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Editorial on the Research Topic

Non-coding RNAs in Reproductive Biology

Non-coding RNAs (ncRNAs) consist of several classes of transcripts that can be classified
according to their function into housekeeping (e.g., ribosomal RNA and transfer RNA) and
regulatory RNAs. The main categories of regulatory RNAs include microRNAs (miRNAs),
small interfering RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), long non-coding RNAs
(lncRNAs) and circular RNAs (circRNAs). ncRNAs are considered as master regulators
of transcription, transcript stability, and post-transcriptional and epigenetic regulators of
protein-coding transcripts, with functions in both physiological processes and human diseases.
To date, much emphasis in research on reproductive biology is put on the identification of
protein-coding genes that play important roles in the development of organs and tissues involved
in reproduction. Mutations in these genes can have devastating effects on the reproductive system.
Surprisingly, much less attention is paid to the possible importance of ncRNAs in reproduction.
Several examples in reproductive physiology and disease clearly demonstrate that ncRNAs are
essential for proper cellular interactions such as ovarian follicle and embryo development, and that
alterations in ncRNAs may play a role in various diseases such as ovarian and prostate cancer.

The Research Topic on “Non-Coding RNAs in Reproductive Biology” in Frontiers in Cell and
Developmental Biology includes a series of 9 articles that discuss recent advances regarding the
biological and molecular roles of ncRNAs in reproductive processes and highlight challenges and
outstanding questions, that need to be addressed in future researches.

The gonadal organs testis and ovary function not only as gamete producers but also
as endocrine organs involved in the synthesis of sex steroid hormones which are crucial
for successful reproduction. In the testis, somatic Sertoli cells directly support and nurse
male germ cells in different stages of development, thus playing an essential role in
spermatogenesis. Liu et al. explored the expression, function, and mechanism of action
of human miR-100-3p in Sertoli cell development, using molecular and physiological
methods. The authors demonstrate that miR-100-3p is more highly expressed in the
Sertoli cells cultured in the presence of 10% fetal bovine serum (FBS) than 0.5% FBS,
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promoting DNA synthesis and cell proliferation, while reducing
apoptosis simultaneously. Through a loss of function study,
authors prove that miR-100-3p directly binds the downstream
target gene, serum/glucocorticoid regulated kinase family
member 3 (SGK3), which main function is related to stimulation
of Sertoli cell development. Next to miRNAs, another new
type of ncRNAs, circRNAs with closed loop structure, have
been reported to play an important role in ovarian follicular
development. Li et al. recently identified an N6-methyladenosine
(m6A)-modified circRNA, circGFRa1, which is abundantly
expressed in the mouse ovary and stage-specifically expressed
in cells that are by the authors considered to be mouse
female germline stem cells (FGSCs). The authors demonstrate
that silencing circGFRa1 in FGSCs significantly reduces their
self-renewal capabilities, while overexpression of circGFRa1
significantly enhances FGSC self-renewal. Furthermore, authors
show that circGFRa1 can enhance the expression of the
downstream target GFRa1, leading to activation of the glial
cell derived neurotrophic factor (GDNF) signaling pathway
by sponging miR-449 in FGSC. Although these data are
very exciting, some caution is necessary, as the presence of
FGSC in the postnatal (adult) mammal ovary continues to be
under debate.

Embryo implantation failure is recognized as a leading cause
of infertility. The review by Zhou andDimitriadis surveys a group
of secreted miRNAs, that are potentially useful in predicting
implantation outcome using materials that can be collected in
a relatively non-invasive way, such as follicular fluid, blood
and uterine fluid. Secreted or extracellular miRNAs are highly
stable in body fluids and can be used as a reflection of disease
state. A further advantage of these miRNAs is that they are
easily detectable in a short time frame. These advantages make
them promising biomarkers for the detection of (successful)
embryo implantation.

The placenta is the structure where exchange of blood borne
factors between mother and fetus occur and as such plays a
central role in maternal and fetal health during pregnancy. Xu
et al. in their mini-review address the role of placenta-derived
miRNAs in the pathophysiology of human pregnancy. miRNAs
produced by the maternal site of the placenta can be selectively
incorporated into exosomes and potentially transferred into fetal
cells to provide intercellular communication betweenmother and
fetus. In this review, the authors especially focus on the role of
exosome miRNAs as possible biomarkers for the prediction of
pregnancy related diseases, such as preeclampsia.

Next to embryo implantation, proper trophoblast invasion
and fusion are also pivotal processes for the establishment of
a successful pregnancy. Two original research papers discuss
the emerging findings that non-coding RNAs are involved in
regulating trophoblast differentiation, invasion, and fusion.
You et al. delineated the precise molecular physiological
processes by which BMP2 regulates trophoblast invasion.
The authors show that serum BMP2 concentrations are
significantly lower in women with early pregnancy loss than in
women with an ongoing early pregnancy. In mice, exogenous
BMP2 promotes embryonic development by stimulating

blastocyst formation and hatching. Using primary extravillous
trophoblast cells, the authors observed that BMP2 upregulates
the downstream LncRNA NR026833.1, promoting SNAIL
expression via sponging miR-502-5p. SNAIL then enhances
MMP2 expression and promotes cell invasion. Apicella et al.
identified two non-coding transcripts, miR-193b and lncRNA
UCA1, in the BeWo trophoblast cell model and in placental
diseases. The authors show that miR-193b is a hub for the
downregulation of 135 targets genes mainly involved in
cell cycle progression and energy usage/nutrient transport.
Furthermore, it is reported that UCA1 knockdown leads to an
altered gene expression profile which may affect trophoblast
cell fusion.

Successful reproduction is highly dependent on the health
status of the reproductive organs. Finding cures for diseases such
as ovarian and prostate cancer is of the utmost importance not
only from a reproductive perspective but also from the point
of human well-being. Takeiwa et al. provide an outstanding
review of the regulatory effects of some lncRNAs in apoptosis
of ovarian cancer cells. In particular the authors focus on
the molecular characteristics of apoptosis-related lncRNAs,
involved in the regulation of transcription factors, histone
modification complexes, miRNAs, and protein stability. The
authors provide insight in the possible role of apoptosis-related
lncRNAs as biomarkers for ovarian cancer diagnosis, prognosis,
and therapy. In line with the review by Takeiwa et al.; Hu
et al. execute an extensive integrated bioinformatic analysis to
characterize lncRNA-immune interactions in prostate cancer.
Prostate cancer-specific dysregulated lncRNAs such as RP11-
627G23.1 and RP11-465N4.5 are identified and seem to be closely
associated with immune-related hallmarks of prostate cancer.

At last, we are pleased with the article by Luo et al.
investigating the regulatory roles of non-coding RNAs in
fetal and postnatal muscle development. The focus of this
study is on fetal development with the emphasis on muscle
development as part of fetal well-being. In this review, the authors
provide an up-to-date research overview of miRNAs, circRNAs,
and lncRNAs involved in regulating myoblast proliferation,
differentiation, and postnatal muscle development through
multiple molecular mechanisms.

In conclusion, with this Research Topic we have collected
a series of reviews and original research papers describing
the role of non-coding RNAs in both physiological
and pathological processes related to male and female
reproduction. The papers comprising this Research Topic
greatly contributed to our further understanding of the
regulatory mechanisms and potential applications of
ncRNAs, although we also learnt that many questions remain
still unanswered.
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Embryo implantation failure is considered a leading cause of infertility and a
significant bottleneck for in vitro fertilization (IVF) treatment. Confirmed factors that
lead to implantation failure involve unhealthy embryos, unreceptive endometrium,
and asynchronous development and communication between the two. The quality
of embryos is further dependent on sperm parameters, oocyte quality, and early
embryo development after fertilization. The extensive involvement of such different
factors contributes to the variability of implantation potential across different menstrual
cycles. An ideal approach to predict the implantation outcome should not compromise
embryo implantation. The use of clinical material, including follicular fluid, cumulus
cells, sperm, seminal exosomes, spent blastocyst culture medium, blood, and uterine
fluid, that can be collected relatively non-invasively without compromising embryo
implantation in a transfer cycle opens new perspectives for the diagnosis of embryo
implantation potential. Compositional comparison of these samples between fertile
women and women or couples with implantation failure has identified both quantitative
and qualitative differences in the expression of microRNAs (miRs) that hold diagnostic
potential for implantation failure. Here, we review current findings of secreted miRs
that have been identified to potentially be useful in predicting implantation outcome
using material that can be collected relatively non-invasively. Developing non-invasive
biomarkers of implantation potential would have a major impact on implantation failure
and infertility.

Keywords: embryo implantation, non-invasive prediction, microRNAs, male factor, spent blastocyst culture
medium, blood, uterine fluid, oocyte quality

INTRODUCTION

Infertility affects a staggering one in six couples worldwide (Wilcox et al., 1988) and can be a
devastating condition for couples, with the failure to conceive recognized as a leading cause of
psychological distress, depression, low self-esteem, and domestic violence (Chachamovich et al.,
2010; Cui, 2010). A major contributor to infertility is the failure of blastocysts to implant,
accounting for >50% of all failed pregnancies (Craciunas et al., 2019). While in vitro fertilization
(IVF) has increasingly assisted couples to conceive, success rates have stagnated as still, ∼50%
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of good quality blastocysts fail to implant (Gardner and Balaban,
2016). Implantation is a highly complex biological process that
requires the coordination between a healthy embryo and a
receptive endometrium. The process is initiated via fertilization
of a healthy oocyte, which occurs in the Fallopian tube. During
fertilization, the female reproductive tract serves as a natural
selection system to guarantee that the best quality sperm reaches
and fertilizes the oocyte (Ralt et al., 1991). Once fertilized, the
zygote travels through the Fallopian tube and develops to the
morula stage when it reaches the uterine cavity. The morula
stage embryo continues to develop to the blastocyst stage in
the uterine cavity before implantation (Norwitz et al., 2001).
This can take up to 72 h within which time the embryo and
the endometrium communicate via secreted and cell surface
factors to prepare for the initial adhesion and attachment (Ashary
et al., 2018). Once the outer layer of the embryo, namely,
the trophectoderm firmly attaches to the endometrial luminal
epithelium, it initiates implantation. Failure of firm adhesion
leads to implantation failure.

Successful implantation is based on the cumulative success of
the above events. Implantation can be affected by many factors
including sperm and oocyte quality, early development of the
embryo, the endometrium, and the reciprocal communication
between blastocysts and endometrium. During an IVF clinical
setting, embryo quality is generally scored via assessment of
morphology, expansion and hatching, development of inner cell
mass, and the formation of the trophectoderm layer (Giorgetti
et al., 1995; Gardner et al., 2000). The transfer of embryos
graded as good or “transferable” can improve implantation
and pregnancy outcome (Giorgetti et al., 1995; Gardner et al.,
2000). However, these morphological criteria do not necessarily
correlate with implantation potential. Embryos with similar
morphologically good scores assessed to be of transferable
quality from aged women (>38 years) have a significantly
lower pregnancy rate compared to those of younger women
(<38 years) (Giorgetti et al., 1995). It is estimated that overall,
50% of good quality embryos fail to implant (Gardner and
Balaban, 2016). In addition to scores based on morphology, pre-
implantation genetic testing is also used in some IVF clinics.
This testing requires the collection of trophectoderm cells to
assess the ploidy of blastocysts and can reveal one of the
many characters that may affect implantation. Another clinical
approach to improve implantation success is via the assessment of
endometrial receptivity. A current clinical test, called endometrial
receptivity array, is used to evaluate whether the endometrium
is in phase or receptive (Díaz-Gimeno et al., 2011). However,
this method is invasive as it requires an endometrial biopsy and
does not diagnose a disrupted or dysregulated endometrium, and
while promising, there is still a need to develop non-invasive
methods to recognize a disrupted endometrium (Díaz-Gimeno
et al., 2011). In addition to the endometrium, sperm quality
also can affect implantation. Current clinical analysis of sperm
quality relies on the basic assessments of sperm morphology
and motility, which do not necessarily reflect their capability in
facilitating embryo development and implantation.

Despite the available tests, abnormalities in sperm, oocytes,
disrupted endometrium, and embryo–endometrial interactions

that contribute to implantation failure are not able to be
effectively determined, and implantation failure remains a
significant bottleneck for IVF treatment. To improve this,
emerging work focuses on assessing biomarkers in samples that
can be collected relatively non-invasively and examining whether
they reflect the implantation potential. While many different
classes of potential biomarkers have been proposed, microRNAs
(miRs) stand out as promising biomarkers to determine the
quality of sperm, oocytes, embryos, and endometrium that
could be used to predict implantation outcome. miRs are
small non-coding RNAs that regulate gene expression and
protein production (Bushati and Cohen, 2007). Secreted or
extracellular miRs are highly stable in body fluids, reflect disease
states, and are easily detectable in a short time frame making
them highly suitable for biomarker detection (Cuman et al.,
2015). Emerging evidence strongly suggests that miRs regulate
human embryo implantation (Paul et al., 2019). Recent studies
support their use as non-invasive biomarkers for sperm, oocyte,
and blastocyst quality, endometrial receptivity, and blastocyst–
endometrial interactions (Cuman et al., 2015; Machtinger et al.,
2017; Li et al., 2019; Abu-Halima et al., 2020). This review aims
to discuss the use of miRs for screening blastocyst quality and
implantation potential, focusing on using human samples that
can be collected relatively non-invasively.

LABORATORY IDENTIFICATION OF MIRS
WITH TRANSLATIONAL POTENTIAL FOR
IMPLANTATION PREDICTION

A standard IVF treatment broadly requires egg retrieval,
sperm collection, IVF, and embryo culture before transfer.
The collection of cumulus cells and follicular fluid is possible
during egg retrieval without affecting IVF (Figure 1). Analysis
of gene and miR expression in follicular fluid and cumulus
cells indicates oocyte and embryo quality, thus the implantation
potential from an embryo’s perspective (Hamel et al., 2008;
Fu et al., 2018). Embryos are generally cultured up to 5–
6 days to reach the blastocyst stage before transfer (Figure 1).
Embryos secrete specific profiles of miRs that may reflect
their quality and implantation potential (Kropp et al., 2014;
Capalbo et al., 2016). The endometrial epithelium secretes
factors into the uterine cavity to regulate implantation and
uterine fluid, or uterine lavage washings can potentially be
used to detect miRs as biomarkers for the prediction of
receptivity and implantation (Boomsma et al., 2009). Blood
contains extracellular miRs with expression levels of some
miRs positively correlating with endometrial levels and can
potentially indicate whether the endometrium is dysregulated
or receptive (Kresowik et al., 2014). Abnormalities in sperm
contribute to blastocyst development and quality (Yuan et al.,
2016), which could impact implantation. It has been shown in
mice that sperm relays epigenetic information to the oocyte
during fertilization and influences pre-implantation embryo and
offspring development (Sharma et al., 2016). The development
of non-invasive biomarkers has driven extensive research in
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FIGURE 1 | Schematic of samples that can be collected non-invasively during in vitro fertilization (IVF) treatment. Characterization of the seminal exosome and
sperm microRNA (miR) profiles could determine sperm quality to predict the potential of embryo development and IVF outcome. Analysis of miR expression in
follicular fluid and cumulus cells may indicate oocyte and embryo quality, and implantation potential from an embryo’s perspective. miR profiles in BCM also likely
reflect embryo quality that may not be distinguished by morphology-based assessment. Endometrial cells release miRs in the blood and the expression levels of at
least some endometrial miRs are reflected in the blood. Assessment of circulating miRs in the blood may predict endometrial receptivity and implantation outcome.
Uterine fluid miR levels reflect “local” endometrial miR secretion and can be collected without compromising embryo transfer to provide information on endometrial
receptivity. These samples are outlined. BCM, blastocyst culture medium.

this area with an overall aim to improve the success rate of
implantation and IVF treatment.

CUMULUS CELLS AND FOLLICULAR
FLUID

Cumulus cells are implicated in oocyte development and
competence (Huang and Wells, 2010). In addition to interacting
directly with the oocyte to facilitate maturation, cumulus cells
are also bathed within the same follicular environment during
oocyte maturation, thus may retain a footprint to reflect its
quality and potential to form a viable embryo (Figure 1;
Patrizio et al., 2007). It has been proven that cumulous cells
are useful for non-invasive diagnosis of oocyte quality (Hamel
et al., 2008; Devjak et al., 2016). Next-generation sequencing
on human cumulus cells has revealed that miRs represent
the major small RNA type, constituting as much as 71%
of the total small RNAs (Xu et al., 2015). As a way of
interaction, it has been shown that bovine cumulus cells and
oocytes reciprocally affect the abundance of miRs in each
cellular compartment (Abd El Naby, 2012), and these miRs
readily control gene expression with extensive downstream
functional implications. Gene expression studies on human
cumulus cells have revealed transcripts that may be involved
in oocyte maturation, implantation, and pregnancy with their

regulatory miRs just beginning to be realized (Gasca et al., 2007;
Hamel et al., 2008). During IVF treatment, cumulus cells are
retrieved while still firmly attached to each oocyte, and as such,
their collection can be sourced from individual oocytes and,
thus provide an indication of the developmental potential for
individual oocytes.

Follicular fluid is also collected during oocyte retrieval;
however, unlike cumulus cells, follicular fluid normally collected
during IVF stimulation is a pool from several oocytes, rather
than a single oocyte to avoid multiple vaginal punctures. Despite
this limitation, one study using pooled follicular fluid from
individual patients has identified differences in miR expression
between groups with different pregnancy outcomes (Scalici
et al., 2016). This study screened five miRs and identified that
hsa-miR-29a expression in the follicular fluid could predict
pregnancy outcome with a specificity of 53.5% and has a
higher discrimination power compared to prediction using
embryo morphology scores (Scalici et al., 2016). Another two
investigations collected follicular fluid from a single follicle and
used microarrays to screen miRs that were able to predict the
difference between good and bad quality blastocysts. Although
hsa-miR-663b has been identified as a common miR that is
inversely related to good quality blastocysts (Machtinger et al.,
2017; Fu et al., 2018), the blastocyst quality discrimination
method used in the two studies is based on routine morphological
assessment. Therefore, the use of hsa-miR-663b as a marker of
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good quality blastocysts can similarly be determined by routine
morphological assessment and likely provides limited application
potential to predict embryo implantation outcome. In a clinical
IVF setting, generally, multiple oocytes are retrieved at one time,
and it is likely that they differ in quality and potential to develop
into viable blastocysts. This may limit the extensive application of
follicular fluid as it cannot be used to evaluate miRs released by
individual oocytes.

SEMINAL PLASMA AND SPERM

Defective sperm function is widely acknowledged as a major
contributor to infertility. Under physiological conditions, the
sperm acquires functional competence during their transit
through the epididymis and female reproductive tract. Both
biophysical and biochemical changes occur along this journey,
eventually culminating in the ability of sperm to undergo an
acrosome reaction, recognize the oocyte, and contribute to
embryo development (Zhou et al., 2018). A number of recent
studies in mice have provided evidence that uptake of miRs from
the epididymal luminal environment endows the sperm with the
capability to contribute to the early embryonic development and,
thus, implantation upon delivery to the oocyte (Yuan et al., 2016;
Conine et al., 2018, 2019). miR profile comparisons between
mouse caput and cauda sperm have identified 27 miRs that are
specifically enriched in cauda sperm, compared to caput sperm
(Nixon et al., 2015; Sharma et al., 2018). Microinjection of cauda
sperm-enriched miRs into caput-derived embryos rescue gene
expression defects before implantation in mice (Conine et al.,
2019). Further investigation has identified an epididymosome-
dependent mechanism for the selective delivery of miRs into
the sperm during their transit in the epididymis in mice (Reilly
et al., 2016; Trigg et al., 2019; Zhou et al., 2019). In humans,
differences in miR expression profiles have been recorded in
both seminal plasma and sperm relative to different embryo
qualities and pregnancy outcomes (Mokánszki et al., 2019;
Abu-Halima et al., 2020; Xu et al., 2020). miR sequencing
analysis on sperm samples grouped according to different embryo
qualities has identified higher expression levels of hsa-miR-191
in the sperm group with better embryo developmental outcome
(Xu et al., 2020). hsa-miR-19b-3p has a lower expression in
sperm that is associated with a successful pregnancy outcome
(Abu-Halima et al., 2020). Another recent study selected 11
spermatogenesis-related miRs and revealed that hsa-let-7a, hsa-
miR-7-1-3p, hsa-miR-141, hsa-miR-200a, and hsa-miR-429 were
significantly elevated, while hsa-miR-15b, hsa-miR-34b, and
hsa-miR-122 were significantly downregulated in both seminal
plasma and sperm of infertile male patients with impaired
sperm production, compared to males with normal fertility
(Mokánszki et al., 2019). Seminal plasma has been identified
with an enriched population of epididymosome-like vesicles,
namely, seminal exosomes (Vojtech et al., 2014). A limitation
of using seminal exosomes is that they represent a mixed
population of extracellular vesicles originating not only from
the epididymis but also from the prostate and seminal vesicles
(Rolland et al., 2013), Whether miR profiles in these vesicles

correlate with sperm quality requires investigation. Nevertheless,
seminal exosomes have been implicated in the transfer of cargo
to sperm, which promotes their motility, ability to capacitate, and
complete acrosomal exocytosis, therefore, affecting sperm quality
(Tompkins et al., 2015). In addition, exosomes isolated from
seminal plasma can modulate the immune response and gene
expression changes in the female reproductive tract (Robertson
and Sharkey, 2016; Bai et al., 2018), which eventually facilitate
implantation and pregnancy in humans. Such functions are at
least mediated via seminal exosome-carried miRs (Machtinger
et al., 2016), and like epididymosomes, seminal exosomes carry
distinctive profiles of miRs (Vojtech et al., 2014). Improved
characterization of the seminal plasma and sperm miR profiles
could not only be beneficial in terms of uncovering the causative
basis of male gamete dysfunction but also for the provision of
urgently needed biomarkers of sperm quality to reliably predict
the outcome of IVF treatments.

SPENT BLASTOCYST CULTURE
MEDIUM

In an IVF setting, a fertilized oocyte is generally cultured in vitro
for up to 5–6 days to the blastocyst stage before transfer. Spent
culture media can be collected during media change without
affecting embryo quality. It has been demonstrated that over 96%
of miRs present in the spent culture media originate from the
trophectoderm and can be consistently detected after blastulation
under IVF culture conditions (Capalbo et al., 2016). It is
tempting to speculate that blastocyst-secreted miRs participate in
the regulation of trophectoderm–endometrial luminal epithelial
interactions therefore implantation. In keeping with this notion,
it has been identified that embryos with different implantation
outcomes (implanted versus non-implanted) secrete different
profiles of miR into the culture medium (Cuman et al., 2015;
Borges et al., 2016; Capalbo et al., 2016). Increased expression
of hsa-miR-142-3p and decreased expression of hsa-miR-20a and
hsa-miR-30c have been identified in non-implanted blastocyst
culture medium (BCM), compared to implanted BCM (Table 1;
Borges et al., 2016; Capalbo et al., 2016). Further, microarray
screens have identified a list of miRs exclusively detected in
either implanted or non-implanted BCM (Table 1; Cuman et al.,
2015; Capalbo et al., 2016). miR profiles in the BCM also likely
reflect embryo quality and overall IVF outcome, as summarized
in Table 1 (McCallie et al., 2010; Rosenbluth et al., 2014; Abu-
Halima et al., 2020).

A previous study has proposed that while the pre-implantation
embryo is in the uterine cavity, it packages regulatory miRs
into extracellular vesicles (Ashary et al., 2018). They further
propose that the packaged miRs are taken up by the endometrial
luminal epithelial cells and alter their function to prepare
for implantation. Incubation of primary human endometrial
epithelial cells (HEECs) with BCM collected from embryos that
were implanted increases their adhesive capacity to trophoblast
cell line-formed spheroids (Cuman et al., 2013). Other notable
examples include hsa-miR-661, which is exclusively secreted
by blastocysts that fail to implant (Cuman et al., 2015).
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TABLE 1 | Identified microRNAs (miRs) in blastocyst culture medium (BCM) with diagnostic potential.

Total number of miRs examined miR expression References

12 miRs BCM from polycystic ovaries: Hsa-let-7a ↓, hsa-miR-24 ↓, hsa-miR-92 ↓,
hsa-miR-93 ↓, hsa-miR-19a ↓, hsa-miR-19b ↓

McCallie et al., 2010

377 miRs Non-implanted BCM: Hsa-miR-20a ↓, Hsa-miR-30c ↓ Capalbo et al., 2016

Only detected in implanted BCM: Hsa-miR-220, hsa-miR-146b-3p,
hsa-miR-512-3p, hsa-miR-34c, hsa-miR-375

754 miRs Failed IVF: Hsa-miR-191 ↑, hsa-miR-372 ↑, hsa-miR-645 ↑ Rosenbluth et al., 2014

7 miRs Non-implanted BCM: Hsa-miR-142-3p ↑ Borges et al., 2016

784 miRs Non-implanted group exclusively: Hsa-miR-374b-3p, hsa-miR-518c-3p,
hsa-miR-126-3p, hsa-miR-361-5p,

Cuman et al., 2015

hsa-miR-29b-2-5p, hsa-miR-516b-5p, hsa-miR-371a-5p, hsa-miR-372,
hsa-miR-518a-3p, hsa-miR-149-5p, hsa-miR-571,

hsa-miR-943, hsa-miR-937-3p, hsa-miR-761, hsa-miR-106b-3p, hsa-miR-182-3p,
hsa-miR-624, hsa-miR-661-5p,

hsa-miR-515-5p, hsa-let-7b-3p, hsa-miR-577, hsa-miR-1912

Implanted group exclusively: Hsa-miR-23a-3p, hsa-miR-570-3p, hsa-miR-485-3p,
hsa-miR-572, hsa-miR-26b-5p,

hsa-miR-150-5p, hsa-miR-744-5p, hsa-miR-874, hsa-miR-24-2-5p, hsa-miR-300,
hsa-miR-619, hsa-miR-208a,

hsa-miR-612, hsa-miR-26b-3p, hsa-miR-632, hsa-miR-362-3p, hsa-miR-543,
hsa-miR-380-5p, hsa-miR-638

372 miRs High quality embryo: Hsa-miR-320a ↑, hsa-miR-15a-5p ↑, hsa-miR-21-5p ↓,
hsa-miR-29a-3p ↓

Abu-Halima et al., 2020

Negative pregnancy: Hsa-let-7a-5p ↑, hsa-miR-19b-3p ↓

Secreted hsa-miR-661 from non-implanted BCM is taken up
by HEECs and reduces their adhesion to trophoblast cell-
formed spheroids (Cuman et al., 2015). A recent study also
demonstrates that incubation of HEECs with BCM from embryos
that implanted, compared to embryos that did not implant
during IVF, leads to a substantial change in the expression of
long non-coding RNAs in the HEECs (Takamura et al., 2019).
PTENP1 is one of the most decreased long non-coding RNAs
in HEECs after being treated with BCM from embryos that fail
to implant (Takamura et al., 2019). Functionally, knockdown
of PTENP1 impairs HEEC adhesion via a miR-dependent
mechanism to downregulate gene targets essential for receptivity
(Takamura et al., 2019).

The implanted and non-implanted embryos from which BCM
was collected had an indistinguishable morphology based on
currently available assessment of embryo quality. Thus, miRs
in the BCM may serve as promising non-invasive biomarkers
to improve the diagnostic accuracy of embryo quality and
implantation potential. An obvious challenge to achieve this
is to determine which cohorts of miRs are present in BCM
samples that correlate with implantation outcome, in particular,
regardless of embryo culture conditions. Although some miRs
such as hsa-miR-19b-3p and hsa-miR-372 have been identified
in at least two independent studies (Table 1), the comparison
of secreted miRs in BCM with different implantation outcomes
has demonstrated a generally inconsistent result among different
studies (McCallie et al., 2010; Rosenbluth et al., 2014; Cuman
et al., 2015; Borges et al., 2016; Capalbo et al., 2016; Abu-Halima
et al., 2020). Contributing factors to this inconsistency include
diverse embryo culture conditions in different IVF clinics,
unstandardized protocols, manual effects on RNA isolation, and

miR detection (Belandres et al., 2019). In addition, an obvious
confounder of associating miRs in BCM with failed implantation
outcome is the potential effects of the endometrium. A failed
implantation group from which BCM was collected could be due
to poor embryo quality, dysregulated endometrium, or altered
receptivity window. The communication between an embryo and
endometrium remains a “black box,” and it is perhaps notable
that not all secreted miRs are taken up by endometrial luminal
epithelial cells to regulate implantation. For future diagnostic
purposes, it is necessary to identify which miRs are taken
up by endometrium and their actions on the endometrium.
A panel of miRs will likely to be included, with the functional
consequence of each individual miR on implantation being
confirmed in ideally both humans (in vitro) and preclinical
animal models (in vivo). Detailed functional studies have only
covered a small proportion of miRs identified so far (Table 2;
Chu et al., 2015; Cuman et al., 2015; Kang et al., 2015; Kottawatta
et al., 2015; Vilella et al., 2015; Zhang et al., 2015; Cai et al.,
2016; Chen et al., 2016; Zheng et al., 2017; Sirohi et al., 2018;
Winship et al., 2018; Balaguer et al., 2019; Griffiths et al., 2019;
Takamura et al., 2019).

BLOOD

MicroRNAs are also readily secreted into the blood. Circulating
miRs are packaged in membrane-bound vesicles, attached
to high-density lipoproteins or bound to RNA-binding
proteins, which endow them with striking stability in the
blood (Schwarzenbach et al., 2014). The human endometrium
features a rich blood supply with the responsibility to
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TABLE 2 | miRs that regulate embryo implantation.

miR Phenotype Target (s) Affect implantation in
animal model

References

Hsa-miR-200c Overexpression of miR-200c in RL95-2 and Ishikawa cells
impair receptive ability in vitro

FUT4↓ Yes (mouse) Zheng et al., 2017

Hsa-miR-661 Secreted by non-implanted embryo and transferred to
HEECs to affect their adhesive capacity in vitro

PVRL1↓ Not available Cuman et al., 2015

Overexpression of miR-661 in HEECs in vitro impairs
adhesion

MDM2↓ Not available Winship et al., 2018

Hsa-miR-181a Inhibition of miR-181a compromises human endometrial
stromal cell decidualization in vitro

KLF12↓ Yes (mouse) Chu et al., 2015; Zhang et al., 2015

Hsa-miR-212 hCG stimulates miR-212 expression in Ishikawa cells to
favor spheroid adhesion in vitro

OLFM1↓, CTBP1↓ Not available Kottawatta et al., 2015

Hsa-miR-145 Overexpression of miR-145 in Ishikawa cells affects mouse
embryo attachment in vitro

IGF1R↓ Not available Kang et al., 2015

Hsa-miR-30d Human endometrial secreted miR-30d is taken up by
mouse pre-implantation embryo and increases embryo
adhesion in vitro

Itgb3↑, Itga7↑, Cdh5↑ Yes (Mouse) Vilella et al., 2015; Balaguer et al., 2019

Overexpression of miR-30d in Ishikawa cells facilitates
adhesion in vitro

SNAI1↓ Yes (Mouse) Cai et al., 2016; Balaguer et al., 2019

Hsa-miR-125b Overexpression of miR-125b in HEECs inhibits cell
migration and invasion in vitro

MMP26↓ Yes (Mouse) Chen et al., 2016

Hsa-miR-29c Overexpression of miR-29c in HEECs impairs adhesion
in vitro

COL4A1↓ Not available Griffiths et al., 2019

Hsa-miR-590-3p Overexpression of miR-590-3p in HEECs in vitro impairs
adhesion

N/A Not available Takamura et al., 2019

Hsa-miR-140 Overexpression of miR-140 in RL95-2 endometrial epithelial
cells impairs adhesion and spheroid outgrowth in vitro

N/A Yes (Rat) Sirohi et al., 2018

provide an optimal environment to promote receptivity
and implantation (Farrer-Brown et al., 1970). Endometrial cells
may secrete/transport a number of miRs to the tissue site of
action by way of the blood, and studies suggest that endometrial
expression levels of at least some miRs are reflected in the blood
(Kresowik et al., 2014; Di Pietro et al., 2018). Circulating miRs
in the blood may be able to predict endometrial receptivity
and implantation. A previous study used whole blood and
paired mid-secretory phase endometrial tissue to determine
whether circulating miRs could distinguish fertile from recurrent
implantation failure patients (Rekker et al., 2018). miR-30a-5p
was identified as differentially expressed in whole blood between
the two groups; however, this difference was not reflected in the
paired endometrial tissue (Rekker et al., 2018). One possible
explanation is that blood cells express miRs (Jickling et al.,
2014), which may mask endometrial tissue-secreted miRs.
Recent work using paired serum and mid-secretory phase
endometrium investigated five miRs and identified a positive
correlation of hsa-miR-31 expression levels between serum
and endometrial tissue (Kresowik et al., 2014). Alternatively,
extracellular miR expression levels do not necessarily reflect
cellular expression levels. Whether miR biomarkers have critical
functions in endometrial receptivity also needs to be determined
experimentally, as differentially expressed circulating miRs
between women with normal fertility and infertility may not
all have functional relevance in receptivity or implantation.
Functional studies of the identified circulating and cellular miRs
in receptivity and implantation models could provide evidence to

support their potential application as biomarkers and treatment
targets. For example, hsa-miR-200c expression is increased in the
serum of infertility and abortion patients, compared to healthy
women (Zheng et al., 2017). Functional analysis using both
human endometrial cell lines and a mouse model demonstrates
that hsa-miR-200c overexpression impairs endometrial cell
receptivity in both species (Zheng et al., 2017).

The obvious challenge to predict implantation outcome using
miRs in the blood will be to distinguish the endometrial secreted
miRs from miRs secreted by other tissues. Of note, the process
of embryo implantation somewhat resembles that of cancer cell
metastasis. Both processes share some of the cellular mechanisms
in cell adhesion, invasion, and angiogenesis (Murray and Lessey,
1999). miRs such as hsa-miR-29c (Griffiths et al., 2019) and
hsa-miR-125b (Chen et al., 2016) that are dysregulated in the
endometrium from infertile women are also associated with
gastric and endometrial cancers (Shang et al., 2012; Wang et al.,
2019). Cancer cells releasing miRs into the blood may confound
the detection of miRs secreted by the endometrium. In this
regard, an important feature of the endometrium is that it
regenerates itself at each menstrual cycle. The endometrium is
only receptive to an implanting embryo within a very short
window in the mid-secretory phase (Ashary et al., 2018). Such
a functional switch is mediated by coordinated changes of
miR expression (Vilella et al., 2015). These phase-dependent
changes, in turn, may endow endometrial-secreted miRs with
unique cycle-dependent expression fingerprints that can be
used to distinguish from the background of other potential
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tissue-secreted miRs. This theory is evidenced by a previous
study comparing miR expression between the proliferative phase
and mid-secretory phase in paired serum and endometrial
tissue from fertile women. hsa-miR-31 has been identified as
a potential biomarker that is elevated in both serum and
endometrium in the mid-secretory phase, compared to the
proliferative phase (Kresowik et al., 2014). It is also essential
to investigate appropriate controls from different pathologies
as comparative groups. The predictive application of blood
miRs on implantation will likely be based on the multiple
measurements of miR expression at different phases within a
menstrual cycle.

Another challenge of using miR levels in the blood for
biomarker purposes has been identified in cancer diagnosis.
A previous study selected 79 solid cancer-circulating miR
biomarkers and determined their expression levels in blood cells.
Forty-six of the 79 miRs were highly expressed in the blood
cells (Pritchard et al., 2012). Plasma isolated from the blood with
different blood cell counts or hemolysis impacted the expression
levels of select miRs (Pritchard et al., 2012). Inconsistency has also
been observed between plasma and serum levels of miR between
pregnant and non-pregnant patient groups after embryo transfer
(Yang et al., 2018). To improve the accuracy of prediction, a panel
of miRs is required, as has been proposed for cancer diagnosis
(Madhavan et al., 2013). To achieve this, an investigation of miR
levels from large cohorts of women with different etiologies of
infertility and other pathologies is required for their potential use
as biomarkers. We have previously identified a dysregulation of
miR-processing machinery in the endometrium of a cohort of
infertile patients, which would have an overall impact on miR
secretion due to compromised miR processing within the cell
(Loke et al., 2019). The miR secretion in this cohort may be
different compared to other infertile cohorts caused by different
etiologies. Identifying which miRs are responsible for ensuring
endometrial receptivity is also required to determine whether
the biomarkers may also be useful as treatment targets of
dysregulated endometrial receptivity.

UTERINE FLUID

The uterine fluid is secreted by the human endometrium as
an indirect approach to communicate with an embryo for the
preparation of implantation. Compared to other body fluids,
uterine fluid is a more “local” secretion and, thus, may provide
direct information when assessing biomarkers for implantation.
Detailed compositional analysis has revealed that uterine fluid
contains miRs and proteins with changed profiles across the
menstrual cycle (Scotchie et al., 2009; Ng et al., 2013). Functional
analysis has proven that endometrial cells secreted miRs, such
as hsa-miR-30d, that are taken up by the embryo via the
trophectoderm and regulate adhesion in vitro (Vilella et al., 2015).
Further investigation demonstrates that secreted miRs in the
uterine fluid target an extensive of implantation-related genes
(Ng et al., 2013). Of note, the miRs in the uterine fluid can be
sourced from different endometrial cells and the blood. This can
be determined via in situ hybridization on endometrial sections,

like what has been done for protein via immunostaining (Hannan
et al., 2010). Uterine fluid can be collected via either aspiration
or lavage without compromising implantation (Hannan et al.,
2012). To the best of our knowledge, however, most currently
available studies on uterine fluid have focused on comparing
the proteins between fertile and infertile patients (Hannan et al.,
2010; Salamonsen et al., 2013). There are presently limited studies
investigating the potential of using miRs in the uterine fluid as a
diagnostic approach for implantation.

OVERALL CHALLENGES OF USING
SECRETED MIRS TO PREDICT
IMPLANTATION

Although miRs are highly desirable as non-invasive biomarkers
to predict implantation, this field of research is somewhat
confounded by a general inconsistency of miR expression levels
across different studies. It has been identified that a number
of factors including RNA isolation and detection systems can
contribute to this inconsistency. Recently published work from
one laboratory, which used different commercial kits to isolate
RNA, demonstrated that the recovery of RNA was variable
between the commercial kits (El-Khoury et al., 2016; Wright
et al., 2020). In addition, the selection of endogenous controls
to normalize the target miR expression levels directly affects
the results, and such importance has been neglected by some
studies. For miR normalization, an ideal endogenous control
should be stably expressed in the body fluid with minimal
biological variation, and the expression should not change with
different implantation outcomes. It is known that in body fluids,
the expression of some cellular endogenous controls may vary
between different samples bringing deviation in normalization.
It is an essential first step to compare the expression variability of
a number of endogenous control candidates in a given body fluid
system and confirm their stability. This has not been conducted
in some studies and may have contributed to the variability of
miR expression. A workflow has been proposed to identify the
best normalization control (Schwarzenbach et al., 2015). All these
steps introducing impact factors require standardization before a
solid conclusion can be drawn.

Adding to this challenge is the observation that inherent
differences between women, together with different IVF
protocols, may lead to differential expression patterns of miR
in the human endometrium. A microarray study has identified
that luteal support following controlled ovarian stimulation has
a profound influence on the miR profile in the endometrium
(Zhao et al., 2012). Specifically, progesterone supplementation
is associated with a significant increase in miR expression in the
endometrium compared to a no steroid supplementation group
following controlled ovarian stimulation (Zhao et al., 2012). The
findings are in accordance with a previous report identifying
differential expression patterns of miR between natural and
stimulated IVF cycles (Sha et al., 2011). In addition, patients
receiving the same IVF treatment who have different serum
progesterone levels have been identified to have different miR
expression patterns in the endometrial tissue collected 6 days
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after oocyte retrieval (Li et al., 2011). Microarray analysis of
the endometrium identified four miRs (hsa-miR-451, hsa-miR-
424, hsa-miR-125b, and hsa-miR-30b) that were decreased in the
high serum progesterone group (Li et al., 2011). The effects of
controlled ovarian stimulation and luteal phase support need to
be considered when comparing data from different studies.

CONCLUSION

Measurement of miRs in the samples that can be collected
without compromising embryo transfer in the same menstrual
cycle opens new perspectives for the diagnosis of embryo
implantation potential. Unfortunately, our understanding of the
mechanisms of how miR dysregulation impacts implantation
and how this accordingly affects miR secretion remains far
from complete. Interpretation of research findings is confounded
by unstandardized assessment of miRs in a given body fluid.
Resolving these questions would have a major impact on
biomarker development and clinical practice for reproductive
clinicians and scientists. This includes optimizing the selection of
embryos for transfer during IVF, improvement of implantation
success rates, and the minimization of multiple pregnancies. It is
likely that a combination of samples that can be collected either
non-invasively or relatively non-invasively, as summarized in this
review, will be useful to assess implantation potential at different

stages of conceptus establishment and development. This relies
on research to find miR biomarkers related to implantation
regulation and the development of new technologies to improve
miR detection. A few microfluidic devices have been developed
recently with a larger capacity to include more miRs and reduce
analysis time. Improved diagnosis of embryo implantation could
have a profound effect on psychological and financial well-being
on women and couples undergoing IVF treatment.
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Skeletal muscle is a highly heterogeneous tissue that plays a crucial role in mammalian

metabolism and motion maintenance. Myogenesis is a complex biological process that

includes embryonic and postnatal development, which is regulated by specific signaling

pathways and transcription factors. Various non-coding RNAs (ncRNAs) account for the

majority of total RNA in cells and have an important regulatory role in myogenesis. In

this review, we introduced the research progress in miRNAs, circRNAs, and lncRNAs

related to embryonic and postnatal muscle development. We mainly focused on ncRNAs

that regulate myoblast proliferation, differentiation, and postnatal muscle development

through multiple mechanisms. Finally, challenges and future perspectives related to the

identification and verification of functional ncRNAs are discussed. The identification and

elucidation of ncRNAs related tomyogenesis will enrich themyogenic regulatory network,

and the effective application of ncRNAs will enhance the function of skeletal muscle.

Keywords: myogenesis, muscle disease, miRNAs, lncRNAs, circRNAs

INTRODUCTION

Skeletal muscle is a highly heterogeneous tissue that contains myofibers, the basement membrane,
muscle satellite cells, immunocytes, and nerves, and plays a crucial role in locomotion, metabolism,
and homeostasis. In mice and humans, this tissue represents ∼30–40% of the total body mass
(Zierath and Hawley, 2004). The molecular regulation of the skeletal muscle during embryonic
and postnatal development is complex. Many aspects of adult myogenesis resemble embryonic
morphogenetic episodes (Bentzinger et al., 2012). In vertebrate embryos, the skeletal muscles of
the trunk and limbs are derived from the paraxial mesoderm and first form a certain number
of somites (Bentzinger et al., 2012). Somites undergo morphogenetic changes and differentiate
into sclerotome and dermomyotome, and muscle progenitor cells (MPCs) delaminate from the
surrounding of the dermomyotome under the regulation of the Shh, Notch, and Wnt signaling
pathways (Grefte et al., 2007). At this stage Myf5 and Mrf4, independently of Pax3/7, regulate
the entry of MPCs into the myogenic program. MPCs express Pax3 and Pax7 genes, and migrate
to the limbs and trunk (Buckingham and Relaix, 2007). However, some MPCs give rise to
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a subpopulation of postnatal muscle stem cells called satellite
cells (SCs) (Gros et al., 2005). Both MPCs and SCs can give
rise to myoblasts to complete myogenesis. The committed
myoblast undergo proliferation, exit the cell cycle, express
myogenic regulatory factors (MRFs), undergo morphological
changes, fusing to form multinucleated myotubes. Finally, these
myotubes are further fused into mature myofibers (Tajbakhsh,
2009) (Figure 1). Six1/4 and Pax3/7 are master regulators
of MPCs but not SCs during early lineage specification,
whereas Myf5 and MyoD commit MPCs and SCs to the
myogenic program. MPCs and SCs expression of the terminal
differentiation genes are performed by both myogenin (MyoG)
and MyHC (Bentzinger et al., 2012). Skeletal muscle is
composed of multinucleated contractile myofibers. Studies have
shown that committed myoblasts align and fuse to generate
small multinucleated myofibers during primary myogenesis
in the embryo [from embryonic day 11 (E11)-E14.5]; during
secondary myogenesis (from E14.5-to birth), the formation
of myofibers containing hundreds of myonuclei are regulated
via numerous signaling pathways and transcription factors
(Sambasivan and Tajbakhsh, 2007).

