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Accurate prediction of heading date under various environmental conditions is expected
to facilitate the decision-making process in cultivation management and the breeding
process of new cultivars adaptable to the environment. Days to heading (DTH) is a
complex trait known to be controlled by multiple genes and genotype-by-environment
interactions. Crop growth models (CGMs) have been widely used to predict the
phenological development of a plant in an environment; however, they usually require
substantial experimental data to calibrate the parameters of the model. The parameters
are mostly genotype-specific and are thus usually estimated separately for each
cultivar. We propose an integrated approach that links genotype marker data with
the developmental genotype-specific parameters of CGMs with a machine learning
model, and allows heading date prediction of a new genotype in a new environment.
To estimate the parameters, we implemented a Bayesian approach with the advanced
Markov chain Monte-Carlo algorithm called the differential evolution adaptive metropolis
and conducted the estimation using a large amount of data on heading date and
environmental variables. The data comprised sowing and heading dates of 112
cultivars/lines tested at 7 locations for 14 years and the corresponding environmental
variables (day length and daily temperature). We compared the predictive accuracy of
DTH between the proposed approach, a CGM, and a single machine learning model.
The results showed that the extreme learning machine (one of the implemented machine
learning models) was superior to the CGM for the prediction of a tested genotype in a
tested location. The proposed approach outperformed the machine learning method in
the prediction of an untested genotype in an untested location. We also evaluated the
potential of the proposed approach in the prediction of the distribution of DTH in 103 F2

segregation populations derived from crosses between a common parent, Koshihikari,
and 103 cultivars/lines. The results showed a high correlation coefficient (ca. 0.8) of the
10, 50, and 90th percentiles of the observed and predicted distribution of DTH. In this
study, the integration of a machine learning model and a CGM was better able to predict
the heading date of a new rice cultivar in an untested potential environment.

Keywords: crop growth model, bayesian inference, differential evolution adaptive metropolis, machine learning,
Markov chain Monte-Carlo
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INTRODUCTION

Heading date is a critical trait for the adoption of a
rice cultivar to target cultivation area and cropping season
(Yano et al., 1997). Improvement in the understanding and
modeling of rice phenology could benefit production and
breeding. However, it has been challenging to model a complex
trait such as heading date, which is usually influenced by
genotype, environment, and their interaction. In the past,
when available data were limited, simple models such as
those based on growing degree days have been used widely,
but these have good predictability for the specific genotype
in environments with few variabilities. With more available
data and knowledge and the improvement in computing
power, more complex models such as crop growth models
(CGMs) have been developed to simulate the performance of
genotypes in a wide range of environments, mainly variable
temperature and photoperiod. A CGM is implemented as a
process-based mathematical set of equations describing the
growth process of a crop plant, and enables the prediction of
growth and production under environmental, management, and
physiological input variables. The physiological parameters in
the CGM equations account for the among-genotype differences
and are usually regarded as environment-independent genotypic
characteristics (Yin et al., 2000). This allows the predictions to
be unrestricted to environments where the model parameters are
calibrated/estimated (Yin et al., 2003).

As genetic marker information becomes available, the genetic
control of the response to environments can be revealed via
the dissection of the variation in the CGM parameters into the
effects of discrete genetic loci—quantitative trait loci (QTLs). The
relevant studies include the research on flowering time in barely
(Yin et al., 2005), rice (Nakagawa et al., 2005), Brassica oleracea
(Uptmoor et al., 2008), and wheat (Bogard et al., 2014). These
studies suggest the possibility of predicting the performance of
a given genotype in an untested environment by plugging in
the parameters that are predicted for the genotype based on the
estimated QTL effects into a CGM. As an example, Bogard et al.
(2014) predicted days to heading (DTH) of wheat based on the
estimated QTL effects and found that the root mean square error
(RMSE) between the observed and predicted values was 6.3 days.
The approach of integrating a gene-based or QTL-based model
with a CGM has been advocated by several studies (White and
Hoogenboom, 1996; Chapman et al., 2002a,b; Letort et al., 2008).
However, further refinement is required for linking the CGM
parameters with genotypes of markers or genes.

For the integrated approach, we must first estimate the
parameters of the CGM using the phenotypic and environmental
data collected in field experiments. Owing to several reasons,
such as the lack of sufficient input data for estimating many
parameters, difficulties in defining the criteria for validating
the predicted accuracy of a CGM, and the diverse structure
of input data, the estimation of CGM parameters remains a
rather open field (Seidel et al., 2018). The estimation methods
can be classified as frequentist or Bayesian. The frequentist
approach assumes that the parameter is a fixed effect and
does not include the prior information of the parameter in

the model. The Bayesian approach assumes that the parameter
is a random variable and the prior information is built into
the model. A comprehensive introduction of this topic can be
found in Makowski et al. (2006). Although the better choice
among Bayesian and frequentist approaches is not clear, the
Bayesian approach could provide further information regarding
the parameters, such as the uncertainty of the estimates, when
the main interest is in interpreting the biological meaning of
estimated parameter values instead of optimizing the predicted
accuracy of the CGM. In several studies (Iizumi et al., 2009; Jones
et al., 2011) a Bayesian approach with the Markov chain Monte
Carlo (MCMC) technique has been applied for estimating CGM
parameters. The commonly used MCMC method, such as the
Metropolis–Hastings algorithm, however, has slow convergence
in practice. Dumont et al. (2014) and Iizumi et al. (2014)
suggested the use of an advanced MCMC technique, such as the
differential evolution adaptive metropolis (DREAM) algorithm,
which can automatically tune the scale and orientation of the
proposed distribution during the search and overcome the
problems of heavy-tailed and multimodal posteriors.

Another consideration is how an integrated framework
connecting the CGM to markers or genes can be built for
predicting complex traits. A straightforward approach is the two-
step approach that first computes the estimates of the CGM
parameters and then uses the statistical models developed for
QTL analysis or genomic prediction (Meuwissen et al., 2001) to
predict the CGM parameters. A unified predictive system has also
been proposed by Technow et al. (2015) and Onogi et al. (2016)
Their framework applied different Bayesian approaches, but both
based their system on a single hierarchical model instead of the
two-stage approach to predict complex traits such as yield in
maize and heading in rice, respectively. Although the integration
of genomic prediction with CGM has shown good potential in
previous studies, another modeling paradigm, such as machine
learning, could also have great potential as a candidate method
for modeling the non-linear, complicated interaction between the
gene and the environment.

Unlike statistical models that focus more on the extraction of
information on the underlying mechanism producing the data,
the machine learning method is concerned with the accuracy
of prediction (Breiman, 2001b). As a result of the big data era,
machine learning has shown unprecedented predictive power
against traditional statistical models. However, there were very
few studies applying the machine learning method in predicting
crop growth, which could stem from the lack of appropriate data
and unfamiliarity with this method in the relevant community. In
this study, we collected the heading data of 112 rice cultivars/lines
tested in multiple locations from 2004 to 2017. This large amount
of heading data combined with environmental data and genetic
marker data allowed us to train a robust machine learning
model and to compare its predictability with that of other
methods. We also collected the heading of 103 F2 segregating
populations created from the crosses of cultivars/lines, which
were selected from the 112 cultivars/lines. This F2 population
data helps validate the model performance in predicting DTH
of a simulated genotype in a new environment. In addition to
training a single machine learning model, building an integrated
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framework combining a CGM and a machine learning model to
predict the complex trait could also be a promising method that
has not been attempted earlier.

In this study, we explored the potential use of the machine
learning method and proposed an integrated approach that
could be superior in an interpolation scenario. We implemented
a Bayesian method for the estimation of CGM parameters.
Although many powerful machine learning methods have been
proposed, there is no single best method that can outperform
others on all fronts, such as the so-called “no free lunch”
theorem. In this study, we evaluated three representative
methods: two decision tree-based approaches [random forest
(RF) and eXtreme gradient boosting (XGB)], and a neural
network-based approach [extreme learning machine (ELM)].
We compared the predictive performance of different modeling
methods, including a CGM [developmental rate (DVR) model],
three machine learning methods, and the proposed integrated
framework, which combines machine learning and CGM using a
two-stage approach to predict the DTH in rice. The comparison
was performed under three cross-validation schemes. We also
examined the ability of the proposed integrated framework
in predicting the distribution of DTH in 103 F2 segregation
populations and demonstrated the superiority of the proposed
approach in predicting the heading date of a new genotype in a
new environment.

MATERIALS AND METHODS

Rice Heading Data
Two datasets of experiments evaluating DTH in rice
cultivars/lines were analyzed in this study. The first was the
dataset of 112 cultivars/lines, and the other was the dataset
of F2 segregation populations derived from crosses between a
Japanese leading cultivar as a common parent, Koshihikari, and
103 cultivars/lines. The 112 cultivars/lines dataset comprised
7,098 observations of sowing, transplanting, and heading dates
of the 112 cultivars/lines evaluated in eight locations in Japan
from 2004 to 2017 (64 combinations of locations and years in
total, Supplementary Table S1). The 112 cultivars/lines were
chosen from those developed in different regions of Japan
(Supplementary Table S2). The experiments were conducted in
one location (Tsukubamirai) in the middle of Japan in the first 2
years, and then gradually expanded to other locations distributed
from the north to the south of Japan in the following years.
All 112 cultivars/lines were sown and transplanted at the same
time in a single experiment at each location, and more than one
experiment (sowing and transplanting on different dates) was
conducted at some locations. We defined the heading date as the
date when more than 50% of individuals reached the heading
stage. The number of plants evaluated for each cultivar/line was
different among the experiments and ranged from 7 to 30. DTH
was calculated as the difference between the heading date and
sowing date. In 70 of 7,168 cases, cultivars/lines did not reach
the heading stage before the end of the experiment. Thus, 70
cases were removed from the analysis. The dataset of the F2
segregation population was created by crossing Koshihikari and

103 of the 112 cultivars/lines. In 2007 and 2008, we evaluated
73 and 30 F2 populations, respectively, in Kasai, Hyogo. Each
population was evaluated using 96 F2 plants (genotypes). The
distribution of DTH in each segregation population was obtained
by recording the heading date of each plant individually.

Meteorological Data
Temperature and photoperiod (day length) are the two most
influential meteorological factors affecting the phenological
development (e.g., flowering) of rice. We downloaded the
daily average temperature data from the Agro-Meteorological
Grid Square Data, National Institute for Agro-Environmental
Sciences, National Agriculture and Food Research Organization,
Japan. We computed the theoretical day length based on the
latitude and longitude of each location according to the CBM
model (Forsythe et al., 1995).

Genotype Marker Data
We used two sets of genotypic marker data from 112
cultivars/lines in this study. The first was the genotype data of 14
SNPs in five heading date-related genes, Hd1 (Yano et al., 2000),
Ghd7 (Xue et al., 2008), Hd6 (Takahashi et al., 2001), Hd16 (Hori
et al., 2013), and Hd17 (Matsubara et al., 2012). The other was the
genotype data of 1,594 markers, which included the 14 heading
date-related SNPs and other SNPs and Simple-sequence repeats
(SSRs) markers. We generated 1,000 simulated genotypes of the
14 heading date-related SNPs as simulated progeny from each F2
population. The simulation was performed based on the linkage
map positions of the SNPs and genotype marker data of parents
of an F2 population.

Methods for Predicting Rice Heading
We compared three methods in the prediction of the heading
date of rice. CGM, a machine learning method, and the proposed
integrated models. The three methods are described in Table 1
with the type of input data and the type of cross-validation
schemes, which are explained in section “Cross-Validation.”

DVR Model
A CGM named the DVR model was modified from a three-stage
beta model (Yin et al., 1997), as proposed by Nakagawa et al.
(2005). The model assumes that the pre-flowering development
of a rice plant is divided into three subphases: (1) the juvenile
phase, when the plant is insensitive to the flowering stimulus;
(2) the “photoperiod sensitive phase,” when the plant starts
to respond to the photoperiodic flowering stimulus; and (3)
the “post- photoperiod sensitive phase,” the period after the
completion of the photoperiod sensitive phase. The progress of
developmental stages (DVS) from seedling emergence (DVS0),
flowering (DVS1) to maturation (DVS2) is quantified as 0, 1, and
2, respectively, and is calculated by integrating the growth rate of
the i-th day DVRi as:

DVSd =
d∑

i=0

DVRi
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where d is the number of days since seedling emergence. DVR is
modeled as the multiplicative function of a temperature response
function and a photoperiod response function, and is defined as
follows:

DVRi =

{
f (Td)
G if DVSd < DVS1 or DVSd > DVS2

f (Td)g(Pd)/G if DVS1 < DVSd < DVS2

where Td and Pd are the daily mean temperature (◦C) and the
photoperiod (h) of the d-th day, respectively, f and g denote
the temperature response function and photoperiod function,
respectively, and G (G > 0) denotes the earliness of flowering
under the optimal condition. DVS1 and DVS2 represent the
ends of the juvenile and photosensitive phases, respectively. The
functions f and g are given by

f (Td) =
[(

Td−Tb
To−Tb

) (
Tc−Td
Tc−To

)(Tc−To)/(To−Tb)
]α

if Tb ≤ Td ≤ Tc,

0 otherwise

g (Pd) =


[(

Pd−Pb
Po−Pb

) (
Pc−Pd
Pc−Po

) Pc−Po
Po−Pb

]β

if Po ≤ Pd,

1 otherwise

where, Tb, Tc, and To are the base, ceiling, and optimum
temperatures (in the unit of degree Celsius), respectively, and Pb,
Pc, and Po represent the base, ceiling, and optimum photoperiods
(in the unit of hours), respectively. The values ofTb,To,Tc, Pb, Po,
and Pc, are fixed at 8, 30, 42, 0, 10, and 24 according to Nakagawa

et al. (2005). The parameter α (α > 0) is the temperature-
sensitivity coefficient, whereas β (β > 0) is the photoperiod
sensitivity coefficient. To minimize the number of parameters,
DVS1 and DVS2 are defined as

DVS1 = 0.145+ 0.005G

DVS2 = 0.345+ 0.005G

according to Nakagawa et al. (2005). Parameters α, β, and
G remain in the DVR model and are assumed to be able
to quantify genetic differences in phenological responses to
environmental factors.

Parameter Estimation
We used the advanced MCMC algorithm to estimate the
posterior distribution of the parameters (α, β, and G). The
details of the implemented DREAM algorithm are provided in
Supplementary Material. The DREAM algorithm runs multiple
chains instead of a single chain. The number of chains should be
larger than twice the number of parameters (three in the DVR
model) and was set to 10. The number of iterations, the number
of samples discarded during burn-in, and the number of selected
samples were set as 50,000, 10,000, and 10,000, respectively.
For the parameters in the DVR model, the normal priors and
ranges of the parameters assumed in the study are summarized
in Table 2. We developed a program in the language Julia to
implement the DREAM algorithm for parameter estimation of
the DVR model. The source code is available from the authors
upon request.

TABLE 1 | Prediction methods used in the study.

Methoda Inputb Cross-validationc

Type Name Description E G LOGO LOGLO

CGM DVR DVR model with Bayesian DREAM MCMC algorithm X

Machine learning ELM Extreme learning machine X X

XGB Gradient boosting X X X X

RF Random forest X X

Integrated model CGM-ELM DVR-Bay -> ELM X X X X

CGM-XGB DVR-Bay -> GB X X X X

CGM-RF DVR-Bay -> RF X X X X

aMethods used for predicting days to heading in rice.
b Input data used for prediction: E indicates environmental data, including daily mean temperature and daily photoperiod; G indicates the genotype marker data.
cLOGO represents leave-one-genotype-out cross-validation. LOGLO is a leave-one-combination-of-genotype-and-location-out cross-validation.

TABLE 2 | DVR model parameters and their prior information.

Parameter Definition Prior N (µ, σ) Range* Unit

alpha Sensitivity of temperature N (3, 1) 0–20 −

beta Sensitivity of photoperiod N (4, 1) 0–25 −

G Earliness of flowering under optimal photoperiod and temperature N (35, 2) 30–120 Day

*A proposal that fell out of the range was discarded during Markov chain Monte-Carlo sampling.
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Machine Learning Methods
We implemented RF, XGB, and ELM to predict the heading
date of rice. The same training data, with the environmental
data and genotypic data as inputs and DTH as outputs,
were prepared for the three machine learning methods. The
environmental data of each observation consisted of daily
temperature from the date of sowing to 199 days later and the
daily photoperiod at the sowing day, and 100 and 200 days
after sowing. As the theoretical photoperiod has a bell-shaped
curve determined only by latitude and longitude, the photoperiod
of three representative days was used to avoid multicollinearity
in the input variables. As described in section “Genotype
Marker Data,” we used two types of genotype marker data. The
data were converted to dummy variables and combined with
environmental data as input.

RF is an ensemble learning method that combines de-
correlated trees and aggregates their predictions by averaging
(Breiman, 2001a). It has been successful as a general-purpose
classification and regression method and is involved in
various practical problems (Biau and Scornet, 2016). We
implemented RF using the R package “randomForest” (Liaw
and Wiener, 2002) with hyperparameters set as the default
values, except for the following parameters: the number of
trees ntree = 500 and the number of variables randomly
sampled mtry = p/3, where p is the number of columns in
the input matrix.

The gradient tree boosting proposed by Friedman (2002) is
an effective and popular machine learning method. Chen and
Guestrin (2016) and Sagi and Rokach (2018) implemented a
scalable end-to-end tree boosting system, called XGB, which
includes innovations such as a novel tree learning algorithm
and a theoretically justified weighted quantile sketch procedure.
XGB has won competitions for machine learning on Kaggle
(Ziêba et al., 2016) and has been proven to be a versatile
and effective tool in regression and classification problems.
We implemented XGB using the R package “XGBoost” (Chen
and He, 2015) with hyperparameters set as their default
values except the following parameters: the maximum depth
of a tree = 6, learning rate = 0.1, and the number of
iterations = 200.

An ELM is a single hidden layer neural network that randomly
assigns the hidden node learning parameters and analytically
determines the network output weights by solving the linear
square system using the least squares method (Huang et al.,
2006). ELM can save time in the training process compared to a
feedforward neural network that adjusts weights through a back-
propagation method. We implemented ELM using the R package
“elmNNRcpp” and set the hyperparameter for the number of
hidden nodes as 100 based on the result of a grid search for 25,
50, 100, 200, and 400 nodes.

Integrated Approach
The proposed integrated approach aimed to link the genotypic
effect on phenological growth using the concept shown in
Figure 1. Data with a large variation in phenological growth
among diverse genotypes tested in multiple environments are

essential for the success of the proposed approach. The approach
is basically a two-step model (Nakagawa et al., 2005; Bogard
et al., 2014) that first links the gene effect to the parameters
in the CGM through a machine learning method, and then
predicts the heading date of a genotype in a target environment
through the CGM. In step 1a, we estimated the model parameters
(α, β, and G) for each genotype using the Bayesian method.
The posterior distributions of the parameters are obtained
via the Bayesian methods. The mean values of the posterior
distributions were chosen as the estimates of the parameters
in the Bayesian method. To link the effect of markers to the
model parameters, we used 112 cultivars/lines for 14 heading-
related markers or 1,594 markers as the input of a machine
learning model for predicting the parameter values. Estimates
of the parameters were used as the output for training a
machine learning model (step 1b). Then, we connected the
genetic effect on the parameters to the crop model in step 2 and
predicted the heading date of a given marker genotype under the
target environment.

Cross-Validation
Three types of cross-validation (CV) were performed to
compare the prediction ability of the different methods.
The first is a fivefold CV that was applied to compare
the performance of the CGM with the machine learning
methods when information on all genotypes and locations
are available. This is a scheme used to validate the accuracy
of prediction for tested genotypes under tested locations. In
a breeding program, we usually do not test the full set of
genotypes across all the environments. The prediction under
this scheme therefore allows breeders to predict the DTH
of “untested combinations” of tested genotypes under the
tested locations. Based on the prediction, breeders can evaluate
the potential adaptation of a tested genotype to a tested
target location.

The second is the leave-one-genotype-out (LOGO) CV. In
this scheme, from among the 112 genotypes, one genotype is
removed from the data and the model is trained to predict
the DTH for the removed genotype. The process is repeated
until each genotype has been removed and predicted once. The
predictions under this scheme allow breeders to predict the DTH
of new lines (or even simulated marker genotypes) under the
tested locations. Based on the prediction, breeders can evaluate
the potential adaptation of an untested genotype (e.g., lines
under development) to a tested target location based on the
marker genotype of the untested genotype. The LOGO CV was
only applied to machine learning methods, and the integrated
approach as the crop model requires the data of the target
genotype to estimate the model parameters.

The third is the leave-one-combination-of-genotype-and-
location-out (LOGLO) CV. In this scheme, one of the eight
locations and one of the 112 cultivars/lines were removed
from the data, and the DTH of the removed genotype in
the removed location is predicted using the prediction model
derived from the data comprising 111 genotypes in 7 locations.
This is a scheme to validate the accuracy of prediction of
untested genotypes under untested locations. The prediction
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FIGURE 1 | Integrated approach concept. Ej is the environmental data that comprises the daily average temperature and daily photoperiod in the j-th environment
(from the date of seeding to the date of heading + 70 days). Yij is the observed phenotypic trait (heading date) for the i-th genotype in j-th environment
(j = 1, 2, . . . , n). Pli is the l-th CGM parameters for the i-th cultivars/line. Gi is a vector of marker genotypes of the i-th cultivar/line.

under this scheme allows us to predict the DTH of new
breeding lines (or simulated marker genotypes, as demonstrated
in this study) to an untested target environment (e.g., expected
environmental conditions in the future) based on marker

genotypes of the untested genotype and environmental data of
the untested environment.

In each CV scheme, the predicted DTH was obtained
for each genotype in each environment (combination of

Frontiers in Genetics | www.frontiersin.org 6 December 2020 | Volume 11 | Article 59951010

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-599510 December 14, 2020 Time: 19:26 # 7

Chen et al. Integrated Approach for Rice-Heading Prediction

location, year, and treatment of different sowing dates).
We then compared the prediction ability among the
modeling methods based on the RMSE between the predicted
and observed DTH.

Prediction of DTH in the F2 Segregation
Populations
The selection of a good parental combination that has a high
probability of generating offspring with desired characteristics is
important in breeding (Iwata et al., 2013). The better prediction
of DTH in the F2 segregation population can help the breeder
to choose the best parental combination to generate progeny
with the desired DTH prior to crossing. This can greatly reduce
the cost and increase the efficiency of breeding. To demonstrate
the potential of the integrated approach, we implemented the
integrated model CGM-XGB trained by parents’ data (the same
data of 112 cultivars) and predicted the DTH in the derived F2
segregation populations (created from the crossing of selected
parental combinations of 112 cultivars) grown under an untested
location, Kasai. In Kasai, 103 F2 segregation populations derived
from a common parent, Koshihikari, and 103 cultivars/lines
were planted in 2008 and 2009 with 73 and 30 populations,
respectively. We evaluated 96 F2 individuals of each segregation
population and measured their heading date to determine
the distribution of DTH in the population. To predict the
distribution of DTH in the segregation populations, we simulated
the genotype marker data of F2 segregation populations, and then
predicted the heading date of simulated genotypes at an untested
location with environmental data. The genotype marker data of
progeny in an F2 segregation population can be simulated from
the genotype marker data of their parents and the estimated
recombination rates between markers. In this study, we simulated
1,000 progeny for 14 markers of heading date-related genes, and
applied the genotype data to the CGM-XGB model constructed
based on the data of 112 cultivars/lines to predict the segregation
distribution of DTH in the F2 population. We considered the
range of DTH of the F2 segregation population for the selection
of progeny with a reasonable value. We therefore compared the
10, 50, and 90th quantiles of the predicted and observed DTH.

RESULTS

Estimation of the DVR Model Parameter
We implemented a Bayesian method for estimating the CGM
parameters in this study. The Bayesian method provided us
with an approximated posterior distribution that was more
informative than the point estimation obtained from the
frequentist method. Table 3 shows the average of the posterior
mean, median, and mode of the CGM parameters (α, β, and
G) among the cultivars/lines from each origin. The average of
the median and mean values of the cultivars/lines from the
same origin are similar; however, the average of the mode
occasionally deviates from the average of the mean. This tendency
is mainly because of the multimodal posteriors induced by
the correlation between the CGM parameters. Therefore, the
mean of the approximated posterior distribution could be more

appropriate to describe the phenological features of a genotype.
The genotypes from the high latitude origins, such as Hokkaido,
Tohoku, and Hokuriku, have less photoperiod sensitivity and
are expected to have a smaller estimated value of β. In contrast,
a larger β should be observed for the photoperiod sensitive
genotypes, mostly from the south of Japan, such as Kinki,
Chugoku, and Kyushu. The average values of the posterior mean
of β were approximately 1.01–1.48 for high latitude origins and
4.76–5.66 for low latitude origins. For α, we can find fewer
differences between the average value of the posterior mean
among origins (all average values were approximately 0.8–1.2).
This probably reflects that the heading date in rice is more
sensitive to the variation in photoperiod rather than the variation
in temperature under the usual conditions. For parameter G,
the smallest average posterior mean could be observed for the
genotype of Northeast origins, Hokkaido (47.6 days) and a larger
average value for the genotypes from Tohoku and Hokuriku (61.4
and 59.6 days), which are south of Hokkaido and in the north of
Japan. The genotypes from the other origins had a similar average
posterior mean of around 52.9–55.4 days.

Comparison of Prediction Ability
Between the Methods
The comparison between the prediction ability of the CGM, the
machine learning approach, and the integrated approach for the
heading date of rice is summarized in Table 4. We first evaluated
the prediction of the heading date of a tested cultivar/line in
a tested location through a fivefold CV process. The machine
learning approach using XGB had a smaller RMSE (4.372 and
2.653 for the model using the environmental data with 14 heading
date-related markers and 1,594 markers data, respectively, as
input) than the CGM (5.711 for the DVR with the parameters
estimated by the Bayesian approach with the DREAM algorithm).
This shows that the use of environmental data and genetic
data combined with the powerful machine learning method can
better predict the heading date of the tested cultivar/line in a
tested environment than the CGM alone. We then evaluated the
prediction of the heading date of an untested genotype in a tested
location using the LOGO CV process. As described in “Materials
and Methods” section, the CGM requires parameters that are
genotypic specific and is unable to make such predictions. The
machine learning method XGB had a better predictive ability
(RMSE = 5.02 and 4.468 with 14 heading date-related markers
and 1,594 markers, respectively) in LOGO CV than the integrated
approach (RMSE = 6.47 and 9.05 with 14 heading date-related
markers and 1,594 markers, respectively). This shows that the
single machine learning method could be a better predictor
when the environmental data is included and the genotypic data
are removed from the training data. The integrated approach
achieved the prediction of the heading date of an untested
genotype via the estimation of the CGM parameters and then
via the fitting of the CGM with the estimates. Both the bias in
predicting the CGM parameters and the adoption of relatively
simple functions in the CGM compared to the more complex
and flexible machine learning methods could be responsible
for the relatively poor predictability in the integrated approach.
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TABLE 3 | Average of the posterior statistics among 112 cultivars/lines from seven different origins.

Parameters in DVR Posterior Cultivar origins

Hokkaido
(9)

Tohoku
(26)

Kanto and
Tokai (24)

Hokuriku
(14)

Kinki and
Chugoku

(9)

Kyushu
(11)

Landrace
and others

(19)

α mean 0.792 1.062 1.141 1.224 0.944 0.891 0.976

median 0.789 1.063 1.149 1.225 0.953 0.911 0.977

mode 0.781 1.071 1.031 1.219 0.735 0.592 0.853

β mean 1.478 1.015 3.994 1.336 4.764 5.652 4.499

median 1.419 0.917 3.853 1.282 4.537 5.144 4.361

mode 1.019 0.427 5.948 1.116 6.632 9.810 5.315

G mean 47.559 61.432 55.236 59.62 55.435 54.788 52.916

median 47.653 61.619 55.693 59.727 56.195 56.497 53.18

mode 47.430 62.403 45.357 55.98 50.004 42.844 49.600

The parameters α, β, and G in the DVR model represent the temperature sensitivity coefficient, the photoperiod coefficient, and the earliness of flowering under the optimal
condition, respectively.

TABLE 4 | Root mean square errors (RMSE) of the three prediction methods used.

Crop growth model Machine learning Integrated approach

DVRa XGBb CGM-XGBc

14H 1,594 14H 1,594

Fivefoldd 5.711 4.372 2.653

LOGOe 5.025 4.468 6.471 9.050

LOGLOf 9.361 8.573 7.690 9.793

aDVR: DVR model with Bayesian DREAM Markov chain Monte-Carlo algorithm.
bXGB: gradient boosting method.
cCGM-XGB: the integrated approach combining DVR with XGB.
dFivefold: fivefold cross-validation.
eLOGO: leave-one-genotype-out cross-validation.
f LOGLO: leave-one combination-of-genotype-and-location-out cross-validation.
14H represents 14 heading-related markers. 1,594 represents 1,594 markers,
including the 14 heading-related markers.

The integrated approach shows its superiority in predicting
the untested genotype in the untested location in the LOGLO
CV process. The integrated approach adopted the Bayesian
approach for the estimation of CGM parameters and trained
an XGB model for predicting the parameters from genotype
markers in step 1. Then, the heading date was predicted with
the CGM of the predicted parameters in step 2. The procedure
of this prediction, abbreviated as CGM-XGB, had the best
predictive ability (RMSE = 7.69 when using 14 heading-related
markers in machine learning) compared to a simple XGB model
(RMSE = 9.361 and 8.537 for the model using the environmental
data with 14 heading-related markers and 1,594 markers data,
respectively, as input). In LOGLO CV, the information of the
tested genotype and the tested location are removed from the
training data, leading the predictor trained by the machine
learning method to be more specific to the involved regions
only. In contrast, the CGM quantifies the response of a plant
to environmental factors using non-linear mechanical equations,
which are more simplified but could be more robust in the
prediction under a more uncertain condition.

TABLE 5 | Root mean square errors (RMSE) of the integrated approaches
involving three different machine learning methods.

Methods in step 1a of the integrated approachesa

Methods in step 1b
of the integrated
approachesb

Bayesian with normal dist. prior

Marker LOGOc LOGLOd

ELM 14H 6.566 7.731

XGB 14H 6.574 7.776

RF 14H 6.817 8.038

ELM 1,594 18.627 19.087

XGB 1,594 9.552 10.658

RF 1,594 7.716 8.528

aStep 1 in the integrated approaches was to estimate the crop growth model
parameters using the rice heading date data and the environmental data.
bStep 2 in the integrated approaches was to train a machine learning model to
predict the CGM parameters of an unknown genotype.
cLOGO: leave-one-genotype-out cross-validation.
dLOGLO: leave-one-combination-of-genotype-and-location-out cross-validation.
ELM, extreme learning machine; XGB, eXtreme gradient boosting; RF, random
forest.

Table 5 shows the results of the integrated approaches that
were implemented with the combinations of three machine
learning methods (RF, XGB, and ELM), and two sets of genotype
marker data (14 heading-related markers and 1,594 markers).
First, we found that the model with 14 heading date-related
markers had better prediction ability than the model with
1,594 markers, which also included the 14 heading-related
markers. The lower prediction ability in the model with a
larger number of markers could be attributed to the inclusion
of markers irrelevant to phenological growth and the lack
of training data for the target genotype. αβG Second, the
adoption of a different machine learning method could affect
the prediction ability. The rank of the ability in the model
was XGB > ELM > RF with 14 heading date-related markers,
and RF > XGB > ELM with the 1,564 markers. It reveals
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that XGB and ELM could be a better predictor of CGM
parameters when less noise is present in the input data (14
heading date-related markers), whereas RF is relatively robust
to the input data with noise. ELM could be greatly affected
by the noise in the input data and even provided a highly
deviated estimation of the parameters. Such problems could
be found in the especially large RMSE of ELM in the model
with 1,594 markers. Among all combinations of methods in
the integrated approaches, XGB in step 1b in the integrated
approach had the best prediction ability in both the LOGO and
LOGLO CV processes.

Predicting DTH Distribution in F2
Segregation Populations
We examined the ability of the proposed integrated model
CGM-XGB in predicting the distribution of DTH in 103 F2
segregation populations. Figure 2 shows the scatterplot of
the 10, 50, and 90th percentiles of the observed distributions
and predicted distributions. The predicted RMSE, correlation
coefficient, and absolute mean difference are also shown in
Figure 2. The percentiles of the predicted DTH distribution
tended to be underestimated in comparison to the percentiles
of the observed DTH distribution for most populations. The
correlation coefficients were mostly over 0.8, and showed that
the integrated approach could be useful in predicting the rank
of the percentiles of distribution in DTH between different
F2 segregation populations. A slightly better prediction was
found in the 30 populations tested in 2009 than in the 73
populations tested in 2008, although the reason for this is
unclear. Histograms of the observed and predicted distributions
in DTH for each segregation population are shown in
Supplementary Figures S1–S3.

DISCUSSION

In this study, we proposed a potential integrated approach
that combines machine learning methods and a CGM to
improve the modeling of physiological growth of rice plants.
We emphasize the importance of the training data for the
successful building of the model. Phenotypic and environmental
data consisting of a wide range of genotypes grown in
multiple environments is a prerequisite for the proposed
approach. In this study, 112 cultivars/lines were selected from
among those adapted to different ecological regions in Japan
(Yamasaki and Ideta, 2013) and had been evaluated at these
locations for more than 10 years. Such comprehensive data
allows us to estimate the phenological parameters in a CGM
with less estimation bias and mitigates the bias induced
by the location effect and makes it possible to associate
the marker effect with the model parameters. In addition,
the real data of the F2 segregating populations presents
opportunities to validate the predictability of the model for
predicting the potential of a cross to develop a new cultivar/line
for a new environment. In previous studies, this validation
was mostly conducted using a simulation study or cross-
validation that might not reflect the true performance of the

proposed model. The power of machine learning methods
is in addition to the quality of the training data. Because
more information can be collected from high-throughput
phenotyping, genotyping, environmental sensing, and omics
analyses, more attention can be paid to the data rather than only
the methodologies.

Estimating the parameters of the CGM appropriately is
essential for the prediction accuracy of a model and for further
inference that utilizes the predicted model parameters. Despite
prior knowledge, the estimation method can influence the
results; therefore, the best strategy to conduct such estimation
remains open for discussion. For parameter estimation, we
implemented both frequentist and Bayesian approaches and
showed no obvious difference in the prediction accuracy of
the CMG (results not shown here). This might mainly result
from the substantial and complete heading data collected
in this study, which provides sufficient information for
parameter estimation.

The parameters α, β, and G in the DVR model represent
the temperature sensitivity coefficient, the photoperiod
coefficient, and the earliness of flowering under the optimal
condition, respectively. In this study, we obtained not only
the point estimated value but also the approximated posterior
distribution of these three parameters for 112 Japanese rice
cultivars. This information allowed us to first examine the
phenological characteristics of the most representative cultivars
quantitatively and use them in building the integrated model.
The characteristics of most Japanese rice cultivars, including
the tendency of photoperiod sensitivity, can be found in a
database1. We compared the tendency of photoperiod sensitivity
of the tested cultivars/lines to the posterior mean of β, and
the results were mostly matched (results not shown here). In
addition, parameter estimation using the Bayesian method
also matched our knowledge regarding the character of a
genotype and might better quantify the indirect features of the
phenological growth of rice.

As shown in Table 3, the β of cultivars originating in
high latitude regions was close to 1, indicating the strong
tendency of photoperiod insensitivity and vice versa. The
results are consistent with those of a previous study (Okumoto
et al., 1996) and rice photoperiod sensitivity is generally
diverse (Hori et al., 2016). All five heading date-related
genes in this study are associated with the rice photoperiodic
pathway (Yano et al., 2000; Takahashi et al., 2001; Xue et al.,
2008; Matsubara et al., 2012; Hori et al., 2013). Although
temperature is also an essential factor in predicting rice
growth, the variation in α was small, suggesting that the
diversity of the thermal reaction among the 112 cultivars
may be small. In combination with the estimation of α and
G, it presented the possible coordination between thermal
reaction, photoperiod sensitivity, and the earliness of flower
initiation that helps the corresponding cultivar to adapt to the
target environment.

Compared to the results achieved by machine learning
methods in other fields in agriculture, such as crop management

1https://ineweb.narcc.affrc.go.jp/
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FIGURE 2 | Scatterplot of the 10, 50, and 90th percentiles of observed and predicted distribution of days to heading (DTH) of segregation populations in 2008 (A)
and in 2009 (B). The observed DTH was obtained from the 96 plants of each population, and the predicted DTH was generated from the proposed integrated
approach CGM-XGB. RMSE: root mean square error; COR: correlation coefficient; MD: mean absolute difference.

and water management (Liakos et al., 2018), examples of
successful applications in crop breeding and genetics are still
relatively rare. The fundamental reason is not only the complexity
of the genotype × environment × management interaction,
but also the unfamiliarity of the method, the lack of adequate
data, and the few experts who are familiar with both fields. We
compared the use of a CGM, machine learning models, and
integrated approaches in predicting rice heading. The results
showed that the machine learning model with the genotypic
marker was more accurate than the CGM in predicting the
heading of a tested cultivar/line in a tested location. We
also compared the predictability of three machine learning
methods: RF (a popular ensemble learning method), ELM (a
feed-forward neural network), and XGB (a modified gradient
boosting method), and showed the advantages of applying
the newly developed algorithm. It is not surprising that the

machine learning methods were capable of better capturing the
complex and non-linear association between complicated traits
and genetic and environmental variables. However, at the same
time, a machine learning method could yield worse predictions
than a mechanistic CGM if the training data is limited or full of
noise. We also showed that the machine learning models were
less applicable for predicting the extrapolation problem, such
as the prediction of the heading of untested genotypes in an
untested location that can be predicted better by the proposed
integrated approach. However, both CGM and the machine
learning model could be useful for cultivation management, such
as supporting the decision on the suitable sowing timing for an
optimal heading date.

The three machine learning methods (RF, XGB, and ELM)
compared in this study have proven their superiority in many
machine learning challenges, and the implemented packages are
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already available to run on many platforms. Although XGB and
ELM had slightly better predictability than RF in our results,
there is no guarantee that one method could outperform others
in a different scenario. The experimental design, training data,
and setting of hyperparameters sometimes play an important
role in practical applications. In addition, factors such as (1)
suitability to a given setting, (2) computational cost, (3) software
availability, and (4) usability, may be considered when selecting
the best method (Sagi and Rokach, 2018). In addition, the lack
of interpretability in most machine learning methods could be an
issue when we apply them to biological problems. For example,
the machine learning model in our integrated approach could
not provide an intuitive understanding of the underlying gene
regulation of rice heading. The development of interpretable
machine learning methods might be helpful in the future when
both predictability and interpretability are needed.

Using 112 cultivars, the integrated model CGM-XGB
simulated and predicted the distributions of DTH in 103 F2
segregation populations. The predicted distributions of DTH
were generally similar to those observed in the real data.
Based on the prediction of DTH in a segregating population
in an environment and management system before producing
crosses, breeders can consider the optimum cross combinations
to develop a novel cultivar. In addition, a recent serious event,
high temperature during the rice ripening period resulted in
deterioration of the grain quality in Japan (Morita, 2009). The
models explored in this study can propose the ideal heading date
and sowing timing in a cultivar to avoid such damage.

CONCLUSION

The capability of the proposed integrated approach in predicting
the heading of a new genotype in a new environment was
demonstrated, and this could prove useful in suggesting the
locally adapted ideotype for rice phenology. We also revealed
that the machine learning model could outperform the crop
growth model (CGM) (phenological model without genotypic
data) in predicting the heading of a tested cultivar/line in a
tested environment and could be replaced with a phenological
model when higher accuracy is preferred. However, the machine
learning model is highly dependent on the given data and is
usually less capable of extrapolating, as demonstrated by the
Leave-one-genotype-out cross-validation (LOGLO CV) results. It
is also difficult to dissect the machine learning model and reveal
the explanatory mechanisms underneath the model, as can be
done with the CGM. The CGM models the key physiological
processes of crop growth, and the inclusion of CGM into the
modeling platform can reduce the uncertainty when simulating
crop growth. This study confirmed that the integrated approach

improved the prediction of the complex trait for a new genotype
in a new location and may benefit crop selection.
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Prediction of growth-related complex traits is highly important for crop breeding.

Photosynthesis efficiency and biomass are direct indicators of overall plant performance

and therefore even minor improvements in these traits can result in significant breeding

gains. Crop breeding for complex traits has been revolutionized by technological

developments in genomics and phenomics. Capitalizing on the growing availability

of genomics data, genome-wide marker-based prediction models allow for efficient

selection of the best parents for the next generation without the need for phenotypic

information. Until now such models mostly predict the phenotype directly from the

genotype and fail to make use of relevant biological knowledge. It is an open question

to what extent the use of such biological knowledge is beneficial for improving genomic

prediction accuracy and reliability. In this study, we explored the use of publicly available

biological information for genomic prediction of photosynthetic light use efficiency (8PSII)

and projected leaf area (PLA) in Arabidopsis thaliana. To explore the use of various types

of knowledge, we mapped genomic polymorphisms to Gene Ontology (GO) terms and

transcriptomics-based gene clusters, and applied these in a Genomic Feature Best

Linear Unbiased Predictor (GFBLUP) model, which is an extension to the traditional

Genomic BLUP (GBLUP) benchmark. Our results suggest that incorporation of prior

biological knowledge can improve genomic prediction accuracy for both 8PSII and PLA.

The improvement achieved depends on the trait, type of knowledge and trait heritability.

Moreover, transcriptomics offers complementary evidence to the Gene Ontology for

improvement when used to define functional groups of genes. In conclusion, prior

knowledge about trait-specific groups of genes can be directly translated into improved

genomic prediction.

Keywords: genomic prediction (GP), photosynthesis, phenomics data analysis, Arabidopsis thaliana (Arabidopsis),

GBLUP, GFBLUP
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INTRODUCTION

Due to breakthroughs in DNA sequencing technology over
the past decade, high-throughput genotyping is now a routine
practice in plant breeding (Rimbert et al., 2018). Phenotyping
is undergoing a similar revolution: large phenomics facilities
are being developed that can rapidly score large germplasm
collections of plants in a range of different environments (Flood
et al., 2016; Crain et al., 2018). These technological developments
have made it possible to acquire datasets describing genotypes
and phenotypes for large numbers of individuals at an extended
temporal scale. Despite recent advances in phenomics it is still
more expensive and laborious than genotyping. To make the
most use of phenomic datasets, Genomic Selection (GS) based
breeding programs aim to predict unobserved phenotypes of
individuals based on genotypes alone. This has the twofold
benefit of reducing breeding costs and speeding up breeding
programs as plants can be genotyped in the seedling stage
and selected accordingly, thus negating the need to grow large
populations to maturity and scoring them all to obtain breeding
values based on phenotypes. GS usually models the unobserved
phenotypes as additive effects of all genetic markers (total
additive genomic value or breeding value) in the test population
using a genomic prediction (GP) model. This GP model is based
on a reference population which has both been genotyped and
phenotyped for the trait(s) of interest (Meuwissen et al., 2001).
The performance of GP depends on many factors, including
genetic architecture, reference population size and structure
and heritability (Karaman et al., 2016). However, GP accuracy,
usually defined as the correlation (Pearson’s r) between observed
phenotypes and predicted breeding values, is generally lower
for complex traits than for simpler ones (Morgante, 2018). This
is because such traits are affected by many loci with small to
moderate effects, along with non-additive genetic (dominance,
epistasis) and genotype-by-environment (GxE) interactions
(Falconer and Mackay, 1996). Incorporating epistasis into GP
models has been reported to improve performance in selfing
plant species but may not work for outcrossing species; therefore,
additive GP models are still the primary choice (Jiang and Reif,
2015).

In GP models, each individual’s genetic or breeding value
is modeled as the sum of additive marker effects. Despite
advancements in phenomics, phenotyping data is still usually
only available for a few traits of several hundreds of individuals
(n), compared to millions of genetic markers (p). GP models
tackle this curse of dimensionality (p > n) by regularization
(Meuwissen et al., 2001). When marker effects are fixed, this
comes in the form of a penalty term added to the log-likelihood,
as in LASSO or ridge regression. More frequently, marker
effects are considered random, and regularization is achieved
through prior distributions on the marker effects. The variance
in these priors is directly related to the heritability, and can
be estimated either using REML, or a fully Bayesian approach.
In the classical GBLUP-approach, a single normal distribution
with equal variance is assumed for all marker effects (Vanraden,
2008). More recently, mixture distributions have been considered
(Moser et al., 2015). The prior could e.g., be amixture of Gaussian

distributions with large and small variances, and a point mass
at zero, allowing a marker to have respectively, large or small
effects, or no effect at all (Macleod et al., 2016). Moreover,
restrictions on the shape of the probability distribution, usually
Gaussian, can be relaxed (e.g., t-distribution) to accommodate
genetic architectures having a larger number of high to moderate
effect sizes (Gianola, 2013) or another suitable distribution can
be exploited instead. In spite of these refinements, it is usually
impossible to find the true causal variants when p > n, which
may lead to suboptimal prediction. Therefore, several authors
suggested that a priori available biological knowledge may be
incorporated in GP models, prioritizing likely causal markers,
and ultimately improving prediction accuracy (Edwards et al.,
2016; Ehsani et al., 2016; Wang et al., 2018).

Two types of biological knowledge have been considered in
the literature: first, knowledge on biological properties of genes
and their associated markers and second, knowledge in the
form of secondary phenotypes. The latter typically concerns -
omics data, and is modeled using additional relatedness matrices
(Guo et al., 2016; Morgante, 2018; Azodi et al., 2020) or
penalized selection indices (Lopez-Cruz et al., 2020). Although
such -omics data can in principle be generated for the GP
reference population, the use of more general publicly available
information is often more feasible and cost-effective. We
therefore focus on biological properties of genes and markers,
such as Gene Ontology (GO) and post-GWAS QTL information.
The GO provides a structured resource of functional classes
of gene products based on orthology, represented into three
biological domains, i.e., molecular function, cellular component
and biological process (Ashburner et al., 2000). Similar functional
groupings can be achieved from transcriptomic experiments
based on the assumption that functionally related genes are
expressed together. These clusters of co-expressed genes may be
enriched in multiple GO terms or pathways. Such information
can be incorporated by allowing the GP model to put more
weight on either certain individual markers (Legarra and
Ducrocq, 2012; Macleod et al., 2016) or groups of markers
(Edwards et al., 2016). Various modeling approaches have been
proposed to enable use of such data (Zhang et al., 2010; Speed
and Balding, 2014; Edwards et al., 2016; Ehsani et al., 2016;
Guo et al., 2016; Fragomeni et al., 2017). Here we use the
Genomic Feature Best Linear Unbiased Predictor (GFBLUP)
approach proposed by Edwards et al., 2016. GFBLUP extends
GBLUP by partitioning the total genomic variance into two sub-
components to weigh different genomic regions differently. This
allows incorporating prior biological knowledge about groups of
variants by treating each region as a separate random genetic
effect with different variance. Subsequently, researchers applied
this approach to various traits (Sarup et al., 2016; Fang et al.,
2017; Rohde et al., 2017; Gebreyesus et al., 2019). While prior
biological knowledge has thus been used to improve GP accuracy,
the question remains what type of knowledge is most useful
and how much the genetic architecture impacts the potential for
improvement of particular traits.

In this study, we investigate improvement in GP performance
using two sources of publicly available biological knowledge,
i.e., Gene Ontology (GO) and clusters of co-expressed genes
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(COEX). This information was incorporated using the GFBLUP
modeling approach, grouping markers in genes according to
either their predicted function or co-expression, respectively. As
complex traits of study, we focused on photosynthetic light use
efficiency of photosystem II (8PSII) and projected leaf area (PLA)
in Arabidopsis thaliana. Both of these traits are related, in the
sense that the 8PSII directly illustrates the photosynthetic light
use efficiency and can capture the most immediate physiological
and regulatory response to varying irradiance levels (Van Rooijen
et al., 2015), whereas growth in PLA is the net outcome of unit
leaf photosynthetic capacity over time (Weraduwage et al., 2015;
Liu et al., 2020).

RESULTS

Genomic Prediction of Complex Growth
Related Traits
Previously, Van Rooijen et al. (2017) conducted a GWAS on A.
thaliana photosynthesis. In particular, they measured the light
use efficiency of photosystem II electron transport (8PSII) for
344 accessions of the Arabidopsis HapMap population, switching
from low light (100 µmol m−2 s−1) to high light (550 µmol
m−2 s−1) irradiance at the onset of day 25. In total, they took
6 measurements before and 12 after applying light stress to
identify potential QTLs during acclimation to high light. As we
intend to use this population to explore the utility of biological
knowledge in genomic prediction, we combined projected leaf
area (PLA), another indicator of plant growth, with 8PSII . We
first assessed whether GP works with reasonable performance for
these complex traits. For this purpose, a classical Genomic Best
Linear Unbiased Prediction (GBLUP) model was constructed
to assess how well the infinitesimal modeling assumptions
fit and to calculate markers-based heritability. In this model
(Equation 2), all marker effects are treated as arising from a
single normal distributionN(0,Gσ 2

g ) having one random genetic
component, to regress each individual phenotype measurement
over all markers simultaneously. At low light (LL) levels, mean
prediction accuracy for 8PSII is lower (Pearson’s r between
predicted and observed phenotypic values ranging from 0.16 ±
0.02 to 0.22 ± 0.01) than at high light (HL, Pearson’s r ranging
from 0.40 ± 0.01 to 0.48 ± 0.01), as shown in Figure 1A.
Prediction accuracy for PLA (Figure 1B) ranges from 0.06 ±
0.01 to 0.17 ± 0.01 and rises with the increase in plant size and
simultaneously decreases with increase in phenotypic coefficient
of variation. Genomic heritability (h2GBLUP) for 8PSII ranged
from 0.08 to 0.13 under LL and 0.56 to 0.87 under HL, and
0.05 to 0.17 for PLA (Supplementary Figure 1). Differences in
prediction accuracy for 8PSII between LL and HL are in line
with differences in genomic heritability, in accordance with
the observation that genomic prediction accuracy is generally
positively correlated with heritabilities (Hayes et al., 2009).
Moreover, for ∼1.2% of the GBLUP models for PLA, h2GBLUP
was zero because of undetermined genomic variance, whereas
for 8PSII ∼7% of genomic variances were estimated to be
100% (h2GBLUP = 1), which is clearly an over-estimation
(Supplementary Figure 2). As reported by Kruijer et al., 2015, it

was expected (based on 5000 simulated traits) that ∼10-15% of
GBLUP models could have variance components that cannot be
estimated for this population, so we discarded these models from
our analysis.

An extension of GBLUP is MultiBLUP (Speed and Balding,
2014), using multiple random genetic components in the model
(Equation 4), thus allowing differential weighting of groups
of genomic markers, each having a separate kinship matrix
derived from that group. We applied MultiBLUP using adjacent
overlapping chromosomal partitions of 10 kb (yielding best
performance when testing window sizes of 1 to 100 kb) to check
if multiple kinship matrices or genomic variance decomposition
improve prediction. The results (Supplementary Figure 3)
indicate that performance was close to that of GBLUP and
could not be improved further. This could be because most
models ended up with only one background kinship matrix
during cross-validation and many of these genomic regions
did not meet the significance threshold (pBonferroni < 0.05)
during association testing. In summary, these results show that
predictive performance for these complex traits is low and
there may be room for improvement by incorporating prior
biological knowledge, decomposing the total genomic variance
into biologically relevant subsets.

High-Level Biological Knowledge Does Not
Necessarily Improve Genomic Prediction
The next question is whether predictive performance can be
improved by using only markers residing within genes that
are known to be linked to the traits of interest. The idea
comes from previous studies, in which a subset of markers
was associated to biological relevant genes and achieved a
genomic value similar to the total genomic value achieved when
using all SNPs (Vanraden et al., 2017; Li et al., 2018). Here,
we selected 7,242 photosynthesis related genes, referred to as
PSGENES in the text, from public repositories (see M&M)
and constructed a GBLUP model based only on these. The
Genomic Relationship Matrix (GRM) was constructed from all
markers within the ORFs of PSGENES, leaving ∼17% of the
total genotyped markers after filtering. Interestingly, the models
performed equally well (Figure 1) as the GBLUP based on all
markers for both traits, with a slight improvement in predictive
ability for PLA (max. ∼6% increase in accuracy). Subsequently,
to assess whether this pre-selected subset of markers can improve
results if they are weighted differently than the rest of markers,
we constructed another model using the GFBLUP modeling
approach (Edwards et al., 2016) (Equation 3) having two genomic
components. In this model, the markers within PSGENES were
treated as one genomic component and the remaining markers
as a second genomic component. Again, this model showed
similar predictive performance as GBLUP, with some reduction
in variability for PLA, but could not improve the accuracy
further (Figure 1). From this, we conclude that prior biological
knowledge-based selection of functionally relevant genes is
potentially useful, but an optimal grouping may be important to
improve GP further.
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FIGURE 1 | Genomic prediction accuracy for photosynthetic light efficiency and projected leaf area. Cross-validation based assessment of prediction accuracy as

Pearson’s r between true and predicted values using three models: (i) GBLUP using all genomic markers (ALL), (ii) GBLUP using only pre-selected photosynthesis

related genic markers (PSGENES) and (iii) GFBLUP using PSGENES as a genomic feature in two genomic components. (A) Accuracy for 8PSII for two days (6 time

points) under low light irradiance levels (LL) and four days (12 time points) under high light irradiance (HL). (B) Accuracy for PLA measured 8 times per day from day 14

after sowing to day 20, where day 20 has only two measurements.

More Fine-Grained Biological Knowledge
Is Useful for Improving Genomic Prediction
To assess whether prior information from publicly available
resources can help improve GP performance, we tested grouping
of genes based on Gene Ontology (GO) terms and previously
reported clusters of co-expressed genes (COEX) of Arabidopsis
thaliana in multiple tissues and developmental stages (Movahedi
et al., 2011). Each of the three GO sub-ontologies, Biological
Process (BP), Molecular Function (MF) and Cellular Component
(CC), was used. The corresponding groups of markers in a GO
or COEX group, called a genomic feature (GF), were used in
GFBLUP (Equation 3) using a separate model for each feature
with two genomic components, i.e., one with markers from
the GF and the other with the remaining markers (rGF). The
predictive performance was compared to that of the GBLUP
benchmark using all markers with identical sets of 8-fold cross-
validation test populations. Each group of markers based on GO
or COEX was treated as a separate random effect in its respective
GFBLUP model for which its contribution to the total genomic

variance was calculated (see M&M). For each GF, the effects
of all corresponding markers were assumed to follow a normal
distribution with equal variance, but different from the remaining
markers; that is, the markers in the GF are differentially weighted
and prioritized from the rest.

In total, 7,297 GO terms and 12,419 disjoint COEX
gene groups were linked to at least one marker. The total
number of genes ranged between 1 and 24,998 for the GO
features and between 1 and 3,384 for the COEX groups
(Supplementary Figure 4, Supplementary Table 4); the number
of markers ranged between 0 and 109,723 for the GO features and
4 and 19,621 for the COEX groups. Due to the hierarchical GO
structure, the 95th percentile of the total number of genes within
GO features was lower (496) as compared to COEX (2,466).
Note that both GO and COEX groups may overlap, i.e., a gene
can be in multiple functionally related GO/COEX groups. In
the following results, the improvement in genomic prediction
has been quantified in terms of percent gain in accuracy
compared to the GBLUP benchmark, GFBLUP model’s goodness
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FIGURE 2 | Biological priors can help improve genomic prediction accuracy for growth related traits. Prediction accuracy of the best overall GFBLUP models using

Gene Ontology (GO) and co-expression (COEX) gene groups, compared to the GBLUP benchmark (without prior biological knowledge). Since the GBLUP model was

evaluated for each measurement point, so the GBLUP here is shown for the corresponding time point where improvement by GFBLUP was observed. Accuracy was

calculated as Pearson’s r between true vs. predicted values. The GBLUP-ALL model uses all markers in GBLUP; GFBLUP-GO and GFBLUP-COEX models use the

top GO terms and COEX (see text for details). (A) Accuracy for 8PSII under low light irradiance levels (LL). (B) Accuracy for ϕPSII under high light irradiance (HL). Here,

despite showing some improvement, the GFBLUP-GO model did not pass all of our model evaluation criteria (see Model Performance Evaluation). (C) Accuracy for

PLA.

of fit measured using likelihood ratio test (LR), and genomic
heritability (h2GBLUP) and proportion of genomic heritability
explained by a genomic feature (h2

f
).

GO Informed Prediction
7,297 GO terms were tested with repeated 8-fold cross-validation
at multiple measurements of a trait, leading to a total of ∼10
million GFBLUP model accuracies for 8PSII and∼29 million for
PLA (Supplementary Figure 5). The models for which variance
was apparently over-estimated (h2

f
> 0.99) or undetermined

(h2
f

< 0.01) were not considered for subsequent analysis. This

was the case for ∼50% of the models for both traits, indicating
that only selected biological groups are potentially helpful.

We initially analyzed the highest gain in prediction
performance obtained by any GO term at any time point.
For 8PSII , “salicylic acid biosynthesis” (BP) provided the highest
increase in accuracy (∼60%), for 8PSII measurements under low
light on the second day (Figure 2, Supplementary Table 2A).
For the GO sub-ontologies CC and MF, “organelle outer
membrane” and “phosphatase activity,” respectively yielded
highest gains in these categories under low light (∼43 and
37%, respectively; Supplementary Table 2A). None of the GO
terms yielded a significant improvement after high light stress;

however, some GO terms, e.g., “protein containing complex”
yielded an increase in accuracy higher than the benchmark but
not passing our model evaluation criteria wholly (Figure 3).
For PLA, the largest improvement (∼197%) was obtained
by the biological process “monocarboxylic acid biosynthesis”
(Figure 2, Supplementary Table 2B). The best performing
MF and CC terms for PLA were “exopeptidase activity” and
“chloroplast part” (∼185 and ∼178%, respectively; Figure 3,
Supplementary Table 2B). Interestingly, these best CC terms for
both traits are directly related to photosynthesis, which lends
credibility to the usefulness of the GO terms to capture relevant
prior biological knowledge.

In total, 43 GO terms (BP:34, CC:6, MF:3) were potentially
informative (i.e., Wilcoxon–Mann–Whitney test p-values <

0.05, without multiple testing correction), showing a tendency
to improve 8PSII traits and yielding a significant increase
in GFBLUP model accuracy (Supplementary Figures 6A, 7,
Supplementary Table 2A) compared to GBLUP. The overall
gain in accuracy for these informative GO features ranged
between 23 and 60%. The GO terms’ hierarchical redundancy
was removed using GO trimming (Jantzen et al., 2011) and the
remaining 40 informative terms fell broadly into six biological
clusters (Figure 4, Supplementary Figure 9): (i) hormonal
regulation; (ii) cellular development; (iii) transport; (iv)
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FIGURE 3 | Biological priors based on top GO cellular components improving genomic prediction accuracy for growth related traits. Prediction accuracy of the best

GFBLUP models using Gene Ontology (GO) cellular components gene groups, compared to the GBLUP benchmark (without prior biological knowledge). The

accuracy of benchmark model may differ within corresponding figures of Figures 2, 3, because it is calculated from the corresponding time point, where improvement

by GFBLUP was observed. Accuracy was calculated as Pearson correlation between true vs. predicted values. The GBLUP-ALL model uses all markers in GBLUP;

GFBLUP-GO models use the top GO cellular component terms mentioned in the text above. The text in the bottom of boxplots shows the likelihood ratio test p-value

(LRT) and proportion of genomic heritability explained (h2f ) by corresponding GO model. (A) Accuracy for 8PSII under low light irradiance levels (LL). (B) Accuracy for

8PSII under high light irradiance (HL). Similar to Figure 2, the GFBLUP-GO model did not pass all of our model evaluation criteria (see Model Performance Evaluation),

though showing some improvement. (C) Accuracy for PLA.

metabolism; (v) catabolism and (vi) macromolecular complex
assembly, organization, and biogenesis. The cellular component
terms were semantically clustered into organellar membranes
and photosynthesis machinery sub-compartments, whereas
molecular function terms were related to transmembrane
transport and phosphatase activities.

For PLA, 52 GO terms (BP:41, CC:6, MF:5) resulted in
significant improvement (pFDR < 0.05) in predictive ability
(Figure 5, Supplementary Figure 6C, Supplementary Table 2B)
and the gain in accuracy ranged between 104 and 197%. After
removal of hierarchical redundancy, semantic grouping of the
remaining 45 GO terms showed that they involved a number
of growth and developmental processes. Biological process GO
terms fell into ∼8 clusters (Figure 6, Supplementary Figure 10)
related to development, defense response, stress response, cell
cycle regulation, metabolism, molecular biosynthesis, cellular
component organization, and transport. The molecular function
terms were clustered into two groups including exopeptidase
and methyltransferase activities. The cellular component terms
included the photosynthesis machinery (i.e., chloroplast) and
endoplasmic reticulum. Comparison of average accuracy over
multiple folds of GO models (Supplementary Figures 6A,C)
indicate that many models performed better than GBLUP. Some

of these passed our significance threshold (see model evaluation
criteria, M&M) at a particular trait measurement but appeared to
improve prediction performance for other measurement points
as well.

The maximum number of genes annotated with the
informative GO terms for 8PSII and significant GO terms
for PLA were 1,358 and 1,245, respectively. These GO terms
appeared at multiple levels of the GO hierarchical structures,
including parent and child terms closely related to photosynthesis
and growth (Table 1). Moreover, many genes were common
with the pre-selected photosynthesis related PSGENES: 42 and
58% for 8PSII and PLA respectively, significantly more than
what expected by chance (pχ2

df : 1
< 0.05). Total genomic

heritability (h2GBLUP) was negatively correlated with predictive
gain (rΦPSII = −0.77, rPLA = −0.5). The genomic heritability
explained individually (h2

f
) by the informative GO terms ranged

between 6 and 31% for 8PSII and between 3 and 43% for
PLA (Supplementary Tables 2A,B). Interestingly, the markers
associated with these GO terms constituted only 0.1–3.3% of
the total markers for 8PSII and 0.005–2.8% for PLA. This
indicates that to improve predictive ability, genomic variance can
be decomposed based on biologically meaningful sets of genes
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FIGURE 4 | Semantic clustering of GO informed prediction for 8PSII. Multidimensional scaling (MDS) plot of the representative subset (i.e., terms remaining after the

redundancy reduction) of biological process GO terms informative for 8PSII. Semantically similar GO terms are clustered based on the “SimRel” semantic similarity

measure using Revigo. Dot size is proportional to the number of genes annotated with the GO term, such that more general GO terms have larger circles. The x and y

coordinates indicate relative cluster distances in 2 dimensions. The %gain of a particular GO term is indicated by the circle color.

FIGURE 5 | Improvement in genomic predictive performance using GO for PLA. All GO terms that significantly improve GFBLUP models for PLA with %gain in

accuracy (r) over GBLUP. Each GO term has a separate model for individual measurements indicated as T{day}_{Number of measurement}. The color bar identifies

the GO terms as Biological Process (BP), Cellular Component (CC) and Molecular Function (MF).
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FIGURE 6 | Semantic clustering of GO informed prediction for PLA. Multidimensional scaling (MDS) plot of the representative subset (i.e., terms remaining after the

redundancy reduction) of cellular component GO terms informative for PLA. Semantically similar GO terms are clustered based on the “SimRel” semantic similarity

measure using Revigo (Supek et al., 2011). Dot size is proportional to the number of genes annotated with the GO term, such that more general GO terms have larger

bubbles. The x and y coordinates indicate relative virtual cluster distances in 2 dimensions. The %gain of a particular GO term is indicated by the bubble color.

scattered over the genome rather than lie in adjacent regions such
as in the MultiBLUP analysis above. Moreover, h2

f
is positively

correlated with GO gene group size (rΦPSII = 0.87, rPLA = 0.77)
as well as with the likelihood ratio (rΦPSII = 0.60, rPLA = 0.65)
of both trait models, indicating that incorporating meaningful
prior subsets into the GFBLUP model improves goodness
of fit.

From this we infer that GO-based prior knowledge can
improve GP performance. The improvement is most prominent
for traits with low heritability, where some of the GO terms
appeared more frequently for PLA than 8PSII at multiple
measurement times.

COEX Informed Prediction
Similar to genomic features based on GO, we made subsets
of markers based on COEX clusters by selecting the markers
within the ORFs of genes which were part of a given

COEX cluster. Similar to GO based models, COEX models
with zero and with 100% variance explained were discarded
(Supplementary Figure 5). In general, more COEX models pass
our model evaluation threshold (Supplementary Figures 6B,D)
and they have a higher likelihood ratio than GO based models.
This could be due to the genic overlap between groups
and the enrichment of multiple related GO terms within
a group.

For 8PSII we found 172 informative COEX gene groups
potentially improving predictive ability, one of which
was statistically significant (p < 0.05) after correcting for
multiple testing using FDR (Supplementary Figures 6B, 8).
355 COEX groups significantly improved predictive
ability for PLA (Figure 7, Supplementary Figure 6D,
Supplementary Tables 3A,B). The gain in accuracy was
higher for PLA (80 to 243%) than for 8PSII (7 to 89%) and
was negatively correlated with genomic heritability (rΦPSII
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TABLE 1 | Known trait-specific GO terms improving genomic prediction performance for both traits.

GO ID Ontology Type h2
f LR p-value (unadj) #gene #marker %gain Cor(Gf,Gr) h2

GBLUP

8PSII

GO: 0009543 chloroplast thylakoid lumen CC 0.07 10.53 1.48 × 10−2 71 218 33 0.59 0.09

GO: 0031968 organelle outer membrane CC 0.06 12.47 4.3 × 10−3 72 345 40 0.61 0.08

GO:0044429 mitochondrial part CC 0.14 47.05 2.3 × 10−3 298 1069 38 0.81 0.09

GO:0005740 mitochondrial envelope CC 0.13 8.43 2.7 × 10−2 255 914 25 0.79 0.12

GO ID Ontology Type h2
f

LR p-value (adj) #gene #marker %gain Cor(Gf,Gr) h2
GBLUP

PLA

GO:0044434 Chloroplast part CC 0.32 101 5.26 × 10−5 1211 5658 178 0.94 0.07

GO:0009535 chloroplast thylakoid membrane CC 0.14 10 4.9 × 10−2 322 1139 121 0.81 0.07

GO:0000911 cytokinesis by cell plate formation BP 0.15 34 9.6 × 10−3 204 1465 134 0.81 0.07

GO:0010090 trichome morphogenesis BP 0.04 30 8.3 × 10−4 31 65 154 0.40 0.06

GO:0010321 regulation of vegetative phase change BP 0.14 18 4.9 × 10−3 425 1512 106 0.84 0.07

GO:0048366 leaf development BP 0.10 48 1.96 × 10−5 99 487 187 0.62 0.06

GO:0090698 post-embryonic plant morphogenesis BP 0.04 7 8.3 × 10−7 4 11 207 0.20 0.06

The proportion of explained genomic heritability (h2f ) by a GO term, likelihood ratio (LR) between GFBLUP and GBLUP models, Wilcoxon–Mann–Whitney test p-value, total number of

genes and markers, %gain in accuracy (r), correlation between genomic relationship matrices based on GO term markers (Gf ) and remaining markers (Gr ) and total genomic heritability

(h2
GBLUP

), for different trait specific GO terms that are common to both GO and COEX based analyses. For GO terms, the type is indicated—molecular function (MF), biological process

(BP) and cellular component (CC).

FIGURE 7 | Improvement in genomic prediction performance using co-expressed gene clusters for PLA. All COEX clusters that significantly improve GFBLUP models

for PLA with %gain in accuracy (r) over GBLUP. Each COEX cluster has a separate model for individual measurements indicated as T{day}_{Number of

measurement}. The clusters are ordered according to “cluster_sr_no” column in Supplementary Table 3B.

= −0.86, rPLA = −0.56), like for GO informed prediction.
This improvement was attributed to a maximum of only ∼5%
of the total genomic markers in all groups. Interpretation of
COEX gene groups is not as straightforward as of GO terms,
which by nature carry an informative name. Interestingly, ∼90%
of genes were common in the COEX groups for both traits,

possibly due to the relatedness of the traits. To attach biological
meaning to these groups we performed GO enrichment analysis
on all groups together. We found 113 BP, 29 MF, and 24 CC
most specific GO terms enriched in these clusters. The top 10
GO terms with highest fold enrichment include photosynthesis
machinery, i.e., chloroplast stroma (GO:0009570), chloroplast

Frontiers in Genetics | www.frontiersin.org 9 January 2021 | Volume 11 | Article 60911726

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Farooq et al. Prior Knowledge Improves Genomic Prediction

envelope (GO:0009941) cellular components; ATPase activity
coupled with transmembrane ion transport (GO:0015662);
and glucose metabolic process (Supplementary Figure 11,
Supplementary Table 5). These results indicate that trait-
specific co-expressed gene functional groups can also help
improve prediction performance and that these groups capture
biologically relevant functions.

Similar to GO informed prediction, ∼34% of COEX genes
were common to the pre-selected photosynthesis related genes
(PSGENES) for both traits, but here this is close to what we expect
by chance. This indicates that, even though the COEX groups
contain only a limited subset of all genes, they are not biased
toward photosynthesis genes. The gain in predictive ability and
explained genomic heritability (h2

f
) for 8PSII by the top COEX

gene group was higher (89% resp. 14%) than those for the top
GO feature (60% resp. 13%). Similarly, for PLA the top COEX
gene group achieved a higher accuracy gain (242%) than the
top GO group (197%), as shown in Figure 2. Notwithstanding
these differences, we observed that many genes were common
between GO and COEX based prediction for both traits (21 and
19% of all models passing the evaluation criteria for 8PSII and
PLA resp.). These common genes in COEX based prediction
were mainly enriched for many fundamental photosynthesis and
growth related GO terms (Supplementary Tables 7A,B), e.g.,
light harvesting in photosystem I and photosynthetic electron
transport in photosystem II (BP), chloroplast (CC), and ATP
binding (MF).

The largest informative COEX groups for 8PSII and for PLA
only differ slightly in sizes (3,176 and 2,840 genes, respectively),
but on average, COEX groups were larger than the GO groups for
both traits. The 95th percentile of genomic heritability explained
individually by the COEX groups (h2

f
) was 70% for 8PSII and

39% for PLA, indicating that some 8PSII models could be
over-estimated. Analogous to GO, h2

f
was positively correlated

with COEX gene group sizes (r8PSII = 0.88, rPLA = 0.40) and
likelihood ratio (r8PSII = 0.27, rPLA = 0.22), indicating that
incorporating meaningful prior subsets into the COEX model
improved goodness of fit.

Together, our results illustrate that both of the meaningfully
specific GO terms and more general COEX groups of genes with
interrelated functions may improve GP predictive performance.

DISCUSSION

Predicting Photosynthesis
In this work, we aimed at improving GP performance by
exploiting publicly available biological knowledge to group genes
in three different ways: using our knowledge about the trait,
using the Gene Ontology and using co-expression. Instead of
developing new methodology, we focused on using existing
BLUP methods, widely used in animal and plant breeding, to
explore new sources of biological prior knowledge, e.g., clusters
of co-expressed genes. The GFBLUP methodology was initially
proposed for Drosophila melanogaster using Gene Ontology
data as biological prior knowledge (Edwards et al., 2016).
We also investigated to what extent different traits benefit

from and the use of prior knowledge. Our results support a
strong influence of different trait genetic architectures, since
performance improvement was more evident for leaf area
phenotypes than for 8PSII .

The approach can be generally applied to complex traits, but
here we focused on photosynthesis and plant size. Besides serving
as a case study, photosynthesis is also interesting in its own right,
for two reasons. First, the genetic architecture of photosynthesis,
though well-studied over the previous decades, is still poorly
described in the quantitative genetic context (Van Rooijen et al.,
2017). Secondly, it is an important target for improvement
in crop breeding (Long et al., 2015). Modest improvements
in photosynthesis efficiency by engineering photorespiratory
pathways have demonstrated enormous yield gains (Kromdijk
et al., 2016; South et al., 2019). The yield model of Monteith
(Monteith, 1977) suggests that increased light use efficiency
of photosystem II holds great potential to meet global food
challenges by increasing the conversion efficiency of intercepted
irradiance into biomass (εc) (Van Bezouw et al., 2019). Another
determinant of plant growth rate is leaf area growth, involving
precise regulation of photosynthesis machinery and growth
hormones such as auxin (Zhang et al., 2017). Leaf area
measurements from fluorescence based non-destructive optical
phenotyping systems, can be efficiently used to screen plants at
different growth stages with varying levels of photosynthetic rates
(Weraduwage et al., 2015). Therefore, improved GP models for
these traits could have impact in future crop breeding.

Following Edwards et al. (2016), we studied accuracy on
internal test sets within the HapMap population. Further work
is needed for data-driven selection of the most relevant terms
for prediction on external test sets. For example, a possible
strategy may be to select the feature with highest genomic
variance explained, or with lowest p-value in the LRT we
described. Our results indicate that biological priors driven
GP models can be used to rank groups of genes potentially
associated to the trait of interest along with improving prediction
performance. The GWAS conducted on the same HapMap
population for photosynthetic light use efficiency of photosystem
II identified that the A. thaliana “Yellow Seedling 1” gene is
involved in photosynthesis acclimation response (Van Rooijen
et al., 2017). This YS1 gene is annotated with GO Cellular
Component terms chloroplast, intracellular membrane-bounded
organelle and mitochondrion and GO Biological Process
terms thylakoid membrane organization and photosystem II
assembly. Our results using GO and COEX GP (Table 1)
clearly demonstrate that these GO terms were most prevalent
to improve the prediction and explain a large amount of
genomic heritability. This indicates that genomic prediction
and GWAS support each other as potentially useful tools for
forward genetics.

The gain of predictive accuracy of the GP models compared
to the base-model is trait-specific and negatively correlates with
genomic heritability, which is promising for breeding at low
h2. This inverse relation may be due to the fact that we deal
with highly polygenic, complex traits: many physiological and
regulatory biological processes are involved in 8PSII under high
light stress, e.g., PSII repair, ROX etc. Our models, testing groups
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of genes individually, may not be able to improve performance
for such cases. Another potential explanation lies in the ability of
GFBLUP to capture small genetic variance at low h2 in a separate
random component, potentially including known causal genes,
which is not possible in GBLUP.

Exploiting Biological Knowledge to
Improve Genomic Prediction
With recent technological advances in both field and controlled
environment high-throughput phenotyping systems, phenotypes
can be measured at unprecedented scales. Phenotypes can
vary in space and time due to genetics and environment
alone, genotype-by-environment (GxE) interactions as well
as stochastic and development effects. Component variances
due to these factors can be calculated by precise modeling.
If multiple measurements are available, GP models can be
developed on individual measurements, treated as individual
phenotypes, or on derived parameters, e.g., growth curves.
We found that at each measurement timepoint, at least some
GO (in particular cellular component terms) or COEX group
could help to improve performance, and some were more
frequent (Figure 4, Supplementary Figure 7). For example, for
8PSII no single GO or COEX gene group was capable of
improving GP accuracy for all time points (either LL or
HL separately), but a number of gene groups were able to
improve PLA at multiple measurements (although not always
meeting the threshold for significance). Phenotyping at an
extended scale and GP modeling thus provides an opportunity
to obtain biological insights. As an alternative to modeling
at each timepoint separately, a whole time series or growth
curve can be used instead. We did not pursue this here, as
time series data is not generally available in most practical
scenarios and we were interested to learn whether performance
improvement was specific to growth stages and conditions
e.g., models for 8PSII behaved differently under low and high
light conditions.

Here, we mainly investigated two approaches to incorporate
publicly available trait-specific biological information into GP,
i.e., pre-selecting a list of genes and selecting sets or groups
of genes based on predicted functional (i.e., GO) or expression
(COEX) information. The approach using predicted functional
information proved to be more useful in this context, but more
approaches and sources of information can also be incorporated
with a focus on prioritizing biologically related genomic regions.
Moreover, knowledge from multiple heterogeneous sources can
be combined to further pinpoint potential QTLs, termed as poly-
omics GPmodels (Wheeler et al., 2014; Uzunangelov et al., 2020).
These information sources may include (i) predicted variants
effects, (ii) gene functions e.g., GO, COEX, (iii) networks of gene-
gene and protein-protein interactions, stored in public resources
like STRING (Mering et al., 2003), GeneMANIA (Warde-Farley
et al., 2010); (iv) pathways, in which genes are grouped e.g.,
KEGG (Kanehisa and Goto, 2000); (v) previously generated
GWAS and QTL results which indicate involvement of particular
regions for specific traits e.g., AraGWAS (Togninalli et al.,
2020), AraQTL (Nijveen et al., 2017), (vi) known connections to

phenotypes and (vii) endophenotypes, usually measured using -
omics data at different stages of genetic information flow toward
phenotypes. The reliability of these sources of information is an
important factor for credible analysis. Information describing the
(un)certainty of annotations is generally available in the form of
a score (e.g., for gene functions based on GO evidence scores or
reliability scores generated by a prediction method). It remains
an open question how to incorporate such scores in the process
of using the biological knowledge for GP.

Our first approach, pre-selecting a gene list, seems to be
naive but can be useful as a baseline for comparison with more
complex statistical procedures. The group based approach is
usually based on gene function, but this heavily depends on
computational prediction, as for most of the genes in plants
and animals, no experimental function annotation is available
(Radivojac et al., 2013). Function prediction is often based on
sequence similarity, which works well for predicting molecular
functions but less so for biological processes. Using expression
compendia based on multiple experiments poses an interesting
alternative, since genes with similar expression patterns are
more likely functionally related, hence more likely involved
in the same biological process(es) (Kourmpetis et al., 2011).
Alternatives are to define phenotype associated genomic regions
based on differential gene expression levels (Fang et al., 2017)
or metabolite levels and metabolic fluxes (Tong et al., 2020),
or to construct haplotypes in genic regions based on their
ontology information (Gao et al., 2018). The GP requiring
genomics inferred relationship matrices (GRM), e.g., GBLUP
and its variants, can make use of information derived from
these sources to construct a population variance-covariance
structure (Zhang et al., 2010, 2011; Fragomeni et al., 2017).
A simple approach is to include multiple random effects for
each knowledge source yielding its own variance-covariance
structure for the population under study, in the mixed model
equations (Guo et al., 2016). One way to combine multiple
omics datasets is to prepare a Composite Relationship Matrix
(CRM) as a linear combination of Genomic Relationship
Matrices (GRMs), Expression Relationship Matrices (XRMs),
Metabolome Relationship Matrices (MRMs), MicroRNA
Relationship Matrices (miRMs) etc. (Wheeler et al., 2014).

