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Editorial on the Research Topic

Genomic Selection: Lessons Learned and Perspectives

Genomic selection (GS) has been one of the most prominent Research Topics in breeding science
in the last two decades after the milestone paper by Meuwissen et al. (2001). Its huge potential for
increasing the efficiency of breeding programs attracted scientific curiosity and research funding.
Many different statistical prediction methods have been tested, and different use cases have
been explored.

We organized this Research Topic to look both back and forward. The objectives were to review
the developments of the last 20 years, to provide a snapshot of current hot topics, and potentially
also to define areas on which more (or less) focus should be put in the future, thereby supporting
readers with formulating and prioritizing their ideas for future research.

Several questions were brought up when organizing this Research Topic including: How did GS
change breeding schemes?Which impact did GS have on realized selection gain?What, considering
the context of particularities of different crops, may be optimal breeding schemes to leverage the
full potential of GS? What has been the impact of and what is the potential of hybrid prediction,
statistical epistasis models, deep learning and other methods? What are the long-term effects of
GS? Can predictive breeding approaches also be used to harness genetic resources from germplasm
banks in a more efficient way?

Having closed our Research Topic, we are happy to present a solid collection of 21 contributions
from 149 authors which reviews the past work around GS, presents new insights, and points
at topics with potential for future research. The 21 contributions consist of 12 original research
articles, a method paper, two review contributions, five opinion articles and a perspective.

Concerning original research, the main topics that have been addressed were “genetic
architecture” and “genetic architecture enhanced prediction methods,” “shortening the
breeding cycle,” “genotype x environment interaction,” “sparse-testing,” and “genomic selection
in polyploids.”

Additionally to considerations aroundGS formajor staple crops, Ferrão et al. “propose a strategy
for using genomic selection in blueberry, with the potential to be applied to other polyploid species
of a similar background.” In particular, the authors highlight that “the use of additive effects
under a linear mixed model framework (GBLUP) showed the best balance between efficiency and
accuracy.” The topic of GS in tetraploids has also been considered by Wilson et al. for the case of
potato. Moreover, Liu et al. investigated prediction methods based on genes known to be relevant
for fiber length in cotton. Pégard et al. considered GS for poplar in the context of forest tree
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breeding and highlight “that genomic evaluation performance
could be comparable to the already well-optimized pedigree-
based evaluation under certain conditions [. . . ] Genome-based
methods showed advantages over pedigree counterparts when
ranking candidates at the within-family levels, for most of
the families.”

The other eight original research contributions were related to
wheat, maize and rice.

Bonnett et al. addressed the application of GS in a wheat
breeding pipeline. In particular, the authors considered
the performance of selected material when applying
genomic selection with different prediction methods in an
early generation.

The topic of modeling environmental effects and genotype-
by-environment interactions (GEI) was addressed by several
authors. Westhues et al. included environmental predictors in GS
using gradient boosting. Based on “data collected by the Maize
Genomes to Fields” initiative, the authors found that “Accuracy
in forecasting grain yield performance of new genotypes in
a new year was improved by up to 20% over the baseline
model by including environmental predictors with gradient
boosting methods.” Genotype-by-environment interactions were
also considered by Tomar et al. who investigated the predictive
ability of a multi-environment genomic prediction model for
yield in spring wheat. Atanda et al. and He et al. considered the
modeling of GEI with the focus on applications in sparse-testing,
and Rembe et al. investigated the impact of GEI on reciprocal
recurrent genomic selection.

Ma and Cao addressed the dissection of grain yield of maize
and compared the predictive ability of different approaches, in
particular when incorporating markers associated with the traits
of interest as a fixed effect in the statistical model. Finally, Cao
et al. addressed genomic prediction of resistance to Tar Spot.

As a contribution of a method article, Schrauf et al.
discussed how to compare different genomic prediction
models by cross validations. The authors “emphasize the
importance of paired comparisons to achieve high power in
the comparison between candidate models, as well as the need
to define notions of relevance in the difference between their
performances. Regarding the latter,” the authors “borrow the idea
of equivalence margins from clinical research and introduce new
statistical tests.”

As review contributions, Fritsche-Neto et al. reviewed GS in
small scale maize hybrid programs and Simeão et al. described
the current status and future application of GS in tropical
forage grasses.

Concerning opinion articles, Crossa et al. presented their view
on the “Modern Plant Breeding Triangle,” comprising genomics,
phenomics, and environomics. Martini et al. highlighted the
challenges that prediction approaches face when aiming at
harnessing genetic resources, that is predicting diverse material
which may not be sufficiently represented in the training
set. Covarrubias-Pazaran et al. outlined how public breeding

programs could be strengthened by focusing on quantitative
genetics principles, and by sharing data resources including
genomic data and breeding values predicted from experimental
evaluations from different organizations. Another opinion
contribution was provided by Gholami et al. who compared
the adoption of GS across different breeding institutions, in
more detail dairy cattle breeding and public and private plant
breeding programs. The authors highlight that differences in
the organizational structure of plant and animal breeding
institutions, as well as differences in the cost-benefit structures
of the use of GS in private and public plant breeding may have
been the cause for differences in the adoption of GS. Gianola
contributed with his reflections on trends and developments in
statistical genetics addressing for instance the “deconstruction of
genetic architecture” and highlighting that “quantitative genetics
provides just a linear (local) approximation to complexity
with little (if any) mechanistic value.” Moreover, the author
emphasized the principal of parsimony in genetic models and
that a bias of a statistical method does not need to be a problem
but that “practically all machine learning methods (e.g., random
forests) provide biased predictions that, on average, will be better
than unbiased machines.”

In the direction of what Gianola called the “linear (local)
approximation,” Powell et al. argue that “The implicit capture
of non-stationary effects of alleles requires the G2P map
to be re-estimated across different contexts” and discuss the
“development and application of hierarchical G2P maps that
explicitly capture non-stationary effects of alleles.”

The rough outline of the content of our Research Topic
emphasizes that GS is now well-established across many plant
species. Moreover, five out of 12 research articles were related
to GEI indicating the relevance of this topic in current research.
Plant breeding programs may have more need to estimate GEI
because a program’s purpose is to develop improved varieties
which is inherently tied to the target environments. Was our
Research Topic able to answer all the questions originally
formulated? We do not think so. For instance, additional
contributions on the optimal use of GS for different crops, but
also a more detailed retrospective analysis of realized selection
gain after the introduction of GS, or the relevance of epistasis
models, hybrid prediction and new machine learning models
would have been desirable.

We hope that our Research Topic supports readers with the
priorization of their own ideas for future investigation, and we
look forward to a potential second volume, maybe 25 years after
the milestone paper by Meuwissen et al. (2001).
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Forest trees like poplar are particular in many ways compared to other domesticated

species. They have long juvenile phases, ongoing crop-wild gene flow, extensive

outcrossing, and slow growth. All these particularities tend to make the conduction of

breeding programs and evaluation stages costly both in time and resources. Perennials

like trees are therefore good candidates for the implementation of genomic selection (GS)

which is a good way to accelerate the breeding process, by unchaining selection from

phenotypic evaluation without affecting precision. In this study, we tried to compare GS

to pedigree-based traditional evaluation, and evaluated under which conditions genomic

evaluation outperforms classical pedigree evaluation. Several conditions were evaluated

as the constitution of the training population by cross-validation, the implementation

of multi-trait, single trait, additive and non-additive models with different estimation

methods (G-BLUP or weighted G-BLUP). Finally, the impact of the marker densification

was tested through four marker density sets. The population under study corresponds

to a pedigree of 24 parents and 1,011 offspring, structured into 35 full-sib families. Four

evaluation batches were planted in the same location and seven traits were evaluated

on 1 and 2 years old trees. The quality of prediction was reported by the accuracy, the

Spearman rank correlation and prediction bias and tested with a cross-validation and an

independent individual test set. Our results show that genomic evaluation performance

could be comparable to the already well-optimized pedigree-based evaluation under

certain conditions. Genomic evaluation appeared to be advantageous when using an

independent test set and a set of less precise phenotypes. Genome-based methods

showed advantages over pedigree counterparts when ranking candidates at the

within-family levels, for most of the families. Our study also showed that looking at ranking

criteria as Spearman rank correlation can reveal benefits to genomic selection hidden by

biased predictions.
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1. BACKGROUND

Forest tree species of interest for domestication like poplar
are particular in many ways compared to other domesticated
species, notably when it comes to breeding. Among the various
particularities, forest trees have long juvenile phases, ongoing
crop-wild gene flow, and extensive outcrossing (Miller and
Gross, 2011). All of these hamper the process of “controlled”
recombination by the breeder. Slow growth and cumbersomeness
typical of trees do not facilitate either the conduction of breeding
programs, notably with evaluation stages being costly both
in time and resources. One of the poplar’s particularities is
clonality or the possibility of asexual reproduction, which is a
powerful tool in evaluation and operational breeding (Bisognin,
2011). However, benefits rarely go hand in hand with simplicity.
Typically for developing a new poplar variety, a first year is used
for mating and seedling growth in nurseries. A second year is
used to propagate the cuttings and install the experiments using
a statistical design to do evaluations in different environments,
and many subsequent years pass before we can assess genotype-
by-environment (G × E) interactions, or late maturation traits
like wood quality. Selection in poplars proceeds typically via
independent level stages (independent culling levels), with early
stages involving screening for fast-growing, disease-resistant
individuals from large numbers of candidates. Late stages focus
on a reduced remainder to select on final growth, architecture,
disease resistance, and wood properties. This has been so far
operationally efficient considering the constraints imposed by the
particularities of trees, but it remains time consuming and lacks
precision at the early stages.

For previous and additional reasons, perennials like trees are
good candidates for the implementation of genomic selection
(GS) (Muranty et al., 2014). GS can potentially accelerate the
breeding process, by unchaining selection from phenotypic
evaluation without affecting precision (Meuwissen et al., 2001).
When applied early at the seedling stage, GS could potentially
save evaluation resources and reduce the time required for
evaluation of late maturation traits. GS involves ranking and
selecting individuals by using a genome-wide marker set and
prediction models calibrated previously in a training set. GS has
been made possible thanks to easy access to cheap genotyping
data, and to recent developments in evaluation methodology (de
los Campos et al., 2009). Recent studies of GS in forest trees
were conducted on several species: eucalypts (Resende et al.,
2012b; Müller et al., 2017; Tan et al., 2017, 2018; Cappa et al.,
2019; Ballesta et al., 2020), spruce (Gamal El-Dien et al., 2015,
2016; Ratcliffe et al., 2015; Lenz et al., 2017, 2020; Chen et al.,
2018; Chamberland et al., 2020), pines (Resende et al., 2012a;
de Almeida Filho et al., 2016; Ratcliffe et al., 2017; Gianola and
Fernando, 2020; Ukrainetz and Mansfield, 2020), and rubber
trees (Cros et al., 2019; Souza et al., 2019). Given the differences
among forest species in general, and between their breeding
programs in particular, assessments of GS feasibility at a case-by-
case basis are often desirable.

According to Hayes et al. (2009), several parameters are
involved in genomic evaluation accuracy. First, the extent of

linkage disequilibrium in the population, which is linked to
the effective population size, affects the accuracy of genomic
prediction. Linkage facilitates the use of markers as proxies
of unknown QTLs in estimating genetic effects. The required
marker density is directly dictated by the extent of linkage
disequilibrium: the lower the linkage disequilibrium, the higher
the number of requiredmarkers (Grattapaglia and Resende, 2011;
Wientjes et al., 2013). The second parameter of importance for
accuracy is the composition of the training set. Such a set must
be representative of the candidates for which a prediction is
required. Several studies developed methods to optimize the
composition of the training set (Rincent et al., 2012; Akdemir
et al., 2015; Isidro et al., 2015). The third parameter is trait
genetic architecture, usually unknown or poorly understood,
but that has an influence on the performances of the different
evaluation methods (Wimmer et al., 2013). Some evaluation
methods, such as those using some efficient strategy to focus only
on relevant variables like the family of bayesian methods, appear
to be more efficient with traits with fairly uneven distributions
of gene effects. Other methods with less stringent a priori on
the distribution of gene effects work generally well with highly
polygenic traits, like G-BLUP. Other modeling approaches intent
to capture the underlying complexity of genetic architectures,
by including non-additive effects like dominance and epistatic
interactions (Toro and Varona, 2010; Su et al., 2012; Vitezica
et al., 2013, 2017; Muñoz et al., 2014; Martini et al., 2017), and by
considering multiple correlated traits. The latter have not been
often used, despite some promising simulation studies (Calus
and Veerkamp, 2011; Guo et al., 2014), empirical studies (Jia
and Jannink, 2012), and the known fact from classical evaluation
that genetic correlations can back accuracies of poorly heritable
traits or those harboring many missing values in the dataset
(Gilmour et al., 2009).

In the present work, we intended to benefit from the large
corpus of knowledge already established around the concept of
GS to carry out a proof-of-concept study on the feasibility of the
methodology in the context of the black poplar breeding program
in France. Black poplar is the leading Eurasian species of riparian
forest, with a wide distribution area, and contributing as a parent
together with Populus deltoides to one of the most widely used
hybrid (Populus × canadensis) tree in the wood industry. This
study is the first GS study for a Populus species. One of the
main objectives of the study was to compare GS to pedigree-
based traditional evaluation, by assessing different modeling
options including non-additive genetic effects and multiple-
trait evaluation. The study also considered the role of marker
densification in the performance of GS, by benefiting from a
recent imputation study (Pegard et al., 2018). The potential
benefits of shortening the breeding cycle, although of importance,
were not evaluated but only discussed in present work, because
of the relatively late sexual maturity in the species. Finally, the
design of the calibration and validation sets was taken into
account as an additional factor in the comparison. Globally, the
study intended to identify the situations in which GS could be a
feasible option for poplar, and also the assessments required to
reveal any eventual advantage.
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TABLE 1 | Description of the pedigree and distribution of family sizes after correction of the pedigree from the marker information.

Father SAN-GIORGIO

Mother SRZ BDG 71077-308 92510-1 72145-007 72131-017 73182-009 73193-056 72131-036 3824-3 71034-2-406 72146-11 Total

VGN 55 57 54 32 34 14 30 276

71041-3-402 28 11 17 30 25 111

71072-501 25 28 29 82

SSC 15 20 20 22 77

71040 24 20 44

662200037 25 32 118 31 206

73193-089 22 20 18 60

662200216 31 19 50

71069-914 22 22

73193-091 21 30 51

H480 13 19 32

Total 95 133 114 71 79 108 208 79 19 56 19 30 1,011

Colors correspond to experimental field trials: green for the trial conducted in 2000/2001, pink for the trial conducted in 2012/2013, blue for the trial conducted in 2014/2016, and

orange for the trial conducted in 2017/2018. These latter individuals represent two parental females (underlined codes) are progenies of VGN and BDG and were subsequently used as

parent for the multiple pair mating.

2. MATERIALS AND METHODS

2.1. Plant Material
The population under study corresponds to a pedigree of 24
parents and 1,011 offspring, structured into 35 full-sib cohorts,
and involving a 4 by 4 factorial mating design together with
a series of multiple pair-mating designs (Pegard et al., 2018).
Most of the parents were sampled from natural populations
or were high-performance trees already used in the breeding
program. The population corresponds therefore to the offsprings
of these individuals obtained by controlled crosses. The effective
population size was estimated to be 12 from coancestry matrices
(Caballero, 2000) computed from pedigree corrected by marker
information. Family size ranged from 10 to 118, with an
average of 26 individuals per family. Pedigree description and
distribution of family sizes are available in Table 1.

2.2. Phenotyping
Field evaluations corresponded to four different experimental
trials. All four experimental trials were planted in the same
location (47◦ 37’59” N, 1◦ 49’59” W, Guéméné-Penfao,
France) with small variations in plot orientation and with
common genotypes as controls across experimental trials
(Supplementary Table 1). The first experimental trial (2000
and 2001) involved the factorial mating design with a total
of 14 families and 413 offspring phenotyped. In second and
third experimental trials, 126 individuals in 6 families and 105
from 5 families were phenotyped (2012/2013 and 2014/2016,
respectively). Finally, in order to reinforce the connectivity
between the different experimental trials, 10 additional full-
sib families with some parents already in use in previous
experimental trials were added in 2015 and phenotyped in
2017/2018. In total, 367 individuals were phenotyped in this last
batch. At their respective time-frames, all 1,011 offspring and

the 24 parents were vegetatively propagated, and field evaluated
in separate experiments according to the same six randomized
complete block design.

Phenotyping involved seven different measurements
over different years (2000/2001, 2012/2013, 2014/2016, and
2017/2018), and for five different traits. Growth was assessed
as stem circumference and tree height. Stem circumference at
1 m was considered for the second year (circ2). Height was
assessed with a graduated rod after 1 (height1) and 2 years
of growth (height2). Mean branching angle was scored on
proleptic branches at the age of 2 years with a 1–4 scoring scale
(angbranch; score 1 : 0–30◦ from the horizontal; score 2: 30–40◦;
score 3: 40–55◦; score 4: >55◦). The scale for angbranch was
calibrated in such a way that resulting measures in the same
population of reference resulted in phenotyping distributions
being close to normality. Rust resistance was assessed with a
1 (no symptom) to 9 (generalized symptoms) scale (Legionnet
et al., 1999) at year 1 (rust1) and year 2 (rust2). Budburst
phenology of the stem terminal bud was evaluated by measuring
its kinetics (every 3 or 5 days from March to April) with a 0–5
scale, where stage 0 corresponded to a completely closed bud
while stage 5 corresponded to the initiation of stem internode
elongation (Castellani et al., 1967). A local polynomial regression
model was fitted between stages and dates for each individual
and this model was further used to predict the date in Julian days
at which the terminal bud was at stage 3 and in order to assess
individual susceptibility to late frosts (Howe et al., 2000). As a
result of such fitting for budburst, distributions were continuous
and close to normality.

All seven phenotypes were independently adjusted to field
micro-environmental heterogeneity with the breedR package
[Muñoz and Sanchez, 2018, implemented in R3.3.1 platform
(R Core Team, 2018)]. We used an individual-tree mixed
model over all four experimental trials, comprising all available
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information with genotyped and non-genotyped individuals (not
included in this study) according to a single-step formulation
(mixture of pedigree relationship matrix for non-genotyped
individuals and genomic equivalent for genotyped individuals)
(Legarra et al., 2009). A random effect capturing spatial
heterogeneity at individual level within trials was fitted thanks
to the use of a bi-splines surface covering row and column
axes (Cappa and Cantet, 2007; Cappa et al., 2015). Such a
surface was nested within each evaluation experimental trial.
Bi-splines were anchored at a given number of knots for rows
and columns, with higher numbers increasing the roughness
of the surfaces and lower numbers giving extra smoothness.
Knot numbers were optimized by an automated grid search
based on the Akaike information criterion (Akaike 1974)
provided by breedR. The use of all available information in
field trials, including non-genotyped individuals, minimized
the occurrence of gaps in the surfaces and facilitated the
prediction of accurate micro-environmental individual effects
across the experiment. The fact of using common genotypes
across trials (see Supplementary Table 1) and the use of genomic
and pedigree relatedness in the mixed model facilitated the
adjustment across trials. The micro-environmental individual
effect was subtracted from the observed phenotype to obtain
a spatially adjusted individual phenotype. A clonal mean of
spatially adjusted phenotypes was calculated for each trait and
used as raw phenotypes for the rest of the study (hereafter
adjusted clonal mean). As a default option, data from all blocks (6
Blocs) were used as input to themodel. The samemodel was fitted
to data from only three of the blocks (blocks 1, 3, and 5 called 3
Blocs model afterwards), to assess prediction quality with a less
precise phenotype. All measurements were tested for deviations
from normality by a randomized Q-Q plot.

2.3. Genotyping
All 1,033 individuals in this population (22 parents, 2 being both
parents and offspring, and 1,009 offspring) were genotyped using
the Populus nigra 12K custom Infinium Bead-Chip (Illumina,
San Diego, CA) (Faivre-Rampant et al., 2016). Additionally, 43
individuals were sequenced, including an extra founder that was
identified as one of the grandparents in the pedigree. Among the
remaining 42 sequenced, there were 22 parents, 14 progenies, and
six unrelated individuals from natural populations. Progenies
were chosen in such a way that all parents had at least one
offspring with its genome sequenced. The set of unrelated
individuals were used to assess the imputation ability under
challenging conditions. In a previous study (Pegard et al., 2018)
genotype imputation from 7K (effective SNPs out of 12K in array)
to 1,466,586 SNPs was performed attaining imputation qualities
higher than 0.84 per individual, and evaluated by a leave-one-
out cross-validation scheme (CV). Resulting imputation was used
in the present study to constitute alternative sets of selected
markers for genotyping. For quality assessment and selection
of the marker sets, we used the proportion of alleles correctly
imputed by genomic position across individuals (Props), and
Props corrected by the probability of correct imputation by
chance (Badke et al., 2013; cProps). Among the imputed SNPs,
we selected those with Props higher than 0.90, with cProps higher

than 0.60 and aminor allele frequency (MAF) higher than 0.05, to
obtain a set of 249,805 SNPs (250K). That latter set comprised the
total of the 7K from the chip. We selected two alternative smaller
marker sets: 50K (with 50,565 SNPs), and 7K_homo (with 7,048
SNPs) where coverage and homogeneity of density was optimized
over the original 7K array. These two sets were composed by
selecting, respectively 1 SNPs every 1,000 or 50,000 bp out of
the 250K set. Whenever more than one candidate SNPs were
available for the same window, we selected the one that had the
highest values of Props and cProps.

2.4. Models
We estimated variance components and heritabilities with the
complete data set and single trait models, and genetic correlations
with a genomic multiple-trait model (GBLUP). The Akaike
Information Criterion (AIC) was used to assess for each given
trait the quality of each model. Two alternative methods were
used to calculate genomic estimated breeding values for each
trait: the best linear unbiased prediction based on genomic
information (GBLUP) (Whittaker et al., 2000; Meuwissen et al.,
2001), and the weighted GBLUP (wGBLUP; Legarra et al., 2009;
Zhang et al., 2016). They were all compared to the best linear
unbiased prediction based on pedigree information (PBLUP)
(Henderson, 1975). The models for GBLUP (and PBLUP) using
matrix notation for additive and non-additive effects were
given by:

y = Bβ + Zu+ ε (1)

y = Bβ + Zu+Wd + ε (2)

where y was the adjusted clonal mean, β a vector of fixed effects,
u the vector of random additive effects following N(0,Gσ 2

a ) with
σ 2
a the additive variance and G (or A in PBLUP) the relationship

matrix, d was the vector of random dominance effects following
N(0,Dσ 2

d
) with σ 2

d
the dominance variance and D the dominance

relationship matrix, ε the vector of residual effects following
N(0,Iσ 2

e ) with σ 2
e the residual variance. The design matrix B

contains the values of the covariables with fixed effects and Z,
W, and I are indicator matrices relating the clonal mean to the
random effects. The methods used to obtain the relationship
matrices are explained in the next section. The PBLUP and
GBLUP single-trait models as well as the multi-trait models were
fitted with the R package breedR (Muñoz and Sanchez, 2018). All
the analyses are summarized in Table 2.

2.5. Relationship Matrix Estimation
The ARM (additive relationship matrix) was built from the
known pedigree at the moment of the controlled crossings,
and denoted hereafter as A. However, a preliminary marker
assessment in this study showed that there were errors in the
pedigree. Pedigree was corrected based on these results and
a new reconstructed ARM was obtained, denoted hereafter as
Acor . Pedigree errors involved in most cases a wrong paternity
attribution and, less frequently, individuals supposed to be
different genetically. The total number of parents after correction
did not change, with an added father and a removed mother.
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TABLE 2 | Combination of models and marker sets tested.

Methods ADD ADD + DOM MultiTrait SNP set

P-BLUP Yes Yes Yes None

P-BLUPcor Yes Yes Yes None

GBLUP

Yes Yes Yes 7K

Yes Yes No 50K

Yes Yes No 100K

Yes Yes No 250K

wGBLUP

Yes Yes No 7K

Yes Yes No 50K

Yes Yes No 100K

Yes Yes No 250K

BayesCpi

Yes No No 7K

Yes No No 50K

Yes No No 100K

No No No 250K

The main change concerned the number of families that went
from 39 to 35. Both A and Acor were calculated with the R
package nadiv (Wolak, 2012), and kept for the comparison in
order to show the potential loss due to pedigree errors and the
maximum performance attainable by pedigree. Concerning the
genomic relationship, we used a normalized matrix (G Equation
3) calculated following VanRaden’s formulation (Habier et al.,
2007; VanRaden, 2007) and the scaling proposed by Forni et al.
(2011) to assure compatibility with A, for each genotyping set
(7K, 50K, 100K, and 250K) :

G =
(M − P1)Wa(M − P1)

′

trace[(M − P1)Wa(M − P1)′]/n
(3)

where M was a genotyping matrix with m markers in columns
and n individuals rows, P1 was a matrix (n × p) containing the
minor allele frequency (2pi), at the marker i, andWa was a matrix
of weights described below.Ad hoc scripts in R were used tomake
the computations for G (R3.3.1 platform). To assess dominance
effects, a dominance matrix based on the pedigree information
was calculated with the R package nadiv (Wolak, 2012) with
expected and observed pedigree information (D and Dcor). The
genomic dominance matrix was calculated as:

D =
(X − P2)Wd(X − P2)

′

trace[(X − P2)Wd(X − P2)′]/n
(4)

where X was the genotyping (n × p) matrix containing code
“0” for the homozygous and “1” for the heterozygous, P2 the
(n × p) matrix containing the heterozygous frequency (2piqi)
according to Vitezica et al. (2013) and normalized in the same
way as for G in Equation 3, and Wd the matrix of weights
as described below. We used one of the procedures of Wang
et al. (2012) for calculating weights in wGBLUP. Unlike GBLUP,
where all markers have the same variance and therefore the same
weight, the derivative wGBLUP uses a transformed G according
to marker weights to select markers. The weights were calculated

as wj = û2j where wj was the weight for the SNP j and ûj was the

estimated marker effect obtained as

ûa = WaX
′G−1ĝ (5)

ûd = WdX
′D−1d̂, (6)

where Wa,d was a diagonal of weights, either a identity
matrix (GBLUP) or a diagonal of w weights (wGBLUP) for
additive (Wa) or dominance (Wd) relationship matrices, ĝ the

genomic estimated breeding values (GEBV) and d̂ the estimated
dominance effects. Several iterations of recomputed ûa, ûd, ĝ, and

d̂ were performed to update G, following recommendation by
Wang et al. (2012), and according to the following steps:

1. Define i = 1,W(a,d)i = I and Gi as Equation (3)
2. Compute ĝi using GBLUP approach
3. Compute additive SNP effects with Equation (5) and

dominance SNP effects with Equation (6)
4. Calculate SNP weights as waj+1 = û2ai and wdj+1 = û2

di
5. Scale waj+1 and wdj+1

6. Calculate Gi+1 with Equation (3)
7. Calculate Di+1 with Equation (4)
8. i = i+ 1
9. Iterate from 2 until i = 3.

A weighted relationship matrix was obtained from each
subsequent iteration, giving respectively, Gw1, Gw2, and Gw3, as
three distinct matrices leading to separate evaluation methods. In
this study, therefore, eight relationship matrices were tested (A,
Acor, G, Gw1, Gw2, Gw3, D, Dcor), and the resulting predictions
were compared via cross-validation and by an independent
data set.

2.6. Prediction Accuracy and
Cross-Validation
We assessed the impact of the composition of the training (TS)
and validation sets (VS) on the performance of the genomic
evaluation by trying two TS/VS sizes and two different TS/VS
compositions in a 10-fold cross-validation scheme. The two sizes
were 50% (T50) and 25% (T25) of the individuals evaluated in the
2000/2001, 2012/2013, and 2014/2016 experimental trials. The
last field evaluation trial of 2017/2018 did not contribute to TS
and was used as an extra independent validation set (TestSet)
for each of the four TS, as it represented a sample of the next
generation of selection candidates. Such Testset represents an
independent validation experiment without the risk of eventual
overfitting that is typical of cross-validation schemes, and it is
the result of a mating campaign involving a sample of parents
from the breeding population (seeTable 1). The two composition
scenarios for TS and VS involved: a sampling of individuals
independently of their family membership and a sampling of
different family sets. Both size and composition were combined
to obtain the desired percentage (50 or 25%) of individuals or
the desired percentage (50 or 25%) of families. The performance
of the models was evaluated following different criteria. Firstly,
predictive ability, which was defined as the Pearson correlation
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coefficient between the adjusted clonal means and the GEBVs of
the samples in the VS, or in the TestSet. The accuracy (Accuracy
and Accuracy test) of the models were estimated by dividing
each predictive ability by the square root of the heritability of
the corresponding A model for the given trait. Additionally, the
Spearman rank correlation between the adjusted clonal means
and the GEBVs of the individuals in the VS was calculated
(Spearman).We estimated the Spearman and Pearson correlation
of the top 5% of the trait, for the section between 5 and 10%,
and between 10 and 50% within the VS. Finally, we assessed
potential bias in genomic predictions by estimating the intercept
and the slope of the linear regression between the adjusted clonal
means and the GEBVs of each model, in the VS and in the
TestSet. Predictive abilities were also calculated at the within
family level. The prediction ability obtained within families
following PBLUP with the corrected pedigree were subtracted
to the equivalent prediction ability obtained from the genomic
model, for given cross-validation scenario and trait. A weighted
average was then calculated according to the size of the family.
given cross-validation scenario and trait. A weighted average was
then calculated according to the size of the family.

2.7. Testing Factor Importance
In order to assess the main factors accounting for genomic
evaluation performance, we applied the Random Forest
algorithm (Liaw and Wiener, 2002) implemented in the Boruta
R package (Kursa and Rudnicki, 2010). The main factors (or
features) were: Trait, Matrix (A, Acor, G, Gw1, Gw2, Gw3, D,
Dcor, Dw1, Dw2, Dw3), GeneticEffect (Additive, Additive, and
Dominance), ST_MT (Single-Trait, Multiple-Trait), GenoSet
(none, 7K,7K_homo, 50K, 250K), Type (Individual, Family),
Perc (T50, T25), and PhenoSet (6 Blocs, 3 Blocs). Classification of
features was done for each of the performance variables available:
predicting ability, Accuracy, Spearman correlation, and slope.

3. RESULTS

3.1. Heritabilities
Heritabilities with their corresponding variance components and
Akaike Information Criterion (AIC) are shown for all models
and traits in the Supplementary Table 2. In general, most traits
showed intermediate to high heritabilities (average of 0.73) as
illustrated by Figure 1A, with height and rust showing the
highest average values, and budburst correspondingly the lowest.
The fact that we used adjusted clonal means as phenotypes
to be explained in the models induced a low residual term,
which in turn raised the heritability estimates. In terms of
models, G and weighted G resulted in higher heritabilities
across traits (Figure 1B), with an advantage to the latter under
additive models, and to the former under models comprising also
dominance (Figure 1C). Most of the genomic scenarios (G and
weighted G) resulted in higher heritabilities than the pedigree-
based counterparts, with uncorrected pedigree resulting in the
lowest heritabilities overall. Another factor increasing heritability
across traits was marker density, with highest values observed
with the 250K SNPs set, followed by the 50k and the 7K_homo
sets, with 7K resulting in the lowest values among genomic

alternatives. On the contrary, using a phenotype adjusted with
less information had little effect on heritabilities.

3.2. Accuracies Estimated by
Cross-Validation With Different Training
Sets
Three out of seven traits (budburst, height1, and rust1) were
selected to show the cross-validation accuracies in Figure 2

(the remaining traits are shown in Supplementary Figure 1),
assuming different relationship matrices and four different
training scenarios (size and composition). Results correspond to
single-trait additive models with a relationship matrix based on
the 7K SNP panel. Accuracies varied between 0.17 and 1.01 across
all scenarios and traits. It is important to note that, because of
the choice of a particular model of reference to provide a basis
heritability (pedigree-based model with the A matrix), accuracies
larger than one were obtained.

Accuracies responded greatly to changes in the way the
training set was constituted (percentage and composition). The
fact of using different families for training than for validation
had a large impact on the accuracy when compared to the
alternative scenario where the splitting between training and
validation occurredmostly within families. Basically, as expected,
predicting different families was less accurate than predicting
different individuals within the same cohort, with losses in
accuracy averaging 13%. This pattern was found for all traits,
except for one training scenario for angbranch, where differences
between the two compositions were also the weakest. Concerning
the percentage, the effect of reducing the training set from T50
to T25 had also an impact on accuracy, although mostly when
training and validation involved different families. On average,
reduction in accuracy with decreasing training set size was
around 4.2% for the training composition based on individuals,
and vary depending on the trait (from −18 to 8%) for that based
on families.

3.3. Challenging Prediction Models With
New Individuals
We used a completely independent set of individuals
representing the next generation of selection candidates to
evaluate the different prediction models with 7K SNP and
across two different training scenarios (T25 and T50). Results
of accuracies from this independent set are presented for three
traits in Figure 3.

Accuracies were substantially lower under the new more
challenging testing scenario than those already shown for the
cross-validation scheme for the same traits (see Figure 2). In
general, marker-based models resulted in a less affected level of
accuracy compared to the pedigree-based counterparts: the G-
based and Gw1 models were the best performers, notably for
rust1 and budburst. For height1, however, A and Acor models
obtained comparable performances to those from genomic based
models. Otherwise, the model based on uncorrected A had
generally poorer accuracies than those shown by the corrected
A. The behavior of the different models in terms of accuracies
depended greatly on traits and, to a much lower extent, on the
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FIGURE 1 | Heritability obtained with a global model using all the available data. (A) Heritabilities derived from an additive model and the 6-block adjusted dataset, the

boxplots represent the heritabilities per trait (angbranch, budburst, circ2, height1, height2, rust1, rust2), according to the marker density (Ped, CorPed, 7K,7K_homo,

50K, and 250K), across matrix. (B) Heritabilities derived from an additive model and the 6-block adjusted dataset, the boxplots represent the heritabilities per matrix

(A, Acor, G, Gw1, Gw2, Gw3), across traits and marker density. (C) Heritabilities derived from the 6-block adjusted dataset, the boxplots represent the heritabilities per

model (ADD: additive; ADD_DOM), across traits, marker density, and matrix.

training scenario. Concerning the training scenario, it is to be
noted that family sampling obtained slightly higher accuracies
than individual sampling, although differences were not of
significance. These results give an idea of the performance
obtained in a real candidate selection test. In doing so, we decided
to look at the impact of other factors on the independent dataset
rather than on cross-validation. The results obtained for the
cross-validation are in Supplementary Material.

3.4. Prediction Performance in the Test Set
With More Complex Models
By adding a dominance effect to the single trait model for each
trait with the 7K SNP panel, we did not observe significant
changes in accuracy with respect to the purely additive model
(Figure 4, upper part, and Supplementary Figure 2). Overall,
dominance did not lead to losses in accuracy, with similar
performances to that of additive counterparts across traits.

Another added complexity were the multi-trait additive
models, which were also evaluated in terms of accuracies
(Figure 4 lower part, and Supplementary Figure 3). The

advantages of a multiple-trait approach over the single-trait
counterpart were trait-dependent and generally very small. For
instance, rust1 showed clearly no benefit in using a multiple-trait
prediction, while for height1 the multiple-trait prediction had
a small advantage when training over different families. For
budburst, however, the multiple-trait approach brought a loss
with the G-based model in both training scenario. Moreover,
the multiple-trait approach did not seem to benefit from the
use of marker-based G matrices over pedigrees. Therefore, the
multiple-trait prediction did not bring a clear-cut advantage
across traits and training scenarios. Genetic correlations between
the traits involved in the multiple-trait analysis are shown in
Supplementary Figure 4 as supplementary data.

In summary for the TestSet, the accuracy of unweighted
G-based models appeared to be slightly better than with
pedigree-based models, although in most cases the Acor model
obtained comparable levels of performance to the best G-based
method (data not shown). The cross-validation sampling strategy
(individual/family) impacted the accuracy in all cases and for
all traits, with individual scenarios having, in general, higher
accuracy than family scenarios. The percentage of individuals
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FIGURE 2 | Cross-validation prediction accuracies using an additive model with 7K SNP for three traits, grouped by the proportion of individuals (Individual, in blue) or

families (Family, in green), in training sets 50% (T50) and 25% (T25). Each violin plot represented the accuracy of 10 repetitions for each scenario, and the dot

represented the median of each distribution.

in the training population (T50/T25) showed a less important
impact on accuracy than that of composition. More advanced
models involving dominance effects and multiple-traits did not
improve the performance of genomic predictions.

3.5. Effect of Marker Density on Accuracies
The same three traits (budburst, height1, and rust1) were
used to show the effect of an increase in marker density on
prediction accuracy over different modeling approaches on the
TestSet in Figure 5 (Supplementary Figures 5, 6). We compared
the accuracies obtained with four marker sets of increasing
density with a single-trait additive model, and T50/Individual
sampling scheme.

The effects of density were clearly trait-dependent, and the
choice of traits illustrated here cover well these differences in
behavior. Such densities were also differently exploited according
to traits by the different G matrices used in the modeling. For
traits like height1 and rust1, densification in the number of SNPs
had no clear benefit in terms of accuracy, and the use of weighted
G matrices did not exploit the extra density to bring additional
accuracy. For traits like budburst, however, densification brought
some benefits in accuracy when combined with some weighting

in the G matrices, notably after one step of weighting and using
the highest densities of 250K.

Besides the number of markers, their distribution over the
genome seemed also of relevance for accuracy. This is particularly
illustrated in the comparison between the 7K and 7K_homo sets,
where the latter represents an even distribution sample over the
genome. Such even distribution was not beneficial for accuracies
across traits compared to the original 7K set. This latter set was
seemingly richer for some relevant genes, as the array design
from which the 7K set results favored certain regions linked to
important traits over a homogeneous distribution.

3.6. Challenging Prediction Models With
Degraded Phenotypes
Phenotypes used as dependent variables in the models resulted
from averaging six field replicates that were previously spatially
adjusted. To test whether the number of replicates could have
an effect on the difference in performance between pedigree
and genomic-based evaluations, new evaluations were produced
based only on 3 out of 6 replicates. The adjusted clonal means
produced were compared to those obtained with 6 Blocks. The
correlation between the two clonal mean sets was close but
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FIGURE 3 | Prediction accuracies using an additive model with 7K SNP for five traits, grouped by the proportion of individuals (Individual, in blue) or families (Family, in

green), in training sets 50% (T50) and 25% (T25) on an independent Test Set representing the candidates for selection. Each violin plot represented the accuracy of

ten repetitions for each scenario, and the dot represented the median of each distribution.

not equal to 1 (from 0.8 to 0.94: Supplementary Figure 7),
and a t-test on paired data confirmed the difference to be of
significance between the two sets of data. Resulting accuracies
under this new evaluation scheme are presented in Figure 6

(Supplementary Figures 8, 9 for the results in cross validation),
involving the training scenario T50/individuals and the marker
density set of 50K. The prediction accuracy was not significantly
affected by the reduction in repetitions, across models and traits.
This result was also observed for other training scenarios and
for the remaining marker densities (not shown). Therefore,
downgrading the phenotype with half the number of repetitions
did not appear to affect pedigree-based predictions, which were
almost equally competitive. This also suggests that evaluations
under current conditions could have been simplified with either
less field area or extended to extra candidates keeping the same
field area.

3.7. Evaluation of Prediction Models With
Complementary Criteria
Trends for slope of the linear regression between the adjusted
clonal means used as phenotypes and the resulting GEBVs
(or pedigree equivalents EBVs) across models showed

that the pedigree-based approaches had the most robust
behavior with values always around 1. Contrarily, G-based
approaches often showed upwardly biased predictions
(Supplementary Figures 10, 11). This deviation was always
more pronounced for G-BLUP than for weighted G-BLUP, with
a decreasing trend in slope with increasing steps of weighting.
Marker densities had the effect of increasing slopes, notably for
G-BLUP and weighted G-BLUP schemes with fewer steps of
weighting. With a less pronounced effect, the change in training
scenarios from individuals to families and from T50 to T25
increased slopes. In general, G-BLUP schemes showed the largest
deviation in slopes due to changes in training scenarios. Slopes
larger than one correspond generally to biases in predictions that
depend on the magnitude of the predicted variable, being larger
the bias the larger the phenotype.

We compared two correlation coefficients: the classical
Pearson correlation, on which predicting abilities are based, and
a rank-based coefficient like Spearman. Such comparison was
made across different tiers of the evaluated sample of candidates:
from the 5% tier of best candidates to the totality of the TestSet,
with the aim to explain the origin of biases. Results are shown
in Figure 7 for budburst (Supplementary Figure 12 for the
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FIGURE 4 | Prediction accuracies using different evaluation models on the TestSet by cross-validation type “T50” with 7K SNP, and rust1, budburst and height1. The

upper panels involve single-trait (ST) vs. multiple-trait (MT) additive models: with ST with individual sampling (blue), ST with family sampling (green), MT with individual

sampling (orange), and MT with family sampling (yellow). The lower panels involve additive (ADD) vs. additive and dominance (ADD_DOM) single-trait models: with

ADD and individual sampling (blue), ADD and family sampling (green), ADD_DOM and individual sampling (light purple), ADD_DOM and family sampling (dark purple).

cross-validation results). Differences between the two coefficients
were substantial within the best 5% tier, where the Spearman
correlation appeared to magnify the advantages of G-based
models over that of pedigree-based counterparts. Such advantage
became more pronounced for that particular elite tier with G-
basedmodels using highermarker densities. Differences were less
pronounced for other less performing tiers, notably those closer
to the mean. For the totality of the TestSet, Pearson resulted in
slightly higher values than those of Spearman. Thus, the behavior
of the two correlations were opposite whether we looked at the
best tier or to the whole distribution, with Spearman revealing
extra differences between evaluation methods for the tail of the
distribution that is usually relevant for selection. Similar patterns
were observed for rust1 (Supplementary Figure 13 lower part).
Height1 had a pattern slightly different, with an advantage of
Spearman over Pearson for the G-based models relevant for the
50K SNP densities and for the 2 top tiers, and no advantage with
the highest density 250K (Supplementary Figure 13 upper part).

3.8. Genomic Model to Select Among
Full-Sibs
Differences in Prediction ability at within-family level between
genome-based and pedigree-based predictions are shown in
Figure 8, in the shape of distributions over all available full-sib

families and for three traits. Results show important variation
across families, spanning from no advantage of genome-
based methods with respect to the pedigree counterpart (zero
differences and below), to advantages over 0.4 for the genome-
based option for some of the families. The different methods of
constructing the G matrix (G and weighted G) had little effect
on the differences, while increasing the training set (T50 vs. T25)
or sampling families instead of individuals augmented slightly
the genome-based advantage in terms of median differences.
These advantages were higher for budburst and rust1 than for
height1. Overall, genome-based methods showed advantages
over pedigree counterparts when ranking candidates at the
within-family levels, for most of the families.

3.9. Ranking of Factors Impacting
Prediction Accuracies
The Boruta algorithm was used to evaluate the different features
explaining the variability of three performance parameters:
accuracy, Spearman correlation and slope. Results in terms
of Z-score for all features in the cross-validation are shown
in Figure 9. Both correlation-based performance parameters,
accuracy and Spearman, led to similar ranking of features, with
Type (Individual vs. Family), trait, matrix (A and G matrices),
and Perc (T50 vs. T25) being the factors explaining the most
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FIGURE 5 | Marker densification impact on predictive accuracy of a single trait additive model with T50 individual in the TestSet for four genomic relationships

matrices (in columns) and three different traits : height1 (purple), budburst (black), and rust1 (orange). The range of accuracies obtained with the pedigree information

was represented in each column by the tag Ped. The accuracies distribution is represented by a boxplot.

in performances. Thus, the A vs. G comparison, although
important, was not the one at the top. For slope, however, the
features related to modeling and integrating information were
the most important ones, with those related to training and
validation characteristics being negligible. A similar analysis was
conducted on the results obtained with the TestSet (Figure 10).
Results show patterns for accuracy and Spearman correlation
similar to those of cross-validation, except for the fact that the
impact of size and composition of validation was negligible in
TestSet conditions. For slope, the effects of the different features
were very small, again with features related to modeling and
integrating information showing the most important roles. The
main feature explaining variability of prediction within family is
the trait variation (Supplementary Figure 14).

4. DISCUSSION

4.1. Genomics Does Not Improve
Substantially Prediction Accuracy Over
Pedigree in Standard Conditions
This study was conceived as a proof-of-concept of the genomic
evaluation in the black poplar breeding program in order to
evaluate feasibility and performance in a situation close to
operational conditions for the species. Several main messages
could be drawn from this study. Firstly, genome-based models

captured higher heritabilities and higher additive variances than
their pedigree equivalents, although this did not lead to a
systematic advantage in terms of prediction accuracy for the
former over the latter. Although G-BLUP obtained in general
the best prediction accuracies, it was very closely followed by the
evaluation based on a genomically corrected pedigree. Secondly,
the benefit of densification of the marker panel for the prediction
quality was not obvious, with results dependent on traits and
treatment of the G matrix. Finally, the most clear advantages of
genome-based methods and of marker densification were found
in more challenging validation situations, when observing the
ranking among the best 5% elite individuals or when importance
was given to selection within families.

The genomic evaluation captured generally more genetic
variance than pedigree evaluation, regardless of the trait. The
number of markers fitted in the model generally increased the
proportion of genetic variance explained by the model, but
this occurred mostly under G-BLUP. When using a weighted
GBLUP variant, the proportion of genetic variance explained by
the model decreased with the cycles of weighting and selection
of relevant markers. Without variable selection, plain G-BLUP,
increasing the number of markers favored a better coverage of all
genomic regions, including those close or inside relevant QTLs.
Variable selection in weighted GBLUP could have eroded relevant
variation, affecting the proportion of captured variation. This
type of behavior could reflect an underlying infinitesimal-like
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FIGURE 6 | Impact on predictive accuracy of two alternative ways of producing phenotypes, with 3 (pink) and with 6 (blue) replicates, with a single trait additive model

in the Test set (T50 individual sampling strategy) by genomic relationships matrices (in columns) and three different traits (in rows): height1, budburst, and rust1. The

accuracies distribution is represented by a violin plot and their median by the dot.

trait architecture of the traits studied rather than a few underlying
QTLs with a substantial effect (Zhang et al., 2016).

Capturing more genetic variance with marker-based models
did not result necessarily in a better prediction of the phenotype
than using plain A models. Our prediction accuracy was already
relatively high under pedigree evaluation, probably due to the
fact of using a good evaluation design with enough repetitions
and spatial adjustments at individual level. Markers did not help
to improve this scenario or very little. Globally, when there was
a difference between pedigree-based and genomic predictions,
this occurred with G or Gw1 matrices. Using several weighting
cycles (Gw2 and Gw3) did not show in any case better results.
Comparable results with decreasing efficiency of several cycles
of weighting were found in other recent studies (Teissier et al.,
2018). Our results show little or no gain by increasing marker
density, even when combining densification with a variable
selection method, such as Gw. This lack of gain in accuracy may
suggest that we have reached a plateau and that 7K markers
are sufficient for this population. Some authors have already
reported plateaus in performance when increasing the number of
markers: in cocoa (Romero Navarro et al., 2017), wheat (Norman
et al., 2018) and eucalyptus (Kainer et al., 2018). For eucalyptus,
the plateau in correlation was still not reached at 500K, while

for cocoa and wheat it was reached after thousands or tens
of thousands of markers. Together with the fact that pedigree
evaluations already obtained high levels of prediction accuracy,
there is also the point that correcting pedigrees generally had a
beneficial effect, making the resulting model truly competitive
in some situations and with some traits compared to genome-
based models. This is not new in forest assessments, given the
fact that controlled crosses are cumbersome and prone to errors.
In loblolly pine (Munoz et al., 2014) and in maritime pine
(Bartholomé et al., 2016), pedigree errors led to decreases in
predicting ability, and by completing or correcting the pedigree
the predicting ability could be increased. In the maritime pine
study (Bartholomé et al., 2016), the predicting ability was
improved by the completion of the pedigree information in such
a way that the genomic evaluation had little extra room for
improvement in predicting ability. The error rate in our pedigree
was 15%, involving in most cases wrong paternity attribution
of complete or partial families, or individuals supposed to be
different genetically.

In our study, model complexification using a dominance effect
had no effect (positive or negative) on the quality of prediction.
Our results are in line with previous studies. Several studies
integrated dominance or epistatic effects in the GS. The results
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FIGURE 7 | Comparison of Spearman (green) and Pearson (purple) correlations between phenotypes and estimated breeding values for budburst in the Test set (T50

individual sampling strategy), for different relationship matrices (within panels abscissas) and SNP densities (across panel columns). Across panel rows represent the

tier used for the calculation of correlations: 0–5% for the 5% best individuals; 5–10%, between the 5 and 10% best individuals; 10–50%, between the 10 and 50%

best individuals, and 100% for the whole Test set.

on real datasets showed either no improvement in terms of
accuracy (Heidaritabar et al., 2014; Gamal El-Dien et al., 2016;
Jiang et al., 2017), even if a non-additive proportion of variance
was observed for the traits, or a small improvement in prediction
accuracy (Aliloo et al., 2016; Moghaddar and van der Werf, 2017;
Tan et al., 2018). This so far limited success may be due to
the fact that the populations under study were not big enough,
nor with an optimal design to reveal the benefits of adding
non-additive effects in genomic prediction. Despite a few strong
genetic correlations in our population, the same observation can
be drawn for the multi-trait approach, which did not bring a
clear advantage to the quality of the predictions. One of the
possible explanations could be found in the small difference in
missing values between traits in our dataset. This has already
been pinpointed as a cause of lack of performance by other
authors working with a multi-trait approach (Jia and Jannink,
2012; Dos Santos et al., 2016; Lyra et al., 2017; Rambolarimanana
et al., 2018). Multi-trait evaluation can help the prediction
by compensating missing values in different traits and poor
heritabilities (Calus and Veerkamp, 2011; Jia and Jannink, 2012;

Marchal et al., 2016; Schulthess et al., 2016). It could also reduce
prediction bias (Kadarmideen et al., 2003). An interesting and
promising approach called “Trait-assisted genomic prediction”
by Ben-Sadoun et al. (2020) allows to optimize the phenotyping
cost by using a multiple-trait approach.

Apart from the general trends between pedigree vs. genomic
models, results of prediction accuracy were fundamentally
trait-dependent and mostly driven by the kind of training
scenario being applied. This is clearly shown by the results
of the Boruta algorithm, which found trait and training
scenarios to be key features in explaining predicting accuracies.
Similarly to other authors (Norman et al., 2018), we observed
that prediction accuracy resulted in higher levels when the
training and validation populations were closely related, as
when the split between the two occurred at within family
levels. On the contrary, prediction accuracy could be greatly
affected when resulting from distant, independent validation
sets. In our study, the cross-validation with individual sampling
performed better than with family sampling, and this somehow
limited the use of genomic evaluations to predict unobserved
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FIGURE 8 | Prediction gain compared to Pedigree based predicting ability within independent test families. Predicting abilities were obtained using an additive model

with 7K SNP for three traits grouped by the proportion of individuals (Individual) or families (Family) in training sets 50% (T50) and 25% (T25). The color of violin plots

correspond to the sampling strategy: in blue, the individual sampling strategy and in green the family sampling strategy. Each violin plot represented the accuracy of

ten repetitions for each relationship matrix. The dot represented the weighted mean of the prediction gain, the mean was weighted by the number of offspring in each

family.

crosses in our population with current approaches. The size
of the training set used to develop prediction calibration is
often cited as an important factor (Nakaya and Isobe, 2012).
Curiously, the differences between our T50 and T25 schemes
(50 and 25% of individuals to construct the calibration model,
respectively) was not as large as one could expect and their
performances overlapping to a large degree, making sometimes
the differences between the two alternative training negligible.
This is presumably very dependent on the properties of the
populations being used for training.

4.2. Genomic Prediction Advantages Are
Mostly Observed in Challenging Conditions
The choice of the training and validation sets is known to have
a non-negligible impact on the prediction accuracy (Rincent
et al., 2012). In that sense, our results showed that there was
a substantial variation around each cross-validation realization,
although often the ranking in performance between realizations
was preserved across scenarios, notably for the individual
sampling. In general, these cross-validation cases corresponded
to operational situations where validation contributes with
extra selection intensities, for instance, with new crosses from
known parents or additional sibs across families to select from.

One additional scenario of training that could be considered
as especially challenging, corresponded to the validation set
of newly obtained crosses from parents that were mostly
underrepresented in the cross-validation sets. This could be
seen as an operational demand to incorporate comparatively
new material for selection. Our results showed that such
challenges (represented by the validation in the test set) affected
substantially the prediction accuracy across models, although
G-BLUP and Gw1 were generally the most robust performers
and pedigree-based evaluations the ones with the greatest loss
overall. In the cross-validation scheme, the factorial design
had a relatively large influence in demographic terms in the
training set. Being a system that creates a well-interconnected
network of families (Sørensen et al., 2005), the factorial design
seemingly favored pedigree predictions to a level that made
it competitive compared to genomic predictions in the cross-
validation. However, the new testing set posed a challenging
prediction problem to pedigree-based models, as the relatedness
between training and validation was certainly weak to support
quality predictions solely from a sparse A matrix. Despite
that, the situation was not always a clear-cut difference between
pedigree and genome-based evaluations, as shown by traits
like height1.
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FIGURE 9 | Importance (Z-score) for each feature estimated with Boruta algorithm to explain Accuracy, slope, and Spearman correlation (Spearman) variability in the

validation population. Boruta shadow features were ShadowMin, ShadowMean, and ShadowMax, as random references. The test factors were Trait (rust1, rust2,

height1, height2, circ2, budburst, angbranch), Matrix (A, Acor, G, Gw1, Gw2, Gw3, D), GeneticEffect (Additive, Additive, and Dominance), ST_MT (Single-Trait,

Multiple-Trait), GenoSet (none, 7K,7K_homo, 50K, 250K), Type (Individual, Family), and Perc (T50, T25). Algorithm decision for each factor, based on the significativity

of the difference between factors and the shadow features are: shadow features (green), confirmed (blue), and rejected (red).

If the extent of relatedness thanks partly to the factorial
design could have facilitated the competitiveness of pedigree-
based predictions, the fact of using a high quality adjusted
phenotype involving 6 repetitions was another element that could
have a role in diminishing the differences between pedigree
and genome-based performances in prediction terms. Actually,
our results showed that downgrading the quality of clonal
means used as phenotypes clearly had no differential effect
between pedigree and genome-based predictions, with the latter
retaining prediction quality at a level without replicate reduction.
This evaluation simplification has also important operational
implications for field evaluation, which need to be balanced with
the genomic investments.

4.3. Genomic Prediction Enables the
Ranking of Candidates to Selection
One of the main objectives of genetic evaluation is ultimately
to rank individuals according to their breeding values, in order
to use subsequently final selections as reproductors for the
next generation. In that sense, identifying accurately the highest
breeding values is a key element in genetic progress, and the
use of predicting abilities based on a parametric correlation

between predictions and true breeding values is one of the most
common means of quality assessment (Daetwyler et al., 2013).
This latter correlation shows a linear relationship with the genetic
response (Falconer, 1981). For the poplar breeding program,
however, the stress is given to the selection of genotypes for
clonal dissemination at the production stage directly, rather than
for gametic dispersion in seed orchards. This essential difference
leads to the importance of ranking in selection decisions for
poplars, as for any other domesticated species with clonal
selection. When assessing the potential of genomic evaluations,
it is essential to take into account the way predictions will
be used for. Thus, we used alternative measures of prediction
quality, like the slope of the regression of “true” breeding values
on estimated breeding values. This slope represents a way to
assess departures due to bias in predictions, generally caused by
unequal representations of lineages in the training (Patry and
Ducrocq, 2011), unbalanced data (Blair and Pollak, 1984), or
the use of wrong variance estimation (Sorensen and Kennedy,
1984). Bias can lead eventually to wrong selection decisions when
involving differently biased candidates. Our results suggest that
G-BLUP was particularly affected by biases, with large departures
toward greater slopes, i.e., best phenotypes gave proportionally
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FIGURE 10 | Importance (Z-score) for each features estimated with Boruta algorithm to explain Accuracy, slope, and Spearman correlation (Spearman) variability in

the TestSet population. Boruta shadow features were ShadowMin, ShadowMean, and ShadowMax. The test factors were Trait (rust1, rust2, height1, height2, circ2,

budburst, angbranch), Matrix (A, Acor, G, Gw1, Gw2, Gw3, D), GeneticEffect (Additive, Additive and Dominance), ST_MT (Single-Trait, Multiple-Trait), GenoSet (none,

7K,7K_homo, 50K, 250K), Type (Individual, Family), and Perc (T50, T25). Algorithm decision for each factor, based on the significativity of the difference between

factors and the shadow features are: in color: Green: shadow features (green), confirmed (blue), and rejected (red).

higher predictions than worst phenotypes. To a lesser extent,
the best weighted G-BLUP (Gw1) also presented departures in
slope. Comparatively, pedigree-based predictions were perfectly
unbiased with slopes of one.

This result casted some doubts on the relevance of
rankings derived from G-BLUP genomic predictions. We added
an alternative measure of prediction quality, the Spearman
correlation between predictions and true breeding values, which
is a non-parametric estimate measuring the variation of the
ranking. Moreover, this focus on ranking appeared as an
appealing feature in the context of poplar breeding. Although
less frequent in the literature than Pearson-based predicting
abilities, a few authors used Spearman correlation to evaluate the
prediction quality and to serve as criterion to select evaluation
approaches (González-Recio et al., 2009; Mota et al., 2018). Some
other authors suggest that individual ranking strategies could be
more efficient (Blondel et al., 2015).

Our comparison of Spearman vs. Pearson correlations
revealed that their differences in behavior were dependent on
the selected tier in the distribution used for calculations, with
Spearman magnifying the advantages of G-based models and
high marker densities over pedigree for the best 5–10% tiers,

the tail of the distribution that is usually relevant for selection.
Pearson, on the other hand, attained its maximum correlation
when considering the whole population. Such a difference in
behavior could be of relevance when considering different levels
of selection intensities, or weights given to each trait in a selection
index. Usually, the interesting part of the distribution is the
top percentiles, where Spearman could be a criterion of choice.
However, in some cases the interest lies at intermediate values,
like for budburst. The goal here is to have trees that do not
budburst too early to avoid late frosts, nor too late to avoid
shortening the growing season. For those central tiers, both
correlations showed similar performances.

We have already pinpointed the fact that the population
used for training, given the level of parental factorization in
their mating, presented favorable conditions for pedigree-based
evaluation. One condition where genome-based evaluation is
expected to outperform a pedigree counterpart is when selecting
at within-family levels. Our results showed that only genome-
based evaluations were able to rank sibs with some degree of
accuracy within family cohorts, where pedigrees do not bring any
extra information. Although such advantage over the pedigree
was not clear for all the families, a majority of them showed some
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FIGURE 11 | Micro-environmentally adjusted phenotypic variability by full-sibs families (in x-axis) for the seven traits used in this study. In color the families includes in

the TS/VS (in blue) or in the TestSet (in pink).

potential for gain over several traits. The fact that this ability
did not translate into larger differences in our population could
result from families of reduced size and/or from segregational
variances too narrow to feed gain in a substantial way. While
family sizes were not specially large for what is usual in breeding
programs (on average 26 sibs per family), the variation at
within-family level appeared indeed as notably reduced when
compared with between-family differences (shown in Figure 11),
and that for most of the traits in the analysis. This could
be the result of a narrow parental variation in the training,
but also from crossings between genetically similar parents, all
characteristics of a reduced effective population size. Our initial
estimates of effective population size (12) already pinpointed this
narrow genetic diversity. A small effective size could explain to
some extent the small difference that was found between our
four training set scenarios, as well as the low impact of the
densification in the number of markers. In that sense, it is clear
that there is a need to expand this proof-of-concept approach
with extra diversity.

4.4. Is There a Better Place in the Selection
Scheme for Genomic Evaluation?
The present study took place at a particular step in the poplar
breeding program, as illustrated in (Figure 12), specifically when
evaluating selected candidates on juvenile traits in the nursery.
The current selection scheme was the result of optimizing for

many constraints derived from the phenotypic evaluation and
operational factors over the years. It comprises several steps
of selection conducted at the greenhouse, at the nursery, in
the laboratory via in vitro tests and later in field trials, with
each step implying different selection intensities and notably
different selection accuracies. It is important to note that each
selection step is done sequentially and conditionally onto the
precedent (i.e., independent culling levels), instead of jointly and
simultaneously, leading to inefficiencies with the risk of losing
in the first steps important variation for subsequent steps. First
steps of selection at the greenhouse and nursery are the less
accurate, but the ones that screen most of the variation. Due to a
limited field evaluation surface, a small number of individuals per
family is kept for the next steps, reducing the phenotypic variance
within each family. Conversely, later steps at the lab and in the
fields are relatively accurate but screen through a subsample of
original variation. Therefore, accuracy and genetic variation do
not meet in a single same step for maximum efficiency in the
current scheme.

Our test of genomic selection was performed with moderate
to high heritability traits, well-evaluated in field trials, and
on a relatively reduced set of individuals (with low effective
population size) that were the result of two previous steps of
selection conducted typically with a low precision and at a
relatively high selection intensity (see Figure 12, with the red
circle indicating where genomic evaluation was tested). These
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FIGURE 12 | Schematic representation of a breeding cycle in poplar, with the evolution in the number of individuals and the selection rate during the different steps of

selection after crossings (year 0). Numbers correspond to one cycle of selection. Selection rate values correspond to a rate relative to the previous step. The place

where the genome-based evaluation test was carried out is identified by a red circle.

conditions are often the ones encountered in late stages in
breeding program cycles, when the implementation of genomic
evaluation is typically devised, and where the precious genomic
and phenotypic resources that are required are to be found. This
is the case, probably, of other species undergoing domestication,
with elites concentrating most of the evaluation resources, and
founder bases only lightly evaluated. Theoretically, there is room
for improvement in the way genomic evaluation is integrated in
this kind of scheme, where extra precision is specially required:
at the first stages of selection. Such a scenario would involve
automatically larger effective population sizes than those used
here. The only drawback of such an early implementation
would certainly be the costs associated with a mass genotyping,
involving thousands of candidates at the greenhouse. However,
with current prices attaining record low levels every year, notably

with custom SNP arrays shared between species (Silva-Junior
et al., 2015; Gutierrez et al., 2017), such a possibility appears now
within the reach of breeding program budgets. In the case of our
study, sequencing had an average cost of 400e per individual,
although with large variations due to techniques and depths,
while genotyping experienced gradual reductions during data
gathering from a starting 94e to late 46e per sample (not including
chip design costs).