SCs reside between the sarcolemma and basal lamina of
myofibers (Mauro, 1961). SCs can serve as a pathway for
skeletal muscle fiber growth after birth by activating myogenesis,
repairing muscle fiber damage, or prolonging muscle fiber
growth (Grounds and Yablonka-Reuveni, 1993). Under normal
conditions, SCs express Pax7 and remain in a state of
mitotic quiescence (Cheung and Rando, 2013). When muscles
are stimulated or injured, SCs are immediately activated,
proliferated, and differentiated like myoblasts. Finally, these
cells fuse with the original myofibers or fuse with each other
into myotubes and connect to the tail of old myofibers to
form new myofibers (Zammit et al., 2006). This process is
called postnatal muscle development (Relaix and Zammit, 2012).
The SC population is a heterogeneous mixture of stem cells
and committed progenitors (Le Grand and Rudnicki, 2007),
and proliferates and divides into two daughter cells in an
“asymmetric” pattern after activation (Kuang et al., 2007). Using
chromosome orientation-fluorescence in situ hybridization
in transgenic Tg:Pax7-nGFP mice, Rocheteau et al. (2012)
demonstrated that all chromatids segregate asymmetrically in
SCs. Cho and Doles used single cell RNA sequencing (scRNA-
seq) to study the transcriptional diversity of freshly isolated
skeletal muscle SCs and found the extensive transcriptional
heterogeneity between individual SCs (Cho and Doles, 2017).
Single-cell mass spectrometry revealed the heterogeneity of
skeletal muscle SC in the activation of myogenesis in vitro and
in vivo (Porpiglia et al., 2017).

Both embryonic myogenesis and postnatal skeletal muscle
development is a highly regulated process; each step of
the process is regulated by specific signaling pathways and
transcription factors such as Sonic hedgehog (Shh), Notch,
Wnt, and bone morphogenetic protein 4 (BMP4) (Jin et al.,
2016), especially MRFs and post-transcriptional regulation by
ncRNAs (Pauli et al., 2011; Zammit, 2017). The Encyclopedia
of DNA Elements (Consortium) project showed that 80% of the
eukaryotic genome is transcribed (Consortium, 2012), but <2%

of total genomic sequences are transcribed into mature protein-
coding RNAs, and the vast majority of transcripts are ncRNAs
(Cheng et al., 2005). Various ncRNAs account for the majority
of total RNA in cells. ncRNAs include tRNA, rRNA, eRNA,
mitochondrial ncRNAs, micro (mi) RNAs, long non-coding
(lnc) RNAs, circular (circ) RNAs, and PIWI-interacting RNAs
(pi) RNAs (de Gonzalo-Calvo and Thum, 2018). Furthermore,
ncRNAs are involved in diverse biological processes, and an
increasing number of studies have shown that ncRNA-mediated
epigenetic regulation plays an important role in myogenesis. In
this review, we mainly focused on the importance of miRNAs,
circRNAs, and lncRNAs in embryonic myogenesis and postnatal
skeletal muscle development, and discussed their regulation of
muscle disease. Finally, challenges and future perspectives in the
identification of novel muscle-related ncRNAs were discussed.

miRNAs AND MYOGENESIS

miRNA and Embryonic Myogenesis
miRNAs are a class of small RNAs that are 20–24 nucleotides
in length, and regulate the expression of target messenger RNAs

(mRNAs) through base-pairing with the 3
′

untranslated regions

(3
′

UTRs) (Bartel, 2009). This interaction leads to inhibition
of translation, mRNA cleavage, and transcript degradation
(Bethune et al., 2012). This mechanism reportedly guides a
diverse set of RNA-induced silencing complexes (RISC) to target
mRNAs (Schraivogel and Meister, 2014). The biogenesis of most
miRNAs depends on specific RNA processing enzymes, including
Drosha and its essential cofactor DGCR8, Dicer (Bushati and
Cohen, 2007). Dicer activity is essential for normal muscle
development during embryogenesis, and Dicer muscle-specific
mutants reduced muscle miRNAs and led to a decrease in
myofiber development by reducing muscle mass and perinatal
lethality in mice (O’Rourke et al., 2007). The role of miRNAs
during embryogenesis was explored in zebrafish. Giraldez and
colleagues generated maternal-zygotic Dicer (MZdicer) mutants
that disrupted the Dicer ribonuclease III and double-stranded
RNA-binding domains. MZdicer mutants displayed abnormal
morphogenesis during gastrulation, somitogenesis, and heart
development. Mutant embryos failed to process precursor
miRNAs into mature miRNAs, but injecting preprocessed
miRNAs restored gene silencing, indicating that miRNAs are
essential for early embryogenesis (Giraldez et al., 2005). A
growing number of studies have elucidated that miRNAs regulate
various aspects of animal embryogenesis, with some miRNAs
functioning in a tissue-specific manner.

MyomiRs are a muscle-enriched group of miRNAs, mainly
composed of miR-1 and miR-133 families, including miR-
1/miR-1-2/miR-206 and miR133a /miR-133b (Horak et al.,
2016; Mok et al., 2017). Furthermore, miR-1 and miR-133
are potent repressors of non-muscle gene expression and
cell fate during mouse and human embryonic stem cell
differentiation (Ivey et al., 2008). In zebrafish, downregulation
of miR-1 and miR-133 altered muscle gene expression and
disrupted actin organization and sarcomere assembly during
muscle differentiation (Mishima et al., 2009). During embryonic
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FIGURE 1 | Coding genes and ncRNAs regulate the process of embyronic and postnatal myogenesis. Coding genes are represented in red squares, ncRNAs are

represented in blue squares.

myogenesis, miR-1 and miR-133 actively shaped gene expression
patterns. Among the set of myomiRs, miR-206 was detected
in somites of chick and mouse embryos (Sweetman et al.,
2006). Sweetman et al. (2008) demonstrated that the ectopic
expression of MRFs in the developing chicken neural tube
induced the expression of distinct myomiRs such as miR-1
and miR-206, whereas the lack of Myf-5 resulted in a loss
of myomiR expression in developing somites. Their results
indicated that myomiRs regulate myogenesis through MRFs.
Additional gain- and loss-of-function experiments are needed to
illustrate the role of myomiRs during myogenesis by affecting
MRF expression. In Xenopus laevis, Vergara et al. examined
the expression of miR-206 accompanying somitogenesis. Both
knockdown and overexpression of miR-206 resulted in abnormal
somite formation (Vergara et al., 2018). Conversely, miR-133
knockdown impaired myotome formation and growth, and the
evolutionarily conserved miR-133 family mediated Gli3 silencing
was critical for embryonic myogenesis (Mok et al., 2018).
Other studies have specifically focused on the genetic analysis
of myomiRs in a variety of model organisms, including flies,
zebrafish, and mice (Sokol, 2012). MyomiRs are integrated into
myogenic regulatory networks and, in turn, have widespread
control of muscle gene expression.

In addition tomyomiRs, several other miRNAs are involved in
skeletal muscle embryonic development. For example, miR-196
reportedly acts upstream of Hoxb8 and Shh in vivo in the context
of limb development, and primarily regulated the transcription of
myogenesis (Hornstein et al., 2005). The zebrafishMyf5 locus has
an intronic miRNA, termed miR-3906 or miR-In300, which was
found to impair fast muscle differentiation by targeting Homer-
1b orDmrt2a, respectively, in zebrafish embryos (Lin et al., 2013).
miR-203 was transiently upregulated in chicken embryos on days
10 to 16 (E10–E16)c and was sharply downregulated and not

expressed after E16 in the chicken embryonic skeletal muscle.
Histological profiles and weight variations of embryo skeletal
muscle revealed that miR-203 expression correlates with muscle
embryonic development (Luo et al., 2014). Collectively, these
results demonstrated the expression and function of myomiRs in
skeletal embryonic myogenesis.

Functional Analysis of miRNAs During

Postnatal Muscle Development
In recent years, a fraction of miRNAs has been detected in
the skeletal muscle. Herein, we systematically summarized the
functions and regulatory mechanisms of miRNAs (Table 1)
during postnatal skeletal muscle development.

Several 100 miRNAs have been identified in plants, animals,
and viruses by employing molecular cloning and bioinformatic
approaches. In different tissues, miRNAs were found to
downregulate gene expression by base-pairing with the 3

′

UTRs
of target mRNAs; they also function this mechanism during
myogenesis. For instance, miRNAs can influence proliferation
via mRNAs coding regulators of the cell cycle. miR-27b is a
functionally conserved miRNA that targets Pax3 to promote
myoblast proliferation in mouse and goat (Crist et al., 2009;
Ling et al., 2018). miR-195/497 is a positive regulator of
SC quiescence by targeting Ccnd1 and Ccnd2 (Sato et al.,
2014). The insulin-like growth factor (IGF) pathway, myocyte
enhancer factor-2 (MEF2), and MRF factors play vital roles
in myogenesis, miRNAs can regulate these pathways. For
example, IGF-2, a critical regulator of skeletal myogenesis, is
a direct and major target of miR-125b in both myocytes and
regenerating muscles. miR-125b negatively modulated myoblast
differentiation in vitro and muscle regeneration in vivo (Ge
et al., 2011). MEF2A is a member of the MEF2 family of
transcription factors, and miR-155 significantly suppressed the
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TABLE 1 | Functions and regulatory mechanisms of miRNAs in postnatal skeletal muscle development.

miRNA Functions Mechanisms Species References

DmiR-1 Required for the dramatic post-mitotic

growth of larval muscle

Targets twist Drosophila Sokol and Ambros,

2005

miR-1 Promotes myoblast proliferation and

differentiation

Targets HDAC4 Mouse Chen et al., 2006

Maintains SCs quiescence and promotes

self-renewal

Goat Sui et al., 2020

miR-181 Required for skeletal myoblast terminal

differentiation

Targets HoxA11 Mouse Naguibneva et al., 2006

miR-214 Modulation of Hedgehog (Hh) signaling in

somite cells, enhance slow-muscle cell types

Targets suppressor of fused

[su(fu)]

Zebrafish Flynt et al., 2007

Promotes myoblast differentiation Targets Ezh2 Mouse Juan et al., 2009

miR-221/222 Inhibits proliferation and differentiation Targets p27 Quail Cardinali et al., 2009

miR-208b/-499 Activates slow and represses fast myofibers

gene programs

Targets Sox6 Mouse van Rooij et al., 2009

miR-27b Promotes myoblast differentiation Targets Pax3 Mouse Crist et al., 2009

Promotes myoblast proliferation and

differentiation

Goat Ling et al., 2018

Promotes myoblast differentiation Inhibits MDFI expression Porcine Hou et al., 2018

miR-206 Promotes myoblasts proliferation and

differentiation

Targets Pax7 Mouse Chen et al., 2010

miR-486 Promotes myoblast differentiation Targets Pax7 Mouse Dey et al., 2011

miR-155 Inhibits myoblast differentiation Targets MEF2A Mouse Seok et al., 2011

miR-125b Inhibits myoblast differentiation Targets IGF2 Mouse Ge et al., 2011

miR-26a Promotes myoblast differentiation Targets Smad1 and Smad4 Mouse Dey et al., 2012

miR-489 Maintains SCs quiescence and regulates

self-renewal

Post-transcriptionally

suppresses the oncogene

Dek

Mouse Cheung et al., 2012

miR-31 Maintains SC quiescence Sequesteres in mRNP

granules together with Myf5

mRNAs.

Mouse Crist et al., 2012

miR-23a Inhibits myogenic differentiation Targets fast myosin heavy

chain (Myh) genes, including

Myh 1, 2 and 4

Mouse Cornu et al., 2012

miR-128a Negatively regulates myoblast proliferation

and myotubes hypertrophy

Regulates IRS1/Akt insulin

signaling

Mouse Motohashi et al., 2013

miR-675-3p/-5p Promotes myoblast differentiation and

regeneration

Targets Smad transcription

factors

Mouse Dey et al., 2014

miR-146b Promotes myogenic differentiation Targets Smad4, Notch1, and

Hmga2

Mouse Khanna et al., 2014

miR-195/497 Maintains SCs quiescence Targets Ccnd1 and Ccnd2 Mouse Sato et al., 2014

miR-186 Inhibits myoblast differentiation Targets myogenin Mouse Antoniou et al., 2014

miR-30a Promotes myogenesis by increasing

apoptosis and altering somite morphology

Targets Six1 Zebrafish O’Brien et al., 2014

miR-431 Promotes differentiation and regeneration of

old skeletal muscle

Targets Smad4 Mouse and

human

Lee et al., 2015

miR-15b/miR-

23b/miR-

106b/miR-503

Pitx2-miRNA pathway regulates myoblast

proliferation

Targets CyclinD1 and

CyclinD2

Mouse Lozano-Velasco et al.,

2015

miR-20a/20b Promotes myoblast differentiation and

represses myoblast proliferation

Targets E2F transcription

factor 1 (E2F1)

Chicken Luo et al., 2016

miR-29a Promotes SCs proliferation Targets FGF2 Mouse Galimov et al., 2016

miR-17-92 Promotes myoblast proliferation but inhibits

myotubes formation

Targets ENH1 Mouse Qiu et al., 2016

miR-34c Inhibits myoblast proliferation and promotes

differentiation

A regulatory loop with Notch1 Mouse Hou et al., 2017

(Continued)
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TABLE 1 | Continued

miRNA Functions Mechanisms Species References

miR-139 Promotes SCs differentiation Targets DHFR Bovine Zhou et al., 2018

miR-708 Activates SCs and regulates self-renewal Antagonizes Tensin3 to inhibit

FAK activation

Mouse Baghdadi et al., 2018

miR-487b-3p Suppresses the proliferation and

differentiation of myoblast

Targets IRS1 Goat Wang et al., 2018

miR-17/19 Promotes myoblast differentiation miR-17 targets Ccnd2, Jak1

and Rhoc, miR-19

complement miR-17

Mouse Kong et al., 2019

miR-208b Promotes myoblast proliferation, inhibits

differentiation

Targets the E-protein family

member TCF12

Mouse Fu et al., 2020

Stimulates fast-to-slow fiber conversion and

oxidative metabolism programmers

Targets FNIP1

miR-9-5p Inhibits the proliferation and differentiation of

SCs

Targets IGF2BP3 Chicken Yin et al., 2020

expression of MEF2A, repressing skeletal muscle differentiation
(Seok et al., 2011). MRFs, including Myf5, MyoD, Myf6,
and myogenin, regulate skeletal muscle differentiation, where
myogenin plays a critical role in regulating the final stage of
muscle differentiation. Antoniou et al. (2014) predicted that six
miRNAs (miR-182, miR-186, miR-135, miR-491, miR-329, and
miR-96) bind the myogenin 3

′

-UTR, but only miR-186 is a
novel post-transcriptional regulator of myogenin during skeletal
myogenesis. Recently, Fu et al. showed that miR-208b targeted
the E-protein family member TCF12 to promote mouse myoblast
proliferation and inhibit their differentiation. Meanwhile, miR-
208b stimulated fast-to-slow fiber conversion and oxidative
metabolism process by targeting FNIP1, thereby regulating
postnatal muscle development (Fu et al., 2020). Several miRNAs
are reportedly present in muscle cells and their modulating
influence on myogenesis is likely to be overly complex. Some
miRNAs target the same transcriptional networks in different
species (Supplementary Table 1).

cicrRNA DURING MYOGENESIS

cicrRNA and Embryonic Myogenesis
With the advent of high-throughput sequencing and novel
bioinformatic tools, thousands of circRNAs were discovered
and their abundance and function were recorded (Salzman
et al., 2012; Memczak et al., 2013). circRNAs are characterized
by a covalently closed ring structure without 3

′

and 5
′

ends and are generated by precursor mRNA back-splicing of
exons. Typically, the expression levels of circRNAs are low,
often exhibiting cell- and tissue-specific patterns in eukaryotes
(Li et al., 2018c). Increasing evidence has demonstrated
that circRNAs participate in many steps of gene expression
by acting as miRNA sponges, miRNA decoy, RNA-binding
proteins (RBPs), as well as mediating RNA translation and
protein interaction. Several studies have demonstrated that
circRNAs possess coding capabilities (Panda et al., 2017).
Owing to the non-linear conformation of circRNAs and lack
of polyadenylated [poly (A)] tails, very few circRNAs can be
identified by RNA-seq, but circRNAs are readily detectable

in ribosomal RNA-depleted RNA-seq datasets (Greco et al.,
2018). One microarray analysis found that 581 circRNAs
were differentially regulated between C2C12 myoblasts and
myotubes (Chen et al., 2018a). However, their roles remain
to be explored. Notably, circRNAs may play a vital role in
myogenesis. Fan et al. (2015) developed a single-cell universal
poly(A)-independent RNA sequencing (SUPeR-seq) method to
sequence both polyadenylated and non-polyadenylated RNAs
from individual cells, discovering 2,891 circRNAs and 913
novel linear transcripts in mouse preimplantation embryos. This
research is crucial to decipher functional regulators of circRNAs
during early mammalian embryonic development. An increasing
number of databases have suggested that skeletal muscle is one
of the tissues enriched in circRNAs (Cheng et al., 2005; Li et al.,
2017).

circSVIL, an exonic circular, was differentially expressed in
chicken skeletal muscle at E11, E16, and post-hatching day 1
(P1) (Ouyang et al., 2018b). circSVIL functions as miR-203
sponges and upregulates levels of c-JUN and MEF2C, thereby
promoting the proliferation and differentiation of myoblasts
(Ouyang et al., 2018a). circFGFR2, generated by exon 3–6 of
the FGFR2 gene, was differentially expressed during chicken
embryo skeletal muscle development (Chen et al., 2018b).
circFGFR2 directly targeted miR-133a-5p and miR-29b-1-5p and
further eliminated the inhibitory effects of the two miRNAs on

myoblast proliferation and differentiation (Chen et al., 2018b).
The circRNA sequencing data of bovine skeletal muscle tissue

demonstrated that circFUT10 was highly (but differentially)
expressed in embryonic and adult skeletal muscle tissues.
Reportedly, circFUT10 regulated myoblast differentiation and
cell survival by directly binding to miR-133a and inhibiting miR-
133a activity (Li et al., 2018b). circFUT10 may target myomiRs
to regulate embryonic myogenesis. The expression level of
circSNX29 was considerably higher in the bovine embryonic
skeletal muscle than in adult skeletal muscle. circSNX29 directly
interacted with miR-744 and efficiently reversed the suppression
of Wnt5a and calcium/calmodulin–dependent protein kinase
II delta (CaMKIIδ) (Peng et al., 2019). In bovine, enhancing
circFUT10 or circSNX29 expression may emerge as a potential
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TABLE 2 | Functions and regulatory mechanisms of circRNAs in skeletal muscle development.

circRNA Functions Mechanisms Species References

circLMO7 Inhibits myoblast differentiation and

promotes myogenesis

miR-378a-3p sponge Bovine Wei et al., 2016

circ-ZNF609 Promotes myoblast proliferation Protein encoding Human Legnini et al., 2017

circRBFOX2 Promotes myoblast proliferation mir-206 sponge Chicken Ouyang et al., 2018b

circFGFR4 Promotes myoblast differentiation and

apoptosis

miR-107 sponge Bovine Li et al., 2018a

circ-Zfp609 Inhibits myoblast differentiation miR-194-5p sponge Mouse Wang et al., 2019b

circHIPK3 Promotes myoblast proliferation and

myogenesis

miR-30a-3p sponge Chicken Chen et al., 2019

Promotes myoblast differentiation miR-124 and miR-379

sopnge

Mouse Yao et al., 2020

circ-FoxO3 Inhibits myoblast differentiation miR-138-5p sponge Mouse Li et al., 2019b

circTitin (circTTN) Promotes proliferation and differentiation

of bovine primary myoblast

miR-432 sponge Bovine Wang et al., 2019a

circTMTC1 Inhibits chicken SMSC differentiation miR-128-3p sponge Chicken Shen et al., 2019

CDR1as (ciRS-7) Promotes myogenic differentiation miR-7 sponge Goat Li et al., 2019a

circHUWE1 Facilitates myoblast proliferation, inhibits

apoptosis and differentiation

miR-29b sponge Bovine Yue et al., 2020a

circSamd4 Promotes myogenic differentiation Associates with PUR

proteins

Mouse Pandey et al., 2020

circINSR Promotes proliferation and reduces

apoptosis of bovine embryonic myoblast

miR-34a sponge Bovine Shen et al., 2020

target in breeding strategies attempting to control muscle
development. Overall, circRNAs play a role in regulating the
myoblast cycle and development by acting as miRNA binding
sites to facilitate the regulation of gene expression during
myogenesis (Zhang et al., 2018a). In Duroc pigs, Hong et al.
(2019) performed RNase R+RNA-seq in three distinct stages
of embryonic skeletal muscle development (33, 65, and 90
days prenatal) to identify circRNAs and found that many
circRNAs were specifically expressed at different embryonic
stages. Collectively, these findings are helpful for further research
on circRNAs in myogenesis.

circRNAs Regulating Postnatal Muscle

Development
Here, we summarized the current research progress on the role
of circRNAs in postnatal myogenesis (Table 2).

Interestingly, almost all circRNAs can act as miRNA
sponges to regulate the transcription and splicing of target
genes. For example, circHIPK3 promoted the proliferation and
differentiation of chicken myoblast cells by sponging miR-30a-3p
binding to MEF2C (Chen et al., 2019). circHIPK3 can promote
the differentiation of C2C12 myoblasts as a sponge of miR-124
and miR-379 (Yao et al., 2020). circINSR promoted proliferation
and reduced apoptosis of bovine embryonic myoblasts by
sponging miR-34a (Shen et al., 2020). Some circRNAs can be
translated into proteins in the post-transcriptional regulation
of muscle development. circ-ZNF609 specifically regulated
mouse and human myoblast proliferation. circ-ZNF609 can
be translated into a protein in a splicing-dependent and cap-
independent manner when ectopically expressed (Legnini et al.,

2017). circZfp609, the mouse homolog of circ-ZNF609, can
sponge miR-194-5p to sequester its inhibition on BCLAF1 to
repress myogenic differentiation (Wang et al., 2019b). Recently,
researchers have shown that circSamd4, which is conserved
between humans and mice, has a positive function in skeletal
muscle differentiation by associating with PURA and PURB, two
repressors of myogenesis that inhibit transcription of the myosin
heavy chain (MHC) protein family (Pandey et al., 2020). This
illustrated the protein interaction mechanism of circRNAs.

lncRNAs IN MYOGENESIS

Role of lncRNAs in Regulating Embryonic

Myogenesis
lncRNAs were originally considered as genomic transcription
“noise” and account for a large proportion of total ncRNAs
(Kapranov et al., 2007; Struhl, 2007). With weak or no protein-
coding potential, lncRNAs are a class of RNA more than 200
nucleotides in length, possessing complex spatial structures and
diverse functions (Derrien et al., 2012). Several lncRNAs are
transcribed by RNA polymerase II (Pol II) from genomic loci

with similar chromatin states to mRNAs; they are often 5
′

-
capped, spliced, polyadenylated, with the absence of a translated
open reading frame (ORF) (Quinn and Chang, 2016). lncRNAs
are ubiquitous in organisms and are cell-type-specific, with poor
evolutionary conservation among different species (Engreitz
et al., 2016). Numerous studies have shown that lncRNAs
are involved in the regulation of gene expression, epigenetics,
cell differentiation, apoptosis, metabolism, signal transduction,
and immune response (Mattick, 2005; Zhang et al., 2019).
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Interestingly, emerging studies have also demonstrated that some
lncRNAs can encode micropeptides shorter than 100 amino
acids to exert micropeptide-mediated functions (Anderson et al.,
2015). Many computational pipelines developed from poly
(A) RNA-seq in different cells can identify new lncRNAs,
and several studies have shown that lncRNAs participate in
embryo myogenesis.

H19 was one of the earliest known examples of imprinted
lncRNAs that did not contain any conserved ORFs between mice
and humans (Brannan et al., 1990). H19 is strongly repressed
after birth in all mouse tissues, but it remains expressed in the
skeletal muscle and heart in adults, suggesting an important
function in these muscles (Poirier et al., 1991). Gabory and
colleagues found that the H19 gene participates as a trans
regulator in the fine-tuning of this imprinted gene network
(IGN) in the mouse embryo (Gabory et al., 2009). This is
the first in vivo evidence of a functional role for H19. Pauli
et al. (2012) performed a time-series of RNA-seq experiments
at eight stages during early zebrafish embryo development and
observed that lncRNAs were particularly numerous during very
early embryo development. In situ hybridization showed that
lncRNAs are expressed in narrower time windows and are
specifically enriched in early-stage embryos. Whole-mount in
situ hybridization showed that lncIRS1 was expressed in the
forming somites in the HH10 chick embryo, controlled IRS1
protein levels, and further activated the IGF-1 signaling pathway
by functioning as ceRNA to sponge miR-15a, miR-15b-5p, and
miR-15c-5p (Li et al., 2019c). Regarding lncRNAs in embryonic
myogenesis, a review by Bouckenheimer et al. summarized
their expression patterns and roles during early human embryo
development and in pluripotent stem cells (PSCs). Importantly,
abundant public mRNA sequencing (mRNA-seq) data have been
used to illustrate the large number of lncRNAs expressed during
embryo development (Bouckenheimer et al., 2016). These results
support the notion that lncRNAs are part of dynamic changes in
transcript expression occurring during mammalian early embryo
development, including myogenesis. Sweta et al. suggested that
lncRNAs are important for mesodermal specification and further
differentiation, development, and functions of mesodermal
derivatives, including lncRNA Evx1as, lncRNA HoxBlinc, and
yylncT (Sweta et al., 2019). During embryonic development, the
musculature of the adult body is derived from the mesoderm.
Accordingly, these lncRNAs may function early myogenesis.
However, insufficient evidence is available. Collectively, a better
understanding of lncRNAs that can regulate the development of
skeletal muscle will open potential avenues for their efficacious
production, and enhance our knowledge regarding embryonic
myogenesis development.

Functions and Mechanisms of lncRNAs in

Postnatal Muscle Development
Numerous lncRNAs have been detected in skeletal muscle,
but only a small fraction of lncRNAs have been characterized.
Recent reports have indicated lncRNAs exert functional
roles through multiple mechanisms, including transcription
activation, molecular sponge activity, competitive binding,

mRNA translation, and protein stability. Studies have shown
that numerous lncRNAs interact with miRNAs to facilitate
myogenesis. We displayed a known pattern of lncRNAs during
skeletal muscle development (Figure 2; Supplementary Table 2).

Notably, functions of lncRNAs are associated with their
subcellular location and microenvironment (Chen, 2016). linc-
YY1 activated gene expression in trans by interacting with
YY1 and removing the YY1/PRC2 complex from target
promoters such as Myh and Troponin, thus promoting muscle
differentiation and regeneration (Zhou et al., 2015). SYISL
interacted with Ezh2, the core component of PRC2, to regulate
the expression of p21 and muscle-specific genes such as MyoG,
MCK, and Myh4, leading to the promotion of myoblast
proliferation and inhibition ofmyogenic differentiation (Jin et al.,
2018). In the nucleus, lncRNAs can also bind to transcription
factors or RBPs to influence transcription activation. For
instance, lncRNA SRA promoted differentiation as a coregulator
of MyoD, along with RNA helicase p68/p72 (Caretti et al.,
2006; Hube et al., 2011). linc-RAM, which is induced by MyoD,
interacts with MyoD, and supports the assembly of the MyoD-
Baf60c-Brg complex to promote muscle growth and regeneration
(Yu et al., 2017).

Most lncRNAs in the cytoplasm act as ceRNAs with miRNAs,
such as lncMD1 (Cesana et al., 2011; Legnini et al., 2014), lnc-
mg (Zhu et al., 2017; Du et al., 2019), and lnc-MAR1 (Zhang
et al., 2018b). Recently, Li reported that 2310043L19Rik (lnc-
231) inhibited differentiation and promoted proliferation of
myoblasts as ceRNA to target miR-125a-5p, thereby inhibiting
the function of E2F3 mRNA (Li et al., 2020b). Conversely, H19
can act as a molecular scaffold to recruit TDP43 to promoters
of MyoD and activate transcription, thereby promoting porcine
SC differentiation (Li et al., 2020a). Furthermore, some lncRNAs
can give rise to functional micropeptides. A conserved lncRNA,
LINC00961/5430416O09Rik, which is localized on the late
endosome/lysosome and encodes a polypeptide of 90 amino acids
termed small regulatory polypeptide of amino acid response
(SPAR), interacted with lysosomal v-ATPase to negatively
regulate mammalian target of rapamycin complex 1 (mTORC1)
activation, as well as skeletal muscle regeneration (Matsumoto
et al., 2017; Tajbakhsh, 2017). Myoregulin (MLN) and dwarf
open reading frame (DWORF) are micropeptide-encoded tissue-
specific putative lncRNAs, located at the sarcoplasmic reticulum
membrane (Ivey et al.), and can directly bind SERCA; MLN
inhibits SERCA activity and hinders the uptake of Ca2+ into
the SR. However, DWORF increases SERCA activity by reducing
exercise performance and Ca2+ uptake into the SR (Anderson
et al., 2015; Nelson et al., 2016). As the sequence length
of lncRNAs is larger than that of miRNAs and circRNAs,
they function diverse mechanisms and play extensive roles in
life processes.

Previous studies have focused on the function of ncRNAs
in the nucleus and cytoplasm. Mitochondria are important
organelles and themain energymetabolism sites in cells (Nunnari
and Suomalainen, 2012). The roles of ncRNAs in mitochondria
have become a new biology research topic (Bandiera et al., 2011).
Barrey et al. for the first time demonstrated the presence of
pre-miRNA and miRNA in the human mitochondria isolated
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FIGURE 2 | lncRNA-miRNA-gene network regulates proliferation and differentiation of myoblast. lncRNAs are represented in red, miRNAs are represented in blue.

from skeletal muscular cells (Barrey et al., 2011). The muscle-
specific miR-1 is able to stimulate mitochondrial translation
of multiple mtDNA-encoded transcripts, while repressing
its nuclear DNA-encoded targets in the cytoplasm (Zhang
et al., 2014). Some lncRNAs generated from the mammalian
mitochondrial genome or located in mitochondria have been
identified. Rackham et al. (2011) identified three lncRNAs
generated from the mitochondrial genome named lncND5 RNA,
lncND6 RNA and lncCytb RNA. Ro et al. reported that the
mouse and human mitochondrial genomes encodes abundant
small RNAs and named mitochondrial genome-encoded small
RNAs (mitosRNAs), which may play an important regulatory
role in the control of mitochondrial gene expression (Ro et al.,
2013). The regulation mechanism and function of mitochondrial
ncRNAs in myogenesis remain to be further explored.

As mentioned above, ncRNAs play an important role in
regulating myogenesis during embryonic and adult stages.
Crosstalk between miRNA-circRNA-lncRNA appears to be
common in muscle development. lncRNAs can inhibit the
function of miRNA through sequence-specific binding, whereas
circRNAs can act as molecular sponges for miRNAs to regulate
target mRNAs related to myogenesis. Further insights into
postnatal skeletal muscle development will illustrate complex and
dynamic regulatory networks.

ncRNAs IN MUSCLE DISEASE

Skeletal muscle is a complex tissue in mammals, and skeletal
muscle diseases are known to occur owing to physiological
and pathological factors. Common skeletal muscle diseases

include atrophy (Cohen et al., 2015), Duchenne muscular
dystrophy (DMD) (Matsumura et al., 1994), and hypertrophy
(Walters, 2017). Several reports have suggested that ncRNAs
may play a functional role in muscle disease and could be
potentially exploited as therapeutic tools. The impact of ncRNA
dysregulation in muscle disease reported in recent years is
depicted in Figure 3.

An understanding of how ncRNAs regulate skeletal muscle
functions and disease can provide novel therapeutic targets for
the prevention and treatment of muscle pathologies in metabolic
diseases. Two muscle-specific ubiquitin ligases, MAFbx/Atrogin-
1 and muscle RING-finger 1 (MuRF1), are prominently induced
during muscle atrophy and mediate atrophy-associated protein
degradation (Sacheck et al., 2007). Blocking the expression of
these two ubiquitin ligases affords protection against muscle
atrophy. Wada and colleagues reported that miR-23a suppressed
the translation of both MAFbx/Atrogin-1 and MuRF1 in a
3′-UTR-dependent manner. Ectopic expression of miR-23a was
sufficient to protect the muscle from atrophy both in vitro
and in vivo (Wada et al., 2011). Direct interactions were
identified between miR-376c-3p and the 3′ UTR of Atrogin-
1, leading to repression of Atrogin-1, and thereby induction
of eIF3f protein levels in both human and mouse skeletal
muscle cells (Shin et al., 2020). Reportedly, lncRNA Pvt1
is upregulated during muscle atrophy by blocking c-Myc
phosphorylation and degradation. Functionally, Pvt1 affects
mitochondrial respiration and morphology, thereby affecting
muscle atrophy and myofiber size in vivo (Alessio et al.,
2019). In addition to affecting myogenesis during embryonic
and postnatal development, muscle disease is affected by
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FIGURE 3 | ncRNAs regulate muscle atrophy (A), hypertrophy (B), and dystrophy (C). lncRNAs are represented in red, miRNAs are represented in blue, circRNAs are

represented in green. Myoblast, black nuclei; satlliate cells, blue nuclei.

miR-206. Loss of miR-206 accelerated and exacerbated the
dystrophic phenotype in mdx mice by suppressing Pax7,
Notch3, and Igfbp5 (Liu et al., 2012). In contrast, several
lncRNAs are known to affect the pathological status of skeletal
muscle dystrophy. lncRNA Atrolnc-1 was abundantly expressed
in skeletal muscle and markedly increased in atrophying
muscle. Atrolnc-1 strongly binds to ABIN-1, inhibits NF-
κB signaling, and causes protein degradation in muscle cells
(Sun et al., 2018). H19 can influence muscle hypertrophy
by regulating the expression of Mstn and IGF2 (Martinet
et al., 2016). Neppl and colleagues observed that lncRNA
Chronos was expressed in muscles. Inhibition of Chronos
induced myofiber hypertrophy both in vitro and in vivo through
the epigenetic modulation of Bmp7 signaling (Neppl et al.,
2017). Knockdown of lncRNA AK017368 promoted muscle
hypertrophy in vivo. Notably, lncRNA AK017368 promoted
proliferation and inhibited differentiation of myoblasts by
competing with Tnrc6a for miR-30c (Liang et al., 2018).

Furthermore, circRNAs are associated with muscle disease.
The dystrophy gene was among the first genes identified
to generate circRNAs in skeletal muscle (Surono et al.,
1999). Legnini et al. analyzed data from both normal and
dystrophic human myoblasts and identified circ-QKI and
circ-BNC2 upregulated during in vitro differentiation, and
downregulated in the DMD conditions, which is consistent
with the notion that dystrophic cells have altered progression
into the differentiation process (Legnini et al., 2017). Song et al.
identified 197 differentially expressed circRNAs between mdx
mice and C57 mice by microarray analysis. A circRNA/miRNA

interaction network was predicted by bioinformatic approaches
(Song et al., 2020). These studies described the expression
pattern of circRNAs and indicated that circRNAs may
play pivotal roles in the pathophysiological mechanisms
of DMD.

CONCLUSION AND FUTURE

PERSPECTIVE

The discovery of ncRNAs has remarkably broadened our
understanding of epigenetic regulation. Most researchers have
used overexpression or inhibition of ncRNA function to explore
their mechanisms during myogenesis; moreover, some ncRNAs
have been well-investigated using in vivo mouse models. Several
reports have revealed ncRNA functions in skeletal muscle
development and disease and can be developed as novel
biomarkers or targets for improving muscular abilities and
therapeutic strategies.

Despite improvements in our knowledge regarding the
role of ncRNAs in myogenesis, detailed identification and
verification of ncRNAs still encounter several obstacles, including
the following:

1) several techniques have been used to identify ncRNAs,
including ncRNA microarray analysis and sequencing
methods based on poly (A) sequencing, especially next-
generation sequencing (NGS). The limitations of NGS on
the identification of ncRNAs and its regulatory mechanisms
need to be addressed as non-poly (A) forms of ncRNAs
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such as circRNAs are often ignored. Furthermore, there are
a variety of ncRNA databases available, such as miRBase,
TargetScan, ribosomal RNA-depleted RNA-seq datasets,
lncRNA Database v2.0, and Linc2GO. We need to determine
a systematic identification approach to combine ncRNA data
generated from different methodologies.

2) Most knownmiRNAs and circRNAs demonstrate cytoplasmic
localization, whereas lncRNAs are present in both the nucleoli
and cytoplasm. Furthermore, nuclear miRNA-directed gene
regulation constitutes a departure from the prevailing view
of miRNA functions (Roberts, 2014), which requires different
experimental schemes to identify functional ncRNAs. Fang
et al. developed PIRCh-seq, a method that enables a
comprehensive survey of chromatin-associated ncRNAs in
a histone modification-specific manner (Fang et al., 2019).
PIRCh-seq significantly reduces the influence of nascent
transcripts and more precisely reveals relationships between
chromatin and its associated ncRNAs than other sequencing
methods. More recently, ribosome profiling, droplet digital
PCR, and NanoString Technologies nCounter assays have
uncovered the functions of ncRNAs (Chen, 2020).

3) Current experiments need to be based on the million-cell
scale, and their accuracy does not support the single-cell
level experiment. The current omics research field has been
transformed from mixed sample research to single-cell level
research. Single-cell sequencing technology has revealed the
existence of cellular heterogeneity and related molecular
mechanisms in detail. For some precious cell samples
or embryonic samples, rigorous validation experiments
are needed.

4) The mechanism of ncRNAs has been assessed via RIP, ChIRP,
CHART, or GRID. One limitation of these probe approaches
is that their efficacy is based on the size and location
of ncRNAs. In recent years, many studies have reported
that ncRNAs play biological functions through exosomes
mediating intercellular communication (Romancino et al.,
2013). Exosomes have been described as 40–100 nm vesicles
that are secreted by a broad range of cell types and have
been identified in diverse body fluids (Raposo and Stoorvogel,
2013). Exosomes have classically double membrane structure
containing rich source of proteins, lipids, mRNAs andmiRNA
biological ingredients (Chevillet et al., 2014). The proteomic
analysis of C2C12 myoblast and myotube exosome-like
vesicles showed that exosomes could regulate muscle
development (Forterre et al., 2014b). Myotube-derived
exosomalmiRNAs downregulate Sirtuin1 inmyoblasts during
muscle cell differentiation (Forterre et al., 2014a). Hudson
et al. found that the expression of miR-23a in exosomes was
altered, which weakened its inhibitory effect on target genes
MuRf1 and atrogin-1, and leaded to muscle atrophy (Hudson
et al., 2014). Mesenchymal-stem-cell-derived exosomes had
low concentrations of muscle-repair-related cytokines and
a number of repair-related miRNAs such as miR-494 to
promote myogenesis and angiogenesis in vitro (Nakamura
et al., 2015). There is growing evidence indicating active
function of lncRNAs and circRNAs in exosomes (Yue et al.,
2020b). Bioactive lncARSR (lncRNA Activated in RCC with

Sunitinib Resistance) could be incorporated into exosomes
and transmitted to sensitive cells, thus disseminating sunitinib
resistance (Qu et al., 2016). H19 can be transferred from
carcinoma-associated fibroblasts (CAFs) to colorectal cancer
cells (CRCs) through exosomes, and acts as a competing
endogenous RNA sponge for miR-141 in CRCs, promoting
the stemness and chemoresistance of CRCs (Ren et al., 2018).
However, the ncRNAs of exosomes related to myogenesis
needs more in-depth analysis.

5) The functional interaction maps for a majority of
characteristic ncRNAs with DNA or transcription factors,
except for some well-studied cases, remain largely unknown.
One crucial issue hindering the progression of this field is
the limitations of RNA-DNA binding interaction technology
and the lack of an ncRNAs-DNA-protein international
database. Addressing these issues would significantly enhance
our understanding of mechanisms that dictate ncRNAs
association with myogenesis.

Furthermore, the identification of functional ncRNAs to improve
muscle development remains a challenge that needs to be
resolved. A major hindrance for most applications is the tissue
delivery and distribution of ncRNAs for efficacy (Kaemmerer,
2018). For example, miRNAs function by integrating with
complexes (RISC), which impedes their crossing of membranes;
lncRNAs have low conservation between species, and their length
and higher structure are complex. Currently, the most commonly
used gene delivery methods for RNA-based therapeutics are
recombinant viral systems such as adenovirus, lentivirus, and
adeno-associated viruses (AAVs), which are employed either
to inhibit or overexpress miRNAs, circRNAs, and lncRNAs
(Sweta et al., 2019). Furthermore, the potential toxicity of the
viral vectors should be determined to reduce negative impacts
on the receptor. In addition to the delivery system for viral
vectors, gene editing technology, antisense oligonucleotides
(ASOs), and RNA interference (RNAi)-mediated approaches
have also been reported. In recent years, the CRISPR/Cas9
system has been used as an efficient gene editing tool to
investigate the function of ncRNAs. However, gene editing
technology has presented off-target effects and ethical disputes.
In contrast, the ASO technology has fewer off-target effects
than the small RNA-mediated approach and the CRISPR/Cas9
system (Bennett and Swayze, 2010). To realize the full
potential of ncRNAs as biomarkers or therapeutic targets
against muscle, validation studies are warranted using both in
vitro and in vivo systems to illustrate the integrated network
of myogenesis.
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Embryo implantation and trophoblast invasion are principal limiting factors of pregnancy
establishment. Aberrant embryo development or improper trophoblast differentiation
and invasion may lead to various unfavorable pregnancy-related outcomes, including
early pregnancy loss (EPL). Our clinical data show that the serum BMP2 levels were
significantly increased during the first trimester of pregnancy and that the serum and
BMP2 expression levels were lower in women with EPL than in women with normal
early pregnancies. Moreover, we observed that BMP2 was expressed in oocytes and
trophoblast cells of cleaved embryos and blastocysts prior to implantation in both
humans and mice. Exogenous BMP2 promoted embryonic development by enhancing
blastocyst formation and hatching in mice. LncRNA NR026833.1 was upregulated by
BMP2 and promoted SNAIL expression by competitively binding to miR-502-5p. SNAIL
induced MMP2 expression and promoted cell invasion in primary extravillous trophoblast
cells. BMP2 promotes the invasive differentiation of mouse trophoblast stem cells by
downregulating the expression of TS cell marker and upregulating the expression of
trophoblast giant cell marker and labyrinthine/spongiotrophoblast marker. Our findings
provide significant insights into the regulatory roles of BMP2 in the development of
the placenta, which may give us a framework to explore new therapeutic strategies
to pregnancy-related complications.

Keywords: BMP2, early pregnancy loss, trophoblast invasion, trophoblast differentiation, embryo development,
lncRNA

INTRODUCTION

Implantation of a competent blastocyst into a receptive uterus is key for the establishment
of pregnancy. Upon implantation, the outer monolayer of the blastocyst, consisting of
trophectodermal (TE) cells, generates the first trophoblast lineages, which develop into diverse
trophoblast cell types (Bianchi et al., 1993). Additionally, the inner cell mass (ICM) of the blastocyst
develops into the second bilaminar extraembryonic tissue that gives rise to the embryo proper in
mice and humans (Gardner, 1982; Stirparo et al., 2018). With the process of epithelial-mesenchymal
transition (EMT), some TE cells develop into cytotrophoblast cells to form cell columns connecting
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to the endometrium. Extravillous trophoblasts (EVTs) are
derived from cytotrophoblast cells in the anchoring columns
under the influence of growth factors and cytokines derived
from many cells, including decidual macrophages, uterine NK
cells and stromal cells. After migration from the attached
embryo, these highly invasive EVTs appropriately invade
the uterine epithelium and uterine spiral arteries, a process
that is indispensable for proper placentation and successful
establishment of mammalian pregnancy (Wehrum et al.,
2011; Gupta et al., 2016). In humans, the occurrence of
EVT invasion in the endometrial stroma and myometrium
(inner third) is critical for developing definitive maternal-
fetal circulation and successful pregnancy (Cakmak and Taylor,
2011). Aberrant trophoblast (EVT or syncytiotrophoblast)
differentiation or improper trophoblast invasion may lead
to various unfavorable pregnancy-related outcomes, including
early pregnancy loss (EPL), preeclampsia, intrauterine growth
restriction, and choriocarcinoma (Brosens et al., 2011).

