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Editorial on the Research Topic Special Issue

Cardioprotection, sex, and gender differences

The special issue, “Cardioprotection, sex and gender differences” focuses on various

aspects of sex and gender and supports that they play a significant role in cardiovascular

diseases (CVD). It has long been known, and supported by numerous studies, that sex

differences play a major role in cardiac susceptibility to cardiovascular disease. Indeed,

important and relevant disparities in pathophysiology, clinical presentation and

management were observed between men and women. o date, the numerous

molecular mechanisms underlying these differences are currently still partially

unknown. It is important to underline the distinction between the two terms, sex and

gender. While “sex differences” are merely due to biological differences, “gender

differences” depend on many aspects, including the environment, lifestyle and

characteristics of attitude. The use of experimental models and a careful analysis of

clinical data is currently emerging that both disparities show fundamental importance

both in the diagnosis and management of cardiovascular diseases. Therefore, gender

differences may be considered a fundamental branch of precision medicine.

In the present special issue, these topics have been covered with both original works

and reviews (Akther et al.; Leutner et al., 2021; Li et al.; Liu et al.; Xu et al.; Ytrehus et al.,

2021; Yu et al., 2022). Forrny et al. analyzed these differences in the setting of the

metabolic syndrome. The Authors focused their attention on type 2 diabetes, a chronic

disease associated with micro and macrovascular complications. Indeed, the Authors

reviewed the literature and reported an increased risk of CVD in women with diabetes

compared to men, in particular concerning the risk of coronary heart disease

accompanied by higher mortality in case of acute myocardial ischemia.

Another interesting aspect is reported by Querio et al. in a mini review on the response

to cardioprotective maneuvers in different experimental models related to sex-dependent

response. The Authors underline the influence of sex on the outcome of cardioprotective

procedures. When applied, cardioprotection significantly reduces damage from ischemia/

reperfusion. Within their review, Querio and collaborators highlighted that the protective
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maneuvers show effects that are not always positive when applied

in female experimental models of a given age. The noticeable

differences in response to these procedures are partly due to sex

hormones, some of which decrease over the life span in women.

The presence of sex hormones, in particular estrogen, has a

highly protective role against ischemia/reperfusion damage. In

this report Querio et al. describe the molecular pathways

involved in cardioprotective protocols, clarifying at least in

part how sex hormones can help improving physiological

responses to CVD (Querio et al., 2021).

Ueda et al. discuss the significance of sex differences in the

pathogenesis of cardiovascular disease. The Authors, through an

overview of the results of the clinical studies obtained to date,

relating to sex differences and hormone replacement therapy.

The recent pandemic condition has highlighted important

disparities in the pathogenesis of COVID, as reported by

numerous studies and reviews (Pagliaro and Penna, 2020;

Penna et al., 2020; Viveiros et al., 2021). In this regard, in

relation to COVID19, in this special issue Cheng et al. found

in a retrospective cohort study that the incidence of myocardial

damage in patients with COVID-19 is sex-dependent,

predominantly in association with a higher degree of

inflammation and bleeding disorders in men. The paper

reports the results of a retrospective study conducted on

1,157 COVID-19 patients (49.4% female and 50.6% male)

who were hospitalized in Huoshenshan hospital from

12 March 2020 to 11 April 2020. The Authors emphasize the

protective role played by sex hormones, in particular with regard

to the inflammatory reaction and the state of coagulation. The

latter, varying based on gender and women’s specific protective

mechanisms, likely mediated by sex differences in the incidence

of myocardial damage. Sex differences are maintained in the

incidence of adverse outcomes in COVID-19 patients.

Another aspect related to a component of the COVID-19

scenario was presented by (Yu et al., 2022). The Authors

analyzed the role of the angiotensin converting enzyme 2

(ACE 2) in the hypertensive heart. The results obtained

indicate the presence of a male preponderance for an

increase in the gene expression of ACE and ACE2. The

results are in agreement with the role of androgens or male

chromosomal complement in controlling the expression of the

two ACE genes.

In conclusion, the studies published in this special issue

confirm the importance of hormonal balance in determining

CVD, an aspect that has also been apparent during the COVID-

19 pandemic.
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Objective: To examine the dose-dependent relationship of different types of statins

with the occurrence of major depressive disorder (MDD) and prescription of

antidepressant medication.

Methods: This cross-sectional study used medical claims data for the general Austrian

population (n = 7,481,168) to identify all statin-treated patients. We analyzed all patients

with MDD undergoing statin treatment and calculated the average defined daily dose

for six different types of statins. In a sub-analysis conducted independently of inpatient

care, we investigated all patients on antidepressant medication (statin-treated patients:

n = 98,913; non-statin-treated patients: n = 789,683). Multivariate logistic regression

analyses were conducted to calculate the risk of diagnosed MDD and prescription of

antidepressant medication in patients treated with different types of statins and dosages

compared to non-statin-treated patients.

Results: In this study, there was an overrepresentation of MDD in statin-treated

patients when compared to non-statin-treated patients (OR: 1.22, 95% CI: 1.20–1.25).

However, there was a dose dependent relationship between statins and diagnosis of

MDD. Compared to controls, the ORs of MDD were lower for low-dose statin-treated

patients (simvastatin>0–<=10 mg:OR: 0.59, 95% CI: 0.54–0.64; atorvastatin>0–<=10

mg:OR:0.65, 95%CI: 0.59–0.70; rosuvastatin>0–<=10 mg:OR: 0.68, 95% CI:

0.53–0.85). In higher statin dosages there was an overrepresentation of MDD

(simvastatin>40–<=60 mg:OR: 2.42, 95% CI: 2.18–2.70, >60–80 mg:OR: 5.27, 95%

CI: 4.21–6.60; atorvastatin>40–<=60 mg:OR: 2.71, 95% CI: 1.98–3.72, >60–<=80

mg:OR: 3.73, 95% CI: 2.22–6.28; rosuvastatin>20–<=40 mg:OR: 2.09, 95% CI:

1.31–3.34). The results were confirmed in a sex-specific analysis and in a cohort of

patients taking antidepressants, prescribed independently of inpatient care.

Conclusions: This study shows that it is important to carefully re-investigate the

relationship between statins and MDD. High-dose statin treatment was related to an

overrepresentation, low-dose statin treatment to an underrepresentation of MDD.

Keywords: statins, depression, dyslipidemia, dosage, precision medicine
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Leutner et al. Statins and Major Depressive Disorder

INTRODUCTION

Statins rank among the most-prescribed drugs worldwide and
have significant lipid-lowering effects and hence they are
usually prescribed to prevent and treat cardiovascular disease
(CVD). Recently published guidelines of the European Society
of Cardiology (ESC/EAS) recommend that high-risk patients,
such as patients with type-2 diabetes with organ damage
or patients with CVD, should have low-density lipoprotein
cholesterol (LDL-cholesterol) levels lower than 55 mg/dl (1). The
main mechanism of statins is inhibition of 3-hydroxy-3-methyl-
glutaryl-coenenzyme A reductase (HMG-CoA reductase), which
in turn inhibits synthesis of mevalonic acid, the main substrate
for the synthesis of cholesterol. Cholesterol itself is the basic
substance for the synthesis of essential hormones such as sex
hormones or vitamin D. In this context, earlier studies have
shown that statins can lower the concentrations of sex hormones
for instance (2–5).

A connection between sex hormones and depression has also
been demonstrated by earlier studies. Low levels of estrogen
have been associated with depression in women (6–10) and
withdrawal of hormone therapy for remitted perimenopausal
depression has been linked to recurrence of depressive symptoms
(7). Similar results have been shown for low testosterone levels
in men (11–13). Earlier studies report associations between
low levels of cholesterol and consequently statin usage and
depression, as well as related symptoms such as lowered mood,
aggression and suicidality (14–17). A potential mechanism for
these associations is impaired serotonin signaling, as cholesterol
is required for serotonin 1A receptor function (18–20) and hence
downregulation of the serotonin 1A receptor has been linked to
mood disorders such as depression (21).

More recently, the neuroinflammation hypothesis for
depression has gained traction, also pointing to antidepressant
effects of anti-inflammatory agents such as statins (22). Along
these lines, some studies report a protective effect of statins on the
development of depression (22–29). One of the major problems
of the existing literature is that especially the relationship
between high-dose statin treatment and MDD has yet to be
investigated in detail. Data on the relationship between high-
dose statin treatment and MDD in randomized controlled trials
(RCTs) are particularly sparse and hence the existing literature
does not clearly demonstrate that statins have an antidepressant
effect, which is the main reason why they are not considered in
antidepressant therapy (30). Given the paucity of data, the aim
of the present study was to investigate the relationship between
statins of different types and dosages and MDD.

METHODS

Study Design
This cross-sectional retrospective analysis investigated medical
claims data for the general Austrian population. Two groups
[patients (1) with and (2) without statin treatment] were
compared in order to investigate the relationship between statin
treatment and MDD.

Patient Population
In the present analysis, health data were investigated for
all Austrians receiving health care services, i.e., ∼97% of
the population. These data include all diagnoses recorded
during a hospital stay and data for all drug prescriptions
exceeding a prescription charge of EUR 4.70. All patients
alive during the observational period from January 2006
to December 2007 (n= 7,945,775) were analyzed, and age
and sex were noted. Patients born in these years or aged
>90 were excluded. The final study cohort consisted of
7,481,168 patients (3,507,903 males; 3,973,265 females). Medical
prescriptions during the study period were analyzed using
the Anatomical Therapeutic Chemical (ATC) Classification
System codes.

Characterization of Patients With MDD
We identified all patients diagnosed with MDD during hospital
stays by using primary and secondary diagnoses, as defined
by the International Classification of Diseases, 10th revision
(ICD-10), codes. We classified patients as having MDD if
they had a primary or secondary diagnosis of F32 (major
depressive disorder, single episode) or F33 (major depressive
disorder, recurrent). In order to strengthen our results, we
performed a sub-analysis in which we investigated all patients
who had been prescribed antidepressants (n = 888,596),
irrespective of inpatient hospital stays. In another sub-analysis,
we considered only patients with at least one hospital stay
(n= 2,011,334), i.e., for whom diagnoses could in principle have
been recorded.

Characterization of Statin-Treated Patients
and the Control Group
The statin-treated group consisted of patients prescribed one
of the following six statins in at least four different quarters
of a year (representing the common prescription procedure
in Austria and patients’ compliance) during the observational
period: simvastatin (ATC-code:C10AA01), lovastatin (ATC-
code:C10AA02), pravastatin (ATC-code:C10AA03), fluvastatin
(ATC-code:C10AA04), atorvastatin (ATC-code:C10AA05), and
rosuvastatin (ATC-code:C10AA07). Patients who had been
prescribed two different types of statins over the observational
period of 2 years were excluded (n = 5,361). The control
group (non-statin-treated patients) consisted of patients to
whom no statins were dispensed during the observation
period. Antidepressant use was measured as the dispensing of
at least one antidepressant (ATC code starting with N06A)
or in combination with psycholeptics (N06CA), olanzapine
(N05AH03), quetiapine (N05AH04), sulpiride (N05AL01),
lithium (N05AN01), or benzodiazepine derivatives (N05BA)
during the observation period.

Finally, the following groups were defined and compared:

1) Statin-treated patients vs. non-statin-treated patients.
2) Sub-analysis (independent of inpatient care): statin-treated

patients on antidepressant medication vs. non-statin-treated
patients on antidepressant medication.
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Average Daily Doses
Average daily doses for the drugs were calculated from the
prescribed dosage, which was converted from defined daily dose
to mg and divided by the number of days that were not spent in
a hospital. To obtain the individual averages of the daily doses,
we extracted the individual drug histories, including information
on dates of received prescriptions and the corresponding dosage
of the prescribed statin. The average was calculated by dividing
the sum of all amounts of the administered drug by the sum of
treatment days, minus the days a patient spent in hospital. The
hospital days were subtracted on the assumption that the patients
were treated with statins during the hospital stay.

In order to ensure precise characterization and interpretation
of each substance, we defined groups according to the average
daily dose for each statin, resulting in the following categories:
>0–10mg, >10–20mg, >20–40mg, >40–60mg, >60–80 mg.

Ethical Approval
This study has been approved by the ethics commission
of the Medical University of Vienna (EK-Nr.: 1020/2020).
A detailed statement on ethical approval is provided in
the Supplementary Material. Written informed consent
from the patients was not required to participate in this
study in accordance with the national legislation and the
institutional requirements.

Statistical Analysis
We calculated odds ratios (ORs) between each case of statin use
and diagnosis of MDD in a matched cohort analysis (each statin-
treated patient was matched to three members of the control
group of the same age and sex). Weighted multiple logistic
regression, as described in similar analysis designs (31), was
used to investigate this association while controlling for age,
sex, dosage, and prescription of other medications (for diabetes
and fibrates).

Patients were assigned a categorical variable for each statin
comprising the respective average daily dose in mg. We
controlled for use of other medications (at least four different
quarters during which 20 different glucose-lowering drugs were
dispensed, including metformin; three fibrates) by introducing
binary dummy variables. Model quality was evaluated using the
adjusted R-squared statistic, multi-collinearity via the variance
inflation factor (VIF). Stratification was used to control for
other diagnoses potentially associated with statin use and MDD
and which could in principle act as confounding factors.
These robustness tests excluded all patients with a diagnosis
of ischaemic heart diseases (any code from the range I20–
I25), diseases of the arteries, including arterioles and capillaries
(I70–I79), stroke (I63–I64), diabetes (E10–E11), obesity (E66),
hypothyroidism (E02–E03), cancer (any code from the range
C00–C97), dementia in Alzheimer’s disease (specific ICD code
for patients with Alzheimer’s disease additionally diagnosed with
dementia) and Alzheimer’s disease (F00, G30), pain (R52), and
sleep disorder (G47). Statistical analysis was performed using
standard packages of Matlab.

RESULTS

Of a total of 7,481,168 patients, 84,638 (1.13% of the general
Austrian population) were diagnosed with MDD during a
hospital stay and 888,596 (11.88% of the general Austrian
population) were undergoing antidepressant therapy (prescribed
independently of a hospital stay). The baseline characteristics of
statin-treated patients and their age- and sex-matched control
group are described in Table 1. In general, statin-treated patients
(males and females) weremore likely to have been diagnosed with
MDD and were more commonly treated with antidepressants
when compared to age- and sex-matched non-statin treated
patients (OR: 1.54, CI: 1.53–1.56).

Supplementary Table 1 shows the baseline characteristics
of the statin-treated patients with diagnosed MDD in
comparison to patients with MDD without statin treatment.
Depressed patients undergoing statin treatment often received
antidepressant and antidiabetic therapy and displayed a
higher prevalence rate of CVD, stroke, diseases of the arteries,
overweight, obesity and hypothyroidism than those without
statin treatment.

Dose-Dependence of Statins on Diagnosis
of MDD
In the general population there was an increased risk of
diagnosis with depression in statin-treated patients when
compared to matched controls (OR: 1.22, CI: 1.20–1.25).
Further, there was a potency- and dose-dependent relationship
between statins and diagnosis of MDD (see Table 2, Figure 1,
Supplementary Figures 2, 3 for multiple logistic regression
analyses and odds of diagnosis). In comparison to non-statin-
treated patients, there was an underrepresentation of diagnosed
MDD in patients receiving lovastatin in doses of >0–20mg
(0–10 mg: OR: 0.12, 95% CI: 0.05–0.27; 10–20 mg: OR: 0.62,
95% CI: 0.41–0.95). Similar results were observed for pravastatin
>0–20mg (0–10 mg: OR: 0.36, 95% CI: 0.29–0.44; 10–20 mg:
OR: 0.63, CI: 0.56–0.70), simvastatin >0–20mg (0–10 mg:
OR: 0.59, 95% CI: 0.54–0.64; 10–20 mg: OR: 0.81, CI: 0.77–
0.86), atorvastatin >0–10mg (OR: 0.65, 95% CI: 0.59–0.70),
rosuvastatin >0–10mg (OR: 0.68, 95% CI: 0.53–0.85) and
fluvastatin >10–60mg. The results in Table 2 also demonstrate
that the lower risk of diagnosis with MDD in low-dose statin-
treated patients decreased with an increase in the potencies
of statins. The OR increased with potency, the lowest OR
beginning in lovastatin-treated patients. Although there was
an underrepresentation of diagnosed MDD in low-dose statin
treatment, the higher dosages showed an overrepresentation of
MDD. Dosages of >20mg of simvastatin (20–40 mg: OR: 1.28,
95% CI: 1.21–1.35; 40–60 mg: OR: 2.42, 95% CI: 2.18–2.70;
60–80 mg: OR: 5.27, 95% CI: 4.21–6.60), >10mg atorvastatin
(10–20 mg: OR: 1.19, 95% CI: 1.06–1.33; 20–40 mg: OR: 1.91,
95% CI: 1.60–2.27;40–60 mg: OR: 2.71, 95% CI: 1.98–3.72; 60–
80 mg: OR: 3.73, 95% CI: 2.22–6.28) and rosuvastatin >20mg
(20–40 mg: OR: 2.09, 95% CI: 1.31–3.34) were related to an
overrepresentation of MDD when compared to controls without
statin treatment.
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TABLE 1 | Baseline characteristics of the study population, showing group size, age and the absolute and relative frequencies of depression, use of other medications

(insulin, oral antidiabetics, antidepressants) and comorbid conditions for males and females in the statin-treated and in the matched control group.

Statin-treated patients Non-statin-treated patients

Male Female Male Female

N 166,979 170,259 500,937 510,777

Age (mean +/– SD) 64.91 +/- 10.86 68.88 +/– 10.41 64.91 +/– 10.86 68.88 +/– 10.41

Depression (F32–F33) 2,947* (1.76%) 6,774* (3.98%) 6,907 (1.38%) 15,953 (3.12%)

Antidepressants 35,379* (21.19%) 63,534* (37.32%) 73,675 (14.71%) 140,846 (27.57%)

Insulin 10,697* (6.41%) 11,348* (6.67%) 6,281 (1.25%) 6,296 (1.23%)

Oral antidiabetics 32,639* (19.55%) 30,950* (18.18%) 26,605 (5.31%) 25,462 (4.98%)

CVD (I20-I25) 32,611* (19.53%) 20,803* (12.22%) 21,733 (4.34%) 19,631 (3.84%)

Stroke (I63, I64) 4,367* (2.62%) 3,684* (2.16%) 5,826 (1.16%) 5,860 (1.15%)

Diseases of arteries (I70–I79) 10,552* (6.32%) 7,569* (4.45%) 13,227 (2.64%) 10,415 (2.04%)

Overweight and obesity (E66) 7,164* (4.29%) 7,149* (4.20%) 8,384 (1.67%) 11,061 (2.17%)

Hypothyroidism (E02, E03) 1,239* (0.74%) 3,277* (1.92%) 2,551 (0.51%) 6,735 (1.32%)

Alzheimer’s disease (F00, G30) 547* (0.33%) 990* (0.58%) 2,537 (0.51%) 4,381 (0.86%)

Pain (R52) 195* (0.12%) 302 (0.18%) 732 (0.15%) 1,003 (0.20%)

Sleep disorders (G47) 2,806* (1.68%) 951* (0.56%) 4,624 (0.92%) 1,878 (0.37%)

SD, standard deviation; CVD, cardiovascular disease, Asterisks denote statistically significant differences between statin- and non-statin treated patients; **p < 0.01, *p < 0.05.

TABLE 2 | Dose-dependent relationship between statins and diagnosis of depression.

All Lovastatin Fluvastatin Pravastatin Simvastatin Atorvastatin Rosuvastatin

>0–10mg 0.12** 1.00 0.36** 0.59** 0.65** 0.68**

CI 0.05–0.27 1.00–1.00 0.29–0.44 0.54–0.64 0.59–0.70 0.53–0.85

>10–20mg 0.62* 0.59** 0.63** 0.81** 1.19** 1.20

CI 0.41–0.95 0.43–0.81 0.56–0.70 0.77–0.86 1.06–1.33 0.95–1.53

>20–40mg 1.29 0.70** 1.02 1.28** 1.91** 2.09**

CI 0.66–2.51 0.62–0.79 0.91–1.15 1.21–1.35 1.60–2.27 1.31–3.34

>40–60mg 0.77** 2.42** 2.71**

CI 0.68–0.86 2.18–2.70 1.98–3.72

>60–80mg 1.13 5.27** 3.73**

CI 0.97–1.31 4.21–6.60 2.22–6.28

Adj. R∧2 0.99 0.98 0.98 0.98 0.99 0.99

Max. VIF 1,61 1.52 1.51 1.93 1.63 1.62

**p < 0.01; *p < 0.05.

Bold values represent the significant ORs.

Robustness Test for Diseases Commonly
Related to MDD
We further conducted a robustness test to estimate the
influence of diseases directly related to MDD, in particular
ischemic heart disease, diseases of arteries, stroke, diabetes,
obesity, hypothyroidism, cancer, dementia in Alzheimer’s disease,
Alzheimer’s disease, pain, and sleep disorders. We thus
tested whether the dosage-dependent MDD risk trajectories
are independent of the above-mentioned disease groups
(see Figure 2, Supplementary Material: baseline tests and
Supplementary Figures 5–10). In these robustness tests the
results showed that the observed dose dependencies followed
the same trend, with an underrepresentation of diagnosed
MDD in low-dose and an overrepresentation in high-dose

statin-treatment. The dose-dependent relationship could also
be observed in a sub-analysis that only included patients
hospitalized at least once (see Supplementary Figure 1).

Sex-Specific Analysis of the
Dose-Dependent Relationship Between
Statins and Diagnosis of MDD
In both male and female patients, the results shown in the
general population were confirmed, demonstrating that low-
dose statin treatment is related to underrepresentation of
diagnosed MDD whereas high-dose statin treatment is related
to overrepresentation when compared to non-statin-treated
patients. Especially for high-dose atorvastatin treatment, we
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FIGURE 1 | Dose-dependent relationship between (A) simvastatin (n = 214,021), (B) atorvastatin (n = 37,919), (C) and rosuvastatin (n = 8,209) and diagnosis of

depression obtained from the logistic regression model.

found that the risk of diagnosis with MDD in females was
nearly double than in males. Further details can be found in
Supplementary Tables 2, 3, Supplementary Figure 4.

Sub-Analysis—Dose-Dependent
Relationship Between Statin Treatment
and Antidepressant Therapy
The final sub-analysis included 888,596 patients receiving
antidepressant medication prescribed independently of
hospitalization. Statin treatment was recorded for 98,913 of
these patients. In the sub-analysis of all patients treated with
antidepressants, similar dose-dependent results in statin-treated
patients could be observed. Thus, low-dose statin treatment was
related to an underrepresentation and high-dose statin treatment
to an overrepresentation of antidepressant medication when
compared to non-statin-treated patients (Figure 3).

DISCUSSION

In the present study, we investigated the relationship between
different types and dosages of statins and diagnosis of MDD

in comparison to non-statin-treated patients. We were able
to demonstrate that there was an increased risk of diagnosed
MDD in patients treated with higher doses of statins when
compared to non-statin-treated patients. Interestingly, low-dose
statin treatment was related to an underrepresentation of MDD
when compared to non-statin-treated patients. Our findings are
also supported by sex-specific results and displayed no qualitative
change after exclusion of patients with diseases closely related
to diagnosis of MDD, such as cardiovascular disease or diabetes,
and to statin use. The dose-dependent results were also observed
in a sub-analysis only including patients taking antidepressant
medication prescribed independently of hospitalization.

Given the physiological mechanisms associated with statins,
a relationship between statin treatment and mood disorders
such as MDD seems plausible. Statins inhibit HMG-CoA
reductase, which is the main mechanism for the synthesis
of cholesterol, resulting in lower cholesterol levels (32) and
consequently subsequent products such as sex hormones (2–5).
Close relationships between low sex hormone levels and
mood disorders were also suggested (7, 9, 11, 12). We have
recently published evidence for a dose-dependent increased
risk of diagnosis of osteoporosis in statin-treated patients and
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FIGURE 2 | Dose-dependent relationship between (A) simvastatin, (B) atorvastatin, and (C) rosuvastatin and diagnosis of depression for baseline (all statin-treated

patients) and after the exclusion of patients with cardiovascular disease (I20–I25, n = 53,414) and (n = 71,722)/or diabetes (E10–E11, n = 32,815) obtained from the

logistic regression model.

hypothesized that specifically higher dosages could inhibit the
synthesis of sex hormones on a clinically relevant level and
therefore advance bone resorption (33). By showing that there
is also a dose-dependent relationship with diagnosed MDD, here
we demonstrate for the first time that it is important to consider
the different types of statins and their dosages when investigating
the relationship between statin treatment and diagnosis of MDD.

Concerns about potential central nervous side-effects of
statins have been raised for almost 30 years. A series of pioneering
work made a case for increased depression rates as well as
non-cardiovascular mortality due to violent incidents and suicide
in patients with low cholesterol and thus in statin users (34–39).
Interestingly, these early positive associations were rarely
replicated (17), as more recent large clinical and register-based
studies have generally implied no increased risk of developing
MDD in statin users (22). On the contrary, protective effects
have been reported and were related to neuroinflammation as
a potential key mechanism of depression (40–42). Nevertheless,
overall the mechanisms of putative association in either direction
are insufficiently understood. Most importantly, the majority of
studies have neglected different potencies and dosages of statins

despite recent advances linking statins with high lipophilia and
hence permeability of the blood-brain barrier but not establishing
a connection between hydrophilic statins and MDD (43). Hence
it is not clear whether under high-dose statin therapy a stronger
downregulation of sex hormones, which are closely related to
MDD, could possibly overrule the positive anti-inflammatory
effect of statins on MDD.

Data regarding the dose-dependent risk of MDD in statin-
treated patients are particularly sparse. For instance, in placebo-
controlled clinical trials it has been shown that both low-
dose lovastatin treatment (30mg) (44) and low-dose simvastatin
treatment (20mg) (45, 46) resulted in significant relief of
depressive symptoms. There are also other prospective studies
demonstrating that low-dose statin treatment, such as 20mg of
atorvastatin (46, 47), could have positive effects on symptoms of
depression. These results indicate that low-dose statin treatment
could indeed be effective in the treatment of depression and
are consequently in accordance with our results, as we found
an underrepresentation of MDD in patients treated with lower
doses of lovastatin (0–20mg), pravastatin (0–20mg), simvastatin
(0–20mg), atorvastatin (0–10mg), and rosuvastatin (0–10mg).
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FIGURE 3 | Dose-dependent relationship between (A) simvastatin, (B) atorvastatin, and (C) rosuvastatin and antidepressant medication (n = 98,913) obtained from

the logistic regression model.

There is evidence that statins can have positive effects on
depression via an anti-inflammatory effect, modulation of
cytokines and reduction of oxidative stress. Improved quality
of life due to improved health consciousness and treatment
compliance and reduced cardiovascular risk has also been linked
to a potential antidepressant effect of statins (48). Nevertheless,
especially the relationship to higher dosages has yet to be
investigated sufficiently. That it is also important to investigate
the different types of statins with their different potencies has
been demonstrated by a Swedish national cohort study showing
that simvastatin had a protective effect on depression, whereas
atorvastatin treatment increased the risk. However, there was no
detailed investigation of different dosages (25).

In the present study, higher dosages were related to an
overrepresentation of MDD in statin-treated patients. These
results could be confirmed by a sex-specific analysis and remain
unchanged after exclusion of patients with diseases closely
related to MDD. Further, similar results were observed in
a sub-analysis investigating all patients taking antidepressant
medication prescribed independently of hospitalization. Thus,
dosage and potency may be the deciding factors for protective
or risk-increasing effects. Whether a possible downregulation

of hormones directly related to MDD under high-dose
statin treatment could overwhelm the described positive anti-
inflammatory effects of statins on MDD should be investigated
in larger prospective clinical trials. The overrepresentation of
diagnosed MDD in high-dose statin-treated patients is of special
interest with regard to the synthesis and processing of cholesterol
to essential hormones such as steroid hormones or Vitamin D. A
study by Chan et al. investigated the effect of high-dose 80mg
simvastatin therapy on mood in a cohort of 140 patients with
secondary progressive multiple sclerosis by conducting a 24
month, double-blind controlled trial. They showed similar results
to those of our study, namely that high-dose statin treatment
was related to increased severity of depressive symptoms, as
measured using the Hamilton Depression Rating Scale (HAM-D)
(49). Hence the fact that cholesterol is required for the serotonin
1A receptor to function (18–20) also has to be considered,
since down-regulation of this receptor is closely related to mood
disorders (21).

Possible interactions with the metabolization of statins should
not be discounted either, as in our study females were at
over double the risk of diagnosis with MDD than males when
receiving high-dose atorvastatin treatment. One thus has to
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consider that atorvastatin is metabolized by cytochrome P450
3A4 (CYP3A4), which is also involved in the metabolism
of estrogens.

Our study has both limitations and strengths. First, register-
based studies are limited by the fact that there is no opportunity
to precisely characterize the diagnosis of the diseases using
clinical data, since we only have access to ICD codes. In the
present study, the number of patients diagnosed with depression
was in relation to the actual literary lower. However, a strength is
that antidepressant medication was also recorded independently
of hospital stays and this number reflects the actual literary
and might compensate underreporting in the second group.
A further limitation of the present study is that we do not
have information on the duration of statin treatment and that
we cannot infer causal effects using the cross-sectional study
design. Additionally, it is not possible to screen the data for
potential associations between different time periods of statin
treatment and the relationship to major depressive disorders
and/or antidepressant medication. Hence especially high-dose
statin-treated patients often had a history of cardiovascular
events and a higher occurrence of cardiovascular risk markers
and thusMDD could therefore be a consequence of CVD (50, 51).
In our dataset from 2006 to 2007 we had no access to cholesterol
levels and could therefore only hypothesize that there could be a
dose dependent relationship between statins and the upcoming
synthesis of vital hormones (e.g., testosterone and estrogen),
which are directly related to MDD. Additionally, we have no
information on marital and socioeconomic status, which is also
related to MDD. Also, we have no information about common
side effects of statins, such as muscle symptoms or reduced
exercise tolerance, and it is known that these symptoms may
induce mood disorders. Further, it was not possible to provide
detailed analysis of treatment adherence. In comparison to
controls, statin-treated patients are characterized in the present
study by a higher rate of comorbidities and it is a well-known
fact that diseases such as diabetes mellitus or CHD, for instance,
are closely related to the development of MDD. However, in our
robustness tests, there was no qualitative change in the results
after the exclusion of patients with such diagnoses.

CONCLUSION

In conclusion, our results demonstrate that there exists a
dose-dependent relationship between statins and diagnosis of
MDD, substantiating both underrepresentation of MDD in
low-dose statin treatment and increased risk of diagnosis with
MDD in high-dose treatment. Considering the widespread use

of statins primarily for disease prevention and increasingly
stricter recommendations for tolerated cholesterol levels, these
findings may be highly relevant for clinical routine across a
broad spectrum of medical disciplines. This is an important
and interesting approach for precision medicine in particular.
Nevertheless, keeping in mind the limitations of register-
based studies, prospective and longitudinal trials are urgently
needed to validate our findings and further elucidate the
mechanisms involved.

DATA AVAILABILITY STATEMENT

The data is not available to access because this is a consolidated
research database that is only accessible for selected partners
under a strict data protection policy.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Medical University of Vienna. Written
informed consent for participation was not required for this
study in accordance with the national legislation and the
institutional requirements.

AUTHOR CONTRIBUTIONS

ML, CM, AK, MK, ST, PK, and AK-W: study design. ML, CM,
and PK: data analysis. ML and CM: manuscript writing. AK-W:
is the guarantor of this work. All authors read, reviewed, and
approved the final manuscript.

FUNDING

This study was funded by the Vienna Science and Technology
Fund (MA16-045).

ACKNOWLEDGMENTS

We extend our thanks to Dr. Gottfried Endel for his assistance
with data assessment.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmed.
2021.608083/full#supplementary-material

REFERENCES

1. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L,

et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias:

lipid modification to reduce cardiovascular risk. Eur Heart J. (2019)

41:111–88. doi: 10.15829/1560-4071-2020-3826

2. Schooling CM, Au Yeung SL, Freeman G, Cowling BJ. The effect

of statins on testosterone in men and women, a systematic review

and meta-analysis of randomized controlled trials. BMC Med. (2013)

11:57. doi: 10.1186/1741-7015-11-57

3. Stanworth RD, Kapoor D, Channer KS, Jones TH. Statin therapy is

associated with lower total but not bioavailable or free testosterone in

men with type 2 diabetes. Diabetes Care. (2009) 32:541–6. doi: 10.2337/dc0

8-1183

4. Corona G, Boddi V, Balercia G, Rastrelli G, De Vita G, Sforza

A, et al. The effect of statin therapy on testosterone levels in

Frontiers in Medicine | www.frontiersin.org 8 February 2021 | Volume 8 | Article 60808314

https://www.frontiersin.org/articles/10.3389/fmed.2021.608083/full#supplementary-material
https://doi.org/10.15829/1560-4071-2020-3826
https://doi.org/10.1186/1741-7015-11-57
https://doi.org/10.2337/dc08-1183
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Leutner et al. Statins and Major Depressive Disorder

subjects consulting for erectile dysfunction. J Sex Med. (2010)

7(Pt.1):1547–56. doi: 10.1111/j.1743-6109.2009.01698.x

5. Zhang X, Li J, Zhou X, Guan Q, Zhao J, Gao L, et al. Simvastatin

decreases sex hormone levels in male rats. Endocr Pract. (2017)

23:175–81. doi: 10.4158/EP161274.OR

6. Newhouse P, Albert K. Estrogen, stress, and depression:

a neurocognitive model. JAMA Psychiatry. (2015)

72:727–9. doi: 10.1001/jamapsychiatry.2015.0487

7. Schmidt PJ, Ben Dor R, Martinez PE, Guerrieri GM, Harsh VL, Thompson

K, et al. Effects of estradiol withdrawal on mood in women with past

perimenopausal depression: a randomized clinical trial. JAMA Psychiatry.

(2015) 72:714–26. doi: 10.1001/jamapsychiatry.2015.0111

8. Xu Y, Sheng H, Bao Q, Wang Y, Lu J, Ni X. NLRP3 inflammasome

activation mediates estrogen deficiency-induced depression- and anxiety-like

behavior and hippocampal inflammation in mice. Brain Behav Immun. (2016)

56:175–86. doi: 10.1016/j.bbi.2016.02.022

9. Almeida OP, Lautenschlager N, Vasikaram S, Leedman P, Flicker L.

Association between physiological serum concentration of estrogen

and the mental health of community-dwelling postmenopausal

women age 70 years and over. Am J Geriatr Psychiatry. (2005)

13:142–9. doi: 10.1097/00019442-200502000-00008

10. Holsen LM, Spaeth SB, Lee JH, Ogden LA, Klibanski A, Whitfield-Gabrieli

S, et al. Stress response circuitry hypoactivation related to hormonal

dysfunction in women with major depression. J Affect Disord. (2011)

131:379–87. doi: 10.1016/j.jad.2010.11.024

11. Shores MM, Sloan KL, Matsumoto AM, Moceri VM, Felker B, Kivlahan DR.

Increased incidence of diagnosed depressive illness in hypogonadal oldermen.

Arch Gen Psychiatry. (2004) 61:162–7. doi: 10.1001/archpsyc.61.2.162

12. Zarrouf FA, Artz S, Griffith J, Sirbu C, Kommor M. Testosterone and

depression: systematic review and meta-analysis. J Psychiatr Pract. (2009)

15:289–305. doi: 10.1097/01.pra.0000358315.88931.fc

13. McHenry J, Carrier N, Hull E, Kabbaj M. Sex differences in anxiety

and depression: role of testosterone. Front Neuroendocrinol. (2014)

35:42–57. doi: 10.1016/j.yfrne.2013.09.001

14. Steegmans PH, Hoes AW, Bak AA, van der Does E, Grobbee

DE. Higher prevalence of depressive symptoms in middle-aged

men with low serum cholesterol levels. Psychosom Med. (2000)

62:205–11. doi: 10.1097/00006842-200003000-00009

15. Tomson-Johanson K, Harro J. Low cholesterol, impulsivity and

violence revisited. Curr Opin Endocrinol Diabetes Obes. (2018)

25:103–7. doi: 10.1097/MED.0000000000000395

16. Morales K, Wittink M, Datto C, DiFilippo S, Cary M, TenHave T, et al.

Simvastatin causes changes in affective processes in elderly volunteers. J Am

Geriatr Soc. (2006) 54:70–6. doi: 10.1111/j.1532-5415.2005.00542.x

17. Hyyppa MT, Kronholm E, Virtanen A, Leino A, Jula A. Does simvastatin

affect mood and steroid hormone levels in hypercholesterolemic men?

A randomized double-blind trial. Psychoneuroendocrinology. (2003)

28:181–94. doi: 10.1016/S0306-4530(02)00014-8

18. Jafurulla M, Chattopadhyay A. Membrane lipids in the function

of serotonin and adrenergic receptors. Curr Med Chem. (2013)

20:47–55. doi: 10.2174/0929867311302010006

19. Jafurulla M, Rao BD, Sreedevi S, Ruysschaert JM, Covey DF, Chattopadhyay

A. Stereospecific requirement of cholesterol in the function of

the serotonin1A receptor. Biochim Biophys Acta. (2014) 1838(Pt.

B):158–63. doi: 10.1016/j.bbamem.2013.08.015

20. Pucadyil TJ, Chattopadhyay A. Role of cholesterol in the function and

organization of G-protein coupled receptors. Prog Lipid Res. (2006)

45:295–333. doi: 10.1016/j.plipres.2006.02.002

21. Wang L, Zhou C, Zhu D, Wang X, Fang L, Zhong J, et al. Serotonin-

1A receptor alterations in depression: a meta-analysis of molecular imaging

studies. BMC Psychiatry. (2016) 16:319. doi: 10.1186/s12888-016-1025-0

22. Salagre E, Fernandes BS, Dodd S, Brownstein DJ, Berk M. Statins

for the treatment of depression: a meta-analysis of randomized,

double-blind, placebo-controlled trials. J Affect Disord. (2016)

200:235–42. doi: 10.1016/j.jad.2016.04.047

23. Chuang CS, Yang TY, Muo CH, Su HL, Sung FC, Kao CH.

Hyperlipidemia, statin use and the risk of developing depression: a

nationwide retrospective cohort study. Gen Hosp Psychiatry. (2014)

36:497–501. doi: 10.1016/j.genhosppsych.2014.05.008

24. Kim SW, Bae KY, Kim JM, Shin IS, Hong YJ, Ahn Y, et al. The use of statins for

the treatment of depression in patients with acute coronary syndrome. Transl

Psychiatry. (2015) 5:e620. doi: 10.1038/tp.2015.116

25. Redlich C, Berk M,Williams LJ, Sundquist J, Sundquist K, Li X. Statin use and

risk of depression: a Swedish national cohort study. BMC Psychiatry. (2014)

14:348. doi: 10.1186/s12888-014-0348-y

26. Yang CC, Jick SS, Jick H. Lipid-lowering drugs and the risk

of depression and suicidal behavior. Arch Intern Med. (2003)

163:1926–32. doi: 10.1001/archinte.163.16.1926

27. O’Neil A, Sanna L, Redlich C, Sanderson K, Jacka F, Williams LJ, et al.

The impact of statins on psychological wellbeing: a systematic review and

meta-analysis. BMCMed. (2012) 10:154. doi: 10.1186/1741-7015-10-154

28. Parsaik AK, Singh B, Murad MH, Singh K, Mascarenhas SS, Williams MD,

et al. Statins use and risk of depression: a systematic review and meta-analysis.

J Affect Disord. (2014) 160:62–7. doi: 10.1016/j.jad.2013.11.026

29. Stafford L, Berk M. The use of statins after a cardiac intervention is

associated with reduced risk of subsequent depression: proof of concept for

the inflammatory and oxidative hypotheses of depression? J Clin Psychiatry.

(2011) 72:1229–35. doi: 10.4088/JCP.09m05825blu

30. Kohler-Forsberg O, Otte C, Gold SM, Ostergaard SD. Statins in

the treatment of depression: hype or hope? Pharmacol Ther. (2020)

215:107625. doi: 10.1016/j.pharmthera.2020.107625

31. Kautzky-Willer A, Thurner S, Klimek P. Use of statins offsets insulin-related

cancer risk. J Intern Med. (2017) 281:206–16. doi: 10.1111/joim.12567

32. Istvan ES, Deisenhofer J. Structural mechanism for statin inhibition of HMG-

CoA reductase. Science. (2001) 292:1160–4. doi: 10.1126/science.1059344

33. Leutner M,Matzhold C, Bellach L, Deischinger C, Harreiter J, Thurner S, et al.

Diagnosis of osteoporosis in statin-treated patients is dose-dependent. Ann

Rheum Dis. (2019) 78:1706–11. doi: 10.1136/annrheumdis-2019-215714

34. MuldoonMF,Manuck SB,Matthews KA. Lowering cholesterol concentrations

and mortality: a quantitative review of primary prevention trials. BMJ. (1990)

301:309–14. doi: 10.1136/bmj.301.6747.309

35. Law MR, Thompson SG, Wald NJ. Assessing possible hazards of reducing

serum cholesterol. BMJ. (1994) 308:373–9. doi: 10.1136/bmj.308.6925.373

36. Boumendil E, Tubert-Bitter P. Depression-induced absenteeism in relation

to antihyperlipidemic treatment: a study using GAZEL cohort data.

Epidemiology. (1995) 6:322–5. doi: 10.1097/00001648-199505000-00023

37. Ploeckinger B, Dantendorfer K, Ulm M, Baischer W, Derfler K, Musalek

M, et al. Rapid decrease of serum cholesterol concentration and postpartum

depression. BMJ. (1996) 313:664. doi: 10.1136/bmj.313.7058.664

38. Jacobs D, Blackburn H, Higgins M, Reed D, Iso H, McMillan G, et al. Report

of the conference on low blood cholesterol: mortality associations.Circulation.