4.5. Recommendations for Future Studies
in Genomic Evaluation in Poplar
One of the main limitations of the study was probably the use
of a training population with a design that did not correspond
necessarily to what is routinely done in poplar breeding. Indeed,
the factorial mating design, although potentially interesting in
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terms of the parental variability, was more oriented for cognitive
or mapping studies. This was partially overcome by the addition
of extra families and crosses, well-connected to the breeding
program. In that sense, a training population truly representative
of the base population for the breeding program could have made
more easily generalizable the results of the study. Resampling in
the existing population is a good way to improve the training
population and increase the prediction accuracy. For instance,
to include 6–8 trees per family and evaluation site appears
to be sufficient to guarantee an accurate estimation of genetic
parameters for wood density and growth in an open pollinated
test of black spruce (Perron et al., 2013). For some species (Cros
et al., 2015; Tayeh et al., 2015), CDmeans has given good results
in optimizing the training population (Rincent et al., 2012). Some
preliminary work not shown in this study, however, suggested
that there is no clear advantage for such an optimal procedure,
and one of the reasons could be the lack of differentiation within
the population to derive truly different training sets. The optimal
procedure could also be tried with a denser SNP set, like the
50K. Another strategy to optimize the training step would be to
integrate existing information in the pedigree and from genetic
association studies in the way proposed by Cericola et al. (2017).

Further investigations are still necessary to improve the
model prediction in terms of accuracy, but also to reduce
systematic and overdispersion biases. The slope bias seemed
to be positively correlated with the number of markers, while
the use of variable selection models like wGBLUP was able
to reduce the slope bias as density was allowed to increase.
Density and marker distribution of the original 7K chip did
not allow GS to get a clear advantage over the pedigree-based
counterpart. Marker densities lower than 7K did not appear
to be of interest here, given already the slight advantage at
7K. Marker selection could be optimized to select the best
repartition. Our trial of an alternative SNP set with 7K being
homogeneously distributed along the genome did not lead
to gains in accuracy. The original 7K array was somehow
enriched for markers in some genomic regions relevant for
economically important traits (Faivre-Rampant et al., 2016).
Alternatively, marker repartition could follow recombination
rate maps obtained from a pedigreed population, enriching
in SNPs around recombination hotspots. Such distributions
could be combined with haplotypic approaches based on LD
information. Some studies show that haplotypic approaches
could increase the reliability of predictions because of the
extra capture of linkage disequilibrium with respect to single
SNPs (Hess et al., 2017).

Multi-trait andmulti-environment evaluations are essential in
plant and tree breeding programs, although performing single-
step analyses in these circumstances could be methodologically
and computationally challenging. In that sense, Montesinos-
Lopez et al. (2018) have proposed efficient heuristic methods
based on multi-trait deep learning (MTDL), which appear to be
well-adapted when data is highly unbalanced, contain missing
values data and there is a need for accommodating different
design factors.

GS can contribute to accelerate genetic gain by increasing the
individual selection accuracy at early stages, thus shortening the

generation interval, and by increasing the selection intensity. We
propose to implement GS sooner in the cycle, at the seedling
stage, than what was assessed in this study. In the short term,
a genomic selection scheme at the seedling stage, when there is
a great number of individuals taking up the least space, would
be of great benefit to the breeding program. Such an early
scheme combined with a multi-trait approach with a selection
index can increase the genetic gain in the short term for most
traits simultaneously, even for those phenotyped at maturity
like wood properties. For now, only the P. nigra parents could
be selected with such early genome-based approach, and in
order to identify the best black poplar parents at the same
year as the controlled-crosses to produce both pure species
descendants and hybrids with other species. Time-consuming
and resource-intensive evaluations could then take place only
on those genomically preselected parents, with the possibility to
enlarge the panel of pre-selections. In the longer term, GS can
be implemented in the other parental species, P. deltoides, and
even at the hybrid progeny (Tan et al., 2017), depending on the
breeding strategy for hybrids. In this case, in addition to the
step at the nursery evaluation, new steps at the laboratory can
focus on other targeted traits, like interaction genotype × rust
strain and woolly aphid resistance for hybrids, increasing the
accuracy of prediction for costly traits related to resistance. Such
propositions could save eventually from 5 up to 9 years in the
breeding program. One of the evaluations for which time gains
are expected is that related to wood quality, with the interesting
possibility of predicting potential uses at the individual level
according to the wood properties.

However, there are limits to the rapid advancements of the
cycle, and we can cite here two main ones: one is regulatory
and the other is of biological nature. Even if accurate genomic
evaluation is available at very early stages, the release of varieties
under current regulations will require carrying out evaluations
under production conditions in several environments, which
usually takes 10 years. Biological constraints are related
to sexual maturity. Indeed, if we want to use a selected
individual from a parental species for hybridization, it is
necessary to wait until sexual maturity at around 7 years
of age. Another added problem when dealing with sex and
early selection is the sex determination, which cannot be
predicted accurately from markers (Müller et al., 2020). Sex
prediction at early stages could indeed save resources among
the selected candidates while waiting for sexual maturity
for mating.

5. CONCLUSIONS AND PERSPECTIVES

Our proof-of-concept study shows that genomic evaluation
advantages are context-dependent. Its performance could
be comparable to the already well-optimized pedigree-based
evaluation under certain standard conditions and with access
to low to medium SNP density panels. Genomic evaluation
appeared to be advantageous under less standard scenarios with
a certain degree of challenge which have been pinpointed in
our present work. Our study focused on a fairly advanced
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stage of the evaluation in the breeding program, where a
substantial part of the variation has already been let aside
by using pragmatic but less efficient early selections at the
nursery (based on early growth, rooting ability . . . ). We believe
that genomic selection could be an interesting option at that
early stage, where selection precision is typically poor and
genetic variability abundant. Our study also showed that it is
important to assess performances by looking at other alternative
criteria, like those related to ranking, notably when these criteria
respond to the operational context of the breeding program
under scrutiny.
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Accurate phenotype prediction of quantitative traits is paramount to enhanced plant
research and breeding. Here, we report the accurate prediction of cotton fiber length, a
typical quantitative trait, using 474 cotton (Gossypium ssp.) fiber length (GFL) genes and
nine prediction models. When the SNPs/InDels contained in 226 of the GFL genes or
the expressions of all 474 GFL genes was used for fiber length prediction, a prediction
accuracy of r = 0.83 was obtained, approaching the maximally possible prediction
accuracy of a quantitative trait. This has improved by 116%, the prediction accuracies
of the fiber length thus far achieved for genomic selection using genome-wide random
DNA markers. Moreover, analysis of the GFL genes identified 125 of the GFL genes that
are key to accurate prediction of fiber length, with which a prediction accuracy similar to
that of all 474 GFL genes was obtained. The fiber lengths of the plants predicted with
expressions of the 125 key GFL genes were significantly correlated with those predicted
with the SNPs/InDels of the above 226 SNP/InDel-containing GFL genes (r = 0.892,
P = 0.000). The prediction accuracies of fiber length using both genic datasets were
highly consistent across environments or generations. Finally, we found that a training
population consisting of 100–120 plants was sufficient to train a model for accurate
prediction of a quantitative trait using the genes controlling the trait. Therefore, the genes
controlling a quantitative trait are capable of accurately predicting its phenotype, thereby
dramatically improving the ability, accuracy, and efficiency of phenotype prediction and
promoting gene-based breeding in cotton and other species.

Keywords: quantitative trait, phenotype prediction, fiber length, fiber length gene, genic SNP, gene expression,
Gossypium

INTRODUCTION

Many traits of agricultural and medical importance, such as crop yield, livestock productivity and
human diseases, are known as quantitative traits that are each controlled by numerous genes.
Therefore, it has been one of the principle aims and interests of current molecular and genomic
research to accurately predict the phenotypes of quantitative traits for progeny selection using omic
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data, thereby enhancing the ability, accuracy, and efficiency
of breeding in crop plants (Crossa et al., 2010, 2013; De Los
Campos et al., 2010b; Heffner et al., 2011a,b; González-Camacho
et al., 2012; Gouy et al., 2013; Desta and Ortiz, 2014; Xu et al.,
2014, 2016; Beyene et al., 2015; Dan et al., 2016) and livestock
(Meuwissen et al., 2001; Daetwyler et al., 2012; Morota et al.,
2014), and medicine in humans (Khan et al., 2001; Lee et al., 2008;
De Los Campos et al., 2010a; Speed and Balding, 2014; Weissbrod
et al., 2016). This has been known as genomic selection (GS)
in crop plant and livestock breeding (Meuwissen et al., 2001;
Desta and Ortiz, 2014) and as genomic medicine in humans
(De Los Campos et al., 2010a). A so-called training population,
usually a subpopulation of individuals randomly selected from a
targeted breeding population, is both phenotyped and genotyped,
and used to train and validate a statistical prediction model.
The utility and efficiency of the trained model for phenotype
prediction of the objective trait are often estimated by prediction
accuracy presented by Pearson’s correlation coefficient between
observed and predicted phenotypes. The remaining individuals
of the targeted population are genotyped only and their genetic
values or phenotypes of the objective trait are then estimated
using the trained and validated prediction model. The predicted
phenotypes of the trait for the individuals of the targeted
population are finally used to make decision for progeny selection
in crop plant and livestock breeding, and for medicine practice in
humans (De Los Campos et al., 2010a).

Because of their polygenic controls and sensitivity to varying
environments, accurate prediction of quantitative traits is very
challenging. Initially, genome-wide DNA markers were used to
predict the phenotypes of quantitative traits (Meuwissen et al.,
2001; Lee et al., 2008; Crossa et al., 2010, 2013; De Los Campos
et al., 2010b; Heffner et al., 2011a,b; Daetwyler et al., 2012;
González-Camacho et al., 2012; Gouy et al., 2013; Morota et al.,
2014; Speed and Balding, 2014; Xu et al., 2014; Beyene et al., 2015;
Weissbrod et al., 2016). Then, genome-wide gene expressions
(Takagi et al., 2014; Xu et al., 2016) and genome-wide metabolites
(Dan et al., 2016; Xu et al., 2016) have been used to improve the
prediction accuracy of the trait phenotype. Attempts have been
also made to improve the prediction accuracy of quantitative
traits by increasing training population size, from hundreds to
thousands of lines, and/or increasing the omic dataset size, from
hundreds to millions of features (Lee et al., 2008; González-
Camacho et al., 2012; Speed and Balding, 2014; Xu et al., 2016).
Furthermore, approximately 20 statistical multiple regression
models, including parametric and non-parametric, have been
tested for the phenotype prediction of quantitative traits using
the omic features (Desta and Ortiz, 2014; Speed and Balding,
2014; Weissbrod et al., 2016). These efforts have improved the
prediction accuracy of quantitative traits, but the prediction
accuracy still remains relatively low for the quantitative traits thus
far investigated. The lower prediction accuracy and increased
cost for phenotype prediction, due to the increased numbers of
DNA markers and/or training population size, have substantially
influenced applications of GS in practical breeding in crop plants
and livestock. Most importantly, plant or livestock breeding
usually consists of three parts: parent selection, cross design, and
progeny selection. GS is effective for progeny selection, but it is

ineffective for parent selection and cross design, while both are
crucial to success of plant or livestock breeding.

Therefore, Zhang et al. (2020a), for the first time worldwide,
proposed a novel molecular breeding technology, designated
gene-based breeding (GBB), and demonstrated its utility and
efficiency for enhanced breeding for maize grain yield. GBB is
designed to develop new varieties by design by making full use of
the genes controlling the objective trait(s), especially the number
of their favorable alleles (NFAs), their SNPs/InDels as DNA
markers and/or their expression abundances as omic features,
through the entire breeding process, including parent selection,
cross design, and progeny selection. Zhang et al. (2020a) showed
that the prediction accuracy of maize grain yield using either of
these three datasets of the grain yield genes for GBB was over 60%
more accurate and several-fold more cost-efficient than those
with genome-wide random SNPs. When the phenotypes of grain
yield predicted with two or all of three datasets of the genes were
jointly used for progeny selection, the top 10% plants selected
using the predicted grain yields were completely consistent with
those selected based on the grain yields of the plants determined
by replicated field trials. Therefore, their results showed that
GBB is promising to substantially continue crop improvement.
Nevertheless, additional research is needed to test the utility and
efficiency of GBB for different traits in different species and to
optimize it for enhanced breeding of different crops and livestock.

In the present study, we explored the ability, utility, and
efficiency of the genes significantly contributing to quantitative
traits for prediction of their phenotypes using fiber length
as the objective trait in cotton. Cotton, including Gossypium
hirsutum L. (Upland cotton) and Gossypium barbadense L. (Sea
Island cotton), is the world’s leading textile fiber crop and an
important oilseed crop. Fiber length is a typical quantitative
trait and also one of the economically most important fiber
quality traits for the textile industry and cotton fiber produce.
We previously cloned 474 GFL (Gossypium fiber length) genes
significantly contributing to fiber length (upper half mean length,
UHML) and estimated their effects on fiber length (Liu, 2014).
In this study, we investigated the phenotype prediction ability
and efficiency of cotton fiber length for gene-based breeding
using these GFL genes. We also discussed the applicability of
the concepts and methods obtained in the present study to
development of GBB for enhanced breeding in other crops and
livestock of agricultural importance.

MATERIALS AND METHODS

Plant Materials and Fiber Length
Phenotyping
One hundred ninety-eight recombinant inbred lines (RILs) at
F7, F8, and F9 generations derived by the single-seed descent
method from a cross of TAM 94L-25 (G. hirsutum) x NMSI 1331
(G. barbadense) were used for this study. These RILs and their
parents were grown at the Texas A&M AgriLife Research Farm
near College Station, TX, United States, in 2009 (F7), 2010 (F8),
and 2011 (F9) to phenotype their fiber lengths. The 2010 and
2011 field trials were performed in a randomized complete block
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FIGURE 1 | Field trial of the RIL population for fiber length phenotyping. (A) Matured fiber bolls used for fiber length phenotyping. (B) Fiber lengths. (C) Variation of
fiber length in UHML, measured by high-volume instrumentation, in the RIL population showing that fiber length is a typical quantitative trait. The fiber length data
were collected from the 2011 field trial and the mean fiber lengths of three replicates.

design, with three replicates, while the 2009 trial only included
a single five-plant plot per line, with no replication, because it
was used for seed production for the 2010 and 2011 trials. The
field practices followed those used for standard cotton breeding
trials in our cotton breeding program. When the fiber bolls
completely ripened (Figure 1A), they were hand-harvested from
entire plots and ginned. A sample of the fibers from each line was
used to measure its fiber length (Figure 1B), presented as upper
half mean length (UHML), using High-Volume Instrumentation
(HVI) at Fiber and Biopolymer Research Institute, Texas Tech
University, Lubbock, TX, United States.

The mean fiber length of each line was calculated from
those of the three replicates for each of the 2010 and 2011
trials (Figure 1C). The fiber length of the 2009 trial was from
single five-plant entry. The broad sense heritability (H2) of fiber
length was estimated separately for the 2010 and 2011 trials by
subtracting the mean fiber length variance of the two parents
among their entries (n = 33 for each parent) [σ2

e = (σ2
p1 + σ2

p2)/2]
from the fiber length variance of the 198 RILs (σ2

p) and then
dividing by the fiber length variance of the 198 RILs (σ2

p).

Genes
GFL Genes
The 474 GFL genes were previously cloned by our laboratory
and coded from 001 through 474 (Liu, 2014) were used
for this study (Supplementary Table S1A; NCBI GenBank
accession numbers: MW082098-MW082571). These 474 GFL
genes included 17 of the 18 published fiber length genes
(Supplementary Tables S2, S3; Zhang et al., 2020b). Liu (2014)
showed that each of these GFL genes had an effect on fiber length
varying from 2.6% to 7.9%, with 88.6% of them significantly
decreasing and 11.4% significantly increasing fiber length, when
activated or up-regulated (Supplementary Table S1A). Network
analysis showed that for 19 of these 474 GFL genes, variation

of their edge numbers in the GFL network was significantly
associated with fiber length (Supplementary Table S1B) (Liu,
2014; for more related information, see Zhang et al., 2020b).

Published Fiber Length Genes
A literature search was conducted as of December 2014 and
found that a total of 18 fiber length genes were cloned
from cotton using different gene cloning methods, including
gene expression repression (RNAi or antisense) and gene
overexpression (Supplementary Table S2; Zhang et al., 2020b).
These 18 published fiber length genes were used as the positive
control to test the ability of the GFL genes to predict the
phenotype of fiber length in this study.

Randomly Selected Cotton Unknown Non-474 GFL
Genes
A cotton database consisting of 79,708 transcripts of developing
fibers sampled on the 10th day of post-anthesis (10-dpa fibers)
(Zhang et al., 2019) were used for sampling the randomly selected
cotton unknown non-474 GFL genes used as the negative control
in this study.

Gene Transcript Expression Profiling and
Gene Transcript Expression Dataset
Construction
The sequences of the TAM 94L-25 transcripts expressed in 10-dpa
fibers (Zhang et al., 2019), including those of the 474 GFL genes,
were used as the reference to determine the expression profiles of
the targeted transcripts of the GFL genes in the 10-dpa developing
fibers of each line. Because a plant gene may be alternatively
spliced into multiple transcripts, with each transcript likely
being translated into different proteins having different biological
functions (Syed et al., 2012; Zhang et al., 2019), the expression
abundances of only the transcripts of the GFL genes that are
responsible for fiber length (Zhang et al., 2020b) were quantified
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as predictors for phenotype prediction of fiber length in this
study. The targeted transcript expression abundance of each GFL
gene in a line was quantified with the RNA-seq 100-nucleotide
clean reads using the RSEM software (Li and Dewey, 2011)
bundled with the Trinity software (Grabherr et al., 2011; Haas
et al., 2013) and presented as Transcripts Per Million mapped
reads (TPM) (Supplementary Table S4).

GFL SNP/InDel Genotyping and
SNP/InDel Dataset Construction
We previously sequenced all the genes expressed in 10-dpa
developing fibers of the cotton population from the 2011 trial
(Liu, 2014; Zhang et al., 2019). In this study, we first identified
the single nucleotide polymorphisms (SNPs) and/or nucleotide
insertions/deletions (InDels) of all the expressed genes using the
RNA-seq 100 nucleotide clean reads and SAMtools (Li et al., 2009;
Li, 2011). The cotton acc. TM-1 genome (Zhang et al., 2015) was
used as the reference. Only the SNPs or InDels identified at the
same position in the two parents, TAM 94L-25 and NMSI 1331,
and two or more lines were used for further analysis. Since the
transcript assemblies of the expressed genes had an average length
of 778 bp (Liu, 2014), the probability that the two parents and
two RILs had an SNP or InDel at the same position by chance,
such as sequencing, base calling, and/or transcript assembly
errors, would be close to zero [P = (1/778)4 = 2.7E-12]. This
filtration excluded almost all SNPs or InDels, if not all, resulted
from sequencing, base calling, and/or transcript assembly errors
from this study.

Then, we extracted the SNPs and/or InDels (hereafter,
SNPs/InDels) contained in the GFL genes. To identify the
SNPs/InDels of the GFL genes that significantly influenced fiber
length, we conducted association analysis between the GFL genic
SNPs/InDels and fiber length using the single marker analysis
method for QTL mapping (Liu, 1997). Given that cotton has a
genome size of 2,450 Mb/1C, the probability of the GFL genic
SNPs/InDels linked to a gene controlling fiber length within an
interval of 10 Mb, if they were the SNPs/InDels contained in
the GFL genes, would be extremely low [(10/2,450)2 = 1.67E-
05]. Therefore, the association of a GFL genic SNP/InDel with
fiber length indicated that the SNP/InDel of the GFL gene highly
likely had a significant effect on fiber length. Therefore, only the
SNPs/InDels contained in the GFL genes significantly influenced
fiber length (P ≤ 0.05) were selected and used as DNA markers
for this study. These genes were defined in this article as the
SNP/InDel-containing GFL genes. Furthermore, the GFL genic
SNPs were verified by allele-specific PCR using the genomic
DNAs of four cotton genotypes, including the two parents of the
cotton population, as templates (Gaudet et al., 2007).

For the construction of the GFL genic genotype dataset,
their SNPs or InDels were scored as bi-allelic DNA markers, as
those genome-wide SNPs used for prediction of phenotype for
genomic selection. The homozygote for one allele was scored
as “0,” the homozygote for the other allele scored as “2,” and
their heterozygote scored as “1.” Because cotton is a frequently
outcrossing species and the RIL population used in this study
was developed in the field condition, with no bagged selfing

pollination, heterozygotes for some plants were expected, even
though the RILs at F7–F9 generation were used for this study.

Fiber Length Prediction
Prediction of fiber length using the GFL genes was carried out
with two genic datasets compiled above separately: (i) the SNPs
or InDels contained in the SNP/InDel-containing GFL genes as
DNA markers and (ii) the targeted transcript expressions of the
GFL genes in 10-dpa developing fibers. Nine prediction models,
including five parametric and four non-parametric models (Desta
and Ortiz, 2014; Zhang et al., 2020b), that have been widely
used for GS were used to predict fiber length using the GFL
genes. The five parametric models were genomic best linear
unbiased prediction (GBLUP) (VanRaden, 2008), least absolute
shrinkage and selection operator (LASSO) (Tibshirani, 1996),
partial least square (PLS) (Geladi and Kowalski, 1986), BayesA
(González-Recio and Forni, 2011), and BayesB (González-Recio
and Forni, 2011). The four non-parametric models were support
vector machine using the radial basis function kernel (SVMRBF)
(Maenhout et al., 2007), support vector machine using the
polynomial kernel function (SVMPOLY) (Maenhout et al., 2007),
random forest (RF) (Svetnik et al., 2003), and reproducing kernel
Hilbert space regression (RKHS) (De Los Campos et al., 2010a).
We tested these nine prediction models because some of them
may not be well suited for these two datasets, while others may be
well fitted for the prediction of fiber length using the datasets.

GBLUP was implemented in an R program (Xu et al., 2014);
LASSO was implemented in the GlmNet/R program (Friedman
et al., 2010); BayesA, BayesB, and RKHS were implemented in
the BGLR package (Pérez and De Los Campos, 2014); SVMRBF
and SVMPOLY were implemented in the kernlab R program
(Karatzoglou et al., 2004); PLS was implemented using the pls R
package (Mevik and Wehrens, 2007); and RF was implemented
in an R program (Liaw and Wiener, 2018). Among the nine
prediction models, several require tuning parameters, which
were selected based on the 10-fold cross validation used for
the prediction (see below). Parameter values that maximize
the predictability (squared correlation between predicted and
observed trait values) were chosen as the optimal values. The
shrinkage parameter of LASSO was chosen in this way. For
the PLS prediction, the number of components extracted was
considered as a tuning parameter and was obtained via 10-fold
cross validation also. For BayesA, BayesB, and RKHS, the number
of iterations, burnIn and thin were set to 10000, 1000 and 10,
respectively. For RKHS, a multi-kernel approach was used, as
proposed by De Los Campos et al. (2010b), and the bandwidth
parameter was set to {0.5, 2, 10}.

A 10-fold cross-validation scheme widely used for GS was used
for the prediction of fiber length using the GFL genes. The 10-
fold cross validation scheme was described in our previous study
(Zhang et al., 2020a), with each subset consisting of 19 or 20 RILs
and 100 replications.

Statistical Analysis
The statistical analyses, including the two-way ANOVA, Tukey’s
HSD (honest significant difference), and parametric correlation
tests, were performed using an R program and Microsoft
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Excel 2013. For the ANOVA and correlation tests, P-value was
presented at a two-tailed significance, and for the Tukey’s HSD
test, a confidence interval (CI) of 95% was applied.

RESULTS

Variation of Cotton Fiber Length, and
Transcript Expression Variation and
SNPs/InDels of the GFL Genes
Phenotype analysis confirmed that the fiber length trait
(Figures 1A,B) under this study exhibited a normal distribution
(Figure 1C), the variation of a typical quantitative trait, for the
field trials through all three years (2009, 2010, and 2011) and
all three generations (F7, F8, and F9) among the 198 RILs of the
population studied. The fiber lengths of the population from the
2009, 2010, and 2011 trials varied from 23.0 to 34.6, 23.1 mm to
35.8 mm, and from 23.1 mm to 34.8 mm, respectively. Figure 1C
shows the variation of fiber length determined through the 2011
field trial. The Pearson’s correlation coefficients (r) of the fiber
length phenotypes between the three replicates of the 2010 and
2011 trials were 0.80–0.85 (N = 164, P = 0.000) and 0.76 (N = 198,
P = 0.000), respectively. The Pearson’s correlation coefficients (r)
of the fiber length phenotypes between the 2009, 2010, and 2011
trials were 0.67–0.91 (N = 164 or 198, P = 0.000), even though the
weather of the trial location in 2011 was unusual hot and drought,
which was quite different from those normal weathers in 2010
and 2009. The broad sense heritability of the fiber length was
H2 = 0.90 and 0.83 for 2010 and 2011, respectively, which were
similar to those previously reported (Ulloa, 2006; Khan et al.,
2010). We were unable to calculate the H2 for 2009 because there
was no replication for the parents for the 2009 trial to estimate
the environmental variance (σ2

e ).
SNP/InDel analysis revealed that 400 of the 474 GFL genes

contained one or more SNPs/InDels and 74 had no SNPs/InDels
for the population. The 400 GFL genes had a total of 10,766
SNPs/InDels, with an average of 26.9 SNPs/InDels per gene.
Gene mutation effect analysis showed that 740 (6.9%) of the
SNPs/InDels contained in 226 of the 400 GFL genes, with an
average of 3.2 SNPs/InDels per gene, significantly increased or
decreased fiber length (P ≤ 0.05) of the RILs (Supplementary
Tables S1C, S6) by 2.1% to 22.6%. The multiple SNPs/InDels
per GFL gene suggested that there are multiple alleles for a GFL
gene, if each of its SNPs/InDels was considered to be biallelic.
The number of SNPs that significantly influenced fiber length
was expected, because a vast majority of the SNPs contained in
protein-coding genes are known to be synonymous, not leading
to protein sequence change and likely having no biological effects
(Graur and Li, 2000). Furthermore, we randomly selected 20
SNPs from the 740 GFL SNPs/InDels, with one SNP from a GFL
gene, and analyzed them by allele-specific PCR using the genomic
DNAs of four cotton genotypes as templates, including the two
parents of the population used in this study. The result confirmed
the existence of all 20 SNPs in the four genotypes, with the sizes of
the PCR products as expected (Supplementary Figure S1), thus
confirming the GFL genic SNPs identified. Therefore, these 226

GFL genes were hereafter defined as SNP/InDel-containing GFL
genes and further used as DNA markers for phenotype prediction
of fiber length.

The 474 GFL genes all expressed in 10-dpa developing fibers
of the population, but their expressions varied by thousands fold,
from 0.75 TPM to 23,601 TPM (Supplementary Table S4). The
expression of each GFL gene also varied dramatically among the
RILs of the population, with a coefficient of variance (CV%) of
18.5%–202.5%. The expressions of all 474 GFL genes exhibited
quantitative variations, with approximately 60% showing normal
distributions and approximately 40% having distributions biased
to lower expressions. Correlation analysis showed that the
expressions of all 474 GFL genes in 10-dpa developing fibers
were significantly correlated with the variation of the fiber
length in the population (P ≤ 0.05), which was consistent with
the expression correlation of previously published fiber length
genes (Supplementary Tables S2, S3) with the variation of fiber
length (Zhang et al., 2020b). Therefore, both SNP/InDel and
expression analyses further confirmed that the 474 GFL genes
controlling fiber length.

Predicting the Phenotype of Fiber Length
Using the GFL Genes
We tested the utility and efficiency of the GFL genes for
phenotype prediction of fiber length for enhanced cotton fiber
length breeding through GBB, especially progeny selection in this
study, using expression abundances and SNP/InDel genotypes of
the GFL genes. We first trained and validated the nine prediction
models using the fiber length data collected from the 2011 trial,
because the RILs of the population from the 2011 trial were also
genotyped using the expressions and SNPs/InDels of the GFL
genes. Then, we tested the utility and efficiency of the trained
prediction model selected above for phenotype prediction of fiber
length for the 2009 (F7) and 2010 (F8) trials using the genotypic
data from the 2011 trial.

Predicting the Phenotype of Fiber Length Using the
Expressions of the GFL Genes
We first tested the ability of the GFL genes for predicting the
phenotype of fiber length, in which the published fiber length
genes previously cloned by different researchers using different
gene cloning methods (Supplementary Tables S2, S3) were used
as the positive control. Since only 18 published genes controlling
cotton fiber length were previously cloned as of December 2014,
the ability of the GFL genes to predict the phenotype of fiber
length was first evaluated using only 18 GFL genes randomly
selected from these 474 GFL genes. These 18 published fiber
length genes were used as the positive control, and 18 randomly
selected unknown cotton genes were used as the negative
control. Nine prediction models widely used for prediction of
quantitative traits for GS and the expressions of the 18 GFL genes
(Supplementary Table S4), 18 previously published fiber length
genes (Supplementary Table S2) and 18 randomly selected
unknown genes were used to predict fiber length, respectively.
Results showed that only the randomly selected GFL genes and
the published fiber length genes could predict the phenotype
of fiber length, with a prediction accuracy of r = 0.246–0.350
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FIGURE 2 | Ability of the GFL genes to predict the phenotype of fiber length using nine prediction models. (A) Ability of the GFL genes to predict the phenotype of
fiber length using 18 GFL genes randomly selected from the 474 GFL genes. r, prediction accuracy presented by Pearson’s correlation coefficient between predicted
and observed fiber lengths; SD, standard deviation for 100 replications. (B) Statistics of prediction accuracies between these three sets of genes described in (A) for
fiber length using the Tukey’s HSD. I, 18 randomly-selected GFL genes. II, 18 published cotton fiber length genes (Supplementary Tables S2, S3); III, 18 randomly
selected unknown cotton non-474 GFL genes. Different letters, significant at a confidence interval (CI) ≥ 95%; error bar, standard deviation for 100 replications.
GBLUP, genomic best linear unbiased prediction; LASSO, least absolute shrinkage and selection operator; PLS, partial least square; SVMRBF, support vector
machine using the radial basis function kernel; SVMPOLY, support vector machine using the polynomial kernel function; RF, random forest; RKHS, reproducing
kernel Hilbert space regression (RKHS).

(P = 0.000). The randomly selected unknown cotton genes could
not predict the fiber length (r = 0.028–0.142, P > 0.05 for all
nine prediction models, except for LASSO that had P = 0.044)
(Figure 2A). Tukey’s HSD test showed that the GFL genes
had a similar prediction ability of fiber length to the published
fiber length genes for five of the nine prediction models tested
(confidence interval, CI < 95%), a higher prediction ability of

fiber length than the published fiber length genes for three of the
models, BayesA, BayesB, and SVMPOLY (CI ≥ 95%), and a lower
prediction ability of fiber length than the published fiber length
genes for only one of the nine models, RF (CI ≥ 95%). Both the
GFL genes and the published fiber length genes had significantly
higher prediction abilities than the randomly selected unknown
genes for all nine prediction models (Figure 2B). These results
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indicated that the GFL genes had similar or better abilities to
predict the fiber length than the published fiber length genes,
thus verifying the contributions of the GFL genes to fiber length
and their utility and efficiency to predict the phenotype of the
objective trait.

Then, we further confirmed the ability of the GFL genes to
predict the fiber length using a series of numbers of the randomly
selected GFL genes sampled by bootstrap sampling, from 6 to all
474 (Figure 3 and Supplementary Table S5). The experiment had
ten bootstrap selections for each number of genes. As expected,
all sets of the randomly selected GFL genes tested, no matter
how many GFL genes there were in the selection, from 6 to
474, and which of the prediction models was used, were able to
predict the fiber length (P = 0.010 for 6 GFL genes and P = 0.000
for all selections of genes with a number of GFL genes greater
than 6). Again, none of the randomly selected unknown gene
selections, regardless of how many there were in the selection,
from 6 to 474, and which of the nine prediction models was
used, could predict the fiber length (P = 0.091–0.505) (Figure 3A
and Supplementary Table S5). Furthermore, as the number of
the GFL genes used for the prediction increased, the prediction
accuracy of fiber length increased (Figures 3A,B). When 200
or more of the GFL genes were used, the prediction accuracy
plateaued (Figure 3C). Comparative analysis showed that the
prediction models, PLS, BayesA, and RKHS, best predicted the
phenotype of fiber length among the nine prediction models
tested, with a prediction accuracy of r = 0.830, 0.817, and 0.814,
respectively, when all 474 GFL genes were used (Figure 3B and
Supplementary Table S5). In contrast, the prediction accuracies
of the randomly-selected unknown gene sets remained non-
significant, low, and consistent, for all of the randomly-selected
cotton unknown gene selections, from 6 to 474 (Figure 3A
and Supplementary Table S5). These results further confirmed
the ability, utility, and efficiency of the GFL genes for accurate
prediction of fiber length.

Prediction of Fiber Length Using the SNPs/InDels of
the GFL Genes as DNA Markers
Moreover, we further tested the ability, utility, and efficiency
of the GFL genes in predicting the phenotype of fiber length
using the 226 SNP/InDel-containing GFL genes (Supplementary
Table S1C). The SNPs or InDels contained in the 226 SNP/InDel-
containing GFL genes were only used as DNA markers
(Supplementary Tables S6, S7), as those DNA markers used for
GS, with no effect of the GFL genes on fiber length considered,
for the prediction. We first compared the prediction accuracy
of fiber length using all 740 SNPs/InDels contained in the 226
GFL genes (Supplementary Table S6) and a selection of the
740 genic SNPs/InDels, with only one SNP/InDel that had the
largest effect on fiber length per GFL gene (Supplementary
Table S7). As expected, the 740 GFL SNPs/InDels better predicted
the phenotype of fiber length, with a prediction accuracy varying
from r = 0.650 (P = 0.000) for the RF model to r = 0.832
(P = 0.000) for the SVMRBF model, than the selection of
the 226 GFL SNPs/InDels, with a prediction accuracy varying
from r = 0.671 (P = 0.000) for the SVMPOLY model to
r = 0.779 (P = 0.000) for the BaysA, BayesB, GBLUP, or RKHS

FIGURE 3 | Continued
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FIGURE 3 | Prediction of fiber length with different numbers of randomly
selected GFL genes and nine prediction models using expression profiles.
(A) Mean prediction accuracy of fiber length with the GFL genes using the
nine prediction models. A series of numbers of the 474 GFL genes ranging
from 6 to 474 were tested using the same numbers of randomly selected
unknown cotton non-474 GFL genes as the negative control
(Supplementary Table S5). For prediction models, see Figure 2.
(B) Prediction accuracy of fiber length with the GFL genes using different
prediction models. (C) Statistics of the mean prediction accuracies between
different numbers of the GFL genes predicted by the nine prediction models
using the Tukey’s HSD. Different letters, significant at CI ≥ 95%; same letter,
not significant at CI ≥ 95%.

model, in seven of the nine prediction models. The 740 GFL
SNPs/InDels had a similar to or lower prediction accuracy than
the selection of the 226 GFL SNPs/InDels for the LASSO and RF
models (Figure 4A).

However, if the selection of 226 SNPs/InDels was used for the
prediction, although the prediction accuracy would be slightly
lower, the cost of genotyping for the prediction would be reduced
by 2.3-fold. Therefore, we further tested the prediction accuracies
of different numbers of the SNPs/InDels selected from the 226
GFL SNPs/InDels for the phenotype of fiber length. Overall,
the RKHS model showed the best prediction results of fiber
length among the nine models (Figure 4B), and as more of the
226 GFL SNPs/InDels were used, a more accurate prediction
of fiber length was obtained (Figure 4C). The fiber lengths of
the cotton lines were predicted at an accuracy of r = 0.783
(P = 0.000), when all the 266 GFL SNPs/InDels were used with the
RKHS model.

In comparison, the prediction accuracies of fiber length using
all 740 SNPs/InDels contained in 226 GFL genes were essentially
the same high as the prediction accuracies of fiber length using
the expressions of all 474 GFL genes, thus demonstrating the
ability, utility and efficiency of the GFL genes in phenotype
prediction of fiber length for progeny selection.

Identification of the Key GFL Genes to
Phenotype Prediction of Fiber Length for
Progeny Selection
The above experiments indicated that the GFL genes were
able to accurately predict the fiber length with either GFL
expression abundances in 10-dpa developing fibers or GFL genic
SNPs/InDels as DNA markers. The question was whether the
GFL genes equally contributed to the phenotype prediction
of fiber length. If not, whether a subset of the GFL genes,
defined herein the key GFL genes, selected from the 474 GFL
genes could predict the phenotype of fiber length as accurate
as all 474 GFL genes for progeny selection. Therefore, we
tested the ability and efficiency of the GFL genes according
to their roles in the GFL network (Liu, 2014; Supplementary
Table S1B), the effects of their SNP/InDel mutations on fiber
length (Supplementary Table S1C), or their effects on fiber
length (Liu, 2014; Supplementary Table S1A). The GFL genes
randomly selected from the 474 GFL genes were used as the
control. The expression abundances of the selected GFL genes
were used for the prediction. Results showed that both the roles of

FIGURE 4 | Prediction of fiber length with the GFL SNPs/InDels as DNA
markers using nine prediction models. (A) Prediction accuracy of fiber length
using the genotypes of all 740 GFL SNPs/InDels (Supplementary Table S6)
versus a selection of 226 GFL SNPs/InDels that had the largest effects on
fiber length, with only one SNP/InDel per gene (Supplementary Table S7).
Different letters, significant at CI ≥ 95%; same letter, not significant at
CI ≥ 95%; error bar, standard deviation for 100 replications. (B) Prediction
accuracy of fiber length with the selection of the 226 GFL SNPs/InDels
(Supplementary Table S7) using different prediction models. (C) Prediction
of fiber length with different numbers of the 226 GFL SNPs/InDels
(Supplementary Table S7) using the RKHS model. Different letters,
significant at CI ≥ 95%; error bar, standard deviation.

the GFL genes in the GFL network (Supplementary Figure S2A)
and their effects on fiber length (Supplementary Figure S2C)
increased the ability of the genes to predict fiber length, but
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FIGURE 5 | Prediction of fiber length using the 226 GFL genes selected according to their effects on fiber length (Subset X, Supplementary Figure S2C).
(A) Prediction of fiber length using different numbers of the 226 selected GFL genes and the SVMRBF model. Different letters, significant at CI ≥ 95%; same letter,
not significant at CI ≥ 95%; error bar, standard deviation for 100 replications. (B) Prediction of fiber length with the 125 GFL genes selected from the 226 GFL genes
(Supplementary Table S8) using the SVMRBF model.

the effects of SNP/InDel mutations of the GFL genes on fiber
length (Supplementary Figure S2B) decreased the ability of the
genes to predict fiber length (CI ≥ 95%). Since the effects of
the GFL genes on fiber length had a larger increase than their
roles in the GFL network for phenotype prediction of fiber
length, the subset of the 226 GFL genes consisting of all 54
positively effective GFL genes, 59 smallest negatively effective
GFL genes, and 113 largest negatively effective GFL genes (Subset
X, Supplementary Figure S2C) was selected for further analysis
(Supplementary Table S1A).

Furthermore, we predicted the phenotype of fiber length
using different numbers of GFL genes randomly selected from
the subset of 226 GFL genes above (Subset X, Supplementary
Figure S2C). When 125 or more of the GFL gene subset were
used, the prediction accuracy of fiber length plateaued for eight
of the nine prediction models and the SVMRBF model best
predicted the phenotype of fiber length using these numbers
of the selected GFL genes (Figure 5A and Supplementary
Figure S3). Therefore, a subset of 125 GFL genes were identified
from the 226 selected GFL genes for phenotype prediction of
fiber length using expression profiles in 10-dpa developing fibers
(Supplementary Table S8). These 125 GFL genes were herein
defined the key GFL genes to phenotype prediction of fiber length
for progeny selection. When the 125 key GFL genes were used,
the prediction accuracy of fiber length approached r = 0.774
(P = 0.000) (Figure 5B), suggesting that they were well suited
for accurate prediction of fiber length and therefore, could be
used for progeny selection in a breeding program. Comparative
analysis showed that the prediction results of these 125 key GFL
genes were significantly correlated with those predicted with all
474 GFL genes (r = 0.888, P = 0.000; Supplementary Figure S4).
The fiber lengths predicted with the expression of the 125 key
GFL genes were also significantly correlated with those predicted
using the 226 SNPs/InDels contained in the 226 GFL genes
(r = 0.892, P = 0.000).

Prediction of Fiber Length Using the GFL
Genes Across Years or Generations
To further explore the ability, utility, and efficiency of the GFL
genes for fiber length prediction, we examined the prediction
accuracy of fiber length for the RILs across years or environments
(generations) using the two datasets of the selected GFL genes
genotyped from the 2011 (F9) trial only and the fiber lengths
phenotyped in 2009 (F7), 2010 (F8), and 2011 (F9), respectively.
The result showed that the GFL genes genotyped in the 2011
(F9) trial could also predict the fiber length of the RILs grown
in 2010 (F8) at a prediction accuracy similar to that achieved
from the 2011 trial that was used for genotyping the genes using
either of the two genic datasets, 125 key GFL expressions or
226 GFL SNPs/InDels as DNA markers. However, the prediction
accuracy of fiber length for the RILs grown in 2009 (F7) was
slightly lower than those achieved for the RILs in 2010 and 2011
(Table 1). Since the 2009 trial had no replication (those of 2010
and 2011 had three replications) and the prediction accuracy
was determined by Pearson’s correlation coefficient between
the predicted and observed phenotypes, the reduced prediction
accuracy for 2009 could be more likely attributed to the fiber
length phenotyping accuracy rather than the gene x environment
interactions. These results confirmed that the prediction accuracy
of fiber length for different environments or years and suggested
that the prediction accuracy of fiber length using the GFL genes
was largely consistent across environments or years at the late
generations of progeny for plant breeding.

The Proper Training Population Size for
Accurate Prediction of Fiber Length
Using the GFL Genes
Furthermore, we determined what was the appropriate training
population size to train a prediction model for fiber length
prediction using the GFL genes by using their expression
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TABLE 1 | Prediction accuracies of fiber length for different generations or years using the two datasets of the selected GFL genes for GBB collected in 2011,
individually: (A) The RKHS model was used for the prediction and (B) The SVMRBF model was used for the prediction.

Year Generation (A) 226 GFL SNPs/InDels as markers (B) Expression of 125 selected GFL genes

r P-value r P-value

2011 F9 0.7830 0.00E + 00 0.7872 0.00E + 00

2010 F8 0.8334 0.00E + 00 0.7761 0.00E + 00

2009 F7 0.6719 0.00E + 00 0.6515 0.00E + 00

The observed fiber lengths measured in 2010 or 2011 were the means of three replicates, while the observed fiber length measured in 2009 was from only one five-plant
plot with no replicate, largely explaining the lower prediction accuracy of fiber length in 2009.

abundances (Figure 6A) and their SNPs/InDels as DNA markers
(Figure 6B), individually. This is because the training population
size is regarded to prediction accuracy and also to the cost
for prediction model training. The populations consisting of a
series of numbers of lines, from 40 to 198, were used to predict
the fiber length using the selected optimal prediction models.
Although the variation of the prediction accuracy increased as
the training population size decreased, the prediction accuracy
of the GFL genes for fiber length plateaued, when 100 lines were
used, with the expressions of the 125 key GFL genes (Figure 6A).
For prediction of fiber length using the 226 SNPs/InDels of
the 226 SNP/InDel-containing GFL genes as DNA markers, the
prediction accuracy of fiber length plateaued, when 120 lines
were used (Figure 6B). Therefore, a training population size of
100–120 lines seemed proper to train a prediction model for
accurate prediction of fiber length for progeny selection using
either genotypes or expressions of the GFL genes.

DISCUSSION

One of the most important aims of molecular and genomic
research is to develop molecular technologies that can enhance
breeding in crop plants and livestock, and enhance medicine
in humans. This study has demonstrated that the phenotype
of a quantitative trait can be accurately predicted using the
genes controlling the trait. The prediction accuracy of the cotton
fiber length, which is used as the objective trait in this study,
has approached its plateaued accuracy, with an accuracy of
r = 0.83 (P = 0.000) using either the SNPs/InDels of 226 of the
474 GFL genes or the expressions of the 474 GFL genes. This
prediction accuracy is as accurate as the prediction accuracy of
maize grain yield (r = 0.85, P = 0.000), which is one of the
most complex quantitative traits, using the maize grain yield
(ZmINGY) genes (Zhang et al., 2020a). Moreover, the cotton
fiber lengths predicted using these two genic datasets of the GFL
genes are significantly correlated (r = 0.892, P = 0.000), further
verifying the prediction accuracy of fiber length. The prediction
accuracy of fiber length achieved using its contributing genes are
4%–315%, with an average of 95%, higher than those of r = 0.20–
0.80 achieved for different quantitative traits using genome-wide
DNA markers, genome-wide gene expressions, or genome-wide
metabolites consisting of thousands to tens of thousands of omic
features (Meuwissen et al., 2001; Lee et al., 2008; Crossa et al.,
2010, 2013; De Los Campos et al., 2010b; Heffner et al., 2011a,b;

Daetwyler et al., 2012; González-Camacho et al., 2012; Gouy et al.,
2013; Morota et al., 2014; Speed and Balding, 2014; Xu et al.,
2014, 2016; Beyene et al., 2015; Dan et al., 2016; Weissbrod et al.,
2016; Islam et al., 2020). If the same species (cotton), same trait
(fiber length, UHML), same prediction models (BayesB, GBLUP
and RKHS), and same cross-validation scheme are considered
for the comparison, the prediction accuracy of the cotton fiber
length using the 740 SNPs/InDels of the 226 GFL genes as DNA
markers were r = 0.80, 0.80, and 0.82 (P = 0.000) for GBLUP,
BayesB, and RKHS, respectively, in this study (Figure 4A).
These prediction accuracies are 116% higher than those of the
fiber length predicted using 6,292 genome-wide SNPs (Islam
et al., 2020). Furthermore, the prediction accuracy of cotton
fiber length using the GFL genes is highly consistent across
years (environments), even though the weathers between the
years were quite different, with 2011 having unusual weather.
This result is consistent with that of Zhang et al. (2020a) who
showed that the genes controlling maize grain yields consistently
predicted the maize grain yield across diverse climates and across
different eco-agricultural systems. Finally, 100–120 plants are
sufficient to properly train a model for accurate prediction of fiber
length using the GFL genes, thus significantly reducing the cost
for training and validating a model for phenotype prediction of
a quantitative trait (Islam et al., 2020). These results, therefore,
indicate that the genes controlling a quantitative trait are capable
of and desirable for accurate prediction of the phenotype of a
quantitative trait for progeny selection.

Zhang et al. (2020a) first proposed gene-based breeding
(GBB), based on the ability, utility, and efficiency of the maize
grain yield genes for accurate prediction of maize grain yield.
GBB is an innovative plant breeding method that makes full
use of the genes controlling the objective trait(s) through the
entire process of plant breeding, including parent selection, cross
design, and progeny selection. Three genic datasets of the genes
are used for GBB individually or jointly: (i) the number of
their favorable alleles (NFAs), (ii) their SNPs/InDels as DNA
markers, and (iii) their expression abundances and networks.
The results of this study that used two of the genic datasets for
GBB provide a strong support for development and application
of GBB for enhanced and accelerated plant breeding. Because
the datasets of genes controlling the objective trait(s) are used
for the entire breeding process, GBB allows not only accurately
selecting for the progeny that are the most high-yielding, high-
quality and highly resistant to biotic and abiotic stresses, but
also accurately selecting the most desirable breeding materials or
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FIGURE 6 | Prediction of fiber length with the selected GFL genes for GBB using different training population sizes. (A) Prediction of fiber length using the transcript
expression abundances of the 125 selected GFL genes and the SVMRBF model (Figures 5A,B). (B) Prediction of fiber length using the 226 selected GFL
SNPs/InDels as DNA markers and the RKHS model (Figure 4C). The prediction was carried out for 100 replications. Each number of lines was sampled for 10 times
by bootstrap sampling, with each number sample being tested with 10 replications. Different letters, significant at CI ≥ 95%; same letter, not significant at CI ≥ 95%;
error bar, standard deviation.

parents to approach the breeding objectives and wisely designing
crosses that maximally combine the favorable alleles and heterotic
genotypes of the genes controlling the objective trait(s) from the
breeding materials into progeny. Therefore, GBB sheds great light
on substantial and continued crop improvement, thus promising
to help feed the world.

The findings of this study are achieved using cotton fiber
length as the objective trait; nevertheless, the concepts and
methods developed in this study are applicable to accurate
prediction of other quantitative traits in crop plants, livestock,
and humans, to development of GBB for enhanced crop and
livestock improvement, and to development of gene-based
medicine for enhanced human disease prevention, diagnosis and
medicine. This conclusion is supported not only by the results

of this study, but also by Zhang et al. (2020a) who accurately
predicted the phenotype of grain yield in maize within and across
diverse environments (locations). However, concerns may exist
for practical use of the trait contributing genes in phenotype
prediction of quantitative traits. The first concern may be
genome-wide high-throughput cloning of the genes controlling
an objective quantitative trait. We previously invented an
innovative technology and developed an associated pipeline for
genome-wide high-throughput cloning of the genes controlling
quantitative traits and used it to have successfully cloned the
1,501 ZmINGY genes used by Zhang et al. (2020a) and the 474
GFL genes used for this study. Both the accurate prediction of
cotton fiber length using the GFL genes (this study) and the
accurate prediction of maize grain yield using the ZmINGY genes
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(Zhang et al., 2020a) consistently indicated that our novel gene
cloning technology enables to genome-wide, high-throughput,
and reliably clone the genes controlling quantitative traits.
Because its gene cloning throughput, efficiency, and reliability
are independent of the genome size, complexity, ploidy level,
and availability of genomic knowledge and resources of a species,
our gene cloning technology is applicable to genome-wide high-
throughput cloning of genes controlling a quantitative trait in any
species, including plants, animals, humans, and microbes. This
technology and associated pipeline will be published and made
available to the public soon.

The second concern may be variation of gene expression
across environments. First, gene expression is the determinant of
phenotype of a trait that results from interaction of numerous
factors, including gene effects (additive and dominant), gene
mutation, gene x gene interaction (epistasis), gene x genetic
background or non-gene element interaction, epigenetic factors,
and G x E interaction; therefore, it is a desirable type of
omics for omics-based prediction of phenotypes. This study
and Zhang et al. (2020a, b) revealed that the variation of
a quantitative trait, such as cotton fiber length, maize grain
yield, and ginseng ginsenoside content (Zhang et al., 2020b), is
contributed by not only gene mutation, such as SNPs/InDels, but
also by variation of gene expression. Therefore, the expression
abundances of genes controlling the objective quantitative trait
accurately predicted the phenotype of the fiber length in this
study and the phenotype of the maize grain yield by Zhang et al.
(2020a). Moreover, Zhang et al. (2019) conducted an extensive
study on the variation of gene expression across environments
and showed that that gene transcript expressions were highly
consistent and highly reproducible across plants growing within
a field trial replicate, between field trial replicates, and sampled
from different years/locations (r = 0.90–0.98, P = 0.000). In
addition, we recently showed that the phenotypic performance of
offspring could be also accurately predicted using the expression
abundances of genes related to the objective trait (grain yield)
in parents in maize across very diverse climates, across eco-
agricultural systems, and across populations (MZ, Y-HL, Y Wang,
CF Scheuring, X Qi, J Pekar, SC Murray, W Xu, S-HS, H-BZ,
submitted). These results together consistently indicate that the
expression abundances of the genes contributing to the objective
trait could predict the phenotype of the trait across environments,
including different years, different climates, and different eco-
agricultural systems, and across populations.
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INTRODUCTION

Continued increases in genetic gain demonstrate the success of established public and private plant
breeding programs. Nevertheless, in the last two decades, a growing body of modern technologies
has been developed and now awaits efficient integration into traditional breeding pipelines. This
integration offers attractive benefits, yet comes with the challenges of making modifications in
established and operational systems, a recent example of which is rice breeding (Collard et al.,
2019). Newly available technologies, genomics rapid cycling (Crossa et al., 2017), high throughput
phenotyping (HTP, phenomics) (Montesinos-López et al., 2017) and historical descriptions of
environmental relatedness (enviromics) (Costa-Neto et al., 2020a,b; Resende et al., 2020; Rogers
et al., 2021) are crucial to improving conventional breeding schemes and increasing genetic gain.
Integrating these new technologies into routine breeding pipelines will support the delivery of
cultivars with robust yields in the face of the expected unfavorable future environmental conditions
caused by climate change and the consequently increased occurrence of biotic and abiotic stresses.
Here, we briefly describe the use of these technologies and their implementation to provide
cost-effective and time-saving approaches to plant breeding. We also give an overview of the
interconnections between these techniques. Finally, we envision future perspectives to implement
a more interconnected breeding approach that takes advantage of the so-called modern plant
breeding triangle: integrating genomics, phenomics, and enviromics.

Why Genomics for Improving Breeding?
One of themost popular uses of genomics in breeding is the prediction of breeding values. Genomic
selection (GS) reduces cycle time, increases the accuracy of estimated breeding values and improves
selection accuracy. For instance, in maize, the effectiveness of GS has been proven for the case of
bi-parental populations (Massman et al., 2013; Beyene et al., 2015; Vivek et al., 2017), as well as
in multi-parental populations (Zhang et al., 2017). Its use has also been documented in species
with long generation times such as trees (Grattapaglia et al., 2018) and dairy cattle breeding, where
the reduction of the breeding cycle has increased the response to selection in comparison with the
progeny testing system (García-Ruiz et al., 2016).

Genomic selection has been implemented in many crops, including wheat, chickpea, cassava
and rice (Roorkiwal et al., 2016; Crossa et al., 2017; Wolfe et al., 2017; Huang et al., 2019), and
the number of programs that are moving from “conventional” to GS is growing. Results in wheat
show that genomic predictions used early in the breeding cycle led to a substantial increase in
performance in later generations (Bonnett et al., 2021 this issue).
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Defining Foundational Core Parents for Genomic

Selection-Assisted Breeding
In genomic selection, the optimization of the training set
composition is an important topic because training and testing
sets should be genetically related in such a way that the genetic
diversity present in the testing set could be covered and captured
by the diversity in the training set. Breeding programs must start
forming initial foundational core parents (training populations)
that represent the genetic diversity found in the current progeny
and conform to the testing population(s) to the greatest extent
possible (Hickey et al., 2012). These foundational parents should
be extensively phenotyped in different target populations of
environments and genotyped with high-density marker systems.
These training sets of foundation parents will be able to produce a
model with a high accuracy for current highly selected progenies
(Zhang et al., 2017).

Why Detailed Phenomics and the Use of

Multi-Trait Analysis to Improve Breeding?
The most important limitation to determining accurate
phenotypes has been the time and cost required to measure traits
in the field. Field phenomics aims to study all plant phenotypes
under a range of environmental conditions. Modern phenomics
methods are able to use hyperspectral/multispectral cameras
to provide hundreds of reflectance data points at discrete
narrow bands in many environments and at many stages of
crop development. Phenotyping technology can now be used to
quickly and accurately obtain data on agronomic traits based
on advancements in plant phenotyping technologies (Atkinson
et al., 2018). Therefore, the main goal of a high-throughput
phenotype (HTP) is to reduce the cost of data per plot and
to increase the prediction accuracy early in the crop-growing
season with the use of highly heritable secondary phenotypes,
closely related to the selection phenotypes. The cost of processing
HTP data can be minimized by using open-source software, such
as FieldImageR (Matias et al., 2020).

There is evidence that multi-trait analyses improve prediction
accuracies when the genetic and residual correlations are
considered in the modeling process. New genomic models that
take the multiple traits and the multiple environments into
consideration, along with trait × environment, trait × genotype,
and trait × genotype × environment interactions, offer a huge
potential for the exploitation of correlations between different
variables and for the differentiation between effects. Integrating
current GBLUP multi-trait models with models that consider
the environmental information with the two- and three-way
interaction terms provides a powerful, unified, whole genome
prediction model.

The Bayesian multi-trait and multi-environment model
(BMTME) (Montesinos-López et al., 2016, 2019a) allows for
general covariance matrices for traits and environments that
capture the correlations among traits and environments better.
This unified model could be implemented to select genotypes
with traits measured in one environment and to predict in other,
untested environments. It could also be applied to predict traits
that are costly or difficult to measure in all environments.

It is crucial to obtain large and inter-operable phenomics
datasets from field phenotyping. This should be used to
characterize the foundational core parents in the different
environments and incorporate them into the visual data collected
in the different environments. These data, along with pedigree
and genomic information, can be used to fit Bayesian linear
mixed models to compute BLUPs of the genetic values of the
material in the training set. Breeding programs should collect
multi-trait data on the multi-environment used for foundational
core parents and exploit possible correlations among traits that
will eventually increase prediction accuracy. The genomics and
phenomics of themulti-trait foundation core parents are essential
for use alongside enviromics data.

Why Enviromics to Improve

Multi-Environment Trials for

Genomics-Assisted Plant Breeding?
The phenotypic variation observed across diverse environments
is a product of genetic and environmental variation. Thus,
enviromics acts as a central bottleneck for the application of
modern genomics-assisted prediction tools, especially for use
across multiple environments. Novel approaches have integrated
field trial data with DNA sequences using different sources of
enviromics, such as linear and nonlinear reaction-norm models
(e.g., Jarquín et al., 2014; Morais-Júnior et al., 2018; Millet et al.,
2019; Monteverde et al., 2019; Costa-Neto et al., 2020a), crop
growth model (CGM) outputs (Heslot et al., 2014; Rincent et al.,
2017, 2019), CGM integrated with GS (Cooper et al., 2016;
Messina et al., 2018; Robert et al., 2020) and historical weather
records to predict cultivars in years to come (de los Campos et al.,
2020).

For example, the strategy proposed by de los Campos et al.
(2020) assesses genomic× environment (G× E) patterns learned
from field trials and predicts the expected performance of a
cultivar in an environment but also evaluates the expected
distribution of a cultivar performance over other possible
weather conditions, while accounting for uncertainty in model
parameters. This is a new method for the analysis of multi-
environment trials and can speed up the assessment of grain yield
adaptability and stability.

Another recent example is the approach that can increase
the resolution in multi-environment prediction for stability
by taking advantage of large-scale enviromics with different
kernel methods (Costa-Neto et al., 2020a). The environmental
relatedness among field trials can be shaped using linear
covariances (as proposed by Jarquín et al., 2014) and non-
linear methods (Gaussian kernel, deep learning, and deep kernel)
(Cuevas et al., 2016, 2017, 2018, 2019; Montesinos-López et al.,
2018a,b, 2019b,c). The use of non-linear kernels has led to
higher accuracy gains in the prediction of novel genotypes
under known conditions, but mostly in the prediction of novel
environment conditions (untested environments). This approach
was expanded to take account of several environmental structures
across different crop development stages (Costa-Neto et al.,
2020b). For the latter, the authors observed an increased ability
to explain G × E in terms of genotype-specific reaction norms
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for key environmental factors or key development stages. This
increased ability to explain G × E was important to achieve
higher accuracy gains in comparison with models without
enviromic information.

In a recent research article, Rogers et al. (2021) emphasized
the importance of incorporating high throughput environmental
data into genomic prediction models in order to carry out
predictions in new environments characterized with the same
environmental characteristics. The author concluded that,
among other factors, G × E interactions and environmental
covariates should be incorporated into prediction models to
improve prediction accuracy.

Interconnection in Modern Plant Breeding
Progress toward the modernization of the statistical and
quantitative genetic models for the analysis of plant breeding in
multi-environment trials has become clearer as the availability
of genomics, phenomics, and environments information has
increased (see, among others, Vargas et al., 1998; Crossa et al.,
2010; Burgueño et al., 2012; Heslot et al., 2014; Jarquín et al.,
2014; Montesinos-López et al., 2017; Millet et al., 2019; Costa-
Neto et al., 2020a; de los Campos et al., 2020; Robert et al.,
2020). Thus, we see that all the elements described above
offer a clear potential for the acceleration of genetic gains in
plant breeding. However, an efficient data-based integration is
required to achieve greater opportunity, particularly in terms of
increasing prediction accuracy. Some of the major links between

genomics, phenomics, and enviromics are outlined below, and
their potential impacts are summarized in Figure 1.

Linking Genomics and Phenomics
Linking massive data sets from genomics and phenomics has
complexities that require statistical models to deal with a
very large number of correlated predictors. Montesinos-López
et al. (2017) proposed linking genomics and phenomics with
Bayesian functional regression models that consider all available
reflectance bands (250 bands or wavelength), genomic or
pedigree information, the main effects of lines and environments,
as well as the effects of interaction. They observed that the
models with wavelength × environment interaction terms were
the most accurate for the prediction of performance in three
different environments and at various crop development time
points. The functional regression models are parsimonious
and computationally efficient because the mathematical basis
functions allow the selection of only 21 beta coefficients (rather
than using all 250). Recently, Lopez-Cruz et al. (2020) proposed
a method to predict the genetic merit of cultivars from
high-dimensional HTP data by integrating high-dimensional
regressions into the standard selection index methodology.

Linking Multi-Trait and Multi-Environment

Data
Multi-trait multi-environment data (MTME) take advantage of
large-scale correlations among different traits evaluated across

FIGURE 1 | The modern plant-breeding triangle incorporates genomics, phenomics, and enviromics. Connections between each of these elements can be beneficial

for the acceleration of genetic gains.
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diverse environments to train accurate GS models. Because of
this, the use of GS in MTME data is a promising approach
to reduce field phenotyping efforts. For example, Ibba et al.
(2020) evaluated the prediction performance of 13 quality traits
in wheat using two multi-trait models and five data sets based
on field evaluations over two consecutive years. In the second
year (testing), lines were predicted using the quality information
obtained in the first year (training). For most of the quality traits,
they found moderate to high prediction accuracies, suggesting
that the use of GS at earlier stages could be recommendable.
Overall, the results indicate that the BayesianMTMEmodel helps
capture the correlation among traits and the correlation among
years, thus increasing prediction accuracy. Finally, we envision
perspectives of modelingMTME-based reaction norms involving
other omics, such as phenomics and enviromics. The latter can
enhance the MTME analysis in terms of creating more biological
models of crop growth, development, and yield components (e.g.,
Robert et al., 2020).

