About this Research Topic
Historically, the first barrier to the characterization of the evolutionary properties of cancer was the limited amount of collectable data, which was usually based on a single tissue biopsy. There are several factors that changed this paradigm, including the advancement of molecular profiling technologies, the substantial decrease in sequencing costs, and the introduction of multimodal serial sampling in clinical and research settings, such as circulating tumor cells (CTC) and cell-free DNA (cfDNA) in peripheral blood samples. Although these tools enable the study of the evolutionary properties of cancers, to date such technological advancements have not been matched by sufficient advancements on modeling the properties of cancer evolution and on understanding the clinical utility of these processes. Only joint efforts from computational, clinical, and experimental perspectives can lead to an improved understanding of evolutionary properties of cancer.
Hence, in this Research Topic we propose a collection of articles of computational, experimental or translational nature, examining clinically relevant properties of cancer evolution, with particular focus on the following aspects:
● The characterization of evolutionary properties of cancers, such as intratumor heterogeneity and the subclonal structure of tumors. Both systematic computational analyses on big data cohorts and detailed experimental studies of small-scale evolutionary cancer dynamics are of interest.
● Experimental or large-scale systematic characterization of cellular-level mechanisms of alteration emergence and selection, including conditional selection between alterations.
● Development and validation of machine learning methods to predict axes of cancer evolution. This may include the preferential trajectories or acquisition of specific alterations (e.g. the canonical APC -> KRAS progression in colorectal adenocarcinoma).
● Development of machine learning methods to predict evolutionary mechanisms leading to resistance to a given therapy. These predictors should have clinical relevance to help forecast mechanisms of resistance to optimally stratify patients and to better inform clinical decision making.
Topic Editor Marco Mina is employed by Sophia Genetics. All other Topic Editors declare no competing interests with regards to the Research Topic subject.
Keywords: cancer, evolution, translational, therapy, computational
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.