Given the complexity of embryo implantation and early
placental development, it is likely that many mechanisms are
involved in the pathophysiology of EPL. In the specimens
obtained from EPL, the trophoblastic shell is thin and
fragmented, and trophoblast infiltration around the lumen of the
endometrial vessels and decidua is reduced. Placentation failure
can be a primary event, as a result of a major chromosomal
abnormality, or can be a secondary event as a result of early
fetal demise due to a major developmental abnormality. Previous
studies have shown that the degree of placentation defects
and trophoblast apoptosis is increased in EPL, independent
of the presence or absence of a chromosomal abnormality
(Greenwold et al., 2003; Hempstock et al., 2003). Hence, a
comprehensive understanding of the molecular mechanisms
underlying trophoblast invasion is essential for improving the
diagnosis and treatment of EPL.

As the largest subfamily of the transforming growth factor
β (TGF-β) superfamily, bone morphogenetic proteins (BMPs)
are essential promoting factors for organogenesis, including
placental development (Shimasaki et al., 2004). Among the BMP
members, BMP2 is detected in the murine endometrium during
the period of decidualization and pregnancy establishment. The
spatiotemporal expression of BMP2, which is correlated with
mouse embryo implantation at the maternal-fetal interface,
suggests that BMP2 plays an important role in the regulation
of embryo implantation and early placentation (Ying and Zhao,
2000; Paria et al., 2001). In mice, conditional depletion of
Bmp2 in the uterus showed that the uterine stroma is incapable
of undergoing decidualization to support further placental
development, leading to sterility (Lee et al., 2007). Similarly,
conditional depletion of the type II receptor for BMP2 (Bmpr2) in
the mouse uterus resulted in fetal growth retardation and severe
hemorrhage at the implantation sites, which subsequently caused
fetal demise and placental abruption (Nagashima et al., 2013).
Furthermore, the proinvasive effects of BMP2 have been reported
in the EMT-related carcinogenesis of various cancers including
breast, colon, gastric, and pancreatic cancers (Clement et al.,
2005; Kang et al., 2010; Chen et al., 2011; Kim et al., 2015; Yang
et al., 2015). Our previous studies revealed that BNP2 is expressed

at a high level in primary human EVT cells and that BMP2
promotes the cell invasion of human trophoblast cells (Zhao
et al., 2018a,b, 2020). Despite the essential role of BMP2 in the
regulation of human trophoblast invasion, the precise molecular
mechanisms by which BMP2 regulates trophoblast invasion
remain largely unknown. Furthermore, the results obtained
from conditional ablation of Bmp2 in the uterus have indicated
the critical role of BMP2 in regulating the transformation of
the uterine stroma during embryo implantation in the mouse
(Lee et al., 2007). However, it is unclear whether BMP2 is
involved in the development of fetoplacental connections and the
pathogenesis of EPL. The objective of this study was to use clinical
samples and in vitro functional studies with human and mouse
cells to investigate the expression, functional role and underlying
molecular mechanisms of BMP2 in the regulation of trophoblast
differentiation and invasion. Additionally, we aimed to obtain
comprehensive information on the involvement of BMP2 in the
pathogenesis of EPL (pregnancy loss at 5–8 weeks) and identify a
therapeutic target for this pregnancy complication.

MATERIALS AND METHODS

Subjects and Samples Collection
From October 2017 to April 2018, fifty healthy non-pregnant
(Non-P) women were recruited as the control group; fifty
pregnant women with a diagnosis of EPL attending Women’s
Hospital, School of Medicine, Zhejiang University, Hangzhou,
Zhejiang, China, were recruited as the study group. These
pregnant women had vaginal bleeding and/or lower abdominal
pain for the first time in the previous few days (0–2 days).
The diagnosis of EPL was based on the clinical history, clinical
examination, and transvaginal ultrasound (TVU) results. In cases
where pregnancy structures (a gestational sac without fetal heart
rate) were identified by TVU, the final diagnosis of EPL was made.
Inclusion criteria were a gestational age between 5 and 8 weeks
(based on the first day of the last menstrual period) and no history
of recurrent spontaneous abortions, chromosomal abnormalities,
endocrine diseases, anatomical abnormalities of the genital tract,
infections, immunological diseases, trauma, internal diseases, or
any chemical agent intake before their elective terminations; fifty
age-matched women with a normal pregnancy (NP) who were
undergoing terminations of pregnancy for psychological reasons
at the same gestational age were designated the control pregnancy
group. Blood samples were collected in EDTA-containing tubes
(BD, Franklin Lakes, NJ, United States) and serum was isolated
within 1 h by centrifugation at 1,900 × g for 10 min at 4◦C
to remove blood cells, and then at 16,000 × g for 10 min
at 4◦C to remove additional cellular nucleic acids attached to
cell debris. Samples were stored at −80◦C prior to analysis.
Placental villous tissues were taken through the cervix during
dilatation and aspiration according to strict clinical procedures.
Embryos with arrested development or poor preimplantation
morphology (zygotes, 4-cell stage, 8–16-cell stage, morulas, and
blastocysts) that cannot to be used for transfer from assisted
reproductive technology (IVF) patients were collected. Informed
consent was obtained from each woman for the use of blood
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samples, placental villous tissue, and embryos, and the study was
approved by the Ethical Review Committee of Women’s Hospital,
Zhejiang University School of Medicine. All the samples were
stored at−80◦C or fixed in 4% formaldehyde until use.

Measurement of BMP2 and MMP2
Activity
The BMP2 levels were quantified using a commercially available
ELISA kit (Quantikine, BMP2 Immunoassay, R&D Systems,
MN, United States). The MMP2 activity was measured using
a commercially available ELISA kit (Quantikine, MMP2
Immunoassay, R&D Systems). All samples were assayed
according to the manufacturer’s instructions and were tested in
duplicate by personnel blinded to each patient group. The optical
density of each well was determined using a microplate reader at
an absorbance of 450 nm. No interference and no cross-reactivity
were expected based on the manufacturer’s instructions. The
minimum detectable dose (MDD) of BMP2 ELISA ranged from
4.3 to 29 pg/mL. The mean MDD was 11 pg/mL. The dynamic
range of BMP2 ELISA ranged from 62.5 to 4,000 pg/mL. The
mean MDD of MMP2 was 28.8 pg/mL. The dynamic range of
MMP2 ELISA ranged from 28.2 to 43,070 pg/mL.

First-Strand cDNA Synthesis and qPCR
Total RNA was extracted using TRIzol reagent (Life
Technologies) following the manufacturer’s instructions.
RNA concentrations were measured by absorbance at a 260 nm
wavelength using a NanoDrop 2,000 Spectrophotometer
(Thermo Fisher Scientific). Reverse transcription was
performed using a QuantiTect Reverse Transcription Kit
(QIAGEN), and 1 µg of total RNA was used according to the
manufacturer’s instructions.

Real-time PCR was performed using the ABI Prism 7,300
sequencing detection system (PerkinElmer Applied Biosystems)
in a 96-well microplate. In total, the 25 µl real-time PCR system
contained 12.5 µl of SYBR Green qPCR MasterMix (Applied
Biosystems), 7.5 µl of a diluted primer mixture (300 nM), and
5 µl of diluted cDNA template (25 ng RNA input). The primer
sequences for real-time PCR are listed in Supplementary Data 1.
The real-time PCR conditions were optimized as follows: 50◦C
for 2 min and 95◦C for 10 min, followed by 40 cycles at 95◦C for
15 s and 55◦C for 1 min. The nucleotide sequences of the resultant
PCR products were confirmed by sequencing. The relative mRNA
expression levels were determined using the 2−M M CT method.
The mRNA and lncRNA expression levels were standardized to
the endogenous GAPDH expression level.

Western Blot Analysis
Cell extraction buffer (Life Technologies) was used to extract the
entire cell lysate according to the manufacturer’s instructions.
The protein lysates (30 µg) were electrophoresed on 8%
SDS-polyacrylamide gels and transferred to a nitrocellulose
membrane (Amersham Pharmacia Biotech). The membranes
were immunoblotted with specific primary antibodies against
BMP2, SNAIL, and MMP2 (listed in Supplementary Data 2)
overnight at 4◦C. The signals were detected with an enhanced

chemiluminescence system (Amersham Pharmacia Biotech) after
incubation with an HRP-conjugated secondary antibody (Santa
Cruz Biotechnology). To standardize the levels of the protein
loaded into each lane, the blots were reprobed with a polyclonal
antibody directed against human α-tubulin. All primary
antibodies used in this study are listed in Supplementary Data 2.

Immunohistochemistry
Placental villous tissues were fixed in 4% formaldehyde and
embedded in paraffin for sectioning. The placenta sections were
deparaffinized and rehydrated before antigen retrieval with Dako
antigen retrieval reagent (pH, 6.0). The sections were incubated
with antibodies against BMP2 (1:50) at 4◦C overnight following
endogenous peroxidase blocking. A universal Dako-labeled
streptavidin biotin-HRP system (Universal LSAB_Kit/HRP) was
used for primary antibody detection. PBS containing rabbit IgG1
isotype (Abcam, ab172730, Cambridge, MA, United States) was
used as a negative control and the concentration of the antibody
used in IHC was 10 µg/ml. The sections were then exposed to
a chromogen reaction (0.05% diaminobenzidine and 3% H2O2)
and counterstained with Harris hematoxylin (Sigma). The signals
were observed under a light microscope (Leica).

Primary Human EVT Isolation and
Culture
Thirty first-trimester human placentas (5–8 weeks gestation)
were collected from women undergoing elective termination
of pregnancy. Primary human EVT cells were isolated from
chorionic villous explants as previously described and cultured
at 37◦C in a humidified 5% CO2/air atmosphere (Li et al.,
2014). Briefly, the placenta villi tips were finely minced and
cultured for 3–4 days in flasks with DMEM (Life Technologies)
supplemented with 10% (vol/vol) FBS, 100 U/mL penicillin, and
100 µg/mL streptomycin. Non-attached pieces were removed
and attached villous tissue fragments were cultured for another
10–14 days to allow for EVT outgrowth. EVT cells were
subsequently separated from villous explants by trypsinization.
Percoll gradient centrifugation, negative magnetic cell sorting
using an antibody against classical major histocompatibility
complex molecules and in vitro culture on a matrix-coated
growth surface. The cells were fixed and probed with a specific
antibody against cytokeratin-7 (EMD Millipore; MAB3554;
Billerica, MA, United States) (10 µg/mL diluted at 1:100)
followed by probing with a fluorescein isothiocyanate-conjugated
secondary antibody or DAPI counterstaining. Next, we counted
the number that was stained by cytokeratin-7 and DAPI.
Only cultures showing more than 99% positive staining for
cytokeratin-7 (Supplementary Figure 1) were used in this study.
In general, cytotrophoblasts outgrow from villi onto Matrigel
differentiate into EVT. Each experiment performed with primary
EVT cells was replicated with cells from five different placentas.
This study was approved by the Ethical Review Committee of
Women’s Hospital, Zhejiang University School of Medicine, and
all women provided informed written consent.
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Small-Interfering RNA Transfection
ON-TARGETplus siRNA (Thermo Fisher Scientific) targeting
the target gene was transfected into primary EVTs or mouse
trophoblast stem (TS) cells using Lipofectamine RNAiMAX
Reagent (Life Technologies). The cells transfected with ON-
TARGETplus control siRNA were used as a negative control
in these studies.

Matrigel-Coated Transwell Invasion
Assay
Primary human EVT cell invasiveness was examined using
the Corning Biocoat Growth Factor Reduced Matrigel Invasion
Chamber (pore size, 8 µm; catalog no. 354483) according to the
guidelines for use. Briefly, primary EVT cells were pretreated with
vehicle control or BMP2 (25 ng/mL) for 20 min. Then, each insert
was seeded with 5× 104 cells suspended in 250 µL vehicle/BMP2-
containing DMEM supplemented with 0.1% (vol/vol) FBS, and
750 µL DMEM supplemented with 10% (vol/vol) FBS was added
to the lower chamber. At the end of the experiment, non-invading
cells were removed from the upper side of the membrane, and
cells on the lower side were fixed in cold methanol for 20 min
before they were stained with 0.1% crystal violet for 20 min.
Membranes were cut out from the transwell inserts using a scalpel
and mounted on glass slides with Cytoseal mounting medium.
Cells on the lower aspect of the mounted membranes were viewed
and photographed under a Nikon Eclipse 80i microscope. For
quantification, the numbers of stained cells in five selected areas
(top, middle, bottom, left, and right) were manually counted.
Mean values from at least five independent experiments, each
duplicated, were used in statistics.

Luciferase Reporter Assay
Potential binding sites were predicted using the TargetScan
database. The linear form of NR026833.1 or the 3′-UTR of SNAIL
containing the binding site of miR-502-5p or mutated was cloned
downstream of the Renilla luciferase gene in the dual luciferase
plasmid pmirGLO vector (Promega) to construct the pmirGLO-
NR026833.1 vector or pmirGLO- SNAIL-3′UTR vector. Briefly,
EVT cells (1 × 105 cells/well) were added to a 24-well plate for
transfection. With the addition of 20 pmol of miR-502-5p mimics
or negative control mimics, 0.8 µg of pmirGLO- NR026833.1
vector, pmirGLO-SNAIL-3′UTR vector or pmirGLO vector,
were co-transfected into cells using Lipoimax (Invitrogen).
Overexpression of miR-502-5p mimics after transfection in the
cells was assessed by qPCR. After transfection for 48 h, the cells
were harvested, and luciferase activities were measured using
the Dual-Luciferase Reporter Assay System (Promega, Madison,
WI, United States). Luciferase activity was measured as firefly
luciferase/renilla luciferase ratio.

Oligonucleotide Transfection, miR Assay,
and lncRNA Assay
The transient transfection was carried out when the cultured cells
reached 60–70% confluence. si-RNA, si-LncRNA, miRNA mimic
and their related control oligonucleotide were designed and
synthesized by RiboBio (Guangzhou, China). All the transfection

procedures were performed using the final concentration of
60 nM of miRNA mimics, 100 nM of miRNA inhibitor
or si-LncRNA. LipoRNAi Max (Invitrogen, Carlsbad, CA,
United States) was used as the transfection medium according to
the manufacturer’s instructions.

Superovulation and Embryo Collection
Female ICR mice (6–8 weeks; Shanghai SLAC Laboratory Animal
Co., Ltd., Shanghai, China) were intraperitoneally injected
with 10 IU of pregnant mare serum gonadotropin (PMSG;
Ningbo Second Hormone Factory, Ningbo, China), followed
by a 10 IU injection of human chorionic gonadotropin (hCG;
Ningbo Second Hormone Factory, Ningbo, China) 48 h after
PMSG injection. Female mice were mated with male ICR mice
(8–10 weeks; Shanghai SLAC Laboratory Animal Co., Ltd.) after
the hCG injection. Mouse embryos were collected from female
ICR mice if a vaginal plug was present. A total of 30 female
mice were used for superovulation and three mice were used in
each stage of the immunofluorescence experiment (a total of 21
female mice). The processes of blastocyst formation and hatching
were observed using microscopy. Six independent experiments
(n = 6) were performed, resulting in a total of 110 embryos in the
control group and 111 embryos in the BMP2-treatment group
(a total of 9 female mice). Unfertilized oocytes were collected
from the ampulla of the oviducts at 14 h after hCG injection
without mating. Zygotes were obtained from the ampulla of the
oviducts of plug-positive females at 18 h post-hCG injection.
Cumulus cells were dispersed with 0.3 mg/mL hyaluronidase.
Other preimplantation mouse embryos were collected at 42–45 h
(the 2-cell stage), 52–55 h (the 4-cell stage), 65–68 h (the 8-cell
stage), and 93–96 h (the blastocyst stage) after hCG injection.
Embryos were flushed from the oviducts and uterus using M2
medium (M7167, Sigma-Aldrich). All experimental procedures
were performed in accordance with the guidelines of the Guide
for the Care and Use of Laboratory Animals and approved
by the Animal Ethics Committee of Zhejiang University for
animal experiments.

Embryo Immunofluorescence
The embryos were washed three times with phosphate-buffered
saline (PBS) containing 0.5% bovine serum albumin (BSA,
Sigma-Aldrich) and fixed in 4% paraformaldehyde for 30 min.
Fixed embryos were washed three times in PBS containing
0.5% BSA, used immediately, or stored at 4◦C in embryo
storage buffer (PBS + 0.9% sodium azide) for up to 1 week.
Fixed embryos were permeabilized with 0.01% Triton X-100
for 30 min and washed three times with PBS containing
0.5% BSA before being blocked in a 5% BSA/PBS solution
for 1 h. Embryos were incubated with a primary antibody
against BMP2 at a 1:500 dilution in 5% BSA/PBS overnight
at 4◦C. Finally, these embryos were washed three times for
20 min in 0.5% BSA/PBS containing 0.05% Tween 20 (0.5%
BSA/PBST) and incubated with a fluorescein isothiocyanate-
conjugated secondary antibody (1:200, Invitrogen, Carlsbad, CA,
United States) for 1 h. The nuclei were stained with 1 mg/mL 40′,
6′-diamidino-2-phenylindole (DAPI, Sigma-Aldrich) for 10 min.
Embryos at the 8-cell stage were chosen as negative controls.
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Images were taken on an Olympus FV1000 confocal microscope
and processed using Adobe Photoshop. The same experiment
was independently repeated three times, each time in triplicate,
and 20–30 embryos of different developmental stages were
examined each time.

Embryo Culture
To study the role of BMP2 in preimplantation embryo
development and zona hatching (complete escape of the
blastocyst from its zona pellucida) in vitro, two-cell embryos
on day 2 (08:30–09:00 h) were recovered and pooled from
several mice in M2 medium (M7167, Sigma-Aldrich). The
embryos were washed three times in KSOM medium. Embryos
were cultured in groups in microdrops (50 µl) of Whitten’s
medium under light oil in an atmosphere of 5% CO2/95%
air at 37◦C for 72 h in the presence or absence of BMP2
(100 ng/ml). BMP2 was added when the cultures were started.
The embryos were observed every 24 h to monitor their
development. Each experiment was repeated six times with the
exception of numerous replicates of controls included in each
experimental repetition.

Mouse TS Cell Culture and
Differentiation Induction
The mouse TS cells line was kindly donated by Dr. Haibin
Wang from the Chinese Academy of Sciences (Beijing,
China). Mouse trophoblast stem cells (TS cells) that were
established from mouse 3.5 days postcoitum blastocysts
or the extraembryonic ectoderms of 6.5 days postcoitum
embryos can either self-renew or differentiate into distinct
trophoblastic cell populations, including invasive mouse
trophoblastic giant cells (Tanaka et al., 1998; Uy et al., 2002).
Briefly, TS cells were maintained and propagated in 25 ng/mL
fibroblast growth factor 4 (FGF4) culture medium supplemented
with 1 mg/mL heparin (Sigma-Aldrich) and composed of
30% TS medium (RPMI 1640 supplemented with 20% FBS,
50 mg/mL penicillin/streptomycin, 2 mM L-glutamine, 1 mM
sodium pyruvate, and additional additives, including 50 mM
β-mercaptoethanol) and 70% mouse embryonic fibroblast (MEF)
conditioned medium. Differentiation of the mouse TS cells was
induced by the removal of FGF4, heparin, and MEF-conditioned
medium for 7 days.

Statistical Analysis
All statistical analyses were performed using SPSS 16.0
(SPSS, Chicago, IL, United States) and GraphPad Prism 5.0
(GraphPad Software, Inc., San Diego, CA, United States).
Data are presented as the mean ± SD from at least five
independent experiments. Differences between groups
were determined by Student’s t-test or one-way analysis of
variance, and statistical significance was defined as P < 0.05.
Differences in the rates of development and hatching
between the protease treatment groups and the control
group were analyzed by a χ2-test. P < 0.05 was defined as
statistically significant.

TABLE 1 | Clinical and biochemical characteristics of the women
included in this study.

Non-pregnacy
(Non-P, n = 50)

Normal
pregnancy (NP,

n = 50)

Early pregnancy
loss (EPL, n = 50)

Age (year) 28.04 ± 3.14 28.06 ± 4.65 28.92 ± 3.48

Gestational age
(day)

− 47.06 ± 4.99 48.76 ± 4.18

Serum β-HCG
(IU/mL)

− 38,427.18 ±
41,159.79a

22,510.28 ±
30,457.91a

Serum BMP2
(pg/mL)

36.28 ± 13.82b 51.02 ± 18.77bc 43.16 ± 16.35c

Data are presented as the means ± SD. aP < 0.05; bP < 0.001; cP < 0.05.

RESULTS

Decreased Serum Levels of BMP2 Are
Associated With EPL
To investigate the functional role of BMP2 during early
pregnancy in humans, we first examined the serum levels of
BMP2 by recruiting three groups of women, including healthy
non-pregnant (Non-P) women, women with NP and women
with EPL. The clinical and biochemical characteristics of the
women included in this study are shown in Table 1. Women
in all three groups (n = 50 in each group) were of similar age.
Women in the NP group had a similar gestational age to those
in the EPL group (47.06 ± 4.99 days vs. 48.76 ± 4.18 days,
respectively, P > 0.05). Maternal serum β-HCG levels were
significantly higher in the NP group than in the EPL group
(38,427.18 ± 41,159.79 IU/mL vs. 22,510.28 ± 30,457.91
IU/mL, respectively, P < 0.05). Compared with Non-P women,
women with NPs had significantly higher serum BMP2 levels
(36.28 ± 13.82 pg/mL vs. 51.02 ± 18.77 pg/mL, respectively,
P < 0.001) (Table 1 and Figure 1A). Notably, subjects in the NP
group had higher serum BMP2 levels than those in the EPL group
(51.02 ± 18.77 pg/mL vs. 43.16 ± 16.35 pg/mL, respectively,
P < 0.05) (Table 1 and Figure 1A).

The Expression of BMP2 Is Higher in
Women With Normal Early Pregnancies
Than in Those With EPL
Although the expression of BMP2 at the maternal-fetal interface
has been reported (Paria et al., 2001), whether BMP2 is
expressed in human embryos remains to be elucidated. We thus
used immunostaining analysis to examine the expression and
localization of BMP2 in human preimplantation embryos. As
shown in Figure 1B, immunostaining for BMP2 was observed in
all embryos analyzed at different stages of development. At the
zygote and 4-cell stages, BMP2 was mainly expressed around the
nucleus, and BMP2 was mainly localized in the cytoplasm from
the 8-cell stage of embryos. Notably, strong cytoplasmic BMP2
staining was observed in the trophectoderm, the cell layer from
which the trophoblast differentiates (Figure 1B). Nonetheless,
BMP2 was also expressed in the ICM that gives rise to the
definitive structures of the fetus (Figure 1B). Given that the
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FIGURE 1 | BMP2 expression in women with normal early pregnancies and EPL. (A) Comparison of the circulating BMP2 levels in non-pregnant (Non-P) women
(n = 50), normal early pregnant women (NP, n = 50) and women with EPL (n = 50). The serum samples collected from these women were measured using ELISA.
(B) The expression and localization of BMP2 in human preimplantation embryos. Human preimplantation embryos, including the zygote, 4-cell, 8-16-cell, morula and
blastocyst stages, were fixed and probed with a specific antibody against human BMP2 followed by probing with a fluorescein isothiocyanate-conjugated secondary
antibody or DAPI counterstaining. PBS without primary antibody was used as a negative control. The images were detected using confocal microscopy.
(C) Expression and localization of BMP2 in first-trimester human placental villus tissues obtained from women with NPs and EPL. The images were detected using
immunohistochemistry staining. PBS containing rabbit IgG1 isotype was used as a negative control. Stronger brown cytoplasmic staining of BMP2 was detected in
the cell column EVTs (yellow arrowheads), syncytiotrophoblasts (black arrowheads) and CTBs (green arrowheads) of the placental villous tissues obtained from
women with NPs (scale bar 1/4 200 mm in 100 × images and scale bar 1/4 50 mm in 400 × images). (D,E) The mRNA (D) and protein (E) levels of BMP2 in villous
tissue obtained from women with NPs (n = 50) and EPL (n = 50) were examined using RT-qPCR and western blot analyses, respectively. The relative amounts of
mRNA were calculated using the 2−11Ct method and normalized to that of the internal control gene GAPDH. The relative amounts of protein were normalized to that
of the internal control α-tubulin. Differences between groups were determined by either Student’s t-test or one-way analysis of variance (*P < 0.05, ***P < 0.001).
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serum BMP2 levels were decreased in women with EPL, we next
compared the expression of BMP2 in placental villous tissues
obtained from women with NPs and those from women with EPL
using immunohistochemistry. As shown in Figure 1C, the results
revealed that the immunohistochemical staining for BMP2 was
significantly decreased in the cytoplasm of cell column EVT,
syncytiotrophoblastic (synCTB) and cytotrophoblastic (CTB)
cells in the villous tissues obtained from women with EPL.
Similarly, the mRNA and protein levels of BMP2 were reduced
in cell lysates of the villous tissues obtained from women with
EPL (Figures 1D,E and Supplementary Figure 2).

BMP2 Upregulates MMP2 Expression,
Increases MMP2 Activity and Promotes
Cell Invasion in Primary Human EVT Cells
We further used primary human EVT cells isolated from first-
trimester human placental villous tissues (normal pregnancies
in women who were undergoing elective surgical termination
at the gestational age of 5–8 weeks) to investigate the cellular
activity of BMP2. To examine the bioactivity of exogenous BMP2,
we treated primary EVT cells with 25 ng/mL BMP2 for 12 h,
and the results showed that BMP2 significantly increased the
mRNA levels of the inhibitor of differentiation (Id) proteins, ID1,
ID2, and ID3 (Supplementary Figure 3). Using the Matrigel-
coated transwell invasion assay and CCK-8 assay, we found that
treatment of primary human EVT cells for 72 h with 25 ng/mL
recombinant human BMP2 (BMP2) significantly increased cell
invasion without affecting cell viability, indicating that BMP2
promotes cell invasion in primary human EVT cells (Figure 2A).
Furthermore, the Gene Set Enrichment Analysis obtained from
the gene sequencing results revealed that a high expression level
of BMP2 was correlated with the EMT-related signaling pathway
(Figure 2B). Matrix metalloproteases (MMPs), especially MMP2
and MMP9 are two gelatinases that are expressed in EVT cells and
are associated with EMT-mediated trophoblast invasion during
first-trimester pregnancy (Shimonovitz et al., 1994; Isaka et al.,
2003). To investigate the effect of BMP2 on the expression of
MMP2 and MMP9, we treated primary EVT cells with 25 ng/mL
BMP2 for 12 or 24 h. The results showed that BMP2 significantly
increased the mRNA and protein levels of MMP2 in primary
EVT cells (Figures 2C,D). Moreover, treatment of primary EVT
cells with 25 ng/mL BMP2 for 24 h increased MMP2 activity in
the conditioned medium of cultured cells (Figure 2E). However,
BMP2 did not have such effects on the expression of MMP9 and
other MMPs (Supplementary Figure 4). These results indicate
that BMP2 promotes cell invasion, most likely, by upregulating
the expression of MMP2 in primary EVT cells.

SNAIL Mediates the BMP2-Induced
Upregulation of MMP2 and Increase in
Cell Invasion in Primary Human EVT Cells
The SNAIL protein is a prototypical EMT-inducing transcription
factor that has been shown to mediate activin A-induced
upregulation of MMP2 (Li et al., 2015). We thus investigated
whether SNAIL plays a regulatory role in the BMP2-induced
upregulation of MMP2 and increase in cell invasion. Using

a siRNA-mediated knockdown approach, we found that the
targeted depletion of SNAIL downregulated the mRNA and
protein levels up to 80–90% (Figures 3A,B). Notably, SNAIL
knockdown completely reversed the BMP2-induced upregulation
of MMP2 expression (Figures 3A,B). Similarly, SNAIL
knockdown completely abolished BMP2-induced increases
in cell invasion (Figure 3C and Supplementary Figure 5). These
results indicate that SNAIL is the main transcription factor that
mediates the BMP2-induced trophoblast cell invasion. To further
investigate the functional role of MMP2 in trophoblast invasion,
we used siRNA-mediated knockdown approaches. The results
showed that knockdown of MMP2 significantly decreased cell
invasion in primary EVT cells (Figure 3D).

MiR-502-5p Suppresses the Expression
of SNAIL and Decreases
SNAIL-Mediated Cell Invasion in Primary
Human EVT Cells
To investigate the molecular mechanisms by which BMP2
regulates the expression of SNAIL, we performed bioinformatics
analysis using TargetScan1. The results showed that the 3′ UTR
of SNAIL mRNA contains a putative binding site of miR-
502-5p. We thus treated primary EVT cells with 25 nM miR-
NC (as a negative control) or 25 nM miR-502-5p mimic for
24 h, and the transfection efficiency was examined using RT-
qPCR (Figure 4A). The results showed that transfection with
miR-502-5p mimic significantly increased miR-502-5p level up to
40 folds (Figure 4A). Notably, the results showed that the miR-
502-5p mimic significantly decreased the mRNA and protein
levels of SNAIL (Figures 4B,C). To further confirm that SNAIL
is the target of miR-502-5p, we cloned the SNAIL 3′ UTR
sequence into a luciferase reporter construct (designated SNAIL
3′-UTR-WT) and mutated the putative miR-502-5p binding
site (designated SNAIL 3′-UTR-MUT) (Figure 4D). Primary
human EVT cells were transfected for 24 h with SNAIL 3′-
UTR-WT or SNAIL 3′-UTR-MUT along with 25 nM miR-
NC or 25 nM miR-502-5p mimic, and the luciferase activities
of the cells were detected using a dual-luciferase assay. As
shown in Figure 4D, compared with miR-NC, the miR-502-5p
mimic significantly decreased the luciferase activity of SNAIL 3′-
UTR-WT. However, the miR-502-5p mimic had no significant
influence on the luciferase activity of the SNAIL 3′-UTR-MUT.
Notably, the inhibition of miR-502-5p using the miR-502-5p
inhibitor abolished the suppressive effect induced by the SNAIL
knockdown (Figure 4E and Supplementary Figure 6). These
results indicate that SNAIL is a direct target of miR-502-5p in
primary EVT cells.

ALK2 or ALK3 Mediates the
BMP2-Induced Upregulation of SNAIL
and MMP2 Expression in Primary Human
EVT Cells
To date, three type I receptors (ALK2, ALK3, and ALK6) have
been implicated in BMP-induced SMAD1/5/8 phosphorylation

1http://www.targetscan.org/vert_50/
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FIGURE 2 | BMP2 upregulates MMP2 expression and promotes cell invasion in primary human EVT cells. (A) Primary human EVT cells were treated with a vehicle
control (Ctrl) or 25 ng/mL BMP2 for 72 h, and cell invasion was examined using the Matrigel-coated transwell invasion assay. A representative image of the assay
(scale bar represents 200 µm) and quantitative results are shown separately. Primary human EVT cells were seeded in 24-well plates, and the cells were treated
every 24 h (24, 48 and 72 h) with Ctrl or 25 ng/mL BMP2 for a total of 72 h. Cell viability was determined using a CCK-8 assay. (B) The correlation between BMP2
treatment and the EMT signaling pathway sing the gene set enrichment analysis plot. (C,D) Primary human EVT cells were treated for 12 h (C) or 24 h (D) with Ctrl
or 25 ng/mL BMP2 and the mRNA (C) and protein (D) levels of MMP2 were examined using RT-qPCR and western blot analyses, respectively. GAPDH and
α-tubulin were used to normalize the RT-qPCR and western blot results, respectively. (E) Primary human EVT cells were treated for 24 h with Ctrl or 25 ng/mL BMP2
and MMP2 activity was examined using ELISA. The results are expressed as the mean ± SEM of five independent experiments (n = 5, *P < 0.05, **P < 0.01).
Differences between groups were determined by Student’s t-test.

(Miyazono et al., 2001). To determine whether ALK2, ALK3 or
ALK6 are required for BMP15-induced SMAD1/5/8 activation,
primary EVT cells were treated with BMP2 in the presence or
absence of 0.5 µM DMH-1 (a selective inhibitor of ALK2/3) (Yu
et al., 2008). As shown in Figures 5A,B, treatment of primary
EVT cells with DMH-1 completely abolished BMP2-induced

increases in the mRNA levels of SNAIL and MMP2. Similarly,
treatment of primary EVT cells with DMH-1 completely
abolished BMP2-induced increases in the protein levels of SNAIL
and MMP2 (Figures 5C,D). These results indicate that ALK2 or
ALK3, but not ALK6, is required for the upregulation of SNAIL
and MMP2 induced by BMP2 in primary EVT cells.
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FIGURE 3 | SNAIL mediates the BMP2-induced upregulation of MMP2 and the increase in cell invasion of primary human EVT cells. (A,B) Primary human EVT cells
were transfected with 25 nM control siRNA (siCtrl) or 25 nM SNAIL-specific siRNA (siSNAIL) for 48 h, and the cells were treated with Ctrl or 25 ng/mL BMP2 for an
additional 12 h (A) or 24 h (B). The mRNA (A) and protein (B) levels of MMP2 and SNAIL were examined using the RT-qPCR and western blot results, respectively.
(C) Primary human EVT cells were transfected with 25 nM siCtrl or 25 nM siSNAIL for 24 h, and the cells were treated with Ctrl or 25 ng/mL BMP2 for an additional
48 h. Cell invasion was examined using the Matrigel-coated transwell invasion assay. (D) Primary human EVT cells were transfected with 25 nM siCtrl or 25 nM
siMMP2 for 24 h. The mRNA levels of MMP2 and cell invasion was examined using RT-qPCR and Matrigel-coated transwell invasion assay, respectively. The results
are expressed as the mean ± SEM of five independent experiments (n = 5, ∗P < 0.05; ∗∗∗P < 0.001; NS, no significant difference). Differences between groups
were determined by one-way analysis of variance.

NR026833.1 Induces SNAIL Expression
and Promotes Cell Invasion in Primazry
Human EVT Cells
To further identify the regulatory networks of mRNAs,
miRNAs, and lncRNAs, we treated primary human EVT cells

(isolated from villous tissues obtained from three women
with NPs) with 25 ng/mL BMP2 and performed high-
throughput second-generation sequencing analysis. A total of 633
mRNAs (370 upregulated and 263 downregulated), 121 miRNAs
(54 upregulated and 67 downregulated), and 908 lncRNAs
(555 upregulated and 353 downregulated) were differentially
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FIGURE 4 | MiR-502-5p suppresses SNAIL expression and decreases SNAIL-mediated cell invasion in primary human EVT cells. (A–C) Primary human EVT cells
were transfected for 24 h with 25 nM miR-NC (as a negative control) or 25 nM miR-502-5p mimic, and the miR-505-5p levels (A) were examined using RT-qPCR.
The mRNA (B) and protein (C) levels of SNAIL were examined using RT-qPCR and western blot analyses, respectively. (D) Primary human EVT cells were
transfected for 24 h with 3′-UTR SNAIL-luciferase reporter (SNAIL 3′-UTR-WT) or 3′-UTR SNAIL mutant-luciferase reporter (SNAIL 3′-UTR-MUT) along with 25 nM
miR-NC or 25 nM miR-502-5p mimic. The luciferase activities of cells were detected using a dual-luciferase assay. (E) Primary human EVT cells were cotransfected
with 25 nM miRNA inhibitor negative control (inhibitor Ctrl) or 25 nM miR-502-5p inhibitor for 24 h as well as 25 nM siCtrl or 25 nM siSNAIL for 24 h. Cell invasion
was examined using the Matrigel-coated transwell invasion assay. The results are expressed as the mean ± SEM of five independent experiments (n = 5, *P < 0.05;
**P < 0.001; NS, no significant difference). Differences between groups were determined by Student’s t-test or one-way analysis of variance.

expressed in the BMP2-treated group. Hierarchical clustering
was performed to show the differential expression patterns of
these mRNAs, miRNAs, and lncRNAs (Figure 6). Moreover,
eight lncRNAs were selected for validation using RT-qPCR, and
all these lncRNAs were upregulated by BMP2 according to the
sequencing analysis (Supplementary Figure 7). Among these

deregulated lncRNAs, NR026833.1 was upregulated up to 10-fold
after BMP2 treatment (Figure 7A). Indeed, the results obtained
from the correlation analysis showed that there was a positive
correlation between the relative mRNA levels of BMP2 and those
of NR026833.1 in villous tissues obtained from women with
NPs (Figure 7B, n = 50). Intriguingly, the expression levels of
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FIGURE 5 | ALK2 or ALK3 mediates BMP2-induced upregulation of SNAIL and MMP2 in primary EVT cells. (A,B) Primary human EVT cells were pretreated with
vehicle control or DMH-1 (0.5 µM) for 60 min and the cells were treated with Ctrl or 25 ng/mL BMP2 for an additional 12 h. The mRNA levels of SNAIL (A) and
MMP2 (B) were examined using RT-qPCR. (C,D), Primary human EVT cells were pretreated with vehicle control or DMH-1 (0.5 µM) for 60 min and the cells were
treated with Ctrl or 25 ng/mL BMP2 for an additional 24 h. The protein levels of SNAIL (C) and MMP2 (D) were examined using western blot analysis. The results are
expressed as the mean ± SEM of four independent experiments (n = 4, *P < 0.05; NS, no significant difference). Differences between groups were determined by
one-way analysis of variance.

NR026833.1 in the villous tissues obtained from women with
NPs (n = 50) were significantly higher than those from women
with EPL (Figure 7C, n = 50), indicating that NR026833.1
could play a functional role in early pregnancy. Our in vitro
experiments showed that NR026833.1 knockdown significantly
downregulated SNAIL expression at the transcriptional and
translational levels (Figures 7D,E) and decreased cell invasion
(Figure 7F) in primary EVT cells.

NR026833.1 Binds to miR-502-5p and
Promotes Cell Invasion in Primary
Human EVT Cells
The NR026833.1 gene is located at chromosome 2 and has
3,463 nucleotides. To investigate the molecular mechanisms by
which NR026833.1 regulates trophoblast invasion, we examined
the localization of this lncRNA because the cellular activities
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FIGURE 6 | Hierarchical clustering analysis of lncRNA and microRNA expression in primary human EVT cells treated with Ctrl (n = 3) or 25 ng/mL BMP2 (n = 3).
Each row represents one type of RNA, and each column represents a sample (A) Ctrl; (B) BMP2 treatment). The color scale shown at the top illustrates the relative
RNA expression level; red represents high expression, and blue represents low expression.

of lncRNAs are dependent on their subcellular distribution.
Using cytoplasmic and nuclear RNA fractions combined with
FISH analysis, we observed that NR026833.1 was preferentially
localized in the cytoplasm of primary human EVT cells
(Figure 8A). Studies have shown that cytoplasmic lncRNAs can
directly bind to miRNAs and serve as microRNA sponges or
competitive endogenous RNAs (ceRNAs) to block associations
with target mRNAs (Zhou et al., 2014). Based on these
studies and our sequencing results, we hypothesized that

NR026833.1 has target sites against miR-502-5p and that
NR026833.1 regulates trophoblast invasion by binding to miR-
502-5p. To test this hypothesis, we constructed luciferase
vectors by cloning wild-type NR026833.1 (NR026833.1 WT) and
mutant NR026833.1 (NR026833.1 MUT). Using dual-luciferase
assays, we found that transfection of the NR026833.1 WT
together with the miR-502-5p mimic but not the NR026833.1
MUT with the miR-502-5p mimic significantly decreased
the luciferase activity of primary EVT cells (Figure 8B).
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FIGURE 7 | NR026833.1 induces SNAIL expression and promotes cell invasion in primary human EVT cells. (A) Primary human EVT cells were treated with Ctrl or 25
ng/mL BMP2 for 12 h, and the levels of NR026833.1 were examined using RT-qPCR. (B) Correlation of the relative mRNA levels of BMP2 and those of NR026833.1
in villous tissues obtained from women with NPs (n = 50). (C) The relative levels of NR026833.1 in villous tissue obtained from women with NPs (n = 50) and EPL
(n = 50) were examined using RT-qPCR. (D,E) Primary human EVT cells were transfected with 25 nM siCtrl or 25 nM NR026833.1-specific siRNA (si NR026833.1)
for 48 h, and the mRNA (E) and protein (F) levels of SNAIL were examined using RT-qPCR and western blot analyses, respectively. (F) Primary human EVT cells
were transfected with 25 nM siCtrl or 25 nM si NR026833.1 for 48 h. Cell invasion was examined using a Matrigel-coated transwell invasion assay. The results are
expressed as the mean ± SEM of at least five independent experiments (*P < 0.05; ***P < 0.001). Differences between groups were determined by Student’s t-test.

Additionally, transfection with the miR-502-5p mimic but
not miR-NC significantly suppressed cell invasion in primary
EVT cells (Figure 8C). Notably, overexpression of NR026833.1
(OE- NR026833.1) increased cell invasion and reversed the

miR-502-5p mimic-induced suppression of cell invasion in
primary EVT cells (Figure 8D). These results indicate that
NR026833.1 promotes trophoblast invasion by interacting
with miR-502-5p.
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FIGURE 8 | NR026833.1 binds to miR-502-5p and promotes cell invasion in primary human EVT cells. (A) Localization of NR026833.1 (red) in primary human EVT
cells using immunostaining. DAPI staining (blue) was used to determine the location of the nuclei. (B) Primary human EVT cells were transfected for 24 h with an
NR026833.1-luciferase reporter (NR026833.1-WT) or an NR026833.1 mutant-luciferase reporter (NR026833.1-MUT) along with 25 nM miRNA-NC or 25 nM
miR-502-5p mimic. The luciferase activities of the cells were detected using a dual-luciferase assay. (C) Primary human EVT cells were transfected for 24 h with 25
nM miR-NC or 25 nM miR-502-5p mimic, and cell invasion was examined using a Matrigel-coated transwell invasion assay. (D) Primary human EVT cells were
transfected for 24 h with miR-NC plus overexpression vector negative control (OE-NC), miR-NC plus overexpression NR026833.1 (OE-NR026833.1) or miR-502-5p
mimic plus OE-NR026833.1, and cell invasion was examined using a Matrigel-coated transwell invasion assay. The results are expressed as the mean ± SEM of five
independent experiments (n = 5, *P < 0.05; ***P < 0.001; NS, no significant difference). Differences between groups were determined by Student’s t-test.

BMP2 Promotes the Development of
Mouse Preimplantation Embryos
To compare embryonic development in humans and mice, we
further investigated the expression, localization and functional
roles of BMP2 in mouse embryos at the corresponding stages.

Using the fluorescence analysis, we observed that BMP2 is
expressed in the mouse oocyte and preimplantation embryo at
all stages, including the zygotes, 2-cell embryos, 4-cell embryos,
8-cell embryos, morula and blastocysts (Figure 9A). Specifically,
BMP2 is primarily localized in the cytoplasm (Figure 9A). Similar
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TABLE 2 | Effects of BMP2 on the developmental potential of
2-cell mouse embryos.

48 h 72 h

No. of blastocyst
(%)

No. of blastocyst
(%)

No. of
blastocyst

hatching (%)

Control 110a 51 (46.4) 95 (86.4) 53 (48.2)

BMP2 111a 74 (66.7)* 101 (91) 79 (71.2)*

P-value 0.002 0.278 0.002

aNumber of embryos that were examined.
*P < 0.05 compared with Control.

to that in humans, BMP2 in mice is localized at the perinuclear
area at the 2-cell stage. Additionally, BMP2 is expressed in both
the trophectoderm and ICM (mainly in trophectoderm cells) at
the blastocyst stage. To examine the roles of BMP2, we cultured
superovulated 2-cell stage mouse embryos with 100 ng/mL BMP2
for up to 72 h. The results showed that BMP2 significantly
promoted blastocyst formation at 48 h and embryo hatching at
72 h (Figure 9B and Table 2).