Alternative Models for Genomic Prediction
Linear mixed model (LMM)-based genomic prediction, as used
in this work, makes use of raw genotypes and parameter
regularization to estimate thousands of SNP marker effects using
only a few hundred observations (p >> n), employing different
prior statistical assumptions on these parameters. This makes
the approach fairly simple and interpretable; therefore, biological
knowledge can be incorporated straightforwardly by employing
these statistical assumptions. But with the increase in the ratio
between markers and available phenotypes, serious overfitting
problems may be encountered in these models (González-
Recio et al., 2014), leading to a need to use prior knowledge
in regularization. A more general set of statistical learning
methods are Machine Learning (ML) methods for prediction
and classification, capable of dealing with the dimensionality
problem in amore flexiblemanner. In thesemethods, phenotypes
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are regressed on nonlinear functions of genotypes rather than
raw genotype values, compromising model interpretability but
potentially improving prediction performance. Several studies
have reported the use of Support Vector Machines (SVM),
Reproducing Kernel Hilbert Spaces Regression (RKHS), Neural
Networks (NN), Random Forests (RF), and boosting (De Los
Campos et al., 2010; Ogutu et al., 2011) for genomic prediction.
Still, low prediction accuracy remains a problem for complex
traits. It will be interesting to further explore how biological
knowledge can be incorporated into ML approaches for GP. One
way could be to involve a knowledge driven regularization-based
approach as demonstrated for disease prediction in human (Deng
and Runger, 2013).

CONCLUSION

The wealth of publicly available transcriptomics and Gene
Ontology based prior biological knowledge can be incorporated
for genomic prediction of photosynthetic light use efficiency of
photosystem II electron transport (8PSII) and PLA. Significant
improvement in prediction accuracy over the benchmark GBLUP
model was obtained for several GO terms and COEX groups.
This improvement is trait-specific and negatively correlates with
genomic heritability; whereas, for projected leaf area we found
more added value than for 8PSII . Many known photosynthesis-
specific GO terms lead to improvements, providing evidence
of the potential usefulness of this approach in future breeding
practice. We foresee incorporation of heterogeneous prior
biological information into machine learning algorithms as an
active area of research in future.

MATERIALS AND METHODS

Datasets
Genotype Data
Genotype data of the 360 natural accessions in the core set
of the Arabidopsis thaliana HapMap population, representing
its global diversity, was obtained using Affymetrix 250k SNP
array (Zhang and Borevitz, 2009; Baxter et al., 2010). The
HapMap accessions were chosen as most accessions are more
or less equally interrelated, so modeling is not heavily affected
by population structure. Phenotypes of 344 accessions were
available, so 16 accessions were removed from the analysis
(CS76104, CS76112, CS76254, CS76257, CS76121, CS28051,
CS28108, CS28808, CS28631, CS76086, CS76138, CS76212,
CS76196, CS76110, CS76117, CS76118). Genotype data were
subjected to quality control and all genotypes with a missing call
in any accession were removed. Only 510 (0.24%) markers had
minor allele frequency (MAF)<0.01 and 14,824 (6.9%) hadMAF
<0.05 (Supplementary Figure 12). To incorporate the effects of
rare alleles along with common alleles in the GP model, the
MAF filtering threshold was set at 0.01. Of subsequent markers
in a window of 50bp with a Pearson correlation coefficient (r) <

0.999, one was removed, using PLINKv1.9 (Purcell et al., 2007).
In total, 214,051 SNPs passed quality filtering, 213,541 remained
after MAF filtering and 207,981 SNPs were available after LD

pruning for the analyses. The resulting minimal distance between
SNPs was found to be∼550 bp.

Phenotype Data
The light use efficiency of Photosystem II electron transport
(8PSII) dataset was obtained from Van Rooijen et al. (2017),
who measured it using chlorophyll fluorescence via NIR imaging
at 790 nm. In this dataset, 8PSII was recorded three times a
day; under 100 µmol m−2 s−1 (low light) for 2 days and for
four continuous days after induction of high light stress at 550
µmol m−2 s−1 to study the photosynthetic acclimatory response.
We measured PLA every 3 h starting from the afternoon of
day 22 after sowing until early morning of day 29 using the
“Phenovator” high-throughput automated phenotyping system
(Flood et al., 2016), which results in total of 54 timepoints for
this trait (Supplementary Table 8). Technical mis-match errors
between the imaging system and the coordination of image
analysis software were identified for some replicates at some time
points for a small number of genotypes, but these were not found
to influence overall results and the data was thus retained. Data
of timepoints on day 22 was excluded from the analyses due to
their relatively low coefficient of variation.

The Phenovator system has been designed to screen
Arabidopsis plants for photosynthesis and growth on a
larger temporal scale in a carefully controlled environment
with minimal noise. The plants are grown over a table,
spatially arranged into sowing blocks, imaged using a moveable
monochrome camera recording 12 plants per image, and
processed using an image processing software (available on
demand from the authors). The system design allows spatial
uniformity and temporal reproducibility by minimizing the
design parameter variances. Therefore, we expected low variances
of interactions between genotype and the design parameters;
whereas, within image position and sowing position could
have larger main effects and thus could be corrected for.
Phenotypic values were taken as the average of one to four
replicates of Best Linear Unbiased Estimators (BLUE) using the
linear mixed model adjusted for experimental design factors
(Supplementary Table 9) that were described in Flood et al.
(2016). For this experiment, the important design factors are
spatial row (x) and column (y) coordinate, the image position
and the sowing block. Thus, the BLUE for phenotypic mean is
calculated based on this equation, implemented in R with the
lmer function (supplemental R script) using the lme4 package
(Bates et al., 2007):

Y = Genotype+ x+ y+ Image_position

+ Sowing_block+ error (1)

where Genotype is used as fixed effect and the other factors are
defined as random effects.

Both traits, at all measurement times, showed approximately
normal distributions (Supplementary Figures 13, 14). The
distributions are leptokurtic and left skewed for both traits
(except for a few measurements for PLA on day 14 and day
15). The coefficients of variation under low light conditions for
8PSII ranged from 1.95 to 2.30% and 2.92 to 7.58% under high
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light and 18.73 to 27.04% for PLA (Supplementary Table 1).
Correlation between subsequent measurement times was high
(r > 0.9) for both traits, except between measurements under
low vs. high light conditions of 8PSII ; therefore, these were
analyzed separately.

Biological Priors
Co-expressed gene groups were obtained from the Arabidopsis
expression compendium by Movahedi et al. (2011). GO data was
retrieved using the R package “org.At.tair.db” (Carlson, 2019b)
and genes were annotated using “GO.db” (Carlson, 2019a)
irrespective of evidence codes. The set of genes in GO terms
were up-propagated along the GO tree, such that each GO group
in our analysis comprised of a set of all those genes attributed
to itself or to all of its child terms. The up-propagated sets of
genes were retrieved using the “GO2ALLTAIRS” method in the
“org.At.tair.db” package. Markers in genes linked to a specific GO
term or COEX cluster were used in the analyses.

Moreover, a set of 7,242 photosynthesis related genes was
manually compiled (Supplementary Table 6) using four publicly
available sources: KEGG (Kanehisa, 2001) pathways related
to photosynthesis (i.e., ath00195, ath00197, ath00710); the
Arabidopsis pathway database AraCyc for four photosynthesis
pathways (i.e., Calvin cycle, photorespiration, oxygenic, light
reaction); genes annotated with GO terms directly related to
photosynthesis machinery; and all 51 priority genes selected for
GWAS of photosynthesis acclamatory response identified by for
this HapMap population.

Statistical Analysis
Linear Mixed Models
The Linear Mixed Model (LMM) with one random genomic
component was used as baseline. This model (Equation 2),
known as Genomic Best Linear Unbiased Prediction (GBLUP)
(Habier et al., 2007; Vanraden, 2008) was used to predict marker
effects, calculate genomic heritability (h2GBLUP) and the total
additive genomic values, which is the sum of all marker effects:

ỹ = µ + g+ ε (2)

Here, ỹ is an nx1 vector of adjusted phenotypes as described
in section 5.1.2, µ is the overall mean, g is an nx1 vector
of genomic values captured by all genomic markers such that
g = ĝ and ε is an n-vector of residuals. The random genomic
values g and residuals were assumed to be independent, normally
distributed as g ∼ N(0,Gσ 2

g ), ε ∼ N(0, Iσ 2
e ). Here G is

the genomic relationship matrix (GRM), providing variance-
covariance structure of genotypes calculated from all genomic
markers and I is the identity matrix.

Accordingly, for each GO and COEX gene groups, another
linear mixed model similar to GBLUP but with two random
genomic components (Equation 3), known as Genomic Feature
Best Linear Unbiased Predictor (GFBLUP) (Edwards et al., 2016)
was applied:

ỹ = µ + f+ r+ ε (3)

This model differs from GBLUP in that the total estimated
genomic value (ĝ = f+r̂) is partitioned into genomic value
captured by markers in a GO/COEX group (f) and by the
remainingmarkers (r̂), such that f ∼ N(0,Gfσ

2
f
), r ∼ N(0,Grσ

2
r )

and ε ∼ N(0, Iσ 2
e ). For both GBLUP and GFBLUP, total

genomic value ĝ of the test population was predicted conditional
on observed phenotypes of the training population, using the
approach mentioned by Edwards et al. (2016). The genomic
relationship matrix G in the GBLUP model was constructed
based on all genomic markers such that G =WW’

m , where W is
an n×m genotype matrix (n genotypes andmmarkers), centered

and scaled such that its ith column wi = (zi−2pi)√
2pi(1−pi)

, where zi

is the ith column vector of Z having minor allele counts (0, 1,
or 2) as entries and pi is the MAF of the ith marker. In our
case, all genotypic locations were homozygous, so genotypes are
coded as 0 or 2. For the GFBLUPmodel, the genomic relationship
matrix Gf for each GO or COEX group was calculated from
the markers linked to that group; Gr was constructed from the
remaining markers.

The MultiBLUP model (Equation 4) was constructed
according to the Adaptive MultiBLUP strategy proposed by
(Speed and Balding, 2014). Briefly, the total genome was divided
into adjacent but 50% overlapping regions of 10 kb. The genomic
markers within these regions were tested as a group to estimate
their association with the phenotype (p < 10−5) and adjacent
regions were merged if pBonferroni < 0.05. Subsequently, separate
covariance matrices K1, K2,..., KM were constructed for each
region (M regions in total) based on its markers and genomic
values g1, g2,..., gM were estimated. The GRM based on all
markers (equivalent to GBLUP) was used if no region was found
significant. The total genomic value is ĝ =

∑M
m=1 ĝm with i.i.d.

gm ∼ N(0,Kmσ 2
m) and ε ∼ N(0, Iσ 2

e ):

ỹ = µ +
∑M

m = 1
gm + ε (4)

Variance components in all of these LMMs were estimated
using the average information restricted maximum-likelihood
(REML) procedure (Johnson and Thompson, 1995) implemented
in the greml method of the R package qgg (Rohde et al., 2020)
for GBLUP/GFBLUP, using a maximum of 100 iterations at a
tolerance level of 10−5; and LDAK v5.1 (http://dougspeed.com/)
for MultiBLUP.

Total additive genomic value was predicted using 8-fold cross-
validation. This involved training the model using 301 (78%)
genotypes and using the remaining 43 for testing in each fold. The
exact same accessions were used for both GBLUP and GFBLUP
during each split to enable a fair comparison. Prediction accuracy
of models was defined as Pearson correlation (r) between
observed phenotypic values and predicted genomic values of the
test population in each fold. The procedure was repeated 10
times, thus modeled predictive ability distributions consisted of
80 correlations or fewer if variances were over- or underestimated
as described earlier by simulation studies (Kruijer et al.,
2015). For comparison between models, the median of these
correlations was used, and significance of the difference was
tested using the non-parametric Wilcoxon–Mann–Whitney test
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for assessing significant differences in median accuracy between
GBLUP and GFBLUP. Subsequently, p-values were adjusted for
multiple-testing correction by calculating False Discovery Rate
(FDR) based on total number of GO/COEX groups multiplied
by total number of time points (Edwards et al., 2016). For 8PSII

we also analyzed results without FDR adjustment, which are
referred as “informative” as opposed to “significant” throughout
the text.

Model Performance Evaluation
GFBLUP models were compared to the benchmark GBLUP
based on their goodness of fit, predictive ability and estimated
genomic parameters. Using the likelihood ratio test (LRT)
we tested the null-hypothesis σ 2

f
= 0. LRT p-values were

based on the asymptotic distribution of the LRT-statistic, which
is a mixture of a point mass at 0 and a χ2-distribution
with 1 degree of freedom (d.o.f.) (Edwards et al., 2015). The
significantly improved GFBLUP models (pLRT < 0.05) having
predictive abilities greater than the benchmark GBLUP (i.e., p-
value of Wilcoxon-Mann-Whitney tests < 0.05) were filtered for
subsequent analysis. Genomic parameters were calculated from
variance estimates of both models to analyze only models passing
the abovementioned filtering criteria. This includes total genomic

heritability explained (h2GBLUP = σ 2
g

(σ 2
g +σ 2

e )
) and proportion of

genomic heritability explained by an individual GO/COEX group

in GFBLUP models (h2
f
=

σ 2
f

(σ 2
f
+σ 2

r +σ 2
e )
). In order to check if we

obtained a higher number of PSGENES in GO/COEX groups
than expected by chance, we used the chi-square test with 1 d.o.f.
to compare the observed vs. expected frequencies of PSGENES in
these groups.

Semantic Clustering of GO Terms
Informative GO terms were clustered based on their semantic
similarity using the Revigo (Supek et al., 2011) web server
with “SimRel” semantic similarity metric equal to 0.7. The
resulting GO clusters were plotted using a Multidimensional
Scaling (MDS) plot in R, where maximum %gain in accuracy
by each GO term was used to color the bubbles. GO terms
enriched in COEX groups were found using the PANTHER
classification system (Mi et al., 2019). Fisher’s exact test was
used for calculating enrichment p-values followed by multiple
testing correction using the FDR, reporting enrichment at
p < 0.05. These enriched GO terms were sorted in order
of their GO hierarchical tree such that a child term was
below its parent; thus, the most specific GO terms are the
child GO terms in the bottom of that tree, were used for
subsequent analysis.
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Supplementary Figure 1 | Relation between genomic heritability and GBLUP

predictive ability. GBLUP prediction accuracy is directly proportional to genomic

heritability for both traits. (A) shows the relation between heritability and accuracy

under low light (LL) and high light (HL) irradiance levels for 8PSII, (B) shows the

same for PLA.

Supplementary Figure 2 | GBLUP accuracy (r) vs. genomic variance (h2
GBLUP

).

Each dot corresponds to prediction accuracy (r) of GBLUP (y-axis) for each split of

the data during cross-validation. The genomic variance explained by the model

(x-axis) ranges from 0 to 1 and calculated as h2
GBLUP

= σ2
g

(σ2
g+σ2

e )
. Models at different

measurement times are colored differently. (A) represents GBLUP models for 8PSII

and contains two separate clouds of dots, representing LL (left) and HL (right)

models with different heritability ranges. (B) represents GBLUP models

for PLA.

Supplementary Figure 3 | MultiBLUP predictive ability. The boxplots show the

prediction accuracy (r) of MultiBLUP applied to 18 measurements of 8PSII and 50

measurements of PLA. The average accuracy is slightly lower than the average

GBLUP accuracy (white star) for both traits. (A) shows the prediction accuracy

under low light (LL) and high light (HL) irradiance levels for 8PSII whereas, (B)

shows the same for PLA.

Supplementary Figure 4 | Number of genes and markers in GO and COEX

features. Total number of genes and markers associated with those genes for

both types of genomic features, i.e., GO (left) and COEX (right).

Supplementary Figure 5 | GFBLUP accuracy (r) vs. genomic variance (h2f )

explained by a GO/COEX group. Each dot corresponds to prediction accuracy (r)

of GFBLUP (y-axis) for each split of data during cross-validation for a particular

GO (A,C) and COEX (B,D) group. The genomic variance explained by the

particular GO/COEX (x-axis) ranges from 0 to 1. (A,B): GFBLUP models for 8PSII;

(C,D): GFBLUP models for PLA.

Supplementary Figure 6 | GBLUP vs. GFBLUP predictive ability. Average

prediction accuracy (r) of GBLUP vs. GFBLUP using GO terms (A,C) and COEX

clusters (B,D) for 8PSII (A,B) and PLA (C,D). The average was calculated over 80

splits of the data (8-fold cross-validation repeated 10 times), excluding models
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where variance was undetermined). Red dots indicate models that passed our

model evaluation criteria (see M&M).

Supplementary Figure 7 | Improvement in genomic prediction performance

using informative GO terms for ϕPSII. All informative GO terms with %gain in

accuracy (r) of GFBLUP over GBLUP at multiple 8PSII measurement times,

indicated by {Low|High light}{day}_{Number of measurement}. The color bar

identifies GO terms as Biological Process (BP), Cellular Component (CC) or

Molecular Function (MF).

Supplementary Figure 8 | Improvement in genomic prediction performance

using informative COEX groups for ϕPSII. All informative COEX clusters with %gain

in accuracy (r) of GFBLUP over GBLUP at multiple 8PSII measurement times,

indicated by {Low|High light}{day}_{Number of measurement}.

Supplementary Figure 9 | Semantic clustering of GO informed prediction for

8PSII. Multidimensional scaling (MDS) plot of representative subset (i.e., terms

remaining after the redundancy reduction) of informative GO terms molecular

functions and cellular components, capable of improving predictive ability of

GFBLUP models for 8PSII. Semantically similar GO terms are clustered based on

the “SimRel” semantic similarity measure using Revigo. Dot size is proportional to

the number of genes annotated with a GO term in the TAIR9 reference genome

annotation. The x and y coordinates indicate relative cluster distances in 2

dimensions. The %gain of a particular GO term is indicated by the

bubble color.

Supplementary Figure 10 | Semantic clustering of GO informed prediction for

PLA. Multidimensional scaling (MDS) plot of representative subset (i.e., terms

remaining after the redundancy reduction) of informative GO terms molecular

functions and cellular components, capable of improving predictive ability of

GFBLUP models for PLA. Semantically similar GO terms are clustered based on

the “SimRel” semantic similarity measure using Revigo. Dot size is proportional to

the number of genes annotated with a GO term in the TAIR9 reference genome

annotation. The x and y coordinates indicate relative cluster distances in 2

dimensions. The %gain of a particular GO term is indicated by the bubble color.

Supplementary Figure 11 | Top 10 enriched GO terms in COEX clusters for 8PSII

and PLA. Top 10 most specific GO terms enriched in 172 informative COEX

clusters for the 8PSII and 355 for PLA traits. The horizontal axis measures the fold

enrichment, i.e., the observed fraction of genes annotated with a particular GO

term divided by the expected fraction in the reference genome of Arabidopsis

thaliana. Enrichment p-values were found using Fisher’s exact test with multiple

testing correction using False Discovery Rate (FDR); only terms with pFDR < 0.05

are shown.

Supplementary Figure 12 | Minor allele frequency spectrum (MAF). MAF

distribution of all 214,051 chip markers. The orange bar represents all markers

having MAF<5%, the red bar rare alleles with MAF<1%.

Supplementary Figure 13 | ϕPSII phenotypic data distributions using Best Linear

Unbiased Estimates (BLUE). Distributions of genotypic means of BLUE values of

genotypes in the dataset.

Supplementary Figure 14 | PLA phenotypic data distributions using Best Linear

Unbiased Estimates (BLUE). Distributions of genotypic means of BLUE values of

genotypes in the dataset.

Supplementary Table 1 | Best Linear Unbiased Estimated Phenotypic data

statistics.

Supplementary Table 2a | Informative GO terms increasing GFBLUP prediction

accuracy for 8PSII.

Supplementary Table 2b | GO terms significantly increasing GFBLUP prediction

accuracy for PLA.

Supplementary Table 3a | Informative COEX improving GFBLUP prediction

accuracy for 8PSII.

Supplementary Table 3b | COEX significantly improving GFBLUP prediction

accuracy for PLA.

Supplementary Table 4 | Genomic features statistics.

Supplementary Table 5 | Enriched Go terms in 8PSII and PLA COEX analysis.

Supplementary Table 6 | List of genes used in GBLUP based on only

photosynthesis genes markers.

Supplementary Table 7a | GO Enrichment of common genes between GO and

COEX based analysis for 8PSII.

Supplementary Table 7b | GO Enrichment of common genes between GO and

COEX based analysis for PLA.

Supplementary Table 8 | Raw measurements of Projected Leaf Area.

Supplementary Table 9 | Average best linear unbiased estimates (BLUE) of

Projected Leaf Area.
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The University of Florida strawberry (Fragaria × ananassa) breeding program has
implemented genomic prediction (GP) as a tool for choosing outstanding parents for
crosses over the last five seasons. This has allowed the use of some parents 1 year
earlier than with traditional methods, thus reducing the duration of the breeding cycle.
However, as the number of breeding cycles increases over time, greater knowledge
is needed on how multiple cycles can be used in the practical implementation of GP in
strawberry breeding. Advanced selections and cultivars totaling 1,558 unique individuals
were tested in field trials for yield and fruit quality traits over five consecutive years and
genotyped for 9,908 SNP markers. Prediction of breeding values was carried out using
Bayes B models. Independent validation was carried out using separate trials/years
as training (TRN) and testing (TST) populations. Single-trial predictive abilities for five
polygenic traits averaged 0.35, which was reduced to 0.24 when individuals common
across trials were excluded, emphasizing the importance of relatedness among training
and testing populations. Training populations including up to four previous breeding
cycles increased predictive abilities, likely due to increases in both training population
size and relatedness. Predictive ability was also strongly influenced by heritability, but
less so by changes in linkage disequilibrium and effective population size. Genotype
by year interactions were minimal. A strategy for practical implementation of GP in
strawberry breeding is outlined that uses multiple cycles to predict parental performance
and accounts for traits not included in GP models when constructing crosses. Given the
importance of relatedness to the success of GP in strawberry, future work could focus
on the optimization of relatedness in the design of TRN and TST populations to increase
predictive ability in the short-term without compromising long-term genetic gains.

Keywords: training population, Fragaria, breeding, Bayes B, genome-wide prediction, test population

INTRODUCTION

The development of high throughput genotyping and new methods for analyzing genome-wide
molecular data are revolutionizing crop improvement. In particular, genomic prediction (GP) is
helping to increase genetic gains for genetically complex traits in animal (Hayes et al., 2009), crop
(Bernardo and Yu, 2007; Crossa et al., 2010; Gezan et al., 2017), and tree breeding programs (Kumar
et al., 2012; Resende et al., 2012a). Genomic prediction relies on an available set of phenotypes and
DNA marker data for a training population (TRN) that is used to fit a model to predict breeding
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values (BV) based on DNA marker data alone for a testing
population (TST). This methodology requires that the genome
has been covered by a sufficiently dense panel of markers, that
moderate to high linkage disequilibrium (LD) exists between
marker loci and the underlying quantitative trait loci and that
there is some degree of relatedness between the TRN and TST
populations (Meuwissen et al., 2001).

As pointed out by Goddard (2009), LD constrains the number
of markers to what is defined as “the number of chromosome
segments” in a segregating population, which depends on the
effective population size (Ne). If Ne decreases, it is expected
that the individuals within the population will share larger
chromosome segments, increasing prediction accuracy (Clark
et al., 2012). Moreover, as Ne decreases, variability on which
to select will decrease, but relatedness between individuals will
increase leading to greater LD in the population (Albrecht
et al., 2014). Therefore, GP methods will capture both LD and
relatedness among individuals in the TRN and TST populations
for predictions (Habier et al., 2007; Albrecht et al., 2014).
Understanding the relative impacts of LD and relatedness in a
breeding program may be helpful, since LD has greater potential
to persist across populations and generations (Hayes et al., 2009).

Predictive ability (PA) is defined as the correlation between the
observed phenotypic value and the BV: [r(y, ĝ)], and prediction
accuracy is the correlation between the true BV and the estimated
BV, [r(g, ĝ)] (Habier et al., 2007). Different empirical equations
can be used to estimate prediction accuracy for GP in one
population (Daetwyler et al., 2008; VanRaden, 2008), or multiple
populations, traits and environments (Wientjes et al., 2015,
2016). However, there is a concern that after several consecutive
breeding cycles using GP the prediction accuracy will decline
due to changes in marker allele frequency (Habier et al., 2007;
Goddard, 2009), and a gradual decay of LD. Therefore, it is
suggested that GP models need to be periodically re-trained to
sustain long-term genetic gains (Habier et al., 2007).

Assessment of GP is not trivial. Some published studies
have been based on a single population with the use of cross-
validation techniques (Crossa et al., 2010; Albrecht et al., 2011;
Resende et al., 2012b). Cross-validation is a statistical technique
used to evaluate models where an independent dataset is not
available for validation. The most common approach, in the
context of GP, is the k-fold cross-validation. Here, individual
observations are randomly split into five or ten subsets, and all
subsets except one are used as a training population with the
remaining subset serving as a validation (or testing) population
in a sequential approach. Because the same original population
is both part of the TRN and TST populations, predictive ability
and prediction accuracy from cross-validation are often upwardly
biased (Amer and Banos, 2010; Michel et al., 2016), resulting in
over-optimistic models. A better alternative is to independently
validate the model with another separate trial (Amer and Banos,
2010; Hofheinz et al., 2012).

Some reports on independent validation and cross-validation
across environments for multiple generations using a two-stage
analysis have been published (Albrecht et al., 2014; Auinger et al.,
2016; Michel et al., 2016, 2017). In these studies, higher predictive
abilities have been reported for cross-validation, with a TRN

population sampling individuals from multiple generations and
validating with an independent trial, rather than predicting from
a single generation and validating with an independent trial.
However, in other studies, no significant differences in predictive
ability or prediction accuracy were found by using independent
validation from either TRN populations constituted as cross-
validation from multiple years or from single years (Sallam et al.,
2015; Ðord̄ević et al., 2019). Nevertheless, as breeding programs
progress in their use of GP, independent validations will become
the reference to evaluate any model.

For training populations tested across multiple environments,
genotype-by-environment (G × E) interactions may be
important. Several GP studies using real data under different
scenarios of locations and/or environments have modeled the
effects of G × E or marker × E interactions (Burgueño et al.,
2012; Jarquín et al., 2014, 2017). Previous studies on genotype
by location interaction (Whitaker et al., 2012) and genotype
by year interaction (Gezan et al., 2017) in the strawberry
(Fragaria × ananassa) production area of Central Florida have
indicated either very low or the absence of G × E interaction for
the main strawberry commercial traits.

The strawberry breeding program at the University of
Florida (UF) conducts genetic trials at the Institute of Food
and Agricultural Sciences, Gulf Coast Research and Education
Center (GCREC) in Balm, FL, United States. Each year a
clonally replicated field trial of advanced breeding selections
is phenotyped for several polygenic traits and genotyped via
single-nucleotide polymorphism (SNP) arrays. These advanced
selections arose from previous marker-assisted seedling selection
for simply inherited disease resistance and fruit quality traits
(Roach et al., 2016; Mangandi et al., 2017; Noh et al., 2017; Salinas
et al., 2019) and subsequent visual field selection of the seedlings.
Yearly advanced selection trials represent the elite parent pool of
the breeding program and have been used to test GP methods
(Gezan et al., 2017) and to apply GP for parent selection. These
accumulated trials now allow further evaluation of models in
strawberry over multiple breeding cycles.

The overall objective of the present study was to inform
practical approaches for the use of GP in the breeding of
horticultural crops by examining multiple cycles in the UF
strawberry breeding program. Our specific objectives were to: (1)
examine the effects on predictive ability of combining multiple
cycles (or years) into TRN populations in the forward and
backward directions; and (2) examine the effects of relatedness
among the TRN and TST populations, LD and Ne on changes in
predictive ability over time.

MATERIALS AND METHODS

Population and Field Testing
The elite population of the UF strawberry breeding program is
treated as a single breeding pool from which the top-ranked
parents of the previous year are used in a partial circular mating
design to generate a large population of seedlings to be evaluated.
This mating design is a modification of a partial diallel design
with a reduced number of four to five crosses per parent, that
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TABLE 1 | Incidence matrix for common genotypes tested among trials (above
diagonal), full-sib families (diagonal, in bold) and common parents of full-sib
families among trials (below diagonal).

Trials T2 T4 T6 T8 T10 N

T2 33 37 29 28 30 217

T4 8 30 57 40 43 240

T6 2 7 45 88 69 237

T8 3 1 14 43 107 273

T10 2 3 10 13 28 266

N is the total number of tested phenotypes excluding common genotypes across
trials. The T2–T10 nomenclature for the five trials conducted in five successive years
is according to Gezan et al. (2017).

fall along an off-diagonal matrix of parental crosses (White et al.,
2007). The best seedling selections are established the following
year in an advanced-selection trial, the structure of which consists
of a mixture of full-sib families, half-sib families, advanced
selections, and cultivars. A representation of the structure of the
population across cycles is presented in Table 1.

Replicated seedling and advanced-selection trials were
previously established at two sites, the Gulf Coast Research and
Education Center (GCREC) in Balm, FL (lat. 27◦ 45′ 37.98′′ N,
long. 82◦ 13′ 32.49′′ W) and at the Florida Strawberry Growers
Association in Dover, FL (lat. 28◦ 0′ 55.55′′ N, long. 82◦ 14′ 5.24′′
W), during the 2013–2014 and 2014–2015 seasons. Very low
genotype by location interactions were observed for yield and
quality traits (Whitaker et al., 2012). Consequently, these trials
were subsequently carried out only at the GCREC.

The populations included in the present study were
established at the GCREC site during five consecutive seasons
from 2013–2014 to 2017–2018. The strawberry breeding program
uses an overlapping generation breeding strategy in which all
the main breeding activities, crossing, testing, and selection, take
place each year (Borralho and Dutkowski, 1998), therefore each
trial was considered a cycle in this sense and was given an even-
numbered code starting with season 2013–2014 as T2 and ending
with 2017–2018 as T10 according to the naming convention
of Gezan et al. (2017). Several common genotypes were tested
across years including cultivars and advanced selections chosen
for further testing in the breeding process (Table 1). Therefore,
these are essentially independent trials established under
different yearly environmental conditions. Seedlings were
clonally propagated by runners in a summer nursery near Monte
Vista, Colorado (T2 and T4 trials) and at Crown Nursery in
Malin, Oregon (T6, T8, and T10) and established in the fruiting
field at GCREC in the first 2 weeks of October in each year.
Site preparation, trial establishment and trial maintenance was
carried out according to standard commercial practices for
west-central Florida (Torres-Quezada et al., 2018). Pest control,
fertilization and weed control varied among seasons according to
environmental conditions. Bare-root clonal plants were arranged
in a randomized complete block design with either five or six
replications per trial and raised beds within replication. Each
bed was subdivided into five to nine plots, each with a common
control genotype to account for environmental variation along
the bed. Genotypes were represented by a single runner plant in
each plot (Supplementary Table S1).

Phenotyping and Genotyping
Five yield and fruit quality traits were assessed weekly from mid-
November to mid-March in all five trials. At each harvest date,
all ripe fruit per plant was removed. All marketable fruit (grams)
by plant were considered as early marketable yield (EMY) if
harvested before the first day of February. Total marketable yield
(TMY) was calculated as the marketable fruit by plant collected
until the first week of March. Average fruit weigh in grams, AWT,
was estimated as the TMY divided by the number of marketable
fruit. Total culls (TC), or unmarketable fruit, were counted and
expressed as a proportion of the total number of fruits per plant
(%). Soluble solids content (SSC) was measured five times during
the season in each trial and was calculated as the mean of all
measurements. One ripe fruit from each plant was squeezed by
hand onto a handheld digital refractometer.

There were a total of 1,715 entries planted in these five
trials that were phenotyped and genotyped using the Affymetrix
Axiom R© IStraw90 (Bassil et al., 2015) and IStraw35 (Verma et al.,
2017) SNP arrays. Quality control was performed on a total of
14,332 segregating SNP markers in which SNPs with MAF < 0.05,
and missing marker data >0.05 were eliminated, yielding a total
of 9,908 markers for the analyses. Missing values for each of the
markers were imputed based on average allele frequency. The
1,715 phenotypes represented 1,558 unique individuals including
advanced selections and varieties that were repeated across trials.

Genomic Prediction Model Analyses
The GP approach implemented was based on best linear
unbiased estimates (BLUE) following one-stage analysis of tested
phenotypes adjusted for the experimental factors in each trial. In
most years, row and column location of each plant in the trial
was recorded and the general linear mixed model was modified
by adding spatial factors (row, col) and correlated residuals
(autoregressive of order 1 for row and column), or independent
residual units. Hence, multiple linear mixed models were tested
for each trait and evaluated based on the Akaike and Bayesian
information criteria (AIC and BIC, respectively) as well as their
numbers of parameters (Isik et al., 2017).

Genomic Best Linear Unbiased Prediction, GBLUP
(VanRaden, 2008) allowed the testing of complex models and
was used only to assess genotype by year interactions (G × Y)
between pairs of years and calculate heritabilities. The multi-year
model assumed the genotypes among years were correlated such
that genetic correlations could be estimated among years, using a
factor analytic variance-covariance structure with two unknown
factors (as fully described by Smith et al., 2001). Factor analytic
models have been used to a large degree in plant breeding
programs to model G × E interaction with heterogeneous
variances between environments, and have shown to work
well for crop species in multi-environment tests (for example,
Burgueño et al., 2007, 2012; Crossa et al., 2006; Oakey et al., 2016;
Dias et al., 2018). We used a multivariate model with a factor
analytic variance-covariance structure with two (K) unknown
factor loadings. When the factor analytic model is applied to
the matrix of genotypic effects in each year (ug), the model can
be written as: ug = (0 ⊗ Im ) f + δ, where 0 is the matrix of
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K vector loadings, f is a vector of genotypic scores; Im is the
vector of genotypes in each year and δ is the vector of genetic
regression residuals. The variance of the genotype effects by
year takes the form: var

(
ug

)
= (0 0

′

+ ψ)⊗ Im where ψ is a
diagonal matrix with ψi as the specific variance for the ith year,
and the matrix across years is G = (0 0

′

+ ψ).
In this analysis, a genomic relationship matrix G was

generated using all 9,908 markers and following the methodology
described by Yang et al. (2010). The G matrix and its inverse were
performed with the software GenoMatrix (Nazarian and Gezan,
2016), and model fitting was carried out with ASReml-R version
4.0 (Butler et al., 2017) R version 3.5.1 (R Core Team, 2018).

Genomic prediction models, for this study, were obtained
by Bayes B and GBLUP, however, Bayes B has been shown to
capture both marker-quantitative trait loci association effects
and genetic relationship effects better than BLUP methods
(Zhong et al., 2009). Even though, GBLUP has indicated to
have a good performance for real data application (de los
Campos et al., 2013), in a previous strawberry prediction study
(Gezan et al., 2017). Bayes B performed slightly better for
low-heritability traits and was therefore the main focus in
our estimation of predictive ability for each TST population.
In Bayes B, the analysis of each trait within each year was
performed according to the following mixed model: y = 1µ+

Zβ+ e, where y is the response vector of BLUES, µ is the
intercept, β is a vector of random marker effects (coded 0,
1, 2) associated with the incidence matrix Z and e is the
vector of residual effects. Bayes B is a variable selection and
shrinkage method, which assumes that some SNP effects are
non-zero with probability 1-π while others have zero effects
with probability π, following a mixture of two different prior
densities with a point of mass at zero and a slab with a
scaled-t density (de los Campos et al., 2013). In this study, we
defined the priors according to the default hyper-parameters
recommended by Pérez and de los Campos (2014).

We estimated predictive abilities by fitting the model for each
trait with data from each individual trial as a training set (e.g., T2)
and predicting to other trials (or years), as testing sets (e.g., T4,
T6). Therefore, when we used T2 as TRN population we made a
prediction for all T4 to T10 trials, by employing a single matrix
of marker effects. The genotypes in these trials are genetically
related to various degrees, but they are statistically independent
in the process of fitting and evaluating the genetic model. After
the single predictions were performed, we increasingly averaged
successive predictions from previous years to the latest cycle
(T10) and evaluated their effect on predictive ability in both
forward (T2, T24,...) and backward (T8642, T864,...) directions.
Each of these combinations was evaluated including or excluding
common genotypes trialed across years. The Bayes B model was
fitted in R (R Core Team, 2018) using the R package BGLR (Pérez
and de los Campos, 2014) implementing a Markov Chain Monte
Carlo method with 50,000 iterations where the first 10,000 were
used as a burn-in. Each trait in each year was run five times
and the predictive ability (PA) was estimated as the average of all
runs, and trace plots of the residual variance were checked. The
heritability of adjusted clonal mean phenotypes was estimated
using GBLUP, with and without common genotypes, as h2

=

σ2
a

σ2
a+σ2

e
, where σ2

a is the additive variance and σ2
e is the estimated

residual variance. Even though there was a moderate number
of full-sib families in each trial (Table 1), we did not estimate
within-family predictive ability for each cycle because of the
unbalanced and small number of seedlings per family, mostly
varying between 3 and 10. Within-family predictive ability is
estimated in a different study (in preparation) established for
three consecutive years with few biparental crosses and a large
number of seedlings per family (60–75).

Linkage Disequilibrium and Effective
Population Size
The previously mentioned set of 9,908 SNP markers was used to
estimate effective population size, Ne. This set of markers was
selected out of 14,332 markers in season 2015–2016 using the
GenoMatrix software (Nazarian and Gezan, 2016) and was used
for all other GP analyses. A closely related set of 9,622 genetically
mapped SNP markers from Axiom IStraw35 SNP array (Verma
et al., 2017) were used to estimate linkage disequilibrium (LD)
for the five trials – T2, T4, T6, T8, and T10. These markers were
distributed among 28 linkage groups (LGs) with a minimum
number of 15 markers and maximum number of 720 markers
per LG (Supplementary Table S2). The multi-year dataset
comprising all cycles was divided into five different subsets
based on crossing year. The purpose of dividing datasets this
way was to estimate the distribution of LD structure and Ne of
each trial without the genetic background influence of parents
and common genotypes among trials. All individuals from
T2 were included: parents, selections, and ancestors connected
to the rest of the trials. Datasets for subsequent cycles T4,
T6, T8, and T10 for the purposes of LD and Ne estimation
included no founders or check cultivars, as the inclusion of
common individuals across trials might influence haploblock
structure estimation.

The R packages synbreed (Wimmer et al., 2012) and LDcorSV
(Desrousseaux et al., 2017) were used to estimate LD based
on population relatedness (r2) and without relatedness (r2

v),
respectively (Mangin et al., 2012). The LD decay in genetic
distance (Mb) was fitted with a non-linear regression model
within the synbreed package. Ne was estimated using an
LD-based approach and allele frequency threshold of 0.05
(Waples, 2006) via NeEstimator v2.1 software (Do et al., 2014).
NeEstimator V2.1 (2017) is a tool for estimating contemporary
effective population size (Ne) using multi-locus diploid genotypes
from population samples. Unlike V1, NeEstimator V2.1 does not
include third-party programs; all methods are implemented by
NeEstimator V2.1 code and also implements a bias-corrected
version of the method based on linkage disequilibrium (LD).

RESULTS

Training GP Models With Multiple Cycles
The effect of using a GP model over multiple breeding cycles
without retraining can be seen when using T2 as a training
population for all successive cycles (Figure 1). For all traits
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FIGURE 1 | Predictive ability (PA), without common genotypes and varieties, using T2 as an independent training population to predict later cycles for five traits.
AWT, average fruit weight (g); EMY, early marketable yield (g per plant); SSC, soluble solids content (◦Brix); TC, proportion of total culls (%); TMY, total marketable
yield (g per plant).

except EMY there was a negative trend in predictive ability
over time. The increase in predictive ability of EMY and TMY
from cycle 2 to cycle 3 seems to be associated with an increase
in heritability, from the TRN to the TST population, that
was not present in other traits. The inclusion of additional
cycles to the training population in the forward direction for
prediction of trial T10 resulted in increased predictive abilities
(Figures 2A,B). Predictive abilities for AWT and TMY tended to
increase continuously, whether common genotypes across trials
were included or not, while the trends for the other traits were
more variable, but still showing an overall positive trend.

Predictive abilities were noticeably higher when common
genotypes were included across cycles (Figure 2), and in this
scenario backward predictions had on average higher predictive
abilities for all traits than forward predictions. When common
genotypes were included in the analyses, adding additional cycles
to the training population in the backward direction gave little
improvement. For example, there seemed to be no improvement
in predictive ability when trial T2 was added to a training
population consisting of trials T8, T6, and T4. However, when
common genotypes were excluded, the addition of cycles to
the training population in the backward direction noticeably
improved predictive abilities for most traits.

Genetic Relationships
Single-cycle predictive abilities based on Bayes B are depicted in
Table 2. The scenario in which all common genotypes between
TRN and TST populations were included had a higher average
predictive ability (0.35) than for the scenario excluding common
genotypes (0.24), as expected. The trait AWT, when common
individuals were included, had the highest average PA (0.43) of
all traits across cycles, with a range from 0.38 to 0.53, followed
by SSC (0.38), TMY (0.35), EMY (0.30), and TC (0.28). A similar

pattern was noted when excluding common individuals, where
AWT had the highest average PA (0.33) varying from 0.15 to 0.48,
followed by SSC (0.26), TMY (0.24), EMY (0.18), and TC (0.18).
The predictive abilities estimated by Bayes B and GBLUP were
very similar (Table 2 and Supplementary Table S4).

Heritabilities and G × E Interaction
Genomic heritability estimates are presented in Figure 3.
Heritability estimates excluding common genotypes among trials
between TRN and TST were lower than those estimates including
common individuals across trials in 80% of the cases. However,
the range of heritabilities in both scenarios was wide and similar,
whether excluding or including common individuals, mostly
varying from 0.15 to 0.65, except for the wider range for TC (0.0–
0.81). Overall, average additive genetic correlations across trials
were very high, indicating very little if any G × Y interaction
(Table 3). Though a few values in some cycles showed moderate
correlations, such as for EMY (0.70) and TC (0.72), all remaining
values were higher than 0.79 (Supplementary Table S3).

Linkage Disequilibrium and Effective
Population Size
A set of 9,622 markers were mapped to 40 linkage groups, the
number of markers per LG varying from 15 to 720. We plotted
r2 and r2v (r2 with no relatedness bias) for T2 and T10 against
genomic distances in Mb for T2 and T10 (Figure 4). We also
compared the decay of LD between T2 and T10. Maximum r2

was 0.4 in T2 and 0.47 in T10. In T2, r2 decreased to 0.2 at
3.5 Mb (Figure 4A), compared to an r2 of 0.2 at 4.2 Mb for
T10 (Figure 4C). Similar trends were observed for r2v, with a
slower decay of LD in T10 compared to T2 (Figures 4B,D).
Much higher values overall for r2 compared to r2v indicates
that a substantial portion of apparent LD was due to relatedness
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FIGURE 2 | Forward (A,B) and backward predictions (C,D) of trial T10 (testing population) and the effect of model averaging the training population on predictive
ability under two scenarios: including common genotypes between the training and testing populations (A,C) and excluding them (B,D). AWT, average fruit weight
(g); EMY, early marketable yield (g per plant); SSC, soluble solids content (◦Brix); TC, proportion of total culls (%); TMY, total marketable yield (g per plant).

(Supplementary Table S2). The effective population sizes, Ne,
for each of the cycles were 25, 17, 23, 23, and 20 for T2,
T4, T6, T8, and T10, respectively, possibly indicating a slight
decrease over time.

DISCUSSION

Independent validation with TRN populations from five breeding
cycles was utilized to evaluate GP methods and inform practical
approaches for its implementation in the strawberry breeding
program at UF. The impact of averaging multiple single
predictions, genetic relationships among the cycles, heritabilities,
G × Y interactions, LD and Ne were explored separately.
The estimation of trait additive correlations across years,
G × Y, using multivariate analyses is complex due to the
heterogenous variances-covariances among environments and
the environmental effects to be fitted. When the number of traits
is high using a parsimonious FA matrix in modeling the G × Y
interaction has advantages in convergence compared to models

using an unstructured variance-covariance matrix. Previous
results showed that increasing the number of components of
FA models would give better estimates of variance-covariance
estimates; however, these models may or may not increase
predictive ability, and it is questionable whether it would improve
the model fit (Burgueño et al., 2011). Though our estimates of
additive correlations across years (Table 3) might be upwardly
biased, they reflect the low G × Y interactions present for the
traits evaluated.

Our focus on the estimation of predictive abilities was due
to the primary emphasis in this study on practical outcomes
and applications; however, it is possible to use deterministic
formulae to calculate prediction accuracies between different
cycles, which we would expect to provide very similar trends
(Wientjes et al., 2015). Prediction accuracy and the reliability of
predictions has been shown to decline across generations due
to a decrease in genetic relationships between the TRN and
TST populations (Habier et al., 2007; Pszczola et al., 2012) as
well as the break-up of LD and consequent reduction of genetic
variance explained by the markers (Goddard, 2009). Therefore,
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TABLE 2 | Forward predictive ability (PA) for five traits estimated using Bayes B, for pairs of trials using: (A) all individuals including varieties and advanced selections in
common among each pair of trials, and (B) excluding common individuals.

(A) (B)

Trait Trial T2 T4 T6 T8 T10 T2 T4 T6 T8 T10

AWT T2 a0.53 0.39 0.45 0.43 0.48 0.33 0.44 0.37

T4 0.38 0.41 0.44 0.31 0.29 0.30

T6 0.42 0.42 0.15 0.32

T8 0.51 0.27

T10

EMY T2 0.30 0.32 0.22 0.37 0.25 0.23 0.20 0.34

T4 0.18 0.23 0.26 0.06 0.13 0.12

T6 0.28 0.40 0.09 0.13

T8 0.40 0.30

T10

SSC T2 0.42 0.38 0.41 0.35 0.36 0.32 0.34 0.30

T4 0.40 0.39 0.40 0.27 0.23 0.25

T6 0.35 0.27 0.11 0.15

T8 0.41 0.29

T10

TC T2 0.32 0.24 0.19 0.22 0.29 0.16 0.19 0.16

T4 0.36 0.29 0.33 0.10 0.24 0.28

T6 0.20 0.29 0.15 0.06

T8 0.33 0.17

T10

TMY T2 0.40 0.36 0.24 0.39 0.35 0.26 0.17 0.35

T4 0.29 0.24 0.33 0.16 0.09 0.25

T6 0.32 0.46 0.22 0.24

T8 0.47 0.27

T10

AWT, average fruit weight (g); EMY, early marketable yield (g per plant); SSC, soluble solids content (%); TC, proportion of total culls (%); TMY, total marketable yield (g per
plant). aPredictive ability ranges from low (light color) to high (dark color).

FIGURE 3 | Genomic narrow-sense heritabilities for five traits for each trial with: (A) all genotypes including varieties and advanced selections in common among
pairs of trials, and (B) excluding common genotypes. AWT, average fruit weight (g); EMY, early marketable yield (g per plant); SSC, soluble solids content (◦Brix); TC,
proportion of total culls (%); TMY, total marketable yield (g per plant).

retraining models for GP is recommended every generation
(Wolc et al., 2011; Pszczola and Calus, 2016). Currently, in the
UF strawberry breeding program the decay of predictive ability
over successive cycles without including common individuals
(Figure 1) is offset by updating the GP model every year with
phenotypic and marker data from the latest field trial. Besides,
significant decreases in selection accuracy over generations are

not expected if marker density is sufficiently high (Solberg
et al., 2008). The number of markers used in this set of trials
(∼10,000) might be considered small when compared with some
other breeding programs, particularly for animals. However,
the most complete strawberry genetic map developed for UF
germplasm (unpublished) has a total length of 1729.5 cM,
meaning that on average more than five markers per cM were
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utilized in this study, which should be more than enough to
account for genome-wide allelic diversity in an elite strawberry
breeding population.

The results obtained by comparing predictive abilities
estimated by Bayes B, as well as a previous report using different
methods of predictions (Gezan et al., 2017), indicate that, for the
commercial traits reported, Bayes B may produce slightly greater
predictive abilities than GBLUP. Therefore, we are using Bayes
B operationally in the breeding program and have focused on
the use of Bayes B for this report. Overall, predictive abilities
using single cycles (or trials) as training populations (Table 2)
were in the general range of estimates reported from other
crops and environments (Sallam et al., 2015; Ðord̄ević et al.,
2019). Using multiple cycles by averaging predictions across
cycles noticeably increased predictive ability, whether individuals
common to multiple trials were included in the analyses or not.
Thus, the size of the training population, which is known to
be important for the success of GP, was increased, not in the
traditional sense (Asoro et al., 2011; Zhang et al., 2017), but
with the addition of independent training populations from each
cycle. Improvements in the estimation of PAs by adding multiple
cycles of training populations could also come from averaging
G× Y interaction effects, though we have shown these to be quite
low (Table 3).

The presence of population structure across the breeding
cycles has important effects on GP (Asoro et al., 2011). Genetic
relationships in the strawberry breeding populations studied arise
from two primary sources: the first is the continued testing
across years of promising advanced selections and check cultivars
during the process of variety development, and the second is the
use of common parents across years which increases relatedness
at the half-sib family level (Table 1). The impacts of genetic
relationships and cosegregation can be seen by comparing the
structure of the TRN populations in Table 1 with the predictive
abilities in Table 2 when including common individuals and
when excluding them. As shown in Table 1, the average number
of common genotypes among T2 or T4 with the other trials is
31 and 44 genotypes, respectively. Among the T6, T8, and T10
trials the average number of common individuals with others is
61, 66, and 62, respectively, partly reflecting the larger number
of genotypes included in these later trials. This helps to explain
the increasing average differences in predictive ability across
traits over time between scenarios where common individuals
are included versus excluded: T2 (0.05), T4 (0.12), T6 (0.18),
and T8 (0.17). Common parents as a source of relatedness is
highlighted by the fact that the average number of parents shared
among individuals for either T2 or T4 with the other trials is four
and five, respectively, but for T6, T8, and T10 trials the average
number of shared parents is eight, eight and seven, respectively.
In other words, the increase in genetic relationships across cycles
over time is clearly one of the factors favoring predictive ability in
this breeding program.

The strength of family relationships within and across
populations has been shown to influence the reliability and the
accuracy of genomic predictions in several studies. In Pszczola
et al. (2012) the effect of four TRN populations with increasing
numbers of half-sib families (5, 20, 40) for a fixed number

TABLE 3 | Average additive genetic correlations for five traits across trials,
including common individuals among trials, using GBLUP and a factor analytic of
order 2 (FA2) variance-covariance matrix, together with the proportion of the total
genetic variance explained (VE%) by FA2.

ra AWT EMY SSC TC TMY

Mean 0.96 0.95 0.9 0.9 0.95

Range 0.94–1.00 0.69–1.00 0.87–1.00 0.72–1.00 0.86–1.00

VE% 97.9 100.0 97.3 98.9 100.0

AWT, average fruit weight (g); EMY, early marketable yield (g per plant); SSC,
soluble solids content (%); TC, proportion of total culls (%); TMY, total marketable
yield (g per plant).

of offspring and a random population with the same number
of individuals was simulated. Based on their results and other
studies (Calus, 2010), the authors concluded that highly related
TRN populations that have a small number of families with
large number of offspring per family yield lower accuracy of
prediction compared to TRN populations with more half-sib
families or random populations. In the UF strawberry breeding
program the composition of the TRN population is largely
determined by the field performance of seedlings selected in
the previous year. Different numbers of seedlings are selected
from each full-sib family based on performance, while also
aiming to have, if possible, all families represented to maintain
genetic diversity. This resulted in small and unbalanced numbers
of individuals representing each full-sib family, which is why
within-family predictions were not performed in this study.
Ultimately, optimizing the design of the TRN population at
the family level is achievable, but constraining the number of
selections in the best families may negatively affect genetic gains,
at least in the short-term. The increase from two common parents
between T2 and T10 to 13 common parents between T8 and
T10 might have had a positive effect on predictive ability. Yet
this is not obvious, since in the scenario of excluding common
individuals the predictive ability for all traits from T8 to T10
(Figure 2D) was lower than the predictive ability from T2 to T10
(Figure 2B), indicating the low impact of the number of half-
sibs in this scenario. When including common individuals, the
situation is reversed, with T8 having greater ability than T2 to
predict T10. It is also important to note that backward predictions
when common individuals are included quickly reach a plateau,
with the addition of T6 to T8 giving a very small increase in
PA and the addition of T4 and T2 giving no improvement
(Figure 2C). Together these results highlight the importance
of relatedness to predictive ability, particularly in the case of
common individuals.

Marker-based genomic heritability estimates from this study
are higher than the previously reported pedigree-based estimates
for T2 and T4 (Gezan et al., 2017). This is not surprising,
as marker-based relationships are more precise. Many studies
have shown positive correlations between predictive ability and
narrow sense heritability, consistent with the present study
(Calus et al., 2008; Daetwyler et al., 2008). The presence of
G × Y interactions may cause rank changes across years, when
pairwise genetic correlations among years are below ra = 0.8
(White et al., 2007; Goddard and Hayes, 2007). In this study,
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FIGURE 4 | Comparison of genome-wide decay of r2 (linkage disequilibrium with relatedness bias) (A,C) and r2v (linkage disequilibrium without relatedness bias)
(B,D) for the T2 (Cycle 0) and T10 (Cycle 4) trials. Horizontal dotted lines represent thresholds of r2 for comparison and vertical dotted lines represent genomic
distances where LD intersects with thresholds.

almost all additive correlations were above 0.8, suggesting low
G × Y interactions that will have little effect on PA. Most of the
strawberry production in Florida is concentrated within a 30-
mile radius of Plant City, and genotype by location interaction
is minimal within this region. On the other hand, G × Y is
more unpredictable and should be monitored closely over time.
Modeling G × Y could allow trials to be pooled into a single
training population, as opposed to averaging predictions across
cycles, possibly improving PA.

Estimates of intra-linkage group regular pairwise LD (r2) and
LD corrected for relatedness (r2

v) for T2 were slightly lower than
our previous estimates of r2 = 0.26 and r2

v = 0.04 (Gezan et al.,
2017). One possible reason is that the original study utilized
17,479 markers from the IStraw90 SNP array, while the present
analysis was based on 9,622 markers from the IStraw35 array
(Verma et al., 2017) which also provides the same quality of
data but at a reduced cost. Simulation studies have shown that
overestimation of LD (r2) comes first from multiples copies of the

same genotype and second from the progeny of full-sib families
(Mangin et al., 2015). In our analysis, we estimated r2 based on
a single copy of each phenotype (common individuals removed),
but there were multiple full-sib families with different numbers
of offspring in each cycle; therefore, the bias of the r2 estimate
should only be due to this second factor. The presence of LD
corrected for relatedness is the driving force for the long-term
success of GP in the breeding population, as r2

v represents the
prediction accuracy that will tend to persist over multiple cycles
without the need for retraining (Mangin et al., 2012; Habier et al.,
2013). The dramatic decrease in LD when removing relatedness
bias once again emphasizes the importance of relatedness in this
population as it relates to the success of GP models.

The impact of Ne on prediction accuracy has been reported
in animals, forest trees and tree fruit species (Kumar et al., 2012;
Daetwyler et al., 2013; Bartholome et al., 2016). In long generation
tree species, the use of elite populations with Ne ranging from
10 to 50 is a common practice to increase genetic gains. In this
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FIGURE 5 | A single UF strawberry breeding cycle (overlapping cycles not shown) combining marker-assisted seedling selection (MASS) for disease resistance and
other simply controlled traits, combined with the early implementation of GP for using untested genotypes in crosses 1 year early (blue line), prior their phenotyping in
a replicated field trial of elite clones (GP trial). Once all clones are phenotyped, GP models are updated with that information for the estimation of BVs to guide future
crosses (dashed line). For ease of visualization, this figure shows only the cycle beginning in 2015. However, due to yearly overlapping cycles, all breeding program
activities including crossing, MASS, seedling trials, GP trials, etc., are carried out every year.

study, effective population size appears to have decreased slightly
from T2 (Ne = 25) to T10 (Ne = 20). In the present study this
apparent slight reduction in Ne and the corresponding increase
in the extent of LD from T2 to T10 are likely contributing to
increased predictive ability with the addition of later cycles. In
the long-term it is important to recognize that intensive recurrent
selection increases inbreeding. Therefore, to maintain long-term
breeding progress, it will be important to continue to introgress
diversity into the elite breeding population.

The last 5 years of implementation of GP in the UF strawberry
breeding program has allowed the use of some parents earlier in
the breeding cycle and has increased the accuracy of estimation
of breeding values. This study makes clear that the use of average
predictions from multiple cycles in training GP models is very
beneficial, at least up to four cycles when common individuals are
included across trials. Based on these results, the following steps
are currently used for the application of GP in the UF strawberry
breeding program (Figure 5):

(1) In the summer prior to each winter fruiting/crossing
season, which in Florida extends roughly from mid-
November through March, phenotypic and marker data
from up to four previous cycles, including common
individuals across trials, are used to train Bayes B models
predicting the BVs of the most recent advanced selections.
These selections were seedlings in the previous cycle and

are genotyped over the summer but are not yet phenotyped
for the five measured commercial traits AWT, EMY,
SSC, TC, and TMY.

(2) Breeding values for these five traits are combined in
a selection index using economic weights for each
trait to rank the advanced selections for their overall
potential as parents.

(3) In November and December, early-season field
observations are made for these advanced selections
for all visually evaluated traits, including: fruit shape, color,
and flavor, disease resistance, plant architecture, etc.

(4) Three to five advanced selections (out of approximately 25–
40 total parents) that are noted for early-season field traits
and ranked highly in the BV selection index are selected for
use as parents in controlled crosses as males. These males
are crossed to one or more elite females that have been field
evaluated for multiple seasons and have complementary
traits to the males chosen by GP. In this way, approximately
10% of crosses have a male parent chosen via GP methods
that is being used in crossing at least 1 year earlier in the
breeding cycle than normal.

As this study suggests, increasing the size of the training
population will increase prediction accuracy, but at some point,
increasing size will not further improve GP models. This appears
to have occurred for the UF strawberry breeding program at the
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fourth cycle. Given the demonstrated importance of relatedness
in this study, future work on the optimal design of the relatedness
within and among TRN and TST populations (choosing which
genotypes to establish in each trial) could possibly increase
predictive ability in the short term without compromising the
potential of future genetic gains. It will also be important to
monitor the performance of crosses chosen via GP versus those
designed in the traditional manner to empirically test whether the
implementation of GP in the breeding program is achieving the
desired results.
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Although hybrid crop varieties are among the most popular agricultural innovations,
the rationale for hybrid crop breeding is sometimes misunderstood. Hybrid breeding
is slower and more resource-intensive than inbred breeding, but it allows systematic
improvement of a population by recurrent selection and exploitation of heterosis
simultaneously. Inbred parental lines can identically reproduce both themselves and
their F1 progeny indefinitely, whereas outbred lines cannot, so uniform outbred
lines must be bred indirectly through their inbred parents to harness heterosis.
Heterosis is an expected consequence of whole-genome non-additive effects at the
population level over evolutionary time. Understanding heterosis from the perspective
of molecular genetic mechanisms alone may be elusive, because heterosis is likely an
emergent property of populations. Hybrid breeding is a process of recurrent population
improvement to maximize hybrid performance. Hybrid breeding is not maximization of
heterosis per se, nor testing random combinations of individuals to find an exceptional
hybrid, nor using heterosis in place of population improvement. Though there are
methods to harness heterosis other than hybrid breeding, such as use of open-
pollinated varieties or clonal propagation, they are not currently suitable for all crops
or production environments. The use of genomic selection can decrease cycle time and
costs in hybrid breeding, particularly by rapidly establishing heterotic pools, reducing
testcrossing, and limiting the loss of genetic variance. Open questions in optimal use
of genomic selection in hybrid crop breeding programs remain, such as how to choose
founders of heterotic pools, the importance of dominance effects in genomic prediction,
the necessary frequency of updating the training set with phenotypic information, and
how to maintain genetic variance and prevent fixation of deleterious alleles.

Keywords: heterosis, inbreeding depression, genomic selection, reciprocal recurrent genomic selection,
dominance, autogamous

INTRODUCTION

Hybrid crop varieties vastly outperform their inbred progenitors in economically important species
ranging from maize (Zea mays) to oil palm (Elaeis guineensis; Duvick, 2005; Fu et al., 2014; Cros
et al., 2015). However, hybrid breeding requires more time and resources than inbred breeding
(Troyer and Wellin, 2009; Longin et al., 2014; Cros et al., 2018). The effectiveness of hybrid breeding
can be improved by genomic selection, in which marker information partially replaces phenotypes
in estimation of breeding values (Heffner et al., 2009). Genomic selection can shorten the breeding
cycle, reduce the costs of phenotyping, and improve selection accuracies (Lorenz et al., 2011;
Heslot et al., 2015; Zhao et al., 2015b; Schulthess et al., 2017; Kadam and Lorenz, 2018).
Genomic selection also opens new opportunities to establish hybrid breeding programs
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in crops which are widely cultivated as inbreds, such as wheat
(Triticum aestivum; Zhao et al., 2015b). Here, we compare and
contrast genomic selection with conventional selection in hybrid
crop breeding. We summarize the quantitative genetic model
of phenotype, and we synthesize quantitative, evolutionary,
phenotypic, and molecular genetic perspectives to explain the
bases of heterosis and its role in breeding hybrids. Then, we cover
the fundamentals of genomic prediction and its uses in genomic
selection at all stages of the hybrid breeding cycle, including
selection strategies for long-term gain. In closing, we outline
factors which influence the success of hybrid breeding programs
relative to inbred breeding programs.

QUANTITATIVE GENETIC MODEL OF
PHENOTYPE

To consider genomic selection for hybrid performance and
heterosis, it is necessary to understand the statistical model
of phenotype used in quantitative genetics. The observed
performances of individuals in a population are their phenotypic
values (Falconer and Mackay, 1996). The variance of individuals’
phenotypic values is due to genetic and non-genetic variance
components and their interactions (Supplementary Table 1;
Eq. 1; Falconer and Mackay, 1996). If non-genetic variance
were absent, then phenotypic variance would be equal to
genetic variance. Detecting genetic variance does not require
demonstrating molecular modes of gene action, and genetic
effects are indirectly observed as differences in phenotypes
(Falconer and Mackay, 1996). For example, if there are no
differences in individuals’ phenotypes and thus no phenotypic
variance, then genetic effects and genetic variance are zero.
Even though at the molecular genetic level cellular machinery
dynamically generates and maintains identical phenotypes, these
are not genetic effects or genetic variance in the quantitative
genetic sense. Similarly, the amount of genetic variation, genetic
diversity, or nucleotide diversity cannot be inferred from the
magnitude of genetic variance even though genetic variation
underlies genetic variance. If the most genetically diverse lines of
a population are sampled and their phenotypes are identical, then
genetic variance is nonetheless zero, assuming no non-genetic
variance. If the phenotype is also measured in closely related lines
but varies greatly, then genetic variance is large, even if the lines
have nucleotide polymorphisms in just one gene.

Total genetic variance can be further partitioned into additive,
dominance, and epistatic variance (Supplementary Table 1;
Eq. 2; Falconer and Mackay, 1996). Intuitively, individuals share
alleles to the degree that they are related (Falconer and Mackay,
1996; Fisher, 1918). Under the infinitesimal model, an impossibly
large number of alleles additively affect quantitative trait
phenotypes, so the proportion of shared alleles among relatives
is expected to produce concomitant phenotypic resemblance
(Fisher, 1918). The more that relatives phenotypically resemble
each other in proportion to their degree of relatedness, the greater
the proportion of phenotypic variance that can be explained by
additive genetic variance, assuming zero non-genetic variance
(Fisher, 1918). If dominance and epistatic variance is present,

relatives may resemble each other more than expected by a strictly
additive model (Lynch and Walsh, 1998).

Genetic variance is also viewed as statistical effects of alleles
at individual loci in a population (Falconer and Mackay, 1996).
Alleles can have additive and dominance effects on genetic value.
At a given locus, the additive effect of an allele, a, is the average
genetic value of all individuals which are homozygous for the
allele (Falconer and Mackay, 1996). The dominance effect of the
allele, d, is the average genetic value of all individuals which
are heterozygous for the allele (Falconer and Mackay, 1996).
Since epistasis requires multiple alleles, single alleles do not have
epistatic effects.

At the population level, the average effect of substituting
one allele for another at a given locus on the genetic
mean of the population depends not only on the additive
and dominance effects of the allele, but also its frequency
(Supplementary Table 1, Eq. 3—5; Falconer and Mackay,
1996). The average effect of an allele, α, is its coefficient
in regression of genetic value on the number of copies of
the allele in each genotype at the locus (Supplementary
Table 1; Eq. 6; Falconer and Mackay, 1996). If dominance
occurs, then observed genetic values do not fall exactly on
the regression line of genetic value on allele copy number
per genotype (Falconer and Mackay, 1996). The deviation of
the heterozygote genetic value from the regression line is the
dominance deviation of the allele, δ (Supplementary Table 1;
Eq. 6; Falconer and Mackay, 1996). If more than one locus
affects phenotype, then epistatic interactions between and/or
among allelic effects across loci can also contribute to genetic
value (Supplementary Table 1; Eq. 7; Falconer and Mackay,
1996). The statistical effects of alleles can be used directly
to calculate respective genetic variances, but realistically it is
almost always unknown which alleles affect phenotype or which
individuals carry which alleles (Falconer and Mackay, 1996).
Therefore, in practice, genetic variances are estimated from
resemblance among relatives, not a priori from allelic effects
(Falconer and Mackay, 1996).

Statistical genetic average, dominance, and epistatic effects
do not represent underlying biological modes of gene action
in most experimental and breeding settings, and modes of
gene action cannot be inferred from the relative contribution
of each source of statistical genetic effects to the genetic
value (Cordell, 2002; Crow, 2010; de los Campos et al., 2015;
Huang and Mackay, 2016; Manfredi et al., 2017). By definition,
biologically dominant or epistatic gene action is largely captured
by statistical average effects, because statistical dominance and
epistasis are residual deviations from average effects (Cheverud
and Routman, 1995). Average, dominance, and epistatic effects
refer to their statistical formulations throughout this review
unless specified as biological.

QUANTITATIVE GENETIC MODEL OF
HETEROSIS

A rationale for hybrid breeding is the systematic exploitation
of heterosis (Schulthess et al., 2017). Mid-parent heterosis is
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FIGURE 1 | Illustration of the partitions of population-level heterosis by Lamkey and Edwards (1999). Arrows indicate random mating or random crossing, and lines
indicate selfing to homozygosity. Note that only dominance, additive × dominance, and dominance × dominance effects can contribute to baseline heterosis, but
dominance, additive × dominance, dominance × dominance, and additive × additive effects can contribute to panmictic-midparent heterosis, inbred-midparent
heterosis, and F2 heterosis. Equations are further described in Supplementary Table 1.

the difference between a progeny genetic value and its mid-
parent value, or the average of its parents’ genetic values
(Supplementary Table 1.; Eq. 8; Lynch and Walsh, 1998). Under
the additive model, the genetic value of a progeny is expected to
be equal to the average genetic value of its parents. Thus, mid-
parent heterosis results from dominance and epistatic deviation.
However, mid-parent heterosis of a single cross is neither a
measure of dominance or epistatic effects nor a measure of
heterosis in a population.

It is important to define heterosis further at the population
level, because (a) heterosis emerges at the population level,
even if it partially can be observed in single crosses, and
(b) breeding involves populations rather than individuals
alone (Figure 1; Lamkey and Edwards, 1999). In a group of
individuals which can potentially intermate, such as a species,
random mating may not occur among all individuals. Non-
random mating of individuals—or any factor which leads to
Hardy–Weinberg disequilibrium, such as migration—can cause
distinct subpopulations form within the overall population,

termed population structure. Within subpopulations, mating is
random and Hardy–Weinberg equilibrium is reached, but among
subpopulations mating is non-random. The subpopulations
are inbred relative to the population that would result if
random mating had occurred among all individuals in the
overall population, and allele frequencies may come to differ
among subpopulations.

What results if two of these subpopulations are randomly
mated to each other? The mean genetic value of their F1
may differ from the mean of the average genetic values within
each subpopulation, and this difference is termed panmictic-
midparent heterosis (Supplementary Table 1; Eq. 9—11; Lamkey
and Edwards, 1999). Panmictic-midparent heterosis is thought
to result from (a) dominance, as allele frequencies differ
between the parent populations, and dominant genotypes that
do not occur in the parents are observed in their F1, and/or
(b) additive × additive epistasis, as new interactions among
alleles are possible in the F1 compared to the parents. The
portion of panmictic-midparent heterosis due to dominance, if
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present, can be thought of as recovery from inbreeding due to
population structure, because subpopulations are by definition
inbred relative to a population in which structure had never
occurred. Although this base population in which structure never
occurred is hypothetical and cannot be observed, it is possible to
form an analogous population in Hardy–Weinberg equilibrium
by randomly intermating the two subpopulations to form an F1,
then randomly mating the F1 to form an F2. Heterosis in the F2,
or F2 heterosis, is reduced by half compared to the panmictic-
midparent heterosis in the F1 (Supplementary Table 1; Eq. 12—
13; Lamkey and Edwards, 1999).

Panmictic-midparent heterosis can be positive or negative.
If panmictic-midparent heterosis is negative, it is sometimes
referred to as outbreeding depression (Waser and Price, 1994;
Lynch and Walsh, 1998; Grindeland, 2008; Oakley et al., 2015).
Outbreeding depression is thought to primarily result not from
dominance, but rather from loss of favorable additive × additive
epistases as co-selected, genomically compatible combinations
of alleles are separated in the F1 of two random-mating
populations (Dobzhansky, 1941; Welch, 2004). These losses of
favorable biological epistases are termed Dobzhansky–Muller
incompatibilities (Dobzhansky, 1941).

What results if, within a subpopulation, inbreeding occurs
rather than random mating? Inbred lines are often observed
to have a lower mean genetic value than the mean of the less
inbred subpopulation, a phenomenon referred to as inbreeding
depression (Charlesworth and Charlesworth, 1987; Falconer
and Mackay, 1996; Charlesworth and Willis, 2009). Inbreeding
depression is thought to result biologically from (a) deleterious
recessive alleles driven to homozygosity, (b) homozygosity at
overdominant loci at which the heterozygous state outperforms
either homozygote, and/or (c) a loss of favorable epistatic
interactions between heterozygous genotypes (Davenport, 1908;
East, 1908; Shull, 1908; Falconer and Mackay, 1996). If it were
possible to randomly mate the inbred lines without selection to
form an F1, the original subpopulation would be reconstituted
and its mean restored to its original state if inbreeding depression
were due to dominance and/or epistasis (Falconer and Mackay,
1996). Interestingly, there is some evidence of inbreeding
depression due to epigenetic changes which may not be reversible
by random mating, termed hybrid decay or hybrid dysgenesis
(de la Luz Gutiérrez-Nava et al., 1998; Xue et al., 2019). Though
hybrid decay is not thought to be a universal cause of inbreeding
depression and has not prevented production of hybrids from
inbreds in commercial programs, it is unknown how widespread
this occurrence is.

If two subpopulations are again considered, an F1 of the
subpopulations can be produced in two ways: (a) the randomly
mating subpopulations can be randomly intermated, or (b) each
subpopulation can first be selfed to produce fully inbred lines,
and the fully inbred lines can be randomly intermated (Lamkey
and Edwards, 1999). The average genetic value of the F1 resulting
from either of these processes is equal (Supplementary Table 1;
Eq. 9; Lamkey and Edwards, 1999). Some of the mean genetic
value of the F1 is due to baseline heterosis, or the restoration
of what was lost due to inbreeding depression during selfing
of both the parent subpopulations (Supplementary Table 1;

Eq. 14; Lamkey and Edwards, 1999). However, the panmictic-
midparent heterosis that results from crossing two randomly
mating subpopulations also contributes to the genetic value of
these F1. Therefore, inbred-midparent heterosis is defined as the
sum of baseline heterosis and panmictic-midparent heterosis,
which is equivalent to the difference of the mean genetic value of
the F1 and the mean genetic value of all the inbred parents derived
from both populations (Supplementary Table 1; Eq. 9, Eq. 15—
16; Lamkey and Edwards, 1999). The key reason to partition
heterosis into panmictic-midparent, F2, baseline, and inbred-
midparent heterosis is that it allows definition of average heterosis
and inbreeding depression at the population level. Furthermore,
it provides a framework to contrast heterosis that results from
crossing two random-mating subpopulations and heterosis that
results from crossing inbred lines that result from the random-
mating subpopulations.

Heterosis is often described as the “opposite” or converse
of inbreeding depression. However, of the partitions of
heterosis described here, only baseline heterosis is strictly
the opposite of inbreeding depression. Panmictic-midparent
heterosis (and therefore inbred-midparent heterosis) can
arise totally from epistatic effects without dominance,
whereas inbreeding depression cannot (Falconer and Mackay,
1996; Lamkey and Edwards, 1999; Chen, 2013). Heterosis
due to epistasis can only result from additive × additive
epistasis, whereas inbreeding depression can result from both
additive × dominance and dominance × dominance epistasis
(Lynch, 1991; Lynch and Walsh, 1998).

EVOLUTIONARY AND MOLECULAR
GENETIC BASES OF HETEROSIS

From the evolutionary perspective, heterosis in quantitative
genetics ultimately rests on assumptions of biological dominance
and biological epistasis, even though the additive model captures
most of the effects of biological dominance and epistasis (Huang
and Mackay, 2016). For biological dominance to affect heterosis,
dominant alleles should have directional effects on fitness (Lynch
and Walsh, 1998). As biologically dominant mutations arise
in a population, they affect phenotype regardless of zygosity
and are exposed to selection (Falconer and Mackay, 1996).
Recessive mutations are only exposed to selection on phenotype
in their homozygous state and can propagate in populations as
they are not selected as heterozygotes (Falconer and Mackay,
1996). Therefore, deleterious dominant alleles are more likely
to be eliminated from populations by selection than deleterious
recessives (Falconer and Mackay, 1996). Over evolutionary time,
it is expected that biologically dominant alleles tend to be
favorable, and deleterious alleles tend to be recessive (Falconer
and Mackay, 1996). If dominant alleles have directional effects
on fitness, the effect is then often positive (i.e., the sign of
dominance occurs in the same direction as the measure of
fitness). In maize, alleles identified as likely deleterious via
genomic evolutionary rate profiling were found more likely
to be recessive (Yang et al., 2017). The likelihood of purging
recessive deleterious alleles is reduced as effective population
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size increases, and deleterious alleles may be shielded from
selection in genomic regions with low recombination rates,
such as the centromere, regardless of dominance (Barrett and
Charlesworth, 1991; Rodgers-Melnick et al., 2015; Yang et al.,
2017). Evolutionary mechanisms besides directional selection
have also been proposed to explain the emergence of dominance,
such as stabilizing selection (Manna et al., 2011).

Heterosis can also result from overdominance, a type
of biological dominance in which heterozygotes have more
extreme phenotypes than both homozygotes, and alleles
persist in populations at intermediate frequencies (Crow,
1999). One overdominant locus alone is sufficient to cause
heterosis (Falconer and Mackay, 1996; Krieger et al., 2010).
However, detection of overdominance is complicated because
it requires inbred parents to be identical at all loci except
the locus of interest. If they are not, then parents can carry
biologically dominant alleles of opposite effects on fitness
linked in repulsion, and pseudooverdominance results: the
loci are never observed in their uncoupled state, and they
appear as one overdominant locus. In absence of linkage,
pseudooverdominance would not exist.

Finally, biological epistasis may contribute to heterosis as
interactions of multiple loci contribute to fitness. Ample evidence
of biological epistasis is available; for example, genes encoding
transcription factor proteins may physically bind to DNA
sequence motifs to activate or repress other genes which affect
phenotype, among other mechanisms (Phillips, 2008; Lehner,
2011; Burdo et al., 2014). However, detecting all types of both
statistical and biological epistasis in regular experimental samples
is often not feasible because the number of combinations of alleles
is much larger than the number of individual genotypes in a
population (Wei et al., 2014). Epistasis also cannot be detected
in a population if the experimental sample is not segregating for
both interacting genes (Stitzer and Ross-Ibarra, 2018).

It is possible that heterosis can be explained fully by
biologically additive, dominant, and epistatic gene action and
that no single gene, class of genes, or physiological phenomenon
causes heterosis (Birchler et al., 2010; Fiévet et al., 2018). If
so, searching for the genetic basis of heterosis would lead to
the genetic basis of the specific trait in question in a particular
experimental sample, and heterosis would be conferred by
biological dominance, overdominance, or epistasis of those genes
which controlled the trait (Fiévet et al., 2018). For example,
consider inquiry into the genetic basis of heterosis for grain yield
in maize and biomass yield in sorghum (Sorghum bicolor). By the
explanation of heterosis above, maize grain yield and sorghum
biomass yield could be controlled by completely different genes
and classes of genes, and dominant, overdominant, or epistatic
action of the genes involved would lead to heterosis. If more
individuals were sampled, which presented more combinations
of genes and/or more genetic variants, then the genetic basis of
observed heterosis could change.

It has been further hypothesized that actions of particular
classes of genes or physiological effects of genes cause heterosis
universally across traits and species (Birchler et al., 2010; Fiévet
et al., 2018). These proposed unifying mechanisms include
organellar complementation, circadian rhythm changes, changes

in hormone expression, genome-wide changes in chromatin
state and/or changes in small RNA expression, dosage effects,
regulatory incompatibility, parent-specific gene expression, and
changes in signaling in response to heterozygosity (Auger et al.,
2005; Reif et al., 2005; Lippman and Zamir, 2007; Kaeppler,
2012; Chen and Birchler, 2013; Bar-Zvi et al., 2017; Herbst
et al., 2017; Li et al., 2020). It is challenging to detangle
whether each of these actions of gene classes and physiological
effects are themselves causes of heterosis, or instead the effect
of a true unobserved cause of heterosis. None has been
demonstrated to universally explain heterosis, but some have
been demonstrated to be associated with heterosis in some
cases and have been incorporated into predictive models with
varying effects on prediction accuracy (Kaeppler, 2012; Westhues
et al., 2017; Schrag et al., 2018; Seifert et al., 2018). At the
transcriptome level, hybrids generally display transcript levels
near their mid-parent value, with some exceptions (Swanson-
Wagner et al., 2006; Hochholdinger and Hoecker, 2007; Springer
and Stupar, 2007). At the proteome level, hybrids generally show
protein levels which deviate from the mid-parent, particularly
in functional classes related to central metabolism and stress
responses (Marcon et al., 2010). Efforts to map heterosis for
various traits generally do not reveal loci for which the association
holds universally across genotypes, even for single traits within
a species (Huang et al., 2016; Liu et al., 2020). If a particular
universal mechanism of heterosis were ultimately revealed, the
genes involved would still have biologically additive, dominant,
or epistatic gene action. The genes may not be identical at the
sequence level, but it would be expected that the mechanism
would be common to all cases of heterosis.

PHENOTYPIC BASES OF HETEROSIS

In hybrid individuals, not all traits are necessarily heterotic
(Kaeppler, 2011). Nor is there correlation in levels of heterosis
for different traits (Longin et al., 2013; Huang et al., 2015).
For example, a hybrid individual might show heterosis in yield
and height, but not root angle, and the amount of heterosis
for yield and height may differ. The sign of heterosis can vary
among traits; inter-subspecific hybrids of indica and japonica rice
(Oryza sativa) show increased vigor, but reduced fertility, as do
interspecific hybrids of donkeys (Equus asinus) and horses (Equus
caballus; Troyer, 2006; Fu et al., 2014). The degree of heterosis
can also depend on environment. Maize hybrids usually show
more heterosis in stressful than non-stressful environments, even
as overall performance is decreased (Duvick et al., 2004). The
lack of consistent levels of heterosis across traits may indicate
that heterosis cannot be explained by a unifying, systems-wide
mechanism—the reasoning being that all traits would then be
affected equally.