(1992) 86:1046–60. doi: 10.1161/01.CIR.86.3.1046

39. Smith GD, Song F, Sheldon TA. Cholesterol lowering and mortality:

the importance of considering initial level of risk. BMJ. (1993)

306:1367–73. doi: 10.1136/bmj.306.6889.1367

40. Kohler O, Krogh J, Mors O, Benros ME. Inflammation in depression and

the potential for anti-inflammatory treatment. Curr Neuropharmacol. (2016)

14:732–42. doi: 10.2174/1570159X14666151208113700

41. Benros ME, Waltoft BL, Nordentoft M, Ostergaard SD, Eaton WW,

Krogh J, et al. Autoimmune diseases and severe infections as risk

factors for mood disorders: a nationwide study. JAMA Psychiatry. (2013)

70:812–20. doi: 10.1001/jamapsychiatry.2013.1111

42. Kohler O, Benros ME, Nordentoft M, Farkouh ME, Iyengar RL,

Mors O, et al. Effect of anti-inflammatory treatment on depression,

depressive symptoms, and adverse effects: a systematic review and

meta-analysis of randomized clinical trials. JAMA Psychiatry. (2014)

71:1381–91. doi: 10.1001/jamapsychiatry.2014.1611

43. Dave CV, Winterstein AG, Park H, Cook RL, Hartzema AG. Comparative risk

of lipophilic and hydrophilic statins on incident depression: a retrospective

cohort study. J Affect Disord. (2018) 238:542–6. doi: 10.1016/j.jad.2018.06.021

44. Ghanizadeh A, Hedayati A. Augmentation of fluoxetine with

lovastatin for treating major depressive disorder, a randomized

double-blind placebo controlled-clinical trial. Depress Anxiety. (2013)

30:1084–8. doi: 10.1002/da.22195

Frontiers in Medicine | www.frontiersin.org 9 February 2021 | Volume 8 | Article 60808315

https://doi.org/10.1111/j.1743-6109.2009.01698.x
https://doi.org/10.4158/EP161274.OR
https://doi.org/10.1001/jamapsychiatry.2015.0487
https://doi.org/10.1001/jamapsychiatry.2015.0111
https://doi.org/10.1016/j.bbi.2016.02.022
https://doi.org/10.1097/00019442-200502000-00008
https://doi.org/10.1016/j.jad.2010.11.024
https://doi.org/10.1001/archpsyc.61.2.162
https://doi.org/10.1097/01.pra.0000358315.88931.fc
https://doi.org/10.1016/j.yfrne.2013.09.001
https://doi.org/10.1097/00006842-200003000-00009
https://doi.org/10.1097/MED.0000000000000395
https://doi.org/10.1111/j.1532-5415.2005.00542.x
https://doi.org/10.1016/S0306-4530(02)00014-8
https://doi.org/10.2174/0929867311302010006
https://doi.org/10.1016/j.bbamem.2013.08.015
https://doi.org/10.1016/j.plipres.2006.02.002
https://doi.org/10.1186/s12888-016-1025-0
https://doi.org/10.1016/j.jad.2016.04.047
https://doi.org/10.1016/j.genhosppsych.2014.05.008
https://doi.org/10.1038/tp.2015.116
https://doi.org/10.1186/s12888-014-0348-y
https://doi.org/10.1001/archinte.163.16.1926
https://doi.org/10.1186/1741-7015-10-154
https://doi.org/10.1016/j.jad.2013.11.026
https://doi.org/10.4088/JCP.09m05825blu
https://doi.org/10.1016/j.pharmthera.2020.107625
https://doi.org/10.1111/joim.12567
https://doi.org/10.1126/science.1059344
https://doi.org/10.1136/annrheumdis-2019-215714
https://doi.org/10.1136/bmj.301.6747.309
https://doi.org/10.1136/bmj.308.6925.373
https://doi.org/10.1097/00001648-199505000-00023
https://doi.org/10.1136/bmj.313.7058.664
https://doi.org/10.1161/01.CIR.86.3.1046
https://doi.org/10.1136/bmj.306.6889.1367
https://doi.org/10.2174/1570159X14666151208113700
https://doi.org/10.1001/jamapsychiatry.2013.1111
https://doi.org/10.1001/jamapsychiatry.2014.1611
https://doi.org/10.1016/j.jad.2018.06.021
https://doi.org/10.1002/da.22195
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Leutner et al. Statins and Major Depressive Disorder

45. Gougol A, Zareh-Mohammadi N, Raheb S, Farokhnia M, Salimi S, Iranpour

N, et al. Simvastatin as an adjuvant therapy to fluoxetine in patients with

moderate to severe major depression: A double-blind placebo-controlled trial.

J Psychopharmacol. (2015) 29:575–81. doi: 10.1177/0269881115578160

46. Abbasi SH, Mohammadinejad P, Shahmansouri N, Salehiomran A, Beglar

AA, Zeinoddini A, et al. Simvastatin vs. atorvastatin for improving mild

to moderate depression in post-coronary artery bypass graft patients: A

double-blind, placebo-controlled, randomized trial. J Affect Disord. (2015)

183:149–55. doi: 10.1016/j.jad.2015.04.049

47. Haghighi M, Khodakarami S, Jahangard L, Ahmadpanah M, Bajoghli H,

Holsboer-Trachsler E, et al. In a randomized, double-blind clinical trial,

adjuvant atorvastatin improved symptoms of depression and blood lipid

values in patients suffering from severe major depressive disorder. J Psychiatr

Res. (2014) 58:109–14. doi: 10.1016/j.jpsychires.2014.07.018

48. Molero Y, Cipriani A, Larsson H, Lichtenstein P, D’Onofrio BM, Fazel S.

Associations between statin use and suicidality, depression, anxiety, and

seizures: a Swedish total-population cohort study. Lancet Psychiatry. (2020)

7:982–90. doi: 10.1016/S2215-0366(20)30311-4

49. Chan D, Binks S, Nicholas JM, Frost C, Cardoso MJ, Ourselin S, et al. Effect

of high-dose simvastatin on cognitive, neuropsychiatric, and health-related

quality-of-lifemeasures in secondary progressivemultiple sclerosis: secondary

analyses from the MS-STAT randomised, placebo-controlled trial. Lancet

Neurol. (2017) 16:591–600. doi: 10.1016/S1474-4422(17)30113-8

50. Tang B, Yuan S, Xiong Y, He Q, Larsson SC. Major depressive disorder

and cardiometabolic diseases: a bidirectional Mendelian randomisation study.

Diabetologia. (2020) 63:1305–11. doi: 10.1007/s00125-020-05131-6

51. Luijendijk HJ, Tiemeier H, van den Berg JF, Bleumink GS, Hofman

A, Stricker BH. Heart failure and incident late-life depression. J

Am Geriatr Soc. (2010) 58:1441–8. doi: 10.1111/j.1532-5415.2010.02

921.x

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Leutner, Matzhold, Kautzky, Kaleta, Thurner, Klimek and

Kautzky-Willer. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Medicine | www.frontiersin.org 10 February 2021 | Volume 8 | Article 60808316

https://doi.org/10.1177/0269881115578160
https://doi.org/10.1016/j.jad.2015.04.049
https://doi.org/10.1016/j.jpsychires.2014.07.018
https://doi.org/10.1016/S2215-0366(20)30311-4
https://doi.org/10.1016/S1474-4422(17)30113-8
https://doi.org/10.1007/s00125-020-05131-6
https://doi.org/10.1111/j.1532-5415.2010.02921.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


CORRECTION
published: 07 April 2021

doi: 10.3389/fmed.2021.677866

Frontiers in Medicine | www.frontiersin.org 1 April 2021 | Volume 8 | Article 677866

Approved by:

Frontiers Editorial Office,

Frontiers Media SA, Switzerland

*Correspondence:

Alexandra Kautzky-Willer

alexandra.kautzky-willer@

meduniwien.ac.at

Specialty section:

This article was submitted to

Family Medicine and Primary Care,

a section of the journal

Frontiers in Medicine

Received: 08 March 2021

Accepted: 09 March 2021

Published: 07 April 2021

Citation:

Leutner M, Matzhold C, Kautzky A,

Kaleta M, Thurner S, Klimek P and

Kautzky-Willer A (2021) Corrigendum:

Major Depressive Disorder (MDD) and

Antidepressant Medication Are

Overrepresented in High-Dose Statin

Treatment. Front. Med. 8:677866.

doi: 10.3389/fmed.2021.677866

Corrigendum: Major Depressive
Disorder (MDD) and Antidepressant
Medication Are Overrepresented in
High-Dose Statin Treatment

Michael Leutner 1, Caspar Matzhold 2,3, Alexander Kautzky 4, Michaela Kaleta 2,3,

Stefan Thurner 2,3,5,6, Peter Klimek 2,3 and Alexandra Kautzky-Willer 1,7*

1Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna,

Austria, 2 Section for Science of Complex Systems, Center for Medical Statistics, Informatics, and Intelligent Systems

(CeMSIIS), Medical University of Vienna, Vienna, Austria, 3Complexity Science Hub Vienna, Vienna, Austria, 4Department of

Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria, 5 Santa Fe Institute, Santa Fe, NM,

United States, 6 Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria, 7Gender Institute, Gars am Kamp, Austria

Keywords: statins, depression, dyslipidemia, dosage, precision medicine

A Corrigendum on

Major Depressive Disorder (MDD) and Antidepressant Medication Are Overrepresented in

High-Dose Statin Treatment

by Leutner, M., Matzhold, C., Kautzky, A., Kaleta, M., Thurner, S., Klimek, P., et al. (2021). Front.
Med. 8:608083. doi: 10.3389/fmed.2021.608083

In the original article, the authors’ name and surnamewere swapped. The correct author list appears
in this article. This has been corrected in all relevant sections. The citation was corrected to “Leutner
M, Matzhold C, Kautzky A, Kaleta M, Thurner S, Klimek P and Kautzky-Willer A (2021) Major
Depressive Disorder (MDD) and Antidepressant Medication Are Overrepresented in High-Dose
Statin Treatment. Front. Med. 8:608083. doi: 10.3389/fmed.2021.608083.”

The authors apologize for this error and state that this does not change the scientific conclusions
of the article in any way. The original article has been updated.

Copyright © 2021 Leutner, Matzhold, Kautzky, Kaleta, Thurner, Klimek and Kautzky-Willer. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other

forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does

not comply with these terms.

17

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.677866
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.677866&domain=pdf&date_stamp=2021-04-07
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:alexandra.kautzky-willer@meduniwien.ac.at
mailto:alexandra.kautzky-willer@meduniwien.ac.at
https://doi.org/10.3389/fmed.2021.677866
https://www.frontiersin.org/articles/10.3389/fmed.2021.677866/full
https://doi.org/10.3389/fmed.2021.608083
https://doi.org/10.3389/fmed.2021.608083
https://doi.org/10.3389/fmed.2021.608083
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


fphys-12-632123 February 10, 2021 Time: 18:48 # 1

ORIGINAL RESEARCH
published: 16 February 2021

doi: 10.3389/fphys.2021.632123

Edited by:
Nazareno Paolocci,

Johns Hopkins University,
United States

Reviewed by:
Michele Coceani,

Gabriele Monasterio Tuscany
Foundation (CNR), Italy

Graziamaria Corbi,
University of Molise, Italy

*Correspondence:
Hu Tan

tigertmmu@aliyun.com
Lan Huang

huanglan260@126.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Clinical and Translational Physiology,
a section of the journal
Frontiers in Physiology

Received: 25 November 2020
Accepted: 22 January 2021

Published: 16 February 2021

Citation:
Cheng R, Liu C, Yang J, Yang Y,

Chen R, Ding X, Gao X, Ke J, Yuan F,
He C, Shen Y, Zhang L, Li P, Tan H

and Huang L (2021) Sex Differences
in the Incidence and Risk Factors
of Myocardial Injury in COVID-19
Patients: A Retrospective Cohort

Study. Front. Physiol. 12:632123.
doi: 10.3389/fphys.2021.632123

Sex Differences in the Incidence and
Risk Factors of Myocardial Injury in
COVID-19 Patients: A Retrospective
Cohort Study
Ran Cheng1†, Chuan Liu1†, Jie Yang1†, Yuanqi Yang1, Renzheng Chen1, Xiaohan Ding2,3,
Xubin Gao1, Jingbin Ke1, Fangzhengyuan Yuan1, Chunyan He1, Yang Shen1,
Limin Zhang1,3, Ping Li1,3, Hu Tan1,3* and Lan Huang1*

1 The Second Affiliated Hospital, Institute of Cardiovascular Diseases of People’s Liberation Army of China (PLA), Army
Medical University, Chongqing, China, 2 Department of Health Care and Geriatrics, People’s Liberation Army Joint Logistic
Support Force 940th Hospital, Lanzhou, China, 3 Department of Infectious Diseases, Huoshenshan Hospital, Wuhan, China

Male novel coronavirus disease (COVID-19) patients tend to have poorer clinical
outcomes than female patients, while the myocardial injury is strongly associated with
COVID-19-related adverse events. Owing to a lack of corresponding data, we aimed
to investigate the sex differences in the incidence of myocardial injury in COVID-19
patients and to identify the potential underlying mechanisms, which may partly account
for the sex bias in the incidence of adverse events. This retrospective study included
1,157 COVID-19 patients who were hospitalized in Huoshenshan Hospital from 12
March 2020 to 11 April 2020. Data on the patients’ demographic characteristics,
initial symptoms, comorbidities and laboratory tests were collected. Totally, 571 (49.4%)
female and 586 (50.6%) male COVID-19 patients were enrolled. The incidence of
myocardial injury was higher among men than women (9.2 vs. 4.9%, p = 0.004).
In the logistic regression analysis, age, and chronic kidney disease were associated
with myocardial injury in both sexes. However, hypertension [odds ratio (OR) = 2.25,
95% confidence interval (CI) 1.20–4.22], coronary artery disease (OR = 2.46, 95% CI
1.14–5.34), leucocyte counts (OR = 3.13, 95% CI 1.24–7.86), hs-CRP (OR = 4.45,
95% CI 1.33–14.83), and D-dimer [OR = 3.93 (1.27–12.19), 95% CI 1.27–12.19] were
independent risk factors only in the men. The correlations of hs-CRP and D-dimer with
hs-cTnI and BNP were stronger in the men. The incidence of myocardial injury in COVID-
19 patients is sex-dependent, predominantly in association with a greater degree of
inflammation and coagulation disorders in men. Our findings can be used to improve
the quality of clinical management in such settings.

Keywords: COVID-19, sex differences, myocardial injury, risk-factors, inflammation, coagulation disorder

INTRODUCTION

As of November 2020, the novel 2019 coronavirus disease (COVID-19) has led to more than
55 million confirmed cases worldwide, including nearly 1.5 million deaths (World Health
Organization, 2020b). The mortality associated with the disease ranges from 5.8 to 11.7% (Du
et al., 2020; Mehra et al., 2020; Shi et al., 2020b). Studies focusing on the epidemiological and
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clinical characteristics of COVID-19 have shown that, in addition
to old age and comorbidities, sex differences are also associated
with disease deterioration and mortality (Chen et al., 2020;
Yang et al., 2020), with male patients showing significantly
higher mortality values (Epidemiology Working Group for
NCIP Epidemic Response, 2020). In Spain, the mortality among
male COVID-19 patients is twice as high as that among their
female counterparts (Pastor-Barriuso et al., 2020). Another
observational, longitudinal study on 10-year mortality, enrolled
1,284 subjects without COVID-19, demonstrated that males
tended to have a lower prevalence of frailty and comorbidities,
receive fewer drugs, but have higher mortality than females
(Corbi et al., 2019). However, there remains a lack of clarity on the
underlying reasons for the sex differences in the incidence of fatal
outcomes in such settings. In COVID-19, mortality is strongly
associated with the incidence of myocardial injury (7.2 to –
27.8%) (Guo et al., 2020; Huang et al., 2020; Wang et al., 2020).
Moreover, myocardial injury development may result in the
deterioration of other COVID-19-related outcomes [e.g., acute
respiratory distress syndrome (ARDS), intensive care unit (ICU)
admission and ventilator therapy] (Lala et al., 2020; Lombardi
et al., 2020; Shi et al., 2020b). Therefore, the sex differences in
the incidence of COVID-19-related myocardial injury may partly
account for the sex bias in the incidence of adverse events. While
some studies showed that the incidence of myocardial injury is
higher among men than women (Guo et al., 2020), others did
not observe significant sex-related differences (Shi et al., 2020b).
Thus, whether the incidence of COVID-19-related myocardial
injury is sex-dependent remains controversial.

Therefore, we aimed to retrospectively compare the
epidemiological characteristics, laboratory test results, and
risk factors associated with myocardial injury between female
and male COVID-19 patients to identify sex differences in the
incidence of myocardial injury as well as the underlying potential
mechanisms so as to facilitate optimal clinical management.

MATERIALS AND METHODS

Study Design and Participants
A total of 1,201 patients who were hospitalized at Huoshenshan
Hospital (Wuhan, China) from 12 March 2020 to 11 April
2020 and diagnosed with laboratory-confirmed COVID-19
according to World Health Organization guidelines (World
Health Organization, 2020a) were enrolled in this single-center,
retrospective cohort study. Patients (1) aged under 18 years,
(2) without laboratory test data, or (3) without high-sensitivity
cardiac troponin I (hs-cTnI) test results were excluded (Shi
et al., 2020b). Real-time reverse transcriptase-polymerase chain
reaction performed using throat swab specimen was employed
for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) infection detection.

Our study protocol was approved by the Human Ethics
Committee, Huoshenshan Hospital (No. HSSLL023). The study
conformed to the ethical guidelines of the Declaration of
Helsinki. Given the limited medical resources and the need to
treat a large volume of patients in the urgently constructed

hospital in a short time, it was a huge challenge to gather
the informed consent form for every hospitalized patient. Oral
informed consent was approved by the ethics commission of the
hospital for patients with COVID-19 (Shi et al., 2020a).

Data Collection
Data on the patients’ demographics, initial symptoms,
comorbidities, and laboratory tests (routine blood test, renal
and liver function, coagulation profile, cardiac biomarkers,
inflammatory biomarkers) were obtained from standardized
clinical electronic medical records. Laboratory tests were
completed within 1 day after admission. All data were
independently verified and entered into the computer database
by two experienced physicians.

Definition
Age was classified as ≤65 years and >65 years (Du et al.,
2020). Initial symptoms were defined as the first symptoms
that appeared in the early infection stages. Comorbidities were
diagnosed using the International Classification of Disease
10 codes before SARS-CoV-2 infection. Laboratory tests were
classified as normal or abnormal based on Huoshenshan Hospital
criteria (Table 2). ARDS was defined according to the Berlin
Definition (Ranieri et al., 2012). Myocardial injury was confirmed
if the hs-cTnI level was higher than the 99th percentile
upper reference limit (Thygesen et al., 2018). According to the
guidelines for diagnosis and management of COVID-19 (5th
version, in Chinese) released by the National Health Commission
of China, the severe and critically ill cases was defined when
meeting any of the follows: respiratory rate ≥30 times/min;
pulse oxygen saturation ≤93% at rest; arterial oxygen partial
pressure/fraction of inspired oxygen ≤300 mmHg; respiratory
failure requiring mechanical ventilation; or respiratory failure
combined with other organ failure requiring ICU treatment
(National Health Commission of China, 2020).

Statistical Analysis
Continuous variables were represented as medians (25th–75th
percentile). Independent sample t-tests or Mann-Whitney U tests
were used for the comparison of continuous variables between
the groups according to the distribution. Categorical data were
exhibited as counts and percentages and further analyzed by the
Chi-squared test or Fisher’s exact test when appropriate.

Logistic regression analyses were applied to determine the
independent risk factors for myocardial injury. Variables with
p < 0.1 in the univariable analysis or those that were
considered clinically relevant were entered into the multivariable
models. Linear regression was applied for the assessment of
the associations between cardiac biomarkers and potential risk
factors. The standardized regression coefficient (R) was used to
describe the association. Forest plots were applied to display the
results of the multiple logistics regression analysis. A two-tailed
P < 0.05 was considered statistically significant.

Statistical analyses were performed with SPSS 26.0 software
(IBM Corp., Armonk, NY, United States). Data visualization was
generated by Prism 7.0 (GraphPad Software Inc., San Diego,
CA, United States).
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RESULTS

Baseline Characteristics in the Male and
Female Patients With and Without
Myocardial Injury
A flow chart of the patient recruitment process is presented
in Figure 1A. Briefly, a total of 1,201 COVID-19 patients
were admitted to Huoshenshan Hospital from 12 March 2020
to 11 April 2020. After the exclusion of two patients aged
under 18 years, 27 without laboratory test data and 15 without
hs-cTnI test data, 1,157 patients were included in our final
analysis, comprising 571 (49.4%) women and 586 (50.6%) men.
Among the 1,157 COVID-19 patients included in our study, a
significantly higher incidence of myocardial injury was observed
in men than women (9.2 vs. 4.9%, p= 0.004) (Figure 1B).

The baseline characteristics of the patients with and without
myocardial injury are summarized in Table 1. In both sexes,
the presence of myocardial injury was associated with older
age [women: 67.5 (57.5–75.75) vs. 61 (53–68) years, p = 0.004,
men: 72 (63.75–78) vs. 61 (51–69) years, p < 0.001] and higher
frequencies of hypertension [women: 15 (53.6%) vs. 193 (35.3%),
p = 0.053; men: 35 (64.8%) vs. 177 (33.3%), p < 0.001] and
chronic kidney disease (CKD) [women: 3 (10.7%) vs. 9 (1.7%),
p= 0.017; men: 5 (9.3%) vs. 9 (1.7%), p= 0.003)].

However, in the men alone, the frequencies of coronary
artery disease (CAD) [14 (25.9%) vs. 34 (6.4%), p < 0.001] and
cerebrovascular disease [8 (14.8%) vs. 24 (4.5%), p = 0.004] were
higher in those with myocardial injury than in those without it.
Moreover, compared to their counterparts without this injury,
the male myocardial injury patients had a higher incidence of
nausea/vomiting [4 (7.4%) vs. 10 (1.9%), p = 0.039] as an initial
symptom but a lower incidence of fever [29 (53.7%) vs. 391
(73.5%), p = 0.002]. Both in females and males, patients with
myocardial injury exhibited more severe and critically ill cases
and had poor clinical outcomes, such as respiratory failure,
ARDS, ICU admission, and death (all p < 0.001).

Laboratory Findings at Admission in
Male and Female Patients With and
Without Myocardial Injury
Both the male and female myocardial injury patients had
higher levels of creatine kinase-MB, lactic dehydrogenase,
α-hydroxybutyrate dehydrogenase, hs-cTnI, brain natriuretic
peptide (BNP), myoglobin, leucocytes, high-sensitive C-reactive
protein (hs-CRP), urea nitrogen, aspartate aminotransferase,
prothrombin time and D-dimer but a lower lymphocyte
percentage and monocyte percentage (all p < 0.05)
(Supplementary Table S1).

Risk Factors for Myocardial Injury in
COVID-19 Patients According to Sex
In the univariable regression analysis, age (>65 years), history
of hypertension, and CKD cerebrovascular disease were risk
factors for the incidence of myocardial injury in both sexes.
However, in the men alone, CAD and cerebrovascular disease

were associated with the incidence of myocardial injury. In the
multivariable logistic regression analysis conducted among the
female patients, age (>65 years) [odds ratio (OR) = 3.76, 95%
confidence interval (CI) 1.61–8.77, p = 0.002], history of CKD
(OR = 4.28, 95% CI 1.02–18.06, p = 0.048 were independent
risk factors for the incidence of myocardial injury. Among the
male patients, age (>65 years) (OR = 4.02, 95% CI 2.05–
7.90, p < 0.001), history of hypertension (OR = 2.25 95%
CI (1.20–4.22, p = 0.012), CAD (OR = 2.46, 95% CI 1.14–
5.34, p = 0.022) and CKD (OR = 4.76, 95% CI 1.38–16.40,
p = 0.013) were independently associated with the incidence of
myocardial injury (Supplementary Table S2 and Figure 2). In
terms of laboratory variables, after multivariable adjustment for
age and the above-mentioned comorbidities, the leucocyte count
(OR = 3.13, 95% CI 1.24–7.86, p = 0.016), the levels of hs-
CRP (OR = 4.45, 95% CI 1.33–14.83, p < 0.001) and D-dimer
(OR = 3.93, 95% CI 1.27–12.19, p = 0.018) were determined as
being independently related to myocardial injury only in the male
patients (Table 2).

Correlations Between hs-CRP, D-Dimer
and Biomarkers of Myocardial Injury in
COVID-19 Patients According to Sex
Compared to the female myocardial injury patients, the male
patients had a remarkable increase in levels of BNP [167.71
(38.47–611.47) vs. 59.13 (6.25–305.97) pg/mL, p < 0.05], hs-CRP
[51.07 (14.27–115.39) vs. 10.57 (1.13–79.22) mg/L, p < 0.05] and
D-dimer [4.29 (1.20–9.05) vs. 1.16 (0.54–3.69) mg/L, p < 0.01].
However, hs-cTnI level did not manifest the significant sex
difference in myocardial injury patients (p > 0.05) (Figure 3).

In the linear regression analysis, the levels of hs-CRP were
positively correlated with those of hs-cTnI in the men (R= 0.202,
p < 0.001) but not women. Furthermore, the levels of D-dimer
were correlated with the hs-cTnI values in both the men
(R = 0.268, p < 0.001) and women (R = 0.157, p < 0.001). The
levels of hs-CRP (men: R = 0.354, p < 0.001; women: R = 0.273,
p < 0.001) and D-dimer (men: R = 0.501, p < 0.001; women:
R = 0.153, p = 0.003) were correlated with those of BNP in both
sexes. However, the correlations were stronger in the men than
women (Figure 3).

DISCUSSION

In the present study, we found that the incidence of myocardial
injury was higher among male COVID-19 patients than their
female counterparts. The multivariate logistic regression analyses
showed that old age and CKD were independently associated
with the presence of myocardial injury in both sexes. However,
history of hypertension and CAD, the elevated hs-CRP and
D-dimer levels were independent risk factors only in the men.
Additionally, while correlations of hs-CRP and D-dimer with
cardiac biomarkers were observed in both sexes, they were more
pronounced in men. Our findings suggest the presence of sex
differences in the incidence and risk factors of myocardial injury
in COVID-19 patients.
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FIGURE 1 | Flowchart of patients recruitment (A) and distribution of myocardial injury with regard to different sex inpatients with COVID-19 (B).

Sex Differences in the Incidence of
Myocardial Injury and Impacts on
Cardiac Function
As illustrated above, the sex bias in the incidence of myocardial
injury in COVID-19 patients is controversial. Although some
studies reported the absence of significant sex differences in
the incidence of myocardial injury (Lombardi et al., 2020; Shi
et al., 2020b), our large-scale study suggested that men are
likelier to develop it. Interestingly, the absolute value of hs-
TnI did not manifest the sex disparities in myocardial injury
patients, suggested that no sex difference existed in the severity
of myocardial injury even if males were more prone to it.
Similarly, a study of 2,736 COVID-19-positive individuals in
New York City reported that no significant sex differences when
the severity of myocardial injury was stratified by troponin I
degrees (Lala et al., 2020).

In the present study, those with myocardial injury showed
a marked increase in their BNP levels in association with
serious cardiac function impairment (Troughton et al., 2014).
Previous studies that focused on the cardiovascular implications
of COVID-19 found that the mean concentration of BNP was
much higher in those who died, highlighting the prognostic
significance of this parameter (Guo et al., 2020). Accordingly, it
can be hypothesized that patients with a higher risk of severe

COVID-19 progression and outcome due to myocardial injury
and worse cardiac function may include a disproportionate
number of males.

Sex Differences in Risk Factors for
Myocardial Injury
Consistent with previous studies (McCarthy et al., 2019; Shi
et al., 2020a), the myocardial injury patients in our study tended
to be older and have a larger number of pre-existing illnesses
(hypertension and CKD) suggesting that these comorbidities
accelerate the development of myocardial injury. Furthermore,
male patients were older and had higher incidences of CAD and
cerebrovascular disease. In line with our findings, Guo et al.
reported that the proportions of men were higher than those
of women in elderly populations and populations with coronary
heart disease (Guo et al., 2020).

Generally, elderly males suffer from a more serious reduced
in total numbers of immune cells and inverted CD4/CD8
T-cell ratio as compared with the female (Perrotta et al.,
2020), resulting in the impaired immunologic surveillance
and immune clearance function in aging males. Moreover,
Svartengren et al. (2005) demonstrated the clearance function
of inhaled particles in small airway areas decreased with
age. In addition, upper airway size as well decreases in
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TABLE 1 | Comparison of demographics, initial symptoms, and comorbidities between myocardial injury and without-myocardial injury in female and male
COVID-19 patients.

Female Male

Myocardial injury
(n = 28)

Without-myocardial
injury (n = 543)

p-value Myocardial injury
(n = 54)

Without-myocardial
injury (n = 532)

p-value

Demographics

Age, years 67.5 (57.5–75.75) 61 (53–68) 0.004 72 (63.75–78) 61 (51–69) <0.001

Current smoker, n (%) 0 (0) 1 (0.2) 1.000 5 (9.3) 67 (12.6)## 0.477

Initial symptoms

Fever (=37.3◦C), n (%) 18 (64.3) 367 (67.6) 0.716 29 (53.7) 391 (73.5)# 0.002

Cough, n (%) 18 (64.3) 382 (70.3) 0.494 32 (59.3) 337 (63.3)# 0.553

Sputum, n (%) 2 (7.1) 67 (12.3) 0.599 10 (18.5) 69 (13.0) 0.255

Short of breath, n (%) 14 (50.0) 241 (44.4) 0.560 26 (48.1) 239 (44.9) 0.650

Fatigue, n (%) 11 (39.3) 196 (36.1) 0.732 13 (24.1) 187 (35.2) 0.102

Nausea/vomiting, n (%) 1 (3.6) 18 (3.3) 1.000 4 (7.4) 10 (1.9) 0.039

Stuffy/runny noses, n (%) 0 (0) 4 (0.7) 1.000 0 (0) 2 (0.4) 1.000

Throat discomfort, n (%) 0 (0) 27 (5.0) 0.452 1 (1.9) 10 (1.9)## 1.000

Comorbidities

Hypertension, n (%) 15 (53.6) 193 (35.5) 0.053 35 (64.8) 177 (33.3) < 0.001

Diabetes, n (%) 7 (25.0) 81 (14.9) 0.241 13 (24.1) 91 (17.1) 0.202

Arrhythmia, n (%) 1 (3.6) 24 (4.4) 1.000 4 (7.4) 20 (3.8) 0.353

Malignant neoplasms, n (%) 1 (3.6) 12 (2.2) 0.484 3 (5.6) 14 (2.6) 0.427

CAD, n (%) 2 (7.1) 37 (6.8) 1.000 14 (25.9)* 34 (6.4) <0.001

COPD, n (%) 1 (3.6) 15 (2.8) 0.560 4 (7.5) 29 (5.5)# 0.758

CLD, n (%) 1 (3.6) 9 (1.7) 0.398 3 (5.6) 21 (3.9)# 0.835

CKD, n (%) 3 (10.7) 9 (1.7) 0.017 5 (9.3) 9 (1.7) 0.003

Anemia, n (%) 1 (3.6) 10 (1.8) 0.428 3 (5.6) 8 (1.5) 0.118

Cerebrovascular disease, n (%) 1 (3.6) 18 (3.3) 1.000 8 (14.8) 24 (4.5) 0.004

Clinical outcomes

Respiratory failure, n (%) 10 (35.7) 20 (3.7) <0.001 28 (51.9) 26 (4.9) <0.001

ARDS, n (%) 11 (39.3) 15 (2.8) <0.001 25 (46.3) 23 (4.3) <0.001

ICU admission, n (%) 8 (28.6) 18 (3.3) <0.001 25 (46.3) 25 (4.7) <0.001

Death, n (%) 8 (28.6) 6 (1.1) <0.001 19 (35.2) 9 (1.7) <0.001

Disease severity

Mild, n (%) 10 (35.7) 398 (73.3) <0.001 20 (37.0) 362 (68.0) <0.001

Severe and critically ill, n (%) 18 (64.3) 145 (26.7) 34 (63.0) 170 (32.0)

Continuous variables with non-normal distribution were represented as medians (25th–75th percentile) and categorical data were represented as count and percentage.
COVID-19, novel 2019 coronavirus disease; COPD, chronic obstructive pulmonary disease; CAD, coronary artery disease; CLD, chronic liver disease; CKD, chronic
kidney disease; ARDS, acute respiratory distress syndrome; ICU, intensive care unit admission. *p < 0.05, compared to female patients with myocardial injury. #p < 0.05,
##p < 0.01, compared to female patients without myocardial injury.

an age-related manner, which is more pronounced in males
(Martin et al., 1997).

These viewpoints partly account for the sex differences in
COVID-19 infection rate and are indispensable to the further
interpretation of the higher myocardial incidence in aging males
compared to aging females (Perrotta et al., 2020).

Sex Differences in the Mechanism of
Myocardial Injury
To characterize cardiac structural and functional abnormalities of
COVID-19 patients, echocardiographic and electrocardiographic
data have been analyzed by several researchers. Giustino et al.
(2020) reported that patients with myocardial injury more
suffered from left ventricle dysfunction, regional wall motion

abnormalities, right ventricle dysfunction, and pericardial
effusions. Additionally, recently researches assessed by speckle-
tracking echocardiography supported that worsening left
ventricle and right ventricle function, reflected by reduced
global and regional strain, were more observed in patients
with severe COVID-19 infection and more associated with
poorer grade and clinical deterioration (Lassen et al., 2020;
Rothschild et al., 2020). Meanwhile, 12-lead electrocardiogram
identified that two different patterns of ST-segment changes,
including global biventricular dysfunction related diffuse
ST-segment changes and regional wall motion abnormalities
associated regional ST-segment changes (Giustino et al.,
2020). It was worth noting that the sex differences in cardiac
structural and functional characteristic changes were not
been reported.
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TABLE 2 | Association between laboratory findings and myocardial injury in female and male COVID-19 patients.

Variables Female Male

Univariable
OR (95%CI)

p-value Multivariable
OR (95%CI)

p-value* Univariable
OR (95%CI)

p-value Multivariable
OR (95%CI)

p-value*

Leucocytes,
×109/L

4–10 1 (Ref) 1 (Ref)

<4 or >10 3.56
(1.61–7.86)

0.002 1.97
(0.59–6.58)

0.271 2.70
(1.48–4.94)

0.001 3.13
(1.24–7.86)

0.016

Neutrophil
percentage, %

40–75 1(Ref) 1 (Ref)

<40
or >75

6.36
(2.80–14.41)

<0.001 2.90
(0.83–10.14)

0.095 9.07
(4.98–16.51)

<0.001 1.86
(0.71–4.85)

0.205

Hemoglobin, g/L ≥115 1 (Ref) 1 (Ref)

<115 1.87
(0.87–4.00)

0.109 0.34
(0.11–1.10)

0.073 3.47
(1.95–6.16)

<0.001 0.94
(0.38–2.35)

0.900

Platelets, ×109/L 100–300 1 (Ref) 1 (Ref)

<100
or >300

1.81
(0.80–4.11)

0.156 0.83
(0.26–2.69)

0.761 2.65
(1.47–4.77)

0.001 1.77
(0.67–4.65)

0.247

hs–CRP, mg/L ≤4 1 (Ref) 1 (Ref)

>4 5.53
(2.39–12.82)

<0.001 2.21
(0.67–7.32)

0.193 16.40
(6.42–41.92)

<0.001 4.45
(1.33–14.83)

0.015

ALT, IU/L ≤50 1 (Ref) 1 (Ref)

>50 0.78 (0.18–3.4) 0.745 1.02
(0.17–5.96)

0.985 1.30
(0.67–2.51)

0.437 1.07
(0.40–2.87)

0.900

TBil, µmol/L ≤26 1 (Ref) 1 (Ref)

>26 5.30
(1.07–26.27)

0.041 7.38
(0.98–55.76)

0.053 3.84
(0.99–14.92)

0.052 3.88
(0.37–40.51)

0.257

BUN, mmol/L ≤9.5 1 (Ref) 1 (Ref)

>9.5 16.46
(4.85–55.82)

<0.001 4.81
(0.77–29.85)

0.092 21.76
(10.28–46.09)

<0.001 2.97
(0.85–10.43)

0.089

Creatinine,
µmol/L

≤100 1 (Ref) 1 (Ref)

>100 1.90
(0.90–3.99)

0.092 0.93
(0.24–3.54)

0.914 6.11
(3.14–11.87)

<0.001 1.34
(0.34–5.24)

0.678

PT, s ≤18 1 (Ref) 1 (Ref)

>18 10.59
(1.84–60.81)

0.008 1.16
(0.10–13.29)

0.908 17.00
(5.77–50.06)

<0.001 5.58
(0.84–37.06)

0.075

APTT, s ≤40 1 (Ref) 1 (Ref)

>40 7.04
(1.35–36.82)

0.021 6.33
(0.47–85.51)

0.165 6.44
(2.02–20.50)

0.002 0.21
(0.02–2.01)

0.174

D-dimer, mg/L ≤0.6 1 (Ref) 1 (Ref)

>0.6 5.50
(2.14–14.12)

<0.001 2.78
(0.86–9.02)

0.089 12.87
(4.99–33.17)

<0.001 3.93
(1.27–12.19)

0.018

OR, odds ratio; 95%CI, 95% confidence intervals. ∗Multivariable models were adjusted by age, history of hypertension, coronary artery disease, chronic kidney disease.
hs-CRP, high-sensitive C-reactive protein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBil, total bilirubin; hs-cTnI, high-sensitive cardiac troponin I;
BNP, brain natriuretic peptide; PT, prothrombin time; APTT, activated partial thromboplastin time.

To an extent, the above findings partly accounted for
the potential pathophysiological mechanism of myocardial
injury caused by COVID-19, such as direct viral invasion
and possibly ischemia-reperfusion injury of the myocardium.
Nevertheless, a much larger body of literature suggests that
the high degree of systemic inflammation and microvascular
thrombosis mediated by the cytokine release syndrome in
hospitalized COVID-19 patients may be more principal in the
development of myocardial injury (Akhmerov and Marbán,
2020; Colling and Kanthi, 2020). In SARS-CoV-2 infection, the

abnormal release of proinflammatory factors could cause
endothelial cell apoptosis, resulting in immunopathogenic
damage to the cardiovascular system (Teuwen et al., 2020).
These factors may shift the balance of coagulation toward a
procoagulant and prothrombotic state (Corrales-Medina et al.,
2013). Consistently, our study demonstrated that both the male
and female patients with myocardial injury presented abnormal
inflammation and coagulation stress, as suggested by the higher
levels of hs-CRP and D-dimer, and developed elevated leukocyte
counts and neutrophil percentages. We also observed that the
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FIGURE 2 | Forest plot of multivariate logistic regression analysis of age and comorbidities associated with myocardial injury in female and male COVID-19
inpatients. OR: odds ratio, 95%CI: 95% confidence intervals.

FIGURE 3 | Comparison and correlation of the laboratory testings in COVID-19 inpatients with and without myocardial injury. Comparison of the level of (A) hs-cTnI,
(B) BNP, (C) hs-CRP, and (D) D-dimer between females and males with and without myocardial injury; Correlation between hs-CRP with hs-TnI (E), D-dimer with
hs-TnI (F), hs-CRP with BNP (G), and D-dimer with BNP (H) in females and males. Hs-cTnI: high-sensitive cardiac troponin I; BNP: brain natriuretic peptide,
hs-CRP: high-sensitive C-reactive protein. *p < 0.05, **p < 0.01, ***p < 0.005.

hemoglobin level was decreased in those with myocardial injury.
Taking into account the oxygen-carrying capacity of hemoglobin
and cardiac oxygen metabolism imbalance, the latter may be of
particular significance in the development of myocardial injury
and early prediction of disease prognosis.

Furthermore, our findings add value to those of previous
studies by demonstrating that the levels of hs-CRP and D-dimer
in men with myocardial injury were almost five and threefold
higher than those in the women, respectively. The sexual
dimorphism in the hyperinflammatory state may be mediated
by different innate and adaptive immune responses based on
sex chromosomes (Klein and Flanagan, 2016; Schurz et al.,
2019). A large number of immune-related genes located in the X
chromosome confer upon women a stronger degree of immune
recognition and a higher elimination rate of pathogenic agents
(Schurz et al., 2019). As observed in a study that enrolled 331

COVID-19 patients, critically ill female patients have significantly
higher levels of SARS-CoV-2 IgG antibodies than their male
counterparts (Zeng et al., 2020).

Sex Differences in the Association
Between hs-CRP, D-Dimer, and Cardiac
Biomarkers
Interestingly, our study supports the notion of the presence of
an independent risk relationship of the inflammatory response
and coagulation disorder with myocardial injury and cardiac
dysfunction in male rather than female patients. It indicated
that the men experienced more severe COVID-19 infection, and
were more susceptible to inflammation and coagulation stress.
Angiotensin-converting enzyme 2 (ACE2) mediates the entry
of the virus into host cells by binding with the virus spike
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protein. However, this process results in the downregulation
of ACE2 as well as uncontrolled renin-angiotensin-aldosterone
system activation and further myocardial adverse outcomes
(Nishiga et al., 2020). Of note, the ACE2 gene, located on the
X chromosome, might experience differences in methylation
with sex-chromosome activation (Ambrosino et al., 2020), which
probably increased the possibility of sex-oriented susceptibility of
myocardial injury.

Meanwhile, women have a higher level of estrogen, which
enhances the level of ACE2 activity and expression in a
concentration-dependent manner (Rice et al., 2004), upregulates
the expression of angiotensin-(1–7) and prompts vasodilation,
NO release and reduced smooth muscle cell proliferation (Ji et al.,
2008). Estrogen as well exhibits a protective effect against the
vascular endothelial injury caused by inflammation (Chakrabarti
et al., 2014). Under oxidative stress, estrogen reduces the rate of
reactive oxygen species generation by specific posttranslational
modifications in the mitochondrial enzymes, inducing a lower
rate of myocardial injury in women (Lagranha et al., 2010).
Accordingly, we hypothesized that the inflammation reaction
and coagulation state vary according to sex and female-specific
protective mechanisms, probably mediating sex differences in the
incidence of myocardial injury and resulting in sex differences in
the incidence of adverse outcomes in COVID-19 patients.

Limitations
Our study has some limitations. Firstly, data on virus antibodies
and proinflammatory cytokines (e.g., interleukin [IL]-1, IL-6,
IL-8 and tumor necrosis factor-α) were not available, which
would provide a proper insight into the pathophysiological
stage of the myocardial injury from viral infection to the
immune reaction. Moreover, the widespread application of
echocardiography was limited due to the rapid progress of
the emergency in Wuhan and the consideration of biosafety
protection measures for hospital staff. Echocardiographic data
were available only in partial subjects and were not analyzed
in our retrospective research. Next, this study had a single-
center design; our findings require validation in further rigorous
prospective studies. Fourthly, our study was retrospective in
nature and could only speculate the biological relationship
between sex differences and myocardial injury on the basis of our
evidence and that of previous studies.

CONCLUSION

Our results suggest that the incidence of myocardial injury
in COVID-19 patients is sex-dependent, predominantly in

association with a higher degree of inflammation and coagulation
disorder in men. These findings may provide a reasonable
explanation for the observed sex differences in the adverse
outcomes in COVID-19 patients and a theoretical basis for sex-
based clinical trials and management.
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Objective: Patients with acute fulminant myocarditis often have more adverse
cardiovascular events and higher mortality. The purpose of this study was to evaluate
the usefulness of age, creatinine, and left ventricular ejection fraction (ACEF score), in
determining the risk that acute fulminant myocarditis will lead to serious cardiovascular
events, death, and cardiac dysfunction.

Methods: We retrospectively reviewed the demographics, laboratory tests,
medications, echocardiographic examinations, in-hospital clinical outcomes, major
adverse cardiovascular events (MACE), and survival rate at 1 year in the medical records
of 220 consecutive subjects suffering from acute fulminant myocarditis from January
2013 to June 2019.