BMP2 Promotes the Invasive
Differentiation of Mouse TS Cells
To investigate the role of BMP2 in the regulation of trophoblast
cell differentiation and invasion, we used mouse TS cells
(established from 3.5 days postcoitus (dpc) blastocysts) to
mimic the process of trophoblast differentiation in vivo. Our
in vitro studies showed that BMP2 treatment promptly decreased
the expression of the TS cell marker Eomes during the first
3 days of cell differentiation (Figure 8A). BMP2 increased
the expression of the labyrinthine/spongiotrophoblast (SpT)
cell marker Tpbpa and the trophoblast giant cell (TGC)
marker Ctsq during the last 3 days of cell differentiation
(Figure 10A). Specifically, after BMP2 treatment, the number
of undifferentiated TS cells (a colony with tightly packed cells
characteristic, yellow arrowheads) was decreased, while the
number of differentiated TS cells (a typical TGC morphology,
blue arrowheads) (Figure 10B). These results indicated that
recombinant BMP2 promotes TS cell differentiation. Similar to
the results in humans, BMP2 promoted cell invasion without
affecting cell proliferation in mouse stem cells (Figure 10C).
Additionally, BMP2 increased the expression of SNAIL and
MMP2 at the transcriptional and translational levels in mouse
TS cells (Figure 10D). Moreover, BMP2 significantly increased
the MMP2 activity in the conditioned medium of cultured cells
(Figure 10D). These results indicate that BMP2 promotes the
invasive differentiation of mouse trophoblasts.

DISCUSSION

Trophoblast differentiation and invasion are critical for early
embryo development and subsequent implantation, and any
dysregulation of the key regulators in this process may lead to
an unsuccessful pregnancy. Members of the TGF-β superfamily

are involved in the regulation of embryo implantation and
trophoblast invasion (Cheng et al., 2013; Li et al., 2014).
Additionally, studies have shown that members of the BMP
subfamily induce differentiation of cells to the trophoblast
lineage (Xu et al., 2002; Lichtner et al., 2013). Our previous
study also showed that BMP2 promotes human trophoblast cell
invasion by upregulating EMT-associated markers (Zhao et al.,
2018a,b, 2020). In this follow-up study, we further investigated
the function and molecular mechanisms by which BMP2
regulates the process of embryo development and trophoblast
differentiation. Information obtained from clinical samples
showed that the serum BMP2 levels were significantly increased
during the first trimester of pregnancy. Given that elevated
peripheral BMP2 levels are associated with the development
of placental tissue during the first trimester, trophoblast cells
are one of the sources of the circulating BMP2. Additionally,
the serum BMP2 levels were significantly reduced and the
BMP2 expression levels were downregulated in villous tissues
obtained from women with EPL, indicating that BMP2 is
a principal factor for placentation in humans. Moreover, we
provided the first data showing that BMP2 is expressed in
the human oocyte and trophoblast cells of cleavage embryos
and blastocysts prior to implantation. However, all the human
embryos used in this study were embryos developing slowly or
with arrested development and those with poor-quality embryo
morphology. These embryos were selected not to be used
for embryo transfer during assisted reproductive technology.
Therefore, the expression level of BMP2 in these embryos could
be different from those in the normal developed embryos.
Previous studies have shown that embryo implantation promotes
endometrium decidualization (Paria et al., 2001; Sharma et al.,
2016). Taken together, previous studies and our results indicate
that BMP2 secreted by endometrial cells and trophoblast
cells may mediate their cooperation during placentation in
an autocrine/paracrine manner, which is essential for early
pregnancy maintenance.

In this study, the gene set enrichment analysis plot
indicated a significant correlation between BMP2 and the EMT
signaling pathway. EMT is a fundamental process of cell shape
change that forms extravillous and interstitial cytotrophoblasts
with mesenchymal characteristics during placental development
(Kokkinos et al., 2010). MMPs have been reported to be related to
the invasive ability of trophoblasts, which are capable of digesting
collagen IV, a major component of the basement membrane
(Seval et al., 2004). A previous study showed that MMP2 and
MMP9 were localized at the placental bed, primarily in EVT
cells during early pregnancy, and were involved in the regulation
of trophoblast invasion (Ma et al., 2015). Specifically, MMP2 is
expressed at a peak level, which is closely associated with invasive
potential at the implantation site during the first trimester of
pregnancy (Shimonovitz et al., 1994; Isaka et al., 2003; Bai et al.,
2005; Jones et al., 2006). Notably, we found that BMP2 promoted
trophoblast invasion by upregulating expression of MMP2 but
not expression of MMP9. In the trophoblast cells obtained from
a gestational placenta at 6–8 weeks, MMP2 is a key regulator of
trophoblast invasion (Staun-Ram et al., 2004). Consistent with
these results, our in vitro experiments confirmed that BMP2 plays
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FIGURE 9 | BMP2 promotes the development of mouse preimplantation embryos. (A) The expression and localization of BMP2 in mouse preimplantation embryos.
Mouse preimplantation embryos, including the oocyte, zygote, 2-cell, 4-cell, 8-cell, morula and blastocyst stages, were fixed and probed with a specific antibody
against mouse BMP2 followed by probing with a fluorescein isothiocyanate-conjugated secondary antibody or DAPI counterstaining. The images were detected
using confocal microscopy. (B) BMP2 accelerates the processes of blastocyst formation and hatching. Mouse 2-cell embryos were cultured in HTF medium with Ctrl
or 100 ng/mL BMP2 for 72 h. The processes of blastocyst formation and hatching (yellow arrowheads) were detected with microscopic observation. Six
independent experiments (n = 6) were performed, and similar results were obtained (the total number of embryos in the control group was 110 and that in the BMP2
group was 111). The scale bars represent 50 µm.

a key role in regulating trophoblast invasion by upregulating
MMP2 expression through SNAIL.

In the present study, our functional studies revealed that
BMP2 has a regulatory role in the promotion of trophoblast
invasion in primary EVT cells. Using whole-genome sequencing,
we identified certain differentially expressed mRNAs, miRNAs
and lncRNAs that are associated with BMP2-induced trophoblast
invasion. Many studies have demonstrated the involvement
of miRNAs and lncRNAs in the regulation of trophoblast
function and placental development in humans (McAninch et al.,
2017; Hayder et al., 2018). LncRNAs are defined as RNAs
longer than 200 nucleotides in length and do not produce
a protein product. Here, we showed that BMP2 prominently

induces the upregulation of NR026833.1, a lncRNA expressed
in primary human EVT cells. Indeed, the expression levels
of BMP2 were positively correlated with those in human
villous tissue. Clinical data also showed that the expression
levels of NR026833.1 were significantly reduced in villous
tissues obtained from women with EPL compared to those
obtained from women with NPs, indicating that this lncRNA
has a role in early placentation. Our experiments further
demonstrated that NR026833.1 knockdown decreased cell
invasion, whereas NR026833.1 overexpression increased cell
invasion in primary EVT cells. LncRNA can serve as a miRNA
sponge to sequester and saturate the cellular pool of miRNA,
thereby operating as a competitive inhibitor to suppress the
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FIGURE 10 | BMP2 promotes the invasive differentiation of mouse TS cells. (A) TS cells were treated with Ctrl or 100 ng/mL BMP2 every 24 h for up to 7 days, and
three cell marker genes, including Eomes (TS cell marker), Tpbpa (SpT marker) and Ctsq (TGC marker), were examined using RT-qPCR. (B) TS cells were treated
with Ctrl or 100 ng/mL BMP2 for 4 days, and cell images were detected with microscopic observation. Undifferentiated TS cells showed a colony with characteristic
tightly packed cells (yellow arrowheads), while differentiated TS cells showed a typical TGC morphology (blue arrowheads). These differentiated TS cells showed a
flattened appearance and increased cell, nuclei and perinuclear granule sizes (blue arrowheads). The scale bars represent 200 µm. (C) TS cells were treated with
Ctrl or 100 ng/mL BMP2 every 24 h for a total of 72 h, and cell invasion was examined using a Matrigel-coated transwell invasion assay. Cell viability was determined
using a CCK-8 assay. (D) TS cells were treated for 12 or 24 h with Ctrl or 100 ng/mL BMP2, and the mRNA (12 h) and protein (24 h) levels of MMP2 and SNAIL
were examined using RT-qPCR and western blot analyses, respectively. TS cells were treated for 24 h with Ctrl or 100 ng/mL BMP2, and the MMP2 activity was
examined using ELISA. GAPDH and α-tubulin were used to normalize the RT-qPCR and western blot results, respectively. The results are expressed as the
mean ± SEM of three independent experiments (n = 3, *P < 0.05, **P < 0.01 and ***P < 0.001). Differences between groups were determined by Student’s t-test or
one-way analysis of variance.

binding of miRNA to its mRNA targets (Bak and Mikkelsen,
2014). We further confirmed that NR026833.1 was preferentially
localized in the cytoplasm of primary human EVT cells and
that there was a binding site in NR026833.1 for miR-502-5p, a
miRNA that was also expressed in primary human EVT cells.

Notably, the miR-502-5p mimic abolished the cell invasion-
promoting effect caused by NR026833.1 overexpression. These
results indicate that NR026833.1 may serve as an intracellular
sponge for miR-502-5p and may abolish the miR-502-5p-
induced suppression of cell invasion. MiRNAs are classified as
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FIGURE 11 | A schematic diagram of the regulatory role of the BMP2/NR026833.1/SNAIL/MMP2 signaling axis in promoting the invasive differentiation of
trophoblasts. Left panel figure. LncRNA NR026833.1 is upregulated by BMP2 and promotes the expression of SNAIL (target gene of miR-502-5p) by acting as a
decoy to competitively bind to miR-502-5p. The upregulation of SNAIL further acts as a transcription factor that induces the production of MMP2, which in turn
promotes cell invasion in primary EVT cells. Right panel figure. In humans and mice, BMP2 is expressed in the oocyte and all embryo stages (especially the
trophectoderm). Exogenous BMP2 enhances embryonic development by increasing blastocyst formation and hatching. Additionally, BMP2 promotes the invasive
differentiation of TS cells by upregulating the expression of SNAIL and MMP2.

endogenous small non-coding RNAs that negatively modulate
gene expression by binding to specific mRNAs and promoting
their degradation or translational repression (Bartel, 2004).
Using bioinformatics analysis and luciferase reporter assays,
we identified a putative binding site of the 3′ UTR of
SNAIL mRNA that specifically matched miR-502-5p, indicating
that SNAIL is the target of this trophoblast-derived miRNA.

Our study further revealed that transfection with the miR-
502-5p mimic suppressed the expression of SNAIL at the
transcriptional and translational levels and that inhibition of
miR-502-5p reversed the siSNAIL-mediated decrease in cell
invasion. SNAIL is a prototypical EMT-inducing transcription
factor that is essential for trophoblast invasion (Blechschmidt
et al., 2007). Using the siRNA-mediated inhibition approach,
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we showed that SNAIL knockdown decreased basal and
BMP2-induced cell invasion in primary EVT cells. These
findings suggest that in human primary EVT cells, miR-
502-5p acts to suppress cell invasion by binding to the
EMT-related transcription factor SNAIL and that the BMP2-
induced increase in NR026833.1 promotes the expression of
SNAIL by competitively binding to (and suppressing the
effect of) miR-502-5p.

Improper trophectoderm differentiation is associated with
arrested preimplantation development and defective embryo
implantation, leading to early pregnancy failure (Roberts and
Fisher, 2011; Pfeffer and Pearton, 2012). Because of ethical
issues, we utilized mouse embryos to investigate the effects of
BMP2 on embryo development and trophoblast invasion. The
results showed that BMP2 is expressed in the mouse oocyte and
during all embryo stages, including 2, 4, and 8-cell embryos as
well as morula and blastocysts (mainly in the trophectoderm
cells). Intriguingly, exogenous BMP2 promoted embryonic
development by enhancing blastocyst formation and hatching
in mice. In line with our results, a previous study showed that
several BMP2 receptor genes, including Bmpr1a, are expressed
in the extraembryonic ectoderm (ExE) (Kishigami and Mishina,
2005). In situ hybridization studies in mice demonstrated that the
expression of BMP2 in the uterus was spatiotemporally correlated
with embryo implantation, suggesting that BMP2 plays a critical
role during embryo implantation and early placentation (Paria
et al., 2001). Additionally, we used mouse TS cells to examine the
roles of BMP2 in the regulation of trophoblast cell differentiation
and invasion. Our results showed that treatment with BMP2
promoted trophoblast differentiation by downregulating the
expression of Eomes (TS cell marker) and upregulating the
expression of Ctsq (TGC marker) and Tpbpa (SpT marker) in
mouse TS cells. Additionally, exogenous BMP2 promoted cell
invasion without affecting cell proliferation. Similar to the results
in primary human EVT cells, the BMP2-induced increase in
cell invasion is most likely through the upregulation of SNAIL
and MMP2 expression in mouse TS cells (Figure 9). These
findings suggest that the stimulatory effect of BMP2 on the
invasive potential of trophoblasts most likely occurs at a very
early stage of placentation. However, one question has been raised
regarding the cause and effect of BMP2 and EPL in humans.
Indeed, it is difficult to draw a conclusion whether changes in
the levels of BMP2 are a cause or effect of the pregnancy loss
in humans. Future studies aimed at addressing this issue will be
of great interest.

CONCLUSION

In conclusion, our findings provide significant insights into
the molecular biology of embryo-maternal interactions,
underscoring the importance of BMP2 in promoting blastocyst
implantation and placental development. These processes are
essential for successful pregnancy and fetal development and
growth. Notably, our study reveals a new regulatory pathway
in which BMP2 induces a miR502-5p/SNAIL/MMP2 signaling
axis via NR026833.1 upregulation (Figure 11). This advance in

knowledge will provide us a framework to explore new diagnostic
and therapeutic strategies for pregnancy-related complications.
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Supplementary Figure 3 | BMP2 upregulates the expression of ID1, ID2, and
ID3 in primary human EVT cells. Primary human EVT cells were treated for 12 h
with Ctrl or 25 ng/mL BMP2 and the mRNA levels of ID1, ID2, and ID3 were
examined using RT-qPCR. GAPDH was used to normalize the RT-qPCR results.
The results are expressed as the mean ± SEM of five independent experiments
(n = 5, ∗∗∗P < 0.001). Differences between groups were determined by Student’s
t-test.

Supplementary Figure 4 | Primary human EVT cells were treated for 12 h with
Ctrl or 25 ng/mL BMP2 and the mRNA levels of MMP9 (A) and
MMP1/3/7/10/11/12/14/15/16/17/21/23/24/25/28 (B) were examined using
RT-qPCR. The results are expressed as the mean ± SEM of five independent
experiments (n = 5, NS, no significant difference). Differences between groups
were determined by Student’s t-test.

Supplementary Figure 5 | SNAIL mediates the BMP2-induced upregulation of
MMP2 and the increase in cell invasion of primary human EVT cells. Primary
human EVT cells were transfected with 25 nM siCtrl or 25 nM siSNAIL for 24 h,
and the cells were treated with Ctrl or 25 ng/mL BMP2 for an additional 48 h. Cell
invasion was examined using the Matrigel-coated transwell invasion assay.

Supplementary Figure 6 | MiR-502-5p suppresses SNAIL expression and
decreases SNAIL-mediated cell invasion in primary human EVT cells. Primary
human EVT cells were cotransfected with 25 nM miRNA inhibitor negative control
(inhibitor Ctrl) or 25 nM miR-502-5p inhibitor for 24 h as well as 25 nM siCtrl or 25
nM siSNAIL for 24 h. Cell invasion was examined using the Matrigel-coated
transwell invasion assay.

Supplementary Figure 7 | (A,B) Volcano plot of the P-values as a function of
weighted fold-change for lncRNAs in primary human EVT cells treated with BMP2.
Gray dots represent lncRNAs not significantly differentially expressed (fold
change < 1; P > 0.05) and red and green dots represent lncRNAs that are
significantly differentially expressed (fold change ≥ 1; P < 0.05). (C) Primary
human EVT cells were treated for 24 h with Ctrl or 25 ng/mL BMP2 and the
relative levels of various lncRNA were examined using RT-qPCR.

Supplementary Data 1 | The list of primers sequence.

Supplementary Data 2 | The list of antibodies used in this study.
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Prostate cancer is among the top mortality factors in male around the world.
Long non-coding RNAs (lncRNAs) have been shown to play crucial roles in
tumor biology and immunology. However, lncRNA-immune interactions have not yet
examined in prostate cancer. Here, we performed integrated analysis to characterize
lncRNA-immune interactions in prostate cancer through multidimensional aspects,
including immune-related hallmarks, tumor immunogenomic signatures, immune-related
biological processes, immune cells, and immune checkpoints. We dissected the
dysregulation of lncRNAs and their clinical relevance in prostate cancer, such as RP11-
627G23.1 and RP11-465N4.5. Immune-related hallmarks took up the major parts
among top significant lncRNA-hallmark interactions. Our analysis revealed that TGF-β
signaling pathway was the most frequent to associate with lncRNAs, which is a signature
of immune response in cancer. In addition, immune response and its regulation were the
most closely connected immunological processes with lncRNA, implying the regulatory
roles of lncRNAs on immune response in prostate cancer. We found that memory resting
CD4+ T cells were the most lncRNA-correlated immune cell. LINC00861 was found
to be potentially intervening targets of immunotherapy for prostate cancer patients,
which was significantly associated with PD-1 and CTLA4. Collectively, we offered a
handy resource to investigate regulatory roles of lncRNAs on tumor immunology and
the development of clinical utility of lncRNAs in prostate cancer.

Keywords: long non-coding RNA, immune checkpoint, immunotherapy, prostate cancer, tumor immunology

INTRODUCTION

Prostate cancer is the most common malignancy in male, especially in Western World (Ferlay et al.,
2015; Ku et al., 2019; Siegel et al., 2020). Despite substantial advances in diagnosis and therapeutics
in prostate cancer, it still ranks the first cause of cancer mortality of male in the United States, which
caused 33,330 deaths in 2020 statistics (Siegel et al., 2020). Studies regarding molecular alterations
of prostate cancer offered mounts of potential diagnostic and therapeutic targets, with non-coding
RNAs playing important roles (Ku et al., 2019).

Transcriptome diversity and their connections with critical biological processes have been
investigated in multiple cancer types, among which non-coding RNAs took a large part

Abbreviations: lncRNA, long non-coding RNA; TCGA, The Cancer Genome Atlas; PRAD, Prostate Adenocarcinoma;
GDC: Genomic Data Commons; TIME: tumor immune microenvironment; ICB: immune checkpoint blockade; CAFs:
carcinoma-associated fibroblasts; Tregs: regulatory T cells.
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(Kahles et al., 2018; Hua et al., 2019; Li et al., 2019). Long
non-coding RNAs (lncRNAs) are >200 nt RNA molecules
with limited protein-coding capability, which have been once
considered as transcriptional noises (Du et al., 2013; Cech
and Steitz, 2014; Iyer et al., 2015). Studies have shown
that lncRNAs exert their biological functions through various
ways, including miRNA sponges (Hansen et al., 2013; Yuan
et al., 2014; Marchese et al., 2017), decoys to bind proteins
(Carpenter et al., 2013; Qian et al., 2016), scaffolds or guides to
regulate protein-protein or protein-DNA interactions (Engreitz
et al., 2013; Lee et al., 2016). LncRNAs have been shown
to play important roles in human cancers (Iyer et al., 2015;
Niknafs et al., 2016; Li S. et al., 2018; Li Z. et al., 2018),
including prostate cancer (Hua et al., 2018, 2019). In particular,
down-regulation of UCA1 (urothelial carcinoma associated 1)
inhibited proliferation of prostate cancer cells by modulating
MYO6 through sponging miR-143 (Yu et al., 2020). Tumor
immune microenvironment (TIME) is among the key factors
impacting the treatment response, especially immunotherapy
(Fridman et al., 2017; Mouw et al., 2017; Thorsson et al.,
2018). The infiltrated abundance of cytotoxic and helper
T lymphocytes within tumor microenvironment has shown
prognostic and clinical implications in multiple cancer types
(Fridman et al., 2017). A variety of immunogenomic features
have been shown to contribute to influencing TIME, including
tumor mutation burden and DNA damage repair defects
(Bryant et al., 2017; Vitkin et al., 2019). Among genitourinary
malignancies, prostate cancer shows unique TIME profiles
with different features of infiltrated immune cell populations
and immunogenomic features (Dallos and Drake, 2018; Vitkin
et al., 2019). Through integrated analysis of lncRNA and
immune features across 33 different cancer types, Li Y. et al.
(2020) demonstrated that lncRNAs were closely interacted
with immune-related pathways and infiltrated immune cells in
cancer. However, the landscape of aberrant lncRNAs and their
interactions with immune features in prostate cancer have not
been characterized.

In the present study, we dissected the dysregulation of
lncRNAs in prostate cancer and their clinical relevance. To
comprehensively characterize lncRNA-immune interactions in
prostate cancer, we assessed the associations between lncRNA
expression and various immune features, including immune-
related hallmarks, tumor immunogenomic signatures, immune-
related biological processes, tumor infiltrated immune cells, and
immune checkpoints. Our analysis revealed close connections
between prostate cancer (PRAD) differential lncRNAs and these
immune features in prostate cancer and suggested the potential
clinical utility of lncRNAs in immunotherapy for patients with
prostate cancer.

MATERIALS AND METHODS

Differential Expression Analysis
The read count profiles of genes in 18 The Cancer Genome Atlas
(TCGA) cohorts with more than five paired adjacent normal
samples were retrieved from the Genomic Data Commons

(GDC) data portal1 (Grossman et al., 2016). Raw read counts
were normalized to FPKM units (Fragments Per Kilobase of
transcript per Million mapped reads). Raw read count matrices
were then subject to DESeq2 (Love et al., 2014) for differential
expression analysis of long non-coding genes. Genes with
fold change >1.5 and false discovery rate (FDR) (Benjamini–
Hochberg corrected P-value) <0.05 were considered to be
significantly expressed in tumor samples.

Risk Evaluation and Survival Analysis
Expression levels of individual differential lncRNAs across all
prostate cancer samples were used to investigate the relations
between expression variations and patient prognosis. The Cox
univariate proportional hazards regression model was adopted
to determine risk lncRNAs in prostate cancer. For each lncRNA,
all patients were dichotomized into high- and low-expression
groups using the median expression level as cut-off. The Kaplan–
Meier algorithm was further utilized to compare overall survival
times between the two groups as described in previous study
(Li et al., 2017, 2019). Differences of overall survival times were
estimated by using the log rank test.

Calculation of Gene Set Scores
The hallmark gene sets were first obtained from the Molecular
Signature Database (MSigDB) (Liberzon et al., 2015). Then,
the hallmark scores in each sample were calculated based on
Gene Set Variation Analysis (GSVA) (Hänzelmann et al., 2013).
Specifically, the GSVA algorithm was employed to evaluate
the variation of hallmark activities over each sample in an
unsupervised manner by utilizing expression profiles of genes
annotated in corresponding hallmarks. Finally, the activity score
of each hallmark was assigned to each sample.

Enrichment of lncRNAs in Biological
Features
To evaluate the enrichment of individual lncRNAs in specific
biological features, the correlations between individual lncRNAs
and genes of biological features were first calculated by
Spearman’s correlation. LncRNA-gene pairs with | Rs| > 0.3
and FDR < 0.05 were considered as significant correlated pairs.
For each lncRNA, Fisher’s exact test and hypergeometric test was
employed to estimate the difference of significant pairs between
interested features and the others across 50 hallmarks and
95 immune-related biological processes, respectively. LncRNA-
hallmark pairs with OR > 1 and FDR < 0.05 were considered
as significantly enriched pairs. The corresponding lncRNAs
were assigned to significant paired biological features as highly
associated lncRNAs.

Estimation of Immune Cell Abundance in
Tumor Samples
For each sample, the CIBERSORT (Newman et al., 2015)
algorithm was employed to evaluate the relative immune cell
abundance from gene expression profiles. In particular, immune-
cell-type gene expression was deconvolved based on predefined

1https://portal.gdc.cancer.gov/
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immune cell signatures. In this study, the LM22 immune cell
signature was adopted. These immune cells were validated
to differentially express in one certain leukocyte population
compared to all other hematopoietic cell types. Specifically,
LM22 signature includes 22 different immune cell types, i.e., “B
cells naive,” ”B cells memory,” “Plasma cells,” “T cells CD8,” “T
cells CD4 naive,” “T cells CD4 memory resting,” “T cells CD4
memory activated,” “T cell follicular helper,” “T cells regulatory
(Tregs),” “NK cells resting,” “NK cells activated,” “Monocytes,”
“Macrophages M0,” “Macrophages M1,” “Macrophages M2,”
“Dendritic cells resting,” “Dendritic cells activated,” “Mast cells
resting,” “Mast cells activated,” “Eosinophils,” and “Neutrophils.”
The correlation between expression level of each lncRNA and
abundance of immune cells was then calculated to determine
immune cell-related lncRNAs in prostate cancer.

Statistical Analysis and Plots
All statistical calculation and plots in this study were performed
in R environment2. Unless specially stated, a statistical test with
P-value or FDR < 0.05 was considered as significant.

RESULTS

Characterization of lncRNA
Dysregulation and Clinical Relevance in
Prostate Cancer
To systematically investigate dysregulation of lncRNAs in
prostate cancer, we retrieved gene expression matrix from
TCGA PRAD cohort, including 499 tumor and 52 paired
adjacent normal prostate samples. All lncRNAs annotated in
GENCODE (release v22) were extracted from the obtained
expression matrix of PRAD. In total, 13,676 lncRNAs were
detected with expression of no less than 0.1 FPKM in at
least one PRAD sample. Various expression cut-offs were used
to examine the expression distributions of lncRNAs across
PRAD samples. Despite universal low expression, lncRNAs
were extensively expressed in PRAD samples. In particular,
an average of 32.1% lncRNAs were detected in more than
90% samples and 22.7% lncRNAs were expressed in less
than 10% samples (Supplementary Figure 1A). On average,
29.5% lncRNAs exhibited expression levels more than 0.1
FPKM, and 7.78% lncRNAs expressed more than 1 FPKM
(Supplementary Figure 1B). Differential expression analysis was
further performed, wherein 1,421 down-regulated and 2,517 up-
regulated lncRNAs were identified in prostate cancer samples
(Figure 1A and Supplementary Table 1). Most of PRAD
differential lncRNAs were identified differential expression in
multiple cancer types with over three quarters show differential
expression in 4–10 cancer types (Supplementary Figure 1C
and Supplementary Table 2). Across 18 different cancer types,
77 lncRNAs were exclusively differentially expressed in PRAD
cohort. For example, RP11-328K15.1 showed no significant
differential expression in multiple cancer types except PRAD

2https://www.r-project.org/

(Figure 1B), which might indicate specific biological functions
in the tumor biology of prostate cancer. To further investigate
the clinical relevance of PRAD differential lncRNAs, associations
between lncRNA expression and patient survival time were
assessed by Cox regression analysis. The expression level of most
differential lncRNAs were negatively associated with prognosis
of PRAD patients, wherein seven lncRNAs were associated with
good prognosis, such as RP1-278O22.1, while 128 lncRNAs
were associated with bad prognosis, such as RP5-1142A6.9
(Figure 1C and Supplementary Table 3). Higher expression
level of RP11-627G23.1 (P = 0.0039, log rank test) and RP11-
465N4.5 (P = 0.0058, log rank test) were significantly associated
with decreased survival of patients with PRAD (Figure 1D).
Similarly, the expression level of most differential lncRNAs were
also negatively associated with disease-free survival of PRAD
patients (Supplementary Figure 2). Our results demonstrated
that lncRNAs play important roles in PRAD and could be
potential prognosis biomarkers.

PRAD Differential lncRNAs Were Closely
Associated With Biological Hallmarks
To further explore the major biological functions that differential
lncRNAs might impact, we estimated the associations between
50 biological hallmarks and individual lncRNAs. Overall,
differential lncRNAs tend to be more positively associated with
biological hallmarks (Figure 2A), wherein the distribution
of correlation index is relatively balanced associated in
the immune hallmarks and less than one fifth exhibited
significant correlations (Supplementary Figure 3A and
Supplementary Table 4). We next performed enrichment
analysis to examine lncRNAs that were exclusively correlated
with some hallmarks than others (see section “Materials and
Methods”). In total, 24,096 significant lncRNA-hallmark pairs
were identified. Immune-related hallmarks showed relatively
balanced distribution of highly associated lncRNA numbers
among individual hallmarks, whereas other types exhibited
larger number of associated lncRNAs in specific biological
hallmarks (Supplementary Figure 3B and Supplementary
Table 5). The most significantly enriched lncRNA-hallmark
pair is between CTD-3247F14.2 and “TNFA signaling via
NFKB.” The observation showed that CTD-3247F14.2 was
prone to correlate with genes involved in “TNFA signaling
via NFKB” than those in other hallmarks, indicated potential
regulatory roles of CTD-3247F14.2 for “TNFA signaling via
NFKB” in prostate cancer. Among the top 10 lncRNA-hallmark
pairs, six are immune-related biological hallmarks, such as
“allograft rejection” (Figure 2B). In addition, LINC00664 was
exclusively significantly enriched in “E2F targets,” which is a
proliferation-related hallmark. Among significant lncRNA-
hallmark pairs, a subset of lncRNAs showed exclusively
enrichment in most immune hallmarks. The majority of
these lncRNAs were also enriched in the process of epithelial-
mesenchymal transition, indicating potential lncRNA-mediated
metastasis via immune processes (Figure 2C). Although cancer-
related signaling and proliferative hallmarks showed the most
associated lncRNAs, immune-related hallmarks hold almost
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FIGURE 1 | Dysregulation and clinical relevance of lncRNAs in prostate cancer. (A) Volcano plot shows the expression difference of lncRNA in prostate cancer
samples compared to those paired adjacent normal samples. (B) The expression changes of top 30 differential lncRNAs of prostate cancer across 18 TCGA cancer
types. (C) The survival risk assessment of differential lncRNAs, showing top significant lncRNAs (FPKM >1) in univariate regression analysis. (D) Kaplan–Meier curve
of RP11-627G23.1 and RP11-465N4.5 in PRAD cohort.

half of the top significant enriched lncRNA-hallmark pairs
(Supplementary Table 5).

LncRNAs Showed Extensive Association
With Immunogenomic Signatures in
PRAD
It is observed that a considerable portion of significantly
enriched lncRNA-hallmark pairs were related to immune
hallmarks, we next examined the associations between lncRNAs
and immunogenomic signatures. Relative activities of 26 tumor
immunogenomic signatures were retrieved from a previous
study (Thorsson et al., 2018), which were utilized to assess
the associations between lncRNAs and immunogenomic
signatures in prostate cancer (see section “Materials and
Methods”). The majority (21 in 26) of immunogenomic

signatures have significantly associated lncRNAs, wherein
most lncRNAs were positively associated with corresponding
immunogenomic signatures (Figure 3A and Supplementary
Table 6). “TGF-β response,” “stromal fraction,” “leukocyte
fraction,” and “lymphocyte infiltration signature score” have
larger number of associated lncRNAs (more than 300 lncRNAs).
Besides some differential lncRNAs that were shared among
distinct immunogenomic signatures, considerable proportions
of lncRNAs were exclusively associated with individual
immunogenomic signatures. In particular, almost half of
“TGF-β response”-associated lncRNAs were specifically positive
associated with “TGF-β response” (Figure 3B). Additionally,
a subset of differential lncRNAs were exclusively negative
associated with “wound healing” activity. Specifically, “TGF-β
response” showed much higher activity in RP11-166D19.1-high
PRAD samples than those in RP11-166D19.1-low PRAD samples
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FIGURE 2 | The correlations between PRAD differential lncRNAs and various hallmarks. (A) Boxplots show correlation indexes of positively and negatively correlated
lncRNAs in each type of hallmark. (B) Bubble plot shows the enrichment of lncRNA-hallmark pairs in cancer hallmarks. (C) A subset of lncRNAs that were
significantly enriched in immune-related hallmarks.

(P < 2E-16, Figure 3C). Prostate cancer samples with higher
level of FAM201A exhibited significantly lower level of “TGF-β
response” activity (P = 2.7E-12, Figure 3D). In collection, our
analysis suggested lncRNAs as markers of activity levels of
immunogenomic signatures in prostate cancer.

LncRNAs Were Frequently Connected
With Immune-Related Biological
Processes in Prostate Cancer
We next explored the connections between lncRNAs and
immune-related biological processes in prostate cancer.
Totally, 38 immune-related processes were found to be
significantly enriched by multiple lncRNAs in PRAD samples,
such as “Regulation of immune response,” “Regulation of
immune system process,” and “Immune system development”

(Figure 4A and Supplementary Table 7). The most parts of
differential lncRNAs potentially regulate immune response
and immune system. In addition, differential lncRNAs were
also found to be connected with cellular immunity, such as
“Regulation of lymphocyte mediated immunity,” “leukocyte
mediated immunity,” and “lymphocyte mediated immunity.”
Prostate cancer samples with low level of CTD-2521M24.9
showed significantly lower activity level of immune response
(P < 2E-16, Figure 4B). High expression level of CTD-
2521M24.9 indicated high activity levels of immune system
development (P < 2E-16, Figure 4C). Interestingly, different
lncRNAs could regulate the same immune-related processes
through modulating diverse genes (Figure 4D). For example,
AC006273.5 was found to regulate “Immune response” by
modulating CD40 and TMEM173, whereas A1BG-AS1 could
potentially regulate “Immune response” through CD40, ELF4,
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FIGURE 3 | Associations between lncRNAs and tumor immune signature. (A) Pie charts show the numbers of significant positively and negatively correlated
lncRNAs in each type of immunogenomic signatures. (B) Heatmap shows the landscape of significant correlated lncRNAs across different immunogenomic
signatures. (C) Comparison of TGF-β response scores between high and low expression level of RP11-166D19.1 in PRAD samples. (D) Comparison of TGF-β
response scores between high and low expression level of FAM201A in PRAD samples.

NLRP1, MR1, and TMEM173. Furthermore, some lncRNAs
exclusively regulate individual immune processes though
the same genes. For example, LINC00654 were found to
regulate “Immunological synapse formation” through DLG1,

CORO1A, DOCK2, PRF1, and EPHB1. In summary, these
observations demonstrated that lncRNAs were frequently
connected with immune-related biological processes in
prostate cancer.
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FIGURE 4 | The crosstalk between lncRNAs and immune-related biological processes in PRAD. (A) Network shows the connections between differential lncRNAs
and top significant immune-related biological processes in PRAD. Circle sizes indicate the numbers of significantly enriched lncRNAs for individual immune-related
biological processes. (B) Comparison of immune response activities between high and low expression levels of CTD-2521M24.9. (C) Comparison of immune
system development activities between high and low expression levels of CTD-2521M24.9. (D) Points show the correlations between lncRNAs and representative
genes in individual immune-related biological processes.
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Interactions Between lncRNAs and
Infiltrated Immune Cells and Immune
Checkpoints Suggest Novel Therapeutic
Strategy for Immunotherapy in Prostate
Cancer
Studies on tumor immunology have proposed various
therapeutic strategies for tumor patients, among which immune
checkpoint blockade (ICB) therapy showed promising clinical
benefits in multiple solid tumor types. Among significant
lncRNA-immune cell interactions, memory resting CD4+ T
cells were found to interact with the most differential lncRNAs,
most of which were positively correlated (Figure 5A and
Supplementary Table 8). In particular, cancer samples with
high expression level of MAGI2-AS3 showed significantly higher
infiltrated abundance of memory resting CD4+ T cells than those
with low expression (P < 2E-16, Figure 5B). High expression of
CTD-3184A7.4 indicated significantly lower level of infiltrated
memory resting CD4+ T cell in prostate cancer (P = 8.3E-10,
Figure 5C). To further explore the associations between lncRNAs
and immune checkpoints in prostate cancer, we estimated the
correlations between the expression levels of lncRNAs and
immune checkpoint genes. Most of PRAD differential lncRNAs
were found to be significantly positively correlated with immune
checkpoint gene expression (Figure 5D and Supplementary
Table 9). Some lncRNAs are positively associated with most
immune checkpoint genes, such as LINC00861 and CTD-
2521M24.9, while some are negative correlated with most of
these genes, such as RP3-325F22.5, BMPR1B-AS1, LINC00665,
and RP11-44B19.1. Specifically, LINC00861 was the most
positively related to PD1 (P < 2E-16, Figure 5E), CTLA4
(P < 2E-16, Figure 5F) and TIGIT, and CTD-2521M24.9 was
the most positively related to PD-L1; in contrast, LINC00665,
RP3325F22.5, BMPR1B-AS1, and RP11-44B19.1 were the most
negatively correlated to PD1, PD-L1, CTLA4, and TIGIT.
Moreover, a Sankey diagram was employed to describe the
connections between lncRNAs, immune cells and actionable
immune checkpoints, with a subset of lncRNAs was closely
related to the immune cells and actionable immune checkpoints
(Supplementary Figure 4). These observations implied that
LINC00861 might regulate the expression of PD-1 and CTLA4,
actionable targets of ICB therapy or be efficient biomarker for
their abundance in prostate cancer. Collectively, these results
suggested that lncRNAs might be utilized to modulate activity
of immune cells or levels of immune checkpoints to promote
immunotherapy for patients with prostate cancer.

DISCUSSION

To comprehensively characterize the lncRNA-immune
interactions in prostate cancer, our study explored the
relations between lncRNAs and biological hallmarks, tumor
immunogenomic signatures, immune-related biological
processes, infiltrated immune cells, and immune checkpoints.
Our study unveiled frequent interactions between PRAD
differential lncRNAs and multiple immune features.

Our analysis presented comprehensive characterization of
lncRNA dysregulation and clinical relevance in prostate cancer.
We identified prostate cancer-specific dysregulated lncRNAs
and prognostic lncRNAs, such as RP11-627G23.1 and RP11-
465N4.5. We revealed the close associations between differential
lncRNAs and biological hallmarks. Although immune-related
hallmarks were not enriched of the largest number of lncRNAs,
they took up approximately half of top significant lncRNA-
hallmark associations. Allograft rejection is the top lncRNA-
related cancer hallmarks, indicating the potential roles of
dysregulated lncRNAs in organ transplantation. For example,
in renal transplantation, oncogenic lncRNA-ATB is significantly
overexpressed in acute rejection patients and regulates renal
cell proliferation and cyclosporine A-mediated apoptosis (Qiu
et al., 2017). The important roles of lncRNA-mediated innate
and adaptive immune responses have been highlighted in
recent years, especially in cancer immunity (Yu et al.,
2018; Denaro et al., 2019; Wu et al., 2020). A subset of
lncRNAs enriched in most immune hallmarks suggests their
potential roles in modulating cancer immunity to facilitate
cancer progression. For example, lncRNA cox-2 facilitates
the polarization of M2 macrophages and therefore induces
the malignant phenotypes of hepatocellular carcinoma cells
and angiogenesis (Ye et al., 2018). As another example,
FOXC1-mediated LINC00301 triggers malignant potential of
non-small cell lung cancer cells and modulates the Tregs
and CD8+ T cell populations by activating TGF-β signaling
(Sun C.-C. et al., 2020).

Besides immune-related hallmarks, we also involved
tumor immunogenomic signatures, immune-related biological
processes, tumor infiltrated immune cells, and immune
checkpoints. These features reflect immunological activities
from diverse aspects in tumor samples (Grivennikov et al.,
2010; Chen and Mellman, 2017; Greten and Grivennikov, 2019).
In particular, tumor immunogenomic signatures represent
genomic variations that were induced by or could induce
immune reprogramming (Thorsson et al., 2018). Moreover,
TGF-β signaling contributes to malignancy of cancer cells
and immunosuppressive microenvironment, thus thwarting
cancer immunotherapy (Colak and ten Dijke, 2017; Batlle and
Massagué, 2019). A large amount of lncRNAs was related to
TGF-β response in prostate cancer, suggesting their profound
implication in TGF-β-mediated immune processes. For example,
TGF-β1-simulated lncRNA DNM3OS induces transformation
of prostate stromal cells by targeting miR-29a/29b/COL3A1 and
miR-361/TGFβ1 axes (Wang et al., 2019). As another example,
the therapeutic efficiency of PSMA-targeted human CAR T
cells are enhanced upon TGF-β insensitivity in the treatment
of prostate cancer (Kloss et al., 2018). Furthermore, stromal
fraction is the second frequent lncRNA-related immune feature,
profoundly implicating in cancer development and immunity
(Tyekucheva et al., 2017; De Jaeghere et al., 2019; Ahn and Kim,
2020). For example, lncRNA H19 derived from carcinoma-
associated fibroblasts (CAFs) contributes to the stemness and
chemoresistance of colorectal cancer by targeting miR-141
(Ren et al., 2018). As another example, lncRNA-CAF induce
transition from normal fibroblasts to CAFs by stabling IL-33,
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FIGURE 5 | The interactions between PRAD differential lncRNAs and major immune cells and immune checkpoint genes. (A) The correlations between significant
differential lncRNAs and major immune cell types. Colors indicate correlation coefficients and diamond sizes represent FDR values. (B) Comparison of relative
abundance of memory resting T cells between high and low expression levels of MAGI2-AS3 in PRAD samples. (C) Comparison of relative abundance of memory
resting T cells between high and low expression levels of CTD-3184A7.4 in PRAD samples. (D) Heatmap shows the correlations between the expression of immune
checkpoint genes and differential lncRNAs. (E) Comparison of PD-1 expression between high and low LINC00861 expression levels in PRAD samples.
(F) Comparison of CTLA4 expression between high and low LINC00861 expression levels in PRAD samples.

thereby leading to development of oral squamous cell carcinoma
(Ding et al., 2018).

The activities of immune cells and abundance of immune
checkpoints were crucial factors that affect the outcomes of

immunotherapy for tumor patients (Cha et al., 2020; Jafari
et al., 2020; Zhou et al., 2020). Our analysis found that a large
number of lncRNAs were significantly associated with memory
resting CD4+ T cells, such as MAGI2-AS3 and CTD-3184A7.4.
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Memory CD4+ T cell is a subset of T cell population that
sustains in the absence of antigen and prepares for rapid
immune response upon repeat antigen exposure (Hope et al.,
2019). It has been shown that central memory CD4+ T cells
in peripheral blood are associated with clinical response of PD-
1 antibody therapy in melanoma patients. Our observations
indicated that these lncRNAs might be able to modulate the
activities of memory resting CD4+ T cells. Overexpression of
MAGI2-AS3 or knockdown of CTD-3184A7.4 may activate
memory resting CD4+ T cells to enhance immune response
against tumor cells. Interestingly, MAGI2-AS3 has been widely
studied in cancers, while these studies mainly focused in
regulating cancer cells themselves (Liu et al., 2019; Li D. et al.,
2020). Our results point out that various lncRNA could have
immune regulatory role other than their influence on cancer
cells. In addition, the close connection between lncRNAs and
immune checkpoints has been revealed, suggesting a profound
implication of lncRNA in immune checkpoint regulation. For
example, LncRNA KCNQ1OT1 inhibits the cytotoxicity of CD8+

T cells and promotes the malignant ability of prostate cancer
cells by targeting miR-15a/PD-L1 axis (Chen et al., 2020).
As another example, lncAMPC activates LIF/LIFR/Jak1/STAT3
pathway to stable PD-L1 and metastasis-associated genes, thereby
contributing to metastasis and immunosuppression in prostate
cancer (Zhang et al., 2020). Of note, in prostate cancer,
LINC00861 was closely associated with T cells regulatory,
macrophages M2 and mast cells resting as well as a series
of immune checkpoints, including PD1, PD-L1, and CTLA4.
These evidence indicates a LINC00861-mediated tumor immune
response beyond its reported regulation of malignant potential
on cancer cells (Liu et al., 2021). Further experimental validation
is needed to confirm the regulatory functions of the immune-
related lncRNAs and select the most efficacious lncRNAs to boost
the antitumor immune response. We believe that intervention
of immune response through lncRNAs will be promising
therapeutics for patients with prostate cancer.