Heterosis is also found in complex traits that are a function
of multiple component traits, even if the component traits can
be fully explained by an additive genetic model. If component
traits diverge phenotypically in parents, then heterosis in the
complex trait is often detected in progeny even as the component
traits remain near the mid-parent (Powers, 1944; Williams, 1959;
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Grafius, 1961; Coyne, 1965; Melchinger et al., 1994; Dan et al.,
2015; Fiévet et al., 2018). For example, in the heterotic pools
of oil palm, one pool has a few heavy fruit bunches, and the
other has many light fruit bunches (Cros et al., 2015). Their
hybrids exhibit substantial heterosis (25%) for fruit production—
the product of bunch number and bunch weight—but the hybrid
values for bunch number and bunch weight remain near the
mid-parent. Notably from the genetics perspective, biological
dominance is not required to explain heterosis in multiplicative
complex traits (Schnell and Cockerham, 1992; Cros et al., 2015).
In this example, it is possible that all of the heterosis in fruit
production of oil palms can be fully explained by biologically
additive gene action in bunch number and bunch weight (in
which case hybrid breeding would not be the optimal strategy to
increase fruit production), but in practice the true genetic bases
of these traits are unknown.

At the biochemical level, complex phenotypes are a function
of multiple component metabolites over time (Fiévet et al.,
2018). Metabolite levels or concentrations are themselves a
complex phenotype, because they are the product of enzyme
amounts and activities within pathways, as well as flux (i.e.,
rate of turnover) through the pathway (Marshall-Colón et al.,
2010; Fiévet et al., 2018). Heterosis can emerge because enzyme
activities often affect metabolic flux non-linearly—i.e., halving the
activity or concentration of a given enzyme does not necessarily
halve metabolic flux (Fiévet et al., 2018; Govindaraju, 2019;
Vacher and Small, 2019). The non-linear relationships of enzyme
activity and metabolic flux has been proposed as the molecular
basis of dominance (Kacser and Burns, 1981). Even if hybrids
have enzyme concentrations near the mid-parent, as would be
expected under additive inheritance, whether flux or the product
metabolite is also at the mid-parent depends on the biochemistry
of the pathway (Vacher and Small, 2019). For example, the
product metabolite concentration in hybrids may deviate from
the mid-parent as enzymes with activities at the mid-parent
interact along a pathway and change the flux, or as a rate-limiting
step of the pathway is saturated at lower levels than the mid-
parent enzyme activity and further increases in enzyme activity
do not affect flux (Fiévet et al., 2018). A key conclusion, then, is
that non-additive phenotypes such as metabolite concentrations
may arise from component additive phenotypes such as enzyme
concentrations or activities. Since metabolites are component
traits of even more integrated traits, like grain yield, non-
additivity in metabolite concentrations can reverberate across
levels of phenotype and can lead to heterosis in the integrated
trait (Fiévet et al., 2018). Whether heterosis is detected can
depend on the choice of phenotype. The metabolome is a
phenotype, and using metabolomics data as component traits
in multi-trait prediction then has instant appeal, despite current
limits in metabolomics on throughput, cost, and the number of
metabolites which can be sampled.

ALTERNATIVE DEFINITIONS OF
HETEROSIS

There are several alternative definitions of heterosis which are not
equivalent to mid-parent heterosis and do not have a well-defined

genetic interpretation. Better parent heterosis (heterobeltiosis)
and commercial heterosis, in which either the phenotypic
value of the better-performing parent or a commercial check,
respectively, is taken from the progeny phenotypic value, may
be useful measures for varietal development but have no
immediate relevance to genetic improvement of a population
by selection, except perhaps to define selection targets (Flint-
Garcia et al., 2009; Schnable and Springer, 2013). Better-parent
and commercial heterosis might be more informatively described
as better-parent and commercial relative performance to avoid
equating these measurements with mid-parent heterosis.

Heterosis has also been restricted to describing only increases
in progeny vigor relative to parents, i.e., positive heterosis
(Shull, 1948). Negative heterosis is observed, as in the progeny
of outbreeding depressed parents (Lynch and Walsh, 1998).
However, the sign of heterosis can also be a simple artifact of
the investigator’s choice of phenotypic measurement (Falconer
and Mackay, 1996). For example, positive heterosis for days
to flowering is equivalent to negative heterosis for speed of
development—a plant which flowers later would have a more
positive value for days to flowering, but it would have a less
positive value for speed of development since it matures more
slowly (Falconer and Mackay, 1996). Therefore, a progeny
that flowers later than its mid-parent would show positive
heterosis for days to flowering, but negative heterosis for
speed of development even though the character measured
(when the progeny flowers) is identical. Another common
example is that severity of disease can also be viewed as
plant health status, and the investigator chooses whether a
more positive number represents more or less severe disease
symptoms. In the case that a progeny is more resistant to
disease that its mid-parent, it will show positive heterosis
if less severe disease is measured as a more positive value
but negative heterosis if less severe disease is measured as a
less positive value.

Finally, heterosis has been conceptualized as a systems-wide
phenomenon is which “the increased vigor, size, fruitfulness,
speed of development, resistance to disease and to insect
pests, or to climactic rigors of any kind” is observed (Shull,
1952). It is perhaps this perspective of heterosis which has
fueled the search for a unifying theory of heterosis as well
as investigation into its functional genomic causes (Birchler
et al., 2003, 2010). Understanding biological bases of heterosis
is valuable, but further investigation is needed to use biological
insights into heterosis in hybrid crop breeding programs
(Ramstein et al., 2019).

GENOMIC PREDICTION

As parents, individuals transmit neither their phenotype nor their
full genotype to their offspring. The allele, or more broadly, the
gamete is the unit of inheritance. Only the additive portion of
genetic value is heritable in the narrow sense if mating is random,
because it does not depend on intra- or inter-locus combinations
of loci which are potentially disrupted upon mating (Falconer
and Mackay, 1996). If mating is random, additive genetic value is
all that is maximizable or “breedable” cyclically over generations,
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and an individual’s additive genetic value is its breeding value
(Falconer and Mackay, 1996; Huang and Mackay, 2016).

Despite its name, the concept of breeding value was not
developed specifically for the purpose of breeding, but rather
to explain the inheritance of quantitative traits: because Mendel
discovered inheritance in traits which had discrete classes, it was
initially unknown whether continuous, quantitative traits were
also controlled by genes that could be transmitted from parent to
progeny (Bernardo, 2020). Fisher (1918) not only conceptualized
that quantitative traits could be the effect of many genes, but also
connected the partial inheritance of parental alleles to observed
patterns of resemblances among relatives (Bernardo, 2020). In
applied breeding programs, some of the assumptions that define
breeding value—such as random mating—are routinely unmet
(Falconer, 1985; Bernardo, 2020). Recently, it has been suggested
to move away from referring to estimates of transmissible
variance as breeding values in applied plant breeding programs
for clarity and because non-additive variance can be transmitted
via cross selection (Bernardo, 2020; Werner et al., 2020). Here,
we refer to breeding values even though at times the definition is
not strictly met.

True breeding value cannot be measured or even observed
in the individual alone, since true measure of breeding
value requires errorless observations of every possible progeny
resulting from the individual mated to every possible member
of the population to which it belongs. Therefore, breeding
values are estimated. The estimation of breeding values was
first accomplished by progeny testing. With random mating,
the average performance of an individual’s progeny is an
estimate of its breeding value (Supplementary Table 1; Eq. 17).
Many mating schemes were developed to more accurately
estimate breeding values by use of more types of relatives
(Hallauer et al., 2010). However, best linear unbiased prediction
(BLUP) was developed to estimate breeding values without the
need for mating designs, as pedigree-based variance-covariance
relationship matrices describe the resemblance between relatives
in a linear mixed model (Supplementary Table 1; Eq. 18;
Henderson, 1975). Assuming no fixed effects, BLUP of breeding
value can be thought of as a linear combination of observed
phenotypes weighted by the degree of their relationship with
the individual for which breeding value is predicted. The
pedigree-based relationship matrix is often referred to as the
numerator relationship matrix, A, and pedigree-based BLUP
is sometimes called ABLUP (Bernardo, 2002; Gianola et al.,
2018). Interestingly, BLUP was slow to gain traction in plant
breeding, but quickly became popular in animal breeding due
to the standing practical impossibility of replicating animal
genotypes (Piepho et al., 2008). It was perhaps here that the
two fields decoupled in their study of genomic prediction and
selection, and the benefits of cross-disciplinary synchronization
of methods are recognized in both fields (Schön and Simianer,
2015; Hickey et al., 2017).

Well in advance of the sequencing technologies that would
make markers cheaper, less biased, and more representative
of the genome, the framework for genomic prediction of
EBV using molecular markers was developed. Bernardo (1994;
1996) used genome-wide markers to estimate breeding values

from kinship rather than pedigree in the first instance of
genomic prediction. Whittaker et al. (2000) addressed the
problem of selection of marker subsets for linear regression in
marker-assisted selection (MAS) by ridge regression, which is
a regularization method that shrinks normalized effects for all
markers equally toward an assumed mean of zero by an optimized
parameter, λ (Supplementary Table 1; Eq. 19). This was a crucial
advance for the use of genomic markers in selection, because
markers generally outnumber phenotypes and cause the “large
p, small n” problem: linear regression by OLS is not possible
if predictors (p) outnumber responses (n), and subsampling is
usually suboptimal (Whittaker et al., 2000). Ridge regression,
like other regularization methods, addresses the problem of
selecting predictors by shrinking their coefficients instead of
subsampling. Regularization also reduces model overfitting, in
which models capture noise (i.e., residual error) as well as signal
(i.e., effects of predictors). Both model overfitting and poor choice
of predictors reduce prediction accuracies. Meuwissen et al.
(2001) realized that if markers in linkage with every quantitative
trait locus (QTL) affecting a trait were to become available, then
additive effects per marker (estimated by ridge regression or other
methods) could be summed to calculate individuals’ genomic
estimated breeding values (GEBVs). Use of GEBVs or any other
value estimated using genome-wide information for selection is
referred to as genomic selection.

Since 2001, tens of methods for genomic prediction of
breeding values, as well as the genetic values of lines used
for production rather than breeding, have been developed
(Gianola et al., 2006, 2009; Legarra et al., 2009; Habier et al.,
2011; Momen et al., 2018; Wang et al., 2018; Howard et al.,
2019; Kadam and Lorenz, 2019). These methods include both
frequentist and Bayesian, as well as parametric and non-
parametric, methods (Gianola et al., 2018). The parametric
method of Whittaker et al. (2000), ridge regression of marker
effects, is called RR-BLUP and assumes marker effects are drawn
from a normal distribution. Hayes et al. (2009) later showed
that estimation of breeding values by RR-BLUP is equivalent to
estimation by genomic BLUP (GBLUP), in which markers are
used to compute a genomic relationship matrix. The genomic
relationship matrix (often denoted G) replaces the pedigree
relationship matrix (A) to calculate BLUPs of GEBVs (VanRaden,
2008). GBLUP is generally more accurate than ABLUP, because
realized genetic relationships deviate from pedigree expectations
following Mendelian sampling, selection, and other events
(VanRaden, 2008). RR-BLUP and GBLUP are widely used for
genomic prediction because they are relatively straightforward
to interpret, often more computationally efficient, and often
as accurate as other methods with more realistic assumptions
(Zhao et al., 2015b; Howard et al., 2019). For reviews
of genomic prediction methods, see Gianola et al. (2018)
and Howard et al. (2019).

In hybrid breeding, genomic prediction can be used to (a)
predict the combining abilities of inbred lines, and (b) predict
the performance of new hybrid genotypes (Bernardo and Yu,
2007; Technow et al., 2012). To predict the combining abilities
of inbred lines, phenotypes of their hybrid progeny are used to
estimate inbred combining abilities, then the combining abilities
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of the inbred lines are modeled as a function of their inbred
genotypes (Bernardo and Yu, 2007). To predict the performance
of new hybrid genotypes, hybrid phenotypes are modeled as a
function of hybrid genotypes (Technow et al., 2012). However,
hybrid genotypes are usually not sequenced directly, and are
inferred instead by genotyping their inbred parents, which
reduces the total number of individuals for genotyping. Even
though within hybrid genotypes a given allele may be specific
to a particular population, modeling population-specific effects
of alleles has not been shown to greatly increase accuracy in
predicting hybrid performance (Technow et al., 2012).

Prediction accuracy is an important determinant of whether
genomic prediction will lead to effective selection across
environments, years, and genotypes. Factors which influence
accuracy of GEBVs include choice of statistical model, trait
heritability, precision in geno- and phenotyping, size the of
the training set, and relatedness/common LD structure of the
training and testing set (Heslot et al., 2015; Rutkoski et al.,
2017). Modeling non-additive effects is an active area of research
with particular relevance to prediction of GEBV or performance
(Vitezica et al., 2017; Varona et al., 2018b; Voss-Fels et al.,
2019). Dominance deviations are by definition zero in genetic
values of homozygous inbred lines; only additive and epistatic
additive effects are non-zero. In non-inbred individuals, all non-
additive effects contribute to genetic value. Product development,
in contrast to population improvement, is concerned with total
genetic value, which includes non-additive effects.

Though modeling non-additive effects would be expected,
then, to improve prediction accuracies, a reminder is warranted:
modeling non-additive genetic effects will only improve
prediction accuracies if non-additive genetic effects exist for the
traits of interest and non-additive genetic effects can be estimated
accurately in the populations of interest (Hill et al., 2008). In light
of these considerations, it is perhaps unsurprising that in practice
classical models which fit non-additive effects rarely outperform
accuracies of additive models (Varona et al., 2018a; Werner
et al., 2018). Interestingly, though, if dominance effects are fit in
absence of underlying dominance, Duenk et al. (2017) observed
no change in accuracy of estimating additive effects. In fact,
accuracy of estimation of additive effects was always improved
or unchanged by models which incorporated dominance, even
in small sample sizes and/or in cases that genetic variance
explained low proportions of phenotypic variance (Duenk
et al., 2017). Though no similar study has been conducted for
epistasis to our knowledge, there appears to be no penalty to
fitting dominance effects. In crossbred (hybrid) and pure-line
animals, incorporating positive directional dominance effects
and inbreeding depression effects (which are posited to underlie
heterosis) sometimes improves prediction accuracies relative
to assuming dominance effects centered at zero or ignoring
inbreeding (Xiang et al., 2016; Varona et al., 2018a; Christensen
et al., 2019). Inclusion of non-additive effects can also improve
choice of parents for crossing by estimates of their progeny
genetic value (Aliloo et al., 2017; Werner et al., 2020).

Multivariate genomic prediction methods are promising for
improving prediction accuracy when traits under selection with
low heritability are genetically correlated with traits with high

heritability (Jia and Jannink, 2012; Neyhart et al., 2017; Okeke
et al., 2017; Sun et al., 2017; Wang et al., 2017; Fernandes et al.,
2018; Watson et al., 2019). Because heterosis in complex traits can
sometimes be explained by component traits which are negatively
complementary in the parents, multivariate genomic prediction
could potentially improve predictions of hybrid performance and
EBVs if such component traits are included. Hybrid production
also faces a constraint on the performance of the inbred parents,
in that inbred parents must have good per se performance and
specific male and female morphotypes for hybrid seed production
(Hallauer et al., 2010). Generally, inbred parents are selected
for these traits separately from their selection as hybrid parents
(Hallauer et al., 2010). Treating inbred and hybrid performance
as different but genetically correlated traits in multivariate
genomic selection may improve selection accuracy for hybrid
performance, but this has not been reported to date.

GENOMIC SELECTION IN HYBRID
BREEDING

Breeding for hybrid performance can benefit from the
incorporation of genomic selection, and in a few cases
genomic prediction could be used to develop new breeding
strategies (Xu et al., 2017). Hybrid breeding primarily
involves inter-population improvement, in which recurrent
selection of individuals within populations is effected between
populations by selecting on individuals’ performance as parents
in between-population crosses (Hallauer et al., 2010). Unlike
intra-population improvement, in which performance of crosses
within populations is used to recurrently select individuals in
the same population, inter-population recurrent improvement
is not only of the populations themselves but also of the
performance of their hybrid crosses in combination (Hallauer
et al., 2010). Hybrid breeding can be considered to have three
main modules: selecting founders of heterotic pools, breeding
heterotic pools, and selecting parents of crosses for production
pipelines (Figure 2).

Heterotic pools are distinct groups of lines which reliably
produce heterosis upon crossing; the lines may or may
not be related (Melchinger and Gumber, 1998). Breeding
distinct heterotic pools is more effective in consistently
producing high-performing hybrids than making random
crosses, because heterotic pools are improved by recurrent
selection for average line performance in hybrid crosses
with the opposite heterotic pool, which is termed general
combining ability (GCA; Sprague and Tatum, 1942; Reif et al.,
2005). Hybrid performance is modeled as the sum of each
parental GCA and the specific combining ability, or SCA,
of the parent pair (Supplementary Table 1; Eq. 20; Griffing,
1956b). GCA corresponds to additive effects, whereas SCA
corresponds to dominance effects (Griffing, 1956a). The process
of breeding heterotic pools increases the ratio of GCA to
SCA effects over time, so the parents’ performance in crosses
becomes more heritable in the narrow sense (Schulthess et al.,
2017). In addition, distinguishing heterotic pools addresses
the practical need for lines to have specific traits for use
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FIGURE 2 | Graphical overview of traditional and genomics-assisted hybrid crop breeding pipelines.

as males or females, as male and female traits such as
high pollen production or male sterility can be pool-specific
(Zhao et al., 2015b).

Heterotic pools are developed by choosing founders,
then recurrently improving the pools for combining ability.
Historically, hybrid breeding was first systematically conducted
in maize in North America, and maize breeding programs are the
longest-running among hybrid crops (Shull, 1908). Though it is
a common misconception that the founders of the first heterotic
pools of maize were chosen for their origin in geographically and
genetically distinct groups, in fact the archetypal Reid-Lancaster
heterotic pattern was developed empirically by trial-and-error in
crossing (Melchinger and Gumber, 1998; Tracy and Chandler,
2006). Later, successful commercial maize heterotic pools arose
upon separating of lines into groups for use as males or females;
the initial pools used have been posited to have shared around
half of their genetic background (Tracy and Chandler, 2006).
Observed genetic divergence between the first North American
maize heterotic pools developed in response to selection and drift

during breeding, rather than by selection of divergent founders
(Duvick et al., 2004; van Heerwaarden et al., 2012).

Heterotic pools have not been widely established for major
crops such as wheat and rice, and there is interest in methods to
choose founders of heterotic pools (Wang et al., 2015; Zhao et al.,
2015a). Based on evidence from maize, some authors suggest
that any split of available germplasm will allow development of
heterotic pools by breeding, and founder grouping is relatively
unimportant (Cress, 1966; Lee and Tracy, 2009). Others suggest
systematic approaches. To choose founders of heterotic pools,
Melchinger and Gumber (1998) proposed to form genetically
similar groups of individuals, then cross a manageable number
of representatives of each divergent genetic subgroup and test
their progeny performance in replicated field trials. Founders
can then be chosen for high per se performance, high average
progeny performance and progeny genetic variance, and—as
applicable—suitability for use as males or females (Melchinger
and Gumber, 1998; Melchinger, 1999). Use of genetically
diverged founders increases the ratio of GCA to SCA, and
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heterosis due to dominance is expected to be positively correlated
with increasing genetic distance of parents (Falconer and Mackay,
1996; Reif et al., 2007). In practice, positive heterosis is often
observed with increasing genetic distance until a point, at which
outbreeding depression prevails and heterosis is negative (East,
1936). A simulation study of heterotic pool formation in an
autogamous crop compared randomly splitting the founder
population, splitting the founder population by genetic distance,
and optimizing the founder split by performance of their F1
hybrids, and found no differences in future hybrid performance
among the formation strategies, suggesting that the initial split
can be arbitrary (Cowling et al., 2020). However, no population
structure in the founder population was assumed, and testing
the formation strategies given a structured founder population
would be of interest. Even though existing heterotic pools
of maize, for example, were not established from genetically
distinct lines, testing the optimal strategy to form heterotic
pools in an allogamous species would be interesting as well
(Duvick et al., 2004).

Genomics-assisted approaches to choose founders have been
proposed (Zhao et al., 2015a; Boeven et al., 2016). One approach
is to simply extend the aforementioned method by using genome-
wide markers to identify genetic subgroups (Boeven et al., 2016).
Another approach to select founders of heterotic pools is to
use a training set of observed hybrid crosses of founders to
predict performance of unobserved crosses (Zhao et al., 2015a).
Then, groups of lines which are heterotic in combination can be
identified algorithmically for selection (Zhao et al., 2015a). The
long-term potential of the groups of lines can be further assessed
by simulation for their genetic representativeness of the base
population, usefulness (in terms of the initial population mean
and expected response to selection), and long-term selection
limits (Zhao et al., 2015a). Though this approach has not been
empirically validated, it has been initialized in rice and wheat
(Zhao et al., 2015a; Beukert et al., 2017). In the wheat population
surveyed, only sixteen of the 135 individuals surveyed were
needed to maximize usefulness and the long-term selection
limit (Zhao et al., 2015a). Therefore, if effective, this approach
could dramatically reduce resources needed to screen potential
founders of heterotic pools. It would be interesting to test whether
this particular method would discern the founders of North
American maize heterotic pools as optimal or near-optimal.

Once founders have been chosen, heterotic pools must be
developed by breeding. Heterotic pools can be recurrently
improved for their ability to combine into hybrids with high
performance by reciprocal recurrent selection (RRS; Comstock
et al., 1949). In the first generation, lines from each heterotic
pool are at once selfed and crossed to the opposite heterotic pool
(Comstock et al., 1949). Rather than making every line-by-line
cross, one or more random testers are chosen to represent each
heterotic pool and used for crossing to all lines of the opposite
heterotic pool, hereafter referred to as testcrossing (Comstock
et al., 1949). In the next season, the testcrosses are grown and
the testcross phenotypes are used to determine GCA of their
parents (Comstock et al., 1949). Parents are selected for their
GCA, and in the final season of the cycle, the selected parents are
grown from saved seed and randomly intermated within heterotic

pools (Comstock et al., 1949). The cycle begins again, with no
need to inbreed the parents (Comstock et al., 1949). Overall,
RRS can be thought of as a special case of standard phenotypic
selection, where the phenotype in question is combining ability,
and measuring combining ability requires progeny testing.

Reciprocal recurrent selection, then, is an ideal candidate for
genomic selection. Phenotyping GCA is expensive and time-
consuming. If GCA could be predicted in the first generation
of the RRS cycle, then the selected lines could be intermated
immediately, reducing cycle time by two-thirds. Reciprocal
recurrent genomic selection (RRGS) has been studied by
simulation in oil palm (Ibáñz-Escriche et al., 2009; Kinghorn
et al., 2010; Cros et al., 2015). Cros et al. (2015) investigated
the effects of training set composition, frequency of model
calibration by progeny test, and number of selection candidates
on annual selection response. If number of available selection
candidates was controlled, RRGS showed a 48% advantage in
annual selection response over RRS because genomic predictions
replaced phenotyping by progeny testing. If RRGS was assumed
to permit evaluation of twice as many candidates for selection
relative to RRS as progeny testing was reduced, then the
advantage increased to 72%. Interestingly, Cros et al. (2015)
tested whether including hybrid geno- and phenotypes in the
training set improved accuracy more than including the parents
alone and found accuracy to be sensitive to the frequency of
model calibration and the number of hybrids included. They
posited that optimal number of F1 hybrid genotypes in the
training set should increase with heterozygosity of the parents of
the F1 hybrids, because more heterozygous parents may produce
more within-cross variance than less heterozygous parents (Cros
et al., 2015). In a follow-up study, Cros et al. (2018) also
investigated whether prediction accuracies from a training set of
genotypes from either only the previous breeding cycle, or both
the previous two breeding cycles, was superior in RRGS. They
found that training on two previous breeding cycles was superior
because of both increased in prediction accuracy and slightly
decreased loss of additive genetic variance (Cros et al., 2018).

A key consideration in both studies was that dominance was
not simulated even though RRGS was used, so the mean genetic
values of the hybrids were equal to the mean of their parents
(Cros et al., 2015, 2018). Further simulations of RRGS with
dominance would be valuable. If dominance were simulated,
then the F1 hybrids’ mean genetic value would differ from the
parents’ mean genetic value. To use both parent and hybrid geno-
and phenotypes in the same training model when directional
dominance is present, it would likely be necessary to include a
fixed effect for the average heterozygosity of each individuals’
genotype following Xiang et al. (2016) and Vitezica et al. (2016),
or alternately to estimate hybrid and parent BLUPs of phenotype
separately following Liang et al. (2018), in order to accurately
predict parental GCA or hybrid genetic value.

Reciprocal recurrent selection differs slightly from recurrent
selection within populations in that breeding values depend on
allele frequencies in both heterotic pools (Stuber and Cockerham,
1966). Two issues then arise. Rembe et al. (2019) note that in its
current implementation, RRGS does not optimize frequencies of
overdominant alleles (either positive or negative) and in some
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cases of negative overdominance will fix unfavorable alleles.
RRGS also cannot optimize frequencies of alleles which have
a frequency of zero in either population, nor predict their
effects, and maximum genetic potential cannot then be achieved
(Cress, 1966; Kinghorn et al., 2010). Periodic introduction of
new germplasm to refresh heterotic pools might overcome the
latter issue if it is in fact significant, though care must be
taken not to disrupt the heterotic pattern. Another interesting
but unexplored possibility is to avoid unwanted fixation from
the start of RRGS; methods developed to control long-term
inbreeding under genomic selection might be adaptable for
the latter purpose.

As heterotic pools are developed, the next module is initiated:
parents of crosses for production pipelines are selected. First,
individuals are selected from each heterotic pool (Lee and
Tracy, 2009). In established commercial maize hybrid breeding
programs, within-pool lines which have a past record of
producing high-performing cross-pool hybrids are recycled by
crossing, and it is their progeny which are selected (Mikel
and Dudley, 2006). As of 2006, only seven inbred founder
lines (though from four heterotic pools) were thought to be
the origin of the commercial North American breeding pool
(Mikel and Dudley, 2006).

Next, selected individuals from each pool are used to develop
inbred lines by doubled haploid (DH) production or selfing.
During inbreeding of lines from two-parent crosses or upon
availability of DH lines, lines are selected for per se performance,
often for traits such as disease resistance (Lee and Tracy, 2009;
Kadam and Lorenz, 2018). Then, the selected lines are testcrossed,
usually to a single tester, and selected by the performance of their
hybrids in a few environments (Lee and Tracy, 2009). Only these
selected lines are crossed again (after selfing to homozygosity
if DH lines are not used) to multiple testers, and their hybrids
are advanced to multi-environment trials (METs; Lee and Tracy,
2009). Parental inbred lines which produce outstanding hybrids
can then be commercialized, and their hybrids may be used in
production (Lee and Tracy, 2009).

Some authors have proposed to reduce or eliminate
preliminary testing by use of genomic prediction (Lee and
Tracy, 2009; Kadam et al., 2016). With sufficient prediction
accuracies, genomic predictions of all possible two-parent,
single crosses of a set of inbred lines (i.e., a diallel) could
replace testcrossing, then crosses predicted to have outstanding
performance could immediately be tested in METs (Hallauer
et al., 2010; Kadam et al., 2016). Genomic prediction could
save time and resources as well as retaining useful lines which
happen to perform poorly with chosen testers (Kadam et al.,
2016). The primary challenges in doing so are generating an
adequate training set of crosses and predicting SCA; it remains
difficult to predict the performance of hybrids for which neither
parent is observed in the training set (Kadam et al., 2016; Kadam
and Lorenz, 2019). Notably, the ideal training set to predict
performance of single crosses that would be obtained from
a diallel is thought to be not a set of testcrosses, but rather
the North Carolina II (NCII) design, in which inbred parents
are grouped into males and females, then crossed factorially
across groups (Hallauer et al., 2010; Fristche-Neto et al., 2018).

However, the number of crosses needed for training can be
reduced from NCII by using various algorithms which rely on
estimates of relationship (Fristche-Neto et al., 2018; Akdemir and
Isidro-Sánchez, 2019; Guo et al., 2019). Inclusion of historical
single cross information can also improve prediction accuracies,
though in some studies this benefit was only realized if the crosses
were from recent cycles, even within the same breeding program
(Dias et al., 2019; Schrag et al., 2019). If the production of F1
hybrid seed by cross-pollination is too expensive on a large scale
with many hybrid combinations (as in self-pollinated crops),
then F1:2 individuals can be substituted into the training set
with only modest reductions in prediction accuracies (Technow,
2019). If entirely eliminating testcrossing is perceived as too risky,
selections from testcrossing can be supplemented with predicted
exceptional single crosses (Kadam and Lorenz, 2018; Viana
et al., 2018). Another cost-reducing alternative is to testcross a
subset of several related lines, and predict combining abilities
for their relatives (Windhausen et al., 2012). Once exceptional
single crosses are identified, with or without testcrossing, their
seed can be increased, advanced through preliminary and multi-
environment yield trials, and eventually released as varieties for
production (Kadam and Lorenz, 2018).

Other approaches to utilizing heterosis, besides by inbred
development and testing, deserve consideration. The cost and
time required for traditional and genomic hybrid breeding is
substantial, and thus the rate of genetic gain is generally less for
hybrid than inbred breeding (Longin et al., 2012). Furthermore,
hybrid seed production is generally more expensive that inbred
seed production, and hybrid genotypes cannot be replicated by
selfing (Schulthess et al., 2017).

One alternative approach to using heterosis is to systematically
reproduce desirable non-inbred genotypes. A major barrier to
utilization of superior genotypes in non-inbred populations is
that they cannot be repeatedly reproduced identically by crossing,
since their parents are not fully inbred (Wricke and Weber,
1986). However, recent proof-of-concept “reverse breeding” in
Arabidopsis thaliana offers an alternative to fixing heterosis by
crossing inbred lines (Wijnker et al., 2012). In reverse breeding,
recombination is suppressed in non-inbred lines, and DH lines
are generated from their gametes (Wijnker et al., 2012). The
DH lines can then be maintained, genotyped, and crossed at
will to reconstitute the original non-inbred line (Wijnker et al.,
2012). However, this method has not been tested in crop species
or applied in crop breeding. A similar approach is synthetic
apomixis, in which seeds identical to the parent plant are
produced without meiosis or fertilization (Wang et al., 2019).
In rice, apomictic seeds can be produced by editing only four
genes, but fertility issues leading to low seed set also result
(Wang et al., 2019).

Clonal propagation methods also reproduce non-inbred
genotypes. Many non-inbred economically important crops,
including sugarcane, potato, and cassava, are propagated
asexually as clones rather than from seed (McKey et al., 2010).
The drawbacks of clonal propagation, however, include the
accumulation of deleterious somatic mutations, disease, costs
of propagule production, and the recalcitrance of some species
to clonally propagate (McKey et al., 2010). Use of polyploidy
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has also been viewed as a way to “immortalize” hybrids,
as allopolyploids can maintain heterozygosity across their
subgenomes at individual loci even upon selfing (Santantonio
et al., 2019). Dosage effects, or changes in phenotype due to
increases in allele copy number, independent of allele state, have
also been posited to contribute to the genetic values of polyploids
relative to genotypes of lesser ploidies (Gianinetti, 2013; Yao et al.,
2013; Fort et al., 2016). Unlike in diploids, heterosis in polyploids
is not maximized in a single cross; this phenomenon is termed
progressive heterosis (Washburn and Birchler, 2014). Progressive
heterosis is expected in polyploids because the number of gametes
inherited exceeds the number of parents. Going beyond single
crosses permits combining gametes from more than two parents
into a single individual genotype, so additional heterosis results.
For example, in autotetraploids, heterosis would be maximized
by a four-way cross. In diploids, the number of gametes inherited
by the F1 progeny in a single cross (two) is equal to the number
of parents (two), so heterosis is maximized in single crosses.

If a uniform population is not necessary, then breeding
open-pollinated varieties (OPVs) can lead to effective utilization
of heterosis. For much of human history, OPVs were the
only varieties available. This is still true in regions which the
commercial breeding sector does not yet serve, and OPVs can
outperform hybrids in some low-input environments (Pixley,
2006; Masuka et al., 2017; Andorf et al., 2019). In United States
maize production, OPVs were abandoned in the early 1920s
due to the difficulty of improving their quantitative traits (i.e.,
yield) as well as lack of uniformity (Duvick, 1999). However,
it is unknown whether OPVs could outperform hybrids today
if they had been as intensively developed (Duvick, 1999).
OPV breeding could be advanced by genomic selection; the
breeding cycle for OPVs is shorter and less costly than for
hybrids. Furthermore, if used as part of a reverse breeding
pipeline, sufficiently outstanding individuals from OPVs could be
reproduced indefinitely as uniform “hybrid” varieties.

If heterosis is largely due to dominance rather than
overdominance, then inbred lines which perform as well as
hybrids must be possible, although they may take time to
develop due to linkage disequilibrium (Werner et al., 2020).
There is some evidence from commercial maize programs
that inbred lines bred conventionally are already beginning to
approach hybrid line performance, though likely because of
the longer hybrid breeding cycle (Troyer and Wellin, 2009).
Heterotic effects of yield have decreased as a percentage of
mean yield over a short time—100 years—perhaps also because
some favorable dominant alleles have been fixed in inbreds.
Continued purging of deleterious recessive alleles from the
genome by genome editing has been proposed, especially in
regions hard to reach by recombination such as the centromere
(Wallace et al., 2018; Valluru et al., 2019). If overdominance
also affects hybrid performance, and overdominant loci can be
identified, then arguably copy number variation could be induced
to fix overdominance in inbred lines. These genomics-assisted
approaches are reminiscent of genetic ideotype building, but until
they are possible, genomics-assisted inbred line breeding may be a
good start to genomics-assisted ideotype building of inbred lines
(Trethowan, 2014).

LONG-TERM OPTIMIZATION OF
SELECTION IN GENOMIC SELECTION
PROGRAMS

All plant breeding programs require genetic variance for
continued progress. Within any breeding population, reducing
effective population size by selection early in the program may
limit long-term genetic gain (Comstock et al., 1949; Robertson,
1960; Woolliams et al., 2015). Though genomic selection
leads to less inbreeding than pedigree-based selection methods,
inbreeding must be controlled (Rodríguez-Ramilo et al., 2015;
Woolliams et al., 2015). Direct selection on GEBV maximizes
gain in the subsequent cycle only and does not necessarily
maximize long-term gain (Sonesson et al., 2012). Fortunately,
data collected routinely in genomic selection programs allow
monitoring and optimization of loss of diversity and inbreeding.
Genomic selection strategies which seek to balance rates of
genetic gain and loss of diversity include:

(a) Optimum contribution selection: genetic value is
maximized while inbreeding is constrained to give the
optimal contributions of parents to the next generation,
i.e., number of progeny (Meuwissen and Sonesson, 1998).

(b) Weighting of rare alleles: allelic effects are weighted by their
frequency such that rare favorable alleles are preserved
(Goddard, 2009).

(c) Weighted genomic selection: allelic effects are weighted by
their frequency, but also the magnitude of their effect, such
that rare favorable alleles which tend to have large effects
on EBV are preserved (Jannink, 2010).

(d) Genotype building: a subpopulation is selected
algorithmically to segregate for maximal haplotype values,
then intermated such that the two best segments ultimately
segregate with equal frequency (Kemper et al., 2012).

(e) Optimal cross selection: selection intensity, inbreeding,
and cross allocation are simultaneously optimized
(Gorjanc et al., 2018).

(f) Usefulness criterion parental contribution: overall
and within-family selection intensity, inbreeding,
and cross allocation are simultaneously optimized
(Allier et al., 2019).

(g) Genomic mating: genetic value, inbreeding, and risk
(calculated from variability in breeding value estimates) are
simultaneously optimized (Akdemir and Sánchez, 2016).

(h) Optimal haploid value selection: outbred individuals are
selected for the predicted value of the best DH lines
they could produce, then used to make DH lines for
which breeding or genetic values are then predicted
(Daetwyler et al., 2015).

(i) Optimal population value selection: sets of individuals
are selected for their collective rather than individual
maximum possible haploid value (Goiffon et al., 2017).

(j) Expected maximum haploid breeding value selection:
individuals are selected for their maximum possible
haploid value (Müller et al., 2018).

(k) IND-HE: genetic gain and expected heterozygosity are
balanced in selection (De Beukelaer et al., 2017).
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(l) Look-ahead selection: sets of individuals are selected for
their collective rather than individual maximum possible
haploid value, with the maximum value occurring in a
user-specified target generation (Moeinizade et al., 2019).

(m) Optimal contribution selection to update the reference
population: assuming a breeding population is used to
update the training set for prediction, selecting the training
set candidates by optimal contribution selection balances
genetic gain and inbreeding (Eynard et al., 2018).

(n) Optimal contribution selection with branching: the
population mating scheme is branched into two paths
which maintain genetic diversity and maximize genetic
gain (Santantonio and Robbins, 2020).

A simulation comparing all methods of long-term selection
optimization in hybrid breeding programs is not yet available
(Rembe et al., 2019). Development of genomic selection strategies
to optimally introgress novel variation are also ongoing (Rembe
et al., 2019). A recent comparison of introducing genetic
donors with varying performance levels either using or omitting
a bridging population to increase mean genetic values of
introgression lines found that use of a bridging step was more
useful when considering low-value donors, and that controlled
introduction of diversity increased gain relative to a completely
closed population (Allier et al., 2020a). Though the field of long-
term selection optimization developed in response to need to
avoid inbreeding and maintain genetic variance, the techniques
developed can also be used to improve short- and medium-term
gain (Müller et al., 2018).

For hybrid programs specifically, selection optimization
methods to prevent unintentional allelic fixation during RRGS in
opposite heterotic groups could be useful (Cowling et al., 2020).
Another issue in hybrid breeding over time is introducing new
germplasm and assigning it to a heterotic pool. Traditionally, new
individuals are assigned to a heterotic pool by their phenotypic
similarity to existing members or observed performance in
testcrosses with representatives of each pool (Melchinger, 1999).
Alternatively, individuals can be assigned to pools by genetic
resemblance (Melchinger, 1999; Boeven et al., 2016). However,
in practice, genetic distance is not consistently useful in
assigning individuals to heterotic pools (Fischer et al., 2010;
Brauner et al., 2019).

Though advanced commercial maize hybrid breeding
programs should not be construed as resulting from long-term
genomic selection, the genetic base of North American and
European commercial maize is narrow, prompting concern
that limiting loss of diversity has occurred (Brauner et al., 2019;
Allier et al., 2020b). Some approaches, such as Germplasm
Enhancement of Maize (GEM), have proposed adaptation
of exotic germplasm to commercial inbred backgrounds by
public-private collaboration. Several inbred lines have been
released as a result of GEM (Samayoa et al., 2018). Other
efforts based on generating DH lines of maize landraces and
characterizing them for their per se and testcross performance
with European testers have also demonstrated a 15% yield
gap between mean testcross yield and mean commercial yield
(Brauner et al., 2019; Hölker et al., 2019). Genomic selection

for line adaptation has been proposed but is largely untested
(Bernardo, 2009; Samayoa et al., 2018; Allier et al., 2020b).
Additionally, commercial breeding programs may reduce loss of
useful diversity by targeted introgression of QTL or transgenes
into elite lines, which improves the lines without drastically
changing their genomic makeup or disrupting the heterotic
pattern (Samayoa et al., 2018).

The limits of long-term selection within closed breeding
populations are unknown (Dudley and Lambert, 2004; Paixão
and Barton, 2016). Breeding progress for high grain oil and
protein content, which was initiated in a maize OPV, has
continued for over 100 cycles of selection without introduction
of new germplasm (Dudley and Lambert, 2004; Moose et al.,
2004). In the same experiment, breeding progress for low
oil and protein content ceased due to measurement and
physiological constraints, respectively (Dudley and Lambert,
2004). Surprisingly, when the direction of selection on lines bred
for low oil and protein content was experimentally reversed at 48
generations, selection response in the opposite direction occurred
rapidly (Dudley and Lambert, 2004). Though not conclusive,
these results suggest that it is difficult to exhaust response to
selection even in completely closed or selected populations using
conventional recurrent selection strategies. The cost of testing
and adapting vast quantities of new germplasm may not be
worth the short-term benefits for advanced commercial hybrid
programs if sufficient genetic variance remains for selection gain,
even among very few lines.

DISCUSSION

Exact recommendations for crop hybrid breeding programs
are situation-dependent, including whether and how to apply
genomic selection. Factors to consider in implementation of
genomic selection strategies include budget, trait heritability, cost
and accuracy of phenotyping, length of the breeding cycle, and
infrastructure for genomic selection (e.g., marker availability,
marker cost, bioinformatics software, statistical expertise, etc.;
Heslot et al., 2015). General factors that affect the success of a
hybrid breeding program relative to an inbred breeding program
include (a) mating system, including whether selfing is possible,
(b) existence of heterotic pools, (c) the degree of heterosis, (d)
the cost of hybrid seed production, including availability of
hybridization systems, and (e) the number of seeds needed in
the cropping system (Longin et al., 2013). Another rationale
for hybrid breeding has been that the sale of hybrid seeds
generates a sustainable funding model for breeding, with built-
in variety protection (Schulthess et al., 2017). However, this
argument is beyond the scope of plant breeding and requires
economics research.

Mating system is a major factor driving the use of hybrid
breeding systems (Longin et al., 2013). Most hybrid crops
(e.g., maize, sugarbeet, rye, and sunflower) are allogamous,
or outcrossing, rather than autogamous, or selfing. Though
both present difficulties in breeding programs—autogamous
crops may be difficult to cross, and allogamous crops may be
difficult or nearly impossible to self—in general autogamous

Frontiers in Genetics | www.frontiersin.org 13 February 2021 | Volume 12 | Article 64376160

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-643761 February 18, 2021 Time: 19:7 # 14

Labroo et al. Heterosis and Hybrid Crop Breeding

crops are less amenable to hybrid breeding due to higher costs
of seed production and less observed heterosis (Wricke and
Weber, 1986; Longin et al., 2012). Less heterosis in autogamous
than allogamous crops may have an evolutionary basis. Over
time, deleterious recessive mutations are more exposed to
selection in selfing than outcrossing species—ultimately leading
to reduced inbreeding depression (Moose et al., 2004). Selfing
genotypes also have more opportunities for selection on epistatic
networks, perhaps leading to increased outbreeding depression
(Fenster et al., 1997).

For a breeding program, the question then remains whether
the gains of heterosis are outweighed by the costs of breeding
hybrids in autogamous crops. The costs of breeding hybrids can
be reduced by developing male-female heterotic pools, scalable
male sterility systems, and hybridization systems. The gains of
heterosis can be increased by breeding heterotic pools. Thus,
initial investment to establish a hybrid breeding program may
be high, but it could provide higher returns over time than an
inbred program. A case study of hybrid wheat, for example,
found that although hybrids are currently competitive with
inbred varieties, whether long-term improvement of hybrids
keeps pace with lines strongly depends on budget, cost of
hybrid seed production, and GCA variance (Longin et al., 2014).
Use of genomic prediction can increase the relative efficiency
of hybrid breeding to line breeding (Longin et al., 2015). If
sufficient budgets to cover the start-up costs of hybrid breeding
(e.g., heterotic pool development, male sterility systems) are
available at no cost to line breeding, then hybrid breeding is
worth investigating.

Whether for autogamous or allogamous species, genomic
selection methods have potential to increase rates of genetic gain
at every stage of hybrid breeding. Use of genomic selection,
for example, to rapidly develop heterotic pools in crops in
which they are not well-established—e.g., rice and wheat— is
worth trying (Rembe et al., 2019). Further reports on RRGS
programs which have been initiated in oil palm, which has
a long generation interval, high phenotyping costs, and high
environmental impact, are anticipated (Cros et al., 2017; Nyouma
et al., 2019). In selection of single crosses, genomic prediction
has potential to reduce the need for testcrossing and field
evaluation (Longin et al., 2015; Kadam et al., 2016). Longin
et al. (2015) considered optimal allocation of resources to
number of DH lines, test locations, and tester lines used for
inbred and hybrid breeding programs with different degrees
of reliance on genomic prediction and different prediction
accuracies. After DH production, testcrosses or lines were either
immediately subject to genomic selection, advanced through
one round of field testing, or advanced through two rounds
of field testing (Longin et al., 2015). The importance of field
testing strongly depended on accuracies of genomic predictions,

but for hybrid breeding, even prediction with low accuracies
improved rate of genetic gain (Longin et al., 2015). If DH lines
underwent a round of phenotypic selection before advancing,
the relative merits of incorporating genomic selection did not
change (Marulanda et al., 2016). The best scenario was genomic
prediction followed by a round of phenotyping (Longin et al.,
2015; Marulanda et al., 2016).

The era of genomic selection offers new opportunities in
hybrid breeding. Genomic selection methods can jumpstart the
establishment of heterotic pools by founder selection and use
of RRGS to unlock heterosis in new hybrid breeding programs.
Genomic selection can also shorten the notoriously long hybrid
breeding cycle by reducing the need for testcrosses and their
phenotypic evaluation. Though implementing genomic selection
methods requires optimization to specific hybrid breeding
situations, a sufficient framework for breeders to make genomics-
assisted decisions already exists.
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Machine learning (ML) is perhaps the most useful tool for the interpretation of large
genomic datasets. However, the performance of a single machine learning method in
genomic selection (GS) is currently unsatisfactory. To improve the genomic predictions,
we constructed a stacking ensemble learning framework (SELF), integrating three
machine learning methods, to predict genomic estimated breeding values (GEBVs). The
present study evaluated the prediction ability of SELF by analyzing three real datasets,
with different genetic architecture; comparing the prediction accuracy of SELF, base
learners, genomic best linear unbiased prediction (GBLUP) and BayesB. For each trait,
SELF performed better than base learners, which included support vector regression
(SVR), kernel ridge regression (KRR) and elastic net (ENET). The prediction accuracy
of SELF was, on average, 7.70% higher than GBLUP in three datasets. Except for the
milk fat percentage (MFP) traits, of the German Holstein dairy cattle dataset, SELF was
more robust than BayesB in all remaining traits. Therefore, we believed that SEFL has
the potential to be promoted to estimate GEBVs in other animals and plants.

Keywords: ensemble learning, stacking, genomic prediction, machine learning, prediction accuracy

INTRODUCTION

Genomic selection (GS) was first introduced by Meuwissen et al. (2001), by using whole-genome
markers’ information to predict the genomic estimated breeding values (GEBVs). The first
application of GS was on dairy cattle, to improve the selection of better performing genotypes and
accelerate the genetic gain by shortening the breeding cycles (Hayes et al., 2009a; Crossa et al., 2017;
Tong et al., 2020). After more than 10 years of development, GS has been wildly used in livestock
and plant breeding programs with high prediction accuracy (Hayes et al., 2009a; Heffner et al.,
2009). Moreover, GS has been applied to improve the prediction of complex disease phenotypes
using genotype data (De Los Campos et al., 2010; Menden et al., 2013). However, a critical concern
in genomic prediction is the prediction accuracy calculated by the Pearson’s correlation between
the estimated breeding values and the corrected phenotypes. Therefore, the exploration of more
robust genomic prediction methods is a well-identified searched by breeders. In recent years, there
was an increasing interest in applying machine learning (ML) to genomic prediction. Machine
learning is a computer program which can optimize a performance criterion using training data,
making predictions or decisions without being explicitly programmed (Alpaydin, 2020). The
excellent predictive ability for complex problems leads ML to be employed in industries requiring
high accuracy, e.g., email filtering, face recognition, natural language processing or stock market
forecasting. ML has been used in GS and might have the best performance at the interpretation
of large-scale genomic data (De Los Campos et al., 2010). González-Camacho et al. (2018)
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suggested that ML was a valuable alternative to well-known
parametric methods for genomic selection. Montesinos-López
et al. (2018) also found that the predictions of the multi-trait
deep learning model were very competitive with the Bayesian
multi-trait and multi-environment model. In another study,
Jubair and Domaratzki (2019) estimated GEBVs of Iranian
wheat landraces by ensemble learning, obtaining better results
with those than with single machine learning. It is possible to
clearly identify a trend from the literature that more breeders
are applying machine learning methods to estimate GEBVs in
genomic prediction.

Currently, the machine learning methods applied in animal
and plant breeding tend to mainly include: support vector
regression (SVR), random forest (RF), kernel ridge regression
(KRR), multi-layer prediction (MLP) and convolutional neural
network (CNN) (Gianola et al., 2011; Libbrecht and Noble, 2015;
González-Camacho et al., 2018; Zou et al., 2019). Those machine
learning methods possess the ability to predict GEBVs by building
a complex non-linear model, considering the interaction effects
and epistatic effects (Gianola et al., 2011). Nevertheless, the
prediction accuracy of those single machine learning methods did
not improve much when compared to the traditional genomic
prediction methods [GBLUP, ridge regression BLUP (rrBLUP),
BayesB, etc.]. Ogutu et al. (2011) compared the prediction
accuracy of RF, boosting and support vector machine (SVM) with
rrBLUP in a simulated dataset, in which rrBLUP outperformed
the three machine learning methods. When comparing the
prediction performance of multi-layer prediction and the SVM
with the Bayesian threshold genomic best linear unbiased
prediction (TGBLUP), the reliability of two machine learning
methods was comparable to, and in some cases, outperformed
that of TGBLUP (Montesinos-López et al., 2019). Albeit that
the achievement of ML in GS has not been fantastic, breeders
are confident on this promising tool. Moreover, even currently
associated with certain limitations, it outstands from the other
common available methods in the performance.

One of the available solutions to further improve the
prediction accuracy of ML in GS is to simultaneously integrate
several machine learning methods in genomic prediction.
Ensemble learning is an ML paradigm where multiple learners
are trained to solve the same problem, therefore, the obtained
robustness is higher when compared to that using single
learner (Thomas, 1997; Polikar, 2006). Stacking, boosting and
bagging were the most common integration strategies used
on ensemble learning, among which stacking has a powerful
prediction capability for complex problems. In other research
areas, stacking has been applied to date prediction, protein-
protein interaction prediction, credit scoring, cancer detection,
etc. (Wang et al., 2011; Wang Y. et al., 2019; Sun and Trevor,
2018; Yi et al., 2020). However, the application of stacking in GS
has rarely been reported.

Therefore, the objective of this study was to improve genomic
predictions by using a stacking ensemble learning framework
(SELF). In the experiment, SVR, KRR, and ENET were selected
as the base learner, and the ordinary least squares (OLS) linear
regression was chosen as the meta learner to construct the
SELF model. Subsequently, we evaluated the SELF model using

two animal datasets (Chinese Simmental beef cattle dataset
and German Holstein dairy cattle dataset) and a plant dataset
(Loblolly pine dataset). To assess the performance of SELF, we
compared the prediction accuracy of SELF with the base learners,
GBLUP and BayesB. Finally, the 20-fold cross-validation was
employed to mitigate the impact of the accidental error.

MATERIALS AND METHODS

Dataset
Chinese Simmental Beef Cattle Dataset
The Chinese Simmental beef cattle population included 1,217
individuals; born between 2008 and 2014 in Ulgai, Xilingolia
of China, and were slaughtered at 16 to18 months. After
slaughtering, the carcass trait was assessed according to
the institutional meat purchase specifications for fresh beef
guidelines. At the present study, three important economic traits
were selected for latter analysis: live weight (LW), carcass weight
(CW), and eye muscle area (EMA). The statistics description
for each trait included an estimation of component variance,
which is presented in Table 1. The entire Chinese Simmental
beef cattle population was genotyped by Illumina R© BovineHD
BeadChip (770K). The quality control criteria of genotype data
were as follows: minor allele frequency (MAF) > 0.05, call
rate (CR) > 0.95 and P-value > 10−5 from Hardy-Weinberg
equilibrium (HWE). In addition, the fix effects were used to
correct the phenotypes of each trait. Among them, age and sex
were regarded as a contemporary group; the fattening time and
initial weight were regarded as covariates.

German Holstein Dairy Cattle Dataset
The dataset of German Holstein dairy cattle consisted of 5,024
bulls with genotypes and phenotypes (Zhang et al., 2015). The
genotype data were generated with the Illumina R© Bovine SNP50
BeadChip [42,551 single nucleotide polymorphisms (SNPs)]. All
of the SNPs met the following standards: HWE P-value > 10−4,
CR > 0.95 and MAF > 0.01 (Yin et al., 2020). Because the dataset
used at the present study was not original, all the phenotype data
had been standardized (mean = 0, standard deviation = 1). More
details about the original dataset can be found at Zhang et al.
(2015). For the German Holstein dairy cattle dataset, the statistics
description was based on Zhang et al. (2015) and can be found in
Table 1. The phenotypes were described by three traits: milk yield
(MY), milk fat percentage (MFP) and somatic cell score (SCS).
These three traits may represent three genetic architectures of
complex traits composed of: (1) one major gene and a large
number of small effect loci (MFP), (2) few moderate effect loci
and many small effect loci (MY), and (3) many loci with small
effects (SCS), respectively (Zhang et al., 2015; Yin et al., 2020).

Loblolly Pine Dataset
The Loblolly pine dataset comprised 951 individuals from
61 families, having 17 traits systemically recorded from each
individual (Resende et al., 2012). For the original dataset, all
the individuals were genotyped with an Illumina R© Iminium
assay (7216 SNPs) (Zhang et al., 2015). After quality control,
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TABLE 1 | Descriptive statistics of the phenotype data used in the genomic prediction.

Dataset Trait Na h2 Mean SD

Beef cattle LW 1216 0.53 505.26 70.76

CW 1216 0.44 271.36 45.65

EMA 1117 0.57 85.21 13.32

Dairy cattle MY 5024 0.95 370.79 641.60

MFP 5024 0.94 −0.06 0.28

SCS 5024 0.88 102.32 11.73

Loblolly pine HT 861 0.31 20.30 73.31

CWAL 861 0.27 2.44 27.32

TS 910 0.37 0.10 1.22

Na, number of the animal with phenotypes; h2, heritability; SD, standard deviation. LW, live weight; CW, carcass weight; EMA, eye muscle area; MY, milk yield; MFP, milk
fat percentage; SCS, somatic cell score; HT, total stem height; CWAL, crown width along the planting beds; TS, tree stiffness.

the genotypes contained 4,853 polymorphic SNPs, which were
the same as used by Resende et al. (2012) and Zhang et al.
(2015). The phenotypes that were used were a subset of the
original phenotype data. Within the traits selected, i.e., growth
traits (total stem height, HT), development traits (crown width
along the planting beds, CWAL) and wood quality traits (tree
stiffness, TS), only one trait was chosen to implement prediction
models, respectively. The statistics description for the Loblolly
pine dataset is shown in Table 1.

Stacking
Stacking is a form of meta-learning which can yield impressive
results by designing novel deep learning architectures (Kyriakides
and Margaritis, 2019). The core idea of stacking is using the
base learners to generate metadata for the inputs and then
utilize another learner, generally called the meta-learner, to
process metadata. Base learners are usually called level 0 learners,
the meta learners are called level 1 learners and the meta
learners stacked on the based learners are the so-called stacking
(Kyriakides and Margaritis, 2019). In genomic prediction, the
SELF is performed in two steps: firstly, a series of single machine
learning methods are trained to generate metadata using markers’
information; secondly, a meta learner are trained to predict
GEBVs using metadata. The data flow of SELF for genomic
prediction is shown in Figure 1.

The base learners employed to construct SELF at present
study, involved SVR, KRR and ENET. SVR and KRR construct
a non-linear model to predict GEBVs and ENET estimate the
GEBVs by building a linear regression. It is important to highlight
that the meta learner should be a relatively simple ML algorithm
to (1) avoid overfitting and (2) possess the ability to handle
correlated inputs with no assumptions about the independence
of features. These two factors will be important because the
inputs of meta-learner will be highly correlated (Kyriakides and
Margaritis, 2019). Taking into account the above requirements,
the OLS linear regression was chosen as the meta-learner in
the SELF. During the SELF model training, the genotypes were
not taken as the direct inputs, instead, it were replaced by the
genomic relationship matrix derived from genotypes (Gianola
et al., 2011). Although this might reduce the prediction accuracy
of a single machine learning method, it would significantly reduce

FIGURE 1 | The data flow of stacking ensemble learning framework for
genomic prediction, from original data to the base learners, creating metadata
for the meta-learner. G, genotypes derived genomic relationship matrix; SVR,
support vector regression; KRR, kernel ridge regression; ENET, elastic net;
OLS, ordinary least squares linear regression.

the time and the memory required for computation. In theory,
the calculation time of SELF will be equivalent to five times of that
by a single machine learning method, as five-fold cross-validation
was used to generate metadata. It is important to highlight that
if the same steps of previous studies were used to apply the
genotypes as the inputs, the computation time of SELF would be
unacceptable. Finally, SELF was run in Python (V3.7) with the
help of sklearn (V0.22) package. The genomic relationship matrix
G was calculated as described by VanRaden (2008):

G =
MM

′∑m
l=1 2pjqj

where M is a n × m matrix (n is the number of individuals, m is
the number of markers) and elements of column j in M are 0−
2pj, 1− 2pj and 2− 2pj for genotypes A1A1, A1A2 and A2A2; qj is
allele frequency A1 at locus j, pj is allele frequency A2 at locus jth.
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Support Vector Regression
Support vector machine (SVM) is grounded in statistical learning
theory. SVR is an application of SVM for regression. SVR utilizes
a linear or non-linear kernel function to map the original space
to a higher dimensional feature space (Müller and Guido, 2016;
Li, 2019). Therefore we built a linear prediction model on feature
space. The SVR problem was formalized as:

min
w,b

1
2
w2
+ C

m∑
i=1

Lε

(
f (xi)− yi

)
where C is the regularization constant, Lε is the ε-insensitive loss:

Lε =

{
0 if z <ε

|z| − ε, otherwise

where k
(
xi, xj

)
= φ (xi)T φ

(
xj
)

z = f (xi) − yi. Through a series
of optimization processes, the SVR can be written as:

f (x) =
m∑
i=1

(
_
α i −αi

)
k(x, xi)+ b

where k
(
xi, xj

)
= φ (xi)T φ

(
xj
)

is the kernel function. In this
study, the Gaussian kernel was used to map original data and
the most suitable parameters of C and ε for each trait were
determined by grid search. The function SVR in sklearn package
(V 0.22) was used to implement SVR methods.

Kernel Ridge Regression
The difference between KRR and ridge regression is that KRR
exploits the kernel trick to define a higher dimensional feature
space and then builds the ridge regression model in feature space
(Douak et al., 2013; He et al., 2014; Exterkate et al., 2016). For
KRR, the final prediction function can be written as the following:

f (x) = k
′

(K + λI)−1 y

where K is the so-called gram matrix with entriesKij = φ(xi) ·
φ(xj), k is a vector with entries ki = φ(x) · φ(xi = k(x, xi)
withi = 1, 2, 3, . . . , n, n is the number of training samples; I is
the identity matrix, λis the ridge parameter. In this study, the
kernel was used to transform input data that was selected by the
grid search method.

Elastic Net
Elastic net is a linear regression model trained with both `1
and `2-norm regularization of the coefficients. This combination
leads to the ENET, presenting similar advantages when compared
to Lasso and ridge regression simultaneously. Thus, ENET can
learn a sparse model where few of the weights are non-zero and
maintaining the regularization properties (Pedregosa et al., 2011).
The progress of training the ENET model can be seen as an
optimization process for:

for this study, X cis a matrix of the training section of G
matrix, ω is the vector of weights, α and ρ are the parameters that
determined by grid search.

Genomic Best Linear Unbiased
Prediction
The basic GBLUP method was built by the following equation
(VanRaden, 2008; Hayes et al., 2009b):

y = 1µ+ Zg + e

where y is the vector of the correct phenotype, µ is the overall
mean, 1 is a vector of ones, Z is a design matrix that allocates
records to breeding values, g is a vector of genomic breeding
values, e is a vector of residuals. Random residuals were assumed
that e ∼ N(0, Iσ2

e ) where σ2
e is the residual variance, I is

an identity matrix. g assumed that g ∼ N(0,Gσ2
g) where σ2

g
is the additive genetic variance, and G is the marker-based
genomic relationship matrix. To implement GBLUP, we used the
mixed.solve function of rrBLUP package in the R V3.5.

BayesB
BayesB assumed a priori that many markers have no effects,
while some have an effect attributed to gamma or exponential
distribution (Meuwissen et al., 2009). The formula of BayesB can
be written as the following:

y =
p∑

j=1

mjαj + e

where y is a vector of phenotypes; mjis the jth maker; αjis the
effect of the jth maker andαj ∼ N(0, σ2

αj
). The variance of αj is

assigned an informative before showing the presence (with the
probability of 1− π) and absence (with the probability of π) of
the marker j. The π was determined by the experience before
building the BayesB model.

Cross-Validation
The prediction accuracy of the machine learning methods,
GBLUP and BayesB was evaluated with K-fold cross-validation
(CV). Each dataset under study was randomly divided into
twenty folds by the 20-fold cross-validation. Each fold would be
the testing set and the remaining nineteen folds were grouped
into the training set. The training set was used to teach the
SELF model how to predict the GEBVs of individuals in the
testing set. The accuracy obtained and shown in the result section
was the mean of prediction accuracy of each testing set which
was measured as the Pearson correlation between the corrected
phenotypes (y) and predicted GEBV (ypre) using the formula

r =
cov(y, ypre)√

var
(
y
)
∗ var(ypre)

RESULTS

Comparison Between the Prediction
Accuracy of Base Learners, GBLUP and
BayesB
Firstly, we described the prediction accuracy of base learners,
GBLUP and BayesB for three datasets, as shown in Table 2.
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TABLE 2 | Prediction accuracy of SVR, KRR, ENET, GBLUP, and BayesB for the three datasets.

Dataset Trait SVR KRR ENET GBLUP BayesB

Beef cattle LW 0.274 ± 0.022 0.283 ± 0.019 0.276 ± 0.018 0.256 ± 0.017 0.265 ± 0.016

CW 0.307 ± 0.016 0.315 ± 0.015 0.315 ± 0.017 0.292 ± 0.014 0.282 ± 0.012

EMA 0.280 ± 0.025 0.281 ± 0.022 0.285 ± 0.024 0.292 ± 0.015 0.281 ± 0.015

Dairy cattle MY 0.764 ± 0.013 0.781 ± 0.009 0.762 ± 0.014 0.768 ± 0.006 0.767 ± 0.005

MFP 0.796 ± 0.012 0.828 ± 0.006 0.797 ± 0.012 0.832 ± 0.003 0.855 ± 0.003

SCS 0.706 ± 0.010 0.751 ± 0.008 0.722 ± 0.019 0.752 ± 0.006 0.731 ± 0.003

Loblolly pine HT 0.340 ± 0.027 0.352 ± 0.011 0.366 ± 0.014 0.349 ± 0.012 0.365 ± 0.009

CWAL 0.352 ± 0.022 0.359 ± 0.018 0.369 ± 0.022 0.384 ± 0.014 0.400 ± 0.011

TS 0.397 ± 0.017 0.407 ± 0.016 0.398 ± 0.015 0.366 ± 0.012 0.418 ± 0.013

The accuracy was calculated by the Pearson’s correlation. LW, live weight; CW, carcass weight; EMA, eye muscle area; MY, milk yield; MFP, milk fat percentage; SCS,
somatic cell score; HT, total stem height; CWAL, crown width along the planting beds; TS, tree stiffness. SVR, support vector regression; KRR, kernel ridge regression;
ENET, elastic net; GBLUP, genomic best linear unbiased prediction. The bold values mean the highest prediction accuracy for each trait.

BayesB and KRR outperformed other methods in three
traits, showing the best predictive power. The prediction
accuracy of GBLUP and ENET was higher than that of
other methods in two traits. The prediction performance
of SVR was the worst, and the prediction accuracy of
SVR was always lower than that of the other methods.
For base learners, the prediction accuracy of KRR was the
highest. The prediction accuracy gap between these methods
was not significant, however, the ability to estimate the
GEBVs was comparable.

Comparison Between the Prediction
Accuracy of SELF and Base Learners
Figure 2 shows the comparison between the prediction
accuracy of the base learners and SELF for nine traits. The
red one represents the prediction accuracy of SELF. SELF
performed better than all the other base learners for each
trait. Particularly for CWAL, HT, and EMA, the prediction
accuracy of SELF was improved by 9.97, 7.36, and 6.40%,
respectively, when compared to the highest prediction accuracy
of base learners. Among the three base learners, the prediction
ability of KRR was comparable to SELF in German Holstein
dairy cattle dataset.

Comparison Between the Prediction
Accuracy of SELF, GBLUP and BayesB
Figure 3 demonstrates the prediction accuracy of GBLUP,
BayesB and SELF for the three datasets. For the Chinese
Simmental beef cattle dataset, the prediction accuracy of
SELF was higher than GBLUP and BayesB, showing an
average improvement of 11.68% from SELF to GBLUP.
For the German Holstein daily cattle, except for the trait
of MFP, SELF performed better than BayesB and GBLUP.
For the Loblolly pine dataset, SELF predicted GEBVs more
accurately than GBLUP and BayesB, showing an improvement
of 14.18% for TS, when compared with GBLUP. Comparing
the prediction accuracy between SELF and GBLUP, the
average prediction accuracy of SELF was increased by
7.70% in nine traits.

DISCUSSION

The previous large number of studies had tried to apply single
machine learning methods into genomic prediction (Long et al.,
2011; Jubair and Domaratzki, 2019; Montesinos-López et al.,
2019; Lenz et al., 2020). However, the single machine learning
methods applicatied in most of the previous studies, only
performed well on certain traits (Long et al., 2011; Ogutu et al.,
2011; González-Camacho et al., 2018; Montesinos-López et al.,
2019). Therefore, the present study proposed a new strategy
to utilize machine learning methods in genomic prediction by
using a stacking ensemble learning framework integrating three
machine learning methods to predict GEBVs simultaneously.
To examine the prediction ability of SELF, we compared the
prediction accuracy of SELF with GBLUP and BayesB in
animal and plant datasets with a variety of genetic architecture.
Considering the computation time and that overfitting was
employed, the genotypes derived relationship matrix as the inputs
rather than using the genotypes directly (Gianola et al., 2011).

The Prediction Accuracy of Base
Learners, GBLUP, and BayesB
Using GBLUP and BayesB to predict GEBV for the three
dataset had been reported early which provided a reference
for verifying our results. Therefore, this study compared the
prediction accuracy of GBLUP and BayesB with the prediction
accuracy obtained from Wang X. et al. (2019), Zhang et al.
(2015), and Resende et al. (2012). Wang X. et al. (2019) compared
GBLUP with BayesB in the Chinese Simmental beef cattle dataset.
Zhang et al. (2015) and Resende et al. (2012) compared the
prediction accuracy of different methods on the German Holstein
dairy cattle dataset and the Loblolly pine dataset, respectively.
Overall, the results were consistent. Since the method was
slightly different from that was used in the previous studies, the
accuracy differed in individual traits. Although, the application
of a single machine learning method to estimate GEBVs on the
three datasets has not been reported, the vast majority of studies
has compared the prediction accuracy of the single machine
learning method with GBLUP or Bayesian family methods on
other populations. Therefore, it provided a practical reference
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FIGURE 2 | Comparison of the prediction accuracy among: SVR (blue violet), KRR (dodger blue), ENET (dark orange) and SELF for nine traits. (A) live weight; (B)
carcass weight; (C) eye muscle area; (D) milk yield; (E) milk fat percentage; (F) somatic cell score; (G) total stem height; (H) crown width along the planting beds; (I)
tree stiffness.

FIGURE 3 | Comparison of the prediction accuracy among: SELF (red), GBLUP (dodger blue) and BayesB (dark orange) for three datasets. (A) Chinese Simmental
beef cattle dataset; (B) German Holstein dairy cattle dataset; (C) Loblolly pine dataset. LW, live weight; CW, carcass weight; EMA, eye muscle area; MY, milk yield;
MFP, milk fat percentage; SCS, somatic cell score; HT, total stem height; CWAL, crown width along the planting beds; TS, tree stiffness. GBLUP, genomic best linear
unbiased prediction; SELF, a stacking ensemble learning framework.

when evaluating the performance of single machine learning
methods. The results of Ghafouri-Kesbi et al. (2017) and Long
et al. (2011) indicated that GBLUP presented better prediction
accuracy when compared to SVR and RF. Furthermore, in
most cases, the performance of SVR with Gaussian kernel
was comparable to that of Bayesian Lasso (Long et al., 2011;
Ghafouri-Kesbi et al., 2017). Similar to previously reported
studies, the results from the present study also confirmed that

single machine learning did not perform significantly better than
GBLUP and Bayes methods.

Excellent Predictive Performance of
SELF
Compared to GBLUP, the average prediction accuracy of SELF
was increased by 7.70% for the nine traits, which is significant
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FIGURE 4 | Example of how an integrated model using a stacked ensemble
with linear and non-linear regression can significantly outperform either a
single linear or non-linear model.

for animal and plant breeding. Particularly for the beef cattle
with a longer generation intervals, such considerable prediction
accuracy improvement will greatly accelerate the genetic gain.
Actually, it is very difficult to build a SELF model to predict a
specific problem with higher accuracy, since the composition of
SELF model is so flexible. Therefore, the present study referred
to previous studies that using machine learning methods to
estimated GEBVs, and combined with our experience to select
the candidate base learner. Besides, a single-layer framework
or multi-layer framework also should be premeditated carefully
when constructing frameworks. Considering the overfitting
always accompanied by the machine learning methods in GS
and the calculating time of SELF, we determined a single layer
stacking framework. Before constructing the model of SELF, RF,
SVR, KRR, and ENET were chosen as the candidates for base
learners, in which RF and SVR had been performed to predict
GEBV in previous studies (Long et al., 2011; Ogutu et al., 2011;
González-Recio et al., 2014; Libbrecht and Noble, 2015; Ghafouri-
Kesbi et al., 2017). Although the utilization of KRR in genomic
prediction had been rarely reported, it was frequently utilized to
classification and regression task for other research areas (Douak
et al., 2013; Avron et al., 2017; Chang et al., 2017; Naik et al., 2018).
In addition, ENET was chosen to achieve more diversification of
SELF model due to the reason that SVR, RF, and KRR predicted
GEBV by building a non-linear model and ENET was a liner
model (Wang Y. et al., 2019). Subsequently to the prediction of
GEBVs using four base learners, we decided to exclude RF from
the SELF, because RF greatly increased the computation time of
SELF. Consequently, the final SELF model was constructed by
SVR, KRR and ENET, in which the base learners were used to
build different types of models to estimate the GEBVs. Generally,
it was reasonable to employ different learning algorithms to
explore the relationship between the feature and the target
variable (Kyriakides and Margaritis, 2019). For the regression
example (Figure 4), we used a stacked ensemble with linear

and non-linear regression, showing the possibility to significantly
outperform either a single linear or non-linear model. Even
though we directly utilized the best prediction of the linear
and non-linear models as the outputs of the integrated model
without stacking, the performance of the integrated model was
greatly improved. Therefore, the constructed SELF could learn
more characteristics in different aspects of the input data, and it
performed better than either of the base learners.

Besides, the form of input data in this study might be another
momentous reason contributed to the higher prediction accuracy
of SELF model. The majority of published studies directly
employed genotypes as the inputs of machine learning methods.
Nevertheless, the number of markers was considerably larger
than the number of individuals. In this case, if we used genotypes
with no transformed, the number of variables in the prediction
model would be an astronomical figure compared to group size.
Despite that single machine learning methods were able to solve
the problem of “big P and small N,” stronger overfitting was
inevitable, which also decreased the prediction accuracy of the
SELF. The application of genomic relationship matrix as the input
data was completely different, as the genomic relationship matrix
was a n × n matrix, whose size is determined by the group
sizen. Therefore, the number of variables in the prediction model
would be consistent with the number of individuals. Although
it might reduce the prediction accuracy of the base learners, it
simultaneously and dramatically reduces the risk of overfitting,
which potentially improves the prediction accuracy of the SELF.

CONCLUSION

The present study proposes a stacking ensemble learning
framework integrating SVR, KRR, and ENET to predict GEBVs.
The excellent performance of SELF in a variety of genetic
architecture datasets indicates that SELF possesses a significant
potential to improve genomic predictions in other animal and
plant populations.
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The observable phenotype is the manifestation of information that is passed

along different organization levels (transcriptional, translational, and metabolic) of a

biological system. The widespread use of various omic technologies (RNA-sequencing,

metabolomics, etc.) has provided plant genetics and breeders with a wealth of

information on pertinent intermediate molecular processes that may help explain

variation in conventional traits such as yield, seed quality, and fitness, among others.

A major challenge is effectively using these data to help predict the genetic merit of

new, unobserved individuals for conventional agronomic traits. Trait-specific genomic

relationship matrices (TGRMs) model the relationships between individuals using

genome-wide markers (SNPs) and place greater emphasis on markers that most relevant

to the trait compared to conventional genomic relationship matrices. Given that these

approaches define relationships based on putative causal loci, it is expected that these

approaches should improve predictions for related traits. In this study we evaluated

the use of TGRMs to accommodate information on intermediate molecular phenotypes

(referred to as endophenotypes) and to predict an agronomic trait, total lipid content,

in oat seed. Nine fatty acids were quantified in a panel of 336 oat lines. Marker

effects were estimated for each endophenotype, and were used to construct TGRMs.

A multikernel TRGM model (MK-TRGM-BLUP) was used to predict total seed lipid

content in an independent panel of 210 oat lines. The MK-TRGM-BLUP approach

significantly improved predictions for total lipid content when compared to a conventional

genomic BLUP (gBLUP) approach. Given that the MK-TGRM-BLUP approach leverages

information on the nine fatty acids to predict genetic values for total lipid content in

unobserved individuals, we compared the MK-TGRM-BLUP approach to a multi-trait

gBLUP (MT-gBLUP) approach that jointly fits phenotypes for fatty acids and total

lipid content. The MK-TGRM-BLUP approach significantly outperformed MT-gBLUP.

Collectively, these results highlight the utility of using TGRM to accommodate information

on endophenotypes and improve genomic prediction for a conventional agronomic trait.

Keywords: genomic prediction, Bayesian regression, lipids, metabolomics, genomics, plant breeding, oats
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1. INTRODUCTION

The observable phenotype is the manifestation of numerous
biological process that occur across organizational levels (DNA,
transcript, protein, and metabolite) in the plant. In the last 20
years significant progress has been made to query phenotypes
at these levels and elucidate the molecular mechanisms (e.g.,
regulatory networks, biochemical pathways, and physiological
mechanisms) that shape variation in conventional traits like plant
architecture, disease resistance, productivity and fitness. Omics
technologies have provided a means to query the phenotypic
space at a molecular level and quantify these phenotypes
across organizational levels and query these mechanisms in
large populations that are typically required in genetic studies.
The term “endophenotype” has been coined to describe these
molecular phenotypes (Kremling et al., 2019). Nonetheless,
efficiently leveraging these resources to improve prediction of the
classical traits that are typically the focus of breeding programs
remains a significant challenge.

The widespread use of various omics technologies has
motivated many studies to develop approaches that integrate
these data types to predict complex traits (Rincent et al., 2018;
Morgante et al., 2020). Dense omics data can be used to
create relationship matrices, much like genomic relationship
matrices, that describe the relatedness among individuals based
on the endophenotypes. Best linear unbiased prediction (BLUP)
frameworks can then be used to predict complex traits using
these kernels. Using these frameworks, Morgante et al. (2020)
showed that BLUP models that included relationship matrices
derived from transciptome data, as well as transcriptome
and genome-wide marker data improved prediction accuracies
compared to models that used only genome-wide markers.
Several other studies have reported similar improvements in
prediction accuracies when omics-based kernels are used for
prediction, suggesting that these omics-based kernels capture
some component of the phenotype that is not explained by
genome-wide markers (environmental or non-additive genetic
variance) (Westhues et al., 2017; Rincent et al., 2018; Schrag
et al., 2018; Krause et al., 2019; Li et al., 2019; Rohde et al.,
2020; Zhou et al., 2020). Despite these promising studies,
these improv2gfgements seem to be dependent on the trait,
methodologies and datatype (Guo et al., 2016; Schrag et al., 2018;
Zhou et al., 2020). Moreover, these approaches require omics
phenotypes for all individuals, which would be a burden formany
plant breeding programs due to the cost of growing-out and
quantifying endophenotypes on these materials.

Information flows from the genotypic space to
endophenotypes and eventually to the focal trait. Given this
relationship, rather than using these data to create omics-based
relationship matrices, knowledge about quantitative trait loci
(QTL) that affect these endophenotypes can instead be directly
introduced into the prediction frameworks. Predictions for the
focal traits should be improved by allowing variance components
to be estimated separately for putative functional (causal loci
and markers in linkage with these loci) and non-functional
markers. This approach would also remove the requirement
to have endophenotypes measured on the population used for

prediction. Of course, this assumes that effects will be somewhat
consistent across populations and locations, and does not
account for genotype-by-environment effects. Several studies
have used domain/prior knowledge to partition genomicmarkers
into potentially functional (associated with endophenotypes or
proximal to causal genes) and non-functional sets (Gusev et al.,
2014; Speed and Balding, 2014; Edwards et al., 2016; MacLeod
et al., 2016; Xiang et al., 2019). The limitation with these
approaches is that they require a means to link endophenotypes
to the genome, whether that is through association or linkage
mapping or physical positions in the genome, thus favoring traits
with simple genetic architecture and large-effect QTL. Since
many traits of agronomic importance follow a complex genetic
architecture, this approach is somewhat limiting for research
programs in plant genetics.

An alternative to these set-based genomic prediction
approaches is to use estimated marker effects to construct
trait-specific genomic relationship matrices (TGRM). Unlike
the genomic relationship matrices defined by VanRaden (2008),
which assume that the trait is affected by many small effect loci
distributed throughout the genome, TGRMs differentially weight
markers according to their effects on the phenotype (Zhang
et al., 2010; Sun et al., 2012; de los Campos et al., 2013; Karaman
et al., 2018; Gianola et al., 2020; Turner-Hissong et al., 2020).
Given this differential weighting, TGRM should better reflect
the relationships between individuals at causal, or potentially
casual loci.

Zhang et al. (2010) used a two-step approach where marker
effects are predicted using Bayes B or Ridge Regression and
each marker is weighted by its corresponding genetic variance
(in Ridge Regression markers have the same variance) when
constructing the relationship matrices. The authors simulated
traits controlled by 50 QTL of varying effect sizes, and
showed that genomic predictions using the TGRM outperformed
conventional genomic prediction approaches that assume an
infinitesimal architecture (i.e., genomic BLUP and Ridge
Regression), but performed slightly worse than a genomic
prediction model that better accommodates large effect QTL
(i.e., Bayes B). The results from this early study highlighting
the potential benefits of using TGRMs has been supported by
several more recent studies (Su et al., 2014; Tiezzi and Maltecca,
2015; Ren et al., 2020). The advantages of these approaches
is that information on endophenotypes can be transferred
to new populations through marker effects, eliminating the
need to quantify endophenotypes in these populations as
required for approaches that directly use these data to develop
relationship matrices.