Results: Two hundred twenty patients were divided into a survivor group and a non-
survivor group. This study found that patients in the non-survivor group were older, had
higher heart rates, and had more serious injuries to multiple organ functions. A high
ACEF score at admission was independently associated with an unfavorable prognosis,
and it was a predictor of in-hospital mortality. The current analysis extends the predictive
performance of the ACEF scores at 30 days by evaluating echocardiographic data as
applied to survivors of fulminant myocarditis and cumulative rates of MACE at 1 year.
The results indicated that patients with high ACEF scores had poor recovery of cardiac
function, and higher rates of MACE, all-cause death, and heart failure at 1 year than
the low-ACEF group.

Conclusion: The ACEF score was identified as an effective predictor of poor in-hospital
outcomes, worse cardiac recovery after 30 days, and higher rates of MACE, all-cause
death, and heart failure at 1 year in patients who had acute fulminant myocarditis. These
data suggest that its predictive accuracy means the ACEF score could be used to
assess the prognosis of patients with acute fulminant myocarditis.

Keywords: age, creatinine, left ventricular ejection fraction, risk prediction, fulminant myocarditis
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INTRODUCTION

Acute myocarditis is an autoimmune inflammation of the
myocardium to the possible sources with the expression
of various clinical manifestations, myocardial damage,
hemodynamic disorders, severe arrhythmias, and unfavorable
prognosis (McCarthy et al., 2000; Eckart et al., 2004; Gupta
et al., 2008; Sharma et al., 2019). Despite the considerably high
risk of heart attack, life-threatening arrhythmias and shock,
patients with acute fulminant myocarditis might recover and
survive longer if they live through the acute phase and if their
cardiac function recovers within 1 month (McCarthy et al.,
2000; Ammirati et al., 2017; Sharma et al., 2019). Thus, early
recognition and risk stratification would lower the in-hospital
mortality in such patients if impressive advances in medical
therapeutic measurements and aggressive mechanical circulatory
support were used earlier (Diddle et al., 2015; Li et al., 2019).

A number of risk factors have been associated with in-hospital
mortality and longer-term outcomes in patients who suffer from
acute fulminant myocarditis, especially renal dysfunction and
impaired cardiac function (Yang et al., 2012; Xu et al., 2018).
However, until now, there have been few simple and effective
tools to evaluate the in-hospital and 30 day prognosis and long-
term survival in patients after acute fulminant myocarditis. The
age, creatinine, and left ventricular ejection fraction (ACEF) score
was originally developed to predict 1 year mortality in patients
who survived for >30 days after acute myocardial infarction
(Lee et al., 2015) and to assess mortality risk in elective cardiac
operations (Ranucci et al., 2009). Its use has subsequently been
extended to other clinical conditions, including acute coronary
syndrome, infective endocarditis, and transcatheter aortic valve
implantation (Di Serafino et al., 2014; Arai et al., 2015; Stähli
et al., 2018; Wei et al., 2019). However, the prognostic value of
the ACEF score in patients with acute fulminant myocarditis has
not been evaluated. In line with this notion, this study aimed to
determine whether the ACEF score is associated with mortality
and to investigate the prognostic value of the ACEF score for
patients with fulminant myocarditis. The results might help
clinical physicians in clinical assessment and decision-making.

MATERIALS AND METHODS

Study Population
This was a retrospective, single-center observational study of
225 patients diagnosed with fulminant myocarditis who were
admitted to a cardiac intensive care unit between January 2013
and June 2019. The procedures of the study conformed to the
Helsinki Declaration with regard to ethical principles, and use of
the participants’ data was in accordance with the ethical standards
of the institutional committees. All authors confirmed that each
patient’s information was identified by an alias. The data were
collected and divided into survivor and non-survivor groups. The
patients standard transthoracic echocardiography at admission.

Data Collection
Each patient’s clinical characteristics, clinical manifestations,
laboratory examinations, echocardiographic data, and ACEF

score were collected and analyzed. The clinical characteristics
included gender, age, prior hypertension, prior diabetes mellitus,
alcohol use, and smoking. The clinical manifestations referred to
heart rate, mean arterial blood pressure, respiratory symptoms,
alimentary symptoms, fever, chest tightness or dyspnea, chest
pain, and neurological symptoms. Laboratory biomarkers,
including white blood cell count (WBC counts, reference
value 3.5–9.5 × 10E12/L), hemoglobin (reference value 115–
160 g/L), MB isoenzyme of creatine kinase (CK-MB, reference
value 0–24 U/L), total bilirubin (normal range 3.4–17.1
µmol/L), and serum creatinine (Scr, normal range 0.7–
1.5 mg/dL), were measured at admission. Cardiac structure and
function were evaluated based on echocardiographic changes
in left atrium dimensions (LAd), left ventricular end systolic
dimensions (LVESd), left ventricular end diastolic dimensions
(LVEDd), left ventricular ejection fraction (LVEF), pericardial
effusion, weakening motion of the ventricular wall, and valve
regurgitation. These echocardiographic data were measured
with M-mode and two-dimensional Doppler echocardiography.
The ACEF score was calculated according to the following
formula: ACEF = age/LVEF+1 (if creatinine was >2.0 mg/dL)
(Ranucci et al., 2009).

The variables related to incidence of death in subjects were
analyzed using multivariate logistic regression to identify
independent predictors. All enrolled patients were then divided
into two groups according to their ACEF score at admission: a
low ACEF score group (ACEF score ≤ 1.43) and a high ACEF
score group (ACEF score > 1.43). The clinical characteristics,
laboratory examinations, and echocardiography at admission
were examined according to different levels of ACEF scores.
In addition, therapeutic treatments and strategies, as well
as in-hospital complications [shock, New York Association
(NYHA class), multiple organ failure, and death] between
the group with low ACEF scores and the group with high
ACEF scores were analyzed. The therapeutic treatments and
strategies included intravenous injection of medication (vitamin
C, immunoglobulin, methylprednisolone, diuretics, dopamine,
norepinephrine, inotropic agents), oral administration of
medication (renin-angiotensin system inhibitors, beta-receptor
blockers, aldosterone antagonists), and other medical assistance
such as temporary pacemaker, ventilator support, intra-aortic
balloon pump (IABP), continuous renal replacement therapy
(CRRT), and extracorporeal membrane oxygenation (ECMO). In
addition, for survivors after 1 month, the echocardiographic data
between the low-ACEF group and the high-ACEF group were
compared. Patients with fulminant myocarditis were followed
up for 1 year. Major adverse cardiovascular events (MACE)
were defined as the composite of all-cause death, heart failure,
and readmission. The 1 year all-cause death and the data of
clinical follow-up were obtained by reviewing medical records
and through telephone interviews with patients on.

Statistical Analysis
Statistical analysis was performed using the SPSS software
package (version 19.0, SPSS, United States). Continuous variables
were expressed as mean ± standard deviation when normally
distributed, and they were compared using the independent-
sample t-test or Mann Whitney U-test. Otherwise, comparison
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was made using the Wilcoxon test and shown as median
(quartile range). Categorical variables were presented as numbers
(percentages), and they were compared with Pearson’s chi-
square test or Fisher’s exact test. Multivariate logistic regression
was performed to determine independent predictors of in-
hospital death in the subjects. The accuracy of the ACEF
score in predicting mortality was assessed using receiver
operating characteristic (ROC) curve analysis. Through ROC
curve analysis, the optimum cut-off ACEF value was determined
as the point of the highest Youden index (sensitivity+ specificity
− 1). Patients were categorized into two groups according to
the statistical ACEF score: the low-ACEF group and the high-
ACEF group. The 1 year rates of cumulative MACE events
were evaluated by the Kaplan-Meier method, and the difference
between groups was assessed by log-rank test in patients with
acute fulminant myocarditis. A p < 0.05 (two-sided) was defined
as statistically significant.

RESULTS

Patients’ Clinical Characteristics,
Performance, Laboratory Findings,
Echocardiographic Examination, and
ACEF Scores
The 225 patients with fulminant myocarditis were enrolled,
and 5 patients were excluded because of incomplete data.
Among the remaining 220 patients, 24 (10.91%) died in
hospital and were classified as a non-survivor group. The
other 196 patients were classified into a survivor group.
The baseline characteristics, clinical manifestations, laboratory
data, echocardiographic measurements, and ACEF scores at
admission are presented in Table 1. Differences between the
two groups in gender, proportion of prior medical histories,
mean arterial blood pressure, frequency of clinical presentation,
and hemoglobin level did not reach statistical significance. With
respect to echocardiographic data (LAd, LVEDd, pericardial
effusion, weakening motion of the ventricular wall, and valve
regurgitation), patients who suffered acute fulminant myocarditis
in the non-survivor group had no significant difference when
compared with patients in the survivor group (Table 1).

The patients with fulminant myocarditis in the non-survivor
group were older [52.63 ± 18.08 vs. 35.00 (24.25∼49.75)], and
they had higher heart rates (115.58 ± 28.90 vs. 80.67 ± 23.76
bpm) than the survivors who complicated acute fulminant
myocarditis. Patients who did not survive after fulminant
myocarditis had higher WBC counts [13.77 ± 8.82 vs. 8.61
(6.10∼11.89) × 10E12/L), CK-MB [95.37 ± 66.45 vs. 25.61
(9.21∼63.84) U/L], total bilirubin [25.26 ± 20.46 vs. 12.70
(9.20∼17.80) µmol/L), and serum creatinine [1.66 (0.95∼1.91)
vs. 0.83 (0.65∼1.05) mg/dL] at admission compared to survivors.
In addition, patients with acute fulminant myocarditis who did
not survive had a significantly higher mean LVESd [40.29 ± 6.81
vs. 36.00 (32.00∼40.00) mm], and a dramatically lower LVEF
[0.34± 0.08 vs. 0.51 (0.40∼0.61)] in comparison with the patients

TABLE 1 | Comparison of the clinical features and the ACEF score in patients with
acute fulminant myocarditis.

Variables Survivor Non-survivor P-value

(n = 196) (n = 24)

Clinical characteristics

Gender (male) [n (%)] 123 (62.76%) 15 (62.5%) 0.981

Age (years) 35.00 (24.25∼49.75) 52.63 ± 18.08* 0.001

Prior hypertension [n (%)] 32 (16.33%) 6 (25.00%) 0.267

Prior diabetes mellitus [n
(%)]

13 (6.63%) 2 (8.33%) 0.671

Alcohol [n (%)] 22 (11.22%) 3 (12.50) 0.741

Smoking [n (%)] 44 (22.45%) 4 (16.67%) 0.517

Heart rate (bpm) 80.67 ± 23.76 115.58 ± 28.90* 0.000

Mean arterial blood
pressure (mmHg)

80.48 ± 13.33 79.28 ± 23.70 0.809

Clinical manifestation

Respiratory symptom [n
(%)]

63 (32.14%) 11 (32.14%) 0.180

Alimentary symptom [n (%)] 47 (23.98%) 9 (37.5%) 0.151

Fever n [n (%)] 111 (56.63%) 17 (70.83%) 0.183

Chest tightness or dyspnea
[n (%)]

137 (69.90%) 20 (83.33%) 0.169

Chest pain [n (%)] 54 (27.55%) 5 (20.83%) 0.483

Neurological symptom
(syncope) [n (%)]

36 (18.37%) 7 (29.17%) 0.161

Laboratory examination

White blood cell counts
(×10 E12/L)

8.61 (6.10∼11.89) 13.77 ± 8.82* 0.041

Hemoglobin (g/L) 131.51 ± 20.65 137.17 ± 27.47 0.348

CK-MB (U/L) 25.61 (9.21∼63.84) 95.37 ± 66.45* 0.000

Total bilirubin (µmol/L) 12.70 (9.20∼17.80) 25.26 ± 20.46* 0.028

Serum creatinine (mg/dL) 0.83 (0.65∼1.05) 1.66 (0.95∼1.91)* 0.000

Echocardiographic parameters

LAd (mm) 35.85 ± 6.00 37.86 ± 7.59 0.148

LVESd (mm) 36.00 (32.00∼40.00) 40.29 ± 6.81* 0.002

LVEDd (mm) 49.0 (46.00∼53.00) 49.36 ± 5.31 0.961

LVEF 0.51 (0.40∼0.61) 0.34 ± 0.08* 0.000

Pericardial effusion [n (%)] 66 (33.67%) 11 (45.83%) 0.238

Weakening motion of the
ventricular wall [n (%)]

108 (55.10%) 17 (70.83%) 0.142

Valve regurgitation [n (%)] 72 (36.73%) 14 (58.33%) 0.105

ACEF score 0.74 (0.49∼1.15) 2.14 ± 0.94* 0.000

Values are given as mean ± standard deviation, median and interquartile range or
number and percentages. *P < 0.05 (survivor group vs. non-survivor group).
CK-MB, MB isoenzyme of creatine kinase; LAd, left atrium diameter; LVESd, left
ventricular end-systolic diameter; LVEDd, left ventricular end-diastolic diameter;
LVEF, left ventricular ejection fraction; ACEF score, the age, creatinine, and ejection
fraction score.

who survived. Importantly, ACEF scores were higher in patients
in the non-survivor group than in the survivor group (Table 1).

Clinical Outcomes and Predictors of
In-Hospital Death
Six risk factors (heart rate, WBC count, CK-MB, total bilirubin,
LVESd, and ACEF) were ranked for predicting in-hospital
death. Multivariate logistic regression demonstrated that the
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ACEF score [odds ratio (OR): 4.499; 95% confidence interval
(CI): (0.960–1.061); p < 0.000] was confirmed to be a strong
independent predictor of in-hospital death in patients with acute
fulminant myocarditis in contrast to other risk factors (Table 2).
The ACEF score displayed good prognostic information for in-
hospital mortality based on ROC curve analysis, and the area of
ROC was 0.871 (Figure 1).

Evaluation of Clinical Characteristics,
Laboratory Tests, Echocardiographic
Findings on Admission, In-Hospital
Medical Treatments, and Clinical
Complications
A recent study reported on the relationship between ACEF
scores and all-cause mortality in patients with acute coronary
syndrome (Stähli et al., 2018). Based on ROC curve analysis, it
was determined that an ACEF score of 1.43 was the optimum

TABLE 2 | The predictors of in-hospital mortality in patients with acute fulminant
myocarditis by multivariate logistic regression analysis.

Variables Odds ratio (95% CI) P-value

Heart rate (bpm) 1.028 (0.997–1.060) 0.081

White blood cell counts (×10 E12/L) 1.019 (0.930–1.118) 0.685

Primary CK-MB (U/L)a 1.006 (0.998–1.015) 0.159

Primary total bilirubin 1.009 (0.960–1.061) 0.718

Left ventricular end-systolic dimension (mm) 0.982 (0.892–1.080) 0.704

ACEF scoreb 4.499 (0.960–1.061) 0.000*

*P < 0.05.
aCK-MB, MB isoenzyme of creatine kinase.
bACEF score, the age, creatinine, and ejection fraction score.

FIGURE 1 | Receiver operating characteristic (ROC) curve of the ACEF score
in predicting in-hospital death in patients with acute fulminant myocarditis.

cut-off value, since it had the highest Youden index. Therefore,
the patients were reclassified into two groups according to their
ACEF scores. A low ACEF score (≤1.43, n = 170) indicated a low
risk of death, and a high ACEF score (>1.43, n = 50) indicated a
high risk of death.

Gender, frequency of alcohol use, and frequency of smoking
had no significant difference between the low-ACEF group and
the high-ACEF group. The patients in the high-ACEF group
were older, and more of them had a history of hypertension and
diabetes. This indicated that older patients or patients with more
clinical diseases might have a higher risk of death.

The differences between the low and high ACEF groups in
echocardiographic measurements on admission were analyzed.
There was no statistically significant difference between the two
groups with regard to pericardial effusion, weakening ventricular
wall motion, and valve regurgitation. By contrast, patients with
fulminant myocarditis in the high-ACEF group had higher
LAd (39.51 ± 6.65 vs. 35.05 ± 5.68 mm, p < 0.05), LVESd
[41.40± 6.22 vs. 34.00 (31.00∼39.00) mm, p < 0.05), and LVEDd
[50.94 ± 5.30 vs. 48.00 (46.00∼51.00) mm, p < 0.05], but a
notable decrease in LVEF [0.37 ± 0.09 vs. 0.55 (0.42∼0.62),
p < 0.05) than the low-ACEF group (Table 3). These results
demonstrated that patients with high ACEF scores had more
serious cardiac dysfunction than the patients with low ACEF
scores (Table 3).

Next, we evaluated the treatments and clinical complications
in both groups. Patients in the high-ACEF group had higher rates
of prescriptions for diuretics, dopamine, and norepinephrine.
They also had a greater need for inotropic agents, ventilator
supports, IABP, CRRT, and ECMO than those in the low-
ACEF group. This implied that the patients in the high-ACEF
group had more serious conditions. By contrast, no significant
differences were observed between the two groups with
respect to treatment with renin-angiotensin system inhibitors,
beta-receptor blockers, aldosterone antagonists, vitamin C,
immunoglobulins, methylprednisolone, and temporary use of
pacemakers. These results demonstrated that the patients in
the high-ACEF group needed more medical support and
were in worse condition than the patients in the low-ACEF
group (Table 3).

The patients with fulminant myocarditis in the high-ACEF
group were more likely to develop clinical complications [shock,
NYHA III-IV, ventricular tachycardia/ventricular fibrillation
(VT/VF), multiple organ failure, and death] than the patients in
the low-ACEF group. This indicated that patients in the high-
ACEF group were at greater risk of serious adverse cardiac events.
Importantly, the mortality rate of patients with acute fulminant
myocarditis was 38.0% in the high-ACEF group and 2.94% in the
low-ACEF group (Table 3).

Evaluation of Electrocardiographic Data
at 30 Days and the Cumulative Rates of
MACE at 1 Year in Patients With Acute
Fulminant Myocarditis
The echocardiographic measurements 1 month after discharge
in survivors were compared according to their ACEF scores.
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TABLE 3 | Summary of the clinical features according to ACEF score in patients with acute fulminant myocarditis.

ACEF score ≤ 1.43 (n = 170) ACEF score > 1.43 (n = 50) P-value

Clinical characteristics

Gender (male) [n (%)] 107 (62.94%) 31 (62.00%) 0.904

Age (years) 34.64±14.34 59.34±15.64* 0.000

Prior hypertension [n (%)] 16 (9.41%) 22 (44.00%)* 0.000

Prior diabetes mellitus [n (%)] 7 (4.12%) 8 (16.00%)* 0.009

Alcohol [n (%)] 18 (10.59%) 7 (14.00%) 0.473

Smoking [n (%)] 35 (20.59%) 13 (26%) 0.415

Laboratory examination

White blood cell counts (×10 E12/L) 8.12 (5.97∼11.16) 13.62 ± 8.19* 0.000

Hemoglobin (g/L) 132.08 ± 21.66 132.20 ± 20.99 0.973

CK-MB (U/L) 24.92 (8.69∼56.69) 75.64 ± 59.00* 0.001

Total bilirubin (µmol/L) 13.77 ± 7.27 15.80 (10.70∼28.70)* 0.001

Serum creatinine (mg/dL) 0.82 ± 0.24 1.75 (1.29∼2.30)* 0.000

Echocardiographic data on admission n = 170 n = 50

LAd (mm) 35.05 ± 5.68 39.51 ± 6.65* 0.000

LVESd (mm) 34.00 (31.00∼39.00) 41.40 ± 6.22* 0.000

LVEDd (mm) 48.00 (46.00∼51.00) 50.94 ± 5.30* 0.005

LVEF 0.55 (0.42∼0.62) 0.37 ± 0.09* 0.000

Pericardial effusion [n (%)] 52 (30.59%) 14 (28.00%) 0.726

Weakening motion of ventricular wall [n (%)] 76 (44.71%) 22 (44.00%) 0.930

Valve regurgitation [n (%)] 50 (29.41%) 22 (44.00%) 0.053

Medical treatments (n = 170) (n = 50)

Renin-angiotensin system inhibitor [n (%)] 81 (47.65%) 22 (44.00%) 0.650

Beta receptor blocker [n (%)] 89 (52.35%) 19 (38.00%) 0.074

Aldosterone antagonist [n (%)] 59 (34.71%) 18 (36.00%) 0.866

Vitamin C [n (%)] 153 (90.00%) 44 (88.00%) 0.000

Immunoglobulin [n (%)] 101 (59.41%) 34 (68.00%) 0.273

Methylprednisolone [n (%)] 123 (72.35%) 38 (76.00%) 0.609

Diuretics [n (%)] 60 (35.29%) 38 (76.00%)* 0.000

Dopamine [n (%)] 30 (17.65%) 25 (50.00%)* 0.000

Norepinephrine [n (%)] 19 (11.18%) 23 (46.00%)* 0.000

Inotropic agent [n (%)] 8 (4.71%) 21 (42.00%)* 0.000

Temporary pacemaker [n (%)] 32 (18.82%) 8 (16.00%) 0.649

Ventilator support [n (%)] 19 (11.18%) 26 (52.00%)* 0.000

Intra-aortic balloon pump [n (%)] 14 (8.24%) 20 (40.00%)* 0.000

CRRT [n (%)] 2 (1.18%) 17 (34.00%)* 0.000

ECMO [n (%)] 1 (1.43%) 4 (8.00%)* 0.002

Clinical complication

Shock [n (%)] 35 (20.59%) 34 (68.00%)* 0.000

NYHA

Grade I-II [n (%)] 112 (65.88%) 17 (34.00%)* 0.000

Grade III-IV [n (%)] 58 (34.12%) 33 (66.00%)* 0.000

VT/VF [n (%)] 14 (8.24%) 19 (38.00%)* 0.000

Multiple organ failure [n (%)] 47 (27.65%) 38 (76.00%)* 0.000

Death [n (%)] 5 (2.94%) 19 (38.00%)* 0.000

Values are presented as mean ± standard deviation, median and interquartile range or number and percentages. *P < 0.05 (ACEF score > 1.43 vs. ACEF score ≤ 1.43).
ACEF, the age, creatinine, and left ventricular ejection fraction; CK-MB, MB isoenzyme of creatine kinase; Lad, left atrium diameter; LVESd, left ventricular end-systolic
diameter; LVEDd, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; CRRT, continuous renal replacement therapy; ECMO, extracorporeal
membrane oxygenation; VT/VF, ventricular tachycardia/ventricular fibrillation.

Patients in the high-ACEF group had markedly higher LAd
[39.70 ± 6.34 vs. 35.24 ± 5.10 mm, p < 0.05], LVESd
[36.30 ± 6.45 vs. 32.00 (30.00∼35.00) mm, p < 0.05)], and
LVEDd [51.53 ± 5.24 vs. 49.00 (45.00∼52.00) mm, p < 0.05)],

but remarkably lower LVEF [0.55 ± 0.98 vs. 0.62 (0.58∼0.68),
p < 0.05]. These data also indicated greater prevalence of
weakening motion of the ventricular wall and valve regurgitation
in the high-ACEF group. These results showed that high ACEF
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TABLE 4 | Echocardiographic data at 30 day in patients with acute fulminant
myocarditis.

Echocardiographic data ACEF score ≤

1.43 (n = 165)
ACEF score >
1.43 (n = 31)

P-value

LAd (mm) 35.24 ± 5.10 39.70 ± 6.34 0.088

LVESd (mm) 32.00
(30.00∼35.00)

36.30 ± 6.45* 0.001

LVEDd (mm) 49.00
(45.00∼52.00)

51.53 ± 5.24* 0.01

LVEF 0.62 (0.58∼0.68) 0.55 ± 0.98* 0.001

Pericardial effusion [n (%)] 33 (20.00%) 6 (19.35%) 0.934

Weakening motion of the
ventricular wall [n (%)]

44 (26.67%) 22 (70.97%)* 0.000

Valve regurgitation [n (%)] 42 (25.45%) 19 (61.29%)* 0.000

Values are presented as mean± standard deviation, median and interquartile range
or number and percentages. *P < 0.05 (ACEF score > 1.43 vs. ACEF score ≤
1.43).
ACEF, the age, creatinine, and left ventricular ejection fraction; LAd, left atrium
diameter; LVESd, left ventricular end-systolic diameter; LVEDd, left ventricular
end-diastolic diameter; LVEF, left ventricular ejection fraction.

scores were closely correlated with myocardial recovery at 1
month in patients with acute fulminant myocarditis (Table 4).

Those patients were followed up for 1 year. Among them, 160
patients in the low-ACEF group (ACEF ≤ 1.43) and 49 patients
in the high-ACEF group (ACEF > 1.43) were included while 11
patients were lost in the follow-up period. The rates of MACE, all-
cause death, and cardiac failure attack at 1 year were remarkably
higher in the high-ACEF group compared to those patients with
low ACEF scores (Figure 2). These data clearly demonstrated
the value of the ACEF score for predicting 1 month and 1 year
outcomes in patients with acute fulminant myocarditis.

DISCUSSION

This study successfully analyzed the differences in clinical
presentation of patients with acute fulminant myocarditis, and
it established one simple and precise ACEF score assessment
tool. It found that patients with high ACEF scores had more
severe disease conditions, required more medical treatments, and
possibly had higher clinical complications and mortality rates

than the patients with low ACEF scores. In addition, ACEF
scores demonstrated a strong ability to predict recovery of cardiac
function in 30 day survivors and the risk of MACE, all-cause
death and cardiac failure attack in patients with acute fulminant
myocarditis. Thus, the ACEF score was shown to be a valuable
predictor for patients undergoing acute fulminant myocarditis
in terms of assessing their risk of in-hospital mortality and
long-term prognosis.

A total of 220 patients with acute fulminant myocarditis
were included in the present study. The patients with acute
fulminant myocarditis in the non-survivor group presented with
a broad spectrum of symptoms and severe cardiac dysfunction,
and they needed more medical treatments and circulatory
support or heart transplantation. Our critical findings were
in accordance with previous results (Ammirati et al., 2018;
Veronese et al., 2018). Early risk stratification contributed to
patients with acute fulminant myocarditis due to high short-
term and long-term mortality. In previous studies, many risk
factors were found to be related to poor prognosis for developing
fulminant myocarditis in patients, especially echocardiographic
data and kidney injury (Yang et al., 2012; Xu et al., 2018),
and prolonged PR interval and widened QRS complex (Sun
et al., 2017). The echocardiographic features of myocarditis in
the non-survivor group were often non-specific, but evaluating
heart function with echocardiographic data was helpful in
determining prognosis. In the current study, the patients in the
non-survivor group were older, had higher serum creatinine, and
had lower LVEF than the patients in the survivor group. Thus, the
predictive ability of a single factor was proven to be insufficient.
Among many parameters (heart rate, WBC count, CK-MB, total
bilirubin, LVESd, and ACEF), the ACEF score at admission, by
incorporating three easily obtainable variables (age, creatinine,
and LVEF), was independently associated with an unfavorable
prognosis, and it was a predictor of in-hospital mortality in
patients with acute fulminant myocarditis.

Early estimation of prognosis in patients with acute fulminant
myocarditis is difficult due to limited clinical studies on long-
term outcomes (Sharma et al., 2019). This new ACEF score was
simpler to establish and more accurate for developing a prognosis
for acute fulminant myocarditis. A high ACEF score probably
reflected the more serious conditions and worse prognosis of

FIGURE 2 | Kaplan-Meier curve for cumulative rates of MACE (A), all-cause rate (B), and heart failure attack (C) according to different levels of the ACEF score in
patients with cute fulminant myocarditis.
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patients with acute fulminant myocarditis. Thus, patients with
high ACEF scores may benefit from early invasive management
and more aggressive use of hemodynamic support devices.
The ACEF score previously was recommended for evaluating
mortality risk in cardiac surgery, and it was considered to be an
independent predictor for in-hospital and long-term mortality
in patients with infective endocarditis (Ranucci et al., 2009;
Wei et al., 2019). Moreover, the ACEF score had been used
to stratify the risk of 1 year clinical outcome and prognostic
impact in 30 day survivors of acute myocardial infarction
after percutaneous coronary intervention (Lee et al., 2015;
Stähli et al., 2018; Gao et al., 2020). The current study was
accomplished by evaluating the predictive ability of the ACEF
scores. A higher ACEF score markedly indicated worse clinical
course in hospital, a poor recovery of cardiac function at 30 days,
and higher rates of MACE and death in patients who suffered
from acute fulminant myocarditis. Clinical sepsis produced
substantial cardiomyocytes injury which was closely correlated
to a reduced peak of intracellular Ca2+ sequestration, but no
changes in resting intra-cellular Ca2+ and Ca2+-transient decay.
It is possible that fulminant myocarditis leading to low cardiac
output syndrome, shock and life-threatening arrhythmia, might
be attributed to alterations in Ca2+ transient properties and
the mechanical properties (Ren et al., 2002). Consistently, this
study determined that it was acceptable to use the ACEF score
to predict short-term and long-term outcomes in patients after
acute fulminant myocarditis.

LIMITATIONS

Some limitations inherent to the study design should be
acknowledged. First, the number of patients referred for acute
fulminant myocarditis was rather small. Second, the proposed
ACEF score risk categories must be tested in an external
validation cohort. Third, although a comprehensive group of
variables was used in the multivariate models, not all risk scores
developed for the multivariate models were included.

CONCLUSION

In this study, the ACEF score, which incorporates three
objectively measurable risk factors (age, creatinine level, and
LVEF), is an extremely simple, practical, easy-to-calculate,
and user-friendly tool for determining the prognosis in the
acute fulminant myocarditis patient population. Furthermore,

in contrast to other risk scores, the ACEF score allows for
the identification of risk stratification, adverse events, and
prognosis, which may further influence management decisions
in acute fulminant myocarditis. These findings strengthened the
role of the ACEF score and demonstrated that it had better
predictive ability and could independently predict clinical adverse
events, in-hospital mortality, cardiac function after 1 month of
recovery, and 1 year prognosis in patients presenting with acute
fulminant myocarditis. The ACEF score provided a novel and
effective indicator to stratify the risk for patients with acute
fulminant myocarditis.
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Small mammals exhibit limited glucose use and glycogen accumulation during
hypothermia. Huddling is a highly evolved cooperative behavioral strategy in social
mammals, allowing adaptation to environmental cooling. However, it is not clear whether
this behavior affects the utilization of glycogen in cold environments. Here, we studied
the effects of huddling on myocardial glycogen content in Brandt’s voles (Lasiopodomys
brandtii) under a mild cold environment (15◦C). Results showed that (1) Compared to
the control (22◦C) group (CON), the number of glycogenosomes more than tripled in
the cool separated group (CS) in both males and females; whereas the number of
glycogenosomes increased in females but was maintained in males in the cool huddling
group (CH). (2) Glycogen synthase (GS) activity in the CS group remained unchanged,
whereas glycogen phosphorylase (GYPL) activity decreased, which mediated the
accumulation of glycogen content of the CS group. (3) Both GS and GYPL activity
increased which may contribute to the stability of glycogen content in CH group. (4)
The expression levels of glucose transporters GLUT1 and GLUT4 increased in the CS
group, accompanied by an increase in glucose metabolism. These results indicate that
the reduced glycogen degradation enzyme level and enhanced glucose transport may
lead to an increase in myocardial glycogen content of the separated voles under cool
environment; while the up-regulation of glycogen synthesis and degradation enzyme
level maintained myocardial glycogen content in the huddling vole.

Keywords: huddling, low temperature, heart, glycogenosomes, glycogen synthetase, glycogen phosphorylase

INTRODUCTION

Low temperature is a stress stimulus for mammals, especially for small mammals as their energy
requirements are high due to the large surface area to volume ratio. Moreover, when environmental
stressors persist for prolonged periods, small animal tissues and organs are more vulnerable to the
impact of external environmental temperature (Gilbert et al., 2010; Wei et al., 2018). Hypothermia
can lead to a slowed heart rate, decreased blood flow output, and decreased myocardial contraction
and relaxation function (Polderman, 2009; Kelly and Nolan, 2010; Tessier and Storey, 2012;
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Chavez et al., 2017). As above, the cardiac muscle of small
mammals is more susceptible to low external temperatures.
Our previous study showed that, in comparison to warm
environmental conditions, Brandt’s voles (Lasiopodomys
brandtii) under cool (15◦C) conditions exhibit myocardial
mitochondrial swelling and crista disruption, as well as decreased
adenosine triphosphate (ATP) synthase activity (Wang et al.,
2020b). Glucose is the energy supply of mitochondria, and
thus changes in mitochondrial function may involve changes in
glycogen content in tissues (Hall and Mackay, 1933; Tarnopolsky,
2016; Xu et al., 2020). Altered carbohydrate metabolism during
hypothermia in mammals is accompanied by abnormalities
in glucose metabolism (Baum et al., 1968; Curry and Curry,
1970; Helman et al., 1984). For example, in rats (Popovic,
1960; Fuhrman and Fuhrman, 1963) and rabbits (Bickford
and Mottram, 1960), metabolism of both endogenously and
exogenously administered glucose is substantially reduced
during hypothermia. Furthermore, exposure to only 4 h of
cold temperature (15◦C) can lead to an increase in myocardial
glycogen content in rats (Steffen, 1988), suggesting that the
effects of hypothermia on cardiac muscle may involve the
balance between glycogen synthesis and degradation.

Glycogen is a branched polymer of glucose and stores energy
in times of nutritional sufficiency for utilization in times of need.
Glycogen synthase (GS), a key enzyme for synthesis, polymerizes
UDP-glucose to form glycogen granules, with phosphorylated
GS (P-GS) being its active state (Palm et al., 2013; Zeqiraj
and Sicheri, 2015; Wang et al., 2019). Glycogen phosphorylase
(GYPL) is a rate-limiting enzyme that breaks down glycogen
granules to glucose (Agius, 2010; Mavrokefalos et al., 2015). The
direct pathway of glycogen synthesis requires the transport of
glucose into cells by one or several glucose transporters (GLUTs)
(Thorens and Mueckler, 2010). GLUT1 is widely distributed
and provides basal glucose transport; GLUT4 is up-regulated
by insulin and is important in insulin-sensitive tissues, such as
skeletal muscle and adipose tissue; and GLUT2 is prominent

in the liver and β-cells of the pancreas and admits glucose
based on a positive glucose gradient between blood and tissue
(Roach et al., 2012). Research on hibernating Daurian ground
squirrels (Spermophilus dauricus) has shown that the increase in
glycogen content in skeletal muscle in winter is mainly due to the
maintenance of P-GS and decrease in GYPL protein expression
(Wang et al., 2019). Thus, studies on the above factors could help
reveal the mechanism related to changes in myocardial glycogen
content under cool environments.

Huddling is a social thermoregulatory behavior, defined as
the active aggregation of nestled animals. It is a cooperative
group behavior, permitting individuals involved in social
thermoregulation to minimize heat loss and thereby lower energy
expenditure, possibly allowing reallocation of saved energy to
other functions (Gilbert et al., 2010; Douglas et al., 2017).
It is commonly exhibited in small mammals and birds to
reduce heat and energy loss under cold environments (Jefimow
et al., 2011; Wojciechowski et al., 2011; Sukhchuluun et al.,
2018; Zhang et al., 2018). Research has shown that many
mammals, such as degu (Octodon degus), Damaraland mole-
rat (Cryptomys damarensis), and Natal mole-rat (C. hottentotus
natalensis), huddle when the ambient temperature is lower than
15–20◦C, with an energy saving of up to 30% (Kotze et al.,
2008; Nunez-Villegas et al., 2014). Research on Eastern pygmy
possums (Cercartetus nanus) has shown that huddling in mild
low temperatures (14◦C) can reduce energy consumption by up
to 50% (Namekata and Geiser, 2009). The benefits of huddling
in energy conservation (Scantlebury et al., 2006; Kotze et al.,
2008), local environmental heating (Nowack and Geiser, 2016),
and survival (Sealander, 1952) have also been studied in several
species. Overall, huddling individuals exhibit increased survival,
lower food intake, decreased body mass loss, increased growth
rate, more constant body temperature, and reduced metabolic
rate (Gilbert et al., 2010). To date, previous studies have primarily
focused on morphological and physiological changes in animal
bodies under various temperatures. However, no studies have

FIGURE 1 | Ultrastructural distribution of myocardial glycogenosomes in Brandt’s voles. Arrow indicates glycogenosome. Muscle filaments (see asterisk) was well
arranged. Scale bar = 0.5 µm.
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reported on changes in myocardial glycogen in mammals under
different temperatures.

Brandt’s voles are small non-hibernating herbivorous rodents
widely distributed among the Inner Mongolian grasslands of
Northern China, dry steppe zone of Mongolia, and southeast
Baikal region of Russia. They are highly socialized animals
that huddle in winter as an adaptation to their harsh habitats
(Zhang et al., 2018), which differs substantially from model
animals. Research has shown that mild cooling can significantly
change the morphology of mitochondria in the cardiac muscle of
Brandt’s voles (Xu et al., 2019; Wang et al., 2020a). Furthermore,
their metabolic rate and thermogenic capacity decrease but
activity increases compared with separated individuals under low
temperatures, suggesting that huddling is a good strategy for
small mammals to cope with cold environments (Sukhchuluun
et al., 2018). Glycogen is one of the most important energy
supply substances in muscles. However, the role of myocardial
glycogen in adaptive huddling has not yet been reported.
Therefore, we hypothesized that a cool environment could

cause an increase in myocardial glycogen content in Brandt’s
voles. We also hypothesized that huddling could effectively
alleviate this change. To test these hypotheses, we observed
the ultrastructure of cardiac muscle in huddling and individual
(separated) Brandt’s voles under mild temperature differences
(normal: 22◦C; cool: 15◦C) in autumn. We also determined the
protein expression levels of glucose transport glycogen synthesis,
and glycogen degradation-related signals. We further explored
the underlying molecular mechanism related to the effects of a
mild cold environment and huddling on changes in myocardial
glycogen content.

MATERIALS AND METHODS

Ethics Statement
All procedures followed the Laboratory Animal Guidelines for
the Ethical Review of Animal Welfare (GB/T 35892-2018) and

FIGURE 2 | Changes in number of myocardial glycogenosomes in Brandt’s voles. (A) Myocardial glycogenosomes in three treatment groups. Arrow indicates
glycogenosome. Scale bar = 1 µm. (B) Bar graph depicting changes in number of glycogenosomes. Values are mean ± SD. Six figures were analyzed in each
sample; eight samples were analyzed in each group. CON, control group; CH, cool huddling group; CS, cool separated group. Different letters identify statistically
significant differences among temperature treatment groups (P < 0.05). *P < 0.05 significant differences between males and females.

Frontiers in Physiology | www.frontiersin.org 3 March 2021 | Volume 12 | Article 59312937

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-593129 March 20, 2021 Time: 18:14 # 4

Xu et al. Huddling Maintained Myocardial Glycogen

were approved by the Animal Care and Use Committee of Qufu
Normal University (Permit Number: dwsc 2019012).

Animals and Groups
Forty-eight adult voles were captured and housed as described
previously (Wang et al., 2020b). The voles were acclimated to
laboratory conditions for 2 weeks. They were housed four animals
per cage (28 × 18 × 12 cm) at an ambient temperature of
22 ± 2◦C, relative humidity of 55 ± 5%, and light/dark regime
of 12 h:12 h (light on from 06:00 to 18:00). Food (standard
rabbit chow, Pengyue Experimental Animal Breeding Co., Ltd.,
China) and water was provided ad libitum and wood shavings
were used as bedding. Based on body weight, a total of 24

FIGURE 3 | Changes in content of myocardial glycogenosomes in Brandt’s
voles. Glycogen levels were normalized by cell protein concentration
measured using the BCA assay. Different letters identify statistically significant
differences among temperature treatment groups (P < 0.05). CON, control
group; CH, cool huddling group; CS, cool separated group.

males (28–50 g, average 38 g) and 24 female (27–54 g, average
33 g) adult voles were randomly divided into three groups,
respectively. Control group (CON): Voles were continuously
housed under an ambient temperature of 22 ± 2◦C, with four
animals in each cage (two males and two females), similar to their
normal state in autumn. Cool huddling group (CH): Voles were
housed together in a cage (two males and two females) under
an ambient temperature of 15◦C. The group size (four voles in
each cage) ensured most animals remained inactive in a huddle
(Sukhchuluun et al., 2018). Cool separated group (CS): Voles
were housed individually in cages at an ambient temperature
of 15◦C. The three treatment groups were maintained under
the same relative humidity (55 ± 5%) and light regime (12 h:
12 h light /dark, light on from 06:00 to 18:00). Animal treatment
started in late September and lasted 8 weeks (Wang et al., 2020b).

Sample Preparation
All animals were sacrificed by CO2 asphyxiation between 08:00
and 11:00 a.m. on the last day of the experiment (Sukhchuluun
et al., 2018; Wang et al., 2020b). After the rapid removal of
cardiac muscle, portions of the ventricles were immediately
excised and fixed in glutaraldehyde. Specimens were fixed in 1%
osmium tetroxide in the same buffer, dehydrated with a graded
series of ethanol, and embedded in epoxy resin. The remaining
cardiac muscle was frozen in liquid nitrogen and stored at
−80◦C. All procedures were carried out in accordance with the
approved guidelines.

Transmission Electron Microscopy (TEM)
The cardiac muscle samples were cut into blocks and immersed
in 3% glutaraldehyde-paraformaldehyde. The blocks were then
dehydrated in a graded series of ethanol and embedded in epoxy
resin, with TEM then performed as described previously (Wang
et al., 2020a). Semi-thin sections of the tissue samples were
stained with methylene blue (Biazik et al., 2015), then adjusted

FIGURE 4 | Glycogen synthase (GS) and glycogen phosphorylase (GYPL) activity in cardiac muscle of voles. (A) GS activity. (B) GYPL activity. Values are
mean ± SD. n = 8. CON, control group; CH, cool huddling group; CS, cool separated group. Different letters indicate significant differences among temperature
treatment groups (P < 0.05).
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FIGURE 5 | Changes in protein expression levels of glycogen synthesis-related factors in cardiac muscle of Brandt’s voles. (A) Representative immunoblots of GS
and P-GS in cardiac muscle. (B) Representative polyacrylamide gel of total protein. (C) Relative protein expression of GS. (D) Relative protein expression of P-GS.
(E) Ratio of P-GS to GS. Values are mean ± SD. n = 8. CON, control group; CH, cool huddling group; CS, cool separated group. Different letters identify statistically
significant differences among temperature treatment groups (P < 0.05). ∗P < 0.05 significant differences between males and females.

under the microscope and sliced with an ultramicrotome (LKB-
NOVA, United States). The ultrathin sections were double
stained with Reynolds’ lead citrate and ethanolic uranyl acetate
(Reynolds, 1963) and then examined via TEM (Hitachi, HT7800,
Japan). Images were processed with NIH Image-Pro Plus 6.0.
Images were analyzed using the measurement tools provided by
the software. Glycogenosome densities were determined within
a defined region (4 µm2 area) at a minimum of three locations
within an image taken at 25,000 × magnification.