CONCLUSION

In conclusion, our study facilitated the understanding of lncRNA-
immune interactions and provided a valuable resource of
immune-related lncRNAs in prostate cancer. These lncRNAs
could be potential biomarkers for immune cells or immune-
related activities in prostate cancer. Because tumor immunity
has major impacts on cancer progression, many immune-related
lncRNAs can predict prognosis and immunotherapy of cancers

(Zhou et al., 2017, 2018; Sun J. et al., 2020; Zhou et al., 2020).
Therefore, these lncRNAs could be potentially utilized to predict
and even modulate immune cell activities or immune checkpoint
abundance to benefit immunotherapy for patients with prostate
cancer.
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In placental mammals, reproductive success, and maternal-fetal health substantially
depend on a well-being placenta, the interface between the fetus and the mother.
Disorders in placental cells are tightly associated with adverse pregnancy outcomes
including preeclampsia (PE), fetal growth restriction, etc. MicroRNAs (miRNAs) represent
small non-coding RNAs that regulate post-transcriptional gene expression and are
integral to a wide range of healthy or diseased cellular proceedings. Numerous miRNAs
have been detected in human placenta and increasing evidence is revealing their
important roles in regulating placental cell behaviors. Recent studies indicate that
placenta-derived miRNAs can be released to the maternal circulation via encapsulating
into the exosomes, and they potentially target various maternal cells to provide
a hormone-like means of intercellular communication between the mother and the
fetus. These placental exosome miRNAs are attracting more and more attention due
to their differential expression in pregnant complications, which may provide novel
biomarkers for prediction of the diseases. In this review, we briefly summarize the
current knowledge and the perspectives of the placenta-derived miRNAs, especially the
exosomal transfer of placental miRNAs and their pathophysiological relevance to PE.
The possible exosomal-miRNA-targeted strategies for diagnosis, prognosis or therapy
of PE are highlighted.

Keywords: placenta, miRNA, exosome, pregnancy, preeclampsia

INTRODUCTION

The placenta is a transient organ that plays a central role in maternal and fetal health
during pregnancy (Anin et al., 2004). Serving as the interface between the fetal and maternal
environments, human placenta performs many critical functions throughout the gestation, such
as exchange of gases, nutrients and waste products between the mother and the growing
fetus (Cross, 1998). Human placenta is also an endocrine gland that modulates maternal
physiological and metabolic events and provides an immune-protective milieu in which the
semi-allogenic fetus can develop (Regnault et al., 2002). Human placenta develops from
the trophectoderm, the outer layer of the pre-implantation embryo. Highly proliferative,
undifferentiated primitive cytotrophoblast (CTB) cells that are derived from the trophectoderm
give rise to differentiated trophoblast cells, mainly including villous syncytiotrophoblast
(STB), cytotrophoblast (CTB), and extravillous trophoblast (EVT; Ji et al., 2013). Defects
in placental development, especially the dysregulation of trophoblast differentiation, are
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tightly associated with fetal loss and pregnant complications, such
as preeclampsia (PE), and fetal growth restriction (FGR; Knofler
et al., 2019).

MicroRNAs (miRNAs) are endogenous, small non-coding
single-stranded RNAs, on average 22nt in length, which can
regulate gene expression primarily through post-transcriptional
repression or messenger RNA degradation in a sequence-
specific manner (Bartel, 2009). Most miRNAs are transcribed as
precursors (either pri-miRNA or pre-mRNA) before capping and
polyadenylation, and their biogenesis requires several enzymes,
including Drosha, DGCR8, Dicer, and Argonaute (Ago) 2
(Donker et al., 2007). In recent years, the remarkable roles
of miRNAs in cellular proceedings under healthy or diseased
conditions have been increasingly recognized (Aghdam et al.,
2019; Mirzaei and Hamblin, 2020; Sadri Nahand et al., 2020;
Davoodvandi et al., 2021; Razavi et al., 2021). In particular, several
studies have shown that knocking out the key enzymes in the
miRNA processing results in embryonic arrest or even embryonic
death (Bernstein et al., 2003; Alisch et al., 2007; Suh et al.,
2010), indicating the significance of miRNAs in the regulation of
pregnant process.

Human placenta is a transient organ with fast development
characteristics and transcriptome diversity. By far, over 1000
mature miRNAs are identified in human genomes (Friedlander
et al., 2014), among which more than 600 miRNAs have been
found in human placenta (Mouillet et al., 2015), and a series
of differential miRNAs have been demonstrated in the placentas
from complicated pregnancies including PE (Pineles et al., 2007;
Ura et al., 2014; Xu et al., 2014). In addition, in vitro and
in vivo studies have revealed the vital roles of these placenta-
derived miRNAs in the regulation of trophoblast cell behaviors
and the occurrence of PE (Xu et al., 2014; Awamleh and Han,
2020; Dong et al., 2020). In addition to the intracellular silencing
functions, an attractive feature of the placenta-derived miRNAs is
their capability of releasing to the maternal circulation via being
encapsulated into the exosomes, and thus potentially targeting
various maternal cells to provide a hormone-like means of
intercellular communication between the mother and the fetus
(Chen et al., 2012).

In this article, we briefly summarize the current knowledge of
the placenta-derived miRNAs, especially the exosomal transfer
of placental miRNAs and their pathophysiological relevance to
PE. The miRNA-targeted promising strategies for the diagnosis,
prognosis or therapy of PE are highlighted.

EXPRESSION AND FUNCTION OF
PLACENTA-DERIVED MIRNAS DURING
PREGNANCY

Placental development is a complicated process during which
various subtypes of cells dynamically differentiate and interact
with each other throughout gestation (Ji et al., 2013). The
expression timing and cellular localization of miRNAs may
change along gestation, indicating their time-dependent, and/or
cell-type-dependent working mechanisms in the placenta. This
point has been well-reflected in many studies. For instance,
the higher expression of placental miR-18a at early gestation,

as well as its specific localization in invasive EVTs are in
consistence with its functions to regulate trophoblast cell invasion
through targeting TGF-β/Smad2 signaling (Xu et al., 2020). The
hypoxia-induced miRNA, miR-210, is transcribed in various
subtypes of placental trophoblasts at early gestation in human
beings and mice. It participates in modulating trophoblast
cell proliferation, invasion, apoptosis, syncytialization, and
angiogenesis by targeting various genes (Anton et al., 2013;
Wang H. et al., 2020). Deficiency in miR-210 leads to failure in the
response of the placenta to maternal hypoxia, especially at early
fetal growth stage (Bian et al., 2020).

To date, emerging evidence has demonstrated the significance
of miRNAs as regulators of various cell behaviors in human
placenta. For instance, let-7a, miR-377, miR-675, miR-145, and
miR-518b, etc., are involved in the regulation of trophoblast cell
proliferation (Forbes et al., 2012; Gao et al., 2012; Doridot et al.,
2013; Liu et al., 2018), miR-34a, miR-29b, miR-376c, miR-195,
miR-210, and many others have roles in modulating trophoblast
cell differentiation toward the invasive pathway (Pang et al., 2010;
Fu et al., 2013; Li et al., 2013; Luo et al., 2014; Wu et al., 2016).
The placental steroidogenesis can be regulated by miR-210, miR-
518c, and miR-22 (Ishibashi et al., 2012; Shao et al., 2017), and
the mitochondrial respiration activities and apoptosis of placental
cells are associated with miR-210 and miR-195 (Wang et al.,
2018; Anton et al., 2019). However, these functional outcomes are
vastly based on in vitro studies using various cell models, and the
relevant in vivo evidence using genetically manipulated mouse
models has been largely lacking.

Among the placenta-derived miRNAs, there exists a placenta-
specific miRNA cluster termed the chromosome 19 miRNA
cluster (C19MC). The C19MC is the largest cluster of miRNAs in
the human genome, and contains 46 highly homologous miRNA
genes within a ∼100 kb genomic region (Bortolin-Cavaille et al.,
2009). The miRNAs in this cluster are predominantly expressed
in the primate placenta and some fetal tissues as well as various
tumor cells (Bentwich et al., 2005; Zhang et al., 2008; Setty et al.,
2020). During pregnancy, they are highly expressed in placental
trophoblasts, and released into maternal circulation which are
eliminated after delivery (Luo et al., 2009; Donker et al., 2012).
Although the full repertoire of the biological actions of C19MCs
remains to be established, a recent study by Mouillet et al.
(2020) have proved the roles of one of the C19MC members,
miR-519d-3p, in promoting trophoblast cell proliferation and
decreasing cell migration abilities. In addition, C19MC miRNAs
are detected in embryonic stem (ES) cells, and their expression
drops considerably when ES cells begin to differentiate, indicating
their roles in the maintenance of the undifferentiated status
(Stadler et al., 2010). Several members of C19MC miRNAs,
such as miR-519, miR-517a, and miR-517c, also exhibit tumor-
suppressive activity via triggering cell senescence (Marasa et al.,
2010) or inhibiting cell proliferation (Liu et al., 2013).

SECRETION AND FUNCTION OF
PLACENTAL MIRNAS IN EXOSOMES

Exosomes are small extracellular vesicles of endocytic origin (van
der Pol et al., 2016). They can be released by many cells and
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are found in body fluids, including peripheral blood, lymph, and
milk, etc. (Akers et al., 2013). The significance of exosomes in
the progression, diagnosis and treatment of various diseases have
been suggested (Asgarpour et al., 2020; Ghaemmaghami et al.,
2020; Hashemian et al., 2020; Nahand et al., 2020). Interestingly,
during pregnancy, the number of exosomes in maternal plasma
appears to be significantly increased from the first trimester
(Sarker et al., 2014), and reaches a maximum level at term (Jin
and Menon, 2018). It is estimated that the concentration of
exosomes in maternal peripheral blood is 20-fold higher than
non-pregnant control (Sabapatha et al., 2006), and returns to
non-pregnant levels within 48 h of delivery (Salomon et al.,
2014). In pregnant complication such as PE, the level of maternal
circulating exosome is progressively higher than normal pregnant
controls (Chiarello et al., 2018).

Exosomes contain multifaceted cargoes, including proteins,
lipids, DNAs, mRNAs, miRNAs, LncRNAs, tRNA, and tRNA
associated fragments (Sarker et al., 2014; Jeppesen et al., 2019).
The selective sorting of miRNAs into exosomes is attributed to
the help of specific RNA-binding proteins, such as hnRNPA2B1

and Ago-2. Other membrane proteins including Caveolin-
1 and Neural Sphingomyelinase 2 are also involved in this
process (Groot and Lee, 2020). The observations by Valadi
et al. (2007) first demonstrated the mechanisms of genetic
exchange between different cells by the exosome transfer of
miRNAs. Later on, Luo et al. (2009) indicated the extracellular
release of placental miRNAs via exosomes into maternal blood.
By far, accumulating studies have identified many exosome-
packaged placental miRNAs and their release into extracellular
compartments and maternal blood (Kambe et al., 2014; Ouyang
et al., 2014; Mitchell et al., 2015; Chang et al., 2017; Chiarello
et al., 2018; Zhao et al., 2018; Czernek and Duchler, 2020; Li
et al., 2020; Yadava et al., 2020; Yang et al., 2020; Wang Y. et al.,
2020). The placental exosomal miRNAs may target other cells
at the feto-maternal interface in paracrine manner (Takahashi
et al., 2017; Wang Y. et al., 2020), or transfer to maternal
recipient cells and play endocrine functions (Kambe et al., 2014;
Zhao et al., 2018; Ma et al., 2020). What’s more, bidirectional
trafficking of exosomal miRNAs between the placenta and the
fetal compartment has been suggested (Chang et al., 2017;

FIGURE 1 | Potential trafficking routes and working mechanisms of exosomal miRNAs during pregnancy. Placenta-derived exosomal miRNAs may be delivered to
maternal or fetal circulation, and affect various cell events in targeting organs. The mother or fetus-derived exosomal miRNAs may also traffic to the placenta to
regulate placental development. Note the dashed lines indicate the uncertainty of evidence by far, the blue arrow indicates endocrine manner and the blue arrow
head indicates paracrine manner.
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Shen et al., 2018; Yang et al., 2019; Yadava et al., 2020; Wang D.
et al., 2020). We summarize the recognition of the placental
exosomal miRNAs in Figure 1, and example some representative
studies as below:

1) The placenta-derived exosomal miRNAs transfer to the
maternal circulation and modulate maternal immune cells
to protect the fetus from the maternal immune attacks.
In vivo and in vitro studies have demonstrated the
dramatical repression of PRKG1 expression in maternal
NK cells by exosomal miR-517-3p (Kambe et al., 2014),
and the downregulation of IL-24 and thus the suppression
in the proliferative capacity and anti-inflammatory effect
of macrophage by exosomal miR-203a-3p (Ma et al.,
2020). In cattle, the placental exosome-derived bta-miR-
499 inhibits the activation of NF-κB via Lin288/let-7 axis,
thereby attenuates the inflammatory responses and forms
an immune-tolerant microenvironment in the uterus.
Inhibition of miR-499 lead to inflammatory deregulation
and increased risk of pregnancy failure (Zhao et al., 2018).

2) Trophoblast cell behaviors can be regulated by exosomal
miRNAs derived from the neighboring or distant
placental cells. Exosomal miR-520c-3p of villous CTB
origin can inhibit cell invasiveness via downregulating
CD44 expression levels in targeted EVT cells (Takahashi
et al., 2017). In vivo and in vitro results indicate the
roles of placental exosomal miR-15a-5p in suppressing
trophoblast cell proliferation, invasion, and apoptosis
through downregulating CDK1 expression and hampering
PI3K/AKT signaling, which is closely associated with PE
progression (Wang Y. et al., 2020).

3) The placenta-derived exosomal miRNAs may regulate fetal
vasculogenesis and angiogenesis. A study from Shen et al.
(2018) showed the downregulation of eNOS expression
in human umbilical vein endothelial cells by exosomal
miR-155 of placenta origin, indicating the potential
delivery of placental miRNAs to the fetal part. However,
ex vivo or in vivo evidence that supports the transfer of
placental exosomes from the placenta to the fetus remains
largely lacking.

4) A potential mode of exosomal miRNAs-mediated fetus-
to-placenta signaling has been suggested. For instance,
miR-133b in human umbilical cord mesenchymal stem
cell (MSC)-derived exosomes boosts trophoblast cell
proliferation, migration, and invasion via targeting SGK1
gene (Wang D. et al., 2020). Exosomal miR-146a-5p and
miR-548e-5p derived from amniotic fluid-MSCs exert anti-
inflammatory effects on human trophoblast cells, and
their dysregulation are associated with the occurrence
of preterm birth (Yang et al., 2019). Umbilical artery-
derived miR-15b-5p can be delivered to the placenta, and
can repress the expression levels of Aplein and cytokines
including IL-1, IL-6, IL-8, and TNF-α, and thus is believed
to play roles in the onset of labor (Yadava et al., 2020).
In addition to target trophoblast cells, the maternal and
umbilical cord blood-derived exosomes can effectively
influence endothelial cells, which is closely associated

with the encapsulation of miRNAs into the exosomes
(Jia et al., 2018). In pigs, miR-150 in umbilical cord
blood-derived exosomes exhibits a pro-angiogenic effect by
stimulating the proliferation and migration of endothelial
cells. A reduced expression of this exosomal miRNA leads
to intrauterine growth restriction of the fetus (Luo et al.,
2018). However, more evidence from appropriate in vivo
models are needed to clarify the working mechanisms of
exosome transfer from the fetus to the placenta.

CLINICAL IMPLICATIONS OF THE
PLACENTA-DERIVED MIRNAS FOR PE

Exploring the Pathogenesis of PE Using
Placenta-Derived miRNAs
Preeclampsia has long been the leading cause of maternal
and fetal morbidity and mortality, affecting approximately 2–
7% of pregnancies. It is defined as the sudden onset of
hypertension after the 20th week of gestation in pregnant
women who had no preexisting hypertension, accompanied
by significant proteinuria or multi-system symptoms, such as
pulmonary oedema, seizures, or oliguria (Sibai, 2003). A well-
accepted theory is that defects in placenta development, especially
the dysregulation of trophoblastic behaviors, are predominant
causes of the disease.

Great efforts have been put to identify genes or signaling
pathways that are associated with the deregulation of trophoblast
differentiation and the development of PE (Ji et al., 2013; Staff,
2019). A great number of differential miRNAs in PE placentas
have been screened, and a series of in vivo and in vitro results
have demonstrated the participation of these aberrantly expressed
miRNAs in PE-associated placental defects (Pang et al., 2010; Ji
et al., 2013; Anton et al., 2019; Xu et al., 2020).

For PE, a big challenge is the discrepancy between the key
pathophysiological changes that are initiated well before the
20th week of gestation and the clinical symptoms that are
not manifested until after that. Therefore, a critical thought is
whether these differential placental miRNAs really contribute to
the pathological change of PE or they are just the consequences
of the disorder at late gestation (Baker and Delles, 2013). As
stated above, placental miRNAs can be released to maternal
circulation during pregnancy in pregnant women (Luo et al.,
2009). Identification of the differential miRNAs in maternal
blood at early-to-mid gestation in PE patients may provide
valuable hints of the pathophysiological placental factors (Gunel
et al., 2011). Our previous results have revealed several miRNAs
(including miR-376c, miR-18a, miR-19b1, miR-92a1, miR-210,
and miR-195) that exhibit significantly aberrant concentrations
in the plasma of PE patients from gestational weeks 15–19
to term. These miRNAs in the placenta potentially contribute
to compromised cell differentiation and functional homeostasis
(Fu et al., 2013; Xu et al., 2014; Wang et al., 2018). However,
results of genetic manipulation of these small RNAs in mice
are lacking. Knocking down of miR-210 leads to relatively
weak influence on fetal development (Krawczynski et al., 2016;
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TABLE 1 | A brief summary of the differential exosomal miRNAs in the plasma from PE patients.

Exosomal
miRNAs

Gestational weeks Sample size Method Changes
in PE
plasma

Diagnostic
capability

References

miR-885-5p 11–14 weeks Selection cohort: PE
(n = 19) and control
(n = 14); Validation cohort:
PE (n = 8) and control
(n = 8)

NGS and
qRT-PCR

↑ – Sandrim et al., 2016

miR-136 <20-week gestation PE (n = 20) and control
(n = 23)

qRT-PCR ↑ AUC = 1.00,
Sen = 95.00%,
Spe = 100.00%

Motawi et al., 2018

miR-494 <20-week gestation PE (n = 20) and control
(n = 23)

qRT-PCR ↑ AUC = 0.87,
Sen = 86.00%,
Spe = 95.00%

Motawi et al., 2018

miR-495 <20-week gestation PE (n = 20) and control
(n = 23)

qRT-PCR ↑ AUC = 0.94,
Sen = 90.00%,
Spe = 83.00%

Motawi et al., 2018

miR-153-3p Term PE (n = 20) and control
(n = 23)

Taqman qPCR ↑ – Li et al., 2020

miR-222-3p Term PE (n = 20) and control
(n = 23)

Taqman qPCR ↓ – Li et al., 2020

miR-224-5p Term PE (n = 20) and control
(n = 23)

Taqman qPCR ↓ – Li et al., 2020

miR-325 Term PE (n = 20) and control
(n = 23)

Taqman qPCR ↑ – Li et al., 2020

– PE (n = 20) and control
(n = 23)

qRT-PCR ↑ – Wang Y. et al., 2020

miR-342-3p Term PE (n = 20) and control
(n = 23)

Taqman qPCR ↑ – Li et al., 2020

miR-532-5p Term PE (n = 20) and control
(n = 23)

Taqman qPCR ↓ – Li et al., 2020

miR-653-5p Term PE (n = 20) and control
(n = 23)

Taqman qPCR ↑ – Li et al., 2020

miR-203a-3p – PE (n = 36) and control
(n = 30)

qRT-PCR ↓ – Ma et al., 2020

miR-134 <13-week gestation PE (n = 4) and control
(n = 5)

miRNA array ↑ – Devor et al., 2020

miR-196b 26–40 weeks PE (n = 4) and control
(n = 5)

miRNA array ↓ – Devor et al., 2020

miR-302c 26–40 weeks PE (n = 4) and control
(n = 5)

miRNA array ↑ – Devor et al., 2020

miR-346 26–40 weeks PE (n = 4) and control
(n = 5)

miRNA array ↑ – Devor et al., 2020

miR-376c <13-week gestation PE (n = 4) and control
(n = 5)

miRNA array ↑ – Devor et al., 2020

miR-486-3p <13-week gestation PE (n = 4) and control
(n = 5)

miRNA array ↑ – Devor et al., 2020

miR-590-5p <13-week gestation PE (n = 4) and control
(n = 5)

miRNA array ↑ – Devor et al., 2020

miR-618 26–40 weeks PE (n = 4) and control
(n = 5)

miRNA array ↑ – Devor et al., 2020

miR-155 Term PE (n = 10) and control
(n = 10)

qRT-PCR ↑ – Shen et al., 2018

miR-486-1-5p The whole gestation PE (n = 15) and control
(n = 32)

NGS ↑ – Salomon et al., 2017

– PE (n = 20) and control
(n = 10)

qRT-PCR ↑ – Wang Y. et al., 2020

miR-486-2-5p The whole gestation PE (n = 15) and control
(n = 32)

NGS ↑ – Salomon et al., 2017

(Continued)
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TABLE 1 | Continued

Exosomal
miRNAs

Gestational weeks Sample size Method Changes
in PE
plasma

Diagnostic
capability

References

– PE (n = 20) and control
(n = 10)

qRT-PCR ↑ – Wang Y. et al., 2020

miR-125a-5p After the diagnosis of PE PE (n = 18) and control
(n = 20)

qRT-PCR ↑ – Xueya et al., 2020

miR-423-5p – PE (n = 20) and control
(n = 10)

qRT-PCR ↑ – Wang Y. et al., 2020

miR-451a – PE (n = 20) and control
(n = 10)

qRT-PCR ↑ – Wang Y. et al., 2020

miR-15a-5p – PE (n = 20) and control
(n = 10)

qRT-PCR ↑ – Wang Y. et al., 2020

miR-92a-1-3p – PE (n = 20) and control
(n = 10)

qRT-PCR ↑ – Wang Y. et al., 2020

miR-92a-2-3p – PE (n = 20) and control
(n = 10)

qRT-PCR ↑ – Wang Y. et al., 2020

miR-103a-1-3p – PE (n = 20) and control
(n = 10)

qRT-PCR ↑ – Wang Y. et al., 2020

miR-103a-2-3p – PE (n = 20) and control
(n = 10)

qRT-PCR ↑ – Wang Y. et al., 2020

miR-126-3p – PE (n = 20) and control
(n = 10)

qRT-PCR ↑ – Wang Y. et al., 2020

miR-520a-5p 10–13 weeks PE (n = 43) and control
(n = 50)

qRT-PCR ↓ AUC = 0.63,
Sen = 60.47%,
Spe = 70.00%

Hromadnikova et al., 2019

miR-517-5p 10–13 weeks PE (n = 43) and control
(n = 50)

qRT-PCR ↓ AUC = 0.699,
Sen = 60.47%,
Spe = 84.00%

Hromadnikova et al., 2019

miR-525-5p 10–13 weeks PE (n = 43) and control
(n = 50)

qRT-PCR ↓ AUC = 0.698,
Sen = 51.16%,
Spe = 84.00%

Hromadnikova et al., 2019

miR-210 PE (24–39 weeks) and control
(30–39 weeks)

PE (n = 19) and control
(n = 34)

qRT-PCR ↑ – Biro et al., 2017

PE (31.00 ± 5.07 weeks) and
control (36.13 ± 3.00 weeks)

PE (n = 8) and control
(n = 8)

qRT-PCR No
significant
change

– Biro et al., 2019

PE, preelampsia; NGS, next generation sequencing; qRT-PCR, reverse transcription-real-time quantitative polymerase chain reaction; Taqman-qPCR, Taqman quantitative
polymerase chain reaction; AUC, area under curve; Sen, sensitivity; and Spe, specificity.

Bian et al., 2020). This may reflect the fine-tune features of
miRNAs to maintain cellular homeostasis, and also indicate the
complicated compensatory routes of various placental miRNAs
as well.

Circulating miRNAs Are Promising
Biomarkers for the Prediction of PE
Circulating miRNAs can be encapsulated into extracellular
vesicles including exosomes or bound to stabilizing proteins
(mainly Ago proteins; Arroyo et al., 2011). Plasma miRNAs
(including the vesicular form and the non-vesicular form) are
relatively stable, being not affected by experimental conditions
such as incubation temperature, pH or even RNase A treatment
(Chen et al., 2008; Mitchell et al., 2008; Arroyo et al., 2011).
The vesicle-packaged miRNAs are more resistant to degradation.
Although the exosomal miRNAs constitute only a fraction of the
whole plasma miRNA population, they exhibit unique changing

pattern PE patients (Biro et al., 2019; Li et al., 2020). Since
exosomal miR-885-5p is suggested as the potential predictive
marker for PE (Sandrim et al., 2016), increasing attention has
been put into this emerging field. The unique characteristics of
exosomal miRNAs make them rather promising as non-invasive
biomarkers for diagnosing or monitoring the development of
PE. We summarize the relevant progress in Table 1. Notably,
studies from Motawi et al. (2018) indicate significant increase in
miR-136, miR-494 and miR-495 in circulating exosomes from PE
patients before the 20th week of gestation, and receiver operating
characteristic curve analysis reveals promisingly high sensitivity
and specificity of these miRNAs to predict PE before the onset of
clinical manifestations.

It has to be noticed that the results from various studies
may show different changing patterns of the exosomal miRNAs
in PE patients (Biro et al., 2017, 2019). The variations may
attribute to the differences in sample size, the gestational
week at sampling, or the statistical method. Importantly,
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the studies using large-scale plasma samples in detailed time
points during gestation with normalized statistical methods are
needed to achieve reproducible results and confirm the clinical
sensitivity and specificity of exosomal miRNAs as the promising
biomarkers for PE.

Exosomal miRNAs Are Potentially Useful
Tools for the RNA-Based Therapies
for PE
In recent years, RNA-based medicine is receiving growing
attention for its diverse roles and promising therapeutic
capacity (Chow et al., 2020). Interestingly, the exosomes can be
engineered to load with miRNAs of interest and delivered to
the recipient cells and/or organs, reinforcing the possibility to
tailor exosomes as gene-delivery vehicles (Thomou et al., 2017).
One technology-barrier is difficulties in introducing anti-miR
into exosomes and delivering anti-miR to exosome-recipient cells
after intravenous administration. Recently, Yamayoshi (2020)
have constructed a novel drug delivery system using anti-
exosome antibody-oligonucleotide conjugates to functionally
inhibit circulating miRNAs, which sheds light on developing
strategy for PE treatment.

CONCLUSION AND PERSPECTIVES

The discovery of placenta-derived miRNAs and their multiple
roles in maintaining healthy pregnancy undoubtedly represent
one of the most exciting progresses in recent years. In addition
to the canonical intracellular silencing functions, placenta-
derived miRNAs can also be released to the maternal or fetal
circulation via encapsulating into the exosomes, and therefore
potentially target various recipient cells to provide a non-
hormonal means of intercellular communication between the
mother and the fetus. Furthermore, unique exosomal miRNA
profiling is potential diagnostic or predictive and prognostic
tool for pregnant complications such as PE, and provides novel
treatment targets for the disease.

There exist several interesting topics that require further
investigations. First, studies regarding exosomal miRNA in
pregnant women have been predominantly focusing on the total
exosomal miRNAs, while seldom identifying their diverse origins.
A recent report reveals that the origin of exosomes determines

its target cells and the transfer activity (Sancho-Albero et al.,
2019), indicating the importance of further clarifying whether the
circulating exosomal miRNAs in the pregnant women are derived
from the placenta, the fetus or various maternal organs. This may
greatly deepen our understanding of the mechanisms underlying
the complicated fetal-maternal interactions during gestation. To
follow this concern, the precise trafficking routes and the specific
targeting cells or organs of the placental exosomal miRNAs are
yet to be clarified. Proper in vivo and ex vivo models should
be constructed to address this point, which is indispensable
for developing exosomal miRNA-based therapeutic strategies for
pregnant complications such as PE. Finally, the convenient and
controllable detection of exosomal miRNA remains challenging,
because the adequately simple and robust assay platforms are
lacking. A recent wok by Xia et al. (2021) has developed a
colorimetric strategy to detect exosomal miR-21 by switching the
visible-light-induced oxidase mimic activity of acridone derivate.
This may provide a feasible tool for the application in exosomal
miRNAs-based diagnosis of PE.
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Circular RNAs (circRNAs) play important roles in the self-renewal of stem cells. However,
their significance and regulatory mechanisms in female germline stem cells (FGSCs) are
largely unknown. Here, we identified an N6-methyladenosine (m6A)-modified circRNA,
circGFRα1, which is highly abundant in mouse ovary and stage-specifically expressed
in mouse FGSC development. Knockdown of circGFRα1 in FGSCs significantly reduced
their self-renewal. In contrast, overexpression of circGFRα1 enhanced FGSC self-
renewal. Mechanistically, circGFRα1 promotes FGSC self-renewal by acting as a
competing endogenous RNA (ceRNA) that sponges miR-449, leading to enhanced
GFRα1 expression and activation of the glial cell derived neurotrophic factor (GDNF)
signaling pathway. Furthermore, circGFRα1 acts as a ceRNA based on METTL14-
mediated cytoplasmic export through the GGACU motif. Our study should help to
understand the mechanisms regulating germ cell development, add new evidence on
the mechanism of action of circRNA, and deepen our understanding of the development
of FGSCs.

Keywords: circGFRα1, METTL14, ceRNA, female germline stem cells, self-renewal

INTRODUCTION

The infertility rate globally has increased year by year, with an average incidence of 12.5%. Infertility
has become the third most common disease threatening human health, after cardiovascular disease
and cancer. A shortage and poor quality of oocytes are key factors leading to female infertility. There
is thus an urgent need to understand the mechanisms of female reproduction in order to improve
the quantity and quality of oocytes. As germline stem cells, female germline stem cells (FGSCs) can
increase oocyte number and improve ovarian function, which is of great significance in mammals
to improve the quality of oocytes and the pregnancy rate (Zou et al., 2009). These cells are thus
becoming a focus of medical care.

With the deepening of the research, great progress has been made in the self-renewal
of FGSCs. For example, a series of genes and signal pathways affecting FGSC self-renewal
have been identified, such as STPBC, AKT1, AKT3, glial cell derived neurotrophic factor
(GDNF) signaling pathway, phosphoinositide-3 kinase–AKT (PI3K–Akt) signaling pathway,
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Hippo signaling pathway, and Notch signaling pathway (Xie
et al., 2014; Li et al., 2015, 2017a, 2019; Pan et al., 2015; Zhang
et al., 2016, 2018; Liu et al., 2017; Ma et al., 2018; Zhu et al., 2018;
Wu et al., 2019). GDNF signaling acts by modifying the activity
of PI3K–AKT mitogen-activated protein kinase/ERK kinase, and
the Src family of downstream substrates, ultimately affecting the
expression of genes such as Bcl6b, Lhx1, Etv5, and Egr3.

The main characteristics of circular RNAs (circRNAs) are as
follows. Most of circRNAs exist in the cytoplasm, but a small part
of circRNAs formed by intron cyclization exist in the nucleus;
circRNAs widely exist in human cells, sometimes more common
than linear RNA; circRNAs are closed loop structure, not easy
to be degraded by RNaseR; circRNAs are highly conservative;
most of circRNAs are formed by exon cyclization, and a small
part are formed by intron cyclization; Some of circRNAs play
the role of miRNA sponge in cells, and a few of them can
be translated into proteins (Burd et al., 2010; Memczak et al.,
2013; Sun et al., 2013; Zhang et al., 2013). Compared with the
miRNA regulatory network, the competing endogenous RNAs
(ceRNAs) regulatory network is more sophisticated and complex,
involving more RNA molecules, including mRNA, pseudogenes
encoding genes, circRNA, lncRNA, and microRNA (Hansen et al.,
2013; Zhang et al., 2013; Guo et al., 2014; Ahmed et al., 2016).
However, to date, no circRNAs critical in the development of
FGSCs, or their functions and/or underlying mechanisms, have
been discovered.

N6-methyladenosine (m6A) is the most important
modification in mRNA epigenetics. Similarly, in the circRNA
epigenetic transcriptome, m6A is also a highly abundant, widely
distributed, and functionally important post-transcriptional
modification (Shafik et al., 2016; Jacob et al., 2017). Yang et al.
(2017) showed that some circRNAs could also recruit translation
initiation complexes to start translating proteins by binding
with the YTHDF3 recognition protein. In addition, Wu et al.
(2019) found that circ_KIAA1429 accelerates the progression of
hepatocellular carcinoma through m6A-YTHDF3-Zeb1.

In this study, on the basis of genome-wide circRNA analysis
(Li et al., 2019), we identified a novel circRNA, circGFRα1, the
biological function in FGSC development of which has not yet
been clarified. We found that circGFRα1 was highly abundant
in mouse ovary and stage-specifically expressed in mouse
FGSC development. Importantly, circGFRα1 promoted the self-
renewal of FGSCs. Mechanistically, we found that METTL14-
mediated m6A modification altered circGFRα1 export to the
cytoplasm, while circGFRα1 acted as a ceRNA to regulate GFRα1
expression by sponging miR-449 to play regulatory roles in FGSC
development. Our findings reveal a novel mechanism regulating
FGSC self-renewal and provide a theoretical basis for the study of
germ cell development and human reproduction.

MATERIALS AND METHODS

Culture of Female Germline Stem Cells
FGSCs were cultured according to the previously method (Zou
et al., 2009; Zhang et al., 2016; Li et al., 2017b). FGSCs passages
were performed at a ratio of 1:4 and intervals of 4–7 days.

Plasmid DNA
We used pLCDH-ciR to construct the circGFRα1 overexpression
vector to perform transcript circularization. An EcoRI restriction
enzyme site was discovered within an endogenous flanking
sequence located in the front circular frame. On the other
hand, a BamHI site was detected within a partially inverted
upstream sequence located in the back circular frame. We
cloned the fragment amplified into the vector between the front
and the back circular frames. We also constructed a control
vector that contained only a non-sense insert between the
front and back circular frames in the absence of circGFRα1-
encoding cDNA. Lentiviral vectors (pGMLV-SC5) loaded with
anti-circGFRα1 shRNA and the negative control shRNA (nc-
shRNA) with EGFP were provided by Shanghai Genomeditech
Company Ltd. In the meantime, we used an irrelevant,
scrambled shRNA that was not matched with the mouse genome
sequence as the control.

For constructing the METTL14-knockdown lentiviral vectors,
we applied molecular biological approaches to insert an
interfering fragment in the U6 promoter downstream into
the lentiviral vector (pLKD-CMV-G and PR-U6-shRNA). We
selected four or more independent siRNAs to examine the target
knockdown efficiency. Finally, we selected the optimal siRNA
target (targetSeq: GCTAAAGGATGAGTTAAT). To construct
METTL14 overexpression vectors, we inserted the candidate
gene cDNAs into the BamHI and EcoRI restriction sites in an
overexpression plasmid (pHBLV-CMVIE-ZsGreen-T2A-puro).

Viral Preparation and Transduction
We used 293T cells to prepare lentiviruses according to a method
described previously (Shi et al., 2004). For lentivirus infection, the
FGSCs were incubated with 1:1 mixture of culture medium and
lentivirus (titer: 2.5× 108). After 12–16 h of infection, the culture
medium containing lentivirus particles was sucked out, and the
culture medium was added to the culture plate for further culture.
Subsequently, the FGSCs were screened by 100 ng/ml puromycin.

RNA Fluorescence in situ Hybridization
Assay
The RNA-FISH procedure for circGFRα1 was performed with the
RNA-FISH kit of GenePharma Inc. (Shanghai, China), according
to the manufacturer’s instructions. Briefly, FGSCs were cultured
in 48-wells overnight at 37◦C and 5% CO2. Next day, cells
were rinsed in chilled phosphate-buffered saline (PBS) two
times. Cells were fixed with 4% paraformaldehyde in the room
temperature for 30 min. Then 0.1% buffer A was added and
incubated in the room temperature for 30 min. After that, the
cells were washed twice with PBS for 5 min. The RNA-FISH
probes targeting circGFRα1 were synthesized by GenePharma
Inc. (Shanghai, China). Those probes were mixed well with buffer
E to a final concentration 2 µM, then to hybridize with cell’s
genes and incubate overnight at 37◦C. The cells were washed
twice with buffer C for 5 min. This was followed by rinsing and
staining with DAPI (1:1,000 dilution; Sigma)-containing PBS at
room temperature for 5 min. The images were acquired with a
fluorescence microscope (Leica, United States).
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CCK8 Assay
We cultured FGSCs in each well (containing 200 µL culture
medium) of 96-well plates at a density of 5,000 cells/well. At a
confluence of 70%–80%, we added 20 µL of the CCK8 reagent
into each well of the plate and incubated it for another 2 h at 37◦C
and 5% CO2. Then, we used a microplate reader to measure the
absorbance (OD) value at 450 nm.

EdU Assay
We cultured FGSCs to 80% confluence and added 50 µM of the
EdU reagent into each well, after which the plate was incubated
for another 2 h. Thereafter, cells were fixed with 4% PFA for
30 min under ambient temperature and neutralized for 5 min
by using 2 mg/mL glycine. Then, the cells were punched with
0.5% Triton X-100, stained with the 1×Apollo staining solution,
incubated for 30 min, and finally washed thrice by using PBS
supplemented with 0.5% Triton X-100. Finally, cell nuclei were
dyed using 1 × Hoechst 33342. A Leica fluorescence microscope
was used to capture images.

m6A Dot Blot
Trizol reagent was used to extract total RNA from FGSCs. After
denaturing at 95◦C, the RNAs were immediately chilled on ice.
Then, they were dropped onto a Hybond-N + membrane. The
membrane was cross-linked with a UV cross-linker, followed
blocking with 5% skim milk, and overnight incubation with
the m6A-specific antibody (1: 1,000) at 4◦C. Thereafter, the
membrane was rinsed by TBST for 10 min, followed by another
1 h of incubation with a secondary antibody at an ambient
temperature. Finally, Tanon 4600SF was used to scan the dots.

qRT-PCR
Trizol reagent was used to extract total cellular RNA from FGSCs
that was quantified using Nanodrop Lite. cDNA was prepared
by reverse transcribing the RNA (1,000 ng) by using a reverse
transcription kit in the 20-µL system. In this qRT-PCR assay,
Taq DNA polymerase was used with SYBR Premix Ex Taq in the
Applied Biosystems R© 7500 Real-Time PCR system. The 2−11Ct

approach was used for data analysis.

MeRIP-qPCR
Total RNA was extracted from FGSCs by using the Trizol reagent
and quantified using Nanodrop Lite. We bound 1.25 µg of the
anti-m6A antibody onto protein A/G magnetic beads dissolved
in the IP buffer (consisting of 140 mM NaCl, 20 mM Tris pH
7.5, 2 mM EDTA, and 1% NP-40) 1 h in advance. Thereafter,
we incubated the resultant antibody-bound protein A/G beads
with the RNA sample at 4◦C for 2 h. Then, the obtained samples
were rinsed twice by using low-salt wash buffer (composed of
5 mM EDTA and 10 mM Tris; pH 7.5), followed by washing
with a high-salt wash buffer (composed of 1 M NaCl, 20 mM
Tris pH 7.5, 0.5% sodium deoxycholate, 1% NP-40, 1 mM
EDTA and 0.1% SDS) twice and then with the RIPA buffer
(150 mM NaCl, 20 mM Tris pH 7.5, 0.5% sodium deoxycholate,
1% NP-40, 1 mM EDTA, and 0.1% SDS) twice. For all the
samples, their wash solutions were harvested and considered

the EDTA, an fraction. In addition, the beads were incubated
with 50 µL N6-methyladenosine 5-monophosphate sodium salt
(20 mM) at 4◦C for 1 h to elute the RNA. After precipitation
with ethanol, cDNA was prepared by reverse transcribing
the RNA in the input, unbound and m6A-bound fractions
by using Superscript III random hexamers. Subsequently,
qRT-PCR was performed to determine the m6A-containing
transcript levels compared with the Rplp0 level. For Rplp0, the
primer sequences were GATGGGCAACTGTACCTGACTG and
CTGGGCTCCTCTTGGAATG.

Dual-Luciferase Reporter Assay
We inserted the mutant (circGFRα1-MUT) and wild-type
(circGFRα1-WT) circGFRα1 miRNA-binding site sequences into
SacI and KpnI sites in the pGL3 promoter vector. Thereafter,
we cultured the cells in 24-well plates and used Lipofectamine
3000 to transfect 5 ng of the pRL-SV40 Renilla luciferase vector
and 80 ng plasmid, together with 50 nM of the negative control
or miR-449 mimics into the cells. After 48 h, we harvested
and examined the cells by performing the dual-luciferase assay
according to specific protocols. Each independent experiment
was performed thrice.

Statistical Analysis
The significance of difference in graphs was assessed using
Student’s t-test unless specified otherwise. The normally
distributed two-sample equal variance was used in this study.
Our researchers were aware of sample grouping in each
experiment. P value of <0.05 indicated statistical significance.
Graphs as well as error bars are represented as means ± SEM
unless specified otherwise. The R statistical environment and
GraphPad Prism 4.0 were used for performing statistical analysis.

RESULTS

Identification and Characterization of
circGFRα1
To identify circRNAs involved in FGSC formation, we reanalyzed
our previous circRNA expression data (Li et al., 2019) and found
that circRNA_12447 (chr19: 58263912–58270163) is upregulated
in FGSCs that possibly leads to FGSC differentiation and self-
renewal. As discovered using the mouse reference genome
(mm10), circRNA_12447 originated from exons 6–8 at the
locus of GDNF family receptor alpha 1 (GFRα1) (Figure 1A)
and was thus referred to as circGFRα1. For investigating
the expression profile of circGFRα1 and verifying its circular
shape, RT-PCR was performed using divergent primers, through
which the expression of circGFRα1 in FGSCs was detected
(Figure 1B). To confirm the circular shape of circGFRα1, RNase
R, a 3′–5′ exoribonuclease with high process ability and no
effect on circRNAs, was used. circGFRα1 developed resistance
to RNase R exposure compared with the control linear gene
GFRα1 (Figure 1C). In addition, RT-PCR products obtained
after amplification with divergent primers were subjected to
Sanger sequencing, which confirmed that circGFRα1 contains
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FIGURE 1 | Characterization of circGFRα1 in FGSCs. (A) The genomic locus of circGFRα1. (B) RT-PCR products showing circularization of circGFRα1 with
divergent primers. (C) After RNase R treatment in FGSCs, qRT–PCR showing the expression of circGFRα1 and GFRα1 mRNA. (D) Sanger sequencing of circGFRα1
demonstrating the head-to-tail splicing. (E) After Actinomycin D treatment, qRT–PCR showing the expression of circGFRα1 and GFRα1 mRNAs at the indicated time
points. (F) RNA FISH for circGFRα1. Scale bars, 20 µm. ***P < 0.001.

the back-spliced junction (Figure 1D). After exposure of
circGFRα1 and the control linear gene to actinomycin D, a
transcription inhibitor, our qRT-PCR results revealed that half-
life of circGFRα1 is over 12 h, whereas that of the related linear
transcript was only 3 h (Figure 1E), indicating higher stability of
circGFRα1 in FGSCs. Furthermore, we performed fluorescence
in situ hybridization assays that revealed that circGFRα1 is mostly
located in the cytoplasm (Figure 1F). Taken together, the findings
indicate the stable and rich expression of circGFRα1 in FGSCs.