Interplay Genomics and Enviromics
Since the 1960s, several researchers have suggested the use of
environmental information to explain the differences in cultivars
due to G× E interactions (e.g., Perkins and Jinks, 1968; Freeman
and Perkins, 1971; Wood, 1976; Vargas et al., 1998; Crossa et al.,
1999). The use of genomics with enviromics is the basis for the
prediction of cultivars across diverse growing conditions (e.g.,
Jarquín et al., 2014; Messina et al., 2018; Millet et al., 2019), which
is useful for the prediction of global warming.

However, the efforts to implement environmental covariates
into genomic selection models usually focus on a few
environmental covariates such as temperature, precipitation,
and sun radiation defined over specific developmental stages of
the crop. With the use of large-scale envirotyping data, it is
possible to design a global-scale envirotyping network of field
trials to train GS models and perform “enviromic assembly” to
predict a wider number of growing conditions from historical
climate and soil data (R package EnvRtype, Costa-Neto et al.,
2020b). In addition, research is underway for the study of model
Enviromic + Genomic prediction (E-GP) to link genotype-
phenotype variations, as well as to explain phenotypic variations
across environments. As a predictive breeding tool, E-GP can
contribute to the study of G × E structures, in which, as an
exploratory tool, E-GP can contribute to the optimization of
experimental networks of field trials and lead to more efficient
training sets for GS (e.g., Rincent et al., 2017). In addition, for the
early stages of selection, genomics and enviromics can be used
to design optimized phenotyping trials and predict the breeding
values of the selection candidate (Morais-Júnior et al., 2018) or
single cross-hybrid prediction (Costa-Neto et al., 2020a).

Through enviromic assembly, it is possible to establish
relatedness among field trials and thus use only the most
representative set of experiments for training GS models.
Another perspective of E-GP is the use of large-scale

environmental data in training models involving genotype-
specific reaction norms (e.g., Ly et al., 2018; Millet et al.,
2019) and phenotypic landscapes implemented by genomics
with crop growth models (CGM) (e.g., Messina et al., 2018;
Bustos-Korts et al., 2019; Robert et al., 2020). The possible
use of image-based responses related to main environmental
stresses, such as heat and drought-stress, can also boost
the implementation of genomic-assisted platforms for
predictive purposes and are capable of better representing the
plant-environment interplay.

Future Perspectives
In order to meet the well-documented challenges of food
and nutrition security, there is a pressing need to use new
technologies to accelerate the progress of plant breeding.
These methods can be incorporated into conventional
phenotypic breeding programs or help redesign established
phenotypic breeding pipelines to enable a gradual shift toward
a more data-driven perspective. The benefits of phenomics
and enviromics together in benchmark genomic pipelines
offer the potential to deliver larger increases in accuracy
and efficiency of breeding pipelines when we select better-
adapted genotypes in a cost-effective manner, as well as in a
reduced timeframe. Genomics, phenomics, multi-trait, and
enviromics analyses are interconnected, and their use can
be optimized based on resources and program structure.
Together, they offer a pathway for conventional phenotypic
breeding to envision a diverse set of opportunities to accelerate
genetic gains.
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The world population is expected to be larger and wealthier over the next few decades
and will require more animal products, such as milk and beef. Tropical regions have
great potential to meet this growing global demand, where pasturelands play a major
role in supporting increased animal production. Better forage is required in consonance
with improved sustainability as the planted area should not increase and larger areas
cultivated with one or a few forage species should be avoided. Although, conventional
tropical forage breeding has successfully released well-adapted and high-yielding
cultivars over the last few decades, genetic gains from these programs have been low
in view of the growing food demand worldwide. To guarantee their future impact on
livestock production, breeding programs should leverage genotyping, phenotyping, and
envirotyping strategies to increase genetic gains. Genomic selection (GS) and genome-
wide association studies play a primary role in this process, with the advantage of
increasing genetic gain due to greater selection accuracy, reduced cycle time, and
increased number of individuals that can be evaluated. This strategy provides solutions
to bottlenecks faced by conventional breeding methods, including long breeding cycles
and difficulties to evaluate complex traits. Initial results from implementing GS in tropical
forage grasses (TFGs) are promising with notable improvements over phenotypic
selection alone. However, the practical impact of GS in TFG breeding programs
remains unclear. The development of appropriately sized training populations is essential
for the evaluation and validation of selection markers based on estimated breeding
values. Large panels of single-nucleotide polymorphism markers in different tropical
forage species are required for multiple application targets at a reduced cost. In this
context, this review highlights the current challenges, achievements, availability, and
development of genomic resources and statistical methods for the implementation of
GS in TFGs. Additionally, the prediction accuracies from recent experiments and the
potential to harness diversity from genebanks are discussed. Although, GS in TFGs
is still incipient, the advances in genomic tools and statistical models will speed up its
implementation in the foreseeable future. All TFG breeding programs should be prepared
for these changes.

Keywords: apomixis, brachiaria, elephant grass, forage breeding, Guinea grass, marker-assisted selection,
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INTRODUCTION

The tropics are home to about a third of the world’s population,
accounting for 36% of the Earth’s landmass, and where most
of the global demographic increase takes place (Morales, 2009).
The tropical region is the center of origin and domestication
of many of the world’s most important food crops and is
responsible for 50% beef production and 40% milk production
worldwide (Morales, 2009; Alexandratos and Bruinsma, 2012).
Despite the huge importance of the tropical region, there is an
evident gap in technological development between the tropical
nations and industrialized temperate countries. The tropical
region has great potential to meet the growing global demand
for food requirements with intensification through improved
management and technologies. One important step toward
intensification is the acceleration of breeding programs.

Plant breeding has evolved from a rudimentary process in its
early stages to a modern and sophisticated system in the past
few decades. The rediscovery of Mendel’s laws of genetics in
1900 is one of the pillars of modern plant breeding (Hallauer,
2011), which can also count on modern techniques such as
high-throughput sequencing, bioinformatics, and automated
phenotyping (Barabaschi et al., 2016). Breeding pipelines can
apply these techniques to increase the rates of genetic gain taking
into account the parameters found in the “breeder’s equation”
(Lush, 1937; Eberhart, 1970), which states that the genetic gain is
directly proportional to the accuracy of the observed phenotype
in relation to the true phenotype and genotype, selection
intensity, and genetic variation, but inversely proportional to
the time of the breeding cycle. Manipulating variables in the
“breeder’s equation” can increase genetic gain as well as reduce
the timeframe to develop new cultivars (Pereira et al., 2018).

Pastures are the main food source for animal feeding in
the tropics, as in Brazil, where approximately 90% of the
livestock are solely grass-fed (Silva et al., 2016). An increase in
productivity and quality of tropical forage grasses (TFGs) will
have a significant impact on livestock production. Although,
cattle and buffaloes already contribute to the largest proportion
of global animal protein supply, increased quantities of milk
and beef are necessary due to growing demands. Production will
have to increase by 57% for beef and 48% for milk by 2050
compared to that in 2005, as projected by the FAO (Alexandratos
and Bruinsma, 2012), while other estimates indicate that the
global demand for livestock products will double by 2050 (Bajželj
et al., 2014; Rao et al., 2015). This higher production needs

Abbreviations: BLUP, best linear unbiased prediction; CIAT, International
Center for Tropical Agriculture; EMBRAPA, Empresa Brasileira de Pesquisa
Agropecuária; GBS, genotyping-by-sequencing; GEBV, genomic breeding values;
GETV, total (genotypic) genomic values; GLS, generalized least squares; GS,
genomic selection; GV, genomic value; GWAS, genome-wide association studies;
IBERS, Institute of Biology, Environmental and Rural Sciences at Aberystwyth
University; ICARDA, International Center for Agricultural Research in the Dry
Areas; ILRI, International Livestock Research Institute; LD, linkage disequilibrium;
NIRS, near-infrared spectroscopy; MAF, minor allele frequency; MAS, marker-
assisted selection; QTL, quantitative trait loci; QTN, quantitative trait nucleotide;
REML, restricted maximum likelihood; SARDI, South Australian Research and
Development Institute; SNP, single-nucleotide polymorphism; TFG, tropical
forage grass; USDA, United States Department of Agriculture.

to take into account scenarios where the land destined for
pastures may have to be reduced, as has been happening in
Brazil (IBGE, 2016). Efforts to breed TFGs focus on increasing
productivity and quality while also reducing losses due to
biotic and abiotic stresses. However, breeding efforts have been
hindered by many features of tropical forages that render the
implementation of more dynamic breeding programs difficult.
TFGs encompass perennial monocotyledonous plants from the
family Poaceae, mostly polyploid, with a C4 photosynthetic
pathway and showing both sexual and apomictic reproductive
systems. Breeding programs of TFGs face challenges such as
different ploidy levels and reproductive modes, evaluation of
perennial plants over different cuts, distribution of efforts among
different species, the evaluation of traits being laborious and
expensive, and most breeding programs being held by public
institutions. The development and release of a new cultivar can
take up to 10 years (Jank et al., 2014).

Genomic selection (GS) offers the opportunity to increase
agricultural production and reduce the breeding interval cycle
to at least half of the conventional time (Crossa et al., 2017).
Reduction of the breeding cycle is the main advantage of GS in
forage breeding (Simeão-Resende et al., 2014). GS and genome-
wide association studies (GWAS) have enormous potential for
use in the selection of complex traits such as yield, disease,
and insect resistance, facilitating the rapid selection of new
cultivars to meet the future demand for food and fodder (Heffner
et al., 2010; Talukder and Saha, 2017). However, breeding
programs of TFGs are still behind those of grain and fiber crops,
and even those of temperate/sub-tropical forages, regarding
the application of genomic tools as a strategy to accelerate
cultivar development. Challenges in applying GS in tropical
forages include designing and obtaining adequately sized training
populations; developing high-quality, low-cost, and reproducible
marker panels; dealing with polyploidy; and gaining knowledge
of the genetic architecture of target traits.

This article provides an overview of GS in TFGs focusing
on the current scenario, recent advances, and prospects for the
effective application of tools and strategies to accelerate TFG
breeding. We have focused on elephant grass (Cenchrus
purpureus syn. Pennisetum purpureum), Guinea grass
(Megathyrsus maximus syn. Panicum maximum), and brachiaria
(Urochloa brizantha syn. Brachiaria brizantha, U. decumbens
syn. B. decumbens, and U. ruziziensis syn. B. ruziziensis), which
account for most of the pastures in many parts of the world,
including Africa, Asia, Australia, and Latin America. Specific
features of breeding programs, availability of genomic resources,
statistical methods for GS, and gaps in the application of GS in
TFG breeding are discussed here. This discussion is essential
for the initiation and practical implementation of GS in TFG
breeding programs.

TFG BREEDING

TFG breeding began relatively recently (Valle et al., 2009).
For example, EMBRAPA, the Brazilian Agricultural Research
Corporation, started its breeding programs for Urochloa and

Frontiers in Plant Science | www.frontiersin.org 2 April 2021 | Volume 12 | Article 66519553

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-665195 April 26, 2021 Time: 15:4 # 3

Simeão et al. Genomic Selection in Forage Breeding

Megathyrsus in the 1980s (Jank et al., 2014), while the elephant
grass breeding program only began in 1991 (Pereira et al., 2017).
One of the first steps toward an effective breeding program
is the compilation of a germplasm collection. Approximately
17,000 accessions of TFGs have been preserved in the primary
global germplasm banks, such as CIAT, EMBRAPA, IBERS,
ICARDA, ILRI, SARDI, and USDA, where Urochloa spp.,
Cenchrus spp., and Megathyrsus spp. correspond to most of
the accessions alongside Digitaria spp. and Paspalum spp. The
genetic variability maintained in these germplasm banks is
invaluable, and these banks offer genetic resources adapted
to varied edaphoclimatic conditions and diverse purposes.
However, there is no corresponding use of this variability during
crossings in practical breeding programs. This indicates that these
collections are not being used to their full potential, although,
initiatives of germplasm exchange between institutions have been
taken to increase genetic variability that can be used in breeding
programs (Negawo et al., 2018; Habte et al., 2020). Better
characterization of germplasm collections will enable quicker
utilization to meet the dynamic demands of the production sector
with the emergence of diverse limitations due to climate, pests, or
changes in production systems.

The limited use of accessions preserved in germplasm banks
for crossing is one of the limitations of TFG breeding (Valle
et al., 2009; Pereira et al., 2018). Other limitations include the use
of a large number of candidate genera and species, insufficient
information on the biology of the species, low genetic variability
for important traits, polyploidy, a complex mode of reproduction
(apomixis), wild characteristics of important species (dehiscence
and malformation of seeds, anti-quality factors, and sensitivity
to photoperiod), lack of information on the genetic control and
heritability of agronomic traits, and little participation of the
private sector in the development of cultivars (Valle et al., 2009;
Sandhu et al., 2015; Pereira et al., 2018). It is worth noting that
brachiaria, Guinea grass, and elephant grass are perennial species,
which implies that most traits are evaluated in the field over long
periods, including several cuts. It is common for a specific trait to
show variation among different cuts (Rocha et al., 2019), which is
very different compared to that of annual species. The impact of
these limitations, along with the differences in market demands
and the ability of producers to absorb new releases, can be seen
in the low number of cultivars released through the years when
compared to the release of grain and fiber crops (Figure 1).

Despite these limitations, the improvement of forage grasses
has revolutionized the pastoral systems. In a study conducted
in sub-Saharan Africa, legume, and grass cultivars released for
different animal production systems increased forage production
by 2.65 times when compared to that of traditional cultivars.
Production was even higher when only forage grass was used
(Paul et al., 2020). Until recently, germplasm introduction was
the key method used for forage grass breeding, which involved
the evaluation and selection of germplasm accessions as a strategy
to obtain cultivars. This method was used to release U. brizantha
cv. Marandu in 1984 by EMBRAPA (Nunes et al., 1984), which is
currently cultivated on fifty-mega hectares of land in Brazil alone
(Jank et al., 2014). The germplasm introduction method, albeit
simple, rapid, and cost-effective, tends to be prone to exhaustion

as it requires the use of accessions collected from nature or
accessions obtained from a germplasm bank in other breeding
programs (Jank et al., 2011). In addition, natural habitats of
species are being increasingly degraded, with loss of variability
as well as restrictions in free access to germplasm across different
countries and breeding programs, notably due to recent laws for
access to genetic diversity and protection of cultivars (Pengelly
and Maass, 2019). Since 2000, the use of recombination as
a key strategy for cultivar development has intensified. For
example, among the new cultivars released by various breeding
programs, intra- or interspecific hybrids, especially of Urochloa,
Megathyrsus, and Cenchrus, have been highlighted, in which the
favorable traits of their progenitors are gathered. Of note, in
the last decade, long-term recurrent selection programs have
been established for major species, and promising results have
been achieved (Miles et al., 2006; Reis et al., 2008; Barrios et al.,
2013). The main objectives of TFG breeding are to identify and
develop improved genotypes that contribute to increased animal
productivity and reduced environmental impact (Figure 2).
Thus, not only a better agronomic behavior of the plant, but also
a more productive performance of the animal is sought, while
ensuring minimal environmental impact (Valle, 2001).

Although, TFG breeding programs have been successful in
releasing new and important cultivars over the years, there
are certain challenges to overcome. In Brazil, these challenges
include reducing losses due to biotic stresses (especially
spittlebug attacks), increasing adaptation based on expected
climate changes, and improving nutritional value to enhance
animal performance, resulting in more beef and milk per
kilogram of pasture. To address these challenges, research
priorities have focused on the development of new capabilities
such as the availability of genome sequences, high-throughput
genotyping, and germplasm characterization of tropical forage
grasses; identification of genes associated with important traits;
development and use of large-scale phenotyping tools; and
implementation of GS (Pereira et al., 2018).

Therefore, the prospects of applying genomic tools in TFG
breeding programs are promising, and these tools, coupled
with adequate pasture management, can continue to promote
substantial advances in livestock productivity. For each forage
species, the objectives of the breeding programs should be well-
defined, as highlighted in Figure 2. In addition to clear objectives,
it is important to use the latest technologies available to accelerate
the development of cultivars. In this regard, the use of genomic
tools for TFG breeding is fundamental.

GS: AN APPRAISAL IN TFG BREEDING

Peculiarities in Breeding Perennial TFGs:
Polyploidy and Apomixis
Perennial forages require selection methods that consider the
effects of both between families and within family individuals for
higher selection gains, mostly in lower magnitudes of narrow-
sense heritability (NSH) (Simeão-Resende et al., 2013, 2014).
In forage breeding, a combination of GS methods is expected
to be useful for predicting genomic breeding values (GEBVs)
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FIGURE 1 | Number of cultivars of brachiaria, Guinea grass, and elephant grass registered in Brazil in comparison with grain and fiber crops. The list was obtained
from the National Cultivar Registry Data Bank (Registro Nacional de Cultivares – RNC) that is a requirement from the Brazilian Ministry of Agriculture, Livestock and
Food Supply since 1997. The numbers shown here were retrieved on 19 November 2020 (http://sistemas.agricultura.gov.br/snpc/cultivarweb/cultivares_registradas.
php). Because the difference in the number of cultivars is high, the Y-axis has been adjusted.

and total (genotypic) genomic values (GETVs), for clonally
propagated cultivars. The estimation of marker effects and
genomic values should enable an increase in selection accuracy
and may reduce the time required for completing a breeding
cycle and the evaluation cost per genotype. Forage breeding
methods associated with GS show differential accuracy and gains,
as demonstrated by Simeão-Resende et al. (2014).

Considering all these premises, and the methods of the
current breeding programs, the uses, and advances of GS in
tropical forages will be presented. Firstly, facts about perennial
TFGs must be pointed out, as most are polyploids and
reproduce apomictically. Apomixis is asexual reproduction by
seed (Barcaccia et al., 2020) producing genetically identical
progeny (Hand and Koltunow, 2014). In both important genera
of TFG, Megathyrsus and Urochloa, gametophytic apomixis
subtype apospory occurs (Ozias-Akins and van Dijk, 2007) which
is a mode of reproduction in which the embryo originates from
a polyploid nucellar cell as a maternal clone by the seed (Valle
and Savidan, 1996). Therefore, the commercial cultivars of these
species are generally both polyploid and apomictic.

Autotetraploid individuals have been developed in
U. ruziziensis and M. maximus by artificially duplicated
chromosomes from diploid sexual individuals (Jank et al., 2014).
These sexual individuals are essential for hybridization with
apomictic ones in breeding programs of both genera to increase
genetic variability and enhance selection. Therefore, cytogenetic
analysis is constantly performed in parents and hybrids and
should be evaluated by considering the importance of the
species targeted by GS.

According to Bourke et al. (2018), the knowledge of the
meiotic behavior of a species is sometimes required to analyze
polyploid data using dosage calling software that uses the
expected segregation ratios in the F1 autotetraploid population.

Unlike allotetraploids, autotetraploids do not behave like diploids
during meiosis and require specialized methods and tools for
genetic studies and mapping (Gallais, 2003). Autotetraploid
plants exhibit polysomic inheritance, which can be detected
during a cytogenetic analysis by visualization of tetravalent
formation and segmental pairing among “partially homologous”
chromosomes (Stebbins, 1947) as well as by molecular inference
(Worthington et al., 2016). The consequence of chromosome
pairing in a tetravalent is the generation of unbalanced gametes
and individuals with non-Mendelian inheritance. Even in recent
autotetraploids induced by colchicine, chromosome pairing may
not show tetravalent formation or other meiotic abnormalities
(Pagliarini et al., 2008); however, the four alleles per locus are
always present. This may generate errors in genetic mapping,
haplotype designation, and the estimation of marker effects,
which are important factors in genomic prediction.

Diploid sexual individuals of M. maximus were collected in
Korogwe, Tanzania, and artificially duplicated (Jank et al., 2014).
The cytogenetic evaluation of autotetraploid (2n = 4x = 32)
sexual and supposedly segmental allopolyploid apomictic plants
revealed a low-to-moderate rate of meiotic abnormalities among
sexual (5%–31%) and apomictic (7%–11%) parents (Pessim et al.,
2010, 2015). Hybrids originating from a single cross showed
abnormal cells at a rate ranging from 16% to 52% (Pessim
et al., 2010, 2015). The frequency of meiotic abnormalities found
in M. maximus is lower than that reported in the tetraploid
Urochloa (2n = 4x = 36) interspecific hybrids, which ranged
from 18% to 82% (Risso-Pascotto et al., 2005; Mendes-Bonato
et al., 2006, 2007; Fuzinatto et al., 2007). Pagliarini et al. (2008)
found that the mean occurrence of meiotic abnormalities in
five induced autotetraploid U. ruziziensis accessions ranged from
5% to 10% and only one accession reached 55% abnormalities.
However, contrary to expectation, in all the autotetraploidized
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FIGURE 2 | Characteristics of brachiaria, Guinea grass, and elephant grass and breeding goals to improve their use as tropical forage grasses. The advantages and
breeding goals are based on Machado et al. (2019). Source of the pictures: Embrapa.

accessions, chromosome pairing was preferentially bivalent
(Pagliarini et al., 2008).

Regardless of the low rate of tetravalent formation in tetraploid
and sexual M. maximus and U. ruziziensis, the issues of
allele dosage and compatibility between apomictic and sexual
genomes still remains unresolved, as explained by Gallais (2003)
for recently doubled genotypes. Therefore, efficient cytogenetic
identification of the best crosses at early stages would allow for the
identification of the best and most cytogenetically stable parents
and progenies. Consequently, all subsequent stages of breeding
programs will certainly benefit from genomic prediction and the
unbiased estimation of marker effects.

Availability of TFG Breeding Populations
for GS
In practice, three populations must be defined for GS: estimation,
validation, and breeding populations (Goddard and Hayes, 2007;
Meuwissen, 2007). These populations may be as follows: i)
physically distinct (three different populations), ii) with two
simultaneous functions (only one population used for estimation

and validation), or iii) with three simultaneous functions (only
one population used for estimation, validation, and selection).
Figure 3 illustrates strategy ii.

Estimation Population
The estimation population is also called the discovery, training,
or reference population. This dataset includes a large number
of markers assessed in a moderate number of individuals (1,000
to 2,000 depending on the desired accuracy), which should have
their phenotypes assessed for various traits of interest. Equations
for predicting genomic values (random multiple regression) are
obtained for each trait. These equations associate each marker
or interval with its effect (predicted by RR-BLUP) on the trait
of interest. The markers that explain the loci regulating the
traits are identified in this population, and their effects are
estimated. Recently, Lara et al. (2019) and Matias et al. (2019a)
used estimation populations with 530 individuals of M. maximus
and 272 individuals of Urochloa hybrids, respectively. Predictive
abilities were lower than 0.4 for the evaluated traits. This indicates
that factors affecting GS efficiency in TFG breeding, such as
adequately sized training populations, still need to be improved.
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FIGURE 3 | Schematic application of genomic selection (GS) in a genetic improvement program (Resende et al., 2012).

Validation Population
When physically separated from the estimation population, this
dataset is smaller than the discovery population and includes
individuals that are assessed for SNP markers and various traits
of interest. The equations for predicting genomic values are
tested to verify their accuracy for this independent sample. To
calculate the accuracy, genomic values are predicted, using the
estimated effects from the estimation population and subjected
to correlation analysis with the observed phenotypic values.
As the validation sample is not involved in predicting the
marker effects, errors from genomic values and phenotypic
values are independent. Correlations between these values are
predominantly genetic in nature and equivalent to the predictive
ability (ryŷ) of GS in estimating phenotypes, which is given
by the accuracy of the selection itself (rqq̂) multiplied by the
square root of the heritability (h), or ryŷ = rqq̂h. Thus,
to estimate the accuracy, one should obtain rqq̂ = ryŷ/h.
This method is valid when raw phenotypic values are used
to calculate the correlations. When using genotypic values
predicted based on phenotypes instead of raw phenotypic
values, heritability should be replaced by the reliability of the
prediction. In general, strategy ii is adopted according to a
k-fold scheme for cross-validation. According to Meuwissen
(2007), when dozens to hundreds of thousands of haplotypes
are estimated, there is a risk of over-parameterization; in
other words, errors in the data are explained by the marker
effects. Cross-validation is therefore extremely important to
address this problem.

Breeding Population
This dataset only contains the markers assessed in the candidates
for selection, and the phenotypes do not need to be assessed
in this population. Therefore, the prediction equations derived
from the estimation population are used to predict the GVs or
future phenotypes of the candidates for selection. The associated
selection accuracy is calculated for the validation population.

In most TFG breeding programs, the training population is the
same as, or part of, the breeding population, and this population
may have experienced directional selection for many generations
(Simeão-Resende et al., 2014). It is likely that validation may
never exist for most breeding programs, firstly because cross-
validation (Kohavi, 1995) has been the commonly used method

and secondly because it is difficult to find out more than one
ongoing breeding program per species and country.

Elephant grass (Cenchrus purpureus) is a tetraploid and
allogamous species in which open pollinated divergent
populations are easy to establish. The two main breeding
strategies are: (i) recurrent selection (Reis et al., 2008); and (ii)
clonal selection (Pereira et al., 2017; Machado et al., 2019). The
recommended number of individuals in estimation populations
for GS can be easily reached, in which the effective population
size can be previously assumed and effectively estimated after
genotyping. Validation can be performed by cross-validation and
this may be extended to different environments or even to related
populations of breeding programs in other countries.

Guinea grass (M. maximus) and brachiaria (Urochloa)
breeding programs have recently adopted the full-sib reciprocal
recurrent selection as a method, in which thousands of hybrids
are generated annually (Barrios et al., 2013; Worthington and
Miles, 2015). As the intrapopulation recurrent selection is feasible
only on sexual populations, because there is no possible crossing
between apomictic accessions, selection is performed on sexual
individuals as a function of heterosis expressed in crossings with
apomictic accessions. The schematic drawing of this procedure
was presented for M. maximus (Simeão-Resende et al., 2004) and
Urochloa (Jank et al., 2014). Based on this information, and the
fact that these methods have been recently implemented, some
limitations for the establishment of estimation populations in
these genera must be discussed. Firstly, the Ne of the sexual
population is extremely low (Ne <7) in M. maximus (Simeão-
Resende et al., 2004; Lara et al., 2019), in tetraploid U. ruziziensis
used as female parents in crossings with apomictic U. brizantha
(Simeão et al., 2015), and in tetraploid sexual U. decumbens
(Barrios et al., 2013). Secondly, albeit the genetic diversity within
populations of apomictic accessions of Urochloa species is high
(Vigna et al., 2011), the number of accessions used in crosses
is low, because the crosses are performed based only on the
adapted and agronomically selected apomictic individuals (Jones
et al., 2021). Therefore, the Ne is likewise low (<20). Thirdly,
as a result of the intra or interspecific crosses, F1 progeny
segregates for mode of reproduction in which individuals in the
progeny may vary from 99% apomictic to 99% sexual. While
this procedure is efficient to explore the panmictic heterosis
(Lamkey and Edwards, 1999) and can readily generate apomictic
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individuals that are potential cultivar candidates, these hybrid
swarms do not constitute a breeding population per se. Therefore,
the Ne among and within hybrid families must be adjusted
and considered for efficient GS use in both genera. Using the
equation Ne =

4Nf n
n+1 , in which Nf is the number of full-

sib families and n the number of individuals per family, we
may suggest the evaluation of 42 families and 10 individuals
per family, a total of 420 genotyped individuals, to achieve Ne
of approximately 152. For phenotyping, the total number may
be approximately 1000 individuals (Resende, 2015). Finally, in
practice, the TFG estimation population for GS in the genera
Megathyrsus and Urochloa could be composed of sexual hybrids
in an open pollinated population, followed by validation in
apomictic hybrids.

Genetic Markers in Selection and Gene
Discovery
The use of molecular genetic markers for selection and genetic
improvement is based on the genetic linkage between these
markers and a quantitative trait locus (QTL) of interest (Resende
et al., 2013). Thus, linkage disequilibrium (LD) between markers
and QTLs is essential for genomic selection from genomic
information (Bourke et al., 2018). It must be made clear that a
QTL refers only to the statistical association between a genomic
region and a trait.

Recently, molecular genetic markers that consist of SNPs
(based on the detection of polymorphisms that arise from a
single nucleotide change in the genome) have been widely used
in many species (Elshire et al., 2011). Generally, for a SNP to
be considered genetically derived, the polymorphism must occur
in at least 1% of the population (Resende, 2015). SNPs are the
most common type of genomic variation and preferred over other
genetic markers because of their abundance, ease of obtainment,
and low genotyping cost. Thousands of SNPs can be used to cover
the entire genome of an organism with markers not more than 1
cM apart from each other.

LD analysis is based on LD between a marker and a QTL in
the whole population and not only within a family, as performed
in linkage analysis (Würschum, 2012). For this to occur, the
marker and QTL must be closely linked. When this occurs, the
association between them is a property of the entire population
and persists for many generations.

Association analysis is used for fine mapping and is based on
population-level LD (Resende et al., 2013). Linkage can occur
when the gene directly affects a trait, and when there is an LD
between the marker and the gene controlling the trait. In the
first case, the effect of the gene is directly evaluated, and the
marker is classified as functional. The functional mutations
are known as quantitative trait nucleotides (QTNs). In the
second case, the linkage test requires LD between the marker
and QTL. When a mutation occurs on a given chromosome,
it creates a haplotype with adjacent loci on the chromosome.
In the subsequent generations, this mutation tends to occur
within the same haplotype unless there is recombination,
which creates the LD used for association mapping
(Resende et al., 2013).

In recent times, efforts to use molecular markers in genetic
improvement research have evolved into two approaches: (1)
GWAS for QTL identification and mapping; and (2) genome-
wide selection (GWS) or GS (Resende, 2015). GS was proposed
by Meuwissen et al. (2001) to increase breeding efficiency and
accelerate genetic improvement. GS emphasizes the simultaneous
prediction (without the use of significance tests for individual
markers) of the genetic effects of thousands of SNP markers
dispersed throughout the genome of an organism to capture
the effects of all loci (both small and large effects) and identify
the overall genetic variation of a quantitative trait (Resende and
Alves, 2020). In this case, the sum of the estimated genetic effects
of the markers present in an individual provides the genetic value
of the individual for selection purposes. Meuwissen et al. (2001)
obtained a complete array of estimates of haplotype effects using
the ridge regression best linear unbiased prediction (RR-BLUP),
BayesA, and BayesB methods. RR had already been used by
Whittaker et al. (2000) for marker selection. Haley and Visscher
(1998) suggested the name GS for selection on a whole genome
scale (Resende and Alves, 2020).

The conceptual development of GS coincides with the
technology associated with SNPs, which is accurate and relatively
affordable. GS uses the associations between many SNP markers
throughout the genome along with phenotypes and takes
advantage of LD between markers and QTLs in close linkage
(Resende et al., 2013). The predictions derived from phenotypes
and SNP genotypes with high density in a generation are thus
used to obtain genomic values (GVs) for individuals in any
subsequent generations based on their genotypic markers, in
which the genetic effects have been estimated.

When LD between markers is incomplete, the joint allele
frequencies for the two loci can change markedly across
generations, thereby leading to changes in haplotypes. In this
case, the marker effects would need to be estimated again to
maintain the accuracy of GS for various generations (Dekkers,
2007). In the case of a complete or close LD, the estimated effects
remain constant across different families and generations within
the same environment.

The number of markers used are directly associated to the
genome size, extent of LD and population structure (Ballesta
et al., 2020). Larger genomes, rapid breakdown of LD and greater
effective population size imply that a higher density of SNP loci
would be needed.

Factors Affecting the Efficiency of GS
The accuracy of GS depends on five factors (Resende et al.,
2014): i) heritability of the trait; ii) number of loci regulating
the trait (also given by 2NeL) and the distribution of their
effects; iii) number of individuals in the discovery population;
iv) effective population size (Ne); and v) marker density, which
depends on the number and genome size (L, in Morgans).
The first two factors are beyond the breeder’s control, and the
latter three factors can be modified by the breeder to increase
the accuracy of GS.

An increase in the selection efficiency using GS can be
achieved by changing the four components of the expression
for genetic progress, given by SG = (krgĝσg)/T, where k
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is the standardized selection differential (dependent on the
selection intensity), rgĝ is the accuracy of selection, σg is the
genetic standard deviation (genetic variability) of the trait in
the population, and T is the time required to complete a
selection cycle.

In perennial and vegetatively propagated plant species, the
benefit of GS is from an increase in rgĝ and a reduction in
T. The increase in rgĝ is due to the use of an actual kinship
matrix (Resende, 2007). This increase depends on the size of the
estimation population and marker density. Factor T is greatly
reduced by GS because genomic prediction and selection can be
performed at the seedling stage. Thus, even if rgĝ shows the same
magnitude as obtained by phenotypic selection, GS is still better
than selection based on phenotypes due to the reduction of T.

Inferring the Quality and Efficiency of GS
The quality of GS is inferred by correlation and regression among
the predicted genetic values and phenotypes in the validation
population, as well as by the accuracy of the prediction. The
correlation and regression coefficients involving observed and
predicted values are practical measures of the ability of the
methods to make predictions that are accurate and unbiased,
respectively. Correlation provides predictive ability, which is
equivalent to the product of accuracy and the square root of
heritability (Resende et al., 2014). The regression coefficient is
algebraically equal to 1. Regression coefficients of less than 1
indicate that the genetic values are overestimated and exhibit
greater variability than expected; coefficients greater than 1
indicate that the estimated genetic values exhibit variability
lower than expected. A lack of bias is important when
selection involves individuals from many generations using the
estimated marker effects from a single generation. Regression
coefficients near 1 indicate that the assessments are unbiased and
effectively predict the actual magnitudes of differences among the
individuals assessed.

The expected value of the regression coefficient is 1, which
indicates an unbiased prediction. Thus, the regression coefficient
can also be used to estimate the heritability of the markers
(Resende et al., 2013). Various heritability values are assessed, and
those that provide a regression equal to 1 should be selected as
the best estimate. If the regression yields a result less than 1, the
magnitude of the assessed heritability value is too high and should
be reduced until the regression coefficient is converged to 1. If
the regression yields a result greater than 1, the magnitude of the
assessed heritability value is too low and should be increased until
it converges to 1.

CURRENT GENOMIC RESOURCES FOR
TFG BREEDING

The availability of a large number of high-quality single-
nucleotide polymorphisms (SNPs) that can be genotyped at
a reasonable cost is a prerequisite for implementing GS in a
crop of choice (Hayes et al., 2013). Gold-standard methods
for SNP discovery rely on resequencing individual samples at
minimum coverage and mapping reads to a reference genome

(McKenna et al., 2010); this is also true for low-coverage,
genotyping-by-sequencing (GBS) methods (Elshire et al., 2011).
Although, reference-free pipelines are available for GBS, such
as UNEAK (Lu et al., 2013), reference-based methods allow for
more informed decisions during the selection of high-quality
SNPs (McCormick et al., 2015). Alternative methods have been
recently tested and reported in Urochloa, for which the GBS-SNP-
CROP pipeline (Melo et al., 2016) was used to generate a “mock”
reference from GBS data (Matias et al., 2019b). This led to the
discovery of a larger number of biallelic SNPs, when compared
to mapping reads to the available genome of the closest related
species (Setaria viridis and Setaria italica).

Assembly quality, which is measured by its accuracy,
haplotype phasing, and contiguity, is an important factor
influencing marker discovery, GWAS, and GS. In tetraploid
blueberries, the selection of probes for targeted SNP genotyping,
investigation of the genetic architecture of fruit traits,
identification of candidate genes, and genomic prediction
benefited from a more complete, chromosome-scale, haplotype-
phased genome assembly (Benevenuto et al., 2019). A huge
reduction in sequencing costs and increased throughput
brought about by second-generation sequencing have allowed
unprecedented access to crop genomic information (Shamshad
and Sharma, 2018). However, the genomic complexity of
most TFG species is still challenging and has kept them
recalcitrant to sequencing efforts targeting reference-grade
assemblies using mainly second-generation short reads.
Forage grass species with the largest breeding programs in
Latin America are mostly polyploid and highly heterozygous
and have genomes with a high repeat content (Table 1).
Third-generation long reads can circumvent some of these
problems, and, combining with a technology such as optical
mapping or chromosome conformation capture can potentially
allow chromosome-scale reference-grade assemblies (Belser
et al., 2018; Shi et al., 2019). The use of these tools to
accelerate genomic research on TFGs is promising and can
thus advance the use of GS in breeding programs. We argue
that the availability of high quality genome assemblies is the
starting point for the development of genotyping systems
that will be useful for successfully deploying GS in TFG
breeding programs.

TABLE 1 | Reproductive system and genomic information of economically
important tropical forage grasses used in livestock production.

Scientific name Predominant
reproductive

system

Genome
size (Gpb)

Chromosome
number and
ploidy level

WGS#

Urochloa brizantha Apomictic 1.4 2n = 4x = 36 No

Urochloa humidicola Apomictic 1.9 2n = 6x,
9x = 36 to 54

No

Urochloa decumbens Apomictic 1.6 2n = 4x = 36 No

Urochloa ruziziensis Sexual 0.6 2n = 2x = 18 Yes

Megathyrsus maximus Apomictic 1.0 2n = 4x = 32 No

Cenchrus purpureus Sexual 2.1 2n = 4x = 28 Yes

#WGS, availability of whole-genome sequence.
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Genome Assembly in Urochloa spp.
Urochloa P. Beauv. Grasses, many of which were previously
included in Brachiaria (Trin.) Griseb., are the most widely used
forage in Latin America. The main species are U. ruziziensis,
U. brizantha, U. decumbens, and U. humidicola. The first genome
assembly of a forage grass species in the genus Urochloa has
recently been reported for U. ruziziensis (Worthington et al.,
2020). The diploid genotype CIAT26162 was sequenced using
short reads (approximately 100 × coverage). Assembly and
scaffolding were performed and PacBio RSII reads were used for
gap filling. This is an invaluable resource for an orphan species
with no previously published genome information available.
However, it also highlights the huge challenges in the assembly
of highly heterozygous, repetitive genomes with short-read
technologies. The publicly available assembly was fragmented
into 102,577 scaffolds, with an N50 of 27.8 kbp. Completeness
metrics based on benchmarking universal single-copy orthologs
(BUSCOs) indicate that 86.7% are complete (1,248 out of 1,440
in the Embryophyta_odb9 dataset), suggesting that there is still
room for improvement. Because of the lack of linkage maps
for an intraspecific diploid cross in U. ruziziensis, which could
be used to cluster and order scaffolds based on linkage groups,
the study relied on anchoring scaffolds based on synteny with
the Setaria italica genome to obtain pseudo-molecules. This
potentially affected the anchored assembly due to undetected
chromosomal rearrangements that might be present between
S. italica and U. ruziziensis, as phylogenetic information and
evolutionary relationships were not taken into account in the
anchoring process.

Genomic Resources for Guinea Grass
(M. maximus)
The placement of Guinea grass in the phylogeny of Paniceae
has changed over the years, however, plant breeders, seed
producers, and farmers in Latin America mostly refer to it as
Panicum maximum, or “Panicum” as a common name for the
species. There is no reference genome assembly available for
M. maximus. The fact that Guinea grass was once included in
Panicum and is still mostly regarded as a Panicum species in
Latin America may lead to the assumption that the available
genome assemblies for panic grasses such as P. hallii (two
publicly available chromosome-scale assemblies; Lovell et al.,
2018) and P. milliaceum (two chromosome-scale assemblies; Shi
et al., 2019; Zou et al., 2019) would provide suitable shortcuts
for the development of genomic resources for M. maximus.
Lara et al. (2019) illustrated how this approach might limit
the genomic distribution and number of SNPs available when
genotyping M. maximus breeding populations using Panicum
genome assemblies as references. In this study, a multi-parental
population of M. maximus half-sib progenies was genotyped
using GBS, and six different assemblies were tested as references
for read mapping. Two of them comprised the genome assemblies
for P. hallii and P. virgatum, while the remaining included
genome assemblies for Setaria (S. italica and S. viridis) and
transcriptome assemblies for M. maximus. The alignment rates
ranged between 19.05% for P. hallii and 24.24% for M. maximus

transcriptomes, showing that a very large proportion of reads
were not used for SNP discovery and genotyping. The sets of
allele-dosed SNPs containing up to 5% of missing data from each
of the reference assemblies ranged between 5,032 for one of the
M. maximus transcriptomes and 8,112 for S. viridis. Although,
this was the first report on the development and assessment
of prediction models, considering the allele dosage, for GS in
M. maximus, increased marker density and prediction accuracies
may be expected when a high-quality genome assembly for the
species is available for SNP discovery and genotyping.

Genomic Resources and Genome
Assemblies for Elephant Grass
(C. purpureus)
Elephant grass (C. purpureus Schumach. Morrone, syn.
Pennisetum purpureum Schumach.), also called napier grass,
merker grass, or Uganda grass, is a tropical grass native to
Eastern and Central Africa. It is an allotetraploid species with a
chromosome constitution of 2n = 4x = 28 A’A’BB and an average
amount of DNA per G1 nucleus of 4.58 pg (Hanna, 1981; Taylor
and Vasil, 1987). Elephant grass is used as animal fodder and
is a promising lignocellulosic biofuel feedstock due to its high
growth rate, high biomass yield, and persistence (Morais et al.,
2009; Singh et al., 2013; Daud et al., 2014; Rocha et al., 2019).

Wang et al. (2018) conducted a genome survey of elephant
grass and estimated its genome size to be 2.01 Gb with 71.36%
of repetitive elements and a heterozygosity of 1.02%. A total of
114.36 Gb of raw data, (approximately 57-fold coverage) was
generated using the Illumina HiSeq sequencing platform for the
Zise genotype (purple elephant grass). A partial draft assembly
was obtained using SOAPdenovo. As expected for such a complex
genome, this effort allowed a preliminary investigation of the
repetitive content of elephant grass and the identification of
thousands of genomic SSR markers, 30 of which were tested
for genotyping a set of 28 elephant grass accessions. Another
genome survey of Merkeron and UF1 cultivars was conducted
by Paudel et al. (2018), and they also developed a high-density
linkage map using GBS.

More recently, two chromosome-scale assemblies of elephant
grass were reported (Yan et al., 2020; Zhang et al., 2020). The
initial assembly of the cv. Purple (Yan et al., 2020) was obtained
using Nanopore long reads and was then polished with Illumina
short reads and scaffolded with Hi-C data. Approximately
2,000 contigs were grouped and oriented into 14 chromosome-
scale scaffolds, with a total size of 1.9 Gbp, 66.3% of which
were annotated as repetitive elements. The assembly showed
high contiguity at the contig level (N50 1.8 Mbp) and 97.8%
completeness using BUSCOs. The predicted protein-coding gene
set also showed high BUSCO completeness (97.1%).

The second assembly (Zhang et al., 2020, available as a
preprint), for the CIAT6263 accession, was obtained with
Nanopore reads and ultra-long reads, which were assembled to
a total size of 2.07 Gbp with a contig N50 of approximately
2.9 Mbp. The authors used a combination of BioNano optical
maps and Hi-C to obtain a final chromosome-scale assembly of
approximately 2 Gbp in 14 pseudomolecules. This assembly was
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also 97.8% BUSCO complete, and repetitive elements accounted
for 60.7% of the genome. The difference in repetitive content
between the two assemblies might be explained by the different
methods applied for de novo identification of repeats.

These two assemblies place elephant grass in a unique
position among the TFGs. Current research trends indicate
the benefits of having not only one but multiple genome
assemblies for a species of interest (Della Coletta et al., 2021).
Large sequencing projects now target pan-genomes, instead
of a single reference that does not capture the full diversity
of a species (Zhao et al., 2018). Future efforts of variant
discovery and association of phenotypes with genomic locations
will be possible using these assemblies as anchors for read
mapping, opening up the possibility of revisiting previous
datasets that were generated without a reference genome.
However, while both efforts resulted in chromosome-scale
scaffolds, the fact that the SMARTDENOVO assembler does
not generate haplotype-resolved contigs indicates that the high
heterozygosity levels of elephant grass were not represented
in the assemblies.

STATISTICAL METHODS IN GS

An ideal method for estimation of SNP effects in GS should
accommodate the genetic architecture of the trait in terms of
genes of small and large effects and their distributions, regularize
the estimation process in the presence of multicollinearity and
a larger number of markers than individuals, using shrinkage
estimators, and perform the selection of covariables (markers)
that affect the trait under analysis. The main problem with GS is
the estimation of a large number of effects from a limited number
of observations and the collinearities arising from LD between
the markers. Shrinkage estimators deal with this appropriately
by treating the effects of markers as random variables and
estimating them simultaneously (Resende, 2007; Resende et al.,
2008; Azevedo et al., 2015; Resende and Alves, 2020).

If the effects of markers are taken as fixed, it is not possible to
consider the covariance between the effects of the markers. With
a high density of markers, more than one marker will be in LD
with a segregating QTL, which will result in covariance between
the marker effects. Most markers will have no effect on a trait, and
the estimated effects of these empty markers will be false. This
problem is greater when the markers are considered to have fixed
effects, because in that case, these pseudo effects will not shrink
toward zero (Resende and Alves, 2020).

In the context of marker-assisted selection (MAS) and
genomic prediction, the method of least squares (LS) has serious
drawbacks. According to Gianola et al. (2003), the selection
index (calculated as the regression involving molecular scores)
presented by Lande and Thompson (1990) for MAS fails when
formulated vectorially. This failure occurs because the covariance
matrix for the molecular scores is singular, as the distribution
of fitted regression values is defined only in the p-dimensional
space (number of covariables) and not in the n-dimensional space
(number of individuals with molecular scores). Therefore, the
selection index leads to an infinite number of solutions.

Another difficulty arises when the number of markers is
equal to or greater than the number of genotyped individuals.
In this case, the collinearity of the predictor variables causes
parametric identification problems, and thus, some type of
dimensional reduction, such as singular value decomposition,
should be used. Another problem is the inadmissibility (unable
to provide the minimum mean square error) of LS estimators, a
result that collapses estimates by LS and generalized LS (GLS).
Thus, the LS method is not recommended for the MAS and
GS analyses. In summary, the LS method is inefficient because
it is impossible to simultaneously estimate all effects when the
number of effects to be estimated is greater than the number
of data points; thus, estimating one effect at a time and testing
its significance leads to an overestimation of significant effects,
and the accuracy of the method becomes low. In addition,
only QTLs with large effects will be detected and used, and
consequently, not all genetic variations will be captured by the
markers. The LS method assumes a priori QTL distribution, with
an infinitely large variance that disagrees with the known total
genetic variance.

Because the number of markers in GS is greater than the
number of individuals, there is a lack of degrees of freedom to
estimate the effects of all markers. A solution to this problem is
to use the RR method (Whittaker et al., 2000) or to consider the
marker effects as random instead of fixed. Fitting random effects
does not expend degrees of freedom, and the effects of all markers
can be estimated simultaneously. This method leads to RR-BLUP,
which considers the effects of QTLs with normal distributions
and equal variance through chromosomal segments.

The main problem for GS is estimating a large number of
effects from a limited number of observations, in addition to
collinearities resulting from LD between markers. The shrinkage
estimators adequately address this issue by treating the marker
effects as random variables and estimating them simultaneously
(Resende et al., 2008).

The main methods for GS are based on Random Regression
and can be divided into three major classes: explicit, implicit, and
dimensionally reduced regression. In the first class, the RR-BLUP,
Lasso, BayesA, and BayesB methods stand out among others. In
the class of implicit regression, the Reproducing Kernel Hilbert
Spaces (RKHS) method, which is semiparametric, is the most
popular. The Independent Components, Partial Least Squares,
and Principal Components stand out among the regression
methods with dimensional reduction. Two new non-parametric
approaches for GS proposed by Resende (2015) and Lima et al.
(2019a,b) have proven to be efficient (Resende and Alves, 2020)
and are called triple categorical regression (TCR) and Delta-
p, respectively.

The explicit regression methods are divided into two groups:
(i) penalized estimation methods (RR-BLUP, Lasso) and (ii)
Bayesian estimation methods (including BayesA, BayesB, fast
BayesB, BayesCπ, BayesDπ, Bayesian regression, BayesRR,
BayesRS, BLasso, and IBLasso). Among these, the best and
most effective in practice are RR-BLUP and BayesB (Visscher
et al., 2006, 2008, 2010; Mrode et al., 2010; Mrode, 2014). Each
method without covariate selection has a similar method with
covariate selection. Thus, the following are the pairs without -
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with covariate selection: BayesA - BayesB; BayesRR - BayesCπ;
BLasso - IBLasso (Resende and Alves, 2020).

The RR-BLUP is a model equivalent to genomic best linear
unbiased prediction (G-BLUP), which is the BLUP method at
an individual level with the genealogical relationship matrix A
changed to a genomic relationship matrix G. The equivalence
between these two methods was given by Habier et al. (2007) and
Van Raden (2008). The G-BLUP and RR-BLUP are equivalent
when the number of QTLs is large, and no major QTL is
present. The use of matrix G based on markers had already been
established by Bernardo (1994); Nejati-Javaremi et al. (1997),
and Fernando (1998). A single-step BLUP simultaneously using
phenotypic, genotypic, and genealogical information, called
H-BLUP single-step, was proposed by Misztal et al. (2009), using
an H matrix composed of the A and G matrices (Resende and
Alves, 2020). The idea of H-BLUP was given by Fernando (1998).

The traditional quantitative genetics rely on random mating
populations. Nowadays, with the availability of SNP markers,
random mating does not need to be assumed, because breeders
can track the transmission of chromosomal segments. Another
assumption is linkage equilibrium in the breeding population.
Once linkage among markers is accounted for in the G coefficient
matrix in RR-BLUP, this circumvents the need to assume linkage
equilibrium (Resende and Alves, 2020).

A refinement of GS can be achieved by using QTNs instead
of SNPs. The evolution of genomic technology is predictable
and the causal mutation of a genetic variation at the nucleotide
level (QTN) can be accessed soon. Thus, GS can be improved
by the direct use of QTNs instead of SNPs. The use of QTNs
will bring the following advantages (Weller, 2016): GS will not
depend on the LD as the QTN will be accessed directly and
not via markers and, this will increase the robustness of the
genomic prediction, which will also be useful in the long run;
the genomic prediction may have transferability across different
populations and species in the same genus; genomic prediction
will use specific QTNs for each trait, unlike G-BLUP by means
of SNPs, which uses the same G relationship matrix for all
traits; the multiple-trait selection indices will directly weigh the
QTNs and not the phenotypic traits; GS may use a smaller
number of generations (only the last ones) for the composition
of the G matrix, which will bring greater genetic gain and
lesser mass of data to be processed; the allele frequencies of the
QTNs will be accessed directly and not through LD with SNPs
(Resende and Alves, 2020).

Single-Environment RR-BLUP and
G-BLUP Models
The parametric regression model for a single environment jth
(j = 1, . . ., m) is defined as yj = 1njµj + Xjβj + εj, where the
vector yj represents nj independent centered observations of the
response variable in the jth environment; 1nj is a vector of ones of
order nj; µj is the overall mean of the jth environment; Xj is the
matrix for the p centered and standardized molecular markers
in the jth environment; vector βj represents the effect of each
of the p markers in the jth environment, and εj is the vector of
random errors in the jth environment with normal distribution

and common variance σ2
εj

. The RR-BLUP assumes that the
effects of the markers have a multivariate normal distribution
βj ∼ N(0, Iσ2

β j
).

Assuming that the effects of the markers βj and εj are
independent, and that uj = Xjβj, then the above model for the
jth environment can be written as yj = 1njµj + uj + εj, where uj,
and εj are independent random variables with uj ∼ N(0, σ2

uj
Kj),

and εj ∼ N(0, σ2
ε I), respectively; σ2

uj
is the variance of uj (to

be estimated), and Kj is a symmetric matrix representing the
covariance of the genetic values. Thus, for a single-environment
where the Kj is of the linear form Kj = Gj = XjX

′

j/p the
G-BLUP is equivalent to RR-BLUP (Van Raden, 2008).

Genetic Parameterization of Additive,
Dominance, and Total Genotype Effects
Additive Model
The following linear mixed model can be fitted to estimate
the marker effects y = Jµ + Xm + e, where y is the
vector of phenotypic observations, µ is the vector of the
fixed effect of the general mean, m is the vector of random
marker effects and e is the vector of random residuals. J
and X are the incidence matrices for µ and m, respectively.
The incidence matrix X contains functions of the values 0,
1, and 2 for the number of alleles for the marker (or the
supposed QTL) in a diploid individual. A similar coding method
uses the values of -1, 0, and 1. The genomic mixed-model
equations for predicting m using the RR-BLUP method are

equivalent to

[
J′J J′X

X′J X
′

X + I σ2
e

(σ2
a/nQ)

][
µ̂

m̂

]
=

[
J′y
X′y

]
. The

total additive genomic value for an individual j is given by
AGV j = ŷj =

∑
i Xim̂i, where Xi is equal to 0, 1, or 2 for

the genotypes mm, Mm, and MM, respectively, for biallelic and
co-dominant markers, such as SNPs.

These prediction equations assume a priori that all loci explain
equal amounts of genetic variation. Thus, the genetic variation
explained by each locus is given by σ2

a/nQ, where σ2
a is the total

genetic variation and nQ is the number of loci (when each locus
is perfectly marked by a single marker), which can be given by
nQ = 2

∑n
i pi

(
1− pi

)
, where pi is the frequency of the allele of

the type M in locus i. The genetic variation σ2
a can be estimated by

restricted maximum likelihood (REML) on the phenotypic data
in a traditional manner or by the variation among markers or
QTL chromosomal segments.

There is no need to use the kinship matrix with the RR-BLUP
method. The pedigree-based kinship matrix used for traditional
BLUP was replaced by a kinship matrix estimated by the markers.
This kinship matrix is a function of X’X present in the equations
of the mixed model described above. This procedure is more
efficient because it effectively captures the kinship produced for
each individual and not an average kinship matrix associated
with the pedigree.

The parameterization of the incidence matrix X uses the values
0, 1, and 2 for the number of alleles of a marker (or supposed
QTL) in a diploid individual and 2p for individuals with missing
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marker data. These values should be centered around 0 so that the
effects of co-dominant markers are effects of allelic substitution
with a mean of 0 in the population. In this case, assuming
Hardy-Weinberg equilibrium, the additive genetic variation of
the trait in the population is equal to σ2

a = 2
∑n

i pi
(
1− pi

)
σ2

m.
Thus, the values of Xi should be replaced by 0 – 2p, 1 – 2p,
and 2 – 2p, to obtain a variable with a mean of 0. Thus, with
centralization, nQ = 2

∑n
i pi

(
1− pi

)
, should be used for the

RR-BLUP method, and the additive genetic effects of individuals
are given by â = Xm̂.

Additionally, the data for markers in matrix X can be
standardized as follows for each matrix element Xi corresponding
to locus i:

Xi = (0 – 2pi)/(Var(Xi))1/2 if the individual is homozygous
for the first allele (mm).
Xi = (1 – 2pi)/(Var(Xi))1/2 if the individual is hetero-
zygous (Mm).
Xi = (2 – 2pi)/(Var(Xi))1/2 if the individual is homozygous
for the second allele (MM).
Xi = 0 if the individual has missing marker data. The
quantity pi is the frequency of the second marker allele.

The cut-off point for including a marker in the analysis can
be determined by the minor allele frequency (MAF), which is a
measure related to the variation of alleles in the population, given
by MAF = (1/2N)1/2 which comes from the standard deviation
of a proportion, given by (pq)1/2/(2N)1/2, where N is the number
of genotyped individuals, meaning that the lower the N value, the
greater the MAF needs to be for accurate estimation of the marker
effect (Resende, 2015; Resende and Alves, 2020).

Coding and Additive Kinship Matrix in Polyploids
The incidence matrix X contains the values 0, 1, 2, 3, and 4
for the number of alleles for the marker (or the supposed QTL)
in a tetraploid individual. Analysis by G-BLUP uses the kinship

matrix given by G = (X∗X∗
′
)

[2
∑n

i pi(1−pi)]
1/2 , where X∗ is the X matrix

after centralization.

Additive-Dominance Model
According to the marker model y = Jµ+Wα+ Sδ+ e, (where
coefficients of α and δ are the additive and dominance effects,
respectively), the most appropriate parameterization to estimate
the effects on the additive-dominance model (Vitezica et al., 2013;
Azevedo et al., 2015) is:

Additive effects (W):

W =


If MM; 2 → 2− 2p = 2q

If Mm; 1 → 1− 2p = q− p
If mm; 0 → 0− 2p = − 2p

.

The values of W must be centered at zero so that the effects of the
codominant markers are effects of allelic substitution (α) with a
mean of 0 in the population.

Dominance effects (S):

S =


If MM; 0 →−2q2

If Mm; 1 → 2pq
If mm; 0 → −2p2

.

G-BLUP for the Additive-Dominance Model
The individual mixed model is given by y = Jµ+ Za+ Zd + e,
where a is the additive genetic vector of the individuals, and d is
the dominance genetic vector of the individuals; a ∼ N(0,Gaσ

2
a),

d ∼ N(0,Gdσ
2
d), and e ∼ N(0, Iσ 2

e ).
The mixed-model equations for the

additive-dominance model are equivalent to
J′J J′Z J′Z

Z′J Z
′

Z + G−1
a

σ2
e

σ2
a

Z′Z

Z′J Z′Z Z
′

Z + G−1
d

σ2
e

σ2
d


 µ̂

â
d̂

 =
 J′y

Z′y
Z′y

, where

Ga =
WW′∑n

i = 1 (2piqi)
, and Gd =

SS′∑n
i = 1 (2piqi)

2 ; pi and qi are

the allelic frequencies; σ2
a =

∑n
i = 1

[
2pi(1− pi)

]
σ2

α, and
σ2

d =
∑n

i = 1
[
2pi(1− pi)

]2
σ2

δ ; and σ2
a and σ2

d are the additive
and dominance genetic variances, respectively.

Adjusting an individual genomic model is equivalent to
adjusting an individual traditional model but with the pedigree-
based matrices A and D replaced by the genomic kinship matrices
Ga and Gd for additive and dominance effects, respectively.

H-BLUP and Single-Step BLUP
In a simultaneous analysis of genotyped and non-genotyped
individuals via G-BLUP, for a global evaluation of the three
classes of individuals in a single step, the same additive model
y = Jµ+ Za+ e can be fitted with one alteration (replacing
matrix G with matrix H) to the mixed-model equations,

according to Misztal et al. (2009)

[
J′J J′Z

Z′J Z
′

Z +H−1 σ2
e

σ2
a

][
µ̂

â

]
=[

J′y
Z′y

]
.

Matrix H includes both the relationships, based on pedigree
(A) and differences between those and the genomic relationships
(Aδ), such that H = A+ Aδ. Thus, H is given by

H =
[

A11 A12
A21 G

]
= A+

[
0 0
0 G–A22

]
, where the

subscripts 1 and 2 represent non-genotyped and genotyped
individuals, respectively.

The inverse of H, which allows simpler calculations, is given by

H−1
= A−1

+

[
0 0
0 G−1

− A−1
22

]
=

[
A11 A12

A21 G−1
+ A22

− A−1
22

]
,

where A−1
22 is the inverse of the kinship matrix based on pedigree

for only genotyped individuals.
From the estimation of genetic values (â) by G-BLUP,

the estimated marker effects (m̂) can be obtained by:
m̂ = (X′X)−1X′â. Models with dominance effects (d)
can also be fitted.

Another important application of this analysis is
the estimation of total heritability explained by all the
markers simultaneously. With the kinship matrix given by
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G = (XX′)/
[
2
∑n

i pi(1− pi)
]
, total heritability can be estimated

by REML using the mixed-model equations to estimate the
variance components σ2

a and σ2
e . The elements of matrix G

represent the average multilocus kinship and are given by
Gjk =

( 1
n
)∑n

i = 1
(xij−2pi)(xik−2pi)

2pi(1−pi)
. Another favorable feature of

G-BLUP is the possibility of directly estimating (by prediction
error variance (PEV)) the accuracy of GS. For individuals with
known phenotypes, this accuracy is valid for the estimation
population without cross-validation. In G-BLUP, the phenotypes
of the validation population are replaced by missing data.
Therefore, individuals from this validation population will have
a validated accuracy estimate.

Models at the level of individuals, including
genotype × environment (ae) interactions, can also be
fitted if there are related individuals within the same
environment and across environments. In this case, the
model is equal to y = Wb+ Za+ Zae+ e, where ae is
the vector of effects from the interaction between additive
genetic effects and environmental effects (random), and
Z is the incidence matrix for a and ae. The mixed-model
equations for predicting a and ae using the BLUP method

are


W′W W′Z W′Z

Z′W Z
′

Z + G−1
a

σ2
e

σ2
a

Z′Z

Z′W Z′Z Z
′

Z + G−1
d

σ2
e

σ2
ae


 b̂

â
âe

 =
W′y

Z′y
Z′y

,

where Gae = G for pairs of individuals in the same environment,
and Gae = 0 for pairs of individuals in different environments.
The variance of the interaction between the additive genetic and
environmental effects is denoted by σ 2

ae.

Additive, Dominance, and Total Genotype Effects in
Polyploids
As SNP markers are biallelic, the inference of dosage allelic
effect is dependent on the genetic effects of interactions (Gallais,
2003; Mackay et al., 2019). Exclusive additivity may create
more classes of genotypic values than any other first-degree
interaction among alleles and must be studied using allele
dosage in GS. In autotetraploids or populations derived from
their “allotetraploids,” such as those evidenced in M. maximus
and U. ruziziensis, the additive genetic variance and NSH
cannot be estimated based solely on testing half-sib progenies
or regression of offspring on the progenitors, because half-sib
families may have fractions of the dominant genetic variance
(Gallais, 1989). G-BLUP analysis of half-sib polyploid data
allows the estimation of broad-sense heritability (BSH) using
the information of all genetic relationships available in the
kinship marker matrix since some “identity-by-state” dominance
relationships allow the estimation of dominance effects, which
along with estimated additive genetic effects, provide the
estimation of the total genotypic value and then the BSH. This
procedure was used in M. maximus hybrids (Lara et al., 2019)
using a low number of parents and in Urochloa interspecific
hybrids (Matias et al., 2019a).

Experimental crossing that provides simultaneous half-sib and
full-sib progenies should be preferentially designed to estimate

additive and dominance genetic effects simultaneously (Simeão-
Resende et al., 2004), aiming at the total genotypic-genomic
value prediction. In this case, there is more information about
dominance relationships, thus generating better estimates. The
BSH is estimated by the additive-dominance model, in which
g = a + d and var(g) = var(a) + var(d). Making estimations of
GEBV and GETV simultaneously in full-sibs and half-sibs with
some progenitors in common in a training/validation population
will allow the summation of the family effect in both predictions
as well as the prediction of crosses that have not been performed.