These statistical frameworks that use TGRM offer
opportunities to improve selection for conventional traits
by including genetic effects for related endophenotypes. In this
study, we evaluated the potential of TGRM to improve genomic
prediction of seed composition traits in oat. We measured
endophenotypes in a large diverse population, allowing
inferences on these endophenotypes to be leveraged to improve
predictions for related phenotypes in new populations. The
abundances of nine fatty acid methyl esters were quantified in
the mature seed of 336 oat lines using gas chromatography-mass
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spectrometry (GC-MS). These data were used to estimate
marker effects for TGRMs using five Bayesian regression
approaches: Bayesian ridge regression, Bayes A, Bayes B,
Bayes Cπ , and Bayesian LASSO. Two datasets were used for
validation. The first dataset consists of fatty acid abundances
measured on an independent population of 213 elite oat lines.
The second study quantified seed protein and lipid content
using near-infrared spectroscopy (NIRS) in 210 elite oat
lines. These datasets allow us to answer two questions: (1)
Are estimated marker effects consistent across populations?
(2) Can predictions for a trait be improved by using TGRM
for component traits (i.e., endophenotypes)? The utility of
these TGRM prediction frameworks is demonstrated through
comparisons with single-trait genomic best linear unbiased
prediction (gBLUP) and multi-trait gBLUP approaches (MT-
gBLUP). This work broadly tests if endophenotype relationships
are transferable between populations. Further, it assesses the
efficiency of endophenotyping for plant breeding: the cost
of such phenotyping will make it efficient only if knowledge
obtained from core populations can be transferred to multiple
breeding populations.

2. MATERIALS AND METHODS

2.1. Plant Materials
This study used three datasets. The first dataset was used to
infer marker effects for nine fatty acids. These data consist of
fatty acid phenotypes measured on an oat diversity panel of
375 lines derived from breeding programs in North America
and Europe. We refer to this panel as the “Diversity Panel.”
The Diversity Panel was grown in an augmented field design
in Ithaca, NY, in 2018. A total of 368 unreplicated entries
were randomly allocated to 18 blocks with 21–23 plots per
block. One primary check, “Corral,” and one of six secondary
checks were included in each of the blocks. These secondary
checks were replicated four times in total, while the primary
check was replicated 19 times (one block had two “Corral”
plots). A total of 336 lines with genotypic data were used for
downstream analyses.

The second dataset consists of fatty acid measurements on
227 lines from a second oat panel, and was used to validate
marker effects estimated in the Diversity Panel. This panel is
constructed from breeding materials and varieties that were
used to develop oat varieties for the northern Midwestern
United States, which will be referred to as the “Elite Panel”
throughout the remainder of this manuscript. The panel
was grown in three locations (Crookston, MN; Volga, SD;
and Madison, WI) using an augmented block design. Each
experiment included 220–224 unreplicated entries and three
check lines.

The third experiment measured total lipid content using
Near Infrared Spectroscopy (NIRS) in six trials for 210 lines
in the Elite Panel. The experiments followed an augmented
block design. Entry means were downloaded from the Triticeae
Toolbox (Blake et al., 2016). Links to each trial are provided in
Supplementary Table 1.

2.2. Genotyping and Marker Imputation
Single-nucleotide polymorphism (SNP) data were collected from
11 genotyping experiments for 539 lines (Campbell et al., 2020).
The glmnet approach was used to impute missing marker
data (Chan et al., 2016). Markers were excluded based on the
following criteria before performing imputation: allele frequency
< 0.02, proportion of missing data across individuals > 0.6,
and heterozygosity > 0.1. Individuals where more than 70% of
markers were missing or more than 10% of the markers were
heterozygous were removed. Genotypic data for individuals in
each study were extracted from these data, and markers with
a minor allele frequency < 0.05 were removed. This resulted
in a total of 62,002 markers used to estimate marker effects for
fatty acid traits in the Diversity Panel, 58,123 markers used for
prediction of fatty acid phenotypes in the Elite Panel, and 54,220
markers used to predict lipid content measured via NIRS in the
Elite Panel.

2.3. Metabolite Profiling for Fatty Acid
Methyl Esters (FAME)
The following protocol was used for all experiments that
measured fatty acid phenotypes. The methods are described in
detail in Campbell et al. (2020) and Carlson et al. (2019). Briefly,
dehulled seeds were homogenized, and 100 mg of pulverized
tissue was used to separate polar and non-polar compounds
using a biphasic extraction method. A set of quality control (QC)
samples was created by combining 60 µL of the upper organic
layer from each sample, as well as 60 µL of the lower aqueous
phase. A total of 600µL of the upper organic layer was transferred
to new glass vials and was dried under nitrogen gas overnight.
Organic fractions were re-suspended in 0.7 mL of 50% methanol
50% methyl tert-butyl ether and a 70 µL aliquot was transferred
to a 2 mL glass vial. Solvent was completely removed by nitrogen
evaporation at ambient temperature. To the dry sample, 100 µL
of toluene containing 2.5 mg/mL of internal standard, glyceryl
triheptadecanoate, and 200 µL of 3N methanolic HCl were
added. The mixture was incubated at 60◦C for 1 h, and 0.5 mL of
hexane and 700µL of water were added to the cooled sample. The
samples were vortexed, centrifuged at 2,000 rpm for 5min at 4◦C,
and the upper hexane layer was diluted 2× with 100% hexane.

One micro-liter of the upper hexane layer containing FAME
was injected into a TG-WAXMS column (30mm × 0.25
mm × 0.25 µm, Thermo Scientific) in a Trace1310 GC
(Thermo Scientific) coupled to a Thermo Scientific ISQ-LT mass
spectrometer. The injector temperature was 260◦C, and the split
ratio was 15:1. A constant flow rate of the carrier gas (He) was
controlled at 1.2 mL · min−1. The initial oven temperature was
200◦C and held for 1min, then increased to 260◦C at 10◦C·min−1

and held for 3 min. Detection was completed under electron
impact mode, with a scan range of 50–650 amu and scan rate
5 scans·s−1. Transfer line and source temperature were both
at 250◦C. Data processing was completed with Chromeleon 7
software (Thermo Scientific). QC sample were injected after
every 6 samples. Standard curves for C14:0, C16:1, C16:0, C18:0,
C18:1, C18:2, C18:3, C20:0, and C20:1 were established.
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2.4. Calculation of Best Linear Unbiased
Predictors for FAMEs
Best linear unbiased predictors (BLUPs) were calculated to
remove systematic effects for each fatty acid phenotype. Given
that both experiments that quantified fatty acids followed the
same type of experimental design (augmented block), the linear
mixed model is nearly identical and is given by

y = µ + DTH + check+ new : entry+ block+ batch+ e (1)

where check is a fixed effect for each of the check varieties; new
is an indicator variable where 0 indicates a check variety and
1 indicates an unreplicated entry, and is nested within entry;
DTH is a fixed covariate that provides days to heading for
each observation; block and batch are random effects to account
for field blocks and injection batch for GC-MS, respectively.
Heading dates were only available for the experiments performed
in Ithaca, so the linear model used to compute BLUPs for fatty
acid phenotypes in the Elite Panel did not include this term.
The terms µ and e represent the overall mean and the vector of
residuals, respectively. We assume entries are unrelated in this
step. The above model was fitted using the sommer package in R
(Covarrubias-Pazaran, 2016). Deregressed BLUPs for each entry i
and fatty acid jwere calculated following Edriss et al. (2017) using

ĝ∗ij =
ĝij

1− PEVij

σ 2
gj

(2)

where ĝij is the BLUP for entry i and metabolite j, PEVij is the
prediction error variance, and σ 2

gj
is the total genetic variance.

2.5. Prediction of Marker Effects for Fatty
Acid Traits
Five Bayesian whole-genome regression approaches were used to
estimate marker effects for each of the fatty acid phenotypes. The
linear model for all approaches is identical. The methods differ
in how the priors for the marker effects are defined. The linear
model is

y = µ +
P∑

p=1

wpap + e (3)

where wp is a vector of allele dosages for marker p and ap is the
corresponding additive genetic effect, y is a vector of fatty acid
phenotypes (endophenotypes), and e is a vector of residuals. In
all cases, we assume e ∼ N(0, σ 2

e ). This linear model was fitted
using the BGLR package in R using 20,000 iterations for the Gibbs
sampler and the first 5,000 samples were discarded (Pérez and
de Los Campos, 2014). Every fifth sample was used to compute
the posterior means of marker effects.

The five Bayesian approaches use different prior distributions
for the marker effects and are described in detail in Meuwissen
et al. (2001) and Gianola (2013). Briefly, Bayesian Ridge
Regression (BRR) is analogous to genomic BLUP (gBLUP) and
samples marker effects from a Normal distribution. In Bayes
A, marker effects are sampled from a scaled-t density, allowing

differential shrinkage of marker effects. Scale-mixture densities
are used as priors for Bayes B and Bayes Cπ . Some effects are
sampled from a point mass at zero and others are sampled
from a scaled-t density, as is the case in Bayes B, or a Normal
distribution in Bayes Cπ . The mixing parameter specifies the
probability of a marker being sampled from either density and
is treated as an unknown in implementations of Bayes B and
Bayes Cπ used in this study (Pérez and de Los Campos, 2014).
Markers are sampled from a point mass at zero with a probability
π and a non-zero density with probability (1 − π). Thus, in
the extreme case where π = 0 Bayes B will behave like Bayes
A and Bayes Cπ will behave similar to BRR. Bayesian LASSO
(BL) samples marker effects from a LaPlace density. This prior
has thicker tails compared to the Normal density used in BRR,
but will shrink small-effect markers toward zero much stronger
than BRR. These frameworks provide ameans to estimate marker
effects for a range of traits with different genetic architectures,
which is consistent with what has been reported for fatty acid
traits in oat (Carlson et al., 2019) (Supplementary Figures 1–18).

2.6. Construction of Trait Specific Genomic
Relationship Matrices
Trait-specific genomic relationship matrices (TGRM) were
constructed using the estimated marker effects for each of the
nine fatty acid phenotypes in the Diversity Panel. For each fatty
acid phenotype, the TGRM are defined as

G∗ = MDM′

P
(4)

whereM is an n× P scaled and centered matrix of allele dosages
with n being the number of individuals and P the number of
markers. D is an P × P diagonal matrix that contains the marker

weights. The weight for marker p is given by
a2p∑P
p=1 a

2
p
where ap is

the additive effect.

2.7. Genomic Prediction
2.7.1. Prediction of Fatty Acid Phenotypes in the Elite

Panel
To predict each fatty acid trait the following model was fitted

y = µ + Zuu+ Zes+ e (5)

where y is a vector of deregressed BLUPs for each line in
the six trials; Zu is an n × q incidence matrix that assigns
the q genomic values to n observations; u is a vector of
genomic values; and Ze is an n × e incidence matrix that
assigns observations to trials and s are the corresponding effects.
Both TGRM-BLUP and gBLUP follow the same model, what
separates the two methods are the assumptions on u. For TGRM-
BLUP, we assume u ∼ N(0, σ 2

g∗G
∗) where G∗ is the TGRM

defined above, and for gBLUP we assume u ∼ N(0, σ 2
g G)

where G is a genomic relationship matrix calculated using
VanRaden’s second definition (VanRaden, 2008). All models
were fitted using the BGLR package in R using the settings
mentioned above (Pérez and de Los Campos, 2014). Prediction
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accuracies were assessed using five-fold cross validation with
50 independent resampling runs. In each resampling run, the
dataset was randomly split into five-folds. The models were
trained on 80% of the data and predictions were made on the
remaining 20%. This process was repeated until each fold was
used as the testing set. Prediction accuracies were computed
using Pearson’s correlation between observed phenotypes and
predicted genomic values for lines in the testing set. Correlation
coefficients were averaged across folds. Comparisons were made
between gBLUP and TGRM-BLUP, and significant differences
in the two methods were declared if TGRM-BLUP increased
prediction accuracy in 90% of the resampling runs. We used
this approach to compare methods over a t-test for two
reasons: (1) in cross-validation each sample is drawn from
the same dataset and are not independent, which violates one
of the assumptions of the t-test; and (2) the magnitude of
the t-statistic is dependant on the sample size, which is the
number of resampling runs. Our approach is not dependent
on the sample size and should be a more robust alternative to
the t-test.

2.7.2. Prediction of Total Lipid Content in the Elite

Panel
Prediction of total lipid content was performed using multi-
kernel TGRM-BLUP (MK-TGRM-BLUP), multi-trait gBLUP,
and gBLUP approaches. The model for MK-TGRM-BLUP is
given by

y = µ +
T∑

t

Zuut + Zes+ e (6)

with all matrices and vectors defined as above; however, ut is a
vector of genomic breeding values computed using the TGRM for
fatty acid trait t. Prediction accuracy was assessed using Pearson’s
correlation between the predicted genomic estimated breeding
values and the BLUPs for each trial. Prediction accuracies from
themodel above were compared to gBLUP to determine if TGRM
affected genomic predictions.

The multi-trait BLUP model is

Y = µ + ZUU+ e (7)

here Y is a n × T matrix of phenotypes and U is a n × T matrix
of genomic breeding values. BLUPs were averaged across the six
trials and were used to construct Y. These data were also used to
fit MK-TGRM-BLUP models that were compared to multi-trait
gBLUP and are given by y = µ +

∑T
t Zuut + e. Prediction

accuracy was assessed in the Elite Panel using five-fold cross
validation. Since 12 lines were included in both the Diversity and
Elite panels, and had phenotypes for both fatty acid and NIRS
traits, these lines were always included in the training data. The
testing set included lines that only had NIRS phenotypes. All
models were fitted using the BGLR package as described earlier
(Pérez and de Los Campos, 2014).

3. RESULTS

Nine fatty acid phenotypes were quantified in a panel of 336
diverse oat lines (referred to hereafter as the Diversity Panel)
using targeted GC-MS (Supplementary File 1). Generally, the
fatty acid phenotypes were highly correlated at both the genetic
and phenotypic levels and correlation patterns were reflective
of the biochemical relationships between compounds (Figure 1).
For instance, we observed strong positive correlations among
C18-type and C20-type fatty acids. Moreover, shorter chain fatty
acids (e.g., C14 and C16) which are synthesized in the early
steps of fatty acid biosynthesis also exhibited strong positive
correlations (Ohlrogge and Jaworski, 1997; Brown et al., 2009;
Li-Beisson et al., 2013). There were exceptions to these patterns,
specifically for C16:1 and C18:3. These fatty acids showed much
lower positive correlations with all other fatty acid phenotypes.
Narrow-sense heritability estimates were moderate to high and
ranged from 0.38 to 0.69, with the lowest and highest h2 observed
for C18:3 and C18:0, respectively. Collectively, these results
suggest that these lipid phenotypes are genetically interrelated
and are under additive genetic control.

3.1. Construction of Trait-Specific Genomic
Relationship Matrices (TGRMs)
Given that a significant portion of phenotypic variation in
these lipid phenotypes could be explained by additive genetic
effects, we sought to leverage these effects to better predict lipid-
related traits in an independent population. We constructed
trait-specific genomic relationship matrices (TGRMs), which
differentially weight markers based on their additive genetic
effects on the phenotype. Since the genetic architectures of the
fatty acid phenotypes differ, we used five Bayesian whole-genome
regression approaches to estimate marker effects: Bayesian ridge
regression (BRR), Bayes A, Bayes B, Bayes Cπ , and Bayesian
LASSO (BL; Supplementary Figures 1–18). These approaches
sample marker effects from various prior densities and can
accommodate a wide range of genetic architectures (see section
2). We evaluated whether the signal captured by these TGRMs
are transferable across populations by predicting the same fatty
acid phenotypes measured in an independent population (Elite
Panel) and environment. Predictive ability was assessed using
five-fold cross validation with 50 independent resampling runs.
Genomic BLUP (gBLUP) using VanRaden’s second GRM was
used as a baseline model. The TGRM-BLUP approaches were
deemed to significantly improve prediction accuracies if the
TGRM out-performed gBLUP in 90% of the resampling runs
(Table 1, Figure 2).

With the exception of C18:1 and C18:3, prediction accuracies
were significantly improved by using a TGRM, indicating
that the signal captured by TGRMs is relevant in this second
independent population (Table 1, Figure 2). Comparisons
between TGRM approaches showed small, often non-significant
differences between methods used to estimate marker effects
(Figure 2, Supplementary Table 2). On average, Bayes B showed
higher predictive abilities for more traits compared to other
methods. For instance, Bayes B significantly outperformed
at least one approach for six of the nine fatty acid traits
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FIGURE 1 | Correlation and heritability for nine fatty acid traits. Genomic correlation between fatty acid phenotypes is shown in the upper triangle of the matrix, while

the lower triangle shows the phenotypic correlations. Narrow-sense heritability estimates (h2) are provided along the diagonal. All values were estimated using a

multi-trait BLUP model using phenotypes recorded in the Diversity Panel. The size of each circle is proportional to the magnitude of the estimate.

TABLE 1 | Proportion of resampling runs where BLUP using trait-specific genomic relationship matrices (TGRM-BLUP) outperformed genomic BLUP (gBLUP).

Method C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 C20:0 C20:1

BRR 0.96 1.00 0.92 1.00 0.48 1.00 0.62 1.00 0.68

Bayes A 0.82 1.00 0.80 1.00 0.38 0.98 0.28 1.00 0.54

Bayes B 1.00 1.00 0.96 1.00 0.54 1.00 0.58 1.00 0.92

Bayes Cπ 1.00 1.00 0.96 1.00 0.58 0.98 0.62 1.00 0.86

BL 0.74 1.00 0.94 1.00 0.52 0.98 0.50 1.00 0.74

Marker effects were estimated using five Bayesian whole-genome regression approaches for each of the nine fatty acid traits in the Diversity Panel (336 lines). Predicted marker effects

were used to construct TGRMs for each trait. The predictive ability of TGRM-BLUP was assessed using nine fatty acid phenotypes measured in a population of 213 oat lines (Elite Panel).

Five-fold cross validation was performed with 50 independent resampling runs. TGRM-BLUP was deemed to significantly improve genomic predictions in a TGRM-BLUP approach that

outperformed gBLUP in 90% or more of the resampling runs, and are indicated by boldfaced text. BRR, Bayesian ridge regression; BL, Bayesian LASSO.

(Supplementary Table 2). Bayes Cπ also showed significantly
higher predictive abilities relative to other approaches, and
significantly outperformed at least one TGRM approach for four
of the nine traits (Supplementary Table 2). Bayesian LASSO
generally showed the lowest predictive ability among the TGRM
approaches and did not outperform any approach for any trait.
Collectively, these results show that the predicted marker effects
are transferable across populations and can improve genomic
prediction for endophenotypes for such seed traits as total
lipid content. Moreover, the Bayesian whole-genome regression

approaches that use a scale mixture prior may better capture
genetic signal for traits with different genetic architectures,
and may be a robust approach to estimate marker effects and
create TGRMs.

3.2. Using TGRMs to Predict Total Lipid
Content
The previous analyses showed that TGRMs can be used
to improve genomic prediction for fatty acid traits in an
independent population. While these outcomes provide support
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FIGURE 2 | Prediction accuracies for fatty acid traits using TGRM-BLUP and gBLUP. Five Bayesian whole-genome regression approaches (Bayes A, Bayes B, Bayes

Cπ , BRR, and BL) were used to estimate marker effects for each fatty acid trait in the Diversity Panel. These marker effects were used to construct trait-specific

genomic relationship matrices (TGRM) and were used to predict fatty acid abundances in the Elite Panel. Prediction accuracy was assessed using five-fold cross

validation with 50 resampling runs. The correlation between predicted genomic breeding values in the testing population and the observed phenotypes is shown in

(A). Panel (B) shows the percent improvement relative to genomic BLUP (gBLUP) for each trait. BL, Bayesian LASSO; BRR, Bayesian ridge regression; r, Pearson’s

correlation coefficient.

for the use of TGRMs in breeding programs, the quantification
of these compounds may not be feasible in breeding programs
due to the high cost of GC-MS. Seed compositional traits
measured via indirect methods, e.g., near-infrared spectroscopy
(NIRS), is a more feasible approach to quantify total seed
lipids in a large breeding program (Melchinger et al., 1986;
Rosales et al., 2011; Diepenbrock and Gore, 2015). With
this in mind, we used the TGRMs for each of the nine
fatty acid traits to predict total seed lipid content measured
through NIRS using a multi-kernel genomic prediction model
(MK-TGRM-BLUP). Prediction accuracies for each multi-
kernel model were compared to gBLUP and the TRGM
methods were determined to significantly improve prediction

accuracies if it outperformed gBLUP in at least 90% of
sampling runs.

All MK-TGRM-BLUP approaches significantly increased
prediction accuracies compared to gBLUP (Figure 3).
Improvements in prediction accuracies ranged from 11.8 to
13.8%. Differences between MK-TGRM-BLUP approaches were
minimal and non-significant. In contrast to the predictions
for fatty acid traits, BRR showed slightly higher prediction
accuracies on average (r = 0.481) compared to other approaches,
while Bayes A showed the lowest prediction accuracy among the
MK-TGRM-BLUP approaches (r = 0.473).

Given that the MK-TGRM-BLUP leverages information on
related traits to improve prediction accuracies, we also compared
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FIGURE 3 | Comparison of prediction accuracies for multi-kernel trait-specific BLUP models (MK-TGRM-BLUP) and a genomic BLUP approach (gBLUP). The

multi-kernel models used TGRMs constructed from estimated marker effects for the nine fatty acid traits. Prediction accuracy was assessed using five-fold cross

validation with 50 resampling runs. The correlation between predicted genomic breeding values in the testing population and the observed phenotypes at each

location is shown in (A). Panel (B) shows the percent improvement relative to gBLUP for each MK-TGRM-BLUP approach. BL, Bayesian LASSO; BRR, Bayesian

ridge regression; r, Pearson’s correlation coefficient.

FIGURE 4 | Comparison of prediction accuracies for multi-kernel trait-specific BLUP models (MK-TGRM-BLUP) and a multi-trait gBLUP approach (MT-gBLUP). The

multi-trait gBLUP model used phenotypes for the nine fatty acid traits and total lipid content measured via near-infrared spectroscopy (NIRS) to predict total lipid

content. Prediction accuracy was assessed using five-fold cross validation with 50 resampling runs. Since there is a small overlap between lines in the diversity panel,

which have fatty acid phenotypes, and lines in the Elite Panel, these common lines were always included in the training set. The testing set is then 20% of the lines

that only have NIRS phenotypes. The correlation between predicted genomic breeding values in the testing population and the average of observed phenotypes

across locations is shown in (A). Panel (B) shows the percent improvement relative to MT-gBLUP for each MK-TGRM-BLUP approach. BL, Bayesian LASSO; BRR,

Bayesian ridge regression; r, Pearson’s correlation coefficient.

the MK-TGRM-BLUP approach to a multitrait gBLUP (MT-
gBLUP) model that jointly modeled all nine fatty acid traits in the
Diversity Panel and total lipid content in the Elite Panel. Thus,
MT-gBLUP contains all the data that was used to compute the
TGRM for fatty acids used in the MK-TGRM-BLUP model. A
total of 12 lines in the Elite Panel had phenotypes for individual

fatty acids and their sum. Five-fold cross validation was used
for the remaining 198 lines in the Elite Panel with phenotypes
for total lipid content. All TGRM-BLUP approaches showed
significant improvements in prediction accuracies over the MT-
gBLUP approach (Figure 4). Prediction accuracies were highest
on average for BRR (r = 0.578), which showed a 14.41%
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FIGURE 5 | Prediction accuracies for two multi-kernel trait-specific BLUP

models (MK-TGRM-BLUP) that use TGRM for the three most abundant and

three least abundant fatty acids. Estimated marker effects for the most

abundant fatty acids (C16:0, C18:1, and C18:2) were used to create the three

TGRM and were used in a multi-kernel gBLUP framework to predict total lipid

content. A similar approach was used with the three least abundant fatty acids

(C14:0, C16:1, and C20:0). Predictions for each MK-TGRM-BLUP approach

were compared to a multi-trait gBLUP approach. Five-fold cross validation

was performed using 50 resampling runs. BL, Bayesian LASSO; BRR,

Bayesian ridge regression; r, Pearson’s correlation coefficient.

increase in prediction accuracy over MT-gBLUP. Collectively,
these results suggest that the use of a TGRM approach can
significantly improve prediction accuracies over conventional
genomic prediction approaches, even when information on
related phenotypes is included in the prediction model.

Finally, we asked whether it was necessary to quantify
and construct TGRM for all fatty acids, or whether similar
improvements in prediction accuracy could be achieved by
using kernels for the most abundant fatty acids. In both
panels, C16:0, C18:1, and C18:2 were the most abundant fatty
acids, while C14:0 C16:1 and C20:0 were present at much
lower levels (Supplementary Figure 20). TwoMK-TGRM-BLUP
models were constructed using kernels for the top three
most abundant fatty acids and the three least abundant fatty
acids. These MK-TGRM-BLUP approaches were compared to
the MT-gBLUP model described above using five-fold cross
validation. Both MK-TGRM-BLUP approaches outperformed

MT-gBLUP in all resampling runs, indicating that including
genetic signal for a subset of fatty acid traits is sufficient to
significantly improve prediction for total lipid content (Figure 5).
Comparisons between the twoMK-TGRM-BLUP approaches did
not show any significant differences in prediction accuracies,
which may be due to QTL that are shared between fatty acids
(Supplementary Figures 2, 3, 5, 6, 8).

4. DISCUSSION

Omics technologies provide an easy and effective way to measure
thousands of endophenotypes in large mapping populations.
Many research groups are using these approaches to improve
prediction for complex traits (Guo et al., 2016; Westhues et al.,
2017; Rincent et al., 2018; Schrag et al., 2018; Li et al., 2019; Xiang
et al., 2019; Rohde et al., 2020; Zhou et al., 2020). While several
studies have reported improvements in prediction accuracies
when these data were used to create relationship matrices, the
results are often mixed and inconsistent (Guo et al., 2016;
Schrag et al., 2018; Zhou et al., 2020). More importantly, such
approaches can be costly to implement in a breeding program
since individuals in the testing population require records for
endophenotypes. TGRMs offer an alternative approach to use
relevant information on endophenotypes to improve prediction
for conventional traits.

In this study, we show that data on endophenotypes can
be used to create TGRMs that majorly improve prediction for
related higher level focal traits. The TGRM improved prediction
accuracies for most traits by as much as 15%. The greatest
improvements among fatty acid traits was observed for C16:0
when marker effects were estimated using Bayes Cπ . C16:0
showed moderate to high heritabilities in the Diversity and
Elite Panels (h2 = 0.68 and 0.64, respectively), and it seemed
to be affected by at least one large-effect QTL in both panels
(Supplementary Figures 2, 11). Thus, predictions for this trait
can be improved by placing greater emphasis on putative causal
markers when defining the genomic relationships among lines.
These results are in agreement with other studies that evaluated
TGRMs (Tiezzi and Maltecca, 2015; Karaman et al., 2018; Ren
et al., 2020). Improvements over gBLUP were most pronounced
for high heritability traits that were regulated by a few large-
effect QTL, which is expected given that such traits are far
from the infinitesimal model assumed by gBLUP (Tiezzi and
Maltecca, 2015; Karaman et al., 2018; Ren et al., 2020). This likely
explains the improvements in prediction accuracies observed
for C16:0 with TGRM-BLUP. Ren et al. (2020) used several
TGRM-BLUP approaches to predict both simulated and real
traits in three species. Marker weights were estimated using
methods with priors that impose local or global shrinkage, and
several types of TGRM were constructed using these weights.
The authors reported the greatest improvements in prediction
accuracies for simulated traits with moderate heritability and
200 QTL when TGRM were constructed using weights estimated
using Bayes Cπ . The authors did not estimate marker effects
using Bayes B; however, both Bayes B and Bayes Cπ use scale
mixture densities to accommodate large-effect QTL (Gianola,
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2013). With these approaches, estimates for small-effect QTL
are shrunk heavily toward zero, while effects for markers
that are in linkage disequilibrium with large-effect QTL are
shrunk less. These approaches are more effective to estimate
marker effects and construct TGRMs for traits that exhibit
oligogenic architectures compared to methods that impose
uniform shrinkage.

Predictions for two fatty acid traits, C18:1 and C18:3,
were not significantly improved with TGRM-BLUP. C18:3
had the lowest heritability in the Diversity and Elite Panels
(h2 = 0.38 and 0.42, respectively) and exhibited a much
more complex genetic architecture compared to other fatty acids
(Figure 1, Supplementary Figures 7, 16). On average, prediction
accuracies were improved by −0.73 to 1.0% over gBLUP, but
only outperformed gBLUP in 28 to 62% of the resampling runs.
These are not unexpected findings given that other studies that
simulated traits with complex architectures and low heritabilities
also failed to see much of an improvement with TGRM-BLUP
(Tiezzi andMaltecca, 2015; Karaman et al., 2018; Ren et al., 2020).
Compared to C18:3, heritability estimates were much higher
for C18:1 and a large-effect QTL was detected in both panels
on chromosome 3D, which explained about 6% of variation in
C18:1 in the Diversity Panel, but predictions were not improved
with TGRM-BLUP (Figure 1, Supplementary Figures 5, 14).
Although the minor allele at this locus was common in the
Diversity Panel (MAF = 0.40), the top marker was rare in the
Elite Panel and was below theMAF threshold (MAF< 0.05) used
when computing the TGRM.

Compared to other approaches that have created relationship
matrices using endophenotype values, the TGRM approach
should be more feasible to implement in a breeding program
since predictions on the testing population can be performed
without records for endophenotypes. Pertinent genetic
information are passed between populations through marker
effects for the endophenotypes. Of course, this assumes that
relevant markers are still segregating in the testing population;
therefore, it is important to carefully select a population to
estimate marker effects. Fatty acid phenotypes were initially
measured in the Diversity Panel which consists primarily of
breedingmaterials from European andNorth American breeding
programs, while the Elite Panel used for genomic prediction is
comprised of materials used in oat breeding programs in the
Upper Midwestern United States. Thus, the panel that was used
to estimate marker effects is diverse and related to the materials
used for prediction (Supplementary Figure 21).

Surprisingly, the MK-TGRM-BLUP approach showed
significant improvements in prediction accuracy over gBLUP
and a multi-trait gBLUP model for total lipid content. Total lipid
content exhibited a much more complex genetic architecture
compared to the fatty acid traits; therefore, we expected the
TGRM approaches to perform equally as well or slightly better
than gBLUP (Supplementary Figure 19). Prediction accuracies
were improved by 11.8 to 13.8% relative to gBLUP and 11.9 to
14.4% relative to MT-gBLUP. The MT-gBLUP approach jointly
fits fatty acids and total lipid content, and should be able to use
the signal contained in the fatty acid phenotypes to improve
predictions for total lipid content. One explanation for the

increased performance of MK-TGRM-BLUP over MT-gBLUP
is that the former is a more parsimonious model. Since an
unstructured covariance matrix was used for MT-gBLUP, all
variances and covariances must be estimated. MK-TGRM-BLUP
on the other hand does not estimate covariances between
the traits, rather information on related traits is provided
through the kernels. A second possibility is that the MT-gBLUP
model assumes an infinitesimal architecture for all traits.
While this may be the case for total lipid content and some
fatty acid traits, several fatty acids showed a much simpler
architecture (Supplementary Figures 1–19). The MT-gBLUP
approach may shrink these large-effect QTL for endophenotypes
with simpler genetic architectures. Nonetheless, these results
demonstrate that TGRM for related endophenotypes can be
leveraged to improve prediction for lower-cost traits to assess
seed quality traits in breeding programs. Moreover, we show
that information on a subset of fatty acids can be leveraged
to significantly improve predictions for total lipid content
relative to the MT-gBLUP approach. The majority of total lipid
content in oat is due to triglycerides, which consist of three
fatty acids bound to glycerol (Leonova et al., 2008). Leonova
et al. (2008) reported that C16:0, C18:1, and C18:2 were the
most predominant fatty acids found in the oat seed, which
is supported by our results in both the Diversity and Elite
panels (Supplementary Figure 20). Since these fatty acids
should be most relevant to total lipid content, this prompted
us to evaluate whether information on these endophenotypes
was sufficient to improve prediction for total lipid content.
MK-TGRM-BLUP models that included information for these
fatty acids significantly outperformed MT-gBLUP for predicting
total lipid content, suggesting that the most predominant fatty
acids can be quantified and used to predict total lipid content.
Surprisingly, prediction accuracies for these MK-TGRM-BLUP
models that used kernels for the most abundant fatty acids
showed equivalent prediction accuracies with MK-TGRM-BLUP
approaches that used kernels for the three least abundant
fatty acids. Several QTL were shared between fatty acids.
For instance, a QTL was identified on chromosome 6A for
C16:0, C18:2, and C16:1 (Supplementary Figures 2, 3, 6).
A second shared QTL was identified on chromosome 3D
for C18:1 and C20:0, suggesting that these loci may have
pleiotropic effects on low and high abundant fatty acid traits
(Supplementary Figures 5, 8).

One major assumption of the approaches used in this study
is that the focal trait is influenced by a relatively small number
of endophenotypes that are known beforehand. For some traits,
such as seed lipid content, selecting which endophenotypes to
include in the model is somewhat straightforward, as we know
the focal trait is essentially a summary of all lipids in the tissue,
and marker effects can be predicted for the important lipids.
Information on these traits can be introduced using a multi-
kernel prediction model, but this is not feasible when tens
or hundreds of endophentoypes possibly affect the focal trait.
High dimensionality would particularly be a problem for traits
like yield, which are influenced by many molecular processes.
Selecting a small subset of relevant endophenotypes for such
traits from dense omics data can be challenging. In these cases, it
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may be appropriate to use a combination of dimension-reduction
and variable selection methods to select relevant phenotypes
or linear combinations of phenotypes. Methods like principal
component analysis or factor analysis have been used extensively
to cope with high-dimensional traits (Runcie and Mukherjee,
2013; Wang and Stephens, 2018; Carlson et al., 2019; Sakamoto
et al., 2019; Yu et al., 2019; Campbell et al., 2020; Rice et al.,
2020; Runcie et al., 2020). These approaches can be used to
create derived traits that capture (co)variance in the original
data, and marker effects can be easily estimated using GWAS
or whole-genome regression approaches. Thus, TGRMs can be
constructed from marker effects for these derived phenotypes. A
second limitation of our approach, which is shared with other
BLUPmethods, is that computations and storage of TGRMmany
be unfeasible with very large populations (> 100k individuals)
(Aguilar et al., 2011; Misztal et al., 2020). The storage of GRMs
scale quadratically with the number of individuals, and inversion
of GRMs increase cubically. Although populations of this size
are rare in public plant breeding programs, genomic studies in
animals and humans routinely involve genetic data for > 100k
individuals. In such cases indirect approaches can be used to
overcome these computational issues and use BLUP frameworks
for genetic evaluations in large populations (see Misztal et al.,
2020 for review).

In conclusion, this study highlights the utility of TGRMs
for related endophenotypes to predict complex traits in crops.
Since the frameworks presented in this study do not require
endophenotypes for selection candidates, these methods should
be tractable to employ in breeding programs. Endophenotypes
and their corresponding marker effects can be quantified in
a large, diverse, discovery population, enabling them to be

collectively leveraged to improve prediction accuracies for
conventional traits in related populations.
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A major barrier to the wider use of supervised learning in emerging applications, such

as genomic selection, is the lack of sufficient and representative labeled data to train

prediction models. The amount and quality of labeled training data in many applications

is usually limited and therefore careful selection of the training examples to be labeled

can be useful for improving the accuracies in predictive learning tasks. In this paper, we

present an R package, TrainSel, which provides flexible, efficient, and easy-to-use tools

that can be used for the selection of training populations (STP). We illustrate its use,

performance, and potentials in four different supervised learning applications within and

outside of the plant breeding area.

Keywords: training optimization, machine learning, genomic selection, genomic prediction, image classification,

multi-objective optimization, mixed models

1. INTRODUCTION

Genomic selection (GS) uses supervised learning for predicting genetic values of phenotyped and
un-phenotyped individuals by using genomewide molecular markers (Meuwissen et al., 2001).
Genomic prediction (GP) models are built using a training data, i.e., genomic and phenotypic data
for a set of individuals. Unfortunately, phenotyping of plants is an expensive and time-consuming
process due to factors such as reliance on human input and budget time and resource constraints.
Therefore, the most important current bottleneck in application of GS in plant breeding programs
is phenotyping. Selection of training populations (STP) in this context refers to identification of a
set of training individuals to be phenotyped.

While the usefulness of optimal training set (TRS) in GS is clearly supported by the literature
(Rincent et al., 2012; Akdemir et al., 2015; Isidro et al., 2015; Lorenz and Smith, 2015; He et al.,
2016; Cericola et al., 2017; Neyhart et al., 2017; Norman et al., 2018; Akdemir and Isidro-Sánchez,
2019; Guo et al., 2019; Mangin et al., 2019; de BemOliveira et al., 2020; Olatoye et al., 2020; Yu et al.,
2020; Kadam et al., 2021), the flexible and efficient software tools for implementing them have been
limited. Indeed, only a few software tools such as STPGA (Akdemir, 2017) and TSDFGS (Ou and
Liao, 2019) are available for public use. The TSDFGS is an R package that focuses on optimization of
the TRS by a genetic algorithm (GA) and can be used for STP based on three built-in design criteria.
Similarly, STPGA is an R package that uses a modified GA for solving subset selection problems
but also allows users to chose from many predefined or user-defined criteria. Here, we designed a
TrainSel package that provides many more options, for example, the ability to select multiple sets
frommultiple candidate sets, specification of whether or not the resulting set needs to be ordered, or
the power to perform multi-objective optimization. In addition, TrainSel can be used for searching
for solutions to variety of TRS and experimental design problems, such as randomized complete
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https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.655287
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.655287&domain=pdf&date_stamp=2021-05-07
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:deniz.akdemir.work@gmail.com
mailto:j.isidro@upm.es
https://doi.org/10.3389/fgene.2021.655287
https://www.frontiersin.org/articles/10.3389/fgene.2021.655287/full


Akdemir et al. TrainSel

block design, lattice design, etc. TrainSel uses GA in conjunction
with simulated annealing (SA) steps, and functions are written
in C++ using Rcpp (Eddelbuettel et al., 2011), and therefore,
improves performance and is more efficient compared to both
of the above alternatives.

In addition, the TrainSel package was designed to be applied
not just for genomic assisted breeding situations, it can also
be utilized for STP in general supervised learning problems.
Supervised learning refers to the exercise of building predictive
models that allow us to predict the states of certain output
variables (referred as labels) based on certain input variables.
To build supervised learning models we make use of a training
dataset that includes observations of both the input variables
and the labels, and generally, the larger and more representative
the training dataset, the greater is the statistical power for
supervised learning. We use the term label throughout this
article to refer to the output variables that we are trying to
predict. In genomic selection, labeling a genotype refers to
measurement of phenotypic values for that genotype in one or
more environments.

In this paper, we demonstrated the usage of the TrainSel
R package for STP on genomic assisted breeding applications,
but also included other applications to illustrate that STP may
also be worthwhile for other supervised learning tasks, such as
image classification.

2. MATERIALS AND METHODS

2.1. Populations for Selection of Training
Population (STP)
During STP, we will encounter different types of populations.
The target population (Akdemir and Isidro-Sánchez, 2019) is the
population that the researcher is interested in, i.e., the population
we want to make inferences about. The study population is the
population that is accessible to the researcher. The candidate
set (CS) is a countably finite representative subset of the study
population, similarly, the test set (TS) is a countably finite
representative subset of the target population. We assume that
we either have an idea about the topology (referring to the initial
data available on CS and TS before doing the experiment) of the
union of the CS and TS, or that it is relatively easy to obtain this
information. Finally, the initial information about the topology
of the CS and TS is used to identify a subset of the CS as
the training set (TRS) for measuring the labels and additional
features. These populations and the default supervised learning
paradigm is illustrated in Figure 1.

2.2. Optimization Algorithm in TrainSel
Selection of training population involves the selection of a
subset from a set of candidates and therefore is a combinatorial
problem. These problems are typically exponential in terms of
computational complexity and may require exploring all possible
solutions. Nevertheless, many modern publications point to the
effectiveness of applying metaheuristics in obtaining “good”
answers to combinatorial optimization problems.

TrainSel uses a combination of GA (Holland, 1992) and
simulated annealing (SA) algorithm (Haines, 1987) for solving

combinatorial optimization problems. Genetic algorithm uses
techniques inspired by natural evolution such as inheritance,
mutation, selection, and crossover to generate better solutions
through iterations (Holland, 1992). Simulated annealing moves
between solutions using a perturbation and acceptance scheme.
At each iteration, a new solution is generated by perturbing the
current solution, and this new solution is accepted if it improves
the optimization criterion. If the perturbed solution is inferior
to the current solution the new solution is accepted based on
an acceptance probability that is inversely proportional to the
distance of the new solution to the current solution and the
current temperature of the system (Haines, 1987). Temperature
parameter varies during the iterations of the SA algorithm
and usually is a decreasing function of the iteration number.
Acceptance of inferior solutions during the SA iterations allows
the algorithm to explore more of the possible space of solutions.

Algorithms such as GA and SA outperform other traditional
methods in many applications, as they are flexible and easy
to implement (no mathematical analysis is needed when
considering a large, complex, non-smooth, poorly-understood
optimization problem). There is no proof of convergence for
either GA or SA, however, they are effective on a large range of
classic optimization problems, andmore specifically, have proved
to be effective for approximating globally optimal solutions
to many combinatorial optimization problems (Glover and
Kochenberger, 2006; Fischetti and Lodi, 2010).

Algorithm 1 describes the main steps of the sample selection
algorithm for the single optimization criteria problems. A
similar algorithm is used when optimizing more than one
criteria. The main difference is that the elite solutions of a
population are defined as the non-dominated solutions of the
current population.

The parameters of the selection algorithm in TrainSel are:
“npop” which is the size of the genetic algorithm population,
“nelite” which is the number of elite solutions selected in
each iteration, “niterations” which is the maximum number
of iterations for the genetic algorithm, “miniterbefstop” is
the minimum number of iterations of “no change” before
the algorithm is deemed converged, “tolconv” which is the
tolerance for determining “no change” in the criteria values,
“niterSANN” which is the number of iterations for the SA
algorithm, “stepSANN” which controls the speed of cooling of
the SA algorithm. Each of these parameters comes with default
settings, most of which do not need to be changed by the user
for small to medium-sized optimization problems. For larger
problems increasing “niterations” and “niterbefstop” parameters
will usually suffice. We have done some experimentation with
the default settings of the remaining parameters (and with
relatively large values for “niterations” and “minitbefstop”)
algorithm in several problems with different complexities where
the true solution was known. The results from these convergence
experiments are provided in Supplementary Figure 1. The user
can use these figures to guess initial estimates for these two
parameters for their problems. After the run of the algorithm,
the best way to decide if the algorithm has worked is by
checking the flattening of the objective function values during the
final iterations.
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FIGURE 1 | Populations in STP and their use. The study population is the population that is accessible to the researcher. The candidate set (CS) is a countably finite

representative subset of the SP, similarly, the test set (TS) is a countably finite representative subset of the target population. The initial information about the topology

of the CS and TS (X0
Candidate

and X0
Candidate

) is used to identify a subset of the CS as the training set (TRS) for measuring the labels (phenotypic values in GS) (YTrain ) and

other related features (XTrain ) (for instance, environmental covariates). The training data for TRS is used to build supervised learning models which are then used to

make inferences and predictions.

Algorithm 1 : Combinatorial optimization algorithm in TrainSel
1: t = 0.
2: Initialization—Create an initial population of solutions of

desired size, St . Parameters: npop
3: repeat

4: t = t + 1.
5: St = ∅.
6: Selection—Identify the best solutions in St−1 by the

ordering of criterion values. Let the best solutions be st .
Parameters: nelite

7: SA—Improve elements of st with simulated annealing
algorithm. Parameters: niterSANN, stepSANN

8: Elitism—Put st in St ,
9: repeat

10: Crossover—Randomly pick two solutions in St .
Obtain a recombination of these two solutions.

11: Mutation—Mutate the solution from the above
step with a certain mutation probability and intensity.
Parameters: mutprob, mutintensity

12: Insert this solution into St .
13: until St has Npop solutions.
14: until Convergence: the achievement of the maximum

number of iterations or non-improvement for a
prescribed number of iterations. Parameters: niterations,
miniterbefstop, tolconv return Best Solution.

In most applications of STP, the ordering of selected samples
in the TRS will not be important and therefore only one instance
of each individual is required for TRS sample; we refer to this
case as an unordered set (UOS). In certain cases, the order of
the sample will be important but again only one instance of
each individual is required, we refer to this case as ordered set
(OS). The cases where we allow more than one instance of each
individual is referred to as unordered multiset (UOMS) and
ordered multiset (OMS). TrainSel allows users to specify which
of these types of sets the optimization problem falls into. An

application of the use of finding optimal ordered sets is the design
of a blocked experiment where we care about the design of the
experiment, i.e., the assignment of individuals to different blocks,
in addition to selecting which individuals to include in the study.

The search algorithm in TrainSel is not guaranteed to find
globally optimal solutions, i.e., the solutions obtained by any
run of TrainSel may be sub-optimal, and different solutions can
be obtained given different starting conditions and optimization
parameters. Another layer of safety can be obtained if the
algorithm is started from multiple initial conditions, and the best
of all the runs is selected as the final solution.

Numerous other algorithms have been proposed for the
optimal subset selection problem, many of them are heuristic
exchange type algorithms (Fedorov, 1972;Mitchell, 1974; Nguyen
and Miller, 1992; Rincent et al., 2012; Isidro et al., 2015). In
exchange type algorithms, new solutions are obtained by adding
a sample unit and removing another at a time (some exchange
algorithms might allow the exchange of more than one samples
at once), these algorithms are greedy and are only proven to find
the best subset for a certain type of design criteria.

2.3. Design Criteria
Selection of training populations is an optimal experimental
design problem, and the work on the optimal experimental
designs has a long and rich history (Smith, 1918; Kiefer,
1959; Fisher, 1960; Fedorov, 1972; Atkinson and Donev, 1992;
Pukelsheim and Rosenberger, 1993; Fedorov and Hackl, 2012;
Silvey, 2013) and it is not a surprise that many different design
criteria have been proposed. These criteria can be categorized
into three major groups:

• Parametric design criteria which assume that the experimenter
has specified a model before the training data is obtained.
These criteria depend on a scalar function of the information
matrix for the model parameters that give some indication
about the sampling variances and covariances of the estimated
quantities by themodel. The estimated quantitymight be some
function of the model parameters or predictions from the
model for target individuals. There are many designs obtained
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by optimizing such criteria are referred to asA−,D−, E−,G−,
etc. . . optimal designs (Kiefer et al., 1985). Bayesian design
criteria use priors on the parameters of the models to evaluate
the utility of designs.

• Nonparametric designs include criteria that are based on
distance or similarity measures. For example, the maximin-
distance design is a space-filling design that chooses a training
population such that the minimum distance among the TRS
is maximized (Johnson et al., 1990). Another such design
is the minimax design (Johnson et al., 1990) where the
training population is such that themaximumof theminimum
distances from the training population to the rest of the
CS or the TS is minimized. Space-filling designs aim to
cover the experimental region with as few gaps or holes
as possible. Unlike the parametric design criteria, minimax
distance presumes no underlying model and, in turn, is
suitable for situations where the model is unknown.

• Multiple design. The choice of an appropriate criterion
requires knowledge about themodel and what is required from
the model. Multiple model optimal experimental design and
compound optimization criteria try to overcome the choice
issue by combining more than one criteria into one via some
type of averaging. Alternatively, we can compare different
designs using more than one criteria based on the dominance
concept and use multi-objective optimization methods to
decide on a certain design from out a set of Pareto optimal
designs (Markowitz, 1952, 1968; Akdemir and Sánchez, 2016;
Akdemir et al., 2019).

TrainSel allows users to use optimization criteria by letting them
write their optimization functions and therefore can be used to
search designs based on all of the above categories. Given the
multitude of design criteria, this flexibility is one key advantage
of TrainSel to its alternatives such as STPGA or TSDFGS.

2.3.1. Built in Criterion: CDmin

The STP involves the selection of TS from CS using optimization
criteria. TrainSel is supplemented with a predefined design
criterion CDmin which is related to the CDmean criteria in Laloë
(1993), Laloë and Phocas (2003), Rincent et al. (2012). The main
reason for implementing this design criterion as the only built-in
design criterion is due to our specific interest in applying TrainSel
to the design of single and multi-environmental GP experiments.

The built-in criterion CDmin depends on the linear mixed
models. The linear mixed-effects model for a n-dimensional
response variable y, n × p design matrix of fixed effects, n × q
design matrix of random effects is defined as:

y = Xβ + Zu+ ε;

where ε ∼ Nn(0,R) is independent of u ∼ Nq(0;G), β ∈ R
p,

G is a q × q covariance matrix and R is a n × n covariance
matrix. The assumptions of the linear mixed-effects model imply
E(y|X;Z) = Xβ , y ∼ Nn(Xβ;ZGZ′ + R) = Nn(Xβ;V) with
V defined as V = ZGZ′ + R. For this model, the coefficient
of determination matrix (Laloë, 1993; Laloë and Phocas, 2003;
Rincent et al., 2012) of û for predicting u is given by

(GZ′PZG)⊘ G

where P = V−1 − V−1X(X′V−1X)−1X′V−1 and ⊘ expresses
the elementwise division. The minimum of the selected diagonal
elements of this matrix is called the CDmin. The minimum of
the coefficient of determination takes on values between 0 and
1, and the designs that give higher values for this criterion are
preferred to designs with lower values. The CDmin criterion
follows the maximin decision rule, maximizing this criterion
amounts to maximizing the utility for the worst case scenario,
and it is suitable for making risk averse decisions.

Most authors use the mean of the selected diagonal elements
of this matrix as the criterion, this is called the CDmean
criterion. We have used CDmin instead of CDmean for several
reasons. Firstly, the distribution of CD values along the diagonal
for a given G matrix includes both the training samples and
the remaining samples. The CD values that correspond to the
training samples, as expected, form a different cluster (high
values of CD) than the cluster of CD values corresponding to the
samples that are not selected (low values of CD) and therefore we
have a bimodal distribution for the CD values. Secondly, if the
aim is to improve the generalization performance of the resulting
model we prefer to move the lower part of this distribution to the
right, i.e., the maximin decision amounts to improving the worst
case CD value in this distribution which leads to the CDmin
approach. Thirdly, the purpose of this article is not to compare
effect of using different selection criteria but to show that TrainSel
can be easily adopted to many different selection criteria.

Alternatively, we could approach the bimodality by restricting
the mean measure to be calculated only on the set difference
of the CS and the TRS or on a predefined TS. It should be
trivial to apply any of these modifications with TrainSel. We
stress here that the choice among themany different optimization
criteria require thorough analysis, but this is beyond the aims of
this paper.

We use two parameterizations of the above mixed model: In
the first parameterization, we assume thatG = σ 2

k
K and R = σ 2

e I

where σ 2
k
and σ 2

e are the variances of the random terms u and
e correspondingly and K is a relationship matrix of the same
dimension as G. In the second parameterization G = K⊗Vk and
R = I ⊗ Ve where Vk and Ve are covariance matrices that relate
to the effects in u and e using Kronecker structured covariances.

The first model is useful for modeling random effects u related
by a relationship matrix K. The STP for this model involves the
selection of a predefined size set from the levels of the random
term u that also correspond to factor levels in the rows (and
columns) of K for labeling.

The second model is useful for modeling factor levels that
correspond to the rows (and columns) of K in several related
environments. The covariance of these random effects in several
environments is given by Vk and similarly, the covariance of the
residual effects in these environments is given by Ve. In this case,
we want to select predefined sizes of sets from the factor levels
that correspond to the rows (and columns) of K to be labeled in
the corresponding environments.

The purpose of the X matrix in the mixed models above
is to account for fixed effects. If the rows of the X matrix
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corresponding to the conditions in a given environment are
heterogeneous, then, in addition to selecting the levels of the
random effect in the TRS, we would like to arrange the training
sample optimally to the conditions expressed in the rows of X. In
these cases, we are looking to identify a TRS that is an ordered
subset of the CS. If no X matrix is specified or if the rows of X are
homogeneous within environments the order of the assignments
will not matter. In this case, STP involves the selection of an
unordered sample as TRS.

2.4. Datasets and Applications
In this section, we describe the datasets, simulations, and related
analysis. We are testing Trainsel with four applications: The first
application deals with STP for GP of hybrid performance, the
second with a design of multi-environmental GS experiment.
The third application deals with STP for an image recognition
problem. Our final application on splines regression entails
simultaneous selection of design points among a set of
candidates and allocation of knots through the range of the
explanatory variables.

2.5. Application 1: Wheat Data for Hybrid
Performance Prediction
This dataset was published in Liu et al. (2016) and was
used in a similar context in Guo et al. (2019). The genetic
dataset included the marker data (90 k SNP array based on
an Illumina Infinium genotyping platform) for 135 elite winter
wheat individuals adapted to Central Europe. A total of 1,604 F1
hybrids were generated in a factorial crossing scheme with 120
inbred individuals serving as female and 15 inbred individuals
serving as male parents.

All genomic data for the wheat data for hybrid performance
prediction application were obtained from the Dryad
Digital Repository (doi: 10.5061/dryad.461nc). All related
phenotypic data were obtained from the Digital Repository
(doi: 10.5447/IPK/2016/11). Marker information for the hybrids
was deduced from the parental individuals.

All individuals were evaluated in up to six environments.
The adjusted means over environments for each of the 1,604
F1 hybrids for 7 traits (gluten content, kernel hardness, protein
content, SDS volume, starch content, test weight, 1,000-kernel
weight) were treated as the labels for the traits.

After removing the hybrids that came from parents with
partial phenotypic data, we were left with 795 hybrids (full
factorial crosses between 15 males and 53 females with complete
phenotypic data). We have complete phenotypic data for all of
these 795 hybrids in this application. Nevertheless, in practice,
the evaluation of each of the hybrids involves making the
cross between the corresponding parents and evaluating them
in phenotypic trials, which are time-consuming and expensive.
It is, therefore, desirable to reduce the costs involved in the
generation and phenotypic evaluation by using a subset of all
possible hybrids in the experiments and to use the data generated
from these experiments for training genomic prediction models
to make inferences about the phenotypic performance of
untested hybrids.

In this application, we examine STP for hybrid performance
prediction, i.e., we would like to select a prespecified size
subset (50, 75, 100, 200 hybrids) of all possible 795 hybrids
for training and use the phenotypic data from the TRS
to predict the performance of the remaining hybrids. The
TRSs were determined either by TrainSel using the CDmin
criterion or by random sampling (repeated 30 times). The
remaining hybrids were used as the TS where the prediction
accuracies were evaluated using the correlation or the mean
squared error between the predicted genotypic values and the
observed phenotypes.

We only used the additive effects when calculating the CDmin
criterion values through use of an additive relationship calculated
from the marker scores. It is possible to include other effects such
as dominance by supplementing the additive effects matrix with
a dominance relationship matrix.

2.6. Application 2: Wheat Data for
Multi-Environmental GS Experiment
Design
We have obtained this dataset from https://triticeaetoolbox.org/
wheat. The genotypic data included 989 individuals genotyped
for 24,740 markers. All of these individuals had complete
phenotypic data on plant height and stripe rust severity from
three environmental trials. Using this data we have performed
a cross-validation experiment where we explored the potential
of STP for the multi-environmental design of GS experiments.
We varied the number of overlapping individuals between the
environments intending to see the effect on the predictive ability
for the untested individuals.

We start each replication of the experiment by randomly
selecting 240 individuals as the CS and the remaining individuals
as the TS. Given the candidate individuals, we assume would
like to construct an experiment in tree environments each of
which can accommodate a fixed number of individuals (20, 40,
60, 80). To see how the replication affects the maximum CDmin
values we also restrict the total number of individuals in the
whole experiment to multiples of 1.2, 1.5, 2, 2.5, 3 of the number
of individuals in each environment. Note that, restricting the
total number of individuals to a multiple of 1.2 of the number
of individuals allowed in each of the environments correspond to
almost total replication (we did not use a factor of 1 because this
value corresponds to a different type of combinatorial problem),
on the other hand, a multiple of 3 corresponds to no replication,
the intermediate values allow some amount of replication. We
have assumed that the covariance of genotypic values between
all trials pairs were 0.7 and we have assumed that the residuals
were independent within and between trials. Besides, we have
assumed that the heritabilities of both experiments were the
same and equal to 0.5. We repeated this experiment 15 times
and for each replication, we record the maximum CDmin
value obtained and we also check the accuracy of the model
in the TSs by calculating the correlation of the trait values in
the TS and corresponding predictions from models based on
different TRSs.
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2.7. Application 3: MINST Datasets for
Image Recognition
Image classification refers to the task of predicting the kind of
objects in images. To train image classification models we need
labeled images as training data. In this context, the purpose of
STP would be to identify a subset of images to be labeled from
out of a larger set of images.

In this application, we used a standard image classification
data, the MINST fashion dataset, obtained using the
“tf.keras.datasets” module, which consists of 28 × 28 grayscale
images of 70,000 in 10 categories. The original data is split into
two parts, the training set has 60,000 images and the test set has
10,000 images. In both the training and test datasets, the different
classes were equally represented.

We performed the following experiment with this dataset: We
started each replication of the experiment by identifying 1,000
samples at random from the original training set of size 60,000
as candidates. The number of samples from each class in the CS
were arbitrarily set as 500, 450, 400, 350, 300, 250, 200, 150, 100,
and 50 to assure an unbalanced CS.We chose a TRS of 100 or 200
samples out of the CS using TrainSel with the maximin distance
criterion and using the distances among the 794 image features
of samples in the CS. In addition, 100 random samples of sizes
100 and 200 were taken from the same CS as random TRSs. For
each TRS, we recorded the entropy for the class distributions
in the TRSs, the loss, and the accuracy for the predictions in
the TS. We used the same 4-layer convolutional deep neural
network prediction model for all the TRSs, these models were
trained using the Keras R package (Allaire and Chollet, 2018).
This experiment was repeated 50 times.

2.8. Application 4: STP for Splines
Regression
Spline regression is a commonly used regression technique for
modeling nonlinear relationships between a continuous response
and continuous explanatory variables. In this technique the
ranges of the explanatory variables are divided into bins using
points which are called knots and the response is modeled with a
piecewise polynomial with a set of extra constraints (continuity,
continuity of the first derivative, and continuity of the second
derivative) at the knots.

A commonly used form of splines, namely the natural cubic
splines, uses cubic segments. The model for a natural cubic
spline that relates the response y to the input variable x can be
expressed as

y = β0+β1x+β2(x−k1)++β3(x−k2)++. . .+β6(x−kp)++σ 2
ε

where

(x− k)+ =
{
0, if x < k

x− k, if x ≥ k

and k1, k2, . . . , kp are the knot positions that are to be specified
as hyper-parameters. Due to this dependence the model matrix
for this model will be written as X(k). The qubic spline is a linear
model, therefore, the formula for D-optimality criteria for this

model can be expressed as D(k) = |X(k)′X(k)| and its value
depends on the choice of the knots. A “good” design maximizes
the value of this function, i.e., we need to select the design points
and also find the best knots for the selected set of design points.

In this simulation exercise, we show that we can
simultaneously pick a TRS of design points out of a set of
candidates and set the knot positions using TrainSel, i.e., we
want to select a set of x values from a set of given candidates
and find values of k1, k2, . . . , kp that maximizes D(k). Just like
in other supervised learning scenarios, we assume we have no
access to the values of the response apriori, their values will
be observed only in the TRS and these along with the selected
optimal knots will be used to fit the cubic spline model. The
model will be used in the prediction of the response and the
predicted response values in the CS will be compared to the true
value of the response (the function value at x) by calculating
mean squared errors. The results obtained by the optimization
approach will be compared to the same size random sample
of x selected from the CS and with the standard approach that
involves placing knots at equally spaced quantiles of the range of
the x values (Ruppert, 2002) in the CS.

In each replication of the experiment, we started with a
1,000 candidate x values sampled uniformly between 0 and
1. We selected 200 (or 300) x values from these candidate
values and also determine the placement of 15 knots. Following
the benchmark experiments in Ruppert (2002) we generated
our response variables from four different functions (namely
logit, sine, bump, spahat functions). More details on these
functions and the generation of the response values are given
in the Supplementary Material. The mean squared error for the
predictions from the optimized set with optimized knots and
random TRSs with equally spaced quantile knots were compared.
This experiment was replicated 30 times.

3. RESULTS AND DISCUSSION

3.1. Application 1: Wheat Data for Hybrid
Performance Prediction
The results of the application on hybrid performance are
summarized by the boxplots in Figure 2 for two traits. The
results for the remaining five traits were summarized in
Supplementary Figure 2. Preliminary analysis with the wheat
data indicated that the hybrids selected as training bymaximizing
the CDmin criterion, provided more accurate prediction models
for predicting the remaining hybrids as compared to models
based on a random sample of hybrids. The relative efficiency
of the optimized samples depended on the number of hybrids
selected in the TRS, and also on the trait. Nevertheless, there was
a clear optimized trend overall. The relative performance of the
optimized TRS to random samples is minimal when the sample
size were as low as 50, and it peaked for about sample size of
100, this relative efficiency decreased as the sample size increases.
These results indicated that the CDmin criterion was a useful
method for selecting wheat hybrids for predictive performance.
In our opinion, hybrid prediction problems provide a perfect
situation to exploit the STP approaches.
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FIGURE 2 | The correlations and the mean squared errors between the predicted and observed trait values of the hybrids in the test data. There is an advantage in

using optimized training samples for this dataset. The correlations and mean squared errors between the predicted and observed trait values of the hybrids in the test

sets were significantly better for the optimized samples than the correlations and mean squared errors of the predicted and observed for the random samples.

3.2. Application 2: Wheat Data for
Multi-Environmental GS Experiment
Design
When designing a multi-environmental GS experiment, we
would like to allocate individuals in environments so that we
have a representative sample of individuals in each environment
and, at the same time, have genetically similar individuals
across environments. Genomic information is not utilized
when designing experiments using classical methods such as
randomized block design, and therefore, these designs are
expected to perform worse than designs that make use of
genomic information.

The CDmin values of the optimal samples on the first row
of Figure 3 indicate that CDmin values are maximized for
intermediate amount of replication between the experiments.

Since, the square root of the CD relates directly to the expected
accuracy, we can use this information to decide on the size and
amount of replication for a multi-environmental GS experiment.

The second and third rows of Figure 3 showed the attained
accuracy for optimal samples and random samples for plant
height and stripe rust. As we can see the optimal experiments
had better accuracy compared to the random experiments at
all experiment sizes, levels of replication and for both of the
traits. The trends in the observed accuracies for both the random
samples and the optimized samples followed the trends observed
in the CDmin values in the first row of the Figure 3.

These results demonstrated that optimally designed multi-
environmental GS experiments can boost prediction accuracies
as compared to randomized block designs. We note here
that designing multi-environmental experiments with a large
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FIGURE 3 | Optimally designed multi-environmental GS experiments can boost prediction accuracies. In the first row, the CDmin values of the optimal samples show

that the CDmin values are maximized for the intermediate amount of replication between the experiments. The second and third rows of figure show the attained

accuracy for optimal samples and random samples for plant height and stripe rust.

FIGURE 4 | Images selected optimally in the TRS have higher entropy in their label distributions than of the random samples (C) and the generalization performance

of the model measured by both loss (A) and accuracy (B) functions in the test dataset indicate that optimally selected samples yield better models than the ones built

on random samples.
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FIGURE 5 | TrainSel spline application. The logarithm of the mean square errors (y-axis) splines models trained on random samples with knots (10, 15, 20, and 30)

located at equally spaced sample quantiles. Optimal training size (x-axis) and knots were selected by optimizing the D-optimality criterion for the different number of

knots and different sample sizes for a set of functions. At each combination of sample size and the number of knots mean squared errors are lower for the latter

approach. Although, in very few cases random sample performed slightly better than the optimized samples, the general trend is in favor of the optimized approach.

number of candidate individuals can be computationally costly.
A useful strategy in these cases involves reducing the size of
the candidate set to a manageable size by selecting a optimal
subset from the full candidate set using suitable design criterion
and using the reduced candidate set in the design of the multi-
environmental experiment.

3.3. Application 3: MINST Datasets for
Image Recognition
The results of this experiment are summarized in Figure 4.
The TRS identified by TrainSel using the maximin distance
criterion had higher entropy in their label distributions on
average compared to those of random samples for both TRS
sizes (Figure 4). Entropy is a widely usedmeasure for quantifying
inhomogeneity, impurity in machine learning applications. The
predictions from the models trained on the optimal TRS were
on average more accurate and had lower cost as measured by
sparse cross-entropy.

Note that, in this application, we have started each replication
of the experiment with an unbalanced CS. Entropy is a measure
of balance in the label distributions, and entropy of the label
distributions in the TRSs selected at random mirrors the
unbalance in the CS. In addition, optimally selected samples
have higher entropy values meaning that the labels for the
samples were more evenly distributed, and this resulted in
models with better accuracy, i.e., the percentage of correctly
classified examples were higher (Figures 4A–C). In addition, the
lower values of the loss function in the test data for optimal
samples indicated that the estimates of probabilities used for the
classification of observations lead to more confident decisions
with more confident class probability estimates.

3.4. Application 4: STP for Splines
Regression
The results of the splines experiment are summarized in
Figure 5. For all combinations of the number of knots, the
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number of TRS sizes, the optimally designed experiments where
both knot placements and selected samples in the TRS were
decided by optimizing the D-optimality criterion have resulted
in splines models with lower mean squared error values as
compared to the splines models trained on random samples
with knots located at equally spaced sample quantiles. This
was true for all of the four different response surfaces we
have tested.

This example used TrainSel used to optimize a mixed integer
optimization problem. Mixed integer programming finds many
applications in plant breeding, for instance, it can be used in
optimizing sequencing resources (Gonen et al., 2017; Cheng et al.,
2020), estimating parental combinations to balance gains and
inbreeding (Brisbane and Gibson, 1995; Jannink, 2010; Heslot
et al., 2015), or genomic mating (Akdemir and Sánchez, 2016).

4. CONCLUSIONS

TrainSel provides algorithms for the optimization of mixed-
integer problems. It was written with the STP problems in focus.
The main use cases are given below:

1. Identifying a TRS from a larger CS for labeling especially when
per sample cost of labeling is relatively high.

2. Design of experiments based on any user-defined design
criteria or with built-in mixed model-based criteria.

3. Design of single or multi-environmental genomic
prediction/selection experiments where the phenotyping
is the major constraining factor.

4. TrainSel can also be used in other combinatorial optimization
problems. Some examples of such problems include
max clique, independent set, vertex cover, knapsack, set
covering, set partitioning, feature subset selection (for
supervised and unsupervised learning), traveling salesman,
job scheduling problems.

The best feature of TrainSel is where we combine training set
selection with a particular experimental design, and this option
has not been implemented in any other STP software.

Reasons for using this package are as follows:

1. Most of the existing STP or statistical design software (such as
TSDFGS, AlgDesign; Wheeler, 2004) will optimize only a few
built-in optimization criteria. You can use TrainSel easily with
your own design criteria.

2. Existing STP or statistical design software (such as STPGA,
TSDFGS, AlgDesign) will optimize a single criterion at a
time, but TrainSel offers an additional better possibility, i.e.,
we can specify multiple objectives that must be optimized
simultaneously.

3. TrainSel uses a memetic evolutionary algorithm which
in our experiments achieved better convergence than a
simple genetic algorithm which was the basis for STPGA
and TSDFGS.

4. The ability to handle ordered or unordered samples, with or
without replication, along with several numerical variables to

optimize user-defined functions makes this package a flexible
general optimization tool.

We have illustrated with several applications that the benefits of
using TrainSel in STP problems. These applications were mostly
related to GP and GS, however, one of the major claims of this
article is that the same techniques can be used for any supervised
learning problem where labeling samples is the main bottleneck
for obtaining the training data.We have exemplified this with two
applications, one in image classification and another one related
to spline regression.

5. IMPLEMENTATION AND USAGE

TrainSel is implemented in R with most of the code written
in Rcpp. Sample usage is illustrated in the Supplementary
and also in the help files within the package documentation.
The source code and installation details are provided at
https://github.com/TheRocinante-lab/TrainSel.
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In the past decades, genomic prediction has had a large impact on plant breeding. Given

the current advances of high-throughput phenotyping and sequencing technologies, it is

increasingly common to observe a large number of traits, in addition to the target trait of

interest. This raises the important question whether these additional or “secondary” traits

can be used to improve genomic prediction for the target trait. With only a small number

of secondary traits, this is known to be the case, given sufficiently high heritabilities and

genetic correlations. Here we focus on the more challenging situation with a large number

of secondary traits, which is increasingly common since the arrival of high-throughput

phenotyping. In this case, secondary traits are usually incorporated through additional

relatedness matrices. This approach is however infeasible when secondary traits are

not measured on the test set, and cannot distinguish between genetic and non-genetic

correlations. An alternative direction is to extend the classical selection indices using

penalized regression. So far, penalized selection indices have not been applied in a

genomic prediction setting, and require plot-level data in order to reliably estimate genetic

correlations. Here we aim to overcome these limitations, using two novel approaches.

Our first approach relies on a dimension reduction of the secondary traits, using either

penalized regression or random forests (LS-BLUP/RF-BLUP). We then compute the

bivariate GBLUP with the dimension reduction as secondary trait. For simulated data

(with available plot-level data), we also use bivariate GBLUP with the penalized selection

index as secondary trait (SI-BLUP). In our second approach (GM-BLUP), we follow

existing multi-kernel methods but replace secondary traits by their genomic predictions,

with the advantage that genomic prediction is also possible when secondary traits are

only measured on the training set. For most of our simulated data, SI-BLUP was most

accurate, often closely followed by RF-BLUP or LS-BLUP. In real datasets, involving

metabolites in Arabidopsis and transcriptomics in maize, no method could substantially

improve over univariate prediction when secondary traits were only available on the

training set. LS-BLUP and RF-BLUP were most accurate when secondary traits were

available also for the test set.

Keywords: GBLUP, genomic prediction, secondary traits, selection indices, penalized regression, random forest
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1. INTRODUCTION

Genomic prediction is increasingly applied as standard tool in
many animal and plant breeding programs. Since it was first
introduced by Meuwissen et al. (2001), the main objective of
genomic prediction was to estimate the breeding values for
unphenotyped (test) genotypes with only molecular markers,
using a training population for which both phenotypic and
genotypic data are available. Applications of genomic prediction
facilitate the rapid selection of superior genotypes (genomic
selection) and accelerate genetic progress in crop breeding.

At the same time, advances in high-throughput phenotyping
and cell biology technologies provide increasing amounts of
phenotypic data, in addition to the “primary” or “target” traits
of interest, such as yield or disease resistance. Such additional
traits are typically high-dimensional, and collected using various
types of technology, e.g., remote-sensing (Araus et al., 2018),
machine vision (Yang et al., 2020), and automation technology
(Sun et al., 2019). Common situations are that secondary traits
are measured (1) in the field, on the same plant as the target trait,
but much earlier in the growing season (2) on entirely different
plants, in controlled environments in phenotyping platforms. In
both cases, the secondary traits are either observed only for the
training set of genotypes, or also for the test set. In all cases
however, the question is whether some of the secondary traits
are associated with the target traits of interest, and whether these
correlations are genetic. In a genomic prediction context, the
question becomes when and how secondary traits can improve
prediction for the target trait. This is well understood if there
is only one secondary trait: accuracy for the target trait then
improves when the heritability of the target trait is lower than
the heritability of the secondary trait times the squared genetic
correlation (Schulthess et al., 2016; Velazco et al., 2019). Here we
focus on the more challenging situation with a large numbers of
secondary traits, which is increasingly common since the arrival
of high-throughput phenotyping.

The two main approaches to incorporate high-dimensional
secondary traits in genomic prediction are the use of multiple
relatedness matrices, and penalized selection indices. In the
former approach, the target trait is modeled as the sum of
genetic effects and effects from secondary traits. Both type
of effects are random, and the relative importance of these
contributions is estimated either using REML-estimates for
variance components or cross-validation. Predictions for the
test set are the sum of the BLUPs for the different effects.
Examples of this approach are Fu et al. (2012), who obtained a
high level of accuracy for predicting hybrid yield performance
using gene expression data from the hybrid parents. Similarly,
Riedelsheimer et al. (2012) reported moderate to high accuracies
for yield-related traits using 120 metabolites in maize. Schrag
et al. (2018) and Xiang et al. (2019) used different relatedness
matrices corresponding to different types of -omics data. Two
major limitations of multiple random-effects models are that
(1) they cannot be used when secondary traits are only
available on the training set; (2) they cannot distinguish
between genetic and residual correlations among the target and
secondary traits.

The second approach was recently proposed by Lopez-Cruz
et al. (2020), who extended classical selection indices by imposing
a LASSO or ridge penalty on the coefficients. This achieves a
dimension reduction, replacing the secondary traits by a single
selection index S, which is a linear combination of the original
traits. The coefficients are chosen to maximize h2(S)ρ2

G(Y , S), i.e.,
the heritability of S times the squared genetic correlation between
S and the target trait (Y). Lopez-Cruz et al. (2020) found that
on new data, this quantity was indeed much higher than for the
classical (unpenalized) selection index. Despite this promising
result, penalized selection indices have not yet been applied in
a genomic prediction context. One possible reason may be that
accurate estimates of genetic correlations between Y and each
of the secondary traits are required, for which the availability of
plant/plot-level observations is assumed.

In the present paper, we propose two new approaches to deal
with large numbers of secondary traits, and compare these to
the approaches described above, using simulated and real data.
First, we define genomic prediction using alternative dimension
reductions (LS-BLUP/RF-BLUP), relying on penalized regression
(or random forest regression) of the target on the secondary
traits.We then compute the bivariate GBLUPwith the dimension
reduction as secondary trait. Second, we extend existing multi-
kernel methods by replacing the secondary traits by their
genomic predictions, the main advantage being that genomic
prediction for the test set is always possible, also when secondary
traits are only measured on the training set. For simulated data
(with available plot-level data), we will also use bivariate GBLUP
with the penalized selection index as secondary trait (SI-BLUP).

2. MATERIALS AND METHODS

2.1. Distributional Assumptions
To a large extent we follow the notation of Runcie and Cheng
(2019), assuming observations on traits Y1, . . . ,Yp+1, where each
Yj is a column vector. The first one (Y1 = Yf ) is the focal
or target trait, for which genomic predictions are required;
Y2, . . . ,Yp+1 are the secondary traits. Ys = (Y t

2, . . . ,Y
t
p+1)

t is
the column vector containing all secondary traits; similarly, Y =
(Y t

1, . . . ,Y
t
p+1)

t is the column vector containing all traits. We
have in total n = nt + no genotypes, including no genotypes for
which the target trait is observed (the training set), and nt for
which it is to be predicted (the t referring to test set). We will use
subscripts t and o to indicate that we take the subset of values on
the test, respectively training set, for example Yo and Yf ,o.

The secondary phenotypes are either observed only on the
training set (the CV1-scenario, using the terminology of Runcie
and Cheng, 2019), or also for the test genotypes (CV2). Since
our focus here is on variable selection and dimension reduction
(rather than different cross-validation schemes), we will refer to
these simply with scenarios 1 and 2, respectively. The n × n
genetic relatedness matrix K is partitioned as:

K =
(
Ktt Kto

Kot Koo

)
,

Frontiers in Genetics | www.frontiersin.org 2 May 2021 | Volume 12 | Article 667358101

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Arouisse et al. Genomic Prediction and Secondary Traits

where the nt × no matrix Kto defines the relatedness between
new (test) and observed (training) genotypes. We will also write
Kt· = [Ktt Kto] and Ko· = [Kot Koo]. Similarly, we can decompose
the genetic and residual covariance matrices 6u and 6e as

6u =
(

6u
ff

6u
fs

6u
sf

6u
ss

)
=
(

6u
f ·

6u
s·

)
,

6e =
(

6e
ff

6e
fs

6e
sf

6e
ss

)
=
(

6e
f ·

6e
s·

)
,

where the scalars 6u
ff
and 6e

ff
are respectively the genetic and

residual variance of the focal trait, and the matrices 6u
ss and 6e

ss

contain the genetic and residual (co)variances of the secondary
traits. The row-vectors 6u

fs
and 6e

fs
contain the genetic and

residual covariance between the focal and the secondary traits.
The joint distribution of Y = (Y1, . . . ,Yp+1) is assumed to be

Y = Xβ + U + E

=




Y1
...

Yp+1



 =




X1β1
...

Xp+1βp+1



+




U1
...

Up+1



+




E1
...

Ep+1





=
[
Yf

Ys

]
=
[
Xf βf

Xsβs

]
+
[
Uf

Us

]
+
[
Ef
Es

]
,

(1)

where

U ∼ N(0,6u ⊗ K), E ∼ N(0,6e ⊗ In). (2)

The genetic covariances (6u
fs
) quantify the degree of overlap

among genetic signals, based on which multivariate methods
can potentially improve genomic prediction. The residual
covariances (6e

fs
) are important when traits are measured on the

same individuals; if measured on different individuals (typically,
in a different experiment), 6e can assumed to be diagonal.
6u and 6e are usually unknown, and need to be estimated
from the data. For p larger than 5 − 10, this usually requires
approximations. Below we describe several dimension reduction
approaches, which reduce the dimensionality of the secondary
phenotypes to 1, and exact REML-estimates of 6u and 6e can
be obtained with standard software.

2.2. Genomic Prediction
Themain objective is the prediction of the genetic effectU1 = Uf ,
i.e., the breeding values for the focal trait, in particular for the
test set (Uf ,t). In our simulations we assess prediction accuracy in
terms of the Pearson correlation (r) between the simulated and
predicted genetic effects, on the test set. For real data, we consider
the correlation between the predicted genetic effects and the trait
values observed on the test sets. Although it is well-known that
this is a biased estimator of the true accuracy (i.e., the correlation
with the unknown genetic effect), the bias is likely to be constant
among methods, as long as the target and secondary traits are
observed on different plants (Runcie and Cheng, 2019).

2.3. Univariate GBLUP
The univariate GBLUP for Uf ,t is defined by

Û
(uni)
f ,t = E(Uf ,t|Yf ,o) = 6̂u

ffKtoV̂
−1(Yf ,o − Xf ,oβ̂f )

= KtoK
−1
oo Û

(uni)
f ,o ,

Û
(uni)
f ,o = 6̂u

ffKooV̂
−1(Yf ,o − Xf ,oβ̂f ),

V̂ = 6̂u
ffKoo + 6̂e

ff Ino ,

(3)

where Û
(uni)
f ,o is the GBLUP for the training set, and REML-

estimates of βf and the variance components 6u
ff
and 6e

ff
are

obtained from a univariate mixed model for Yf . This is the best
(univariate) linear unbiased predictor, at least given the true
values of the variance components.