CircGFRα1 Affects Self-Renewal and
Survival of Female Germline Stem Cells
Tissue-specific expression results revealed that
circGFRα1 is highly expressed in the mouse ovary

(Supplementary Figure 1A). Moreover, the circGFRα1 level was
found to be stage-specific during the development of mouse
FGSCs; a high level of transcript was present in FGSCs, whereas
significantly lower levels were detected in germinal vesicle
(GV)-stage oocytes (P < 0.05) and metaphase II (MII)-stage
oocytes (Supplementary Figure 1B, P < 0.001). To examine
the effect of circGFRα1 on FGSC development, we regulated
its expression through RNA interference or overexpression
by inducing lentivirus infection (Figure 2A). As expected,
circGFRα1 overexpression was found to significantly upregulate
its level (Figure 2B, P < 0.001). However, relative to negative
controls, its expression level was significantly decreased in
shRNA-loaded lentivirus-infected FGSCs, which specifically
bind to the circGFRα1 junction site (Figure 2C, P < 0.001).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 April 2021 | Volume 9 | Article 64040278

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-640402 April 5, 2021 Time: 10:36 # 5

Li et al. CircGFRα1 Promotes Self-Renewal of FGSCs

FIGURE 2 | CircGFRα1 affects self-renewal and survival of FGSCs. (A) Selected images for FGSCs infected with lentivirus. (B) qRT-PCR analyses detected the RNA
level of circGFRα1 in cells infected with the circGFRα1 overexpression lentivirus control (over-con), circGFRα1 overexpression lentivirus (over). (C) qRT-PCR analyses
detected the RNA level of circGFRα1 in cells infected with the circGFRα1 knockdown lentivirus control (kd-con), circGFRα1 knockdown lentivirus (kd). (D) CCK-8
assays were conducted using FGSCs infected with the circGFRα1 overexpression lentivirus control (over-con), circGFRα1 overexpression lentivirus (over), circGFRα1
knockdown lentivirus control (kd-con), circGFRα1 knockdown lentivirus (kd). (E) EDU assays were conducted using FGSCs infected with the circGFRα1
overexpression lentivirus control (over-con), circGFRα1 overexpression lentivirus (over), circGFRα1 knockdown lentivirus control (kd-con), circGFRα1 knockdown
lentivirus (kd). (F) Relative expression of Akt, Bcl6b, Lhx, and Etv5 in FGSCs after circGFRα1 overexpression (over) and knockdown (kd). Overexpression control and
knockdown control as blank control groups respectively. When calculating the relative expression, the expression of control group was set as 1. A positive value
indicates up regulation, and a negative value indicates down regulation. (G) Relative expression of Stra8, Sycp3, and Kit, FGSCs infected with the circGFRα1
knockdown lentivirus control (kd-con), circGFRα1 knockdown lentivirus (kd). **P < 0.01 and ***P < 0.001.

Then, we examined the effects of circGFRα1 overexpression and
knockdown on FGSC proliferation through CCK-8 and EdU
incorporation assays, respectively. According to CCK8 assay

results, the OD values of FGSCs with circGFRα1 overexpression
markedly increased relative to controls, whereas those of
circGFRα1-knockdown FGSCs evidently decreased compared
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with those of controls (Figure 2D, P < 0.001). Moreover, the
EdU assay results indicated that EdU-positive FGSCs with
circGFRα1 overexpression that were transfected with lentivirus
were markedly more in number than controls (Figure 2E,
P < 0.001). However, transfection with circGFRα1-knockdown
lentivirus markedly decreased the number of EdU-positive
FGSCs compared with that of controls (Figure 2E, P < 0.001).
Thus, we found that genes, including Akt, Bcl6b, Lhx, and Etv5,
associated with self-renewal with the highest responsiveness to
GDNF signaling within FGSCs are significantly upregulated
(Figure 2F). Meanwhile, we found that the expression levels
of genes associated with FGSC self-renewal were significantly
downregulated (Figure 2F), whereas the expression levels of
genes associated with differentiation, such as Stra8, Sypc3,
and Kit, were extremely low and not affected by circGFRα1
knockdown (Figure 2G, P > 0.05). In summary, these findings
suggest that the overexpression of circGFRα1 promoted the
self-renewal and maintenance of FGSCs, while its knockdown
impaired these characteristics.

CircGFRα1 Serves as a Sponge for
miR-449
To explore the potential of circGFRA1 as a miRNA sponge,
we performed the RNA hybrid analysis1. From our results,
we predicted that certain miRNA-binding sites are present in
circGFRα1. Of the estimated miRNAs, miR-449, which was also
predicted to target the GFRα1 gene based on TargetScan and
miRanda, was identified. Figure 3A shows the miR-449 seed
region nucleotides (denoted in red). Later, CCK-8 and EdU
assays were performed for examining the biological effects of
miR-449 on FGSCs. We found that FGSCs transfected with miR-
449 inhibitors have enhanced proliferation capacity, whereas
those transfected with miR-449 mimics have markedly reduced
proliferation capacity (Figures 3B,C). These findings indicate the
role of miR-449 in the regulation of FGSC proliferation.

To verify whether the circGFRα1 transcript interacts with
miR-449, the luciferase reported gene assay was performed
using the circGFRα1-fused reporter gene (pGL3-circ GFRα1).
In addition, a construct containing a non-specific circGFRα1
sequence (pGL3-circEGFR-MUT) and a wild-type construct
(pGL3-circGFRα1-WT) were developed (Figure 3D). Then, miR-
449 mimic and pGL3-circGFRα1-WT were co-transfected into
the cells, which markedly reduced the luciferase activity in
these cells compared with that in cells co-transfected with
control miRNA and pGL3-circGFRα1-WT or co-transfected
with mimic and pGL3-circGFRα1-MUT (Figure 3E). These
findings indicated that miR-449 directly binds to circGFRα1
and adversely targets the latter. Furthermore, to verify whether
circGFRα1 directly binds to miR-449, RIP assays were performed
using control IgG or anti-AGO2 antibodies. The qRT-PCR
assay was used to analyze miR-449 and circGFRα1. We found
that anti-AGO2 antibodies markedly downregulate miR-449
and circGFRα1 compared with control IgG (Figure 3F), which
suggests that miR-449 directly binds to circGFRα1 in the
presence of AGO2.

1https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/

CircGFRα1 Acts as a Decoy of miR-449
to Upregulate Their Common Target,
GFRα1
To explore the potential of circGFRα1 as a ceRNA for
sequestering miR-449 and upregulating GFRα1 expression and
activation of the GDNF signaling pathway. We firstly showed
that the circGFRα1 expression is comparable to the GDNF
signal after removal and replenishment of GDNF; its expression
decreased 18 h after GDNF removal but increased after GDNF
replenishment (Figure 4A). Moreover, TargetScan was used to
identify the miR-449 putative target genes, which predicted
GFRα1 (Figure 4B). To confirm this prediction, luciferase
assays were performed using a GFRα1-fused reporter gene. Co-
transfection of miR-449 mimic with the GFRα1 UTR significantly
reduced the luciferase activity compared with that in control
miRNA co-transfected with the GFRα1 UTR or in mimic co-
transfected with the GFRα1 UTR (Figure 4C). These findings
revealed that miR-449 directly binds to the GFRα1 UTR and
adversely targets the latter. To verify whether the GFRα1 UTR
directly binds to miR-449, RIP assays were performed using
control IgG and anti-AGO2 antibodies; miR-449 and the GFRα1
UTR were analyzed through qRT-PCR. We found that anti-
AGO2 antibodies markedly downregulate the expression of
miR-449 and the GFRα1 UTR compared with control IgG
(Figure 4D), indicating that the GFRα1 UTR directly binds to
circGFRα1 depending on the presence of AGO2. To examine
whether circGFRα1 regulates the GFRα1 level by interacting with
miR-449, we detected GFRα1 expression in circGFRα1-deleted
or circGFRα1-overexpressed FGSCs. As shown in Figures 4E,F,
circGFRα1 overexpression increased the GFRα1 mRNA and
protein expression, whereas circGFRα1 silencing reduced the
GFRα1 mRNA and protein expression. Furthermore, the miR-
449 inhibitor was co-transfected with si-circGFRα1 in FGSCs,
which reversed the repression (Figure 4G). Taken together, the
findings support the assumption that circGFRα1 modulates the
GFRα1 level by directly interacting with miR-449.

METTL14 Promotes Cytoplasmic Export
of m6A-Modified circGFRα1 Through the
GGACU Motif
As circGFRα1 functioned as a ceRNA, it might be exported to
the cytoplasm in an m6A-dependent manner. To study whether
m6A modification occurs in circGFRα1, we first predicted the
m6A sites using an online bioinformatic tool, m6Avar2, and
found three RRACU m6A sequence motifs located in circGFRα1.
Next, we performed methylated RNA immunoprecipitation (Me-
RIP)–qPCR assays and found that the m6A level of circGFRα1
in FGSCs was very high (Figure 5A). We then performed
shRNA-mediated silencing of METTL14, a core component of
the m6A methylase complex, and found that downregulation of
METTL14 resulted in decreases in the m6A levels of both total
RNA and circGFRα1 (Figures 5B,C). The results of METTL14
knockdown were confirmed by western blotting (Supplementary
Figure 2A). We then investigated whether m6A modification

2http://m6avar.renlab.org/
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FIGURE 3 | CircGFRα1 serves as a sponge for miR-449. (A) RNA hybrid analyses showed putative miR-449 binding sites in CircGFRα1. (B) CCK-8 assays were
conducted using FGSCs infected with the miR-449 mimics control (mimics-con), miR-449 mimics (over), miR-449 inhibitor control (inhibitor-con), and miR-449
inhibitor (inhibitor). (C) EdU assays were conducted using FGSCs infected with the miR-449 mimics control (mimics-con), miR-449 mimics (over), miR-449 inhibitor
control (inhibitor-con), and miR-449 inhibitor (inhibitor). (D) Target region of the CircGFRα1 for miR-449 and the mutant type of circGFRα1. (E) Effects of miR-449 on
the activity of firefly luciferase reporters containing either circGFRα1 or mutant type circGFRα1 were assessed by luciferase reporter gene assays. (F) RIP assays
were performed to detect miR-449 and circGFRα1. ***P < 0.001.

could affect the RNA metabolism of circGFRα1. Knockdown
of METTL14 did not lead to a change in the expression of
circGFRα1 (Supplementary Figure 2B).

In addition, we performed FISH and cytoplasmic and nuclear
mRNA fractionation experiments, and found that silencing of
METTL14 significantly increased the nuclear circGFRα1 content
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FIGURE 4 | CircGFRα1 functions as a ceRNA to sequester miR-449 and upregulate the expression of GFRα1. (A) qRT–PCR analysis for the expression of
circGFRα1 after GDNF removal and replenishment. (B) Target region of the 3′-UTR GFRα1 for miR-449. (C) Effects of miR-449 on the activity of firefly luciferase
reporters containing either 3′-UTR GFRα1 or mutant type 3′-UTR GFRα1 were assessed by luciferase reporter gene assays. (D) RIP assays were performed to
detect miR-449 and 3′-UTR GFRα1. (E) qRT–PCR and western blotting analysis for the expression of GFRα1 in FGSCs infected with the circGFRα1 overexpression
lentivirus control (over-con), circGFRα1 overexpression lentivirus (over). (F) qRT–PCR and western blotting analysis for the expression of GFRα1 in FGSCs infected
with the circGFRα1 knockdown lentivirus control (kd-con), circGFRα1 knockdown lentivirus (kd). (G) qRT–PCR and western blotting analysis for the expression of
GFRα1 in FGSCs infected with the circGFRα1 knockdown lentivirus control (kd-con), circGFRα1 knockdown lentivirus (kd), and co-transfected miR-449 inhibitor and
circGFRα1 knockdown lentivirus (kd + inhibitor). ***P < 0.001. n.s., no significant.
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FIGURE 5 | METTL14 promotes cytoplasmic export of m6A methylated circGFRα1. (A) MeRIP assay showing that m6A was highly enriched in circGFRα1
(B) Relative m6A level of FGSCs after METTL14 knockdown (kd). (C) MeRIP assay showing that down- regulation of METTL14 resulted in the decreased m6A level
of circGFRα1. (D) RNA-FISH showing that the increased nuclear staining of circGFRα1 caused by METTL14 knockdown. (E) Cytoplasmic and Nuclear RNA
Fractionation assay showing that knockdown of METTL14 increased the nuclear circGFRα1 content. (F,G) Cytoplasmic and Nuclear RNA Fractionation assay
showing that the nuclear and cytoplasmic circGFRα1 contents were both increased, and mainly in nuclear fraction when mutated the GGACU m6A motif in
circGFRα1 overexpressing construct. Scale bars, 20 µm. ***P < 0.001.

(Figures 5D,E, p < 0.001). We also found that, when circGFRα1
was overexpressed, both nuclear and cytoplasmic circGFRα1
levels were increased, particularly in the cytoplasmic fraction
(Figure 5F, p < 0.001). By browsing the junction sequence

in circGFRα1, we identified that the GGACU motif was a
putative m6A motif. Once we mutated the GGACU m6A motif
in a circGFRα1-overexpressing construct, although both nuclear
and cytoplasmic circGFRα1 levels were increased, the main
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increase occurred in the nuclear fraction (Figure 5G, p < 0.001).
These findings indicated that m6A modification of circGFRα1
facilitated circGFRα1 export from the nucleus to the cytoplasm
in an m6A-dependent manner and that m6A modification of
circGFRα1 are important for FGSC development.

DISCUSSION

On the basis of the above findings, we propose a model
(Figure 6) in which METTL14 alters the m6A modification
of circGFRα1 and increases its export to the cytoplasm, while
circGFRα1 promotes FGSC self-renewal by acting as a ceRNA
that sponges miR-449, leading to enhanced GFRα1 expression
and activation of the GDNF signaling pathway, finally affecting
the development of FGSCs.

Recently, the role of circRNAs has become evident in
determining the fate of FGSCs (Li et al., 2017a, 2019). CircRNAs,
a newly discovered class of non-coding RNAs, have a covalent
bond that links the 3′- and 5′-ends produced through back-
splicing (Memczak et al., 2013). The expression of circRNAs
is tissue- and stage-specific, and a small portion of circRNAs
is highly conserved among different species (Salzman et al.,
2013). Functional research on circRNAs has been focused mostly
on nuclear transcriptional regulators, miRNA sponges, and
RNA-binding proteins (Hansen et al., 2013). In this study,
we discovered that miR-449 binds to GFRα1 and circGFRα1,
indicating that circGFRα1 possibly plays the role of an miR-
449 sponge in regulating the GFRα1 level through the ceRNA
mechanism. Therefore, we suggest that circGFRα1 plays the role
of a ceRNA for GFRα1 in FGSCs and serves as a miR-449
sponge. First, our bioinformatics analysis results demonstrated
the presence of miR-449-binding sites in the 3′-UTR of both

circGFRA1 and GFRA1. Second, these results were further
validated through luciferase reporter assays. Third, circGFRα1
deletion downregulated the GFRα1 level. Finally, the inhibition
of miR-449 reversed the above expression trend.

Increasing evidence has shown that m6A modification plays
an important role in mammalian biology. For example, it
is involved in upregulation of RNA stability (Wang et al.,
2014), localization (Fustin et al., 2013), transport, cleavage
(Molinie et al., 2016), and translation (Meyer et al., 2015)
at the post-transcriptional level. Alarcon et al. (2015) found
that Mettl3-dependent pri-miRNA methylation can promote
DGCR recognition and processing, thus promoting microRNA
maturation. In addition, HNRNPA2B1, an m6A recognition
protein, promotes the processing of pri-miRNA into pre-miRNA
(Alarcon et al., 2015). Moreover, the modification of circRNA
can promote its translation (Yang et al., 2017). Yang et al. (2018)
found that m6A-modified lincRNA 1,281 mediates the regulatory
mechanism of ceRNA. Here, we found that m6A is enriched
on circGFRα1 in FGSCs. Modification of m6A in circGFRα1
leads to the improvement of its RNA stability, which may
partially account for the upregulation of circGFRα1 in FGSCs.
In addition to m6A modification, other mechanisms might
also be involved in the elevation of circGFRα1, such as DNA
methylation, histone modification, and miRNA dysregulation,
which warrant further exploration.

GDNF signal regulates the protein phosphorylation of
downstream substrates by affecting the activity of protein kinases
(PI3K–Akt, mitogen/ERK kinase, and Src family kinases, etc.),
ultimately affecting the level of protein expression, which is
the most important mechanism regulating SSC self-renewal and
differentiation (Brinster and Avarbock, 1994; Oatley et al., 2007;
He et al., 2008). GFRα1 is the receptor of GDNF, and GDNF can

FIGURE 6 | Proposed model of novel circGFRα1 exports to the cytoplasm mediated by METTL14, and promotes self-renewal of FGSCs. METTL14 alters the m6A
modification of circGFRα1 and increases its export to the cytoplasm, while circGFRα1 promotes FGSC self-renewal by acting as a ceRNA that sponges miR-449,
leading to enhanced GFRα1 expression and activation of the GDNF signaling pathway, and finally affecting self-renewal of FGSCs.
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regulate the fate of stem cells only by binding with this receptor.
Our previous study showed that GFRα1 was expressed on the
surface of FGSCs, and that FGSCs had a mechanism of self-
renewal involving GDNF similar to that of SSCs (Li et al., 2019).
In this study, we found that circGFRα1 acts as a decoy of miR-449
to upregulate their common target, GFRα1.

Taking our findings together, we found that circGFRα1
promotes FGSC self-renewal by acting as a ceRNA that sponges
miR-449, leading to enhanced GFRα1 expression and activation
of the GDNF signaling pathway. Furthermore, circGFRα1 acts as
a ceRNA based on the METTL14-mediated cytoplasmic export
through the GGACU motif. Our study should help to understand
the mechanisms regulating germ cell development, add new
evidence on the mechanisms of action of circRNA, and clarify
female reproductive mechanisms to improve the quantity and
quality of oocytes.
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Ovarian cancer is a health-threatening malignancy of ovary in female reproductive
systems and one of the most common gynecological malignancies worldwide. Due to
rare early symptoms, ovarian cancers are often diagnosed at advanced stages and
exhibit poor prognosis. Thus, efforts have been paid to develop alternative diagnostic
and therapeutic strategies for the disease. Recent studies have presented that some
long non-coding RNAs (lncRNAs) play roles in apoptosis of ovarian cancer cells
through various mechanisms involved in the regulation of transcription factors, histone
modification complexes, miRNAs, and protein stability. Because evasion of apoptosis in
cancer cells facilitates to promote tumor progression and therapy resistance, apoptosis
regulatory mechanisms of lncRNAs may be promising new targets in ovarian cancer. In
this review, we introduce the recent findings in regard to the molecular mechanisms of
apoptosis-related lncRNAs in ovarian cancer cells.

Keywords: ovarian cancer, ovary, apoptosis, long non-coding RNA, transcriptional regulation, histone
modification complex, competing endogenous RNA

OVARY AND OVARIAN CANCER

The ovary is a female reproductive organ where oocyte development occurs (Motta et al., 1997;
Virant-Klun, 2015; Yadav et al., 2018) and functions as an endocrine organ involved in the
synthesis of the female sex steroid hormones and the regulation of reproduction such as the
menstrual cycle, pregnancy, and lactation (Hiller-Sturmhöfel and Bartke, 1998). Thus, the health of
ovaries is essential for reproduction and women’s lives, rendering finding cures to ovarian diseases
crucial. Ovarian cancer is one of the most common gynecological cancers (Momenimovahed et al.,
2019). The GLOBOCAN 2018 data estimates ∼300,000 new cases of ovarian cancer and over
180,000 ovarian cancer–related deaths per year worldwide (Bray et al., 2018). Ovarian cancer is
a heterogeneous disease and classified by type of originated cell. Epithelial ovarian cancer (EOC)
is the most common ovarian cancer (∼90%) (Rojas et al., 2016; Momenimovahed et al., 2019).
The disease is often advanced at diagnosis due to lack of early symptoms and the 5-year cause-
specific survival rate is <50% (Siegel et al., 2018; Torre et al., 2018; Trinidad et al., 2020). Based
on the current limitations, alternative diagnostic and therapeutic approaches for ovarian cancer
remain to be explored.
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APOPTOSIS IN OVARY AND OVARIAN
CANCER

Apoptosis is a process of programmed cell death triggered by
intrinsic or extrinsic signals (Wong, 2011). Intrinsic signals
are initiated by cellular stresses. These signals increase the
mitochondrial permeability and release of the pro-apoptotic
factors such as cytochrome-c, resulting in activation of cysteine-
aspartic acid proteases (caspases), which are essential enzymes for
apoptosis execution. Meanwhile, extrinsic signals are mediated by
death receptor signaling pathways. Death receptors, their ligands,
and adaptor proteins form the death-inducing signaling complex
(DISC), which triggers caspase activation (Wong, 2011).

Apoptosis plays physiological roles in normal ovary functions
such as follicular atresia and corpus luteum regression (Vaskivuo
and Tapanainen, 2003; Yadav et al., 2018). In malignant tumors,
evasion of apoptosis facilitates cancer cell survival and tumor
progression (Wong, 2011; Binju et al., 2019), thus efforts have
been paid for cancer strategies to discover the molecules to
exert apoptosis in cancer cells whereas not in normal cells.
For ovarian cancer treatment, small chemicals that modulate
apoptosis-related proteins such as inhibitors of apoptotic proteins
(IAPs) have entered clinical trials (Binju et al., 2019).

In terms of apoptosis pathways in cancers, several mechanisms
of apoptosis-related genes have been well characterized.
Transcription factors such as E2F family proteins, nuclear factor
kappa B (NF-κB) proteins, and signal transducer and activator
of transcription (STAT) family proteins modulate apoptosis
via regulating transcription of apoptosis-related genes (Bours
et al., 2000; Crosby and Almasan, 2004; Karin, 2006; Kim and
Lee, 2007; Kent and Leone, 2019; Verhoeven et al., 2020).
Histone modification complexes such as polycomb repressive
complex 1/2 (PRC1/2) affect transcription of apoptosis-related
genes through histone methylation (Cao et al., 2011; Wang W.
et al., 2015; Christofides et al., 2016). Apoptosis-related genes
are also modulated by post-transcriptional gene regulation
mechanism, such as through miRNAs that regulate apoptosis-
related gene mRNAs (Di Leva et al., 2014; Pistritto et al.,
2016; Si et al., 2019). Ubiquitin-mediated protein degradation
systems are also involved in apoptosis (Zhang et al., 2004;
Hoeller and Dikic, 2009; Yang et al., 2009), as some E3 ubiquitin
ligases are involved in ubiquitination of apoptosis-related
proteins (Hoeller and Dikic, 2009; Yang et al., 2009, 2018;
Woo and Kwon, 2019).

Considering the importance of apoptosis in cancer
pathophysiology, strategies targeting these apoptosis regulatory
mechanisms may contribute to the development of novel ovarian
cancer therapies.

LONG NON-CODING RNA (lncRNA)

Long non-coding RNAs (lncRNAs) are defined as >200-
nt transcripts that do not encode proteins and tens of
thousands of lncRNA transcripts are identified throughout the
human genome, the majority with unknown function. However,
functional studies of some lncRNAs have revealed that they

have a wide range of functions. For example, lncRNAs regulate
transcription and chromatin remodeling by modulating the
recruitment of transcription factors and PRC to specific genomic
loci. Furthermore, lncRNAs are involved in gene regulation
at post-transcriptional levels through interacting with mRNAs,
miRNAs, and proteins (Marchese et al., 2017). Intriguingly,
lncRNAs play important roles in pathophysiology of various
cancers (Takayama and Inoue, 2016; Misawa et al., 2017; Arun
et al., 2018; Mitobe et al., 2018; Kamada et al., 2020; Takeiwa
et al., 2020). Particularly, several lncRNAs have been suggested
to regulate the apoptosis of ovarian cancer cells (Figure 1
and Table 1). In the following sections, we will describe some
apoptosis-related lncRNAs in ovarian cancer cells according to
their mechanisms.

Apoptosis-Related LncRNAs Regulating
Transcription Factors
In this section, we will introduce an apoptosis-promotive lncRNA
growth arrest-specific 5 (GAS5) and apoptosis-suppressive
lncRNAs non-coding RNA in the aldehyde dehydrogenase 1A
pathway (NRAD1)/long intergenic non-coding RNA 00284
(LINC00284) and a non-coding variant of ceruloplasmin (CP)
(lncRNA ceruloplasmin; NRCP).

GAS5
Growth arrest-specific 5 is downregulated in ovarian cancer,
with this low expression associated with shorter disease-free
period and lower overall survival rate of ovarian cancer patients
(Gao et al., 2015; Li et al., 2016; Zhao et al., 2018; Long
et al., 2019). GAS5 overexpression promotes apoptosis of ovarian
cancer cells such as A2780, HEY, OVCAR3, and SKOV3,
and increases the sensitivity of HEY and SKOV3 cells to the
anticancer agent cisplatin (Gao et al., 2015; Li et al., 2016;
Zhao et al., 2018; Long et al., 2019). A functional study has
shown that GAS5 recruits the E2F4 transcription factor to the
poly(ADP-ribose) polymerase 1 (PARP1) promoter, repressing
PARP1 transcription in HEY and SKOV3 cells (Long et al., 2019;
Figure 1A). GAS5-mediated PARP1 repression might contribute
to apoptosis by downregulating the mitogen-activated protein
kinase (MAPK) pathway, but direct evidence will be required in
the future study.

NRAD1/LINC00284
Non-coding RNA in the aldehyde dehydrogenase 1A pathway/long
intergenic non-coding RNA 00284 is highly expressed in ovarian
cancer. NRAD1 overexpression and knockdown experiments
have shown that it suppresses the apoptosis of HO8910
and OVCAR3 cells. Functional analyses using HO8910 cells
have suggested that NRAD1 binds to NF-κB subunit 1 (NF-
κB1) transcription factor and induces NF-κB1–mediated
transcriptional repression of mesoderm specific transcript
(MEST), contributing to the suppression of apoptosis (Ruan
and Zhao, 2019; Figure 1A). However, since a previous study
has reported that HO8910 is a cross-contaminated cell line, this
mechanism is needed to be verified using other ovarian cancer
models (Ye et al., 2015).
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FIGURE 1 | Schematic representation of mechanisms of apoptosis-related lncRNAs in ovarian cancer. LncRNAs involved in apoptosis of ovarian cancer cells via
regulating transcription factors (A), histone modification complexes (B), miRNAs (C), and protein stability (D) are shown. Names of lncRNAs promoting and
suppressing apoptosis are shown in blue and red, respectively. In addition, apoptosis-promotive or suppressive functions of lncRNAs are shown in blue or red lines,
respectively. Potential apoptosis-associated biological pathways are shown in dotted lines. ABHD11-AS1, abhydrolase domain containing 11 antisense RNA 1;
ALDOA, aldolase, fructose-bisphosphate A; ALDOC, aldolase, fructose-bisphosphate C; BMI1, B lymphoma Mo-MLV insertion region 1 homolog; BTG2, B-cell
translocation gene 2; CBL, casitas B-lineage lymphoma: CDKN1A, cyclin dependent kinase inhibitor 1A; CP, ceruloplasmin; CYTOR, cytoskeleton regulator RNA;
EZH2, enhancer of zeste homolog 2; FALEC, focally amplified long non-coding RNA in epithelial cancer; FEZF1-AS1, fasciculation and elongation protein zeta family
zinc finger 1 antisense RNA 1; GAS5, growth arrest-specific 5; GHET1, gastric carcinoma high expressed transcript 1; GPI, glucose-6-phosphate isomerase;
H2AK119ub, the ubiquitination at the 119th lysine residue of the histone H2A; H3K27me3, the tri-methylation at the 27th lysine residue of the histone H3; HIF1α,
hypoxia-inducible factor 1α; HOTAIR, HOX transcript antisense RNA; MEG3, maternally expressed gene 3; MEST, mesoderm specific transcript; NCK1, non-catalytic
region of tyrosine kinase adaptor protein 1; NCK1-DT, NCK1 divergent transcript; NDRG2, n-myc downstream-regulated gene 2; NEAT1, nuclear enriched abundant
transcript 1; NF-κB1, nuclear factor kappa B subunit 1; NRAD1, non-coding RNA in the aldehyde dehydrogenase 1A pathway; NRCP, lncRNA ceruloplasmin;
PARP1, poly(ADP-ribose) polymerase 1; PVT1, plasmacytoma variant translocation 1; STAT1, signal transducer and activator of transcription 1; TIMP2, tissue
inhibitor of metalloproteinase 2; TP73-AS1, tumor protein p73 antisense RNA 1; UCA1, urothelial carcinoma associated 1; UNC5B-AS1, uncoordinated 5 netrin
receptor B antisense RNA 1.

CP Non-coding Variant (NRCP)
NRCP is a non-coding splice variant of the ceruloplasmin-
coding gene that is upregulated in ovarian cancer (Rupaimoole
et al., 2015). High NRCP expression levels correlate with shorter
overall survival in patients with ovarian cancer, while NRCP
knockdown induces apoptosis in A2780 and SKOV3 cells
(Rupaimoole et al., 2015). NRCP binds to RNA polymerase
II and STAT1 transcription factor, and promotes glycolysis in
A2780 and SKOV3 cells by upregulating glycolysis pathway genes
such as glucose-6-phosphate isomerase (GPI), aldolase, fructose-
bisphosphate A (ALDOA), and aldolase, fructose-bisphosphate
C (ALDOC) via STAT1 (Rupaimoole et al., 2015; Figure 1A).

These results suggest a possibility that NRCP may modulate
apoptosis by regulating cancer metabolism. NRCP is not
annotated in National Center for Biotechnology Information
(NCBI) Reference Sequence (RefSeq) database (on Feb 3rd,
2021) and requires further characterization of sequences and
expression profiles.

Apoptosis-Related LncRNAs Regulating
Histone Modification Complexes
In this section, we will describe the following apoptosis-
suppressive lncRNAs: abhydrolase domain containing 11
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TABLE 1 | Mechanisms of apoptosis-related lncRNAs in ovarian cancer cells.

lncRNA Chr. location Roles in ovarian cancer cells/xenograft tumors Clinical relevance in ovarian
cancer tissues/patients

Effects on
apoptosis

GAS5 1q25 ↓ in A2780/HEY/HO8910 a/OVCAR3/SKOV3 cells
Binds to E2F4 and represses PARP1 in HEY/SKOV3 cells
Sponges miR-196a-5p to upregulate HOXA5 in primary tumor
cells from HGSOV tissues and A2780/OVCAR3 cells
Represses PARP1, growth and cisplatin resistance in SKOV3
tumors

↓ in tumor tissues
↓ is correlated with shorter
DFS/OS

+

NRAD1/LINC00284 13q14 ↑ in A2780/CAOV3/HO8910/OVCAR3/SKOV3 cells
Binds to NF-κB1 and represses MEST in HO8910 cells
Promotes growth of HO8910 tumors

↑ in ovarian cancer tissues −

CP non-coding
variant (NRCP)

3q24-25 ↑ in A2780/IGROV1/OVCAR3/SFMAR/SFWAS/SKOV3 cells
Binds to RNA Pol II and STAT1, upregulates GPI, ALDOA, and
ALDOC
Promotes growth and metastasis of A2780/SKOV3 tumors

↑ in tumor tissues
↑ is correlated with shorter OS

−

ABHD11-AS1 7q11 ↑ in HO8910/OVCA429 cells
Upregulates RhoC in A2780/OVCAR3 cells
Binds to EZH2 and represses TIMP2 in HO8910/OVCA429 cells
Promotes growth and metastasis of A2780 tumors

↑ in tumor tissues −

FALEC/FAL1 1q21 Promotes PRC1-mediated repression of CDKN1A, BTG2, and
FAS in A2780 cells
Binds to and stabilizes BMI1 in A2780 cells
Promotes A2780 tumor growth

↑ and copy number gain
correlated with shorter OS

−

TP73-AS1 1p36 ↑ in CAOV3/HO8910/OV420/SKOV3 cells
Binds to EZH2 and represses CDKN1A in SKOV3 cells
Promotes SKOV3 tumor growth

↑ in tumor tissues
↑ is correlated with poor
prognosis

−

UNC5B-AS1 10q22 ↑ in A2780/ES2/SKOV3 cells
Binds to EZH2 and promotes NDRG2 in ES2/SKOV3 cells

↑ in tumor tissues −

FEZF1-AS1 7q31 ↑ in A2780/COC1/PEO1/SKOV3 cells
Sponges miR-130a-5p, upregulates SOX4 in COC1/SKOV3 cells

↑ in tumors and serum
↑ is correlated with shorter OS

−

HOTAIR 12q13 ↑ in cisplatin-resistant A2780/SKOV3 cells
Sponges miR-138-5p, upregulates EZH2 and SIRT1 in
A2780/SKOV3 cells
Promotes A2780 tumor growth

↑ in tumor tissues
↑ is correlated with shorter OS in
HGSOV patients

−

CYTOR/LINC00152 2p11 ↑ in A2780/HO8910/SKOV3 cells
Sponges miR-125b to upregulate MCL1 in A2780/SKOV3 cells
Increases MCL1 level and SKOV3 tumor growth

↑ in tumor tissues
↑ is correlated with shorter OS

−

MEG3 14q32 ↓ in OVCAR3/OVCAR5/OVCAR8/SKOV3 cells
Sponges miR-205-5p in OVCAR8/SKOV3 cells

↓ in tumor tissues +

NCK1-DT/NCK1-
AS1

3q22 ↑ in CAOV3/OVCAR3/SKOV3/SNU119/SUN8 cells
Sponges miR-137 to upregulate NCK1 in CAOV3/SKOV3 cells
Prevents CBL-mediated NCK1 degradation in CAOV3/SKOV3
cells

↑ in tumor tissues −

NEAT1 11q13 ↑ in A2780/CAOV3/ES2/HO8910/OV90/OVCAR3/SKOV3 cells
↑ in paclitaxel-resistant HeyA8/SKOV3 cells versus parental cells
↑ in cisplatin-resistant A2780/SKOV3 cells versus parental cells
Sponges miR-34a-5p, upregulates BCL2 in OVCAR3/SKOV3
cells
Sponges miR-4500, upregulates BZW1 in CAOV3/ES2 cells
Sponges miR-194, upregulates ZEB1 in HeyA8/SKOV3 cells
Sponges miR-770-5p, upregulates PARP1 in A2780/SKOV3 cells
Promotes growth of SKOV3/A2780 tumors and paclitaxel
resistance

↑ in tumor tissues
↑ in cisplatin and
paclitaxel-resistant cancer tissues
↑ is correlated with shorter OS

−

PVT1 8q24 ↑ in A2780/OVCAR3/TOV112D cells
Sponges miR-543, upregulates SERPINI1 in OVCAR3/TOV112D
cells

↑ in tumor tissues
↑ is correlated with shorter OS

−

UCA1 19p13 ↑ in A2780/HeyA8/OAW42/OVCAR4/SKOV3 cells
↑ in paclitaxel-resistant HeyA8/SKOV3 cells
↑ in cisplatin-resistant A2780/SKOV3 cells
Sponges miR-129, upregulates ABCB1 in HeyA8/SKOV3 cells
Sponges miR-654-5p, upregulates SIK2 in HeyA8/SKOV3 cells
Sponges miR-143, upregulates FOSL2 in A2780/SKOV3 cells

↑ in tumor tissues
↑ in tumors and serum exosomes
of patients with cisplatin-resistant
cancers

−

(Continued)
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TABLE 1 | Continued

lncRNA Chr.
location

Roles in ovarian cancer cells/xenograft tumors Clinical relevance in ovarian
cancer tissues/patients

Effects on
apoptosis

GHET1 7q36 ↑ in 3AO/A2780/OVCAR3/SKOV3 cells
Prevents VHL-mediated HIF1α degradation in A2780/SKOV3 cells

↑ in tumor tissues
↑ is correlated with increased
tumor size and distant
metastasis

−

aAlthough HO8910 cell line was used as an ovarian cancer cell model in these studies, a previous study has reported that it is a cross-contaminated cell line.
ABCB1, ATP binding cassette subfamily B member 1; ABHD11-AS1, abhydrolase domain containing 11 antisense RNA 1; ALDOA, aldolase, fructose-bisphosphate A;
ALDOC, aldolase, fructose-bisphosphate C; BCL2, B-cell lymphoma 2; BMI1, B lymphoma Mo-MLV insertion region 1 homolog; BTG2, B-cell translocation gene 2; BZW1,
basic leucine zipper and W2 domain-containing protein 1; CBL, casitas B-lineage lymphoma; CDKN1A, cyclin dependent kinase inhibitor 1A; CP, ceruloplasmin; CYTOR,
cytoskeleton regulator RNA; DFS, disease-free survival; EZH2, enhancer of zeste homolog 2; FAL1, focally amplified lncRNA on chromosome 1; FALEC, focally amplified
long non-coding RNA in epithelial cancer; FEZF1-AS1, fasciculation and elongation protein zeta family zinc finger 1 antisense RNA 1; FOSL2, Fos-related antigen 2;
GAS5, growth arrest-specific 5; GHET1, gastric carcinoma high expressed transcript 1; GPI, glucose-6-phosphate isomerase; HGSOV, high-grade serous ovarian cancer;
HIF1α, hypoxia-inducible factor 1α; HOTAIR, HOX transcript antisense RNA; HOXA5, homeobox A5; LINC00152, long intergenic non-coding RNA 00152; LINC00284,
long intergenic non-coding RNA 00284; MCL1, myeloid cell leukemia 1; MEG3, maternally expressed gene 3; MEST, mesoderm specific transcript; NCK1, non-catalytic
region of tyrosine kinase adaptor protein 1; NCK1-AS1, NCK1 antisense RNA 1; NCK1-DT, NCK1 divergent transcript; NDRG2, n-myc downstream-regulated gene 2;
NEAT1, nuclear enriched abundant transcript 1; NRAD1, non-coding RNA in the aldehyde dehydrogenase 1A pathway; NRCP, lncRNA ceruloplasmin; OS, overall survival;
PARP1, poly(ADP-ribose) polymerase 1; PTX, paclitaxel; PVT1, plasmacytoma variant translocation 1; RhoC, ras homolog family member C; SERPINI1, serpin family I
member 1; SIK2, salt inducible kinase 2; SIRT1, sirtuin 1; SOX4, sex-determining region Y (SRY)-box transcription factor 4; TIMP2, tissue inhibitor of metalloproteinase 2;
TP73-AS1, tumor protein p73 antisense RNA 1; UCA1, urothelial carcinoma associated 1; UNC5B-AS1, uncoordinated 5 netrin receptor B antisense RNA 1; VHL, von
Hippel–Lindau tumor suppressor; ZEB1, zinc finger E-box binding homeobox 1.

antisense RNA 1 (ABHD11-AS1), focally amplified long non-
coding RNA in epithelial cancer (FALEC)/focally amplified
lncRNA on chromosome 1 (FAL1), tumor protein p73 antisense
RNA 1 (TP73-AS1), and uncoordinated 5 netrin receptor B
antisense RNA 1 (UNC5B-AS1).

ABHD11-AS1
Abhydrolase domain containing 11 antisense RNA 1 is
upregulated in ovarian cancer (Wu et al., 2017; Zeng et al.,
2019). A functional study has shown that ABHD11-AS1
modulates the expression of ras homolog family member C
(RhoC) by an unknown mechanism, suppressing apoptosis
in A2780 and OVCAR3 cells (Wu et al., 2017). Another
functional study has shown that ABHD11-AS1 binds to
enhancer of zeste homolog 2 (EZH2), a component of
PRC2. ABHD11-AS1 facilitates tri-methylation at the 27th
lysine residue of the histone H3 protein (H3K27me3) on the
tissue inhibitor of metalloproteinase 2 (TIMP2) promoter,
as mediated by PRC2, and likewise suppresses TIMP2
expression in HO8910 cells and OVCA429 ovarian cancer
cells (Figure 1B). TIMP2 suppression mediated by ABHD11-AS1
promotes the proliferation of OVCA429 cells, suggesting that
ABHD11-AS1 may also modulate apoptosis by this mechanism
(Zeng et al., 2019).

FALEC/FAL1
Focally amplified lncRNA in epithelial cancer/focally amplified
lncRNA on chromosome 1 was initially identified as an lncRNA
whose gene copy number increased in multiple types of
cancers, including ovarian cancer (Hu et al., 2014). Its high
expression level and gain in genomic copy number correlate
with a shorter overall survival rate of late-stage ovarian cancer
patients (Hu et al., 2014). A functional study using A2780
cells has suggested that FALEC binds to a component of
PRC1, B lymphoma Mo-MLV insertion region 1 homolog
(BMI1) protein, and recruits PRC1 to the promoters of genes

such as cyclin dependent kinase inhibitor 1A (CDKN1A), B-
cell translocation gene 2 (BTG2), and FAS. Subsequently, PRC1
mediates the ubiquitination at the 119th lysine residue of the
histone H2A (H2AK119ub) on these promoter regions and
the suppression of these genes (Figure 1B). The FALEC/PRC1
complex target genes such as CDKN1A, BTG2, and FAS are
suggested to be involved in apoptosis regulation (El-Deiry, 2001;
Mao et al., 2015). Thus, FALEC can be a regulator of ovarian
cancer apoptosis.

TP73-AS1
Tumor protein p73 antisense RNA 1 is upregulated in EOC and
associated with poor prognosis in EOC patients (Li Y. et al.,
2019). A recent study has shown that TP73-AS1 knockdown
induces apoptosis of SKOV3 cells, suppressing the proliferation
in in vitro culture and the xenograft tumor formation in
athymic mice. In contrast, TP73-AS1 overexpression suppresses
apoptosis in CAOV3 ovarian cancer cells. Functional analyses
have suggested that TP73-AS1 epigenetically suppresses CDKN1A
expression by recruiting PRC2 to its promoter (Figure 1B) and
modulates apoptosis of SKOV3 cells through this mechanism (Li
Y. et al., 2019).

UNC5B-AS1
Uncoordinated 5 netrin receptor B antisense RNA 1 is highly
expressed in ovarian cancer, and a recent study has shown
that its knockdown activates caspase 3 in ES2 and SKOV3
cells, suggesting the apoptosis-suppressive role of UNC5B-
AS1 (Wang et al., 2020). Moreover, the same study has
suggested that UNC5B-AS1 promotes PRC2 to repress the n-myc
downstream-regulated gene 2 (NDRG2) expression epigenetically
(Figure 1B), which may suppress ovarian cancer cell apoptosis
(Wang et al., 2020). This study is limited in the elucidation
of the mechanism by which UNC5B-AS1 regulates PRC2
and its in vivo function, and further functional analyses
are required.
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Apoptosis-Related LncRNAs Regulating
miRNAs
In the section, we will introduce an apoptosis-promotive
lncRNA GAS5 and the following apoptosis-suppressive lncRNAs:
fasciculation and elongation protein zeta family zinc finger 1
antisense RNA 1 (FEZF1-AS1), HOX transcript antisense RNA
(HOTAIR), non-catalytic region of tyrosine kinase adaptor protein
1 (NCK1) divergent transcript (NCK1-DT)/NCK1 antisense RNA
1 (NCK1-AS1), nuclear enriched abundant transcript 1 (NEAT1),
and urothelial carcinoma associated 1 (UCA1).

FEZF1-AS1
High levels of FEZF1-AS1 are detected in tumor tissues and
the serum of EOC patients, with its high expression associated
with shorter overall survival of EOC patients (Sun et al.,
2020). Moreover, its knockdown promotes apoptosis in COC1
and SKOV3 ovarian cancer cells, suggesting the apoptosis-
suppressive role of FEZF1-AS1. In vitro analyses of FEZF1-AS1
have shown that it functions as a competing endogenous RNA
(ceRNA) for miR-130a-5p, or sponges miR-130a-5p (Figure 1C).
Consequently, FEZF1-AS1 upregulates the expression of a
miR-130a-5p target gene, sex-determining region Y (SRY)-box
transcription factor 4 (SOX4), that promotes proliferation of
COC1 and SKOV3 cells and may contribute to apoptosis
suppression (Sun et al., 2020). Further analysis of FEZF1-AS1
function, especially in vivo, will clarify its role and significance
in apoptosis of ovarian cancer cells.

GAS5
A recent functional study has suggested that GAS5 functions as a
ceRNA for miR-196a-5p to upregulate homeobox A5 (HOXA5),
promoting apoptosis of primary tumor cells from high-grade
serous ovarian cancer tissues as well as A2780 and OVCAR3 cells
(Zhao et al., 2018; Figure 1C).

HOTAIR
HOX transcript antisense RNA is upregulated in ovarian cancer,
and the elevated expression level correlates with the shorter
overall survival of ovarian cancer patients (Qiu et al., 2015;
Wang Y. et al., 2015; Zhang et al., 2016; Luo et al., 2017; Yu
et al., 2018). HOTAIR knockdown induces apoptosis in ovarian
cancer cells such as A2780, HeyC2, and OVCA429, and decreases
the cisplatin sensitivity of A2780 and SKOV3 cells (Qiu et al.,
2015; Wang Y. et al., 2015; Zhang et al., 2016, 2020; Yu et al.,
2018). A recent functional study using A2780 and SKOV3 cells
has suggested that HOTAIR acts as a ceRNA for miR-138-5p,
leading to cisplatin resistance of these cells (Zhang et al., 2020;
Figure 1C). This study has shown that HOTAIR/miR-138-5p
axis modulates EZH2 and sirtuin 1 (SIRT1) expression, but its
biological significance has not been elucidated.