GS and GYPL Activity
Samples stored at −80◦C were used to detect GS and GYPL
activity. GS activity was determined by measuring the rate of
NADH decline at 450 nm using a Glycogen Synthase Assay Kit
(20E10Y14, Shanghai Hengyuan Biological Technology Co., Ltd.,
China) according to the manufacturer’s instructions (Ouyang
et al., 2018). GYPL activity was determined by measuring the rate
of NADPH increase at 450 nm with a Glycogen Phosphorylase
Activity Assay Kit (20H10L15, Shanghai Hengyuan Biological
Technology Co., Ltd., China) according to the manufacturer’s
instructions (Song et al., 2018).

Glycogen Quantification
Samples stored at −80◦C were used to detect glycogen content.
The amount of glycogen in the myocardia from the three groups
was determined with a Glycogen Assay Kit (BC0340, Solarbio,
Beijing, China). Glycogen levels were normalized by cell protein
concentration measured using the BCA assay (Zhao et al., 2017).

Western Blotting
Total protein was extracted from the tissues and solubilized in
sample buffer (100 mM Tris, pH 6.8, 5% 2-β-mercaptoethanol,
5% glycerol, 4% SDS, and bromophenol blue), with the extracts
of cardiac protein then resolved via SDS-PAGE [10% Laemmli
gel with an acrylamide/bisacrylamide ratio of 29:1 and 98% 2,2,2-
trichloroethanol (Aladdin, JI522028, China)]. To study protein
expression in different tissues, we used total protein content as a
reference. After electrophoresis, the gel was irradiated on the UV
platform of the electrophoresis gel imaging analysis system (Bio-
Rad, California, United States) for 5 min, with the signal then
collected. As described previously (Li and Shen, 2013; Posch et al.,
2013), the original image captured with no gain was stored. The
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fluorescence intensity of each lane (after removal of background
fluorescence intensity) was determined with Image-Pro Plus 6.0,
which contains an internal reference to correct the fluorescence
intensity of the target protein. The proteins were then electrically
transferred to polyvinylidene fluoride (PVDF) membranes (0.45
µm pore size) using a Bio-Rad wet transfer apparatus. The blotted
membranes were blocked with 5% skimmed milk powder in Tris-
buffered saline (TBS; 150 mM NaCl, 50 mM Tris-HCl, pH 7.5)
and incubated with rabbit anti-glycogen phosphorylase (1:1,000,
#ab198268, Abcam, Cambridge, United Kingdom), rabbit anti-
glycogen synthase (1:1,000, #3886, Cell Signaling Technology
CST, Danvers, MA, United States), rabbit anti-phospho glycogen
synthase (1:1,000, #3891, CST), rabbit anti-glucose transporter
type 1 (1:500, #21829, Proteintech, China), rabbit anti-glucose
transporter type 2 (1:500, #20436, Proteintech, China), and
rabbit anti-glucose transporter type 4 (1:500, #21048, Proteintech,
China) in TBS containing 0.1% BSA at 4◦C overnight. The
membranes were then incubated with IRDye 800 CW goat anti-
rabbit secondary antibodies (1:5,000, #31460, Thermo Fisher
Scientific, Rockford, IL, United States) for 90 min at room
temperature and visualized with an Odyssey scanner (Bio-Rad,
CA, United States). Quantification of blots was performed using
NIH Image-Pro Plus 6.0.

Statistical Analyses
The normality of data and homogeneity of variance were tested
by Shapiro-Wilk and Levene tests, respectively. All data exhibited
normal distribution and homogeneous variance. Double-factor
variance analysis [two-way analysis of variance (ANOVA)]
was used to compare differences between treatment and sex.
Results were significant at P < 0.05. Data are expressed as
mean ± standard deviation (Mean ± SD). All statistical analyses
were conducted using SPSS 19.0.

RESULTS

Ultrastructural Changes in Number of
Glycogenosomes
Glycogenosome clusters were observed, with each
glycogenosome showing a diameter of ∼30 nm. Most
glycogenosomes were distributed between the muscle
filaments, with a small number distributed around the
mitochondria (Figure 1).

Figure 2A shows the distribution of glycogenosomes at low
magnification. In the CS group, the number of glycogenosomes
was more than triple that in the CON and CH groups (P < 0.05).
In addition, the number was significantly higher (P < 0.05) in
females than in males (Figure 2B).

Glycogen Quantification
Glycogen quantification showed significant accumulation in
the CS group (P < 0.05), but no significant differences were
observed between the CON and CH groups in either males or
females (Figure 3).

FIGURE 6 | Changes in protein expression levels of glycogen
degradation-related factors in cardiac muscle of Brandt’s voles.
(A) Representative immunoblots of GYPL in cardiac muscle.
(B) Representative polyacrylamide gel of total protein. (C) Relative protein
expression of GYPL. Values are mean ± SD. n = 8. CON, control group; CH,
cool huddling group; CS, cool separated group. Different letters identify
statistically significant differences among temperature treatment groups
(P < 0.05).

Changes in GS and GYPL
Results showed that GS activity in the CH group was
significantly higher than that in the CON and CS groups
(P < 0.05), but there were no significant differences
between the CON and CS group in females. Furthermore,
among the three groups, GYPL activity was highest in
the CH group (P < 0.05) and lowest in the CS group
(P < 0.05) (Figure 4).

Changes in Protein Expression of
Glycogen Synthesis-Related Proteins
The GS and P-GS concentrations were detected by western blot
analysis, as shown in Figure 5. Representative polyacrylamide
gels of total protein are shown in Figure 5B.

The relative protein expression levels of GS and P-GS showed
different trends among the three treatment groups. Specifically,
the protein expression levels of GS in the CS group were
lower than the levels in the CH and CON groups, whereas
protein expression levels of P-GS in the CH and CS groups
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FIGURE 7 | Changes in protein expression levels of glucose transporter proteins in cardiac muscle of Brandt’s voles. (A) Representative immunoblots of GLUT1,
GLUT2, and GLUT4 in cardiac muscle. (B) Representative polyacrylamide gel of total protein. (C) Relative protein expression of GLUT1. (D) Relative protein
expression of GLUT2. (E) Relative protein expression of GLUT4. Values are mean ± SD. n = 8. CON, control group; CH, cool huddling group; CS, cool separated
group. Different letters identify statistically significant differences among temperature treatment groups (P < 0.05).

were higher than levels in the CON group (P < 0.05). Levels
of P-GS was higher (P < 0.05) in females than in males
(Figures 5C,D).

The P-GS to GS ratio is one of the most direct indicators
of glycogen synthesis. Here, the ratio trend among the three
treatment groups was CON < CH < CS (P < 0.05).
The ratio was also higher (P < 0.05) in females than in
males (Figure 5E).

Changes in Protein Expression of
Glycogen Decomposition-Related
Proteins
The content of GYPL was detected by western blot analysis, as
shown in Figure 6. Representative polyacrylamide gels of total
protein are shown in Figure 6B.

The relative protein expression of GYPL showed a slight
change among the three treatment groups. Specifically, levels
were higher in CS group females than in CON group
females (Figure 6C).

Changes in Protein Expression of
Glucose Transporter Proteins
The contents of GLUT1, GLUT2, and GLUT4 were detected
by western blot analysis, as shown in Figure 7. Representative
polyacrylamide gels of total protein are shown in Figure 7B.

The relative protein expression of GLUT1 increased in the
CS group compared with the other groups in both males
and females (P < 0.05). The relative protein expression of
GLUT2 showed the same trend, i.e., CON > CH > CS,
but there was a significant difference between males and
females. The relative protein expression of GLUT4 in males
was markedly higher in the CS group than in the CON group
(P < 0.05), but there were no differences in females among the
three groups.

DISCUSSION

We studied the effects of a cool environment on the number
of cardiac glycogenosomes and glycogen content in huddling
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Brandt’s voles, as well as the underlying mechanism related
to the regulation of glycogenosome number. One of the
most important findings of this study is the ultrastructural
observation of a significant increase in the number of cardiac
glycogenosomes in the CS group, as verified by the glycogen
content results.

Changes in myocardial glycogen in mammals during
long-term cool exposure have not been reported previously,
although our results are consistent with those of myocardium
under short-term hypothermia and skeletal muscle under
long-term hypothermia, as the major types of muscle
fibers in ventricles are similar to those in soleus muscle
(Schaub et al., 1989). Research on rats has shown that
glycogen content in the myocardium is significantly
increased after only 4 h of exposure to 15◦C (Steffen,
1988). Furthermore, Daurian ground squirrels experience
an increase in glycogen concentration in the soleus muscle
after 2 months of low temperature exposure in winter
(Wang et al., 2019). Excessive glycogen accumulation in
the heart can lead to degenerative changes such as arrhythmia,
cardiac hypertrophy, and hypotonia (Kanungo et al., 2018).
In this study, glycogen content in the myocardium of
the CS group was significantly higher than that of the
CON group. This indicates that hypothermia may cause
significant degenerative damage to the myocardium of
small mammals and may involve disrupting the balance
between glycogen synthesis and decomposition. In addition,
our previous study indicated that ATP synthase activity in
the myocardial mitochondria of Brandt’s voles under cool
conditions is significantly lower than that observed under
warm environments, which may lead to a decrease in glucose
utilization in the mitochondria (Wang et al., 2020b). Thus,
this may be one of the reasons for glycogen accumulation
in the CS group.

Here, compared with the CON group, GS activity in
the myocardium increased in the CS group males but
remained stable in the CS group females, indicating
that the level of glycogen synthesis did not decrease. In
addition, in the CS group, GYPL activity decreased in the
myocardium of both males and females, indicating that
glycogen decomposition was weakened. Therefore, the
maintenance of glycogen synthesis enzyme and reduction
of glycogen degradation enzyme in the CS group may
be one of the main reasons for the increase in glycogen
content/glycogen particle accumulation in the myocardium.
One thing to note is that the expression of GS protein
was significantly decreased in the CS group, but its
phosphorylation rate, the active state of GS (Greenberg
et al., 2006) was significantly increased, which may be
a major mechanism related to the unchanged enzyme
activity level of GS.

Surprisingly, compared with the CON group, the content
of glycogen in the myocardium of the CH group remained
unchanged, with the synchronous increase in glycogen
synthesis and degradation enzyme likely responsible for the
maintenance of glycogen stability. This suggests that the

effect of low temperature on glycogen synthesis enzyme
can be significantly alleviated by huddling behavior. Here,
huddling behavior completely or partially alleviated the
increase in glycogen content caused by the decrease in
glycogen degradation enzyme in the myocardium of voles
following cold environment exposure by increasing glycogen
decomposition. Normal glycogen metabolism is the basis
of exercise in mammals (Consitt et al., 2019; Moniz et al.,
2020). Earlier studies on Brandt’s voles showed that activity
is higher in huddling groups than separated groups under
cool environments (Sukhchuluun et al., 2018). Thus, we
speculated that the similar level of glycogen metabolism
in the myocardium of the CH group and CON group
compared to that in the CS group may be the one of the
underlying reasons.

Glycogen synthesis and decomposition also depend
on changes in glucose metabolism (Chen and Phelix,
2019). In this study, the protein expression levels of
glucose transporters GLUT1 and GLUT4 in the CS group
males were significantly higher than in the CON group
males, which may contribute to intracellular glucose
accumulation and glycogen content increase. In female
voles, the protein expression of GLUT1 was significantly
higher in the CS group than in the CH group, which
may be one of the reasons why glycogen content in
the myocardium of the CS group was higher than that
of the CH group.

In summary, we explored the regulatory mechanism related
to the balance between glycogen synthesis and degradation
on the number in myocardial glycogenosomes of huddling
and separated Brandt’s voles under cool environments.
Results showed that a cool environment led to an increase
in myocardial glycogen content in voles, which could
be alleviated by huddling behavior, and may be a good
consequence of the collective overwintering behavior of
socialized animals. The activity of glycogen phosphorylase
decreased, and the protein expression of GLUT1 and GLUT2
increased in CS group, indicating that the glycogen degradation
enzyme decreased and glucose transport increased in the
CS group. The activities of glycogen synthase and glycogen
phosphorylase increased in the CH group, suggesting that
the synthesis and decomposition of glycogen were increased
in the CH group. These results indicate that the reduced
glycogen degradation enzyme level and enhanced glucose
transport may lead to an increase in myocardial glycogen
content in the separated voles under cool environment; while
the up-regulation of glycogen synthesis and degradation
enzyme level maintained myocardial glycogen content in
the huddling voles.
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Vulnerable Plaque Is More Prevalent
in Male Individuals at High Risk of
Stroke: A Propensity Score-Matched
Study
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Chun Wang1*

1 Department of Neurology, People’s Hospital of Deyang City, Deyang, China, 2 Department of Neurology, West China
Hospital, Sichuan University, Chengdu, China

Objectives: To assess the gender differences in the prevalence of carotid vulnerable
plaques in high-risk individuals for stroke in a multicenter, cross-sectional study.

Methods: In the year 2015, 18595 residents who were at the age of 40 or older
participated in a face-to-face study in eight communities in southwestern China. Totally
2,644 participants at high risk of stroke were enrolled. Before and after propensity
score matching (PSM), the prevalence of carotid plaques and vulnerable plaques were
compared between men and women. Multivariate analyses were applied to explore the
association between the gender and carotid plaques. Stratified analyses and interaction
tests were performed to identify factors that might modify the association between the
gender and carotid plaques.

Results: Among 2644 high-risk individuals enrolled, there were 1,202 (45.5%) men and
1442 (54.5%) women. Carotid plaques were detected in 904 (34.2%) participants, while
vulnerable plaques were found in 425 (16.1%) participants. Before PSM, carotid plaques
were more prevalent in male individuals than the female (36.7% vs. 32.1%, p = 0.01),
as well as vulnerable plaque (20.0% vs. 12.8%, p < 0.01). Men tend to have a higher
prevalence of vulnerable plaques in multivariate analyses (adjusted OR 1.70, 95% CI
1.10–2.62, p = 0.02). Stratified analyses and interaction tests demonstrated that the
association between male sex and vulnerable carotid plaque did not change by age,
family history of stroke, histories of chronic disease, smoking status, drinking status,
physical activity, and BMI (all p for interaction > 0.05). After PSM, vulnerable plaques
were still more prevalent in male individuals than the female (17.03% vs. 12.07%,
p = 0.032).

Conclusion: Male individuals had a higher risk of vulnerable carotid plaque independent
of classical vascular risk factors. Whether there is a gender-specific association between
variations in genes related to inflammation, lipid metabolis, and endothelial function and
plaque vulnerability needs to be further studied.

Keywords: gender, plaque vulnerability, risk factors, propensity score matching, atherosclerosis
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INTRODUCTION

Stroke is one of the leading causes of death and the major cause of
adult disability worldwide, especially in China (GBD 2016 Causes
of Death Collaborators, 2017; Wu et al., 2019). With the aging
of the population, the onging high incidence of risk factors and
inadequate management, the burden of stroke is increasing year
by year (Wu et al., 2019). Approximately 80% of all strokes are
ischemic and carotid artery atherosclerosis accounts for at least
20% of all ischemic strokes (Prasad, 2015; Puig et al., 2020).

Atherosclerosis is an chronic inflammatory disease of
the arterial wall, with the characteristics of inflammation,
endothelial injury, lipid accumulation, and extensive degradation
of extracellular matrix components (Mangge and Almer, 2019;
Wijeratne et al., 2020). Carotid atherosclerosis has been identified
as a major risk factor of ischemic stroke, cardiovascular diseases,
and other vascular events (Rundek et al., 2008; Sillesen et al., 2018;
Parish et al., 2019). Ultrasound is a non-invasive and economical
diagnostic technique that helps provide valuable information on
carotid atherosclerosis such as carotid intima thickness (CIMT)
and carotid plaque presence (Park, 2016). Several studies suggest
that carotid plaque is more powerful in predicting vascular
outcomes, compared with CIMT (Ho, 2016; Nezu and Hosomi,
2020).

Previous epidemiological researches have reported the
associations between several classical vascular risk factors
(such as age, hypertension, diabetes, dyslipidemia, and current
smoking) and carotid plaques (Sturlaugsdottir et al., 2016;
Bian et al., 2018; Noflatscher et al., 2019; Santos-Neto et al.,
2021). It is noted that the incidence of stroke is higher in
male individuals compared with the female age < 75 years
(Lloyd-Jones et al., 2010), and gender differences in plaque
characteristics might help explain this phenomenon. However,
there is scarce information available about the gender differences
in the prevalence of carotid plaque in high-risk individuals
for stroke. Previous studies which investigated the association
between sex and intra-plaque hemorrhage (IPH) mainly focused
on patients with moderate or severe carotid stenosis (Ota et al.,
2010). Meanwhile, the judgment of IPH in carotid plaque was
mainly based on histopathological examination after carotid
endarterectomy (CEA) (Hellings et al., 2007). Therefore, we
conducted the present study using the data of a multicenter,
cross-sectional survey in China to explore the gender differences
in the prevalence of carotid plaques among individuals at
high risk of stroke.

MATERIALS AND METHODS

Study Design and Participants
The present study was a branch of the China National
Stroke Screening Survey (CNSSS) program of the National
Health and Family Planning Commission of China (grant
No. 2011BAI08B01) (Li et al., 2015; Yi et al., 2020a,b). The
CNSSS which aimed to provide stroke prevention policies
for the Chinese, is a population-based cross-sectional study
with a 2-stage stratified sampling framework (Li et al., 2015;

Yi et al., 2020a,b). More details of the CNSSS could be followed
at the official website (Stroke Prevention Project Committee,
2018). From May 1, 2015 to Sep 31, 2015, the present study was
conducted in eight randomly selected communities of Sichuan
province in southwestern China, using a cluster survey method
(Yi et al., 2020a,b). This survey was performed among residents
aged≥ 40 and who lived more than 6-month in each community.
Ethics Committee of the three participating institutions (People’s
Hospital of Deyang City, Affiliated Hospital of Southwest Medical
University, the Suining Central Hospital) approved our study
protocol and written informed consent was obtained from all
participants enrolled in this study (Yi et al., 2020a,b).

Data Collection and the Definition of
High-Risk Individuals for Stroke
Data were collected via using a standardized structured face-
to-face questionnaire by experienced surveyors, including
demographic information (age, sex, education level), family
history of stroke, behavior factors (smoking, drinking, exercise
habits), history of stroke [ischemic stroke or transient ischemic
attack (TIA), hemorrhagic stroke], history of chronic diseases
(hypertension, dyslipidemia, diabetes mellitus, and atrial
fibrillation) (Yi et al., 2020a,b). Body measurements of
height, weight, waist circumference, and hip circumference
were also measured and recorded in the questionnaire. The
eight stroke-related risk factors were assessed, including
hypertension, dyslipidemia, diabetes mellitus, atrial fibrillation,
current smoking (≥1 cigarette per day), physical inactivity
(physical exercise < 3 times per week for < 30 min each
time), overweight/obesity [defined as body mass index
(BMI) ≥ 26 kg/m2], and a family history of stroke, which
has been elaborated upon in our previous study (Yi et al.,
2020a,b). Participants who had at least three of the above eight
risk factors or had a history of stroke were identified as the
high-risk participants for stroke (Wang et al., 2017).

Laboratory examinations such as fasting blood glucose (FBG),
hemoglobin A1c, triglycerides, total cholesterol (TC), high-
density lipoprotein cholesterol (HDL-C), low-density lipoprotein
cholesterol (LDL-C), and homocysteine, electrocardiogram
(ECG), and carotid ultrasonography were also obtained from
the high-risk participants for stroke (Yi et al., 2020a,b). Detailed
methods for data collection have been elaborated upon in our
previous studies (Yi et al., 2020a,b).

Carotid Ultrasound Examination
Diagnostic ultrasound (type 512, ACUSON Sequoia Apparatus,
7.5 MHz probe, Berlin, Germany) was performed in participants
at high risk of stroke to assessed bilateral common and internal
carotid arteries, as well as bifurcations according to standard
scanning reading protocols (Rundek et al., 2008; Yi et al.,
2020b). Detailed procedures for evaluating the characteristics
of carotid plaque have been described in our previous study
(Yi et al., 2016, 2017, 2020b). An atherosclerotic plaque was
defined as the presence of an endoluminal protrusion > 1.5 mm
or a focal thickening at least 50% greater of the CIMT than
adjacent arterial wall (Rundek et al., 2008; Yi et al., 2020b).
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Based on the plaque echogenicity and surface appearance, carotid
plaques were further classified from class I to class IV as
uniformly echolucent, predominantly echolucent, predominantly
echogenic, and echogenic, respectively (Mathiesen et al., 2001; Yi
et al., 2020b). Plaques of class I or II were identified as vulnerable
plaques, while plaques of class III or IV were identified as stable
plaques (Yi et al., 2016, 2017, 2020b). Carotid plaques were
independently classified by ultrasound practitioners who were
blinded to baseline information.

Statistical Analyses
Clinical characteristics are presented as means with standard
deviations (SDs) for continuous variables and as frequencies
with percentages for categorical variables according to different
genders. Intergroup differences in categorical variables were
calculated for significance using the χ2-tests or Fisher’s exact
tests, while intergroup differences in continuous variables were
calculated using the Student’s t-tests or Mann-Whitney U-test
(Li et al., 2020a).

Univariate analysis comparing factors associated with carotid
plaque and vulnerable plaque in high-risk individuals for
stroke was performed. Multivariate logistic regression was
performed to identify the association between gender and carotid
plaque in high-risk individuals in 4 different models. Model
1 was adjusted for age and family history of stroke. Model
2 was adjusted for variables in model 1 + BMI. Model 3
was adjusted for variables in model 1 + BMI + vascular
risk factors (history of ischemic stroke or TIA, hypertension,
dyslipidemia, diabetes mellitus, smoking status). Model 4 was
adjusted for variables in model 1 + BMI + vascular risk
factors + laboratory test (Hemoglobin A1c, FBG, Triglycerides,
TC, HDL-C, LDL-C). Stratified analyses and interaction tests
were conducted according to age, family history of stroke,
histories of chronic disease, smoking status, drinking status,
physical activity, and BMI, to identify factors that might
modify the association between the gender and carotid
plaques. The significance of interaction was tested by the log-
likelihood ratio test.

We also performed a propensity score matching (PSM)
algorithm including baseline characteristics that are assumed to
be related to the gender by using a multivariate logistic regression
analysis, to calculate the propensity score for each patient. Then
participants between different gender groups were matched via
using the nearest neighbor approach (caliper 0.2, ratio 1:1)
to minimize potential imbalances between the two groups as
previously described in detail (Li et al., 2020a). Gender differences
in the prevalence of carotid plaques and vulnerable plaques were
compared before and after PSM.

The 95% confidence intervals (CI) were calculated to describe
the precision of the estimates. Two-sided P< 0.05 was considered
statistically significant for all results. All statistical analyses
were performed using SPSS 21.0 software (IBM, Chicago, IL,
United States), statistical software packages R (The R Foundation,
version 3.4.3)1 and EmpowerStats (X&Y Solutions, Inc., Boston,

1http://www.R-project.org

MA, United States)2, which have been described in our previous
studies (Li et al., 2020a,b).

RESULTS

In the year 2015, 18595 residents aged ≥ 40 participated in the
face-to-face survey in eight communities in Sichuan province in
southwestern China. Finally, a total of 2644 subjects at high risk
of stroke were enrolled, comprising 1,202 men and 1,442 women
aged 63.3 ± 9.8 years. A flow diagram of the data preparing and
cleaning process in this survey is provided in Figure 1.

Gender Differences in the
Characteristics of High-Risk Individuals
and the Prevalence of Carotid Plaque
Gender differences in the characteristics of high-risk individuals
and the prevalence of carotid plaque were exhibited in Table 1.
Compared with women, men were younger (62.7 ± 10.3 vs.
63.7 ± 9.4 years, p < 0.01), had higher educational level
(p < 0.01), more history of former and current smoking
(13.9%, 54.2% vs. 1.7%, 4.4%, respectively, p < 0.01) and
regular alcohol consumption (18.7% vs. 1.6%, p < 0.01),
less history of ischemic stroke or transient ischemic stroke
(TIA) (14.4% vs. 20.5%, p < 0.01), diabetes (28.4% vs. 39.3%,
p < 0.01), dyslipidemia (67.8% vs. 76.5%, p < 0.01) and
atrial fibrillation (7.8% vs. 11.0%, p < 0.01). Meanwhile, the
level of FBG (6.3 ± 2.2 vs. 6.5 ± 2.7 mmol/L, p = 0.02),
total cholesterol (5.1 ± 1.0 vs. 5.3 ± 1.0 mmol/L, p < 0.01),
HDL-C (1.5 ± 0.5 vs. 1.7 ± 0.6 mmol/L, p < 0.01)
and LDL-C (2.9 ± 0.9 vs. 3.1 ± 0.9 mmol/L, p < 0.01)
were lower in men than in women in the current survey.
However, men had a higher level of homocysteine than
women (15.5 ± 11.1 vs. 11.9 ± 7.2 mmol/L, p < 0.01).

2http://www.empowerstats.com

FIGURE 1 | Flow diagram of the data preparing and cleaning process in this
survey.
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TABLE 1 | Gender differences in the characteristics of individuals at high risk of
stroke and the prevalence of carotid plaque.

Variables Total
(n = 2,644)

Male
(n = 1,202)

Female
(n = 1,442)

P-value

Age, year, mean ± SD 63.3 ± 9.8 62.7± 10.3 63.7 ± 9.4 <0.01*

Education, n (%) <0.01‡

Primary school or below 1833 (69.3) 762 (63.4) 1071 (74.3) –

Junior middle school 658 (24.9) 343 (28.5) 315 (21.8) –

Senior middle school 120 (4.5) 73 (6.1) 47 (3.3) –

College or above 33 (1.3) 24 (2.0) 9 (0.6) –

Family history of stroke,
n (%)

474 (17.9) 206 (17.1) 268 (18.6) 0.33‡

Vascular risk factors, n (%)

Ischemic stroke or TIA 468 (17.7) 173 (14.4) 295 (20.5) <0.01‡

Hemorrhagic stroke 93 (3.5) 36 (3.0) 57 (4.0) 0.18‡

Hypertension 2122 (80.3) 945 (78.6) 1177 (81.6) 0.05‡

Diabetes mellitus 907 (34.3) 341 (28.4) 566 (39.3) <0.01‡

Dyslipidemia 1918 (72.5) 815 (67.8) 1103 (76.5) <0.01‡

Atrial fibrillation 252 (9.5) 94 (7.8) 158 (11.0) <0.01‡

Smoking status, n (%) <0.01‡

Never 1736 (65.7) 383 (31.9) 1353 (93.8) –

Former 192 (7.3) 167 (13.9) 25 (1.7) –

Current 716 (27.1) 652 (54.2) 64 (4.4) –

Alcohol consumption, n (%) 248 (9.4) 225 (18.7) 23 (1.6) <0.01‡

Physical inactivity, n (%) 1698 (64.2) 757 (63.0) 941 (65.3) 0.22‡

Overweight or obesity, n (%) 1647 (62.3) 744 (61.9) 903 (62.6) 0.69‡

BMI, kg/m 26.0 ± 3.6 25.9 ± 3.3 26.1 ± 3.7 0.16*

Waist circumference, cm 88.9± 12.0 88.9± 10.0 86.4± 11.6 <0.01*

Hip circumference, cm 95.2± 11.9 95.9± 10.5 94.6± 13.0 0.16*

Hemoglobin A1c, mmol/L 6.8 ± 1.8 6.9 ± 2.0 6.6 ± 1.6 <0.01*

FBG, mmol/L 6.4 ± 2.5 6.3 ± 2.2 6.5 ± 2.7 0.02*

Total cholesterol, mmol/L 5.2 ± 1.0 5.1 ± 1.0 5.3 ± 1.0 <0.01*

HDL-C, mmol/L 1.6 ± 0.6 1.5 ± 0.5 1.7 ± 0.6 <0.01*

LDL-C, mmol/L 3.0 ± 0.9 2.9 ± 0.9 3.1 ± 0.9 <0.01*

Triglycerides, mmol/L 1.8 ± 1.9 1.8 ± 2.2 1.8 ± 1.6 0.36*

Homocysteine, mmol/L 13.6 ± 9.4 15.5± 11.1 11.9 ± 7.2 <0.01*

Total carotid plaque, n (%) 904 (34.2) 441 (36.7) 463 (32.1) 0.01‡

Vulnerable carotid plaque,
n (%)

425 (16.1) 240 (20.0) 185 (12.8) <0.01‡

Data are presented as mean ± SD, median (range), or number (%).
*Student t-test. ‡χ2 test.
BMI, Body mass index; FBG, fasting blood glucose; HDL-C, high density lipoprotein
cholesterol; LDL-C, low density lipoprotein cholesterol.

Carotid plaques were found in 904 (34.2%) subjects, and 425
(16.1%) had vulnerable plaques. The total prevalence of carotid
plaque was higher in men than in women (36.7% vs. 32.1%,
p = 0.01), as well as vulnerable plaque (20.0% vs. 12.8%,
p < 0.01).

Risk Factors Associated With Carotid
Plaques in High-Risk Individuals for
Stroke
Univariable analysis of risk factors associated with total
carotid plaques and vulnerable plaques was presented in
Table 2. Male sex was associated with both carotid plaque

TABLE 2 | Univariable analysis for the factors associated with carotid plaques in a
population at high risk of stroke.

Variables* Total carotid plaque Vulnerable carotid plaque

OR (95%CI) P-value OR (95%CI) P-value

Age, year 1.07 (1.06–1.08) <0.01 1.05 (1.04–1.06) <0.01

Male 1.23 (1.04–1.44) 0.01 1.70 (1.37–2.09) <0.01

Education level

College or above Reference – Reference –

Primary school or
below

1.22 (0.59–2.52) 0.60 1.56 (0.55–4.48) 0.41

Junior middle school 0.65 (0.31–1.38) 0.26 0.98 (0.33–2.85) 0.96

Senior middle school 0.93 (0.41–1.10) 0.86 1.28 (0.40–4.08) 0.68

Family history of stroke 0.82 (0.66–1.02) 0.07 0.77 (0.57–1.02) 0.07

Vascular risk factors

Ischemic stroke or TIA 0.71 (0.57–0.88) <0.01 0.88 (0.67–1.17) 0.39

Hemorrhagic stroke 1.41 (0.93–2.14) 0.11 1.09 (0.63–1.88) 0.76

Hypertension 1.67 (1.35–2.07) <0.01 1.64 (1.22–2.19) <0.01

Dyslipidemia 1.22 (1.02–1.47) 0.03 1.20 (0.95–1.53) 0.13

Diabetes mellitus 1.06 (0.90–1.26) 0.50 1.09 (0.88–1.36) 0.42

Atrial fibrillation 1.12 (0.85–1.47) 0.42 1.02 (0.71–1.44) 0.93

Smoking status

Never Reference – Reference –

Former 2.04 (1.51–2.75) <0.01 1.93 (1.34–2.77) <0.01

Current 1.36 (1.13–1.63) <0.01 1.70 (1.36–2.14) <0.01

Alcohol consumption 1.13 (0.86–1.48) 0.38 1.11 (0.78–1.56) 0.57

Physical inactivity 1.00 (0.84–1.18) 0.96 0.92 (0.74–1.14) 0.44

BMI 1.00 (0.98–1.02) 0.99 0.97 (0.95–1.00) 0.09

Waist circumference 1.00 (0.99–1.01) 0.38 1.00 (0.99–1.01) 0.85

Hip circumference 1.00 (0.98–1.01) 0.78 0.99 (0.97–1.01) 0.38

laboratory test

Hemoglobin A1c 1.08 (1.01–1.16) 0.03 1.09 (1.01–1.18) 0.03

FBG 1.04 (1.01–1.08) 0.01 1.05 (1.01–1.09) 0.01

Triglycerides 1.01 (0.97–1.05) 0.71 1.05 (1.01–1.11) 0.03

TC 1.19 (1.10–1.29) <0.01 1.21 (1.10–1.33) <0.01

HDL-C 1.20 (1.04–1.37) 0.01 1.05 (0.88–1.24) 0.59

LDL-C 1.22 (1.11–1.34) <0.01 1.26 (1.12–1.42) <0.01

Homocysteine 1.01 (1.00–1.02) 0.06 1.00 (0.99–1.01) 0.72

OR, odds ratio; CI, confidence intervals; BMI, Body mass index; FBG, fasting
blood glucose; TC, total cholesterol; HDL-C, high density lipoprotein cholesterol;
LDL-C, low density lipoprotein cholesterol.

(OR 1.23, 95%CI 1.04–1.44, p = 0.01) and vulnerable plaque
(OR 1.70, 95%CI 1.37–2.09, p < 0.01). Besides, age, history
of ischemic stroke/TIA, hypertension, dyslipidemia, former
or current smoking, baseline hemoglobin A1c, FBG, TC,
and LDL-C were associated with total carotid plaque (all
p < 0.05). Meanwhile, age, hypertension, former or current
smoking, baseline hemoglobin A1c, FBG, triglycerides, TC,
and LDL-C were associated with vulnerable plaque (all
p < 0.05).
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The Association Between Male Sex and
Carotid Plaque in High-Risk Individuals
for Stroke
As presented in Table 3, multivariate logistic regression was
conducted to explore the association between male sex and
total carotid plaque or vulnerable plaque. After adjusting for
age, family history of stroke, and BMI (model 1 or 2),
male sex was significantly associated with total carotid plaque
(p < 0.01) and vulnerable plaque (p < 0.01). When vascular
risk factors (including a history of ischemic stroke or TIA,
hypertension, dyslipidemia, diabetes mellitus, smoking status)
and lab tests (including hemoglobin A1c, FBG, triglycerides,
TC, HDL-C, LDL-C) were included in the multivariate logistic
regression (model 3 or 4), male sex was no longer an
independent risk factor for carotid plaque, however, the
male was still an independent risk factor for vulnerable
plaque (adjusted OR 1.70, 95%CI 1.10–2.62, p = 0.02, in
model 4) than female.

Stratified Analyses and Interaction Test
of the Association Between Male Sex
and Vulnerable Plaque
To further explore the association between male sex and
vulnerable carotid plaques, stratified analyses and interaction
tests were employed. In Figure 2, we found that the association
between male sex and vulnerable carotid plaque did not change
by age, family history of stroke, histories of chronic disease
(ischemic stroke or TIA, hypertension, dyslipidemia, diabetes
mellitus), smoking status, drinking status, physical activity and
BMI (all p for interaction > 0.05). Male individuals tended to have
a stronger association with vulnerable carotid plaque compared
with the female, as shown in Table 3.

Gender Differences in the Prevalence of
Carotid Plaque and Vulnerable Plaque
After PSM
After PSM, we identified two subgroups of 928 participants
(including 464 men and 464 women) at high risk of stroke
that were balanced for all characteristics. Relative multivariate
imbalance in terms of the L1 measure was smaller (0.468 vs.
0.733) and no covariate had standardized mean differences > 0.1
after PSM. As shown in Table 4, there was no significant
difference in the characteristics between different gender groups
in the matched dataset (all p > 0.05). After PSM, men no longer
had more carotid plaque (33.2% vs. 31.9%, p = 0.67), however,
vulnerable plaques were still more prevalent in male individuals
(17.0% vs. 12.1%, p = 0.03).

DISCUSSION

Atherosclerosis in the carotid artery can lead to plaque
vulnerability, which is one of the main causes of ischemic
stroke (Howard et al., 2015; Pelisek et al., 2012). Our
present study have identified a high prevalence of total

TABLE 3 | Multiple logistic regression analysis for the association between male
sex and carotid plaque in a population at high risk of stroke.

Total carotid plaque Vulnerable carotid plaque

OR (95%CI) P-value OR (95%CI) P-value

Unadjusted 1.23 (1.04–1.44) 0.01 1.70 (1.37–2.09) <0.01

Model 1 1.33 (1.12–1.58) <0.01 1.79 (1.45–2.22) <0.01

Model 2 1.35 (1.14–1.60) <0.01 1.79 (1.45–2.22) <0.01

Model 3 1.03 (0.82–1.29) 0.82 1.49 (1.13–1.97) <0.01

Model 4 1.30 (0.89–1.89) 0.17 1.70 (1.10–2.62) 0.02

Model 1 was adjusted for age and family history of stroke.
Model 2 was adjusted for variables in model 1 + BMI.
Model 3 was adjusted for variables in model 1+ BMI+ vascular risk factors (history
of ischemic stroke or TIA, hypertension, dyslipidemia, diabetes mellitus, smoking
status).
Model 4 was adjusted for variables in model 1 + BMI + vascular risk
factors+ laboratory test (Hemoglobin A1c, FBG, Triglycerides, TC, HDL-C, LDL-C).
OR, odds ratio; CI, confidence intervals; BMI, Body mass index; FBG, fasting
blood glucose; TC, total cholesterol; HDL-C, high density lipoprotein cholesterol;
LDL-C, low density lipoprotein cholesterol.

carotid plaque (34.2%) and vulnerable carotid plaque (16.1%)
among high-risk participants for stroke in southwestern China
and demonstrated that male individuals have a higher risk
of vulnerable plaques than the female (adjusted OR 1.70,
95% CI 1.10–2.62), even after propensity score -matched.
Moreover, stratified analyses and interaction tests showed that
the stronger association between male sex and vulnerable plaque
did not change by age, family history of stroke, histories
of chronic disease (ischemic stroke or TIA, hypertension,
dyslipidemia, diabetes mellitus), smoking status, drinking,
physical activity, and BMI, suggesting that male is associated
with a higher risk of vulnerable plaque independent of classical
vascular risk factors.

It has been demonstrated that age, hypertension, diabetes,
high low-density lipoprotein cholesterol levels, and current
smoking are traditional cardiovascular risk factors related to
the prevalence of carotid plaques (Sturlaugsdottir et al., 2016;
Bian et al., 2018; Noflatscher et al., 2019; Santos-Neto et al.,
2021). However, there is scarce information regarding the gender
differences in the prevalence of carotid plaques in participants
at high risk of stroke, especially vulnerable plaque. It is known
that IPH is one of the major characteristics of vulnerable
plaque, several researchers have investigated the association
between sex and IPH in the carotid artery (Hellings et al.,
2007; Ota et al., 2010; Vrijenhoek et al., 2013). Observational
research based on histological analysis of CEA specimens
found that female individuals tend to have a more stable,
less inflammatory carotid plaques compared with the male,
independent of clinical manifestation and cardiovascular risk
factors (Hellings et al., 2007). Similarly, a cohort study conducted
in patients who had undergone CEA suggested that carotid
plaques obtained from male individuals had a higher prevalence
of IPH compared with the female (Vrijenhoek et al., 2013).
Another study enrolled patients with asymptomatic moderate or
severe carotid stenosis, and suggested that men had more high-
risk plaques compared with women after justing for potential
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FIGURE 2 | Stratified logistic regression analysis to identify variables that modify the association between male and vulnerable carotid plaque. Each stratification was
adjusted for age, family history of stroke, histories of chronic disease (ischemic stroke or TIA, hypertension, dyslipidemia, diabetes mellitus), smoking status, regular
alcohol consumption, physical inactivity, and BMI, except for the stratification factor itself.

confounders (Ota et al., 2010). Our study demonstrated that
male individuals had a higher risk of vulnerable carotid plaques
than the females, which is similar to the results of previous
studies (Hellings et al., 2007; Ota et al., 2010; Vrijenhoek
et al., 2013). The difference between our study and previous
studies is that the current study was a population-based study
conducted in high-risk individuals for stroke, which is different
from previous studies that mainly focused on patients with
moderate or severe carotid stenosis, even posttreatment of CEA.

The underlying pathophysiologic mechanisms that explain
these gender differences of the prevalence of vulnerable carotid
plaque are poorly understood. There are several possible reasons
for this. First, although men do not experience a rapid
decline in endogenous sex hormone production, an age-related
decrease in the levels of endogenous sex hormone especially
testosterone might have an important effect on the progression
of atherosclerosis. It has been demonstrated that low levels of
free testosterone are associated with the progression of carotid
atherosclerosis in elderly men independently of classical vascular
risk factors (Muller et al., 2004; Svartberg et al., 2006; Soisson
et al., 2012). Second, there are differences in the protective
effect of estrogen on atherosclerosis between the two genders
(Yahagi et al., 2015). Estrogen might play a direct effect on matrix

metalloproteinase production contributing to the attenuation of
atherosclerotic disease in females (Yahagi et al., 2015). A recently
published observational study found that men have more age-
specific carotid IPH in magnetic resonance imaging compared
with women. However, among post-menopausal women, the risk
of carotid IPH becomes closer to that of men with increasing age
(Singh et al., 2017). It has been found that men with the common
genetic variation in estrogen receptor alpha have three times
higher risk of myocardial infarction as compared to those without
variant (Shearman et al., 2003), which indicates that genetic
factors might play an essential role in the gender differences
of atherosclerosis. A previous study found that only 19.5% of
the carotid plaque burden could be explained by traditional
and less traditional vascular risk factors, also suggesting that
genetic and environmental factors might play a major role in
the determination of atherosclerosis (Kuo et al., 2012). Until
recently, variation in genes related to inflammation, endothelial
function, and lipid metabolism are thought to be linked to
carotid plaque burden (Gardener et al., 2011; Wang et al., 2011;
Stroke Prevention Project Committee, 2018). Whether there is
a gender-specific association between variations in genes related
to inflammation, endothelial function, and lipid metabolism and
plaque vulnerability has not been adequately studied.
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TABLE 4 | Gender differences in the characteristics of individuals at high risk of
stroke and the prevalence of carotid plaque after PSM.