In the case of similar magnitudes of NSH and BSH, there
is no need for dominance adjustment, and only half-sibs can
be used. In M. maximus, the estimated NSH and BSH for
important traits showed a remarkably low and high magnitude,
respectively, based on the use of phenotypic data (Simeão-
Resende et al., 2004) or genomic data (Lara et al., 2019). In
this species, GS based on additive and dominant effects needs
to be performed to obtain the highest levels of genetic gain. In
this way, it is important to work with tetrasomic inheritance
more than disomic inheritance (Lara et al., 2019) and more
genetically diverse synthetic populations to elevate the heritability
and accuracy of GEBV prediction. The higher dominance effect
evidenced in tetraploid M. maximus cannot be simply extended
to other species unless the effect is previously known, or simply
tested by different models of GS. de Bem Oliveira et al. (2019)
predicted GEBV in blueberries by comparing diploid (data coded
as 0, 1, and 2), tetraploid (data coded as 0, 1, 2, 3, and 4),
and continuous (data coded as continuous parameterization
assuming values between 0 and 1 and a cumulative additive effect)
data models at the individual level. The researchers concluded
that the use of continuous data generated estimated genetic gain
values that were not significantly different from the best models
of all traits. As diploid and tetraploid inferences of data did not
affect the predictive ability, we can infer that simplified models
can perform adequately.

Ridge, Bayes, and Lasso Methods
Bayesian methods are associated with systems of nonlinear
equations, and non-linear predictions can be more efficient
when the QTL effects are not normally distributed owing to
the presence of genes with major effects. The linear predictions
associated with RR-BLUP assume that all markers with the same
allele frequency contribute equally to genetic variation (lack of
genes with major effects). In Bayesian estimation, the shrinkage
of effect estimates for the model is controlled by the a priori
distribution assumed for these effects. Different distributions
produce different shrinkages. Methods for penalized and
Bayesian estimation may include (BayesB, Fast BayesB, BayesCπ,
BayesDπ, Lasso, BLasso, and IBLasso) or lack (RR-BLUP, EN,
RR-BLUP-Het, and BayesA) direct covariable selection. Bayesian
methods are more efficient when the distribution of QTL effects
is leptokurtic (positive kurtosis) because of the presence of genes
with large effects. The RR-BLUP method is equally efficient when
the QTL effects are normally distributed.

Comparisons among the methods for predicting genomic
breeding values have been performed. Meuwissen et al. (2001)
concluded that the BayesB method is theoretically best because it
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is slightly superior to RR-BLUP. However, the author simulated
genotypic data with the same a priori distribution used for
the estimation. This approach yielded greater accuracy for this
method, although, such accuracy is unattainable in practice if
the actual distribution associated with genetic effects differs from
the a priori distribution assumed for analysis. In general, there
is no method that is best under any circumstances because each
method may yield significantly different results depending on the
population structure and nature of the trait. However, the results
obtained by Guo et al. (2012) indicate that the RR-BLUP method
is easier to apply and equal to or better than the others for most
applications in plants.

The assumed distributions for the genetic effects of markers
in the different GS methods are Gaussian normal with common
variance for RR-BLUP, Student’s t-distribution given chi-square
priori for variances for Bayesian methods, and Double Laplace
exponential for Lasso. Figure 4 illustrates the forms of
the normal (RR-BLUP), t (BayesA), and double exponential
(Lasso) distributions.

It is observed that, in relation to RR-BLUP, the prior density
used in Bayesian Lasso shows a greater density mass at zero point
and more robust tails providing greater shrinkage on regression
coefficients close to zero and lower shrinkage on regression
coefficients away from zero. The prior density used in BayesA
also has a higher density mass at the zero point and more
robust tails than the normally used RR-BLUP. Bayesian Lasso
has greater shrinkage on regression coefficients close to zero than
BayesA. However, the distribution tails are similar between the
two methods (Figure 4).

The BayesA method implies a large number of markers with
small effects or a few markers with moderate to large effects.
BLasso implies a large number of markers with effects close to
zero or a few markers with moderate to large effects. RR-BLUP
implies a large number of markers with small effects.

Deep Learning
Machine-learning algorithms (random forest, bagging, support
vector machine, and others) have been successful in recognizing
complex patterns and making correct decisions based on data.

FIGURE 4 | Probability density functions of the double exponential, Student’s
t, and normal distributions, all with means equal to zero and variances equal
to the unit.

Machine learning is a science of creating and studying algorithms
that improve their own behavior in an iterative manner by design
(Beysolow, 2017). Recent developments in machine learning
enable the implementation of high-dimensional regression using
nonlinear methods (Bellot et al., 2018). Another class of models,
indeed a subfield of machine learning that became more used
to prediction in recent times is deep learning. This theory is
devoted to building algorithms that explain and learn a high and
low level of abstractions of data that traditional machine learning
algorithms often cannot (Beysolow, 2017).

Bellot et al. (2018) present an application of deep learning
for the prediction of complex traits comparing the Multilayer
Perceptron (MLP) and Convolutional Neural Network (CNN)
with commonly used linear regression methods (BayesB and
BayesRR). The deep learning under the linear regression, in
some cases was very competitive. The MLP and CNN are very
heterogeneous classes of predictor that depend on the number of
layers, number of neurons per layer, and the activation function.
However, the predictive accuracy of Bayesian linear methods
is highly dependent on the heritability and this is not a main
factor in MLP and CNN.

GWAS via the BayesCπ and BayesDπ Methods
Gene discovery or GWAS, which can be accomplished by the
BayesCπ and BayesDπ methods (described by Habier et al.,
2011), are advantageous because they provide information on
the genetic architecture of the quantitative trait and identify the
QTL positions by modeling the frequencies of SNPs with nonzero
effects. They are advantageous over the regression analysis of
single markers because they simultaneously account for all
markers. However, care needs to be taken whenever the number
of markers is larger than the number of individuals genotyped
and phenotyped. Gianola (2013) showed that in such cases, the
prior in Bayesian approaches such as BayesC and BayesD, is
always influential, which could affect the inference of whether a
marker is associated with the trait.

In the BayesC method, a common variance is specified for
all loci. The BayesD method maintains the specific variances
for each locus. Additionally, π is treated as an unknown with a
uniform a priori distribution (0,1), thus producing the BayesCπ

and BayesDπ methods. The modeling of π is interesting in
the association analysis. The majority of the markers are not
in LD with the genes; therefore, a set of markers associated
with a trait must be identified. In contrast, the BayesB method
determines π subjectively. Using the indicator variable δi, the
BayesCπ and BayesDπ methods model the additive genetic effect
of individual j as aj =

∑n
i = 1 βixijδi, where δi = (0, 1). The

distribution of δ = (δ1, δn) is binomial with a probability of
π. This mixed model is more parsimonious than the BayesB
method. According to the model hierarchy, a distribution must
be postulated for π, and there must be a beta distribution, which
when appropriately specified, becomes a uniform distribution
(0,1) (Legarra et al., 2011).

The quantities for xij are elements of the codominant marker
genotype vector and are generally coded as 0, 1 or 2, depending
on the number of copies of one of the alleles at the marker locus
i, and βi is defined as the element of the vector of the regression
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coefficients, which includes the marker effects on a phenotypic
trait y by means of the LD with the genes that control the trait
(Resende et al., 2013).

Sample Size for GS and GWAS
Genomic data are especially useful for GS, which allows selection
at the seedling stage to increase genetic gain in the adult
stage. With a high density of markers, the expected squared
accuracy of GS is given by Daetwyler et al. (2008); Resende et al.
(2008); Goddard et al. (2011); Grattapaglia and Resende (2011)
r2

ĝg =
Nh2

(Nh2+nQTL)
=

Nh2

(Nh2+me)
=

Nh2

(Nh2+2NeL)
=

Nh2

(Nh2+ L
F )

,

where N is the number of genotyped and phenotyped individuals,
L is the genome size (in Morgans) of the species, me is
the number of independent chromosomal segments, Ne is the
effective population size, and F is the inbreeding coefficient of the
population. For a desired r2

ĝg , h2, and nQTL, N can be determined.
The reliability of GS is given by the expression r2

gg =

Nh2

Nh2+NQTL
, where rgg equals GS accuracy, N is the number of

individuals in the population, NQTL is the number of QTLs
that control each trait, and h2 is the individual heritability. The
estimate of the number of individuals that must be evaluated
to obtain the desired accuracy can be obtained by the following

expression, derived from the previous one, N =
r2

gg NQTL

(1−r2
gg )h2

(Resende et al., 2014).
Figure 5 shows the curve graphs with N in various scenarios

(functions of h2, NQTL, and rgg). Based on these graphs and the
genetic information of the traits, breeders can adequately size
their studies on inheritance and maximize genetic gain with the
improvement made by selection.

Various kinds of information can be obtained from Figure 5.
For example, considering scenario 3, it appears that for a trait
with individual heritability equal to 0.30 and that is controlled
by 100 QTLs, an accuracy of 90% can be obtained if the sample
size is equal to 1,500 genotyped and phenotyped individuals.

From the first equation, the estimate of the number of QTLs
that control each trait can be calculated based on the expression

NQTL =

(
1−r2

gg

)
Nh2

r2
gg

. Once the selective accuracy and heritability

are estimated, given the N practiced in a study, the NQTL can be
estimated for several traits.

A possible exercise is the theoretical determination of NQTL,
given the N and the estimated h2 while varying r2

gg . For a case of
h2 equal to 0.30, and N equal to 1,500, the NQTL values can be
inferred according to Figure 6. The same figure shows the case of
h2 equal to 0.20, and N equal to 1,500.

Based on Figure 6, it can be seen that for N = 1,500 genotyped
individuals, the QTL numbers vary from 49 to 468 (Scenario 1,
h2 = 0.30) and from 32 to 312 (Scenario 2, h2 = 0.20), when the
accuracy varies from 0.95 to 0.70, respectively.

Sample Size for Gene Detection
The sample size (N), with power of detection at a significance
level of 10−5 according to the h2

mi magnitude of the QTL
(considered as random effect), is given by Resende (2015) N ≈

(
Z(1− α

2 )
+Z(1−β)

)2
(1−h2)

h2
mi

, where Z(1− α
2 )

and Z(1−β) are the values
of the cumulative distribution function of the standard normal
distribution, associated with the probabilities of error type I (α)
and error type II (β) for bilateral hypothesis tests.

The quantity (1− β) is the probability that the experiment
will exhibit a statistically significant difference between the
treatment averages. Values of 0.80 and 0.90 are common and
appropriate in practice.

Table 2 and Figure 7 show that the sample sizes ( <1,000)
commonly used in plant breeding only detect QTL when the
QTL explains 5% or more of the phenotypic variation, a fact
that is unlikely under polygenic inheritance (total trait h2 <0.50).
The power of 0.90 is more appropriate because it leads to
an 81% = 0.902 probability that two independent studies will
detect the same QTL.

GS APPLICATIONS IN BRACHIARIA,
GUINEA GRASS AND ELEPHANT GRASS
BREEDING

In TFG breeding, combining conventional breeding efforts and
GS has not been a simple task. As opposed to advances in
animal breeding and crop commodities, they have been slow
and challenging in tropical forages. The number of candidate
TFG species is high, and decisions about investments need to
be made considering the effective benefits of GS, the potential
profit that can be achieved by the new cultivars, and the
real impact of new forage on livestock production. The three
tropical genus/species brachiaria (Urochloa spp.), Guinea grass
(M. maximus) and elephant grass (C. purpureus) are very
important and extensively used as pastures in tropical America,
Asia, and sub-Saharan Africa.

Marker number and density are important factors influencing
the efficient use of GS in TFG breeding. One of the reasons
for the low accuracy of GS is the exceptionally low number
of effective markers, which may result from a non-adequate
reference genome. Before the U. ruziziensis genome assembly
was publicly available, the genomes of S. viridis and P. virgatum
were frequently used as reference genomes for SNP calling
and linkage map construction in Urochloa species with 1,000
SNPs (Ferreira et al., 2019) and M. maximus with 1,322 SNPs
(Deo et al., 2020). For C. purpureus, 20,144 SilicoDArT and
28,610 SNP markers have been mapped onto the pearl millet
(C. americanus) reference (Muktar et al., 2019). Compared with
other agronomically important Poaceae species, such as maize,
for which the 50 K Illumina MaizeSNP50 BeadChip (Ganal et al.,
2011) and the 600 K Affymetrix Axiom Maize Genotyping Array
(Unterseer et al., 2014) are available, the number of markers in
TFG needs to be significantly enhanced. Genome calling using
reference genomes of other grasses improves the number of SNPs,
as shown by Matias et al. (2019a), who reported >26k SNPs
in Urochloa hybrids. However, the minimum allele depth used
was ≤2 reads considering allele dosage and resulted in a low
predictive ability (<0.31) in GS for agronomic traits. Similar
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FIGURE 5 | Sample size for genomic selection with desired accuracy ranging from 0.70 to 0.95 in six scenarios in terms of heritability and quantitative trait locus
(QTL) number.

results were obtained by Lara et al. (2019) in M. maximus
in which >32k SNPs were classified as unique and used in
GS, although, the maximum value of predictive ability using
tetraploid dosage of 0.3955 was achieved for the trait organic
matter that displayed secondary importance in forage breeding.

Current TFG breeding programs lack the important
information that could improve and allow the efficient use of GS.
Firstly, a major impact will be obtained by increasing the number
of markers per genome size by sequencing and generating
reference genomes for the target species or more closely related

species. Secondly, we need to improve our knowledge about
the inheritance of target traits in tropical forages including the
genetic effects of biallelism in (auto) tetraploids. Thirdly, we need
to work with training populations connected with validation
and breeding populations and testing environments that must
be correlated with the environment of the target population
(Burgueño et al., 2012; Jarquín et al., 2014; Santantonio et al.,
2020). Finally, we need to work with half-sib and full-sib
progenies to improve the predictive ability for traits in which
the dominance effects are significant, aiming to predict crosses
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FIGURE 6 | Number of quantitative trait loci (NQTL) for genomic selection with accuracy ranging from 0.70 to 0.95 in two scenarios in terms of heritability and
individual sample size.

TABLE 2 | Sample size (N) and power for detection of significance level 10−5 according to the h2
mi magnitude of the quantitative trait locus, considered as having a

random effect: N ≈

(
Z(1− α

2 )
+Z(1−β)

)2
(1−h2)

h2
mi

.

h2 = 0.30 h2 = 0.50

Z for β = 0.90 Z for α = 10−5
(
Z(1− α

2 )
+ Z(1−β)

)2
h2

mi N Z for β = 0.90 Z for α = 10−5
(
Z(1− α

2 )
+ Z(1−β)

)2
h2

mi N

1.28 3.99 27.7729 0.001 19441 1.28 3.99 27.7729 0.001 13886

1.28 3.99 27.7729 0.005 3888 1.28 3.99 27.7729 0.005 2777

1.28 3.99 27.7729 0.01 1944 1.28 3.99 27.7729 0.01 1389

1.28 3.99 27.7729 0.05 389 1.28 3.99 27.7729 0.05 278

1.28 3.99 27.7729 0.1 194 1.28 3.99 27.7729 0.1 139

1.28 3.99 27.7729 0.2 97 1.28 3.99 27.7729 0.2 69

1.28 3.99 27.7729 0.3 65 1.28 3.99 27.7729 0.3 46

FIGURE 7 | Sample size (N) required to detect genetic effects of markers (assumed to be random effects) with different marker heritability (h2
mi ) and total heritability

(h2): N values as a function of h2
mi . The plotted N values were obtained via logarithmic transformation to improve visualization.

that are not performed in tetraploid Urochloa and M. maximus
hybrid development programs.

The current M. maximus and Urochloa breeding programs
generate thousands of hybrids annually, and those hybrids must
pass through several steps of selection until they finally achieve
the status for evaluation under animal feeding pressure to

prove their value in animal production and be released as new
cultivars. However, it is mandatory for hybrids to show apomixis
and resistance/tolerance to spittlebugs (mostly in Urochloa)
and diseases (mostly in M. maximus and C. purpureus). These
traits are a great bottleneck slowing the subsequent evaluation
steps in the breeding program since phenotyping of individuals
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demands significant labor, time (two or more years), and the
dedication of trained technicians. As a result, only a small
number of individuals can be evaluated annually reducing the
rate of genetic gain. Methods such as GWAS and MAS may
help to speed up the identification of individuals showing these
important traits and increased rates of genetic gain. Recently
published data on mapping genomic regions associated with
apospory emphasize the routine application of markers for
selection in Urochloa and Megathyrsus (Worthington et al., 2016;
Deo et al., 2020).

Finally, TFG breeding programs can be sped up by the
application of GS. However, this demands greater investments;
collaboration among breeders, molecular biologists, and
bioinformaticians; integration of research teams from different
institutions and countries; and most importantly, continuity
associated with critical course corrections.

ADDITIONAL METHODS APPLIED TO
TFG BREEDING

The use of new efficient high-throughput methodologies in
addition to GS should be discussed according to their accuracies
and potential use in higher numbers of individuals at initial
stages of selection. The first obvious application is its use
when no genotyping tool is available at a reasonable cost.
A second application would be to use phenomics to screen nearly
fixed genetic materials which is likely to capture non-additive
genetic effects. Nonetheless, phenomics could deliver breeding
innovations, and the challenge represented by the breeding target
scenario (Reynolds et al., 2020).

Phenomic selection (PS) using high-throughput phenotyping
methods less expensive than genotyping by sequencing is
an opportunity for tropical forage breeding. Rincent et al.
(2018) proposed using near-infrared spectroscopy (NIRS)
variables generated as regressors or to estimate kinship in
the same statistical models used in GS to perform PS.
The results were promising and cost affordable for wheat
and poplar when compared to GS. TFGs are a probable
candidate for this method because phenotyping using NIRS
to obtain bromatological data is routine in research programs
and may be studied and amplified to other spectra to be
performed as a routine method of PS. Biomass measuring
in TFG is a laborious, time-consuming, and biased task,
because of the necessity of several annual evaluations (4 to
7) during selection. It also limits the number of individuals
in experiments (300 to 2,000). Sensor-based images enabled
high-throughput non-invasive phenotyping throughout the
growing cycles of forage grasses, and the models established
a high correlation between images and the biomass yield
in M. maximus (Castro et al., 2020) as well as for crude
protein percentage and chlorophyll concentration in Urochloa
(Jiménez et al., 2020). Deep learning-based neural network
studies demonstrated that accuracies must be increased by
pre-trained models and data augmentation (Castro et al.,
2020). Nevertheless, deep learning progress is accelerating
and will be able to perform better predictions than ever

(Montesinos-López et al., 2021). Although it has been the
subject of debate in the past, extra investment in phenotyping
technologies is becoming more accepted to capitalize on
recent developments in crop genomics and prediction models.
In this context the different strategies for phenotyping can
be built from phenomic selection (Rincent et al., 2018),
high-throughput phenotyping, and detailed characterization or
‘precision’ phenotyping (Reynolds et al., 2020).

THE FUTURE OF GS IN FORAGE
BREEDING

The availability of genome-wide, high-throughput, and cost-
effective flexible markers, across the genome, suitable for large
populations with or without a reference genome sequence,
is the most important factor for the effective and efficient
implementation of GS. Recent advances in long read quality and
sequence throughput, in addition to other technologies such as
Hi-C or optical maps, make it possible for virtually any research
group with reasonable funding to obtain reference-grade genome
assemblies for their crop of choice. While not necessarily easy,
the generation of high-quality genome assemblies should be
considered as a starting point for any orphan species that would
benefit from the use of genomic tools for crop improvement.
These assemblies could be extremely useful for resequencing and
variant discovery, which can lead to genotyping platforms for
association studies and GS. When coupled with well-designed
and thoroughly phenotyped training populations, these genomic
resources could serve as the basis for implementing GS steps in
the breeding of TFGs.

As discussed by Lin et al. (2014) and Bhat et al. (2016),
the cost of identifying and genotyping a large number of
SNPs is still a barrier for TFGs, although, second-generation
sequencing technology has provided new SNP genotyping
platforms, particularly GBS. In addition, phenotyping large
representative reference populations is expensive. Reduction of
phenotype assessment costs per individual and new phenomic
approaches are essential to take advantage of the true benefits
of GS. Marker technologies must be combined with high-
throughput phenotyping to achieve significant genetic gains
for complex traits.

Furthermore, the considerations stated by Simeão-Resende
et al. (2014) are still valid. GS will allow an increase in the
early-generation of number of individuals evaluated considering
the large number of targeted traits. However, when we deal
with GS in the improvement of tropical forages, we realize
that there is still a long way to go. Theoretically, by models
and methods already developed and successfully applied in
commodity species, the procedures could be easily incorporated
into the routine of breeding programs. Nevertheless, in orphan
species, all knowledge needs to be built on solid molecular
bases. In principle, the evaluation of a large number of
individuals for selection purposes increases the probability
of the best allelic combinations for traits of economic
importance without narrowing the genetic basis for selection.
This should be considered in the improvement of polyploid and
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apomictic Urochloa spp. and M. maximus. Performing inter- and
intraspecific crosses with sexual plants in these genera increases
the variability available for selection and allows the generation
of genetic combinations not found in apomictic accessions.
The spectrum of possibilities for GS expands considerably for
these species; however, the identification of markers is narrowed
to large-scale phenotyping and genotyping. The conformation
of the discovery population should be carefully considered
in terms of the number of hybrid families to be evaluated,
the number of individuals per half-sib and full-sib families,
and the distribution of markers on the chromosomes of the
paternal and maternal genomes. The mother plants to be
used in crosses should be exclusively sexual, so that they do
not generate, in addition to hybrids, their own clones (by
apomixis) in the progeny, which would cause an incorrect bias
in the determination of GEBV and the identification of markers
and their effects.

Finally, designing forage breeding programs, mainly for
polyploid and apomictic grasses, and proposing breeding
schemes that make optimum use of GS is a significant task for
plant breeders. Although, this is a challenge, it is also a great
opportunity to accelerate genetic gain in TFG breeding.
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Genomic prediction of complex traits across environments, breeding cycles, and
populations remains a challenge for plant breeding. A potential explanation for this
is that underlying non-additive genetic (GxG) and genotype-by-environment (GxE)
interactions generate allele substitution effects that are non-stationary across different
contexts. Such non-stationary effects of alleles are either ignored or assumed to
be implicitly captured by most gene-to-phenotype (G2P) maps used in genomic
prediction. The implicit capture of non-stationary effects of alleles requires the G2P
map to be re-estimated across different contexts. We discuss the development and
application of hierarchical G2P maps that explicitly capture non-stationary effects
of alleles and have successfully increased short-term prediction accuracy in plant
breeding. These hierarchical G2P maps achieve increases in prediction accuracy by
allowing intermediate processes such as other traits and environmental factors and
their interactions to contribute to complex trait variation. However, long-term prediction
remains a challenge. The plant breeding community should undertake complementary
simulation and empirical experiments to interrogate various hierarchical G2P maps that
connect GxG and GxE interactions simultaneously. The existing genetic correlation
framework can be used to assess the magnitude of non-stationary effects of alleles
and the predictive ability of these hierarchical G2P maps in long-term, multi-context
genomic predictions of complex traits in plant breeding.

Keywords: multi-trait prediction, non-linear relationships, crop growth models, genetic correlation, non-additive
genetic effects, epistasis, pleiotropy, GxE interactions

INTRODUCTION

Response to selection in breeding programs relies on predicting the additive genetic merit of
new individuals for a target population of environments (Hallauer and Miranda, 1988; Comstock,
1996). Predicting the additive genetic merit of individuals, i.e., breeding values, requires the
estimation of allele substitution effects of genetic loci (Falconer and Mackay, 1996). Both functional
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additive genetic effects and functional non-additive genetic
effects, generated by interactions that exist within (dominance)
and between (epistasis) genetic loci, contribute to estimates
of allele substitution effects (Cheverud and Routman, 1996;
Hill et al., 2008; Huang and Mackay, 2016). The contributions
of functional additive effects to allele substitution effects are
considered stationary as they are not influenced by changes in
allele frequencies at genetic loci. However, the contributions
of functional non-additive genetic effects (GxG interactions) to
allele substitution effects are dependent on the allele frequencies
of genetic loci. Therefore, changes in the genetic background can
alter the predictions of allele substitution effects. Predictions of
allele substitution effects can also change across environments,
producing gene-by-environment (GxE) interactions. We refer
to the alterations of allele substitution effects, and therefore
predictions of the additive genetic merit of individuals in
the presence of these interactions as non-stationary effects of
alleles. In the most extreme case, allele substitution effects can
change sign, i.e., from positive to negative values and vice versa,
if changes in the value of non-stationary effects exceed the
value of stationary effects (Paixão and Barton, 2016; Wientjes
et al., 2021). Such sign changes in allele substitution effects
change the performance landscape’s optimum and influence the
breeding target (Wright, 1963; Messina et al., 2011). Therefore,
breeding programs need to accurately predict these non-
stationary effects of alleles across different contexts to deliver
the highest possible response to selection. Beyond the theoretical
considerations, we consider three contexts where the potential
for change in sign of allele substitution effects was identified
to influence genomic prediction accuracy for commercial maize
breeding for the United States corn-belt (Cooper et al., 2014a,b):
breeding cycles, populations, and environments. We anticipate
these considerations will also be relevant for other plant
breeding situations.

Non-stationary effects of alleles decrease the accuracy of
genomic predictions across breeding cycles. The accuracy of
genomic prediction decreases with an increase in breeding cycles
between the training and prediction set (Clark et al., 2012;
Pszczola et al., 2012; Daetwyler et al., 2013; Habier et al., 2013).
Changes in genetic relationships, linkage disequilibrium, and
causal loci’s cosegregation have been identified as important
factors (Habier et al., 2013). These factors can impact GxG
interactions due to changes in allele frequencies. A practical
approach to account for GxG interactions in the decrease in
genomic prediction accuracy over breeding cycles is periodic
retraining of the genomic prediction equation (Podlich et al.,
2004). However, this is costly and may exclude smaller breeding
operations. The ability to estimate non-stationary effects of alleles
can create opportunities to increase the persistence of prediction
accuracy across breeding cycles and widen the application of
genomic prediction in plant breeding.

Non-stationary effects of alleles decrease the accuracy of
genomic predictions across populations. Genomic prediction
across populations is important as the germplasm accessed
for breeding applications is often organized in many different
populations (Melchinger and Gumber, 1998; Technow et al.,
2020; White et al., 2020). Across population prediction often

suffers from lower accuracy than prediction across breeding
cycles due to more considerable differences in allele frequencies
of causal genetic loci (de Roos et al., 2009; Hayes et al.,
2009). Along with mutations and redundancy of causal
genetic loci, extreme differences in allele frequencies can
cause discrepancies in segregation patterns of causal genetic
loci between populations, which can cause large differences
in allele substitution effects between populations (Rio et al.,
2020). Empirical and simulation studies have shown that GxG
interactions primarily determine these large changes in allele
substitution effects between populations (Duenk et al., 2020;
Legarra et al., 2020). Therefore, the ability to accurately capture
GxG interactions in genomic prediction will be necessary to
effectively utilize diverse germplasm (Tanksley and McCouch,
1997; Jordan et al., 2011; Mace et al., 2013, 2020; Gorjanc et al.,
2016; Halewood et al., 2018).

Non-stationary effects of alleles decrease the accuracy of
genomic predictions across environments. Genomic prediction
across environments has allowed faster identification of stable
performing varieties. Most methods that predict performance
across environments, including GxE interactions, have been
purely statistical (Yates and Cochran, 1938; Finlay and Wilkinson,
1963; Eberhart and Russell, 1966; Piepho, 1997; Burgueño
et al., 2012; Crossa, 2012). With implicit knowledge of
environmental effects, these methods have been shown to
increase prediction accuracy within specific datasets or a well-
defined target population of environments. Still, they are
sensitive to changes in the target population of environments.
Explicit knowledge of environmental effects can make genomic
prediction across environments more robust. More recent
methods have demonstrated improved prediction accuracy
by explicitly including environmental covariates in genomic
prediction (Heslot et al., 2014; Jarquín et al., 2014; Costa-Neto
et al., 2021; Jarquin et al., 2021). However, all of these methods
generate predictions conditional on current environments and
therefore represent short-term predictions. Improved long-
term predictions of response to selection in plant breeding,
including effects of GxE interactions, will require methods to
generate predictions of “best-bet” synthetic future environments
(Hammer et al., 2020).

Despite the challenge of non-stationary effects of alleles,
plant breeding has accurately predicted short-term response
to selection to accumulate genetic gain over the long term
(Duvick, 2005; Mackay et al., 2011). Short-term predictions of
response to selection can mitigate non-stationary effects of alleles
by conditioning predictions on current genetic backgrounds
and environments. However, with the introduction of genomic
prediction (Meuwissen et al., 2001), plant breeding now seeks
to re-design breeding programs to further accelerate the pace
of varietal development (Bernardo and Yu, 2007; Heffner et al.,
2009; Gaynor et al., 2017). The increased speed of selection
trajectories of new breeding strategies deploying genomic
prediction places a stronger focus on plant breeding programs’
ability to predict long-term response to selection. Long-term
predictions of response to selection struggle to mitigate the
non-stationary effects of alleles, as predictions conditional
on the current genetic background and environment become
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increasingly uninformative into the future. An illustrative
simulation example to explore these concepts is provided in the
Supplementary Information.

In this perspective, we discuss a few lessons learned
from applying hierarchical gene-to-phenotype (G2P) maps in
predictive breeding and our view of promising future research
directions to realize improvements in the prediction of long-term
response to selection in plant breeding.

PERSPECTIVE

Improvements in prediction from the specification of
interactions require thorough interrogation of the underlying
G2P maps of complex traits (Houle et al., 2010; Marjoram
et al., 2014). The genetic architecture of traits, which details
the number, distribution of effect sizes, and “behavior” of these
causal genetic variants, can be viewed as a G2P map. Therefore,
the G2P map defines the complete paths from causal genetic
variants to the phenotype of complex traits (Waddington, 1957;
Burns, 1970; Lewontin, 1974). The dominant G2P map used
to investigate the role of interactions in response to selection
is a single complex trait underpinned by the infinitesimal
model (Robertson, 1960; Carlborg et al., 2006; Hill et al., 2008;
Mäki-Tanila and Hill, 2014; Goodnight, 2015; Paixão and
Barton, 2016; Wientjes et al., 2021). The infinitesimal model
allows breeders to consider complex phenotypes in a single
trait context, with underlying genetic variation associated
directly with the phenotypic variation of complex traits
within a reference population of genotypes (Figure 1A). The
infinitesimal model, embedded within the breeders equation
(Lush, 1937), has been successful in plant breeding (Hallauer
and Miranda, 1988; Comstock, 1996). However, alternative G2P
maps have been developed. Here we consider their potential for
breeding applications.

Hierarchical G2P maps provide a multi-trait context for
investigations into the importance of interactions in genomic
prediction. Complex trait phenotypes, such as grain yield, can
be viewed as the product of multiple component traits. The
hierarchical structure allows intermediate processes (Figure 1B),
such as other traits and environmental factors and their
interactions, to contribute to complex trait variation (Wright,
1934; Waddington, 1957; Houle et al., 2010; Liu et al., 2019;
Cooper et al., 2020a).

In quantitative genetics, hierarchical G2P maps have
been developed based on path analysis (Wright, 1934). The
specification of intermediate processes in hierarchical G2P
maps allows the decomposition of total effects, captured
by the infinitesimal G2P map, into path specific direct and
indirect effects (Wright, 1934). Lande and Arnold (1983)
demonstrated that hierarchical G2P maps could be used to
separate direct response to selection from indirect response
to selection of multiple correlated traits. Valente et al. (2013)
provide an overview of the breeding applications of Structural
Equation Models (Gianola and Sorensen, 2004; Pearl, 2012)
and highlight their ability to allow prediction across a broader
range of livestock and crop management practices than standard

multi-trait models without requiring frequent re-estimation
of the G2P map. Recently, there has been an increase in
the use of Structural Equation Models for prediction and
inference in both animal and plant breeding (Tiezzi et al.,
2015; Momen et al., 2018; Campbell et al., 2019; Pegolo
et al., 2020; Abdalla et al., 2021). However, due to a lack
of prior knowledge of the underlying relationships, most
studies have used Structural Equation Models to estimate
linear relationships between traits. The assumption of linear
relationships restricts the range and magnitude of non-stationary
effects and, therefore, the frequency of rank changes in
additive genetic merit.

In plant science, decades of experiments led to the
development of hierarchical G2P maps for plant breeding that
allow predictions across a wide range of growing conditions
(Holzworth et al., 2014; Hammer et al., 2019). Crop Growth
Models are hierarchical mechanistic models of plants that
simulate trajectories of multiple trait phenotypes over time for the
growing season determined by environmental conditions. Crop
Growth Models explicitly quantify the relationships, both linear
and non-linear, between traits, physiological “meta-mechanisms”
and complex trait phenotypes such as grain yield. These “meta-
mechanisms” are measurable via high-throughput phenotyping
and resulting in robust and stable equations with heritable
genotype-dependent parameters (Tardieu et al., 2020). This
has allowed Crop Growth Models to be linked to underlying
genotypic variation for plant breeding applications (Chapman
et al., 2003; Chenu et al., 2009; Messina et al., 2011). More
recently, Crop Growth Model – Whole Genome Prediction
methods have connected an underlying “infinitesimal” genetic
architecture to key components of Crop Growth Models via a
hierarchical Bayesian estimation procedure (Figure 2; Technow
et al., 2015; Cooper et al., 2016). The inclusion of Crop Growth
Models in genomic prediction enables the prediction of trait-
trait and trait-environment interactions in the hierarchy’s upper
levels, which are directly associated with the estimates of allele
substitution effects of genetic parameters for traits in the lower
levels of the crop growth model hierarchy. This correction of
phenotypes can lead to improved estimates of genetic correlations
between traits and increased prediction accuracies across the
different contexts discussed above. Crop Growth Model – Whole
Genome Prediction methods, and subsequent variations, have
been shown to improve short-term predictions of genetic merit
in the presence of GxE interactions (Bustos-Korts et al., 2019;
Millet et al., 2019; Robert et al., 2020; Toda et al., 2020;
Diepenbrock et al., 2021) and genotype-by-environment-by-
management interactions in plant breeding. The success of
hierarchical G2P maps in capturing non-stationary effects in
predictions across diverse environments has seen growth models
being revisited in animal breeding (Doeschl-Wilson et al., 2007;
Puillet et al., 2016, 2021).

However, the prediction of long-term response to selection
remains a significant challenge (Reeve, 2000; Goddard, 2009;
Hill, 2017). For example, long-term selection experiments in
maize have often produced results not predictable a priori or
from simulation (Lamkey, 1992; Dudley and Lambert, 2003),
such as continued selection response after 100 years
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FIGURE 1 | Gene-to-Phenotype (G2P) Maps. (A) Representation of an additive infinitesimal G2P map, assuming direct effects of causal genetic variants (green
circles) on complex trait phenotypes. (B) Representation of an additive hierarchical G2P map, decomposing total effects into direct effects of causal genetic variants
on intermediate traits, and phenotypic effects of multiple intermediate traits on complex trait phenotypes.

(Dudley and Lambert, 2003). Long-term predictions of response
to selection, based on the classical versions of the infinitesimal
model (Walsh and Lynch, 2018), struggle to accurately predict
the non-stationary effects of alleles as information from current
genetic backgrounds and environments become increasingly
uninformative into the future. A key paper by Paixão and Barton
(2016), extending Robertson’s (1960) work with only functional
additive effects, has clarified the importance of non-stationary

effects of alleles generated by GxG interactions for long-term
response to selection. They describe two explicit scenarios:
(i) when drift dominates selection, i.e., when the selection
pressure at individual functional loci is weak, the initial variance
components will determine the increase in response to selection
over breeding cycles due to interactions; (ii) when selection
dominates drift, i.e., when the selection pressure at individual
functional loci is strong, the initial variance components are
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FIGURE 2 | Schematic representation of a hierarchical crop growth model whole genome prediction (CGM-WGP) G2P map. Taken from Figure 2b of Cooper et al.
(2020a). Genetic variants are associated with traits or “meta-mechanisms” at lower levels in the crop growth model hierarchy to predict traits at higher levels in the
hierarchy.

poor predictors of the response to selection over breeding cycles
and details of the G2P map need to be explicitly considered.
Therefore, to quantify the importance of non-stationary effects
of alleles in predicting long-term response to selection in plant
breeding, we should consider two questions:

i. What is the strength of selection operating on the causal
loci for traits in breeding programs?

ii. If selection operating on the causal loci is strong, what is
the underlying G2P map?

The availability of dense genotype data, sequence data, and
advances in phenotyping provide the opportunity to revisit
theories about the strength of selection in plant breeding
programs. Before the ability to study allelic variation via genotype
data, the selection units of breeding programs were breeding
values of individuals. It has been shown for complex traits
that strong selection at the individual level does not necessarily
translate to strong selection at the causal loci (Goddard, 2009;
Walsh and Lynch, 2018). However, technologies such as genomic
prediction (Meuwissen et al., 2001) are shifting the selection

units of breeding programs toward the allele substitution effects
of genetic loci. Despite selection still occurring on individuals,
genomic selection can distribute selection pressure unevenly
across the genome by directing selection pressure to genetic
loci with large estimated allele substitution effects (Heidaritabar
et al., 2016; Wientjes et al., 2021). Therefore, the use of genomic
selection in breeding programs can result in selection dominating
drift at specific genetic loci placing greater importance on the
G2P map assumed in genomic predictions.

Complete knowledge of the underlying G2P maps of complex
traits is unlikely. However, hierarchical G2P maps with partial
knowledge of intermediate processes offer promise for predicting
long-term response to selection, given their success in improved
short-term predictions of non-stationary effects of alleles. An
obstacle in the practical applications of such hierarchical G2P
modeling approaches is non-identifiability, also referred to
as equifinality or the many-to-one property (Lamsal et al.,
2018; Barghi et al., 2020; Henshaw et al., 2020; Kruijer
et al., 2020; Tsutsumi-Morita et al., 2021). Effects can be
non-identifiable due to unmeasured confounders that generate
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correlated errors between effects, which results in multiple,
equally likely hierarchical G2P maps for experimental data sets.
As an example, a multi-trait G2P map involving GxG interactions
and the summation of Trait 1 and Trait 2 (Figure 3A) could
equally be parameterized as the simplified Crop Growth Model –
Whole Genome Prediction G2P map of two traits with purely
additive functional genetic effects and non-linear relationships
between traits (Figure 3B). Therefore, the level of detail required
in hierarchical G2P maps to overcome non-identifiability is still
an active research area.

FUTURE DIRECTIONS

In recent times, genomic prediction across multiple contexts
has received increased focus in breeding (de Roos et al., 2009;
Hayes et al., 2009; Windhausen et al., 2012; Gorjanc et al.,
2016; Montesinos-López et al., 2019). In a multi-context setting,
the genetic correlation naturally provides a measure to quantify
predictive accuracy (Falconer, 1952; Robertson, 1959; Bohren
et al., 1966). To maximize the benefits of using the genetic
correlation framework, plant breeding requires hierarchical G2P
maps that include the explicit specification of interactions
(Figure 3C). Specification of gene-gene interactions would allow
the assessment of changes in the genetic background on GxG

interactions and prediction accuracy. Specification of gene-
trait and trait-trait interactions would allow the assessment of
changes in the environment and agronomic management on
GxE interactions and prediction accuracy. Breeding programs
are often organized in many different populations or regions to
limit these impacts of GxG and GxE interactions, respectively,
while assuming a single performance optimum and single
breeding target. However, GxG or GxE interactions can generate
a performance landscape with multiple optima (Wright, 1963;
Cooper et al., 2005; Messina et al., 2011; Technow et al.,
2020). Prior specification of this multiple optima landscape,
via hierarchical G2P maps, would allow more comprehensive
explorations of the impact of such interactions on the long-term
response to selection of plant breeding programs.

Complementary simulation and empirical studies can
interrogate the changes of genetic correlations across contexts to
quantify the relative magnitude of GxG and GxE interactions and
measure their impact on genomic prediction. Recent research,
primarily from animal breeding, has renewed the focus on
this framework (Wientjes et al., 2015; Dai et al., 2020; Duenk
et al., 2020; Legarra et al., 2020). The common theme has been
using the genetic correlation to assess likely magnitudes of GxG
interactions underpinning complex traits. Duenk et al. (2020)
used simulations to show that realistic levels of dominance alone
could not drive the genetic correlation between two populations

FIGURE 3 | Hierarchical G2P Maps for Plant Breeding. Examples of three multi-trait hierarchical G2P maps with the explicit specification of interactions. Hierarchical
G2P maps incorporating knowledge of trait interactions (+, λ) can be used to adjust phenotypes and increase the accuracy of the estimation of gene effects (u),
gene interactions, and genetic correlations (rg) between traits. Gene effects (u) can be directly assigned to trait phenotypes (y) or indirectly assigned via linear trait
relationships (+) or non-linear trait interactions (λ). A, D, and E indicate additive, dominance, and epistatic functional genetic effects, respectively. Non-genetic effects
of trait phenotypes are represented by e. (A) Representation of a G2P map with gene interactions and linear relationship between trait phenotypes,
(B) Representation of current Crop Growth Model – Whole Genome Prediction (CGM -WGP) G2P maps with additive genetic effects and non-linear trait interactions,
and (C) Representation of potential G2P maps with both gene interactions and non-linear trait interactions.
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below 0.8, but realistic levels of epistasis could drive the genetic
correlation as low as 0.45. Legarra et al. (2020) used two regularly
intermated populations with similar allele frequencies and
an expectation of minimal GxG interactions to speculate on
the role of GxE in low across population predictions. They
also suggested a genetic correlation threshold of 0.6, below
which populations should be classed as distinct. However, these
recent animal breeding studies overlooked the inclusion of GxE
interaction scenarios. GxE interaction scenarios are of high
relevance to plant breeding which regularly predict across a
diverse set of target population of environments. Plant breeding
is in a prime position to use results from evolutionary genetics
(de Villemereuil et al., 2016), multi-environment trial analyses
(Piepho, 1997; van Eeuwijk et al., 2005; Malosetti et al., 2013),
and Crop Growth Models (Jones et al., 2003; Hammer et al.,
2010; Messina et al., 2011; Holzworth et al., 2014) to assess
the impact of GxE interactions on genetic correlations and
determine their influence on breeding programs designed to
utilize genomic prediction. Therefore, we propose that the plant
breeding community undertake complementary simulation and
empirical studies to quantify the relative magnitude of GxG and
GxE interactions across relevant environmental and population
contexts to quantify their impact on genomic prediction.

The dominant crop improvement procedure of today is
a sequential operation. Breeding programs first develop new
varieties with a limited sampling of the full range of farmers’
agronomic possibilities. Within this first step, plant breeding
programs simultaneously perform population improvement to
improve the additive genetic merit of breeding germplasm
and product development, to identify new varieties with the
highest total genotypic merit (Messina et al., 2011; Powell
et al., 2020; Technow et al., 2020; Werner et al., 2020). Then
agronomic research programs follow, focusing on developing
and optimizing crop management strategies for the handful of
new varieties. Hierarchical G2P maps can connect the objectives
of plant breeding and quantitative genetics with those of crop
agronomy (Figure 3; Cooper et al., 2020a,b). The explicit
connections between gene and multiple trait levels, embedded
in hierarchical G2P maps, can be perturbed experimentally
(empirical and simulation) to quantify the impact of agronomic
management interventions and changes in the environment. The
effects of the perturbations can be investigated to determine
how they propagate through the hierarchical G2P map and
update estimates of allele effects at both the gene and trait
levels. Ex-ante predictions of perturbations at the gene level
could be used to guide improved prediction of “synthetic”
varieties developed through novel gene-editing techniques. Ex-
ante predictions of perturbations at the trait level could improve
the efficiency of breeding new varieties adapted for alternative
farming systems and future climate scenarios (Hammer et al.,
2020). At the same time, predictions can be extracted from each
level of the hierarchical G2P map, allowing the decomposition
of individual performance into additive genetic, total genetic,
and phenotypic merit. Decomposition of path-specific values in
hierarchical G2P maps has been demonstrated in evolutionary
and quantitative genetics (Lande and Arnold, 1983; Gianola and
Sorensen, 2004; Valente et al., 2010, 2013; Henshaw et al., 2020;

Janeiro et al., 2020; Pegolo et al., 2020). Therefore, the ability to
exploit different sources of improved crop performance under a
single prediction framework could improve crop improvement
pipelines’ accuracy and flexibility to navigate performance
landscapes for current and future environments (Messina et al.,
2011, 2020; Technow et al., 2020).

CONCLUSION

Current genomic prediction methods struggle to predict the non-
stationary effects of alleles as the genetic background (breeding
cycles and populations) and the environment changes. These
non-stationary effects of alleles are determined by interactions
between genetic loci, traits, and the environment. Non-stationary
effects of alleles result in low prediction accuracy across
breeding cycles, populations and environments. As discussed
above, the development of hierarchical G2P maps has been
shown to improve the genomic prediction of non-stationary
effects of alleles across breeding cycles and environments. The
simultaneous specification of GxG and GxE interactions in
hierarchical G2P maps may help to more thoroughly explore
the impact of non-stationary effects of alleles on the long-term
response to selection of plant breeding programs.
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Blueberry (Vaccinium corymbosum and hybrids) is a specialty crop with expanding

production and consumption worldwide. The blueberry breeding program at the

University of Florida (UF) has greatly contributed to expanding production areas by

developing low-chilling cultivars better adapted to subtropical and Mediterranean

climates of the globe. The breeding program has historically focused on recurrent

phenotypic selection. As an autopolyploid, outcrossing, perennial, long juvenile phase

crop, blueberry breeding cycles are costly and time consuming, which results in low

genetic gains per unit of time. Motivated by applying molecular markers for a more

accurate selection in the early stages of breeding, we performed pioneering genomic

selection studies and optimization for its implementation in the blueberry breeding

program. We have also addressed some complexities of sequence-based genotyping

and model parametrization for an autopolyploid crop, providing empirical contributions

that can be extended to other polyploid species. We herein revisited some of our previous

genomic selection studies and showed for the first time its application in an independent

validation set. In this paper, our contribution is three-fold: (i) summarize previous results

on the relevance of model parametrizations, such as diploid or polyploid methods, and

inclusion of dominance effects; (ii) assess the importance of sequence depth of coverage

and genotype dosage calling steps; (iii) demonstrate the real impact of genomic selection

on leveraging breeding decisions by using an independent validation set. Altogether, we

propose a strategy for using genomic selection in blueberry, with the potential to be

applied to other polyploid species of a similar background.

Keywords: genotyping by sequencing, sequencing depth, allele dosage, plant breeding, molecular marker, fruit

quality, independent validation, genomic prediction

INTRODUCTION

Blueberry (Vaccinium corymbosum and hybrids) is recognized worldwide for its health benefits due
to the high content and diversity of polyphenolic compounds (Kalt et al., 2020). Such health-related
attributes have resulted in an increased demand for blueberries, as it has become a crop with one of
the fastest growths in production trends, with an increase of 142% of its production in the last
10 years (FAOSTAT, 2021). In this sense, the blueberry breeding program at the University of
Florida (UF) has had a major contribution to the expansion of production areas. Starting in the
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1950s, the UF blueberry breeding program led to pioneering
hybridizations between high-quality US northern adapted species
(Vaccinium corymbosum) and endemic US southern species (e.g.,
Vaccinium darrowii), selecting for low-chill requirements to
break the dormancy of flower buds (Sharpe and Sherman, 1971;
Lyrene, 2000). The resulting breeding material and cultivars,
known as southern highbush blueberries, established a new
industry in Florida and multiple warmer regions worldwide,
allowing a year-round supply of fresh blueberries for the
global market.

Historically, like many others, the UF program used recurrent
phenotypic selection with visual assessment of plants to select
both new parents for crossing and genotypes for commercial
testing (Cellon et al., 2018). Despite the success of the industry
and the release of many cultivars in recent decades, the use
of conventional methods results in low genetic gains per
unit of time. Moreover, the autopolyploid nature of the crop,
long juvenile phase, multi-year evaluations, large experimental
areas, and the high sensibility to inbreeding depression make
phenotypic selection costly and time-consuming. Remarkably,
it can take up to 12 years to release a new cultivar using
conventional tools (Lyrene, 2005). As DNA sequencing costs
continue to decrease, genomics-based markers present an
opportunity to accelerate the breeding process by achieving more
accurate selection during earlier breeding stages. Therefore, the
UF blueberry breeding program has been leading innovative
genomics studies and procedures to fill two primary gaps in
the blueberry breeding literature: understanding the genetic
architecture of complex traits via genome-wide association
studies (GWAS) and quantitative trait loci (QTL) mapping;
and, at the practical level, performing genomic prediction based
on molecular markers, a methodology popularly referred to as
genomic selection (GS).

GWAS and QTL mapping are both tools for providing
a biological elucidation of the genetic architecture, in which
molecular markers spanning the entire genome are statistically
tested for associations with phenotypes (Pritchard et al., 2000).
While QTL analyses are usually performed using structured
populations, GWAS increases the mapping resolution by using
populations with low levels of linkage disequilibrium considering
a deep history of recombination events. In blueberry, we recently
detected candidate genomic regions and markers associated with
different fruit quality traits (Ferrão et al., 2018) and flavor-
related volatiles (Ferrão et al., 2020) via GWAS investigations;
and we built a high-density linkage map and detected QTL
associated to berry firmness (Cappai et al., 2020a). In counterpart,
GS aims to predict breeding values by using all genome-wide
markers simultaneously (Meuwissen et al., 2001). The underlying
rationale is that most QTL will be in linkage disequilibrium with
some of the markers used whenever the marker density is high
enough. Therefore, the estimated effect of all markers will lead to

Abbreviations: UF, University of Florida; GEBV, genomic estimated breeding

value; GWAS, genome-wide association study; QTL, quantitative trait loci; eBLUE,

empirical best linear unbiased estimate; SNP, single nucleotide polymorphism;

GxE, genotype by environment interaction; MAS, marker-assisted selection; GS,

genomic selection; GBLUP, genomic best linear unbiased prediction.

accurate predictions of the genetic merit for a complex trait. We
have recently shown the potential of GS in blueberry breeding
under distinct modeling scenarios (de Bem Oliveira et al., 2019,
2020; Amadeu et al., 2020a; Zingaretti et al., 2020).

The autopolyploid nature of blueberry (2n = 4X = 48)
imposes additional challenges for analyzing and interpreting
genetic data. Autopolyploids possess genomes with multiple
sets of homologous chromosomes, resulting in non-preferential
pairing and potential polysomic inheritance during meiosis.
Given the presence of higher allele dosage (i.e., the number of
copies of each allele at a particular locus), a higher number
of genotypic classes are possible (Gallais, 2003; Garcia et al.,
2013; Dufresne et al., 2014). Thus, the inclusion of allelic
dosage information on GS models could imply a more accurate
estimation of breeding values by considering the additive
effect of multiple copies of the same allele and the potential
inheritance of dominance effects. However, accurate allele
dosage calling on polyploids depends on a higher depth of
coverage, increasing genotyping costs when using sequence-
based genotyping platforms (Gerard et al., 2018; Caruana et al.,
2019). After performing foundational studies on the importance
of polyploid models, the inclusion of non-additive effects, and
sequencing depth on allele dosage parameterizations, the UF
blueberry breeding program is now on track to overcome the
barrier a simple promise to make GS a reality.

Motivated by the potential to use GS to reshape traditional
blueberry breeding, we herein revisited some of our previous
studies and described the current achievements in blueberry.
Thus, our contributions in this paper are three-fold: (i)
summarize previous results on the relevance of model
parametrizations, such as diploid or polyploid methods,
and inclusion of additive and non-additive gene actions for
prediction; (ii) assess the importance of accurate dosage
estimation for genomic prediction under low and high
sequencing depth scenarios; (iii) demonstrate the realized impact
of GS over breeding cycles by using an independent validation
set. Altogether, we anticipate challenges and directions for future
studies in blueberry that could be applied to other polyploid and
fruit species of a similar breeding background.

MATERIALS AND METHODS

Populations and Phenotypic Data
The southern highbush blueberry populations used in this study
were generated as part of the breeding program at the University
of Florida. Two phenotypic datasets, referred to as calibration set
and testing set, were used for different purposes.

The calibration set comprises a large breeding population
already described in previous studies (Ferrão et al., 2018; de
Bem Oliveira et al., 2019). Briefly, it consists of 1,837 individuals
originating from 117 biparental crosses using 146 distinct
parents. The population corresponds to early stages in the
breeding scheme, and it was planted in a high-density nursery
at the “Plant Science Research and Education Unit” in Citra,
Florida. All phenotypic evaluations were conducted on ripe fruits
collected from the beginning of April to mid-May. Fruit firmness
(g∗mm−1 of compression force), size (mm), and weight (g) were
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evaluated over two seasons (2014 and 2015), while soluble solid
(◦Brix) was evaluated only in 2015. Given the large representative
population, all genomic prediction models reported in this study
were calibrated using this dataset. The empirical best linear
unbiased estimates (eBLUEs) were estimated for each genotype
based on a linear model. Genotype and year were considered
fixed effects, as described by Amadeu et al. (2020a). Hereafter, the
eBLUEs for each trait were considered as our response variable in
the genomic prediction analyses.

The testing set was used for independent validation in genomic
prediction analyses. It comprises 280 advanced selections not
originally included in the calibration set. These genotypes
represent materials in advanced stages in the breeding program
planted over 2013–2017 under commercial conditions. These
genotypes were evaluated over several years (2014–2020), some of
them (16 common genotypes) in different locations throughout
Florida. As these phenotypes were collected from plants in
different physiological phases and multiple environments, we
adjusted the phenotypes using a linear model, including separate
fixed effects for the year, location, and plant age. The eBLUEs
of each genotype per trait were used as the phenotypic value
in subsequent genomic prediction analyses. All phenotypic
analyses were carried out using the ASReml-R software (Butler
et al., 2009). Additional details about the calibration and testing
datasets are reported in Supplementary Figures 1, 2.

Genotyping
The calibration set was genotyped using the “Capture-Seq”
approach described in Benevenuto et al. (2019). The genotyping
of the testing set was also performed using “Capture-Seq,”
considering 10,000 biotinylated probes of 120-mer at RAPiD
Genomics (Gainesville, FL, USA). Sequencing was carried out
in the Illumina HiSeq2000 platform using 150 cycle paired-
end runs. To ensure that the same group of single nucleotide
polymorphisms (SNPs) will be called in both calibration and
testing sets, we included the next-generation sequence data from
both sets under the same SNP calling pipeline. First, raw reads
were cleaned and trimmed. Then, the remaining reads were
aligned using Mosaik v.2.2.3 (Lee et al., 2014) against the largest
scaffolds of each of the 12 homoeologous groups of Vaccinium
corymbosum cv. “Draper” genome assembly (Colle et al., 2019).
SNPs were called with FreeBayes v.1.3.2 using the 10,000 probe
positions as targets (Garrison andMarth, 2012). Loci were filtered
out applying the following criteria: minimummapping quality of
10; only biallelic locus; maximum missing data of 50%; minor
allele frequency of 1%; and minimum and maximum mean
sequence depth of 3,750 across individuals, respectively. A total
of 63,552 SNPs were kept after these filtering steps. Sequencing
read counts per allele per individual were extracted from the
variant call file using vcftools v.0.1.16 (Danecek et al., 2011)
and subsequently used to investigate some practical questions
implementation of genomic prediction in polyploids.

We first investigated the importance of accurate genotype
calling for genomic prediction by testing ratio and dosage under
high and low sequencing depth scenarios. For this purpose, we
used the calibration set only in a 10-fold cross-validation scheme.
For the ratio method, each genotypic score was computed as the

ratio between the alternative and total read depth, as described
by Sverrisdóttir et al. (2017) and applied in de Bem Oliveira et al.
(2019). For the dosage method, genotypic classes were assigned
probabilistically using the updog R package v.2.1.0 considering
the “norm model” and prior bias equals zero (Gerard et al., 2018;
Gerard and Ferrão, 2020). Both genotyping methods (ratio and
dosage) were compared under scenarios of high sequencing depth
(random sampling for the mean number of 60 reads – 60×) and
low sequencing depth (random sampling for the mean number
of 6 reads – 6×). Specifically, we assumed the sequencing reads
of each allele (alternative or reference) for a given marker come
from a multinomial distribution, with probability equal to the
number of the reads divided by the total number of reads across
all the alleles, markers, and individuals (N). Then, we sampled
N/10 reads from this multinomial distribution. We performed
this sampling 10 times, and each sampling result was used in a
different cross-validation fold. To avoid an eventual confounding
between the number of markers and the predictive ability over
the four scenarios, we kept the same number of SNPs (63,552)
across all scenarios. Therefore, in total, four scenarios were tested:
ratio_60x, ratio_6x, dosage_60x, and dosage_6x.

For the real validation and implementation of GS in the
blueberry breeding program, we used the actual read counts to
estimate the allele dosage in the calibration and test sets according
to the “norm model” in the updog 2.1.0 R package (Gerard et al.,
2018; Gerard and Ferrão, 2020). The posterior probability modes
were used as our genotypic score. After estimating the posterior
mean per genotype, we filtered out markers with a proportion
of individuals genotyped incorrectly (“prop_miss” < 10%) and
markers with an estimated bias higher than 0.13 and smaller than
7.38. Missing genotypes were imputed by the mean of each locus.
A total of 48,829 SNPs were kept and used in genomic prediction
for independent validations.

Statistical Analyses
Single-trait linear mixed models were used to predict breeding
values using the best linear unbiased prediction (BLUP) and
restricted maximum likelihood approach (REML) to estimate
variance components, as following: y = µ + Zu + e; where y

is a vector of pre-corrected phenotypic records for a particular
trait; µ is the overall mean; Z is an incidence matrix linking
observations in the vector y to their respective breeding value
in the vector u. Normality was assumed for the additive and
residual effects, where u ∼ MVN(0,Gσ 2

u ) and the residual
variance e ∼ MVN(0, Iσ 2

u ). For the residual, I is an identity
matrix; while σ 2

u and σ 2
e are the genetic and residual variance

components. The matrix G denotes the genomic relationship
matrix computed using the ratio genotypic score or the tetraploid
allele dosages with the different sequencing depths described
above. The matrices were estimated in the AGHmatrix v.2.0.0
R package (Amadeu et al., 2016). For the ratio implementation,
we used the “ratio” option in the software that computes

the relationship as G = ZZ
′

/h, where Z is the mean-
centered matrix of the molecular marker information (ratio
values); and h is a scale factor, where h =

∑m
i=0 s

2
i and

s2i is the variance of the vector zi centered marker i (for
more details, see de Bem Oliveira et al., 2019). For the dosage
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FIGURE 1 | Schematic representation of four validation scenarios tested in blueberries. Calibration set represents a diverse group of genotypes representative of the

UF blueberry breeding population. In Scenario 1, we used the calibration set in a 10-fold cross-validation scheme to test the relevance of genotyping calling (ratio vs.

dosage) considering two different sequencing depths (6× and 60×). Scenario 2 (across-stages) represents a group of 114 individuals originally presented in the

calibration set that were clonally propagated, moved to the advanced Stage of the breeding program, and phenotyped under commercial field conditions. Scenario 3

(general prediction) represents an independent group of 280 genotypes (testing set), evaluated under commercial conditions. The phenotypic values of the target

individuals were pre-adjusted for the year, location, and age effects. Finally, in Scenario 4 (stratified prediction), we performed predictions over four regions of the State

of Florida. To avoid potential model overfitting, we removed genotypes from the calibration set overlapped with the testing set.

implementation, we used the additive relationship matrix based
onVanRaden (2008) as described by de BemOliveira et al. (2019).
All genomic prediction analyses were carried out using the
rrBLUP package (Endelman, 2011). For comparison, predictions
were also carried out using pedigree BLUP. Using the same
linear mixed model, we computed the numerator pedigree-
based relationship considering autotetraploidy and no double
reduction (Kerr et al., 2012), using the AGHmatrix v.2.0.0 R
package (Amadeu et al., 2016).

Predictive performances were assessed for the ratio and
dosage methods under high (60×) and low (6×) sequencing
depth scenarios using only the calibration set in a 10-fold
cross-validation scheme. To this end, the calibration set was
randomly divided into 10 groups, where one group was used
as a validation test, while the remaining nine groups were
used as training. Models were trained in the validation test
using the genomic best linear unbiased prediction (GBLUP)
approach. For each fold, predictive abilities were estimated using
Pearson’s correlation between genomic estimated breeding values
(GEBVs) and the corresponding eBLUEs. We also evaluated the
correspondence between the top 20 groups of individuals ranked
using dosage_60x and the other scenarios. A post-hoc Tukey test
(alpha= 0.05) was used for intergroup comparisons between the
top 20 ranked genotypes.

For the independent GS validation over the breeding cycles,
we assessed the robustness of our predictive model over different
scenarios: (i) across-stages scenario refers to 114 individuals
from the calibration set that were clonally propagated in 2014
and planted in a commercial condition in a single location,
becoming the testing set – prediction accuracy in this scenario
can demonstrate the potential losses when models are trained
at earlier stages (high density) and used at late stages of
selection (commercial condition); (ii) general scenario stands

for models trained in the calibration set and predictions carried
out in the testing data, in which the target phenotypic values
were pre-corrected for year, location, and age fixed effects; (iii)
stratified scenario comprises models trained in the calibration
set that were tested for predictions across four regions in
Florida (North-FL, Central-FL, South-FL, and Citra-FL) – in
contrast to the general predictions, in this scenario the target
phenotypic values were pre-corrected only for the year effect per
region. In all scenarios, predictive performances were assessed via
Pearson’s correlation.

A summary of all validation scenarios is illustrated in
Figure 1. We complemented the predictive analysis for the
stratified predictions by accessing the importance of genotype-
by-environment interaction (GxE) via ANOVA. To this end, we
considered 16 genotypes (checks) that were phenotyped over
the four regions. We fitted a linear model considering the year,
genotype, location, and the interaction between genotype and
location (GxE) as fixed effects. ANOVA was performed in R (R
Team, 2013) using the native lm() function.