2.4. Multivariate GBLUP in Scenarios 1
and 2
The multivariate GBLUP in scenario 1 is

Û
(m1)
f ,t = E(Uf ,t|Yo) = (6̂u

f · ⊗ Kto)V̂
−1(Yo − Xoβ̂)

= KtoK
−1
oo Û

(m1)
f ,o ,

Û
(m1)
f ,o = (6̂u

f · ⊗ Koo)V̂
−1(Yo − Xoβ̂),

V̂ = 6̂u ⊗ Koo + 6̂e ⊗ Ino ,

(4)

where Û
(m1)
f ,o is the GBLUP for the training set, and REML-

estimates of β and the variance components (matrices) 6u and
6e are obtained from the multivariate mixed model for Yf and

Ys. As pointed out by Runcie and Cheng (2019), Û
(m1)
f ,t and Û(uni)

f ,t

have the same form, but the “input” Ûf ,o differs.
The multivariate GBLUP in scenario 2 is

Û
(m2)
f ,t = E(Uf ,t|Yf ,o,Ys)

=
(
6̂u

ff ⊗ Kto 6̂u
fs ⊗ Kt·

)
V̂−1

(
Yf ,o − Xf ,oβ̂f

Ys − Xsβ̂s

)
,

V̂ =
(

6̂u
ff
Koo 6̂u

fs
⊗ Ko·

6̂u
sf
⊗ Kt

o· 6̂u
ss ⊗ K

)

+




6̂e

ff
Ino 6̂e

fs
⊗
(
0 Ino

)

6̂e
sf
⊗
(

0t

Ino

)
6̂e

ss ⊗ In





(5)

where 0 denotes a nt × no matrix of zeros. This differs from the
CV2 prediction in Runcie and Cheng (2019), who described a
two-step approach.

2.5. Dimension Reduction Using LASSO or
Random Forests
Expressions (4) and (5) are valid regardless whether there
is just a single secondary phenotype, or multiple ones.
However, when the dimension of the secondary phenotype
(p) is larger than 5 − 10, estimation of the required
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FIGURE 1 | Causal diagrams showing different assumptions about the

mechanisms underlying genetic correlations between a high-dimensional

secondary phenotype Ys and a target (focal) trait Yf . For ease of presentation,

Ys is represented by a single node; causal relationships among some of the

secondary traits might exist. Outgoing arrows from the node G to a trait

represent the genetic effect of all loci combined. The arrow Ys → Yf represents

a causal effect from at least one of the secondary traits on the target trait.

(Left) Some of the genetic correlations between Ys and Yf are the result of the

causal effect Ys → Yf ; to some extent they may also be a consequence from

correlation between the direct genetic effects G → Yf and G → Ys (see Kruijer

et al., 2020 for more mathematical details). (Right) There is no causal effect

Ys → Yf , and genetic correlations between them may be induced by genetic

effects on a latent trait L that is affecting both Ys and Yf . The LS-BLUP and

RF-BLUP methods assume the left diagram, and reduce the dimension of Ys
first making a prediction Ŷf using Ys within the training set. Also the GM-BLUP

method implicitly assumes the left diagram.

genetic covariances quickly becomes challenging and often
infeasible (Zhou and Stephens, 2014; Zwiernik et al.,
2017). Moreover, even if estimates of genetic covariance
are available, the resulting predictions may be prone to
overfitting. Reducing the dimension of the secondary
phenotype appears to be a relevant strategy to deal with
these issues.

Here we propose the dimension reduction S = ĥ(Ys),
where ĥ(Ys) is a prediction of Yf based on Ys, obtained
either with LASSO or random forests. Genomic prediction in
scenarios 1 and 2 is then performed using (4) and (5), with

S = ĥ(Ys) as secondary trait. We will refer to the resulting
genomic predictions using LS-BLUP and RF-BLUP, depending
on whether the dimension reduction was achieved by respectively
LASSO or random forests. In a GWAS context, such dimension
reductions have been used by van Heerwaarden et al. (2015)
and Melandri (2019). The intuition behind this dimension
reduction is that some of the secondary traits may have a
causal effect on Yf (Figure 1, left). Genomic prediction with

LS-BLUP and RF-BLUP may then work well if Ŷf captures
most of the relevant genetic correlations. In our simulations
described below, we also consider the situation where genetic
correlations are not the result of a causal effect of Ys on
Yf (for example, as in Figure 1, right panel). Because of the
relatively small size of the populations considered here, the
dimension reduction is computed on the same training set that
is used for genomic prediction. This is of course not essential
for this approach, and various sample splitting techniques
may be of interest for larger populations; see the discussion
section below.

When using RF-BLUP in the simulations described below,
we used the R-package randomForest, with the default settings.
Often however, a more accurate dimension reduction can be
achieved by tuning various hyperparameters (like the number of
trees), which we explore for the real data.

2.6. Dimension Reduction Using Selection
Indices
In addition to the notation Ys for the column vector containing
all secondary traits, we will now also use Ys(j) for the column-
vector containing the jth secondary trait, the dimension being

either no × 1 (scenario 1) or n × 1 (scenario 2). We will use Y(i)
s

for the row-vector containing all secondary traits for genotype
i. Recall that the individual secondary traits are still labeled
Y2, . . . ,Yp+1, Y1 being the target trait.

A well-known alternative dimension reduction approach is
to use a selection index S =

∑p
j=1 γjYs(j), which is a linear

combination of secondary traits, with coefficients such that the
resulting index best predicts the genetic effect of the target trait
(Falconer and Mackay, 1996). Assuming independent genetic
effects (i.e., ignoring population structure), the p × 1 vector γ

of coefficients is obtained by minimizing, for each individual

i, the expectation of (Uf [i] − Y
(i)
s γ )2. The minimizing γ then

equals the inverse variance-covariance of Ys times the vector of
genetic covariances between Ys and Yf , i.e., γ SI = 6s

−16u
sf
.

To estimate γ SI one could plug in estimates 6̂s and 6̂u
sf
, where

6̂s = 6̂u
ss ⊗ Koo + 6̂e

ss ⊗ Ino is the estimated variance-covariance
matrix of the secondary traits on the training population, and
6̂u

sf
contains estimates of genetic covariances with the target

trait. However, when the dimension (p) is large, 6u
ss and 6e

ss are
difficult to estimate, and the selection index is likely to overfit,
as some elements in 6u

sf
may be large by chance, and receive too

much weight.
To address these issues, Lopez-Cruz et al. (2020) proposed

penalized selection indices, minimizing instead E(Uf [i] −
Y
(i)
s γ )2 + λJ(γ ), where λ > 0 is the penalty and J(γ ) is either∑p
j=1 γ 2

j (ridge penalty) or
∑p

j=1 |γj| (LASSO penalty). λ = 0
gives the classical (unpenalized) SI. In case of a ridge penalty, the
penalized SI is given by

γ̂ SI(λ) = (6̂s + λIp)
−16̂u

sf . (6)

We will follow the implementation by Lopez-Cruz et al. (2020)
in their R-package SFSI, where 6u

sf
is estimated with MANOVA

on the individual plant or plot-level data, and 6u
ss is estimated

using the sample covariance matrix of the secondary traits. We
emphasize that no multi-trait mixed-model of the form (1)–(2) is
fitted. Moreover, the regularization only controls how 6̂s affects
6̂u

sf
; the estimates 6̂s and 6̂u

sf
themselves are not regularized.

Following again (Lopez-Cruz et al., 2020), we use internal
cross-validation within the training set to choose an appropriate
value of λ, maximizing h(S)ρG(S,Yf ). After selecting a value for
λ, genomic prediction in scenarios 1 and 2 is performed using
(4) and (5), with a single secondary trait, i.e., the selection index∑p

j=1 γ
(λ)
j Ys[j]. We will use SI-BLUP to refer to the genomic

prediction obtained this way.

2.7. Genomic Prediction Using Multiple
Relatedness Matrices
Another alternative to selection indices is to model the secondary
traits using random effects (see e.g., Riedelsheimer et al., 2012;
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Van De Wiel et al., 2016; Xu et al., 2016; Schrag et al., 2018;
Xiang et al., 2019; Azodi et al., 2020). In addition to the
genetic relatedness matrix K, these models use an additional
relatedness matrix M derived from the secondary phenotypes,
and assume that

Yf = Xf βf+U
(gen)
f

+V
(sec)
f

+Ef = Xf βf+U
(gen)
f

+Ysbs+Ef , (7)

where U
(gen)
f

∼ N(0, σ 2
KK) and V

(sec)
f

∼ N(0, σ 2
MM). We will

call this the Multi-BLUP model (not to be confused with Speed
and Balding, 2014, where the same type of model is used, but
where genomic regions are represented by different relatedness
matrices). The variance components σ 2

K , σ 2
M , and σ 2

E can be
estimated with REML or with cross-validation. For simplicity
we consider only one type of secondary phenotypes. Similar
to the equivalence between GBLUP and SNP-BLUP, the effects

V
(sec)
f

can be written as Ysbs, for a vector bs of independent

random effects with N(0, p−1σ 2
M) distribution. Hence, similar to

the LS-BLUP and RF-BLUP, the Multi-BLUP approach implicitly
assumes a causal effect of Ys on Yf (Figure 1, left), which
is assumed to be linear, with random coefficients. The usual
“genomic” prediction based on model (7) is

ÛMulti = Û
(gen)
f

+ V̂
(sec)
f

, (8)

i.e., the sum of the BLUPs for the genetic and secondary trait
effects. We put genomic between quotes because (8) is partly a
phenotypic prediction: instead of the genetic component of the
secondary traits, it directly relies on these traits themselves, which
are assumed to be available on the test set. As a consequence, the
use of (8) is limited to scenario 2.

To overcome these limitations we propose the GM-BLUP:

ÛGM = Û
(gen)
f

+ Û
(gen)
s b̂s, (9)

where b̂s is the vector of predicted random coefficients obtained

from the Multi-BLUP model, and Û
(gen)
s is the matrix of GBLUPs

for the secondary traits (either univariate or multivariate). These
GBLUPs can of course also be computed in scenario 1. Apart
from being the “genomic analogue” of (8), (9) can also be
motivated by a causal model of the form

Yf = Xf βf + Uf + Ef + h(Us), (10)

as considered by Töpner et al. (2017) and Grotzinger et al. (2019).
In contrast to the Multi-BLUP, GM-BLUP only depends on the
genetic components of the secondary traits.

Finally, following many other authors (e.g., Riedelsheimer
et al., 2012; Xu et al., 2016) we will also compute a prediction
based on the secondary traits alone, using the model

Yf = Xf βf + V
(sec)
f

+ Ef = Xf βf + Ysbs + Ef , (11)

and define the MBLUP

ÛM = V̂
(sec)
f

= Ysb̂s. (12)

Again, this is to some degree a phenotypic prediction, and since

the direct effects of the SNPs are ignored, the estimated effects b̂s
will differ from those obtained from model (7).

2.8. Simulations
We first compare the different methods on simulated data, with
p = 300 secondary traits. We used existing genotypic data, from
the Arabidopsis RegMap, containing 1, 307 accessions genotyped
with 214, 051 SNPs (Horton et al., 2012). For each data-set we
randomly selected 500 accessions, from which we randomly
sampled a test set of 100 accessions. We randomly selected 1, 500
SNPs with a minor allele frequency of at least 0.3. For each data-
set we first simulated direct genetic effects (gi) and residuals (ri)
for each accession i, and the final trait values were obtained
using a structural equationmodel, describing functional relations
between traits. More specifically, for each individual i, the (p +
1)×1 vector of trait values is defined by yi = yi3+gi+ri,3 being
the (p+ 1)× (p+ 1) matrix of structural coefficients. The (k, l)th
entry of 3 contains the effect of trait k on trait l, and the vectors
gi and ri have zero mean Gaussian distributions with covariance
matrices 6g and 6r , respectively. The joint distribution of all
n(p + 1) trait values is then as in (1), with 6u = Ŵt6gŴ and
6e = Ŵt6rŴ, where Ŵ = (I − 3)−1 (Gianola and Sorensen,
2004; Töpner et al., 2017; Kruijer et al., 2020).

The target trait is defined as Yf = Y1 = λ(Y2 + Y3 +
Y4) + G1 + R1, and we do not assume any functional relations
among the secondary traits. Hence, if λ 6= 0, there is a causal
effect from Y2, Y3, and Y4 on Y1, but the algorithms under
consideration do not know which of the 300 secondary traits
are the actual causal ones. We consider λ values on the grid
{−1,−0.5, 0, 0.5, 1}. 6g has diagonal elements (0.2, 0.7, . . . , 0.7),
i.e., the variances of the direct genetic effects are 0.2 for Yf and
0.7 for each of the secondary traits. The off-diagonal elements
corresponding to Y1 vs. (Y2,Y3,Y4) are ρG

√
0.2 · 0.7, where we

choose ρG ∈ {−0.5, 0, 0.5}. Similarly, 6r has diagonal elements
0.8 for Yf and 0.3 for the secondary traits, and the off-diagonal

elements between Y1 and (Y2,Y3,Y4) are ρE
√
0.8 · 0.3, with ρE ∈

{−0.5, 0, 0.5}. The other off-diagonal elements in 6g and 6r

are zero.
For the special case λ = 0 we have Ŵ = I, 6u = 6g and

6e = 6r , and Yf will have a heritability of 0.2. The secondary
traits will have heritability 0.7, and there is no causal effect of
(Y2,Y3,Y4) on Y1. Genomic prediction for Y1 can however still
benefit from the genetic correlation between these traits (which
is present when ρG 6= 0). When λ 6= 0, the causal effect of
(Y2+Y3+Y4) onY1 will introduce additional genetic and residual
covariance in 6u and 6e.

For each of the 125 combinations of λ, ρG and ρE we simulate
50 data-sets; for each of them we predicted the simulated genetic
effects for the test set, with the different methods.

2.8.1. Benchmark

In addition to the methods described above, we evaluate
a benchmark prediction, by computing (4) and (5) for the
four-dimensional mixed model with Y1 − Y4, using the true
(simulated) variance components.
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2.9. Data
To test the methods on real data, we consider four data-sets with
various target and secondary phenotypes. To assess accuracy,
each data set was randomly split into training (70%) and a test
genotypes (30%). This was repeated 160 times, and we report
accuracy averaged over the 160 test sets. Because of the required
computing time, only 50 test sets were analyzed for RF-BLUP
with hyper-parameter-optimization (for the Arabidopsis data-
sets), and 30 test-sets for the maize data (for all methods).
With one exception (mentioned below), the target and secondary
phenotypes were measured on different plants; therefore, all
bivariate mixed models were fitted with diagonal residual
covariance (i.e., diagonal 6e in Equations 4 and 5).

The first two data sets were measured on the A. thaliana
HapMap population, where 36 metabolites from Fusari et al.
(2017) were used as secondary phenotypes and the kinshipmatrix
was estimated based on one million imputed SNPs (Arouisse
et al., 2020). Dataset 1 contains three target traits related to biotic
and abiotic stress, fromThoen et al. (2017). In dataset 2, the target
is the rosette fresh weight, measured in of the experiments of
Fusari et al. (2017). This is the only dataset for which the residual
covariance is non-diagonal.

In the third data set, we predicted the grain yield, plant height
(PH) and flowering time (FT) of 388 inbredmaize lines (Z. mays),
using 5, 760 transcripts (Azodi et al., 2020) as secondary traits. In
this case, we selected for each data-set a subset of transcripts using
the LASSO on the training set, following Azodi et al. (2020). In
other words, the transcripts selected by LS-BLUP were also used
for the other methods.

2.10. Data Availability
The data that support the findings of this study are available at:
https://doi.org/10.1105/tpc.19.00332 (Maize data)
https://doi.org/10.1105/tpc.17.00232 (A. thaliana Metabolite
data)
https://doi.org/10.1111/nph.14220 (A. thaliana Phenotypes)
https://doi.org/10.1111/tpj.14659 (A. thaliana SNP data)

All data-sets (except the maize transcriptomics) are
included in an Rdata file available at: https://figshare.com/
s/5d01062711ce33bb327e.

2.11. Software and Computing Time
The required computing time is mainly driven by the complexity
of fitting either a bivariate mixed model with a single relatedness
matrix, or univariate mixed models with either one or two
relatedness matrices. For the datasets considered here, each
bivariate mixed model took between 20 and 50 s to fit, the
univariate mixed models taking at most a few seconds. For
complexity as function of n and p we refer to Zhou and Stephens
(2014).

R-code for all methods is available at https://figshare.com/
s/5d01062711ce33bb327e, where we mostly relied on asreml-
R (Butler et al., 2009). Several open source alternatives are
however available; in particular sommer (Covarrubias-Pazaran,
2016) for bivariate mixed models, and gaston for univariate
mixed models. Using gaston’s lmm.diago.likelihood function,
the (univariate) GBLUP for large numbers of traits can

be computed in only a few seconds, which is useful for
the GM-BLUP method. For the dimension reduction in LS-
and RF-BLUP we used the R-packages glmnet (Friedman
et al., 2010), caret (https://cran.r-project.org/package=caret), and
randomForest (Liaw and Wiener, 2002). For the maize data,
LASSO and random-forest regression were performed in python,
using the scikit-learn packages.

3. RESULTS

3.1. Simulations
Figures 2, 3 show the estimated accuracy as function of λ, i.e.,
the size of the causal effects of Y2, Y3, and Y4 on the target trait
Yf (i.e., Y1). We focus on three cases, with different values for the
correlations between the direct genetic effects on Y1, . . . ,Y4, as
well as the corresponding residuals (see section 2): (A) ρG = 0.5
and ρE = −0.5, (B) ρG = ρE = 0, and (C) ρG = 0.5 and
ρE = 0.5. In scenario 1 (Figure 2) as well as scenario 2 (Figure 3),
accuracies are generally higher when λ moves away from zero.
This is expected, as the total genetic variance and heritability
increase due to the causal effect, especially when ρG and λ have
the same sign. When they have opposite sign, the lowest accuracy
can occur at an intermediate value of λ [e.g., at λ = −0.5 in
case of (A)].

The multi-trait benchmark with perfect information on the
genetic and residual covariance between the target trait Yf and
secondary traits Y2, Y3, and Y4 always outperforms univariate
GBLUP, except when ρG = λ = 0, in which case accuracies are
equal. When ρG 6= 0, the benchmark always benefits from the
genetic correlations between the target trait and the secondary
traits, even if the latter do not have a causal effect on Yf .

The accuracy of univariate GBLUP varied between r = 0.44
and r = 0.70, while the benchmark had accuracy between 0.50−
0.70 (scenario 1) and 0.50 − 0.92 (scenario 2). The difference
between scenario 2 (secondary traits observed on the test set) and
scenario 1 (secondary traits only observed on the training set)
was bigger for large values of |λ|. This is because for large |λ|, the
total genetic correlation (which is also a function of ρG) between
Yf and the causal secondary traits (Y2, Y3, and Y4) is larger.

In absence of a causal effect Ys → Yf (λ = 0) and residual
genetic and residual correlations having opposite sign (case
A), our simulation setup appeared to be too challenging, and
none of the methods performed better than univariate GBLUP.
Something similar occurred in case C, for λ = −0.5. On the
positive side, for large values of |λ|, both SI-BLUP and LS-BLUP
have near-benchmark accuracy, where the latter did not rely on
plot-level observations. In scenario 2, RF-BLUP appeared to be
an interesting alternative, with somewhat lower accuracy on the
extreme sides, but relatively good performance at unfavorable
values of λ.

Prediction based on the secondary traits only (M-BLUP; only
available in scenario 2) is generally one of the least successful.
The multi-kernel methods (Multi-BLUP and GM-BLUP) are
somewhere in between, GM-BLUP often having an accuracy
similar to that of RF-BLUP. GM-BLUP appears to be slightly
better than Multi-BLUP, but in most cases the difference is
smaller than the standard errors of the accuracy estimates.
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FIGURE 2 | Accuracy of genomic prediction methods in scenario 1, which for each value of λ is estimated from 50 simulated data-sets (standard errors between 0.011

and 0.042). “GBLUP” is the univariate GBLUP, and the benchmark is the multivariate GBLUP based on Y1, . . . ,Y4, using the true (simulated) values of the variance

components (see section 2.8.1). Acronyms of the other methods are given in section 2; they use all secondary traits (Y2, . . . ,Y301), without knowledge of (Y2,Y3,Y4)

being causal. λ is the size of the causal effect of (Y2,Y3,Y4) on Y1. ρG is the correlation between the direct genetic effects on Y1, . . . ,Y4; similarly, ρE is the correlation

between the non-genetic effects. The total genetic correlation is function of λ and ρG. (A) ρG = 0.5, ρE = −0.5, (B) ρG = 0, ρE = 0, and (C) ρG = 0.5, ρE = 0.5.
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FIGURE 3 | Accuracy of genomic prediction methods in scenario 2, which for each value of λ is estimated from 50 simulated data-sets (standard errors between 0.014

and 0.051). “GBLUP” is the univariate GBLUP, and the benchmark is the multivariate GBLUP based on Y1, . . . ,Y4, using the true (simulated) values of the variance

components (see section 2.8.1). Acronyms of the other methods are given in section 2; they use all secondary traits (Y2, . . . ,Y301), without knowledge of (Y2,Y3,Y4)

being causal. λ is the size of the causal effect of (Y2,Y3,Y4) on Y1. ρG is the correlation between the direct genetic effects on Y1, . . . ,Y4; similarly, ρE is the correlation

between the non-genetic effects. The total genetic correlation is function of λ and ρG. (A) ρG = 0.5, ρE = −0.5, (B) ρG = 0, ρE = 0, and (C) ρG = 0.5, ρE = 0.5.
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3.2. Arabidopsis and Maize Data
Tables 1, 2 contain the accuracies for datasets 1–4 described
above, averaged over randomly sampled test sets (see section
2). Because the original individual plant (or plot) data were not
available, we could not compute the SI-BLUP here.

In scenario 1 (Table 1), none of the multi-trait methods
performed consistently better than univariate GBLUP. For the
second trait in data-set 1 (Salt5), RF-BLUP had accuracy 0.09, vs.
0.03 for univariate GBLUP; the latter had highest accuracy for the
first and third trait in dataset 1 (fungus, and drought and fungus
stress combined).

The remainder of this section we focus on scenario 2 (Table 2),
in which there weremore substantial differences amongmethods.
For all datasets, methods based on multiple relatedness matrices
(Multi-BLUP and GM-BLUP) had accuracies similar to single-
trait GBLUP. As in the simulations, GM-BLUP gave only a
minor (if any) improvement over Multi-BLUP. The approaches
based on dimension reduction of the secondary traits (LS-BLUP
and RF-BLUP) appeared to give a substantial improvement over
univariate GBLUP, e.g., from r = 0.03 to r = 0.23 (LS-BLUP)
for the Salt5 trait in data-set 1, or from r = 0.55 to r = 0.65
(RF-BLUP) for Maize yield in data-set 3, with transcriptomics as
secondary traits.

LS-BLUP had the highest accuracy in all Arabidopsis datasets,
with a small but consistent improvement over RF-BLUP (0.02–
0.03 higher), also when optimized with the caret/scikit-learn
packages. This hyperparameter optimization appeared to be
rather important for the Maize data; using the default settings
from the randomForest package (as in the simulations), accuracy
was considerably lower (for yield and the transcripts for example,
r = 0.65 vs. r = 0.51).

For the maize data, RF/LS-BLUP improved accuracy for yield
from around 0.64 − 0.65 to 0.71 − 72 when plant height and
flowering time were included as secondary phenotypes, together
with the transcriptome data. None of the other methods could
exploit the additional data, and accuracies were similar to those
obtained with the transcripts alone. Prediction based on the
secondary traits alone (M-BLUP) had around zero accuracy in
all Arabidopsis data-sets, but r = 0.49− 0.54 for the maize data,
similar to GBLUP and multi-BLUP.

4. DISCUSSION

Given the importance of genomic selection in plant breeding and
the rapid development of phenotyping technology, it becomes
increasingly important to know if and how the availability of
additional phenotypic traits can improve prediction accuracy for
a target trait. Here we proposed new methods to incorporate
large numbers of such additional traits in genomic prediction,
and compared these to existing methods, in simulated and real
data. In many of the simulated data-sets, some of our methods
indeed greatly improved univariate genomic prediction. In these
cases, the accuracy was often close to that of penalized selection
indices, without requiring plot-level data. In other cases, none
of the methods did very much better than univariate prediction,
while the multi-trait benchmark indicated that there is in fact

scope for improvement. This happens especially when genetic
and residual correlation have opposite sign. Moreover, our study
indicates that current methods do not perform well when the
secondary traits are available only on the training set (i.e., in
scenario 1): while there was often some improvement in many
of the simulations, accuracy in scenario 1 was hardly improved
for any of the real data-sets.

While scenario 1 is probably most common, scenario 2
(secondary traits being also observed for the test set) may
arise in a number of applications. In particular, it has become
increasingly common to screen large collections for metabolites
or other types of -omics data, and scenario 2 may also arise
in a biomedical context when biomarkers could be used to
predict disease. Our results for various stress traits in Arabidopsis
showed that metabolites can indeed improve accuracy, even if
they were measured in a different study. While Multi-BLUP and
the LS- and RF-BLUP require balanced data, the GM-BLUP is
more flexible, and can also handle an intermediate scenario where
only some of the secondary traits are measured for all (or some
of) the test genotypes.

Except SI-BLUP, all methods implicitly assume a causal
relationship between the secondary traits and the target trait.
In our simulations, accuracy was indeed suboptimal when this
relationship was weak or absent. However, in these cases the SI-
BLUP often performed poorly as well. The accuracy of LS-BLUP
and RF-BLUP may be improved if one could successfully address
the following two artifacts. First, the dimension reduction and
genomic prediction should ideally be carried out on different
subsets of the training set. In the populations we considered here,
this however led to poor estimation of variance components and
lower accuracies, because of the relatively small population size.
We therefore used the whole training set for both dimension
reduction and genomic prediction. The advantage of a larger
training set seems to outweigh the incurred overfitting, but this
may be different for larger populations, in which case sub-
sampling strategies like bootstrap aggregation (bagging) might be
useful. Second, specifically for LS-BLUP, the cross-validation in
the first (dimension reduction) step appears to select too many
variables. Often, this may still result in an accurate prediction
Ŷs on the training set, but for the prediction of breeding
values on the test set that leads to overfitting. The methodology
implemented in the hdi-package (Dezeure et al., 2015) might
resolve this issue, by first assessing significance of secondary
traits. Such improvements should at least guarantee an accuracy
that is never (much) below that of univariate GBLUP. Finally,
a remaining limitation of RF-BLUP and LS-BLUP is that the
dimension reduction relies on phenotypic rather than genetic
values, which is likely to stay sub-optimal in case genetic and
residual correlations have opposite sign.

We attempted to improve existing multi-kernel methods with
our GM-BLUP approach, replacing secondary traits by their
genomic predictions. Unfortunately, this led to only minor
improvements. In case secondary traits have high heritability,
there is little shrinkage and genomic predictions and trait
values are highly correlated, leading to similar accuracies. In
case secondary traits have lower heritabilities, the methods may
potentially differ more, but at the same time, in such a scenario
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TABLE 1 | Prediction accuracy in scenario 1, for various target and secondary traits in Maize and Arabidopsis.

Data sets Target trait Secondary phenotypes GBLUP GM-BLUP LS-BLUP RF-BLUP RF-BLUP*

1 Number of spreading lesions Metabolites 0.23 0.22 0.20 0.21 0.21

under fungus stress

Fresh weight of the rosette Metabolites 0.03 0.00 0.07 0.09 0.09

under Salt_5 stress

Number of spreading lesions Metabolites 0.19 0.18 0.16 0.16 0.15

under Drought_and_fungus stress

Number of damaged leaves and Metabolites 0.10 0.09 0.06 0.10 0.10

feeding sites under Caterpillar_3 stress

2 Fresh weight Metabolites 0.30 0.30 0.29 0.30 0.30

3 Flowering time (FT) [4] Transcripts 0.54 0.55 0.55 0.53 0.55

Plant height (PH) Transcripts 0.54 0.55 0.55 0.53 0.51

Yield Transcripts + FT+PH 0.53 0.53 0.54 0.52 0.52

Yield Transcripts 0.55 0.55 0.55 0.55 0.55

Acronyms of the methods are as in Figures 2, 3. For RF-BLUP*, we used the randomForest package with the default settings; for RF-BLUP, hyper-parameters were optimized using the

caret package (data-sets 1 and 2) or scikit-learn (data-set 3). For data-sets 1 and 2, reported accuracies are averages over 160 test sets (standard errors between 0.006 and 0.007),

except for RF-BLUP, where 50 sets were used (SE between 0.010 and 0.014). In dataset 3, 30 test sets were used for all methods (SE between 0.006 and 0.03).

TABLE 2 | Prediction accuracy in scenario 2, for various target and secondary traits in Maize and Arabidopsis.

Data sets Target trait Secondary phenotypes GBLUP M-BLUP Multi-BLUP GM-BLUP LS-BLUP RF-BLUP RF-BLUP*

1 Number of spreading lesions Metabolites 0.23 −0.04 0.21 0.22 0.31 0.28 0.28

under fungus stress

Fresh weight of the rosette Metabolites 0.03 0.09 0.08 0.07 0.23 0.20 0.19

under Salt_5 stress

Number of spreading lesions Metabolites 0.19 −0.02 0.16 0.17 0.27 0.25 0.23

under Drought_and_fungus stress

Number of damaged leaves and Metabolites 0.10 0.05 0.06 0.07 0.14 0.12 0.11

feeding sites under Caterpillar_3 stress

2 Fresh weight Metabolites 0.30 0.00 0.29 0.30 0.32 0.30 0.28

3 Flowering time (FT) [4] Transcripts 0.55 0.54 0.55 0.55 0.66 0.65 0.54

Plant height (PH) Transcripts 0.54 0.53 0.54 0.55 0.66 0.64 0.53

Yield Transcripts + FT+PH 0.53 0.49 0.50 0.52 0.72 0.71 0.49

Yield Transcripts 0.55 0.52 0.53 0.54 0.64 0.65 0.51

Acronyms of the methods are as in Figures 2, 3. For RF-BLUP*, we used the randomForest package with the default settings; for RF-BLUP, hyper-parameters were optimized using the

caret package (data-sets 1 and 2) or scikit-learn (data-set 3). For data-sets 1 and 2, reported accuracies are averages over 160 test sets (standard errors between 0.006 and 0.012),

except for RF-BLUP, where 50 sets were used (SE between 0.010 and 0.014). In dataset 3, 30 test sets were used for all methods (SE between 0.006 and 0.03).

there is much less scope for improvement with multi-trait
methods in the first place. BothMulti-BLUP and GM-BLUP were
often less accurate than competing methods. To some extent
this may be explained by the absence of variable selection, or,
compared to RF-BLUP, the assumed linearity. Nonetheless, GM-
BLUP extended the use ofMulti-BLUP to scenario 1, without ever
being less accurate.

For the case of a single secondary trait, Runcie and Cheng
(2019) studied the bias in accuracy estimates, when these are
based on the correlation with the observed phenotype, rather
than with the (unobserved) genetic effect. This can become
problematic when traits are measured on the same plants, in
which case the amount of bias is likely to vary among methods,
in particular when residual correlations between the target and

secondary traits are large. For the Arabisopsis and maize data
considered here, the bias should be constant, as all target and
secondary traits were measured on different plants. No bias
occurred for the simulated data, where we used the true genetic
values to assess accuracy. Nevertheless, further work is needed
to extend the methods presented here with reliable estimates of
accuracy, also in the case of traits measured on the same plants.
For the LS-BLUP, RF-BLUP and SI-BLUP, the parametric and
semi-parametric accuracy estimates of Runcie and Cheng (2019)
can in principle be computed, since all these methods reduce the
dimension of the secondary traits to one. This would however
require the sample-splitting or bagging schemes mentioned
above, and it is an open question how the different accuracy
estimates should be aggregated.
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Statistical methods for high-dimensional data often benefit
from initial screening, for example by removing variables with
very low marginal correlation (see e.g., Fan and Lv, 2008). In
the present context, screening should be based on heritability
and genetic correlation with the target trait. This is however
difficult for several reasons. First, as pointed out before, reliable
estimates of these correlations require plot-level data, at least for
the population sizes considered here. Moreover, bivariate mixed
models need to be fitted for each secondary trait, increasing
computation time. A more fundamental problem is that even
if accurate estimates were available, it would be difficult to
formulate an appropriate criterion and threshold. The well-
known criterion for a single secondary trait (whose heritability
times the squared genetic correlation with the target trait
should exceed the heritability of the latter) cannot directly be
generalized. For example, in one of our simulation settings (i.e.,
with λ = 0 and ρG = 0.5), each of the three relevant secondary
traits (Y2,Y3,Y4) has heritability 0.7, the heritability of the target
trait being 0.2. Consequently, we have 0.7 × ρ2

G < 0.2 for each
secondary trait individually, while at the same time genomic
prediction using a mixed model for Y1−Y4 is more accurate than
with a mixed model for Y1 alone.

More generally, themethods presented here could be extended
in several ways. First, for all of them, prediction relies on the
GBLUP: either bivariate GBLUP, or univariate GBLUP extended
with additional relatedness matrices. This corresponds to a
Gaussian prior on the marker effects, which could be generalized
to a mixture of Gaussians and a point mass at 0, as for example

in Bayes-R (Moser et al., 2015). Another extension would
be the prediction of sensitivities to environmental covariates,
which could then be used to predict new environments, as in
Millet et al. (2019). In the LS- and RF-BLUP methods, a wider
range of prediction methods could be considered to achieve
the dimension reduction, such as elastic nets or gradient tree
boosting. Ideally, this reduction is driven by genetic rather than
phenotypic effects, and the dimension should not necessarily be
reduced to one (like we did here), but to a data-driven number.
Finally, it would be of interest to relax the linearity assumption
on which most methods (except RF-BLUP) rely. Deep learning
with feedforward or convolutional neural networks seems of
particular interest here, especially for the relationship between
target and secondary traits.
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of Irrigation, Universidad Autónoma Chapingo, Texcoco, Mexico

Genomic selection (GS) is a technology used for genetic improvement, and it has many
advantages over phenotype-based selection. There are several statistical models that
adequately approach the statistical challenges in GS, such as in linear mixed models
(LMMs). An active area of research is the development of software for fitting LMMs
mainly used to make genome-based predictions. The lme4 is the standard package for
fitting linear and generalized LMMs in the R-package, but its use for genetic analysis
is limited because it does not allow the correlation between individuals or groups of
individuals to be defined. This article describes the new lme4GS package for R, which
is focused on fitting LMMs with covariance structures defined by the user, bandwidth
selection, and genomic prediction. The new package is focused on genomic prediction
of the models used in GS and can fit LMMs using different variance–covariance matrices.
Several examples of GS models are presented using this package as well as the analysis
using real data.

Keywords: genomic selection, genomic prediction, linear mixed model, lme4, kernel

INTRODUCTION

With the new, low-cost, high-throughput genotyping technologies of the last decade, a breeding
selection paradigm called genomic selection (GS) has emerged (Meuwissen et al., 2001). GS
combines molecular and phenotypic data to obtain the genomic estimated breeding values (GEBVs)
of individuals that have been genotyped but not phenotyped (Bernardo and Yu, 2007; de los
Campos et al., 2009; Hayes et al., 2009; VanRaden et al., 2009; Crossa et al., 2010). The main
advantages of GS over family-based selection in breeding are that it reduces the cost per cycle and
the time required for variety development. However, several factors could impact the accuracy of
prediction; they occur at different levels and are influenced by several genetic, environmental, and
statistical factors.

Complications arise in GS when determining (i) the size and diversity of the training
population, (ii) the relationship between the training and testing sets, (iii) genetic complexity,
and (iv) the heritability of the traits to be predicted. Challenges in GS are related to the
high dimensionality of marker data, where, the number of markers is much larger than the
number of observations, the multi-collinearity among markers, the cryptic interaction between

Abbreviations: BGLR, Bayesian generalized linear regression; BLR, Bayesian linear regression; BLUP, best linear unbiased
prediction; GEBV, genomic estimated breeding value; GLMM, generalized linear mixed model; GS, genomic selection; LMM,
linear mixed model; REML, restricted maximum likelihood.
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markers, the complexity of the trait, sample size, correlation
among markers, and the ever-present genotype × environment
interaction. These complexities require parametric and semi-
parametric statistical models, especially mixed models, Bayesian
estimations, and, recently, deep machine learning methods that
can deal appropriately with the usually large datasets (Crossa
et al., 2017). This has led to computational challenges due to the
data size and statistical challenges that include model fitting and
parameter optimization. Therefore, the development of complete
and simple computer packages to estimate the GEBV of the
individuals to be selected under these complex scenarios is crucial
for an efficient application of GS.

The first R software (R Core Team, 2021) developed for
genome-based prediction was presented by de los Campos et al.
(2009). Shortly afterward, Pérez et al. (2010) formally described
the Bayesian linear regression (BLR) that allows fitting high-
dimensional linear regression models including dense molecular
markers, pedigree information, and several other covariates other
than markers. The BLR R-package described by Pérez et al.
(2010) allows including not only markers but also pedigree data
jointly. Furthermore, Pérez et al. (2010) explained the challenges
that arise when evaluating genomic-enabled prediction accuracy
through random cross-validation (CV), as well as how to select
the best choice of hyperparameters for the Bayesian models.

Linear mixed models play a fundamental role in GS
and genomic-enabled predictions. This kind of models is
widely used for predictions, although other models, such
as nonlinear models, neural networks, and other machine
learning models, could be used for this purpose. The standard
linear mixed model of the form y = Xβ+ Zu+ e, where,
y is a response vector of dimension n × 1; X and Z are
the design matrices for the fixed (β) and genotypic random
(u) effects, respectively; and two variance components are
estimated u ∼ MN(0, σ2

uK), with K being a known semidefinite
variance–covariance matrix and e ∼ MN(0, σ2

e I). In the context
of GS, K could be the additive relationship matrix derived
from the coefficient of co-ancestry (numerator relationship
matrix A), or it could be the genomic relationship matrix
obtained from markers (G). As shown below, there are
several alternative ways of expressing the incidence matrix
Z and the vector of random effects u when using the
numerical relationship matrix (A). Bayesian versions of
linear regression models have been extensively developed, and
their companion software largely distributed and used for
research and extended to more complicated cases, for example,
the introduction of genotype × environment interaction
incorporating pedigree and environmental covariables
(Jarquín et al., 2014).

Endelman (2011) developed the rrBLUP R-package, which
is able to fit the basic linear mixed model with two variance
components (σ2

u and σ2
e ) described before with the maximum

likelihood or restricted maximum likelihood (REML) methods.
As an extra facility, the rrBLUP computes the Gaussian kernel
and the exponential kernel that usually account for small cryptic
epistatic effects among the markers. The rrBLUP has a CV
algorithm to measure the prediction accuracy of the models
and shows rapid solutions of the mixed model equations for

moderate-to-intermediate data sizes. More specialized computer
software, such as the synbreed of Wimmer et al. (2012) and
GEMMA of Zhou and Stephens (2012), were later developed.

Although the previously mentioned genomic software
programs solve important genomic prediction problems (e.g.,
prediction in training and testing sets, CV, and estimation of
variance parameters), they are separate software pieces without a
unified statistical and computing framework. So from the user’s
perspective, having a single package implementing all the models
to be fitted will save data preparation time and data analysis time.
Thus, Pérez and de los Campos (2014) extended the original BLR
R-package developed by Pérez et al. (2010) to a more general
R-package, the Bayesian generalized linear regression (BGLR)
that offers users a great variety of genomic models and methods
in a unified computing software for data analysis. The BGLR is
available at CRAN. The BGLR package includes several Bayesian
regression models, including parametric variable selection and
shrinkage methods, and semi-parametric procedures [Bayesian
reproducing kernel Hilbert space (RKHS) regressions]. Many
non-genomic applications are implemented as well, and response
traits can be continuous or categorical (binary or ordinal).
The Bayesian algorithm is based on a Gibbs sampler with
scalar updates implemented in efficient routines written in C
programming language. Furthermore, the BGLR is the main
machinery for adapting other more complex genomic models, for
example, the complex phenomenon of genotype × environment
interaction including pedigree and environmental covariables
(Jarquín et al., 2014). The BGLR is also used for assessing the
marker effect × environment interaction of Lopez-Cruz et al.
(2015) and for fitting Bayesian ridge regression and the Bayes B,
as shown by Crossa et al. (2017), or for using the threshold model
for ordinal data as did Montesinos-López et al. (2016), and for
running all the Bayesian alphabet models.

Although linear mixed models are important tools for
fitting GS models, Covarrubias-Pazaran (2016) mentioned
like that current GS software includes only one random
effect; and therefore, using genomic prediction for more
complicated situations hybrid prediction using additive,
dominance, and epistatic effects is not possible under the
available models. The authors proposed likelihood-based
software for fitting mixed models with multiple random effects
that allow the user to specify the variance–covariance structure
of random effects. Covarrubias-Pazaran (2016) presented
an R-package called sommer for genomic prediction with
three algorithms for estimating variance components: average
information, expectation–maximization, and efficient mixed
model association. Results from sommer were comparable
with those of other software, and sommer was faster than its
Bayesian counterparts.

The development of software for fitting linear mixed models
is an active area of research. The use of pedigree and genomic-
enabled prediction linear mixed models is crucial for advancing
the application of genomic-assisted breeding. The lme4 package
(Bates et al., 2015) for R (R Core Team, 2021) has efficient
functions for analyzing linear mixed models and generalized
linear mixed models (GLMMs). Some of the main features of
lme4 are that (i) it is efficient for large dataset problems; (ii)
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it handles any number of grouping factors, nested or cross-
classified; and (iii) it can use a combination of sparse and dense
matrix representations to facilitate the processing of large datasets
at high computational speed.

However, the use of lme4 for genetic analysis has been
limited because it does not allow using the correlation between
individuals or groups of individuals. When individual lines or
animals are related, the marginal likelihood must allow using
this covariance between relatives. Vazquez et al. (2010) developed
a package called pedigreemm that uses the lme4 but allows for
correlations between levels of random effects, such as those due
to genetic relationships between relatives expressed as pedigree
relationships. The methodology of Vazquez et al. (2010) uses the
numerator relationship matrix A (a positive-definite matrix) and
subjects it to the Cholesky decomposition, where, the Cholesky
factor (L) can be obtained from the pedigree information.

Based on the above considerations and some limitations in
terms of the computing efficiency of some existing genomic-
enabled prediction models, in this research, we describe the new
lme4GS R-Package that is based on the lme4 software of Bates
et al. (2015) that is available in CRAN. The lme4GS is focused
on genomic-based prediction of GS and can fit mixed models
with several different variance–covariance matrices. The lme4GS
introduces fixed and random effects, and associated variance–
covariance matrices, from which matrices for fixed and random
effects (X, Z1, ..., Zq, respectively) are obtained. The original
variance–covariance matrices are introduced and transformed by
using the Cholesky factorization or the eigenvalue decomposition
of variance–covariance matrices and later used for defining
the objective function (deviance function). Once the objective
function has been defined, the optimization module optimizes
the objective function and provides REML estimates of the
parameters of interest.

MATERIALS AND METHODS

Consider the linear mixed model:

y = Xβ+ Zu+ e, (1)

where, y is a response vector of dimensions n × 1, X is a
matrix of fixed effects of dimensions n × p, β is a vector of
fixed effects of dimensions p × 1, Z is an incidence matrix
of dimensions n × r, and u is a vector of random effects.
We assume u ∼ MN(0, σ2

aK) and e ∼ MN(0, σ2
e I), with K a

known variance–covariance matrix, and σ2
a and σ2

e are variance
parameters associated with u and e, respectively; furthermore, we
assume that u and e are independently distributed. In the case of
GS, the variance–covariance matrix can be derived from markers
or from pedigree.

The linear mixed model (1) can be rewritten as;

y = Xβ+ Z∗u∗ + e, (2)

where, Z∗ = ZL, with L obtained from the Cholesky factorization
of K; alternatively, Z∗ = Z031/2 with 0 and 3 the matrices
of eigenvectors and eigenvalues, respectively, obtained from the

eigenvalue decomposition of K, and u∗ ∼ MN(0, σ2
uI). Note that

Z∗u∗ has the same distribution as Zu; that is, Z∗u∗=d Zu ∼
MN(0, σ2

aZKZ
′

).

Best Linear Unbiased Predictions
Once mixed model (2) is fitted, the conditional means of the
random effects can be obtained, that is, û∗.The best linear
unbiased predictions (BLUPs) for u∗ are obtained as follows:
û∗ = σ̂2

uZ∗
′

V̂∗−1(y−X̂β) where, V̂∗ = σ̂2
uZ∗Z∗

′

+ σ̂2
e I, with

σ̂2
e , σ̂2

u and β̂ REML estimates of variance parameters and vector
of fixed effects, respectively. The conditional means of random
effects for the model in equation (1) are obtained as follows:
û = L̂u∗ if the Cholesky factorization is used, or alternatively,
û = 031/2û∗ if the eigenvalue is used.

Prediction of New Observations
The main goal of GS is to predict new observations (phenotypic
values) or simply obtain the BLUPs for random effects not present
in the observed data but drawn from the same population as u
and e (Gilmour et al., 2004). Assume that the random vector u
and matrix K are partitioned as follows:

u =
[

u1
u2

]
, K =

[
K11 K12
K21 K22

]
,

the BLUPs for u2 are obtained as:

E
(
u2
∣∣ y1

)
= K21K−1

11 u1. (3)

In a more general case, model (1) can be extended to include more
random effects, that is:

y = Xβ+

q∑
j = 1

Zjuj + e, (4)

where, Zj is a design matrix of random effects, and uj is a vector
of random effects, j = 1, ..., q, where, q corresponds to the
number of random terms included in the model. We assume
that uj ∼ MN(0, σ2

j Kj) is independently distributed. Note that
model (1) is a special case of model (4) obtained by setting
q = 1, Z = Z1, u = u1, K = K1, σ2

a = σ2
1. Based on

the same computational strategy used to rewrite model (1) as the
model in (2), model (4) can be rewritten as:

y = Xβ+

q∑
j = 1

Z∗j u
∗
j + e. (5)

Implementation
The lme4GS package is an extension of the lme4 R-package
(Bates et al., 2015); lme4GS development was inspired by existing
R-packages, pedigreemm (Vazquez et al., 2010) and lme4qtl
(Ziyatdinov et al., 2018), which are focused on quantitative
trait locus (QTL) mapping association and linkage studies,
whereas, lme4GS is focused on the problem of prediction
in GS (Meuwissen et al., 2001) with GBLUP-type models,
although the models can be applied in other research areas.
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lme4GS uses the computational engine provided by the well-
tested and widely used lme4 package to fit mixed models with
a variance–covariance matrix provided by the user. lme4GS
can be considered a generalization of existing package rrBLUP
(Endelman, 2011) because it is able to fit model (4), whereas,
rrBLUP is able to fit model (1). The package also implements
some of the models in the sommer package of Covarrubias-
Pazaran (2016). lme4GS uses the high-level modular structure of
lmer (formula module, objective function module, optimization
module, and output module) to fit the models with variance–
covariance matrices provided by the user. The formula module
allows the specification of fixed and random effects and associated
variance–covariance matrices, from which matrices for fixed
and random effects (X, Z1, ..., Zq, respectively) are obtained.
After that, the variance–covariance matrices are introduced by
computing transformed incidence matrices (Z∗j , j = 1, ..., q)
using the Cholesky or eigenvalue decomposition of variance–
covariance matrices provided by the user, which are taken as
inputs to define the objective function (deviance function). Once
the objective function has been defined, the optimization module
is used to optimize the objective function and provide REML
estimates of the parameters of interest. Finally, the output module
is used to provide an output that can be interpreted by the end
user. We developed three main R functions:

• lmerUvcov: Fits a linear mixed model with a variance–
covariance matrix provided by the user. This function takes
as input a formula to specify the response y, the fixed effects
(fixed) and the random effects (random), a data.frame, and
a list (Uvcov) to specify the variance–covariance matrix for
random effects. Once the model is fitted, the routine returns
an object of class merMod for which many methods are
available in R for further processing (e.g., summary, print,
predict, and VarCorr).
• ranefUvcov: Extracts the conditional means of random

effects. This function takes as input an object returned by the
lmerUvcov function. If the ranef function in the lme4 package
is used taking as input the object provided by the lmerUvcov
function, it will extract the conditional means for the random
effects in model (6); the conditional means for random effects
in model (5) are obtained as explained in the BLUPs section.
The ranef function in lme4 is overwritten with ranefUvcov,
so the user can call either of these two routines and obtain
the same results.
• ranefUvcovNew: Obtains BLUPs for new levels of random

effects with user-specified variance–covariance matrices. The
function takes as input an object provided by the lmerUvcov
function and a two-level list with variance–covariance
matrices that contains information of the genotype identifiers
(GIDs) to be predicted and those that were included when

BOX 1 | Loading wheat data.
1 library(lme4GS)

2 library(pedigreemm)

3 data(wheat599)

4 ls() #list objects

fitting the model. The BLUPs are obtained using partitions
similar to those used to derive equation (4).

The software is available in the github repository1.

EXAMPLES

In this section, we illustrate the use of the R-package lme4GS with
several examples using sample data included in the package. In
our examples, we consider only the prediction of random effects
and the estimation of variance parameters, although the package
is also able to estimate fixed effects.

Example 1: Genome-Wide Prediction
Using Markers and Pedigree
In this example, we analyze a set of 599 wheat lines developed by
the CIMMYT Global Wheat Breeding Program. The dataset has

1https://github.com/perpdgo/lme4GS

BOX 2 | Computing A and G matrices.
1 ## Complete and sort incomplete Pedigree using

editPed

2 PedEdit< editPed(sire = wheat.Pedigree$gpid1,

dam=wheat.Pedigree$gpid2,

3 label = wheat.Pedigree$progenie,

verbose = TRUE)

4

5 ## Converted the data frame PedEdit into an S4 object

of formal

6 ## class ‘Pedigree’

7 PedFinal<-with(PedEdit,pedigree(label=label,

sire=sire,dam=dam))

8

9 #A

10 AFull<-getA(PedFinal)

11 GID<-unique(wheat.Pheno$GID)

12 selected<-rownames(AFull)%in%GID

13 A<-AFull[selected,selected]

14 A<-matrix(A,599,599)

15 rownames(A)<-colnames(A)<-rownames(AFull

[selected,selected])

16

17 W<-scale(wheat.X,center=TRUE,scale=TRUE)

18 G<-tcrossprod(W)/ncol(W)

19

20 #Environment 1

21 e1<-which(wheat.Pheno$Env==1)

22 y<-wheat.Pheno[e1,]$Yield

23 GID<-as.character(wheat.Pheno[e1,]$GID)

24

25 wheat<-data.frame(y = y,mrk=GID,ped=GID)

26 random<-list(mrk=list(K=G),ped=list(K=A))

27 fmGA<-lmerUvcov(y∼(1| mrk)+(1|

ped),data = wheat,Uvcov = random)

28 summary(fmGA)

29

30 #BLUPs

31 ranefUvcov(fmGA)

32

33 #or equivalently

34 ranef(fmGA)
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been analyzed several times in the literature (e.g., de los Campos
et al., 2009; Crossa et al., 2010; Pérez et al., 2010). The dataset
includes grain yield information, a pedigree, and 1,477 markers
generated by Triticarte Pty., Ltd. (Canberra, Australia2). Here, we
present the raw phenotypic data, including the replicates in each
environment and the pedigree information, in order to show how
to use R tools to obtain the additive relationship matrix that is
later used as input for fitting the models. The dataset is loaded
into the R environment with the commands shown in Box 1.

Once the commands are executed, the following objects are
available:

• wheat.Pheno: A data.frame with four columns: Env for
environments, Rep for replicates, GID for genotype
identifiers, and Yield for grain yield.
• wheat.Pedigree: A data.frame with three columns: gpid1

and gpid2, which correspond to the GID of parents 1
and 2, respectively, and progeny, which correspond to the
GIDs of progeny.
• wheat.X: A matrix of dimensions 599 × 1,279, which

corresponds to Diversity Array Technology (DArT)
markers coded as 0 and 1.

A linear model to predict grain yield in one of the
environments using markers and pedigree is given by:

y = 1µ+ Z1u1 + Z2u2 + e, (6)

where, y is the response vector in one environment, 1 is a vector
of ones, µ is an intercept, u1 ∼ MN(0, σ2

mG), G = WW
′

/p
(see Lopez-Cruz et al., 2015) is a genomic relationship matrix,
W is the matrix of markers centered and standardized, p is the
number of markers, σ2

m is a variance parameter associated with
markers, u2 ∼ MN(0, σ2

aA), A is an additive relationship matrix
derived from pedigree, σ2

a is its associated variance parameter,
Z1, Z2 are matrices that connect phenotypes with genotypes,

2https://www.diversityarrays.com

BOX 3 | Partial output from Box 2.
1 Linear mixed model fit by REML [‘lmerUvcov’]

2 Formula: y ∼ (1 | mrk) + (1 | ped)

3 Data: wheat

4

5 REML criterion at convergence: 1103.5

6

7 Scaled residuals:

8 Min 1Q Median 3Q Max

9 -2.51852 -0.44430 0.00982 0.42390 2.60030

10

11 Random effects:

12 Groups Name Variance Std.Dev.

13 mrk (Intercept) 0.22189 0.4711

14 ped (Intercept) 0.21138 0.4598

15 Residual 0.03496 0.1870

16 Number of obs: 1198, groups: mrk, 599; ped, 599

17

18 Fixed effects:

19 Estimate Std. Error t value

20 (Intercept) 4.81719 0.08757 55.01

and e is a random term distributed as in model (1). The additive
relationship matrix A can be easily computed in R using the
pedigreemm package (Vazquez et al., 2010); the corresponding
Cholesky decomposition can be computed very efficiently, and
the package is able to store the result as a sparse matrix. The code
in Box 2 computes the A and G matrices and then fits the mixed
model using the lmerUvcov function. After that, it extracts the
BLUPs using the ranefUvcov function.

The model fitting time is about 81 s on a computer with
a 2.8-GHz Intel Core i7 processor. After the model is fitted,
the summary function can be used to show some of the
results. The estimates of variance parameters are σ̂2

m = 0.2218,

BOX 4A | Single training and testing partition.
1 set.seed(456)

2 trn<-sample(unique(GID),size=as.integer(0.80∗599))

3 tst<-setdiff(unique(GID),trn)

4

5 #Phenotypes in training and testing

6 y_trn<-y[GID%in%trn]

7 y_tst<-y[GID%in%tst]

8

9 A_trn<-A[rownames(A)%in%trn,colnames(A)%in%trn]

10 G_trn<-G[rownames(G)%in%trn,colnames(G)%in%trn]

11 GID_trn<-GID[GID%in%trn]

12 GID_tst<-GID[!(GID%in%trn)]

13

14 pheno_trn<-data.frame(y_trn=y_trn,mrk=GID_trn,

15 ped = GID_trn)

16

17 random<-list(mrk=list(K=G_trn),ped=list(K=A_trn))

18

19 fmGA_trn<-lmerUvcov(y_trn∼(1| mrk)+(1| ped),

data=pheno_trn,

20 Uvcov = random)

21

22 plot(pheno_trn$y_trn, predict(fmGA_trn),

23 xlab="Observed phenotype",ylab="Predicted

phenotype")

24

25 #Predict for new levels

26 blup_tst<-ranefUvcovNew(fmGA_trn,

27 Uvcov=list(mrk=list(K=G),

ped=list(K=A)))

28 i1<-match(GID_tst,rownames(blup_tst$mrk))

29 i2<-match(GID_tst,rownames(blup_tst$ped))

30 blup_mrk<-blup_tst$mrk[i1,1]

31 blup_ped<-blup_tst$ped[i2,1]

32 yHat_tst<-fixef(fmGA_trn)[1] + blup_mrk + blup_ped

33

34 points(y_tst,yHat_tst,col="red",pch=19)

35 legend("topleft",legend=c("Training","Testing"),

36 pch=c(1,19),col=c("black","red"),bty="n")

37

38 #Correlation in testing set

39 cor(y_tst,yHat_tst)

40

41 #MSE

42 var(y_tst-yHat_tst)

43

44 #Data frame with prediction for further processing

45 predictions<-data.frame(GID=GID_tst,y=y_tst,

yHat=yHat_tst)

46
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FIGURE 1 | Observed vs. predicted phenotypic values in the training and testing sets.

σ̂2
a = 0.2113, and σ̂2

e = 0.0349 (see Box 3). The functions
predict, residuals, etc., that are routinely used after fitting the
model with the lmer function; they can also be used with the
resulting object.

Example 2: Training and Testing Sets
In this example, we mimic the GS problem faced by breeders;
we evaluate the predictive ability of model (6) by CV, which
requires randomly partitioning the data into two disjoint sets,
assigning 80% of the lines to the training set and the remaining
20% to the testing set. The code in Box 4A partitions the data
into the training and testing sets and defines two vectors, y_trn
and y_tst, with the phenotypic values of both sets. Next, it creates
a list object with the random effects for the linear mixed model.
The linear mixed model is fitted using the training set of the
data, with the lmerUvcov function. In the next step, we define a
list of random effects including the variance–covariance matrices
G and A and the GIDs of the lines to be predicted; the row
and column names of the covariance matrices correspond to
the GIDs. The ranefUvcovNew function is used for prediction
and provides a list of BLUPs for each of the random terms as
a result. Finally, the predictions for individuals in the testing
set are obtained by simply adding up the intercepts to the
BLUPs. Observed and predicted values are stored in a data.frame
with three columns: GID, y (observed phenotypic values), and
yHat (predicted phenotypic values) used for graphical displays.
Figure 1 shows a scatter plot with observed and predicted
phenotypic values in both the training and testing sets. Pearson’s
correlation coefficient between the observed and predicted values
is 0.5638, and the mean squared error (MSE) is 0.2581.

Box 4B shows the R code to perform a five-fold CV that is
widely used to study prediction accuracy (e.g., Crossa et al., 2010).
We randomly divided the data into five disjoint sets based on the
GID, {S1, ..., S5}. Each set is used to measure prediction accuracy.
With the use of these sets, the data are divided into the training
and testing populations; for example, the data in {S2, ..., S5} are
the training data, and S1 are the testing data. The model is fitted
using the training data, then phenotypes for S1 are predicted,
and prediction accuracy is measured. The same exercise can be
carried out taking Sf as the testing data, f = 2, ..., 5. Table 1
shows the results of CV, column 1 corresponds to fold, column
2 shows Pearson’s correlation coefficient between observed and
predicted values for individuals in the training set, column 3
corresponds to the MSE in the training set, and columns 4 and
5 show the correlations and MSE for individuals in the testing
set. The average correlation in the training set is 0.9768, whereas,
the correlation in the testing set is 0.5192. The average MSE in
the training set is 0.0187, and that in the testing set is 0.2897. The
results are as expected: the correlation in the training set is higher
than in the testing set, and the MSE is higher in the testing set
than in the training set.

Example 3: Hybrid Prediction
The prediction of hybrid performance is very important in
agricultural breeding programs. Technow et al. (2014) and
Acosta-Pech et al. (2017) employed G-BLUP type models to
predict the performance of maize hybrids. The linear model used
to that end is given by:

y = 1µ+Wθ+ Z1u1 + Z2u2 + Z3u3 + e, (7)
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BOX 4B | Cross-validation.
1 set.seed(789)

2 uGID<-unique(GID)

3 nFolds<-5

4 sets<-sample(1:nFolds,size=length(uGID),replace=TRUE)

5 resultsCV<-matrix(NA,nrow=nFolds,ncol=4)

6 colnames(resultsCV)=c("r_trn","MSE_trn",

"r_tst","MSE_tst")

7

8 for(f in 1:nFolds)

9 {
10 #Training and testing

11 trn<-(uGID[sets!=f])

12 tst<-(uGID[sets==f])

13

14 #Phenotypes in training and testing

15 y_trn<-y[GID%in%trn]

16 y_tst<-y[GID%in%tst]

17

18 A_trn<-A[rownames(A)%in%trn,

colnames(A)%in%trn]

19 G_trn<-G[rownames(G)%in%trn,

colnames(G)%in%trn]

20 GID_trn<-GID[GID%in%trn]

21 GID_tst<-GID[!(GID%in%trn)]

22

23 pheno_trn<-data.frame(y_trn=y_trn,

mrk=GID_trn,

24 ped=GID_trn)

25

26 random<-list(mrk=list(K=G_trn),

ped=list(K=A_trn))

27

28 fmGA_trn<-lmerUvcov(y_trn∼(1| mrk)+(1|

ped), data=pheno_trn,

29 Uvcov=random)

30

31 yHat_trn<-predict(fmGA_trn)

32

33 #Correlation in training set

34 resultsCV[f,1]<-cor(y_trn,yHat_trn)

35

36 #MSE in training set

37 resultsCV[f,2]<-var(y_trn-yHat_trn)

38

39

40 #Predict for new levels

41 blup_tst<-ranefUvcovNew(fmGA_trn,

Uvcov=list(mrk=list(K=G),

42 ped=list(K=A)))

43 i1<-match(GID_tst,rownames(blup_tst$mrk))

44 i2<-match(GID_tst,rownames(blup_tst$ped))

45 blup_mrk<-blup_tst$mrk[i1,1]

46 blup_ped<-blup_tst$ped[i2,1]

47 yHat_tst<-fixef(fmGA_trn)[1] + blup_mrk +

blup_ped

48 #Correlation in testing set

49 resultsCV[f,3]<-cor(y_tst,yHat_tst)

50 #MSE

51 resultsCV[f,4]<-var(y_tst-yHat_tst)

52 }

53 resultsCV

where, y is the response vector; 1 is a vector of ones; µ is
an intercept; W is the design matrix for environments; θ is
the vector of environmental effects (fixed); Z1, Z2, and Z3

TABLE 1 | Results from five-fold cross-validation.

Fold Training Testing

r MSE r MSE

1 0.9752 0.0201 0.5290 0.2778

2 0.9775 0.0181 0.5680 0.2729

3 0.9755 0.0197 0.5096 0.3035

4 0.9786 0.0173 0.4179 0.3280

5 0.9775 0.0182 0.5714 0.2663

avg 0.9769 0.0187 0.5192 0.2897

sd 0.0015 0.0012 0.0624 0.0256

MSE, mean squared error.

BOX 5 | Loading maize data.
1 library(lme4GS)

2 data(cornHybrids)

3 ls() #List objects

BOX 6 | Fitting model for hybrid prediction.
1 maize.Pheno$GCA1<-as.character(maize.Pheno$GCA1)

2 maize.Pheno$GCA2<-as.character(maize.Pheno$GCA2)

3 maize.Pheno$SCA<-as.character(maize.Pheno$SCA)

4

5 #Genomic relationship matrix for parent 1

6 GCA1<-unique(maize.Pheno$GCA1)

7 selected<-rownames(maize.G)%in%GCA1

8 K1<-maize.G[selected,selected]

9

10 #Genomic relationship matrix for parent 2

11 GCA2<-unique(maize.Pheno$GCA2)

12 selected<-rownames(maize.G)%in%GCA2

13 K2<-maize.G[selected,selected]

14

15 #kronecker, make.dimmanes is necessary to identify

the hybrids

16 #with the label Parent 1:Parent 2

17 K3<-kronecker(K1,K2,make.dimnames=TRUE)

18

19 #Training set

20 trn<-which(!is.na(maize.Pheno$PlantHeight))

21

22 hybrid<-data.frame(y=maize.Pheno$PlantHeight[trn],

23 loc=maize.Pheno$Location[trn],

24 P1=maize.Pheno$GCA1[trn],

25 P2=maize.Pheno$GCA2[trn],

26 H=maize.Pheno$SCA[trn])

27

28 random<-list(P1=list(K=K1),

29 P2=list(K=K2),

30 H=list(K=K3))

31

32 #Fit the model

33 fm<-lmerUvcov(y∼loc+(1|P1)+(1|P2)+(1|H),

data=hybrid, Uvcov=random)

34

35 summary(fm)

are incidence matrices for paternal, maternal, and hybrids,
respectively; u1 and u2 are vectors of general combining abilities
for parental and maternal lines, respectively; u1 ∼ MN(0, σ2

1K1),
u2 ∼ MN(0, σ2

2K2) with K1 and K2 relationship matrices for
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BOX 7 | Output from Box 6.
1 #...

2 Random effects:

3 Groups Name Variance Std.Dev.

4 H (Intercept) 0.016385 0.12800

5 P2 (Intercept) 0.000841 0.02900

6 P1 (Intercept) 0.002047 0.04525

7 Residual 0.001182 0.03438

8 Number of obs: 400, groups: H, 100; P2, 20; P1, 20

9 #...

BOX 8 | Predicting hybrid’s performance.
1 #Unobserved hybrid performance

2 blup_tst<-ranefUvcovNew(fm,Uvcov=list(H=list(K=K3)))

3 blup_tst$H

4

5 #variance parameters

6 vc<-VarCorr(fm)

7 print(vc,comp=c("Variance","Std.Dev."),digits=4)

8 variances<-as.data.frame(vc)$vcov

9 variances

10

11 #Heritability

12 h2<-sum(variances[2:3])/sum(variances[2:4])

13 h2

paternal and maternal lines σ2
1, σ2

2 associated variance parameters,
u3 ∼ MN(0, σ2

3K3), with K3 = K1 ⊗ K2, σ2
3 variance parameter

associated with hybrids, and e ∼ MN(0, σ2
e I). Note that model

(7) can be rewritten as y = Xβ+ Z1u1 + Z2u2 + Z3u3 + e,
where, X = [1W] and β = (µ, θ′)′, which corresponds to model
(4) discussed before. To exemplify how to fit this model in the
lme4GS package, we used the DT_cornHybrids dataset included
in the R-package sommer (Covarrubias-Pazaran, 2016), and we
included a copy of the original data in the package (cornHybrids).
The dataset contains phenotypic data for grain yield and plant
height for 100 out of 400 possible crosses that originated from 40
inbred lines belonging to two heterotic groups, with 20 lines in
each. Only 100 hybrids were evaluated in four locations, and then
the problem was to estimate their general combining abilities and
specific combining abilities and to predict the performance of
untested hybrids at each location. The dataset can be loaded in
R using the commands shown in Box 5:

The dataset contains the following R objects:

• maize.Pheno: A data.frame with six columns: Location,
GCA1 (Parent 1), GCA2 (Parent 2), SCA (hybrid), Yield,
and PlantHeight. Records with missing values in the last
two columns correspond to hybrids (identified with the
Parent 1:Parent 2 label) that were not evaluated in the field
and that we need to predict.
• maize.G: A matrix with relationships between individuals

for parents of both heterotic groups (K1 and K2).
The matrix was computed using 511 single-nucleotide
polymorphisms (SNPs) using the A.mat function included
in the rrBLUP package (Endelman, 2011). The row names
and column names of this matrix correspond to the GIDs
for Parent 1 and Parent 2.

BOX 9 | Gaussian and exponential kernel.
1 #Box 9: Gaussian and exponential kernel

2 library(lme4GS)

3 library(pedigreemm)

4

5 #Load data

6 data(wheat599)

7

8 ## Complete and sort incomplete Pedigree using

editPed

9 PedEdit<-editPed(sire=wheat.Pedigree$gpid1,

dam=wheat.Pedigree$gpid2,

10 label=wheat.Pedigree$progenie,

verbose=TRUE)

11

12 ## Converted the data frame PedEdit into an S4

object of formal

13 ## class ’Pedigree’

14 PedFinal<-with(PedEdit,pedigree(label=label,

sire=sire,dam=dam))

15

16 #A

17 AFull<-getA(PedFinal)

18 GID<-unique(wheat.Pheno$GID)

19 selected<-rownames(AFull)%in%GID

20 A<-AFull[selected,selected]

21 A<-matrix(A,599,599)

22 rownames(A)<-colnames(A)<-rownames(AFull

[selected,selected])

23

24 #X (markers)

25 X<-scale(wheat.X,center=TRUE,scale=TRUE)

26

27 #Phenotypes environment 1

28 e1<-which(wheat.Pheno$Env==1)

29 y<-wheat.Pheno[e1,]$Yield

30 GID<-as.character(wheat.Pheno[e1,]$GID)

31

32 wheat<- data.frame(y=y, ped=GID,k_id=GID)

33

34 fm1<-theta_optim(y∼(1| k_id)+(1| ped),

Uvcov=list(ped=list(K=A)),

35 kernel=list(kernel_type=

"gaussian",MRK=X),

36 data=wheat)

37

38 fm2<-theta_optim(y∼(1| k_id)+(1| ped),

Uvcov=list(ped=list(K=A)),

39 kernel=list(kernel_type=

"exponential",MRK=X),

40 data=wheat)

41

42 par(mfrow=c(1,2))

43 plot(fm1$theta,fm1$LL,xlab=expression(theta),

ylab="Log-Likelihood",

44 type="b",pch=19,main="a)")

45 plot(fm2$theta,fm2$LL,xlab=expression(theta),

ylab="Log-Likelihood",

46 type="b",pch=19,main="b)")

The code in Box 6 computes matrices K1, K2, and K3 in
model (7) and fits the model using the lmerUvcov function using
only observed phenotypic values for plant height.

The model fitting takes about 1 s to complete on a computer
with a 2.8-GHz Intel Core i7 processor. Once the model is
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FIGURE 2 | The values of the bandwidth parameter vs. the log-likelihood. (A) Gaussian kernel. (B) Exponential kernel.

BOX 10 | Summary of fitted models.
1 summary(fm1$fm)

2 #Output (edited)

3 Random effects:

4 Groups Name Variance Std.Dev.

5 k_id (Intercept) 0.29043 0.5389

6 ped (Intercept) 0.07751 0.2784

7 Residual 0.03434 0.1853

8 Number of obs: 1198, groups: k_id, 599; ped, 599

9

10 Fixed effects:

11 Estimate Std. Error t value

12 (Intercept) 4.6510 0.1314 35.4

13

14 summary(fm2$fm)

15 #Output (edited)

16 Random effects:

17 Groups Name Variance Std.Dev.

18 ped (Intercept) 0.05154 0.2270

19 k_id (Intercept) 0.62952 0.7934

20 Residual 0.03408 0.1846

21 Number of obs: 1198, groups: k_id, 599; ped, 599

22 Fixed effects:

23 Estimate Std. Error t value

24 (Intercept) 4.5311 0.5599 8.093

fitted, the summary function can be used to display some
relevant information. The summary output is displayed in Box 7,
which shows estimates for general combining ability, and specific
combining ability and the variance parameter associated with
residuals, σ̂2

1 = 0.016385, σ̂2
2 = 0.000841, σ̂2

3 = 0.002047, and
σ̂2
e = 0.001182.

The expected hybrid performance of individuals not evaluated
in field can be obtained by combining the outputs from the
ranefUvcov and ranefUvcovNew functions. Box 8 shows the
instructions to compute the BLUPs for the specific combining
ability of hybrids. The ranefUVcov function is called internally

in ranefUvcovNew. Box 8 also shows how to extract variance
parameters using the VarCorr function and then compute
heritability using the results. Following Covarrubias-Pazaran
(2016), h2

= (σ2
1 + σ2

2)/(σ
2
1 + σ2

2 + σ2
e ), which leads to an

estimated heritability of 0.70.

Example 4: Selection of the Bandwidth
Parameter With a Gaussian Kernel
Gianola et al. (2006) introduced the Gaussian kernel into
quantitative genetics with the idea of capturing the total genetic
effects in the problem of genomic prediction. The Gaussian
kernel is defined as (e.g., Morota and Gianola, 2014; Pérez and
de los Campos, 2014)

K
(
xi,xj

)
= exp

{
−θ

d2
ij

m

}
= exp

{
−θ

∑m
k = 1

(
xik − xjk

)2

m

}
,(8)

where, θ is a positive bandwidth parameter; dij is the Euclidean
distance; and xik (i, j = 1, ..., n, k = 1, ...,m) is the marker
genotype code for individual i at marker k, and m is the number
of markers. The bandwidth parameter may be chosen by CV,
REML, or maximum likelihood or with Bayesian methods. The
Gaussian kernel has been used by many authors for genomic
prediction (e.g., de los Campos et al., 2010; Endelman, 2011;
Pérez-Elizalde et al., 2015). The selection of the bandwidth is
not an easy problem due to high computational cost; de los
Campos et al. (2010) and Endelman (2011) proposed evaluating
the performance of the model, which includes the Gaussian
kernel over a grid of values of θ. Given that θ > 0, if we
set ρ = exp(−θ), then ρ ∈ (0, 1), so we can define a grid of
values for ρ and then, using these values, set the values for θ,
that is, θ = − log ρ, so that equation (8) can be rewritten as
K
(
xi,xj

)
= exp

{
log ρd2

ij/m
}

. Another kernel that is also used in
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TABLE 2 | Time comparison (seconds) among different software for models fitted in the work.

Software Version Examples

Model (6) Model (7) Model (10) Gaussian Model (10) exponential

lme4GS 0.1 81.5 1.3 1,608.8 1,701.1

BGLR 0.8 0.8 143.0 20.2 – –

sommer 4.1.3 4.1.3 46.0 2.7 – –

genomic prediction is the exponential kernel (e.g., Piepho, 2009;
Endelman, 2011):

K
(
xi,xj

)
= exp

{
−θdij/

√
m
}
, (9)

where, all the terms have been described previously. Similar to the
case of the Gaussian kernel, the model can be reparametrized in
terms of parameter ρ ∈ (0, 1).

We developed the function theta_optim that fits model (5)
when one of the random terms (uj,j = 1, ..., q) includes
as the variance–covariance matrix a Gaussian or exponential
kernel. This function takes as input the same objects as the
lmerUvcov function and a list (kernel) containing (i) a matrix
with distances ({dij/

√
m}, i, j = 1, ..., n) or the marker matrix

(
{
xij
}
, i = 1, ..., n, j = 1, ...,m), (ii) the kernel type (either

“gaussian” or “exponential”), and (iii) a sequence of values for
θ; the IDs for the individuals are taken directly from the row
names of matrices that provide the distances or the markers. If
the sequence of values for θ is not provided, then it is generated
automatically. The software then fits the mixed model in (5) using
the lmerUvcov function for each of the distinct values of θ. The
value of θ that maximizes the log-likelihood is chosen as the
optimum. The function returns a list with the following elements:
a vector of values of the log-likelihood, the maximum value of
the log-likelihood, the values of θ used for fitting the model, the
optimum value of θ, the fitted model, and the kernel computed
with the optimum value of θ .

In the following example, we show how to predict grain
yield using a relationship matrix derived from a Gaussian or
exponential kernel and a relationship matrix derived from a
pedigree. A linear model to predict grain yield for environment
one is analogous to model (1):

y = 1µ+ Z1u1 + Z2u2 + e, (10)

where, y is the grain yield; 1 is a vector of ones; µ is an intercept,
u1 ∼ MN(0, σ2

mK), with K a kernel, which can be either Gaussian
or exponential, and σ2

m is a variance parameter associated with
markers; u2 ∼ MN(0, σ2

aA), where, A is an additive relationship
matrix derived from pedigree, and σ2

a its associated variance
parameter; Z1, Z2 are matrices that connect phenotypes with
genotypes; and e is a random term distributed as in model (1).

The code in Box 9 is used to fit model (10) for Gaussian
and exponential kernels. Figure 2 shows the profile of the log-
likelihood for different θ values. For the Gaussian kernel, the
maximum of the log-likelihood is equal to -513.0865, attained at
θ̂ = 1.1779, whereas, for the exponential kernel, the maximum
of the log-likelihood is equal to -511.585, attained at θ̂ = 0.4107.

The code in Box 10 shows how to summarize parameter
estimates for the fitted model with the optimum value of the
bandwidths from, where, estimates of the variance parameters
can be obtained. The model fitting time is about 1,608 s for
the model with Gaussian kernel and 1,701 s for the model
with exponential kernel using the same processor described
before. Note that the selection of bandwidth parameter is a very
computer intensive task, but several authors (e.g., Endelman,
2011; Pérez-Elizalde et al., 2015) have reported that the prediction
accuracy with nonadditive kernels is higher than the prediction
accuracy of ridge regression (or equivalently GBLUP).

Computational Times and Comparison
With Other Software
We fitted models (6) and (7) in sommer (Covarrubias-Pazaran,
2016) and BGLR (Pérez and de los Campos, 2014). In the case
of BGLR, the number of iterations for the Gibbs sampler was
set to 30,000. We were unable to fit the models in rrBLUP
(Endelman, 2011) because it is not possible to include more than
one covariance matrix in the software; that is also the reason
that we were unable to fit model (10) with this software. The
predictions from the different software programs were about
the same. Here, we present a small comparison of running
times for model (6) fitted in Box 2, model (7) fitted in Box 6,
and model (10) fitted in Box 9 with Gaussian and exponential
kernels. Covarrubias-Pazaran (2016) also included a benchmark
of sommer against other packages. Models were fitted using a
2.8-GHz Intel Core i7 processor in R-4.0.5 (R Core Team, 2021).
Table 2 presents the resulting time (in seconds) it takes to fit the
different models. Some entries in the Table 2 are empty because
the corresponding models cannot be fitted in the corresponding
software package. From this Table 2, we conclude that sommer is
the fastest software, followed by lme4GS and BGLR.

CONCLUSION

We developed an R software package that can be used to
fit mixed models with user-defined covariance structures for
random effects. The software was developed with applications of
GS in mind, mainly for applications in plant breeding with small
to moderately sized datasets. However, given the omnipresence
of mixed models, the package can be used in other research
areas. The software fits the model using well-known and widely
tested computational routines available in the lme4 package.
The software provides a user-friendly and intuitive interface that
allows users to fit a wide variety of classic linear mixed models.
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Hybrid rice varieties can outyield the best inbred varieties by 15 – 30% with appropriate
management. However, hybrid rice requires more inputs and management than inbred
rice to realize a yield advantage in high-yielding environments. The development of
stress-tolerant hybrid rice with lowered input requirements could increase hybrid rice
yield relative to production costs. We used genomic prediction to evaluate the combining
abilities of 564 stress-tolerant lines used to develop Green Super Rice with 13 male
sterile lines of the International Rice Research Institute for yield-related traits. We also
evaluated the performance of their F1 hybrids. We identified male sterile lines with good
combining ability as well as F1 hybrids with potential further use in product development.
For yield per plant, accuracies of genomic predictions of hybrid genetic values ranged
from 0.490 to 0.822 in cross-validation if neither parent or up to both parents were
included in the training set, and both general and specific combining abilities were
modeled. The accuracy of phenotypic selection for hybrid yield per plant was 0.682.
The accuracy of genomic predictions of male GCA for yield per plant was 0.241, while
the accuracy of phenotypic selection was 0.562. At the observed accuracies, genomic
prediction of hybrid genetic value could allow improved identification of high-performing
single crosses. In a reciprocal recurrent genomic selection program with an accelerated
breeding cycle, observed male GCA genomic prediction accuracies would lead to similar
rates of genetic gain as phenotypic selection. It is likely that prediction accuracies of male
GCA could be improved further by targeted expansion of the training set. Additionally,
we tested the correlation of parental genetic distance with mid-parent heterosis in the
phenotyped hybrids. We found the average mid-parent heterosis for yield per plant
to be consistent with existing literature values at 32.0%. In the overall population of
study, parental genetic distance was significantly negatively correlated with mid-parent
heterosis for yield per plant (r = −0.131) and potential yield (r = −0.092), but within
female families the correlations were non-significant and near zero. As such, positive
parental genetic distance was not reliably associated with positive mid-parent heterosis.
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INTRODUCTION

Hybrid crop varieties are economically valued for increased vigor,
yield, yield stability, and uniformity in species including maize,
sugar beet, and cotton (Hochholdinger and Baldauf, 2018). Rice
(Oryza sativa L.) is a self-pollinated crop that has traditionally
been cultivated as an inbred, but the introduction of male sterility
into cultivated germplasm in the 1970s enabled hybrid breeding
(Virmani and Wan, 1988; Yuan et al., 1989; Nalley et al., 2017).
Public hybrid rice varietal development to date has resulted
primarily from identification of superior single crosses rather
than the systematic breeding of heterotic pools (Lu and Xu, 2010;
Spielman et al., 2013). Developing heterotic pools for rice by
reciprocal recurrent selection methods may increase the rate of
genetic gain for hybrid rice breeding compared to evaluating
random crosses, because reciprocal recurrent selection can
concurrently improve the additive value of the populations while
exploiting heterosis due to dominance (Comstock et al., 1949).