Variables Total
(n = 928)

Male
(n = 464)

Female
(n = 464)

P-value

Age, year, mean ± SD 63.1± 10.0 63.2± 10.4 63.0 ± 9.7 0.77*

Education, n (%) 0.215‡

Primary school or
below

620 (66.8) 297 (64.0) 323 (69.6) –

Junior middle school 256 (27.6) 136 (29.3) 120 (25.9) –

Senior middle school 42 (4.5) 26 (5.6) 16 (3.5) –

College or above 10 (1.1) 5 (1.1) 5 (1.1) –

Family history of stroke,
n (%)

179 (19.3) 85 (18.3) 94 (20.3) 0.45‡

Vascular risk factors,
n (%)

Ischemic stroke 151 (16.3) 72 (15.5) 79 (17.0) 0.53‡

Hemorrhagic stroke 33 (3.6) 19 (4.1) 14 (3.0) 0.38‡

Hypertension 763 (82.2) 383 (82.5) 380 (81.9) 0.80‡

Diabetes mellitus 328 (35.3) 158 (34.1) 170 (36.6) 0.41‡

Dyslipidemia 651 (70.2) 332 (71.6) 319 (68.8) 0.35‡

Atrial fibrillation 89 (9.6) 47 (10.1) 42 (9.1) 0.58‡

Smoking status, n (%) 0.28‡

Never 750 (80.8) 375 (80.8) 375 (80.8)

Former 41 (4.4) 16 (3.5) 25 (5.4)

Current 137 (14.8) 73 (15.7) 64 (13.8)

Alcohol consumption,
n (%)

51 (5.5) 29 (6.3) 22 (4.7) 0.31‡

Physical inactivity, n (%) 587 (63.3) 285 (61.4) 302 (65.1) 0.25‡

Overweight or obesity,
n (%)

595 (64.1) 301 (64.9) 294 (63.4) 0.63‡

BMI, kg/m2 26.5 ± 3.5 26.2 ± 3.3 26.3 ± 3.8 0.53*

Waist circumference,
cm

89.2 ± 8.9 87.0± 11.2 86.6± 10.6 0.61*

Hip circumference, cm 95.2± 11.0 95.9 ± 9.8 94.5± 12.2 0.34*

FBG, mmol/L 6.6 ± 2.8 6.5 ± 2.7 6.7 ± 2.9 0.28*

Total cholesterol,
mmol/L

5.2 ± 1.1 5.2 ± 1.1 5.3 ± 1.1 0.30*

HDL-C, mmol/L 1.7 ± 0.7 1.7 ± 0.7 1.7 ± 0.7 0.63*

LDL-C, mmol/L 3.0 ± 0.8 2.9 ± 0.9 3.0 ± 0.8 0.80*

Triglycerides, mmol/L 1.7 ± 1.6 1.7 ± 1.6 1.7 ± 1.8 0.90*

Homocysteine, mmol/L 7.8 ± 1.3 7.8 ± 1.2 7.8 ± 1.3 0.93*

Total carotid plaque,
n (%)

302 (32.5) 154 (33.2) 148 (31.9) 0.67‡

Carotid vulnerable
plaque, n (%)

135 (14.6) 79 (17.0) 56 (12.1) 0.03‡

Data are presented as mean ± SD, median (range), or number (%).
*Student t-test. ‡χ2-test.
BMI, Body mass index; FBG, fasting blood glucose; HDL-C, high density lipoprotein
cholesterol; LDL-C, low density lipoprotein cholesterol.

Limitations
The results of the present study should be interpreted with
caution given its limitations. First, although a standardized
structured face-to-face questionnaire was used by experienced
surveyors to collect data including demographic characteristics,
behavior factors, family history of stroke, history of stroke and
chronic disease, and physical examination, the application of
the self-reported questionnaire might also be associated with

recall bias and make the answers unreliable. Second, even though
we conduct a multicenter population-based study with a large
number of subjects recruited and the large number of variables
collected, we only screened residents ages ≥ 40 years and we
did not compare the gender differences of carotid plaque in
residents who were not identified as the high-risk individuals
for stroke, therefore, our results might not represent the whole
population. Third, carotid plaque and plaque vulnerability were
evaluated by carotid ultrasound but not high-resolution magnetic
resonance imaging, which could provide more information
including plaque composition and morphology. Besides, the data
collection was done many years ago and this is unlikely to
provide an updated picture of the situation. Furthermore, we did
not explore the effect of antiplatelet drugs or statins on plaque
vulnerability in our study due to a lack of data. Finally, limited to
the study protocol of the CNSSS program, we could not provide
information related to inflammatory markers such as the level
of C-reactive protein or other acute-phase protein, and further
studies are needed to explore this issue.

CONCLUSION

Despite the above limitations, this multicenter, cross-sectional
study provides clear evidence that male individuals had a higher
risk of vulnerable carotid plaque independent of classical vascular
risk factors, genetic factors might play a major role in the gender
differences in the progression of atherosclerosis. Whether there is
a gender-specific association between variations in genes involved
in inflammation, endothelial function, and lipid metabolism and
plaque vulnerability needs to be further studied.
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Ischemic heart disease (IHD) is a multifactorial pathological condition strictly related to
genetic, dietary, and lifestyle factors. Its morbidity and mortality rate represent one of
the most important pathological issues that today involve younger people in a stronger
way than in the past. IHD clinical outcomes are difficult to treat and have a high
economic impact on health care. So prevention of this pathological condition through
cardioprotective maneuvers represents the first line of intervention, as already underlined
by several animal and human studies. Even if the time of intervention is important to
prevent severe outcomes, many studies highlight that sex-dependent responses are
crucial for the result of cardioprotective procedures. In this scenario sexual hormones
have revealed an important role in cardioprotective approach, as women seem to be
more protected toward cardiac insults when compared to male counterparts. The aim of
this mini review is to show the molecular pathways involved in cardioprotective protocols
and to elucidate how sexual hormones can contribute in ameliorating or worsening the
physiological responses to IHD.

Keywords: cardioprotection, ischemic heart disease, estrogen, sex, conditioning, gender, reperfusion injury

INTRODUCTION

Ischemic heart disease (IHD) is a pathological condition characterized by reduced or absent blood
flow in coronary arteries due to total or partial occlusion of these vessels by atherosclerotic plaque
or blood clots formation. This condition causes improper supply of oxygen and nutrients to
myocardial tissue, and, depending on ischemia duration, myocardial cell death can occur. Among
all cardiovascular diseases (CVD), IHD is the leading single cause of death in Europe: IHD mortality
represents 19% of deaths among men and 20% of deaths among women (Kuznetsova, 2018).
Emerging evidences support differences in risk factors, symptoms, and outcomes of IHD between
sexes in an age-related trend (Pagliaro et al., 2020). Data from the CVD statistics point out that
IHD is the leading cause of death in men (16%) and women (11%) under 75, while it is the single
cause of premature mortality in men (16%) under 65 and the second in women compared for the
same age ranges (Wilkins et al., 2017). Ischemia can also be induced during cardiac surgery where
controlled periods of cardiac arrest allow and optimize critical interventions.

Important cellular modifications during prolonged ischemia are linked to mitochondrial
dysfunction and reduced ATP availability and are strictly related to intracellular Ca2+ impairment
as already reviewed elsewhere (Garcia-Dorado et al., 2012). Furthermore, it is now well established
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that reperfusion, that is, the restoration of blood flow, causes
further damage of cardiac tissue, maintaining intracellular Ca2+

overload that exacerbates the harmful effects induced by ischemia
and activates calpain-mediated proteolysis, leading to the
condition commonly designated as “reperfusion injury” (Garcia-
Dorado et al., 2012; Inserte et al., 2012; Kalogeris et al., 2012).

According to the phenomena described, it is accepted
nowadays that ischemia reperfusion injury (IRI) is characterized
by detrimental effects of both ischemia and reperfusion. From
a clinical perspective, even if restoration of blood flow could
be dangerous, it represents the only possible intervention to
have better survival chance when coronary occlusion occurs, and
researches are moving toward new insights to reduce IRI and
improve cardiac outcomes after prolonged ischemia.

Experimental and clinical studies have underlined sex
differences in response to IRI, with women showing most
detrimental outcomes, probably due to improper diagnosis
and poorer prevention procedures than male counterparts
(Garcia et al., 2016). IHD shows indeed different onset and
clinical pictures in the two sexes, and the underestimated
risk for female patients could represent the cause of poorer
outcomes (Maas and Appelman, 2010). Moreover, studies
are addressed to the development of therapeutic approaches
in order to reduce or prevent detrimental effects of IRI
in both pathological condition and cardiac surgery (Penna
et al., 2015). So in the following paragraphs, we will discuss
some cardioprotective maneuvers, in particular pre-conditioning
(PreC), post-conditioning (PostC), and remote conditioning,
that will be presented with a focus on sexual differences to
these interventions, emphasizing the need for a sex-dependent
approach in cardioprotection.

SEX DIFFERENCES IN PHYSIOLOGICAL
CARDIOPROTECTION

Nowadays it is largely accepted that there are different IRI
manifestations in male and female subjects, among all ages
and outcome of cardiac injury. Differences studied and results
obtained suggest a possible role of sexual hormones in
several animal models.

Despite the traditional dualism of estrogens and androgens in
conditioning the cardioprotective responses, mainly highlighted
by experiments from animal models, human studies and
clinical data show a more complex scenario. In this section,
cardioprotective pathways activated by both estrogens and
androgens are presented, with the aim to underline the weakness
of sex-adapted cardioprotective strategies only focused on
these mechanisms.

Estrogen binds to different receptors: estrogen receptor-
α (ER-α), estrogen receptor-β (ER-β), or G-protein coupled
estrogen receptor (GPR30 or GPER). Even if ER-β has a
strategical role in cardioprotection, the involvement of ER-α
against IRI effects is still controversial; nevertheless, consistent
data suggest that estrogen-mediated protective response may
rely on both ERs (Murphy and Steenbergen, 2007b; Deschamps
et al., 2010). Several pathways activated by this hormone can

be seen as the opposite to those activated during ischemia
or reperfusion. In fact, estrogen is involved in the regulation
of ions transporters and exchangers: it induces S-nitrosylation
of L-type Ca2+ channels with a reduction of Ca2+ loading,
and it regulates Ca2+ uptake in mitochondria through the
extracellular signal-regulated kinases (ERK1/2) (Iorga et al.,
2017). Despite reactive oxygen species (ROS) increase being
directly related to ischemia duration, it has been demonstrated
that estrogen increases mitochondrial biogenesis and reduces
ROS production in these cellular compartments. The hormone
is also involved in the upregulation of nitric oxide synthases
(NOS), through PI3-K pathway, with the consequent rise in
NO production that has a primary role in activating protein
kinase G (PKG) that enhances KATP channels activity and
inhibits mPTP opening. Evidences show that mitochondrial
preservation induced by estrogen could also be mediated by
STAT3 activation through tumor necrosis factor receptor 2
(TNFR2) (Wang et al., 2008). Furthermore, estradiol decreases
connexin-43 (Cx-43) dephosphorylation, which has been shown
to be cardioprotective toward IRI (Murphy and Steenbergen,
2007a,b; Wang et al., 2020).

Cardioprotection in female hearts involves also endogenous
antioxidant systems: catalase, superoxide dismutase (SOD),
glutathione (GSH), and GSH peroxidase (GPx) are highly
expressed if compared to male counterparts (Casin and Kohr,
2020). Moreover, female cardiomyocytes show high ascorbate
redox homeostasis and enhanced nitrate-to-nitrite conversion
that elevates NO production (Lim et al., 2009).

Other animal studies centered their work in the evaluation
of the effect of testosterone in cardioprotection, and like
estrogen, androgens can activate both genomic and non-
genomic responses by binding to androgen receptors (AR)
(Lucas-Herald et al., 2017).

There are several factors through which androgens may have
a role in cardioprotection (Bell et al., 2011; Pongkan et al., 2015,
2016; Lucas-Herald et al., 2017). In fact, testosterone is involved
in physiological mitochondrial ROS generation (Pagliaro and
Penna, 2015); it is also able to activate the PI3-K pathway
increasing endothelial NOS (eNOS) activity and NO production.
Testosterone is involved in the upregulation of sarcoplasmic
reticulum Ca2+ release channels (SERCA) and activation of
L-type calcium channels, and it has been observed that in severe
ischemic condition it may contribute to Ca2+ overload suggesting
that specific context may modulate the response to this sexual
hormone (Murphy and Steenbergen, 2007a; Wang et al., 2008).
The positive or negative roles of androgens in cardiac tissue are
under investigation, but it is already known that testosterone
can be converted to estrogen by aromatase, and through this
modification it can activate cardioprotective effects induced by
the other sexual hormone.

So reducing the cardioprotective difference between the two
sexes relying only on sexual hormones could be limiting in the
management of IRI, and it is not supported by pharmacological
interventions, with synthetic estrogens that demonstrated
detrimental effects in postmenopausal women after IRI (Hulley
et al., 1998; Anderson et al., 2004; Sivasinprasasn et al., 2016).
Furthermore, new insights underline the involvement of several
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determinants in male and female manifestations of IRI, among
which are anatomical, physiological, and genetic factors (Luczak
and Leinwand, 2009; Regitz-Zagrosek and Kararigas, 2017; Stone
et al., 2019; Litviňuková et al., 2020).

SEX AND CARDIOPROTECTIVE
MANEUVERS

Regarding the deleterious effects induced by IRI, future
challenges for clinical procedures are addressed to the reduction
of reversible or not reversible injury of cardiac tissue and the
enhancement of cardioprotection. Conditioning maneuvers
figure as intriguing protocols that revealed successful results
in animal models of IRI, but their potential application to
humans seems to underline some difficulties. In particular,
PreC is not applicable in pathological settings because of
ischemic unpredictability, and only a few clinical trials develop
this protocol in cardiac surgery, while PostC seems to be
more applicable after ischemic injury even if the window
of protection occurs only a few minutes after reperfusion
(Kloner and Rezkalla, 2006; Vinten-Johansen et al., 2007).
Remote conditioning probably is the most plausible procedure
to induce cardioprotection in clinical settings, and several
clinical trials are developed to study the advantageous use of
this maneuver (Candilio et al., 2011; Pedersen et al., 2018;
England et al., 2019). There are plenty of data focusing on
the cardioprotective effects of conditioning maneuvers on
animal models, and only a few clinical trials developed in
humans show contrasting results underlining the difficult
translatability of these protocols to clinics (Kloner and
Rezkalla, 2006; Peart and Headrick, 2009; Heusch, 2013).
The following paragraphs show different sex responses to
conditioning procedures in animal models, focusing on
possible application to humans. Human studies and most
relevant clinical trials based on the effect of conditioning are
summarized in Table 1.

PreC
Among cardioprotective maneuvers PreC, is a possible
therapeutic approach to limit the damaging effect of IRI.
PreC consists of brief periods of ischemia and reperfusion (I/R)
before the infarcting ischemia; it could be performed through
mechanical or pharmacological stimulation or with exercise
(Penna et al., 2020). According to its temporal application
PreC could be used prior to cardiac surgery interventions,
like coronary artery bypass graft surgery (CABG), but it is still
difficult to perform PreC in the prevention of other unpredictable
cardiac outcomes that involve IRI. Cardioprotection induced
by PreC has been demonstrated to involve different molecular
pathways that contribute to mitochondrial preservation through
the inhibition of mPTP opening; among them are cGMP/PKG
pathway that is involved in the production of NO through
Akt/eNOS activation, the reperfusion injury savage kinase
(RISK) pathway that activates ERK1/2 and GSK3β, and the
survivor activating factor enhancement (SAFE) pathway that
activates STAT3 responses (Heusch, 2013; Penna et al., 2015).

Given the effect of PreC, and the implications of sex hormones
in cardioprotection, it could be interesting to evaluate if there are
different responses to PreC in male and female subjects.

In order to assess any difference between sexes in PreC
followed by ischemia, it has been evidenced in animal models
that not only sex but also age influences the resulting
cardioprotection: in fact, young female animals show no response
to PreC presumably due to incomplete sexual maturation, while
male subjects show cardioprotection after PreC at any age
(Turcato et al., 2006).

Furthermore, several studies underline positive effects of
PreC before IRI in males but no effects or worst injury in
female subjects. Some results suggest that the female heart is
physiologically protected by estrogen, and thus the effect of PreC
can be insufficient to overcome that of the sexual hormone,
while male subjects benefit at all ages from the treatment with
PreC. To support this hypothesis, some groups underline the
role of different cardioprotective mediators in PreC and their
physiological expression in the two sexes: KATP channels and heat
shock proteins (HSP) that are constitutively more activated in
females (Ranki et al., 2002; Deschamps et al., 2010), the enzymatic
or non-enzymatic capability to control increasing ROS that is
more evident in female hearts (Casin and Kohr, 2020), and PI3-
K/NOS pathway activation through Notch1 and GPR30 that is
more expressed in female hearts (Rocca et al., 2018). On the
other hand, a study by Lieder and collaborators underlines no
sex differences after PreC treatment of rat hearts showing no
sex-dependent differences in infarct size; the authors discuss
their results underlining that diverging data in this field could
be caused by animal models or different experimental protocols
(Lieder et al., 2019). In this scenario, it is highly supported that
female cardioprotection induced by PreC can be reached only
if cardiac insults overcome a stress threshold that makes the
existing estrogen protection insufficient (Song et al., 2003; Pitcher
et al., 2005); lack of clinical trials or human studies that show
different responses in the two sexes compels this consideration
only to a theoretical field.

PostC
Another cardioprotective intervention that can be used to reduce
IRI is PostC: brief intermittent cycles of I/R mechanically or
pharmacologically induced in the onset of reperfusion. PostC
activates different intracellular responses; the most studied are
the cGMP/PKG pathway, the RISK pathway, and the SAFE
pathway that all contribute to mitochondrial preservation and
limit cardiac damage (Heusch, 2013). Emerging clinical studies
are addressed to translate animal model results to humans, also
because PostC has a great clinical potential and its application
could be promising in cardioprotective strategies (Vinten-
Johansen et al., 2007). As seen in PreC, it could be reasonable to
think that differences between sexes can also be found in PostC
responses (Skyschally et al., 2009).

It has been observed that after PostC only males show
improved post-ischemic recovery of function, and protective
effects of PostC in male subjects involve different factors,
such as reduced superoxide production, increased MnSOD
expression, reduced Bax/Bcl-2 ratio, and reduced caspase-3
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TABLE 1 | Human studies and most relevant clinical trials based on the effect of conditioning maneuvers and their effect in the two sexes.

Intervention Cardioprotective maneuver Effect of the treatment Sex differences References

Coronary angioplasty for acute
myocardial infarction

PostC Reduction in infarct size and
attenuation of no reflow

No sex differences studied Staat et al., 2005

Primary percutaneous coronary
intervention in STEMI

Combination of RIC and PostC Improvement of myocardial
salvage index. No differences in
infarct size and microvascular
occlusion

No sex differences studied Eitel et al., 2015

Primary percutaneous coronary
intervention in STEMI

RIC Improvement of myocardial
salvage index

No significant sex
differences

Sloth et al., 2015

Elective coronary bypass
grafting

RIC No differences in biomarkers
release

No interaction between
cardioprotection and sex

Kleinbongard et al., 2016

Primary percutaneous coronary
intervention in STEMI

RIPC Reduction in enzymatic infarct
size. Improvement of
T2-weighted edema volume.
ST-segment resolution > 50%

No sex differences studied Crimi et al., 2013

STEMI, ST-segment elevation myocardial infarction; PostC, post-conditioning; RIC, remote ischemic conditioning; RIPC, remote ischemic post-conditioning.

FIGURE 1 | Cardioprotective pathways activated by conditioning maneuvers and sex-related response. Animal models suggest that males (M) seem to respond
better to conditioning cardioprotective maneuvers through the activation of cGMP-PKC (1), RISK (2) and SAFE (3) pathways than female (F) that constitutively
express these pathways. Figure created in BioRender.com.

activation (Ciocci Pardo et al., 2018). Furthermore, after PostC
male hearts also show higher expression in p-Akt, p-GSK3β and
p-PKCε, while female expression of these intracellular mediators

has no changes after the treatment (Ciocci Pardo et al., 2018).
Moreover, Inserte and collaborators show that in male Sprague–
Dawley rat hearts, PostC activates the cGMP/PKG pathway that is
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involved in cardioprotection through the delaying normalization
of intracellular pH (Inserte et al., 2011). Studies on animal models
show that PostC maneuvers have effects only in male hearts; lack
of data in female animal models make it difficult to define clear
differences between sexes.

Regarding all the molecular responses to PostC in males
hearts, it could be speculated that PostC response is also strictly
related to sex hormones showing that probably it activates
pathways that are already highly expressed in females due to
estrogen stimulation; so to have PostC cardioprotective effect,
it could be reasonable that female hearts have to be exposed
to higher injury (Crisostomo et al., 2006; Penna et al., 2009).
Some human clinical trials and meta-data analysis underline
no beneficial effect of PostC application, but the different sex
response was not considered by these studies (Eitel et al., 2015;
Xing et al., 2019), while other works show a positive effect
of PostC in reducing infarct size, but no sex differences were
outlined (Staat et al., 2005). Furthermore, some evidences also
underline that the hearts of women treated with PostC showed
worse outcomes compared to untreated women, pointing out
the need for deeper investigations on the possible application of
PostC in female patients (Shin et al., 2019).

Remote Conditioning
Remote ischemic conditioning (RIC) is considered among
cardioprotective maneuvers; it consists of brief cycles of ischemia
and reperfusion in a peripheral organ or tissue (even in arms or
legs), remote from the heart (Przyklenk et al., 1993). It can be
induced before (remote PreC), during (remote per-conditioning),
or after (remote PostC) an index ischemia (Penna et al., 2015). It
is a non-invasive and low-cost procedure that can be performed
through an inflating/deflating pneumatic cuff to induce 5 min
cycles of ischemia/reperfusion favoring the protection induced by
RIC (Hausenloy et al., 2020). Clinical benefits of this procedure
are still debated (Hausenloy et al., 2019, 2020), but recent findings
point out a possible role of humoral factors released after RIC that
have an age- and sex-dependent protective role (Heinen et al.,
2018). In particular, Heinen et al. (2018) point out a significant
protective role of humoral factors derived from young males
exposed to RIC in reducing infarct size, and this is probably due
to the phosphorylation of GSK3β that is involved in the inhibition
of mPTP through the RISK pathway. Furthermore, a recent
work by Lieder et al., reported no differences in cardioprotection
in a specific RIC model (Lieder et al., 2019). Clinical data
suggest controversial results on the efficacy of RIC, some of
them showing no cardioprotection (García Del Blanco et al.,
2021), while others underlining cardioprotective effects of RIC

with no sex differences (Crimi et al., 2013; Eitel et al., 2015;
Sloth et al., 2015; Kleinbongard et al., 2016). Insufficient data in
animal and clinical studies point out differences between sexes
in cardioprotective effects of RIC, and some authors suggest
estrogens as possible confounding factors that make difficult
the interpretation of limited data regarding the role of RIC
in female subjects (Brevoord et al., 2012; Lieder et al., 2019;
Shaban and Leira, 2019).

CONCLUSION

In this brief report, we have outlined different responses in female
and male hearts to IRI, and in particular we focused on a primary
role of estrogens in cardioprotection. Some of the most studied
cardioprotective maneuvers, in order to reduce IRI, have been
described with a particular focus on females and males’ different
responses. The overview outlined here shows that differences
between sexes in cardioprotective interventions could be linked,
but not exclusively, to the physiological role of sexual hormones
that change throughout the lifespan highlighting a complex
relationship toward age and sex in response to cardioprotective
maneuvers. In conclusion, sex and age differences have to
be considered in cardioprotection in order to optimize the
clinical application of these procedures. As Figure 1 shows,
we have focused on intrinsic cardioprotective mechanisms that
can be elicited by conditioning maneuvers as in our opinion
it is important to understand the sex-related differences in
these mechanisms before moving on to testing pharmaceutical
approaches. Furthermore, a deeper knowledge of the protective
pathways activated by the different conditioning maneuvers in
the two sexes represents a crucial point for clinical interventions.
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Type 2 diabetes is a chronic disease associated with micro- and macro-vascular
complications, including myocardial ischemia, and also with a specific and intrinsic
cardiac dysfunction called diabetic cardiomyopathy (DCM). Both clinical and animal
studies demonstrate significant sex differences in prevalence, pathophysiology, and
outcomes of cardiovascular diseases (CVDs), including those associated with diabetes.
The increased risk of CVDs with diabetes is higher in women compared to men with 50%
higher risk of coronary artery diseases and increased mortality when exposed to acute
myocardial infarction. Clinical studies also reveal a sexual dimorphism in the incidence
and outcomes of DCM. Based on these clinical findings, growing experimental research
was initiated to understand the impact of sex on CVDs associated with diabetes and
to identify the molecular mechanisms involved. Endothelial dysfunction, atherosclerosis,
coagulation, and fibrosis are mechanisms found to be sex-differentially modulated in
the diabetic cardiovascular system. Recently, impairment of energy metabolism also
emerged as a determinant of multiple CVDs associated with diabetes. Therefore, future
studies should thoroughly analyze the sex-specific metabolic determinants to propose
new therapeutic targets. With current medicine tending toward more personalized care
of patients, we finally propose to discuss the importance of sex as determinant in
the treatment of diabetes-associated cardiac diseases to promote a more systemic
inclusion of both males and females in clinical and preclinical studies.

Keywords: type 2 diabetes, cardiovascular diseases, sex differences, gender differences, ischemic heart
diseases, personalized care, cardioprotection, diabetic cardiomyopathy

INTRODUCTION

An alarming report from the International Federation of Diabetes recently highlighted that
prevalence of diabetes keeps increasing worldwide, affecting 463 million people in 2019
(International Diabetes Federation, 2019). Cardiovascular (CV) complications remain the
predominant causes of morbidity and mortality among diabetic patients with an increased
risk of heart failure, coronary artery diseases (CADs), myocardial infarction (MI), diabetic
cardiomyopathy (DCM), and stroke (American Diabetes Association, 2015). Despite an estimated
prevalence of diabetes slightly lower in women in comparison with men (9 vs. 9.6%)
(International Diabetes Federation, 2019), strong evidence suggests worse CV consequences
and mortality in diabetic women, independent of age. Consequently, there is a growing
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interest for a better understanding of the molecular mechanisms
involved in this phenomenon (Kautzky-Willer et al., 2016).

IMPACT OF ESTROGENS ON
CARDIOVASCULAR SYSTEM

Multiple studies show that female hormones, particularly
estrogens, have a beneficial effect on CV health (Dantas et al.,
2012; Kander et al., 2017). Estrogen receptors ERα and ERβ

are expressed in endothelial cells, vascular smooth muscle cells,
and cardiomyocytes of both sexes (Cid et al., 2002; Iorga et al.,
2017). Estrogens can affect lipid metabolism, energy balance, fat
distribution, insulin sensitivity, and blood pressure and increase
bioavailability of nitric oxide (NO) (Cid et al., 2002; Ventura-
Clapier et al., 2017a). Estrogens also positively regulate vascular
relaxation factors, such as prostaglandin I2. Therefore, estrogen
has the ability to positively regulate CV risk factors, such
as obesity, hypertension, and glucose mishandling. Studies on
ovariectomized animals demonstrate greater impairment of left
ventricular function following an ischemia-reperfusion episode
with an implication of apoptosis, pro-inflammatory cytokines,
and reactive oxygen species (ROS). Treatment with estrogens
resulted in restoration of cardiac function, indicating a potential
cardioprotective role of female sex hormones (Lagranha et al.,
2010; Yang et al., 2018).

Compared with men, women have a higher percentage of fat
mass, primarily accumulating in the subcutaneous area (Power
and Schulkin, 2008). Estrogens modulate fat distribution through
the expression of their receptors. Of interest, a higher ERα/ERβ

ratio has been shown to correlate with lower adiposity, especially
at the visceral level (Davis et al., 2013). Importantly, healthy
women present lower intracardiac lipid levels than men (Huang
et al., 2017), and male sex is a predictor of myocardial steatosis
(Kannel and McGee, 1979; Iozzo et al., 2009). Thus, favorable
distribution of fat participates in CV health in women. Another
important point is the lower blood pressure from adolescence
onward, due to 27% less renin system activity (Blenck et al.,
2016). Hypertension is a well-known CV risk factor affecting both
sexes but with higher incidence and severity in men (Kjeldsen,
2018). Endogenous estrogen maintains vasodilation, contributing
to the control of blood pressure in premenopausal women
(Garcia et al., 2016).

INCREASED RISK IN CARDIOVASCULAR
COMPLICATIONS IN TYPE 2 DIABETIC
WOMEN

Several parameters linked to sexual dimorphism could contribute
to higher CV risk in type 2 diabetic (T2D) women in comparison
to T2D men (Table 1).

A role of estrogen and its receptors has been evocated to
explain the higher CV risk found in T2D women. Increased
expression of ERβ compared with ERα is associated with
increased oxidative stress, inflammation, and atheromatous
plaque formation (Xing et al., 2009), leading to the development

TABLE 1 | Sexual dimorphism in cardiovascular risk factors in absence or
presence of diabetes.

Male Female References

Absence of diabetes

Lifestyle

Food intake and energy
expenditure
Risk of T2D with
consumption of sugary
drinks
Physical activity and MI risk
Smoking and CADs risk
Smoking and diabetes risk

↑

–

↓

↓

=

↓

↑

↑

↑

=

Kautzky-Willer et al.,
2016
Eshak et al., 2013

Kriska et al., 2006
Thomas, 2017
Willi et al., 2007

Fat distribution

Fat percent

Preferential localization

Ectopic cardiac fat

↓

Visceral

↑

↑

Subcutaneous

↓

Power and Schulkin,
2008
Power and Schulkin,
2008; Blüher, 2013
Kannel and McGee,
1979; Iozzo et al., 2009

Blood pressure

Basal systolic and diastolic
blood pressure
Incidence and severity of
HT
Cardiac adaptation to HT

HF failure risk

↑

↑

Eccentric
hypertrophy

↓

↓

↓

Concentric
hypertrophy

↑

Blenck et al., 2016;
Kjeldsen, 2018
Anand et al., 2008

Krumholz et al., 1993;
Santos and Shah, 2014
Beale et al., 2018

Glucose metabolism

Basal insulin level

Risk of diabetes

↓

↑

↑

↓

Flanagan et al., 2006;
Reichelt et al., 2013
International Diabetes
Federation, 2019

Presence of diabetes

Fat distribution

Preferential localization

Risk of CADs with obesity

Cardiac lipid level

Visceral

↓

↓

Visceral

↑

↑

Power and Schulkin,
2008
Elffers et al., 2017; Lind
et al., 2017
Iozzo et al., 2009

Blood pressure

Incidence and severity of
HT

↓ ↑ Anand et al., 2008

Glucose metabolism

Manifestation

Insulin resistance

CV risk with prediabetes

Impaired
fasting
blood

glucose
↓

–

Impaired
glucose

tolerance
↑

↑

Rydén et al., 2007

Flanagan et al., 2006;
Reichelt et al., 2013
Levitzky et al., 2008

Arrows in the “male” column indicate differences in comparison to female; and
arrows in the “female” column indicate differences in comparison to male. CV,
cardiovascular; CADs, Coronary artery diseases; HF, heart failure; HT, hypertension.

of type 2 diabetes and CV complications. Diabetic women present
higher insulin resistance (Flanagan et al., 2006; Reichelt et al.,
2013) and are more likely to be glucose intolerant, and diabetic
men have elevated fasting blood glucose levels (Rydén et al.,
2007). Estrogen supplementation in postmenopausal women
decreases fasting blood glucose and, thus, improves glucose
tolerance (Huang et al., 2017). Ovariectomized Sprague–Dawley
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females had poorer glucose tolerance than non-ovariectomized
animals (Saengsirisuwan et al., 2009). Importantly, prediabetes
(fasting blood glucose: 100–125 mg/dL) is predictive of
CVDs only in women (Levitzky et al., 2008). The greater
insulin resistance found in women, coupled with endothelial
dysfunction, may explain the high risk of CV complications in
T2D (Rutter et al., 2003).

Importantly, obesity increases the relative risk of CADs by
64% in women as opposed to 46% in men (Elffers et al., 2017;
Lind et al., 2017). Besides this, visceral adipose tissue is the source
of ectopic deposition of fat in the heart (Tchernof and Despres,
2013), participating in the development of DCM through
lipotoxicity (Listenberger et al., 2001; Bugger and Abel, 2014).
T2D women have a more pronounced increase in intracardiac
lipid content than T2D men (Iozzo et al., 2009). The ERβ

receptor prevalence results in an adipogenic and diabetogenic
profile (Blüher, 2013; Davis et al., 2013), probably explaining
this difference.

Rutter et al. (2003) show that the increase in left ventricular
mass and wall thickness correlating to glucose intolerance is
more important in women than in men, largely accounted for by
obesity and pressure overload. Hypertension is more pronounced
in T2D women than in T2D men, and sex appears to influence
morphological cardiac adaptation to hypertension (Santos and
Shah, 2014). Women tend to develop concentric hypertrophy
compared with men who tend to develop eccentric hypertrophy
(Krumholz et al., 1993). This is confirmed in animal models
(Olsson et al., 2001). A decrease in peroxisome proliferator-
activated receptor-α (PPARα) signaling is found in hypertrophic
males but not in females (Harrington et al., 2017), and acute
inhibition of PPARα blocks the sex difference in hypertrophy
development. Accordingly, in humans suffering from aortic
stenosis, Kararigas et al. (2014) reveal that cardiac hypertrophy
is related to increased activation of profibrotic and inflammatory
markers in men compared with women.

SEXUAL DIMORPHISM IN ISCHEMIC
HEART DISEASES ASSOCIATED WITH
DIABETES

In the general population, incidence of MI remains higher in men
than in women. CVDs appear on average 10 years earlier in men
than in women (Kannel and McGee, 1979; Thom et al., 2006;
Anand et al., 2008; Dantas et al., 2012). Interestingly, women
seem to lose this sex-related protection in the presence of T2D
(Murphy, 2011). This could be primarily due to differences in
diagnosis and treatment of MI itself. Symptoms experienced by
women are, in 50% of cases, different from the classic symptoms
recognized in men, such as feelings of exhaustion, digestive
disorders, and shortness of breath (Mehta et al., 2016), resulting
in delayed treatment (Bugiardini et al., 2017). When considering
CADs, women have a 50% higher risk than men, presenting
increased mortality when exposed to acute MI (Kannel, 1987;
Toedebusch et al., 2018) with a strong impact of long-standing
diabetes in women (Natarajan et al., 2005). Several studies
show a higher risk of CADs at lower glucose levels in women

(Koro et al., 2008; Levitzky et al., 2008). The Framingham study
also demonstrated that risk of MI is increased by five in T2D
women compared with non-diabetic women, and this risk is only
multiplied by two in T2D men (Kannel et al., 1974; Wannamethee
et al., 2012). Moreover, 38% of women die within 1 year of their
first MI although only 25% of men do so (Thom et al., 2006).

Concomitant development of atherosclerosis, endothelial
dysfunction, and impairment of the coagulation profile could
explain, in part, why diabetic women present a higher risk
of ischemic heart diseases (IHDs). Clinical studies reveal
a more severe atherogenic dyslipidemia in diabetic women,
particularly through an increase in triglycerides and lipoprotein
cholesterol concentrations (Walden et al., 1984). Accumulation of
oxidized low-density lipoprotein within arteries is a mechanism
contributing to the development of atherosclerotic plaques. In
particular, Chen et al. (2002) show that its receptor, the lectin-
like oxidized low-density lipoprotein receptor-1 (LOX-1), has
an important role in atherosclerosis development. Interestingly,
sex differences in LOX-1 are reported with a particularly high
expression in diabetic and obese women (Brinkley et al., 2008),
making it an interesting pathway related to sex differences in
diabetes and IHDs.

Atherosclerosis is an important factor contributing to the
development of endothelial dysfunction. Diabetic women are also
characterized by greater endothelium impairment in comparison
to diabetic men. Clinical studies particularly show endothelium-
dependent vasodilation alteration, which is confirmed in different
animal models of T2D (Alameddine et al., 2015; Ranucci et al.,
2019). A decrease in endothelium-dependent and -independent
vascular response is observed in female Goto-Kakizaki rats
with lower coronary flow and reduced upregulation of the NO
pathway (Desrois et al., 2017; Palee et al., 2017). Zhang et al. reveal
a predisposition of females to vascular lesions after induction of
diabetes in both mesenteric arteries and the aorta (Zhang et al.,
2012; Hunter et al., 2017). Regulation of the protein kinase B
pathway may also contribute to vascular endothelial dysfunction
and myocardial sensitivity to an ischemia-reperfusion episode
(Desrois et al., 2004), especially in females (Reichelt et al.,
2013). Goel et al. (2008) suggest that estrogen causes gender-
specific endothelial dysfunction in hyperglycemic conditions
by increasing the expression of PKCβ and increasing O2

−

production in females. Hyperglycemia also alters the balance of
estrogen receptors and increases both oxidative stress and the
level of vasoconstrictors (Donahue et al., 2007; Wannamethee
et al., 2012; Hunter et al., 2017).

Interaction between endothelial impairment and platelet
aggregation is also implicated in atherosclerosis pathogenesis.
Diabetic women present elevation of fibrinolytic/thrombotic
factors during the transition from normoglycemia to diabetes
(Steinberg et al., 2000; Donahue et al., 2007, 2011), leading
to a prothrombotic coagulation profile (Steinberg et al., 2000;
Donahue et al., 2007). Meigs et al. report an increase in circulating
levels of thrombosis-promoting factors (Plasminogen activator
inhibitor-1, von Willebrand factor) and adhesion molecules
(vascular cell adhesion molecule 1, intercellular adhesion
molecule 1) associated with atherosclerosis and microvascular
diseases (Meigs et al., 2006; Madhu, 2010). In addition, women
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with T2D are more sensitive to changes in coagulation and
inflammation than men, which could be explained by the fact
that women have a larger platelet count as well as higher platelet
reactivity than men (Ranucci et al., 2019). Together, concomitant
development of atherosclerosis, endothelial dysfunction, and
impairment of the coagulation profile lead to a favorable
environment for IHD development in diabetic women (Figure 1).

Mechanisms involved in increased mortality following
myocardial infarction in diabetic women are not fully
understood. Nevertheless, energy metabolism has recently
emerged to explain this sex difference (Figure 1). A strong
decrease in ATP and phosphocreatine cardiac content has been
observed following ischemia-reperfusion injury in prediabetic
female rats fed with a high-fat, high-sucrose diet and in diabetic
GK female rats (Fourny et al., 2019a,b). Importantly a previous
study reports no difference in high-energy compounds following
ischemia-reperfusion injury in male GK (Desrois et al., 2010),
suggesting the important role of mitochondria and particularly
the energy production pathway in female sensitivity to IHDs.

SEXUAL DIMORPHISM IN HEART
FAILURE ASSOCIATED WITH DIABETES

Heart failure is driven by CADs but also by aging, hypertension,
diabetes, and obesity (Ho et al., 2016; Beale et al., 2018; Seferović
et al., 2018). The excess risk of HF associated with diabetes is
significantly greater in women with diabetes than in diabetic men
(Ohkuma et al., 2019), increasing HF risk fivefold in women
compared to 2.4-fold in men (Beale et al., 2018). Kim et al. (2019)
also show that the impact of diabetes on long-term mortality and
HF readmission seems to be greater in females than in males.
Women represent ∼60% of patients having HF with preserved
ejection fraction (HFpEF) whether they present with diabetes or
not, but T2D women are younger, more obese, have worse renal
function, lower prevalence of atrial fibrillation, and decreased
hemoglobin levels (Lejeune et al., 2021). Importantly, HFpEF is
more prevalent in women than in men, who preferentially exert

HF with reduced ejection fraction (Beale et al., 2019; Dewan
et al., 2019). In line, Weinberg et al. (1999) show sex-related
differences in genes regulating calcium handling and contractile
function. Males have higher beta-myosin heavy chain and atrial
natriuretic factor, and lower SERCA-2 mRNAs in comparison
with females despite a similar left ventricular hypertrophy and
systolic overload (Weinberg et al., 1999).

Besides CADs and hypertension, the diabetic heart is
characterized by alterations of its structure and mass as well as
of its diastolic and systolic function, leading to the concept of
DCM (Boudina and Abel, 2010). Interestingly, DCM prevalence
is higher in women in comparison to men. In particular,
Kiencke et al. (2010) show that female gender is an independent
risk factor for DCM, characterized by greater structural and
functional impairment (Kiencke et al., 2010; Toedebusch et al.,
2018; Figure 1).

Myocardial remodeling occurs during DCM development
with an increase in fibrosis and collagen I and III deposits,
leading to myocardial rigidity (Murphy et al., 2017). Studies show
greater myocardial remodeling and fibrosis in women with HF
compared with men (Li et al., 2017). Women with T2D have
greater cardiac hypertrophy, myocardial wall thickening, and an
increase in left ventricular mass. Greater hypertrophy is also
observed in female GK rats compared with males (Desrois et al.,
2004). Estrogen receptor ERβ is shown to play an important role
in the regulation of collagen levels (Schuster et al., 2016). Schuster
et al. (2016) reveal that overexpression of ERβ in mice reduced
myocardial fibrosis and collagen I/III deposits, improving cardiac
function. Inversely, Skavdahl et al. (2005) detect basal cardiac
hypertrophy in female mice deficient for ERβ, confirming
the important role of this receptor for cardiac hypertrophy
development in females. Moreover, imbalance between ERα and
ERβ is reported in diabetic women and may explain the loss of
estrogen cardioprotection regarding myocardial hypertrophy and
fibrosis in DCM (Wells et al., 2005).

A fined-tuned regulation of metabolism and energy
production is essential for heart function (Horman et al.,
2012; Bertrand et al., 2020). Female cardiomyocytes contain

FIGURE 1 | Mechanisms involved in the higher risk and mortality of type 2 diabetic women in ischemic heart diseases and diabetic cardiomyopathy. Detailed
information is provided in the main text. Blue arrows represent differences in comparison to diabetic men.
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less mitochondria, but they are more efficient than in male
cardiomyocytes. Female hearts use fatty acids for energy
production in greater proportion than males (Djouadi et al.,
1998; Ventura-Clapier et al., 2017b). They also produce fewer
ROS, have a lower calcium uptake rate, and a greater calcium
retention capacity (Ventura-Clapier et al., 2017b). This sexual
dimorphism does not lead to a difference in respiration and
mitochondrial efficiency in the basal state but could play a role in
pathological situations such as DCM. Of interest, a mitochondrial
localization of estrogen receptors is reported, inducing direct
effects of estrogen on mitochondrial respiration and antioxidant
defenses (Gupte et al., 2015). Billimoria et al. (2006) show a
greater mitochondrial respiration in female streptozotocin-
treated (STZ) rats in comparison with corresponding males.
Lagranha et al. (2010) show that the phosphorylation level of
mitochondrial proteins is more important in females compared
with males. This is particularly the case for the aldehyde
dehydrogenase 2, leading to a decrease in ROS production
(Lagranha et al., 2010; Tchernof and Despres, 2013).

Metabolic inflexibility is commonly noticed in the diabetic
heart, which mainly relies on fatty acid oxidation for energy
production (Vallerie and Bornfeldt, 2015). The increase in
fatty acid oxidation in the diabetic heart is associated with an
increase in PPARα, which plays a key role in the development
of cardiac hypertrophy and dysfunction in DCM (Madrazo
and Kelly, 2008; Bayeva et al., 2013). Interestingly, estrogen is
involved in the signaling pathway of lipid metabolism and may
explain the differences in mitochondrial metabolism observed
between diabetic males and females. Indeed, Djouadi et al. (1998)
show, in PPARα−/− mice, that the subsequent inhibition of
cellular fatty acid metabolism caused massive accumulation of
hepatic and cardiac lipids, hypoglycemia, and death in 100% of
males but only 25% of females. The treatment with β-estradiol
decreased the mortality in males, demonstrating the role of
female sex hormones in lipid homeostasis mediated by PPARα

(Djouadi et al., 1998). In the last decade, micro-RNAs emerged
as biomarkers of DCM and targets for new treatment. Yin
et al. (2019) show that miR-30c protects cardiac metabolism
and function in diabetes through PPARα modulation and its
downstream effector, the co-activator Peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC1α). The
miR-208a, whose overexpression induced spontaneous cardiac
hypertrophy (Callis et al., 2009), is another miR playing a
role in DCM. Recently, Lum-Naihe et al. (2017) highlighted
higher miR-208a expression in female diabetic hearts than in
male counterparts.