RESULTS AND DISCUSSIONS

In the last two decades, GS has become a reality for many
animal and plant breeding programs. Despite the optimism
and proven efficacy, its wide implementation is still hindered
by investment costs and the analytical skills required (Hickey
et al., 2017). With that in mind, the UF blueberry breeding
program initiated genomic studies on a large scale in 2013.
First, we worked closely with genotyping companies to design
customized genotyping platforms; we phenotyped and genotyped
a large and multi-parental blueberry breeding population; we
increased our computational resources; and finally, we adapted
our breeding framework to incorporate genomics. During this
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FIGURE 2 | A schematic representation of the UF blueberry breeding program, integrating phenotypic selection and genomic prediction. The breeding process is

conventionally organized in two integrated steps: population improvement and product development. A breeding cycle starts with crosses between outstanding

parental genotypes. After that, several stages (I–IV) are required to evaluate the genotype performance. At Stage I, we will use marker-assisted selection targeting

traits with simple genetic architecture. Genomic selection will be implemented in Stage II when GEBVs are computed. In advanced selections (Stages III and IV),

high-quality phenotyping will be performed to leverage the calibration of genomic prediction models. At these stages, metabolomics and sensory panel analyses will

also play an important role in flavor-assisted selections. In the end, elite materials are registered as clonally propagated cultivars. In addition, to shortening the time for

product development, GS can be applied to move top-ranked plants directly from Stages II to IV, skipping at least 3 years of evaluation at Stage III. For population

improvement, GS can assist in more accurate parental selection at early stages.

process, the implementation of GS in a polyploid and outcrossing
species proved challenging, particularly regarding the intrinsic
biological complexities and the availability of genomic and
computational tools (Mackay et al., 2019). In blueberry, for
example, a high-quality genome assembly became available only
in 2019 (Colle et al., 2019). As a result, about half of the capture-
seq genotyping probes originally developed based on a draft
genome assembly were discarded afterward based on the high-
quality genome, without compromising genetic association and
genomic prediction analyses (Benevenuto et al., 2019). We also
explored additional optimizations to reduce costs regarding the
number of individuals per family, the number of markers, and
sequencing depth (de Bem Oliveira et al., 2020). Moreover, new
genomics methods and tools have been developed in the last

decade for the polyploid community, including allele dosage
estimation, haplotype reconstruction, and the use of different

relationship matrices (Bourke et al., 2018). Here, we presented

the lessons we have learned so far for implementing GS in an
autotetraploid and outcrossing species. We summarized previous

results and also included novel findings relevant to the blueberry
and polyploid community.

Filling the Gaps: Phenotypic and Genotypic

Selection in the Same Breeding Framework
Blueberry is an outcrossing and clonally propagated crop, for
which the breeding process can be conventionally organized
in two central steps: population improvement and product
development (Lyrene, 2005). First, population improvement is
done to manage the frequency of beneficial alleles over time by
selecting and crossing outstanding materials, as conceptualized
in recurrent selection designs. Second, in parallel, product
development consists of a series of trials in which potential
candidates are evaluated over several years and locations,
advancing across stages until selecting the best genotypes
becomes a registered variety. In Figure 2, we illustrated these
two key steps and how they are integrated into a four-stage
selection design (from Stages I to IV) in the UF blueberry
breeding program.

Annually, the blueberry breeding program performs more
than 200 crosses, including parents selected among cultivars,
elite material, and wild germplasm (Lyrene, 2005). From these
crosses, about 20,000 seedlings are planted in non-replicated
high-density nurseries (area of 0.2 ha), establishing the so-called
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Stage I. After 1 year, plants in Stage I are visually selected
based on fruit size, color, scar, and using the breeder’s “bite test”
for flavor quality attributes. Approximately 10% of the original
number of seedlings are kept after this first selection, and the
unselected plants are removed from the field. To not exhaust
genetic diversity, a minimal number of individuals per family
are kept. However, given blueberry’s long juvenile period, the
availability of few berries, and the high competition in a high-
density planting, it is difficult to phenotype for all traits and assess
the individuals’ full potential stage.

Additionally, the large number of individuals prevents
genomic prediction at this stage, given the costs of genotyping.
Therefore, at Stage I, we envision that marker-assisted selection
(MAS) for traits with simple genetic architecture is a more
feasible approach, and it is a current research line of the breeding
program. In this regard, the example of MAS implementation in
early selection stages is reported in strawberry (Gezan et al., 2017;
Osorio et al., 2020).

After the first selection, ∼2,000 genotypes pass to the second
stage (Stage II). All plants stay in the same field plot, in high
density. Further visual phenotypic evaluations are performed for
the next 3 years. At this stage, we are implementing genomic
prediction to increase genetic gains by improving phenotyping
accuracy and selecting parents at early stages. Therefore, at Stage
II, all plants will be genotyped. The GEBVs will be predicted for
five fruit quality traits (soluble solids, titratable acidity, weight,
size, and firmness), yield, and consumers panel liking scores.
Using a selection index according to trait importance (Williams,
1962), we will perform GS to complement standard phenotypic
descriptors and rank all genotypes. Different selection indexes
are defined every year, depending on the traits and crosses
performed, with yield and flavor traits usually receiving the
highest weights. As routinely done, 10% of the 2,000 plants will
be moved to the next stage (Stage III), where selected plants are
clonally propagated and evaluated in a 15-plant clonal plot in a
commercial field.

At Stage III, around 200 plants are more accurately
phenotyped for more traits, using more fruits, clonal repetitions,
and multiple years of evaluations in commercial conditions.
Technically, all information collected at this stage will be used to
feed the genomic prediction models. The UF blueberry breeding
program has included new traits for routine phenotyping to meet
the current demand from different marketable demands in recent
years. For example, the use of volatiles for flavor-assisted selection
has shown the ability to predict sensory perceptions by explaining
55% of the variation in overall liking scores (Colantonio et al.,
2020). Given the high costs to perform sensory panels, we are
incorporating metabolomics in the breeding pipeline to predict
flavor ratings for many genotypes at Stage III (Gilbert et al., 2015;
Colantonio et al., 2020; Ferrão et al., 2020).

In the last stage (Stage IV), around 15–20 plants selected
from Stage IIIs with consistent and outstanding performances
are propagated and planted at commercial trial sites across
Florida. The different locations comprise two production systems
according to the accumulation of chilling hours: evergreen and
deciduous (Fang et al., 2020). To ensure accurate selection,
phenotypic data is collected weekly and used to feed our

genomic prediction models. Fruits from selected genotypes are
also submitted to sensory panels, where blueberry consumers
score flavor preferences. Elite selections from this final Stage
are ultimately named, patented, and released as clonally
propagated cultivars.

Altogether, the conventional breeding pipeline takes up to
12 years to evaluate the genotype merit of an individual to
be released as a cultivar. With the implementation of genomic
selection at the scope of the breeding program, the selection
criteria can be more accurate than the visual phenotypic selection
at Stage II. Moreover, it will shorten the time to select genotypes
to become a parent in the next breeding cycle and advance to
Stage III. In a typical recurrent selection breeding scheme, the
parental selection is crucial (Lyrene, 2005). We have optimized
this selection by ranking the GEBVs over the breeding cycles and
seeking crosses that minimize inbreeding. Among the different
tools available for mate allocation, we have recently implemented
the algorithm described in the AlphaMate software with default
parameters (Gorjanc and Hickey, 2018).

“Simplicity Is the Ultimate

Sophistication”1: On the Relevance of

Additive GBLUP Models
When confronting the problem of modeling the relationship
between molecular markers and variation in the observed traits,
an important question to keep in mind is what statistical method
could better describe this relationship (Ferrão et al., 2019).
In recent years, we have investigated statistical and biological
aspects underlying the implementation of genomic prediction in
autopolyploid species, including (i) the importance of accounting
for allele dosage in whole-genome statistical models (de Bem
Oliveira et al., 2019); (ii) the relevance of multiple gene actions,
including additive and non-additive genetic sources (Amadeu
et al., 2020a; Zingaretti et al., 2020); and finally, (iii) the impact of
sequencing depth of coverage, when sequence-based genotyping
approaches are used (de Bem Oliveira et al., 2020).

Among the factors that differentiate diploid and polyploid
analyses, resolving the allelic dosage of individual loci is
one the most important. While in diploid organisms, only
three genotypic classes are possible for biallelic markers,
autotetraploids, like blueberry, can have up to five genotypic
classes. Therefore, in theory, it is expected that statistical models
accounting for the dosage effect could be more informative and
provide a more realistic representation of the genetic complexity
of a quantitative trait (Garcia et al., 2013). We first tested this
hypothesis by contrasting polyploid and diploid parametrizations
in GWAS studies (Ferrão et al., 2018), whereby a larger number
of associations were observed under polyploid models. In a
subsequent study, we investigated a similar assumption for
genomic prediction (de Bem Oliveira et al., 2019). We tested
GBLUP models using relationship matrices built in a tetraploid
(Slater et al., 2016) and diploid (VanRaden, 2008) fashion.

Interestingly, both parametrizations resulted in similar
performances for all traits tested. Furthermore, the similar

1Quote by Leonardo da Vinci.
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predictive ability for diploid and polyploid parametrizations
was also reported in other autotetraploid species (Lara et al.,
2019; Matias et al., 2019), which ultimately reinforced the
robustness of the predictive accuracy of GBLUP regardless of
the ploidy parametrization used. These results are explained
by the similarity between the genomic relationship matrices
computed using diploid and autotetraploid parametrizations.
Recently, we presented empirical evidence on this topic by
showing that the estimation of molecular pairwise relatedness in
both scenarios are highly correlated, in particular, under low-to-
middle rates of heterozygosity (Amadeu et al., 2020b).

Besides the potential additive impact of allele dosages,
dominance effects can also be heritable in polyploids and could
improve the prediction of genetic values. Therefore, it is also
reasonable to speculate that a greater number of alleles per
locus may increase the range of genetic models to describe one-
locus genotypic value by accounting for multiple dominance
levels (Gallais, 2003). This is exemplified by the different models
addressing the dominance effect proposed in the polyploid
literature, including the use of digenic interactions (Endelman
et al., 2018), the use of a general effect by assuming that each
genotype has its effect (Rosyara et al., 2016; Slater et al., 2016), and
the use of heterozygous parametrization (Enciso-Rodriguez et al.,
2018). In blueberries, we tested the importance of such different
gene actions in predictive studies. Although we have observed an
improvement in the statistical goodness of fit when dominance
effects are counted, this increment is not directly translated into
predictive ability (Amadeu et al., 2020a). Hence, the additive
model resulted in performance similar to models accounting for
dominance effects, as it has been described for diploid species
(Muñoz et al., 2014).

Given the genetic complexity of polyploids and the potentially
higher intra- and inter-locus interactions, we also hypothesized
that predictions could be improved by using deep learning
techniques (Zingaretti et al., 2020). Through deep learning, we
could take advantage of non-linearity assumptions to model the
whole genetic merit of an individual. We used allo-octoploid
strawberry and autotetraploid blueberry as our biological models
and compared linear models and deep learning techniques for
prediction to test this. We did not observe improvements of deep
learning over traditional linear models for traits with presumably
different genetic architectures in both species. The only exception
was observed in a simulated data set. Deep learning performed
better for traits with large epistatic effects and low narrow-sense
heritability, which reinforced the high predictive ability of mixed
models as prediction machinery.

Our last contribution to the practical implementation of
genomic prediction in polyploids is the relevance of sequencing
depth of coverage for genotyping methods based on next-
generation sequencing. Sequencing depth refers to the number
of reads sequenced at a given site in the genome. Low
coverage datasets increase the chances of not sampling all
homologous chromosomes at a given site for a given individual
during sequencing. Thus, it could result in high rates of
missing data, miscalled genotypes, and uncertainty of allele
copy number in heterozygous genotypes (Clark et al., 2019).
Some studies in polyploid crops have recommended increasing
the sequencing depth to circumvent this issue, which implies

higher costs of genotyping. For example, Bastien et al. (2018)
and Uitdewilligen et al. (2013) suggested sequencing depths
of 50X−80X for an accurate assessment of allele dosage in
autotetraploid potatoes. In a recent study, we demonstrated that
such numbers are quite conservative for genomic prediction.
By combining a simple genetic parametrization (ratio) and
low-to-mid sequencing depth (6x–12x), we achieved similar
predictive accuracies as the ones obtained using higher depths
for blueberry traits with different genetic architectures (de Bem
Oliveira et al., 2020). In practical terms, reducing the amount
of sequencing data will also reduce the costs of implementing
GS or potentially genotyping more individuals under a
fixed budget.

Despite the considerable advancements previously explored,
the relevance of using more sophisticated algorithms for
genotype calling and its impact on genomic prediction remains
unexplored. Recently, several new methods have been developed
to assign accurate allelic dosage of individual loci in polyploids
(Garcia et al., 2013; Gerard et al., 2018; Pereira et al., 2018; Clark
et al., 2019). In this paper, we compared predictive abilities.
We confirmed that low-to-mid sequencing depth and ratio
parametrization could be used to rank GEBVs with similar
predictive performance (Figure 3 and Supplementary Table 2)
and genotypic ranking (Table 1). Nonetheless, despite the
attractive simplicity of using the ratio and low-sequencing
depth, such results are only valid for prediction analysis (de Bem
Oliveira et al., 2019, 2020). Importantly, there is no empirical
evidence that setting the parameters to these levels could work for
inferential studies such as GWAS, population genomics, linkage,
and QTL mapping. In this sense, an important counterpoint was
recently reported in hexaploid sweet potato. Higher sequencing
depths and accurate dosage calling improved the ultra-dense
linkage map and posterior QTL analysis (Gemenet et al., 2020;
Mollinari et al., 2020). For GWAS, we observed large rates of
false-positive associations when analyses were performed using
low sequencing depth associated with the ratio parametrization
(results not shown). Herein, we systematically observed
large biases when relationship matrices were constructed
using the ratio_6x approach (Supplementary Figure 4 and
Supplementary Table 4).

Our results suggest that the use of traditional GBLUP is
robust enough for genomic prediction, even under simplistic
assumptions. This fact has long been discussed in the specialized
literature and has raised questions on the contribution of linkage
disequilibrium between QTL and markers vs. the relationship
information to GS (Habier et al., 2013).

How Does Genomic Prediction Work in a

Real Validation Population?
While we have investigated several statistical and computational
aspects related to GS in blueberry, it is still unknown how
accurate the predictions will be across breeding cycles, with
plants in different phenological stages and locations. This
scenario came to be called “true validation” and involves the use
of independent populations. We investigate it by dividing our
prediction analyses as following: models calibrated in 2014 and
2015 using plants in Stage II were used for genomic predictions
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FIGURE 3 | Violin plot with predictive ability considering two genotype calling approaches (dosage and ratio) under two sequencing depth scenarios (6× and 60×) for

four fruit quality traits in blueberry using 10-fold cross validation. Each circle represents one cross validation fold result.

TABLE 1 | The number of genotypes matching the top 20 rankings using the

dosage_60× method as the benchmark, under 10-fold cross-validation.

Method Depth Firmness Size Weight Brix

Dosage 6× 16.5b 16.9b 16.3b 16.4b

Ratio 6× 16.2b 15.6c 16.2b 15.3b

Ratio 60× 18.8a 18.3a 18.6a 18.7a

A post-hoc Tukey test (alpha = 0.05) was used for intergroup comparisons over the

scenarios. Cells with the same letter represent non-statistically different groups for the

given trait (column).

of individuals at Stages III and IV. Both data sets share genetic
similarity (Figure 4A).

For independent validations, we tested different scenarios in
which GS could be applied (Figure 1). First, we focused on
validations across breeding stages. To this end, we used the
calibration test—originally evaluated in Stages II—to predict
a subset of individuals that were cloned and planted in an
advanced stage (Stages III). When compared to within-sample
cross-validation schemes, as originally reported by de Bem
Oliveira et al. (2019) and Amadeu et al. (2020a), lower predictive
accuracies were observed (Figure 4B). These results mainly
highlight (i) the importance of collecting better phenotypic data
and (ii) the influence of plant management. Remarkably, most
of the phenotypic traits measured in the calibration set were
collected from five berries per genotype, while on Stage III, we
used 25 berries per genotype. Furthermore, genotypes in Stage II
are planted in high-density nurseries with phenotypes collected
in plants that are still in their juvenile phase. At the same time,
Stages III are grown under commercial conditions and evaluated
over several years.

A second predictive scenario tested the relevance of calibration
tests at early stages to predict independent genotypes in advanced
stages that were more extensively phenotyped. The results for

most fruit-quality traits confirm the importance of genomic
information (general predictions) over pedigree-based methods
(Figure 4C). However, compared with predictions using within-
sample cross-validation schemes, we also observed a reduction
in the predictive results (Supplementary Table 3) (de Bem
Oliveira et al., 2019; Amadeu et al., 2020a). This decline in
predictive performance in true validation is expected due to
differences in the allele frequencies over populations, variation
in linkage disequilibrium patterns, and GxE interactions
(Habier et al., 2013).

In the third scenario, a more challenging exercise was
to measure how predictive ability varies across regions in
the State of Florida (stratified predictions, Figure 4D). Higher
predictability was observed for Citra and Central-FL, the closest
regions where the models were originally trained. In counterpart,
plants evaluated in the South-FL showed, on average, lower
predictability performances. Despite the small number of
genotypes included in this analysis, these results provide insights
into the importance of GxE interaction for GS in blueberry.
We further explored this hypothesis by using a group of 16
common genotypes (checks) evaluated over the four regions.
The results confirmed the significance of the GxE effect for
most of the traits (Table 2 and Supplementary Figure 3), with
the plants evaluated in South-FL showing the most contrasting
values. It is noteworthy that blueberry locations in South-FL
are grown under an evergreen production system, under less
chilling hours, and are focused on preventing defoliation during
the winter months (Fang et al., 2020). On the other hand,
Citra, Central-FL, and North-FL regions are grown under the
deciduous production system, where leaves are dropped during
the winter. Such differences in the production systems could
drive the largest disparity observed at South-FL compared with
the other regions.

The results from independent validations allow us to draw
some practical conclusions. First, even with low-to-moderate
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FIGURE 4 | Genomic prediction on independent validation scenarios. (A) Principal component analysis (PCA) of two blueberry populations: calibration set represents

the trained set, where genomic prediction models were originally calibrated; and testing set comprising additional 280 individuals used for testing. (B) Across-stages

prediction: predictive ability was measured in a subset of 114 individuals included in the calibration set, but phenotypes were collected in advanced selection stages.

(C) General prediction: the predictive ability of the testing set after training the models in the calibration set. (D) Stratified predictions: after training the models in the

calibration set, individuals in the testing set were predicted using phenotypes collected over four macro-regions in the Florida State, which are under different chilling

hour accumulation. All predictive abilities were expressed as percentage values.

predictive accuracies, GS is still encouraging. For example,
soluble solids and firmness are both traits treasured by
consumers, for which routine phenotyping is expensive and time-
consuming for large populations, like Stage IIs. Ranking plants

based on their GEBVs proved to be a better alternative than any
other criteria historically used throughout UF blueberry breeding

program (pedigree or visual selection).More accurate phenotypic

data to annually recalibrate the model also has the potential to

improve predictability.

Unifying Biological Discoveries and

Predictions
Genomic information can also provide new opportunities to
integrate biotechnology and quantitative genetics into modern
breeding programs, creating platforms for both deliveries of
new products and biological discovery (Hickey et al., 2017).
For example, in blueberry, biological discoveries have been
addressed via QTL mapping (Cappai et al., 2020a) and GWAS
studies (Ferrão et al., 2018, 2020) for multiple fruit quality traits.
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TABLE 2 | Mean and standard deviation (in parenthesis) of four fruit quality traits

were evaluated in advanced stages of the blueberry breeding program at four

Florida regions.

Location Firmness (g * mm−1) Size (mm) Weight (g) ◦ Brix

North FL 248 (32.8) 18.0 (1.79) 2.57 (0.641) 11.3 (1.31)

Citra 245 (42.0) 17.0 (2.22) 2.34 (0.691) 10.9 (1.33)

Central FL 244 (29.3) 17.7 (1.46) 2.29 (0.491) 11.8 (1.27)

South FL 251 (33.4) 17.4 (1.34) 2.21 (0.549) 12.0 (1.91)

GxE (p-value)* 0.007 0.0002 0.005 0.47

*p-values associated to genotype-by-environment interaction (GxE) were computed using

a linear model and ANOVA, where season, genotype, location, and the interaction

between genotype and location (GxE) were fitted as fixed effects.

Values were computed using 16 common genotypes (checks).

Unifying such discoveries with prediction is challenging, but
it has been addressed under three different avenues: (i) use
of GWAS discovered QTL as fixed effects on GS models; (ii)
incorporating markers (or QTL) in MAS designs, and (iii) using
genome-editing technology to speed up breeding.

In a strategy called “GS de novo GWAS,” we explored the
importance and applicability of GWAS findings for prediction
using the significant GWAS hits as fixed effects in GS models,
considering independent datasets. For oligogenic traits, like some
flavor-related volatiles, we achieved an increase of more than
20% in predictive ability compared with traditional GS methods
(Ferrão et al., 2020). Using a similar strategy, gains in predictive
performance have also been reported in other crops, such as
maize (Bernardo, 2014; Rice and Lipka, 2019), wheat (Sehgal
et al., 2020), and rice (Spindel et al., 2016). Alternatively, we
have investigated further modeling strategies to accommodate
biological information into the predictive models. For example,
the use of Bayesian strategies that could accommodate SNPs with
larger effect by using different prior distributions (Erbe et al.,
2012; Gianola, 2013; Zhou et al., 2013); and GBLUP models that
could weight variants previously selected either via association
analysis or using bioinformatic pipelines (Su et al., 2014; Zhang
et al., 2016; Liu et al., 2020; Ren et al., 2021).

Another potential strategy is to use target markers associated
with important traits for MAS during Stage I of the blueberry
breeding program. Such a strategy could be used for the early
selection of plants still in the seedling stage. Acknowledged by
their simple genetic architecture, we showed that few markers
could yield reasonable predictive accuracies of volatile emission
and, thus, leverage flavor selection (Ferrão et al., 2020). We
envision that MAS can also be implemented for other oligogenic
traits. In this regard, we have been conducting other GWAS and
QTL mapping studies for disease resistance, such as anthracnose
(Colletotrichum gloeosporioides) and bacterial wilt (Ralstonia
solanacearum). A similar strategy has been implemented in
strawberries (Gezan et al., 2017; Osorio et al., 2020) and
other fruits (Iezzoni et al., 2020). However, for MAS to be
applicable for thousands of plants, cheap and fast DNA extraction
and targeted SNP genotyping assays should be optimized.
We are currently testing high-resolution melting (HRM) and
competitive allele-specific PCR (KASP) assays to validate and
implement MAS for volatiles.

Gene editing is another attractive technology with the
potential to have significant effects on the breeding program.
Aside from the use of CRISPR-Cas9 for validating candidate
genes identified via GWAS or QTL studies, some simulations
have recently shown that genome editing can double the rate of
genomic gain when coupled with genomic prediction, compared
with GS conducted in isolation (Noman et al., 2016; Hickey et al.,
2017). However, to our knowledge, there is only one study of
CRISPR-Cas9 targeted mutagenesis in blueberry (Omori et al.,
2021). At the UF blueberry breeding program, we have advanced
our understanding of the best tissue culture practices and most
effective transformation markers (Cappai et al., 2020b), laying
the ground for CRISPR/Cas9 genome editing implementation in
our breeding program. Using this technique, we can also take
advantage of the knowledge accumulated from model crops to
introduce novel allelic diversity in orthologs and accelerate the
domestication process.

CONCLUSIONS

The implementation of GS has already changed the UF blueberry
breeding program routine by reorganizing how we collect
genotypic and phenotypic information and analyze data to rank
the material to advance stages and breed in the next cycles. Our
previous studies on GS were fundamental to define the most
cost- and time-effective methods for model parameterization
and genotyping. The main lessons learned can be conveniently
divided into different areas. Statistically, despite the numerous
algorithms for prediction—many of them more elegant at the
biological and computational level—the use of additive effects
under a linear mixed model framework (GBLUP) showed
the best balance between efficiency and accuracy. Considering
the particularities of autopolyploid genetic data, we showed
that for GS, low depth of sequencing (6×-12×) simplifies
the allele dosage information (i.e., diploidization and ratio)
resulted in similar prediction accuracies as those obtained using
more refined scenarios. Finally, the genomic prediction was
incorporated in a recurrent selection breeding scheme at the
practical level, whereby variety development and populational
improvement run in parallel. So far, GEBVs have been primarily
used for parental selection to increase genetic gains while keeping
the genetic diversity. A more objective reduction in the number
of years to develop a cultivar would be selecting the top-ranked
genotypes from Stage II directly to IV, skipping at least 3 years of
evaluations at Stage III.

FUTURE DIRECTIONS

Finally, we highlight some challenges and opportunities for
further studies in blueberries. First, recalibrating the model with
more accurate phenotypic data can yield better predictive ability.
In this sense, phenomics is also a cutting-edge area of research
that could leverage the number of traits and samples collected
during a season and improve the quality of phenotypic data.
For example, yield is a complex and time-consuming trait to
be phenotyped over the season. We envision that image-based
phenotyping may aid in evaluating yield and other traits, such
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as plant architecture and diseases. For the future, it would
also be important to incorporate additional statistical checks
(common genotypes) across years and locations to understand
better the effects of GxE interaction on genomic predictions and
recalibrate our models according to the environmental targets.
On integrating multi-omics data, we expect that we will predict
flavor preferences through volatile quantification and perform an
early selection for more flavorful cultivars. Statistically, testing
new algorithms for mate allocation and using haplotypes for
prediction and imputation methods are some potential areas that
could further improve genomic predictions.
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Scalable Sparse Testing Genomic
Selection Strategy for Early Yield
Testing Stage
Sikiru Adeniyi Atanda1,2,3†, Michael Olsen4*†, Jose Crossa2†, Juan Burgueño2†,
Renaud Rincent5†, Daniel Dzidzienyo1, Yoseph Beyene4†, Manje Gowda4†, Kate Dreher2†,
Prasanna M. Boddupalli4†, Pangirayi Tongoona1†, Eric Yirenkyi Danquah1†,
Gbadebo Olaoye6 and Kelly R. Robbins3*†

1 West Africa Center for Crop Improvement (WACCI), University of Ghana, Accra, Ghana, 2 International Maize and Wheat
Improvement Center (CIMMYT), Texcoco, Mexico, 3 Section of Plant Breeding and Genetics, School of Integrative Plant
Sciences, Cornell University, Ithaca, NY, United States, 4 International Maize and Wheat Improvement Center (CIMMYT),
Nairobi, Kenya, 5 French National Institute for Agriculture, Food, and Environment (INRAE), Paris, France, 6 Agronomy
Department, University of Ilorin, Ilorin, Nigeria

To enable a scalable sparse testing genomic selection (GS) strategy at preliminary
yield trials in the CIMMYT maize breeding program, optimal approaches to incorporate
genotype by environment interaction (GEI) in genomic prediction models are explored.
Two cross-validation schemes were evaluated: CV1, predicting the genetic merit of new
bi-parental populations that have been evaluated in some environments and not others,
and CV2, predicting the genetic merit of half of a bi-parental population that has been
phenotyped in some environments and not others using the coefficient of determination
(CDmean) to determine optimized subsets of a full-sib family to be evaluated in
each environment. We report similar prediction accuracies in CV1 and CV2, however,
CV2 has an intuitive appeal in that all bi-parental populations have representation
across environments, allowing efficient use of information across environments. It is
also ideal for building robust historical data because all individuals of a full-sib family
have phenotypic data, albeit in different environments. Results show that grouping of
environments according to similar growing/management conditions improved prediction
accuracy and reduced computational requirements, providing a scalable, parsimonious
approach to multi-environmental trials and GS in early testing stages. We further
demonstrate that complementing the full-sib calibration set with optimized historical
data results in improved prediction accuracy for the cross-validation schemes.

Keywords: genomic selection, factor analytic, preliminary yield trials, prediction accuracy, unstructured model,
CDmean

INTRODUCTION

Due to climate change threatening crop productivity in sub-Saharan Africa (SSA), breeding
for drought tolerance and yield stability across target environments is a high priority for the
International Maize and Wheat Improvement Center (CIMMYT) tropical maize breeding program
(Beyene et al., 2015, 2019). To achieve genetic gain improvement in alignment with these breeding
objectives, the CIMMYT maize breeding programs leverage novel technologies such as doubled
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haploid (DH) technology, that allows generation of tens of
thousands of inbred lines yearly, a low-cost genotyping platform,
and genomic selection (GS) that uses whole-genome information
to predict the genetic merit of new lines. The CIMMYT
maize breeding scheme has five stages of testing. Many hybrid
combinations are developed each year and tested in a small
number of environments during the early testing phase, in later
stages a small number of selected hybrid combinations are tested
in many environments. To identify parental lines for the next
breeding cycle and develop stress tolerant and high yielding
hybrids that meet farmers’ needs, hybrids are tested under both
well-watered (WW) and water-stress (WS) conditions in the
preliminary screening stages. Each stage is characterized by the
number of locations and the number of testers. These factors
influence selection accuracy in the different testing stages.

At stage 1 or preliminary yield trials, several experimental
hybrids are generated by crossing DH lines, or lines developed
using the pedigree scheme, to a tester from a complementary
heterotic group. The testcross hybrids are evaluated in 3–5
environments, where each environment is a combination of
location and management (WS and WW), and the data are
used to select the best 10–15 percent of the lines within or
across the managements for advancement to stage 2 yield trials
(Beyene et al., 2019). Effective selection decisions at stage 1
yield testing are critical for the advancement of lines with the
greatest potential to perform in the resource-intensive multi-
location, multi-tester testing stages. However, the effectiveness
of phenotypic selection (PS) for stage 1 testcross trials is limited
by evaluation on one tester and in few environments, which do
not adequately represent the target population of environments
(Endelman et al., 2014), this is largely due to the number of
DH lines for testcross and the number of testcross hybrids for
evaluation. Consequently, the CIMMYT Global Maize breeding
program is focused on redesigning early-stage yield trials to
accelerate genetic gain and reduce the cost of hybrid testing by
evolving from a phenotypic based selection to the use of GS
to predict the genetic merit of new lines. The efficiency of this
method for evaluation of stage 1 candidates has been established
(Beyene et al., 2019).

The current GS strategy relies on phenotyping 50 percent
of a bi-parental population, observed across WW and WS
environments, to predict the genetic merit of un-tested
candidates for both WW and WS (Beyene et al., 2015, 2019;
Santantonio et al., 2020) in a test-half-predict-half strategy
(Atanda et al., 2020). While this strategy results in improved
prediction accuracy at lower cost, it is not optimal for reducing
breeding cycle time because a subset of the bi-parental population
is required for model training (Atanda et al., 2020). The goal
of the CIMMYT maize breeding program is to accelerate the
early yield testing stage by using information from previously
tested genotypes that have been phenotyped and genotyped
(historical data) for model training. Based on the predicted
genomic estimated breeding value (GEBV), lines will be advanced
directly to stage 2 yield trials, the effectiveness of this strategy has
been evaluated in our previous study.

Sparse testing represents a promising approach to expand
the number of lines tested when GS is used to advance lines

directly into stage 2, and for stage 1 screening of lines in cases
where the genetic merit of some new lines may not be accurately
predicted due to low genetic relationship between new lines and
previously evaluated genotypes in the historical dataset. In the
case where GEBV of lines cannot be accurately predicted from
historical data, sparse testing has been identified as an optimal
GS strategy compared to the current CIMMYT GS strategy (test-
half-predict-half) that tests half of a full sib family to train
genomic prediction models for full sibs that are not tested in stage
1 (Atanda et al., 2020; Santantonio et al., 2020). Given that all
populations have phenotypic records in different environments,
it is an appealing option for creating a robust historical dataset
and allows for borrowing of information across environments
resulting in improved prediction accuracy when compared to
the test-half-predict-half strategy (Burgueño et al., 2012; Atanda
et al., 2020; Santantonio et al., 2020).

To identify a scalable strategy that optimizes the
representation of genetic space of the genotypes across
environments leading to efficient use of information across the
environments at the early yield testing stage, we evaluated two
different breeding scenarios: (1) predicting the genetic merit of
new bi-parental populations across environments (phenotyping
of populations was unbalanced across environments) or, (2)
predicting different subsets of a bi-parental population across
environments. Here, coefficient of determination (CDmean) was
used to split bi-parental populations across environments.

The main objectives of this study were to: (1) determine
an effective strategy to implement sparse testing within the
CIMMYT tropical maize breeding program and, (2) determine
the optimal method to incorporate genotype by environment
interaction (GEI) into the GS model for early yield testing stage.

MATERIALS AND METHODS

Plant Materials
The datasets used in this study are described in detail in Atanda
et al. (2020). Briefly, the maize datasets consist of 849 and 1,389
DH lines derived from 13 and 45 DH bi-parental populations
respectively. The DH lines were unique within each year and
were testcrossed to one of three single-cross testers in 2017 and
one of two single-cross testers in 2018 respectively. Testcrosses in
2017 and 2018 were grouped into 13 and 34 trials, respectively.
The trials were connected by common checks, and each trial
was planted in an alpha-lattice incomplete block design with
two replications under WW condition in Kiboko and Kakamega,
Kenya and WS condition, in Kiboko during the 2017 and 2018
growing seasons. The entries in the trials were planted two-rows
per plot, each row was 5 m long, with spacing of 0.75 m between
rows and 0.25 m between hills. At planting, two seeds per hill were
planted and thinned to one plant per hill 3 weeks after emergence
to obtain a final plant population density of 53,333 plants per
hectare. Fertilizers were applied at the rate of 60 kg N and 60 kg
P2O5 per ha, as recommended for the area. Nitrogen was applied
in a split dose at planting and 6 weeks after emergence. For the
purposes of modeling genotype by environmental interactions
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(GEI), several combinations of factors (location, management,
and year) were used to classify environments as summarized in
Table 1.

All DH lines were genotyped using repeat Amplification
Sequencing (rAmpSeq) at Cornell Life Science Core Laboratory
Center, Ithaca, NY, United States. The genotyping platform
takes advantage of knowledge of whole-genome sequences and
repetitive sequences to identify DNA sequence polymorphisms
using novel bioinformatics tools [for detail see Buckler et al.
(2016)]. It provides dominant markers, with the 9,155 sequence
tags coded as 0 and 2 based on presence or absence of the
dominant marker, respectively. The 6,785 markers with minor
allele frequency greater than 0.05 were used for analysis.

Genomic Selection Models
A separate analysis was run for each of the environmental
classifications found in Table 1 using a multi-environment linear
mixed model incorporating GEI effect. The covariance structures
were defined using the groups in Table 1 and the model was fit in
ASReml using the average information algorithm (Gilmour et al.,
1995) as:

y = 1nµ+ X1b1 + Z1u1 + Z2u2 + Z3u3 + Z4u4 + Z5u5 + ε

(1)
where y (n × 1) is the vector of phenotypes for each DH lines
measured in the environments (1...k), µ is the overall mean and
1n (n × 1) is a of vector ones, b1 is a fixed effect of location, u1is

TABLE 1 | Classification of the environments based on management, location by
management, management by year and location by management by year.

Grouping of the environments Environment

Location by
management

Kiboko by WW LM1

Kakamega by WW LM2

Kiboko by WS LM3

Management (single
year analysis)

WW M1

WS M2

Management by year WW by 2017 MY1

WS by 2017 MY2

WW by 2018 MY3

WS by 2018 MY4

Management++

(multi-year analysis)
WW M+1

WS M+2

Location by
management by year

Kiboko by WW by 2017 LMY1

Kakamega by WW by
2017

LMY2

Kiboko by WS by 2017 LMY3

Kiboko by WW by 2018 LMY4

Kakamega by WW by
2018

LMY5

Kiboko by WS by 2018 LMY6

M+ is the broad classification of management across years as WW and WS.

the random effect of the interaction between the genomic effect
of g-th DH line and v-th environment, u2 is the random effect of
the tester, u3 is the random effect of the trial, u4 is the random
effect of replication nested within environment, trial and year for
the multi-year dataset, u5 is the random effects of incomplete
block nested within replication, trial, location and year for the
multi-year dataset. The number of fixed and random effects is
represented as n and p, while Xn and Zp are incidence matrices
for fixed and random effects, respectively. The variance of the
random effects u2, u3, u4, and u5were assumed to be distributed
as:

up ∼ N(0, Ipσ
2
up

) (2)

where Ip and σ2
up

are the identity matrix and variance of the p-
th random effect (u2- u5). In Equation 1 all fixed effects and
random effects u2- u5 are model in the same way for all analyses,
while the covariance structure for u2 and ε varied based on the
environmental classifications in Table 1.

The random GEI effect u1 is defined as the Kronecker product
(
⊗

) between the g × g genomic relationship matrix (G) and
the v × v variance-covariance matrix of the genomic effect of
genotypes in and between environments (Go).

u1 ∼ N[0, (G⊗ Go)] (3)

Thus, covariance of the genomic effect of the line (u1) in multi-
environment model, can be represented as:

Cov(u1, u
′

1) = Go ⊗ G (4)

Go ⊗ G =


σ2

g1
σg12 · · · σg1v

σg21 σ2
g2 · · · · · ·

σgv1

...

...

. . .

...

σ2
gv

⊗ G(5) (5)

where Go represents the v × v variance-covariance matrix of the
genomic effect of genotypes in the environments. The number of
environments v varied based on the environmental classifications
in Table 1. The diagonal of the Go matrix is the additive genetic
variance σ2

gv
within the v-th environment. The off-diagonal (σg1v)

elements represent the genetic covariance between environments.
Fitting the GEI in this way enables examination of the

predictive ability of an unstructured model (US) that allows
fitting unequal covariance between pairs of environments or
managements, in addition to different genetic variances within
environment/management. However, the number of parameters
to estimate for the US model does not increase linearly with the
number of environments, which can result in non-convergence
when the number of model parameters is large relative to the
number of data points (Smith et al., 2001; Kelly et al., 2007;
Oakey et al., 2016). The factor analytic (FA) model has been
identified as a more parsimonious approach to fit the complex
covariance structure amongst a large number of environments
(Piepho, 1998; Smith et al., 2001; Crossa et al., 2004; Oakey
et al., 2016; Smith and Cullis, 2018). FA identifies one or few
factors underlying the correlation among the k environments
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by their relationship to unobservable latent variables. Therefore,
the GEI is modeled as interaction between the genomic effect
of the g-th DH line and one or few factors underlying the
environmental/management influences on the genotype (Piepho,
1998; Smith et al., 2001; Crossa et al., 2004; Kelly et al., 2007). FA
model for Cov(ug, u

′

g) is expressed as:

(33′ +9)⊗ G (6)

where 3 is a v × m matrix of loading factors, the columns
of 3 are associated with the environmental loadings for the
m-th latent factor. 9 is a v × v heterogeneous diagonal matrix
with specific environment genetic variances 9v on the diagonal
and zero covariance between environments. When the number
of environments was less than 4 (as defined in Table 1), one
multiplicative component was considered (m = 1) and m = 2
as number of environments increased from 4 to 6. We use the
extended FA (XFA) model that allows a non-full rank variance
matrix for the GEI effects, therefore the mixed model equation
is sparser, resulting in reduced computational requirements
compared to the standard FA model. Details can be found in
Thompson et al. (2003) and Meyer (2009).

The residual variance for the GS model (Equation 1) can be
specified as:

ε ∼ N(0,R) (7)

where R is a heterogeneous diagonal matrix of the residual
variances for each environment v:

R =


σ2

ε1
∗In1 0 · · · 0
0 σ2

ε2
∗In2 · · · 0

...

0

...

0
. . .

...

σ2
εv
∗Inv

 (8)

where Inv is a nv = nv identity matrix and nv is the number
of observations in environment v. The off-diagonal elements of
the R matrix equal zero [Cov(ε, ε

′

) = 0] and diagonal elements
represent the residual variance within each of v environments.
Generally, the residual variance for multi-environment GS
models can take two different forms explaining different model
assumptions. For example, a uniform residual variance for all
environments (σ2

ε1
= σ2

ε2
. . . = σ2

εv
), and a heterogeneous residual

variance where each environment has different residual variance
(σ2

ε1
6= σ2

ε2
. . . 6= σ2

ε v
).

The plot level heritability for each environment was calculated
from the variance components obtained from the model as:

h2
v =

σ2
gv

σ2
gv
+σ2

εv

(9)

where σ2
gv

and σ2
εv

are the genetic and residual variance estimates
specific to environment v.

Calibration Set Optimization Criteria
Following Atanda et al. (2020), CDmean and Avg_GRM were
used as genetic optimization criteria. Similar to Rincent et al.

(2012), CDmean was used to optimize experimental design
by determining which individuals were evaluated in each
environment. However, in this study, CDmean is the mean of
the expected reliability of the predicted genetic values of N-
1 individuals in a specific bi-parental population, where N is
the size of a given full-sib family with each g-th individual
used to predict the reliability of the remaining full-sibs. The
expected reliability of the prediction of the different contrasts was
expressed as:

CD (K) = diag

[
K
′

(G−λ(Z
′

DZ+λG−1)
−1

)K
K′GK

]
(10)

where D = 1−X(X
′

X)−1X
′

, G, X, and Z are the same as defined
above and K is a matrix of contrast vectors with the sum of each
contrast vector equal to zero such that 1′K = 0.

In principle λ = σ2
ε/σ

2
g, where σ2

ε is the residual error and σ2
g

is the genetic variance obtained from Equation 1; however, this
cannot be calculated for untested lines. According to Atanda et al.
(2020), the efficiency of CDmean is not highly dependent on trait
heritability but rather on genomic relationship. Consequently, λ

was set to 0.5. In our previous study, when an intermediate value
was chosen for (λ = 0.5) the prediction accuracy was close to
accuracies achieved using λ = σ2

ε/σ
2
g, this was in agreement with

Rincent et al. (2012). Therefore, CDmean = mean [diag(CD(K))],
each column of the K matrix is a contrast between (N-1)
individuals of a full-sib family and the mean of the full-sib family.
A contrast using the first individual in the family is set up as:

K1 = c
(

n− 1
n

,
−1
n

,
−1
n

)
(11)

Where n is the number of individuals in the populations.
Therefore, one individual of a full-sib in a specific bi-
parental population serves as a calibration set to estimate
the reliability of predicting the remaining full-sibs. This was
repeated N times enabling each g-th individual of a full-
sib to serve as calibration set. Consequently, we obtain a
CDmean value for each individual in a given bi-parental
population and individuals (50 percent of a bi-parental
population) with the highest CDmean value represent an
optimized calibration set. Theoretically, individuals with high
CDmean value maximize the reliability of those with low
CDmean value, thus full-sib families where split between
environment by keeping high and low CDmean lines together
in WW environments, respectively. In the WS environment,
a portion of lines from each WW environment were used
as the calibration set (Supplementary Figure 2). A script to
calculate the CDmean is provided in Supplementary File 1.
This strategy was adopted because it is computationally
efficient compared to Rincent et al. (2012) which used an
exchange algorithm to randomly exchange one individual
between the calibration set (N

′

, – total number of individuals
to phenotype) and the un-phenotyped individuals (N- N

′

),
where the exchange is accepted if the initial CDmean value
improved and rejected otherwise. The process repeated until
reaching a plateau. Akdemir et al. (2015) and Heslot and
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Feoktistov (2020) also modified Rincent et al. (2012) with
improved computational efficiency. The efficacy of these
methods was not compared in our study, but results from
preliminary analysis show the strategy used in this study
improved prediction accuracy compared to Rincent et al. (2012)
(results not shown).

The Avg_GRM is a raw estimate of the proportion of the
genome shared between a potential training set and all individuals
in a specific full-sib family. Based on the results from our
previous study (Atanda et al., 2020), CDmean and Avg_GRM
genetic optimization criteria have similar efficiency in selecting
individuals from historical data closely related with a specific bi-
parental population. However, Avg_GRM genetic optimization
criterion is computationally more efficient; thus, the Avg_GRM
genetic optimization criterion was used to select 300 individuals
from the historical data that are closely related to a specific full-sib
family. The Avg_GRM can be expressed as:

Avg_GRMj =
1
n

n∑
g

Ggj (12)

where Ggj is the genomic relationship between the g-th individual
in a target full-sib family and the j-th line in the historical data
and n is the size of target full-sib family.

Cross-Validation Scheme
The predictive ability of two cross-validation schemes was
evaluated for possible implementation of a sparse testing GS
strategy in the CIMMYT tropical maize breeding program. For
even distribution of populations across environments, a bi-
parental population with size ≤ 30 was dropped from 2017
dataset and the remaining 12 bi-parental populations were
used for the analysis. The first cross-validation scheme (CV1)
involved masking six random bi-parental populations of the
twelve bi-parental populations in one WW environment with
the remaining bi-parental populations masked in the other
WW environment. In the WS environment, three random bi-
parental populations from each WW environment were masked;
this process was repeated 10 times (Supplementary Figure 1).
Prediction accuracy was calculated as the Pearson correlation
of the predicted GEBV obtained from the models and the
BLUE estimates of DH testcrosses for each population in each
environment. The mean across populations is reported.

In the second cross-validation scheme (CV2), CDmean was
used for splitting each bi-parental population equally across
WW environments by masking 50 percent of a bi-parental
population with lowest CDmean value in one environment and
the remaining 50 percent masked in the other WW environment.
For the WS environment, half of the individuals unmasked in the
WW environments were masked (Supplementary Table 1 and

FIGURE 1 | Predictive ability of factor analytic model for the cross-validation schemes (CV1 and CV2) in WS environments/management. LM and M represent
prediction accuracy obtained when covariance was modeled across environments and managements, respectively, for within-year prediction. LMY represents
classification of environment as location by management by year, MY and M+ represent the broad classification of the management across years as WW and WS,
and explicit definition of the management across years as WW 2017 and 2018 and WS 2017 and 2018. LMY, MY and M+ used all available historical data. The suffix
“his” represents prediction accuracy obtained with optimized historical data using the Avg_GRM genetic optimization criterion.
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Figure 1). Due to the diversity of populations in 2018, the 2018
dataset was chosen to represent “historical” data in this study.
Following Atanda et al. (2020), we further assessed the predictive
ability of augmenting the training set in both cross-validation
schemes with all historical data or with an optimized set of 300
individuals from the historical records closely related to a specific
full-sib family using Avg_GRM genetic optimization criterion. In
the scenario where full-sib training sets were augmented with
historical data, GEI was considered as location by management
by year (LMY 1, 2, 3, 4, 5, and 6), management by year (MY 1, 2, 3,
and 4) to account for the difference between managements across
years in addition to the broad definition of management as WW
(M+1) and WS (M+2). The prediction accuracy was calculated
as the Pearson correlation of the predicted GEBV and the BLUE
estimates of DH lines in each environment, obtained using
the complete dataset for each population, from the combined
analysis. The mean across populations is reported.

RESULTS

Residual Variance, Heritability Within
Environment/Management, and
Correlation Between Pairs of
Environments/Managements
Except for when the environment was classified as year by
management by location (LMY 1, 2, 3, 4, 5, and 6), where
the US model was responsive to the training set and did not
consistently converge, the results for FA and US models were
equivalent regardless of the cross-validation schemes (Result
not shown). Thus, only results from FA model were presented.
The genetic correlation between environments (LM 1, 2, and
3) in the CV1 ranges from 0.13 to 0.64 (Table 2). A similar
trend was observed for CV2 and ranges from 0.22 to 0.363.
For CV1, the within environments (LM 1, 2, and 3) plot-level
heritability for grain yield ranges from 0.27 to 0.42 and ranges
from 0.26 to 0.32 in CV2. When environments were grouped
into managements, for CV1, the genetic correlation between
WW (M1) and WS (M2) was 0.37 and plot-level heritability

within each management was 0.24 and 0.35 respectively. While
for CV2, the genetic correlation between M1 and M2 was
0.47, and plot-level heritability within each management was
0.19 and 0.32.

The genetic correlation between environments (LMY 1, 2,
3, 4, 5, and 6) varies across the cross-validation schemes, it
ranges from −0.14 to 0.74 for CV1 and −0.02 to 0.79 for
CV2. The plot level heritability for each environment across
the cross-validation was modest. In analyses where management
was defined across years (WW 2017 and 2018 – MY1 and
3, WS 2017 and 2018 – MY2 and 4), the genetic correlation
between managements also ranged from negative to moderate
correlation for CV1 (Table 3). While it ranged from low to
moderate in CV2. For the broad definition of management
across years as WW (M+1) and WS (M+2), the genetic
correlation was 0.60 and 0.68 for CV1 and CV2, respectively.
Generally, the estimates of plot-level heritability for CV1 and
CV2 were moderate.

Comparison of Predictive Ability of the
Models and the Cross-Validation Schemes
The grouping of the environments into management consistently
shows higher prediction accuracy compared to modeling of
covariance between environments defined as a combination of
location, management and year (Figures 1, 2). Though the
prediction accuracy for the cross-validation schemes was similar,
the slight difference corroborates the different estimates of
heritability and genetic correlation obtained from the cross-
validation schemes. The augmentation of the training set with
optimized historical information improved prediction accuracy
compared to either use of all the historical data plus the full-
sib training set or only the full-sib training set. Unsurprisingly,
prediction accuracy increases with higher heritability and
genetic correlation between environments/managements as
observed with prediction accuracy of WW compared to WS.
Although prediction accuracy of FA and US models are
similar (Supplementary Table 2), the US model failed to
consistently converge when environment was defined based on
the combination of location, management, and year.

TABLE 2 | Plot level heritability (diagonal) and genetic correlations between pairs of managements or environments (upper diagonal) for the two managements (upper
half) and three environments (lower half) from the factor analytic model analysis of 2017 dataset.

Cross-validation scheme

CV1 CV2

M WW WS WW WS

WW 0.24 (0.08) 0.37 – 0.19 (0.06) 0.47 –

WS 0.35 (0.06) – 0.32 (0.09) –

LM Kiboko WW Kakamega WW Kiboko WS Kiboko WW Kakamega WW Kiboko WS

Kiboko WW 0.27 (0.09) 0.24 0.63 0.26 (0.06) 0.31 0.63

Kakamega WW 0.42 (0.06) 0.15 0.32 (0.10) 0.22

Kiboko WS 0.34 (0.06) 0.32 (0.04)

M represents grouping of locations by management as WW and WS; LM represents the grouping of locations as Kiboko-WW, Kakamega-WW and Kiboko-WS. Plot level
heritability estimates within each grouping management (M or LM) are represented in the diagonal. The upper diagonals are genetic correlations between environmental
groupings. Standard errors for the heritability estimates are in parentheses.
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TABLE 3 | Plot level heritability (diagonal) and genetic correlations between pairs of managements (upper diagonal) for the two managements (upper half) and four
managements (lower half) from the factor analytic model analysis of combined 2017 and 2018 dataset.

CV1

M+ WW WS

WW 0.31 (0.05) 0.60 – – – –

WS 0.38 (0.03) – – – –

MY WW 2017 WS 2017 WW 2018 WS 2018

WW 2017 0.32 (0.03) 0.31 0.10 0.05 – –

WS 2017 0.38 (0.03) −0.11 0.55 – –

WW 2018 0.27 (0.05) 0.09 – –

WS 2018 0.20 (0.03) – –

LMY Kiboko WW 2017 Kakamega WW 2017 Kiboko WS 2017 Kiboko WW 2018 KakamegaWW 2018 Kiboko WS 2018

Kiboko WW 2017 0.30 (0.07) −0.03 0.45 0.04 −0.14 0.19

Kakamega WW 2017 0.46 (0.08) −0.10 0.29 0.38 0.16

Kiboko WS 2017 0.41 (0.04) 0.23 −0.10 0.32

Kiboko WW 2018 0.49 (0.04) 0.69 0.74

KakamegaWW 2018 0.50 (0.08) 0.33

Kiboko WS 2018 0.38 (0.04)

CV2

M+ WW WS

WW 0.35 (0.04) 0.68

WS 0.39 (0.05)

MY WW 2017 WS 2017 WW 2018 WS 2018

WW 2017 0.35 (0.04) 0.47 0.36 0.20

WS 2017 0.38 (0.04) 0.30 0.59

WW 2018 0.15 (0.07) 0.38

WS 2018 0.20 (0.05)

LMY Kiboko WW 2017 Kakamega WW 2017 Kiboko WS 2017 Kiboko WW 2018 KakamegaWW 2018 Kiboko WS 2018

Kiboko WW 2017 0.27 (0.07) −0.01 0.32 0.12 −0.10 0.19

Kakamega WW 2017 0.38 (0.05) 0.38 0.42 0.54 0.12

Kiboko WS 2017 0.38 (0.06) 0.26 −0.02 0.34

Kiboko WW 2018 0.53 (0.10) 0.73 0.79

KakamegaWW 2018 0.54 (0.05) 0.55

Kiboko WS 2018 0.36 (0.05)

M+ represents broad classification of management across years as WW and WS. MY represents the grouping of environments by management (WW and WS) and year
(2017 and 2018). LMY groups environments by management (WW and WS), location (Kakamega and Kiboko), and year (2017 and 2018). Plot level heritability estimates
for M+, MY, and LMY are represented in the diagonal. The upper diagonals are genetic correlations between environmental groupings. Standard errors for the heritability
estimates are in parentheses.

DISCUSSION

The sparse testing GS strategy in which the genetic merit of
new lines is evaluated in different but genetically correlated
environments has proven to increase prediction accuracy
compared to the test-half-predict-half GS strategy and, provided
that all new lines have phenotypic data, it is seemingly robust
for developing historical training datasets (Burgueño et al., 2012;
Atanda et al., 2020; Santantonio et al., 2020). The evaluation
of new genotypes across environments allows the utilization
of information across environments using multi-environment
models. However, multi-environment models, especially the US
model, tend to become non-parsimonious as the number of
environments increases resulting in convergence failure (Smith
et al., 2001; Kelly et al., 2007; Meyer, 2009). Considering that
a small number of environments and genotypes were evaluated

in the preliminary yield trials in this study, the use of the US
model did not pose any statistical challenge. However, inclusion
of historical data in the training set increases the number of
environments, which could result in computational challenges
for the US approach. Alternatively, the FA model, which is
a complexity reduction model for an increased number of
environments, requires fewer parameters while accounting for
covariance between environments (Smith et al., 2001; Thompson
et al., 2003; Crossa et al., 2004; Kelly et al., 2007; Burgueño et al.,
2008, 2011, 2012; Smith and Cullis, 2018; Tolhurst et al., 2019),
and could be more suitable as historic training datasets increase
in size and complexity.

Although the predictive ability of the two cross-validation
schemes is comparable, the improved prediction accuracy of CV1
might be due to the close relationship (half-sib relationship)
of all the populations. Previous studies (Lehermeier et al., 2014;
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FIGURE 2 | Predictive ability of the factor analytic model for the cross-validation schemes (CV1 and CV2) in WW environments/management. LM and M represent
prediction accuracy obtained when covariance was modeled across environments and managements, respectively, for within-year prediction. LMY represents
classification of environment as location by management by year, MY and M+ represent the broad classification of the management across years as WW and WS,
and explicit definition of the management across years as WW 2017 and 2018 and WS 2017 and 2018. LMY, MY and M+ used all available historical data. The suffix
“his” represents prediction accuracy obtained with optimized historical data using the Avg_GRM genetic optimization criterion.

Schopp et al., 2017; Atanda et al., 2020) also indicate that
use of closely related multiple bi-parental populations as a
training set result in improved prediction accuracy. Using
diverse populations, one would expect the differences in
marker-quantitative trait loci linkage phase across bi-parental
populations would result in a lower signal to noise ratio, but
that does not appear to be the case in this dataset where several
populations share a common parent. The small size of the bi-
parental population used in this study might affect the prediction
accuracy of CV2. Borrowing of information across environments
was the basis for the improved prediction accuracy using sparse
testing compared to test-half-predict-half (Atanda et al., 2020),
thus, a strategy that optimizes coverage of the genetic space
of the genotypes across environments should result in higher
predictive ability.

The FA is a parsimonious model for fitting a relatively
high number of environments in multi-environment trials
utilizing latent factors which give rise to correlations between
environments to capture the complexity of covariances among
many environments (Burgueño et al., 2012; Oakey et al., 2016;
Smith and Cullis, 2018; Tolhurst et al., 2019). However, with
few environments and a large dataset to estimate all model
parameters, the superiority of the FA model over the US
model will likely depend on the ability of the FA model
to adequately represent the underlying covariance structure
between environments in the dataset (Piepho, 1998; Kelly et al.,

2007; Meyer, 2009; So and Edwards, 2009; Ward et al., 2019).
While this study looked at relatively few environments, the
limitations of the US model became apparent in the multi-
year dataset with six environments defined. Under this scenario,
US model was sensitive to the training set used and did not
consistently converge, suggesting that the utility of US model
will diminish rapidly as the number of environments increase.
Given reliable convergence and similar performance with a small
number of environments, the FA appears to be a more robust
approach for modeling sparse testing implementations in the
CIMMYT Maize program.

In practice, the CIMMYT tropical maize breeding program
advances lines to multi-location, multi-tester yield trials based
on relative performance within or across managements (WW
and WS), the observed improvement in prediction accuracy
when environments were grouped into managements suggests
that categorizing the environments into management did not
sacrifice information on GEI. Assigning environments/locations
into groups using prior information, such as management, as
is the case in this study, can serve as a complexity reduction
strategy for reducing the number of model parameters, providing
a more parsimonious approach for modeling GEI. However, stage
1 yield testing is typified by a small number of environments,
which is a limitation to the generalization of the results of this
study across different phases of yield testing, in particular with
a large number of environments. However, similar to the strategy

Frontiers in Plant Science | www.frontiersin.org 8 June 2021 | Volume 12 | Article 658978104

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-658978 June 22, 2021 Time: 14:30 # 9

Atanda et al. Scalable Sparse Testing

employed in this study, using multi-environment data, Lado et al.
(2016) grouped 35 environments into three mega environments
using the additive main and multiplicative interactive (AMMI)
model (Zobel et al., 1988), and GS was performed within the
mega environments.

Augmenting a given full-sib training set with an optimized
set of 300 individuals from historical data using the Avg_GRM
genetic optimization algorithm improved prediction accuracy
compared to using all available historical records. The similar
genetic covariance between managements, heritability, and
prediction accuracy obtained when historical data is used to
complement the full-sib training set, suggests that an increase
in the training set size using historical data results in more
stable estimates of model parameters when compared to using
only the full-sib records as the training set. The results
from this study corroborate our earlier study (Atanda et al.,
2020) indicating that the use of genetic optimization criteria
to select individuals genetically connected to the breeding
population to serve as a training population results in improved
prediction accuracy. This further illustrates the importance of
genetic relationships between training and breeding populations
and indicates that any GS approach carefully consider which
historical records are included for training of genomic prediction
models. Furthermore, these results suggest that, when genomic
information is available breeders should consider utilizing multi-
year information for advancement decisions. This could not
only improve advancement decisions but could enable earlier
recycling of material to reduce generation intervals.

CONCLUSION

Given the similar prediction accuracies obtained in CV1 and
CV2, decisions on which sparse testing experimental design
will likely depend on cost and ease of implementation. While
the prediction accuracy for the cross-validation schemes is
equivalent, CV2 has an intuitive appeal in that all bi-parental
populations have representation across environments, which
would allow efficient use of information across environments
and would be ideal for building a robust historical dataset.
Further, the CV2 can be extended to resource demanding multi-
environment, multi-tester advanced yield testing stages to save
resources. In this study, grouping similar environments to model
GEI information reduced computational challenges and achieved
superior prediction accuracy. In general, including historical
information in trial advancement decisions improved prediction
accuracy, suggesting that the use of historical information
in routine advancement decisions could improve accuracy.
Furthermore, selecting historical information based on genetic
connectedness with the breeding population proved more
effective than including all historical information.
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Supplementary Figure 1 | Illustration of cross-validation scheme 1. Each box
represents a population; the black color depicts populations masked in an
environment and the white color represents populations used for model training to
predict the genomic estimated breeding value of masked populations in each
environment. Environments (1, 2, and 3) represent Kiboko optimal, Kakamega
optimal and Kiboko drought.

Supplementary Figure 2 | Illustration of cross-validation scheme 2. Each box
represents a population; the white color depicts individuals within a bi-parental
population selected based on their CDmean value to predict the genomic
estimated breeding value of masked individuals (black color). Environments (1, 2,
and 3) represent Kiboko optimal, Kakamega optimal and Kiboko drought.

Supplementary Table 1 | Masking of subset of a bi-parental population in CV2
across environments.

Supplementary Table 2 | Prediction accuracy for factor analytic models using
m = 1 and 2 and the unstructured model, depicting model accuracy using either
m = 1 or 2 as number of environments increase.

Supplementary Table 3 | Eigen analysis of factor analytic matrix, showing
variation explained by the latent variables.
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INTRODUCTION

Favorable variation from genetic resources is anticipated to play a key role in the adaptation of crops
to the increasingly unfavorable production conditions resulting from climate change (FAO, 2015).
Weather extremes lead to more frequent occurrences of abiotic stress and facilitate the emergence
and spread of diseases. While there is no doubt that alleles and haplotypes offered by accessions
from germplasm banks are of enormous value, the integration of beneficial alleles into elite material
poses three major challenges:

1. the identification of promising germplasm bank accessions,
2. the separation of beneficial major effect alleles from undesired linkage drag,
3. the repackaging of polygenic variation into elite and adapted materials.

Identifying promising germplasm bank accessions, which may offer single alleles with major effects
or beneficial quantitative variation, often resembles looking for a needle in a haystack. In practice,
it is almost never possible to phenotype a large portion of the available germplasm due to high
costs, challenges with adaptation, restricted facility resources and time pressure. An informed
prescreening of the available accessions will be necessary.

Moreover, when accessions with putative alleles for desired traits are identified, the mission is
not yet accomplished, since the beneficial variation must be integrated into elite germplasm. In the
case of a simple genetic architecture such as an identified major effect gene, the novel allele can
be introgressed by marker assisted backcrossing (MABC) or can be approached by gene editing.
However, preceding discovery research is required to identify the genetic variation associated
with the phenotypic variation. In particular, gene editing requires very precise information on the
causative variation. The availability of a trait-associated marker, which may be sufficient for an
application in MABC, may be insufficient for a gene editing approach. This research is resource
and time consuming and carries the inherent risk of unsuccessful validation experiments due an
altered effect of the allele when in combination with the genetic background of elite material.

When dealing with quantitative variation, dedicated mapping experiments are not required.
However, it is more difficult to bring quantitative variation into an elite background and have a
product acceptable to breeders. Landraces carry many deleterious and inferior alleles which can
quickly disrupt the positive linkage blocks painstakingly constructed by breeders over decades.
Diminished agronomic performance makes the breeding community reluctant to include such
germplasm in their elite breeding programs.
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Prediction approaches can help the effective use of genetic
resources in two ways. First, predictions can identify the most
promising candidate accessions for a certain trait, thus restricting
the number of accessions to evaluate in experiments (Yu et al.,
2016). Second, predictions can accelerate the pre-breeding (or
“germplasm enhancement”) process by helping to target the
desired alleles for transfer to an elite germplasm background,
saving resources and time.