Existing hybrid rice varieties may outyield the best inbred
varieties by 10 to 30% with appropriate management (Spielman
et al., 2013). However, adoption of hybrid rice varieties is low
outside of China, in part because the hybrid yield advantage
of temperate japonica varieties used in China is much greater
than that observed in tropical indica varieties to date (Janaiah
and Xie, 2010; Longin et al., 2012; Spielman et al., 2013). In
some countries, socioeconomic factors such as lack of irrigation
systems, paved roads, certified seed suppliers, seed marketing,
farmer education, and available credit to purchase seed and
fertilizer have limited hybrid rice adoption (Mottaleb et al.,
2015; Abebrese et al., 2019). Of the agronomic factors that
influence hybrid rice adoption, poor grain quality has been a
longstanding challenge, but breeding progress since the early
2000s has produced some acceptable varieties (Spielman et al.,
2013). Surveys of farmers suggest that poor quality is not the
primary determinant of hybrid rice rejection (Spielman et al.,
2013; Feng et al., 2017). Farmers choose not to grow hybrid
rice for many reasons, including the high cost of seed, poor
seed quality, and lack of hybrid seed availability (Spielman
et al., 2013). However, the key agronomic reason for limited
adoption is that hybrid rice varieties require more intensive
management of irrigation, fertilizer, weeds, and other biotic
stressors to provide a yield advantage over inbred varieties in
otherwise high-yielding environments (Spielman et al., 2013;
Mottaleb et al., 2015; Nalley et al., 2016). Therefore, the
development of stress-tolerant hybrids with lowered input
requirements could spur hybrid adoption and unlock hybrid
yield advantages.

In this study, we evaluated the general combining abilities
(GCAs) of the existing male sterile lines of the International Rice
Research Institute (IRRI) with stress-tolerant germplasm used
in the development of Green Super Rice varieties, as well as
the performance, or genetic value, of their F1 hybrids (Sprague
and Tatum, 1942; Ali et al., 2018; Yu et al., 2020). The founders
of the Green Super Rice program were selected for multiple
stress tolerances, including salinity, submergence, tungro disease,
anaerobic germination conditions, and low water and nitrogen
inputs (Ali et al., 2018). We sought to identify any outstanding

F1 hybrids—which may be as stress-tolerant and yet higher-
yielding than existing Green Super Rice lines—to advance for
further testing for varietal release. We also sought to identify
male and female lines with superior GCA which could be used to
initiate the development of heterotic pools from IRRI germplasm,
presumably stacked with alleles conferring stress tolerance. In
addition to phenotypic evaluation, we used genomic prediction
to evaluate non-phenotyped parental lines and hybrid crosses.

We also tested whether parental genetic distance was
correlated with mid-parent heterosis using a large sample
of hybrids and genome-wide molecular markers. Mid-parent
heterosis due to dominance is expected to be positively correlated
with parental squared difference in allele frequency (SDAF)
by quantitative genetic theory (Falconer and Mackay, 1996;
Amuzu-Aweh et al., 2013). It has also been posited that genetic
divergence in founders of heterotic pools may lead to improved
gain in reciprocal recurrent selection programs, even though in
practice heterotic pools have been developed from closely related
germplasm in species such as maize (Melchinger, 1999; Tracy
and Chandler, 2006; Rembe et al., 2019). A previous study of
rice which used > 100k genome wide markers and six parental
lines found a curvilinear relationship of genetic distance and
mid-parent heterosis, with mid-parent heterosis increasing with
genetic distance to a point and then declining (Waters et al.,
2015). Due to past lack of availability of molecular markers,
other studies used fewer than 500 markers and found positive
correlations of genetic distance and heterosis using 10 or 22
parents (Xiao et al., 1996; Kwon et al., 2002). However, another
study using 319 markers found no correlation of genetic distance
and heterosis in progeny of 13 parents (Boeven et al., 2020). In
other species, such as wheat, whether parental genetic distance
is correlated with heterosis varies, with different findings among
studies and populations (Melchinger, 1999; Boeven et al., 2020).
We wished to test whether parents of hybrids with high SDAF
tended to produce hybrids with high mid-parent heterosis in our
rice population of study.

MATERIALS AND METHODS

Plant Materials and Population Design
The plant materials for prediction comprised 13 female
lines, 564 male lines, and their 10,716 possible F1 hybrids
(Supplementary File 1). Twelve of the female lines were wild-
abortive cytoplasmic male sterile (CMS), and one female line,
A07, was thermosensitive genic male sterile (TGMS). The 564
male tester lines were backcross introgression lines (BILs) from
11 families. Each family of BILs was generated by crossing one
of the 11 diverse males to a common female, Weed Tolerant
Rice 1 (WTR-1), and advancing the backcrosses to the BC1F5
generation under stringent selection for multiple stress tolerances
as described in Ali et al. (2018). The recurrent parent, WTR-
1, was a restorer line, but the male lines likely segregated for
fertility restoration.

Of the 10,716 possible F1 hybrids, a random subset of 938 were
made to comprise the genomic prediction model training set by
crossing six female lines to 137 males. To avoid unintentional
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selection for synchronous flowering, the female parents had two
planting dates. None of the 137 male lines were completely
crossed to all six females. However, in pairwise comparisons of
females, all females had some overlap with each other female in
males crossed (Supplementary Table 1). In total, 85 of the males
were crossed to a single female, 108 of the males were crossed
to 2 females, 124 of the males were crossed to 3 females, 60 of
the males were crossed to 4 females, and 5 of the males were
crossed to 5 females. All female lines were manually emasculated
to prevent contamination by selfing and to expose the stigma.

Two groups of lines were used to estimate mid-parent
heterosis and commercial relative performance but were not
included for prediction. The five maintainer (B) lines of the five
CMS female parents were used to estimate mid-parent heterosis.
Six inbred lines were used as commercial checks to estimate
commercial relative performance: five of the donor parents, Y 134
(DP 6), Khazar (DP 8), OM 997 (DP 10), M 401 (DP17), and X
21 (DP19), and the recurrent parent, WTR-1.

Field Experimental Design
The F1 hybrids, their inbred parents, the female maintainer
lines, and the commercial checks were phenotyped in an
unbalanced randomized complete block design (RCBD) in two
environments, irrigated lowland and irrigated upland, at the
IRRI farm (approximately 14◦09′50.7′′ N, 121◦15′50.5′′ E) in the
dry season of 2018. After establishment in seedbeds on January
8, 2018, seedlings were transplanted at the three-leaf stage.
Transplanting occurred on January 31, 2018, at the irrigated
lowland site and on February 8, 2018, at the irrigated upland
site. The plants were harvested the week of May 14, 2018. Basal
NPK fertilizer was applied at a rate of 30 kg/ha, and zinc was
applied at a rate of 5 kg/ha. N fertilizer was also applied at 28–
30 days after transplanting and at the panicle initiation stage
(42 days after transplanting) at a rate of 35 kg/ha. Rat fences
were installed at both locations; bird pressure was controlled by
farmworkers in the lowland environment, and by a bird net at
the upland environment. Both environments were hand-weeded.
Both environments were irrigated, but the lowland environment
was continuously flooded to a depth of ∼10 cm, whereas water
depth was allowed to vary in the upland field. Insect pressure
was controlled by application of Regent R© pesticide (fipronil).
Temperatures were sufficient throughout the growing season to
ensure seed set in the TGMS female line A07.

The field layout was designed in PBTools 1.4, which depends
on the R package agricolae (IRRI, 2014; de Mendiburu, 2020).
There were two blocks per environment with one replicate
per genotype per block, but replicates were missing for some
genotypes. Genotypes were replicated in single-row plots due to
limited availability of hybrid seed, with five plants per row, and
plants were spaced to 25 × 20 cm within rows. Measurements
were only recorded for plants at 20 cm spacing within rows; i.e.,
edge plants were not measured, nor were plants with missing
neighbor plants within the row.

The following traits or trait derivatives were phenotyped: plant
height, number of tillers, panicle dry weight, panicle length,
proportion of spikelets filled, yield per plant, and yield potential
per plant (Supplementary File 1). For all genotype replicates,

phenotypes were averaged across measured plants in a single-row
plot; plants were subsamples, but were not treated as subsamples
in downstream modeling because subsampling variance was not
of interest. Plant height was measured from the base of the plant
to the panicle tip after flowering. All tillers were assumed to be
productive based on observations in a subset of samples. For
panicle measurements and yield estimates, three random panicles
were harvested from each sampled plant, totaling nine panicles
per replicate. Panicle length was measured from the pedicel to
the panicle tip and averaged across all panicles in a replicate. For
a given replicate, yield per plant was calculated as panicle dry
weight times tiller number. For a given replicate, yield potential
per plant was calculated as average panicle dry weight divided by
proportion of spikelets filled times tiller number. Yield potential
per plant and proportion of spikelets filled were only measured in
the irrigated lowland environment due to cost.

Molecular Marker Generation and
Analysis
Genome-wide molecular markers were generated for the parents
with tunable genotyping-by-sequencing R© (tGBS) by data2Bio
and its subsidiary, Freedom Markers, in Ames, Iowa (Ali et al.,
2017; Ott et al., 2017). In general, each individual DNA sample
was double-digested with restriction enzymes, then the resulting
fragments were ligated to a uniquely barcoded adapter at the
5′ end. At the 3′ end, the fragments were ligated to a universal
sequencing adapter. However, in the first subsequent PCR
amplification of the library, the complementary primer for the
universal sequencing adapter was extended by 1-3 nucleotides;
only fragments in which the genomic sequence complemented
the extension were amplified. Then, the libraries were amplified
with Ion Proton sequencing primers.

The male and female parents were sequenced in separate Ion
Proton runs. For the male parents, a total of ten Ion Proton runs
were done; the female parents were sequenced in two Ion proton
runs as part of a larger set. The Ion Proton sequencing reads were
trimmed by the manufacturer to remove adapter sequence and
bases with PHRED quality scores less than 15 in the software Lucy
(Chou and Holmes, 2001). For the female parent A07, additional
RAD-sequencing was done in-house. In brief, DNA was extracted
from mature leaf tissue of the A07 parent and digested separately
with one of three enzyme combinations: ApeKI-PstI, HinP1I-PstI,
or ApeKI only. Then, each digestion was ligated separately to
unique barcoded adapters and subsequently pooled. Fragments
were selected for sizes ranging from 200–500 bp, and the libraries
were amplified by PCR. Then, the libraries were sequenced
for single-read 100 bp reads with an Illumina NovaSeq6000
SP. All reads were aligned to the Nipponbare IRGSP-1.0 v7
reference genome in GSNAP 2017-11-15 (Kawahara et al., 2013;
Wu et al., 2016). Then, variants were called in BCFtools 1.7
(SAMtools, 2018).

Variant sites were filtered separately within the male and
female parent sets in TASSEL 5.0 (Glaubitz et al., 2014). Within
sets, only the 2 most major alleles of the variant were considered,
and at most 50% of the individuals were permitted to be
heterozygous. In the females, the minimum site count was

Frontiers in Genetics | www.frontiersin.org 3 June 2021 | Volume 12 | Article 692870126

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-692870 June 24, 2021 Time: 18:22 # 4

Labroo et al. Genomic Prediction in Hybrid Rice

FIGURE 1 | Neighbor-joining tree of the parental lines used in the study. Color indicates the female parents (light blue) and, for the male parents, their subfamily by
donor parent (all other colors). The recurrent parent for all males was WTR-1.

2 (corresponding to a minimum site presence of 10% in all
females), and the minimum minor allele count was 2, yielding
77,709 polymorphic sites among the females. In the males, the
minimum site count was 188 (corresponding to a minimum site
presence of 33% in the males), and the minimum minor allele
count was 3, yielding 148,922 total polymorphic sites among
the males. The genotypes were imputed separately for males
and females in Beagle 5.0 (Browning et al., 2018). Principal
components analysis of the male and female parent genotypes
was done using 20,000 sites common to both using the glPca
function in the R package adegenet (Jombart and Ahmed, 2011).
The F1 hybrid genotypes were inferred from the same 20,000 sites
common to males and females using the build.HMM function in

the R package sommer version 3.8 (Covarrubias-Pazaran, 2016,
2018). A phylogenetic neighbor-joining tree of the male and
female parent genotypes was constructed in TASSEL 5.0 using the
same common 20,000 sites, and the tree was visualized in the R
package ape version 5.5 (Figure 1; Paradis and Schliep, 2019).

The additive relationship matrices of each the females, males,
and F1 hybrids, denoted respectively as GF, GM, and GH, were
calculated with the A.mat function in sommer by the method of
Endelman and Jannink (2012). The 77,709 imputed female sites
were used to estimate GF, and the 148,922 imputed male sites
were used to estimate GM. The hybrid genotypes inferred from
the 20,000 sites common to males and females via the build.HMM
function were used to estimate GH. The specific combining ability
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(SCA) relationship matrix GFM was the Kronecker product of the
male and female additive relationship matrices (Bernardo, 2002).
Pairwise SDAF, a hypothetical predictor of mid-parent heterosis,
was calculated as:

SDAFij =
∑N

n=1 (pin − pjn)2

N
(1)

Where SDAFij was the squared difference in allele frequency
between the ith female parent and the jth male parent, pin − pjn
was the difference allele frequency between the ith female parent
and jth male parent at the nth variant site, and N was the total
number of variant sites.

Modeling and Statistical Analysis
All linear models were fit in a single step with the mmer function
in sommer (Covarrubias-Pazaran, 2016, 2018). For a given trait,
i.e., plant height, tiller number, panicle length, average yield per
plant, proportion of spikelets filled, or potential yield per plant,
the genotype replicates (i.e., single-row plots) were considered
the experimental unit. Genetic variances for plant height, tiller
number, panicle length, and average yield per plant traits were
estimated with models of the following form:

Yijkl = µ+ Hi + Ej + HEij + B(k)j + εijkl (2)

where Yijkl was the random phenotypic response of the ith

single-cross hybrid genotype in the kth block nested in the jth
environment from the lth replicate, µ was the grand mean, Hi
was the random effect of the ith hybrid genotype with N(0, Iσ2

H),
Ej was the random effect of the jth environment with N(0, Iσ2

E),
HEij was the random interaction of the ith hybrid genotype and
the jth environment with N(0, Iσ2

HE), B(k)j was the effect of the
kth block nested within the jth environment with N(0, Iσ2

B), and
εijkl was the random error associated with each replicate with
N(0, Iσ 2

e ).
The genetic variance for proportion of spikelets filled and

potential yield per plant was estimated using the following
model in (3), without the environment term and its associated
interactions, because the traits were only phenotyped in the
irrigated lowland environment:

Yijk = µ+ Hi + Bj + εijk (3)

Yijk was the random phenotypic response of the ith hybrid
genotype in the jth block from the kth replicate, µ was the grand
mean, Hi was the random effect of the ith hybrid genotype
with N(0, Iσ2

H), Bj was the random effect of the jth block with
N(0, Iσ2

B), and εijk was the random error associated with each
replicate with N(0, Iσ 2

e ).
The entry-mean heritability was estimated for each of height,

tiller number, panicle length, and yield per plant by (4) following
the method of Holland et al. (2003) for unbalanced RCBDs:

H2
=

σ2
H

σ2
H +

σ2
HE
hj
+

σ2
e
ht

(4)

where σ2
H was the variance among hybrid genotypes from

models of the form in (2), σ2
HE was the variance of the interaction

of the hybrid genotype and environment, σ2
e was the error

variance, hj was the harmonic mean of the number of total
observations of each hybrid genotype within an environment,
and ht was the harmonic mean of the total number of
observations per hybrid genotype.

For proportion of spikelets filled and potential yield,
which were phenotyped in a single environment, entry-mean
heritability was estimated by (5) also following Holland et al.
(2003), using the following equation with the terms as described
in (3):

H2
=

σ2
H

σ2
H +

σ2
e
ht

(5)

Additive genetic variances were estimated from models of the
form in (6) for plant height, tiller number, panicle length, and
yield per plant. The terms of (6) are the same as in (2), but in (6)
the random effect H was assumed to have a multivariate normal
(MVN) distribution with H ∼ MVN(0, GHσ2

H), where GH was
the additive genomic relationship matrix of the F1 hybrids:

Yijkl = µ+ Hi + Ej + HEij + B(k)j + εijkl (6)

Additive genetic variances for proportion of spikelets filled
and potential yield were estimated from model of the form in
(7), with the same terms as (3), but the random effect H was
assumed to have a multivariate normal (MVN) distribution with
H ∼ MVN(0, GHσ2

H), where GH was the additive genomic
relationship matrix of the F1 hybrids:

Yijk = µ+ Hi + Bj + εijk (7)

Narrow-sense heritability, or the proportion of additive
genetic variance out of total phenotypic variance, was estimated
on a single-plant basis for all traits. Variance components were
estimated from the models of the form in (6) for plant height,
tiller number, panicle length, and yield per plant, and narrow-
sense heritability was estimated with (8):

h2
=

σ2
H

σ2
H + σ2

HE + σ2
e

(8)

For proportion of spikelets filled and potential yield, narrow-
sense heritability was estimated using (9) with variances
estimated from the models of the form in (7):

h2
=

σ2
H

σ2
H + σ2

e
(9)

For each trait, genomic best linear unbiased predictions
(GBLUPs) of hybrid genetic value, male GCA, and female GCA
were each estimated using two separate models: the genomic
GCA model and the genomic GCA + SCA model. Model fits
were compared with the Akaike information criterion (AIC) and
Bayesian information criterion (BIC). The genomic GCA model
was:

Yijklm = µ+ Fi + Mj + Ek + B(l)k + FEik + MEjk + εijklm
(10)
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where Yijklm was the random phenotypic response of a single-
cross hybrid of the ith female line and the jth male line observed
in the kth environment, lth block, and mth replicate, µ was the
grand mean, Fi was the random GCA effect of the ith female
parent with F ∼ MVN(0, GFσ

2
F) where GF was the additive

genomic relationship matrix among females, Mj was the random
GCA effect of the jth male parent with M ∼ MVN(0, GMσ2

M)
where GM was the additive genomic relationship matrix among
males, Ek was the effect of the kth environment with N(0, Iσ2

E),
B(l)k was the effect of the lth block nested in the kth environment
with N(0, Iσ2

B), FEik was the random interaction of the ith

female and the kth environment with N(0, Iσ2
FE), MEjk was the

random interaction of the jth male and the kth environment with
N(0, Iσ2

ME), and εijklm was the random error of each observation
with N(0, Iσ 2

e ).
The genomic GCA+ SCA model was:

Yijklm = µ+ Fi + Mj + Ek + B(l)k + FEik + MEjk

+ FMij + εijklm (11)

where terms were as described above, and FMij was the additional
random SCA interaction effect of the ith female and the jth
male, with FM ∼ MVN(0, GFMσ2

FM). GFM was the Kronecker
product of GF and GM (Bernardo, 2002).

Best linear unbiased predictions (BLUPs) of hybrid genetic
value and male and female GCAs were also estimated without
genomic information to 1) estimate the predictive ability and
prediction accuracy of the genomic prediction models, and 2)
estimate the accuracy of phenotypic selection. For the GCA
model, all terms remained the same as in (10), but the distribution
of the random effects of F and M were simply assumed to be
N(0, Iσ2

F) and N(0, Iσ2
M) respectively.

Yijklm = µ+ Fi + Mj + Ek + B(l)k + FEik + MEjk

+ εijklm (12)

Similarly, for the GCA + SCA model, all terms remained
the same as in (11), but the distribution of the random effects
F, M and FM were assumed to be N(0, Iσ2

F), N(0, Iσ2
M), and

N(0, Iσ2
FM) respectively:

Yijklm = µ+ Fi + Mj + Ek + B(l)k + FEik + MEjk

+ FMij + εijklm (13)

There are multiple methods to estimate genomic prediction
accuracy (Estaghvirou et al., 2013). Here, predictive ability was
Pearson’s correlation of an estimated value and a true value.
Prediction accuracy was considered to be predictive ability
divided by the square root of the reliability of the estimated
value (Mrode, 2014). This method of estimating prediction
accuracy, which is well-established in animal breeding programs,
was chosen because it is relatively unbiased, precise, and stable
compared to other methods (Estaghvirou et al., 2013). Predictive
abilities of the genomic GCA and genomic GCA + SCA models
described in (10) and (11) were each estimated for male GCA by
ten-fold cross-validation (Resende et al., 2012). Sample size was

inadequate to estimate genomic predictive ability and accuracy
for female GCA. In each fold, the hybrid progeny phenotypes
of 38 of the males were masked from the training set, and the
masked training set was used to train the prediction model.
Predictive abilities for male GCA, or Pearson’s correlation of the
GBLUP of male GCA estimated in the training set fold and the
BLUP of male GCA estimated from all available observations
in the full dataset, were then calculated for the 38 masked
males and averaged across folds for each model. Prediction
accuracy for male GCA for each model was the predictive ability
divided by the square root of the reliability of the genomic
prediction. For each model, the square root of the reliability
of the genomic prediction was the correlation of the GBLUP
of male GCA and BLUP of male GCA when all available
observations were used for estimation of both, as in (10),
(11), (12), and (13).

Predictive abilities and prediction accuracies were also
estimated for hybrid genetic values for each phenotypic response
following Technow et al. (2014). For each of 500 replications,
four females and 127 males which had been crossed to at
least one of the four females were randomly sampled. Then,
a training set was formed by randomly sampling 150 hybrids
which had phenotypic records available, with the constraint
that the randomly sampled male and female lines had at least
one hybrid progeny in the training set. Predictive ability, here
Pearson’s correlation of the hybrid genetic values estimated
from the training fold and the observed hybrid genetic values,
was recorded for hybrids which were not included in the
training set. Predictive ability was recorded separately for
hybrids which had both parents included in the training set
(T2), one parent included in the training set (T1), only the
female parent included in the training set (T1F), only the
male parent included in the training set (T1M), and neither
parent included in the training set (T0). The prediction accuracy
was the predictive ability divided by the square root of the
reliability of the genomic prediction, here the correlation of the
genomic BLUP of hybrid genetic value and BLUP of hybrid
genetic value when all available observations were used for
estimation of both.

The accuracies of phenotypic selection for each trait were
estimated for male GCA, female GCA, and hybrid genetic value
as the square root of the reliabilities of their respective BLUPs
(Falconer and Mackay, 1996; Mrode, 2014). Reliabilities of male
GCA and female GCA were estimated from each the GCA model
in (12) and the GCA + SCA model in (13). Reliabilities of
hybrid genetic values were estimated from model (2) and (3).
To estimate each reliability, the prediction error variances (PEV)
of the appropriate BLUPs (i.e., of hybrid genetic value, female
GCA, or male GCA) were obtained in sommer by inverting the
coefficient matrix of the relevant model. For the BLUPs of male
GCA for a given model and trait, the reliability was the average
of:

1−
PEVj

σ2
M

(14)

where PEVj was the prediction error variance of the jth BLUP of
male GCA and σ2

M was the estimated male GCA variance. For the
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BLUPs of female GCA for a given model and trait, the reliability
was the average of:

1−
PEVi

σ2
F

(15)

where PEVi was the prediction error variance of the ith BLUP of
female GCA, and σ2

F was the estimated female GCA variance. For
the BLUPs of hybrid genetic value for a given trait from model
(2), the reliability was the average of:

1−
PEVi

σ2
H

(16)

where PEVi was the prediction error variance of the ith
BLUP of hybrid genetic value, and σ2

H was the estimated
variance among hybrids.

To assess correlation of SDAF with mid-parent heterosis, mid-
parent heterosis of each F1 hybrid was estimated using BLUPs of
genetic values from the following model:

Yijklm = µ+ Fi + Gj + Ek + GEjk + B(l)k + εijklm
(17)

Yijklm was the random phenotypic response and µ was the
grand mean. In the vein of Xiang et al. (2016) and Liang et al.
(2018), Fi was the fixed effect of an indicator of whether the
genotype was an inbred or F1 hybrid to account for the possibility
of differing inbred and hybrid group means in the presence of
heterosis.Gj was the random effect of the jth inbred parent, inbred
commercial check, or F1 hybrid genotype with N(0, Iσ2

G) Ek was
the random effect of the kth environment with N(0, Iσ2

E), GEjk
was the random interaction effect of the jth genotype and the kth

environment with N(0, Iσ2
GE), B(l)kwas the random effect of the

lth block nested within the kth environment with N(0, Iσ2
B), and

εijklmwas the random error associated with each observation with
N(0, Iσ2

e ). The environment term and its associated interactions
were dropped in estimation of yield potential and proportion of
spikelets filled, because they were observed only in the irrigated
lowland environment.

Mid-parent heterosis of each F1 hybrid was obtained as:

MPH =
Ĥ − M̂P

M̂P
(18)

where MPH was mid-heterosis, Ĥ was the BLUP of the F1
genotype value from (17), and M̂P was the mid-parent value,
i.e., the mean of the BLUPs from (17) of its parental genotype
values (Supplementary File 1). The BLUP of the ith genotype
value was the sum of µ, F̂i, and Ĝj from (17). Because the CMS
parents do not set seed, the corresponding maintainer (B) line
phenotype was used to estimate heterosis. Pearson’s correlation of
SDAF with mid-parent heterosis was estimated among all hybrids
in the study and also separately within families of hybrids with the
same female parent. Student’s t test of significance was conducted
at α = 0.05 for each correlation, with the null hypothesis that
a given correlation did not significantly differ from zero and
the alternate hypothesis that the given correlation significantly
differed from zero.

Commercial relative performance (commercial heterosis) was
estimated for each F1 hybrid with phenotypic observations
against each check as:

CRP =
Ĥ − Ĉ

Ĉ
(19)

where CRP was commercial relative performance, Ĥ was the
BLUP of the F1 hybrid genotype value from (17), and Ĉ was
the BLUP of the commercial check genotype value from (17).
The BLUP of the ith genotype value was the sum of µ, F̂i,
and Ĝj from (17).

RESULTS

Summary Statistics and Heritabilities
Mean phenotypic values for height, tiller number, panicle length,
proportion of spikelets filled, yield per plant, and potential yield
were respectively 85 cm, 14 tillers, 226 mm, 0.757, 36 g per
plant, and 54 g per plant (Supplementary Figure 1; Table 1).
Highest entry-mean heritability observed was for height at 0.906,
and lowest entry-mean heritability observed was for potential
yield at 0.311 (Table 2). Narrow-sense heritabilities on a single-
plant basis were greatest for the proportion of spikelets filled at
0.864 and least for potential yield at 0.271 (Table 2). Because
the narrow-sense heritability of proportion of spikelets filled
was high, perhaps due to differing genetic architectures between
TGMS and CMS lines for the trait, we also estimated the narrow-
sense heritability in the CMS lines only as 0.922 by removing
observations of the TGMS line A07 from the model. Principal
components analysis of the parental genotypes showed clustering
of the males and females, but divergence of the male and female
parents was not due to historical reciprocal recurrent selection
(Supplementary Figure 2).

Model Fit, Predictive Ability, and
Prediction Accuracy
For all traits, model fit was superior for the genomic GCA+ SCA
model compared to the genomic GCA model as assessed by

TABLE 1 | Trait mean phenotypic values and standard deviations overall and
within environments for the F1 hybrids.

Trait Mean ± Standard
Deviation, Overall

Mean ± Standard
Deviation,

Irrigated Lowland

Mean ± Standard
Deviation,

Irrigated Upland

Height (cm) 85 ± 15 89 ± 13 70 ± 11

Tiller Number 14 ± 5 16 ± 4 10 ± 3

Panicle Length
(mm)

226 ± 24 231 ± 22 213 ± 25

Proportion of
Spikelets Filled∗

0.757 ± 0.149

Yield per Plant (g) 36 ± 19 44 ± 17 18 ± 7

Potential Yield∗ (g) 54 ± 20

∗Proportion of spikelets filled and potential yield were only phenotyped in the
irrigated lowland environment.
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TABLE 2 | Estimates and their standard errors for each trait of entry-mean
heritability of the F1 hybrids and narrow-sense heritability on a single-plant basis.

Trait Entry-Mean Heritability Narrow-Sense Heritability

Height 0.906 ± 0.007 0.719 ± 0.029

Tiller Number 0.505 ± 0.034 0.376 ± 0.054

Panicle Length 0.824 ± 0.014 0.542 ± 0.046

Proportion of
Spikelets Filled

0.780 ± 0.014 0.864 ± 0.014*

Yield per Plant 0.433 ± 0.038 0.328 ± 0.055

Potential Yield 0.311 ± 0.046 0.271 ± 0.063

∗ In the CMS lines only, the narrow-sense heritability for proportion of spikelets filled
was 0.922 ± 0.008.

either AIC or BIC (Supplementary Tables 2, 3). However, the
predictive abilities and accuracies of the genomic GCA + SCA
models were not substantially different from the genomic
GCA models (Supplementary Tables 4, 5; Tables 3, 4). Mean
prediction accuracies for male GCA ranged from 0.215 to
0.318 for the genomic GCA models and 0.233 to 0.332 in the
genomic GCA + SCA models (Table 4). Prediction accuracies
for untested females were not estimated. For hybrids in the
T0 set, mean genomic GCA model accuracies ranged 0.039
to 0.394, while the genomic GCA + SCA model accuracies
ranged from 0.043 to 0.490. For hybrids in the T1 set, mean
genomic GCA model accuracies ranged from 0.476 to 0.806,
while the genomic GCA + SCA model accuracies ranged from
0.509 to 0.827. For hybrids in the T1F set, mean genomic
GCA model accuracies ranged from 0.310 to 0.908, while
the genomic GCA + SCA model accuracies ranged from
0.364 to 0.943. For hybrids in the T1M set, mean genomic
GCA model accuracies ranged from 0.537 to 0.742, while the
genomic GCA + SCA model accuracies ranged from 0.423 to
0.785. For hybrids in the T2 set, mean genomic GCA model

accuracies ranged from 0.769 to 0.948, while the genomic
GCA + SCA model accuracies ranged from 0.772 to 0.956
(Table 3). However, in the hybrid T0 case, accuracy for yield
per plant was increased from 0.215 to 0.490 by inclusion of
the SCA effect. No other trait had more than a 10% increase
in accuracy by inclusion of the SCA effect in the T0 case,
and substantial increases in accuracy with inclusion of the
SCA effect were not observed for yield per plant in scenarios
besides T0. Except in the case of proportion of spikelets filled,
accuracy in the T1F scenarios was always substantially higher
than the T1M scenarios.

The accuracy of phenotypic selection for hybrid genetic value
ranged from 0.566 to 0.952 among traits (Table 5). For the
GCA model, the accuracy of phenotypic selection for male GCA
ranged from 0.484 to 0.861, and the accuracy of phenotypic
selection for female GCA ranged from 0.853 to 0.910 (Tables 6, 7;
Supplementary Tables 6, 7). For the GCA + SCA model,
the accuracy of phenotypic selection for male GCA ranged
from 0.253 to 0.798, and the accuracy of phenotypic selection
for female GCA ranged from 0.850 to 0.910 (Tables 6, 7;
Supplementary Tables 6, 7).

Hybrid Genetic Value and Parental GCA
The genomic GCA+ SCA model was used to rank hybrid genetic
values. The maximum predicted F1 hybrid yield was 43.352 grams
per plant, which scaled to 8.670 tons per hectare (Supplementary
Table 8). The maximum predicted F1 hybrid potential yield
was 77.401 grams per plant, scaling to 15.479 tons per hectare
(Supplementary Table 9). Over half of the top 20 F1 hybrids in
terms of yield per plant had phenotypic observations available,
though the top-ranked hybrid did not. The relative performance
of the F1 hybrids compared to the commercial inbred checks
(commercial heterosis) ranged from −43.9% to 70.0% for yield
per plant (Supplementary Figure 3; Table 8). The maximum

TABLE 3 | Mean prediction accuracies ± standard error thereof in cross-validation of the genomic prediction models for hybrids.

Trait T0 T1 T1F T1M T2

Genomic GCA model

Height 0.345 ± 0.013 0.793 ± 0.009 0.908 ± 0.007 0.562 ± 0.006 0.948 ± 0.003

Tiller Number 0.162 ± 0.005 0.628 ± 0.014 0.644 ± 0.015 0.537 ± 0.008 0.812 ± 0.007

Panicle Length 0.394 ± 0.012 0.806 ± 0.009 0.906 ± 0.008 0.574 ± 0.005 0.942 ± 0.005

Proportion of Spikelets Filled 0.039 ± 0.003 0.476 ± 0.003 0.310 ± 0.006 0.742 ± 0.003 0.769 ± 0.003

Yield per Plant 0.215 ± 0.012 0.688 ± 0.008 0.741 ± 0.008 0.646 ± 0.007 0.820 ± 0.005

Potential Yield 0.380 ± 0.015 0.719 ± 0.011 0.842 ± 0.009 0.566 ± 0.011 0.855 ± 0.006

Genomic GCA + SCA model

Height 0.414 ± 0.019 0.820 ± 0.010 0.943 ± 0.008 0.498 ± 0.014 0.956 ± 0.005

Tiller Number 0.190 ± 0.007 0.640 ± 0.016 0.676 ± 0.016 0.442 ± 0.012 0.772 ± 0.013

Panicle Length 0.446 ± 0.020 0.827 ± 0.011 0.940 ± 0.011 0.423 ± 0.018 0.928 ± 0.011

Proportion of Spikelets Filled 0.043 ± 0.003 0.509 ± 0.004 0.364 ± 0.007 0.785 ± 0.005 0.809 ± 0.004

Yield per Plant 0.490 ± 0.022 0.715 ± 0.009 0.795 ± 0.009 0.532 ± 0.014 0.822 ± 0.006

Potential Yield 0.415 ± 0.016 0.723 ± 0.012 0.847 ± 0.010 0.525 ± 0.014 0.851 ± 0.007

For each of the 500 cross-validation folds, 4 female parents and 127 male parents were chosen to have hybrid progeny included in the training set. The total number of
hybrid genotypes sampled for training was 150. Accuracies are reported for hybrids which were not included in the training set which had neither parent in the training
set (T0), one parent in the training set (T1), the female parent only in the training set (T1F), the male parent only in the training set (T1M), and both parents in the
training set (T2).
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TABLE 4 | Model prediction accuracy and standard error for male GCA for each
trait as estimated by ten-fold cross-validation.

Trait Genomic GCA model Genomic GCA + SCA model

Height 0.232 ± 0.056 0.233 ± 0.067

Tiller Number 0.215 ± 0.060 0.261 ± 0.065

Panicle Length 0.224 ± 0.043 0.269 ± 0.046

Proportion of
Spikelets Filled

0.318 ± 0.083 0.332 ± 0.079

Yield per Plant 0.219 ± 0.072 0.241 ± 0.079

Potential Yield 0.292 ± 0.078 0.233 ± 0.096

TABLE 5 | Reliabilities and accuracies of phenotypic selection for
hybrid performance.

Trait Reliability Accuracy

Height 0.906 0.952

Tiller Number 0.533 0.730

Panicle Length 0.828 0.910

Proportion of Spikelets Filled 0.791 0.889

Yield per Plant 0.466 0.682

Potential Yield 0.321 0.566

TABLE 6 | Accuracies of phenotypic selection for male GCA.

Trait GCA model GCA + SCA model

Height 0.809 0.627

Tiller Number 0.644 0.570

Panicle Length 0.680 0.253

Proportion of Spikelets Filled 0.861 0.798

Yield per Plant 0.640 0.562

Potential Yield 0.484 0.454

TABLE 7 | Accuracies of phenotypic selection for female GCA.

Trait GCA model GCA + SCA model

Height 0.906 0.906

Tiller Number 0.860 0.858

Panicle Length 0.910 0.910

Proportion of Spikelets Filled 0.898 0.876

Yield per Plant 0.853 0.850

Potential Yield 0.900 0.899

genomic predicted GCA for yield per plant in females and males
respectively were 36.341 and 34.047; both of the female and male
lines top-ranked for GCA had phenotypic observations available
(Supplementary Tables 10, 11).

Mid-Parent Heterosis and Parental SDAF
Average mid-parent heterosis was positive, though not extremely
so, for all traits except height and proportion of spikelets filled
(Figure 2 and Table 9). Yield per plant and its component
trait, tiller number, showed the highest average heterosis; average
heterosis for yield was 32.0%. Parental SDAF ranged from 0.200
to 0.285 in the phenotyped F1 hybrids (Supplementary Figure 4).

TABLE 8 | Mean, standard deviation, and range of relative yield per plant of the F1

hybrids compared to each inbred check.

Check Mean Relative Performance ± SD Range

WTR-1 0.206 ± 0.143 −0.238—0.679

Y 134 (DP 6) 0.191 ± 0.141 −0.248—0.659

Khazar (DP 8) 0.283 ± 0.147 −0.218—0.724

OM 997 (DP 10) 0.283 ± 0.152 −0.190—0.786

M 401 (DP 17) 0.179 ± 0.140 −0.256—0.642

X 21 (DP 19) 0.289 ± 0.153 −0.186—0.796

Overall, in all hybrids, parental SDAF was significantly correlated
with mid-parent heterosis for all traits except proportion of
spikelets filled (Figure 3 and Table 10). Interestingly, the
direction of the correlation was negative for all traits except
tiller number. The strongest correlation of mid-parent heterosis
and SDAF for hybrids overall was for panicle length. However,
when hybrids were grouped into families by female parent, there
were no significant correlations between parental SDAF and
mid-parent heterosis.

DISCUSSION

The objectives of this study were (1) to identify high-yielding
F1 hybrids from crosses of IRRI male sterile lines with stress-
tolerant male lines, (2) to identify parental lines with high
GCA for use in future reciprocal recurrent genomic selection
programs, and (3) to evaluate genomic prediction and phenotypic
selection accuracies in our hybrid breeding population, with
the end goal of developing stress-tolerant hybrid rice varieties.
Compared to inbred commercial checks (which were also
progenitors of the male lines), phenotyped F1 hybrids showed
genetic yield advantages of up to 80% and warrant further
testing (Supplementary Figure 3; Table 8). Although the genetic
yield of the top-performing F1 hybrid observed in the study
environment was 8.670 tons per hectare, this measure pertains
to the study environment only—which included both standard
irrigated conditions and stressful upland conditions—and only
the plant population densities used, which were lower than
those observed in farmers’ fields (Supplementary Table 8).
Relative to the mid-parent, the F1 hybrids showed on average
32.0% mid-parent heterosis for yield, which is consistent with
literature averages of 10 to 30% in rice (Figure 2 and Table 9;
Janaiah and Xie, 2010; Longin et al., 2012; Spielman et al.,
2013). However, the maximum mid-parent heterosis observed
for yield was 89.2%, and heterosis up to 48.3% was observed
within a single standard deviation of the mean (Figure 2 and
Table 9). Because heterosis is present in the F1 hybrids and
SCA as well as GCA variance was detected, recurrent selection
for GCA in the male and female lines tested should allow
development of heterotic pools. However, we did not evaluate the
relative efficiency of hybrid vs. line breeding for our population
given the estimated GCA and SCA variance detected in our
population or other relevant factors, and further investigation of
this topic is warranted.
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FIGURE 2 | Box plots of mid-parent heterosis for each trait in the phenotyped F1 hybrids. (A) Plant height (cm). (B) Tiller number. (C) Panicle length (mm).
(D) Proportions of spikelets filled. (E) Yield per plant (g). (F) Potential yield per plant (g).

Fertility Restoration and Genetic
Architecture of Spikelet Filling
Interestingly, narrow-sense heritability for the proportion of
spikelets filled was relatively high at 0.600 (Table 2). Although
variation in grain fill is generally driven by environmental factors
in rice, with starch synthesis and deposition depending on
available assimilate, in rice hybrids absence of grain fill can be
due to spikelet sterility from lack of fertility-restoring (Rf ) alleles
(Peng et al., 1998; Tang et al., 2017). Because fertility restoration
is only relevant in hybrids of CMS parents, not TGMS parents,
we estimated narrow-sense heritability for proportion of spikelets
filled in the CMS-derived hybrids only as 0.922 (Table 2). The
relatively high proportion of phenotypic variance explained by
additive genetic variance for this trait in CMS lines suggests that
segregation for fertility restoration played a role in the proportion
of spikelets filled in the CMS-derived hybrids and as such in
observed yield per plant. Concordantly, selection accuracy for
proportion of spikelets filled was substantially higher in the T1M
hybrids than T1F hybrids in cross-validation, though T1F hybrids
had higher accuracies than T1M for all other traits. Screening the
population for known major fertility restoration alleles at Rf3 and
Rf4 may allow the use of marker-assisted selection to improve
selection accuracy (Tang et al., 2017). It may also be possible to
select for fertility restoration by genomic prediction rather than
mapping fertility-restoring alleles of more minor or modifying
effect. Selection for fertility restoration may effectively unlock
observed yield potential in future hybrids and fix Rf alleles in the
male heterotic pool.

Accuracies of Genomic Prediction for
Hybrid Genetic Value and Parent GCA
Genomic prediction model accuracies were high in unobserved
T2 F1 hybrids, for which both parents were included in
the training set (Table 3). All F1 hybrids surveyed were

closely related; closely related individuals have smaller effective
population size, which reduces the effective number of loci
controlling traits and is expected to increase prediction accuracy
(Supplementary Figure 5; Daetwyler et al., 2010). Accuracy
appeared to be driven primarily by estimation of the female line
effects, and accuracy in T2 hybrids was not substantially different
from T1F hybrids (Table 3). The exception was proportion of
spikelets filled, for which the male (restorer) line effects were
more relevant. As expected, accuracy in the T0 hybrids was low,
though positive and improved substantially for yield per plant by
the inclusion of SCA effects in the model (Table 3).

Accuracy was low for genomic estimated male GCA (< 0.300)
despite that the males all shared a recurrent parent and as such a
large proportion of their genomes (75% ± Mendelian sampling
and selection; Supplementary Figure 6; Table 4). Although the
male donor progenitors were diverse, multiple male lines per
donor were sampled. Low accuracies of genomic predictions of
male GCA may have been due to highly unbalanced crossing of
males to females, with no single male crossed to all females. It was
not possible to estimate accuracy for genomic estimated GCA in
the females, which were also closely related but more extensively
phenotyped (Supplementary Figure 7).

TABLE 9 | Mean, standard deviation, and range of mid-parent
heterosis for each trait.

Trait Mean Mid-Parent Heterosis ± SD Range

Height −0.019 ± 0.106 −0.237—0.313

Tiller Number 0.292 ± 0.132 −0.026—0.741

Panicle Length 0.017 ± 0.054 −0.163—0.183

Proportion of
Spikelets Filled

−0.034 ± 0.160 −0.657—0.258

Yield per Plant 0.320 ± 0.163 −0.110—0.892

Potential Yield 0.327 ± 0.131 0.005—0.817
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Phenotypic accuracies were similar to or lower than genomic
prediction accuracies for hybrid performance in the T2 case
(Table 5; Rutkoski et al., 2015). Notably, accuracy of genomic
prediction of hybrid yield (0.820) was greater than accuracy of
the phenotypes (0.682). However, for male GCA, the phenotypic
accuracies greatly exceeded those of genomic prediction for
both the GCA and the GCA + SCA models (Table 6). It
was not possible to compare genomic and phenotypic selection
accuracies for female GCA.

Inconsistent Correlations of Mid-Parent
Heterosis and Parental SDAF
Considering all hybrids in the study, we observed parental SDAF
to be negatively correlated with mid-parent heterosis and hybrid
genetic value for all traits surveyed except tiller number, for
which SDAF was positively correlated with mid-parent heterosis
(Figure 3 and Table 10). In many species, parental SDAF (or
other measures of genetic distance) is positively correlated with
heterosis due to release from inbreeding depression to a point,
as dominant alleles mask deleterious recessive alleles in hybrids
(Falconer and Mackay, 1996). However, as genetic distance
increases, outbreeding depression eventually prevails as favorable
epistatic combinations of genes are separated (Lynch and Walsh,
1998). A common manifestation of outbreeding depression is
fertility barriers (Edmands, 2002). In the case of yield per
plant, we cannot eliminate the possibility that genetic distance is
correlated with absence of wide-cross compatibility alleles known
to affect seed set, given the inter-subspecific diversity present in
the male lines (Ji et al., 2005). However, given the intense selection
on the male lines, it seems possible that wide-cross compatibility
in the males may have also been positively and indirectly selected
with yield. Genetic distance could also be correlated with absence
of fertility restoring alleles by chance. However, yield potential
corrects for fertility restoration by estimating yield as if all
spikelets were filled to the average weight observed in the study,
and overall mid-parent heterosis for yield potential was also
negatively correlated with parental SDAF. Importantly, though
unsurprisingly given the relationships of the BC1F5 male lines,
the correlation of parental SDAF and mid-parent heterosis was
not observed within female families of hybrids (Table 10). This
suggests that the negative correlations observed in hybrids overall
were due to differences in female genetic distance from the
average male. More crucially for practical purposes, whether
genetic distance is indicative of mid-parent heterosis depends on
the population defined, even in closely related hybrids.

Future Directions for IRRI Hybrid Rice
Breeding
Based on the study findings, we caution against the conventional
wisdom that increased genetic distance between parents alone
will always confer improved hybrid performance or positive
heterosis. Increased genetic distance in the potential founders
of heterotic pools of rice screened was not reliably associated
with desired positive heterosis for yield, even though the pools
could be genetically distinguished. In this population, and
probably in rice more generally, empirical selection for GCA

TABLE 10 | Pearson’s correlation coefficient of mid-parent heterosis and SDAF
with 95% confidence intervals of the coefficient and t-tests of significance
conducted at α = 0.05.

Trait r ± 95% CI t df P

Height

Overall −0.330 ± 0.062 −9.791 783 < 0.001

10A −0.041 ± 0.157 −0.512 154 0.610

2A 0.007 ± 0.176 0.077 122 0.939

4A 0.031 ± 0.145 0.419 181 0.676

6A −0.044 ± 0.227 −0.381 73 0.705

7A −0.073 ± 0.237 −0.592 66 0.556

A07 0.084 ± 0.146 1.118 177 0.265

Tiller Number

Overall 0.299 ± 0.064 8.725 778 < 0.001

10A −0.143 ± 0.155 −1.786 152 0.076

2A 0.058 ± 0.176 0.644 121 0.521

4A 0.027 ± 0.145 0.357 180 0.722

6A 0.032 ± 0.227 0.269 73 0.788

7A −0.084 ± 0.239 −0.677 65 0.501

A07 0.045 ± 0.146 0.601 177 0.549

Panicle Length

Overall −0.430 ± 0.057 −13.309 783 < 0.001

10A −0.042 ± 0.157 −0.516 154 0.607

2A −0.084 ± 0.175 −0.935 122 0.352

4A 0.081 ± 0.144 1.094 181 0.275

6A 0.066 ± 0.226 0.568 73 0.572

7A 0.013 ± 0.238 0.103 66 0.918

A07 0.058 ± 0.146 0.772 177 0.441

Proportion of Spikelets Filled

Overall −0.015 ± 0.081 −0.363 588 0.717

10A 0.127 ± 0.156 1.578 151 0.117

2A 0.063 ± 0.177 0.687 120 0.493

4A 0.103 ± 0.146 1.364 174 0.174

6A 0.027 ± 0.228 0.23 72 0.818

7A 0.083 ± 0.242 0.663 63 0.510

Yield per Plant

Overall −0.131 ± 0.069 −3.698 781 < 0.001

10A 0.014 ± 0.157 0.169 154 0.866

2A 0.041 ± 0.176 0.450 122 0.653

4A 0.116 ± 0.144 1.562 180 0.120

6A 0.040 ± 0.227 0.346 73 0.730

7A −0.022 ± 0.238 −0.176 66 0.861

A07 0.104 ± 0.146 1.389 176 0.167

Potential Yield

Overall −0.092 ± 0.08 −2.225 585 0.026

10A −0.031 ± 0.159 −0.386 151 0.700

2A −0.005 ± 0.178 −0.059 120 0.953

4A 0.087 ± 0.148 1.141 171 0.255

6A 0.042 ± 0.228 0.360 72 0.720

7A −0.008 ± 0.244 −0.060 63 0.952

Overall correlations as well as correlations within female families are reported.
Correlations are not available within the A07 female family for potential yield or
proportion of spikelets filled because phenotypic observations of the A07 line were
not available at the location in which the traits were phenotyped, irrigated lowland.

is preferable to selection based on genetic distance to breed
high-performing hybrid rice.

For hybrid performance, genomic prediction accuracies were
similar to or higher than phenotypic accuracies. Therefore,
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FIGURE 3 | Scatterplots of mid-parent heterosis against parental SDAF. Points are colored according to female parent. (A) Height. (B) Tiller number. (C) Panicle
length. (D) Proportion grains filled. (E) Yield per plant. (F) Potential yield.

genomic prediction could be useful for product development
in the population of study. Most notably, inclusion of genomic
information increased prediction accuracy for hybrid yield per
plant by approximately 13.8% compared to phenotype alone
(Tables 3, 5). Observed accuracies of prediction of unobserved
hybrids with at least one parent in the training population (T1)
were also positive and substantial, suggesting that on average
genomic prediction could allow identification of further crosses
with high value in the population of study. Genomic prediction
accuracies for hybrids with neither parent observed (T0) were not
as high as in the T1 case, but were nonetheless positive.

In contrast, genomic prediction accuracies for male GCA
were substantially lower than phenotypic accuracies. For yield,
genomic prediction accuracies were approximately three times
less than phenotypic selection accuracies. However, reciprocal
recurrent genomic selection for GCA can reduce cycle length
by two-thirds compared to reciprocal recurrent phenotypic
selection, because parents can be immediately recycled using
genomic predictions of their GCA, leading to a cycle length of
one (Powell et al., 2020). In conventional reciprocal recurrent
selection, it is necessary to cross new parents to the opposing pool
and phenotype the inter-pool crosses to estimate GCA before
intra-pool recycling is possible, which increases the cycle length
to three (Rembe et al., 2019). The genomic prediction accuracies
observed in the study would provide comparable genetic gain to
phenotypic selection if used to reduce the breeding cycle length
to one, assuming that reduction in cycle length has no effect
on genomic prediction accuracy and that accuracy of genomic

prediction of female GCA (which could not be estimated, but for
which more observations per female were available) is the same
or higher than male GCA (Rembe et al., 2019; Powell et al., 2020).
Increases in accuracies of genomic prediction of GCA relative
to phenotypic selection are likely possible, as the training set of
related hybrids would build over time in a closed population, and
more complete and informative crossing designs could provide
phenotypes. The potential of hybrid breeding strategies in IRRI
germplasm would benefit from further assessment by simulation
(Faux et al., 2016; Gaynor et al., 2020).
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The effects of climate change create formidable challenges for breeders striving to
produce sufficient food quantities in rapidly changing environments. It is therefore critical
to investigate the ability of multi-environment genomic prediction (GP) models to predict
genomic estimated breeding values (GEBVs) in extreme environments. Exploration of
the impact of training set composition on the accuracy of such GEBVs is also essential.
Accordingly, we examined the influence of the number of training environments and
the use of environmental covariates (ECs) in GS models on four subsets of n = 500
lines of the soybean nested association mapping (SoyNAM) panel grown in nine
environments in the US-North Central Region. The ensuing analyses provided insights
into the influence of both of these factors for predicting grain yield in the most and
the least extreme of these environments. We found that only a subset of the available
environments was needed to obtain the highest observed prediction accuracies. The
inclusion of ECs in the GP model did not substantially increase prediction accuracies
relative to competing models, and instead more often resulted in negative prediction
accuracies. Combined with the overall low prediction accuracies for grain yield in the
most extreme environment, our findings highlight weaknesses in current GP approaches
for prediction in extreme environments, and point to specific areas on which to focus
future research efforts.

Keywords: genotype-by-environment (GE) interaction, soybean nested association mapping (SoyNAM)
populations, genomic selection (GS), extreme environmental conditions, environmental covariates (ECs)

INTRODUCTION

The impacts of climate change are adversely affecting the availability of food, feed, fuel, and fiber
security worldwide, with prior research suggesting a crop yield loss of 5% for each degree Celsius
above historically observed weather patterns (Nelson et al., 2010; Zhao et al., 2017). Accelerated
climate change has already been observed in specific regions that have low food security, which in
turn could exacerbate crises in areas of the world that already struggle with a lack of available and
affordable food (Whitford et al., 2013). It is therefore critical that research efforts focus on refining
breeding tools so that the overall genetic gain of crops that humanity relies on continues to increase,
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even in the face of extreme and fluctuating environments.
Such work in breeding for optimal crop varieties are essential
because agricultural efficiency in use of land and inputs are
maximised whenever growers select the best crop variety for their
environment, whereas varieties ill-suited to their environment
will be more susceptible to disease, pest, and weather events
(Zhao et al., 2017).

Genomic prediction (GP) is an emergent methodology that
revolutionised plant and animal breeding, and is grounded in a
statistical framework that uses genome-wide markers to predict
breeding values of agronomically important traits (Bernardo,
1994; Meuwissen et al., 2001). Bernardo (1994) was the first
who proposed the use of genomic information as covariates for
predicting untested genotypes. Later on, Meuwissen et al. (2001)
proposed a new methodology to cope with the challenge of fitting
prediction models when the number of genomic covariates (p),
delivered with the advancements of sequencing technologies,
surpass by far the number data points (n) available to fit models
(p� n).

A typical breeding program using GP begins with model
training in which individual plants, grouped in a training
population, are genotyped and phenotyped for the trait(s) of
interest (Heffner et al., 2009). These training data are then used
to fit a prediction model that quantifies the relationship between
the p genotyped markers and phenotypic traits. This fitted
model exclusively uses genotypic information collected from
a breeding population to predict genomic estimated breeding
values (GEBVs) of un-phenotyped genotypes, leveraging the
genomic relationships between individuals in testing and training
sets. The main application of this fitted GP model is to find
which individuals have optimal GEBVs. Arguably, the most
important advantages of GP are that it allows breeders (1) to
determine which varieties should be discarded (screening), (2)
to identify superior individuals to advance, and (3) to select
best parents with desirable characteristics to be used in the
next improvement cycles. In this way, GP has been shown to
increase the genetic gain per field season compared to marker-
assisted selection approaches that rely on phenotypic selection
(Heffner et al., 2010).

One challenge that GP has already been shown to be
well-suited for is the prediction of GEBVs across multiple
environments (Burgueño et al., 2012; Heslot et al., 2014; Jarquín
et al., 2014; Lopez-Cruz et al., 2015). To accurately make such
predictions, GP models are typically augmented with additional
terms to account for variability attributable to environments
and their interaction with the genotype. These augmented GP
models take on two main forms, specifically naïve or non-
informed and informed. The first, naïve or non-informed, is
to include a main random effect for the environment, as well
as a two-way interaction effect between each marker genotype
and each environment. This so-called G × E model has been
shown to improve prediction accuracies (Jarquín et al., 2014;
Lopez-Cruz et al., 2015) relative to conventional GP models
that only include genotype and environment main effects. The
second approach (informed) takes into account environmental
covariates (ECs) measured at each environment, and then
uses kernel-based methods to incorporate such information via

the variance-covariance structures, which ultimately account
for the interaction between environmental factors and marker
genotypes. The resulting model (called the G × W model)
incorporates quantifications of the interactions between each
marker genotype and each EC into the prediction of GEBVs, and
it could potentially outperform the naive G × E models (Jarquín
et al., 2014; Basnet et al., 2019).

Given the promising prediction accuracies of the G × E
and G × W models reported in these previous studies (Basnet
et al., 2019), it is critical that their potential to predict GEBVs
in extreme environments are explored. If these two models end
up yielding a low or similar prediction accuracies under extreme
environmental conditions, then future research will need to
focus on either refining these GP models, exploring the genetic
and environmental diversity required to yield decent prediction
accuracies, or both. Therefore, the purpose of this study was to
explore the impact of training set composition on the ability of
the G × E and G × W models to accurately predict GEBVs in
an extreme environment. The resulting analysis was conducted
using a subset of the publicly available genotypic, phenotypic,
and EC data from the soybean nested association mapping
(SoyNAM) panel (Song et al., 2017; Diers et al., 2018) collected
across multiple years and locations across the US-North Central
Region. We used the phenotypic and EC data available at the nine
resulting environments to determine which of the nine resulting
environments were most and least similar among them. We
then explored which subsets of environments yielded the highest
prediction accuracies in these two targeted environments. Our
working hypothesis was that the currently available genotypic,
phenotypic, and EC data were insufficient for enabling the G× E
and G ×W GP models to accurately predict GEBVs in extreme
environments. Thus, we predicted that these two GP models
would provide inaccurate GEBVs at the most different of the nine
environments that we considered in this study.

MATERIALS AND METHODS

The SoyNAM panel has been previously described (Song et al.,
2017). Briefly, this panel consists of 40 recombinant inbred
line (RIL) families derived from crossing a diverse parent to
a common parent (IA3023). On average, each family consists
of approximately 140 RILs, resulting in a total sample size
of 5,600 individuals. To conduct our analysis, we considered
a total of 5,000 markers that were genotyped from 17 lines
that are elite public germplasm; 15 have diverse ancestry and
8 are plant introductions (Xavier et al., 2015). Genotypic and
phenotypic data for the SoyNAM are publicly available at https:
//www.soybase.org/SoyNAM. These markers were then filtered to
remove all markers that contain more than 50% of missing values
and a minor allele frequency smaller than 0.03, resulting in a total
of 4,450 markers being used for all downstream analyses.

Phenotypic Data and Field Trials
The phenotypic data were collected across 10 different locations
in the US-North Central Region over 3 years. The trait
that we analysed was grain yield (kg ha−1), which has been
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previously described (Hunter et al., 2017). The experimental
design at each of the resulting environments have already
been presented in Diers et al. (2018) and Xavier et al.
(2018). However, not all locations were observed in all
years, which resulted in a total of 18 location × year
combinations (environments) (Xavier et al., 2018). Of these 18
environments, we analysed only a subset of 9 environments
for which (1) we were able to obtain weather information
and (2) have a common set of overlapping genotypes.
Thus, a total of 2,336 genotypes were observed across all
9 environments. At each of the 9 environments, best linear
unbiased predictions (BLUPs) grain yield, which already have
been presented in Diers et al. (2018) and Xavier et al.
(2018), were used in our analyses. To ensure the most and
the least similar environments based on weather data also
were the most and the least similar environments based on
phenotypic data, random samples of 500 individuals were
selected and mean phenotypic correlation between environments
was computed until these matched. For a given environment,
the mean phenotypic correlation is defined as the mean
Pearson correlation of grain yield and the grain yield at the
remaining environments. Thus, four random samples were
considered for this study, where the difference of the mean
phenotypic Pearson correlation between the most and the
least correlated environment ranged from 0.185, 0.190, 0.191
to 0.198. Within each environment, heritabilities for grain
yield were estimated as the ratio between the variability
explained by the genetic component and the total variance

Ĥ2
=

σ̂2
L

σ̂2
L+σ̂2

E
, where σ̂2

L and σ̂2
E are, respectively, the variance

component estimates of a line random effect and residual
random effect fitted from a mixed linear model with grain
yield as the response variable and lines included as a random
effects (please see Holland et al., 2003) for an overview of
calculating heritability).

Weather Data
At each of the 9 environments, we obtained ECs in the
form of historical weather data extrapolated from Google
Cloud.1 These data were from weather stations distanced at
most 57 km from the field location. After downloading the
data from the cloud using a custom R script (Available from
GitHub2), we selected three ECs that were both common
to all 9 weather stations and recorded in 24-hr increments.
Specifically, these three ECs were mean minimum daily
temperature (measured in tenths of degrees Celsius), mean
maximum daily temperature (tenths of degrees Celsius), and
mean daily precipitation (inches). We chose to not convert
mean daily precipitation to SI units because we wanted
to leave the historical weather data from Google Cloud
unaltered. For each location, weather data were collected
starting on the planting date and continued until the 125th
day after planting. Thus, the total number of ECs totaled
3 × 125 = 375, for a total of 9 × 375 = 3,375 total

1https://cloud.google.com/public-datasets/weather
2https://github.com/sarahwidener/Frontiers_Paper/blob/master/weather_
retrieval/Get%20all%20weather%20data%20for%20project.R

weather records across all 9 locations. A total of six weather
records were missing; these values were imputed with the mean
value between the previous and the following day within the
same environment.

Statistical Analyses Conducted on ECs
to Quantify Similarity Across
Environments
At each environment, we assessed the distribution of the values
of each EC on the first day of planting and the following
125 days. Additionally, we conducted a principal component
analysis (Morrison et al., 1976) of all 375 ECs (3 ECs measured
across 125 days) to explore their degree of similarity across the 9
environments. These analyses enabled the identification of which
environments were most and least similar among them.

GS Models
We considered three genomic selection models (M1–M3) in our
analysis; however, first we introduce the most elemental linear
predictor (M0) because it is useful for deriving the other models.

M0: E + L. Consider that the yield performance yij of the
ith (i = 1, 2,..., 500) genotype observed in the jth (j = 1, 2,...,
9) environment can be represented as a sum of a common
constant effect across genotypes and environments (µ) plus a
line effect Li, an environmental effect Ej and an error term eij
addressing the non-explained phenotypic variability as follows
in M0:

yij = µ+ Ej + Li + eij (0)

where Ej and Li are considered random terms such that these
are assumed to be independent and identically distributed
(IID) outcomes from a normal density such that Ej ∼ N

(
0, σ2

E
)

and Lj ∼ N
(
0, σ2

L
)
, with σ2

E and σ2
L being the corresponding

variance components; and eij ∼ N
(
0, σ2) with σ2 representing

the residual variance. One disadvantage of M0 is that it does not
allow the prediction of unobserved genotypes because it relies
only on phenotypic information.

M1: E + G. To allow the prediction of untested genotypes,
genomic relationships between individuals in training and
testing sets should be established first. For this, we construct
a covariance structure whose entries contain the genomic
similarities between pairs of individuals. Assuming that the
marker effects bk in the linear combination involving p
markers, gi =

∑p
k=1 xikbk, follows IID normal densities

N(0, σ2
b) and using results from the multivariate normal

density we have that that the vector of genomic effects g ={
gi
}

follows a multivariate normal distribution such that g ∼

N
(

0, Gσ2
g

)
, where G = XX

′

p , X is the centered and scaled

(by columns) matrix of molecular markers, and σ2
g = p×

σ2
b. Thus, we have the following linear predictor for M1:

yij = µ+ Ej + gi + eij, (1)

where all terms are as previously described. One of the
disadvantages of M1 is that it returns the same genomic
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effect across environments; thus the direct influence of
stimuli unique to particular environments are not taken
into consideration.

M2: E + G + G × E. To allow estimations of particular
genomic effects within environments, Jarquín et al. (2014)
proposed a model that conceptually considered the interaction
between each molecular marker and each environment.
This model is based on the cell-by-cell product between
two covariance structures, one for environmental factors
using only the identification of the environments and
another for genotypes based on the genomic relationship
matrix. Thus, the genotype-by-environment interaction
effects can be predicted thought gE =

{
gEij

}
with

gE ∼ N
(

0,ZEZ
′

E#ZgGZ
′

gσ
2
gE

)
where ZE and Zg are the

corresponding incidence matrices that connect phenotypic
observations with environments and genotypes; σ2

gE is the
corresponding variance component; and # represents the
Hadamard (cell-by-cell) product between two matrices. Hence,
we have that the resulting linear predictor for M2 can be written
as follows:

yij = µ+ Ej + gi + gEij + eij, (2)

where all terms are as previously described. This model not only
allows the inclusion of the G × E interaction in a naïve way but
potentially also offers the opportunity of including the genotype-
by-environment interaction component in an informed way. One
approach for accomplishing this is to include ECs that describe
environmental similarities between pairs of environments. Such
information is incorporated into the final GP model we consider,
as described below.

M3: E + G + G × W. Analogous to the derivation of the
kinship matrix G, the information on ECs can be considered
in the development of an environmental kinship matrix
� describing environmental similarities between pairs
of environments. Jarquín et al. (2014) proposed a model
that allows the incorporation of the ECs to interact with
molecular markers. To accomplish this, it is necessary to
first model the main effect of the ECs. Consider that the
environmental effect wj corresponding to jth environment
can be written as a linear combination between q ECs
and their corresponding effects wj =

∑q
l=1 Wjlγl with

γl ∼ N
(
0, σ2

W
)

and σ2
W defined as the corresponding

variance component. Then we have that the vector of
environmental effects follows a multivariate normal density
such that w =

{
wj
}
∼ N

(
0, �σ2

�

)
; where � =

WW
′

q , W
is the centered and scaled (by columns) matrix of ECs (i.e.,
measurements of mean minimum daily temperature, mean
maximum daily temperature, and mean daily precipitation
across 125 days, as previously described), σ2

� = qσ2
W is the

corresponding variance component. To include the main
effect of the ECs in the prediction model, we have to expand
� using the incidence matrix that connects phenotypes with
environments such as ZE�Z

′

E is the resulting covariance
structure. In order to include the ECs in interaction with

marker genotypes, we substitute the expanded covariance
matrix in the covariance structure of the gE term such as
gw ∼ N

(
0,ZE�Z

′

E#ZgGZ
′

gσ
2
g�

)
with σ2

g� acting as the
corresponding variance component. The resulting linear
predictor for M3 can be written as follows:

yij = µ+ Ej + gi + gwij + eij, (3)

where all terms are as previously described. Conceptually, this
model allows the inclusion of the interaction between each
molecular marker and each ECs.

Cross-Validation Scheme
The main objective of this cross-validation scheme was to identify
the training environments and GP model that yielded the highest
possible prediction accuracies in (1) the environment that had
the lowest mean phenotypic correlation with the other eight
environments, and then to contrast this result with (2) the
environment that had the highest mean phenotypic correlation
with the other eight environments. For both (1) and (2), we
conducted a CV00 cross validation scheme (Jarquín et al., 2017;
Jarquin et al., 2020) where none of the genotypes from the test
environment were used to train the GS model.

For a given random sample of 500 genotypes (i.e., RILs
from the SoyNAM population) observed in all 9 environments,
we randomly selected a set of 200 genotypes to be the testing
set in the unobserved environment. We used the phenotypic
information of the remaining 300 genotypes observed in the
remaining 8 environments. Because we were interested in the
impact of training set composition on prediction accuracies in
a given test environment, we evaluated the ability of all possible
subsets of the remaining eight remaining environments to train
each GP model and accurately predict GEBVs. The resulting
numbers of possible combinations of environments to include
in the training set are described in Table 1. For a given test
environment, training set, and GP model, prediction accuracy
was measured as the Pearson correlation between the observed
(phenotypic) and predicted (GEBV) values. This procedure was
repeated three additional times so that the performance of the
GP models could be evaluated across all 4 random subsets
of 500 genotypes.

TABLE 1 | The number of possible combinations (right column) of subsets of eight
environments (left column) considered as a training sets for the genomic
selection models.

Subset of environments Number of combinations

1 8

2 28

3 56

4 70

5 56

6 28

7 8

8 1

In summary, the value of the right column of the ith row is

(
8

i

)
.
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RESULTS

Similar Distribution of EC Values Across
Nine Environments, With IA_2013
Displaying the Most Unique EC Values
A biplot of the first two principal components of 3 × 125 = 375
ECs suggests that many of the locations have similar
environmental conditions (Figure 1A). This result is supported
by similar distributions of values of the three ECs (across
the 125 days since planting) within each of the 9 locations
(Figures 1B–D). Collectively, these results suggest that there is
not a substantial amount of environmental diversity among the
9 environments that were tested. Nevertheless, among these 9
environments, IL_2013, IN_2013, and IA_2013 appeared to be
the most divergent.

Phenotypic Data on Grain Yield Were
Most Unique Within IA_2013, While Grain
Yield Within NE_2011 Was Most Similar
to the Remaining Environments
Across the 4 replicate random samples of 500 genotypes, we
observed similar trends in phenotypic distributions of yield
performance (ka ha−1) across the 9 environments. For brevity,

we focus on the results for the second random sample in the
main text of the manuscript, and then provide similar details
for the remaining three random samples in the Supplementary
Material section. We observed that IA_2013, IA_2012, and
IL_2011 were the environments that tended to yield the least,
while IN_2013 and NE_2011 were the environments that yielded
the greatest (Figure 2).

We then quantified the phenotypic correlation between
environments to determine which were least and most
similar. As such, the mean phenotypic correlation of each
environment with the remaining eight environments is
presented in Table 2. The two environments that showed the
lowest and the highest mean correlation with the remaining
eight environments were IA_2013 (0.137) and NE_2011
(0.327), respectively (as depicted under the column labeled
“Rep 2” under “Average Correlation” in Table 2). Across
the four replicates, we also calculated the heritabilities at
each of the environments. These heritabilities were relatively
stable across the 9 tested environments with around 50% of
the phenotypic variability explained by the additive genetic
component within each environment (Table 2). Based on
the collective information on trait correlations across the 9
environments and the ECs, we determined that IA_2013 was
the most extreme environment and that NE_2011 was the least
extreme environment.

FIGURE 1 | (A) Shows the first two principal components (PCs) from a principal component analysis of three environmental covariates (ECs) measured over
125 days at nine environments in the US North Central Region. The X-axis shows PC1 and the Y-axis shows PC2. The percent of total variation explained in each
PC is provided in the axis labels. This plot suggests that IN_2013, IL_2013, and IA_2013 are the environments with EC values that are most distinct from the
remaining environments. (B–D) Display the distributions of mean daily values of three environmental covariates (Y-axis) at these nine environments (X-axis) and
* represents the mean. (B,C) Show maximum and minimum daily temperature, respectively, within each environment in tenths of degrees Celsius. (D) Shows
precipitation in inches. Collectively (B–D) suggest that there the observed EC values are similar among these 9 environments.
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FIGURE 2 | Boxplot of yield in kg ha−1 (Y-axis), by environment (X-axis) for the second random sample of 500 genotypes from the SoyNAM panel, and * represents
the sampling mean. Environments IA_2013, IA_2012, and IL_2011 had the lowest yield, while IN_2013 and NE_2011 had the highest yield.

TABLE 2 | Mean Pearson correlation coefficient of grain yield (in kg ha−1) between each environment and the remaining eight environments (presented under the
columns labeled “Average Correlation”), as well as the observed heritability of grain yield within each environment (presented under the columns labeled “Heritability”).

Environment Average Correlation Heritability

Rep 1 Rep 2 Rep 3 Rep 4 Rep 1 Rep 2 Rep 3 Rep 4

IA_2013 0.164 0.137 0.150 0.158 0.503 0.485 0.492 0.497

IA_2012 0.268 0.216 0.228 0.254 0.511 0.499 0.483 0.496

IL_2011 0.221 0.203 0.179 0.177 0.500 0.521 0.486 0.514

IL_2013 0.277 0.277 0.257 0.291 0.509 0.510 0.507 0.482

IL_2012 0.263 0.261 0.236 0.247 0.513 0.481 0.497 0.504

IN_2012 0.290 0.277 0.262 0.287 0.507 0.495 0.500 0.483

NE_2012 0.293 0.245 0.235 0.266 0.506 0.484 0.478 0.481

IN_2013 0.289 0.283 0.301 0.276 0.517 0.534 0.502 0.467

NE_2011 0.349 0.327 0.340 0.356 0.502 0.500 0.510 0.499

The columns labeled “Rep 1”, . . . , “Rep 4” present these summary statistics for each of the 4 random samples of 500 randomly selected individuals.

Relatively Small Number of
Environments Needed to Yield Accurate
Predictions for IA_2013
We evaluated the ability of M1–M3 to predict GEBVs in the
most extreme environment, IA_2013, using the all-possible
subsets of the 8 remaining environments, as described in the
Section “Materials and Methods” and Table 1. Figure 3 presents
the correlation between the predicted and observed values for
IA_2013 considering the 255 different ways for combining the
remaining 8 environments for model calibration across the 4
replicates of 500 randomly selected genotypes. In general, low

and sometimes negative prediction accuracies were observed,
with the highest observed prediction accuracy being less than
0.36. The optimal number of training environments (i.e., that
yielded the highest prediction accuracies from M1, M2, and M3)
changed considerably across the four replicates, but we frequently
observed that a relatively small number of environments was
needed to achieve the highest possible prediction accuracy.
Across the 4 replicates of 500 random samples, we never
observed an instance where the model accounting for ECs (i.e.,
M3) yielded definitively higher prediction accuracies than M1
or M2. Moreover, there were many combinations of training
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FIGURE 3 | Observed prediction accuracy of grain yield in kg ha−1 at IA_2013 across multiple genomic prediction (GP) models and training environments. Four
random samples of 500 genotypes from the SoyNAM panel are presented in panels (A–D). For each panel, the X-axis is the specific number of environments
considered for training the GP model, sorted from smallest to largest number of training environments; and the Y-axis shows the prediction accuracy, quantified as
the Pearson correlation coefficient between the observed phenotypic values and the genomic estimated breeding values. The results in grey depict the GP model
without any genotype-by-environment (G × E) interaction effects, while the results in blue depict the GP model with G × E interaction effects, and finally the results in
yellow depict the GP model with G × E interaction effects that incorporates environmental covariates (ECs). The highest observed prediction accuracies across any
training set from each GP model are highlighted by a solid circle of the same color, while the prediction accuracies of the three models obtained using all eight of the
possible environments in the training set are shown as horizontal lines of the same color. These panels show that not all eight environments are needed to obtain the
maximum possible prediction accuracies.

environments where M3 clearly yielded lower, and often negative,
prediction accuracies.

Slightly Larger Number of Training
Environments Needed to Maximize
Prediction Accuracy in NE_2011
We then conducted a similar analysis to assess the predictive
ability of M1–M3 to predict GEBVs in the least extreme
environment (NE_2011, see Figure 4). In general, we observed
higher prediction accuracies at NE_2011 relative to those
observed in the most extreme environment (IA_2013). Similar to
IA_2013, the number of optimal environments needed for M1,
M2, and M3 differed across reps. However, the general trend
we observed was that a larger number of training environments
were needed for maximizing the prediction accuracy in NE_2011
relative to IA_2013. Finally, we did not observe any evidence
that including ECs in the model improved prediction accuracy.
That is, the highest prediction accuracy observed for M3
(∼0.53) was not noticeably different than those of M1 and M2,
and the lowest prediction accuracies observed across the four
replicates were from M3.

DISCUSSION

We compared the ability of various subsets of environments to
accurately predict GEBVs in (1) a target environment that was
the most different from the remaining environments with respect
to phenotypic correlation and observed ECs, and (2) a target
environment that was the most similar using these same metrics.
Although we observed lower prediction accuracies in (1), the
ensuing analysis highlighted similar trends in model performance
for both (1) and (2). Using three different GS models that
accounted for environmental information to varying degrees,
we discovered that maximum prediction accuracies could be
achieved by using only a subset of the 8 environments to train the
GP models. Additionally, we found that the inclusion of ECs into
GP models did not substantially boost the prediction accuracies
of the target environments. Finally, when using a reduced
number of environments to train the GP models, we occasionally
observed extremely low and negative prediction accuracies when
including ECs into the GP model. Thus, we identified potential
areas of weakness in existing GP models when they are applied to
predicting GEBVs in specific environments and underscored the
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FIGURE 4 | Observed prediction accuracy of grain yield in kg ha−1 at NE_2011 across multiple genomic prediction (GP) models and training environments. Four
random samples of 500 genotypes from the SoyNAM panel are presented in panels (A–D). For each panel, the X-axis is the specific number of environments
considered for training the GP model, sorted from smallest to largest number of training environments; and the Y-axis shows the prediction accuracy, quantified as
the Pearson correlation coefficient between the observed phenotypic values and the genomic estimated breeding values. The results in grey depict the GP model
without any genotype-by-environment (G × E) interaction effects, while the results in blue depict the GP model with G × E interaction effects, and finally the results in
yellow depict the GP model with G × E interaction effects that incorporates environmental covariates (ECs). The highest observed prediction accuracies across any
training set from each GP model are highlighted by a solid circle of the same color, while the prediction accuracies of the three models obtained using all eight of the
possible environments in the training set are shown as horizontal lines of the same color. These panels show that not all eight environments are needed to obtain the
maximum possible prediction accuracies.

critical need to explore which factors influence the development
of training environments that can lead to the most accurate of
such predictions.

The Inclusion of ECs Into the GP Model
Did Not Result in Substantially Higher
Prediction Accuracies
For the environment with the least similar phenotypic
correlations and ECs relative to the remaining environments
(IA_2013), we observed low prediction accuracies, as expected.
These low accuracies indicate that there is room for improvement
for developing approaches to predict GEBVs in extreme
environments. Nevertheless, the trends that we observed in our
analysis point to areas for further exploration and refinement. To
illustrate this point, consider the results from the second random
sample of 500 individuals we considered in this study. For this
replicate of our analysis, the inclusion of the G × E interaction
in the model without weather data (M2) returned the highest
predictive ability (0.357). In this case, only two environments
were needed (IL_2012, IN_2012) for model calibration, and
the relative improvements were, respectively, 7, 12, and 10%

relative to using all of the eight environments in the training set
under M1, M2, and M3.

These results also identified important shortcomings of using
ECs directly in the GP model. For instance, the fact that M3
occasionally yielded prediction accuracies that were lower than
those of M1 and M2 suggests that the inclusion of ECs into the GP
model is not guaranteed to increase the accuracy of GEBVs. This
suggests that further research into the development of GP models
that effectively incorporate these ECs is needed. Combined with
the observation that M3 yielded negative prediction accuracies
more often than M1 and M2, we also infer that further
investigation similar to Gillberg et al. (2019) is needed into
dissecting which EC values are most likely to contribute to
the highest possible prediction accuracies. These two avenues
for future research could ultimately facilitate the development
robust statistical models for GP in this paradigm, as well as
identification of the ideal environments and ECs to use to train
these GP models.

We observed similar trends between the performance of the
three GP models in most similar environment (NE_2011). In
particular, we noted that the incorporation of such weather
data to predict GEBVs in NE_2011 (i.e., through M3) often
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resulted in accuracies that were either negative or worse than
M1 and M2. Because we observed a higher and more stable
prediction accuracies as the number of environments used in
the training set increased (a trend that was also observed for
IA_2013), we infer that the collective information from multiple
similar environments is critical for accurate prediction GEBVs in
targeted environments with similar weather characteristics.

Minimal Genotypic and Environmental
Diversity Are Limiting Factors of This
Study
There are several important shortcomings of this study. First,
we limited our analysis to only one species. Given the relatively
narrow genetic diversity of soybean (Hyten et al., 2006), our
study potentially did not fully explore the full extent to which
M1–M3 could robustly predict breeding values in species with
more diverse germplasm. Although we would expect to observe
low prediction accuracies for such scenarios (as suggested by the
findings of, e.g., Lorenz and Smith, 2015), it would nevertheless
be worthwhile to quantify these accuracies. Similarly, all 9 of
the environments that we evaluated were from a relatively
narrow geographical range in the midwestern United States. Even
though we were able to observe differences in the prediction
accuracy of the GP models between the two test environments
(IA_2013 and NE_2011), it is critical that follow-up studies
conduct the analysis presented in this work in data from a wider
range of locations.