PERSONALIZED CARE OF DIABETIC
PATIENTS

Involvement of female hormones in various physiological and
pathophysiological processes has led the scientific community
to focus their research on the male sex. However, we currently
know that women have a different clinical presentation and
drug response in multiple pathologies, including CVDs and
T2D (Mathieu et al., 2018; Fourny et al., 2019b). First, clinical

trials demonstrated sex differences in lifestyle intervention in
diabetic patients. Moderate-intensity resistance exercise training
is a more favorable approach for hypertensive women because
of greater decreases in diastolic blood pressure and significant
increases in flow-mediated dilation compared with their male
counterparts (Collier et al., 2011). Weight loss with intensive
lifestyle modification led to greater decreases in glucose/insulin
concentration, insulin resistance, triglyceride, and glycated
hemoglobin HbA1c levels in men than in women, indicating
that women should particularly pay attention to risk factors,
such as obesity (Perreault et al., 2008). This was confirmed in
animal models in which diet change is most effective to reduce
inflammation in male mice (Griffin et al., 2019).

Sex differences are also reported in regard to the response
to antidiabetic drugs. In young patients, metformin plus
rosiglitazone was more effective in girls than in boys (Zeitler
et al., 2012). In adults, women had a higher reduction of
body weight after treatment with metformin or sulfonylurea,
whereas men displayed higher HbA1c reduction after treatment
with metformin only (Schütt et al., 2015). Sex differences were
also reported for incretins with a better glycemic control in
men (Anichini et al., 2013) while others showed greater weight
loss, reductions of fasting glucose, and blood pressure levels in
women (Pencek et al., 2012). The LEADER study highlighted
a greater CV benefit in men than in women with liraglutide
treatment (Verma et al., 2018). Recently, Raparelli et al. (2020)
demonstrated greater CV effectiveness of GLP-1 receptor agonist
in women. However, “the real-world experience” study showed
that men achieved target glycemic response in higher proportions
than women after 1 year of exenatide (Anichini et al., 2013).
A greater glycemic response and HbA1c reduction was found
with sulfonylureas than with thiazolidinediones in men, whereas
female sex was associated with greater HbA1c reduction but
a weight gain and edema risk with thiazolidinediones (Dennis
et al., 2018). Interestingly, Zinman et al. (2015) reported no sex
difference in the EMPA-REG OUTCOME trial in effects of a
sodium-glucose cotransporter 2 inhibitor. However, subgroup
analysis showed a significant CV benefit in males only (Kautzky-
Willer and Harreiter, 2017). In 2020, an important study showed
no differences for vascular efficacy outcomes or death with major
protection against major adverse CV events, HF, vascular death,
and total mortality in both men and women (Rådholm et al.,
2020). Taken together, these studies clearly show that sex should
be considered in the choice of antidiabetic treatment to move
toward “precision medicine,” which aims to treat patients with
accurate care that is more personalized and including individual
variability (Currie and Delles, 2018; Prasad and Groop, 2019).
However, mechanisms involved in these differences are not yet
understood, and disparity of antidiabetic treatments used, alone
or in combination, makes comparison difficult.

The choice of the animal model to be employed is also
delicate for the efficient transfer of results to humans, particularly
when comparing males and females. Indeed, studying females
is not always possible in animal T2D models. For example,
the female TallyHo mouse does not show hyperglycemia unlike
males (Kim et al., 2005) and the female Nagoya-Shibata-Yasuda
mouse has a low incidence of type 2 diabetes compared with
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males (Ueda et al., 1995). Besides this, enriched diets are also
commonly used in the literature, but their diversity and duration
make comparison difficult. Thus, each diet-induced and energetic
diabetic model should be well characterized to ensure good
interpretation of the results obtained in both sexes.

CONCLUSION

In conclusion, clinical and animal studies clearly indicate that
there are sex differences in T2D-associated CV complications.
However, the precise molecular mechanisms responsible for
these differences are still largely blurred. Recent studies have
particularly emphasized the link between energy metabolism and
miRs. Thus, future studies should particularly pay attention to the
metabolic dysfunctions that are involved in both IHDs and DCM
development. This could provide new targets for the treatment
of the diabetic heart. In addition, the antidiabetic drug response
also differs significantly according to sex. Therefore, the scientific
community must include both sexes in future clinical trials and

animal studies to improve quality of care and bring a more
personalized treatment to each patient.
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Angiotensin-converting enzyme 2 (ACE 2) in the heart including its sex dependency

in the hypertensive heart, has not been much studied compared to ACE. In the

present study, we used the Dahl salt-sensitive rat exposed to fructose and salt to

model a hypertensive phenotype in males, females, and ovariectomized females. Blood

pressure was measured by the tale-cuff technique in the conscious state. Expression of

RAS-related genes ACE, ACE2, angiotensin II receptor type 1, Mas1, and CMA1 in the

heart were quantified. The results revealed small but significant differences between male

and female groups. The main results indicate the presence of a male preponderance for

an increase in ACE and ACE2 gene expression. The results are in accordance with the

role of androgens or male chromosomal complement in controlling the expression of the

two ACE genes.

Keywords: hypertensive heart, angiotensin-converting enzyme, male, female, rat, salt-sensitive, fructose,

angiotensin-converting enzyme 2

INTRODUCTION

The COVID-19 pandemic has drawn attention to the connection between cardiovascular disease
and coronavirus infections. Hypertension seems to increase the risk of symptomatic COVID-19
infection. Male sex is overrepresented among those with severe disease development and fatality
(Borges do Nascimento et al., 2020; Gebhard et al., 2020). Male and female sex hormones are
steroids with the regulation of gene expression as their main (but not only) mechanism of action.
Sex steroid-responsive elements are present in various cells of the heart.

Angiotensin-converting enzyme 2 (ACE2) (Gheblawi et al., 2020), the cell membrane
ectopeptidase linked to the renin-angiotensin system (RAS), is described to function as a receptor
for the penetration of the coronavirus into human cells (Chen et al., 2020).
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Major RAS components are widely expressed in the body
and are important treatment targets against hypertension.
Angiotensin II (AngII) produced from angiotensin I (AngI)
by the enzyme ACE or chymase, has vasoconstrictive,
proinflammatory, and prooxidative effects via binding to
the AT1R receptor (ACE1/AngII/AT1R axis). An alternative
pathway is the conversion of AngI or AngII to the peptide
Ang1-7 by the ACE2 enzyme. Ang1-7 binds to a specific MAS
receptor promoting anti-fibrotic and vasodilator effects counter-
regulating the effect of AngII (ACE2/Ang1-7/Mas axis). Ang1-9
is an alternative product of AngI with an anti-hypertropic effect.
At the protein level, ACE is constitutively present in endothelial
cells independent of the organ. Proposed cellular sources of
ACE2 in the heart are macrophages and in the vessel wall most
likely pericytes and cardiomyocytes (Burrell et al., 2005; Chen
et al., 2020; Hikmet et al., 2020). The Mas receptor is reported
to be present in the sarcolemma of cardiomyocytes (Bader et al.,
2018). Chymase in mast cells localized to the heart represents
renin and ACE independent pathway to AngII production
(Ferrario et al., 2020; Froogh et al., 2020).

The present study aimed to examine if upstream regulation
of ACE2 and related RAS gene-expression components in
the hypertensive heart were dependent on sex in a female
sex hormone-reliant manner. For this purpose, we examined
male, female, and ovariectomized female Dahl salt-sensitive
hypertensive rats. Only minor differences in gene expression
of RAS components were detected. However, male sex but not
female sex or loss of ovary function was associated with higher
ACH2 and ACE gene expression.

METHOD

Six groups (n = 14–15) of adult male and female Dahl salt-
sensitive rats, aged 12 weeks, were included in the study. The
female rats were divided into two groups, one group underwent

TABLE 1 | List of primers for gene expression analysis with their corresponding protein names.

Gene Protein Primer

HPRT1 (HPRT) Hypoxanthine-guanine phosphoribosyltransferase NM_012583.2 GACCGGTTCTGTCATGTCG

ACCTGGTTCATCATCACTAATCAC

SDHA Succinate dehydrogenase complex, subunit A, flavoprotein variant NM_130428.1 CCCTGAGCATTGCAGAATC

CATTTGCCTTAATCGGAGGA

Ace (ACE1) Angiotensin I converting enzyme NM_012544.1 GGAGACGACTTACAGTGTAGCC

CACACCCAAAGCAATTCTTC

Ace2 Angiotensin I converting enzyme 2 NM_001012006.1 TCAAGGGAAAAGAACCAGACA

GGTTTCAAATCACTCACCCATAC

Agtr1 Rattus norvegicus angiotensin II receptor type 1, type 1b (Agtr1b) NM_031009.2 GGTTCAAAGCCTGCAAGTGAA

GAGTGAGCTGCTTAGCCCAAA

Cma1 (CYH; MCT1; chymase) chymase 1, mast cell NM_013092.1 ACTCTCGGCCAACTTCAACT

TTCACGTTTGTTCTGCCCCA

Mas1 MAS1 proto-oncogene, G protein-coupled receptor NM_012757.2 GGAGAGCCTGATTTCCCCTC

ACAGTGAGCTGGGTGCTTTG

ovariectomy, and thereafter, the Dahl rats received fructose
in their drinking water with a control diet (0.3% NaCl) or an
elevated salt diet (6%). The study was approved by local and
Norwegian animal welfare authorities (approval ID 6784), and
all procedures conformed to the guidelines from Directive
2010/63/EU of the European Parliament on the protection
of animals used for scientific purposes. Blood pressure was
monitored non-invasively using the tale-cuff technique. After
8 weeks, heart samples from the apex of the left ventricle were
harvested and stored in RNA later (Qiagen, Hilden, Germany)
and expression of selected target genes ACE, ACE2, Agtr1,MAS1,
and CMA1 were examined (Table 1). Total RNA was isolated
according to the RNeasyFibrous Tissue protocol (Qiagen).
RNA concentration was measured spectrophotometrically
(NanoDrop, Witec, Switzerland). Reverse transcription of
RNA was carried out using a High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Foster City, CA, USA).
The qRT-PCR was performed in an ABI PRISM 7900 HT Fast
real-time thermal cycler using the SYBR green master mix
(Applied Biosystems). Primers were obtained from Eurogentec
(Seraing, Belgium) and Sigma-Aldrich (St Louis, Mo, USA).
The relative expression ratio of the target gene was calculated
using the 2−11CT method. The expression of the target genes
was normalized to stably expressed reference genes succinate
dehydrogenase complex flavoprotein subunit A (SDHA) and
hypoxanthine-guanine phosphoribosyltransferase (HPRT)
selected based on testing by NormFinder (Andersen et al., 2004).

The statistics were based on a 2×3 factorial design with two
independent variables, diet-salt two levels (with and without salt)
and sex three levels (male, female, and ovariectomized female),
respectively. Statistical analysis was performed using two-way
ANOVA (SigmaStat, Systate Software) for the effect of sex and
the effect of increased diet salt and interaction between these
two. The Holm-Sidac test was used as a post-hoc test to test
for significance between the six groups. Results are presented as
mean± SEM.
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TABLE 2 | Blood pressure, body weight, and heart weight (indexed to tibia length).

Male Male salt Female Female salt Female OVX Female OVX salt

Body weight (g) 407 ± 5+ 393 ± 7+ 254 ± 2 260 ± 4 293 ± 8+ 306 ± 2+

Heart/tibia (g/cm) 2.5 ± 0.09+ 2.6 ± 0.07+ 1.9 ± 0.04 2.2 ± 0.07* 2.1 ± 0.06 2.5 ± 0.06+*

BP systole (mmHg) 156 ± 4.5 186 ± 6.3* 161 ± 7.7 183 ± 6.9* 153 ± 4.0 192 ± 6.2*

BP diastole (mmHg) 111 ± 4.3 139 ± 6.1* 117 ± 7.9 138 ± 6.7* 100 ± 3.6 143 ± 7.5*

Mean± SEM (n= 14–15), *indicates p < 0.05 vs. the corresponding same-sex group with normal salt, + indicates p < 0.05 vs. the corresponding female ovary-intact normal diet group.

FIGURE 1 | Expression of selected genes (mRNA) normalized to housekeeping genes succinate dehydrogenase complex flavoprotein subunit A (SDHA) and

hypoxanthine phosphoribosyltransferase 1 (HPRT1) and presented relative to the expression level in female ovary-intact hearts with standard salt diet. Mean ± SEM (n

= 14–15), *indicates p < 0.05 vs. the corresponding same-sex group with normal salt, + indicates p < 0.05 vs. the corresponding female ovary-intact normal diet

group (this group serving as control).

RESULTS

At the endpoint, blood pressure in the six groups was elevated
above values at 12 weeks in untreated low salt diet Dahl rats
(historical controls, mean arterial pressure males 101 ± 3.4
mmHg, females 105 ± 3.2, ovx females 102 ± 4.0, n = 6). The
added salt diet significantly increased both systolic and diastolic
arterial blood pressure above the fructose alone (Table 2).
Interestingly, there were no differences in blood pressure between
the three subgroups within each of the two diet groups i.e.,
there were no detectable differences in blood pressure between
male, female, and female ovariectomized rats suggesting that any
difference in gene expression would not be a direct reflection
of differences in blood pressure at the endpoint. However, a
significant difference in heart weight relative to tibia length was
present between females given elevated salt and females given
standard salt.

Angiotensin-converting enzyme 2 gene expression increased
slightly but significantly in all three salt-exposed hypertensive
groups (Figure 1). Interestingly, the highest level of ACE2
expression was observed in high salt male hypertensive hearts,
which was almost doubled compared to hearts from females with
a standard salt diet (1.85± 0.1 vs. 1.00± 0.05 units).With respect
to ACE1, expression was more pronounced in males compared to
female hearts, independent of diet intervention. Mas1 tended to
be slightly downregulated in hypertensive hearts, however, only

significantly in hearts from males and ovariectomized females
when compared to corresponding controls.

The gene expression data are presented relative to the
expression of the same gene in ovary intact females exposed
to normal salt (Figure 1). Normalized to HPRT and STDA
measured values were ACE 0.034 ± 0.002, ACE2 0.0032 ±

0.00017, Agtr1α 0.025 ± 0.0016, Mas1 0.0023 ± 0.0024, and
CMA1 0.0032 ± 0.0037 (mean ± SEM) in this subgroup. The
calculated average ratio ACE2/ACE gene expression was 0.09 ±

0.008 in males, 0.106 ± 0.011 in females, and 0.102 ± 0.007 in
female ovx and in corresponding subgroups receiving high salt
0.110 ± 0.008, 0.120 ± 0.009, and 0.112 ± 0.005 (p = 0.036,
overall effect of the high salt intervention).

DISCUSSION

Salt-dependent hypertension is widely distributed in the human
population and is caused by the interaction between diet and
individual genetic makeup (Rodriguez-Iturbe et al., 2007). The
condition is mimicked experimentally in the Dahl salt-sensitive
rat, which gradually develops hypertension on a standard diet
supplemented with fructose and accelerates its development on
the high salt diet (Ludvigsen et al., 2018; Lee et al., 2020).
In the present study of RAS-related gene expression in Dahl
salt-sensitive male and female rat hearts, we observed that
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overall expression of ACE and ACE2 was higher in males with
elevated blood pressure compared to females. Two levels of
elevated blood pressure were studied, and the more pronounced
hypertension increased ACE2 gene expression slightly but
significantly in all three groups. Interestingly, we did not find
significant differences between hearts from intact females and
ovariectomized females. Thus, the presence of androgens and/or
other compounds related to the difference in sex chromosome
patterns between males and females might be responsible for
slightly higher ACE and ACE2 expression in males in the
present study.

Angiotensin-converting enzyme 2 is an X-chromosome linked
in both humans and rats. In the case of functionally significant
ACE2 polymorphisms in the population, males depend on their
maternal variant of the gene, whereas females are mosaic and
can be more robust or phenotypically variable. In humans, it is
proposed that the ACE2 belongs to a part of the X chromosome
that escapes inactivation. To our knowledge, it is not known
if this is the case in the rat. In accordance with a connection
between androgens and ACE2 expression, ACE2 is present in
the male reproductive tract and is especially highly expressed
in the testis (Younis et al., 2020). Conclusions from the present
study are substantially limited since differences in expression
were statistically significant but small, and their physiological
relevance appears therefore unclear. Gene expression changes do
not predict ACE2 level at the cell surface. We cannot deduce that
male hearts have more receptors for the coronavirus; however,
we conclude that the regulation at gene expression level by male
sex or androgens needs to be examined in different experimental
models. Interestingly, the results based on gene expression in
the Dahl salt-sensitive rat is in agreement with findings from a
study undertaken in spontaneously hypertensive rats measuring
ACE and ACE2 activity in male and female hypertensive hearts
(Dalpiaz et al., 2015).

Compared to ACE, the ACE2 gene is expressed at a low
level, and the overall significance of ACE in the male heart
should not be underscored. It has repeatedly been shown that
ACE inhibition and AngII receptor antagonism are effective
treatments against blood pressure elevation and the progression
of concomitant observed heart hypertrophy and remodeling in
the Dahl rat (Kim et al., 2001). Heart hypertrophy, fibrosis, and
inflammation are the main findings when salt is started at an
early age (7 weeks) leading to cardiac failure mirroring heart
failure with preserved ejection fraction (HFpEF) after 10 weeks
(Gallet et al., 2016). With respect to experimental studies of
pressure-induced heart remodeling, most studies are performed
in the male. However, in heart failure mast cells, macrophages

and T cells contribute significantly and add to the complexity
regarding the role of chromosomal sex and sex hormones. This
study does not give any evidence to propose a cell source of the
various components of RAS in the heart. CMA1 was included
since mast cell is part of a hypertensive remodeling of the
heart, chymase is a pathway for ACE independent conversion
of AngI to AngII in the heart, and sexual dimorphism has been
proposed with estrogen as a regulating factor (Li et al., 2015).
The decrease in detected expression in high salt male hearts and
female ovariectomized hearts isminor, and all hearts studied were
obtained from fructose-feed rats with elevated blood pressure
(Tran et al., 2009).

In conclusion, the increased expression level of ACE and
ACE2 found in the male hypertensive heart indicates that
more attention should be paid to mechanisms regulating the
different parts of RAS by taking both hormonal status and sex
into consideration.
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Previous reports suggest that diabetes may differentially affect the vascular beds of
females and males. The objectives of this study were to examine whether there were
(1) sex differences in aortic function and (2) alterations in the relative contribution of
endothelium-derived relaxing factors in modulating aortic reactivity in UC Davis Type
2 Diabetes Mellitus (UCD-T2DM) rats. Endothelium-dependent vasorelaxation (EDV)
in response to acetylcholine (ACh) was measured in aortic rings before and after
exposure to pharmacological inhibitors. Relaxation responses to sodium nitroprusside
were assessed in endothelium-denuded rings. Moreover, contractile responses to
phenylephrine (PE) were measured before and after incubation of aortic rings with a nitric
oxide synthase (NOS) inhibitor in the presence of indomethacin. Metabolic parameters
and expression of molecules associated with vascular and insulin signaling as well as
reactive oxygen species generation were determined. Diabetes slightly but significantly
impaired EDV in response to ACh in aortas from females but potentiated the relaxation
response in males. The potentiation of EDV in diabetic male aortas was accompanied
by a traces of nitric oxide (NO)- and prostanoid-independent relaxation and elevated
aortic expression of small- and intermediate conductance Ca2+-activated K+ channels
in this group. The smooth muscle sensitivity to NO was not altered, whereas the
responsiveness to PE was significantly enhanced in aortas of diabetic groups in both
sexes. Endothelium-derived NO during smooth muscle contraction, as assessed by
the potentiation of the response to PE after NOS inhibition, was reduced in aortas
of diabetic rats regardless of sex. Accordingly, decreases in pAkt and peNOS were
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observed in aortas from diabetic rats in both sexes compared with controls. Our data
suggest that a decrease in insulin sensitivity via pAkt-peNOS-dependent signaling and
an increase in oxidative stress may contribute to the elevated contractile responses
observed in diabetic aortas in both sexes. This study demonstrates that aortic function
in UCD-T2DM rats is altered in both sexes. Here, we provide the first evidence of sexual
dimorphism in aortic relaxation in UCD-T2DM rats.

Keywords: sex differences, aorta, type-2 diabetes, nitric oxide, insulin resistance

INTRODUCTION

Over the past decade, obesity and type 2 diabetes (T2D) have
reached epidemic levels worldwide, becoming one of the most
challenging health problems in the 21st century (Tabish, 2007;
Zheng et al., 2018). Cardiovascular diseases (CVDs) are one
of the primary causes of morbidity and mortality in patients
with diabetes (Brunner et al., 2005). Premenopausal women
have a lower incidence of CVD when compared with age-
matched men (Barrett-Connor, 1994). However, premenopausal
women with diabetes not only lose the sex-based cardiovascular
protection but also experience a higher relative risk of CVD
compared to diabetic men (Steinberg et al., 2000). It has
been established that hyperglycemia and diabetes affect female
and male vascular beds differently. We previously reported
sex differences in the development of vascular dysfunction in
arteries of streptozotocin-induced type 1 diabetic rats (Zhang
et al., 2012; Han et al., 2016). However, the pathophysiology
of vascular dysfunction in T2D is likely to differ from that in
type 1 diabetes.

With the increasing prevalence of T2D, creating effective
preclinical models of the disease has become crucial for disease
prevention and treatment. Dr. Havel and colleagues at the
University of California (UC) Davis developed a validated rat
model of T2D, the UC Davis Type 2 Diabetes Mellitus (UCD-
T2DM) rats. UCD-T2DM rats exhibit all of the key features of
the disease in humans such as polygenic adult-onset obesity,
insulin resistance, intact leptin signaling, and spontaneous
β-cell decompensation with preserved fertility in both sexes
(Cummings et al., 2008; Kleinert et al., 2018).

Recently, we reported sex differences in the development of
impaired vascular reactivity in mesenteric arteries from UCD-
T2DM rats (Shaligram et al., 2020). Nevertheless, it remains to be
established whether this reported sexual dimorphism is specific
to the small arteries or is generalizable to larger conduit arteries
in type 2 diabetic arteries. Thus, the initial aim of our study
was to determine whether the aortic response to endothelium-
dependent and independent vasodilators and vasoconstrictors
varies with sex in UCD-T2DM rats.

Endothelium-dependent vasorelaxation (EDV) is considered
a reproducible factor for assessing endothelial function (De
Vriese et al., 2000). In diabetes, enhanced (Aloysius et al., 2012),
impaired (Vanhoutte et al., 2009), and preserved EDV (Miller and
Vanhoutte, 1991) have been reported. Altered EDV can result
from alteration in synthesis or release of endothelium-derived
relaxing factors (EDRF) [nitric oxide (NO), prostacyclin (PGI2),

and endothelium-derived hyperpolarizing factor (EDHF)] or
endothelium-derived contracting factors.

Nitric oxide has been considered a major contributor to
EDV in large conduit arteries (Félétou, 2011), whereas EDHF
plays a predominant role in small resistance arteries (Garland
et al., 1995). In large conduit arteries, it is widely accepted that
NO levels are reduced in diabetes (Han et al., 2014) and that
changes in the level of endothelial NO synthase (eNOS) and/or
increased generation of reactive oxygen species (ROS) such as
superoxide may contribute to the reduction of NO production
or bioavailability.

It has also been proposed that EDHF may play a role
as a backup vasodilator in small resistance vessels when NO
bioavailability is compromised (Brandes et al., 2000). The
chemical identity of EDHF varies with vascular size, vascular
bed and species (Leo et al., 2011). The classical EDHF pathway
involves the opening of small- and intermediate-conductance
calcium-activated potassium channels (SKCa and IKCa) on the
endothelium and the subsequent hyperpolarizing of smooth
muscle cells via activation of Na-K-ATPase and/or Kir channels
or through myoendothelial gap junctions (Edwards et al., 1998;
Parkington et al., 2002; Sandow et al., 2002). Previous studies
have provided evidence of EDHF-type responses induced by
acetylcholine (ACh) in rabbit conduit arteries that are potentiated
by the elevation of cAMP but inhibited by disruption of gap
junctions or a combination of SKCa and IKCa channel blockers
(Griffith et al., 2002).

Overall, studies in various experimental models have
evaluated the effects of diabetes on endothelial NO production.
However, the sex-specific effects of T2D on the relative
contribution of EDRF to the vascular reactivity of large conduit
arteries remain unclear. Here, we examined changes in the
relative importance of EDRF in modulating aortic relaxation in
male and female UCD-T2DM rats.

Insulin resistance, a key element in the pathogenesis of
T2D (Ormazabal et al., 2018), is associated with endothelial
dysfunction by several mechanisms including oxidative stress.
Here, we evaluated the responsiveness to insulin signaling by
measuring the aortic expression of insulin receptor substrates
(IRS-1 and IRS-2), total and phosphorylated levels of Akt, and
eNOS. Since NADPH oxidases (NOX) are a potent cellular source
of superoxide in the cardiovascular system (Drummond and
Sobey, 2014), experiments were also carried out to determine the
aortic expression of NOX subtypes. Moreover, ROS generation
was determined in primary aortic endothelial cells isolated from
male and female UCD-T2DM rats.
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This study demonstrates that aortic function in UCD-T2DM
rats is altered in both sexes. Here, we provide the first evidence of
sexual dimorphism in aortic relaxation in UCD-T2DM rats.

MATERIALS AND METHODS

Experimental Animals
Male and female UCD-T2DM rats were generated by breeding
obese Sprague–Dawley (SD) rats with Zucker Diabetic Fatty
(ZDF) lean rats that were homozygous wild type for the leptin
receptor and had inherent β-cell defects. Rats were bred at the
animal facility in the Department of Nutrition at the UC Davis
(Cummings et al., 2008).

Rats were maintained with water and standard rodent chow
food ad libitum at constant humidity and temperature, with
a light/dark cycle of 12 h. After acclimation for 1 week at
the animal facility at the University of the Pacific, animals
were euthanized for experiments using carbon dioxide as the
euthanasia agent, according to the recommendations from the
2013 AVMA Guidelines on Euthanasia and the NIH Guidelines
for the Care and Use of Laboratory Animals: Eighth Edition
(US National Institutes of Health, 2011). Age-matched male
and female non-obese and non-diabetic SD rats (Simonsen
Laboratories, Gilroy, CA, United States) (∼average 19–20 weeks
old) were employed as controls for UCD-T2DM rats. Diabetic
phase was determined by measuring blood glucose levels for
three subsequent measurements using a standard glucose test
meter (OneTouch, LifeScan, CA). Animals were considered
diabetic when non-fasting blood glucose levels were higher than
300 mg/dl. The diabetic animals used in the study were diabetic
for 35 ± 2.7 (males) and 31 ± 3.1 (females) days. UCD-T2DM
rats exhibit insulin resistance prior to the onset of diabetes,
similar to humans (Cummings et al., 2008).

All animal protocols were approved by the Animal Care
Committee of the University of the Pacific and UC Davis
Institutional Animal Care and Use Committee and complied
with the Guide for the Care and Use of Laboratory Animals:
Eighth Edition (US National Institutes of Health, 2011) and with
ARRIVE guidelines.

Measurement of Metabolic Parameters
in the Plasma
Blood glucose levels were measured in 12-h fasted rats
using a standard glucose test meter (OneTouch, LifeScan,
CA) and triglycerides were measured by using an Accutrend
Plus System (hand-held point-of-care device) and specific test
strips (Roche Farma, Barcelona, Spain) with a drop of blood
collected from the tail vein. Blood samples were collected from
intracardiac puncture and obtained in tubes containing heparin
as an anticoagulant. Plasma was obtained by centrifugation
at 10,000 × g for 5 min at 4◦C and stored at −80◦C until
used. Insulin levels were determined in plasma samples by
using ELISA kits according to the manufacturer’s protocol
(Spi Bio, Montigny Le Bretonneux, France). Insulin sensitivity
index (ISI) was determined from fasting plasma glucose and
insulin using the following formula: ISI = [2/(blood insulin

(nM) × blood glucose (µM) + 1)] (Sangüesa et al., 2017).
HbA1c was measured using the Bayer A1cNow test kit,
according to the manufacturer’s instructions, and animals with
A1c levels greater than 6.5% on two separate tests were
considered diabetic.

Measurement of Arterial Tension
The thoracic aorta was cut into 2-mm rings after being
excised and cleaned off adhering connective tissues. To measure
isometric tension, the rings were suspended horizontally between
two stainless steel hooks in individual organ baths containing
20 ml of Krebs buffer (in mM: 119 NaCl, 4.7 KCl, 1.18 KH2PO4,
1.17 MgSO4, 24.9 NaHCO3, 0.023 EDTA, 1.6 CaCl2, and 6.0
glucose) at 37◦C bubbled with 95% O2 and 5% CO2. Isometric
tension was continuously monitored with a computer-based
data acquisition system (PowerLab; ADInstruments, Colorado
Springs, CO, United States). To develop a stable basal tone, aortic
rings were equilibrated under 1g resting tension for 40 min.
Rings were stimulated two times with 80 mM KCl every 20 min
until maximum contraction was achieved. The ability of ACh
(10 µM) to induce relaxation of phenylephrine (PE, 2 µM) pre-
contracted vessels was taken as evidence for the preservation
of an intact endothelium. For the relaxation studies, an equal
submaximal concentration of PE (2 µM) was used in both
males and females.

Relaxation Responses to ACh
Aortic rings were precontracted with PE (2 µM), which
represented a concentration that produced 80% of the maximal
effect (EC80). The concentration response curves (CRCs) were
obtained by the addition of increasing concentrations of ACh
(10−8 to 10−5 M). In addition, CRCs to ACh were obtained
before and after 20 min incubation with indomethacin (Indo;
10 µM; dissolved in DMSO), a cyclooxygenase (COX) inhibitor,
Indo plus 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ;
10 µM), an inhibitor of soluble guanylate cyclase (sGC), and
finally after incubation with Indo, ODQ, and N-nitro-L-arginine
(L-NNA; 100 µM), a non-selective NO synthase (NOS) inhibitor.
Tissues were washed with Krebs buffer between each CRC to
allow the rings to return to basal tone.

Relaxation Responses to Sodium
Nitroprusside (SNP)
CRCs to SNP (10−9 to 10−5 M), a NO-donor, were obtained
in endothelium-denuded aortic rings pre-contracted with PE
(2 µM) taken from all experimental groups.

Contractile Responses to PE
The constrictor CRCs to PE (10−8 to 10−5 M) were generated
before and after incubation with Nω -nitro-L-arginine methyl
ester (L-NAME, 200 µM), a NOS inhibitor, in the presence of
Indo (10 µM, dissolved in DMSO), a COX inhibitor. Tissues were
washed with Krebs buffer between each CRC to allow the rings to
return to basal tone. A vehicle-only (no drugs present) study was
performed simultaneously in aortic rings from the same animal
(data not shown).
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Western Blot Analysis
Aortic tissue samples were micronized through freezing with
liquid nitrogen and grinding with a mortar and pestle as
previously described (Baena et al., 2015). To obtain total protein
extract, samples were incubated with RIPA buffer (Sigma-
Aldrich, St. Louis, MO, United States) containing Protease
Inhibitor Cocktail (UltraCruz, Santa Cruz Biotechnology, Dallas,
TX, United States) for 1.5 h at 4◦C and centrifuged at
15,000 × g for 15 min at 4◦C, and supernatants were collected.
Protein concentrations were determined by the bicinchoninic
acid (BCA) assay.

Protein (20–30 µg) was subjected to sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE). Proteins were
then transferred to 0.45-µm nitrocellulose membranes (Bio
Rad Laboratories Inc., Hercules, CA, United States), blocked
for 1 h at room temperature with 5% w/v BSA in 0.1%
Tween-20 Tris-buffered saline (TBS), and incubated overnight
at 4◦C with primary antibodies. All primary antibodies were
diluted 1:1000 unless otherwise noted. Primary antibodies for
endothelial NO synthase (eNOS), phospho-eNOS (p-eNOS) (Ser-
1177), V-akt murine thymoma viral oncogene homolog-2 (Akt),
phospho-AKT(p-AKT) (Ser-473), and insulin receptor substrates
1 and 2 (IRS-1 and IRS-2) were supplied by Cell Signaling
(Boston, MA, United States). Antibodies against NOX1, NOX4,
KCNN3 (SKCa), and KCNN4 (IKCa) were obtained from Abcam
(Cambridge, MA, United States). Incubation with secondary
antibody (LI-COR donkey anti-Rabbit IgG IRDye 680 or anti-
mouse IgG IRDye 800CW, 1:10,000) was performed in the
blocking buffer for 1 h at room temperature. Before analyzing,
the membrane was washed four times with TBS containing 0.1%
Tween-20. Detection was done by using a LI-COR Odyssey
imaging system (Lincoln, NE, United States). The bands were
quantified by densitometry using Image Studio Lite software. To
confirm the uniformity of protein loading, blots were incubated
with GAPDH and β-actin antibodies (Cell Signaling, Boston, MA,
United States) and were normalized for GAPDH and β-actin
(data expressed as fold change from control group).

Measurement of ROS Generation by Rat
Aortic Endothelial Cells
Primary Cell Isolation and Culture
Aortas were cut open lengthwise to expose the endothelial
surface. Vessels were incubated in a collagenase II (Worthington)
solution (2 mg/ml in DMEM) at 37◦C with the endothelial
surface facing down for 30 min. Collagenase was blocked 1:1 with
complete endothelial cell growth medium [DMEM supplemented
with 10% fetal bovine serum, 1% Antibiotic-Antimycotic solution
(Gibco, MA), 4 µg/ml endothelial cell growth supplement
(Corning, 354006), 1% Non-essential amino acids (Gibco, MA),
and 10 mM HEPES (Gibco, MA)]. The endothelial surface of
each vessel was scraped into fibronectin-coated tissue culture
dishes containing complete medium. Cultures were expanded
and frozen at passage 1. The endothelial phenotype of the
preparation was confirmed by evaluating cellular uptake of
the endothelium-specific marker DiI-acetylated low-density
lipoprotein. Experiments were conducted in cells obtained from

three control and three diabetic male and four control and four
diabetic female rats. The day before the experiments, cells were
plated in commercial endothelial cell growth medium (ScienCell,
CA) supplemented with 25 mM glucose (ScienCell, CA).

Assays for Oxidant Generation in Intact Cells
H2O2 generation was measured using Amplex Red and
horseradish peroxidase (HRP) as previously described (Vázquez-
Medina et al., 2016). Briefly, cells were incubated with 50 µM
Amplex Red (Thermo Fisher, MA) and 2.5 U/ml HRP (Sigma)
for 30 min at 37◦C. The medium was collected, and absorbance
was measured at 572 nm. At the end of the experiments, the
cells were dissociated from the dishes. Protein content was
measured by the BCA gold assay (Thermo Scientific, MA)
and results were normalized to protein content. Intracellular
oxidant generation was monitored by fluorescence microscopy
using CellROX reagent (Thermo Scientific, MA). Cells loaded
with 5 µM CellROX and NucBlue (Thermo Fisher, MA) were
incubated for 30 min at 37◦C. Cells were rinsed three times
and imaged using an inverted fluorescence microscope (Zeiss
Axio Observer) fitted with a 20× objective and Zen software.
Fluorescence intensity in five fields per sample was quantified
using ImageJ (NIH) and normalized to cell number.

Statistical Analysis
All values are expressed as mean ± standard error of the
mean (SEM). Relaxation responses to each concentration of ACh
and SNP were calculated as the percentage of relaxation from
maximum PE contraction. Similarly, the recorded increase in the
force of contraction was calculated as the percentage of maximum
contraction obtained with PE at the highest dose or as changes in
tension with increasing concentration of PE in the aortic rings.
The concentration of agonist that produced half of the maximum
effect (Emax) was expressed as EC50 and calculated by a sigmoidal
dose–response model (for variable slope) using GraphPad Prism
v7 (GraphPad Software Inc., San Diego, CA, United States).
Sensitivity to each agonist was expressed as pD2 values (−log
[EC50]), which were normally distributed. The area under the
curve (AUC) was determined using GraphPad Prism 8 with
trapezoidal technique. To compare the effect of different EDRFs
such as COX, the ACh results were expressed as differences
in the area under the concentration response curve (1AUC)
between control (absence of Indo) and experimental (presence of
Indo) conditions. One-way ANOVA was used to compare means
among experimental groups (e.g., EC50, Emax, and metabolic
data). When the one-way ANOVA test returned p< 0.05, post hoc
analyses were performed using Tukey’s test. Comparison of CRCs
between two groups was done using two-way ANOVA, with one
factor being concentration and the other being group (male vs.
female and control vs. diabetic). When the ANOVA test returned
p < 0.05, post hoc analyses were performed using Bonferroni’s
or Tukey’s test. Comparison of CRCs in a pre/post-test format
within a group was done using two-way ANOVA with repeated
measures. Three-way ANOVA with factors being sex, diabetes,
and drugs (male vs. female, diabetic vs. non-diabetic and no drug
vs. drug treatment) was used to compare group means. When the
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ANOVA test returned p< 0.05, post hoc analyses were performed
using Tukey’s test.

For ROS generation assays, means were compared between
control and diabetic groups using unpaired Student’s t-tests
for both males and females. Normality was confirmed using
the Shapiro–Wilk test. Statistical analyses were conducted using
GraphPad Prism v8.4.3. Values were considered different when
p < 0.05. Student’s unpaired t-test was used for comparisons of
two group means (e.g., protein expression studies).

RESULTS

Metabolic Parameters and Insulin
Signaling in UCD-T2DM Rats
Body weights of both male and female diabetic rats were
significantly higher compared with the respective non-diabetic
controls (Table 1). Accordingly, the weight of intra-abdominal
adipose tissue, as well as its ratio to body weight (adiposity),
was higher in diabetic rats than in non-diabetic control groups
for both sexes. Moreover, male and female UCD-T2DM rats
had higher triglyceride levels in plasma than did the respective
non-diabetic controls. When compared to male UCD-T2DM
rats, female UCD-T2DM rats had significantly higher circulating
triglyceride levels and adiposity. Furthermore, both fasting
glucose and HbA1c levels were higher in male and female diabetic
rats compared to their respective non-diabetic controls. Fasting
plasma insulin concentration was significantly higher in female
diabetic rats compared with those in both the non-diabetic
female control and male diabetic groups (Table 1). Similar to the
previous report (Shaligram et al., 2020), there was no difference
in plasma insulin levels in male diabetic rats when compared
with their respective non-diabetic controls. However, the ISI was
significantly lower in diabetic groups, regardless of sex, indicating
that insulin signaling may be impaired in diabetic groups of
both sexes. When compared to male UCD-T2DM rats, female
UCD-T2DM rats had a lower ISI (Table 1).

The reduced ISI observed in the current study prompted
us to analyze the expression of the main insulin signal
transducers, insulin receptor substrate-1 (IRS-1) and insulin

receptor substrate-2 (IRS-2), in aortic tissue. As shown in
Figure 1A, IRS-1 expression was significantly reduced in both
male and female diabetic groups (by 0.5-fold and 0.6-fold in
male and female diabetic groups, respectively). In contrast,
only the female diabetic group displayed reduced IRS-2 protein
expression (0.5-fold) compared to the sex-specific non-diabetic
control (Figure 1B).

Relaxation Responses to ACh in
UCD-T2DM Rat Aortas
A sex difference was observed in aortic relaxation responses to
ACh in non-diabetic control rats. Both sensitivity, as assessed by
−log [EC50] (pD2) value, and Emax to ACh were significantly
higher in female than in male aortas (Table 2). In controls,
the pD2 to ACh was 6.57 ± 0.1 in male and 7.20 ± 0.1
in female aortas; the ACh Emax was 81.14% ± 1.6% in male
and 94.72% ± 1.9% in female aortas (n = 6–12 per group,
p < 0.05, one-way ANOVA).

When compared to the male non-diabetic control group, a
potentiated relaxation response to ACh was observed in the male
diabetic group (Figure 2A). Both the pD2 and Emax of aortic rings
to ACh were significantly enhanced in the male diabetic group
(Table 2). The pD2 to ACh was 6.57 ± 0.1 in control males and
7.14 ± 0.0 in diabetic males; the ACh Emax was 81.14% ± 1.6%
in control males and 94.04% ± 0.9% in diabetic males (n = 11–
12 per group, p < 0.05, one-way ANOVA). However, the Emax
but not the sensitivity of aortic rings to ACh was reduced slightly
but significantly in the female diabetic group compared to its
respective control and the diabetic male group (Figure 2B and
Table 2). The ACh Emax was 94.7% ± 1.9% in control females
and 85.9% ± 2.0% in diabetic females (n = 6–7 per group,
p < 0.05, one-way ANOVA).

Relative Contribution of EDRF to
ACh-Induced Relaxation in UCD-T2DM
Rat Aorta
The relative contributions of PGI2, cGMP, and NO to
vasorelaxation induced by ACh were estimated by sequentially
inhibiting COX, sGC, and NOS. Specifically, EDV to ACh

TABLE 1 | Body weight and adipose weight, blood glucose levels, HbA1c, and other metabolic parameters of male and female control and diabetic rats.

n Male control Male diabetic Female control Female diabetic

Body weight (g) 9–12 314.40 ± 21.7 529.60 ± 20.8* 210.47 ± 6.4# 403.99 ± 6.8*

Adipose tissue (g) 9–12 1.25 ± 0.1 11.77 ± 0.9* 1.56 ± 0.2 14.06 ± 1.8*#

Adipose tissue/body weight (g) 9–12 0.0043 ± 0.0 0.02 ± 0.0* 0.007 ± 0.0 0.036 ± 0.0*#

Triglyceride (mmol/L) 9–12 1.30 ± 0.1 1.94 ± 0.2* 1.27 ± 0.0 3.62 ± 0.4*#

Blood glucose (mg/dl) 9–12 132.25 ± 8.4 302.23 ± 29.3* 144.88 ± 12.5 388.73 ± 34.3*

HbA1c level 9–12 4.23 ± 0.1 10.95 ± 0.8* 4.43 ± 0.0 9.99 ± 0.9*

Insulin (ng/ml) 8–10 0.91 ± 0.5 0.96 ± 0.2 0.49 ± 0.1 5.71 ± 1.9*#

ISI 8–10 1.35 ± 0.1 0.60 ± 0.1* 0.89 ± 0.2 0.10 ± 0.0*#

Data are expressed as mean ± SEM.
n, number of rats per group.
*p < 0.05 (vs. control, same sex), #p < 0.05 (vs. male, respective group), using one-way ANOVA followed by Tukey’s post hoc test.
Insulin sensitivity index (ISI) = [2/(blood insulin (nM) × blood glucose (µM) + 1]. HbA1c = glycated hemoglobin (A1c).
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FIGURE 1 | Western blot analysis of IRS1 and IRS2 expression in control and UCD-T2DM rat aorta. Protein levels of (A) aortic insulin receptor substrate-I (IRS1) and
(B) insulin receptor substrate-2 (IRS2) from the samples of male and female control and diabetic rats. IRS1 (A) and IRS2 (B) were quantified by densitometry and
normalized to corresponding beta actin. Values are represented as mean ± SEM. Each bar represents the values obtained from n = 4–5 animal s per group. To show
representative bands, images from different parts of the same gel have been juxtaposed, indicated by white dividing lines. Capped lines indicate significant
differences between two groups (p < 0.05), as analyzed by unpaired Student ’s t-test.