NCK1-DT/NCK1-AS1
Non-catalytic region of tyrosine kinase adaptor protein 1 divergent
transcript is highly expressed in ovarian cancer. Mechanistically,
it acts as a ceRNA for miR-137 to upregulate NCK1, which
suppresses apoptosis of CAOV3 and SKOV3 cells and enhances
their cisplatin resistance (Chang et al., 2020; Figure 1C).

NEAT1
Nuclear enriched abundant transcript 1 is upregulated in
ovarian cancer and is associated with shorter overall survival
of ovarian cancer patients (Chen et al., 2016). NEAT1 acts as
a ceRNA for miR-34a-5p to upregulate BCL2 and suppresses
apoptosis of OVCAR3 and SKOV3 cells (Ding et al., 2017).
In addition, NEAT1 acts as a ceRNA for miR-4500, to
upregulate basic leucine zipper and W2 domain-containing
protein 1 (BZW1) that suppresses apoptosis of CAOV3 and
ES2 cells (Xu et al., 2020), and miR-194 to upregulate the
transcription factor zinc finger E-box binding homeobox 1
(ZEB1), promoting resistance to the anticancer agent paclitaxel
(PTX) in HeyA8 and SKOV3 cells (An et al., 2017). Furthermore,
NEAT1 sponges miR-770-5p, to upregulate PARP1 and increase
cisplatin resistance in A2780 cells in vivo (Zhu et al., 2020;
Figure 1C).

UCA1
The lncRNA UCA1 is upregulated in ovarian cancer and is
detected in exosomes derived from the serum of ovarian cancer
patients (Li Z. et al., 2019; Li et al., 2020). Functional studies
have shown that UCA1 acts as a ceRNA for miR-129 and
miR-654-5p to upregulate ATP binding cassette subfamily B
member 1 (ABCB1) and SALT INDUCIBLE KINASE 2 (SIK2),
respectively, which contribute to the suppression of apoptosis
and the enhancement of PTX resistance in HeyA8 and SKOV3
cells (Wang et al., 2018; Li et al., 2020). In addition, UCA1
functions as a ceRNA for miR-143 to increase Fos-related antigen
2 (FOSL2), and enhances cisplatin resistance in A2780 and
SKOV3 cells (Li Z. et al., 2019; Figure 1C). However, the
importance of the function of UCA1 as a ceRNA in vivo has not
been fully analyzed.

Recent studies have found that many other lncRNAs
modulate ovarian cancer apoptosis through regulating
miRNAs. For example, CYTOR/LINC00152 acts as a ceRNA
of miR-125b to upregulate an antiapoptotic protein MCL1
in A2780 and SKOV3 cells (Chen et al., 2018). PVT1
suppresses apoptosis in OVACAR3 and TOV112D cells
by inhibiting miR-543 and increasing a miR-543 target
SERPIN1 (Qu et al., 2020). In contrast, MEG3 promotes
apoptosis in OVCAR8 and SKOV3 cells by sponging miR-
205-5p (Tao et al., 2020). The detail of lncRNAs regulating
miRNAs is also reviewed in other articles (Braga et al., 2020;
Salamini-Montemurri et al., 2020).

Apoptosis-Related LncRNAs Regulating
Protein Stability
In the section, we will introduce the following apoptosis-
suppressive lncRNAs: FALEC/FAL1, gastric carcinoma high
expressed transcript 1 (GHET1), and NCK1-DT/NCK1-AS1.

FALEC/FAL1
As described above, FALEC binds to BMI1 and modulates PRC1
function in A2780 cells. In addition, FALEC stabilizes BMI1 by
suppressing ubiquitin-mediated BMI1 protein degradation (Hu
et al., 2014; Figure 1D).
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GHET1
The lncRNA GHET1 is upregulated in ovarian cancer and
higher expression correlates with increased tumor size and
distant metastasis (Liu and Li, 2019). Conversely, its knockdown
induces apoptosis and downregulates glycolysis in A2780 and
SKOV3 cells, where GHET1 binds to an E3 ubiquitin ligase, von
Hippel–Lindau tumor suppressor (VHL), and prevents VHL-
mediated degradation of hypoxia-inducible factor 1α (HIF1α)
(Figure 1D). Since the GHET1 function in ovarian cancer cells
has been only examined by in vitro assays, in vivo analyses of
GHET1 are needed. Although the role of the GHET1/VHL/HIF1α

axis in apoptosis has not yet been elucidated, HIF1α and
cancer metabolism have been shown to play important roles
in apoptosis regulation, suggesting the possibility that this axis
may also be involved in the phenomenon (Zhou et al., 2006;
Matsuura et al., 2016).

NCK1-DT/NCK1-AS1
In addition to the function as a ceRNA, NCK1-AS1 increases
the stability of NCK1: NCK1-AS1 binds to an E3 ubiquitin
ligase, casitas B-lineage lymphoma (CBL), and prevents CBL-
mediated degradation of NCK1 (Chang et al., 2020; Figure 1D).
The functions of NCK-AS1 in ovarian cancer have been
suggested based on in vitro experiments, and thus needs to be
evaluated using ovarian tumor specimens or in vivo ovarian
cancer models.

CONCLUSION

In this review, we introduced the mechanisms of apoptosis-
related lncRNAs in ovarian cancer cells. Considering that
dysregulation of apoptosis is involved in the resistance to
ovarian cancer therapies, small molecule inhibitors/siRNAs
targeting apoptosis-suppressing lncRNAs, or apoptosis-
promoting lncRNAs themselves may be applicable to ovarian
cancer therapies. For nucleic acid-based therapeutics, it is
important to develop the drug delivery systems (DDSs)
with high target specificity and less non-specific toxicity
in vivo. Particularly, for ovarian cancer, DDSs will be
useful to treat metastatic cancer cells in peritoneal cavity
(Amreddy et al., 2018; van den Brand et al., 2018). Moreover,

apoptosis-related lncRNAs may be potential diagnostic and
prognostic biomarkers. Especially, FEZF1-AS1 and UCA1 are
detected in serum and exosomes recovered from serum of ovarian
cancer patients, respectively, which suggested their potential as
liquid biopsy markers for ovarian cancer.

Apoptosis-related lncRNAs have basically been studied using
conventional ovarian cancer cell lines, and the functions of
some lncRNAs have been examined by in vitro assays alone.
For clinical application, it is required to elucidate the lncRNA
functions in vivo. Moreover, previous studies have indicated some
discrepancies between ovarian cancer cell lines and the original
tumor clinical tissues in terms of genomic and histological
features and gene expression profiles (Domcke et al., 2013;
Beaufort et al., 2014). Thus, lncRNA studies using ovarian
tumor specimens or other ovarian cancer models are strongly
demanded. Three-dimensional cultures of patient-derived cancer
cells (PDCs) and cancer models established by transplanting
tumor specimens into host mice (patient-derived xenograft
[PDX] models) retain the properties of original tumors and
have attracted attention as promising models for cancer research
and drug screening (Ishiguro et al., 2016; Maru and Hippo,
2019; Namekawa et al., 2019; Shiba et al., 2019). Further studies
using PDC and PDX models would advance the application
of apoptosis-related lncRNAs to ovarian cancer diagnosis,
prognosis, and therapies.
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Human Sertoli cell is required for completing normal spermatogenesis, and significantly,
it has important applications in reproduction and regenerative medicine because of its
great plasticity. Nevertheless, the molecular mechanisms underlying the fate decisions of
human Sertoli cells remain to be clarified. Here, we have demonstrated the expression,
function, and mechanism of Homo sapiens-microRNA (hsa-miR)-100-3p in human
Sertoli cells. We revealed that miR-100-3p was expressed at a higher level in human
Sertoli cells by 10% fetal bovine serum (FBS) than 0.5% FBS. MiR-100-3p mimics
enhanced the DNA synthesis and the proliferation of human Sertoli cells, as indicated
by 5-ethynyl-2′-deoxyuridine (EdU) and Cell Counting Kit-8 (CCK-8) assays. Flow
cytometry showed that miR-100-3p mimics reduced the apoptosis of human Sertoli
cells, and notably, we predicted and further identified serum/glucocorticoid regulated
kinase family member 3 (SGK3) as a direct target of MiR-100-3p. SGK3 silencing
increased the proliferation and decreased the apoptosis of human Sertoli cells, while
SGK3 siRNA 3 assumed a similar role to miR-100-3p mimics in human Sertoli cells.
Collectively, our study indicates that miR-100-3p regulates the fate decisions of human
Sertoli cells by binding to SGK3. This study is of great significance, since it provides the
novel epigenetic regulator for the proliferation and apoptosis of human Sertoli cells and
it may offer a new clue for gene therapy of male infertility.

Keywords: human Sertoli cells, hsa-miR-100-3p, proliferation, apoptosis, SGK3

INTRODUCTION

Abnormal spermatogenesis causes male infertility. Sertoli cell is one of the most important somatic
cells within the testis because it is essential for regulating normal spermatogenesis and male germ
cell development. In anatomical structure, the Sertoli cell is surrounded by male germ cells in the
seminiferous tubules, and it directly contacts with male germ cells of different stages. Sertoli cell
is tightly linked by multiprotein complexes that constitute the blood–testis barrier (BTB), which
protects male germ cells from immunological rejection (Shi et al., 2018). Besides, Sertoli cell can
provide a number of growth factors for the signaling transduction of male germ cells (Hofmann,
2008), e.g., bone morphogenetic protein 4 (BMP4), stem cell factor (SCF), glial cell-derived
neurotrophic factor (GDNF), and fibroblast growth factor 2 (FGF2). Androgen receptor (AR)
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is specifically expressed in Sertoli cell, and its functional failure
leads to immature Sertoli cells and spermatogenesis arrest (Singh
et al., 1995; Meachem et al., 1997; Meroni et al., 2019). Finally,
Sertoli cells can remove apoptotic germ cells with an aim to retain
the homeostasis of the testis (Gong et al., 2018). Significantly,
recent studies demonstrate that Sertoli cells have the potential
to become the cells of other lineages, including the induced
pluripotent stem (iPS) cells, neural stem cells (Alamoudi et al.,
2018), and Leydig cells (Fu et al., 2019), reflecting that Sertoli
cells might have significant applications in cell transplantation
and tissue engineering for human diseases.

MicroRNA (known as the miRNA) has been demonstrated
to play essential roles in mediating cellular proliferation,
differentiation, transdifferentiation, and apoptosis. We have
recently demonstrated that a number of miRNAs regulate the fate
decisions of human spermatogonial stem cell (SSC). For example,
miR-1908-3p controls human SSC renewal and apoptosis by
binding to Kruppel-like factor 2 (KLF2) (Chen et al., 2020), while
miR-122-5p regulates human SSC fate decisions via targeting
casitas B-lineage lymphoma (CBL) (Zhou et al., 2020). Moreover,
we have revealed that P21-activated kinase 1 (PAK1)/miR-31-
5p controls human SSC proliferation and the apoptosis via
targeting juxtaposed with another zinc finger protein 1 (JAZF1)
(Fu et al., 2019), and miR-663a mediates human SSC proliferation
and apoptosis by targeting transcription factor nuclear factor
I X-type (NFIX) (Zhou et al., 2018). We have also compared
the global miRNA profiles in human spermatogonia, pachytene
spermatocytes, and spermatids between normal men and non-
obstructive azoospermia patients (Yao et al., 2017). Nevertheless,
the roles and molecular mechanisms of miRNAs in mediating
human Sertoli cell remain elusive. It has been reported that
miR-638 suppresses the growth of immature Sertoli cells by
regulating sperm-associated antigen 1 (SPAG1) (Hu et al., 2017).
MiR-130a has been shown to stimulate the proliferation of the
immature porcine Sertoli cells via the activation of SMAD5
(Luo et al., 2020), while miR-320-3p is specifically expressed
in mouse Sertoli cells and it reduces the lactate production of
Sertoli cells through suppressing the level of glucose transporter
3 (Zhang et al., 2018). Recently, we have revealed the expression
and the effect of miR-202-3p on regulating human Sertoli
cells (Yang et al., 2019). These studies indicate that miRNA
may be involved in controlling the fate determinations of
Sertoli cells. It is well known that 10% fetal bovine serum
(FBS) can significantly promote the proliferation of human
Sertoli cells. Therefore, we compared the miRNA expression
profiles in human Sertoli cells between 10% FBS and 0.5% FBS
with an aim to identify novel miRNAs that could promote
the proliferation of human Sertoli cells, and we revealed that
miR-100-3p was expressed at a higher level in human Sertoli
cells by 10% FBS than 0.5% FBS. In this study, we have
uncovered that has-miR-100-3p promotes the proliferation and
DNA synthesis and that it inhibits the apoptosis of human
Sertoli cells by binding to serum/glucocorticoid regulated kinase
family member 3 (SGK3). Thus, this study offers new epigenetic
mechanisms controlling human Sertoli cell fate decisions, and
importantly, it might provide new biomarkers for the treatment
of male infertility.

MATERIALS AND METHODS

Culture of Human Sertoli Cells
We isolated human Sertoli cells from six obstructive azoospermia
(OA) patient testicular tissues by the two steps enzymatic
digestion followed by differential plating (Yang et al., 2019).
Human Sertoli cells were seeded onto the culture dish, and
they were cultured with Dulbecco’s modified Eagle’s medium
(DMEM)/F12 (Gibco, United States) by the addition of 10%
FBS (Gibco, United States) and 1% penicillin and streptomycin
(Gibco, United States) at 34◦C in 5% CO2 incubator. This study
was approved by the Institutional Ethical Review Committee of
Hunan Normal University, and an informed consent of testis
tissues for research only was obtained from each OA patient.

RNA Extraction and RT-PCR
We extracted total RNA from human Sertoli cells when they
were cultured with 10% or 0.5% FBS for 3 h, respectively, by
the RNAiso Plus reagent (Takara, Japan). NanoDrop (Thermo
Fisher Scientific, United States) was utilized to determine the
concentrations of total RNA, and RNA with good quality was
employed for RT-PCR. We performed RT of RNA to obtain the
cDNA by the First Strand cDNA Synthesis Kit (Thermo Fisher
Scientific, United States) and PCR reaction of the cDNA in terms
of the protocol (Yang et al., 2014). We chose the following gene
primers, including Wilms’ tumor gene 1 (WT1), GATA binding
protein 4 (GATA4), GDNF, SCF, follicle-stimulating hormone
receptor (FSHR), SRY-related high-mobility group-box gene 9
(SOX9), AR, and FGF2, and the sequences of those genes were
shown in Supplementary Table 1.

The PCR reactions of cDNA were completed for 35 cycles
pursuant to the conditions we previously described (Yang et al.,
2014). The PCR products were separated by electrophoresis
with 2% agarose gels stained with Safer ethidium bromide
Alternatives-GelGreen (Biotium, United States). Images were
exposed to the Gel Documentation and Image Analysis System
ChampGel 5000 (SageCreation, China). No cDNA but with PCR
of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) primers
was used as a negative control.

Real-Time qPCR
The RNAiso Plus reagent (Takara, Japan) was employed to
isolate total RNA from human Sertoli cells and these cells
without or with the treatment of miR-100-3p mimics, miR-
100-3p inhibitor, miRNA mimics control, miRNA inhibitor
control, SGK3 siRNAs, or siRNA control. RT reactions were
performed for 60 min at 37◦C using the mixture consisting of
100 ng RNA, 10 µl 2× TS miRNA Reaction Mix, 1 µl miRNA
RT Enzyme Mix, and RNase-free water in a total volume of
20 µl, and heat inactivation of RT was done for 5 s at 85◦C
in a Veriti 96-Well Thermal Cycler (Bio-Rad, United States).
Nuclease-free water was employed to dilute the RT reaction
mixture by five times. The miRNA primer sequences for real-
time qPCR were shown in Supplementary Table 1. Real-time
qPCR was performed three times utilizing Power SYBR Green
PCR Master Mix (Biosystems, United Kingdom) and a CFX
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Connect Real-Time System (Bio-Rad, United States), pursuant to
the protocol described previously (Wang et al., 2017). The levels
of miRNAs were normalized to U6, and their relative expression
was calculated using the 2−11Ct method (Wang et al., 2017).

The levels of SGK3 gene were measured by real-time qPCR
in human Sertoli cells with treatment of miR-100-3p mimics,
miRNA mimics control, miR-100-3p inhibitors, miRNA inhibitor
control, SGK3-siRNAs, or siRNA control, pursuant to the
protocol described previously (Wang et al., 2017). SGK3 primers
were designed and shown in Supplementary Table 1, and the
relative levels of SGK3 gene were calculated by the 2−11Ct

method after normalization to housekeeping gene GAPDH
(Wang et al., 2017).

Immunocytochemistry
For the immunocytochemical staining, 4% paraformaldehyde
(PFA; Beyotime, China) was used for fixation of human Sertoli
cells for 20 min, and 0.5% Triton X-100 (Sigma, United States)
was employed to permeabilize these cells for 15 min. These cells
were blocked with 5% bovine serum albumin (BSA) for 90 min,
and they were incubated with primary antibodies as shown in
Supplementary Table 2 overnight at 4◦C. Primary antibodies
were replaced with isotype IgGs to serve as negative controls.
The secondary antibody IgG (Sigma, United States) with 1:2,000
dilution was used to recognize the primary antibodies. Cell
nuclei were labeled by 4′,6-diamidino-2-phenylindole (DAPI),
while the images were screened by a fluorescence microscope
(Leica, Germany).

Transfection of MiR-100-3p Mimics,
MiR-100-3p Inhibitors, or SGK3 siRNAs
to Human Sertoli Cells
The mimics, inhibitors, and the controls for miR-100-3p
were bought from GenePharma (Shanghai, China). The
oligonucleotide sequences for miR-100-3p mimics and inhibitors
were shown in Supplementary Table 3. Human Sertoli cells
were planted to the culture dish at 1 × 105 Sertoli cells/cm2

density, and they were cultured with DMEM/F12 containing
the 10% FBS overnight. Human Sertoli cells were classified
into four groups, namely, miR-100-3p mimics, miRNA mimics
control, miR-100-3p inhibitor, and miRNA inhibitor control.
Similarly, human Sertoli cells were categorized into four groups,
including SGK3 siRNA 1, SGK3 siRNA 2, SGK3 siRNA 3, and the
control siRNA. Transfection of miR-100-3p mimics, inhibitor,
or SGK3 siRNA1-3 was completed, respectively, utilizing
Lipofectamine 3000 transfection agent (Life Technologies,
Carlsbad, CA, United States). Forty-eight or seventy-two hours
after transfection, the cells were used for determining the mRNA
or protein levels.

Cell Counting Kit-8 Assay
For the proliferation assay, human Sertoli cells were plated onto
96-well microtiter plates (Corning, United States) at a density
of 2,000 Sertoli cells/well, and they were transfected with miR-
100-3p mimics, miRNA mimics control, miR-100-3p inhibitor,
miRNA inhibitor control, SGK3 siRNA 3, or the control siRNA.

After 5 days of culture, Cell Counting Kit-8 (CCK-8) assay (Dojin
Laboratories, Japan) was performed to measure human Sertoli
cell proliferation pursuant to the manufacturer’s direction. The
culture medium was changed with 10% CCK-8 solution (Dojin
Laboratories, Kumamoto, Japan), and the cells were incubated
with it for 3 h. The absorbance was determined at 450 nm by a
microplate reader.

Western Blots
Human Sertoli cells were transfected with miR-100-3p mimics,
miRNA mimics control, miR-100-3p inhibitor, miRNA inhibitor
control, SGK3 siRNAs, or the control siRNA, and the RIPA buffer
(Beyotime Biotechnology, China) was used for protein extraction
from these cells. Centrifugation of cell lysates was performed at
12,000 × g for 20 min, while the protein concentrations were
determined by bicinchoninic acid (BCA) kit (Dingguo, China).
Thirty micrograms of cell lysate were employed for Western blots
using the antibodies (Supplementary Table 2) in terms of the
method (He et al., 2007), while the blots were detected with
chemiluminescence (SageCreation, China).

5-Ethynyl-20-Deoxyuridine (EdU)
Incorporation Assay
In total, 3,000 human Sertoli cells/well were plated onto 96-
well plates (Corning, United States) in DMEM/F12 with the
addition of 50 mM 5-ethynyl-2′-deoxyuridine (EdU; RiboBio,
China). These cells were treated with miRNA mimics control,
miR-100-3p mimics, miRNA inhibitor control, miR-100-3p
inhibitor, SGK3 siRNA 3, or the control siRNA. We fixed
the cells after 12 h of culture with 4% PFA, and they were
neutralized by 1.8 mg/ml glycine and permeabilized with 0.5%
Triton X-100 for 15 min. Apollo staining reaction buffer was
utilized for EdU immunostaining, while Hoechst 33342 was
employed for labeling cell nuclei. The EdU-positive cells were
calculated from at least 500 cells by fluorescence microscopy
(Leica, Germany).

Annexin V and Propidium Iodide Staining
and Flow Cytometry
The apoptosis of human Sertoli cells was examined by the
allophycocyanin (APC) Annexin V and propidium iodide (PI)
apoptosis detection kit (BioLegend, London, United Kingdom)
and flow cytometry (BD, United States) after transfecting
without or with the treatment of miR-100-3p mimics, miR-
100-3p inhibitors, miRNA mimics control, miRNA inhibitor
control, SGK3 siRNAs, or the control siRNA. Human Sertoli
cells were seeded onto six-well plates (Corning, United States)
at a density of 5 × 104 cells/well, and they were collected
by centrifuging at 1,000 rpm for 5 min. Meanwhile, the cells
were labeled by the non-vital dye PI and Annexin V-fluorescein
isothiocyanate (FITC), which was employed to detect different
cell populations, including the intact cells (i.e., FITC−PI− cells),
the early apoptotic cells (i.e., FITC+PI− cells), and the late
apoptotic cells (i.e., FITC+PI+ cells).
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Terminal Deoxynucleotidyl Transferase
dUTP Nick End Labeling Assay
The terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) Apoptosis Detection Kit (Yeasen, China)
was utilized to further examine the apoptotic cells. In total,
5 × 104 human Sertoli cells/well were treated with miRNA
mimics control, miR-100-3p mimics, miRNA inhibitor control,
miR-100-3p inhibitor, SGK3 siRNA 3, or the control siRNA,
and 4% PFA was used for fixing these cells for 30 min
at 4◦C. After extensive washes by phosphate buffered saline
(PBS), the cells were treated with 20 mg/ml Proteinase K, 1×
DNaseI Buffer for 6 min and 10 U/ml DNaseI for 10 min,
and they were washed with deionized water and incubated
with 1× Equilibration Buffer for 30 min. These cells were
stained with Alexa Fluor 647 in buffer mixed with TdT
Enzyme for 70 min at 37◦C. After extensive washes by PBS,
DAPI was used for labeling the cell nuclei, and the TUNEL-
positive cells were counted by the fluorescence microscope
(Leica, Germany).

Dual Luciferase Assay
A total of 3,000 human Sertoli cells were seeded onto 96-
well plates (Corning, United States). After 24 h of culture,
Lipofectamine 3000 transfection agent (Sigma, United States)
was employed to transfect miR-100-3p mimics or the
mimics control to these cells. Forty-eight hours later,
human Sertoli cells were transfected with 500 ng plasmids
containing the binding sequence in 3′ untranslated regions
(UTRs) of SGK3, firefly luciferase (reporter), or the renilla
luciferase (internal control) (Genecreate, China) using the
Lipofectamine 3000 reagent (Sigma, United States). Forty-
eight hours after transfection, human Sertoli cells were
lysed, and luciferase activity was determined using the
96-well plate luminometer (Corning, United States). The
results were normalized to cells transfected with miRNA
mimics control.

Statistical Analysis
All results were shown as the mean ± SEM. Comparisons
between two groups were performed using the unpaired t-test,
and P-value < 0.05 was regarded as statistically significant. Each
experiment was conducted at least three times independently.

RESULTS

Biochemical Phenotype of Primary
Human Sertoli Cells
We first verified the identity of the cells used in this study
using numerous markers for human primary Sertoli cell.
The transcripts of GDNF, GATA4, WT1, SCF, FSHR, SOX9,
AR, and FGF2 were detected in the isolated human cells
(Figure 1A) as shown by RT-PCR. No PCR product was
detected in the no cDNA samples but with PCR by the
primers of GAPDH. Furthermore, immunocytochemistry
showed that the cells were positively stained for WT1

FIGURE 1 | Phenotype of human Sertoli cells. (A) The transcripts of glial
cell-derived neurotrophic factor (GDNF ), GATA binding protein 4 (GATA4),
Wilms’ tumor gene 1 (WT1), stem cell factor (SCF ), follicle-stimulating
hormone receptor (FSHR), SRY-related high-mobility group-box gene 9
(SOX9), androgen receptor (AR), and fibroblast growth factor 2 (FGF2) were
detected by RT-PCR in human Sertoli cells. Housekeeping gene
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used to be the
RNA loading control. (B–G) Immunocytochemistry revealed the positive cells
of WT1 (B), GDNF (C), GATA4 (D), SCF (E), SOX9 (F), and isotype IgGs (G) in
human Sertoli cells. Scale bar in panels (B–G) = 40 µm.

(Figure 1B), GDNF (Figure 1C), GATA4 (Figure 1D), SCF
(Figure 1E), and SOX9 (Figure 1F). No immunostaining
was seen in the cells when the isotype IgGs were used
for the replacement of primary antibodies (Figure 1G),
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FIGURE 2 | MiR-100-3p controls human Sertoli cell proliferation. (A) Real-time qPCR showed the relative expression levels of Homo sapiens-microRNA
(hsa-miR)-29b-1-5p, hsa-miR-7974, hsa-miR-4656, hsa-miR-6132, hsa-miR-7159-5p, hsa-miR-4433a-3p, hsa-miR-6067, hsa-miR-100-3p, hsa-miR-376b-3p,
hsa-miR-7974, and hsa-miR-29b-1-5p in human Sertoli cells by 10% fetal bovine serum (FBS) compared with 0.5% FBS. (B) The transfection efficiency of
miR-100-3p mimics and inhibitor was evaluated by fluorescence microscope and phase-contrast microscope. Scale bar = 80 µm. (C) The relative expression levels
of miR-100-3p in human Sertoli cells treated with miR-100-3p mimics or inhibitor. (D,E) The cell growth of human Sertoli cells treated with miR-100-3p mimics (D)
and miR-100-3p inhibitor (E) for 5 days. * denoted the statistical difference between miR-100-3p mimics and miRNA mimics control or miR-100-3p inhibitor and
miRNA inhibitor control.

which verified the specific expression of these proteins
mentioned above.

Differential Expression of MiR-100-3p in
Human Sertoli Cells Between 10% and
0.5% Fetal Bovine Serum
We have found that FBS promotes human Sertoli cell
proliferation. To seek novel miRNAs that are involved in the
DNA synthesis and proliferation of human Sertoli cells, we
compared the differences in the global miRNA profiles of human
Sertoli cells cultured in different serum concentrations (10%
vs. 0.5% FBS) using miRNA microarrays. The representative
miRNAs that were upregulated and downregulated in human
Sertoli cells cultured with 10% FBS compared to 0.5% FBS were
identified and listed in Supplementary Table 4. Among the
miRNAs with differential expression (fold changes ≥ 1.5 and
p < 0.05), miR-100-3p was expressed at a higher level in human
Sertoli cells by 10% FBS than 0.5% FBS. Real-time qPCR reflected
the highest level of miR-100-3p in human Sertoli cells by 10%
FBS compared with 0.5% FBS (Figure 2A), which was consistent
with miR-10-3p expression in human Sertoli cells affected by
10% FBS and 0.5% FBS, as detected by miRNA microarrays.
These data suggest that miR-100-3p is involved in regulating the
proliferation of human Sertoli cells.

MiR-100-3p Stimulates Human Sertoli
Cell Growth and DNA Synthesis
We examined the role of miR-100-3p in regulating human Sertoli
cells using miR-100-3p mimics and inhibitors. As shown in
Figure 2B, the transfection efficiency of miR-100-3p mimics or
inhibitors was more than 80% in human Sertoli cells. MiRNA
mimics control, miR-100-3p mimics, miRNA inhibitor control,
or miR-100-3p inhibitor was transfected to human Sertoli cells
by Lipofectamine 3000. Twenty-four hours after transfection,
real-time qPCR demonstrated that the level of miR-100-3p was
upregulated by miR-100-3p mimics in human Sertoli cells when
compared to miRNA mimics control (Figure 2C). In contrast,
miR-100-3p inhibitor reduced miR-100-3p expression in human
Sertoli cells compared to miRNA inhibitor control (Figure 2C).

The influence of miR-100-3p on human Sertoli cell
proliferation was measured by various kinds of methods.
Cell proliferation assays were performed from 1 day to 5 days
after transfection of miR-100-3p mimics and miR-100-3p
inhibitors, and miR-100-3p mimics increased the numbers
of human Sertoli cells compared to miRNA mimics control
(Figure 2D), whereas miR-100-3p inhibitor reduced the growth
of human Sertoli cells when compared with miRNA inhibitor
control (Figure 2E). The levels of proliferating cell nuclear
antigen (PCNA) protein were increased by miR-100-3p mimics
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FIGURE 3 | MiR-100-3p affects human Sertoli cell DNA synthesis. (A) Proliferating cell nuclear antigen (PCNA) expression was shown by Western blots in human
Sertoli cells at 72 h after miR-100-3p mimics or inhibitor transfection. (B) The relative expression of PCNA in human Sertoli cells at 72 h after miR-100-3p mimics
and inhibitor transfection. (C–F) The ratios of 5-ethynyl-2′-deoxyuridine (EdU)-positive cells were illustrated by EdU incorporation assays in human Sertoli cell
treatment with miRNA mimics control vs. the miR-100-3p mimics (C,D) as well as miR-100-3p inhibitor vs. miRNA inhibitor (E,F). Scale bar in panels (C,E) = 80 µm.
* indicated the statistical difference between miR-100-3p mimics and miRNA mimics control or miR-100-3p inhibitor and miRNA inhibitor control.

and decreased by miR-100-3p inhibitor, as shown by Western
blots (Figures 3A,B). The percentages of EdU-positive cells
were enhanced by miR-100-3p mimics (Figures 3C,D) and
decreased by miR-100-3p inhibitor (Figures 3E,F), as indicated
by EdU incorporation assay. Collectively, these results implicate
that miR-100-3p can stimulate human Sertoli cell growth
and DNA synthesis.

MiR-100-3p Inhibits Human Sertoli Cell
Apoptosis
We further determined the influence of miR-100-3p on human
Sertoli cell apoptosis. As shown by APC Annexin V and PI
staining and analyzed by flow cytometry, miR-100-3p mimics
decreased human Sertoli cell apoptosis vs. miRNA mimics
control (Figures 4A,B). By contrast, the percentage of human

Sertoli cell apoptosis was enhanced by the miR-100-3p inhibitor
compared to miRNA inhibitor control (Figures 4C,D). The
percentages of TUNEL-positive cells were decreased by miR-100-
3p mimics and enhanced by miR-100-3p inhibitor, as shown by
TUNEL assay (Figures 4E,F,G,H). Therefore, our results indicate
that miR-100-3p inhibits human Sertoli cell apoptosis.

SGK3 Is a Direct Target of MiR-100-3p in
Human Sertoli Cells
We next sought to find miR-100-3p targets in controlling human
Sertoli cells. Because miRNAs act via their seed sequence through
the base-pair binding to the 3′ UTR of mRNAs. We used various
kinds of miRNA prediction software (TargetScan, miRwalk, and
miRDB) and predicted that SGK3, EBF1, and PSD3 were the
potential targets for miR-100-3p (Figure 5A).
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FIGURE 4 | MiR-100-3p inhibits human Sertoli cell apoptosis. (A–D) The percentages of human Sertoli cell early and late apoptosis affected by miR-100-3p mimics
(A,B) and miR-100-3p inhibitor (C,D) by comparison to the respective control. (E–H) The ratios of terminal deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL)-positive cells in human Sertoli cells treated with miR-100-3p mimics and miR-100-3p inhibitor by comparison to the respective control. Scale bar in panels
(E,G) = 80 µm. * denoted the statistical difference between miR-100-3p mimics and miRNA mimics control or miR-100-3p inhibitor and miRNA inhibitor control.

To determine whether SGK3 is a binding target for miR-
100-3p in human Sertoli cells, we performed real-time qPCR
and Western blots showing that SGK3 transcripts were reduced
by miR-100-3p mimics but increased by miR-100-3p inhibitors
(Figure 5B), while SGK3 protein was diminished by miR-100-3p
mimics but enhanced by miR-100-3p inhibitor (Figures 5C,D).
The second to eighth nucleotides (known as the seed region) of
miR-100-3p were able to bind to the 3′ UTR sequence of SGK3
mRNA (Figure 5E), and the binding site of SGK3 mRNA was
further illustrated by the dual luciferase assay. The luciferase
activity of the fusion genes was reduced by the sequence in 3′ UTR
of SGK3 mRNA in human Sertoli cells by miR-100-3p mimics

(Figure 5F, left panel), whereas the mutated target sequences
had no effect on the luciferase activity (Figure 5F, right panel).
Considered together, these data indicate that SGK3 may be a
direct target for miR-100-3p in human Sertoli cells.

The Effect of Serum/Glucocorticoid
Regulated Kinase Family Member 3
Knockdown on the Proliferation and
Apoptosis of Human Sertoli Cells
We asked the impact of SGK3 on human Sertoli cell proliferation
and apoptosis. We used SGK3 small interfering RNAs (siRNAs),
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FIGURE 5 | MiR-100-3p binds to serum/glucocorticoid regulated kinase family member 3 (SGK3) in human Sertoli cells. (A) MiR-100-3p targets were predicted by
three bioinformatics tools. (B) The relative levels of SGK3 mRNA in human Sertoli cells affected by miR-100-3p mimics or miR-100-3p inhibitor by comparison to the
respective control. (C,D) The relative level of SGK3 in human Sertoli cells at day 3 after transfection of miR-100-3p mimics or miR-100-3p inhibitor after normalization
to ACTB (beta-actin). (E) Schematic diagram illustrated the binding site of miR-100-3p to SGK3 mRNA. (F) The binding of miR-100-3p to wild-type SGK3 by dual
luciferase assays in human Sertoli cells after transfection of miR-100-3p mimics or the miRNA mimics control. * indicated the statistical difference between
miR-100-3p mimics and miRNA mimics control or miR-100-3p inhibitor and miRNA inhibitor control.

including SGK3 siRNA 1–3, with different base-pair binding
sites, to knock down the SGK3 level of human Sertoli cells.
The transfection efficiency of SGK3 siRNAs in human Sertoli
cells was more than 80%, as indicated by the transfection of
FAM-labeled fluorescent oligo (Figure 2A). SGK3 siRNAs could
knock down the levels of SGK3 transcripts and proteins, while
SGK3 siRNA 3 had the highest effectiveness for SGK3 silencing
(Figures 6A,B).

SGK3 siRNA 3 caused the enhancement of human Sertoli
cell number from 24 to 120 h of culture (Figure 6C). The
PCNA protein level (Figure 6D) and the ratio of EdU-
positive cells (Figure 6E) of human Sertoli cells were
increased by SGK3 siRNAs, especially by SGK3 siRNA
3. By contrast, SGK3 knockdown reduced the apoptosis
of the human Sertoli cells (Figures 6F,G). Together,
these results reflect that SGK3 silencing stimulates the
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FIGURE 6 | Serum/glucocorticoid regulated kinase family member 3 (SGK3) knockdown regulates human Sertoli cell proliferation, DNA synthesis, and apoptosis.
(A) The relative levels of SGK3 mRNA in human Sertoli cells after transfection of SGK3 siRNA 1–3 or the control siRNA. (B) The relative level of SGK3 protein in
human Sertoli cells after transfection of SGK3 siRNA 1-3 or the control siRNA. (C) The cell growth of human Sertoli cells treated with SGK3 siRNA 3 and the control
siRNA for 5 days. (D) The relative level of proliferating cell nuclear antigen (PCNA) protein in human Sertoli cells at day 3 transfected by SGK3 siRNA 1-3 or the
control siRNA. (E) The 5-ethynyl-2′-deoxyuridine (EdU)-positive cells of human Sertoli cells treated with SGK3 siRNA 3 or the control siRNA. Scale bar in panel
(E) = 80 µm. (F) The percentages of apoptosis in human Sertoli cells transfected with control siRNA or SGK3 siRNA 3. (G) The percentages of terminal
deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in human Sertoli cells transfected with control siRNA or SGK3 siRNA 3. Scale bar in
panels (E,G) = 80 µm. * indicated the statistical difference between SGK3 siRNAs and the control siRNA.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 May 2021 | Volume 9 | Article 642916104

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-642916 May 5, 2021 Time: 18:19 # 10

Liu et al. Hsa-miR-100-3p in Human Sertoli Cells

FIGURE 7 | The impact of miR-100-3p and serum/glucocorticoid regulated kinase family member 3 (SGK3) siRNA 3 on the apoptosis of human Sertoli cells. (A,B)
Allophycocyanin (APC) Annexin V/propidium iodide (PI) staining and flow cytometry showed the apoptotic percentages of human Sertoli cells affected by miRNA
inhibitor control, miR-100-3p inhibitor, as well as miR-100-3p inhibitor and SGK3 siRNA 3. (C,D) Terminal deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL) assay revealed the percentages of TUNEL-positive cells in human Sertoli cells affected by miRNA inhibitor control, miR-100-3p inhibitor, as well as
miR-100-3p inhibitor and SGK3 siRNA 3. Scale bar in panel (C) = 80 µm. * indicates the statistical differences between miR-100-3p inhibitor and SGK3 siRNA 3 and
miR-100-3p inhibitor or between miR-100-3p inhibitor and miRNA inhibitor control.

proliferation and suppresses the apoptosis of human
Sertoli cells, which was in accordance with the influence of
miR-100-3p mimics.

The Synergetic Effect of MiR-100-3p and
Serum/Glucocorticoid Regulated Kinase
Family Member 3 SiRNA 3 on the
Apoptosis of Human Sertoli Cells
We further inquired whether there was the synergetic effect
of miR-100-3p inhibitor and SGK3 siRNA 3 on the apoptosis
of human Sertoli cells. MiR-100-3p inhibitor and SGK3
siRNA 3 were co-transfected to these cells with Lipofectamine
3000 reagent. After 48 h of transfection, the number of
early and late apoptosis was decreased in human Sertoli
cells with the co-transfection of miR-100-3p inhibitor
and SGK3 siRNA 3 compared with the cells transfected
with miR-100-3p inhibitor (Figures 7A,B). TUNEL assay
showed that the percentages of TUNEL-positive cells were
decreased in human Sertoli cells co-transfected with miR-
100-3p inhibitor and SGK3 siRNA 3 when compared to those
cells transfected with miR-100-3p inhibitor (Figures 7C,D).
These data implicate that there is a synergetic effect of miR-
100-3p inhibitor and SGK3 siRNA 3 on the apoptosis of
human Sertoli cells.

The Synergetic Effect of MiR-100-3p and
Serum/Glucocorticoid Regulated Kinase
Family Member 3 SiRNA 3 on DNA
Synthesis and Proliferation of Human
Sertoli Cells
We finally explored the influence of miR-100-3p inhibitor and
SGK3 siRNA 3 on the DNA synthesis and proliferation of human
Sertoli cells. Western blots showed that the expression levels
of SGK3 (Figures 8A,B) and PCNA (Figures 8E,F) proteins
were enhanced in human Sertoli cells with the co-transfection
of miR-100-3p inhibitor and SGK3 siRNA 3 compared with
the cells transfected with miR-100-3p inhibitor. Similarly, the
EdU incorporation assay displayed that the percentages of EdU-
positive cells were increased in human Sertoli cells co-transfected
with miR-100-3p inhibitor and SGK3 siRNA 3 in comparison to
these cells transfected with miR-100-3p inhibitor (Figures 8C,D).
Together, these results indicate that there is the synergetic
influence of miR-100-3p inhibitor and SGK3 siRNA 3 on the
DNA synthesis and proliferation of human Sertoli cells.

DISCUSSION

Sertoli cell is required for regulating spermatogenesis because it
provides the niche and the nutrition for the proliferation and
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FIGURE 8 | The effect of miR-100-3p and serum/glucocorticoid regulated kinase family member 3 (SGK3) siRNA 3 on the DNA synthesis and proliferation of human
Sertoli cells. (A,B,E,F) Western blots displayed the expression levels of SGK3 (A,B) and proliferating cell nuclear antigen (PCNA) (E,F) proteins in human Sertoli cells
affected by miRNA inhibitor control, miR-100-3p inhibitor, as well as miR-100-3p inhibitor and SGK3 siRNA 3. (C,D) The 5-ethynyl-2′-deoxyuridine (EdU)
incorporation assay revealed the percentages of EdU-positive cells in human Sertoli cells affected by miRNA inhibitor control, miR-100-3p inhibitor, as well as
miR-100-3p inhibitor and SGK3 siRNA 3. Scale bar in panel (C) = 80 µm. * denoted the statistical differences between miR-100-3p inhibitor and SGK3 siRNA 3 and
miR-100-3p inhibitor or between miR-100-3p inhibitor and miRNA inhibitor control.

differentiation of male germ cells (Franca et al., 2016). It has
been shown that the amount of male germ cells is positively
correlated with the number of Sertoli cells (Rebourcet et al.,
2017). In addition, Sertoli cell can be reprogrammed to become
Leydig cell by Wt1 ablation (Zhang et al., 2015) and neural stem
cells (Alamoudi et al., 2018), highlighting that Sertoli cell has
significant applications in male reproduction and cell therapy
of various diseases. Although great progress has been made in
understanding the biology of rodent Sertoli cells, the molecular
mechanisms for human Sertoli cell fate decisions, especially
epigenetic regulators, are still unknown.

By comparing the expression levels of miRNAs between
0.5% FBS and 10% FBS in human Sertoli cells, we revealed

that miR-100-3p was enhanced by 10% FBS, as demonstrated
by miRNA microarray and verified by real-time qPCR. MiR-
100-3p has been shown to control the proliferation and the
apoptosis of human gastric cancer cells via binding to bone
morphogenic protein type 2 receptor (BMPR2) (Peng et al.,
2019), and it may be involved in producing interleukin (IL)-
8 and IL-1β in mesangial cells (Liang et al., 2016). In this
study, we have shown that miR-100-3p stimulates human Sertoli
cell proliferation and DNA synthesis, as determined by CCK-
8 assay, PCNA expression, and EdU incorporation assay. We
have uncovered that miR-100-3p suppresses human Sertoli cell
apoptosis, as indicated by Annexin V and PI staining and flow
cytometry as well as TUNEL assay.
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Predicted by miRWalk and miRDB software, we assumed
that SGK3 is a potential target. Furthermore, we uncovered
that the level of SGK3 was reduced by miR-100-3p mimics
and increased by miR-100-3p inhibitor, reflecting that SGK3
is the binding target for miR-100-3p in human Sertoli cells.
Dual luciferase reporter assays further demonstrated that miR-
100-3p is able to bind to SGK3 in human Sertoli cells. SGK3
knockdown led to changes in human Sertoli cell proliferation
and apoptosis, which was consistent with the influence of the
miR-100-3p mimics. SGK3, belonging to the SGK family of
acylglycerol kinase (AGK) kinases, is expressed in many kinds
of cells, especially in testis and pancreas, and it exerts broad
functions (Lang et al., 2006). It has been shown that SGK3 plays
a role as a carcinogen in breast cancer, ovarian cancer, and
hepatocellular carcinoma, and it participates in controlling cell
survival, differentiation, and material transport (Lang et al., 2006;
Wang et al., 2019). SGK3 is composed of a 3′ UTR that is the
target seed region of numerous miRNAs. The transcription and
location of SGK3 are affected by many factors, e.g., miRNA-335-
5p (Yao et al., 2018), and it is involved in many intracellular
signaling transduction pathways, including phosphoinositide 3-
kinase (PI3K)/AKT pathway (Basnet et al., 2018). In the current
study, we identified SGK3 as a direct and binding target of
miR-100-3p in human Sertoli cell fate decisions.