In this commentary, we summarize some activities related to
predictive breeding in the context of genetic resources conducted
at the International Maize and Wheat Improvement Center
(CIMMYT). We then discuss differences between predictive
breeding approaches for genetic resources and genomic
selection for elite breeding programs. We propose that research
on predictive methods for genetic resources should explore
approaches which are “enriched” by external information; for
example, knowledge of molecular biological mechanisms, or
accession “passport” data that provides information on the
environmental conditions in which the accession was originally
cultivated. Passport data comprising latitude, longitude, and
altitude are fundamental initial information for each accession
stored in the bank. The inclusion of external information may
increase the power of predictive breeding approaches, especially
in the context of harnessing genetic resources.

PREDICTIVE BREEDING FOR GENETIC

RESOURCES AT CIMMYT

Genotyping of Accessions of CIMMYT’s

Germplasm Bank
CIMMYT has genotyped most of its maize and wheat collections
as part of the Seeds of Discovery Project (SEED). For maize, more
than 98% of the CIMMYT and IITA (International Institute of
Tropical Agriculture) maize collection have been genotyped. For
wheat, 37 and 66%, respectively, of the CIMMYT and ICARDA
(International Center for Agricultural Research in the Dry Areas)
wheat collection have been genotyped (Sansaloni et al., 2020).
The smaller percentages for wheat, compared to maize, are due
to the larger size and differing composition of the combined
collections. CIMMYT’s germplasm bank has ∼28,000 maize, but
more than 140,000 wheat accessions. The available genotypic
data provides a solid foundation for prediction approaches for
screening the collections more systematically.

Genetic Resources for Breeding for Maize

Lethal Necrosis Resistance
A recent example of the successful use of germplasm bank
material in response to an emerging threat was the development
of germplasm tolerant to Maize Lethal Necrosis (MLN).
Thirteen out of 1000 screened landraces were identified as
showing low susceptibility to Maize Chlorotic Mottle Virus
(MCMV), the major causal component of MLN disease (for a
review on CIMMYT’s activities related to MLN, see Boddupalli
et al., 2020). The pre-screening in this study was based
on geographical distribution, racial structure, and genomic
distance data calculated as described in Franco-Duran et al.

(2019). The performance of the developed inbred lines in
hybrid combinations is currently tested, in particular under
MLN pressure.

Prediction of Wheat Landraces Accessions
For wheat, Crossa et al. (2016) considered genomic prediction
on a large set of Mexican (∼8,400) and Iranian (∼2,400) bank
accessions for several traits including thousand-kernel weight,
grain hardness, grain protein, and plant height. The predictive
abilities obtained were mostly between 0.39 and 0.68, when using
20% of the data as training set (Crossa et al., 2016, Table 2).
An exception was plant height for the Iranian landraces, which
showed a predictive ability of only 0.17. These results indicated
that genomic prediction has a potential for (1) fast screening of
the whole GB for different traits, and (2) a rapid and efficient pre-
breeding method for introgression useful alleles (and haplotypes)
into advance breeding lines while not eroding genetic diversity.

Association Studies With Environmental

Covariates as Phenotype
A novel approach to use “passport” data of accessions
is “environmental genome-wide association studies”
(environmental GWAS or EnvGWAS). This approach treats
environmental variables of the sites where accessions were
collected as phenotypes, and combines this information with
genotypic data for the accessions in an association study. The
objective is to identify genetic variation which is associated
with the adaptation to certain environmental conditions (Lasky
et al., 2015; Romero Navarro et al., 2017; Gates et al., 2019).
Though this approach conceptually could lead to high false
positive rates due spatial distribution impacting phylogeny
and environmental variables, this problem can be controlled,
as in standard GWAS, by introducing a random polygenetic
effect with the genomic relationship as covariance (Yang et al.,
2014). Proof of concept work in drought using collection site
precipitation data has demonstrated the power of EnvGWAS to
detect variants of potential interest in maize landraces (Gates
et al., 2019). Validation of the role of these variants in drought
response, conducted through independent in silico analysis
of transcriptome data and analysis of phenotypic data, has
confirmed the value of EnvGWAS for identifying variants and in
turn landraces containing variants for further analysis and use
in breeding.

DIFFERENCES BETWEEN PREDICTIVE

APPROACHES IN THE CONTEXT OF

GENETIC RESOURCES AND GENOMIC

SELECTION IN AN ELITE GERMPLASM

POOL

Although we have witnessed promising results for both maize
and wheat, we see conceptual limitations of standard genomic
prediction methods when looking for novel beneficial alleles.
Standard prediction approaches predict from a training to a
prediction set and can only predict the effect of new combinations
of already known segments (Meuwissen et al., 2001). Indeed,

Frontiers in Plant Science | www.frontiersin.org 2 July 2021 | Volume 12 | Article 674036108

https://www.cimmyt.org/
https://seedsofdiscovery.org/
https://www.iita.org/
https://www.icarda.org/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Martini et al. Genomic Prediction and Genetic Resources

this is also the major application of genomic selection in an
elite breeding pipeline where most alleles have already been
sampled in different combinations. In this situation, one aims
at recombining the positive alleles which have already been
observed. This differs fundamentally from a prediction where
the objective is to find novel beneficial variation. Therefore,
when screening for novel diversity which is not present in the
training set, we see the main value of the prediction in its
indirect information: a strong accumulation of beneficial alleles
that are already present in the training set may be a result of
selection pressure in the accession’s history. Thus, the probability
of finding additional novel alleles for the trait of interest may
be increased.

Approaches to Incorporate External

Information
To address this conceptual discrepancy between the nature
of statistical prediction and the objective of predicting novel
diversity, and to go beyond the indirect information provided
by a standard genomic selection as described above, we believe
different sources of information need to be combined with
genotypic data. Examples may be passport data as in EnvGWAS,
gene annotation data (Gao et al., 2017), data on biochemical
pathways or other data on biological mechanisms, or general
(quantitative genetics) knowledge on -for instance- ratios of
variances (Hem et al., 2021). Such approaches have already been
followed in general genomic prediction literature, but we think
that they will especially unfold their potential in the context of
genetic resources.

A promising approach to follow for a broader range of
traits is the comparison of structure, function and point of
action of gene products. Given that some genes involved in
the variation of stress resilience are known, bioinformatics tools
can identify related genes whose gene products are of similar
structure, have a similar predicted function or are relevant in
the same biochemical pathways as the known genes. Genomic
data can then be used to identify novel variation in the regions
around these newly identified genes. Approaches of this kind
have been used, for instance as resistance gene enrichment
sequencing targeting certain proteinmotifs to identify resistances
to biotic stresses (Jupe et al., 2013; Zhang et al., 2020), and have
produced impressive results. However, such a strategy focuses
on major gene effects and it remains to be seen whether they
can be transferred to a quantitative trait such as yield under
abiotic stress.

For the identification of germplasm bank accessions providing
beneficial alleles for quantitative traits, we see the accession
passport data as central information. This data cannot only
be used to identify major effects in an association study, but
can also be used in a genomic prediction approach. Here, a
genomic relationship matrix of the accessions can be used to
predict the environmental variables of the collection sites as
“quantitative trait.” This “environmental genomic prediction”
(EnvGP) then employs the environmental data as a phenotype
in the training panel to predict materials of higher value for
“hands-on” evaluation. Considering the polygenic nature of

many traits of interest, we are currently assessing the potential
of EnvGP together with other paradigms such as crop modeling
to leverage genetic resources for germplasm development.

As an example addressing the process of repackaging
of polygenic variation into elite and adapted materials, we
cite Origin Specific Genomic Selection (OSGS; Yang et al.,
2020). Here, the additional information used in the prediction
is only the knowledge from which parent the alleles are
derived. However, this add-on allows a partitioned form of
genomic selection which facilitates a more targeted management
of the introgression of novel beneficial variation during
the introgression process. The genetic value is split into
the contribution of the elite parent and the contribution
of the “exotic” parent. Having both parts separated, the
approach aims at avoiding a systematic selection against
exotic alleles due to the higher genetic value of elite material
although a certain fraction of exotic alleles may be beneficial.
Validation of this approach using simulation and application
in existing barley and maize datasets suggests potential for
use in polygenic trait introgression in bi- and potentially
multi-parental populations.

CONCLUSION

Germplasm bank accessions can be considered as crop
“genetic insurance” for the genetic adaptation to increased
abiotic and biotic stresses, in particular caused by climate
change. As for other fields, “big data,” here describing
the germplasm bank collections, needs innovative
approaches for “data mining,” to identify and harness useful
variation, and unleash its potential. We see a conceptual
key in combining statistical prediction methods with
additional data other than genotypes and phenotypes.
Approaches of this type have been followed in genomic
prediction literature, but we consider them as particularly
promising when applied in the context of harnessing
genetic resources. The type of data to use, and how to
use it provide a large playground for the exploration of
creative approaches.
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The usefulness of genomic prediction (GP) for many animal and plant breeding programs

has been highlighted for many studies in the last 20 years. In maize breeding programs,

mostly dedicated to delivering more highly adapted and productive hybrids, this

approach has been proved successful for both large- and small-scale breeding programs

worldwide. Here, we present some of the strategies developed to improve the accuracy

of GP in tropical maize, focusing on its use under low budget and small-scale conditions

achieved for most of the hybrid breeding programs in developing countries. We highlight

the most important outcomes obtained by the University of São Paulo (USP, Brazil) and

how they can improve the accuracy of prediction in tropical maize hybrids. Our roadmap

starts with the efforts for germplasm characterization, moving on to the practices for

mating design, and the selection of the genotypes that are used to compose the

training population in field phenotyping trials. Factors including population structure

and the importance of non-additive effects (dominance and epistasis) controlling the

desired trait are also outlined. Finally, we explain how the source of the molecular

markers, environmental, and the modeling of genotype–environment interaction can

affect the accuracy of GP. Results of 7 years of research in a public maize hybrid

breeding program under tropical conditions are discussed, and with the great advances

that have been made, we find that what is yet to come is exciting. The use of

open-source software for the quality control of molecular markers, implementing GP,

and envirotyping pipelines may reduce costs in an efficient computational manner. We

conclude that exploring newmodels/tools using high-throughput phenotyping data along
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with large-scale envirotyping may bring more resolution and realism when predicting

genotype performances. Despite the initial costs, mostly for genotyping, the GP platforms

in combination with these other data sources can be a cost-effective approach for

predicting the performance of maize hybrids for a large set of growing conditions.

Keywords: accuracy, quantitative genomics, R packages, genomic selection, breeding schemes

INTRODUCTION

Hybrid breeding programs are usually based on pureline
methods, including the development of inbreeding lines by self-
pollination or double-haploids, followed by progeny evaluation
across heterotic pools (Hallauer et al., 2010). The great challenge
of this approach is to adequately test the performance in all
possible combinations of lines in crosses (Bernardo, 1994). In
this context, we have conducted several studies indicating the
usefulness of genomic prediction (GP, Meuwissen et al., 2001).
Since the first studies of GP in maize (Bernard and Yu, 2007),
several applications have been made to improve different steps
of maize breeding, such as the selection under diverse breeding
populations (Lorenzana and Bernardo, 2009; Lehermeier et al.,
2014), the rapid cycle improvement of parental inbreeds (Zhang
et al., 2017; Cui et al., 2020; Das et al., 2020), the prediction of
double-haploid lines (e.g., Cooper et al., 2016; Messina et al.,
2018), and the prediction of the performance of single-crosses
for single or multi-environment conditions (Windhausen et al.,
2012; Dias et al., 2018; Alves et al., 2019; Millet et al., 2019;
Costa-Neto et al., 2020; Rogers et al., 2021).

Here we focused our review efforts on the GP of maize
hybrids, particularly in the single-crosses of F1. From the last 10
years of research in this field, several research groups pointed
to affect the main factors that drastically affect the accuracy of
GP for hybrid prediction, such as (1) the genetic design and the
genotypes used to form the training population; (2) the presence
of a population structure; (3) the importance of non-additive
effects controlling the desired characteristic; (4) the source of
molecular markers used; and (5) the genotype× environment (G
× E) interaction over contrasting environments. Therefore, this
review aims to describe the most important outcomes in this field
and report our research experience in a small-scale low budget
breeding program under tropical growing conditions.

ROADMAP FOR IMPLEMENTING GP IN

HYBRID BREEDING PROGRAMS

Here, we highlighted the most important outcomes obtained by
the Allogamous Breeding Laboratory of the University of São
Paulo (USP, Brazil) and some other groups in testing GP for
predicting maize hybrids. We present our review as a roadmap
for small-scale and low-budget breeding programs due to the fact
that most of our research is focused on optimizing GP in order
to find the best training sets (TS), to select the best genotyping
pipelines, and to choose the best multi-environment structures
to predict scenarios of genotype× environment interaction. Our
roadmap began with the efforts for germplasm characterization,

which involves both molecular and phenotypic characterization.
Before this step, it is necessary to develop the inbred lines during
successive cycles of self-crossing. For most breeding programs,
this step may involve the use of double haploid technology. After
seed replication, field trials must be well-conducted, following
certain management practices, which may evolve, for example,
the use of optimum vs. nitrogen-limited conditions. A good
statistical analysis and phenotype correction are important steps
that impact further genomic analysis (Galli et al., 2018).

Then, after the characterization of lines, we focused on maize
hybrid predictions. The second step of the roadmap considers
schemes for mating design and choosing the genotypes used
to compose the training population in field phenotyping trials.
Factors including population structure and the importance of
non-additive effects (dominance and epistasis) controlling the
desired trait are also outlined. Finally, we present how the source
of the molecular markers, environment, and the modeling of
genotype × environment interaction can affect the accuracy of
GP. We also point out that the use of dominance effects in
GP is crucial to deliver accurate predictions of maize hybrids.
Results of 7 years of research in our public maize hybrid breeding
program under tropical conditions are discussed, and with the
great advances that have been made, we find that what is yet to
come is exciting. In the end, we revised some fields of work and
the lessons we learned from both our experience and the results
from other groups.

GERMPLASM CHARACTERIZATION

Tropical Germplasm of USP, Brazil
The very first step on our scientific road was to carry out
germplasm characterization on the newly acquired inbred lines
(Sant’Ana et al., 2020). Genomic diversity and population
structure of germplasm (e.g., heterotic groups) are widely known
to accelerate genetic gains in breeding programs. This structure
and diversity are allocated to twomajor groups, such as temperate
and tropical germplasm in tropical maize. While tropical maize
germplasm has a greater genetic diversity, the temperate one
has more pronounced heterotic patterns (Mir et al., 2013).
Moreover, tropical maize germplasm lacks information on its
genetic diversity regarding low-nitrogen (N) stress (De Andrade
et al., 2016; Torres et al., 2018). In this context, in order to
analyze the population structure of tropical maize accessions
and identify genomic regions related to low-N tolerance, an
initial set of 64 inbred lines was evaluated under ideal and low
N availability conditions. The lines were genotyped using 417,
112 Single Nucleotide Polymorphism (SNP) markers from the
Affymetrix platform described above. The grouping, based on the
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Nitrogen Acquisition Efficiency (NAE) values, classified the lines
into two phenotypic groups, the first of which was composed
of genotypes with high NAE (called H_NAE group) and the
second of genotypes with low NAE (called L_NAE group). The
groups H_NAE and L_NAE presented mean NAE values of 3,304
and 1,644, respectively (Sant’Ana et al., 2020). The population
structure analysis revealed a weak relationship between genetic
and phenotypic diversities. Simultaneously, line pairs having a
high NAE and a considerable genetic distance were identified.

In greater detail, we noticed that a set of 29 single nucleotide
polymorphism (SNP) markers displayed a significant difference
in the allelic frequencies (Fst > 0.2) between groups H_NAE and
L_NAE. Pearson’s correlation between NAE and the favorable
alleles in this set of SNPs was 0.69. These SNPs can be useful
for the marker-assisted selection (MAS) for low-N tolerance in
maize breeding programs. The results of this study can assist
maize breeders when identifying genotypes to be used in the
development of low-N tolerance cultivars.

Using this information, we have chosen 49 lines to compose
the genitor bank of our breeding programs. We carried out
the first complete diallel, which outlined the heterotic groups
and the first GP training population, both used in the studies
described below.

Finding Population Structure in Hybrid

Breeding Populations
Due to the considerable diversity, we then tried to identify
whether the population structure within the dataset should
be considered (Lyra et al., 2018). Population structure arises
mainly due to geographical isolation and natural/artificial
selections. Individuals are distributed into a few to several distinct
subgroups that display different allele frequencies (Figure 1A).
In a genome-wide association study (GWAS), individuals within
the diversity panel present a specific phenotype of one or more
lines that may generate misleading estimates on the linkage
imbalance. As a result, whenever a phenotype is correlated with
a subpopulation, this phenotype will probably show spurious
associations. Although these associations are a major concern
for GWAS, the use of highly structured subgroups in hybrid
prediction could influence the achievement of reliable estimates
of genomic estimated breeding values (GEBVs) for quantitative
traits (Larièpe et al., 2017; Werner et al., 2020).

There are many ways to account for population structure in
GP. Traditionally, the use of only a genomic relationship matrix
is enough to predict phenotypes within breeding populations.
However, when there is a strong structure (e.g., diverse panels),
one strategy is to incorporate autovectors and admixture
coefficients as covariates (fixed effects) in genomic models
(Figure 1A). The use of principal components (PCs) in the
genomic best linear unbiased prediction (GBLUP) method might
result in a poorly positioned model because PCs enter both
as fixed effects and implicitly, via the random effect (de Los
Campos and Sorensen, 2014). Another option is to consider
population structure in the cross-validation scheme, ensuring
that each subpopulation is equally represented in the training
and validation sets, consequently maximizing relatedness

(Atanda et al., 2021). A third approach essentially divides
the population into homogeneous (putative unstructured)
subgroups (Figure 1B). When predictions are limited to specific
subpopulations, the predictive ability is generally greater than
predicting between subgroups or correcting for PS covariables
(Guo et al., 2014). On the other hand, despite efforts to control
the heterogeneity of marker effects among subpopulations
(e.g., MG-GBLUP model, Lehermeier et al., 2015), dividing the
population into subgroups may lead to a reduction in population
size and a loss of diversity, thus reducing the predictive ability.

Tropical and subtropical maize genotypes are not as organized
as temperate ones, which mean that more than two heterotic
pools can be used in crosses. Equivalently, a diverse population
of inbred lines can be crossed with testers representing different
genetic origins. Thus, although only the effect of alleles and
their interactions make up the genetic structures of hybrids,
it is essential to find the structure patterns and understand
how this information affects the predictions. In this sense, we
investigated the effect of population structure in the GPs of
simple crossbreeding considering two scenarios: (1) applying the
traditional GBLUP and four methods of adjusting population
structure in the whole group and (2) using homogeneous
(A-GBLUP), within-group analysis (W-GBLUP), multi-group
analysis (MG-GBLUP), and inter-group analysis (AC-GBLUP) in
stratified groups (Lyra et al., 2018).

No advantages were found in the addition of population
structure covariables to the prediction model based on the
predictive ability. Thus, one explanation could be that the
genomic relationship matrix has implicitly captured the genetic
variation of population structure and hybrid mixing; another
reason could be the similarity in the average performance of
the characteristics in the subpopulation. Our second strategy
was to divide the population into stratified groups. From our
results, the predictive ability was significantly higher in A-GB
and MG-GBLUP than W-GB for both characteristics, suggesting
that considering the heterogeneity of the marker effects among
subpopulations may be a promising strategy.

Our results suggest that the population structure problem
for the GP can be efficient for highly structured (defined)
populations but not for single hybrids. These results provided
further knowledge about our germplasm and reassuring ways to
perform GP.

DESIGN OF TRAINING POPULATIONS FOR

GENOMIC PREDICTION

Finding the Best Mating Design for Training

Populations
Post-hoc but relevant information about creating a training
population is included in our realm of projects. We realized that
the literature concerning GP in maize was quite vast, yet there
was a significant shortage of studies on the best genetic design to
build the training population.

Therefore, we handled a study to verify genomic selection
accuracy to predict the performance of maize hybrids under
different genetic designs (Fristche-Neto et al., 2018). Several
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FIGURE 1 | Approaches to control the maize population structure. (A) A mixed linear model accounts for the covariates of population structure (fixed effect) and the

genomic relationship matrix (kinship). An example of an allele-specific the population is shown in the graph. (B) 3D graph for the first three major components (PCs)

using 452 simple tropical maize hybrids. Two stratification methods for the prediction of hybrids are shown in the panel. The first is a homogeneous group approach

(A-GBLUP), which assumes constant marker effects between groups. The second is a multivariate approach (MG-GBLUP) that uses data from several groups and

considers heterogeneity, with population-specific marker effects that can be correlated between subpopulations.

mating designs, such as Griffing’s methods, partial diallel, North
CarolinaDesign II (NCII), and test crossing (Hallauer et al., 2010)
have been proposed. Thesemethods have the following fourmain
goals: (i) to provide information on the genetic control of the
trait under investigation; (ii) to generate populations to be used
as a basis for the selection and development of cultivars; (iii) to
provide estimates of genetic gain; (iv) to obtain information to
evaluate the genitors used in the breeding program, based on the
general and combination-specific capabilities (GCA and SCA),
respectively. Although many articles have been published on GP
in maize (Lorenzana and Bernardo, 2009; Windhausen et al.,
2012; Lehermeier et al., 2014; Cooper et al., 2016; Zhang et al.,
2017; Dias et al., 2018; Messina et al., 2018; Alves et al., 2019;
Millet et al., 2019; Costa-Neto et al., 2020; Cui et al., 2020; Das
et al., 2020; Wang et al., 2020; Rogers et al., 2021), no studies on
the best genetic design to build the training population have yet
been conducted. This population should maximize the accuracy
and contemplate practical restrictions, such as the costs and
logistics of crosses to be made. Thus, in this study, we aimed (i) to
empirically evaluate the effect of genetic designs when used as a
GP training population of single maize hybrids obtained through
full diallel (FD) or via NCII, and (ii) to identify the possibility of
reducing the number of crosses and genitors to compose these
TSs (Fristche-Neto et al., 2018).

In addition to the standard genetic designs, we also evaluated
the possibility of using optimized training populations (OTS)
aiming to reduce the number of individuals for training genomic
prediction without reducing accuracy. For this purpose, we used
the algorithm proposed by Akdemir et al. (2015) with predefined
population size. Therefore, to predict the FD, we used the NCII,
the testcross (TC), and OTS as the TS with sizes of 32 (with the
same size of the TC data set), 152, 272, and 393 hybrids (with

the same size as the NCII data set). Following the same idea of
aiming to predict NCII, we used the TC and OTS with 32, 152,
and 272 hybrids.

Our results suggest that TC is the worst genetic design to
be used as a TS to predict simple maize crosses that must be
obtained through FD or NCII. On the other hand, NCII is the
best TS for the prediction of hybrids taken from FD. In addition,
combinations from FD or NCII can be well predicted using OTS,
thus reducing the total number of crosses to be made. However,
the number of parents and crosses per parent in the ST should
be maximized.

Training Populations Using Public

Databases—An Alternative
Due to the scarcity of resources in the initial phases, we
addressed the possibility of incorporating public databases in
the composition of our training populations (Morais et al.,
2020). Small-scale public and private programs with limited
budgets often lack the financial ability to genotyping a
considerable number of individuals to apply GP efficiently. In
this regard, Morais et al. (2020) have evaluated the usefulness
of incorporating public database panels to compose tropical
GP training populations. In this context, the following public
databases were used: (a) ASSO—Nested Association Mapping
Population (NAM) combined with the Maize Association Panel
282 (166 + 282 endogamic lines, respectively); (b) NCRPIS—
United States Department of Agriculture—Agricultural Research
Service (USDA-ARS), North Center Regional Plant Introduction
Station (2.046 endogamic lines); (c) USP—tropical endogamic
lines of the University of São Paulo (64 endogamic lines).

These databases contained phenotypic information regarding
plant height (PH, in cm), ear height (EH, in cm), and the SNP
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markers data. A total of 29 training populations (TPs) were
defined and divided into four scenarios to determine the best
strategy to apply public databases to predict lines.

The best predictions were achieved with the strategy of the TP
composed by candidates selected with an optimization algorithm
from all the public database and private lines, even at the smallest
TP sizes evaluated (81 and 281 TP sizes). On the other hand, the
lowest predictive abilities were achieved using only the Tropical
USP database as training and validation populations (VP), due
to its lack of genetic variability and reduced population size,
hindering prediction. The results of all four scenarios of TP
formation showed that the predictive ability increased with the
increase of TP size, the relationship rate between TP and VP, and
genetic variability. (Rife et al., 2018) revealed a similar potential
of GP to predict wheat traits using historical data across several
public breeding programs, reinforcing the possibility of using
external data for model training.

The optimization of the training population proposed by
Akdemir et al. (2015) showed promising results, even when the
training population size was reduced. For example, small groups
of individuals (250) selected in public panels are enough to
achieve predictive abilities of over r = 0.44 and r =0.53, for
PH and EH, respectively. Optimizing the TP can increase the
representation of the subpopulation, allowing for an efficient and
controlled updating of the training population over the years
(Akdemir et al., 2015).

Nevertheless, what is the real reason to use public databases,
and how does it fit into a breeding framework? The use of
public data aims to an early-start GP with reduced costs and
over the years, to setup a more complex GP training population.
The number of individuals from the program genotyped
and phenotyped will increase as time goes on, reducing the
participation of public databases in the training population
and thus paying off the costs of genotyping the population
in training over the years. For example, the total cost of the
training population could be divided over 5 years, with the public
database replacing 20% per year of the training population with
individuals from the program.

Considering a training population that is 10 times bigger
than the VP, this strategy should be conducted as follows: in
the first year, (a) genotyping and phenotyping of the germplasm
program, composing 10% of TP, along with external individuals
selected by optimization procedures (90% of TP), (b) out of 10%,
established as the VP (new progeny with no phenotyping data),
(c) validation and prediction of GEBV. In the second year, (a)
genotyping and phenotyping of individuals from the germplasm
program (10% of the TP), (b) once again, new individuals
are to make up the VP (10% of TP), while the remaining
individuals from the germplasm program are to be a part of TP,
with the TP composed by 70% of external individuals selected
from optimization procedures and 30% of internal individuals
genotyped previously, (c) validation and prediction of GEBV.
As genotyping will be performed annually, after 6 years, the
TP would be composed exclusively of individuals from the
program. In the sixth year, the best performer could optimize
the training population with internal individuals, maintaining
a good prediction ability index. This procedure optimizes the

TABLE 1 | Reports on the comparison between GBS and array regarding

genomic studies.

Compared

platforms

Species Method Overall result References

GBS and

array

Wheat GP GBS comparable

to or better than

an array

Elbasyoni et al.,

2018

GBS and

array

Barley GWAS Broadly similar

conclusions

Darrier et al., 2019

SSR, GBS,

and array

Wheat GP and

diversity

Array

underestimates

diversity

measures; similar

predictive abilities

Chu et al., 2020

GBS and

array

Maize GWAS Platforms were

complementary for

detecting QTL

Negro et al., 2019

GBS and

array

Maize GP Similar results

depending on the

prediction model

Sabadin and

Fritsche-Neto,

2020

QTL, quantitative trait loci.

technical, operational, and financial balance, considering the
resources available over time and each harvest.

SEARCHING FOR NEW SOURCES OF

MARKERS AND REFERENCE GENOMES

Impact of the Genotyping Platform in GP
Nowadays, SNPs are the most widely used molecular markers
in genomic studies, as they are abundant and evenly distributed
in the genome. In addition, genotyping platforms that provide
many markers have quickly, accurately, and cost-effectively
allowed for the use of molecular tools, including GP. High-
performance genotyping platforms, such as SNP-array and next-
generation sequencing (NGS) provide thousands of markers for
hundreds of samples, making them very suitable (Rasheed et al.,
2017) for this purpose. Since there are different technologies
to be detected, SNP-type markers can be different and located
in distinct points of the genome so that later genomic
studies can be affected by them. Recent studies have suggested
comparable GWAS results, genetic diversity, and GP using
different genotyping platforms in several species, includingmaize
(Elbasyoni et al., 2018; Darrier et al., 2019; Negro et al., 2019; Chu
et al., 2020) (Table 1).

In this context, we studied how SNP markers obtained from
two genotyping platforms (616K SNP-array and GBS) affect
the GP in our germplasm (Sabadin, 2020). We also attempted
to verify the effect of the use of different reference genomes
in SNP calls via GBS (i) using the most common reference
genome, line B73 (GBS-B73), (ii) using a simulated reference
genome built with GBS data, considering all inbred lines (GBS-
Mock-All), and (iii) using a simulated reference genome built
with GBS data from a single line, our heterotic pool tester L56
(GBS-Mock-L56). For this purpose, we used the USP data set
mentioned above (see section above “Training populations using
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public databases”). To build the simulated genome, we used a
pipeline developed by Melo et al. (2016), which captures the
polymorphism regardless of an external genome. Finally, for
each set of SNP marker data obtained from different platforms
and approaches, we performed the GPs considering both the
additive (GBLUP additive) and the additive-dominance (GBLUP
additive-dominance) models.

Density and Distribution of SNPs
The density and distribution of SNP markers varied according to
the genotyping platform chosen. In our study, the SNP markers
discovered by SNP-array and GBS-B73 had the same reference
genome, which allowed us to compare them regarding marker
distribution on chromosomes and detect coincident SNP as well.
Despite the difference in the number of SNP markers (62,409
for SNP-array and 5,594 for GBS-B73), both platforms had
similar distributions along the genome. However, only 300 SNP
markers coincided, suggesting that they detected polymorphisms
in different regions. Although this is an important result, these
differences were only consistent for some GP models.

The GBLUP model is based on the genomic relationship
between genotypes to estimate the genetic values of non-
phenotyped individuals. Therefore, assessing the genomic
relationship is more important than the polymorphism
resolution, which was confirmed when we evaluated the additive
genomic relationship matrix (Ga) and the genomic dominance
matrix (Gd). For the Ga matrices, high correlations were
observed between the SNP-array, GBS-B73, and GBS-Mock-All
SNP data sets (r = 0.88), revealing that these approaches
estimate the additive genomic relationship between hybrids in
a similar way. However, for the Gd matrices, lower correlations
were observed among all SNP data sets, which show that the
polymorphism captured by these platforms estimated the
dominance effects differently. GBS-Mock-L56 displayed low
correlations with other SNP data sets and had a low performance
for all downstream analyses, proving that it is an erroneous
alternative to sample polymorphism within the population, since
only polymorphisms between L56 and other individuals were
identified. This information is crucial when the aim is to predict
the genetic values of hybrids, although the architecture of the
feature can influence the performance of GP models.

Similarly, when considering the variance captured by
the additive effects and the dominance deviations, these
proportions also vary depending on the genotyping platform
and the genetic architecture of the characteristic (Figure 2),
which can be explained by the reduction in the number
of markers, which consequently inflates the effective size of
these markers. On the other hand, the SNP-array captured
higher proportions of total variance and dominance, yet it
was close to zero in the GBS-Mock-L56, considering all
characteristics. In addition, the differences for grain yield (GY)
were more significant than for simple characteristics (plant and
ear heights).

As far as predictive abilities are concerned (Figure 3),
genotyping platforms and reference genomes do not affect the
additive model, except for GBS-Mock-L56. Furthermore, the use
of a reference genome historically unrelated to the evaluated

germplasm, such as the B73 genome (temperate maize), seems to
be enough to capture the additive relationship of the genotypes
within the population.

This situation can change greatly when we consider the effects
of dominance to estimate genetic values. In our study, except for
GBS-Mock-L56, small differences in predictive capabilities were
observed among SNP data sets, when we performed the GBLUP
additive-dominance model. Furthermore, the differences were
more remarkable for GY, supporting the fact that the inclusion of
the dominance effects of GPmodels is more relevant for complex
traits. The coefficients of determination between GEBV estimates
remained high (the lowest was for GY, R2 = 0.88) but below that
when obtained with the additive model.

Finally, for GP purposes, the most common genotyping
platforms (SNP-array and GBS) offer very similar predictive
abilities when using only additive effects in GP models. However,
when we add dominance effects, their performance may change,
especially when estimating hybrid performance. Dominance
effects are critical to hybrid GP, and therefore, the choice of a
genotyping platform may affect the estimates of genetic values.
However, the differences appear to be small and acceptable
in some cases. Furthermore, the use of a reference genome
historically unrelated to the evaluated germplasm does not seem
to be a decisive factor for GP since it can sample the haplotype
variability among genotypes within the population. Another
highlight uses a simulated reference genome to discover SNP
since it does not depend on an external genome to detect
polymorphisms. This strategy may be a valid alternative when
conducting GP studies with reliable estimates, especially for
orphan crops, where a reference genome is not yet available.
Somehow, sampling polymorphisms consistently, using all
genotypes within the population, is recommended to build the
simulated genome.

GENETIC ARCHITECTURE AND FURTHER

GENOMIC PREDICTION MODELING

Connecting Phenotypic and Genomic

Variation
Once optimal germplasm characterization, population structure,
training population mating design and composition, and
genotyping methodology were defined, there was interest in
further improving predictive abilities through modeling (Alves
et al., 2019, Galli et al., 2020). The ability of the GP to connect
phenotype and genotype has been proven to have a strong
relationship with the genetic architecture of the trait. In this
sense, tools such as GWAS have been applied, and the results have
suggested the existence of a wide range of genetic control patterns
in agronomic traits. Thus, many GPmethods have been proposed
to address the domain of genetic architectures. However, for
open pollination species, such as maize, while the identification
of variants and architectures by GWAS is usually performed in
inbred lines, the GP is mainly directed at selecting hybrids. In
this sense, the usefulness of a priori GWAS in lines to predict
its hybrid offspring has been explored by Galli et al. (2020).
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FIGURE 2 | Proportion of the phenotypic variance explained by the estimated components of variance in the different traits (EH, ear height; PH, plant height; GY, grain

yield), models and scenarios studied.

FIGURE 3 | Summary of the predictive abilities for each combination of model and genotyping scheme studied for three agronomic traits in maize (EH, ear height; PH,

plant height; GY, grain yield).

The trait used in the case study was the low-nitrogen tolerance
index (LNTI).

In previous GWAS (Morosini et al., 2017), four significant
trait marker associations were identified in the parental
population. The influence of these associations was verified
for MAS, GP, and the MAS + GP of hybrids (Figure 4). The
GP was performed with all molecular markers, except when
associated with the MAS. For MAS+ GP, the significant markers
were removed before calculating the genomic relationship
matrices. Three GPmethods, namely BayesB, GBLUP, and RKHS
(Figure 4A). Finally, GWAS was performed considering the

additive, dominance, and additive and dominance in hybrids
to verify the coincidence of associations with the parental lines
(Figure 4B). The predictive ability of LNTI was observed to
be low, ranging from −0.019 to 0.107 (Figure 4A). It was also
shown that (i) the MAS of hybrids with markers identified in
inbred lines had the lowest predictive abilities; (ii) adding a
priori information from inbred lines of GWAS decreased the
predictive ability of GP (MAS + GP); (iii) GP alone produced
the best results.

To date, many studies have found that GP accuracy can be
enhanced using a priori information, especially from GWAS
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(Zhang et al., 2014; Spindel et al., 2016). However, the results are
conditioned by factors, such as trait heritability and the variation
explained by the main genes (Bernardo, 2014). Furthermore,
the results obtained by Galli et al. (2020) corroborate the
long-standing hypothesis of the lack of connection between
inbred lines and the performance of their hybrid offspring. In
addition, the GWAS of hybrids produced different marker-trait
associations to those found for the parental lines published in
2017. The differences observed were both the nature of intralocus
interaction and the location of markers, suggesting that the most
important genes driving phenotypes in inbred lines and hybrids
might be different.

Understanding the Impact of Heterosis

in GP
According to Sprague and Tatum (1942), hybrid performance
can be divided into two components, namely general combining
ability (GCA) and specific combining ability (SCA). The GCA
component can be explained by the differences between the
average performance of parental lines in crosses and the
average of the overall population. In this sense, the GCA
of a line depends on the substitution effects of the allele
and involves additive and non-additive genetic effects (Reif
et al., 2007). The SCA, on the other hand, represents the
deviation of hybrid performance from parental averages. This
component is often attributable to deviations from additivity
due to dominance and epistasis (Reif et al., 2007), and it is
one of the most critical components of hybrid performance.
Thus, the additive and non-additive effects of markers must
be estimated to consider all the genetic variance present in
a population.

The modeling of non-additive effects in genomic studies
can provide several advantages (Technow et al., 2012; Varona
et al., 2018), such as (1) increasing the accuracy of prediction
of genomic selection methods, (2) allowing for the allocation
of crossover and consequently, and (3) a better exploration
of heterosis (Kadam et al., 2016). However, one of the
barriers is that additive and non-additive effects are often
not mutually orthogonal. For this reason, the parameters
of variance that enter genomic models (for example, the
additive and the dominance variances) cannot be used directly
to break down total genetic variance into GCA and SCA
components. As presented by Alves et al. (2019), due to their
flexibility, Bayesian models can be used to estimate these
important parameters, especially when the genetic design does
not allow an orthogonal decomposition of genetic variance in
these components.

In this context, Alves et al. (2019) presented a method to
decompose genetic variance into GCA and SCA using Bayesian
genomic models that account for additive and non-additive
effects (dominance and epistasis).

The proposed method can be applied not only to single
hybrids but also to double and triple hybrids. As proof of
concept, the proposed approach was applied to the data set
described above (USP, see section Germplasm Characterization).
The results showed that non-additive effects play a crucial role
in expressing quantitative characters under stress conditions

(especially GY, Figure 5). This study also showed that the
accuracy of the prediction models that account for the additive
and non-additive effects depends on interest characteristics.
It was also found that selecting 30% of the best single-
crosses during the pre-selection phase in the field, based on
GP with additive and non-additive effects, leads to a subset
of hybrids that contained 85–95, 70–80, and 75–85 of the
5% higher hybrids for ear height, plant height, and GY
(Figure 5), respectively.

MODELING GENOTYPE × ENVIRONMENT

INTERACTION (G × E) IN GP

Finding Novel Kernel Methods and

Modeling Structures for G × E
The G × E is a multiplicative non-additive effect due to the
non-parallel trait-specific phenotypic responses, a function of
genotype diversity and environmental variation. Since 2012,
when the marker by environment interaction approach was
developed (Burgueño et al., 2012), the analysis and modeling
of G × E have evolved from the genotype to the gene
or genomic level (Crossa, 2012). However, multi-environment
modeling to predict maize hybrids started with Dias et al.
(2018) (Table 2). Since then, several efforts have been made to
extend those modeling approaches when considering different
kernel methods and structures. For example, different G × E
approaches to include genomics and large-scale environmental
data (enviromics) (Bandeira e Sousa et al., 2017; Costa-Neto et al.,
2020; Rogers et al., 2021) using explicit covariates for modeling
reaction-norms (Millet et al., 2019) or implicit covariates derived
from multivariate structures (e.g., Dias et al., 2018; Krause et al.,
2020).

Our research group aimed to understand how environmental
characterization (envirotyping) and non-linear kernels could
improve prediction models, including G × E (Bandeira e Sousa
et al., 2017; Costa-Neto et al., 2020). Below, we detail a case study
using our tropical maize germplasm from USP, in which we were
able to test novel G × E structures and kernel methods to model
genomic× environment effects.

We conducted an extensive study on G × E over three
agronomic traits in tropical maize (GY, PH, and EH) for two
different sets in Brazil. Bandeira e Sousa et al. (2017) tested two
kernel methods, a linear (GBLUP, hereafter abbreviated as GB)
and non-linear (Gaussian Kernel, GK) kernel and four modeling
structures for G × E using (i) single-environment (SE) model,
using the average values of the genotypes for all environments;
(ii) multi-environment, main genotypic effects model (MM);
(iii) multi-environment, single variance G × E deviation
model (MDs), and (iv) multi-environment, environment-specific
variance G × E deviation model (MDe). Models without G
× E structures (SM and MM) were less accurate than those
including G × E effects (MDs and MDe). For the MM, MDs,
and MDe models, the increase in the prediction accuracy
of GK over GB ranged from 9 to 49%. As expected, GY
was the less predictable trait due to its polygenic nature,
and because of that, this trait became the main target for
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FIGURE 4 | Performance of different statistical models and GWAS-based strategies for genomic prediction of maize hybrids. (A) Summary of the predictive

capabilities of the Low Nitrogen Tolerance Index (LNTI) in maize hybrids using BayesB, RKHS, MAS + RKHS, GBLUP, MAS + GBLUP, and MAS additive. (B) Summary

of GWAS, QQ, and Manhattan graphs for LNTI. The graphs represent additive GWAS (upper) and dominance (lower). The MAS was based on statistically significant

associations identified for LNTI by Morosini et al. (2017).

further studies. For all traits, few differences were observed
between the MDs and MDe models. Gaussian Kernel was
observed to outperform all GB-based models in accuracy for

all models, with an average accuracy gain from 34 to 70%.
However, for EH and PH, the gains using GK were smaller than
using GB.

Frontiers in Plant Science | www.frontiersin.org 9 July 2021 | Volume 12 | Article 658267119

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Fritsche-Neto et al. Genomic Prediction of Maize Hybrids

FIGURE 5 | According to phenotypic classification, the proportion of 5% higher hybrids was identified by pre-screening based on cross-validation via GP using the

additive + dominance model at a certain selection intensity (x-axis). Each panel corresponds to one evaluated character. The lines within a graph represent different

environments (AN: Anhembi; PI: Piracicaba; LN: Low nitrogen; IN: Ideal nitrogen).

Understanding the Contribution of

Non-additive Effects for G × E
Since 2017, some studies have pointed that the use of additive (A)
plus non-additive effects (e.g., dominance, D; epistasis, A × A)
might drastically improve the accuracy of GP for maize hybrids
(Acosta-Pech et al., 2017; Dias et al., 2018; Alves et al., 2019,
2021; Costa-Neto et al., 2020; Ferrão et al., 2020; Ramstein et al.,
2020; Rogers et al., 2021), especially with G × E under multi-
environment conditions. It seems that the main dominance effect
(D) plus dominance by the environment interaction (D × E)
corresponds to about 50% of the observed phenotypic variation
for complex traits, such as GY in hybrid maize. This is an
important issue because the usage or non-usage of non-additive
effects only depends on the computational effort expected, that
is, from raw molecular marker data, it is feasible and easy,
nowadays, to compute both additive or non-additive effects
and their relatedness-based matrices to implement GBLUP and
kernel models (Alves et al., 2019). The use of algebra resources
to remove the complexity of the variance–covariance matrices,
such as the singular decomposition value (Costa-Neto et al.,
2020; Cuevas et al., 2020) and factor analytic structuration (Dias
et al., 2018; Rogers et al., 2021) is a computationally smart
way to translate model complexity into accuracy gains. Here,
we detail the results we found as an extension of the study of
Bandeira e Sousa et al. (2017), related to the first option resource
previously mentioned.

We investigated different models involving additive (A) and
additive-dominance (AD) main effects (MM model, but using
A + D), along with the interactions (MDs models) including
reaction-norm for A and D effects to predict GY (Costa-Neto
et al., 2020). After the use of GB and GK, a third kernel
method was also tested, the so-called deep kernel (DK), which
takes advantage of the arcsine kernel that thought the available
phenotypic data could mimic different hidden layers an in-
depth learning approach. Thus, DK is also a non-linear kernel,
but unlike GK, it approaches the genomic relatedness into
an empirical relatedness of the individuals across a diverse
set of environments. Our results suggest that DK outperforms
GB and GK when exploring dominance effects in hybrid
prediction. In terms of explaining the phenotypic variation across
multi-environment, the DK and GK models better captured
the genomic and enviromic sources and reduced the residual
variance of the models. Then, we tested three scenarios, namely
CV1, novel genotypes in known environments; CV2, sparseMET
conditions, some genotypes at some environments, and CV0,
novel environments.

In addition, our results indicated that GK and DK explore the
G× E variation better (in this case, G× E=A× E+D× E) in a
less computationally expensive way than GB. The GB kernel was
the worst kernel method for exploring D effects to predict GY
in maize hybrids. For all prediction scenarios (CV1, CV2, and
CV0), we observed that accuracy gains could only be achieved
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TABLE 2 | Strategies and main results for multi-environment genomic prediction

of grain yield, the main agronomic trait in hybrid maize breeding since 2017.

Germplasm Core ideas and importance References

Tropical hybrids The first use of GP for modeling G × E

and predicting maize hybrids

Acosta-Pech

et al., 2017

Differences of several variance–covariance

structures and Gaussian kernel in the

prediction of G × E

Bandeira e Sousa

et al., 2017

Contribution of dominance effects and

factor analytic structures for G × E

Alves et al., 2019

Temperate DH

lines

The use of crop models with genomic

prediction (CGM-WGP) is better than

GBLUP

Cooper et al.,

2016

Update of CGM-WGP and application in

predicting phenotypic landscapes

Messina et al.,

2018

Temperate hybrids Use of factorial regression to find

covariates that explain genomic-enabled

reaction norms

Millet et al., 2019

Tropical hybrids Deep kernels accounting for genomic and

near-infrared relatedness kernels

Cuevas et al.,

2019

The importance of additive (A), dominance

(D), and AA, DD, and AD covariances

under Bayesian prediction approaches

Alves et al., 2019

The use of deep kernel and Gaussian

kernel for modeling additive and

dominance G × E effects with reaction

norm

Costa-Neto et al.,

2020

Multivariate GBLUP using factor analytic

structures

Krause et al., 2020

Temperate hybrids The use of dominance and functional

enrichments to increase GP

Ramstein et al.,

2020

The use of difference variance–covariance

structures to model dominance and

reaction-norm

Rogers et al., 2021

Tropical hybrids Contribution of non-additive effects and

mega-environment grouping in prediction

accuracy

Alves et al., 2021

for GB-based models when including some envirotyping data as
the main effect (W) or as reaction-norm (G × W = A × W
+ D × W). The non-linear kernels were also more efficient at
using the phenotypic records in training models for CV1, CV2,
and mostly for CV0. For CV0, the combination of DK and more
straightforward reaction-norm models (including only A + D +

W effects) achieved almost the same accuracy as more complex
structures (A + D +W + A ×W + D ×W). This suggests that
to predict future scenarios using actual TSs, the use of enviromic
sources combined with additive and dominance genomic data,
both modeled with non-linear kernels, is the best way to achieve
higher mathematical accuracy biologically that better represents
novel G× E conditions.

Finding Novel Enviromic Approaches to

Deal With G × E
Combined with phenotypic and genotypic data, the use of
envirotypic data sources can leverage the molecular breeding
strategies addressing the prediction of tested and untested

environments, such as climate change scenarios (Millet et al.,
2016, 2019; Messina et al., 2018; Bustos-Korts et al., 2019; de
los Campos et al., 2020; Guo et al., 2020). These data have been
incorporated into GP in the last ten years to better model the
G × E interaction according to the reaction norm (Heslot et al.,
2014; Jarquín et al., 2014; Gillberg et al., 2019; Costa-Neto et al.,
2020; Rogers et al., 2021). However, it is difficult formost breeders
to deal with this interaction between environmental models,
ecophysiology, and genetics (Costa-Neto et al., 2021), in which
we need to (i) implement a cost-effective and intuitive pipeline to
integrate envirotyping data in GP and (ii) find novel enviromic
approaches, more capable of describing phenotype-envirotype
covariances and translate it into accuracy gains. Below, we briefly
present the results by Costa-Neto et al. (2021), who implemented
an envirotyping pipeline and then review some of the main
applications of enviromic data achieved for other groups.

Costa-Neto et al. (2021) presented two novel approaches to
modeling the environmental similarity from enviromic data.
Using a proof-of-concept data set, we tested the importance
of (i) EC-specific kernels for main environmental factors and
(ii) the envirotyping level at each key development stage of
crop development. For the latter, we proved accuracy gains
of the reaction-norm models using a specific environmental
relatedness, built using ECs for each development stage,
concerning the benchmark environmental relatedness (single-
environmental kernel using all ECs at all development stages).
This approach enabled a better understanding of which
development stage impacts the relatedness of individuals across
MET. We tested a CV1 scheme to predict GY using a drastically
reduced phenotyping level (only 20% of the phenotypes were
used as TS). We showed that a model without enviromic data
has a minimal prediction accuracy (r = 0.101), and the inclusion
of envirotyping data boosted the prediction up to r = 0.504
(enviromic by development stage) and r = 0.485 (enviromic for
all crop development stages).

An alternative approach for the use of environmental
relatedness kernels is the adoption of single-covariate regressions
(Ly et al., 2018) or the first step of screening in which the ECs
that best explain the trait variation are used to fit a simpler
but more accurate linear reaction-norm structure (Millet et al.,
2019). These ECs can be collected from in-field sensors or
public databases (for more details, see the next section) and
also consider stress-covariates derived from crop growth models
(CGM) (Heslot et al., 2014; Rincent et al., 2017). For the latter,
a more robust single-step approach relies on the integrated
use of GP with CGM, which was successful in predicting the
performance of DH maize lines on water-stressed environments
(Cooper et al., 2016) and across a large target region of the
breeding program in the United States (Messina et al., 2018).
For low-budget breeding programs that are unable to invest
in large phenotyping for ecophysiology traits (e.g., biomass
accumulation during crop life) need to improve accuracy in
training CGM. An alternative can be in the exploring of the
environmental relatedness or EC-specific regressions, which
increases the accuracy of GP in hybrid prediction more simply
(Costa-Neto et al., 2020; Rogers et al., 2021) with a satisfactory
ability to predict cultivar responses (de los Campos et al., 2020)
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and explain the reaction-norm for both complex quantitative
traits (Ly et al., 2018; Millet et al., 2019) and less complex traits
(Guo et al., 2020; Jarquin et al., 2020).

OPEN-SOURCE R PACKAGES TO

FACILITATE THE ADOPTION OF GENOMIC

PREDICTION

Since the first work on GP, published approximately 20 years
ago (Meuwissen et al., 2001), a wide number of computational
solutions have been developed to process data and run prediction
models, such as BGLR (Pérez and de los Campos, 2014), rrBLUP
(Endelman, 2011), and sommer (Covarrubias-Pazaran, 2016). For
plant breeding, most of these solutions were implemented in R,
an open statistical-computational environment. Nowadays, these
software solutions can offer the processing of genotyping data
(Granato et al., 2018b), fit marker regressions or genomic wide
association analysis (Endelman, 2011), run GP accounting for
several multi-trait multi-environment approaches (Pérez and de
los Campos, 2014; Covarrubias-Pazaran, 2016; de los Campos
and Gr?neberg, 2016; Granato et al., 2018a; Montesinos-López
et al., 2019), and integrate envirotyping sources in the reaction-
norm modeling of G × E (Costa-Neto et al., 2021). Here, we
briefly discuss three software developed by the Allogamous Plant
Breeding Laboratory of the University of São Paulo as part of
our experience in the field of genomic-enabled prediction of
maize hybrids.

To deal with genotyping data, we developed the package
snpReady (Granato et al., 2018b), which helps the user with
quality control and the recoding of markers. In addition, it helps
obtain some parameters of population genomics. This package
implements a pipeline of conversion, imputation of missing
data, and preparation of genotyping data for genomic analysis,
outputting matrices in appropriate formats for different software.
These applications are simple and enough to be integrated into
the breeding pipelines or coupled with other environments, such
as shiny (Matias et al., 2019).

After that, we realized the need to implement a
computationally efficient approach that facilitates the use
of multi-environment prediction structures accounting for G ×

E. To fill this gap, we developed the package, Bayesian Genotype
plus Genotype Environment (BGGE, Granato et al., 2018a),
which considers a wide number of genomic environmental
structures and two kernel methods (linear GBLUP and non-
linear Gaussian kernel) in a processing time of five times
faster than Bayesian Generalized Linear Regressions (BGLR).
Furthermore, it uses algebra resources resulting in a significant
gain in processing speed, especially for large data sets (Granato
et al., 2018a), such as near-infrared data (Cuevas et al., 2019),
historical yield trial data (Cuevas et al., 2020), and enviromics
(Costa-Neto et al., 2020).

For the latter, since the first work involving the use of
environmental information in GP (Heslot et al., 2014; Jarquín
et al., 2014), there is a need to fine-tune the methodologies of
collection, processing, and the use of this data in GP. Generally,
the collection, organization, and processing of environmental

data are steps that require the installation of equipment in the
field. In turn, such equipment may be expensive or difficult
to access for some research groups in specific regions or
countries. Therefore, we have decided to enter a routine of
climate data collection through NASA’s Prediction of Worldwide
Energy Resources (NASA-POWER, Sparks, 2018), which can
access information daily, anywhere in the world. Thus, the
computational development of these routines evolved to the
development of the first open-source envirotyping pipeline,
named EnvRtype (Costa-Neto et al., 2021). Three modules of
envirotyping are offered in this package, namely (i) the collection
of raw environmental information from public platforms,
requiring only the geographic and temporal coordinates of
the experiments and processing data set, (ii) environmental
characterization based on the use of the processed environmental
covariables to describe the typology of the environments, and (iii)
the implementation of GPmodels enriched with ecophysiological
parameters, considering three different structures of reaction-
norm, and subsequently incorporate them into the prediction
models under a Bayesian framework in the same way as in BGGE.

FINAL REMARKS

This work aimed to present a review of our results, which shows
that it is possible to increase the accuracy in the prediction of
hybrids. This requires the use of optimized training populations,
the inclusion of non-additive genetic effects in the prediction
models, and environmental information to compose the matrices
of G × E covariance and non-linear kernels of genomic
relationship. On the other hand, there are no significant gains
in the accuracy using GWAS information in parental lines,
population structure, or using markers from new generation
sequencing. Below, we conclude our work by describing some
lessons we learned, both from our studies and other groups.

GWAS Might Be Useful to Discover the

Architecture of G × E for Further GP

Modeling
Going back to our experience with GWAS described in this
review, we found in our road map that the use of GWAS for
further prediction modeling might be more successful, especially
to understand genomic-environment sources of G × E in our
tropical germplasm. For example, Vidotti et al. (2019) used
GWAS to establish a relation between the genetic control of
the maize responsiveness and Azospirillum brasilense, a plant
growth-promoting bacteria (PGPB) common in tropical soils and
related to maize nitrogen fixation. The GWAS outcomes helped
understand how heterosis is important for improving the quality
of crop systems by increasing the nitrogen use efficiency (NUE) of
maize. Another promising approach is presented by Millet et al.
(2016), which involves the use of GWAS to find genomic regions
associated with the reaction norm for key environmental factors
expected in future scenarios.

A similar approach uses only the phenotypic data to model
parameters of adaptability and stability, as in the work by Gage
et al. (2017). Combining GWAS and such parameters that reflect
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the effect of G× E for specific genotypes, these authors were able
to explore the genomic-related sources that explain the drivers of
phenotypic plasticity and how the artificial selection shaped these
patterns on the temperate maize germplasm in the United States.
Finally, another good example is given by Ramstein et al. (2020).
These authors used GWAS to find quantitative trait loci (QTLs)
related to the phenotypic variation of some important traits in
maize. Then, using gene annotation, it was possible to explore the
functional contribution of those QLTs to express the phenotypes
and the increasing accuracy of GP. This functional enrichment
in further GP models contributed to the increase in the accuracy
of a hybrid panel of temperate maize cost-effectively. It can also
be useful for the tropical germplasm, which still demands the
development of a higher panel of inbred lines to address the test
of those hypotheses.

How to Deal With the Complexity and

Diversity of Big Data?
In the last 20 years of genomic selection research, the plant
breeding community is still learning how to connect a wide
number of data sources related to the “Central Dogma of
Molecular Biology” with the observed phenotypic variation of
traits in field trials, which began as a regression of phenotypes
over molecular markers evolved by the integration of different
data sources and modeling structures. Computational research
in GP must develop to capture other data sources in a
computationally smart way and find which structure is better
to integrate each type of data. For example, Costa-Neto et al.
(2020) suggest that the use of Deep Kernels (DK) is a faster
and more accurate way to model both genomic and enviromic
relatedness than benchmark GBLUP approaches, which is similar
to results by Cuevas et al. (2019) who used near-infrared data.
However, it seems that the paradigm of “less means more”
when dealing with some sources of data, such as enviromics, in
which we still have a long pathway in optimizing approaches
capable of capturing gene × envirotype interactions across crop
fields. In addition, in our studies, we observed that a good
enviromic kernel (W) added in the GP models as the main effect
is sometimes better than modeling a full-rank reaction-norm
model accounting for the genomic environment and genomic
enviromics. On the other hand, works by authors, such as Cuevas
et al. (2020) and de los Campos et al. (2020) show that big
historical data can be implemented by different computational
approaches and have a satisfactory accuracy to support the
selection decisions. Thus, methodological approaches must be
developed to capture exploitable patterns in big data and
computational tools to implement them, the latter preferably as
open-source software.

Deep learning approaches accounting for this data source
can be a more parsimonious approach to taking advantage of
big data without over-fitting prediction models. Finally, we find
that using multi-trait multi-environment data might help design
better field phenotyping trials for training GP models. As the
modern computational tools attempt better to explore G × E
and G × G within a multi-environment multi-trait context, the

opposite path might be taken by using historical data to design
future trials (Rincent et al., 2017) and scenarios (Millet et al.,
2016; Bustos-Korts et al., 2019), but also to predict cultivars at
novel growing conditions (Gillberg et al., 2019; Millet et al., 2019;
de los Campos et al., 2020).

Are Prediction-Based Tools Cost-Effective

Approaches?
Prediction-based tools are cost-effective approaches. Plant
breeding is based on selecting the best-evaluated genotypes in
target environments, demanding many field-testing resources
(physical and financial). Therefore, GP has proven to be useful
to enlarge the spectrum of individuals evaluated in silico but with
a limited accuracy in multiple environmental conditions due to
the non-additive effects related to G× E and G× G interactions.
Recently the emerging new ways to include environmental
data and CGM in the GP are considered good strategies to
correct this deficiency in predicting G× E interaction deviations
(Messina et al., 2018). In addition, these new applications allow
genotype screening at reduced phenotyping costs considering
virtual scenarios.

Despite the great advances that have been made, what is
to come is exciting for hybrid maize breeding. New tools
and models, such as the integrated use of high throughput
phenotyping, CGM, and optimized tools for simulation of
improvement methods can bring more resolution, realism, and
depth to the predictions. With HTP, we will be able to evaluate
the same plant several times over the crop cycle and increase the
effective size of training populations. Additionally, even before
running HTP studies in the field, it is possible to validate some
protocols in silico for phenotyping traits, such as PH (Galli et al.,
2021). On the other hand, both pathways of enviromics and CGM
will allow us to build virtual improvement scenarios and predict
the deviations of G× E interaction more accurately. Finally, with
the simulations, we will be able to test a series of scenarios cheaply
and easily, helping outline the best improvement strategies and
resource allocations.

Finding Research Partnerships to Expand

the Field-Testing Network
Most of the applications described in the last section consider
datasets with at least four environments and almost one thousand
entries (lines, DH, and hybrids), which represent the reality
for at least a small-scale breeding program. As discussed in
the previous sections, with the increase in the availability of
data, the computational demand and the power of cutting-
edge testing hypotheses in maize breeding also increase (Rogers
et al., 2021). We envisage that maize hybrid breeding programs
can take advantage of historical multi-environment testing data
(Dawson et al., 2013) to explore the environmental impacts
on the plasticity of germplasm, collecting during this process
data from enviromics, and other sources of data useful to train
accurate models. During this step, it is possible to integrate some
simulation platform capable of generating reliable environmental
scenarios (Millet et al., 2016) or phenotypic landscapes (Bustos-
Korts et al., 2019), such as CGM. The use of public databases to
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test hypotheses, train models, or import datasets for your own
purposes that might reduce costs and provide a guideline to
follow. However, as we have pointed out in section Germplasm
Characterization, the implementation of a well-conducted field
trial for phenotypic, genotypic, and envirotypic characterization
of the so-called “Modern Plant Breeding Triangle” (Crossa et al.,
2021), is crucial for providing good quality data to test a
wide number of hypotheses. Another interesting option is to
establish partnerships with other small-scale breeding programs
and public institutions in order to create a large network of field
data, such as the successful partnership of public institutions in
the United States—The Genome to Field Project (McFarland et al.,
2020). In Brazil, the first steps of this approach were led by the
Allogamous Plant Breeding Laboratory from USP. We tried to
share every genomics database, enviromics, and high-throughput
phenotyping (available in https://data.mendeley.com/datasets/
5gvznd2b3n).
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INTRODUCTION

The strategic goals of the “Consultative Group on International Agricultural Research”
(CGIAR), which serves small-scale agricultural producers in the developing world, include the
increase of nutrition and food security, the reduction of poverty, and the reduction of the
“environmental footprint” of agricultural production systems (https://www.cgiar.org/how-we-
work/strategy/). For each of these goals, progress can be made by breeding new crop varieties with
increased productivity, stress resilience, nutritional value, and reduced requirement for fertilizer
or agrochemicals.

Despite the great success of CGIAR breeding in the last decades, we posit that quantitative
genetics principles must be more strongly emphasized in breeding strategies to keep pace with the
accelerated demand and with changes in production conditions resulting in a growing demand for
food, climate change and newly introduced breeding objectives -such as nutritional quality.

Traditionally, molecular breeding approaches focused on the identification of major genes, often
for disease resistance, and the introgression of these alleles into elite material. This has been a
fruitful strategy to prevent or mitigate production losses since disease resistances are essential traits
for most target populations of environments (TPEs). However, the focus on major genes for disease
resistances may also have slowed down genetic gain for yield in some programs. We advocate
the redesign of breeding pipelines with a stronger orientation on quantitative genetics principles,
optimizing the components of the “breeder’s equation” to deliver a high selection response for
quantitative traits like yield. Moreover, to improve the basis on which selection decisions are made,
we propose an open-source breeding approach in which individual public and private institutions
collaborate, align their activities, and share data to enhance efficiency for all participants.

We will briefly present the breeder’s equation and highlight the terms that can be manipulated
to increase genetic gain per time and per dollar invested. We will also present some guidelines
recommended by the Excellence in Breeding (EiB) platform to optimize the selection response in
a classical breeding scheme. We then discuss how genome-assisted prediction methods (genomic
selection, GS) can be used for further optimization.