(10−8 to 10−5 M) in rat aortic rings pre-contracted with
PE (2 µM) was obtained before and after pretreatment with
Indo (10 µM), followed by the addition of ODQ (10 µM)
and L-NNA (100 µM). When ODQ was added, the EDV
reduction is thought to represent the impact of NO-dependent
cGMP on EDV (Pieper and Siebeneich, 1997). Finally, addition
of L-NNA, after inhibition of sGC by ODQ, represents
the impact of NO independent of cGMP (Bolotina et al.,
1994), and the slight remaining EDV to ACh is referred
to as the L-NNA, Indo-insensitive component-type relaxation
(Feletou and Vanhoutte, 1988).

TABLE 2 | pD2 and Emax to acetylcholine (ACh) in aortic rings from male and
female control and diabetic rats.

Ach n pD2 Emax (%)

Male control 12 6.57 ± 0.1 81.14 ± 1.6

Male diabetic 11 7.14 ± 0.0* 94.04 ± 0.9*

Female control 6 7.20 ± 0.1# 94.72 ± 1.9#

Female diabetic 7 7.07 ± 0.1 85.92 ± 2.0∗#

Data are expressed as mean ± SEM.
n, number of rats per group.
*p < 0.05 (vs. control, same sex), #p < 0.05 (vs. male, respective group), analyzed
using one-way ANOVA followed by Tukey’s post hoc test.

The administration of Indo to block COX activity had no
apparent effects on pD2 and Emax to ACh, regardless of sex
or diabetes status. The 1AUC, defined as the difference in the
AUC between the CRC to ACh before and after Indo, was
not different between UCD-T2DM groups and respective non-
diabetic control groups in either sex (Figures 3A–D and Table 3).
Addition of ODQ completely blocked the remaining relaxation
in all experimental groups except for the male diabetic group
(Figure 3B). After adding ODQ, a slight but significant relaxation
response remained in aortic rings of the male diabetic group
compared to the control group (Figure 3B vs. Figure 3A). The
Emax to ACh in male control and male diabetic aortas was
2.22% ± 0.2% and 10.14% ± 0.5%, respectively (p < 0.05, one-
way ANOVA) (Table 3, third column). To examine whether
the slight residual ACh-induced relaxation in male diabetic
aortas may be due to the direct action of NO (independent of
cGMP), a NOS inhibitor was used. The addition of L-NNA,
a non-selective NOS inhibitor, had no apparent effect on the
remaining Indo- and ODQ-resistant relaxation in male diabetic
aortas (Figure 3B). After the addition of L-NNA, there was still
a significant difference in the Emax to ACh between male control
and male diabetic groups. The Emax to ACh was 0.43%± 0.4% in
male control and 13.38% ± 1.2% in male diabetic rats (p < 0.05,
one-way ANOVA) (Table 3, fourth column). The remaining
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FIGURE 2 | Concentration-response curves to acetylcholine (ACh) in control and UCD-T2DM rat aorta. Relaxation responses to cumulative concentrations of ACh
(10−8 to 10−5 M) in intact aortic rings pre-contracted with phenylephrine (PE, 2 µM) from male (A) and female (B) control and diabetic rats. Data are expressed as
mean ± SEM. n = 6–12 animals per group. *p < 0.05 between two groups analyzed using two-way ANOVA followed by Bonferroni’s post hoc test.

FIGURE 3 | Endothelium-derived relaxing factors (EDRF) contribution to acetylcholine (ACh)− induced relaxation responses in control and UCD-T2DM rat aorta.
Effects of inhibiting cyclooxygenase, soluble guanylyl cyclase and nitric oxide synthase on ACh-induced vasorelaxation in aortic rings taken from (A) male control and
(B) male diabetic, (C) female control and (D) female diabetic rats. ACh relaxation was measured in the presence of indomethacin (Indo, 10 µM), followed by addition
of ODQ (10 µM), and then with N-nitro-L-arginine (L-NNA; 100 µM). Data are expressed as mean ± SEM. *p < 0.05 vs. no drug; #P < 0.05 vs. Indo; analyzed using
two-way ANOVA with repeated measures followed by Bonferroni post hoc test (n = 5–8 per group). Light gray shaded area: contribution of endothelium-derived
hyperpolarizing factor (EDHF)-type to endothelium-dependent vasorelaxation (EDV).
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TABLE 3 | Area under the curve (1AUC), Sensitivity (pD2: -logEC50) and maximum response (Emax) to ACh in rat aortic rings from male and female control
and diabetic rats.

Groups No drug Indo Indo + ODQ Indo + ODQ + L-NNA

pD2 Emax (%) 1AUC pD2 Emax (%) 1AUC pD2 Emax (%) 1AUC pD2 Emax% AUC

Male control 7.04 ± 0.1 83.82 ± 2.9 ND 6.72 ± 0.0 81.90 ± 2.31 28.2 ± 4.7 ND 2.22 ± 0.2ab 163.99 ± 9.2 ND 0.43 ± 0.4ab 2.79 ± 1.2

Male diabetic 7.18 ± 0.0 94.16 ± 1.1* ND 6.95 ± 0.1 93.97 ± 0.3 23.7 ± 0.9 ND 10.14 ± 0.5*ab 166.05 ± 5.1 ND 13.38 ± 1.2*ab 11.15 ± 1.6*

Female control 7.31 ± 0.0 92.50 ± 0.7# ND 7.29 ± 0.0 92.16 ± 2.8 6.35 ± 1.0 ND 2.38 ± 1.1ab 185.60 ± 15.8 ND 1.51 ± 0.6ab 3.28 ± 1.1

Female diabetic 7.19 ± 0.0 84.50 ± 2.7*# ND 7.20 ± 0.0 93.78 ± 0.9 9.71 ± 4.6 ND 4.39 ± 0.6ab# 187.59 ± 13.5 ND 2.72 ± 0.7ab# 3.21 ± 1.2#

A comparison of the 1AUC, sensitivity (pD2), and maximum response (Emax ) to acetylcholine in the absence (no drug) or in the presence of Indo, Indo + ODQ, and
Indo + ODQ + L-NNA in aortic rings from male and female control and diabetic rats. Data are expressed as mean ± SEM.
*p < 0.05 (vs. control, same sex), #p < 0.05 (vs. male in respective group) (one-way ANOVA followed by Tukey’s post hoc test); ap < 0.05 vs. no drug control within each
group, bp < 0.05 vs. indo within each group (two-way ANOVA with repeated measures followed by Tukey’s post hoc test), n = 5–8 per group.
ND, not determined.

AUC after addition of L-NNA in the male diabetic group was
significantly different from the male control group, suggesting a
slight role of NO-PGI2-independent relaxation responses in this
group (Table 3, fourth column, Figure 3B, gray shaded area).

It is well known now that smooth muscle hyperpolarization
results indirectly from the opening of endothelial SKCa and IKCa
channels (McNeish et al., 2006). Therefore, an elevated NO-PGI2-
independent-type relaxation in aortas from the male diabetic
group could be expected to result from significant overexpression
of these hyperpolarizing KCa channels on the endothelium
(Gillham et al., 2007). Next, Western blot analysis revealed
that the expression of both SKCa and IKCa was significantly
upregulated (by 9.0-fold and by 1.0-fold, respectively) in the
aortic tissues from male diabetic rats compared with those in
non-diabetic controls (Figures 4A,B).

Relaxation Responses to SNP in
UCD-T2DM Rat Aorta
The smooth muscle sensitivity to NO was investigated by
generating CRC to SNP (10−9 to 10−5 M) in endothelium-
denuded aortic rings. No significant changes in either pD2 values
or Emax of SNP were observed in diabetic animals of either
sex. The pD2 values to SNP was 8.06 ± 0.0 in male control,
8.19 ± 0.1 in male diabetic, 8.50 ± 0.0 in female control, and
8.32 ± 0.0 in female diabetic animals. The Emax to SNP in
male control and male diabetic animals was 100.15% ± 0.3%
and 101.46% ± 1.4%, respectively. The Emax to SNP in female
control and female diabetic animals was 104.34% ± 3.2% and
100.18%± 0.4%, respectively.

Contractile Responses to PE in
UCD-T2DM Rat Aorta
Contractile responses to an α-adrenoceptor agonist (PE) were
analyzed by measuring the CRC to PE (10−8 to 10−5 M). There
were no sex differences in PE contractile responses in aortic
rings from non-diabetic control groups (Figure 5). However,
both maximal tension developed in response to PE (Tensionmax)
and the sensitivity to PE in aortic rings were significantly
enhanced in aortic rings of diabetic groups compared with the
non-diabetic control rats, regardless of sex (Figures 5A,B and
Table 4).

Next, the CRC to PE (10−8 to 10−5 M) was determined in
aortic rings before and after pretreatment with the NO synthase
inhibitor, L-NAME (200 µM), in the presence of Indo (10 µM).
The changes in the contractile response to PE after the addition
of L-NAME reveal the role of endothelium-derived NO during
smooth muscle contraction in response to PE, as previously
reported by us (Zhang et al., 2012; Sangüesa et al., 2017) and
others (Hayashi et al., 1992; Dora et al., 2000).

The administration of Indo to block COX metabolites slightly
but significantly reduced Emax to PE in aortas from male control
and female diabetic groups, suggesting a slight elevation of the
contractile metabolite of COX in this group, with no apparent
effect on the maximal contractile response in female control
and male diabetic groups (Figure 6 and Table 5). The addition
of L-NAME resulted in a significant increase of the contractile
responses to PE in all experimental groups (Figure 6). However,
1AUC (the difference in AUC between PE CRC before and after
L-NAME) was lower in aortas of the diabetic rats compared with
the control group, regardless of sex (Table 5).

Intracellular Pathways Related to
Vascular Function in UCD-T2DM Rat
Aortas
To investigate the mechanism by which endothelium-derived
NO generation in response to PE might be reduced in
diabetic animals, eNOS activation by phosphorylation was
investigated by Western blot analysis. As shown in Figure 7B,
the phosphorylation of eNOS at Ser-1177 was significantly
reduced in aortic tissue from diabetic rats relative to controls,
regardless of sex. Although the expression of total eNOS showed
no significant difference between diabetic males and controls,
its levels were significantly reduced in aortas from diabetic
females (Figure 7A).

Vascular dysfunction could also be related to insulin
resistance, and our results suggest that insulin signaling could
be impaired in diabetic rats in both sexes. Next, we determined
the expression of pAkt, which is downstream of IRS and an
upstream mediator of eNOS phosphorylation at Ser-1177 in
aortic tissues. Figure 8B shows that pAkt (Ser-473) content was
significantly reduced in the aorta of diabetic rats compared with
the control groups for both sexes, whereas total Akt protein
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FIGURE 4 | Western blot analysis IKCa and SKCa expression in control and UCD-T2DM rat aorta. Protein levels of (A) aortic intermediate conductance calcium
activated potassium channel (IKCa) and (B) small conductance calcium activated potassium channels (SKCa) were measured from the samples of male control and
diabetic rats. IKCa (A) and SKCa (B) were quantified by densitometry and normalized to corresponding GAPDH. Values are represented as mean ± SEM. Each bar
represents the values obtained from n = 4–5 per group. To show representative bands, images from different parts of the same gel have been juxtaposed, indicated
by white dividing lines. Capped lines indicate significant differences between two groups (p < 0.05), as analyzed by unpaired Student’s t-test. MC, male control; MD,
male diabetic.

FIGURE 5 | Concentration-response curves to phenylephrine (PE) in control and UCD-T2DM rat aorta. Contractile responses to cumulative concentrations of PE
(10−8 to 10−5 M) in intact aortic rings of (A) male and (B) female control and diabetic rats. Data are expressed as mean ± SEM. n = 5–6 per group. *p < 0.05
between two groups analyzed using two-way ANOVA followed by Bonferroni’s post hoc test.

content remained unaffected by diabetes status, regardless of
sex (Figure 8A).

To further investigate the possible mechanisms underlying
the elevated responses to contractile agents in this model,
the protein expression of NADPH oxidase (NOX) subtypes
NOX1 and NOX4 was measured. NOX1 expression was
significantly elevated in aortic tissues from diabetic groups,
regardless of sex (1.5-fold in male diabetic and 1-fold in
female diabetic rats, Figure 9A). However, NOX4 expression
showed no significant differences among all experimental
groups (Figure 9B).

Lastly, to examine whether the elevated expression of NOX1
in aortic tissues of diabetic rats was associated with elevated

basal ROS levels in this group, intracellular and extracellular ROS
generation was measured in primary endothelial cells isolated
from aortic tissues using Amplex Red and CellROX assays.
Both assays demonstrated that ROS generation was higher in
the endothelial cells isolated from arteries of diabetic groups
compared with those in the non-diabetic controls, regardless of
sex (Figures 9C,D).

DISCUSSION

The present study demonstrates that aortic function in UCD-
T2DM rats is altered in both sexes. It also provides the first

Frontiers in Physiology | www.frontiersin.org 9 July 2021 | Volume 12 | Article 61631783

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-616317 July 16, 2021 Time: 17:40 # 10

Akther et al. Aortic Function in UCD-T2DM Rats

TABLE 4 | pD2 and Tensionmax to phenylephrine (PE) in aortic rings from male and
female control and diabetic rats.

PE n pD2 Tensionmax (g)

Male control 5 6.81 ± 0.0 1.26 ± 0.1

Male diabetic 5 7.19 ± 0.0* 1.79 ± 0.1*

Female control 5 6.78 ± 0.0 1.04 ± 0.1

Female diabetic 6 7.14 ± 0.0* 1.53 ± 0.1*

Data are expressed as mean ± SEM.
n, number of rats per group.
*p < 0.05 (vs. control, same sex), analyzed using one-way ANOVA followed by
Tukey’s post hoc test.

evidence of sexual dimorphism in aortic relaxation in UCD-
T2DM rats.

In the current study, while both male and female diabetic
rats had higher body weight and hyperglycemia compared with

non-diabetic control rats, the female diabetic group exhibited
higher adiposity, triglyceride, and insulin levels than control
or male diabetic rats. This is consistent with the results from
our previous study (Shaligram et al., 2020). Similarly, Ohta
et al. (2014) which reported elevated blood insulin levels in
spontaneously diabetic torii (SDT) female rats compared with
SDT male rats. In the current study, the ISI was lowered in
diabetic groups, irrespective of sex. However, when compared
to male diabetic rats, female diabetic rats exhibited a lower ISI.
Accordingly, here, we showed that insulin signaling was impaired
in the aortic tissues in diabetic groups in both sexes. Notably,
aortic IRS-1 was reduced to a similar extent in both diabetic
groups, but IRS-2 was reduced only in the female diabetic group.
It has been reported that the downregulation of IRS-2 levels in
endothelial cells is induced by hyperinsulinemia in obese subjects
(Kubota et al., 2011). Similarly, our results on elevated insulin
levels in female diabetic rats may suggest that the decreased

FIGURE 6 | Concentration-response curves to phenylephrine (PE) in intact aortic rings from (A) male control, (B) male diabetic, (C) female control, and (D) female
diabetic rats. Contraction to PE was measured in absence of any drug (ND) or in presence of indomethacin (Indo, 10 µM) followed by addition of N-Nitro-L-arginine
methyl ester (Indo + L-NAME, 200 µM). Results are expressed as a percent of the maximal response to PE (10 µM) obtained in the absence of any drug. Data are
expressed as mean ± SEM, analyzed using two-way ANOVA with repeated measures followed by Tukey’s post hoc test: ∗p < 0.05 vs. ND; #p < 0.05 vs. Indo,
n = 6–8 per group.
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TABLE 5 | Emax, Tensionmax, pD2, and 1AUC to phenylephrine (PE) in aortic rings
from male and female control and diabetic rats.

Emax(%) Tensionmax (g) pD2 1AUC

Male control (n = 6)

ND 100 1.26 ± 0.1 6.81 ± 0.0

Indo 78.72 ± 4.8a 1.09 ± 0.1 6.74 ± 0.0 239.10 ± 5.0

Indo + L-NAME 176.15 ± 3.6b 2.47 ± 0.2b 7.29 ± 0.0b

Male diabetic (n = 8)

ND 100 1.79 ± 0.1c 7.19 ± 0.0c

Indo 95.39 ± 5.5 1.66 ± 0.1 6.95 ± 0.1 103.66 ± 18.1∗

Indo + L-NAME 132.58 ± 8.7bc 2.26 ± 0.1b 7.46 ± 0.0b

Female control (n = 6)

ND 100 1.04 ± 0.1 6.78 ± 0.0

Indo 87.83 ± 11.6 0.93 ± 0.1 6.76 ± 0.0 319.44 ± 59.8

Indo + L-NAME 226.19 ± 31.2b 2.25 ± 0.2b 7.21 ± 0.1b

Female diabetic (n = 7)

ND 100 1.53 ± 0.1c 7.14 ± 0.0c

Indo 78.94 ± 2.2a 1.19 ± 0.1 7.01 ± 0.0 167.42 ± 6.8*

Indo + L-NAME 134.23 ± 9.4bc 1.98 ± 0.1b 7.35 ± 0.0b

Data are expressed as mean ± SEM. Three-way ANOVA with factors being sex,
diabetes, and drugs were used to compare among group means of Emax (%),
Tensionmax, and pD2.
ap < 0.05 vs. (ND), bp < 0.05 vs. (Indo); cp < 0.05 (vs. control, same sex); analyzed
using three-way ANOVA followed by Tukey’s post hoc test.
1AUC, differences of area under the concentration–response curve with or without
L-NAME in the presence of indo.
*p < 0.05 (vs. control, same sex), analyzed using two-way ANOVA followed by
Tukey’s post hoc test. n = 6–8 per group.

IRS-2 expression observed in the aorta could be in part due to
hyperinsulinemia in this group.

In T2D, impaired (Sakamoto et al., 1998), enhanced (Zhong
et al., 2012), or preserved (Bohlen and Lash, 1995) EDV has
been reported. Here, a slight but significant decrease in maximum
relaxation to ACh was observed in aortic rings from female UCD-
T2DM rats compared to their respective controls. However, an
intriguing observation of this study was that aortic rings from
male diabetic animals exhibited a potentiation in EDV compared
with that in male controls. Similar observations were also made
by our group using Zucker diabetic fatty (ZDF) male rats.
Specifically, obesity-induced diabetes (ZDF model) significantly
impaired relaxation responses to ACh in aortic rings taken
from females, but potentiated the relaxation in males (data not
shown). In accordance with our current study, Zhong et al. (2012)
reported elevated relaxation responses to ACh in aortic rings of
GK male rats. On the other hand, Kazuyama et al. (2009) and
Nemoto et al. (2011) reported an impaired EDV in aortic rings
from GK male rats.

It has been well established that in conduit arteries, NO
plays a major role in EDV (Shimokawa et al., 1996; Gao et al.,
2011). The impaired EDV may result from either a decreased
NO production or an increased inactivation of NO by ROS. It
has been reported that T2D reduces the synthesis of NO in rat
aorta by phosphorylation of eNOS at Ser-1177 (Nemoto et al.,
2011). Here, we did not directly measure NO production, but
our data show that the expression of the active, phosphorylated
form of eNOS is decreased while the expression of NOX1 and
ROS generation are increased in aortas from diabetic groups in

both sexes, suggesting that decreased NO bioavailability may in
part contribute to reduced responses to ACh in diabetic female
arteries. However, elevated ACh responses in diabetic male aorta
cannot be attributed to decreased NO due to decreased eNOS
activation or elevation of ROS, suggesting that other factors
may be involved.

There is an established negative regulatory effect of NO on
EDHF synthesis (Bauersachs et al., 1996; Brandes et al., 2000), and
an augmented EDHF response was also shown to compensate
for the loss of NO in arteries in diabetic rats (Garland et al.,
1995; Malakul et al., 2008). In agreement with those studies that
demonstrate compensatory interactions between pathways, the
potentiation of the ACh response (regardless of decreased eNOS
activity) in aortic rings from the male diabetic group suggests that
other vasodilatory molecules besides NO may be involved in ACh
relaxation in this group.

In the present study, we showed that the inhibition of COX
metabolites by Indo did not alter relaxation responses to ACh
significantly in aortic rings of any of the four experimental
groups. Consistent with these results, Malakul et al. (2008)
reported that hypercholesterolemia and type 1 diabetes did not
have any effect on COX-mediated EDV in rat aortas. Here,
addition of ODQ completely abolished the EDV in aortic rings
of control groups of both sexes as well as female, but not male,
diabetic groups, suggesting that EDV is solely mediated by NO
acting on the sGC (NO-dependent cGMP) pathway in the above-
mentioned groups. Although the vasodilatory effect of NO on
vascular smooth muscle is mainly mediated by cGMP (via a
cGMP-dependent K+-channel activation) (Taylor et al., 2001), a
direct effect of NO on Ca2+-dependent K+-channels (Bolotina
et al., 1994) and L-type calcium current (Summers et al., 1999)
without requiring cGMP has also been demonstrated. Here, the
slight remaining Indo-ODQ-resistant relaxation in the aorta of
male diabetic rats was unaffected by L-NNA, suggesting that NO-
independent cGMP does not play a role in EDV in this group. An
alternative explanation for the relaxation resistance to sGC and
NOS inhibition in male diabetic aortas may be the contribution
of other factors (NO- and PGI2-independent) on relaxation in
this group. Similarly, Malakul et al. (2008) reported a potential
role of EDHF in EDV in aortas of streptozotocin-induced type 1
diabetic male rats. However, they did not include females in their
studies to determine whether there was a sex effect in the type 1
diabetic rat aorta. There are also other reports of a decreased NO-
dependent relaxation response and increased EDHF activity in
saphenous arteries (Chadha et al., 2010) and carotid arteries (Leo
et al., 2010) of high-fat diet-induced obese and type 1 diabetic
male rats, respectively.

Epidemiological studies suggest that males are at higher
risk for CVD compared to age-matched females during their
reproductive years (Liu et al., 2003). This sex difference has
been attributed to estrogen’s protective effect in females and/or
a detrimental androgen effect in males (Thompson and Khalil,
2003). However, a growing body of evidence suggests that
androgens exhibit protective actions on the cardiovascular
system (Nettleship et al., 2009). Administration of testosterone
has been shown to induce both endothelium-dependent and
independent vasorelaxation in rabbit aorta (Yue et al., 1995),
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FIGURE 7 | Western blot analysis of eNOS and peNOS expression in control and UCD-T2DM rat aorta. Protein levels of (A) total endothelial nitric oxide synthase
(eNOS) and (B) phosphorylated eNOS (peNOS) in aortic samples from male and female control and diabetic rats. eNOS (A) and peNOS (B) were quantified by
densitometry and normalized to corresponding beta actin. Each bar represents the mean ± SEM of values obtained from n = 4–5 animals per group. To show
representative bands, images from different parts of the same gel have been juxtaposed, indicated by white dividing lines. Capped lines indicate significant
differences between two groups (p < 0.05), as analyzed by unpaired Student’s t-test.

rat aorta (Costarella et al., 1996), and porcine coronary artery
(Crews and Khalil, 1999).

Here, our data show that control female aortas exhibit greater
ACh-mediated vasorelaxation compared to male aortas. This is
in accordance with our previous report on the sex difference
in rat aortic relaxation (Rahimian et al., 1997); however, we
have now extended these findings in reporting that under the
T2D condition, beneficial effects of female hormones could
be lost, yet, intriguingly, male aortas exhibit greater ACh-
mediated relaxation.

The KCa currents are mainly mediated by IKCa and SKCa
channels (Brähler et al., 2009) in conduit and resistance-sized
arteries in many species, including humans (Taylor et al., 2001;
Félétou, 2009; Grgic et al., 2009). Taylor et al. (2001) reported that
NO-independent relaxations evoked by ACh in rabbit conduit
arteries were sensitive to a combination of SKCa and IKCa channel
blockers. Although the effects of SKCa and IKCa channel blockers
were not examined in the current study design, our data on
the significant increase in expression of IKCa and SKCa channels
in male diabetic arteries suggest that the slight NO- and PGI2-
independent relaxation observed in this group may be associated
with these channels. In a preliminary functional study, further
examination of IKCa and SKCa, using selective inhibitors of these
channels, suggested a role for IKCa in ACh-induced relaxation in
aorta of male diabetic rats (data not shown). These results are
also in accordance with Schach et al. (2014) who reported an
elevation of expression and contribution of IKCa in mesenteric

arteries of male ZDF rats. In the current study, we observed
no significant differences in the expression of IKCa channels in
aorta from female diabetic compared with female control animals
(n = 5–6, data not shown). It is also important to note that in aorta
from males, the contribution of a NO-independent factor to the
ACh response was only observed in the diabetic state and not in
the control (or healthy) state. Sandow et al. (2009) reported that
EDHF is present in aortas of juvenile rats (Martínez-Orgado et al.,
1998) and disease models (such as hypercholesterolemic, diabetic,
hypertensive, and with altered estrogen levels), but absent in
healthy adult aorta (Kagota et al., 2000; Matsumoto et al., 2004;
Woodman and Boujaoude, 2004; Malakul et al., 2008).

Besides the possibility of a modified contribution of NO,
alteration of EDV to ACh in aortas of the UCD-T2DM model
could be explained by changes in smooth muscle responsiveness
to NO or contractile agents. However, our data showed that
SNP (a NO donor)-induced relaxation of endothelium-denuded
aortic rings was not altered in male or female diabetic groups.
Similarly, Nemoto et al. (2011) observed no significant difference
in SNP-induced relaxation in aortic rings of male GK rats.
This suggests that smooth muscle responsiveness to NO in the
aorta was not affected in UCD-T2DM rats. On the other hand,
in the current study, the sensitivity and maximum tension to
PE were enhanced significantly in aortic rings of UCD-T2DM
groups compared with their respective controls, regardless of sex
(Figure 5). The elevated PE response may in part explain the
slight but significant decrease in the maximum relaxation in ACh
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FIGURE 8 | Western blot analysis of Akt and pAkt expression in control and UCD-T2DM rat aorta. Protein levels of aortic (A) total V-akt murine thymoma viral
oncogene homolog-2 (Akt) and (B) phosphorylated V-akt murine thymoma viral oncogene homolog-2 (pAkt) from the samples of male and female control and
diabetic rats. Akt (A) and pAkt (B) were quantified by densitometry and normalized to corresponding GAPDH. Each bar represents the mean ± SEM of values
obtained from n = 4–5 animals per group. To show representative bands, images from different parts of the same gel have been juxtaposed, indicated by white
dividing lines. Capped lines indicate significant differences between two groups (p < 0.05), as analyzed by unpaired Student’s t-test.

responses in aorta of female diabetic rats. However, it is important
to note that regardless of increased PE-induced contraction,
the ACh response was enhanced in male diabetic arteries. This,
therefore, excludes the diminished PE contractile responsiveness
as the cause of the increased ACh responses observed in male
diabetic arteries. Nevertheless, our data on PE responses are
in line with previous findings that type 1 diabetes results in
increased vascular contraction in rat aortas (Abebe et al., 1990)
and mesenteric arteries (White and Carrier, 1990).

Phenylephrine may indirectly stimulate endothelial cells
to release NO via a signal transmitted either through
myoendothelial gap junctions (Dora et al., 2000; Jackson
et al., 2008) or by mechanical stress (Fleming et al., 1999).
Therefore, the elevated contractile responses to PE observed in
UCD-T2DM male and female rats may in part result from a
decreased release of NO from the endothelium during smooth
muscle contraction or an enhanced release of contracting factors
(Zhang et al., 2012).

In the current study, we assessed the role of endothelium-
derived NO by measuring the difference in the degree of PE-
induced contraction in the absence and presence of L-NAME
(Hayashi et al., 1992; Han et al., 2016). Pretreatment with
L-NAME caused a significantly lower potentiation of the PE
response in aortic rings from UCD-T2DM rats, regardless of
sex (Figures 6B,D) compared with their controls. This suggests
that decreased basal NO activity may in part be responsible for

the elevated PE contractile responsiveness in UCD-T2DM rats
in both sexes. Here, our study was limited in that we did not
directly measure basal NO level. Nevertheless, consistent with an
important role for eNOS phosphorylation on serine 1177 by Akt
in regulating basal NO release (Scotland et al., 2002; Kobayashi
et al., 2004), a reduction in eNOS expression by phosphorylation
at Ser-1177 was observed in aortas from diabetic rats in both sexes
compared with their controls. Additional studies will be needed
to document the direction and magnitude of these interactions
along with the relative importance of NO to elevated contractile
responses in UCD-T2DM male and female rats.

Insulin resistance is a key element in the pathogenesis of
T2D (Ormazabal et al., 2018). Insulin resistance is associated
with endothelial dysfunction by several mechanisms including
increased production of pro-inflammatory vasoconstrictor
factors and oxidative stress (Schneider et al., 2000; Del Turco
et al., 2011). Previous studies on experimental models of
insulin resistance revealed impaired insulin-mediated PI3K/Akt-
dependent signaling in the vasculature (Jiang et al., 1999).
Our data on the significant decrease in expression of IRS and
pAkt (a downstream mediator of IRS and upstream of eNOS
phosphorylation at Ser-1177) in aortic tissues of diabetic animals
in both sexes, suggest that the decreased peNOS levels in the
diabetic aorta could arise from altered activation by pAkt.

Finally, it has also been reported that in diabetes, oxidative
stress and superoxide radical production derived from
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FIGURE 9 | Western blot analysis of NOX1 and NOX4 expression in intact aorta, and oxidant generation in primary aortic endothelial cells isolated from control and
UCD-T2DM rats. Protein levels of aortic NADPH oxidases (NOX1) (A) and NOX4 (B) from the samples of male and female control and diabetic rats. NOX1 and NOX4
were quantified by densitometry and normalized to corresponding GAPDH. To show representative bands, images from different parts of the same gel have been
juxtaposed, indicated by white dividing lines. Hydrogen peroxide (H202) (C) and intracellular oxidant (CellROX oxidation) (D) generation in primary aortic endothelial
cells isolated from male and female control and diabetic rats. Values are presented as mean ± SEM. Each bar represents the values obtained from n = 4–5 animals
per group for NOX expression and n = 3–4 animals per group for oxidant generation studies. Capped lines indicate significant differences between two groups
(p < 0.05), analyzed by unpaired Student’s t-test.

insulin resistance may play a crucial role in enhancing the
contracting responses (Shi et al., 2007). Superoxide scavenges
NO, decreasing its bioavailability (Rubanyi et al., 1986), and
elevating endothelium-dependent contractions. In the present
study, we determined expression of NOX proteins, a source of
superoxide. Vascular walls express high levels of NOX1, NOX2,
and NOX4 (Griendling et al., 2000). NOX1 is mainly expressed
in large conduit vessels (Lassègue et al., 2001), whereas NOX2

is more highly expressed in resistance vessels (Touyz et al.,
2002). Here, we observed an elevated expression of NOX1 in
aorta from diabetic groups, irrespective of sex, whereas NOX4
expression was not changed. Youn et al. (2012) reported that
the activation of NOX1 was associated with eNOS uncoupling
and endothelial dysfunction in streptozotocin-induced type 1
diabetic mice aorta. Furthermore, Gray et al. (2013) reported
that genetic deletion of NOX1 in diabetic mice led to reduced
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FIGURE 10 | Proposed drivers of an elevated contractile response in UCD-T2DM rat aortas. (A green one) Impaired insulin signaling, elevated ROS generation, and
decreased basal NO activity may drive elevated contractile responses in aortic rings of both male and female UCD-T2DM rats. (B blue one) Male UCD-T2DM rat
aortas display enhanced EDV (despite elevated contractile responses) along with elevated IKCa and SKCa channel expression and traces of NO-independent
responses. (C red one) Female UCD-T2DM rat aortas display impaired EDV, possibly due to decreased NO activity and enhanced contractile responses. IRS, insulin
receptor substrate; pAkt, phosphorylated V-Akt murine thymoma viral oncogene homolog-2; peNOS, phosphorylated endothelial nitric oxide synthase; NOX,
NADPH oxidase; ROS, reactive oxygen species; NO, nitric oxide; IKCa, intermediate-conductance calcium- activated potassium channel; SKca, small-conductance
calcium-activated potassium channel; EDV, endothelium-dependent vasorelaxation.

diabetes mellitus symptoms, suggesting a key role of NOX1-
derived ROS in diabetes. Consistent with these results is the
observation that ROS generation in aortic primary endothelial
cells isolated from diabetic rats was higher than in cells isolated
from control animals, regardless of sex. Taken together, our
results on NOX1 upregulation and increased ROS generation
in diabetic arteries suggest that the elevation of responses
to PE observed in diabetic animals in both sexes may be
partially due to the reduced NO bioavailability or increased
in generation of potential vasoconstrictor substances (such as
superoxide anions).

CONCLUSION

This study represents the first report showing that the aortic
function in UCD-T2DM rats is altered in both sexes. Our
data suggest that decreased insulin sensitivity, possibly via
pAkt-dependent signaling and enhanced oxidative stress, may
contribute to the elevated contractile responses in aorta of
this model of T2D, regardless of sex. We also showed sex
differences in aortic relaxation in this model. Specifically,
our data show that under the T2D condition, beneficial
effects of female hormones could be lost, yet, intriguingly,
male aortas exhibit greater ACh-mediated relaxation.

Additional studies will be needed to identify an underlying
mechanism for the sex-specific differences observed in the aortic
relaxation in this model.

Figure 10 depicts our proposed scheme based on the data
presented in this report. Briefly, the elevation of contractile
responses in aortic rings of both male and female UCD-T2DM
could result from decreased basal NO activity, possibly due to
the impaired insulin-mediated pAkt-peNOS dependent signaling
and/or increased oxidative stress in this model (A). In the
meantime, aortic vasorelaxation was elevated in aortic rings
from male UCD-T2DM rats (B), but slightly impaired in female
UCD-T2DM rats (C). The elevated vasorelaxation response in
aortic rings from male diabetic rats (despite elevated contractile
responses in this group) was accompanied by the elevated IKCa
and SKCa channel expression and trace a of NO-independent
responses (B). However, the decreased relaxation in female
diabetic aortas could be in part attributed to the decreased NO
activity and elevated contractile responses in this group (C).
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Great progress has been made in the understanding of the pathophysiology of
cardiovascular diseases (CVDs), and this has improved the prevention and prognosis of
CVDs. However, while sex differences in CVDs have been well documented and studied
for decades, their full extent remains unclear. Results of the latest clinical studies provide
strong evidence of sex differences in the efficacy of drug treatment for heart failure,
thereby possibly providing new mechanistic insights into sex differences in CVDs. In this
review, we discuss the significance of sex differences, as rediscovered by recent studies,
in the pathogenesis of CVDs. First, we provide an overview of the results of clinical
trials to date regarding sex differences and hormone replacement therapy. Then, we
discuss the role of sex differences in the maintenance and disruption of cardiovascular
tissue homeostasis.

Keywords: cardiovascular disease, estrogen, sex hormones, cardiovascular homeostasis, non-nuclear signaling

INTRODUCTION

Despite recent advances in medical and interventional therapies, cardiovascular disease (CVD)
remains a leading global cause of death in men and women. Although sex differences are well
recognized in the epidemiology and outcomes of CVD, their full extent is yet unclear. The
results of recently published clinical studies on sex differences may provide new insights into
the underlining mechanisms. A recent study that investigated the effect of sacubitril–valsartan
on the incidences of cardiovascular death and hospitalization by heart failure (HF) in patients
with HF with preserved ejection fraction (HFpEF) reported significantly reduced outcomes in
women with HFpEF, but no statistically significant effect was observed in men with HFpEF
(Solomon et al., 2019; McMurray et al., 2020). Sacubitril upregulates natriuretic peptide signaling
of which cyclic guanosine monophosphate (cGMP) is considered the downstream target (Emdin
et al., 2020). Intriguingly, sildenafil, another activator of cGMP signaling, via inhibition of
phosphodiesterase type 5 (PDE5), showed sex differences in its beneficial effect on HF in animal
models (Takimoto et al., 2005; Sasaki et al., 2014). Studies also showed that women with premature

Abbreviations: ARB, Angiotensin receptor blockers; CHIP, Clonal hematopoiesis of intermediate potential; CVD,
Cardiovascular diseases; DOPS, Danish Osteoporosis Prevention Study; EC, Endothelial cells; HF, Heart failure; HFpEFHF,
With preserved ejection fraction; HFrEFHF, With reduced ejection fraction; HT, Hormone therapy; IHD, Ischemic heart
disease; VSMC, Vascular smooth muscle cells; WHI, Women’s Health Initiative.
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menopause more frequently embrace clonal hematopoiesis of
intermediate potential (CHIP), the age-related expansion of
hematopoietic stem cells with leukemogenic mutations without
detectable malignancy, which is associated with the development
of CVD (Jaiswal et al., 2017; Honigberg et al., 2021). Taken
together, these clinical and experimental findings suggest clear
sex differences in cardiovascular morbidity, natural course
and drug efficacy.

The role of sex hormones in the development of CVD,
particularly the effect of estrogen on the cardiovascular system, is
strongly suggested as the cause of these sex differences. Indeed,
several clinical trials, including recent large-scale clinical trials
and many basic experiments, have shown the cardiovascular
protective effects of estrogen (Bernelot Moens et al., 2012;
Schierbeck et al., 2012; Hodis et al., 2016). However, some
previous large-scale clinical trials have reported adverse effects
of estrogen (Manson et al., 2003; Turgeon et al., 2004), so it
seems estrogen may not be entirely beneficial. For clarity in this
area, it is necessary to determine the mechanisms of action of
estrogen in greater detail. Therefore, in this paper, we first outline
the results of clinical trials to date that evaluated the preventive
effects of estrogen against CVD, and then, we focus on the
molecular function of estrogen signaling in terms of receptors,
cell types, organs and pathological models. Finally, we discuss the
mechanisms by which estrogen signaling elicits sex differences in
the cardiovascular system.

SEX DIFFERENCES AND ESTROGEN
HORMONE THERAPY IN
CARDIOVASCULAR DISEASES

Sex Differences in Cardiovascular
Diseases
Studies over the decades have reported a distinct pattern of
CVD prevalence based on sex. Further, the latest epidemiological
report stated that younger women have a lower risk of developing
CVD, that the difference between sexes disappears at ages 60–79,
and that women overtake men at the age of 80 (Virani et al., 2020),
i.e., young premenopausal women have protection against CVDs,
and the protection fades away after menopause. Therefore, the
cardioprotective role of the female hormone estrogen has been
regarded as a major factor responsible for the sex difference in
the incidence of CVDs (Vitale et al., 2009).

The overall lifetime risk of HF is similar between the
sexes, but sex differences in the epidemiology of HF become
apparent when the type of HF is considered. HF with reduced
left ventricular ejection fraction (HFrEF) is more common in
men than in women (Lee et al., 2009; Dunlay et al., 2017).
This type of HF is caused by previous myocardial infarction
or dilated cardiomyopathy, and these two diseases are more
prevalent in men than in women. In contrast, as revealed
by the Framingham heart study, HFpEF is two times more
common in women than in men (Lee et al., 2009; Dunlay et al.,
2017). Given the fundamental differences in pathophysiology,
HFpEF and HFrEF are managed differently. Although results

of clinical trials on HFrEF demonstrate the effectiveness of beta
blockers, angiotensin converting enzyme inhibitors, angiotensin
receptor blockers (ARBs) and sodium–glucose cotransporter-2
inhibitors, these therapies do not definitively decrease morbidity
and mortality in patients with HFpEF (Borlaug, 2020). However,
there are weak signals of benefit for mineralocorticoid receptor
antagonists (Borlaug, 2020). It is important to note that the
Prospective Comparison of ARNI with ARB Global Outcomes
in Heart Failure With Preserved Ejection Fraction (PARAGON-
HF) trial, which is the latest and largest HFpEF outcomes trial,
reported a strong sex difference in the efficacy of angiotensin
receptor neprilysin inhibitor (ARNI) treatment, with greater
benefits observed in women than in men (Solomon et al.,
2019; McMurray et al., 2020). Sacubitril–valsartan, compared
with valsartan, reduced the prevalence of cardiovascular death
and total hospitalizations for HF by 27% in women with
HFpEF, but with no effect in men (Solomon et al., 2019;
McMurray et al., 2020).

The incidence of ischemic heart disease (IHD) is higher in
men than in women throughout their lifespans, even though
the sex difference decreases as age increases (Albrektsen et al.,
2017). Despite the low prevalence of myocardial infarction in
women compared to men, a recent large-scale cohort study
showed that women have a higher risk of death and HF
than men in the 5 years following an ST-segment-elevation
myocardial infarction, even after accounting for differences in
angiographic findings, revascularization, and other confounders
(Ezekowitz et al., 2020). Women with IHD characteristically
have higher prevalence of angina, burden of CVD risk factors,
and prevalence of non-obstructive coronary artery disease on
angiography than men with IHD (Garcia et al., 2016). Non-
obstructive coronary artery disease, also known as microvascular
angina, is a disease that predominantly affects postmenopausal
women (Jespersen et al., 2012), where estrogen is reported
to mediate coronary microvascular function by modulating
nitric oxide (NO) in coronary endothelium (Lu et al., 2016;
Vanhoutte et al., 2016). CHIP is associated with elevated levels of
inflammatory cytokines and accelerated atherosclerosis in animal
and human studies (Fuster et al., 2017; Jaiswal et al., 2017;
Jaiswal and Libby, 2020). A recent study reported that premature
menopause (i.e., menopause before the age of 40), and especially
natural premature menopause, is independently associated with
increased risk of CHIP (Honigberg et al., 2021). This suggests
that CHIP is associated with incident coronary artery disease
events in postmenopausal middle-aged women independent of
conventional coronary artery disease risk factors.

Although the risk of atrial fibrillation (AF) is higher in
men than in women (Ball et al., 2018), it is well documented
that women with AF have higher risks of stroke, myocardial
infarction and HF than men with AF (Regitz-Zagrosek et al.,
2016). In the CHA2DS2-VASc scoring system used to evaluate
the risk of stroke, a point is added for female sex, and
patients with total points ≥ 2 who have another risk factor are
recommended to receive oral anticoagulant therapy to prevent
stroke (January et al., 2014; Kirchhof et al., 2016). Uncontrolled
systolic hypertension is a stronger risk factor of incident AF in
women than in men, associated with a twofold increased risk
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of incident AF in women and a 30–60% increased risk in men
(Sharashova et al., 2020).