In conclusion, we have reported for the first time that
miR-100-3p promotes DNA synthesis and proliferation and
suppresses the apoptosis of human Sertoli cells. We have
also identified that miR-100-3p binds to SGK3 in human
Sertoli cells. Therefore, miR-100-3p controls human Sertoli cell
proliferation and apoptosis by targeting SGK3. As such, this
study offers new mechanisms by uncovering epigenetic regulators
for determining the fate determinations of human Sertoli cells.
Given the functional importance of miRNAs in mediating human
reproduction, our study could provide novel targets for gene
therapy of male infertility.
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A bioinformatics screen for non-coding genes was performed from microarrays
analyzing on the one hand trophoblast fusion in the BeWo cell model, and on the
other hand, placental diseases (preeclampsia and Intra-Uterine Growth Restriction).
Intersecting the deregulated genes allowed to identify two miRNA (mir193b and
miR365a) and one long non-coding RNA (UCA1) that are pivotal for trophoblast fusion,
and deregulated in placental diseases. We show that miR-193b is a hub for the down-
regulation of 135 cell targets mainly involved in cell cycle progression and energy
usage/nutrient transport. UCA1 was explored by siRNA knock-down in the BeWo
cell model. We show that its down-regulation is associated with the deregulation
of important trophoblast physiology genes, involved in differentiation, proliferation,
oxidative stress, vacuolization, membrane repair and endocrine production. Overall,
UCA1 knockdown leads to an incomplete gene expression profile modification of
trophoblast cells when they are induced to fuse into syncytiotrophoblast. Then we
performed the same type of analysis in cells overexpressing one of the two major
isoforms of the STOX1 transcription factor, STOX1A and STOX1B (associated previously
to impaired trophoblast fusion). We could show that when STOX1B is abundant, the
effects of UCA1 down-regulation on forskolin response are alleviated.

Keywords: trophoblast, placenta, preeclampsia, intra uterine growth restriction, syncytialisation,
non-coding RNAs

INTRODUCTION

In humans, abnormal placental development is associated with two major pregnancy diseases:
preeclampsia (PE) and intrauterine growth restriction (IUGR).

PE occurs in a range of 2–5% pregnancies, and it is characterized by hypertension and
proteinuria, surging from the mid-gestation at the earliest (Steegers et al., 2010). Despite a certain
degree of heterogeneity in its pathogenesis, a consensus exists that abnormal placentation or
placenta development could be at the origin of the disease. Notably, placental ischemia would

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 May 2021 | Volume 9 | Article 633937109

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.633937
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2021.633937
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.633937&domain=pdf&date_stamp=2021-05-13
https://www.frontiersin.org/articles/10.3389/fcell.2021.633937/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-633937 May 8, 2021 Time: 17:28 # 2

Apicella et al. ncRNA, Trophoblast Fusion and Placental Diseases

cause intermittent hypoxia, oxidative stress, cell death, and the
release to the maternal circulation of anti-angiogenic factors and
debris that promote inflammation and a systemic endothelial
dysfunction (Rana et al., 2019). In some cases, the disease poses
a real threat to the survival of the mother requiring the delivery
of the feto-placental unit. Thus, PE is one of the major causes
of premature births (before 37 completed weeks of pregnancy),
with their cortege of neonate complications (Goldenberg et al.,
2008). The symptoms of the disease disappear after delivery.
However, epidemiological studies have shown that the women
who have suffered a preeclamptic pregnancy have an increased
risk of developing a cardiovascular disease (CVD) later in life
(Newstead et al., 2007; Brouwers et al., 2018), as well as other
diseases affecting strongly vascularized tissues, such as the brain
(Basit et al., 2018).

IUGR refers to a somehow loosely defined condition in which
the unborn baby is smaller than expected for his or her gestational
age (Nardozza et al., 2017). IUGR babies typically have an
estimated weight that falls below that of 90% of unborn babies of
the same gestational age. In addition, IUGR babies are sometimes
born prematurely. Babies with IUGR are at increased risk of
health problems before, and after birth. These problems include
low oxygen levels while in the womb and high levels of distress
during labor and delivery. In the long term, IUGR increases the
risk of developing a metabolic disease such as type 2 diabetes and
CVD (Darendeliler, 2019).

In about one third of the cases, PE is complicated with IUGR,
suggesting that there could be an overlap in the etiology of both
diseases. The considerable similarity in histopathology and gene
expression in the placentas has been recently reported between
both diseases (Awamleh et al., 2019; Gibbs et al., 2019; Medina-
Bastidas et al., 2020).

In the human placenta, the maternal blood is in direct contact
with a continuous multinucleated layer, the syncytiotrophoblast
(STB). This polarized interface releases hormones and mediates
the exchange of nutrients, gases and waste between mother
and the developing fetus (Turco and Moffett, 2019). The
STB is mitotically inactive, formation and constant renewal
of the syncytium depends on the underlying mononuclear
cytotrophoblasts (CTB). Throughout gestation, CTBs proliferate,
differentiate and eventually fuse with the STB via cell-syncytial
fusion. This process is balanced by a concomitant release of
apoptotic material as syncytial knots from the STB to the
maternal circulation. Hence, the process of syncytialization is
critical to the integrity of the STB and in maintaining the
essential functions of the placenta. Several in vitro and in vivo
studies have demonstrated a close, if not a causal, relationship
between structural/functional deficiency of the syncytium and the
development of PE and IUGR (Guller et al., 2008; Roland et al.,
2016; Costa, 2016).

Genome-wide transcriptomic and epigenomic studies have
greatly contributed to the understanding of the molecular
mechanisms involved in either normal or pathological placenta
development. Thus, numerous studies have revealed altered
placental expression of various genes in PE and IUGR (Cox et al.,
2015; Deyssenroth et al., 2017; Chabrun et al., 2019; Majewska
et al., 2019; Benny et al., 2020). A particular category concerns

those genes encoding for non-protein coding RNAs (ncRNAs).
Classes of ncRNAs include transfer RNAs (tRNAs), ribosomal
RNAs (rRNAs), small RNAs, such as microRNAs (miRNAs),
siRNAs, piRNAs, snoRNAs, snRNAs, exRNAs, scaRNAs and
the long ncRNAs (Hombach and Kretz, 2016). The ncRNAs
display a great variety of mechanisms of action including: post-
transcriptional gene regulation through controlling processes like
protein synthesis, RNA maturation, transport and decay, but
also, transcriptional gene regulation through the modification
of chromatin structure (Fernandes et al., 2019). They are an
important basis of epigenetic regulation in the human placenta,
in normal and pathological situations (Hayder et al., 2018;
Apicella et al., 2019). Structurally different ncRNAs engage
diverse mechanisms that lead to different regulatory outcomes.
The discovery of the diversity of functions played by the ncRNAs
in the cell physiology has boosted the exploration of their role in
placental development, physiology and pathology.

The central role of the STB in the physiology of the placenta,
suggests that deregulation of ncRNAs specifically required
for its formation and/or maintenance could be potentially
involved in placental diseases. Here we combined two microarray
analyses, one carried out on the classical fusogenic trophoblast
model BeWo (under the accession number GSE148088) (Kudo
et al., 2004; Ramos et al., 2008; Orendi et al., 2010; Shankar
et al., 2015; Zheng et al., 2016), and one carried out on
total human placentas with normal controls, PE and IUGR
placentas (under the accession number E-MTAB-9416). A cross-
analysis was carried out with a drastic filtering in order to
identify ncRNA that are associated to disease (in the placentas)
and to fusion (induced by forskolin treatment in the BeWo
cells), in parallel.

This cross-analysis allowed the identification of a small subset
of ncRNAs which are consistently modified both during fusion
of trophoblast cells, and in the pathological placentas. We then
carried on our analysis focusing upon the miRNA miR-193b (by a
bioinformatic approach) and the lncRNA UCA1 (through knock-
down (KD) experiments). In addition, we analyzed the effects of
this KD in BeWo cells, overexpressing specifically one of the two
major isoforms of the STOX1 transcription factor (STOX1A and
STOX1B), previously identified as a key player in preeclampsia
(George and Bidwell, 2013), and recently shown to modulate
fusion through a specific equilibrium between its two isoforms
(Vaiman and Miralles, 2016; Ducat et al., 2020). The chart of the
present study is shown as Figure 1.

RESULTS

Transcriptional Modifications in BeWo
Cells Following Forskolin Treatment
BeWo cells were cultured in the presence of 20 µM forskolin
to induce cell fusion (BeWo-FSK). Control cells were grown
with the vehicle, DMSO (BeWo-CO). After 72 h, the total
RNA was extracted, and global gene-expression profiles were
analyzed with microarrays. Comparison of BeWo-FSK relative
to BeWo-CO detected 2109 genes differentially expressed
(DEGs) with a fold change (FC) either ≤-2 or ≥2, and
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FIGURE 1 | Chart of the study, explaining the pivotal aim: connecting non-protein coding genes involved in trophoblast fusion with placental genes altered in human
placental pathologies (Preeclampsia and Intra-Uterine Growth Restriction).

P-value ≤ 0.05 (Figure 2A and Supplementary Table 1). Of
these, 828 genes were up-regulated and 1,281 down-regulated
(Supplementary Table 1). Gene set enrichment analysis (GSEA),
and over representation analysis (ORA) confirmed that our
results were accurately consistent with previous reports having
analyzed transcriptomic changes in BeWo cells after forskolin
treatment (Supplementary Figure 1). In the BeWo-FSK we
detected substantially increased expression of key markers of
syncytialization such as CGA (FC = 10.1; P = 2.1 × 10−11),
CGB1 (FC = 20.5; P = 2.81 × 10−12) or ERVFRD-1 (aka
Syncytin2, FC = 10.6; P = 6.23 × 10−12). Up-regulated DEGs
were associated with biological processes such as cell migration,
vascular development, response to TGF-Beta and response to
hypoxia. Down-regulated DEGs are mainly involved in cell cycle
progression, amino-acid metabolism, and mitochondrial gene
expression (Figure 2B). In terms of hallmarks present in the
GSEA Broad database, inflammation and hypoxia pathways were
particularly enriched in up-regulated genes, while cell cycle,
nutrient sensing via mTORC1 pathway, were strongly enriched

in down-regulated genes, suggesting a whole silencing of basic
pathways of cell physiology and energy expenditure slow down,
accompanying the differentiation of the trophoblast cells into a
syncytial structure.

Differentially Expressed Non-coding
RNAs in Forskolin-Treated BeWo Cells
Three hundred and seven (307) of the DEGs detected in
the BeWo-FSK relative to BeWo-CO, encode annotated
ncRNAs. They belong to different categories including:
sense-intronic RNA, antisense RNA, long non-coding RNA
(lncRNA), circular (circRNA), microRNA (miRNA) and
housekeeping ncRNAs (Y-RNAs, ribosomal RNAs, Small
nucleolar RNAs and transfer RNAs) (Figure 3). The category
of housekeeping ncRNAs was the most represented (111
genes). Nonetheless, we focused our study on the categories
corresponding to regulatory ncRNAs. A selection of the
most significantly modified regulatory ncRNAs detected
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FIGURE 2 | Transcriptomic analysis of BeWo cells after 72 h treatment with forskolin. (A) Summary of transcriptomic analysis. Genes with a fold change (FC) either
≤-2 or ≥2, and P ≤ 0.05 were considered differentially expressed in the BeWo cells treated with forskolin (BeWo-FSK) relative to the untreated cells (BeWo-CO).
(B) Over Representation Analyis (ORA) showing principal Biological processes and Hallmarks enriched by the up-regulated (left) and down-regulated (right) DEGs in
the BeWo-FSK compared to the BeWo-CO.
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FIGURE 3 | Distribution of the different categories of non-coding RNAs (ncRNAs) differentially expressed in the BeWo-FSK.

TABLE 1 | Top 25 differentially expressed regulatory ncRNAs in the BeWo cells
after 72 h of forskolin treatment.

Gene symbol ncRNA class Fold change P-value FDR P-value

hsa-miR-147b miRNA 28.94 8.33E-11 3.53E-07

LINC01511 lncRNA 14.88 8.43E-13 1.63E-08

hsa-miR-4632 miRNA 8.93 6.38E-09 7.80E-06

RP11-420L9.5 antisenseRNA 7.6 1.61E-08 1.48E-05

LINC01237 lncRNA 4.45 2.70E-07 1.00E-04

MYCNUT lncRNA 4.31 3.72E-09 5.15E-06

LINC01164 lncRNA 3.98 1.37E-07 8.14E-05

UCA1 lncRNA 3.76 2.19E-06 7.00E-04

CTB-60B18.12 antisenseRNA 3.46 2.06E-06 7.00E-04

hsa-miR-6810 miRNA 3.36 3.13E-06 9.00E-04

hsa-miR-936 miRNA 3.35 5.99E-06 1.50E-03

SLC2A1-AS1 antisenseRNA 3.23 6.17E-06 1.50E-03

IL10RB-AS1 antisenseRNA 3.14 5.32E-06 1.30E-03

hsa-miR-193b miRNA 2.91 8.00E-04 4.54E-02

hsa-miR-365a miRNA 2.73 3.90E-06 1.10E-03

hsa-miR-6888 miRNA 2.54 8.24E-05 9.80E-03

hsa-miR-3941 miRNA 2.16 3.18E-05 5.10E-03

Hsa-miR-636 miRNA −2.16 4.69E-05 6.70E-03

hsa-miR-301a miRNA −2.27 2.92E-05 4.90E-03

RP11-884K10.7 antisenseRNA −2.84 4.00E-04 2.68E-02

COX10-AS1 antisenseRNA −3.12 5.63E-05 7.60E-03

OLMALINC lncRNA −3.33 9.98E-05 1.12E-02

hsa-miR-1908 miRNA −3.45 6.12E-07 3.00E-04

DLEU2 lncRNA −3.75 8.74E-05 1.03E-02

hsa-miR-6758 miRNA −4.31 8.16E-07 3.00E-04

following forskolin treatment in the BeWo cells is shown
in Table 1. These include the lncRNAs, antisenseRNAs and
miRNAs. The list of the totality of ncRNAs (classified by
category) detected as differentially expressed is provided as
Supplementary Table 2.

Identification of Regulatory ncRNAs
Targets Reveals Their Potential Roles in
Syncytialization
To investigate the role of these ncRNAs in the process of BeWo
fusion we identified their putative targets (when known) using
appropriate databases (miRBase, starBase v2.0. and DianaTools
LncBase v.2). Since miRbase tends to provide a more limited list
of putative target genes (∼10% of the others) for a given miRNA,
and since these were generally largely covered in the other
databases, this constituted the major basis for the establishment
of our lists of targets. Next, we selected among these targets those
which are indeed detected as DEGs in the BeWo-FSK relative to
the BeWo-CO cells. These resulted in a list of 278 up-regulated
and 572 down-regulated DEGs. Out of the deregulated DEG
list (Supplementary Table 1), this represents 33.6% for the up-
regulated and 44.6% for the down-regulated DEGs. Assuming
a total of 50,000 genes including the non-protein coding ones,
the expected proportions are 1.6 and 1.1%, respectively, thus we
observed a significant enrichment of putative targets in both cases
(χ2 contingency test, p < 10−20).

Hallmark enrichment analysis using the ncRNAs targeted-
DEGs revealed that the most significantly impacted functions
are related to the cell cycle progression for the down-regulated
DEGs, while TNF-signaling and hypoxia response are the most
enriched processes for the up-regulated DEGs. Strikingly, these
enriched pathways are quite similar to those obtained with the
total DEG gene set, suggesting that many DEGs contributing to
the definition of the hallmarks are targeted by the ncRNAs.

Network Analysis of ncRNAs and Their
Targets Identifies miR-193b as a Hub
To further analyze the role of the differentially expressed ncRNAs
in the process of BeWo fusion we used the Cytoscape tool
to construct a regulatory network integrating these ncRNAs
and their targets. This resulted in a network composed of
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FIGURE 4 | Network analysis identifies miR193b as a hub regulator (A) Most significantly down-regulated genes in BeWo-FSK targeted by miR193b. (B) Hallmarks
enrichment analysis of the targets of miR193b deregulated in the BeWo-FSK relative to the BeWo-CO.

985 nodes (representing ncRNAs and targets) and 1,775 edges
(representing interactions). Next, we submitted our network to
topological analysis. MiR-193b was identified as the principal hub
of our network, with 135 predicted targets (Figure 4A). Other
lesser hubs corresponding to miR-16, miR-455, and miR-365 are
presented as Supplementary Figure 2. Most of the targets of
miR-193b were down-regulated (108 out of 135) in the BeWo-
FSK relative to BeWo-CO, while miR-193b was significantly
up-regulated (FC = 2.91; P = 0.0008). Hallmarks enrichment
analysis shows that the down-regulated genes targeted by mir-
193b are mainly involved in the control of cell cycle progression
and energy usage/nutrient metabolism (Figure 4B).

A Small Subset of ncRNAs Involved in
Syncytialization Is Also Associated With
Preeclampsia and Intrauterine Growth
Restriction
To identify ncRNAs associated with syncytialization in BeWo
which could be also involved in PE and/or IUGR we compared
the list of ncRNAs identified in BeWo with those identified
in a list from our study on total human placentas with
normal controls, PE and IUGR placentas (E-MTAB-9416) and
other published datasets (GSE114349, GSE114691, GSE75010,
GSE93839, and GSE66273). Comparison of all differentially
expressed ncRNAs, revealed that two miRNAs (miR-193b
and miR-365a) and one lncRNA (UCA1) were found most
consistently up-regulated in both PE and IUGR. Therefore,
miR-193b is associated to trophoblast fusion, together with
pathological placentation, suggesting its overall implication in

normal placental function. A few additional miRNAs where also
found simultaneously differentially expressed in preeclamptic
placentas and in the BeWo-FSK (miR-936; miR-6886; miR-7110;
miR-518A1; miR-4454, and miR-1283-2), but those were not
studied further in the present paper.

We next focused our attention on the lncRNA UCA1.
This was justified by the following: (i) UCA1 is up-regulated
in PE and IUGR but also in primary cultures of human
syncytiotrophoblasts exposed for 24 h to 1% oxygen as compared
to the same cells exposed to 20% oxygen (Table 2), (ii)
also, a study coupling laser microdissection to isolate specific
trophoblast subpopulations and microarray analysis, identified
UCA1 as the most differentially expressed ncRNA in STBs
isolated from the placentas of pregnancies with severe PE relative
to controls (Gormley et al., 2017), (iii) in situ hybridization
confirmed up-regulation of UCA1 in the STBs compartment of
the placenta. Alternative splicing isoforms have been described
for UCA1 (Xue et al., 2016). We found that UCA1 was increased

TABLE 2 | Genome-wide transcriptomic studies showing up-regulation of UCA1
either in preeclampsia or intrauterine growth retardation.

Data set Study Fold change P-value

E-MTAB-9416 IUGR vs. CO 8.91 3.20 × 10−03

GSE75010 PE vs. CO 2.04 2.81 × 10−10

GSE93839 PE STB vs. CO STB 5.93 1.55 × 10−03

GSE66273 PE vs. CO 6.19 3.33 × 10−04

GSE147776 IUGR vs. CO 2.01 3.58 × 10−02

GSE41331 CTB 1%O2 vs. 20%O2 1.86 1.61 × 10−02
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FIGURE 5 | Exon level analysis of UCA1. The microarray ClariomD provides information on the local fluorescence level of a series of probe and allows to calculate a
local splicing index, comparing BeWo cells treated with FSK vs. BeWo cells treated by the DMSO as a vehicle. Isoforms lacking the first portion of the full transcript
are more strongly expressed in the BeWo-FSK comparatively to the BeWo-CO.

in expression by 3.76-fold following FSK treatment. Exon level
analysis of UCA1 (accessible through the ClariomD array used in
this study) shows that probes located in the terminal part of the
gene have a higher level of fluorescence in the forskolin-treated
compared to the control cells (Figure 5). Thus, it shows that in
the BeWo-FSK there is a specific increase in the production of the
shorter isoforms (ENST00000600160.2, ENST00000589333.2) of
UCA1, while the level of expression of the most complete isoform
(ENST00000397381.4) is apparently unaffected.

UCA1 siRNA Knockdown Lead to Altered
Regulation of Genes Involved in Fusion
Mechanisms in BeWo Cells
The effect of the si-RNAs was evaluated by qRT-PCR. UCA1
levels were drastically affected (reduction ranging from 90 to
98% compared to the si-SCR, according to the experiment,
Figure 6A). In a first characterization, we analyzed in BeWoC
cells the expression of genes involved in cell proliferation (ki67,
ITIH5), oxidative stress (NOS3, GCLM and CAV1-also involved
in exosome physiology), membrane repair (ANXA1, ANXA2,
CAV1), trophoblast fusion (Syncytin1, Syncytin2), endocrine
differentiation of trophoblast (CGA/CGB), syncytiotrophoblast
stabilization (TGM2) cell migration (MMP9), oxygen sensing
(INHA), and apoptosis (BAX, BCL2, DAPK1 and BAD). The
KD of UCA1 led to significant alterations of almost all the
genes involved in these pathways (Figure 6). A principal
component analysis was carried out on the qPCR data and
showed a clear separation of the cell replicates (Figure 7).
The first axis (79% of the variation) is driven by the FSK
treatment, while the second axis (10%) contrasts markers
of differentiation vs. markers of proliferation. The analysis
reveals that in terms of gene expression, the KD of UCA1
reduced the differences between FSK treated cells and control
group in the center of the graph. This means that when
levels of UCA1 are strongly reduced, the expression profile
remains closer to that of untreated control cells. These

observations suggest that UCA1 is important for a successful
syncytialisation process.

A statistical test by two-ways ANOVA revealed significant
modifications for most genes except GCLM and DAPK1 (Table 3
and Figure 6). The knockdown of UCA1 by itself affected
all the genes, but MMP9. The FSK effect was significant
in all the genes except UCA1, CGB, KI67 (in addition to
GCLM and DAPK1). Finally, there was a significant interaction
effect between the FSK treatment and the UCA1 KD in the
case of UCA1, CGB, SYNCYTIN2, TGM2, ANXA2, ITIH5,
and BAD. These interaction effects indicate a differential
effect of the UCA1 KD according to the FSK treatment
leading to cell fusion.

Interference Between UCA1 and the
Trophoblast Differentiation Factor STOX1
in BeWo Cells
Previously, we have identified STOX1 as a major actor of
the syncytialisation process in BeWo cells. More specifically,
we showed that the short isoform of STOX1, STOX1B,
antagonizes cell fusion when overexpressed and that disturbing
the STOX1A/B balance mimics specific gene perturbations seen
in PE CTBs in three well-characterized cell lines BeWoA, BeWoB
and BeWoC, the first two overexpressing STOX1A and STOX1B,
20–30- and 6-fold, respectively (Ducat et al., 2020). In the present
paper, analyzing exon-level microarrays, we show now for the
first time that STOX1 isoforms are differentially spliced when
the BeWo cells fuse under forskolin (Supplementary Figure 3),
strengthening the idea that the two isoforms are associated with
different pivotal stages of trophoblast differentiation.

To explore the putative role of UCA1 in the syncytialization
in normal and pathological conditions, we silenced this lncRNA
using a specific small interfering RNA (si-RNA) in BeWo cells
lines permanently transfected either with an empty plasmid
(encoding G418 resistance), or with the same plasmid encoding
for the expression of either STOX1A or STOX1B (These cells are
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FIGURE 6 | qRT-PCR analysis of the efficiency of UCA1 silencing in BeWo cells with or without forskolin treatment, and its effects on several markers of
syncytialization. Genes involved in apoptosis are on the right panel. Stars (*) are marks of a significant effect of the siRNA against UCA1, hashes (#) are marks of
significant effects of the forskolin-induced fusion, and (i) are marks of interaction effects (*, #, i represent p-values below 0.05; **, ##, ii p < 0.01; ***, ###, iiip < 0.001).
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FIGURE 7 | Principal Component Analysis of the BeWo cells treated or not with FSK and with or without the siRNA induced knockdown of UCA1. The squares are
the samples analyzed projected on the two major principal components. The genes are projected as well on the factorial plan, to help for interpreting the axes. The
horizontal axis is correlated with the cell differentiation induced by FSK. The second axis is rather correlated with cell proliferation. Circles are drawn to easily identify
the different categories of treatment. Detailed interpretation is provided in the text.

called BeWoC, BeWoA or BeWoB, respectively). The cells were
transfected with the si-UCA1 or a scrambled siRNA, si-SCR, used
as control. We analyzed by qPCR a panel of 8 genes (including
UCA1), The choice of these 8 genes was motivated by the fact
that strong correlations exist between the 19 genes analyzed
in the first experiment. The chosen genes are representative of
the different pathways analyzed (proliferation-KI67, oxidative

stress-INHA, trophoblast differentiation-SYN1, apoptosis-BCL2,
BAX, invasion-MMP9, endocrine differentiation-CGA). The
results are presented as a histogram (Figure 8A), with statistical
values presented in Supplementary Table 3 (ANOVA), and as
a PCA analysis, where the two first axes account for 40 and
19.5% of the variance (Figure 8B). BeWoC cells (represented
by squares) harbor the same profile with the 8 genes from the
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TABLE 3 | Statistical analyses of individual gene effects following UCA1 knock-down ± FSK treatment (significant values are in red fonts).

Overall tests of univariate models Tests of univariate effects

Y variable F Prob. Source F Prob.

UCA1 22.504 0.00029659 Si treatment 56.948 6.6307 × 10−05

Fusion 4.288 0.07213567

Si treatment*Fusion 6.275 0.03665572

CGB 8.208 0.00797657 Si treatment 10.373 0.01222583

Fusion 0.283 0.60936093

Si treatment*Fusion 13.967 0.00572781

CGA 127.930 4.243 × 10−07 Si treatment 43.849 0.00016558

Fusion 336.346 8.0411 × 10−08

Si treatment*Fusion 3.596 0.09452054

GCLM 2.521 0.13152052 Si treatment 4.143 0.07620217

Fusion 0.975 0.3524659

Si treatment*Fusion 2.445 0.15650114

NOS3 14.589 0.00131394 Si treatment 15.149 0.0045949

Fusion 28.613 0.0006866

Si treatment*Fusion 0.004 0.95003544

CAV1 5.155 0.02833346 Si treatment 7.939 0.02257829

Fusion 7.147 0.02821257

Si treatment*Fusion 0.379 0.55505375

KI67 13.163 0.00184323 Si treatment 34.327 0.00037894

Fusion 0.891 0.37283458

Si treatment*Fusion 4.272 0.07257943

SYN2 23.107 0.00027009 Si treatment 39.848 0.00022968

Fusion 18.244 0.00271954

Si treatment*Fusion 11.229 0.01006638

TGM2 51.718 1.3944 × 10−05 Si treatment 63.473 4.4987 × 10−05

Fusion 84.869 1.5606 × 10−05

Si treatment*Fusion 6.811 0.0311362

ANXA2 39.218 3.939 × 10−05 Si treatment 23.397 0.00129298

Fusion 43.573 0.00016922

Si treatment*Fusion 50.685 0.00010006

ITIH5 56.208 1.0168 × 10−05 Si treatment 37.157 0.00029085

Fusion 125.667 3.5958 × 10−06

Si treatment*Fusion 5.801 0.04260521

SYN1 10.209 0.00413556 Si treatment 15.939 0.00399228

Fusion 14.682 0.00500579

Si treatment*Fusion 0.005 0.94569912

ANXA1 96.898 1.2527 × 10−06 Si treatment 45.870 0.00014171

Fusion 243.711 2.8262 × 10−07

Si treatment*Fusion 1.114 0.32213654

MMP9 5.171 0.02810927 Si treatment 1.134 0.31791426

Fusion 13.560 0.00619729

Si treatment*Fusion 0.819 0.39182403

INHA 137.727 3.1788 × 10−07 Si treatment 40.502 0.00021729

Fusion 372.037 5.4151 × 10−08

Si treatment*Fusion 0.641 0.44650823

BAX 21.540 0.00034606 Si treatment 36.796 0.00030055

Fusion 25.245 0.00102124

Si treatment*Fusion 2.580 0.14686479

BCL2 8.774 0.00654947 Si treatment 13.427 0.00636233

Fusion 12.786 0.00723255

Si treatment*Fusion 0.110 0.74867557

(Continued)
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TABLE 3 | Continued

Overall tests of univariate models Tests of univariate effects

Y variable F Prob. Source F Prob.

DAPK1 2.339 0.14975061 Si treatment 2.106 0.18480454

Fusion 2.027 0.1923598

Si treatment*Fusion 2.884 0.12788132

BAD 32.681 7.7268 × 10−05 Si treatment 55.723 7.1629 × 10−05

Fusion 36.270 0.0003154

Si treatment*Fusion 6.050 0.03934242

previous analysis: in the condition where the KD of UCA1 is
combined with FSK treatment, the expression profile is close
to the one of BeWoC cells without FSK and not treated with
the siUCA1. Overall, the FSK effects were all oriented in the
same direction of the first axis (clear to dark colors), which
can thus be interpreted as a mark of FSK-induced trophoblast
differentiation. A strong difference Between BeWoA, BeWoB
and the control BeWoC comes from the variation along the
second axis, showing that in this case, STOX1-overexpressing
cells in the presence of forskolin are positioned with increasing
abcissae, suggesting that this axis correlate with STOX1-driven
differentiation in the presence of forskolin. When UCA1 is KD,
the effect of STOX1 are less pronounced on the second axis (red
squares, lozenges-BeWoA and circles-BeWoB). In the absence of
FSK the STOX effects are less obvious and the dots are all in the
middle of the graph.

Interestingly, the gene expression profiles are very peculiar in
BeWoB cells under FSK treatment when analyzing UCA1 effects.
On the first axis, UCA1 KD is not able to modify strongly the
x-axis in these cells (from ∼2.3 to 1.5, 1 = 0.8), while in control
BeWoC, the modification on the x-axis ranges from∼1.9 to−0.5,
1 = 2.4, and in BeWoA from ∼2.2 to 0.5, 1 = 1.7. The effect
on gene differentiation was thus less reduced in BeWoB cells,
comforting the idea that BeWoB overexpression and UCA1 KD
act similarly but not synergistically against trophoblast fusion.
This may be associated to the fact that STOX1B overexpression
is associated with deficits of syncytialization (Ducat et al., 2020).

DISCUSSION

In the placenta, the STB acts as a barrier between the mother
and fetus, and functions in gas exchange, nutrient, waste
transport and hormone production. The STB is mitotically
inactive and is formed by the constant cell-cell fusion of the
underlying mononuclear CTBs. STB fragments are continuously
shed into the maternal circulation. Thus, maintenance of the
STB requires a finely regulated turnover. Excessive or restricted
CTB-STB fusion may lead to PE, IUGR, and implantation failure
(Gauster et al., 2009).

Although derived from human choriocarcinoma, the BeWo
cells, display structural and physiological features of human
primary trophoblast (Burres and Cass, 1986; Ramos et al., 2008;
Orendi et al., 2010) and have been largely used as a model to
study the process of trophoblasts fusion induced by forskolin

treatment (Chen et al., 2008; Zhou et al., 2013; Wang et al., 2014).
Several transcriptomic studies have helped to identify important
genes involved in trophoblast fusion (Kudo et al., 2004; Depoix
et al., 2011; Shankar et al., 2015; Zheng et al., 2016). However,
the majority of these studies have focused on the role of protein-
coding genes. The role that ncRNAs could have in the trophoblast
fusion remains to be explored.

Here, we have conducted a microarray transcriptomic analysis
of BeWo cells under forskolin treatment (BeWo-FSK) and
focused our analysis on the differentially expressed ncRNAs
relative to controls (BeWo-CO). We identified a number of
ncRNAs (antisense-RNAs, lncRNAs, miRNAs) which might
be involved in the process of syncytialization in vivo. We
have generated a network displaying the putative regulatory
interactions among the differentially expressed ncRNAs and
differentially expressed genes (DEGs) in the BeWo-FSK relative
to the BeWo-CO. The analysis of this network shows that the
majority of ncRNAs targets are involved in cell proliferation
and metabolism. Topological analysis of the network identified
miR193b as a principal hub of the network. Hallmarks
enrichment analysis shows that most targets of miR193b are
down-regulated genes involved in cell cycle progression such as
CCND1, CCNA2, or BUB1B. Previous studies have shown that
miR193b acts as tumor suppressor by repressing cell proliferation
(Mazzu et al., 2017; Zhang et al., 2017; Bhayadia et al., 2018). In
the context of placental development, it has been reported that
mir193b-3p overexpression significantly decreases the migration
and invasion of the trophoblast cells (HTR-8/SVneo) by targeting
the 3′UTR of TGF-beta2 (Zhou et al., 2016). The miR193b has
been found consistently up-regulated in PE and IUGR placentas
in our study and others (Ishibashi et al., 2012; Xu et al., 2014;
Zhou et al., 2016; Awamleh et al., 2019). This miRNA is thought
to contribute to these pathologies because of its inhibitory effect
on the migration and invasion of trophoblasts. Here we show
that miR193b is also involved in the process of syncytialization.
A prior, and key step in syncytialisation, is the acquisition of
fusion competence, which requires the CTB to exit the cell
cycle (Lu et al., 2017). Therefore, by targeting genes involved
in the control of cell cycle progression, miR193b could play a
pivotal role in this crucial step of the process of syncytialisation.
Overexpression of miR193b in PE could negatively impact
placental development by accelerating CTB-STB fusion, thus
leading to a premature depletion of the pool of CTBs necessary to
ensure the constant renewal of the STB. Alternatively, increased
miR193b expression in PE could reflect a mechanism seeking to
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FIGURE 8 | (A) qRT-PCR analysis of the efficiency of UCA1 silencing in controls BeWoC and BeWo overexpressing either STOX1A or STOX1B, with or without
forskolin treatment, and its effects on several markers of syncytialization. (B) Principal Component Analysis of the BeWo cells [controls BeWoC (circles) and
overexpressing either STOX1A (lozenges) or STOX1B (circles)]. The genes are represented in black bold characters. The rectangles show the position of the different
replicates. Red color marks UCA1 KD, while green are control cases. Dark colors mark FSK treatment. The interpretation of the axes is marked by black arrows.

compensate an excessive apoptotic shedding of the syncytium by
facilitating the entering of CTB into the fusion process.

Since a dysfunctional syncytium could be at the origin
of placental diseases, we systematically searched for lncRNAs

involved in the CTBs fusion that were deregulated in placentas
from PE or IUGR. An exhaustive literature search, as well and
the reanalysis of datasets available in the GEO Database resulted
in the identification of three lncRNAs consistently up-regulated
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in PE and IUGR and involved in syncytialization: miR193b,
miR365a and UCA1.

UCA1 (Urothelial Cancer Associated 1), is a lncRNA initially
identified in a bladder cancer cell line (Wang et al., 2006). The
involvement of lncRNAs in placental diseases has been previously
described for the HELLP syndrome, a serious complication of
preeclampsia (van Dijk et al., 2012). In the case of UCA1
high expression has previously been reported in different
types of cancer. UCA1 promotes cell proliferation, tumor
progression, migration and drug resistance. UCA1 mediates the
transcriptional regulation at an epigenetic level by interaction
with chromatin modifiers (EZH2, CTCF, YAP,. . .), by direct
regulation via chromatin looping and/or by sponging miRNAs
(Neve et al., 2018). The oncogenic functions of UCA1 have
been extensively studied, but its role in development and
differentiation remains unknown. A recent study, using the HTR-
8/SVneo and JAR trophoblast cells suggests that UCA1 could
inhibit trophoblast cell invasion and proliferation by down-
regulating JAK2 (Liu et al., 2020). Knockdown of UCA1 in
these cells suppressed the apoptotic rate and accelerated cell
proliferation. Increased expression of UCA1 in PE had been
reported previously and confirmed by our study (Liu et al., 2020).
In addition, increased expression of UCA1, specifically in the
STB of preeclamptic placentas, has been reported (Gormley et al.,
2017). Thus, these data suggest that similar to miR193b, UCA1
might contribute in driving CTBs toward syncytialisation by
inhibiting the genes involved in cell proliferation. The increased
expression of UCA1 in the preeclamptic syncytium could reflect
an increase in the turnover of the syncytium, to compensate for
an increased apoptotic rate (Sharp et al., 2010; Fogarty et al.,
2013). However, suppression of UCA1 in the HTR-8/SVneo and
JAR cells decreased their apoptotic rates, indicating that UCA1
could also be involved in the induction of apoptosis (Liu et al.,
2020). To explore more deeply the role that UCA1 might play
in the process of syncytialization, we silenced its expression in
the BeWo cells (BeWo-CO and BeWo-FSK) using a specific
small interfering RNA (siRNA). Our results show that silencing
UCA1 results in the downregulation of proliferation, attenuation
of the expression of several markers of syncytialization, and
most significantly downregulation of the expression of the
antiapoptotic marker BCL2. As mentioned above in the HTR-
8/SVneo and JAR cells, the Knockdown of UCA1, suppressed
the apoptotic rate and accelerated cell proliferation (Liu et al.,
2020). Thus, suppression of UCA1 in BeWo cells seems to have a
different impact concerning the proliferation and apoptosis rates.
These differences could be attributed to the fact that these cell
lines are akin to different types of CTBs or either to particularities
linked to the tumoral transformation process undergone by these
cells. Nevertheless, our results on the BeWo cells are consistent
with other studies indicating that in many cell types, UCA1
stimulates proliferation and inhibits apoptosis (Jun et al., 2018;
Liu et al., 2018; Chen et al., 2019; Li et al., 2019; Wang et al.,
2019). One limit of our study is that we did not carry out
cell visualization experiments of the fusion; we can nevertheless
assume that the alterations of syncytialisation marks that we
observe here will likely be associated to phenotypic effects, that
will have to be further assessed in future works.

Having in hand a model of altered fusion by STOX1A
(BeWoA) or STOX1B (BeWoB) overexpression we attempted
to evaluate the effect of UCA1 KD in these specific models.
The overexpression of STOX1B (inhibiting fusion) led
to more limited gene alterations than the other cells
when forskolin was added in the Knock down of UCA1,
suggesting that the alterations of gene expression induced by
STOX1B overexpression render the UCA1 down-regulation
alterations less visible.

Interestingly, hypoxia which plays a central role in the
development of PE is known to induce UCA1 expression
through HIF1A in both cancer cell lines and primary cultures
of STB (Yuen et al., 2013; Xue et al., 2014; Zhu et al.,
2019; Wang et al., 2020). In addition, it has been shown
that UCA1 inhibits ischemia/reperfusion-induced apoptosis in
cardiomyocytes (Chen et al., 2019; Wang et al., 2020). Given
that ischemia/reperfusion is a known hallmark of severe PE
and knowing that UCA1 has been detected as overexpressed
specifically in the STB of severe preeclamptic patients (Gormley
et al., 2017), it is tempting to speculate that UCA1 overexpression
could reflect a protective mechanism aimed to attenuate
apoptosis. However, in other cell types UCA1 has proved to
exert pleiotropic effects, thus it might be involved in many
other aspects of the trophoblast physiology. Although the BeWo
cells are a good model to study the cell fusion process they
are transformed carcinoma-like cells missing many trophoblast
functions. Therefore, a more in-depth analysis of the functions
of UCA1 in the placenta requires more physiological models
such as primary trophoblast cultures, or placental organocultures.
Another direction for future work is the assessment of the
specific effects of the short isoforms of UCA1 that appear to
be specifically modified when fusion occur. To note, we have
recently demonstrated that alternative splicing is a general feature
of placental disease, affecting hundreds of genes (Ruano et al.,
2021). This could be achieved by lentiviral transformation of
the cell lines, or even primary cultures with this short isoform.
Finally, to understand better how UCA1 is actually functioning is
an interesting challenge for further studies.

METHODS

Cell Culture
BeWo cell lines were cultivated in F12 medium (Life
Technologies) supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin/streptomycin in 6-cm diameter plates,
up to 60% confluence and with 50 µg/ml of geneticin G-418.
The generation of the BeWoA (overexpressing constitutively
STOX1A), BeWoB (overexpressing constitutively STOX1B)
and BeWoC cell lines is described in detail in Ducat et al.
(2020). The concentration of forskolin chosen for this study
was based on preliminary studies (Ducat et al., 2020). At the
end of the treatment, total RNA was extracted as previously
described (Ducat et al., 2016). The siRNA against UCA1 was
Ambion silencer select provided by ThermoFisher scientific.
After plating in 12-well plates (1 ml) at 70% confluency, the cells
were transfected the nest morning using RNAiMAx transfection
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reagent (Invitrogen). Each well was transfected with 200 µl of
OptimemTM with 1 µl of RNAiMax and 0.5 µl of siRNA or si
scrambled at 5 pmol/µl, following the manufacturer’s protocol.
To induce syncytialization the cells were treated 1 day later with
20 µM forskolin or vehicle (DMSO) for 72 h.

Microarray Assay
One hundred ng of RNA per sample were analyzed using the
ClariomD (Affymetrix) microarray assay. Library preparation,
hybridization and data acquisition were performed by
GENOM‘IC platform according to manufacturer‘s instructions.
Gene and exon level expressions were processed and extracted
from the ClariomD microarray using the Transcriptomic
Analysis Console (TAC) provided by Affymetrix.

Quantitative Reverse Transcribed-PCR
Five hundred nanograms of total RNA were reverse transcribed
with MMLV using the Invitrogen kit and random primers. qPCR
was carried out under standard conditions in a LightCycler480
(Roche) in 96 well plates as previously described (Ducat et al.,
2020), with a Sybrgreen kit from BioLine (Meridian Bioscience).
In the case of UCA1, the analysis was carried out using a TaqMan
probe and the Roche LightCycler R© TaqMan R© Master. The PPIA
gene (cyclophilin) was used as reporter in all experiment,
since we have shown previously an excellent stability of this
gene in trophoblast cells. All the cell qPCR experiments were
carried out three to four independent times, and every time
in triplicates. Primers for the different genes are listed as
Supplementary Table 4.

Functional Annotation of the
Differentially Expressed Genes (DEGs)
For the functional annotation of the DEGs we performed
Over-representation analysis (ORA) using the WebGestalt1

bioinformatics resource (Liao et al., 2019). Databases
interrogated include: Gene Ontology (GO), Kyoto Encyclopedia
of Genes and Genomes (KEGG), and Hallmarks. The significance
of the detected enrichments was calculated using the Benjamini
and Hochberg multiple test adjustment.

Gene Set Enrichment Analysis (GSEA)
GSEA was conducted using GSEA software from the Broad
Institute2. The BeWo fusion gene set was generated using the
top up-regulated and down-regulated genes after 72 h forskolin
treatment reported by Shankar et al. (2015). We used as input the
gene expression matrix generated by the Transcriptomic Analysis
Console (Affymetrix) including all samples and replicates. The
permutation value was set as 1,000. P-values were corrected
for multiple testing and the cutoff for significant enrichment
corresponds to an FDR < 0.25.

Prediction of ncRNAs Targets
To identify targets for the differentially expressed ncRNAs in the
BeWo-FSK relative to BeWo-Co cells we used ad hoc databases.
1http://bioinfo.vanderbilt.edu/webgestalt
2https://www.gsea-msigdb.org/gsea/index.jsp

These include miRBase3, starBase v2.0.4 and the DianaTools
LncBase v.25.

ncRNAs Regulatory Network
The ncRNAs and corresponding differentially expressed targets
were used to generate a regulatory network. The network was
constructed, visualized and analyzed using the Cytoscape 3.2.1
software6 and its complementary applications (Shannon et al.,
2003). The centrality parameters of the network were analyzed
using the Cytoscape application NetworkAnalyzer (Shannon
et al., 2003). Two topological parameters Betweenness Centrality
(BC) and node degree were used to identify hub genes. The
network is available as a Supplementary XML File.
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Supplementary Figure 1 | GSEA analysis of the data from the present paper in
comparison with published data, demonstrating an extreme similarity of our data
compared to published datasets (Shankar et al., 2015).

Supplementary Figure 2 | Presentation of the network of deregulated genes in
the predicted targets of miR-16, miR-455, and miR-365.

Supplementary Figure 3 | STOX1 expression levels at the probe level along the
gene. Junction probes analysis revealed that a large part of the 3′ exon is less
present in FSK-streated cells. This decrease in a series of probes reveal that
STOX1A is twice as abundant as STOX1B when the cells are not fused, while in
the context of fusion the ratio STOX1A/STOX1B drastically changes.
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