THE BREEDER’S EQUATION

In its simplest form, the breeder’s equation for one trait, or even a composite of traits integrated
in a selection index, states that the genetic gain per unit of time, expressed as the difference of the
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means of the (additive) genetic values before and after selection
(1µ) divided by time t, is given by:

1µ

t
=

(h2 i σp)

t

Here, h2 is the narrow sense heritability, i is the standardized
selection differential, that is the difference in phenotypic standard
deviations between the mean of the selected fraction and the
mean of the initial population, and σp is the phenotypic standard
deviation of the population before selection (modified from
Lynch andWalsh, 1998). The cycle length t in years describes the
time needed for one breeding “cycle” including recombination,
evaluation, and selection of parents for the new set of crosses.
The breeder’s equation highlights the parameters that can be
optimized to increase genetic gain per unit of time. We can
increase the accuracy of our selection, h2 for instance, by
improving trial quality or increasing replication. We can increase
the selection intensity i by selecting fewer individuals, or from a
greater number of candidates (or both). Finally, we could reduce
the cycle time t by shortening the time from cross to evaluation
and to crosses of selected progeny (rapid generation advance).

RECOMMENDATIONS FOR THE DESIGN

OF PROGRESSIVE BREEDING PIPELINES

The Excellence in Breeding (EiB) platform (https://
excellenceinbreeding.org/) provides guidance to the
CGIAR system and its national partners on the successful
implementation of genomic prediction methods. EiB has
proposed, as a first step, to optimize classical programs by
addressing resource allocation in the light of the breeder’s
equation, which may sometimes require a radical redesign of
the pipeline. The routine use of genomic selection to select
parents is then implemented in a second iteration. EiB has
modeled many of the breeding pipelines of CGIAR centers
in detail and has evaluated a range of approaches to crossing,
evaluation, and selection decisions in simulations. Some general
recommendations are summarized below:

1) Formalize the breeding objective by defining market
segments and corresponding product profiles describing the
“ideal” product.

Point (1) guarantees that we clearly define in which direction
we would like to breed. Moreover, market intelligence from
a wide range of sources can be brought to bear on variety
design (Cobb et al., 2019). We do not advocate for a
particular methodology but emphasize the importance of
investing resources in de- and refining the breeding goal. Client
and market intelligence can be assembled from participatory
plant breeding approaches (Witcombe et al., 1996; Ashby,
2009; Ragot et al., 2018) for subsistence-oriented systems, but
product design for market-oriented cropping systems requires
formal engagement with farmers, processors, and marketers to
ensure that breeding objectives result in products that are both
producible and marketable.

2) Form the crossing blocks out of small elite populations of
20–301 parents (avoid closely related individuals) and keep
the crossing block as a mostly closed system. Use diversity
measures and the variance of the traits defined in the product
profile to monitor the diversity in the population over time.

Point (2) allows concentration on the “most elite” material (i.e.,
material with high breeding or genetic value) for our breeding
objectives, which increases selection intensity (i). Moreover, a
smaller effective population size avoids unnecessary crossing and
testing, which saves resources. Experimental populations, theory
and simulations show that a small number of elite individuals
contain enough variance to avoid genetic bottlenecks in short
and medium-term breeding time-horizons (Moose et al., 2004;
Gaynor et al., 2017). This recommendation is linked to the
breeder’s equation by effectively managing the genetic variance
and optimizing selection intensity.

3) The rate of new “diversity” injected into the pipeline each
cycle should be low rather than high, which means parents
of a cycle should be mainly chosen from the progeny of the
previous cycle (recurrent selection strategy). New diversity
(e.g., alleles conferring disease resistance) should be mainly
injected in the form of donors of elite background with high-
value haplotypes that do not currently exist in the population.
This diversity must be carefully introduced to minimize
linkage drag associated with new resistance alleles.

The restriction of the input of new diversity in point (3) is critical
to the success of methods such as pedigree BLUP (Best Linear
Unbiased Predictor) or genomic BLUP to improve the accuracy
of selection of parents for the subsequent cycle. A certain degree
of relatedness is required for these methods to be accurate. In
addition, introgressing too many new parents can reduce the
accuracy of quantitative genetics methods (Lynch and Walsh,
1998; Walsh and Lynch, 2018). When a recurrent selection
strategy is used properly, almost any introgression would be a
step backwards in terms of general performance and breeding
value, and should only be used for special trait introgression or
if genetic variance has been exhausted (Allier et al., 2020). This
recommendation is linked to effectively managing the genetic
variance in breeder’s equation.

4) Formalize the crossing, evaluation, and selection decisions as
variables in a process that is comprised of different stages (e.g.,
crossing blocks, nursery, early testing, late testing, etc.).

The formalization described in point (4) is required to apply
selection criteria consistently and to characterize the breeding
scheme more easily for simulations (point 5) and continuous
improvement processes.

5) Changes in crossing, evaluation or selection procedures
and resource allocations should be supported by simulations

1The number of elite parents is suggested for 30-year breeding time horizon of a

classical program that takes between 3–5 years to recycle parents. In addition, the

number of elite parents in the crossing block must be increased when adopting

an aggressive GS scheme (recycling F1s) because the number of effective cohorts

decreases drastically.
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or experiments measuring the effect of the change on
genetic gain while considering other influencing parameters,
including costs.

It is critical that all the steps and processes used in the
breeding pipeline be accurately costed, permitting simulation and
modeling to be used to allocate resources to maximize the rate of
genetic gain delivered per year and per dollar spent.

6) Use and document selection indices or independent culling
to formalize the selection decisions when breeding for several
quantitative traits simultaneously. The goal should be to make
parent selection as objective and “data-driven” as possible,
such that anyone having the underlying data can understand
how the selection decision was made. All traits which are
included in the selection decision should also be formally
included in the recorded data and in the description of the
selection criteria.

Selection indices allow application of selection criteria more
consistently, can increase the selection intensity for several traits
simultaneously and make use of genetic correlations between
traits, if they are approximately known (Lynch andWalsh, 1998).

7) Use a data management and analytical system as a high
priority to enable the analytical pipelines.

Adoption of analytical methods such as state of the art
experimental design, spatial modeling to increase accuracy, and
use of BLUP are all critical to acceleration of genetic gains.
Organized, digitized data collection and storage and querying
systems linking phenotypic, pedigree, and genotypic data are
required to provide predictions routinely and rapidly. This
recommendation is linked to all terms of the breeder’s equation
since better datamanagement and analytics lead tomore accurate
selections, better management of diversity and in general to more
accurate decisions.

8) According to the number of plots available and the breeding
time-horizon, optimize the number of crosses and progeny per
cross to maximize variation among and within families that
can be selected.

The trade-off between allocating resources between number
of families and family size will depend on factors like
the number of traits included in the product profile,
their genetic correlations and the time that we expect
our breeding program to operate (longer periods benefit
of putting more resources in the number of families
and shorter breeding periods benefit of putting more
resources in bigger families). We recommend the use of
simulations to approach this question. This recommendation
is linked to the breeder’s equation by optimizing the
selection intensity.

9) Parents for recycling should be selected from the first one
or two testing stages of phenotyping yield (early recycling)
to reduce cycle length. Also, breeders should avoid using
the same parent repeatedly for several years in new crosses,
which substantially lengthens the breeding cycle. Indeed, with

emphasis on a short cycle time, selected progeny from a parent
should always be preferred to the parent itself.

Shortening the breeding cycle while maintaining confidence in
the selection of parents will often require reallocation of resources
to improve data quality and quantity of the first and second
testing stages of phenotyping.

10) Multiplication time (e.g., line generation, clonal
propagation) should be reduced to the minimum possible
(aiming for an overall cycle time as short as biology allows. For
example, in seed crops that might be 2–3 years), leveraging
new methodologies such as speed breeding, semi-autotrophic
hydroponics, among others.

A successful example of renewing a traditional breeding pipeline
at the International Rice Research Institute (IRRI) has been
described at by Collard et al. (2019).

An overview, as well as a more detailed description of the
different simulations supporting the recommendations above,
can be found in the toolbox of EiB (https://excellenceinbreeding.
org/toolbox). Once an aggressive classical breeding program
with most of the features described above has been implemented,
the adoption of genome-assisted prediction methods is
recommended for parent selection. Implementation may follow
the approach suggested below.

INCORPORATION OF GENOMIC

SELECTION IN THE BREEDING STRATEGY

Much plant breeding literature on genomic selection (GS) focuses
on predictive ability, especially the prediction of the performance
of a selection candidate in the absence of any phenotypic data.
Predicting the commercial performance of material that has
not been phenotyped, which would mean that we substitute
experiments with predictions, is an important application of GS,
but it is not necessarily the most impactful one, especially not
for small programs. The most important application of GS is the
inference of the individual’s genomic estimated breeding values
(GEBV) from the phenotypes of its available relatives, for the
purpose of selecting parents of the next cycle. In the context
of population improvement, with the objective of maximizing
genetic gain per year, we are not primarily interested in the
phenotype of a selection candidate itself, but rather would like to
knowwhich candidates we should select as parents of new crosses
to achieve the highest improvement in the new generation. The
breeding value aims at capturing the improvement of the new
generation when randomly crossing the line under consideration
with other lines of the population (Mrode, 2014).

The first simple step in applying GS is therefore increasing
accuracy by the use of the GEBV as the selection criterion,
instead of EBV or phenotypes in isolation. This application can be
incorporated into any breeding pipeline, usually at the agronomic
testing stage, provided that genotypic data is available. Moreover,
the resulting increase in accuracy can also give more freedom
to reduce cycle time t, for instance by allowing parents to be
selected from the first stage of agronomic testing (see point 9

Frontiers in Plant Science | www.frontiersin.org 3 July 2021 | Volume 12 | Article 681624129

https://excellenceinbreeding.org/toolbox
https://excellenceinbreeding.org/toolbox
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Covarrubias-Pazaran et al. Strengthening Breeding by Quantitative Genetics Principles

above) due to the increased accuracy of surrogates of trait genetic
merit compared to pure phenotypic information.

A second step could be the use of GS for sparse phenotyping.
Sparse phenotyping means that not each genotype is tested in
each environment, but some genotypes are tested at only a
subset of locations. Such an approach can increase the accuracy
of the estimation of genetic values by sampling from more
environments, which again reduces the error resulting from
genotype-by-environment (GxE) interaction. Moreover, sparse
phenotyping can be used to increase the number of candidates
tested which increases selection intensity. Both, increasing the
number of environments and increasing the number of tested
candidates can be approached by sparse testing subjected to
fixed costs. GS helps to keep the data quality when reducing
the data points and models including genotype-by-environment
(GxE) effects can be of additional advantage (Jarquin et al.,
2020).

A third application of GS is to recycle selection candidates
as early as possible (e.g. nursery stage) based on their GEBVs,
or genomic estimated genetic value (GEGV; additive plus non-
additive effects). The training population should be formed
by phenotypes generated from related candidates from the
same program (not exotic diversity panels) phenotyped in
previous seasons.

The fourth step in applying GS is to use genomic marker
information to predict the crossing process, e.g., not only the
expected performance of genotypes coming from a certain cross,
but also the variability within a family of siblings. This can be

used to optimize family sizes for different crosses, and to use
predicted within family variance to maximize long-term gain.

For these points see for instance Cobb et al. (2019), Clark et al.
(2013), Lehermeier et al. (2017), Gorjanc and Hickey (2018) and
Henryon et al. (2019),Werner et al. (2020). Any of these steps can
be incorporated independently, but the order proposed reflects
an increasing level of complexity of the related logistics, and
therefore may lead to a more successful implementation of GS.

OPEN SOURCE BREEDING

CGIAR centers together with NARs breeding centers form
networks that phenotype and disseminate breeding materials
that primarily originate from CGIAR centers. We envision an
“open-source” breeding model that combines resources from
different public and/or private partners for the benefit of all
participants (intellectual property questions would need to be
addressed to make a participation attractive for private partners).
GS would permit the pooling of experimental data from different
institutions that work within the same TPE. This would enable
a better coverage of the TPE through a stronger testing network
that shares (highly) related material. This way, CG centers, NARs
and local companies could “borrow strength” from each other
by sharing data on a central platform (Atlin and Jannink, 2010).
A similar approach is currently used in dairy breeding, where
the data are centrally processed and managed. In the context
of public plant breeding, this would mean that the data from
participating programs is jointly used to generate a stronger,

FIGURE 1 | Organization of open-source breeding: A hub receives the data (phenotypes and genotypes) from different programs or companies and makes the data

available as training sets to enable the different ways of using genomic prediction (see main text).
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more accurate prediction model than any single program could
generate independently. A hub could then manage a source
population and deliver lines or clones to local partners who
could utilize the lines in a product development pipeline and give
the experimental results back to the central data management
unit (see Figure 1). Moreover, they could also use the lines as
parents in their own pipelines. No CGIAR breeding networks
have yet been formally constituted as open-source GS networks,
but several have begun generating GEBVs for all new selection
candidates and are therefore ready to implement the model
with their national partners. The open-source GS network model
has many advantages, including allowing breeding programs
serving small-scale producers in the developing world to make
selections and advance populations even when trials are lost to
biotic or abiotic stress, or when disruptions such as a human
pandemic hamper or prevent field testing, as happened in many
breeding programs in 2020–2021. The open-source GS model
will also permit highly efficient, two-stage rapid-cycle recurrent
GS methods (Gaynor et al., 2017) that can reduce the breeding
cycle to the biological limit imposed by the juvenility period of
the species (time interval needed to move from seed to seed in
seed cropsmay be 1 year or less but in tree speciesmay be a couple
of years) to be applied in the service of small-scale producers
in Africa.

CONCLUSION

An efficient implementation of genomic prediction methods in
CGIAR-NARs breeding programs (and maybe other publicly
funded programs) depends on forming structured programs that
follow certain design rules. Such programs must be outcome-
oriented, with well-defined targets expressed in formal product
profiles that guide selection decisions. We suggest that the first
step in this process is to implement a classical breeding pipeline
optimized based on quantitative genetics principles (reducing
cycle time to the biological limit while increasing the accuracy
of early testing and managing the genetic diversity at the proper

program size). From there, the adoption of GS methods will be

a natural extension guided by the breeder’s equation. A first step
would then be the use of GEBVs as selection criteria instead of
phenotypic data in isolation. The breeding populations should be
(almost) closed, using a relatively small number of elite parents.
In the next steps, GS should be used to reduce evaluation costs
while increasing the coverage of the TPE using sparse testing
supported by marker data. Moreover, GS should be used to
reduce the breeding cycles down to 1 year in a stepwise fashion
for most crops if the phenotyping and selection methods are
up to the challenge (data for all traits and use of indices is a
pre-requisite for the most extreme use of GS). Simultaneously,
it should be explored how “open source” breeding structures
could be implemented in CGIAR-NARs networks, allowing small
breeding programs to borrow strength from each other by
incorporating the data generated by other programs working in
the same crop but different regions with highly related material.
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High yield is the primary objective of maize breeding. Genomic dissection of grain yield

and yield-related traits contribute to understanding the yield formation and improving

the yield of maize. In this study, two genome-wide association study (GWAS) methods

and genomic prediction were made on an association panel of 309 inbred lines. GWAS

analyses revealed 22 significant trait–marker associations for grain yield per plant (GYP)

and yield-related traits. Genomic prediction analyses showed that reproducing kernel

Hilbert space (RKHS) outperformed the other four models based on GWAS-derived

markers for GYP, ear weight, kernel number per ear and row, ear length, and ear diameter,

whereas genomic best linear unbiased prediction (GBLUP) showed a slight superiority

over other modes in most subsets of the trait-associated marker (TAM) for thousand

kernel weight and kernel row number. The prediction accuracy could be improved

when significant single-nucleotide polymorphisms were fitted as the fixed effects.

Integrating information on population structure into the fixed model did not improve the

prediction performance. For GYP, the prediction accuracy of TAMs derived from fixed

and randommodel Circulating Probability Unification (FarmCPU) was comparable to that

of the compressed mixed linear model (CMLM). For yield-related traits, CMLM-derived

markers provided better accuracies than FarmCPU-derived markers in most scenarios.

Compared with all markers, TAMs could effectively improve the prediction accuracies for

GYP and yield-related traits. For eight traits, moderate- and high-prediction accuracies

were achieved using TAMs. Taken together, genomic prediction incorporating prior

information detected by GWAS could be a promising strategy to improve the grain yield

of maize.

Keywords: grain yield, genome-wide association study, trait-associatedmarkers, prediction accuracy, fixedmodel

INTRODUCTION

Maize serves as an important cereal and forage crop and plays an important role in
sustaining global food security. Improvement of grain yield is a major and longstanding
breeding goal for maize. Kernel number per ear (KNE) and thousand kernel weight
(HKW) are the major components of grain yield per plant (GYP). Kernel number
per row (KNR) and kernel row number (KRN) are the important components of
the KNE. Ear length (EL) and ear diameter (ED) affect GYP in different degrees.
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In general, compared to GYP, yield components and related traits
are less affected by environments and have higher heritability,
and therefore, can be directly used to facilitate the final yield
of maize (Shi et al., 2017). Identifying loci associated with GYP
and yield-related traits will contribute to understanding their
basis and the correlations between them at a molecular level. In
addition, the identification of important loci and genes involved
will provide useful information for whole-genome selection of
high-yield potential.

Using linkage mapping and genome-wide association study
(GWAS), a large number of quantitative trait loci (QTLs) or
single-nucleotide polymorphisms (SNPs) have been identified
among different populations. For instance, under drought and
heat environments, Millet et al. (2016) detected a large number of
significant SNPs for the grain yield and the grain number using
single-environment and multi-environment GWAS methods.
Zhang et al. (2017) identified 23 QTLs and 25 significant SNPs
for HKW, KRN, and KNR in recombinant inbred lines and
an association panel of 240 maize inbred lines, and a stable
locus (PKS2) influencing KRN, HKW, and kernel shapes was
identified. Using an intermated B73 × Mo17 Syn10 doubled
haploid population and a natural population, Zhang et al. (2020)
detected 100 QTLs and 138 SNPs for GYP and yield-related traits
and found that eight significant SNPs were co-located within
intervals of seven QTLs. These studies enforce the complex of
GYP and yield-related traits, which are governed by a mixture
of many large-effect and small-effect genomic components.

Traditional marker-assisted selection (MAS) and marker-
assisted recurrent selection (MARS) use only a few large-
effect QTLs or markers, where efficient selections are made
in maize breeding programs. Genomic selection (GS) uses
whole genome-wide molecular markers to predict the breeding
values of individuals. Therefore, it can capture both major
and minor effect markers and is efficient for complex traits,
especially for grain yield. GS has been shown to outperform
MAS for grain yield and physiological traits in maize doubled
haploid populations (Cerrudo et al., 2018), and for days
to silking/anthesis and anthesis–silking interval in a nested
association mapping population (Guo et al., 2021). Annual gain
from GS outperformed that from MAS by 2-fold for winter
wheat and approximately 3-fold for maize at a moderate accuracy
(Heffner et al., 2010). Genetic gains of maize stover index and
yield + stover index were 14–50% larger with GS than with
MARS (Massman et al., 2013), which is consistent with the
simulation results that GS produced up to 43% greater genetic
gains than MARS for polygenic traits with low heritability
(Bernardo and Yu, 2007). The primary advantages of GS over
phenotypic selection are reflected in its low cost per cycle and
the time for variety development. In maize advanced test-cross
yield trials, GS reduced the cost by 32% over phenotype-based
selection with similar selection gains (Beyene et al., 2019). With
respect to cost reduction in maize breeding, breeders can test-
cross half of all available lines, evaluate them in first-stage multi-
environment trials, and then utilize the phenotypic data to
predict the remaining half through GS (Crossa et al., 2017).

In GS, prediction models are established using prior
phenotypic and marker data in a training population. The

genomic estimated breeding value (GEBV) is predicted based
on the marker effects estimated from the training population
in a test population with genotypic data and no phenotypic
data (Meuwissen et al., 2001). Many parametric methods such
as GBLUP and Bayesian (Bayes) methods including Bayes A,
Bayes B, Bayes C, and Bayes least absolute shrinkage and
selection operator, semi-parametric models such as RKHS, and
nonparametric methods have been developed to fit marker
effects and predict phenotypes (Meuwissen et al., 2001; Gianola
et al., 2006, 2011; Parmley et al., 2019; Sun et al., 2020).
Multivariate models were developed to simultaneously consider
information from multi-environment trials or multi-trait data
(Burgueño et al., 2012; Montesinos-López et al., 2016; Schulthess
et al., 2018). Previous studies showed that no single GS model
had better performance compared with other models in all
cases due to different backgrounds of training and testing
populations, different traits, and different experimental designs
(Pérez-Rodríguez et al., 2012; Ali et al., 2020). In maize, practical
applications of GS have been widely demonstrated in many
aspects including inbred line prediction (Zhao et al., 2012;
Liu et al., 2019), hybrid performance prediction (Guo et al.,
2019; Schrag et al., 2019; Li et al., 2020), and combining
ability prediction (Riedelsheimer et al., 2012). These findings
demonstrate the potential of GS helping in the selection of elite
parents and hybrid combinations.

Both GWAS and GS use the same input datasets, including a
phenotype dataset and a genotype dataset; thus, only additional
analyses are required (Spindel et al., 2016). Several studies have
discussed the advantages of combining GWAS and GS models
that incorporate trait-associated markers (TAMs) detected by
GWAS as random or fixed effects in GS models (Spindel et al.,
2016; Bian and Holland, 2017; Herter et al., 2019; Liu et al., 2019;
Rice and Lipka, 2019). However, the effects of TAM derived from
different GWAS methods on prediction accuracy have rarely
been reported. In this study, an association panel of 309 inbred
lines was genotyped with 58,129 markers using genotyping-by-
sequencing (GBS), and the performance of GYP, ear weight (EW),
HKW, KNE, KNR, KRN, EL, and ED was evaluated in multi-
environment trials. The main objectives of this study were to
(1) identify significant SNPs for eight traits using two GWAS
methods, (2) compare the prediction accuracies of different
GS models, (3) investigate the prediction accuracy by treating
significant SNPs and population structure as the fixed effects, and
(4) evaluate the effects of TAMs derived from different GWAS
methods on prediction accuracy.

MATERIALS AND METHODS

Plant Materials and Trial Designs
The panel consisted of 16 new selected inbred lines, 128
core germplasms of China, and 165 expired U.S. plant variety
protection inbred lines, as previously reported (Ma et al., 2021).
The panel was evaluated at four sites: Dancheng (33.646◦

N, 115.257◦ E), Yuanyang (35.012◦ N, 113.704◦ E), Yucheng
(34.411◦ N, 116.274◦ E), and Sanya (18.381◦ N, 109.183◦ E) in
2017, and at one site (Yuanyang) in 2019. The field trial had
a randomized complete block design with three replicates per
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genotype and environment. Entries were planted in two-row
plots that were 3.75m in length, 0.60m spacing between rows,
and 0.33m spacing between plants.

Phenotyping and Analyses
Grain yield per plant, EW, HKW, KRN, KNR, EL, and ED
were measured manually in three ears with good self-pollination
for each genotype. KNE was calculated from KRN and KNR.
Heritability at the per mean level and multi-environment
ANOVA were calculated using QTL IciMapping v4.0 software
(Meng et al., 2015). Pearson’s correlation coefficient was
calculated using the R package Performance Analytics. Best linear
unbiased estimate (BLUE) values of each trait were calculated
using QTL IciMapping v4.0 and were used as phenotypes for
GWAS and GS analyses.

Association Mapping Analysis
The GBS genotypic data of the panel have been described in
a previous study (Ma et al., 2021). Markers with minor allele
frequencies (MAF) less than 5%, missing rates greater than 10%,
and heterozygous rates greater than 10% were removed. Finally,
58,129 SNPs were adopted for GWAS. The kinship matrix was
calculated using the Centered_IBS method in TASSEL v5.2.60
(Bradbury et al., 2007). The subgroups (K) were estimated using
the Bayesian Markov chain Monte Carlo method in Structure
v2.3.4 (Pritchard et al., 2000). The Q matrix of two subgroups (K
= 2) was used to control the population structure as previously
described (Ma et al., 2021). To reduce false associations, a single-
locus method, namely, compressed mixed linear model (CMLM)
(Zhang et al., 2010), and one multi-locus method, namely,
fixed and random model Circulating Probability Unification
(FarmCPU) (Liu et al., 2016), were carried out using the GAPIT
package (Lipka et al., 2012). The Q and K matrices were
incorporated into both GWAS methods. A multiple testing
correction is not required in multi-locus methods because all loci
are estimated and tested simultaneously (Zhang et al., 2019b).
Therefore, a less stringent p-value threshold of 1/58,129 =

1.72E−05 was used to identify significant SNPs in the two GWAS
methods. Other parameters were set default based on the GAPIT
manual. Linear regression was used to calculate the phenotypic
variation explained (PVE) of FarmCPU, whereas the PVE of
CMLM was calculated using GAPIT. Candidate genes were
scanned from 50 kb upstream to downstream of each significant
locus using ANNOVAR (Wang et al., 2010).

Genomic Prediction
The prediction was done using GBLUP, Bayes A, Bayes B, Bayes
C, and RKHS. Kernel averaging was used in the RKHS, and
bandwidth parameters were set at 1/5M, 1/M, and 5/M, where
M is the median squared Euclidean distance. Seven subset sizes
of TAMs, that is, 100, 500, 1,000, 5,000, 10,000, 20,000, and
40,000 were selected according to the ranks of –log10(p value)
calculated by FarmCPU and CMLM based on BLUE values. The
prediction accuracy of seven subsets was compared to that of all
markers (58,129). For the eight traits, TAMswere all treated as the
random effects (randommodel) in all GSmodels. For traits where
significant SNPs (p < 1.72E−05) were detected, the significant

SNPs were treated as the fixed effects and other remaining
markers were treated as the random effects (fixed model). In
the fixed model, one Q matrix (Q1) calculated using Structure
was added into GBLUP and RKHS models as the fixed effects
to evaluate the impact of population structure on the prediction
accuracy. In addition, significant SNPs were all fitted as the
random effects in RKHS to evaluate their potential application.

Randomized imputation was adopted for missing makers,
according to the known genotype frequency. For each marker,
individuals were coded as 2 (homozygous minor allele), 0
(homozygous major allele), and 1 (heterozygous). Recoding and
imputation were carried out using the R software. Five GS
models, TAMs, fixed model, random model, and fixed effects of
Q matrix were performed using the R package, BGLR (Pérez and
de los Campos, 2014). For all models, the length of the Gibbs
chain was 12,000 iterations, with the first 3,000 samples discarded
as burn-in. A 5-fold cross-validation scheme with 100 replicates
was used to divide the association panel into training and testing
sets. The mean correlation coefficient between GEBVs and BLUE
values in the testing sets was used to estimate the accuracies of
different GS models and different SNP densities.

RESULTS

Phenotypic Descriptions and Correlations
Descriptive statistics revealed that extensive phenotypic
variations were observed in GYP and seven yield-
related traits in the panel under different environments
(Supplementary Table 1). The heritability for eight traits ranged
from 0.59 (EW and KRN) to 0.77 (EL) (Supplementary Table 2).
Significant and positive pairwise correlations were observed
between different traits. GYP had high correlations with EW,
KNE, KNR, and ED, moderate correlations with KRN and EL,
and low correlations with HKW (Supplementary Figure 1).
ANOVA across environments showed that the effects of
genotype, environment, and genotype × environment
interactions were significant (p < 0.001) for all traits
(Supplementary Table 2). This showed that the association
panel was highly affected by environments. Therefore, the BLUE
values were used for GWAS and GS analyses.

Significant Trait Marker Associations and

Their Prediction Accuracies
In total, 58,129 high-quality SNPs were used to perform GWAS
for eight traits using BLUE values. FarmCPU and CMLM were
used to control false associations for all traits. A total of 22
significant SNPs were identified with a p-value threshold of
1.72E−05, and the average PVE of all significant signals was
4.20% (Table 1). FarmCPU detected 17 association signals, which
was higher than CMLM (7) (Table 1). One significant SNP each
was found for GYP, EW, and HKW. Eight, eight, and four
significant SNPs were detected for KRN, ED, and EL, respectively.
One pleiotropic SNP (S3_62750920) was found between EW
and ED. A SNP for ED, namely, S7_174915679, was detected
using the two GWAS methods. The prediction accuracy of the
significant SNPs was ranged from 0.26 to 0.45 using RKHS
(Supplementary Figure 2).
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TABLE 1 | Significant SNPs and candidate genes for grain yield and yield-related traits using two GWAS methods.

SNP name* Trait§ p value PVE† Method# Candidate gene

S3_53872814 GYP 1.68E−05 5.92 FarmCPU Zm00001d040612

S3_62750920 EW 1.02E−05 5.98 FarmCPU Zm00001d040748, Zm00001d040751

S1_47210783 HKW 1.56E−05 6.16 CMLM Zm00001d028812

S1_10685412 KRN 1.43E−05 1.99 FarmCPU Zm00001d027671

S1_179199207 KRN 3.38E−06 4.80 FarmCPU Zm00001d031137, Zm00001d031138

S3_134708533 KRN 2.45E−06 1.44 FarmCPU Zm00001d041715, Zm00001d041716

S4_135839291 KRN 2.79E−06 1.32 FarmCPU Zm00001d050992

S4_234082607 KRN 1.54E−07 2.29 FarmCPU Zm00001d053559

S4_86484873 KRN 1.08E−07 1.74 FarmCPU Zm00001d050406, Zm00001d050409

S7_105588532 KRN 5.13E−08 7.38 FarmCPU Zm00001d020310, Zm00001d020311

S8_145121832 KRN 2.46E−06 0 FarmCPU Zm00001d011266

S1_69620597 EL 5.84E−07 1.35 FarmCPU Zm00001d029416

S3_174651102 EL 2.11E−08 7.21 FarmCPU Zm00001d042631, Zm00001d042632

S4_117775505 EL 7.78E−06 0.70 FarmCPU Zm00001d050712, Zm00001d050714

S4_174433366 EL 4.36E−06 4.80 FarmCPU Zm00001d051912

S1_233432714 ED 7.53E−06 10.26 FarmCPU Zm00001d032659, Zm00001d032661

S2_118387989 ED 1.47E−05 5.43 CMLM Zm00001d004568, Zm00001d004571

S2_118390724 ED 1.59E−05 5.39 CMLM Zm00001d004568, Zm00001d004571

S2_118625688 ED 1.46E−05 5.43 CMLM Zm00001d004572, Zm00001d004573

S2_118744667 ED 1.21E−05 5.54 CMLM Zm00001d004573, Zm00001d004574

S3_62750920 ED 1.01E−05 5.64 CMLM Zm00001d040748, Zm00001d040751

S7_13345176 ED 4.01E−06 3.77 FarmCPU Zm00001d019027, Zm00001d019028

S7_174915679 ED 1.22E−05 5.54 CMLM Zm00001d022310

S7_174915679 ED 3.94E−06 0.76 FarmCPU Zm00001d022310

*Numbers before and after “_” represent chromosome and position, respectively.
§GYP, EW, HKW, KRN, EL, and ED are abbreviations of grain yield per plant, ear weight, thousand kernel weight, kernel row number, ear length, and ear diameter, respectively.
†
PVE, phenotypic variation explained.
#CMLM, compressed mixed linear model; FarmCPU, fixed and random model Circulating Probability Unification.

Prediction Accuracy of Different Prediction

Models
Five GS models were evaluated using seven subsets of TAMs
derived from FarmCPU and CMLM. The prediction accuracies
ranged from 0.10 to 0.84 and differed among prediction models
and traits. Regardless of the marker effects, the prediction
accuracy of RKHS using TAMs was the highest, followed
by GBLUP, and Bayes B was the least for GYP, EW, and
KNE (Tables 2 and 3, Supplementary Table 3). The prediction
accuracies of the RKHS exceeded those of the other models
by 3.85–68% for GYP and by 1.52–33.33% for KNE (Table 2,
Supplementary Table 3). For EW, the percentage increase in
accuracy of RKHS over the other four models using CMLM-
derived TAMs ranged from 1.85 to 64%, whereas that of
RKHS over the other models using FarmCPU-derived TAMs
was large, with the percentage increase ranging from 26.09 to
210% (Table 3). Slight increases in the prediction accuracies of
RKHS over the other models were also demonstrated in most
subsets for KNR, EL, and ED (Supplementary Tables 4–6). For
HKW, GBLUP was slightly superior to RKHS, Bayes A, Bayes
B, and Bayes C (Table 4). In most of the marker sets, a small
advantage of GBLUP over other models was also observed in
KRN (Table 5).

Impact of Using Significant SNPs and

Population Structure as Fixed Effects on

Prediction Accuracy
The prediction accuracies of using significant SNPs and
population structure as the fixed effects were evaluated in traits
where significant SNPs were detected. In most of the TAM
subsets, using 4–8 significant SNPs as the fixed effects improved
the prediction accuracy by 1.43–40% and 1.37–22.41% for KRN
and EL, respectively, when compared with the random model in
all five models (Table 5, Supplementary Table 5). For GYP, EW,
and HKW, the prediction accuracy did not change (or slightly
decreased) when treating one significant SNP as a fixed effect
compared to fitting all markers as the random effects in GBLUP
and RKHS. However, the accuracy of the fixed model slightly
increased or was similar to that of the random model in the
three Bayes prediction models. For ED, the fixed model based on
FarmCPU-derivedmarkers improved the accuracy by 1.35−16%,
whereas that of CMLM-derived markers had similar prediction
performance as the random model in most cases. In general, the
prediction accuracy could be improved when significant SNPs
were fitted as the fixed effects.

To evaluate the effect of population structure on prediction
accuracies, the Q matrix calculated using Structure was
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TABLE 2 | Prediction accuracy of random model, fixed model, and population structure model based on trait-associated markers in five prediction models for grain yield

per plant.

Model* Scenario§ Prediction accuracy#

100† 500 1,000 5,000 10,000 20,000 40,000 58,129

Bayes A CMLM-RAN 0.51

(0.08)

0.56

(0.07)

0.56

(0.08)

0.56

(0.08)

0.53

(0.08)

0.47

(0.09)

0.29

(0.11)

0.09

(0.12)

FarmCPU-RAN 0.51

(0.08)

0.56

(0.07)

0.56

(0.07)

0.56

(0.08)

0.53

(0.08)

0.46

(0.09)

0.29

(0.11)

FarmCPU-FIX 0.52

(0.08)

0.56

(0.08)

0.56

(0.08)

0.57

(0.08)

0.54

(0.09)

0.47

(0.10)

0.33

(0.11)

Bayes B CMLM-RAN 0.48

(0.09)

0.53

(0.08)

0.53

(0.08)

0.54

(0.08)

0.51

(0.09)

0.44

(0.09)

0.26

(0.11)

0.08

(0.12)

FarmCPU-RAN 0.48

(0.09)

0.54

(0.08)

0.53

(0.08)

0.54

(0.08)

0.51

(0.09)

0.44

(0.09)

0.25

(0.11)

FarmCPU-FIX 0.49

(0.09)

0.54

(0.08)

0.54

(0.08)

0.56

(0.08)

0.53

(0.09)

0.45

(0.10)

0.32

(0.12)

Bayes C CMLM-RAN 0.50

(0.09)

0.55

(0.07)

0.55

(0.08)

0.56

(0.08)

0.53

(0.08)

0.46

(0.09)

0.28

(0.12)

0.09

(0.12)

FarmCPU-RAN 0.50

(0.09)

0.55

(0.07)

0.55

(0.07)

0.56

(0.08)

0.53

(0.08)

0.46

(0.09)

0.28

(0.11)

FarmCPU-FIX 0.51

(0.09)

0.56

(0.08)

0.57

(0.08)

0.57

(0.08)

0.53

(0.09)

0.46

(0.10)

0.33

(0.11)

GBLUP CMLM-RAN 0.52

(0.08)

0.57

(0.07)

0.57

(0.08)

0.59

(0.08)

0.56

(0.09)

0.49

(0.09)

0.30

(0.11)

0.10

(0.12)

FarmCPU-RAN 0.52

(0.08)

0.57

(0.07)

0.57

(0.07)

0.59

(0.08)

0.55

(0.09)

0.48

(0.09)

0.30

(0.11)

FarmCPU-FIX 0.52

(0.08)

0.57

(0.07)

0.57

(0.08)

0.57

(0.08)

0.53

(0.09)

0.46

(0.10)

0.33

(0.12)

FarmCPU-FIX-PS 0.52

(0.08)

0.57

(0.08)

0.57

(0.08)

0.57

(0.08)

0.53

(0.09)

0.46

(0.10)

0.32

(0.12)

RKHS CMLM-RAN 0.54

(0.09)

0.62

(0.07)

0.61

(0.08)

0.62

(0.08)

0.59

(0.09)

0.54

(0.10)

0.42

(0.12)

0.32

(0.14)

FarmCPU-RAN 0.54

(0.09)

0.62

(0.07)

0.61

(0.08)

0.62

(0.08)

0.59

(0.09)

0.54

(0.10)

0.42

(0.12)

FarmCPU-FIX 0.54

(0.08)

0.61

(0.08)

0.61

(0.08)

0.61

(0.08)

0.57

(0.09)

0.52

(0.10)

0.42

(0.11)

FarmCPU-FIX-PS 0.54

(0.09)

0.61

(0.08)

0.61

(0.08)

0.61

(0.08)

0.57

(0.09)

0.52

(0.10)

0.42

(0.11)

*GBLUP, genomic best linear unbiased prediction; RKHS, reproducing kernel Hilbert space.
§CMLM-RAN and FarmCPU-RAN, traits-associated markers from compressed mixed linear model (CMLM) and fixed and random model Circulating Probability Unification (FarmCPU)

are treated as random effects; FarmCPU-FIX, significant SNPs (p < 1.72E−05) are treated as the fixed effects and other remaining markers are treated as the random effects (fixed

model); FarmCPU-FIX-PS, the Q matrix is treated as fixed effect in the fixed model.
†
100–40,000, the number of trait-associated markers.
#Prediction accuracy is represented by mean and standard deviation in brackets.

incorporated into the fixed model in GBLUP and RKHS.
For GYP, EW, and KRN, the accuracy did not change
when the Q matrix was included as a fixed effect in most
cases of RKHS and GBLUP (Tables 2, 3, 5). For HKW, the
population structure had no effect on accuracies in RKHS,
whereas the accuracy decreased by 0.01–0.05 when the Q
matrix was used in the GBLUP model. For EL, the accuracy
reduced by 0.02–0.07 at 500–20,000 TAMs when population
structure was added into the GBLUP fixed model. For ED,
the accuracy improved by 0.02 at 100 and 40,000 CMLM-
derived TAMs and decreased by 0.05 at 40,000 FarmCPU-
derived TAMs when the Q matrix was added in GBLUP,
and the accuracy was same or slightly decreased in the
remaining scenarios.

Effect of Different GWAS Methods on

Prediction Accuracy
For GYP, the prediction accuracies of TAMs derived fromCMLM
and FarmCPU were compared in the five models (Table 2),
regardless of the random or fixed models. For EL and ED,
the prediction accuracy of 100 TAMs by FarmCPU was 2.74–
5.97% higher than that by CMLM in the five models. For
the other subsets, the prediction accuracies of CMLM-derived
markers were 8.22–42.11% higher than those of FarmCPU-
derived markers in EL and ED (Supplementary Tables 5, 6).
For the other five traits, the prediction accuracies of CMLM-
TAMs were consistently superior to those of FarmCPU-TAMs
across all subsets in the five models. In particular, the increase
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TABLE 3 | Prediction accuracy of random model, fixed model, and population structure model based on trait-associated markers in five prediction models for ear weight.

Model* Scenario§ Prediction accuracy#

100† 500 1,000 5,000 10,000 20,000 40,000 58,129

Bayes A CMLM-RAN 0.54

(0.09)

0.58

(0.08)

0.57

(0.08)

0.55

(0.09)

0.50

(0.09)

0.44

(0.10)

0.27

(0.12)

FarmCPU-RAN 0.20

(0.11)

0.12

(0.11)

0.15

(0.10)

0.19

(0.11)

0.18

(0.11)

0.14

(0.12)

0.10

(0.12)

0.09

(0.12)

FarmCPU-FIX 0.19

(0.12)

0.14

(0.11)

0.18

(0.11)

0.20

(0.11)

0.19

(0.11)

0.16

(0.11)

0.12

(0.12)

Bayes B CMLM-RAN 0.51

(0.09)

0.55

(0.08)

0.54

(0.08)

0.53

(0.09)

0.48

(0.09)

0.41

(0.10)

0.25

(0.12)

FarmCPU-RAN 0.16

(0.11)

0.13

(0.11)

0.16

(0.11)

0.18

(0.11)

0.17

(0.12)

0.14

(0.12)

0.11

(0.12)

0.09

(0.12)

FarmCPU-FIX 0.15

(0.11)

0.13

(0.11)

0.18

(0.11)

0.20

(0.12)

0.19

(0.12)

0.16

(0.12)

0.12

(0.12)

Bayes C CMLM-RAN 0.53

(0.09)

0.57

(0.08)

0.57

(0.08)

0.55

(0.09)

0.50

(0.09)

0.43

(0.10)

0.27

(0.12)

FarmCPU-RAN 0.23

(0.11)

0.17

(0.11)

0.18

(0.11)

0.19

(0.11)

0.18

(0.11)

0.14

(0.12)

0.11

(0.12)

0.09

(0.12)

FarmCPU-FIX 0.20

(0.12)

0.16

(0.11)

0.20

(0.11)

0.20

(0.11)

0.19

(0.11)

0.15

(0.12)

0.12

(0.12)

GBLUP CMLM-RAN 0.54

(0.09)

0.59

(0.08)

0.58

(0.08)

0.58

(0.09)

0.53

(0.09)

0.46

(0.10)

0.29

(0.12)

0.12

(0.12)

FarmCPU-RAN 0.20

(0.12)

0.19

(0.11)

0.23

(0.11)

0.22

(0.11)

0.20

(0.11)

0.16

(0.12)

0.12

(0.12)

FarmCPU-FIX 0.18

(0.12)

0.17

(0.11)

0.20

(0.11)

0.20

(0.11)

0.19

(0.12)

0.16

(0.12)

0.12

(0.12)

FarmCPU-FIX-PS 0.17

(0.12)

0.16

(0.11)

0.19

(0.11)

0.20

(0.11)

0.19

(0.12)

0.15

(0.12)

0.12

(0.12)

RKHS CMLM-RAN 0.55

(0.09)

0.62

(0.08)

0.61

(0.08)

0.61

(0.09)

0.57

(0.09)

0.52

(0.11)

0.41

(0.13)

0.31

(0.14)

FarmCPU-RAN 0.29

(0.13)

0.33

(0.13)

0.37

(0.12)

0.37

(0.13)

0.34

(0.13)

0.32

(0.14)

0.31

(0.14)

FarmCPU-FIX 0.28

(0.14)

0.28

(0.13)

0.31

(0.13)

0.37

(0.13)

0.36

(0.13)

0.33

(0.14)

0.31

(0.14)

FarmCPU-FIX-PS 0.27

(0.13)

0.27

(0.13)

0.31

(0.13)

0.36

(0.13)

0.36

(0.13)

0.33

(0.14)

0.31

(0.14)

*GBLUP, genomic best linear unbiased prediction; RKHS, reproducing kernel Hilbert space.
§CMLM-RAN and FarmCPU-RAN, traits-associated markers from compressed mixed linear model (CMLM) and fixed and random model Circulating Probability Unification (FarmCPU)

are treated as random effects; FarmCPU-FIX, significant SNPs (p < 1.72E−05) are treated as the fixed effects and other remaining markers are treated as the random effects (fixed

model); FarmCPU-FIX-PS, the Q matrix is treated as the fixed effect in the fixed model.
†
100–40,000, the number of trait-associated markers.
#Prediction accuracy is represented by mean and standard deviation in brackets.

in prediction accuracies for CMLM-TAMs over FarmCPU-
TAMs was large in EW, with the percentage increase ranging

from 32.26 to 383.33% across all scenarios (Table 3). With

respect to TAMs, moderate and high prediction accuracies

were achieved in five prediction models for the eight traits.
The optimum number of TAMs for prediction differed greatly
among the eight traits, two GWAS methods, and five GS
models. These results indicate that it is necessary to determine
the optimum SNP information that can represent sufficient
variations to achieve high prediction accuracies for each
trait before their application in GS breeding. Compared to
all SNPs, higher prediction accuracies were achieved using
TAMs in most scenarios. This indicates that TAMs could

effectively improve the prediction accuracies of GYP and
yield-related traits.

DISCUSSION

Genomic selection is a promising breeding method with the
aim of accelerating the speed and efficiency of breeding
processes. In contrast, GWAS is used to identify QTLs or
genes that underlie important traits for breeding. They seek
to model the different aspects of the genetic architecture of
traits and have complementary advantages (Bian and Holland,
2017). Previous studies have shown the effectiveness of the
GS method using important loci for target traits identified by
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TABLE 4 | Prediction accuracy of random model, fixed model, and population structure model based on trait-associated markers in five prediction models for thousand

kernel weight.

Model* Scenario§ Prediction accuracy#

100† 500 1,000 5,000 10,000 20,000 40,000 58,129

Bayes A CMLM-RAN 0.65

(0.06)

0.72

(0.06)

0.72

(0.05)

0.70

(0.05)

0.67

(0.06)

0.60

(0.07)

0.41

(0.08)

FarmCPU-RAN 0.55

(0.08)

0.58

(0.07)

0.59

(0.07)

0.58

(0.07)

0.54

(0.07)

0.48

(0.08)

0.35

(0.08)

0.20

(0.09)

CMLM-FIX 0.66

(0.06)

0.72

(0.05)

0.73

(0.05)

0.71

(0.05)

0.67

(0.06)

0.60

(0.07)

0.42

(0.09)

Bayes B CMLM-RAN 0.63

(0.06)

0.70

(0.06)

0.71

(0.05)

0.68

(0.06)

0.64

(0.06)

0.57

(0.07)

0.39

(0.08)

0.21

(0.09)

FarmCPU-RAN 0.53

(0.08)

0.56

(0.07)

0.58

(0.08)

0.56

(0.07)

0.52

(0.07)

0.46

(0.08)

0.34

(0.09)

CMLM-FIX 0.64

(0.06)

0.71

(0.05)

0.71

(0.05)

0.69

(0.06)

0.66

(0.06)

0.58

(0.07)

0.41

(0.09)

Bayes C CMLM-RAN 0.65

(0.06)

0.72

(0.06)

0.72

(0.05)

0.70

(0.05)

0.67

(0.06)

0.60

(0.07)

0.41

(0.08)

0.20

(0.09)

FarmCPU-RAN 0.55

(0.08)

0.57

(0.07)

0.59

(0.07)

0.58

(0.07)

0.54

(0.07)

0.48

(0.08)

0.35

(0.08)

CMLM-FIX 0.66

(0.06)

0.72

(0.05)

0.73

(0.05)

0.71

(0.05)

0.67

(0.06)

0.60

(0.07)

0.42

(0.09)

GBLUP CMLM-RAN 0.67

(0.06)

0.73

(0.05)

0.73

(0.05)

0.71

(0.05)

0.68

(0.06)

0.60

(0.07)

0.40

(0.08)

0.20

(0.09)

FarmCPU-RAN 0.56

(0.08)

0.60

(0.07)

0.60

(0.07)

0.58

(0.07)

0.54

(0.07)

0.48

(0.08)

0.34

(0.08)

CMLM-FIX 0.67

(0.06)

0.73

(0.05)

0.73

(0.05)

0.71

(0.05)

0.67

(0.06)

0.60

(0.07)

0.42

(0.09)

CMLM-FIX-PS 0.66

(0.06)

0.72

(0.05)

0.72

(0.05)

0.69

(0.05)

0.64

(0.06)

0.55

(0.07)

0.39

(0.09)

RKHS CMLM-RAN 0.66

(0.06)

0.72

(0.05)

0.72

(0.05)

0.69

(0.06)

0.65

(0.06)

0.56

(0.07)

0.37

(0.08)

0.24

(0.08)

FarmCPU-RAN 0.54

(0.08)

0.58

(0.07)

0.58

(0.07)

0.55

(0.07)

0.51

(0.07)

0.45

(0.08)

0.33

(0.08)

CMLM-FIX 0.66

(0.06)

0.72

(0.05)

0.72

(0.05)

0.69

(0.06)

0.64

(0.06)

0.55

(0.07)

0.39

(0.09)

CMLM-FIX-PS 0.66

(0.06)

0.72

(0.05)

0.72

(0.05)

0.69

(0.05)

0.64

(0.06)

0.55

(0.07)

0.39

(0.09)

*GBLUP, genomic best linear unbiased prediction; RKHS, reproducing kernel Hilbert space.
§CMLM-RAN and FarmCPU-RAN, traits-associated markers from compressed mixed linear model (CMLM) and fixed and random model Circulating Probability Unification (FarmCPU)

are treated as the random effects; CMLM-FIX, significant SNPs (p < 1.72E−05) are treated as the fixed effects and other remaining markers are treated as the random effects (fixed

model); CMLM-FIX-PS, the Q matrix is treated as the fixed effect in the fixed model.
†
100–40,000, the number of trait-associated markers.
#Prediction accuracy is represented by mean and standard deviation in brackets.

GWAS (Bian and Holland, 2017; Liu et al., 2019; Rice and
Lipka, 2019). In this study, we demonstrated the potential
of incorporating prior information for grain yield and seven
yield-related traits explored by GWAS into GS in a maize
association panel.

Prediction models are the major factors that affect the
prediction accuracy of different traits. In this study, GBLUP,
Bayes A, Bayes B, Bayes C, and RKHS were adopted to
compare the prediction accuracies of eight traits based on
GWAS-derived markers. The advantage of RKHS over the
other four models was demonstrated using GYP, EW, KNE,

KNR, EL, and ED in most TAM subsets, which was in line
with many studies on maize, wheat, barley, and Arabidopsis
thaliana (González-Camacho et al., 2012; Heslot et al., 2012;
Pérez-Rodríguez et al., 2012; Liu et al., 2018; Li et al., 2020).
RKHS, as one of the semiparametric methods, does not need
to make most of the assumptions on the relationship between
phenotype and genotype as do parametric models and was
found to have the potential for capturing the total genetic
effects from real data (Gianola et al., 2006; Gianola and van
Kaam, 2008). The inferior performance of the RKHS over
other models has also been reported in maize kernel oil traits
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TABLE 5 | Prediction accuracy of random model, fixed model, and population structure model based on trait-associated markers in five prediction models for kernel row

number.

Model* Scenario§ Prediction accuracy#

100† 500 1,000 5,000 10,000 20,000 40,000 58,129

Bayes A CMLM-RAN 0.71

(0.06)

0.77

(0.05)

0.79

(0.05)

0.78

(0.05)

0.76

(0.06)

0.69

(0.07)

0.52

(0.10)

0.34

(0.12)

FarmCPU-RAN 0.70

(0.05)

0.68

(0.07)

0.64

(0.07)

0.57

(0.10)

0.55

(0.09)

0.49

(0.10)

0.41

(0.11)

FarmCPU-FIX 0.70

(0.05)

0.73

(0.06)

0.73

(0.08)

0.69

(0.07)

0.67

(0.07)

0.63

(0.08)

0.57

(0.09)

Bayes B CMLM-RAN 0.69

(0.07)

0.75

(0.05)

0.78

(0.05)

0.76

(0.06)

0.74

(0.06)

0.66

(0.08)

0.50

(0.10)

0.35

(0.12)

FarmCPU-RAN 0.68

(0.05)

0.69

(0.06)

0.66

(0.07)

0.56

(0.09)

0.53

(0.10)

0.47

(0.11)

0.40

(0.11)

FarmCPU-FIX 0.69

(0.06)

0.73

(0.06)

0.73

(0.06)

0.68

(0.07)

0.66

(0.07)

0.62

(0.08)

0.56

(0.09)

Bayes C CMLM-RAN 0.70

(0.06)

0.77

(0.05)

0.79

(0.05)

0.78

(0.05)

0.76

(0.06)

0.69

(0.07)

0.52

(0.10)

0.35

(0.11)

FarmCPU-RAN 0.69

(0.05)

0.69

(0.06)

0.64

(0.07)

0.56

(0.10)

0.55

(0.09)

0.48

(0.10)

0.41

(0.11)

FarmCPU-FIX 0.70

(0.05)

0.74

(0.06)

0.73

(0.06)

0.69

(0.07)

0.67

(0.07)

0.63

(0.08)

0.57

(0.09)

GBLUP CMLM-RAN 0.72

(0.06)

0.77

(0.05)

0.80

(0.05)

0.79

(0.05)

0.76

(0.06)

0.70

(0.07)

0.53

(0.10)

0.36

(0.12)

FarmCPU-RAN 0.70

(0.05)

0.67

(0.07)

0.63

(0.08)

0.56

(0.10)

0.56

(0.10)

0.50

(0.11)

0.42

(0.11)

FarmCPU-FIX 0.70

(0.05)

0.73

(0.06)

0.73

(0.06)

0.69

(0.07)

0.67

(0.07)

0.63

(0.08)

0.57

(0.09)

FarmCPU-FIX-PS 0.71

(0.05)

0.73

(0.06)

0.73

(0.06)

0.69

(0.07)

0.67

(0.07)

0.63

(0.08)

0.57

(0.09)

RKHS CMLM-RAN 0.70

(0.06)

0.77

(0.05)

0.79

(0.05)

0.77

(0.06)

0.75

(0.06)

0.67

(0.07)

0.51

(0.09)

0.39

(0.10)

FarmCPU-RAN 0.70

(0.05)

0.65

(0.07)

0.62

(0.08)

0.56

(0.09)

0.54

(0.09)

0.49

(0.10)

0.43

(0.10)

FarmCPU-FIX 0.71

(0.05)

0.72

(0.06)

0.72

(0.06)

0.67

(0.07)

0.65

(0.08)

0.61

(0.08)

0.56

(0.09)

FarmCPU-FIX-PS 0.71

(0.05)

0.72

(0.06)

0.72

(0.06)

0.67

(0.07)

0.65

(0.08)

0.61

(0.08)

0.56

(0.09)

*GBLUP, genomic best linear unbiased prediction; RKHS, reproducing kernel Hilbert space.
§CMLM-RAN and FarmCPU-RAN, traits-associated markers from compressed mixed linear model (CMLM) and fixed and random model Circulating Probability Unification (FarmCPU)

are treated as the random effects; FarmCPU-FIX, significant SNPs (p < 1.72E−05) are treated as the fixed effects and other remaining markers are treated as the random effects (fixed

model); FarmCPU-FIX-PS, the Q matrix is treated as the fixed effect in the fixed model.
†
100–40,000, the number of trait-associated markers.
#Prediction accuracy is represented by mean and standard deviation in brackets.

(Hao et al., 2019) and cotton fiber quality traits (Islam et al.,
2020). In this study, GBLUP showed a slight advantage over
RKHS and the other models using TAMs for HKW and KRN.
If additivity has a major effect, RKHS produces a similar
performance as other methods, whereas if non-additive effects
are present, it has a better prediction accuracy (Morota and
Gianola, 2014). Although no single model was consistently
performing better in all scenarios, RKHS could be the best
choice when the computation time and prediction accuracy were
comprehensively considered.

Except for GYP, the prediction accuracy of TAMs produced
by CMLM was consistently higher than that by FarmCPU. In

multiple species, FarmCPU outperformed CMLM and other
methods by controlling the inflation of p values, identifying
newly associated SNPs, and overlapping with the reported
loci (Liu et al., 2016). CMLM and FarmCPU use different
strategies to solve the confounding problem and improve
statistical power for the mixed linear model methods (Zhang
et al., 2010; Liu et al., 2016), which results in different
marker information. Different markers, marker distributions,
MAF, and multicollinearity might show the discrepancy in
accuracies of the two GWAS methods. Except for EW,
moderate and high accuracies were displayed in five models
using FarmCPU-derived TAMs for GYP and other traits,
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which were high enough to make efficient predictions. GS
can remarkably accelerate genetic gains by shortening the
breeding cycle even if moderate accuracies are achieved
(Heffner et al., 2010).

Genome-wide association study is a rapid and effective
method for identifying genetic variations in important
germplasms. Based on the prior knowledge of the underlying
genetic architecture detected by GWAS, the advantage of
integrating GWAS with GS was identified in our association
panel. Our results showed that subsets of TAMs that treated
significant SNP as the fixed effects or random effects could
improve the prediction accuracies of GYP and yield-related
traits compared with all markers. This was similar to the
results of the studies by Liu et al. (2020) and Yuan et al.
(2019), who reported that the prediction accuracy of marker
trait-associated SNPs was higher than that of all markers or
random genome-wide SNPs for maize grain yield, flowering
time, and Fusarium ear rot resistance. The study by Lozada
et al. (2019) proved that wheat yield achieved higher accuracies
using three subsets of associated markers that were selected
from GWAS in training populations compared with all markers.
Compared with GS without marker selection by GWAS,
TAMs as the random effects in GS increased the prediction
accuracies, regardless of which TAMs were selected from in
the full dataset or training set (Cericola et al., 2017; Liu et al.,
2019; Ali et al., 2020). In most cases, the prediction accuracy
was the highest at 100–5,000 TAMs and then decreased as the
number of markers increased for the eight traits. A similar
trend was observed in wheat grain yield based on GWAS-
derived markers (Lozada et al., 2019). The decreased trend
of the prediction accuracy was also found in many cases
where evenly distributed SNPs were used and three examples
where randomly selected markers were used in rice (Spindel
et al., 2015). Higher marker density caused a lower prediction
accuracy if significant SNPs were included, but resulted in a
higher accuracy if significant SNPs were excluded for simple
traits that were controlled by one or several genes with the
large effects (Zhang et al., 2019a). The multicollinearity and
complexity of GS models for the estimation of GEBVs became
severe when an increasing number of markers were used (Ali
et al., 2020), which might decrease the prediction accuracy.
The smaller number of TAMs that benefited higher accuracies
could be helpful to lower the costs of genotyping in GS-assisted
breeding. In general, GS based on GWAS results from the
full panel set could help to improve the prediction accuracies,
although the “inside trading” effects lead to inflated values
(Arruda et al., 2016).

In this study, treating one or several significant SNPs as the
fixed effects in GS models resulted in higher accuracies in most
cases, compared with those with only the random effects, which
was in accordance with the trends in accuracy improvement
shown in maize, wheat, and rice (Arruda et al., 2016; Spindel
et al., 2016; Herter et al., 2019; Odilbekov et al., 2019). The
incorporation of large-effect QTL or SNPs as the fixed effects
was also a promising strategy to improve the prediction accuracy
of GS (Bernardo, 2014; Herter et al., 2019). A slightly decreased

accuracy was observed in the fixed model of GBLUP and RKHS
for GYP, EW, and HKW. A similar result was also revealed in
wheat yield stability using GBLUP (Sehgal et al., 2020). Except
for HKW, the genetic architecture of GYP, EW, and yield stability
was complex and hard to capture, which was supported by
the fact that less robust SNPs with low phenotypic variation
were identified. These could lead to the results obtained for
these traits.

Integrating information on population structure into fixed
models did not improve prediction performance and, in some
cases, slightly decreased the accuracies. Similar results were
found in the study by Rio et al. (2019); when taking genetic
structure into account, the prediction accuracy of maize grain
yield, grain moisture, yield index, and male flowering did not
improve compared to standard GBLUP. However, Liu et al.
(2019) showed that taking three principal components as the
fixed effects in the random model could slightly improve the
prediction accuracy. In fact, the impact of population structure
on GS accuracy depends on many factors such as a priori
indicators, prediction strategies, allele effects, allele frequencies
between groups, the features of traits, and populations (Guo
et al., 2014; Liu et al., 2019; Rio et al., 2019). Extended models
that consider this information will guarantee high accuracies
of GEBV.

The major limitation of incorporating TAMs into GS
models depended on the accuracy of GWAS results. Marker
selection strategies based on p values or marker effects
might produce an improper marker set with low accuracies
if the GWAS was incorrect (Jeong et al., 2020). GWAS
results from the full data set that included the training
set and testing sets might produce an overfitted markers
set. In real GS-assisted breeding projects, the training set
is used to conduct prediction models and predict other
breeding populations that only have genotypes. Further
investigation is needed in order to validate the application
prospect of GS based on prior information from the GWAS
results.

Despite these limitations, the combination of GWAS and GS
offers an effective means for germplasm screening of traits with
low heritability where, for instance, a 1% increase in prediction
accuracy could improve genetic gains (Rice and Lipka, 2019).
Furthermore, continued enlargement of the association panel
by incorporating new fixed effects and high-quality phenotypic
data from multi-environment trials is expected to improve the
accuracy of GEBV. Besides, the marker information and training
population will be used to obtain an optimum breeding design
and improve genetic gains through reducing costs. Recently,
GMStool is developed to present the best prediction model with
the optimal marker set based on GWAS results (Jeong et al.,
2020), which provides a useful tool for breeders. As GBS, SNP
array technology, and other high-output genotyping strategies
arise, the genotyping costs are likely to continue to decrease,
whereas the phenotyping costs are usually steady or increasing
(Spindel et al., 2015). Therefore, the combination of GWAS and
GS will become a cost-effective method for selecting high-yield
germplasms in maize and other species.
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Tar spot complex (TSC) is one of the most important foliar diseases in tropical maize.
TSC resistance could be furtherly improved by implementing marker-assisted selection
(MAS) and genomic selection (GS) individually, or by implementing them stepwise.
Implementation of GS requires a profound understanding of factors affecting genomic
prediction accuracy. In the present study, an association-mapping panel and three
doubled haploid populations, genotyped with genotyping-by-sequencing, were used
to estimate the effectiveness of GS for improving TSC resistance. When the training
and prediction sets were independent, moderate-to-high prediction accuracies were
achieved across populations by using the training sets with broader genetic diversity,
or in pairwise populations having closer genetic relationships. A collection of inbred
lines with broader genetic diversity could be used as a permanent training set for TSC
improvement, which can be updated by adding more phenotyped lines having closer
genetic relationships with the prediction set. The prediction accuracies estimated with a
few significantly associated SNPs were moderate-to-high, and continuously increased
as more significantly associated SNPs were included. It confirmed that TSC resistance
could be furtherly improved by implementing GS for selecting multiple stable genomic
regions simultaneously, or by implementing MAS and GS stepwise. The factors of
marker density, marker quality, and heterozygosity rate of samples had minor effects
on the estimation of the genomic prediction accuracy. The training set size, the genetic
relationship between training and prediction sets, phenotypic and genotypic diversity
of the training sets, and incorporating known trait-marker associations played more
important roles in improving prediction accuracy. The result of the present study provides
insight into less complex trait improvement via GS in maize.

Keywords: maize, tar spot complex, genomic prediction, genomic selection, prediction accuracy, genotyping-by
sequencing
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INTRODUCTION

Tar spot complex (TSC), caused by an interaction of at least
three fungal species: Phyllachora maydis; Monographella maydis;
and Coniothyrium phyllachorae, is one of the most important
foliar diseases of maize (Zea mays L. subsp. mays) in many
Central and South American tropical and subtropical areas
(Hock et al., 1992; Pereyda-Hernández et al., 2009). TSC can
result in up to 75% grain yield loss, due to reduced ear
weight, low kernel filling, and loose kernels. Development and
deployment of maize varieties with genetic resistance is the
most economical and effective strategy for controlling TSC
(Ceballos and Deutsch, 1992).