In general, the incorporation of ECs into GP in a manner
analogous to the incorporation of genome-wide marker data
is rapidly maturing into the field of enviromics (Resende
et al., 2021), and the findings from this study and others
(Alves et al., 2021) could be useful for the establishment of
best practices for collecting and utilizing environmental data.
For example, one notable constraint of our study was that
the observed ECs were common for all genotypes within
the same environment. Given the potential for significant
differences in EC values within a field, we were unable
to capture these potentially important sources of variability.
Combined with our use of only three ECs that were common
across the 9 environments, we postulate that the inclusion of
more ECs, potentially with differing values within locations,
will reveal how sensitive or insensitive the GP models
are at predicting breeding values when used in cases of
extreme environments.

CONCLUSION

Even with the relatively narrow scope of genomic and
environmental diversity observed in our data, we identified
notable weaknesses in both the current GP models and training
data used to predict GEBVs in different environments. We
observed that (1) most accurate GEBVs were from GP models
trained on only a subset of the available environments, and
(2) at best the inclusion of ECs into the GP model did not
substantially improve the prediction accuracies of the GEBVs.
Nevertheless, the fact that we observed such diversity in

prediction accuracies across the possible combinations of training
sets suggest that a substantial amount of research is needed
to explore which properties of training sets are responsible for
the highest prediction accuracies. Coupled with the generally
low prediction accuracies for the most extreme environment,
we ultimately conclude that dedicated future research endeavors
are needed to make genomic prediction better suited for
extreme environments.
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yield, while IN_2013 and NE_2011 had the highest yield.

Supplementary Figure 2 | Boxplot of yield in kg ha−1 (X axis), by environment (Y
axis) for the (first, third or fourth) random sample of 500 genotypes from the
SoyNAM panel. Environments IA_2013, IA_2012, and IL_2011 had the lowest
yield, while IN_2013 and NE_2011 had the highest yield.

Supplementary Figure 3 | Boxplot of yield in kg ha−1 (X axis), by environment (Y
axis) for the (first, third or fourth) random sample of 500 genotypes from the
SoyNAM panel. Environments IA_2013, IA_2012, and IL_2011 had the lowest
yield, while IN_2013 and NE_2011 had the highest yield.

Frontiers in Genetics | www.frontiersin.org 9 July 2021 | Volume 12 | Article 689319146

https://www.frontiersin.org/articles/10.3389/fgene.2021.689319/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.689319/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-689319 July 19, 2021 Time: 23:31 # 10

Widener et al. Genomic Prediction in Contrasting Environmental Conditions

REFERENCES
Alves, F. C., Galli, G., Matias, F. I., Vidotti, M. S., Morosini, J. S., and Fritsche-

Neto, R. (2021). Impact of the complexity of genotype by environment and
dominance modeling on the predictive accuracy of maize hybrids in multi-
environment prediction models. Euphytica 217:37.

Basnet, B. R., Crossa, J., Dreisigacker, S., Pérez–Rodríguez, P., Manes, Y., Singh,
R. P., et al. (2019). Hybrid wheat prediction using genomic, pedigree, and
environmental covariables interaction models. Plant Genome 12:180051. doi:
10.3835/plantgenome2018.07.0051

Bernardo, R. (1994). Prediction of maize single-cross performance using RFLPs
and information from related hybrids. Crop Sci. 34, 20–25. doi: 10.2135/
cropsci1994.0011183x003400010003x

Burgueño, J., de los Campos, G., Weigel, K., and Crossa, J. (2012). Genomic
prediction of breeding values when modeling genotype× environment
interaction using pedigree and dense molecular markers. Crop Sci.52, 707–719.
doi: 10.2135/cropsci2011.06.0299

Diers, B. W., Specht, J., Rainey, K. M., Cregan, P., Song, Q., Ramasubramanian, V.,
et al. (2018). Genetic architecture of soybean yield and agronomic traits. G3 8,
3367–3375.

Gillberg, J., Marttinen, P., Mamitsuka, H., and Kaski, S. (2019). Modelling G×
E with historical weather information improves genomic prediction in new
environments. Bioinformatics 35, 4045–4052. doi: 10.1093/bioinformatics/
btz197

Heffner, E. L., Lorenz, A. J., Jannink, J. L., and Sorrells, M. E. (2010). Plant breeding
with genomic selection: gain per unit time and cost. Crop Sci. 50, 1681–1690.
doi: 10.2135/cropsci2009.11.0662

Heffner, E. L., Sorrells, M. E., and Jannink, J. L. (2009). Genomic selection for crop
improvement. Crop Sci. 49, 1–12. doi: 10.1007/978-3-319-63170-7_1

Heslot, N., Akdemir, D., Sorrells, M. E., and Jannink, J.-L. (2014). Integrating
environmental covariates and crop modeling into the genomic selection
framework to predict genotype by environment interactions. Theor. Appl.
Genet. 127, 463–480. doi: 10.1007/s00122-013-2231-5

Holland, J. B., Nyquist, W. E., and Cervantes-Martínez, C. T. (2003). Estimating
and interpreting heritability for plant breeding: an update. Plant Breed.
Rev. 22, 9–112.

Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W., and Mortensen,
D. A. (2017). Agriculture in 2050: recalibrating targets for sustainable
intensification. Bioscience 67, 386–391. doi: 10.1093/biosci/bix010

Hyten, D. L., Song, Q., Zhu, Y., Choi, I.-Y., Nelson, R. L., Costa, J. M., et al. (2006).
Impacts of genetic bottlenecks on soybean genome diversity. Proc. Natl. Acad.
Sci. U.S.A. 103, 16666–16671. doi: 10.1073/pnas.0604379103

Jarquín, D., Crossa, J., Lacaze, X., Du Cheyron, P., Daucourt, J., Lorgeou, J., et al.
(2014). A reaction norm model for genomic selection using high-dimensional
genomic and environmental data. Theor. Appl. Genet. 127, 595–607. doi: 10.
1007/s00122-013-2243-1

Jarquin, D., De Leon, N., Romay, M. C., Bohn, M. O., Buckler, E. S.,
Ciampitti, I., et al. (2020). Utility of climatic information via combining
ability models to improve genomic prediction for yield within the genomes
to fields maize project. Front. Genet. 11:592769. doi: 10.3389/fgene.2020.59
2769

Jarquín, D., Lemes da Silva, C., Gaynor, R. C., Poland, J., Fritz, A., Howard, R.,
et al. (2017). Increasing genomic-enabled prediction accuracy by modeling
genotype× environment interactions in Kansas wheat. Plant Genome 10, 1–15.
doi: 10.3835/plantgenome2016.12.0130

Lopez-Cruz, M., Crossa, J., Bonnett, D., Dreisigacker, S., Poland, J., Jannink, J. L.,
et al. (2015). Increased prediction accuracy in wheat breeding trials using a
marker× environment interaction genomic selection model. G3 5, 569–582.
doi: 10.1534/g3.114.016097

Lorenz, A. J., and Smith, K. P. (2015). Adding genetically distant
individuals to training populations reduces genomic prediction accuracy
in barley. Crop Sci. 55, 2657–2667. doi: 10.2135/cropsci2014.12.
0827

Meuwissen, T. H., Hayes, B. J., and Goddard, M. E. (2001). Prediction of total
genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829.
doi: 10.1093/genetics/157.4.1819

Morrison, D. F., Marshall, L. C., and Sahlin, H. L. (1976). Multivariate Statistical
Methods (New York, NY: McGraw-Hill)

Nelson, G. C., Rosegrant, M. W., Palazzo, A., Gray, I., Ingersoll, C., Robertson, R.,
et al. (2010). Food Security, Farming, And Climate Change to 2050: Challenges
to 2050 and Beyond. Washington, DC: International Food Policy Research
Institute.

Resende, R. T., Piepho, H.-P., Rosa, G. J., Silva-Junior, O. B., e Silva, F. F., de
Resende, M. D. V., et al. (2021). Enviromics in breeding: applications and
perspectives on envirotypic-assisted selection. Theor. Appl. Genet. 134, 95–112.
doi: 10.1007/s00122-020-03684-z

Song, Q., Yan, L., Quigley, C., Jordan, B. D., Fickus, E., Schroeder, S., et al. (2017).
Genetic characterization of the soybean nested association mapping population.
Plant Genome 10:lantgenome2016.2010.0109.

Whitford, R., Fleury, D., Reif, J. C., Garcia, M., Okada, T., Korzun, V., et al.
(2013). Hybrid breeding in wheat: technologies to improve hybrid wheat seed
production. J. Exp. Bot. 64, 5411–5428. doi: 10.1093/jxb/ert333

Xavier, A., Beavis, W., Specht, J., Diers, B., Muir, W., Mian, R., et al. (2015).
SoyNAM: Soybean Nested Association Mapping Dataset. R package version 1.

Xavier, A., Jarquin, D., Howard, R., Ramasubramanian, V., Specht, J. E., Graef,
G. L., et al. (2018). Genome-wide analysis of grain yield stability and
environmental interactions in a multiparental soybean population. G3 8, 519–
529. doi: 10.1534/g3.117.300300

Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., et al. (2017).
Temperature increase reduces global yields of major crops in four independent
estimates. Proc. Natl. Acad. Sci. U.S.A. 114, 9326–9331. doi: 10.1073/pnas.
1701762114

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Widener, Graef, Lipka and Jarquin. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org 10 July 2021 | Volume 12 | Article 689319147

https://doi.org/10.3835/plantgenome2018.07.0051
https://doi.org/10.3835/plantgenome2018.07.0051
https://doi.org/10.2135/cropsci1994.0011183x003400010003x
https://doi.org/10.2135/cropsci1994.0011183x003400010003x
https://doi.org/10.2135/cropsci2011.06.0299
https://doi.org/10.1093/bioinformatics/btz197
https://doi.org/10.1093/bioinformatics/btz197
https://doi.org/10.2135/cropsci2009.11.0662
https://doi.org/10.1007/978-3-319-63170-7_1
https://doi.org/10.1007/s00122-013-2231-5
https://doi.org/10.1093/biosci/bix010
https://doi.org/10.1073/pnas.0604379103
https://doi.org/10.1007/s00122-013-2243-1
https://doi.org/10.1007/s00122-013-2243-1
https://doi.org/10.3389/fgene.2020.592769
https://doi.org/10.3389/fgene.2020.592769
https://doi.org/10.3835/plantgenome2016.12.0130
https://doi.org/10.1534/g3.114.016097
https://doi.org/10.2135/cropsci2014.12.0827
https://doi.org/10.2135/cropsci2014.12.0827
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1007/s00122-020-03684-z
https://doi.org/10.1093/jxb/ert333
https://doi.org/10.1534/g3.117.300300
https://doi.org/10.1073/pnas.1701762114
https://doi.org/10.1073/pnas.1701762114
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-637133 August 26, 2021 Time: 12:29 # 1

ORIGINAL RESEARCH
published: 01 September 2021

doi: 10.3389/fgene.2021.637133

Edited by:
Waseem Hussain,

International Rice Research Institute
(IRRI), Philippines

Reviewed by:
Yongkang Kim,

University of Colorado Boulder,
United States

Nicholas B. Larson,
Mayo Clinic, United States

*Correspondence:
Éder David Borges da Silva

ederdbs@gmail.com

Specialty section:
This article was submitted to

Statistical Genetics and Methodology,
a section of the journal

Frontiers in Genetics

Received: 02 December 2020
Accepted: 05 August 2021

Published: 01 September 2021

Citation:
Silva ÉDB da, Xavier A and Faria

MV (2021) Impact of Genomic
Prediction Model, Selection Intensity,

and Breeding Strategy on
the Long-Term Genetic Gain

and Genetic Erosion in Soybean
Breeding. Front. Genet. 12:637133.

doi: 10.3389/fgene.2021.637133

Impact of Genomic Prediction Model,
Selection Intensity, and Breeding
Strategy on the Long-Term Genetic
Gain and Genetic Erosion in Soybean
Breeding
Éder David Borges da Silva1* , Alencar Xavier2,3 and Marcos Ventura Faria1

1 Department of Agronomy, Universidade Estadual do Centro-Oeste, Guarapuava, Brazil, 2 Department of Biostatistics,
Corteva AgriscienceTM, Johnston, IA, United States, 3 Department of Agronomy, Purdue University, West Lafayette, IN,
United States

Genomic-assisted breeding has become an important tool in soybean breeding.
However, the impact of different genomic selection (GS) approaches on short- and
long-term gains is not well understood. Such gains are conditional on the breeding
design and may vary with a combination of the prediction model, family size, selection
strategies, and selection intensity. To address these open questions, we evaluated
various scenarios through a simulated closed soybean breeding program over 200
breeding cycles. Genomic prediction was performed using genomic best linear unbiased
prediction (GBLUP), Bayesian methods, and random forest, benchmarked against
selection on phenotypic values, true breeding values (TBV), and random selection.
Breeding strategies included selections within family (WF), across family (AF), and within
pre-selected families (WPSF), with selection intensities of 2.5, 5.0, 7.5, and 10.0%.
Selections were performed at the F4 generation, where individuals were phenotyped
and genotyped with a 6K single nucleotide polymorphism (SNP) array. Initial genetic
parameters for the simulation were estimated from the SoyNAM population. WF
selections provided the most significant long-term genetic gains. GBLUP and Bayesian
methods outperformed random forest and provided most of the genetic gains within
the first 100 generations, being outperformed by phenotypic selection after generation
100. All methods provided similar performances under WPSF selections. A faster decay
in genetic variance was observed when individuals were selected AF and WPSF, as
80% of the genetic variance was depleted within 28–58 cycles, whereas WF selections
preserved the variance up to cycle 184. Surprisingly, the selection intensity had less
impact on long-term gains than did the breeding strategies. The study supports that
genetic gains can be optimized in the long term with specific combinations of prediction
models, family size, selection strategies, and selection intensity. A combination of
strategies may be necessary for balancing the short-, medium-, and long-term genetic
gains in breeding programs while preserving the genetic variance.
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INTRODUCTION

Soybean [Glycine max (L.)] is the most important source of
protein for animal feed and an important source of oil for
human consumption, biofuel, and other industrial applications.
Soybeans are cultivated globally, and the largest producers
include Brazil, United States, Argentina, Paraguay, and China
(FAO, 2021). Soybeans are bred for several traits, but grain yield
is considered as the most important.

Genome-wide prediction is a key tool in soybean breeding.
It is utilized for faster and more accurate selection of superior
individuals (Meuwissen et al., 2001). Methodologically, genomic
models recreate the framework utilized for pedigree analysis, but
using genomic relationships instead (VanRaden, 2008; Habier
et al., 2011; VanRaden et al., 2011). Other factors that may
have contributed to the increasing adoption of genomic selection
(GS) in plants include the decreasing cost of genotyping and
the availability of software tools and computing power to
analyze large datasets.

Studies involving GS in plants have been mostly focused on
prediction for advancement purposes, hence restricted to the
evaluation of genetic gain within a single generation (Schmutz
et al., 2010; Sonah et al., 2013; Jarquin et al., 2016; Xavier
et al., 2016, 2018a,b; Diers et al., 2018; Smallwood et al., 2019).
Studies of long-term gains based on GS are expensive and
time-consuming; consequently, the literature is scarce (Wray
and Goddard, 1994; Goddard, 2009; Yabe et al., 2016; Gorjanc
et al., 2018; Allier et al., 2019a). In addition, evaluation with
real data from breeding programs faces additional challenges,
such as the ongoing changes in breeding pipelines driven by
business decisions, changes in the genotyping technology, and
annual changes in resources. Conversely, the deployment of
simulations has become an instrumental decision tool in plant
breeding. It enables the assessment of genetic gain under different
scenarios. In part, the increasing popularity of simulations is due
to the quantity and flexibility of software made available (Faux
et al., 2016; Pook et al., 2019; Toledo et al., 2019). For instance,
breeders are now capable of simulating entire breeding programs
with the intent of tuning the breeding parameters to maximize
genetic gains in the short and long term (Hickey et al., 2014;
Gorjanc et al., 2018), along with the best allocation of resources
for a given budget.

By assessing predictive models and contrasting selection
strategies, this study envisioned analyzing the influence of a set
of variables on long-term genetic gains based on a simulated
soybean breeding program and providing insight into the best
practices for optimizing genetic gains.

MATERIALS AND METHODS

Simulated Populational Parameters
The founder breeding population contained 200 individuals.
Those were simulated based on the genomic parameters using
the Markovian Coalescent Simulator (MaCS; Chen et al., 2009),
which recreates the evolutionary process with multiple cycles
of drift, mutation, and selection. The genomic parameters for

the simulations reproduce the soybean genome with detailed
information (Schmutz et al., 2010). We considered a genetic map
architecture of 20 chromosomes with 115 cM average length,
which collectively spanned 950 Mb. For each chromosome, 1,000
segregating sites were assigned.

Our study focused on the simulation of grain yield (in tons per
hectare) as the primary trait of interest. The genetic architecture
of the simulated trait was assumed to be infinitesimal with
70% of all segregating sites, which were not necessarily utilized
as markers, having a non-zero effect sampled from a normal
distribution. The genotype-by-environment variance provided
a non-heritable variation attributed to the season. Residual
variance remained constant throughout the simulation, causing
a reduction in heritability overtime as the genetic variance
decreased. Simulations began assuming an average yield of 3.00 t
ha−1. The function addTraitAEG from the AlphaSimR package
was utilized for the simulation of the phenotypic values. All
simulation code is available on GitHub.1

Additive genetic effects, genotype-by-environment
interaction, and residuals were simulated from Gaussian
distribution using variance components estimated from the
SoyNAM dataset (Diers et al., 2018; Xavier et al., 2018a) as
σ2

a = 25, σ2
G ×E = 49, σ2

e = 121, and h2
= 0.12. The

parameter estimation from the SoyNAM dataset was based on a
multivariate genomic best linear unbiased prediction (GBLUP)
model with unstructured genetic covariance and diagonal
residual covariance, fitting grain yield from all 18 environments
as response variables and using as explanatory variables the
overall mean (fixed) and a polygenic term (random). The
final estimates of the variance components for σ2

a , σ2
e , and

h2 were obtained as averages across the 18 environments,
whereas σ2

G ×E was computed as the average off-diagonal of the
variance–covariance matrix.

The main simulation settings followed a soybean breeding
program with 300 families per cycle and with 50 individuals per
family, producing a total of 15,000 individuals per cycle. After
crossing, the populations were inbred via single seed descendent
(SSD) until F2:4, as shown in Figure 1, where lines were
evaluated in field trials and genotyped with a single nucleotide
polymorphism (SNP) array similar to the Soybean 6K SNP chip
(Akond et al., 2013). Individuals were then selected to become
parents of the upcoming breeding cycle using the phenotypic and
genotypic information. The calibration of genomic prediction
leveraged data from the previous three breeding cycles, thus
leveraging information from up to 45,000 individuals per model.
The processes of selecting and crossing were repeated for 200
cycles to capture the theoretical plateau of genetic gains across all
simulated parameters. Each breeding scenario was reproduced 60
times with different computational random seeds.

A second simulation with 100 breeding cycles was performed
with varying numbers of families and offspring, where five
combinations that use the same number of resources were
chosen—300 × 50, 250 × 60, 200 × 75, 150 × 100, and
100 × 150—where the combinations correspond to the number

1https://github.com/Ederdbs/GenomicSelection

Frontiers in Genetics | www.frontiersin.org 2 September 2021 | Volume 12 | Article 637133149

https://github.com/Ederdbs/GenomicSelection
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-637133 August 26, 2021 Time: 12:29 # 3

Silva et al. Genomic Prediction Soybean Breeding

FIGURE 1 | Simulated families created and inbreeding using single seed descent (SSD).

of families and individuals per family, respectively. Each breeding
scenario was reproduced 45 times with different random seeds.

Genotypic and phenotypic data were simulated with the
R package AlphaSimR (Gaynor et al., 2020), reproducing the
previous methodological framework (Faux et al., 2016). The
software was utilized to simulate the founder population,
perform selection, fingerprint individuals with the specified SNP
chip, make crosses, generate offspring, inbred individuals, and
simulate phenotypic values. All simulations and subsequent
statistical analyses of the results were performed using R software
(R Core Team, 2020). The code was run in parallel by distributing
the multiple breeding scenarios over 960 cores, requiring
approximately 10 h of computation per run. The R package
doParallel (Ooi et al., 2019) was utilized to parallelize the runs.

Evaluation of Simulated Scenarios
Evaluation of the breeding strategies, selection intensities, and
selection models was based on previous studies (Daetwyler et al.,
2013). The evaluation criteria included the population mean
across breeding cycles, genetic variance, and accuracy. Analyses
were performed within a generation, combining the data from the
repeated simulation runs. The statistical model for the analysis of
simulated data was the following:

y = 1µ+ Xmm+ Xss+ Xii+ Xpp+ ε

where y is the vector of the random variable of the simulated
population; µ is the model intercept; X represents the incidence
matrix, which is further divided to accommodate the three factors

under evaluation (Xm, Xs, Xi, and Xp); m for the selection
model; s for the breeding strategy; i for the selection intensity;
p for the population design, as combinations of the number
of families and individuals per family; and ε is the vector
of residuals, assumed to be distributed as ε ∼ N

(
0, Iσ2

ε

)
. The

statistical test of multiple comparison was based on Tukey’s
range test with 5% probability of error fit using the built-
in R function TukeyHSD. This model was used to generate
Figure 2.

Selection Models
The following selection models are evaluated: (1) True breeding
values (TBV)—true breeding value, which serves as the upper
limit of the achievable prediction power; (2) Random—
random selection of individual, as the worst-case scenario; (3)
Pheno—phenotypic-based selection without the use of genomic
information; (4) GBLUP—the genomic best linear unbiased
predictor fitted with REML (restricted maximum likelihood)
variance components (Nejati-Javaremi et al., 1997; Habier
et al., 2007); (5) BayesA—Bayesian shrinkage regression that
assigns a t prior to marker effects (Meuwissen et al., 2001);
(6) BayesB—an extension of BayesA with variable selection
(Meuwissen et al., 2001); (7) FLM—fast Laplace model (Xavier,
2019), an empirical Bayes model with a double exponential
prior for marker effects; and (8) RF—random forest regression
(Breiman, 2001), a common machine learning procedure based
on bootstrapping aggregation of multiple decision trees. The
models GBLUP, BayesA, BayesB, and FLM were fitted using
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FIGURE 2 | Evaluation of individual factors on population means. Multiple comparison test: Capital letters indicate difference in means across factor with Tukey’s
range test with 5% alpha level contrasting the levels of each factor (prediction method, selection intensity, balance between population size and family size, and
breeding strategy) on generations 10, 50, and 100.

the R package bWGR (Xavier et al., 2019) and solved via
expectation–maximization (EM). The model RF was fitted
using the R package ranger (Wright et al., 2020) with
default settings.

As a brief description of the GS model, these models in
function on genomic information can be written in terms of the
linear model:

y = Xb+ f (M)+ ε

where y is the vector of phenotypic values; X is the incidence
matrix of the environment term treated as a fixed effect; b is a
vector of environmental means; f (M) is the function of markers
that describe the genetic merit of individuals; and ε is a random
vector of residuals, assumed to be distributed as ε ∼ N

(
0, Iσ2

ε

)
.

The genetic function of markers, f (M), varied from model to
model. For GBLUP, BayesA, and FLM, the function was linear
and the marker effects were strictly additive; thus, the function of
markers was f (M) = Mβ. The distinction of the models was the
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prior assigned to the distribution of marker effects, being normal
for GBLUP, distributed as Student’s t for BayesA, and distributed
as a double exponential for FLM. The function describing BayesB
was f (M) = Mβγ, which is also linear, but with a variable
selection term (γ) that caused further shrinkage to the Student’s
t prior assigned to the marker effects. The only non-linear model
under evaluation was random forest, in which case the genetic
function is a linear ensemble of multiple independent regression
trees (T): f (M) = n−1 ∑ T (m ∈ M).

Breeding Strategy
The breeding strategies were based on soybean breeding designs
previously described in the literature (Backes et al., 2003;
Sebastian et al., 2010; de Cássia Pereira et al., 2017; da Silva et al.,
2018; Smallwood et al., 2019). The following approaches were
considered in this study:

AF: across-family selection. Genotypes are selected across
families based on their estimated genetic merit, without regard
for their family structure or any constraint for selecting multiple
individuals from the same pedigree.

WF: within-family selection. In this strategy, all families were
equally represented in the advancements. The best genotypes
from each family are selected to become parents in the
upcoming generations.

WPSF: within the pre-selected family. This strategy comprises
two steps. Firstly, the family level selection is performed to
identify the best-performing families (top 30%). Secondly, the
selection of individuals occurs within the family. With fewer
families to select from, more individuals per family will be
parenting the upcoming generation compared to WF.

Selection Intensity
Four levels of selection intensity were considered: 2.5, 5.0, 7.5,
and 10.0%. These values represent the percentages of individuals
selected to be used as parents of the next generation. The selection
of parental combinations was performed at random; thus, it is
possible that not all selected individuals served as parents.

RESULTS

Genetic Gains
The simulation results presented in Figure 3 summarize the
population means over the course of 200 cycles. Supplementary
Table 1 provides the population means for all combinations of
treatments under evaluation in breeding cycles 10, 100, and 200.
Across all scenarios, the population mean of random selection is
anchored at the starting point. Selection of TBV represents the
upper boundary of each scenario; hence, these are particularly
useful to contrast the potential of the different scenarios. The
highest long-term population means from selection on TBV
occurred WF with loose selection intensities (7.5–10%). Genetic
gains were generally closer to those from TBV when selections
were performed WPSF.

Phenotypic selection outperformed GS over the course of
200 breeding cycles. Selection using random forest provided
poor predictive performance in all scenarios, possibly due to

the non-additive nature of the regression trees fitting a strictly
additive genetic architecture. All linear genomic models (BayesA,
BayesB, FLM, and GBLUP) provided similar outcomes. When
conditioning for all other varying parameters, BayesA and FLM
were the best-performing models within the first 100 breeding
cycles (Figure 2).

After 10 cycles of selection, the highest gains were attained
at the highest selection intensity (2.5%), which characterizes the
short-term gain benefit from a higher selection pressure while
the genetic variance is still abundant. After 100 breeding cycles,
the genetic gains are affected by the combination of selection
intensity and breeding strategy. For example, selection performed
AF using BayesA provided the highest gains with a selection
intensity of 10%, whereas, under WF, the highest gains occurred
with a selection intensity of 2.5%. Such discrepancy is attributed
to the amount of genetic variance left for long-term selection.

The highest long-term gains were reached when selections
were performed WF. The maximum attainable, as benchmarked
by selection upon TBV, resulted in a grain yield of 54 t ha−1

(WF), being 35% higher than AF selections and 46% higher than
WPSF (Supplementary Table 2). The overall trend for long-
term gains using GS followed the order WF > WPSF > AF.
When the selections were based on phenotypic values, the genetic
gains outpaced the GS run for all strategies (AF, WPSF, and
WF), whereas that was not observed within the first 100 cycles
(Figure 1). In fact, phenotypic selection WF was the third highest
performing model, behind AF and WF selections performed on
TBVs. The impact of each factor on the prediction accuracy over
200 breeding cycles is provided in Supplementary Figure 1.

Figure 2 summarizes the results of the simulation performed
within 100 cycles, where different family sizes were an additional
variable under evaluation. Within 10 breeding cycles, the scenario
of 100 families with 150 individuals displayed the highest average,
although the differences were negligible. Over the course of
50 and 100 breeding cycles, the number of families and the
family sizes displayed significant differences in the genetic gains,
with larger differences as generations progressed. The overall
trend was that a greater number of families increase the gain
in the long term.

Diversity Loss
The decay in genetic variance overtime is presented in Figure 4.
The number of cycles to exhaust 80% of the genetic variance is
provided in Supplementary Table 3. The study simulates closed
populations without the inflow of external variation, the existing
genetic variance consumed overtime as selection takes place.
Overall, a fast decay in genetic variance is observed under a higher
selection pressure, whereas a lower selection pressure preserved
more genetic variance in the long term. When selection was
performed at random, over 80% of the initial genetic variance
remained after 200 breeding cycles. The interaction between
the selection intensity and selection strategy was significant
(p < 0.01) across all selection models.

Within-family selection preserved the genetic variance for
more cycles (Figure 4). Selection WF based on TBVs exhausted
80% of the genetic variance within 48–69 breeding cycles,
whereas AF and WPSF selections on TBVs exhausted 80% of
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FIGURE 3 | Population means across 200 breeding cycles. Colors correspond to the different selection methods, grid columns represent the selection intensity (2.5,
5, 7.5, and 10%), and grid rows represent the breeding strategies, where individuals were selected across family (AF), within pre-selected families (WPSF), or
within-family (WF).

the diversity between 25 and 42 cycles (Supplementary Table 3).
Depletion of genetic variance was more pronounced with GS.
Under the selection intensity of 10%, BayesA selection WF
exhausted 80% of the variance after 184 cycles, whereas selections
AF and WPSF display the same diversity loss after 54 and 58
cycles, respectively.

Diversity loss attributed to genetic drift is presented in
Figure 5. These results assess the impact of bottlenecking
the population through the various combinations of breeding
strategy and selection intensity, utilizing random selections to
avoid the confounding effect of directional selection. Higher
rates of drift occurred under a higher selection pressure (2.5%).
Strategy-wise, losses were highest for selection WPSF, with little
difference across the selection intensities, ranging from −0.325
to −0.353%. The lowest rate of drift was observed under WF
selection, with the rate of losses ranging from−0.199 to−0.136%.

DISCUSSION

Genomic prediction has become an important tool for selection
and breeding in agriculture as it can enhance the rate of

genetic gain in comparison to pedigree and phenotype-based
selection by leveraging information on relationship and the
linkage disequilibrium between the marker and the quantitative
trait locus (QTL; Meuwissen et al., 2001; Habier and Fernando,
2009; Bernardo, 2010; Crossa et al., 2013, 2017; Daetwyler
et al., 2013; de Los Campos et al., 2013). In soybean, the
value of genomic prediction has been assessed and described
in recent years (Jarquín et al., 2014; Xavier et al., 2016,
2018a,b; Diers et al., 2018; Matei et al., 2018; Xavier and
Rainey, 2020). These studies agreed that adequate composition
of the training data is imperative to successful and accurate
prediction. The definition of an optimized training set entails
(1) maximizing the genetic relationship between the training
and target populations and (2) collecting phenotypic information
from year–location combinations that represent the target
population of environments. Whereas factors that affect genomic
predictions for short-term gains have been well characterized,
it is unclear which factors affect long-term genetic gains. The
answer for that would come from long-term simulations, such as
the present study. Primarily, simulations enable the optimization
of the modern breeding program in animal and plant species
(Yu et al., 2005; Hickey et al., 2014; Cowling et al., 2015, 2020;
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FIGURE 4 | Genetic variance across 200 breeding cycles. Colors correspond to the different selection methods, grid columns represent the selection intensities (2.5,
5, 7.5, and 10%), and grid rows represent the breeding strategies, where individuals are selected across family (AF), within pre-selected families (WPSF), or within
family (WF).

Gorjanc and Hickey, 2018; Muleta et al., 2018) by enabling the
assessment of the breeding conditions that increase the rate of
genetic gains, the conservation of useful genetic diversity, and the
best allocation of breeding resource, such as the number of field
plots, genotyping density, number of crosses, and population size
(Heffner et al., 2010; Gonen et al., 2017; Gorjanc et al., 2017a,b).

Simulations indicate that linear models outperformed random
forest for complex traits controlled by additive genetics and
additive genotype-by-environment interactions. Under different
scenarios, other studies found machine learning methods to
display similar performances (Li et al., 2018; Ali et al., 2020). The
discrepancy in the results is likely due to the nature of trait and
population under evaluation, as machine learning predictions
could be suitable for more structured populations and with some
degree of epistatic control (Xavier, 2019; Abdollahi-Arpanahi
et al., 2020). We also acknowledge that random forest was run
with default settings in this study, and parameter tuning would
benefit its predictive performance.

Selection factors provided a similar outcome to the findings
in other studies (Gorjanc and Hickey, 2018; Santantonio and
Robbins, 2020), where the authors assessed balancing short-

and long-term sustainable gains in plant breeding. Their results
indicate that higher population sizes provide higher long-term
gains. An alternative framework for the maximization of long-
term response to selection is proposed by Goddard (2009) based
on the use of selection indexes that account for allele frequency
aiming to account for the value of rare loci and in short- and long-
term gains. Under limited resources, our simulations indicate
that a lower selection pressure generally contributes to long-
term gains at the cost of compromising short-term gains. Across
breeding strategies, WPSF appears to provide reasonable gains
in both the short and the long term while having the range
of gains being less influenced by selection pressure. WPSF is
an intermediate between AF and WF, and the results are, in
fact, intermediary between the short-term gains provided by AF
selections and the long-term gains provided by WF selection.

The real-life trend of genetic gains in soybeans is positive,
but variable across geographies. In North America, the rates of
genetic gain have been estimated to be 23.4 kg ha−1 year−1

(Fox et al., 2013), 26.5 kg ha−1 year−1 (Koester et al., 2014),
and 16.8 kg ha−1 year−1 (Rogers et al., 2015). In the southern
regions of Brazil, the rates of genetic gains were estimated to be
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FIGURE 5 | Genetic drift per cycle under random selection across family (AF), within pre-selected families (WPSF), or within family (WF) in different selection
intensities (SI).

71.5 kg ha−1 year−1 (Lange and Federizzi, 2009) and 40.0 kg
ha−1 year−1 (Todeschini et al., 2019); in Argentina, the rate has
been reported to be 44.3 kg ha−1 year−1 (de Felipe et al., 2016).
These reports provide insight from the perspective of traditional
breeding progress before the deployment of GS and, in most
cases, with lengthy breeding cycles with the choice of parents
taking place in advanced generations and commercial products.
Our simulations provided higher annual gains than what has
been reported; however, with the advent of earlier evaluations
and increasing trust in genomic prediction, it is likely that annual
genetic gains will be progressively and iteratively optimized for
multiple factors, including those evaluated in the present study
(model, selection intensity, family size, and breeding strategy).

The selection of unproven parents from earlier generations
is often interpreted as gambling with high risk and high
rewards, even though much of the risk is mitigated with
the use of genomic information with robust statistical models
calibrated with phenotypic data from multiple years. In addition
to advancements, more opportunities arise with the use of
genomics to predict and select the best combinations for
crossing that further increase the probability of generating
elite offspring. Previous studies have evaluated population-level
selection strategies in further detail (Bernardo, 2010; Jannink,
2010; Kemper et al., 2012; Daetwyler et al., 2015; Ma et al.,
2016; Goiffon et al., 2017; Matei et al., 2018) with the goal of
preserving the segregation of low-frequency haplotypes for long-
term gains (Beukelaer et al., 2017). Balancing the number of
families and the family size can be a fundamental part of the
strategy to continue the steady gains overtime (Figure 2), and,
whereas the difference is not perceived in the short term, the
magnitude of grain increases significantly overtime. Yet, multiple

factors should be taken into account when allocating resources in
terms of the number of families and family size (Lindgren et al.,
1997; Fu, 2015).

Scenarios simulated as provided herein were based on the
parental selection at the F4 stage, which is commonly perceived
as an early generation for recycling as the quality and the quantity
of phenotypic data are still scarce, of doubtful quality, and in
many cases, without replication. Nevertheless, early recycling
is a promising framework for speeding up the rate of genetic
gain by shortening the length of the breeding cycles. In fact,
shortening the breeding cycles while inducing multiple cycles
a year reproduces a framework referred to as “speed breeding”
(Hickey et al., 2019; Nagatoshi and Fujita, 2019; Jähne et al.,
2020). Recent studies often support recombination in the early
stages of inbred development (Gaynor et al., 2017), more so
as the accuracy of selection in the early stages benefits greatly
from the GS. Another important aspect of parental selection
regards the management of genetic diversity in modern plant
breeding, which is largely ignored and not always adequately
measured (Fu, 2015). Our results indicate that the multiple
factors in the breeding design can affect the rate of diversity loss,
mainly selection pressure and selection strategy (Supplementary
Table 2), and that one must consider to balance these factors to
attain the desired gain in the short term without compromising
long-term gains. That is particularly the case for soybeans,
whose germplasm-wise genetic diversity is considered low when
compared to that of other species (Martin, 1982). Some Canadian
soybean breeding programs have maintained diversity through
decades of breeding while fixing maturity genes (Bruce et al.,
2019). In the United States, soybean population structures and
diversity varied by maturity group (Vaughn and Li, 2016), which
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suggests that new sources of variation could be obtained through
the introgression of material from different regions.

The diversity available in breeding programs affects the
accuracy of breeding values by dictating the amount of existing
genetic signals to select upon an effective population size
(Meuwissen, 2009). With restricted diversity, the genotyping
density and marker distribution can be optimized to capture
the existing variation in the target population with the goal of
increasing genomic prediction accuracy (Ma et al., 2016). Of
course, the long-term impacts of selection on genetic variance
also vary depending on the genetic variance of interest, as the
prominence of additive and non-additive variances is not the
same over multiple cycles of selection (Paixão and Barton, 2016).

In soybeans, the management of diversity is necessary to
ensure useful variability for future breeding objectives, such as
yield performance under drought or waterlogging (Valliyodan
et al., 2017), the seed oil and protein content profiles (Stewart-
Brown et al., 2019), and disease resistance (de Azevedo Peixoto
et al., 2017). Monitoring genetic diversity in the genomic era
can be performed through tracking overtime changes in allele
frequencies (Allier et al., 2019b; de Castro Lara et al., 2020;
Meuwissen et al., 2020). We showed that selection could quickly
exhaust genetic diversity under closed breeding systems, and
breeding systems can benefit from balancing short gains to
preserve diversity and assure long-term gains. Such balance had
been the focal point of recent studies (Cowling et al., 2017;
Gorjanc et al., 2018; Ru and Bernardo, 2019, 2020; Santantonio
and Robbins, 2020) seeking for avenues to extend genetic
resources with genomic tools, including the selection of material
from germplasm collection to expend the genetic basis of elite
programs. In addition to germplasm introgression, increases in
genetic diversity in soybeans have been done in the past through
mutagenic agents (Curtin et al., 2011; Khan, 2013; Haun et al.,
2014; Demorest et al., 2016) and more recently, through genome
editing techniques based on CRISPR-Cas9 (Cai et al., 2015,
2018a,b; Jacobs et al., 2015; Sun et al., 2015; Zheng et al., 2020)
and target recombination for directional backcrossing (Ru and
Bernardo, 2019, 2020).

The simulations performed in our study indicate that GS
enables higher rates of genetic gain in the short and medium
term compared with phenotype selection, but also led to faster
extinction of the genetic variance. Thus, genomic prediction
and selection must be applied mindfully with the purpose of
maximizing gains while maintaining genetic variance. We found
that a breeding strategy that balances selection at the family level,
and within and across family at the individual level, can mitigate
losses in genetic variance while providing satisfying genetic gains
in the short term. Simulation is a powerful and inexpensive tool
to test hypotheses, and for future studies, we envision addressing
the importance of other important breeding parameters. Namely,
future studies should focus on investigating (1) the optimal
generation to select the parents and its trade-off with the
accuracy of selection; (2) the influence of non-additive and
non-infinitesimal genetic architecture and how machine learning
would perform in such conditions; (3) the long-term effect of
different models designed to select parental combinations; (4) the
impact of different island models where new sources of variation

are constantly infused into the main breeding panel; and (5)
what would be the potential benefit of breeding hybrid soybeans
assuming there are variable levels of dominance.

CONCLUSION

Long-term gains were influenced by the interaction among GS
models, breeding strategy, and selection intensity. Adequate
handling of these factors will aid breeding programs to ensure
genetic gains in short, medium, and long term. Therefore, the
breeding strategy is the most influential factor and, therefore,
is a key criterion to conserve genetic variance and obtain the
highest population mean overtime. The absolute impact of the
selection intensity is lower than that of the breeding strategy and
GS model. The benefits of balancing family size and the number
of families were not perceived on short-term gains. Additive
GS models (BayesA, BayesB, FLM, and GBLUP) have similar
behaviors in selecting the best individuals, whereas RF has poor
predictive performance when implemented with default settings.
In summary, a combination of strategies may be necessary for
balancing the short-, medium-, and long-term genetic gains in
breeding programs while preserving genetic variance.
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Strategies to Assure Optimal
Trade-Offs Among Competing
Objectives for the Genetic
Improvement of Soybean
Vishnu Ramasubramanian1,2* and William D. Beavis1

1 George F. Sprague Population Genetics Group, Department of Agronomy, Ames, IA, United States, 2 Bioinformatics
and Computational Biology Graduate Program, Iowa State University, Ames, IA, United States

Plant breeding is a decision-making discipline based on understanding project
objectives. Genetic improvement projects can have two competing objectives: maximize
the rate of genetic improvement and minimize the loss of useful genetic variance. For
commercial plant breeders, competition in the marketplace forces greater emphasis on
maximizing immediate genetic improvements. In contrast, public plant breeders have
an opportunity, perhaps an obligation, to place greater emphasis on minimizing the loss
of useful genetic variance while realizing genetic improvements. Considerable research
indicates that short-term genetic gains from genomic selection are much greater than
phenotypic selection, while phenotypic selection provides better long-term genetic
gains because it retains useful genetic diversity during the early cycles of selection.
With limited resources, must a soybean breeder choose between the two extreme
responses provided by genomic selection or phenotypic selection? Or is it possible to
develop novel breeding strategies that will provide a desirable compromise between
the competing objectives? To address these questions, we decomposed breeding
strategies into decisions about selection methods, mating designs, and whether the
breeding population should be organized as family islands. For breeding populations
organized into islands, decisions about possible migration rules among family islands
were included. From among 60 possible strategies, genetic improvement is maximized
for the first five to 10 cycles using genomic selection and a hub network mating
design, where the hub parents with the largest selection metric make large parental
contributions. It also requires that the breeding populations be organized as fully
connected family islands, where every island is connected to every other island, and
migration rules allow the exchange of two lines among islands every other cycle of
selection. If the objectives are to maximize both short-term and long-term gains, then
the best compromise strategy is similar except that the mating design could be hub
network, chain rule, or a multi-objective optimization method-based mating design.
Weighted genomic selection applied to centralized populations also resulted in the
realization of the greatest proportion of the genetic potential of the founders but required
more cycles than the best compromise strategy.

Keywords: island model selection, recurrent selection, tradeoffs, optimization, genetic algorithms, genetic
response, genomic selection, recurrence models
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Ramasubramanian and Beavis Trade-Offs in Recurrent Selection

BACKGROUND

Responses to the selection of commodity crops have been enabled
by decreasing the number of years per cycle of recurrent selection,
by increasing the number of replicable genotypes (selection
intensity), and by increasing the number of replicated field trials
(heritability on an entry mean basis). In other words, genotypic
improvements from responses to selection in commodity crops
over the last 50 years (Specht et al., 2014) required monetary
investments that became part of increased seed costs during the
same time (Byrum et al., 2017; USDA-ERS, 2020). Since the
emergence and adoption of Genomic Selection (GS), it has been
possible to increase the numbers of genotypes that are evaluated,
i.e., selection intensity, without significant increases in numbers
of field plots (Bernardo and Yu, 2007; Bernardo, 2008; Asoro
et al., 2011; Heslot et al., 2012; Nakaya and Isobe, 2012; Combs
and Bernado, 2013; Crossa et al., 2014; Beyene et al., 2015; Bassi
et al., 2016; Marulanda et al., 2016; Jonas and de Koning, 2016;
Hickey et al., 2017; Goiffon et al., 2017).

While the initial interest in GS has been to increase genetic
gains, plant breeders are aware that increased selection intensities
are associated with faster losses of genetic potential in the
founder populations (Robertson, 1960; Hill and Robertson, 2008;
Bulmer, 1971).

Between the two limiting cases of no response to selection
and the infeasible ideal response of realizing maximum genotypic
potential among founders in a single cycle of selection, there are
many possible recurrent selection response curves, two of which
are illustrated in Figure 1. One of the curves depicts high rates
of gain in the early cycles, which is favored for immediate short-
term gains. However, the maximum average genotypic value
approaches a limit that is less than 40% of the genotypic potential
of the founders. The other curve depicts a response with slower
rates than the previous one in early cycles, but with greater
genotypic values before approaching a limit due to loss of genetic
potential from selection. This response pattern is desirable for
maximizing gains while preserving genetic variability. For a fixed
set of evaluation resources, the differences between the two
response curves could be due to differences in selection intensities
or selection methods or both. For example, simulation studies of
recurrent GS methods indicate that GS provides faster genetic
gains than phenotypic selection (PS) for five to 10 cycles of
recurrent selection; PS provides continued genetic gains after
response to GS becomes limited (Goddard, 2009; Jannink, 2010;
Liu et al., 2015). A question for the breeder is which possible curve
most accurately represents the relative importance of short-term
gains versus retention of valuable alleles for future generations
of plant breeders. For commercial plant breeders, competition
in the marketplace forces greater emphasis on maximizing
immediate genetic gains. In contrast public plant breeders have
an opportunity, perhaps an obligation, to place greater emphasis

Abbreviations: SM, Selection Method; MD, Mating Design; MP, Migration policy;
PS, Phenotypic selection; HN, Hub Network; BI, Best Island; GS, Genomic
selection; CR, Chain Rule; RB, Random Best; WGS, Weighted Genomic Selection;
RM, Random Mating; FC, Fully Connected; IM, Island Model; GM, Genomic
Mating; GA, Genetic Algorithm.

on minimizing the loss of useful genetic alleles while realizing
genetic gains that are close to the maximum.

In spite of these general statements about the relative
importance for commercial and public genetic improvement
projects, each genetic improvement project has unique objectives
and constraints. Previously, we (Ramasubramanian and
Beavis, 2020) reported responses for combinations of selection
intensity, GS methods, and training sets applied recurrently
to populations composed of 2000 F5-derived lines from
contemporary soybean germplasm belonging to maturity
groups II and III. The combinatorial set of factors consisted
of Phenotypic Selection (PS) and four commonly used GS
methods, training sets, selection intensity, number of QTL
(nQTL), and broad sense heritability (H) on an entry
mean basis. While interactions among all factors affected
all response metrics, only the impacts of GS methods,
selection intensity, and training sets are factors that plant
breeders can control.

All GS methods provided greater responses than PS for at
least five cycles, but PS provided better responses to selection
as response from GS methods reached a limit. These results
are consistent with reports by Goddard (2009); Jannink (2010),
and Liu et al. (2015) that demonstrated that the full genotypic
potential of the founders is eliminated more quickly with GS
than PS. In terms of factors that a soybean breeder can control,
a selection intensity of 1.75 and Ridge Regression Genomic
Prediction (RRGP) models provided rapid response in the early
cycles of selection. It also allowed the retention of genetic
diversity for continued response to selection in later cycles,
when the models are updated with training data from previous
cycles. We also suggested that further improvements might
be made if the populations were organized into families or
islands and mating designs that optimize parental contributions
to retain greater genetic potential in the populations are used
(Ramasubramanian and Beavis, 2020). Herein, we investigate
strategies that soybean breeders can employ to find optimal
trade-offs between maximizing genetic gain from selection and
retaining useful genetic diversity.

Given that there are constraints on the size of the breeding
program, including the number of lines to evaluate and the
number of field plots, it is important to reveal as many
response curves as possible for possible breeding strategies. While
breeders can observe these curves and identify one that most
closely reflects the relative importance of the two objectives,
we conjectured that it should be possible to design additional
breeding strategies that are better, in the sense of minimizing
the trade-offs, than those we previously investigated. One of the
approaches is to use a trade-offs table to identify the best strategy
for a given set of relative weights for the short-term and long-term
objectives of the program.

The challenge of realizing genetic gains from selection and
retaining useful genetic diversity in closed populations has been
of interest since it was demonstrated that there are theoretical
limits for response to selection in closed populations (Hill and
Robertson, 2008; Bulmer, 1971). Trade-offs among objectives
don’t prohibit finding optima as long as optimality is defined as
a compromise among competing objective functions (Deb, 2003;
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FIGURE 1 | Illustration of possible responses to recurrent selection. Average genotypic value is plotted on y-axis and cycle number is plotted on x-axis. (i) The purple
line depicts a response pattern with no genetic gain, which is possible when there is no selection in a population with a large effective population. (ii) The red line
depicts a hypothetical ideal response curve when the maximum genotypic potential among founders is realized in one cycle of selection. The ideal is not feasible
using selection if the alleles responsible for the maximum are distributed among more than two founders. (iii) The black line depicts a response pattern with high rates
of gain in the early cycles, but the maximum average genotypic value approaches a limit that is less than 40% of the genotypic potential among the founders. The
dashed black line represents the corresponding rapid drop in genotypic potential among the founders. (iv) The blue line depicts a response pattern with slightly
slower rates of gain in early cycles relative to the black line, but achieves greater genotypic values before approaching a limit. This is due to conservation of genetic
variability as represented by the dashed blue line with slower rate of decrease in genotypic potential of the population. Note that there are potentially an infinite
number of unique response curves that fall between no response and an ideal response.

Konak et al., 2006; Shoval et al., 2012; Sheftel et al., 2013; Saeki
et al., 2014).

Before the development of GS, quantitative geneticists
working on domestic animal systems utilized mathematical
programming modeling and operations research approaches to
find near-optimal solutions to the challenge of assuring genetic
gain and minimizing inbreeding per cycle of selection (Wray and
Goddard, 1994). The first publication using operations research
approaches to address multiple objectives in plant breeding
was applied to the selection of multiple traits (Johnson et al.,
1988). Generally, operations research approaches involve three
activities: (1) define objectives using measurable metrics; (2)
translate the objectives into a model consisting of objective
functions, decision variables, and constraints; and (3) find an
algorithm that will provide values for the decision variables
resulting in optimal solutions to the model (Rardin, 2017).

If a genetic improvement project wants to assure genetic
gain and retain useful genetic diversity, then there are two
competing objectives for which a trade-off needs to be optimized.
This represents an example of a multi-objective optimization

problem (Deb, 2003, 2011; Rardin, 2017). After translating
each of the objectives into an objective function, there are
several strategies for finding the optimal solution (Deb, 2003).
The two most commonly used strategies are known as ε-
constraint and the weighted sum. The ε-constraint method
consists of identifying one of the objectives, e.g., maximize
genetic gain, and translate other objectives, such as minimize
inbreeding, into decision variables that can be constrained
in a linear, integer, or quadratic mathematical programming
model (Haimes et al., 1971); in other words, translate the
multi-objective optimization mathematical model into a single
objective optimization model for which there exist computational
algorithms capable of finding the optimum solution (Frank and
Wolfe, 1956; McCarl et al., 1977; Lazimy, 1982). Framing the
ε-constraint method requires definition of metrics for genetic
diversity or inbreeding. In animal breeding, this method became
known as Optimum Contribution Selection (Wray and Goddard,
1994; Brisbane and Gibson, 1995; Meuwissen, 1997; Grundy et al.,
1998; Meuwissen et al., 2001). Subsequent to the development
of GS, Optimum Contribution Selection was modified to
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maximize Genomic Estimated Breeding Values (GEBVs), and the
realized relationship matrix was used to constrain inbreeding
in what became known as Genomic Optimum Contribution
Selection (Sonesson et al., 2010; Schierenbeck et al., 2011;
Woolliams et al., 2015).

The second well-established approach to a challenge is known
as the weighted sum method. The weighted sum method assigns
weights, ωi∈ [0, 1] and

∑
ωi = 1, to each of the “i” objective

functions, and an algorithm is employed to find the values
for the decision variables that minimize all objective functions
simultaneously (Zadeh, 1963). The weighted sum method is
equivalent to the concept of selection index familiar to breeders.
In this case, the selection index is composed of weighted
parameters for genetic gain and inbreeding or, equivalently,
genetic diversity. If genomic information is available, GEBVs can
be used to maximize genetic gain and the realized relationship
matrix can be used to minimize inbreeding resulting in a
genomic selection index that can be calculated for all genotypes
(Carvalheiro et al., 2010; Clark et al., 2013).

Both ε-constraint and weighted sum methods are referred
to as preference methods (Deb, 2003) where the constraints
or relative weights have been predetermined. For defined
preferences, there exist exact optimization algorithms if Karush-
Kuhn-Tucker (KKT) conditions are met (Karush, 1939; Kuhn
and Tucker, 1951). An exact optimization solution guarantees
that no other feasible solution will be a better solution for
the specified set of constraints or weights. Unfortunately, it
is difficult to predetermine these values because they require
forecasting the relative economic values of genetic gains and
retention of useful genetic diversity in terms of immediate returns
and future benefits. For commercial plant breeding projects,
competition in the marketplace will force much greater emphasis
on maximizing genetic gains than retaining genetic diversity to
maximize immediate return on investment. In contrast, public
soybean breeders have an opportunity, perhaps an obligation, to
retain useful genetic diversity while realizing genetic gains for
quantitative traits of agronomic importance. Since each plant
breeding project has unique relative trade-offs, evolutionary
algorithms have been adopted to provide multiple solutions on
an efficient (Pareto) frontier of solutions to competing objectives
(Deb, 2003, 2011; Konak et al., 2006). Decision makers then
decide which of the solutions have the appropriate relative
emphasis on the competing objectives.

Genetic improvement can be viewed as single or multiple
connected search strategies in genotypic space (Podlich and
Cooper, 1999; Cooper et al., 2002, 2014). The single search
strategy, a.k.a. global, corresponds to the selection of lines
in centralized populations, where genotypes from all the sub-
populations are treated as one population (Technow et al., 2021).
The multiple connected search strategy, a.k.a. local, occasional
and corresponds to selection of lines in multiple domains with
infrequent exchange of lines. Search strategies in genotypic
space inspired the development of a class of evolutionary
algorithms known as genetic algorithms (GAs). GAs are based
on recurrent selection of breeding populations and are often used
to find computational solutions to large combinatorial problems
(Goldberg, 1989; Luque, 2011).

In a canonical GA, selected solutions are pooled together
into a set of solutions. Subsequently the individual solutions
are randomly sampled for pairwise “matings” to create a new
set of solutions for evaluation and selection. Computational
analogs of mutation or recombination referred to as mutation
and recombination operators, are utilized to move the population
of solutions into new domains in the solution space towards
global optima. The algorithm is iterated until there are no
improvements in the sets of solutions. Inspired by Wright’s
shifting balance theory of evolution, researchers developed a
subclass of GAs, known as parallel Gas, that maintain structure
among subsets of individual solutions and enable the subsets
to independently find different solutions for different domains
(Wright, 1967; Wright, 1988; Cantú-Paz, 2000; Luque, 2011; Yabe
et al., 2016). The parallel GA is analogous to the concept of island
model selection in genetic subpopulations. The term island refers
to distinct sub-populations, where genotypes from any of the sub-
populations cannot randomly mate with lines from other sub-
populations due to restrictive rules for mating. However, Island
Model/Parallel GAs allow for an exchange of solutions among
subpopulations that are evolving in parallel. Island model GAs are
also distinct from canonical GAs in terms of properties because
evolution happens locally, within island, as well as globally,
among islands. Island model parameters consist of number of
islands, island size, selection pressure within each of the islands,
numbers of migrants, migration frequency, connectedness or
topology of islands, and emigration and immigration policies
among islands (Whitley et al., 1999; Skolicki, 2007; Skolicki and
Jong, 2007).

Rather than investigate the trade-off between objective
functions, Jannink (2010) demonstrated that it is possible to
retain useful genetic diversity in GS by weighting low-frequency
alleles with favorable estimated genetic effects. Simulations
with Weighted Genomic Selection (WGS) resulted in greater
responses across 24 selection cycles of recurrent selection than
unweighted GS, using RRBLUP estimated breeding values, for
both low and high heritability traits. However, the initial rates
of response using WGS were less than responses from the
application of PS and less than GS. The response using WGS
was better than the response from PS after 20 cycles of selection,
but the responses relative to GS depended on the number of
simulated QTL and heritability. Decay of linkage disequilibrium
(LD) between marker and QTL is one of the factors that can slow
responses using GS relative to PS (Hickey et al., 2014; Xavier et al.,
2016), although decay of LD did not contribute to responses in
the initial cycles using WGS. The rate of inbreeding per cycle
is also greater with GS than with PS, whereas it is similar to PS
when WGS is applied. The rate of fixation of favorable alleles is
lower for WGS than GS resulting in larger numbers of cycles of
genetic improvement before response to selection reaches a limit
(Jannink, 2010). Efforts to balance the response in early cycles
and later cycles have included addition of parameters to WGS
(Sun and VanRaden, 2014) and dynamic weighting of rare alleles
depending on the time horizon for the breeding program (Liu
et al., 2015). Low-frequency favorable alleles are given greater
weights, drawn from a beta distribution, in initial cycles, and the
weights tend toward unity as the number of cycles of selection
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approaches a predefined time horizon. This shifts the balance
towards retaining greater genetic variance in earlier cycles.

Investigations of GS, WGS, genomic optimum contribution
selection, and genomic selection index assume that selected
individuals will be randomly mated. Typically, plant breeders do
not randomly mate selected genotypes, rather, most use selected
genotypes that exhibit the most desirable selection metrics,
e.g., GEBVs, to serve as “hub” parents in networked crossing
designs (Guo et al., 2013, 2014). Because the metaphor of hubs
with spokes represents the preference for crossing most selected
lines to a few “hub” lines, we refer to this mating design as
a Hub Network (HN), and this is the mating design used in
our previous investigation (Ramasubramanian and Beavis, 2020).
A Hub Network (HN) mating design applies greater weights to
genetic contributions from hub genotypes resulting in amplified
loss of genetic diversity relative to Random Mating (RM) by
reducing the effective population size.

As soybean breeders have become aware of the potential
impacts due to loss of genetic diversity from use of GS, they
have used various ad hoc methods to avoid crosses between
related genotypes (Diers, Graef, Lorenz, Cianzio, Singh, Byrum,
Xu personal communications). After quantitative geneticists
working on animal breeding systems demonstrated that it
is possible to use the genomic selection index strategy with
an evolutionary algorithm to identify optimal pairs of mates
(Kinghorn, 2011; Pryce et al., 2012; Woolliams et al., 2015),
plant quantitative geneticists developed and investigated various
versions of genomic selection index and genomic optimum
contribution selection for plant breeding (Akdemir and Sánchez,
2016; De Beukelaer et al., 2017; Cowling et al., 2017; Lin et al.,
2017; Gorjanc et al., 2018; Allier et al., 2019a,b). Notice that
the computational demand to find the optimum on the non-
decreasing efficiency frontier created by all possible constraint
values or relative weights in all N choose 2 (NC2) mating pairs
is particularly well suited for application of GAs. Also, it should
be noted that Akdemir and Sánchez (2016) referred to their
implementation of genomic optimum contribution selection
as efficient GS. In addition to evaluating traditional PS, GS,
and genomic optimum contribution selection, Akdemir and
Sánchez (2016) proposed and evaluated a novel mathematical
programming model, referred to as genomic mating (GM).
They formulated the problem as minimizing a linear function
of inbreeding plus a negative risk function for the realized
relationship matrix of Np possible parents. Inbreeding is a
function of the expected genetic diversity among Nc progeny
from the Np parents and is weighted by a parameter that controls
allelic diversity among all Np parents. Risk is determined for each
cross as the sum of the expected breeding values of the progeny
plus the expected standard deviations of marker loci weighted
by a parameter that controls the allelic heterozygosity of the
relative contributions of the marker loci to the GEBVs. Thus, risk
is similar to the usefulness criterion, defined by Schnell (1983)
(as cited in Melchinger et al., 1988), of a selected proportion
of the population and the weighting parameter reflects the
breeders’ emphasis of its importance. They demonstrated that
their GM formulation is equivalent to an optimization problem
of minimizing inbreeding subject to defined level of risk, denoted

ρ. The solution needs to calculate risk and inbreeding for the
range of acceptable ρ values for Nc progeny from Np parents,
i.e. (Akdemir and Sánchez, 2016) developed a Tabu-search GA
to determine the efficiency frontier between inbreeding and risk.
In an updated version, Akdemir et al. (2018) used a GA to find
the complete set of non-dominated solutions (Deb, 2003, 2011)
that comprise the efficiency frontier for the three criteria of Gain
(G), Inbreeding (I), and Usefulness (U) values in the objective
function. This allows the selection of a subset of solutions for
evaluation, obviating the need for conducting a grid search across
all possible values. More details on the GM method are provided
in Supplementary File 1.

Akdemir and Sánchez (2016) demonstrated the utility of
their genomic mating approach using simulations of recurrent
selection beginning with two founders for a trait composed
of simple additive genetic architecture. The QTL were evenly
distributed across a simulated genome consisting of three diploid
linkage groups. Their results indicated that the efficiency frontier
produced responses across 20 cycles that were better than
PS and as good as GS and genomic optimum contribution
selection for the first five to seven cycles and better than PS,
GS, and genomic optimum contribution selection thereafter
(Akdemir and Sánchez, 2016). They did not include WGS for
comparison in their study.

Recognizing that Island Model/Parallel GAs are very efficient
at finding global optima, Yabe et al. (2016) suggested that
computational island models could be used to create efficient
and effective breeding plans for plant breeders. Even though
computational parallel GAs allow the software developer to
change mutation and recombination rates, which are not under
the control of plant breeders, structures of breeding populations
based on island models could offset the loss of useful genetic
variability through regulation of exchange of genotypes among
sub-populations. It is not unusual for plant breeders of crops
that are easily self-pollinated to routinely evaluate, select, and
recurrently cross lines derived from one or two specific bi-
parental crosses. In the vernacular of soybean and maize breeders,
this is known as “working a population.” Yabe et al. (2016)
demonstrated that GS on populations organized as islands
provided greater response to selection than GS on a single
population comprising all the islands, after the 12th of 20 cycles
of recurrent GS. Their founder population consisted of lines
derived from in silico crosses of six homozygous rice lines with
an elite rice variety, i.e., a hub network. They isolated the
six families of Recombinant Inbred Lines (RILs) for recurrent
selection using GS with no or occasional exchange of selected
lines among the family islands. While their results appeared to
be similar to WGS, they did not compare their results with
WGS. They also suggested that the trade-off between genetic gain
and retention of useful genetic variance could be improved by
adjusting the number and frequencies of migrants among sub-
populations. We hypothesize that a breeding strategy consisting
of breeding populations organized as family islands and in which
crossing decisions are based on genomic mating will provide
small soybean genetic improvement projects with the ability to
minimize the trade-offs between maximizing genetic gain and
minimizing the loss of useful genetic variability.
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Within the populations organized as islands, we evaluated
four migration policies, three selection methods, and four mating
designs. Given that each of the factors show characteristic
average response patterns with widely different rates and limits
of responses, we also hypothesize that the combinations of
all these factors will further increase the number of possible
response curves due to the interaction among these factors.
To evaluate the potential of these combinations of methods to
realize genetic gains while retaining useful genetic diversity, we
compare outcomes from simulated recurrent selection applied to
contemporary soybean germplasm adapted to Maturity Group
(MG) II and III using a set of metrics (Ramasubramanian and
Beavis, 2020), which includes the standardized genotypic value
(Rs), the most positive genotypic value (Mgv) among F5-derived
lines selected in cycle c, the standardized genotypic variance
(Sgv), the average expected heterozygosity (Hs), and the lost
genetic potential of populations based on the number of favorable
alleles that are lost.

METHODS

Simulations
Initial sets of soybean lines were generated by simulating crosses
of 20 contemporary homozygous lines representing the diversity
of soybean germplasm adapted to MGs II and III with IA3023,
a former widely grown variety adapted to MG III, to generate
in silico F1 progeny (Ramasubramanian and Beavis, 2020).
Individual F1s from each of the 20 crosses were self-pollinated
in silico for four generations to generate 100 lines per family
forming 2000 lines organized into 20 families with genotypic
information at 4289 genetic loci (Song et al., 2017). Thus, the
genetic structure of the initial simulated populations is similar to
that used in the experimental SoyNAM investigation (Guo et al.,
2010; Takuno et al., 2012; Song et al., 2015, 2017; Xavier et al.,
2017; Diers et al., 2018).

As reported previously (Ramasubramanian and Beavis, 2020),
there were 3818 polymorphic loci in the combined population
consisting of 20 families with an average of 773 polymorphic loci
within each of the families for the initial founding sets of lines.
The variance of the number of polymorphic loci among families
was ∼34, which indicates that the number of polymorphic loci
is roughly similar among all families. Across the 20 families
of Cycle 0 (C0) lines, average expected heterozygosity was 0.09
with an estimated variance of 4.4∗10−7 among families. The
average estimated Gst value across the genome for the initial
founding set of F5-derived lines was 0.32, as determined by
the “diff_stats” function in the mmod R package (Jombart,
2008; Ryman and Leimar, 2009; Jombart and Ahmed, 2011;
Ramasubramanian and Beavis, 2020). Average pairwise “Fst”
estimated using “pairwise.fst” in “hierfstat” R package (Goudet,
2005) among the 20 families in simulated data is 0.20. Pairwise
“Fst” is a measure of population differentiation among pairs of
populations based on Nei’s genetic distance, which is estimated
as the ratio of difference between the weighted average of the
expected heterozygosity of pairs of families and total expected
heterozygosity of the pooled populations to total expected

heterozygosity of the pooled populations. For two populations
“A” and “B” of size nA and nB, expected heterozygosity (averaged
over loci) is denoted as Hs(A) and Hs(B), respectively. Let Ht
denote the expected heterozygosity of a pooled population
of “A” and “B.” Then, the pairwise Fst between “A” and

“B” is computed as: Fst(A, B) =
Ht −

(
nAHs(A) +nBHs(B)

(nA+nB)

)
Ht

(Goudet, 2005). For comparison, the average Fst using genotypic
data from the SoyNAM project among 40 families is 0.09 with
a maximum pairwise Fst of 0.15 and a minimum Fst of 0.007
(Ramasubramanian and Beavis, 2020), whereas the average Fst
among the clusters in the USDA soybean germplasm collection is
0.23 (Song et al., 2015; Xavier et al., 2018).

Combinations of Factors
We evaluated 60 combinations of factors (Table 1) that could
influence responses to recurrently selected populations derived
from a set of founder genomes representing the diversity of
contemporary soybean germplasm adapted to MG II and III in
North America (Mikel et al., 2010; Diers et al., 2018). The factors
included structure of breeding populations, selection method,
and mating design. The structure of the breeding populations,
which refers to the presence of distinct sub-populations,
included retaining the structure of the original 20 founder
families through restrictive breeding rules, referred to as family
islands, and dissolving family structures after the initial founder
population was created, referred to as centralized populations.
For comparison with previous studies, the centralized population
structure corresponds to the bulked population in Yabe et al.
(2016) and the centralized policy in Technow et al. (2021). The
family island structure with migration of lines among islands is
also called as distributed policy in Technow et al. (2021), whereas
islands that are not connected to each other are called as isolated
in Technow et al. (2021) and is the policy termed as discrete
selection in Yabe et al. (2016).

Previously, we demonstrated that the development of
homozygous lines for phenotypic evaluation would limit the
numbers of segregating linkage blocks with effective QTL effects.
Our evaluations of responses with 40, 400, and 4289 QTL showed
that responses for 400 QTL followed a pattern that facilitated
the study of the impact of factors on short-term and long-term
responses, as the responses realized limits around 15–20 cycles,
whereas for 40 and 4289 QTL, the responses reached limits within
10 cycles and around 30 cycles, respectively (Ramasubramanian
and Beavis, 2020). Consequently, we chose to designate only
400 polymorphic marker loci as simulated QTL. The QTL were
distributed uniformly among the SNP loci and each contributed
equal additive effects of ± 0.5 units to the total genotypic value
of a line. Thus, cycle C0 lines derived from the founders had
an average genotypic value of zero and the potential to create
genotypic values ranging from −200 to +200. Phenotypic values
were simulated by adding non-genetic values sampled from N
(0, σe

2) distribution to the simulated genotypic values, where σe
2

that corresponds to non-genotypic variance was determined by
the heritability (σe

2 = ((1−H)/H)∗ σg
2), where σg

2 corresponds to
genotypic variance and H corresponds to broad sense heritability.
Herein we report only simulated broad sense heritability values
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TABLE 1 | Treatment design representing the factors that impact responses and limits of responses that were investigated.

Factors Levels Values for levels

Population type 2 Centralized and Island populations

Island model selection

Migration
frequency

1 Migration frequency of 2 corresponds to migration of lines every other cycle of
selection

Migration size 1 Migration of 2 lines per migration event (20%)

Migration policy 4 (i) Isolated selection (IS) (For IS, migration frequency, size and direction are set
to “0”)
(ii) Best island
(iii) Random best
(iv) Fully connected

Migration
direction

1 (i) Bi-directional

Factors common to Non-island and Island populations

Selection method 3 (i) Phenotypic selection,
(ii) Genomic selection,
(iii) Weighted genomic selection

Mating design 4 (i) Hub network
(ii) Chain rule
(iii) Random mating
(iv) Genomic mating

Genetic model
parameters

1 400 QTL and 0.7 H

Total number of
combinations of
treatment factors

60

Total number of
simulations

5 (replicates/combination of factors) 300

on an entry mean basis of 0.7. The non-genetic variance was held
constant across subsequent cycles of selection. Thus, heritability
is expected to decline with every cycle of selection due to
loss of additive genetic variance relative to a constant non-
genetic variance.

Phenotypic selection (PS), genomic selection (GS), and
weighted genomic selection (WGS) were applied recurrently to
both population structures. Recurrent selection applied to the
centralized populations consisted of ranking all lines in a given
cycle (Figure 2) according to the selection metric and retaining
10% for crossing to create the next cycle of lines. In terms of
standardized selection differential, this corresponds to selection
intensity, ι= 1.75. For selection of lines organized into family
islands, 10% of the lines are selected within islands (Figure 3).
Subsequently, 20% of lines might be migrants from other family
islands depending on migration rules (Table 1). Metrics used for
selection include simulated phenotypic values for PS, genome
estimated breeding values (GEBVs) for GS, and weighted genome
estimated breeding values for WGS. We used the weighting
function used by Jannink (2010) for estimating weighted genome
estimated breeding values (Supplementary Table 1). A previous
study indicated that among GS methods, Ridge Regression (RR)
provided the best compromise between short-term and long-
term responses (Ramasubramanian and Beavis, 2020); thus, we
only used RR to train GP models for GS. RR was implemented

with a method that employs Expectation Maximization to obtain
Restricted Maximum Likelihood Estimates of marker effects
(Xavier, 2019).

For both GS and WGS, the training models were updated
every cycle of selection with data sets from all prior cycles.
Since average within-family prediction accuracies are less than
prediction accuracies from combined training sets comprising
F5-derived lines from across all the families (Ramasubramanian
and Beavis, 2020), we used a training set comprising F5-derived
lines from all the families. Training sets for each cycle were
obtained by randomly sampling 1600 lines from the set of
2000 lines in each cycle. The most accurate predictions and
maximum genetic responses were obtained with training data
that are cumulatively added every cycle. For purposes of this
manuscript, model updating refers to retraining the model with
data from the current cycle as well as all prior cycles that were
cumulatively added.

Subsequent to selection, four mating designs were applied to
create the next cycle of lines (Table 1). To simulate theoretical
truncation selection, selected lines were randomly mated (RM).
The chain rule (CR), a.k.a., a single round-robin mating design
(Yabe et al., 2016), is an alternative to RM that assures all
selected lines contribute to the subsequent cycle of evaluation
and selection. In contrast to the attempt to assure equal
representation of selected lines through RM and CR, most
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FIGURE 2 | Schematic representing simulated recurrent selection in centralized populations comprising 20 families. The schematic depicts the in silico steps used to
generate the base population of 2000 F5 derived lines derived from 20 founder lines crossed to IA3023. The depiction includes the model training step and the
recurrent steps of prediction, sorting, truncation selection, crossing, and generation of 2000 F5-derived lines for each cycle as well as the decision steps to check if
the training set should be updated and if the recurrent process should be continued for another cycle.

soybean breeders use a mating design that assures most progeny
will be derived from crosses of a few lines that exhibit the
most desirable performance (Guo et al., 2013, 2014). In the
hub network (HN) mating design, the hub parents with the
largest selection metrics make the largest parental contributions
(Ramasubramanian and Beavis, 2020). The fourth mating design,
genomic mating (GM), uses mathematical objective functions
to assure that defined breeding objectives are used to identify
pairs of crosses from among the selected lines. GM method was
implemented using the “Genomic Mating” R package (Akdemir
et al., 2018). As originally described, GM combines selection and
mating in a single step, but we decomposed the steps to provide
comparable outcomes from all other combinations of selection
methods, mating designs, and organized populations.

Genomic Mating in Centralized Families
In a selected set of 200 lines, there are 200C2 (19900)
combinations of parental pairs. To solve the objective
function w.r.t., an initial population of parental pairs, 250
initial populations of 200 combinations of parental pairs, is
sampled from 19900 combinations (19900C200) for the genetic
algorithm to solve.

Genomic Mating in Populations Organized as Family
Islands

In island selection, ten lines are selected from each of the 20
family islands. Within each island, 45 (10C2) combinations of
parental pairs are possible (Supplementary Figure 1). To solve
the objective function w.r.t., an initial population of parental
pairs, 250 initial populations of 10 combinations of parental
pairs, is sampled with replacement to keep the population size
equal to the centralized populations for the GA. For each of
the 20 families, the GA is applied to the initial subset of 250
out of all possible combinations (45C10). The other parameters
for the GA are the same for both centralized and family
island populations. The genetic algorithm selects non-dominated
elite solutions (Deb, 2003, 2011) and crosses non-dominated
elite solutions for 50 iterations with a mutation probability of
0.8 (Supplementary Figure 1). Examples of pseudocode are
provided in Akdemir and Sánchez (2016) and the “Genomic
Mating”. It is important to note that the parameter values
in the genetic algorithm can be optimized, and the set of
solutions in the pareto-front can be explored for better fsolutions
using other methods such as NSGA-II, NSGA-III, SPEA-1,
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FIGURE 3 | Schematic representing simulated recurrent selection of family island populations where each of the 20 families from the founders is considered an
island population. The schematic depicts the in silico steps used to generate the base population of 2000 F5 derived lines derived from 20 founder lines crossed to
IA3023; 100 F5-derived lines generated from each of the crosses form a distinct island. The depiction includes the model training step and the recurrent steps of
prediction, sorting, truncation selection within islands, migration, crossing, and generation of 100 F5-derived lines per island for each cycle as well as the decision
steps to check if the training set should be updated and if the recurrent process should be continued for another cycle. The blue shaded circles represent lines that
are descendants of the founder populations in the islands and red shaded circles represent lines that are replaced by immigrants from the island with the largest
genotypic value for the “Best Island” policy.

SPEA-2 and other recent improved versions of GAs for better
convergence rate and quality of solutions, determined by the
proximity to global optimum (Deb, 2011; Seada and Deb, 2018;
Supplementary Figure 1).

Migration Rules Among Family Islands
In addition to applying selection methods and mating designs
to both population structures, there are many possible rules
that affect migration among islands. Migration rules that
were implemented in a preliminary investigation included: (1)
frequency of migration—never, once every two cycles, and every
cycle of recurrent selection; (2) the proportion (10% and 20%)
of immigrants that will be included in crosses responsible for
creating the next cycle of lines; (3) migration can be either in
one direction or it can be reciprocal among family islands. Based
on the preliminary investigation (results available on request),
we decided to set the migration rule as bi-directional migration
between both immigrant and emigrant islands of two lines once
every other cycle of selection.

Migration Policies Among Family Islands
Migration policy (MP) refers to the nature of island topology
specifying connections between emigrant and immigrant islands.
The four levels for migration policy included “Isolated” (IS),
“Best Island” (BI), “Random Best” (RB), and “Fully Connected”
(FC). For the BI policy, emigrant lines are selected from
the island with most desirable average genotypic value in the
islands, and selected lines can migrate to no more than 10
islands. Given a bi-directional migration rule, the emigrant
island also receives two immigrants from the islands that
received the emigrants. For an RB policy, an emigrant island
is selected randomly from a set of 10 islands with high
average genotypic values, while the migration pattern itself
is similar to BI policy. For the FC policy, every island is
connected to every other island, and lines migrate from emigrant
islands with high values to randomly selected immigrant islands
(Supplementary Figure 2).

Note that migration factors are irrelevant for populations that
did not maintain the structure of family islands, and they are

Frontiers in Genetics | www.frontiersin.org 9 September 2021 | Volume 12 | Article 675500168

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-675500 September 20, 2021 Time: 12:59 # 10

Ramasubramanian and Beavis Trade-Offs in Recurrent Selection

irrelevant for isolated family islands where there is no migration.
Thus, the treatment design is not a complete factorial, rather,
the complete set is comprised of responses for 60 combinations
of factors with five independent replicates per combination
of factors. The parameter values for levels of island selection
specific factors were selected based on limits of responses
from a larger set of simulations (2664 combinations of factors
with 10 replicates per combination of factor) performed for a
preliminary study. The migration rules investigated included
migration of one or two lines every cycle, or every other cycle
or once in three cycles in one or both directions. Mating
designs included (HN, CR, and RM) for 40, 400 and 4289
QTL with 0.7 and 0.3 H (response patterns for this set are
available on request).

Modeled Response to Recurrent
Selection
The averaged genotypic value for each cycle, c, of recurrent
selection was modeled with a linear first-order recurrence
equation:

f 0(c)y(c+1) + f1(c)y(c) = g(c) (1)

where c is a sequence of integers from 0 to 39 representing each
cycle of recurrent selection from cycle 1 to 40 and f 0, f 1, and g
are constant functions of c. By rearranging the equation, we note
that the response in cycle c+1 can be represented as

y(c+1) = −
f1(c)
f0(c)

y(c)+
g(c)
f0(c)

(2)

Since the ratios f 1(c)/f 0(c) and g(c)/f 0(c) are constants, we can
represent the response in cycle c+1 as

y(c+1) = αy(c)+β (3)

If y0 specifies the average genotypic value of the first cycle
of F5 lines derived from crosses involving IA3023 and the
other founders, then (3) has a unique solution (Goldberg, 1958;
Ramasubramanian and Beavis, 2020):

yc = αcy0+β 1−αc

1−α
if α 6= 1

yc = αcy0+ βc if α = 1
(4)

An alternative representation of (eqn 4) for the situation of α

6= 1 is
yc = αc(y0−y′)+ y′

with y′ = β
1−α

(5)

where α is less than 1 for genotypic response to recurrent
selection and y′ represents the asymptotic limit to selection
(Goldberg, 1958; Ramasubramanian and Beavis, 2020).
An illustration of the values of the sequence of c = 0–
39 for a range of α and β values can be found in our
previous study (Ramasubramanian and Beavis, 2020). The
model-derived curves can be interpreted as response to
selection as a function of the frequencies of alleles with
additive selective advantage, selection intensity, time, and
effective population size (Robertson, 1960). The parameters,

α, and β were estimated with a non-linear mixed effects
method implemented in the “nlme” and “nlshelper”
packages (Pinheiro and Bates, 2000; Baty et al., 2015;
Pinheiro et al., 2021).