Hormone Therapy in Cardiovascular
Diseases
These sex differences in CVD prevalence may be attributed
to estrogen function in cardiovascular organs, and this is
supported by studies conducted over previous decades. In
1978, the Framingham study reported that women with
surgical menopause have a 2.7-fold higher risk of CVD events
than women of the same age without surgical menopause
(Gordon et al., 1978). This finding led to the notion that
exogenous estrogen could reduce the risk of CVD events in
postmenopausal women. Several cohort studies consistently
reported the cardioprotective effect of hormone therapy (HT)
that lowers risk of CVD (Grodstein et al., 1997; Varas-Lorenzo
et al., 2000; Taylor et al., 2020). In turn, major randomized
controlled trials reported around the year 2000 showed neutral
effects of HT (Hulley et al., 1998; Grady et al., 2002), and
a randomized placebo-controlled studies conducted by the
Women’s Health Initiative (WHI) reported no benefits in CVD
prevention but observed rather increased risks of stroke and deep
vein thrombosis (Rossouw et al., 2002). These conflicting results
may reflect differences in the time between menopause and the
start of HT. Earlier cohort studies have included younger women
who underwent HT in the early postmenopausal period, while
the randomized studies included participants who received HT
10 years after menopause when responsiveness to estrogen in
cardiovascular tissues may have diminished.

In fact, recent studies provided evidence supporting this
‘timing hypothesis’. The WHI-Coronary Artery Calcium Study
(CACS) analyzed the calcified plaque burden on coronary arteries
in women close to the age of menopause (50–59 years) who
received estrogen or placebo. The women who received estrogen
were found to have a lower calcified plaque burden than
the women who received placebo (Manson et al., 2007). The
Danish Osteoporosis Prevention Study (DOPS) was conducted
to estimate the effects of early initiated HT on CVD prevention
(Schierbeck et al., 2012). In DOPS, healthy women (n = 1,006)
with a mean age of 49.7 years were randomly divided into
two groups: HT group (n = 502) and no-treatment group
(n = 504). Women treated with HT for 10 years had a
significantly reduced risk of HF, myocardial infarction and
mortality, but they did not have a significant increase in the
risk of venous thromboembolism, stroke or cancer (Schierbeck
et al., 2012). In the Early versus Late Intervention Trial with
Estradiol study (ELITE), participants who had early menopause
(<6 years after menopause) and those who had late menopause
(≥ 10 years after menopause) were randomized to receive oral
17β-estradiol or a placebo (Hodis et al., 2016). The carotid
intima-media thickness (CIMT) measured by ultrasound was
the primary clinical outcome as an estimation of cardiovascular
risk. 17β-estradiol-treated early menopausal subjects had slower
progression of CIMT than placebo-treated subjects, but there
was no estrogen effect in late menopausal participants (Hodis
et al., 2016). Taken together, these clinical findings suggest that

estrogen HT exhibits cardioprotective effects when initiated at an
ideal timepoint after menopause, encouraging the researchers to
further investigate the molecular and physiological functions of
estrogen and estrogen receptor (ER)-mediated signaling in the
cardiovascular system.

The effects of sex hormones other than estrogen on CVD
have not necessarily been evaluated sufficiently. Progesterone, in
combination with estrogen, is effective in inhibiting endometrial
hyperplasia and cancer (Beresford et al., 1997). The risk of CVD
was lower when progesterone was used in combination with
estrogen than with estrogen alone (Grodstein and Stampfer,
1995), suggesting that progesterone may have cardioprotective
effects. However, the effects of progesterone itself on the
cardiovascular system have been little studied so far. It has also
been reported that low serum testosterone levels are associated
with an increase of the incidence of CVD in men (Khera et al.,
2021), while exogenous testosterone therapy reportedly increases
the risk of cardiovascular disease (Basaria et al., 2010; Vigen et al.,
2013), so the cardiovascular actions of androgens need to be
further studied as well.

MOLECULAR MECHANISMS OF
ESTROGEN RECEPTOR SIGNALING IN
CARDIOVASCULAR CELLS

There are two ERs: ERα and ERβ, both of which exhibit
high homology (Mendelsohn and Karas, 1999). Ligand-bound
ERs translocate from cytoplasm to nucleus and regulate gene
expression as transcription factors (nuclear ER signaling).
ERs alternatively function without nuclear translocation via
enzymatic signaling pathways (non-nuclear ER signaling)
(Mendelsohn and Karas, 2010; Ueda and Karas, 2013). Functional
ERs are expressed in various cardiovascular cell types of
humans and animals, including vascular endothelial cells (ECs),
vascular smooth muscle cells (VSMCs), and cardiomyocytes
(Mendelsohn and Karas, 1999). Estrogen is also known to
signal via a transmembrane G-protein-coupled receptor known
as GPER. The characteristics and signaling targets of each ER
are summarized in Table 1. Since GPER has been reviewed
extensively in other papers (Haas et al., 2009; Prossnitz and
Barton, 2011; Feldman and Limbird, 2017; Luo and Liu, 2020),
we will focus on ERα and ERβ in this review.

In the nucleus, ligand-bound ERs function as transcription
factors, interacting with estrogen response elements, and thereby
regulate gene expression (Mendelsohn and Karas, 2005). Also,
nuclear ER-estrogen complexes modulate the function of other
transcription factor classes via protein–protein interactions.
Hence, these complexes control gene expression without directly
binding to DNA (Mendelsohn and Karas, 1999; McKenna and
O’Malley, 2002). Recruitment of co-activators and displacement
of co-repressors differ in each cell type, which determine cellular
response to estrogen.

Cellular physiological responses to estrogen are elicited
within minutes by the activation of membrane-associated ER,
which has been termed “rapid” or “non-nuclear” ER signaling
(Ueda and Karas, 2013). Non-nuclear ER signaling has been
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TABLE 1 | Characteristics of ERs.

ERs ERα ERβ GPER

Identification 1969 1996 1997

Category Nuclear steroid hormone superfamily G protein-coupled
receptor superfamily

Location Cytoplasm,
nucleus

Membrane
(caveolae)

Cytoplasm,
nucleus

Membrane
(caveolae)

Membrane

Targets ERE,
non-ERE

PI3K, ERK ERE,
non-ERE

ND AC/PKA, EGFR (PI3K,
ERK)

References (Caulin-Glaser et al., 1997; Lantin-Hermoso et al., 1997;
Mendelsohn and Karas, 1999, 2005, 2010; Chambliss
et al., 2000, 2010; Simoncini et al., 2000; McKenna and
O’Malley, 2002; Florian et al., 2004; Lu et al., 2004;
Levin, 2005; Osborne and Schiff, 2005; Pedram et al.,
2006; Ueda and Karas, 2013; Ueda et al., 2018)

(Mendelsohn and Karas, 1999,
2005; Chambliss et al., 2002;
McKenna and O’Malley, 2002;
Patten et al., 2004;
Fliegner et al., 2010)

(Haas et al., 2009;
Prossnitz and Barton,
2011; Feldman and
Limbird, 2017;
Luo and Liu, 2020)

ER, estrogen receptor; GPER, G protein estrogen receptor; ERE, estrogen response element; AC, adenylate cyclase; PKA, protein kinase A; EGFR, epidermal growth
factor receptor; PI3K, phosphoinositide 3-kinase; ERK, extracellular signal-regulated kinase; ND, not determined.

identified in various cell types in vitro, including VSMCs,
ECs, and cardiomyocytes (Osborne and Schiff, 2005; Ueda and
Karas, 2013). The ERs located in small invaginations of the
cell membrane known as caveolae signal the rapid actions via
activating kinases or phosphatases to affect cell physiology (Levin,
2005; Pedram et al., 2006). Non-nuclear ER signaling in the
cardiovascular system has been most studied in ECs, where rapid
(within 15–30 min) activation of endothelial nitric oxide synthase
(eNOS) by estrogen was observed (Caulin-Glaser et al., 1997;
Lantin-Hermoso et al., 1997). ERs that reside in caveolae activate
PI3K, Akt and ERK1/2 kinases, leading to activation of eNOS
phosphorylation in ECs (Simoncini et al., 2000; Florian et al.,
2004; Pedram et al., 2006). ERα binds to striatin, which is a
scaffold protein colocalized with caveolin-1. The activation of
PI3K requires that striatin acts as the scaffold protein of the
ERα complex at the caveolae (Chambliss et al., 2000; Lu et al.,
2004). Blocking ERα-striatin binding, either with a peptide that
represents ERα amino acids 176–253 or with the ERα triple-point
mutation (lysine 231, arginine 233 and arginine 234 to alanine:
KRR), abolishes non-nuclear signaling without affecting nuclear
signaling (Lu et al., 2004, 2016; Bernelot Moens et al., 2012; Ueda
et al., 2018). Meanwhile, endogenous ERβ was also found in the
EC membrane, specifically at the caveolae; however, its associated
proteins have not been determined (Chambliss et al., 2002).

ESTROGEN ACTIONS IN ANIMAL
MODELS OF CARDIOVASCULAR
DISEASES

Ischemic Heart Diseases
In animal models of IHDs, such as myocardial infarction and
ischemia–reperfusion, both of ERα and ERβ were reported
to play a role in the cardioprotective effects of estrogen.
After myocardial infarction, increased mortality and HF
exacerbation were observed in global ERβ KO mice (Pelzer
et al., 2005). Consistently, cell-type specific overexpression of
ERβ in cardiomyocytes improved cardiac function and survival

after myocardial infarction. In female mice overexpressing ERα,
cardiac fibrosis after myocardial infarction was inhibited with
increased angiogenesis (Mahmoodzadeh et al., 2014; Schuster
et al., 2016). In an ischemia–reperfusion model, estrogen
normalized coronary endothelial dysfunction in ovariectomized
wild-type mice, while estrogen failed to reverse it in global
ERα KO mice (Favre et al., 2010). ERα KO mice also
demonstrated markedly impaired cardiac contractility, increased
cardiomyocyte death and mitochondrial damage after ischemia–
reperfusion (Zhai et al., 2000; Wang et al., 2006). In contrast,
in an ex vivo model of global ischemia–reperfusion, the hearts
of female ERβ KO mice showed poor functional recovery
compared to those of wild-type mice, but no significant
difference was observed between ERα KO and wild-type
mice (Gabel et al., 2005). Mechanistically, estrogen attenuates
reperfusion injuries after ischemia mainly via activation of
PI3K-Akt, increased expression of the anti-apoptotic protein
BCL-2 and reduced expression of proapoptotic caspase proteins
(Patten et al., 2004). In female ERβ KO mice, estrogen
treatment failed to induce recovery from ischemic injury or
activation of PI3K-Akt signaling in the hearts (Patten et al.,
2004; Fliegner et al., 2010). Taken together, ERβ seems to
play important roles in cardioprotection against ischemia–
reperfusion injury, while the role of ERα varies depending on
methodological conditions.

Cardiac Hypertrophy and Failure
Pathological cardiac hypertrophy develops in response to
various pathological stresses, including genetic, mechanical and
neurohormonal stress. Excessive and prolonged stress leads
hypertrophy to failure. Sex difference is known as a modifier
of cardiomyopathy in humans (van Berlo et al., 2013), as
well as in genetically modified mouse models of hypertrophic
cardiomyopathy, including a missense mutation (R403Q) in
the α-myosin heavy chain and a missense mutation (R92Q) in
cardiac troponin T (Maass et al., 2004; McKee et al., 2013; Chen
et al., 2015). In both transgenic mice, male mice showed an
overt phenotype of cardiac hypertrophy and failure compared
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FIGURE 1 | Rapid non-nuclear ERα signaling is indispensable for estrogen to provide NO that activates sGC. ERα non-nuclear signaling requires the interaction
between ERα and striatin, a scaffold protein residing at caveolae. A transgenic mouse line in which ERα non-nuclear signaling was selectively disrupted showed that
ERα non-nuclear signaling was indispensable to the therapeutic efficacy of cGMP-PDE5 inhibition in heart failure but not to that of sGC stimulation. These data imply
the advantage of sGC stimulation over PDE5 inhibition as a potential therapeutic strategy in treating heart failure in post-menopausal women, highlighting the need
for female-specific therapeutic strategies.

with female mice (Olsson et al., 2001; Maass et al., 2004;
McKee et al., 2013). Importantly, ovariectomized female mutant
mice had worse phenotypes with greater impairment of
contractile function and myocardial energy metabolism, while
estrogen supplementation restored these parameters (Chen et al.,
2015). These findings suggest protective effects of estrogen
against cardiac hypertrophy and failure.

Results of studies that used global ERα or ERβ KO mice
subjected to chronic angiotensin II treatment or pressure
overload have suggested the role of ERβ in the protective
property of estrogen against cardiac hypertrophy and failure.
Mechanistically, the link between estrogen and the cGMP-
PKG signaling pathway may be a key that deserves further
investigation (Kim and Levin, 2006). Upregulation of cGMP
signaling in myocardium has emerged as a novel therapeutic
strategy for heart failure, evidenced by recent clinical studies.
The Vericiguat Global Study in Subjects with Heart Failure
with Reduced Ejection Fraction (VICTORIA) study showed
cardiovascular protection by the soluble guanylate cyclase
(sGC) stimulator vericiguat (Armstrong et al., 2020). Neprilysin
inhibition by ARNI that provides cardiovascular benefits also
stimulates cGMP signaling via augmentation of the natriuretic
peptides (McMurray et al., 2014). Considering that myocardial
cGMP-PKG signaling pathway is deactivated in human HFpEF

and that HFpEF is associated with female sex independent of
obesity and diabetes (Lee et al., 2009; Dunlay et al., 2017), it
is reasonable to assume that estrogen decline and subsequent
cGMP deactivation may contribute to the pathophysiology
of HFpEF. In fact, estrogen signaling is crucial for a PDE5
inhibitor sildenafil-induced activation of cGMP-PKG in cardiac
myocytes to ameliorate HF in female mice (Fisher et al., 2005;
Sasaki et al., 2014). Additionally, using a novel knock-in mice,
whose ERα are replaced with the ERα harboring triple-point
KRR mutation, we recently reported that rapid non-nuclear
ERα signaling is indispensable for estrogen to provide NO that
activates sGC (Figure 1; Fukuma et al., 2020). These results
suggest a potential link between estrogen and cGMP signaling.
A recent study provided a great progress in the experimental
research of HFpEF, where mice treated with a combination
of high-fat diet and inhibition of NOS signaling by L-NAME
recapitulates the systemic and cardiovascular features of human
HFpEF (Schiattarella et al., 2019). In contrast to observations in
humans, however, female mice in the HFpEF model developed
a significantly attenuated cardiac phenotype compared with
their male counterparts, and this protection in female mice
was preserved even by ovariectomy (Tong et al., 2019). Given
that ARNI use for HFpEF patients reduced the risk of HF
only in women (Solomon et al., 2019; McMurray et al., 2020),
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extended studies may clarify the molecular mechanisms by
which cardiovascular benefits provided by the natriuretic peptide
augmentation and its downstream cGMP signaling show the sex
difference in HFpEF.

Injury Response in the Vasculature and
Atherosclerosis
Vascular damage provokes regional vascular inflammation
and prolonged inflammation leads to pathological vascular
remodeling that manifests as neointimal hyperplasia. Estrogen
was found to inhibit the intimal thickening in a mouse carotid
artery injury model through inhibiting the proliferation of
VSMCs and promoting re-endothelialization (Iafrati et al., 1997;
Hayashi et al., 2000; Brouchet et al., 2001; Chambliss et al.,
2010). In ERα KO mice, estrogen treatment failed to protect
vasculature against the vascular injury (Brouchet et al., 2001;
Pare et al., 2002), while in ERβ KO mice, it is still protective
(Karas et al., 1999; Brouchet et al., 2001), suggesting that
ERα is responsible for the estrogen protection on vasculature.
The importance of the non-nuclear ER signaling pathway in
estrogen-induced vascular protection has been evaluated in gain-
and loss-of-function studies. Estrogen dendrimer conjugates
(EDC), which was found to specifically bind to membrane ERs
but not those in cytoplasm and selectively activates non-nuclear
ER signaling, promoted re-endothelialization in injured carotid
arteries in an ERα-dependent manner (Chambliss et al., 2010).
Notably, endometrial carcinoma cell growth was activated by
estrogen, but not EDC, suggesting that selective activation of
the non-nuclear ER signaling does not promote cancer growth
(Chambliss et al., 2010). In turn, estrogen’s vascular protective
effect was not observed in disrupting peptide mice (DPM), in
which ERα-striatin binding was disrupted due to overexpression
of a peptide that represents ERα amino acids 176–253 (Bernelot
Moens et al., 2012), suggesting that non-nuclear signaling plays
a substantial role in the protection by estrogen against vascular
injury. Meanwhile, ligand-bound ERα mediates the transcription
of target genes through the activation function 2 (AF2) domain,
which is located on the C-terminal. Knock-in mice without a
functional AF2 domain showed impaired estrogen protection
against atherosclerosis (Billon-Galés et al., 2011). Conversely, the
estrogen effects on re-endothelialization after vascular injury was

preserved in these mice (Billon-Galés et al., 2011). Another study
using a knock-in mouse model harboring a point mutation of
the arginine 264 of ERα (R264A-ERα), in which non-nuclear
ERα signaling is selectively abrogated, consistently showed that
endothelial healing is mediated by non-nuclear ERα signaling,
and in turn, atheroma protection is mediated by nuclear
ERα action (Adlanmerini et al., 2020). Additionally, increased
atherosclerotic lesion area was displayed in LDL receptor-KO
mice transplanted with ERα KO mice bone marrow, suggesting
a substantial role of ERα signaling in bone marrow cells for
atheroprotection (Ribas et al., 2011).

CONCLUSION

Estrogen directly affects cardiovascular tissues and may have
considerable influence on the sex differences observed in the
epidemiology and outcomes of CVDs. Recent clinical studies
have highlighted the diverse cardiovascular effects of estrogen,
and research into the mechanisms of action of the sex hormone
will be increasingly important in the future.
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Association Between Depression and
Risk of Incident Cardiovascular
Diseases and Its Sex and Age
Modifications: A Prospective Cohort
Study in Southwest China
Lisha Yu 1†, Yun Chen 2†, Na Wang 2, Kelin Xu 2, Chenghan Wu 1, Tao Liu 1* and Chaowei Fu 2*

1Guizhou Center for Disease Control and Prevention, Guiyang, China, 2 School of Public Health, Key Laboratory of Public

Health Safety, National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, Shanghai,

China

To examine possible associations between depression and cardiovascular disease (CVD)

incidence and whether demographic factors modified those associations in the Chinese

population. This prospective cohort study comprised 7,735 adults aged 18 years or

older in Guizhou, China from 2010 to 2020. The Patient Health Questionnaire-9 (PHQ-9)

was used to measure the prevalence of depression. Cox proportional hazard models

were used to estimated hazard ratios (HRs) and 95% confidence intervals (95%CIs)

of depression and incident CVD. We identified 215 CVD cases (including 28 acute

myocardial infarction (AMI) and 197 stroke cases) during an average follow-up of 7.07

years. In the multivariable-adjusted model, baseline PHQ-9 score was associated with

incident CVD, AMI, and stroke. The HR per 1-SD increase for PHQ-9 score was 1.14

(95%CI: 1.03, 1.26) for CVD, 1.26 (95%CI: 1.01, 1.57) for AMI, and 1.12 (95%CI: 1.01,

1.25) for stroke. Compared with participants without depression, those with any mild or

more advanced depression had a higher risk of incident CVD (HR: 1.69, 95%CI: 1.08,

2.64) and AMI (HR: 3.36, 95%CI: 1.17, 10.56). Associations between depression with

CVD and stroke were suggested to be even stronger among women and participants

aged<65 years (P for interaction<0.05). The effect of depression on stroke tended to be

preserved in non-smokers. Depression was associated with a higher risk of incident CVD,

AMI, and stroke in adults of Southwest, China, particularly in women, participants aged

<65 years, and non-smokers. These findings highlighted the importance and urgency of

depression healthcare.

Keywords: the Patient Health Questionnaire-9 (PHQ-9), depression, cardiovascular disease, effect modification,

cohort study

INTRODUCTION

Depression is a leading cause of disability, with more than an estimated 264 million people affected
worldwide (1). Previous studies have reported that depression is consistently associated with a
higher risk of adverse cardiovascular disease (CVD). In a meta-analysis of 28 prospective cohort
studies, Pan et al. (2) reported a pooled adjusted hazard ratio (HR) of 1.45 for incident stroke
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associated with baseline depression. Another systematic review
reported that people with major depression have a 56%
higher risk of developing ischemic heart disease (IHD), with
depression accounting for 2.95% of the disability-adjusted life
years associated with IHD (3). However, the causal relationship
between depression and CVD is still questionable, while the
previous positive association was largely based on cross-sectional
studies, cohort studies with short follow-up durations, or
with inadequate adjustment of potential confounding factors.
Also, the results had been inconsistent between different
sociodemographic strata, such as men and women. For example,
a meta-analysis found similar associations between depression
and stroke in both men and women (4), while a study in Sweden
suggested that the effect of depression on stroke was higher
in men compared with women (5). The previous study has
found a stronger association between depression and stroke in
participants aged <65 years but not in participants ≥65 years
(6). Therefore, more prospective cohort studies are still needed
to examine whether the association between depression and CVD
differs over sociodemographic factors.

To our knowledge, very few prospective cohort studies
have been conducted on this issue among Chinese (7–9), in
which three cohort studies covered middle-aged and older
Chinese adults (7–9), and studies including younger adults in
China were still not reported so far. In this study, we used
data from a prospective cohort study in Southwest China to
investigate whether depression was associated with CVD in
adults and test whether those associations were modified by
sociodemographic factors.

MATERIALS AND METHODS

Study Design and Population
The Guizhou Population Health Cohort Study (GPHCS) was
a prospective community-based cohort in Guizhou province
located in Southwest China. A total of 9,280 residents was
enrolled from 48 townships of 12 districts (or counties) in
this cohort from 2010 to 2012 using a multistage proportional
stratified cluster sampling method. The inclusion criteria
included residents aged 18 years or older, who had no plan
to move out and completed survey questionnaire and blood
sampling. All participants were followed up for major chronic
diseases and vital status through a repeated investigation from
2016 to 2020 with the loss to follow-up rate of 12.04%. A total of
428 participants were further excluded for this analysis, including
44 with a history of CVD, 214 without reliable information on
CVD status at follow-up, and 170 without sufficient information
on depression at baseline. This study was approved by the
Institutional Review Board of Guizhou Center for Disease
Control and Prevention (No. S2017-02). All participants signed
the written informed consent.

Assessment of Depressive Symptoms
The Patient Health Questionnaire-9 (PHQ-9) with a 9-question
depression scale, was used to screen for the presence and
severity of depressive symptoms according to the Diagnostic

and Statistical Manual of Mental Disorders-IV criteria (DSM-
IV) (10). Subjects were asked to respond to each symptom by
rating the best statement applied over the past 2 weeks, using
a score from zero to three (ranging from “not at all” = zero,
“several days”= one, “more than half the days”= two, or “nearly
every days” = three). Given a range of total scores between
0 and 27, the higher score indicated the greater severity of
depressive symptoms. They were divided into three categories
according to the PHQ-9 scores (0, no depression; 1 to 4, minimal
depressive symptoms; and≥5, mild or more advanced symptoms
as depression) (11). The Chinese version of the PHQ-9 has
demonstrated high reliability and validity (12).

Ascertainment of Incident CVD Events
The study outcome was self-reported incident CVD events.
Incident CVD events were assessed by the following
standardized questions: “Have you been diagnosed with
cerebral hemorrhage by a doctor?”, “Have you been diagnosed
with subarachnoid hemorrhage by a doctor?,” “Have you been
diagnosed with cerebral infarction by a doctor?”, or “Have
you been diagnosed with acute myocardial infarction (AMI)
by a doctor?” Participants who reported cerebral hemorrhage,
subarachnoid hemorrhage, or cerebral infarction during the
follow-up period were defined as having an incident stroke, and
those who reported the above symptoms or AMI were defined as
having incident CVD. All deaths were confirmed by the Death
Registration Information System and Basic Public Health Service
System, and deaths from AMI or stroke were considered as
incident CVD cases.

Covariates
Information on the covariates was collected by trained health
workers using a structured questionnaire via a face-to-face
interview, including sociodemographic characteristics (age, sex,
ethnicity, education, marriage status, and occupation), lifestyle
(smoking status, alcohol use, and physical activity), history of
chronic diseases (type 2 diabetes (T2DM), hypertension, and
dyslipidemia), and use of medications for T2DM, hypertension,
and dyslipidemia. Height, body weight, and blood pressure were
measured by trained health workers. Current smoker was defined
as smoking at least one cigarette or other tobacco product a day
for 12 months or more. Alcohol use was defined as drinking at
least one time a week for 12months ormore. Physical activity was
defined as having moderate or vigorous physical activity at least
10min every time for one or more times per week. Body mass
index (BMI) was calculated as body weight in kilograms divided
by square height in meters (kg/m2). Venous blood samples
were obtained from participants after at least 8 h overnight
fast to measure fasting plasma glucose (FPG), total cholesterol
(TC), triglycerides (TG), high-density lipoprotein cholesterol
(HDL), and low-density lipoprotein cholesterol (LDL-C). A 2-
h oral glucose tolerance test (OGTT) with 75 g of glucose was
carried out for participants. T2DM was defined if participants
met either of the following criteria: (1) self-reported doctor
diagnosis of diabetes or use of anti-diabetic medications; (2) FPG
≥7.0mmol/L; (3) OGTT ≥11.1 mmol/L; (4) HbA1c ≥6.5% (13).
Hypertension was defined as who met either of the following
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criteria: (1) systolic blood pressure ≥140 mmHg and/or diastolic
blood pressure ≥90 mmHg; and/or (2) self-reported doctor
diagnosis of hypertension or use of hypertension medications
(14). Dyslipidemia was defined as whomet either of the following
criteria: (1) self-reported doctor diagnosis of dyslipidemia or use
of lipid regulating drugs; (2) high TC: TC≥6.22mmol/L; (3) high
TG: TG ≥2.26 mmol/L; (4) low HDL-C: HDL-C <1.04 mmol/L;
5) high LDL-C: LDL-C ≥4.14 mmol/L (15).

Statistical Analysis
Data were described as means and SDs for continuous variables,
and as frequencies and percentages for categorical variables.
Baseline characteristics are summarized according to depression
status and compared using the analysis of variance or the Chi-
square test. The person-years (PYs) of follow-up were calculated
for each participant from the date of enrolling the cohort to
the date of the CVD diagnosis, death, or the date of follow-up,
whichever came first. The associations of depression with CVD,
AMI, and stroke were estimated using Cox proportional hazards
regression models. Two models were estimated: (1) Model 1: age
(<30, 30–39, 40–49, 50–59, 60–69, ≥70) and sex were adjusted;
(2) Model 2: the variables in model 1 plus ethnicity (Han Chinese
or non-Han Chinese), education (<9 or ≥9 years), marriage
status (married or other), occupation (framer or other), smoking
status (current smoker or non-smoker), alcohol use (yes or no),
physical activity (yes or no), BMI, history of T2DM (yes or no),
history of hypertension (yes or no), and history of dyslipidemia
(yes or no) were adjusted. To assess the robustness of the
results, the following sensitivity analyses were performed: (1) We
repeated Model 2 after excluding participants who were followed
up less than 2 years, and (2) Considering the competing risk
of death, a competing risk model was also fitted. The potential
effect modifications by age (<65 or ≥65 years old), sex, smoking
status, alcohol use were estimated by (1) including multiplicative
interaction terms in the multivariable Cox models; (2) fitting
stratified models. We used the Schoenfeld residuals to test the
assumption of hazard proportionality in Cox regression models
and found no evidence of non-proportionality (P ≥ 0.05). Two-
sides P< 0.05 was considered statistically significant. All analyses
were performed in R software (Version 4.0.3; R Foundation for
Statistical Computing, Vienna, Austria).

RESULTS

Study Participants
Of 7,735 eligible subjects for the current analysis (Figure 1),
47.7% were men, with an average age of 44.37 ± 15.07 years old.
A total of 500 (6.46%) participants was presented with depression
(PHQ-9 score≥ 5), with an average score of 7.22± 2.88, and near
one-fifth (19.0%) had minimal depression with the PHQ-9 score
between 1 to 4. Compared with participants without depression
(PHQ-9 score = 0), depressive ones were older, women, ethnic
minority, farmers, or having lower education levels (Table 1).
They also had a lower proportion of current smokers and a higher
prevalence of hypertension or dyslipidemia.

Associations of Depression With Incident
CVD, AMI, and Stroke
During the mean of 7.07 follow-up years, a total of 215 new
CVD cases were identified with the crude incident density of
3.93 per 1,000 PYs, with 28 (0.51 per 1,000 PYs) new AMI cases
and 197 (3.60 per 1,000 PYs) stroke cases (Table 2). The crude
incident density was highest in the depression group (6.55 per
1,000 PYs), followed by minimal, and no depression groups. The
age- and sex-adjusted Cox model showed that the PHQ-9 score
was associated with an increased risk of incident CVD, AMI, and
stroke. In the fully adjusted models, the adjusted HRs were 1.14
(95%CI: 1.03, 1.26) for CVD, 1.26 (95%CI: 1.01, 1.57) for AMI,
and 1.12 (95%CI: 1.01, 1.25) for stroke with per SD increase of
PHQ-9 score. Compared with no depression participants, those
with minimal depression experienced a statistically increased risk
of incident AMI, and those with depression had a higher risk of
incident CVD and AMI.

In the sensitivity analysis (Table 3), the corresponding effect
estimates of baseline depression status on the incident CVD and
AMI did not change substantially after excluding participants
who were diagnosed with CVD or AMI within 2 years after
entering the cohort. However, the association between depression
and incident stroke was attenuated, with the adjusted HR of 1.11
(95%CI: 0.99, 1.26) for per SD increase of PHQ-9 score. When
the competing risk model was used to estimate the associations
between depression with incident CVD, AMI, and stroke, the
effects were similar to those in the main analysis.

Subgroup Analysis and Effect Modification
We also explored the potential effect modification of baseline
age, sex, smoking status, and alcohol use on the associations of
depression with incident CVD, AMI, and stroke, and the results
of the subgroup analyses were presented in Figure 2. The effects
of PHQ-9 score on CVD and stroke were higher in women or
participants aged <65 years than men or those aged ≥65 (P
for the interaction of CVD and stroke <0.05). The associations
between PHQ-9 score with stroke were stronger in non-smokers
(P for the interaction <0.05). However, alcohol use modification
was not significant.

DISCUSSION

This study examined the associations between depression and
incident CVD, AMI, and stroke in a prospective cohort study
of 7,735 adults in Southwest China with an average of 7 years
follow-up. At baseline, 6.5% of the participants experienced a
mild or more advanced depression. PHQ-9 score was associated
with risk of incident CVD, AMI, and stroke, while depression
was associated with 1.69-fold and 3.36-fold risks of CVD and
AMI, respectively. Furthermore, we found that the associations
were only significant in women, participants aged <65 years,
non-smokers, and non-alcohol users.

Previous studies have suggested that depression is associated
with an increased risk of CVD (2, 3, 7, 8, 16, 17). In the Jackson
Heart Study among 3,309 participants followed-up for 10 years,
O’Brien et al. found that major depressive symptoms, defined as
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FIGURE 1 | The flow chart.

TABLE 1 | General characteristics of the study population by the depression status at baseline in Southwest China.

Total

(N = 7,735)

Depression status P-value

No (0) Minimal (1–4) Mild or more advanced (≥5)

N 7,735 5,766 1,469 500

PHQ-9 score 0.87 ± 2.05 0 2.11 ± 1.05 7.22 ± 2.88 <0.001

Age at baseline, years 44.37 ±

15.07

43.52 ± 14.95 46.80 ± 15.28 47.12 ± 14.78 <0.001

<30 1,517 (19.6) 1,213 (21.0) 236 (16.1) 68 (13.6) <0.001

30.0–39.9 1,655 (21.4) 1,293 (22.4) 271 (18.4) 91 (18.2)

40.0–49.9 1,942 (25.1) 1,433 (24.9) 369 (25.1) 140 (28.0)

50.0–59.9 1,331 (17.2) 945 (16.4) 289 (19.7) 97 (19.4)

60.0–69.9 824 (10.7) 569 (9.9) 190 (12.9) 65 (13.0)

≥70.0 466 (6.0) 313 (5.4) 114 (7.8) 39 (7.8)

Men, % 3,692 (47.7) 2,851 (49.4) 645 (43.9) 196 (39.2) <0.001

Ethnic minority, % 3,197 (41.3) 2,471 (42.9) 541 (36.8) 185 (37.0) <0.001

Education ≥9 years, % 3,328 (43.0) 2,618 (45.4) 544 (37.0) 166 (33.2) <0.001

Married, % 6,251 (80.8) 4,631 (80.3) 1,224 (83.3) 396 (79.2) 0.021

Farmer, % 4,411 (57.0) 3,379 (58.6) 787 (53.6) 245 (49.0) <0.001

Current smoker, % 1,972 (25.5) 1,502 (26.0) 364 (24.8) 106 (21.2) 0.045

Alcohol use, %* 1,525 (19.7) 1,146 (19.9) 299 (20.4) 80 (16.0) 0.089

Physical activity, % 67,41 (87.1) 5,023 (87.1) 1,311 (89.2) 407 (81.4) <0.001

BMI, kg/m2 22.90 ± 3.36 22.90 ± 3.35 23.01 ± 3.46 22.55 ± 3.12 0.030

History of T2DM, % * 657 (8.5) 486 (8.4) 130 (8.8) 41 (8.2) 0.202

History of hypertension, % 2,014 (26.0) 1,451 (25.2) 426 (29.0) 137 (27.4) 0.032

History of dyslipidemia, % 4,436 (57.3) 3,258 (56.5) 874 (59.5) 304 (60.8) 0.009

*missing value.

PHQ-9, Patient Health Questionnaire-9; BMI, body mass index; T2DM, type 2 diabetes mellitus.
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TABLE 2 | The incident risk of CVD, AMI, and Stroke associated with baseline depression status.

Cases, n Incident density/1000 PYs Hazard Ratio (95% Confidence Interval)

Mode 1 Mode 2

CVD

PHQ-9 score (per SD increase) 215 3.93 1.14 (1.03, 1.26) * 1.14 (1.03, 1.26) *

No (0) 146 3.57 1.00 1.00

Minimal (1–4) 46 4.47 1.11 (0.79, 1.55) 1.10 (0.78, 1.53)

Mild or more advanced (≥5) 23 6.55 1.64 (1.05, 2.55) * 1.69 (1.08, 2.64) *

AMI

PHQ-9 score (per SD increase) 28 0.51 1.26 (1.02, 1.55) * 1.26 (1.01, 1.57) *

No (0) 13 0.32 1.00 1.00

Minimal (1–4) 11 1.06 3.05 (1.36, 6.84) ** 3.11 (1.37, 7.07) **

Mild or more advanced (≥5) 4 1.13 3.36 (1.09, 10.42) * 3.36 (1.17, 10.56) *

Stroke

PHQ-9 score (per SD increase) 197 3.60 1.12 (1.00, 1.25) * 1.12 (1.01, 1.25) *

No (0) 137 3.35 1.00 1.00

Minimal (1–4) 40 3.89 1.02 (0.72, 1.46) 0.99 (0.70, 1.42)

Mild or more advanced (≥5) 20 5.69 1.51 (0.94, 2.42) 1.55 (0.96, 2.49)

Model 1: adjusted for age (<30, 30–39, 40–49, 50–59, 60–69, ≥70), sex.

Model 2: model 1 plus ethnicity, education, marriage, occupation, smoking status, alcohol use, physical activity, history of T2DM, history of hypertension, history of dyslipidemia, and

body mass index.

**P < 0.01, *P < 0.05.

PY, person years; CVD, cardiovascular disease; PHQ-9, Patient Health Questionnaire-9; SD, standard deviation; AMI, acute myocardial infarction.

TABLE 3 | Sensitivity analysis.

Hazard Ratio (95% Confidence Interval)

CVD AMI Stroke

Excluding participants who were diagnosed within 2 years

PHQ-9 score (per SD increase) 1.13 (1.02, 1.26) * 1.26 (1.01, 1.57) * 1.11 (0.99, 1.26)

No (0) 1.00 1.00 1.00

Minimal (1–4) 1.21 (0.86, 1.72) 3.51 (1.53, 8.07) ** 1.12 (0.77, 1.63)

Mild or more advanced (≥5) 1.63 (1.00, 2.66) * 3.62 (1.14, 11.47) * 1.50 (0.88, 2.54)

Competing risk model

PHQ-9 score (per SD increase) 1.13 (1.03, 1.24) ** 1.25 (1.04, 1.51) * 1.12 (1.01, 1.24) *

No (0) 1.00 1.00 1.00

Minimal (1–4) 1.09 (0.78, 1.52) 3.26 (1.42, 7.47) ** 1.00 (0.70, 1.42)

Mild or more advanced (≥5) 1.64 (1.06, 2.53) * 3.26 (1.00, 10.67) 1.53 (0.96, 2.44)

Adjusted for age (<30, 30–39, 40–49, 50–59, 60–69, ≥70), sex, ethnicity, education, marriage, occupation, smoking status, alcohol use, physical activity, history of T2DM, history of

hypertension, history of dyslipidemia, and body mass index.

**:P < 0.01, *P < 0.05.

CVD, cardiovascular disease; AMI, acute myocardial infarction; PHQ-9, Patient Health Questionnaire-9; SD, standard deviation.

a score of 21 or higher on the 20-item Center for Epidemiological
Studies Depression Scale (CES-D), were associated with a 2-
fold greater hazard of stroke, while a per-SD increase in CES-
D score was associated with a 1.3-fold (16). In another cohort
of the China Health and Retirement Longitudinal study among
12,417 middle-aged and older adults, Li et al. (8) reported
that participants with elevated depressive symptoms had a 39%
(95%CI: 22, 58%) higher risk of incident CVD, a 36% (95%CI:
18, 57%) higher risk of heart disease, and a 45% (95%CI: 6,
99%) higher risk of stroke during the 4 years of follow-up. A
recent meta-analysis of 21 studies involving 47, 625 participants

found that participants with depressive symptoms had a 1.36-
fold higher risk of stroke, but not of MI (HR: 1.08, 95%CI:
0.91, 1.29) (18). As expected, the depressive symptoms were
associated with a higher risk of CVD and AMI in this study,
while the association was not statistically significant in stroke.
Apart from differences in methods of depression symptoms
assessment, different age distribution, the residual confounding
effects, divergent medical, behavioral, or social responses to the
depressive disorder may partly explain the different findings
overstudies. Another potential explanation for such differences
may be the limited number of new cases in this study. Thus,
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FIGURE 2 | The incident risk of CVD, AMI, and Stroke associated with baseline PHQ-9 score by sex, age, smoking status, and alcohol use. Adjusted for age

(<30, 30–39, 40–49, 50–59, 60–69, ≥70), sex, ethnicity, education, marriage, occupation, smoking status, alcohol use, physical activity, history of T2DM, history of

hypertension, history of dyslipidemia, and body mass index. HR, hazard ratio; 95%CI, 95% confidence interval; PHQ-9, Patient Health Questionnaire-9; SD, standard

deviation; CVD, cardiovascular disease; AMI, acute myocardial infarction. (A) Subgroup analysis by sex; (B) subgroup analysis by age group; (C) subgroup analysis by

smoking status; (D) subgroup analysis by alcohol use.

future work with a longer follow-up period is needed to confirm
the association between depression and risk of CVD including
AMI and stroke.

There are several potential mechanisms for the association of
depression with excess risk of incident CVD. Biologically,
depression is associated with hypothalamic-pituitary-
adrenal axis hyperactivity (19), platelet activation (20), and
immunological/inflammation effects (21), all of which might
be linked to the increased CVD risk. Secondly, the depressive
population often has unhealthy lifestyles, including smoking
(22), alcohol abuse (23), low physical activity (24), and obesity
(25), which could affect the occurrence of CVD. In addition,
depression is associated with other comorbidities (26), like
hypertension and diabetes, both are risk factors related to
incident CVD. Nevertheless, after adjusting for baseline
smoking status, alcohol use, physical activity, BMI, history of
hypertension, and diabetes, the association between depression
and incident CVD remained stable in this study, indicating that
the effect of depression was independent of those risk factors
mentioned above.

Sex modified associations between depression, and incident
CVD and stroke in this study, which was inconsistent with
several previous studies (4, 5, 8, 27). Those associations were

more evident in women in this study. Hamano et al. evaluated
sex differences in the association between depression and
stroke and found that the effect of depression on stroke was
higher in men compared with women (8). A meta-analysis
of 17 prospective studies reported that the associations were
similar between men and women (4). Even so, our findings
provided new evidence that there may be a sex difference in
the association of depression with incident CVD and stroke in
the Chinese population. Although the exact mechanisms are still
unclear, there are several potential biological and psychosocial
explanations. First, the prevalence of depression is higher in
women than men in this study. Compared with women, men
may be less inclined to report a depressive disorder or seek
help until the depression is severe (28, 29). Second, depression
increases the plasma concentration of 5-hydroxytryptamine (5-
HT), which is of particular relevance to women (20). 5-HT
may affect platelet function and lead to platelet aggregation
as well as coronary vasoconstriction (30). In addition, lifestyle
differences may contribute to the stronger association in women.
Previous studies have reported that there are several different
risk factors associated with CVD in men and women, although
the underlying biological mechanisms are still unclear (31, 32).
The risk-elevating effect of depression on stroke tended to be
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preserved in a subgroup of non-smokers, which might be due to
most smokers being men.

Previous cohort studies in the Chinese population were
among middle-aged and older adults (7, 8), while this study
included participants aged 18 years or above. In the stratified
analysis by age, we found that the effects of depression on
incident CVD and stroke were higher in participants aged
<65 years, which was consistent with the previous study
(6). The Framingham Study found that depression increased
the risk of stroke in those aged <65 years but not in
those aged ≥65 years. More prospective studies with a large
sample size are calling to confirm whether age modifies
the association between depression and incident CVD in
the future.

The strengths of this study included the well-characterized
prospective design and the longer follow-up period with a
relatively low loss to follow-up rate. To our knowledge, this
is the first report on the association between depression and
incident CVD in different demographic groups in Southwest
China. This study also had notable limitations. Firstly, we only
measured baseline depression status using PHQ-9 and did not
measure during the follow-up. Also, we did not have clinical
diagnoses information of depression, which might lead to a
misclassification of the depression status. Secondly, those with
depressive disorders may be less likely to participate owing to
their loss of interest in most things. Thirdly, the outcome was
self-reported and the timing of onset may be inaccurate, and the
association might be underestimated. In addition, even though
current analyses adjusted for major potential confounding
factors, residual confounding resulting from dietary factors was
still possible.

In conclusion, depression significantly increased the risk
of incident CVD including AMI and stroke, especially in
women, participants aged <65 years, and non-smokers. Further
prospective studies with clinically diagnosed depression and
repeated measures of depression in Chinses population are
required to examine the potential underlying mechanisms. Our
findings highlight the need for focused attention on increasing
awareness and improving the healthcare of depression, and
also suggest that primary care physicians should pay more

attention to CVD prevention if females, the elder, or non-
smokers become depressed.
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