Since the limits of responses are approached asymptotically,
the number of cycles required to reach half of the limits before
there is no longer response to selection is referred to as the half-
life of the recurrent selection process (Robertson, 1960; Dempfle,
1974; Cockerham and Burrows, 1980; Kang and Namkoong,
1980; Kang, 1983; Kang and Nienstaedt, 1987). From the first-
order recurrence equation (5), the half-life is estimated as

t1/2 = ln(0.5) / ln(α) (6)

when y0 is “0” and the asymptotic limit is estimated as y′
(Ramasubramanian and Beavis, 2020).

Analyses of Variance (ANOVA) of
Modeled Response to Recurrent
Selection
Analyses of variance is used to evaluate the impact of factors
and their interactions on the modeled responses to global
and island recurrent selection. The analyses of variance used
single-level nlme models with modeled (Eqn 5) responses
grouped by combinations of treatment factors. We analyzed
the variance among modeled responses using AIC, BIC, and
Likelihood metrics that were grouped based on combinations
of treatment variables consisting of population type, selection
method, mating design, and migration policy for migration
frequency, migration size, and migration direction for one
genetic model consisting of 400 simulated QTL responsible for
0.7 H with equal additive effects (Table 1). For a discussion
of the analyses of variance using non-linear mixed effects
models refer to (Pinheiro and Bates, 2000; Zuur et al., 2009;
Baty et al., 2015; Pinheiro et al., 2021; Oddi et al., 2019;
Ramasubramanian and Beavis, 2020).

In the first phase of model fitting, we fit a random intercept
model for estimating both α and β in the recurrence equation
using the “nlme” R package. Estimates of modeled parameters
from nlsList models were retained as starting values for fixed
effects. Multiple ANOVA of “nlme” objects representing the
models were used to identify combinations of factors with
significant impacts on the non-linear response. The model with
the lowest AIC score was selected as the best model. The best
random intercept model in the first phase of model fitting process
M15 and models with combinations of three factors (M11-
M14) showed evidence of auto-correlation among residuals.
Since auto-correlation violates the independence assumption,
the correlation among residuals was modeled using AR-1
correlation structure. Since the genotypic values across cycles
in recurrent selection are correlated, fitting AR-1 correlation
does not remove the correlation unless cycles are used as
co-variates. However, using cycles as a co-variate makes the
model fitting process very time-consuming and often has
larger AIC scores than models without cycles as covariates.
The Model M15 with AR-1 correlation structure was further
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refined by modeling variance components using “varIdent”
structure in “nlme.” The process for fitting, selecting, and
refining mixed-effects models is similar to our previous study
(Ramasubramanian and Beavis, 2020) and is described in
Supplementary File 2.

Evaluations of Responses to Recurrent
Selection
Evaluations of responses to recurrent selection were conducted
on both modeled and genotypic values using a set of metrics
described in Ramasubramanian and Beavis (2020) and defined
below. The estimated population half-life and asymptotic limits
used the estimated parameters α and β of the first-order
recurrence model. The average genotypic values were used to
estimate the standardized genotypic value (Rs) and maximal
genotypic value (Mgv). Maximum possible genotypic potential
of the founders provided a reference for number of favorable
alleles retained in the population. The loss of genotypic potential
is characterized by reduction in the standardized variance of
genotypic values (Sgv) and estimated heterozygosity (Hs). In
addition, efficiency of conversion of loss in genotypic variance
into genetic gain (Rs_var) provides a way to assess gain in
genotypic value and loss of genetic variance simultaneously.
For selection using island models, the different impacts of
selection strategies on the genotypic variance at individual
island or global levels are assessed using intra-island Sgv, inter-
island, and global variance of genotypic values. A schematic
diagram of the processes, factors, and evaluation metrics used
to characterize the responses to recurrent selection is provided
in Figure 4.

Evaluation Metrics
The standardized genotypic value, Rs was estimated in every
cycle of selection as the proportion of maximum genotypic
potential (200 units) relative to the average genotypic value
of 2000 lines in C0 (Eqn 7). Values range from 0 to 1
with the value of 1 corresponding to the maximum possible
genotypic value with the genetic model and 0 corresponding
to the average genotypic value of C0 (Meuwissen et al.,
2001; Liu et al., 2015; Ramasubramanian and Beavis, 2020).

Rs =
Rc

(Rm − R0)
(7)

Rs - Standardized genotypic value
R0 - Average genotypic value of F5 derived lines produced by

founders
Rc - Average genotypic value in cycle ‘c’ – R0
Rm - Maximum possible genotypic value (200)
Since we previously evaluated the genetic improvement of

soybean using PS and the HN mating design in centralized
populations, we used PS with a selection intensity of 1.75 for
the centralized population and HN mating design (designated
as CE-PS-HN) as a reference for comparing novel combinations
of selection and mating designs proposed in the study.
A standardized relative genotypic response, 1Rsc, is calculated
in equation (8) as the percentage of the difference in standardized

genotypic values, Rsc, in each cycle c.

Percent Gain in Rsc (Design−x)=
Rsc (Design−x) − Rsc(CE−PS−HN)

Rsc(CE−PS−HN)
∗100 (8)

Rsc(Design−X) - standardized response for Design-x in cycle ‘c’
Rsc(CE−PS−HN) - standardized ersponse for CE-PS-HN design

in cycle ‘c’
The standardized genotypic variance (Sgv), defined as the

change in estimated genotypic variance from the estimated
genotypic variance of the initial population of lines from C0,
was used to evaluate the changes in estimated genotypic variance
across cycles of recurrent selection. Note that values for Sgv range
from zero to one as it is standardized to the maximum genotypic
variance among founders.

Efficiency of genetic improvement is a metric used to evaluate
the proportion of genetic improvement that was obtained
through loss of genetic diversity from recurrent selection
(Gorjanc et al., 2018). Efficiency is estimated as the slope in
linear regression in linear regions of response curves. However,
responses to recurrent selection in the absence of mutation
are inherently non-linear (Robertson, 1960; Bulmer, 1971; Hill
and Robertson, 2008; Ramasubramanian and Beavis, 2020). For
purposes of evaluating the relative contribution of lost genetic
variance to genetic response in both linear and non-linear
segments of the response curve, we introduce the standardized
genotypic variance of the response, Rs_Var, calculated with
Equation (9).

Rs_var =
Gc − G0

SdG0−SdGc
(9)

Gc -average genotypic value of the set of F5 derived lines
evaluated in cycle ‘c’

G0 -average genotypic value of the founding set of F5
derived lines

SdG0 - estimated standard deviation of genotypic values
of founding set of F5 derived lines

SdGc - estimated standard deviation of genotypic values of
F5 derived lines in cycle ‘c’
The numerator term represents the difference in average
genotypic values of a population in cycle “c” from cycle “0”
normalized to standard deviation of genotypic values in cycle
“0.” The denominator represents the difference of standard
deviation of genotypic values between cycles “0” and “c”
normalized to the standard deviation of genotypic values in cycle
“0” (Ramasubramanian and Beavis, 2020). For the centralized
populations, Rs_Var was estimated by calculating the variance
of simulated genotypic values. Standardizing the estimated
genotypic variance with respect to the maximum genotypic
values in the initial population results in values that range from
0 to 1. For the family island populations, the genotypic variances
can be split into within- and between-island genotypic variance.
The three measures we used to estimate the global diversity of
populations, inter-island diversity, and within-island diversity are
provided in the documentation of the R package.
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FIGURE 4 | Overview of the recurrent selection process. Representation of entities such as genomes, associated F5-derived lines and processes such as the
estimation of marker effects, selection, migration and crossing. Levels correspond to layers of information with level 1 comprising genomic information, level 2
comprising phenotypes of lines within and across family islands, and level 3 comprising higher-level information including responses across cycles of selection. The
factors include nQTL and H at the genome level, selection method (SM) including phenotypic selection (PS), genomic selection (GS), and weighted genomic
selection (WGS). The factors at level 2 include selection intensity (SI - top 10% selected fraction); Mating Design (MD), which includes Hub Network, Chain Rule,
Random Mating, and Genomic Mating; Migration Policy (MP), which includes: “Isolated Selection,” “Best Island,” “Random Best,” and “Fully Connected” policies.
Among the MD levels, GM method involves application of evolutionary multi-objective optimization to minimize inbreeding and maximize gain and usefulness. Level 3
is characterized using evaluation metrics such as half-life and asymptotic limits derived from recurrence equation models and metrics such as Standardized
Responses (Rs), Standardized genotypic variance (Sgv), Maximal genotypic values (Mgv), and efficiency of converting loss in genetic variance into gain (RsVar)
derived from simulated outcomes. Other metrics include prediction accuracy and MSE for GP models (RR-REML) and expected heterozygosity (Hs).

RESULTS

Analysis of Variance of Modeled
Genotypic Values
There is strong evidence from the analyses of variance
(Supplementary File 4) that the modeled genotypic values

across cycles of selection depend on interactions among
selection method, mating design, and migration policy. The
most parsimonious model included all combinations of factors
indicating that interactions among all factors have statistically
significant influences on recurrent responses to selection and
requires unique estimates of α, and β in (3) for each of the
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combinations of factors (M15 in Supplementary File 4). For
all combinations of factors, we report only migration involving
bi-directional migration of two migrants every other cycle.
Among the factors that affect only family island populations
with migration, migration frequency had significant effects on
rate and the asymptotic limits for response to selection, whereas
migration direction and size had relatively small effects on
rates and no significant effect on the asymptotic limits for
response to selection. Rates and genotypic values at the limits of
response for a given selection method and mating design also
depend on genetic architecture and heritability (data available
on request). Rather than belabor the specific outcomes from
all possible combinations of factors that affected the modeled
responses, the remainder of the reported results are restricted to
results from simulations with 400 QTL responsible for 70% of
phenotypic variability.

Rates and Limits of Responses to
Recurrent Selection
Factors common to centralized and family island populations
such as mating design and selection method as well as factors
specific to isolated and island model selection had significant
effect on estimated population half-lives and asymptotic limits.
Half-lives for selection methods on centralized populations
ranged from 3.83 to 16.10 cycles with a mean of 9.62 cycles, and
asymptotic limits ranged from 71.64 to 160.76 with a mean of
115.97 (58% of the maximum possible potential in the founders).
Compared to centralized populations, half-lives for selection on
isolated family islands were very low ranging from 1.97 to 2.89
cycles with a mean of 2.43 cycles, and asymptotic limits ranged
from 28.42 to 38.30 and a mean of 33.12 (16.5% of the maximum
possible potential in the founders) (Supplementary File 5;
Supplementary Figure 3). Estimated half-lives for island model
selection methods were on the average greater than selection
methods applied to centralized populations ranging from 4.24
to 32.04 cycles with a mean of 13.45 cycles. Asymptotic limits
ranged from 47.54 to 198.82 with a mean of 116.8 (58.5% of the
maximum possible potential in the founders) (Supplementary
File 5; Supplementary Figure 3).

Responses to Recurrent Selection of
Non-island Lines
There were 12 combinations of selection methods and mating
designs that were applied to lines in centralized populations. The
greatest genotypic values (Rs) were attained with WGS (Figure 5
and Supplementary Table 2). Genomic selection using RRBLUP
estimated phenotypic values resulted in greater responses than
PS in early cycles while WGS produced greater responses than
PS in later cycles (Figure 5; Supplementary Table 2). Weighted
genomic selection followed by the CR mating design resulted
in the greatest realization of genetic potential before reaching a
limit. Genomic selection using RRBLUP estimated phenotypic
values followed by an HN mating design resulted in the greatest
rates of response in the first ten cycles and, if followed by RM,
provided the greatest responses in the first 20 cycles. When the
GM design is applied to selected lines to obtain specified crosses

according to optimization criteria, the responses in the first 15
cycles were larger than obtained with RM, whereas responses
after the 20th cycle were less than responses for other mating
designs (Figure 5 and Supplementary Table 2).

The responses measured as maximum genotypic values
(Mgvs) produced response patterns similar to Rs. Use of WGS
followed by the CR mating design resulted in an average Mgv
of 125 (62.5% of the maximum potential in the founders)
followed by PS and GS using RRBLUP estimated phenotypic
values in the 40th cycle. Genomic selection followed by the
HN mating design (CE-GS-HN) realized greater Mgvs relative
to other combinations of factors only in the early cycles
(Supplementary Figure 4).

The rates at which standardized genotypic variance (Sgv)
and expected heterozygosity (Hs) decreased depended on the
mating designs (Figure 6 and Supplementary Figure 5). The
application of RM and CR mating designs after selection helped
maintain genotypic variance and heterozygosity for use in later
cycles of recurrent selection. The HN mating design resulted in
the fastest loss of Sgv and Hs (heterozygosity), while the GM
design demonstrated losses of Sgv and heterozygosity that were
intermediate between HN and RM/CR designs.

The rate at which maximum genotypic potential decreased
across cycles of selection was reflected in the estimated number
of lost favorable alleles. Among the selection methods, GS using
RRBLUP-estimated phenotypic values lost genetic potential faster
than PS and WGS (Figure 7). Among the mating designs, HN
resulted in the fastest loss of genetic potential while RM lost
genetic potential slower than any of the other mating designs.
With the GM method, genetic potential was lost at a rate that
was intermediate between RM and HN mating designs. The CR
design lost favorable alleles at rates that were similar to GM with
GS, whereas after applying CR with PS and WGS, the loss of
alleles was similar to RM (Figure 7).

Rates of inbreeding are larger for GS compared to PS and
WGS in the first 10–15 cycles. The RM and CR mating designs
demonstrated the slowest rates of inbreeding, whereas rates
of inbreeding with the GM and HN mating had high rates
of inbreeding before responses to selection became limited
(Supplementary Figures 6, 7). The estimates of genotypic
responses, standardized to genotypic variance (Rs_Var), were the
greatest in the first 20–30 cycles with CR, RM, and GM mating
designs, while the HN mating design lost the greatest amount of
Rs_Var with GS, PS, and WGS (Supplementary Figures 8, 9).

Responses to Recurrent Selection of
Lines Organized as Family Islands
The genotypic values when the isolated family island populations
reached the limits were as much as 67% less than the values when
limits were reached in the centralized counterpart populations
(Supplementary Figure 10). Among the isolated selection
methods, GS and WGS with GM design (designated IS-GS-
GM and IS-WGS-GM) provided the greatest genotypic values
at the response limits. Between 10% and 15% of the maximum
potential in the founder populations was realized within the first
10 to 15 cycles, when there was no migration among islands
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FIGURE 5 | Standardized genotypic responses (Rs) across 40 cycles of recurrent selection on centralized (A,C,E) and family island (B,D,F) populations, using
Phenotypic Selection (PS) (A,B), Genomic Selection (GS) (C,D) and Weighted Genomic Selection (WGS) for the four mating designs (MD): Hub Network (HN), Chain
Rule (CR), Random Mating (RM), and Genomic Mating (GM). Standardized genotypic responses are represented from a simulated genetic architecture consisting of
400 additive QTL uniformly distributed throughout the genome and responsible for 70% of phenotypic variability. Ten percent of lines are selected to be used in
crosses in HN, CR, RM, and GM designs. Migration policies (MP) included the Best Island (BI), Random Best (RB), and Fully Connected (FC) with bi-directional
migrations of two migrants every other cycle. GP models are updated every cycle in GS and WGS using training sets with data from all prior cycles of selection.
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FIGURE 6 | Standardized genotypic variance across 40 cycles of recurrent selection on centralized (A,C,E) and family island (B,D,F) populations, using Phenotypic
Selection (PS) (A,B), Genomic Selection (GS) (C,D), and Weighted Genomic Selection (WGS) (E,F) for the four mating designs (MD): Hub Network (HN), Chain Rule
(CR), Random Mating (RM), and Genomic Mating (GM). Ten percent of lines are selected for crossing. The genetic architecture in the initial simulated founder lines
consisted of 400 additive QTL uniformly distributed throughout the genome and expressed broad sense heritability on an entry mean basis of 0.7. Genetic variance
is standardized to the average genotypic variance in founder populations in cycle “0.” Average island genetic variance refers to genetic variance within families
averaged across 20 families. Migration policy in the island models included “Best Island” (BI), “Random Best” (RB), and “Fully Connected” (FC) with bidirectional
exchange of two immigrants and emigrants every other cycle of selection. GP models are updated every cycle in GS and WGS using training sets with data from all
prior cycles of selection.
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FIGURE 7 | Lost genotypic potential and average genotypic values across 40 cycles of recurrent selection on centralized (A,C,E) and family island (B,D,F)
populations, using Phenotypic Selection (PS) (A,B), Genomic Selection (GS) (C,D) and Weighted Genomic Selection (WGS) (E,F) and four mating designs (MD): Hub
Network (HN), Chain Rule (CR), Random Mating (RM), and Genomic Mating (GM). Ten percent of lines are selected for crosses using HN, CR, RM, and GM mating
designs. The genetic architecture in the initial simulated founder lines consisted of 400 additive QTL uniformly distributed throughout the genome and expressed
broad sense heritability on an entry mean basis of 0.7. The dotted lines represent maximum genetic potential estimated from favorable alleles that are lost from the
population, and solid lines represent increase in average genotypic value of populations due to recurrent selection. Migration policies (MP) in the island models
included “Best Island” (BI), “Random Best” (RB), and “Fully Connected” (FC) with bidirectional exchange of two immigrants and emigrants every other cycle of
selection. GP models are updated every cycle in GS and WGS using training sets with data from all prior cycles of selection.
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(Supplementary Figure 10). Maximal genotypic values (Mgvs)
followed a pattern similar to Rs, and Sgvs mirrored the response
pattern in IS (Supplementary Figure 10).

In contrast to selection on isolated family islands, genotypic
values at the limits were larger using BI, RB, and FC migration
policies among islands, where there is exchange of lines. Among
the selection methods applied to the family island populations,
GS and WGS realized the greatest genetic potential before
reaching limits of responses (Figures 5, 7). The impacts of mating
designs on the responses to selection applied to family island
populations are distinct from those on centralized populations. In
the centralized populations, RM and CR mating designs provided
the greatest genotypic values before response to selection became
limited, whereas in the family island populations, GM provided
the greatest genotypic values when coupled with BI and RB
migration policies. The FC migration policy with the largest
migration rates produced responses that were similar among the
HN, CR, RM, and GM designs (Figures 5, 7).

As noted above, the best responses to selection in the first
10 to 20 cycles on centralized populations were obtained using
GS followed with an HN or GM mating design (respectively
designated CE-GS-HN and CE-GS-GM in Figure 5). The greatest
short-term responses to selection in family island populations
were obtained using either GS or WGS followed by the HN
mating design coupled to a FC migration policy (IM-GS-HN-FC
and IM-WGS-HN-FC in Figure 5 and Supplementary Table 2).
The gains in the first 10–20 cycles that were obtained using GS
and WGS followed by the GM design coupled to a FC migration
policy were comparable and showed little difference.

Given the FC migration policy, the largest standardized
genotypic responses at the limits to response (0.59–0.61) were
obtained using GS or WGS with HN, CR, RM, and GM designs,
whereas with RB migration policy, GS and WGS followed by the
GM design produced the greatest realization of genetic potential
before the 40th cycle (0.59–0.6) compared to (0.3–0.4) with HN,
CR, and RM designs (Figure 5 and Supplementary Table 2). The
BI policy showed a pattern similar to that of RB, but at a slower
rate of response (Figure 5 and Supplementary Table 2).

Maximum genotypic values followed a pattern similar to
Rs for most of the island selection methods. In contrast to
selection in centralized populations where PS and WGS resulted
in the greatest Mgvs in 20–40 cycles, GS in family island
populations resulted in larger Mgvs (124.6) than island PS (119.9)
by the 40th cycle.

Rates of decrease in maximum available potential are
influenced by factors such as selection intensity, selection
method, and mating design. Relative to centralized populations,
island selection retains allelic diversity in the combined
population as selection depletes variance only within islands and
not across islands (Figure 7). Such loss in maximum potential
is not always reflected in rates of responses. Relaxed selection
intensity will result in retention of genetic variance with no
significant increase in response as it is observed with BI and
RB migration policies when combined with RM designs for
PS, GS, and WGS.

Island selection with GM design and FC migration policy
showed the least rate of decrease of Hs values for PS,

GS, and WGS reflecting a greater potential retained in the
population followed by island selection with GM design and
RB migration policy (IM-GM-RB) as well as island selection
with GM design and BI migration policy (IM-GM-BI). Island
selection with HN design and BI policy (IM-HN-BI) as well
as RB policy (IM-HN-RB) showed the most rapid decrease
in Hs across 40 cycles of selection, whereas CR and RM
designs with the same RB and BI migration policies showed
intermediate rates of decrease in Hs. There is an oscillatory
pattern in the decrease of Hs, where Hs increased with
every migration event in early cycles. In late cycles, the
magnitude of increase in Hs due to a migration event
decreased and the oscillatory pattern dampened to a continuous
decrease as the populations approached the limits of responses
(Supplementary Figure 5).

Island PS demonstrated lesser rates of inbreeding compared
to island GS and WGS. RM design showed the least rates of
inbreeding among the four mating designs for BI, RB, and FC
migration policies (Supplementary Figures 6, 7). CR design
followed a pattern similar to HN or GM depending on the
selection method. Among migration policies, the FC policy
demonstrated lesser rates of inbreeding compared to BI and
RB policies, whereas the BI policy demonstrated the largest
rates of inbreeding. The GM design demonstrated rates of
inbreeding that were intermediate between RM and HN/CR
designs (Supplementary Figure 7).

Rs_Var for island selection with FC migration policies
was larger than that observed with centralized populations,
demonstrating larger efficiency of converting loss of genetic
variance into gain. However, with FC policy, all mating designs
showed a similar pattern (Supplementary Figure 8), whereas
Rs_Var for island selection with BI and RB policies was
comparable to that of centralized PS and GS, except for GM
design, which showed larger Rs_Var after 10–20 cycles of
selection (Supplementary Figure 9).

Diversity Within and Among Islands
The average within-island genotypic variance decreased towards
zero through 40 cycles of selection, whereas global and inter-
island genotypic variance increased before becoming limited. The
rates of decrease in average within-island genotypic variance were
influenced by the selection method, mating design, and migration
policy. Both GS and WGS demonstrated similar patterns of loss
of genotypic variance within islands, and rates of loss with both
the selection methods were faster than PS (Figure 6). The HN
mating design demonstrated the fastest loss of within-island
genotypic variance followed by RM, CR, and GM designs. The
FC migration policy provided the slowest loss of within-island
genotypic variance followed by RB and BI migration policies
(Figure 6). Notice, however, an oscillatory pattern in which
within-island genotypic variance increased with every migration
event and decreased because of selection in cycles when there
were no migrants. For both the within-island genotypic variance
and the expected heterozygosity, the magnitudes of oscillations
dampened towards zero after 20–30 cycles of selection except
for the GM mating designs coupled with BI and RB migration
policies (designated IM-GM-BI and IM-GM-RB, respectively, in
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Figure 6). The amplitude of increased genetic variance due to
migration was greater for RB and BI migration policies with large
spikes after 25–30 cycles of selection, while the amplitudes were
smaller with the FC migration policies (Figure 6).

The largest values for inter-island genotypic variance were
obtained with the RM design combined with BI and RB migration
policies followed by CR and HN designs with BI and RB
migration policies (Figure 8). Whereas, the FC migration policies
demonstrated the smallest increases in inter-island genotypic
variance through 40 cycles of selection (Figure 8). Recall that the
FC migration policies provide the greatest migration rates among
islands. Global genotypic variance in family island populations
increased due to increase in inter-island genotypic variance. The
BI migration policies demonstrated the largest global genetic
variance for RM, HN, and CR mating designs followed by
the RB migration policies. The GM design with BI and RB
migration policies provided intermediate rates of increase in
global genotypic variance while the FC migration policy showed
the least increase in global genotypic variance when coupled with
the HN, CR, RM, and GM mating designs (Figure 8).

Within the classes of migration policies, the migration
frequency had significant influence on rates and limits of
responses across most combinations of selection methods,
mating designs, and migration policies, while numbers of
migrants significantly affected responses only for a few
combinations of factors. Both rates and limits of response
decreased with fewer migrants for the HN mating design. For
the RM design, exchange of migrants among family islands once
in every three cycles provided the greatest genotypic values at
the limits compared to responses with more frequent exchange.
Migration size and migration direction had no significant effect
on limits of selection responses (data available on request).

Trade-Offs Between Short-Term and
Long-Term Gains From Recurrent
Selection
There were 12 combinations of selection methods and mating
designs applied to centralized populations and 48 combinations
of selection methods, mating designs, and migration policies
applied to family island populations. From among the 60
methods, GS using a ridge regression model followed by a hub
network mating design in centralized populations and WGS
followed by crosses using the CR in the centralized populations
respectively (designated CE-GS-HN and CE-WGS-CR in Table 2
and Figure 4) demonstrated the greatest responses in the first
20 and last 20 cycles, respectively. However, if the objective for
genetic improvement is to maximize gain in the first 5, 10, 30, or
40 cycles, other combinations of the factors are needed to achieve
the objective. If the breeding objective is to maximize rates of
genetic improvement in five to 10 cycles of recurrent selection
then there are two best options: 1. Genomic selection using
RRBLUP estimated phenotypic values followed by an HN mating
design in family island populations with FC migration policies,
or 2. Genomic selection using RRBLUP estimated phenotypic
values followed by a GM design in family island populations with
FC migration policies (respectively designated as IM-GS-HN-FC

and IM-GS-GM-FC in Table 2). If the objectives are to maximize
both short-term and long-term gains then the best solution
was obtained by selecting with RRBLUP estimated phenotypic
values followed by an HN/CR/GM in family island populations
and applying an FC migration policy (designated IM-GS-HN-
FC/ IM-GS-CR-FC/ IM-GS-GM-FC in Table 2). Among the
combinations applied on centralized populations, WGS followed
by the CR mating design or RM resulted in largest long-term
gains, while selection using RRBLUP estimated phenotypic values
followed by an HN mating design provided the greatest short-
term gains. It is important to note that the relative ranking
of methods will change with the weights for short-term and
long-term objectives.

DISCUSSION

Significance
The challenge of finding optimal trade-offs among competing
genetic improvement objectives has usually been approached
by combining selection and crossing in a single step without
consideration of population structure (Akdemir and Sánchez,
2016; De Beukelaer et al., 2017; Akdemir et al., 2019; Allier
et al., 2019a,b, 2020; Ramasubramanian and Beavis, 2020).
Akdemir and Sánchez (2016) combined selection and mating in
their GM method. De Beukelaer et al. (2017) used weighted
selection indices to maximize gain while retaining a threshold
level of diversity. Among the three diversity measures they tested,
indices that incorporate diversity measures to minimize loss
of rare favorable alleles and minimize heterozygosity resulted
in responses that were greater than WGS with truncation
selection. Including diversity measures in a set offered advantage
over truncation selection, as selected mate pairs retained rare
favorable alleles better than WGS coupled with RM design. Allier
et al., 2019a,b included the impact of within-family selection to
maximize genetic gain while minimizing loss of genetic variance,
but they did not consider migration among families.

Ramasubramanian and Beavis (2020) investigated GS
methods for the genetic improvement of soybean, but only
considered the HN mating design applied among F5-derived
lines regardless of their family affiliation. Herein, we approached
the challenge by disentangling breeding decisions into four
distinct groups: (1) organization of the breeding population,
(2) selection methods, (3) mating designs, and (4) migration
policies. Each of these were divided into possible alternatives
within each group and treated as independent factors in
orthogonal treatment combinations.

As with our previous investigation, we found that the fastest
rates of genetic improvement resulted when GS followed by
the HN mating design is applied to the centralized populations
(Ramasubramanian and Beavis, 2020). When combined, these
three decisions have reinforcing effects on responses to selection.
At the other extreme, when WGS is applied to populations
organized as family islands followed by either CR or RM, the
tendency of all three to retain genetic diversity reinforce each
other resulting in the largest genotypic values, but only after many
cycles of selection. Because the slopes of the curves resulting
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FIGURE 8 | Global and inter-island genotypic variance in island selection. (i) Global genotypic variance (A,C,E) and (ii) Inter-island genetic variance (B,D,F) for
Phenotypic Selection (PS) (A,B), Genomic Selection (GS) (C,D), and Weighted Genomic Selection (WGS) (E,F) for the four mating designs including Hub Network
(HN), Chain Rule (CR), Random Mating (RM), and Genomic Mating (GM) methods. Migration policy included “Best Island” (BI), “Random Best” (RB), and “Fully
Connected” (FC) for 400 simulated QTL and 0.7 H. Migration rules included bidirectional exchange of two immigrants and emigrants every other cycle of selection.
Genotypic variance is standardized to the average genotypic variance in founder populations in cycle “0.” GP models are updated every cycle in GS and WGS using
training sets with data from all prior cycles of selection.
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TABLE 2 | Trade-off table for strategies.

Objectives Objectives weighted equally for
gain across 40 cycles

Method

IM-FC-GS-HN IM-FC-GS-CR IM-FC-WGS-HN IM-FC-GS-GM IM-FC-WGS-GM

Rs in 5 cycles (Rank) 0.2 0.14 (5) 0.13 (13) 0.13 (13) 0.13 (13) 0.13 (13)

Rs in 10 cycles (Rank) 0.2 0.29 (3) 0.28 (7) 0.29 (3) 0.27 (11) 0.26 (12)

Rs in 20 cycles (Rank) 0.2 0.53 (1) 0.51 (4) 0.51 (4) 0.48 (8) 0.49 (7)

Rs in 30 cycles (Rank) 0.2 0.59 (7) 0.59 (7) 0.59 (7) 0.59 (7) 0.59 (7)

Rs in 40 cycles (Rank) 0.2 0.59 (13) 0.6 (8) 0.59 (13) 0.61 (4) 0.61 (4)

Weighted rank 1 2 3 4 4

Objectives Objectives weighted highly for gain
in the first 20 cycles

Method

IM-FC-GS-HN IM-FC-WGS-HN IM-FC-GS-CR CE-GS-CR CE-GS-GM

Rs in 5 cycles (Rank) 0.5 0.14 (5) 0.13 (13) 0.13 (13) 0.14 (5) 0.14 (5)

Rs in 10 cycles (Rank) 0.2 0.29 (3) 0.29 (3) 0.28 (7) 0.28 (7) 0.28 (7)

Rs in 20 cycles (Rank) 0.1 0.53 (1) 0.51 (4) 0.51 (4) 0.44 (18) 0.44 (18)

Rs in 30 cycles (Rank) 0.1 0.59 (7) 0.59 (7) 0.59 (7) 0.47 (22) 0.47 (22)

Rs in 40 cycles (Rank) 0.1 0.59 (13) 0.59 (13) 0.60 (8) 0.47 (26) 0.47 (26)

Weighted rank 1 2 3 4 4

Trade-off table to support the decision for selecting the best strategy to achieve objectives including maximum gain in 5, 10, 20, 30, and 40 cycles of recurrent selection.
The methods are ranked for each of the objectives based on standardized genetic responses. The absolute genotypic response values for each of the methods are
provided along with the ranking of the method for the specific objective in bold numeric in parenthesis. Two sets of objective weights are provided to define the relative
importance of the objectives: (i) the weighted rank of methods are estimated with more emphasis on the first 20 cycles (top), (ii) the weighted rank of methods are
estimated with equal emphasis on the first and last 20 cycles (bottom). The best five methods among the 60 methods for each of the weighted objectives are presented.
The simulations are provided for 400 simulated QTL responsible for 70% of phenotypic variability. Migration policies include “Isolated Selection,” “Best Island,” “Random
Best,” and “Fully Connected.” Other migration factors are set to constant values: migration frequency - 2, migration direction - 2 (bi-directional), and migration size - 2.
Selection methods include PS, Phenotypic Selection; GS, Genomic Selection; and WGS, Weighted Genomic Selection. Mating designs include HN (Hub Network), CR
(Chain rule), RM, Random Mating; and GM, Genomic Mating method.

from WGS and PS at 40 cycles are still positive, it is possible
that both selection methods could continue to produce greater
genetic potential with more cycles of selection. In previous
comparative studies, WGS produced long-term responses that
are similar to methods such as Optimal Contribution Selection
and Expected Maximum – Haploid Value (Daetwyler et al.,
2015; Müller et al., 2018). Herein when we applied WGS to
centralized lines followed by the GM design, the genotypic values
at the limits to response were greater than the genotypic values
obtained with PS or GS followed by GM. This combination also
retained the largest values for heterozygosity and favorable alleles
across more cycles. However, the differences between responses
to GS and WGS followed by GM were not significant when
applied to the populations organized into family islands with
migration among islands.

Between the extreme response curves, it was also possible to
find many response curves with intermediate trade-offs between
the objectives. For example, applying WGS to lines that were
not organized into islands followed by HN provided greater
response rates than other combinations of factors involving
WGS. Selection among lines organized into family islands
resulted in responses that were larger or comparable to responses
from centralized populations for only a limited number of
combinations of mating design (GM) and migration policies (RB
and FC). This may be due to the small numbers of related lines
on each island (20 × smaller than the centralized population).

With such a small number, selection can deplete all the genetic
variance within the first 10–15 cycles as demonstrated in isolated
selection. When there is no migration, which is the major source
of new genetic variability, the populations realized only 10%–
15% of maximum potential in the founder populations even
while optimizing for sustainable gain using the GM method.
A relaxed selection intensity, where the top 20% of the lines in
each island are selected can sustain responses for longer cycles as
demonstrated in centralized and island selection with migration
(Supplementary Table 3).

As expected, even with small numbers of lines per island,
migration had a positive impact on the outcomes. It is known
that intermediate levels of migration rate result in optimal
trade-offs between gain and diversity (Skolicki, 2007; Skolicki
and Jong, 2007: Obolski et al., 2017). However, the range of
intermediate parameter values depend on the specific context. In
our study, responses in family islands were larger than selection
responses in centralized populations only when migration
events happened every cycle or once in two cycles. When
migration happened once in three cycles of selection, the rates
of responses in the early cycles were very low resulting in fewer
cycles of response to selection and lower genotypic values as
the limits to selection were approached. Migration size and
direction did not have any significant impact on response within
the small range of parameter values we tested for migration
size and direction.
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Also, we retained the best line, in terms of the selection metric,
within island during migration events and replaced the second
best line in the ranked list of selected lines with the immigrant
for the BI and RB policies, whereas, for the FC policy, lines that
are ranked from 2–6 are replaced. This replacement policy allows
crossing between lines that are best within islands and immigrant
lines from islands with the highest selection metric resulting in
high rates of response within islands. We hypothesize that other
policies that replace lines with low selection metric value with
high selection metric values from immigrant islands will reduce
genetic diversity within islands and result in different outcomes
compared to the policy we have implemented.

Nonetheless, we found a very good trade-off among the
competing objectives. If GS was applied to lines on FC islands
and the selected lines were mated according to the pareto-optimal
crosses identified using GM, then the combination preserved
genetic variance for long-term gain with little penalty relative to
the realized rates of improvement in early cycles by GS and the
HN mating design. Yabe et al. (2016) have reported outcomes
from recurrent GS in rice populations using the following three
migration policies: centralized populations also referred to as
bulked GS, discrete GS that corresponds to the fully isolated
selection, and island GS which corresponds to the island model
selection. In their study, where they used the CR for crossing, GS
on centralized populations showed larger responses in the seven
to eight cycles compared to isolated and island selection, whereas
island GS demonstrated larger responses than the centralized and
isolated GS after 12 cycles of selection. Similarly, in this study,
GS on centralized populations with CR mating design resulted
in larger long-term responses compared to most of the island
GS except when an FC migration policy was used, where the
responses were roughly similar in the first 10 cycles. Moreover,
the responses were larger in the late cycles with Island GS and
FC policy than in the centralized policy with CR mating design
similar to the outcomes in the Yabe et al. (2016) study.

In another study, Technow et al. (2021) have investigated
the impact of breeding program structure in maize hybrid
development. They observed that a centralized policy provided
the best responses, when the genetic architecture is completely
additive. This roughly corresponds to the results we observed,
where GS in centralized populations showed the largest short-
term responses with the HN mating design, which is similar
to the disproportional contributions in Technow et al. (2021).
They also noted that, as the genetic complexity increased, the
distributed and isolated policies provided larger responses. In
summary, motivated by Akdemir and Sánchez (2016) and Yabe
et al. (2016), we demonstrate that it is possible to design
breeding strategies to produce near maximal rates of genetic
improvement while retaining maximal genetic potential for long-
term genetic improvement.

Future Research
By framing breeding strategies as orthogonal combinations of
population structure, selection methods, mating designs, and
migration policies, we illustrated the potential of the approach for
a small arbitrary soybean genetic improvement project. We did
not consider the relative emphasis of objectives and constraints

for any specific genetic improvement project. Consider first the
structure of breeding populations. We compared a centralized
structure of lines with family islands created by individual crosses
among the founders and then we selected within and among
islands according to the same criteria. This might make sense
within a single soybean genetic improvement project for lines
adapted to MGs II and III. Alternatively, individual breeding
projects might be considered breeding islands.

There are six public soybean genetic improvement projects
adapted to MGs II and III. There are likewise about the same
number of commercial soybean genetic improvement projects
in the same MGs. All of these projects began at different times
and were initiated with unique, albeit overlapping, germplasm
resources (Mikel et al., 2010). While all of the projects select
lines with greater genotypic values for yield, the yield values are
obtained from different, overlapping, environments.

From the perspective of soybean genetic improvement across
regions within MGs II and III, each genetic improvement project
can be represented as an island where genotypes are exchanged
among project islands based on annual evaluations in uniform
regional trials and according to legal licensing rules. In practice,
breeding projects exchange projects only the best performing
lines adapted to similar environmental conditions. Nonetheless,
soybean breeders will maintain useful genetic variability by
exchanging lines among island projects. An advantage is that
diversity among islands increases with selection, even when
within-island diversity decreases. Eventually, beyond 40 cycles
of recurrent selection, genetic variability among islands will
decrease as genetic variability among islands is lost to selection.

Future investigations of breeding strategies to optimize
trade-offs between rates of genetic gains and retention of
useful genetic variance in soybean adapted to MGs II and III
should consider population structures within island projects
that more accurately reflect those that currently exist. Also,
future investigations should simulate genetic architectures with
genotype × environment effects. It is well known that a line
adapted to one environment may not perform well in other
environments, and it is possible to define fitness values so that
they include environmental effects. Third, future investigations
should consider a broader set of migration rules and policies.
The FC migration policy is considered the upper bound of
island models as all islands are connected to every other island
with maximum migration rates among islands. While our results
indicate that this policy provided the best long-term genotypic
values, it remains to be tested whether it will provide the best
results for genetic architectures with genotype by environment
interaction effects.

Fourth, we need to recognize islands in time because every
cycle of selection discards useful genetic variability. A soybean
germplasm resource project was set up (Mikel et al., 2010)
to recover useful genetic variability lost during domestication
of soybean (Nelson, 2011). Rather than trying to build long
bridges to islands located in the distant past, our results
suggest that there should be a large amount of useful genetic
variability that was discarded in the first few cycles of modern
soybean breeding. For that matter, until response to selection
reaches the half-life for the population, large amounts of useful
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genetic variability can probably be recovered from islands
represented by recent cycles of discarded lines. These conjectures
should be preceded by simulations to determine the potential
benefit and costs associated with sampling lines in recently
discarded islands.

Fifth, it should be clear that a predefined mating design
does not take advantage of opportunities created by each cycle
of progeny to optimize outcomes according to most project
objectives. Thus, there continues to be a need for algorithms that
efficiently and effectively identify crosses from among genotypes
produced by each cycle of selection. It is tempting to adopt and
investigate all evolutionary algorithm strategies. However, only
a subset is relevant to the practice of plant breeding (Hagan
et al., 2012). For example, mutation and recombination rates
can be controlled in computational evolutionary algorithms,
whereas plant breeders cannot regulate these with current
practices. Nonetheless there are many opportunities for cross-
disciplinary research between evolutionary computing and
plant breeding. There is a large body of literature concerning
the properties of evolutionary algorithms and factors and
strategies that affect convergence rates and quality of solutions
(Goldberg, 1989; Goldberg and Deb, 1992; Whitley et al.,
1999; Skolicki, 2007; Skolicki and Jong, 2007; Črepinšek et al.,
2013; Obolski et al., 2017), and working with computational
scientists should reveal novel methods to maximize the
genetic potential of a breeding population in a minimum
number of cycles.

Akdemir and Sánchez (2016) proposed only one of many
possible GAs to identify pareto-optimal solution pairs. An
approach introduced by Gaur and Deb (2016) and Mittal
et al. (2020) would use statistical methods such as clustering
and machine learning to unravel relationship among pareto-
optimal solutions. The statistical knowledge can be used to
improve the search for optimal solutions and establish several
cycles of optimization. Conceptually, unveiling any relationship
among pareto-optimal pairs in a genotypic space is likely to
provide new knowledge regarding the characteristics of such
complementary pairs. In addition, modeling responses with a
first-order recurrence equation or a non-linear mixed effects
model to predict the half-life and asymptotic limits of selection
have potential to improve the efficiency of GAs by providing
repair operators to alter the trajectory of population evolution
towards the desired optimal trade-offs.

Lastly, consider the challenge of stating explicit relative
emphasis on objectives and definition of constraints for any
specific genetic improvement project. As noted previously,
this challenge exists because it requires assigning economic
and agronomic value of short-term genetic gains vs. the
forecasted value of useful genetic variants that may be discarded
each cycle of selection. As a thought experiment, note that
the trade-off objectives can be reduced to a single “grand”
objective of creating a genotype (line) with the genotypic
value equal to the full genetic potential of the founders in
a single cycle. For a genetic architecture consisting of two
alleles at a single locus, achieving the single grand objective
is trivial. Also, it is possible to imagine that the grand
objective can be achieved for a complex genetic architecture

with infinite resources. Clearly, given genetic architectures of
complex traits and resource constraints, there are no feasible
solutions to the grand objective, but it is a useful reference to
serve as the goal.

In summary, we have evaluated and suggested several
novel combinations of existing genomic selection methods,
mating designs, and migration rules that resulted in improved
responses. The study has demonstrated the potential of these new
approaches, which integrate the strengths of whole-genome level
information, prediction modeling, and optimization methods to
contribute to the development of decision support systems for
real plant breeding programs.
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Harnessing Genetic Diversity in the
USDA Pea Germplasm Collection
Through Genomic Prediction
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Phenotypic evaluation and efficient utilization of germplasm collections can be time-
intensive, laborious, and expensive. However, with the plummeting costs of next-
generation sequencing and the addition of genomic selection to the plant breeder’s
toolbox, we now can more efficiently tap the genetic diversity within large germplasm
collections. In this study, we applied and evaluated genomic prediction’s potential to a set
of 482 pea (Pisum sativum L.) accessions—genotyped with 30,600 single nucleotide
polymorphic (SNP) markers and phenotyped for seed yield and yield-related
components—for enhancing selection of accessions from the USDA Pea Germplasm
Collection. Genomic prediction models and several factors affecting predictive ability were
evaluated in a series of cross-validation schemes across complex traits. Different genomic
prediction models gave similar results, with predictive ability across traits ranging from 0.23
to 0.60, with no model working best across all traits. Increasing the training population size
improved the predictive ability of most traits, including seed yield. Predictive abilities
increased and reached a plateau with increasing number of markers presumably due to
extensive linkage disequilibrium in the pea genome. Accounting for population structure
effects did not significantly boost predictive ability, but we observed a slight improvement
in seed yield. By applying the best genomic prediction model (e.g., RR-BLUP), we then
examined the distribution of genotyped but nonphenotyped accessions and the reliability
of genomic estimated breeding values (GEBV). The distribution of GEBV suggested that
none of the nonphenotyped accessions were expected to perform outside the range of the
phenotyped accessions. Desirable breeding values with higher reliability can be used to
identify and screen favorable germplasm accessions. Expanding the training set and
incorporating additional orthogonal information (e.g., transcriptomics, metabolomics,
physiological traits, etc.) into the genomic prediction framework can enhance
prediction accuracy.

Keywords: genomic selection, genomic prediction, reliability criteria, germplasmaccessions, pea (Pisumsativum L),
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INTRODUCTION

Pea (Pisum sativum L.) is a vitally important pulse crop that
provides protein (15.8–32.1%), vitamins, minerals, and fibers. Pea
consumption has cardiovascular benefits as it is rich in potassium,
folate, and digestible fibers, which promote gut health and
prevent certain cancers (Mudryj et al., 2014; Tayeh et al.,
2015). Considering the health benefits of pulse crop, the US
Department of Agriculture recommends regular pulses
consumption, including peas, to promote human health and
wellbeing (http://www.choosemyplate.gov/). In 2019, more
than 446,000 hectares of edible dry pea were planted with
production totaling 1,013,600 tonnes in the USA, making it
the fourth largest legume crop (http://www.fao.org) (USDA,
2020). Growing peas also help maintain soil health and
productivity by fixing atmospheric nitrogen (Burstin et al.,
2015). Recently, the pea protein has emerged as a frontrunner
and showed the most promise in the growing alternative protein
market. The Beyond Meat burger is a perfect example of a pea
protein product gaining traction in the growing market. About
20-g protein (17.5%) in each burger comes from pea (https://
www.nasdaq.com/articles/heres-why-nows-thetime-to-buy-
beyond-meat-stock-2019-12-05). Another product made from
pea, Ripptein, is a non-dairy milk product of pea protein that
is gaining tremendous interest as an alternative dairy product
(https://www.ripplefoods.com/ripptein/). Additionally, peas are
gaining attention in the pet food market as it is grain-free and an
excellent source of essential amino acids required by cats and
dogs (PetfoodIndustry.com; Facciolongo et al., 2014). As the
demand for pea increases, particularly in the growing
alternative protein market, genetic diversity expansion is
needed to hasten the current rate of genetic gain in pea
(Vandemark et al., 2014).

Germplasm collections serve as an essential source of variation
for germplasm enhancement that can sustain long-term genetic
gain in breeding programs. The USDA Pisum collection, held at
the Western Regional Plant Introduction Station at Washington
State University, is a good starting point to investigate functional
genetic variation useful for applied breeding efforts. To date, this
collection consists of 6,192 accessions plus a Pea Genetic Stocks
collection of 712 accessions. From this collection, the USDA core
collection, comprised of 504 accessions, was assembled to
represent ∼18% of all USDA pea accessions at the time of
construction (Simon and Hannan 1995; Coyne et al., 2005).
Subsequently, single-seed descent derived homozygous
accessions were developed from a subset of the core to form
the ‘Pea Single Plant’-derived (PSP) collection. The PSP was used
to facilitate the collection’s genetic analysis (Cheng et al., 2015).
The USDA Pea Single Plant Plus Collection (Pea PSP) was
assembled as well as included the PSP and Chinese accessions
and field, snap and snow peas from US public pea breeding
programs (Holdsworth et al., 2017).

Genomic selection (GS) takes advantage of high-density
genomic data that holds a promise to increase the rate of
genetic gain (Meuwissen et al., 2001). As genotyping costs
have significantly declined relative to current phenotyping
costs, GS has become an attractive option as a selection

decision tool to evaluate accessions in extensive germplasm
collections. A genomic prediction approach could use only
genomic data to predict each accession’s breeding value in the
collection (Meuwissen et al., 2001; Habier et al., 2007; VanRaden,
2008). The predicted values would significantly increase the value
of accessions in germplasm collections by giving breeders a means
to identify those favorable accessions meriting their attention
from the thousand available accessions in germplasm collections
(Longin et al., 2014; Crossa et al., 2016; Jarquin et al., 2016).
Several studies used the genomic prediction approach to harness
diversity in germplasm collections, including lentil (Haile et al.,
2020), soybean (Jarquin et al., 2016), wheat (Crossa et al., 2016),
rice (Spindel et al., 2015), sorghum (Yu et al., 2016), maize
(Gorjanc et al., 2016), and potato (Bethke et al., 2019). A pea
genomic selection study for drought-prone Italian environment
revealed increased selection accuracy of pea lines (Annicchiarico
et al., 2019; Annicchiarico et al., 2020). To the best of our
knowledge, no such studies have been performed using the
USDA Pea Germplasm Collection, but a relevant study has
been conducted using a diverse pea germplasm set comprised
of more than 370 accessions genotyped with a limited number of
markers (Burstin et al., 2015; Tayeh et al., 2015).

To date, methods to sample and utilize an extensive genetic
resource like germplasm collections remain a challenge. In this
study, a genomic prediction approach targeting complex traits,
including seed yield and phenology, was evaluated to exploit
diversity contained in the USDA Pea Germplasm Collection. No
research has been conducted before on genomic prediction for
the genetic exploration of the USDA Pea Germplasm Collection.
Different cross-validation schemes were used to answer essential
questions surrounding the efficient implementation of genomic
prediction and selection, including determining best prediction
models, optimum population size and number of markers, and
impact of accounting population structure into genomic
prediction framework. We then examined the distribution of
all nonphenotyped accessions using SNP information in the
collection by applying genomic prediction models and
estimated reliability criteria of genomic estimated breeding
values for the assessed traits.

MATERIALS AND METHODS

Plant Materials
A total of 482 USDA germplasm accessions were used in this study,
including the Pea Single Plant Plus Collection (Pea PSP) comprised
of 292 accessions (Cheng et al., 2015). The USDA Pea Core
Collection contains accessions from different parts of the world
and represents the entire collection’smorphological, geographic, and
taxonomic diversity. These accessionswere initially acquired from64
different countries and are conserved at the Western Regional Plant
Introduction Station, USDA, Agricultural Research Service (ARS),
Pullman, WA (Cheng et al., 2015).

DNA Extraction, Sequencing, SNP Calling
Green leaves were collected from seedlings of each accession
grown in the greenhouse with the DNeasy 96 Plant Kit (Qiagen,
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Valencia, CA, USA). Genomic libraries for the Single Plant Plus
Collection were prepped at the University of Minnesota
Genomics Center (UMGC) using genotyping-by-sequencing
(GBS). Four hundred eighty-two (482) dual-indexed GBS
libraries were created using restriction enzyme ApeKI (Elshire
et al., 2011). A NovaSeq S1 1 × 100 Illumina Sequencing System
(Illumina Inc., San Diego, CA, USA) was then used to sequence
the GBS libraries. Preprocessing was performed by the UMGC
that generated the GBS sequence reads. An initial quality check
was performed using FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Sequencing adapter remnants
were clipped from all raw reads. Reads with final length <50 bases
were discarded. The high-quality reads were aligned to the
reference genome of Pisum sativum (Pulse Crop Database
https://www.pulsedb.org/, Kreplak et al., 2019) using the
Burrow Wheelers Alignment tool (Version 0.7.17) (Li and
Durbin, 2009) with default alignment parameters, and the
alignment data was processed with SAMtools (version 1.10)
(Li et al., 2009). Sequence variants, including single and
multiple nucleotide polymorphisms (SNPs and MNPs,
respectively), were identified using FreeBayes (Version 1.3.2)
(Garrison and Marth, 2012). The combined read depth of 10
was used across samples for identifying an alternative allele as a
variant, with the minimum base quality filters of 20. The putative
SNPs from freeBayes were filtered across the entire population to
maintain the SNPs for biallelic with minor allele frequency
(MAF) < 5%. The putative SNP discovery resulted in biallelic
sites of 380,527 SNP markers. The QUAL estimate was used for
estimating the Phred-scaled probability. Sites with a QUAL value
less than 20 and more than 80% missing values were removed
from the marker matrix. The rest of the markers were further
filtered out so that heterozygosity was less than 20%. The filters
were applied using VCFtools (version 0.1.16) (Danecek et al.,
2011) and in-house Perl scripts. The SNP data were uploaded in a
public repository and is available at this link: https://www.ncbi.
nlm.nih.gov/sra/PRJNA730349 (Submission ID: SUB9608236).
Missing data were imputed using a k-nearest neighbor genotype
imputation method (Money et al., 2015) implemented in TASSEL
(Bradbury et al., 2007). SNP data were converted to a numeric
format where 1 denotes homozygous for a major allele, -1 denotes
homozygous for an alternate allele, and 0 refers to heterozygous
loci. Finally, 30,646 clean, curated SNP markers were identified
and used for downstream analyses.

Phenotyping
Pea germplasm collections (Pea PSP) were planted following
augmented design with standard checks (“Hampton,”
“Arargorn,” “Columbian,” and “1,022”) at the USDA Central
Ferry Farm in 2016, 2017, and 2018 (planting dates were March
14, March 28, and April 03, respectively). The central Ferry farm
is located at Central Ferry, WA at 46°39′5.1″N; 117°45′45.4″ W,
and elevation of 198 m. The Central Ferry farm has a Chard silt
loam soil (coarse-loamy, mixed, superactive, mesic Calcic
Haploxerolls) and was irrigated with subsurface drip irrigation
at 10 min d−1. All seeds were treated with fungicides; mefenoxam
(13.3 ml a.i. 45 kg-1), fludioxonil (2.4 ml a.i. 45 kg -1), and
thiabendazole (82.9 ml a.i.45 kg -1), insecticide; thiamethoxam

(14.3 ml a.i. 45 kg -1), and sodiummolybdate (16 g 45 kg -1) prior
to planting. Thirty seeds were planted per plot; each plot was
152 cm long, having double rows with 30 cm center spacing. The
dimensions of each plot were 152 × 60 cm. Standard fertilization
and cultural practices were used.

The following traits were recorded and are presented in this
manuscript. Days to first flowering are the number of days from
planting to when 10% of the plot’s plants start flowering. The
number of seeds per pod is the number of seeds in each pod.
Plant height (cm) is defined as when all plants in a plot obtained
full maturity and were measured in centimeters from the collar
region at soil level to the plants’ top. Pods per plant is the
number of recorded pods per plant. Days to maturity referred to
physiological maturity when plots were hand-harvested,
mechanically threshed, cleaned with a blower, and weighed.
Plot weight (gm) is the weight of each plot in grams after each
harvest. Seed yield (kg ha−1) is the plot weight converted to seed
yield in kg per hectare.

Phenotypic Data Analysis
A mixed linear model was used to extract best linear unbiased
predictors (BLUPs) for all traits evaluated using the following
model:

yij � μ + Gi + Ej + (GpE)ij + eij (1)

where yij is the observed phenotype of ith genotypes and jth
environment which is the number of years, μ is the overall mean,
Gi is the random genetic effect (i is number of genotypes), Ej is
the random environments (j is number of years), (GpE)ij is the
genotype by environment interaction, and eij is the residual error.

For the purpose of estimating heritability, we fit the same
model above. The heritability in broad sense (H2) on an entry-
mean basis for each assessed trait was calculated to evaluate the
quality of trait measurements following the equation (Hallauer
et al., 2010):

H2 � σ2G
σ2G + σ2GE/j + σ2e/jr

(2)

where σ2G is the genetic variance, σ2GE is variance due to the
genotype by year interaction, σ2e is the error variance, j is number
of years considered as environments, and r is the relative number
of occurrences of each genotype in a trial (harmonic mean of the
entries). We also calculated heritability proposed by Cullis et al.
(2006) implemented in Sommer package in R (Covarrubias-
Pazaran, 2016).

H2
Cullis � 1 − ( PEV

md*Vg
) (3)

where PEV is the predicted error variance for the genotype, Vg

refers to the genotypic variance, md is the mean values from the
diagonal of the relationship matrix, which is an identity matrix.

The R package, lme4 (Bates et al., 2015), was used to analyze
the data. The trait values derived from the BLUPs were used to
measure correlation with the ggcorrplot using ggplot2 package
(Wickham 2016). All phenotypic and genomic prediction models
were analyzed in the R environment (R Core Team, 2020).
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Genomic Prediction Models
The genomic prediction models were fitted as follows:

y � μ + Zu + ε (4)

where y is a vector of the genotype BLUPs obtained from Eq. 1, μ
is the intercept of the model used for the study, Z is the SNP
marker matrix, u is the vector of marker effects, and ε is a residual
vector.

Five genomic prediction models were evaluated including
ridge regression ridge regression best linear unbiased
prediction approach (RR-BLUP), partial least squares
regression model (PLSR), random forest (RF), BayesCpi, and
Reproducing Kernel Hilbert Space (RKHS).

The RR-BLUP model assumes all markers have an equal
contribution to the genetic variance. One of the most widely
used methods for predicting breeding values is RR-BLUP,
comparable to the best linear unbiased predictor (BLUP) used
to predict the worth of entries in the context of mixed models
(Meuwissen et al., 2001). The RR-BLUP basic frame model is:

y � Zu + ε (5)

where u ∼ N(0, Iσ2u) is a vector of marker effects and Z is the
genotype matrix e.g., (aa, Aa, AA) � (0, 1, 2) for biallelic single
nucleotide polymorphisms (SNPs) that relates to phenotype y
(Endelman, 2011). The RR-BLUP genomic prediction was
implemented using the “RR-BLUP” package (Endelman, 2011).

Partial least square regression is a reduction dimension
technique that aims to find independent latent components
that maximize the covariance between the observed
phenotypes and the markers (predictor variables) (Colombani
et al., 2012). The number of components (also known as latent
variables) should be less than the number of observations to avoid
multicollinearity issues and commonly the number of
components are chosen by cross validation. PLSR was
executed using the “pls” package (Mevik and Wehrens, 2007).

Random forest is a machine learning model for genomic
prediction that uses an average of multiple decision trees to
determine the predicted values. This regression model was
implemented using the “randomForest” package (Breiman,
2001). The number of latent components for PLSR and
decision trees for random forest was determined by a five-fold
cross-validation to have a minimum prediction error.

BayesCpi was used to verify the influence of distinct genetic
architectures of different traits on prediction accuracy. The
BayesCpi assumes that each marker has a probability π of
being included in the model, and this parameter is estimated
at each Markov Chain Monte Carlo (MCMC) iteration. The
vector of marker effects u is assumed to be a mixture of
distributions having the probability π of being null effect and
(1- π) of being a realization of a normal distribution, so that,
uj|π, σ2g ∼ N(0, σ2g). The vector of residual effects was considered
as e ∼ N(0, σ2e). The marker and residual variances were
assumed to follow a chi-square distribution σ2g ∼ χ2(Sb, ]0)and
σ2e ∼ χ2(Sb, ]0), respectively, with ]0 � 5 degrees of freedom as
prior and Sb shape parameters assuming a heritability of 0.5
(Pérez and de los Campos, 2014).

The last model used was the RKHS. The method is a regression
where the estimated parameters are a linear function of the basis
provided by the reproducing kernel (RK). RKHS considers both
additive and non-additive genetic effects (de los Campos et al.,
2013). In this work, the multi-kernel approach was used by
averaging three kernels with distinct bandwidth values. In this
implementation the averaged kernel, �K was given by:

�K � ∑rKrσ2βr ~σ
−2
β , where ~σ2β � ∑

r
σ2βr . Here r � 3 and σ2βr are

interpretable as variance parameters associated with each kernel.
Therefore, for each rth kernel the proportion of sharing alleles
between pairs of individuals (ii′) was given by Kr � exp −hkd2ii’ }{ ,
where hk is a bandwidth parameter associated with rth

reproducing kernel and d2iiC is the genetic distance between
individuals i and i′ computed as follows: d2ii‘ � ∑p

j�1(xij−xiCj)2,
where j � 1, . . . , p markers stated as above. The bandwidth
parameter values for the three kernels were h � 0.5{1/5,1,5, as
suggested by (Pérez and de los Campos, 2014). Those values
were chosen using the rule proposed by de los Campos et al.
(2010).

Genomic prediction models RR-BLUP, PLSR, RF were carried
out using “GSwGBS” package (Gaynor, 2015) while the
BayesianCpi and RKHS were executed with the BGLR package
(de los Campos et al., 2010). We calculated each genomic
prediction model’s predictive ability as the Pearson correlation
between the estimated breeding values from model 1) (obtained
using the full data set) and those of validation set predicted from
the respective model. For that, we used a cross-validation scheme
considering 80% of the observations, randomly selected, as
training and the remaining 20% as validation set. The process
was repeated 20 times for each model. From the predictive ability
values, we estimated the confidence interval for this parameter
using the bootstrap method considering 10,000 samples (James
et al., 2013).

Determining Optimal Training Population
Size
The influence of training population size on predictive ability was
evaluated using a validation set comprising of 50 randomly selected
lines and training sets of variable sizes. The validation set was formed
by randomly sampling 50 lines without replacement. The training
population of size n was formed sequentially by adding 25 accessions
from the remaining accessions such that its size ranged between 50
and 175. We subset the collection into subgroups of 50, 75, 100, 125,
150, and 175 individuals each. The RR-BLUP model was used to
predict each trait. This procedure was repeated 20 times, and
accuracies of each training population size were averaged across
20 replicates. To predict a particular subpopulation with increasing
population size, a similar procedure was followed to using variable
training population size ranged from 50 to 175 with an increment
of 25.

Determining Optimal Marker Density
To evaluate the effects of GBS marker selection on predictive
ability, we randomly sampled markers five times with the
following subset: one thousand (1 K), five thousand (5 K), ten
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thousand (10 K), fifteen thousand (15 K), twenty thousand
(20 K), twenty-five thousand (25 K), and thirty thousand
(30 K). A random sampling of SNP was implemented to
minimize or avoid any possible biases on sampling towards a
particular distribution. Using the RR-BLUP model, a five-fold
cross validation approach was used to obtain predictive ability in
each marker subset. This procedure was repeated 20 times and
predictive ability for each subset of SNPs were averaged across 20
replicates.

Accounting for Population Structure Into
the Genomic Prediction Framework
We explored the confounding effect due to population structure
on predictive ability. We investigated subpopulation structure on
482 accessions genotyped with 30,600 SNP markers using the
ADMIXTURE clustering-based algorithm (Alexander et al.,
2009). ADMIXTURE identifies K genetic clusters, where K is
specified by the user, from the provided SNP data. For each
individual, the ADMIXTUREmethod estimates the probability of
membership to each cluster. An analysis was performed in
multiple runs by inputting successive values of K from 2 to
10. The optimal K value was determined using ADMIXTURE’s
cross-validation (CV) error values. Based on >60% ancestry, each
accession was classified into seven subpopulations (K � 7).
Accessions within a subpopulation with membership
coefficients of <60% were considered admixed. A total of eight
subpopulations were used in this study, including admixed as a
separate subpopulation. Principal component (PC) analysis was
also conducted to summarize the genetic structure and variation
present in the collection.

To account for the effect of population structure, we included the
top 10 PC, or the Q-matrix from ADMIXTURE into the RR-BLUP
model and performed five-fold cross-validation repeated 20 times.
Alternatively, we also used the subpopulation (SP) designation
identified by ADMIXTURE as a factor in the RR-BLUP model.
Albeit a smaller population size, we also performed a within-
subpopulation prediction. As stated above, a subpopulation was
defined based on >60% ancestry cut-off. Only three subpopulations
with this cut-off were identified and used with reasonable number of
entries (e.g., N > 40): SP5 (N � 51), SP7 (N � 58), and SP8 (N � 41).
A leave-one-SP-out was used to predict individuals within the
subpopulation with the RR-BLUP model. We also used
increasing population sizes to predict specific subpopulation (e.g.
SP8) using the RR-BLUP model.

Estimating Reliability Criteria and
Predicting Unknown Phenotypes
Nonphenotyped entries were predicted based on the RR-BLUP
model using SNP markers only. The reliability criteria for each of
the nonphenotyped lines were then calculated using the formula
(Hayes et al., 2009; Clark et al., 2012) as follows:

r(PEV) �
�������������(1 − (PEV

σ2
G

))√
(6)

where PEV is the predicted error variance, and σ2G is the genetic
variance.

RESULTS

Phenotypic Heritability and Correlation
Recorded days to first flowering had a wide range of variability
from 60 to 84 days with a mean of 71 days. The estimated
heritability for days to first flowering was 0.90 using Eq. 2 and
0.80 as per Cullis heritability using Eq. 3 (Table 1). For the
number of seeds per pod, the mean was 5.7 with a heritability
estimate of 0.84 (H2

Cullis � 0.66). The heritability for plant height
was 0.81 (H2

Cullis � 0.68), with an average height of 74 cm. The
number of pods per plant had a heritability estimate of 0.50
(H2

Cullis � 0.27) with a mean of 18 number of pods per plant and
ranged from 15 to 23 pods. Days to physiological maturity had a
mean of 104 days with an estimated heritability of 0.51 (H2

Cullis �
0.38). Seed yield per hectare ranged widely from 1734 to
4,463 kg ha−1 with a mean yield of 2,918 kg ha−1 and a
heritability value of 0.67 (H2

Cullis � 0.46). The number of pods
per plant was highly and positively correlated with seed yield.
Correlation estimation also suggested seed yield was positively
correlated with plant height, days to physiological maturity, and
days to first flowering (Supplementary Figure S1).

Predictive Ability of Different Genomic
Prediction Models
No single model consistently performed best across all traits that
we evaluated (Table 2), however Bayesian model BayesCpi,
RKHS, and RR-BLUP, in general, tended to generate better
results. Roughly the predictive abilities from different models
were similar, although slight observed differences were likely due
to variations on genetic architecture and the model’s assumptions
underlying them. For days to first flowering, the highest
predictive ability was obtained from the RR-BLUP (0.60). RR-
BLUP, RF, and RKHS models generated the highest predictive
ability for number of pods per plant (0.28). Number of seeds per
pod was better predicted by RR-BLUP and Bayes Cpi (0.42). For
plant height highest prediction accuracies were obtained from RF
and BayesCpi (0.45). BaysCpi also gave the highest prediction
accuracies for days to physiological maturity (0.47). For seed

TABLE 1 | Heritability and summary statistics for seed yield and other agronomic
traits.

Trait Mean Range SD CV(%) H2 H2
Cullis

DFF (days) 71 60–84 4.8 6.7 0.90 0.80
NoSeedsPod (Nos.) 5.7 4.4–6.9 0.5 8.5 0.84 0.66
PH (cm) 74 37.6–108.3 11.5 15.5 0.81 0.68
PodsPlant (Nos.) 18 15–23 1.5 8.3 0.50 0.27
DM (days) 104 99–112 2.4 2.3 0.51 0.38
SeedYield (kg ha−1) 2,918 1734–4,463 451 15.4 0.67 0.46

DFF is days to first flowering; NoSeedsPod is the number of seeds per pod, PH is plant
height, PodsPlant is the number of pods per plant, DM is days to physiological maturity,
SeedYield is seed yield per hectare, SD is the standard deviation, CV is coefficient of
variance, H2 is heritability in the broad sense.
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yield, RKHS had slight advantages over other models (0.42). As
mentioned above, some differences between the model’s
accuracy were only marginal and cannot be a criterion for
choosing one model (Table 2). For example, among the tested
models, the highest difference in predictive accuracy,
considering number of seeds per pod, had a magnitude of
0.02, a marginal value. The lack of significant differences
among genomic prediction models can be interpreted as
either a good approximation to the optimal model by all
methods or there may be a need for further research (Yu
et al., 2016). Unless indicated otherwise, the rest of our results
focused on findings from the RR-BLUP model.

Determining Optimal Number of Individuals
Increasing the training population size led to a slight increase in
the predictive ability overall for all traits. Across all traits except
days to first flowering and plant height, predictive ability
reached a maximum with the largest training population size
of N � 175 (Figure 1). A training population comprised of 50
individuals had the lowest predictive ability across all traits. For
days to first flowering, and plant height predictive ability did
steadily increase up at N � 150, and prediction ability reached
the maximum for most traits at highest training population size
with N � 175. Regardless of population size, predictive ability
was consistently higher for days to first flowering, whereas
predictive ability was consistently lower for pods per plant
(Figure 1). However, while predicting subpopulation 5

highest predictive ability was obtained for plant height
(Supplementary Figure S3).

Determining Optimal Marker Density
The different marker subsets had insignificant differences on
predictive ability for all the traits evaluated in this study. In
general, however, predictive abilities were higher between 5K and
15K SNPs and reached a plateau with increasing number of SNPs
(Supplementary Figure S2). For seed yield, plant height, and
days to maturity, highest predictive ability were 0.38, 0.39, and
0.42 respectively. The highest predictive ability for days to first
flowering was 0.61 using a SNP subset of 15K.

Accounting for Population Structure in the
Genomic Prediction Model
Population structure explained some portion of the phenotypic
variance, ranging from 9 to 19%, with the highest percentages
observed for plant height (19%) and seed yield (17%). Using
either ADMIXTURE or PCA to account for the effect due to
population structure, we improved the predictive ability. We
observed a 6% improvement for days to first flowering and
32% for seed yield compared over models that did not
account for population structure.

We also performed within subpopulation predictions.
Presented here are the predictive abilities for subpopulations 5,
7, and 8, as they had at least 40 entries. Subpopulation 8 had the

TABLE 2 | Predictive ability for seed yield and agronomic traits using five genomic prediction models.

Traits RR-BLUP PLSR RF BayesCpi RKHS

DFF (days) 0.60 (0.57–0.63) 0.57 (0.53–0.61) 0.55 (0.52–0.58) 0.59 (0.55–0.63) 0.54 (0.5–0.58)
NoSeedsPod 0.42 (0.37–0.48) 0.41 (0.36–0.46) 0.40 (0.35–0.45) 0.42 (0.38–0.46) 0.40 (0.34–0.48)
PH (cm) 0.39 (0.33–0.44) 0.42 (0.38–0.48) 0.45 (0.4–0.5) 0.45 (0.41–0.48) 0.43 (0.39–0.48)
PodsPlant 0.28 (0.22–0.33) 0.25 (0.2–0.31) 0.28 (0.22–0.34) 0.23 (0.17–0.29) 0.28 (0.23–0.34)
DM (days) 0.42 (0.36–0.47) 0.44 (0.39–0.5) 0.41 (0.35–0.46) 0.47 (0.43–0.5) 0.45 (0.4–0.48)
SeedYield (kg ha−1) 0.38 (0.34–0.42) 0.31 (0.27–0.36) 0.39 (0.35–0.44) 0.35 (0.31–0.39) 0.42 (0.37–0.48)

DFF is days to first flowering; NoSeedsPod is the number of seeds per pod; PH is Plant height in cm, PodsPlant is the number of pods per plant; DM is days to physiological maturity; within
parentheses are ranges of predictive ability.

FIGURE 1 | Predictive ability with increasing training population size using the RR-BLUP model, DFF is days to first flowering, DM, is days to physiological maturity,
NoSeedsPod is number of seeds per pod, PH is plant height in cm, PodsPlant is the number of pods per plant, SeedYield is seed yield in kg ha−1.
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highest predictive ability for days to first flowering (0.68), plant
height (0.33), days to maturity (0.43), and seed yield (0.37). The
highest predictive abilities for the number of seeds per pod (0.40)
and pods per plant (0.12) were obtained from subpopulation 7
(Table 3). Notably, predictive ability was generally higher when
all germplasm sets or subpopulations were included in the model
compared to when predictions were made using a subset of
germplasm.

Predicting Genotyped but Nonphenotyped
Accessions
The genomic prediction model was then used to predict
nonphenotyped entries based on their SNP information. Based
on the distribution of GEBV, none of the predicted phenotypes
for nonphenotyped accessions exceeded the top-performing
observed phenotypes for seed yield (Figure 2). The mean seed
yield of predicted entries (2,914 kg ha−1) was not significantly
different from the mean seed yield of observed genotypes
(2,918 kg ha−1). The mean of observed and predicted entries
were non-significant for the other five traits (Supplementary
Table S1). The GEBV for number of pods per plant, number of
seeds per pod (Supplementary Figures S4, S5), days to first
flowering, and days to maturity all fall within the range of
observed phenotypes (Similar Figures not added).

Reliability Estimation
We obtained reliability criteria for all traits, including seed yield
and phenology, for 244 nonphenotyped accessions. The average
reliability values ranged from 0.30 to 0.35, while the highest values
for evaluated traits ranged from 0.75 to 0.78. The higher reliability
values were distributed in the top, bottom, and intermediate
predicted breeding values (Supplementary Tables S2–S7). For
seed yield (kg ha−1), the highest reliability was obtained from the
bottom 50 (Figure 3). Higher reliability criteria are primarily
distributed among the intermediate and top GEBV for days to
first flowering. Predicted intermediate plant height showed the
highest reliability, as presented in Figure 3.

DISCUSSION

Widely utilized plant genetic resources collections, such as the
USDA pea germplasm collection, hold immense potential as diverse
genetic resources to help guard against genetic erosion and serve as
unique sources of genetic diversity from which we could enhance
genetic gain, boost crop production, and help reduce crop losses due
to disease, pests, and abiotic stresses (Jarquin et al., 2016; Crossa
et al., 2017; Holdsworth et al., 2017; Mascher et al., 2019). As the
costs associated with genotyping on a broader and more accurate
scale continue to decrease, opportunities increase to evaluate and
utilize these collections in plant breeding. Relying on phenotypic
evaluation alone can be costly, rigorous, and time-intensive.
However, by incorporating high-density marker coverage and
efficient computational algorithms, we can better realize the
potential for utilizing these germplasm stocks by reducing the
time and cost associated with their evaluation (Yu et al., 2016;
H. Li et al., 2018; Yu et al., 2020). In this study, we evaluated the
potential of genotyping-by-sequencing derived SNPs for genomic
prediction. We found that it holds promises for extracting useful
diversity from germplasm collections for applied breeding efforts.

In this study, predictive ability was generally similar among
methods, and there was no single model that worked across traits,
consistent with results obtained by other authors (Burstin et al.,
2015; Spindel et al., 2015; Yu et al., 2016; Azodi et al., 2019). For
example, considering only the punctual estimates, RR-BLUP
model was the best for days to first flowering, however for
plant height, days to physiological maturity, and seed yield,
the best models were BayesCpi and RF, BayesCpi and RKHS,

TABLE 3 | Predictive ability within and across subpopulations using RR-BLUP and all SNP markers.

Sub pops DFF NoSeedsPod PH PodsPlant DM SeedYield

Sub pop 5 (51) 0.27 0.26 0.08 -0.01 0.02 0.18
Sub pop 7 (58) 0.34 0.40 0.22 0.12 -0.01 0.01
Sub pop 8 (41) 0.68 0.35 0.33 0.07 0.43 0.37
SP- 0.50 0.45 0.47 0.25 0.51 0.34
SP+ 0.53 0.35 0.42 0.25 0.48 0.45
SP PC10 0.51 0.41 0.44 0.18 0.20 0.43
Var exp (R2) 0.13 0.09 0.19 0.15 0.15 0.17

DFF is days to first flowering, NoSeedsPod is the number of seeds per pod, PH is plant height, PodsPlant is the number of pods per plant, DM is days to physiological maturity, SP- does
not account for population structure, SP+, refers to the population structure addressed in the model, SP PC10 addresses population structure with 10 PC, Var exp (R2) refers the variance
explained by population structure after fitting a regression model, within parenthesis represent the number of entries in each subpopulation.

FIGURE 2 | Distribution of phenotyped and predicted nonphenotyped
accessions within the USDA pea germplasm collection for seed yield and plant
height.
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respectively. In recent work, Azodi et al. (2019) compared 12
models (6 linear and 6 non-linear) considering 3 traits in 6
different plant species, and they did not find any best
algorithm for all traits across all species. Newer statistical
methods are expected to boost prediction accuracy; however,
the biological complexity and unique genetic architecture of traits
can be regarded as the root cause for getting zero or slight
improvement on prediction accuracy (Valluru et al., 2019; Yu
et al., 2020). As data collection accelerates in at different levels of
biological organization (Kremling et al., 2019), genomic
prediction models will expand and nonparametric models,
including machine learning, may play an essential role for
boosting prediction accuracy (Azodi et al., 2019; Yu et al., 2020).

A related work in pea has been published but only based on a
limited number of markers (Burstin et al., 2015). This work assessed
genomic prediction models in a diverse collection of 373 pea
accessions with 331 SNP markers and found no single best
model across traits, which is consistent with our findings. In this
work, the authors reported that traits with higher heritability, such as
thousand seed weight and flowering date, had higher prediction
accuracy. We also verified days to first flowering as having the
highest heritability and predictive accuracies through all the models.
Interestingly, yield components like the number of seeds per pod and
pods per plant showed lower predictive accuracy, regardless of
prediction models used. Consistent with our results, Burstin et al.
(2015) also found yield components like seed number per plant as
having lower predictive accuracy and higher standard deviation for

prediction. These traits are highly complex and largely influenced by
the environment.

The predictive ability increased for all traits except plant height
when we increased the model’s training population size, suggesting
that adding more entries in the study can boost predictive ability. By
accounting population structure into genomic prediction framework,
we observed an improved prediction accuracy for some traits—seed
yield and days tofirstflowering—but not for other traits. Although the
population structure explained 9–19% of the phenotypic variance, we
cannot fully and conclusively answer the effect of population structure
in prediction accuracy due to smaller population size. In addition,
accounting for the relatedness among individuals in the training and
testing sets can potentially boost prediction accuracy (Riedelsheimer
et al., 2013; Lorenz and Smith, 2015; Rutkoshi et al., 2015); it was
outside the scope of this research but deserves further study. Adding
more environments (year-by-location combination) can also
potentially improve prediction accuracy using genomic prediction
frameworks that account for genotype-by-environment interactions
and/or phenotypic plasticity (Jarquin et al., 2014; Crossa et al., 2017; X.
Li et al., 2018; Guo et al., 2020). In general, we observed that predictive
ability slightly increased and plateaued after reaching certain subset of
SNPs. Such a plateau on prediction ability maybe due to overfitting of
models (Hickey et al., 2014; Norman et al., 2018), presumably due to
extensive linkage disequilibrium in the pea genome (Kreplak et al.,
2019).

Previous studies have indicated the importance of considering
reliability values when using predictive ability values to select

FIGURE 3 | Reliability criteria for nonphenotyped lines: the top 50 of genomic estimated breeding values are blue, and bottom 50 are in red, intermediates are in
green. (A) reliability estimates for seed yield (kg ha−1), (B) days to first flowering, (C) plant height, (D) number of seeds per plant.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7077548

Bari et al. Genomic Prediction in USDA Pea Germplasm

192

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


genotypes (Yu et al., 2016). We found higher reliability estimates
were spread across all GEBVs rather than clustering around higher
or lower extreme of GEBVs. Those accessions with top predicted
values and high reliability estimates maybe selected as candidate
parents for increasing seed yield and/or germplasm enhancement.
However, for a trait such as days to flowering in pea, even low or
intermediate predicted values maybe suitable candidates when
paired with high reliability values. We found the means of GEBV
for nonphenotyped entries were non-significantly different with
phenotyped accessions, and almost none of nonphenotyped
accessions were expected to exceed seed yield of phenotyped
accessions. Several accessions in the USDA pea germplasm
collection can be readily incorporated into breeding programs for
germplasm enhancement by incorporating above-average accessions
with high or moderately high reliability values (Yu et al., 2020).

CONCLUSIONS AND RESEARCH
DIRECTIONS

The research findings demonstrated that the wealth of genetic
diversity available in a germplasm collection could be assessed
efficiently and quickly using genomic prediction to identify
valuable germplasm accessions that can be used for applied
breeding efforts. With the integration of more orthogonal
information (e.g., expression, metabolomics, proteomics, etc.)
into genomic prediction framework (Kremling et al., 2019;
Valluru et al., 2019) coupled with the implementation of more
complex genomic selection models like a multivariate genomic
selection approach (Rutkoski et al., 2015), we can considerably
enhance predictive ability. This research framework could greatly
contribute to help discover and extract useful diversity targeting
high-value quality traits such as protein and mineral
concentrations from a large germplasm collection in the future.
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