Understanding the genetic architecture of TSC resistance
will allow breeders to improve their breeding efficiency by
the implementation of marker-assisted selection (MAS) or
genomic selection (GS) to introgress the resistance genes into
susceptible germplasm. A few studies have been conducted
to dissect the genetic architecture of TSC resistance in maize
(Mahuku et al., 2016; Cao et al., 2017). In a collection of 890
inbred lines genotyped with 56 K SNPs, three TSC resistance
loci on chromosomes 2, 7, and 8 were identified through
association mapping (AM) analysis. The major quantitative
resistance locus (QTL) detected on maize chromosome bin
8.03, was furtherly validated in three bi-parental populations
through linkage mapping analysis. Identification of the major
QTL on bin 8.03 provides the foundation for fine mapping this
major QTL and developing functional markers for implementing
MAS (Mahuku et al., 2016). The genetic architecture of TSC
resistance in maize was confirmed by combined AM and
linkage mapping using higher marker density, the major QTL
on bin 8.03 was narrowed down to a 33.6 million base pair
region, and the results showed that TSC resistance in maize
is controlled by a major QTL on bin 8.03, coupled with
several minor QTL with smaller effects on other chromosomes
(Cao et al., 2017).

Genomic selection is an extension of MAS that uses genome-
wide markers to predict the genomic estimated breeding values
(GEBVs) of the un-tested lines for selection, where the genome-
wide markers are used for selection without detection QTL
(Meuwissen et al., 2001; Edriss et al., 2017). In maize, GS
has been investigated to improve several major diseases, e.g.,
maize lethal necrosis resistance (Gowda et al., 2015; Sitonik
et al., 2019), northern corn leaf blight resistance (Technow
et al., 2013), ear rot resistance (Han et al., 2018; Liu et al.,
2020). These studies showed that GS is a promising approach
to improve the major diseases, which are under polygenic
control. Medium-to-high prediction accuracies were achieved in
these studies, and the factors affecting prediction accuracy were
assessed over a wide range of target traits. Key factors affecting
prediction accuracy include the heritability of the predicted
trait (Combs and Bernardo, 2013; Zhang et al., 2015), size of
the training set (Zhang et al., 2017), marker density (Spindel
et al., 2015), marker quality (Guo et al., 2020), phenotypic,
and genotypic variations of the target trait (Gowda et al.,
2015), the genetic relationship between training and prediction
sets (Isidro et al., 2015; Santantonio et al., 2020; Atanda et al.,

2021), and incorporating known trait-marker associations
(Bernardo, 2014; Wang et al., 2019), etc. A preliminary genomic
prediction analysis has been conducted to investigate the
effectiveness of implementing GS for improving TSC resistance
in maize, results showed that moderate-to-high prediction
accuracies were achieved within different populations using
various population sizes and marker densities (Cao et al.,
2017). The accuracy of predicting TSC resistance across
populations is still unknown under the different factors affecting
prediction accuracy.

In the present study, an association-mapping panel and
three doubled haploid (DH) populations, genotyped with
genotyping-by-sequencing (GBS), were used to estimate the
genomic prediction accuracy of TSC resistance in maize. The
main objectives of the present study are to: (1) estimate
the genomic prediction accuracy of TSC resistance across
populations, where the training and prediction sets are
different; (2) assess the effect of marker density, marker
quality, heterozygosity rate (HT) of samples, the genetic
relationship between training and prediction sets, incorporating
known trait-marker associations on estimation the genomic
prediction accuracy of TSC resistance; (3) explore training
population development base on the phenotypic variation
of TSC resistance.

MATERIALS AND METHODS

Plant Materials, Phenotyping, and
Phenotypic Data Analysis
In the present study, an AM panel and three bi-parental DH
populations were used. The AM panel, designated Drought
Tolerant Maize for Africa (DTMA) AM panel, consists of 282
tropical and subtropical inbred lines developed by the Global
Maize Program of International Maize and Wheat Improvement
Center (CIMMYT).

The three DH populations, namely Pop1, Pop2, and Pop3,
consists of 174, 100, and 111 lines, respectively. Each of the DH
populations was derived from an F1 cross formed between a
TSC resistant line and a TSC susceptible line, the protocol of
generating DH lines was described by Prasanna et al. (2012).
The resistant parental lines are widely used CIMMYT maize lines
showing good resistance to TSC, and the susceptible parental
lines are drought or drought and heat stress-tolerant lines (Yuan
et al., 2019) showing severe susceptibility to TSC. The Pop2 and
Pop3 shared a common donor line, and the susceptible parental
lines of these two populations were derived from the same genetic
pool through population improvement. The detailed information
of the parental lines was described by Cao et al. (2017).

The DTMA AM panel was evaluated for TSC response in
Mexico at five environments, i.e., in Puebla (Latitude: 20◦28′;
Longitude: −97◦38′; Mega environment: lowland tropical) in
2009, 2011 and 2012; in Guerrero (Latitude: 17◦02′; Longitude:
−99◦38′; Mega environment: lowland tropical) in 2012; and
in Veracruz (Latitude: 19◦15′; Longitude: −96◦12′; Mega
environment: lowland tropical) in 2012. Pop1 was evaluated for
TSC response at three environments, i.e., in Puebla in 2011
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and 2014; and in Guerrero in 2013. Pop2 was evaluated for
TSC response at four environments, i.e., in Puebla in 2012 and
2014, each year had two planting dates. Pop3 was evaluated
for TSC response at three environments, i.e., in Puebla in 2012
with two planting dates; and in Puebla in 2014 (Cao et al.,
2017). All the locations used for disease screening had high
and consistent natural pressure of TSC. A randomised complete
block design was used for all experiments with three replications
per location. Each plot consisted of a single 2-m row with
10 plants per row. The TSC score evaluation was performed
according to the methods described by Mahuku et al. (2016).
The disease severity was recorded using a scale of 1–5 with
a 0.5 increment, where 1 = highly resistant (HR), no visible
disease symptoms or lesions identifiable on any of the leaves;
5 = highly susceptible (HS), all leaves are dead, no green leaf
tissue remaining or disease symptoms on more than 80% of
the leaf surface.

MEATA-R software1 (Alvarado et al., 2020) was used to
analyze multi-location trials using a mixed linear model to
estimate the best linear unbiased prediction (BLUP) value of
genotypes and the broad-send heritability of the target trait in
each population based on the entry mean within trials. The mixed
linear model was applied as follows:

Yijk = µ+gi+ej+geij+rkej+εijk

where Yijk is the target trait, µ is the overall mean, gi, ej, and geij
are the effects of the i-th genotype, j-th environment, and i-th
genotype by j-th environment interaction, respectively. rkej is the
effect of the k-th replication within the j-th environment. εijk is
the residual effect of the i-th genotype, j-th environment, and k-th
replication. Genotype is considered as the fixed effect, whereas all
other terms are declared as the random effects.

Broad-sense heritability (H2) based on the entry means within
trials was estimated as follows:

H2
=

σ2
g

σ2
g+

σ2
ge
ne +

σ2
e

ne nr

where σ2
g , σ2

e , and σ2
ge are the genotypic variance, error

variance, and genotype-by-environment interaction variance,
respectively, and nr and ne are the numbers of replications and
environments, respectively.

Genotyping and SNP Calling
A commonly used GBS protocol was applied in the present
study, which was described in the previous studies (Elshire et al.,
2011; Wu et al., 2016; Wang et al., 2020). The SNP calling and
imputation was performed according to the methods previously
described (Glaubitz et al., 2014; Swarts et al., 2014). Both the un-
imputed and the imputed datasets were generated for all four
populations of the present study. The un-imputed datasets were
only used in the three DH populations to build the block maps to
perform linkage mapping analyses. The rest of the analyses were
performed with the imputed datasets. Initially, 955,690 SNPs,

1http://hdl.handle.net/11529/10201

evenly distributed on the 10 maize chromosomes, were called for
each of the genotyped samples.

Population Structure Analysis
The population structure analysis was performed with the
principal components analysis (PCA) in all the four populations,
where 232,538 SNPs, filtered with minor allele frequency (MAF)
greater than 0.05 and missing rate (MR) less than 20%, were
utilised. In the DTMA AM panel, the population structure
analysis was applied in software Structure V2.3.3 using an
admixture model-based clustering method (Hubisz et al., 2009),
where a sub-set of 10,000 SNPs with no missing values were
randomly selected to perform this analysis. The heat map of the
number of SNPs within 1 Mb physical position was shown in
Supplementary Figure 1, which indicates that the 10,000 SNPs
almost evenly distribute in 10 maize chromosomes. The average
linkage disequilibrium decay distance reported in the previous
study was 3.5 Kb at r2 = 0.1 (Cao et al., 2017). In the DTMA AM
panel, evenly distributed SNPs and rapid linkage disequilibrium
decay are able to avoid the introduction of bias of oversampling
SNPs in the linkage disequilibrium regions in the population
structure analysis. Hypotheses were tested for sub-population
number K ranging from 1 to 10, and each K was run seven times
with burn-in time and replications both to 100,000.

Genomic Prediction Analysis
The genomic prediction was implemented in the rrBLUP package
(Endelman, 2011). In each population, a five-fold cross-validation
scheme with 100 replications was used to estimate the prediction
accuracy of rMG. The 80% of the lines in each population were
randomly assigned as a training set to estimate the effect of the
molecular markers and train the prediction model, the rest of the
20% lines were assigned as a validation set in each replication
to get the GEBV of each line in the validation set. The average
correlation coefficient between the GEBVs and the observed
breeding values of the lines in the validation set was defined as
the prediction accuracy rMG. Within each of the four populations,
SNPs filtered with MAF greater than 0.05 and MR less than 20%,
were used for the genomic prediction analyses with a five-fold
cross-validation scheme.

Effect of the Genetic Relationship on the
Estimation of the Prediction Accuracy
According to the changes of ad hoc statistic delta K (1K) value,
the DTMA AM panel was divided into several subgroups. Within
each subgroup, a five-fold cross-validation scheme was used to
estimate the prediction accuracy of rMG. Besides, the predictions
were also conducted between pairwise subgroups, when one
subgroup was used as a training set to predict the other subgroup.

Across all the four populations, the predictions were also
conducted between pairwise populations, where SNPs filtered
with MAF greater than 0.05 and MR less than 20% across all
the four populations, were used for the genomic prediction
analyses. When the predictions were made across subgroups or
populations, the training and validation sets were independent,

Frontiers in Plant Science | www.frontiersin.org 3 July 2021 | Volume 12 | Article 672525146

http://hdl.handle.net/11529/10201
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-672525 July 12, 2021 Time: 17:44 # 4

Cao et al. GP of Maize TSC Resistance

and the prediction accuracy of rMG estimated in the validation set
was calculated from only a one-time analysis.

Effect of Marker Quantity and Quality on
the Estimation of the Prediction
Accuracy
To assess the effect of marker quantity and quality on the
estimation of the prediction accuracy, different parameters were
applied to filter the SNP dataset within each population to
perform the genomic prediction analyses. In each population, a
five-fold cross-validation scheme with 100 replications was used
to estimate the prediction accuracies. The prediction accuracies
were compared, when the SNP datasets filtered with different
parameters, were used for genomic prediction analyses.

Different levels of MAF, MR, and HT of the SNPs were used
to control the marker quantity and quality. Nine combinations
between three MAF levels and three MR levels were used to filter
the SNP dataset within each population, MAF setting at 0.05,
0.20, and 0.40; MR setting at 0.00, 10, and 20%. The HT of the
SNPs in the DTMA AM panel was set at 1, 3, 5, and 10% after
the SNPs were filtered with MAF of 0.05 and MR of 0%, and
the prediction accuracies were estimated with a five-fold cross-
validation scheme. The effect of the HT of the samples on the
estimation of the prediction accuracy was evaluated by setting
the HT of the samples at 1, 3, 5, and 10% in the populations
of DTMA and Pop1, where the SNPs filtered with MAF greater
than 0.05 and MR of 0% were used for prediction analyses. The
software of TASSEL V5.0 (Bradbury et al., 2007) was used to filter
the imputed dataset with MAF and MR. The customised R scripts
were used to filter the HT of the SNPs and samples.

Genomic Prediction Analyses With the
Significantly Associated Markers
Detected From the Genetic Mapping
Genomic prediction analyses with significantly associated
markers were performed to simulate MAS. In the previous study,
261,948 filtered SNPs were used to perform AM analysis in
the DTMA AM panel. In total, 155 SNPs were identified that
were significantly associated with TSC resistance in maize at
the threshold of −log10 (P) > 4.53 (Cao et al., 2017). A five-
fold cross-validation scheme was used to assess the accuracies of
genomic predictions conducted with the significantly associated
markers and the same number of random-selected markers, the
number of markers was set as 1, 2, 3, 4, 5, 10, 20, 155, 500,
1000, 3000, 5000, 10,000, 30,000, 50,000, 100,000, and 200,000.
The significant markers were selected based on their −log10 (P)
value, and their chromosome positions. The most significantly
associated SNPs were selected on all chromosomes firstly, and
then the second significant-associated SNPs were selected.

A block map was constructed in each of the three DH
populations to perform linkage mapping in a previous study (Cao
et al., 2017), where the blocks were treated as genetic markers to
construct the genetic map. In total, 437 blocks in Pop1, 494 blocks
in Pop2, and 493 blocks in Pop3 were built with 20,473, 27,818
and 326,07 SNPs, respectively. In the software of QTL IciMapping
Version 4.1 (Meng et al., 2015), the single-marker analysis

method was used to perform the linkage mapping analyses and
rank the scores of the log of the odds of all the blocks, the scores
of the log of the odds representing the significant levels of the
association between the block and the TSC resistance. A five-
fold cross-validation scheme was used to assess the accuracies of
genomic predictions conducted with the significantly associated
markers and the same number of random-selected markers, the
number of markers was set as 5, 10, 15, 20, 30, 50, 100, 200, 300,
400, and all the blocks in each population.

In the above analyses, the prediction accuracy could be
overestimated, because the same population was used to identify
the significantly associated markers firstly, and then it was
used to calculate the prediction accuracy estimated with the
significantly associated markers. To avoid the overestimated
prediction accuracy, the 150 significantly associated markers
detected from the DTMA AM panel were used for estimating
the prediction accuracy in each of the three DH populations,
when the DTMA AM panel was used as the training set, and the
DH population was used as the validation set. For comparison,
150 randomly selected markers were also used to estimate the
prediction accuracy in each of the three DH populations.

Training Set Development Based on the
Phenotypic Variation of TSC Resistance
According to the phenotypic variation information of the TSC
resistance in each population, training sets were formed. Four
scenarios were simulated and compared within each of the four
populations, where the training set was formed by sampling the
same percentage of materials with a selection from both resistant
and susceptible tails (R + S), with random selection (RD), with
a selection from the resistant tail (R), with a selection from the
susceptible tails (S), respectively. In each scenario, the validation
set was the whole population, and the training set ranged from 20
to 60%, with an interval of 20%. In each of the four populations,
a total of 12 combinations and comparisons were conducted
between the four scenarios and the three percentage levels of
the training set.

RESULTS

Phenotypic Variation, Heritability, and
Phenotypic Correlation Between
Locations
The BLUP value of TSC resistance of all the genotypes across
the four populations ranged from 1.31 to 4.39. The Pop3 had
the widest range of variation among the four populations. The
minimum BLUP value was 1.31,1.81, 1.18, and 1.37 in the DTMA
AM panel, Pop1, Pop2, and Pop3, respectively. The maximum
BLUP value was 3.23, 3.00, 3.95, and 4.39 in the DTMA AM
panel, Pop1, Pop2, and Pop3, respectively. The heritability of
TSC resistance across locations was 0.80, 0.54, 0.88, and 0.93
in the DTMA AM panel, Pop1, Pop2, and Pop3, respectively.
The average phenotypic correlation coefficient of TSC resistance
between locations was 0.47, 0.37, 0.68, and 0.84 in the DTMA AM
panel, Pop1, Pop2, and Pop3, respectively.
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Population Structure Analysis Within and
Among Populations
According to the ad hoc statistic 1K value changes, the DTMA
AM panel was divided into three subgroups, the number of lines
was 40, 111, and 131 in Subgroups 1, 2, and 3, respectively (Cao
et al., 2017). Most of the lines in Subgroup 1 were from the
Mexico physiology research group, lines in Subgroup 2 were
mainly from the subtropical breeding program, and lines in
Subgroup 3 were mainly from the lowland tropical breeding
program. The result of the structure split for all the Ks (1–
10) was provided in Supplementary File 1. The population
structure within the DTMA AM panel was illustrated with the
first two principal components in Figure 1A, where the results
showed the first and second principal components explained
4.48 and 3.66% of the total SNP variation, respectively. Some
lines from each subgroup centrally clustered with each other,
indicating the moderate level of genetic relatedness among
the subgroups. The inbred lines in the Subgroup 3 were
most widely scattered, implying the broadest genetic diversity
presented in Subgroup 3 among all the three subgroups.
These observations are consistent with the current germplasm
exchange patterns where there is a constant flow of germplasm
among the subgroups.

The genetic relationship among the four populations was
illustrated with the first two principal components in Figure 1B,
where the results showed the first and second principal
components explained 14.11 and 7.57% of the total SNP
variation, respectively. The inbred lines in the DTMA AM
panel were most widely scattered, implying the broadest genetic
diversity presented in the DTMA AM panel among all four
populations. The DTMA AM panel was not overlapped with any
of the three bi-parental populations, the Pop1 was not overlapped
with either the Pop2 or the Pop3. The Pop2 was overlapped
with the Pop3, due to the common parent shared by these two
populations, it indicated the closest relationships between these
two populations.

Genomic Prediction Accuracies
Obtained Within and Across Populations
and Subgroups
Genomic prediction accuracies obtained from five-fold cross-
validations and 100 replications were high in all four populations,
when the SNP datasets, filtered with MAF greater than 0.05 and
MR less than 20%, were used to perform prediction within each
population. The number of SNPs after filter in the DTMA AM
panel, Pop1, Pop2, and Pop3 were 261,948, 98,018, 102,204, and
104,046, respectively. The rMG values observed in the DTMA AM
panel, Pop1, Pop2, and Pop3 were 0.56, 0.60, 0.75, and 0.69. The
rMG value observed in the DTMA AM panel was lower than those
observed in the DH populations.

Genomic prediction accuracies obtained from five-fold cross-
validations and 100 replications were low to moderate within the
three subgroups of the DTMA AM panel (Table 1). The rMG
values observed in the Subgroup 1, Subgroup 2, and Subgroup
3 were 0.27, 0.55, 0.35, respectively. The rMG values observed in

the subgroups of the DTMA AM panel were lower than those
observed in the DTMA AM panel.

Genomic prediction accuracies obtained across subgroups
were relatively low when the predictions were performed between
pairwise subgroups (Table 1). The rMG values observed between
pairwise subgroups ranged from −0.30 to 0.33, the relative high
prediction accuracies were observed, when Subgroup 3 was used
as a training set to predict the other two subgroups, because of the
bigger population size and broadest genetic diversity presented
in Subgroup 3 contributing to the improvement of prediction
accuracy. The rMG values observed between pairwise subgroups
were lower than those observed within the subgroups.

Genomic prediction accuracies obtained across populations
varied in different scenarios and ranged from 0.20 to 0.64
(Table 2). The plots of the correlation between the predicted and
the observed BLUP values for these predictions were shown in
Supplementary Figure 2. When the DTMA AM panel was used
as the training set, the rMG values observed in the Pop1, Pop2,
and Pop3 were 0.45, 0.61, and 0.55, respectively. When the DH
populations were used as the training set to predict the DTMA
AM panel, the rMG values observed in the DTMA AM panel
were relatively low and ranged from 0.20 to 026. The rMG values
observed between the pairwise DH populations were moderate
to high and ranged from 0.36 to 0.64. The highest rMG values
were observed in pairwise populations of Pop2 and Pop3, i.e.,
0.64 and 0.60. The lowest rMG values were observed in pairwise
populations of Pop1 and Pop3, i.e., 0.36 and 0.40.

Genomic Prediction Accuracies
Obtained From Different Levels of
Marker Density, Marker Quality, and
Heterozygosity Rate of Samples
Across all the populations, the number of markers decreased as
the MAF increased and the MR decreased, the marker quality
improved as the number of markers decreased. The maximum
number of markers and the highest MD were observed by filtered
the SNPs with the combination of MAF of 0.05 and MR of
20%, the minimum number of markers and the lowest MD were
observed by filtered the SNPs with the combination of MAF
of 0.40 and MR of 0%. The number of SNPs filtered with the
combination of MAF of 0.05 and MR of 20% in the DTMA
AM panel, Pop1, Pop2, and Pop3 was 261,948, 98,018, 102,204,
and 104,046, respectively. The number of SNPs filtered with
the combination of MAF of 0.40 and MR of 0% in the DTMA
AM panel, Pop1, Pop2, and Pop3 was 1144, 61,471, 65,923, and
61,525, respectively.

The prediction accuracy results estimated in all the four
populations under the nine marker datasets filtered with the
combinations of MAF and MR were shown in Figure 2. Within
each population, the rMG values estimated with the different
marker datasets were slightly different. The rMG values ranged
from 0.54 to 0.58 in the DTMA AM panel, from 0.59 to 0.61 in
the Pop1 population, from 0.75 to 0.78 in the Pop2 population,
and from 0.65 to 0.71 in the Pop3 population. Across all the
populations, relatively high and similar prediction accuracies
were obtained across all levels of MAF and MR, indicating that
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FIGURE 1 | Results of the principal components (PC) analysis in the (A) DTMA association mapping panel, and in (B) all the four populations of DTMA association
mapping panel, Pop1, Pop2, and Pop3.

the levels of MAF and MR had minor effects on the estimation of
the prediction accuracy.

The prediction accuracy results of all the four populations
estimated at the four levels of HT of SNPs at 1, 3, 5, and 10%
were shown in Figure 3. Under the combination of MAF of 0.05
and MR of 0%, the number of markers in the DTMA AM panel

TABLE 1 | Genomic prediction accuracies for TSC resistance obtained between
the three subgroups of the DTMA association mapping panel.

Training set (number of lines) Validation set Prediction accuracy

Subgroup 1 (40) Subgroup 1 0.27

Subgroup 2 −0.08

Subgroup 3 −0.03

Subgroup 2 (111) Subgroup 2 0.55

Subgroup 1 −0.3

Subgroup 3 0.07

Subgroup 3 (131) Subgroup 3 0.35

Subgroup 1 0.16

Subgroup 2 0.33

TABLE 2 | Genomic prediction accuracies for TSC resistance obtained between all
the four populations of DTMA association mapping panel, Pop1, Pop2, and Pop3.

Training set (number of lines) Validation set Prediction accuracy

DTMA (282) Pop1 0.45

Pop2 0.61

Pop3 0.55

Pop1 (174) DTMA 0.26

Pop2 0.61

Pop3 0.40

Pop2 (100) DTMA 0.20

Pop1 0.52

Pop3 0.60

Pop3 (111) DTMA 0.23

Pop1 0.36

Pop2 0.64

filtered with the HT of SNPs at 1, 3, 5, and 10% were 582, 4274,
7503, and 10,065, respectively. The rMG values estimated from the
number of SNPs of 582, 4274, 7503, and 10,065 were 0.45, 0.53,
0.53, and 0.54, respectively (Figure 3A). A significant increase
of the rMG value was observed in the DTMA AM panel, when
the HT of SNPs changed from 1 to 3% and the number of SNPs
increased from 582 to 4274. Under the combination of MAF
of 0.05 and MR of 20%, the number of markers in all the DH
populations were filtered with the HT of SNPs at 1, 3, 5, and 10%.
The slight differences were observed on the rMG values, as the
HT of SNPs increased in all the DH populations (Figures 3B–D).
These results indicated that the effect of HT of SNPs on the
estimation of the prediction accuracy is mainly caused by the
changes in the number of SNPs.

The prediction accuracy results of all the four populations
estimated at the four levels of HT of samples at 1, 3, 5, and
10% were shown in Figure 4. Under the combination of MAF
of 0.05 and MR of 0%, the number of samples in the DTMA
AM panel filtered with the HT of the sample at 1, 3, 5, and 10%
were 120, 184, 219, 250, respectively. The rMG values estimated
in the DTMA AM panel at the HT of samples of 1, 3, 5, and
10% were 0.53, 0.57, 0.56, and 0.56, respectively. In Pop1, the
number of samples filtered with the HT of samples at 1, 3, 5,
and 10% was 92, 165, 171, and 174, respectively. The rMG values
estimated in Pop1 at the HT of samples of 1, 3, 5, and 10% were
0.59, 0.59, 0.59, and 0.61, respectively. In Pop2, the number of
samples filtered with the HT of samples at 1, 3, 5, and 10% was
46, 95, 100, and 100, respectively. The rMG values estimated in
the Pop2 at the HT of samples of 1, 3, 5, and 10% were 0.65,
0.76, 0.77, and 0.77, respectively. In the Pop3, the number of
samples filtered with the HT of samples at 1, 3, 5, and 10% was
77, 111, 111, and 111, respectively. The rMG values estimated
in Pop3 at the HT of samples of 1, 3, 5, and 10% were 0.68,
0.69, 0.69, and 0.69, respectively. Similar trends were observed
across all four populations, the slight increases were observed on
the rMG values, as the HT of samples increased. These results
showed that the effect of HT of samples on the estimation of
the prediction accuracy is mainly caused by the changes in the
number of samples.
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FIGURE 2 | Genomic prediction accuracies for TSC resistance estimated from the five-fold cross-validation scheme in all the four populations of (A) DTMA
association mapping panel, (B) Pop1, (C) Pop2, and (D) Pop3, under the nine levels of marker density (MD) filtered with the combinations of three levels of minor
allele frequency (MAF) and three levels of missing rate (MR).

FIGURE 3 | Genomic prediction accuracies for TSC resistance obtained in the (A) DTMA association mapping panel, (B) Pop1; (C) Pop2; (D) Pop3, under the
different levels of marker density (MD) at the four levels of heterozygosity rate (HT) of SNPs at 1, 3, 5, and 10%, and filtered with the combination of minor allele
frequency (MAF) of 0.05 and missing rate (MR) of 0%.
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FIGURE 4 | Genomic prediction accuracies for TSC resistance obtained in the four populations of the (A) DTMA association mapping panel, (B) Pop1, (C) Pop2,
and (D) Pop3, at the four levels of heterozygosity rate (HT) of samples of 1, 3, 5, and 10%, and the different number of samples (NS).

FIGURE 5 | Genomic prediction accuracies for TSC resistance estimated with the same number of significant and random markers in all the four populations of
(A) DTMA association mapping panel, (B) Pop1, (C) Pop2, and (D) Pop3.
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Genomic Prediction Accuracies
Obtained From the Significantly
Associated Marker
Genomic prediction accuracies in all the four populations
estimated with the significantly associated SNPs were shown
in Figure 5, where relatively high rMG values were obtained
with a few significantly associated markers in each of the four
populations. The rMG values obtained from the significantly
associated SNPs were consistently higher than those obtained
from the same number of randomly selected markers. In the
DTMA AM panel, the number of significant-associated markers
detected on the chromosomes of 2, 3, 7, and 8, were 1, 3, 1,
and 150, respectively. The significantly associated SNPs used
for prediction were ranked based on the information of their
significant p-values and physical positions, and the top five
significantly associated SNPs with the lowest p-values used for
prediction were selected from the chromosomes of 8, 3, 2, 7, and
3, respectively. In the DTMA panel, the rMG value obtained from
the most significantly associated SNP on chromosome 8 was 0.37.
The rMG values obtained from the top two, top three, top four,
and top five significantly associated SNPs were 0.49, 0.54, 0.58,
and 0.59, respectively. The rMG values consistently increased, as
more significantly associated SNPs were used for prediction. The
rMG values reached the plateau, once the number of significantly
associated SNPs used for prediction increased to more than 500.
Similar trends were observed in the three DH populations, the
rMG values obtained from the significantly associated markers
were consistently higher than those obtained from the same
number of randomly selected markers, the rMG values reached the
plateaus in the DH populations, once the number of significantly
associated markers used for prediction increased to more than
50. These results indicated that incorporating the significantly
associated SNPs into GS has the potential for improving the
prediction accuracy.

Genomic prediction accuracies in the DH populations of
Pop1, Pop2, and Pop3 estimated with the 150 significantly
associated SNPs were higher than those estimated with the
same number of randomly selected SNPs (Table 3), when the
DTMA AM panel was used as the training set to predict the
DH population as the validation set. The genomic prediction
accuracies estimated with the 150 significantly associated SNPs
were 0.39, 0.49, and 0.43 in the Pop1, Pop2, and Pop3,
respectively. The genomic prediction accuracies estimated with

TABLE 3 | Genomic prediction accuracies in the DH populations of Pop1, Pop2,
and Pop3 estimated with the 150 significantly associated SNPs and the same
number of randomly selected SNPs.

Training
set

Validation
set

Prediction accuracy
estimated with the

150 significantly
associated SNPs

Prediction accuracy
estimated with the

150 randomly
selected SNPs

DTMA Pop1 0.39 0.09

DTMA Pop2 0.49 0.15

DTMA Pop3 0.43 0.11

the 150 randomly selected SNPs were 0.09, 0.15, and 0.11 in the
Pop1, Pop2, and Pop3, respectively.

Training Set Development Based on the
Phenotypic Variation of the Target Trait
For all the four populations, the results of the prediction
accuracies estimated in the 12 combinations between the four
scenarios and the three percentage levels of the training set were
presented in Figure 6. Across all four scenarios, the prediction
accuracy increased in all the populations as the increase of
percentage of the training set. For example, the prediction
accuracies in the scenario of R+S were 0.72, 0.82, and 0.87, when
the percentages of the training set in the DTMA panel were set as
20, 40, and 60%, respectively. Under the same percentage of the
training set, the scenario of R+S outperformed the other three
scenarios, and the scenario of RD outperformed the other two
scenarios of R and S. For example, the prediction accuracy in
the DTMA panel at the percentage of the training set at 60%
were 0.87, 0.81, 0.59 and 0.71 for the scenario of R+S, RD, R,
and S, respectively. Similar trends were also observed in the three
DH populations. These results indicated that the training set
development with broad phenotypic variation has the potential
improving prediction accuracy.

DISCUSSION

In tropical and subtropical areas of Central and South America,
TSC is one of the most destructive foliar diseases of maize, it
may cause up to 75% grain yield loss. A few genetic studies
have been conducted to dissect the genetic architecture of
resistance to TSC of maize (Mahuku et al., 2016; Cao et al.,
2017), where the heritabilities of TSC in different populations
were medium-to-high, revealing that the phenotypic selection
is effective for improving TSC resistance. However, improving
TSC resistance through phenotypic selection is cost-intensive and
time-consuming, because multiple location trials are required to
improve TSC resistance through phenotypic selection.

Previously published studies revealed that TSC resistance in
maize is controlled by a major QTL on bin 8.03, coupled with
several minor QTL with smaller effects on other chromosomes.
Fine mapping the major QTL on bin 8.03 and developing
function markers associated with this major QTL will facilitate
the implementation of MAS for improving breeding efficiency,
and saving cost. In the present study, the effectiveness of MAS was
simulated, when a few significantly associated SNPs were used
for GS. In the DTMA panel, the prediction accuracy estimated
with the most significantly associated SNPs on bin 8.03 was
0.37, and the prediction accuracy continuously increased as more
significantly associated SNPs were used for GS. A similar trend
was also observed in the three DH populations. These results
implied that it is effective to improve the TSC resistance in maize
by implementing MAS for introgression of the major QTL on
bin 8.03 into susceptible germplasm. Moreover, TSC resistance
in tropical maize could be furtherly improved by implementing
GS for selecting multiple stable genomic regions simultaneously,
or by implementing MAS and GS stepwise.
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FIGURE 6 | Genomic prediction accuracies estimated in the 12 combinations between the four scenarios and the three percentage levels of the training set (20, 40,
and 60%) in the four populations of (A) DTMA association mapping panel, (B) Pop1, (C) Pop2, and (D) Pop3. The scenario of R + S represents the selection from
both resistant and susceptible tails, RD represents the random selection, R represents the selection from the resistant tail, S represents the selection from the
susceptible tail.

In maize, GS has been shown as an effective genomic tool
to improve breeding efficiency and accelerate genetic gain over
a wide range of target traits with different levels of genetic
complexity (Crossa et al., 2017). GS was implemented in various
kinds of the population to estimate the genomic prediction
accuracy of different target traits in several previous studies (Zhao
et al., 2012; Vélez-Torres et al., 2018). In the previous study,
moderate-to-high prediction accuracies of TSC resistance were
achieved within each of the four populations (Cao et al., 2017).
In the present study, moderate-to-high prediction accuracies
were achieved across populations by using the training sets
with broader genetic diversity, and in pairwise populations
having closer genetic relationships. These results implied that a
collection of inbred lines with broader genetic diversity could
be phenotyped in multiple locations and used as a permanent
training set, which will be employed to implement GP on the
untested new populations. The training set could be updated
by incorporating more new phenotyped lines, which have closer
genetic relationships with the prediction set. Therefore, higher
prediction accuracies can be achieved by strengthening the
genetic relationship between the training and prediction sets
and increasing the size of the training set (Riedelsheimer et al.,
2013). This strategy will enhance breeding efficiency and save
costs dramatically for improving TSC resistance in a breeding
program. Moreover, a common training set also could be built
for the implementation of GS on multiple traits improvement,

especially for the less complex traits of foliar diseases or
nutritional quality traits in maize, which can be predicted very
well by using a collection of inbred lines with broad genetic
diversity as the training set.

Implementation of GS requires a profound understanding of
factors affecting genomic prediction accuracy (Zhang et al., 2017).
In the previous study, the effects of training set size and marker
density on the estimation of the genomic prediction accuracy
of TSC resistance were investigated (Cao et al., 2017). In the
present study, the effects of factors of marker density, marker
quality, HT of samples, phenotypic diversity of the training set,
incorporating known trait-marker associations on the estimation
of the genomic prediction accuracy of TSC resistance were
furtherly assessed. Results showed that the levels of MAF, MR,
and HT of SNPs had minor effects on the estimation of the
prediction accuracy. The effects of MAF, MR, and HT of SNPs
on the estimation of the prediction accuracy are mainly caused
by the changes in the number of SNPs. Once the number of
SNPs is saturated on each chromosome, and at least one SNP
per linkage disequilibrium block is selected for prediction, the
prediction accuracy reaches a plateau (Lorenzana and Bernardo,
2009). There is a tradeoff between the number of markers and
marker quality, marker quality becomes lower as the number
of markers increases in a specific marker dataset. Appropriate
levels of MAF, MR, and HT of SNPs should be considered
and selected to improve the prediction accuracy and reduce the
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computational burden by balancing the number of markers and
marker quality, this result is consistent with several previous
studies (Guo et al., 2020). Within each of the four populations,
slight increases in prediction accuracy were also observed, as
the HT of samples increased and the training set size enlarged,
indicating that training set size is an important factor improving
prediction accuracy (Combs and Bernardo, 2013).

Selective genotyping is proposed to improve QTL mapping
and save cost in bi-parental populations, where only the
individuals from one or two tails with extreme phenotypic values
are genotyped (Sun et al., 2010). In the present study, the R + S
scenario built the training set by selecting the individuals from
two tails with extreme phenotypic values, the R + S scenario had
higher prediction accuracies than those in other scenarios. Taking
the advantages of more accurate phenotyping and abundant
phenotypic variation, the R + S scenario outperformed other
scenarios. It implies that prediction accuracy can be improved by
developing a training set with broad phenotypic variation, as well
as broad genotypic diversity indicated in several previous studies
(Gowda et al., 2015; Guo et al., 2020).
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Genome-assisted prediction of complex (e.g., quantitative) traits is an ingredient of “Genomic
Selection,” a paradigm adopted successfully in animals and plants of agricultural importance. The
approach has impacted the timing of selection decisions, and it has delivered improvements in the
quality of predictions (“accuracy”) relative to what can be attained by the use of pedigrees and
phenotypes. It has enhanced the rate of response to genetic selection and spectacularly so in dairy
cattle, at least as suggested by genome-based estimates of genetic change. Researchers have spent
much effort in developing and adapting prediction machines, and the author will focus on this
matter, with mild excursions into tangential issues. The material is organized into nine sections
and, since the author was to opine, it represents a set of personal views, rather than a review of
literature, made retrospectively.

1. Deconstruction of “genetic architecture”: Molecular genetics and biochemistry confirm that
the theory of quantitative genetics provides just a linear (local) approximation to complexity with
little (if any) mechanistic value. The intricate interactions and feedbacks inherent in biological
systems cannot be captured by simple linear regressions, even if highly-dimensional regression
models are fitted to the data. The effective dimension of a model cannot exceed the sample
size. For example a model with 5 million parameters run with a sample size of 500 does
not provide meaningful estimates of more than 500 distinct estimable functions of parameters:
individual site effects are not likelihood-identified. The view that quantitative genomics can
unravel the “genetic architecture” of complex traits by providing an inventory of allelic frequencies
and allelic substitution effects, or by a decomposition of variance (typically complicated by
strong linkage disequilibrium) is equivalent to stating that tons of bricks, steel, and glass can
represent Zaha Hadid’s new Beijing airport or Frank’s Gehry’s Guggenheim Museum at Bilbao.
The author often refraines from using the buzz term “genetic architecture” and favores “statistical
architecture” instead.

2. Crumbs are not bread: The QTL paradigm [superseded by zillions of genome-wide
association study (GWAS) in human genetics] has had a minor impact on agricultural
practices (fertilization, management, etc.), with few exceptions. GWAS with single-marker
regression is also insufficient because it accounts for little genetic variation (except for major
effect variants at intermediate frequencies, which are “caught” by observation anyhow), apart
from ignoring interactions as stated above. Although a more complex model may improve
learning, the author has not seen reports where variable selection methods and members
of the Bayesian alphabet capture signals much more effectively than a simple GWAS run
with large samples, as in human genetics consortia. Shrinkage methods are typically “vector
optimized” (with ridge regression notoriously so), and the borrowing of information facilitated
by proper priors tends to make signals similar to each other. Bayesian variable selection (BVS)
with spike-slab distributions may be more powerful, but signals from large-effect variants
are strengthened at the expense of mitigating small effects. In BVS or LASSO, the “richer
get richer and the poorer get poorer” whereas ridge regression is more “social democrat,”
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making effect-size estimates similar to each other. If a pizza for
500 persons is divided into 5 million unexpected guests, each
will end up getting a crumb. The perception of the author is that
advances in the resolution and causality of small-effect variants
via GWAS and genome-enabled prediction have been marginal,
at least in agriculture.

3. Corroboration vs. induction: The main contributions
of quantitative genetics (genomics) have been in description,
prediction, and decision, e.g., selection choices, inbreeding
management, and optimum contribution theory, as opposed
to inference. In predictive approaches, genomic heritability or
correlations take the role of “regularization knobs” (i.e., not
viewed as parameters with existential meaning) for constructing
prediction machines. The objective is to make statements about
yet-to-be-observed phenotypes based on some training data.
Predictions can be calibrated empirically, but inferences cannot.
How can one say that an estimate of an entelechy, such as
heritability is bad or good? Following Descartes: “I cannot be
observed, therefore, I do not exist.” According to Encyclopedia
Britannica, for Descartes to prove that heritability exists, one
must assume it does. For prediction, “there is no need for that
hypothesis” as often attributed to Laplace.

4. Occam’s razor resurrected:A less recognized but important
ingredient of the study on genomic selection of Meuwissen
et al. (2001), was the use of predictive cross-validation employed
earlier in plant breeding but almost completely ignored in
animal breeding. In the latter field, the ideas of Henderson
(1963, 1973, 1984) encouraged work in developingmore complex
and bigger models, based on the (incorrect) perception that
bigger was better. An example is multiple-trait longitudinal
models for dairy cattle, producing cow-specific curves at
the genetic and environmental levels for several lactations
in hundreds of thousands of genetically related cows! Little
attention had been devoted to evaluating whether or not a
simple model would predict better than a bigger one. The
use of cross-validation in genome-enabled prediction debunked
the widespread perception. Big complex models make more
assumptions and, with finite sample sizes, it is not uncommon
that such models lack robustness, thus failing to deliver better
predictions. During the 20th century, model choice received
scant formal consideration in animal breeding, a notable
exception being a study by Sorensen and Waagepetersen (2003).
Genomic selection with cross-validation helped to refute older
views. Simplicity can be effective and is often elegant.

5. Prediction is inclusive: There is no universally best
genome-based prediction machine for animal or plant breeding.
The relative performance of the various methods depends mainly
on the information content and structure of the training set, and
on the extent to which a configuration of genotypes spanned
in the training process will also appear in the testing set. These
two aspects are difficult to evaluate ex ante. Often, the size
of the training sample or functions thereof, e.g., Daetwyler
et al. (2008), are used as a proxy for the “expected quality” of
predictions. However, a sample may be huge and yet convey little
information. The plant breeding group in Munich has worked
(e.g., Auinger et al., 2021) in assessing genomic measures of
information content, such as molecular diversity present in a

training sample, and attempting to connect these metrics to
predictive outcomes. For instance, a strong underlying structure
may affect prediction adversely, even in large samples, so
conceivably it could be modified to enhance the quality of
outcomes. The larger the overlap between training and testing
samples, the more relevant to a target population the statements
made from training data will be. George Box andNormanDraper
(my teacher in a regression course I took in 1972) taught: “Never
extrapolate beyond the experimental region”. Suppose a prediction
machine “sees” 50% AABB and 50% aabb individuals in the
training process. However, the testing set has the configuration
1
3AABB +

1
3AaBb +

1
3aabb. Both sets have the same allelic

frequencies, but the testing set contains a “novelty,” AaBb, so the
prediction machine would be extrapolating. Genetic relatedness
is a measure of such overlap, but the driving force is the degree
of molecular similarity between individuals in the corresponding
data partitions. Random replication of cross-validation may
produce an estimate of an upper bound for predictive ability.
Even when both training and testing sets are representative of a
target population, the performance of prediction methods often
depends on cryptic interplays between environment, trait and
model complexity (effective number of parameters fitted vis-a-vis
effective training sample size).

It is futile to have information-rich training samples but
unrepresentative and ridiculously small testing sets, as large
variation among outcomes of similar prediction exercises is
to be expected. Small testing sets and failure to replicate
cross-validation in some studies have produced results where
models accommodating dominance and epistasis appear as
delivering a somewhat better performance than additive
prediction models. Such results may be “false positives” reflecting
chance, rather than signal.

6. And the Oscar goes to. . . :A simplemethod such as genomic
best linear unbiased predictor (GBLUP) may tell something
about the state of nature and perform adequately. An involved
procedure, such as a deep neural network (DNN), may tell
nothing and yet produce spectacular results, although it has failed
miserably in some studies. Like all neural networks, a DNN is
regarded as “universal approximator.” An ongoing meta-analysis
of hundreds of studies made in INIA, Spain (disclaimer: I will be
a coauthor) places reproducing kernel Hilbert spaces regression
(RKHS); e.g., Wahba (2007) methods ahead of others, but only
slightly. Work with animals and plants and with various field
crops in CIMMYT (e.g., Costa-Neto et al., 2021) has shown the
flexibility of kernel methods for capturing genome-environment
interactions and environmental similarities. InWisconsin, RKHS
has been extended to the single-step BLUP setting, and the
CIMMYT group is developing a multiple-trait Bayesian RKHS.
Last, but not the least, RKHS is the mother of GBLUP, along the
lines that Gibbs sampling is a child of the Metropolis-Hastings
algorithm for Markov chain Monte Carlo sampling.

Animal breeding industries have embraced GBLUP, and there
seems to be little scope for adoption of the Bayesian alphabet
models (the membership of this club is converging to infinity) for
routine use, but there can be exceptions. GBLUP is a “good thing”
as pointed out in the early ’90s, and we have known for a while
that it is not only a special case of RKHS, but also a maximum
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penalized likelihood estimator, a linear neural network, and
that it has a Bayesian interpretation. It has been extended to
cross-sectional, multi-trait, longitudinal situations and has been
“robustified.” Importantly, software developed mainly at the
University of Georgia by Misztal allows crunching millions of
predicted genomic breeding values. GBLUP with mild tweeks
will probably remain the technology (term used deliberately)
of choice for genetic evaluation of selection candidates. The
science of genome-enabled prediction has arrived at a reasonable
destination, but the voyage will continue, and new data will
bring challenges.

7. Help needed:Despite an abundance of chips enabling large-
scale genotyping, training samples are seldom drawn at random,
thus unrepresentative. This situation constitutes a selection
process that is often not considered in predictive models. Animal
breeders have been widely influenced by the “selection bias” study
of Henderson (1975), based on questionable assumptions, as
pointed out first by Robin Thompson (1979). Ad-hoc approaches
and arguments have been used for justifying some forms of
analysis or modeling, such as the notion of treating a large
number of contemporary groups as fixed, leading to inefficient
estimation (James-Stein “inadmissibility” argument; Judge et al.,
1985). The arguments were based on an obscure notion of bias
removal advocated by Henderson. Such views have carried into
genome-enabled prediction in animal breeding. The problem
of employing selected samples for inference and prediction
stands and should be studied with more rigor, e.g., via missing
data theory.

8. Bias against bias: The notion of statistical “bias” continues
to be misunderstood. GBLUP is believed (just consider its name)
to be an unbiased predictor, but it is identical to ridge regression
in some settings. However, ridge regression is a biased estimator.
Is this a Dr. Jekyll Mr. Hide issue or some statistical bipolarity?
The answer is that prediction and estimation unbiasedness have
different definitions! Say you own a plant or a bull called
“Charlie,” a fixed entity with identity (e.g., if Charlie is AA, it
has a specific breeding value that possibly differs from that of
Aa or aa). You are not interested in learning the average of a
(very) large sample of potential Charlies; rather, you seek the
breeding value of the Charlie you have. If ridge regression is used
to estimate the breeding value of Charlie, Dr. Jekyll says there is
estimation bias, butMr. Hide states that there would be none. The
latter is wrong (in the bias sense) with respect to Charlie, but not
with respect to an average of potential Charlies, some of which
will be AA, some Aa, and some aa. All good members of the
Bayesian alphabet including GBLUP, with its appealing Bayesian
interpretation (Gianola and Fernando, 1986), and practically
all machine learning methods (e.g., random forests) provide
biased predictions that, on average, will be better than unbiased
machines. A potential therapy for unbiasedness-obsession is

“debiasing” (Breiman, 2001). However, predictions would be
probably worse because, in addition to the extant uncertainty
of prediction sets, there would be an extra error resulting from
a deteriorated bias-variance trade-off. In the end, the debiased
genome-enabled predictions may be much worse than prior to
bias removal.

9. Use a GPS to map the road ahead: Defining pertinent
breeding objectives (the classical Smith-Hazel problem)
continues being crucial in practice, but it has become
academically non glamorous at these times of massive
genotyping, epigenotyping, proteomics, metabolomics, and
(fine) phenotyping. It is important not to lose perspective as,
otherwise, breeders will get inebriated with a cocktail “on apps.”
Another issue of (some) concern is that the current emphasis
on “big data,” “massive computing,” and “visualization” may
diminish basic science education, as it appears that current thesis
students start crunching numbers before they know genomics, or
the meaning of a probability distribution, or attain an elementary
knowledge of randomization or causality. Foundational theory
and concepts should continue being taught. Otherwise, the field
may drown in a technology-induced maelstrom, and critical
or even visionary perspectives may end up playing a role that
becomes secondary to that of a beautiful visualization or, even
worse, to a machine.

W. G. Hill (“Bill”) noted in a 2010 study discussing from
Lush to Genomics: “Opinions we can debate.” I look forward
to that conversation (Hill, 2010).
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Use of genomic prediction (GP) in tetraploid is becoming more common. Therefore,

we think it is the right time for a comparison of GP models for tetraploid potato. GP

models were compared that contrasted shrinkage with variable selection, parametric vs.

non-parametric models and different ways of accounting for non-additive genetic effects.

As a complement to GP, association studies were carried out in an attempt to understand

the differences in prediction accuracy. We compared our GP models on a data set

consisting of 147 cultivars, representing worldwide diversity, with over 39 k GBS markers

and measurements on four tuber traits collected in six trials at three locations during 2

years. GP accuracies ranged from 0.32 for tuber count to 0.77 for dry matter content. For

all traits, differences between GP models that utilised shrinkage penalties and those that

performed variable selection were negligible. This was surprising for dry matter, as only

a few additive markers explained over 50% of phenotypic variation. Accuracy for tuber

count increased from 0.35 to 0.41, when dominance was included in the model. This

result is supported by Genome Wide Association Study (GWAS) that found additive and

dominance effects accounted for 37% of phenotypic variation, while significant additive

effects alone accounted for 14%. For tuber weight, the Reproducing Kernel Hilbert Space

(RKHS) model gave a larger improvement in prediction accuracy than explicitly modelling

epistatic effects. This is an indication that capturing the between locus epistatic effects

of tuber weight can be done more effectively using the semi-parametric RKHS model.

Our results show good opportunities for GP in 4x potato.

Keywords: tetraploid potato, genotype by sequencing, genomic prediction, genome wide association study,

non-additive effects

INTRODUCTION

Cultivated potato (Solanum tuberosum L.) is one of the most consumed food crops in the world,
behind only rice and wheat (Birch et al., 2012). Since its discovery over 500 years ago, breeders
have selected and hybridised this crop to adapt to various environmental conditions and satisfy
numerous market desires. With its large genetic diversity, this was easily achieved making potato
one of the most versatile food crops. Most of the environmental and market class adaptations,
as well as genetic gains for simple traits, have been attained via phenotypic selection, which may
take 10–12 years until a new cultivar is introduced (Jansky, 2009; Endelman et al., 2018). However,
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there has been limited progress for more quantitative traits with
lower heritabilities, for example yield Jansky (2009). Genomic
prediction (GP), where phenotypes are regressed on marker
profiles (Bernardo, 1996; Whittaker et al., 2000; Meuwissen et al.,
2001), allows for the early selection or discarding of favourable or
unfavourable hybrids, and therefore significantly speeds up the
breeding cycle (Hickey et al., 2017).

Genomic prediction has seen more application in animal
breeding in comparison to plant breeding and has rarely been
applied to polyploid species until recently. Cultivated potato is an
autotetraploid, and the patterns of inheritance in autotetraploids
are more complicated than diploids and allotetraploids (Gallais,
2003; Garcia et al., 2013; Dufresne et al., 2014), hence the reason
for the smaller number of GP studies among these species.
Despite the obstacles, GP has recently been put to use in a number
of autopolyploid crops including alfalfa (Annicchiarico et al.,
2015), potato (Habyarimana et al., 2017; Sverrisdóttir et al., 2017;
Enciso-Rodriguez et al., 2018; Endelman et al., 2018; Amadeu
et al., 2020), blueberry de BemOliveira et al. (2019), Amadeu et al.
(2020), and tetraploid ryegrass Guo et al. (2018).

Despite the common theme of past studies, in that they
look at GP in autopolyploids, they differ in more ways than
just the species they focus on. This study intends to merge
some of the principles used in previous studies. Genotype by
sequencing (GBS) has been utilised previously in the study of GP
of autopolyploid crops (Annicchiarico et al., 2015; Sverrisdóttir
et al., 2017; Guo et al., 2018), and will be implemented in
this study as the method for investigating DNA variation. One
difficulty encountered in quantitative genetics for polyploids
is the determination of allele dosage. Recent studies have
investigated methods to deal with this problem (Endelman et al.,
2018; Guo et al., 2018; de Bem Oliveira et al., 2019) by looking
directly at allele frequencies and refraining from performing
discrete genotype calling. This study also directly examines allele
frequencies, but uses a probabilistic approach for determining the
most likely dosage based on allele frequency ratios.

Statistical models used for GP face the scenario where
n << p, therefore penalties are introduced for reliable
estimation of marker effects, which require assumptions on the
parametric distribution of these marker effects (Piepho, 2009).
The most common GP model is known as GBLUP (Genomic
best linear unbiased predictor), a mixed model, where the
relationship between cultivars is used as input, and is equivalent
to using a ridge regression penalty with an assumed normal
distribution for marker effects (Piepho, 2009). A relationship
matrix can be derived assuming additive effects and non-
additive effects (dominance and epistasis). We investigate the
impact of explicitly accounting for non-additive effects (Enciso-
Rodriguez et al., 2018; Endelman et al., 2018; Amadeu et al.,
2020) vs. implicitly modelling these non-additive effects using
the semi-parametric Reproducing Kernel-Hilbert Space (RKHS)
model (Gianola and van Kaam, 2008; Habyarimana et al.,
2017). Another relationship matrix has been proposed for
autotetraploids, that assumes separate genotype effects for each
marker (Slater et al., 2016) which also implicitly captures non-
additive effects and is included in this study. Bayesian models
are also included in this study, to compare the impact of

different prior assumptions on the distribution of marker effects
(Pérez and de los Campos, 2014).

For GP, there is no “one-size-fits-all” model that works best,
and instead the performance of models depends primarily on
trait architecture (de los Campos et al., 2013). Unlike many
GP studies, we extend this study to include a Genome Wide
Association Study (GWAS), to describe the architecture of each
trait and explain the differences in the performance of the various
GPmodels. Applying GWAS tomarkers coded for different types
of dominance (Rosyara et al., 2016), we attempt to identify the
source of dominance effects, for those traits that were more
accurately predicted with GP models that included non-additive
effects. GWASwill also reveal the level of association between our
markers and a particular trait, to understand why a GP model
that estimates marker effects performs better than a model that
estimates genotype effects or vice versa.

We aim to demonstrate the feasibility of GP in autotetraploid
potato in this proof-of-concept study. Using four traits and GBS
marker data, various modelling strategies will be compared to
uncover the model or models most suitable for a given trait. To
comprehend the relationship between a trait and its most suitable
model, a GWAS is used to describe the genetic architecture of the
traits, providing some insight as to why somemodelling strategies
might work better for particular traits.

MATERIALS AND METHODS

Plant Materials
A diversity panel of 147 tetraploid potato cultivars, including
recent Dutch breeding material were chosen for this study.
This subset of cultivars are representative of the worldwide
commercial potato germplasm and were selected based on
criteria such as: phenotypic diversity of important traits, country
of origin, market category (chip and French fry processing,
cooking and starch varieties), year of commercial introduction,
and availability of the cultivars. Some of these varieties were
analysed in previous studies that used similar criteria for
selection (D’hoop et al., 2008, 2014). Propagation was done
by two Dutch breeding companies, one of which had also
performed phenotyping and collecting the biological material
needed for genotyping.

Genotypic Information
DNA material (100 ng) was digested with ten units of EcoT22
(Clontech) and incubated at 37◦C for 2 h and then heat killed.
Samples were then ligated with 640 units of T4 ligase (NEB)
and phased adaptors with TGCA overhangs at 22◦C for 1 h and
heat killed. The ligated samples were diluted in the ratio 1:10
with water, and then amplified for 18 cycles to add barcodes.
Barcoded libraries were SPRI purified, quantified, and pooled
in groups of 48 samples. Pooled samples were SPRI purified,
quantified, and diluted to 2 nM for sequencing on the Illumina
HiSeq 2500 using single-end 1×100 reads. Sequence reads were
mapped against the potato reference genome sequence of DM
v4.04, including the chloroplast and mitochondrial sequences
using Burrows-Wheeler Aligner 0.7.12. After the removal of
monomorphic markers, those with more than two alleles and
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TABLE 1 | Two examples of genotype probabilities based on allele counts.

Allele count Genotype probabilities

Reference Alternative AAAA AAAB AABB ABBB BBBB

15 13 0 0.05 0.94 0.01 0

15 0 0.99 0.01 0 0 0

markers from repetitive regions of the genome, 870 thousand bi-
allelic markers were available for further filtering. Markers with
minor allele frequency <0.01 and those with read depths <10 or
>100 were removed. From the remaining markers, the posterior
probability of allele dosage, conditional on both allele counts and
sequencing error, was calculated (see Supplementary Material

for more details). This will be referred to as the genotype
assignment probability. Tetraploid genotypes can belong to
either of the classes AAAA, AAAB, AABB, ABBB, BBBB, where
“A” and “B” are the reference and alternative allele, respectively.
If there is an equal amount of counts for both alleles we
would infer the genotype to be AABB (see example in Table 1).
Similar methodology is applied in the PolyOrigin software
(Zheng et al., 2020).

Genotype assignment probabilities were used as a filter
criterion. For each individual, markers were removed when
the highest genotype assignment probability was below a
threshold. Stricter thresholds created more missing information
and decreased the number of markers, since markers without
information for more than 25% of the individuals were removed.
Allele dosage was then determined as the dosage with maximum
genotype probability. Probability thresholds of 0.85, 0.75, and 0.5
resulted in marker matrices of 19, 26, and 39 thousand markers,
respectively. Using an additive GBLUP model, a preliminary GP
analysis was performed to decide which marker matrix should
be used as there may be a trade-off between the quantity and
quality of markers. In almost all cases, the 39 K marker matrix
gave the most accurate predictions and will henceforth be used
for all analyses (Supplementary Figure 1). The larger number of
markers lends itself to a more complete coverage of the genome
(Figure 1).

Although linkage disequilibrium (LD) was not calculated in
this study, it was calculated for an overlapping panel of tetraploid
potato (Vos et al., 2017). In that study, it was found that LD
falls quickly and suggested 40 K markers were needed for good
coverage of the tetraploid potato genome for GWAS, which is
comparable to the number of markers used here.

For all analyses performed in this study, we begin with
genotype information contained in the marker matrix (X), with
147 rows and 39,000 columns. Each element of X gives the
discrete count of alternative alleles (0, 1, 2, 3, 4) assigned
by genotype probabilities, at a given marker position for a
given cultivar. When these counts are entered in a design
or relationship matrix and a single parameter is estimated to
quantify the dependence of the phenotype on the allele count,
then this implies that marker effects are additive.

For imputing the missing marker information, the mode
was used. This was compared to mean imputation using the

39 K marker set mentioned above and a GBLUP model. The
GP accuracies resulting from marker matrices imputed with the
mode were slightly higher than those imputed from the mean.

Phenotypic Information
Field trials were performed in 2017 and 2018 at three locations:
Spain, Poland, and the Netherlands. Seed tubers were planted
in plots consisting of eight plants. A row-column resolvable
design was implemented with two complete blocks, and varieties
dispersed across the field using latinisation over rows and
columns (Piepho et al., 2015). Checks of one particular variety
were uniformly distributed throughout the trial in order to detect
and correct for spatial trends. Randomisation was performed
using the package DiGGer (Coombes, 2009) executed with
the software R (R Core Team, 2019), where all analyses were
conducted with this study.

Four traits will be discussed in this study: plot tuber weight
(kilograms), plot tuber count (number of tubers), mean tuber
length (millimetres), and dry matter content (percentage).
Adjusted means were calculated by correcting for row and
column trends, as well as block effects using the model:

y = block+ rowinblock+ colinblock+ G+ ǫ, (1)

where y is a vector of phenotypic observations. Equation (1)
allows us to adjust for field trends (from blocks, rows within
blocks, and columns within blocks) and extract the best linear
unbiased estimate (BLUE) of each genotype (G). Complete blocks
were used in each trial therefore a fixed term for the block effect
is suitable in the statistical model. Rows and columns within
blocks were incomplete and therefore treated as random effects
having normal distributions as follows: row ∼ N(0, σ 2

row) and
col ∼ N(0, σ 2

col
) where σ 2

row and σ 2
col
, are row and column

variances, respectively. Other non-genetic factors are captured in
the random term ǫ that is assumed to be normally distributed as
ǫ ∼ N(0, σ 2

ǫ ) where the residual variance is represented by σ 2
ǫ .

For investigating genotype by environment interaction (GxE),
the BLUEs from the six trials (three locations, 2 years) will be
useful, however for this application of GP, we require one vector
of observations for a given trait, as if they came from one single
environment. To consolidate our six phenotypic values, we again
calculated the adjusted means of each genotype, after correcting
for the effect of different trials using Equation (2).

y = trial+ G+ ǫ, (2)

where y are the BLUEs calculated from Equation (1), and ǫ

captures the variation from the interaction between genotype
and trial as well as within trial error variation. Equation (2) is
an across trial model, while Equation (1) was used for within
trial analyses. This could have been combined in one statistical
model, but for future GxE applications, and the ability to carefully
assess each trial for outliers, it was conducted in two steps. A
comparison of BLUEs calculated from the method described here
vs. one single model was done and the results were the same. The
BLUEs from Equation (2) will be used as the response variable
for GP analyses going forward. This study is therefore a two-step
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FIGURE 1 | Marker density of 39 K markers.

analysis since phenotypic adjusted means and GP are done with
separate models. ASREML (Butler, 2009) was used to conduct all
phenotypic analyses.

Heritability
To have an understanding of how much phenotypic variation
can be attributed to between-genotype variation, broad-sense
heritability was calculated. Using the BLUEs from Equation (1)
as the response variable, we apply the following model across our
three locations (L) and 2 years (T):

y = L+ T + LT + G+ GL+ GT + ǫ

Using the random terms of this model, highlighted in bold font,
we can isolate the variability that is caused genetically from the
variability that is caused from genotype by location and genotype
by year interactions (GL,GT). The BLUEs from Equation (1) give
only one value for each genotype per trial (year and location
combined), for this reason our error term (ǫ) in the heritability
equation captures the variation from the three way interaction
of genotype, location, and year. Averaging a genotypic effect
across multiple trials without including marker information, is
closer to an estimation of repeatability than heritability (Falconer
et al., 1996), but for now we shall use traditional nomenclature.
Heritability was calculated from the variance components as:

H2
=

σ 2
g

σ 2
g +

σ 2
gL

l
+

σ 2
gT

t +
σ 2

ǫ

l×t

,

where l and t represent the total numbers of locations and years.
Variation due to genotype by location and genotype by year
interactions are represented by the terms σ 2

gL, σ
2
gT , respectively,

while σ 2
g represents genetic variance. The term σ 2

ǫ is the variance
of the three way interaction of genotype by year by location, and
contains genetic signal alongside within trial variation.

Prediction Models
For GP, many types of statistical models are applicable; those
that perform shrinkage vs. those that perform variable selection
which is dependent on the assumed distribution of marker
effects, and those models that account for non-additive effects in
various ways.

• Additive GBLUP:

y = µ + Zaa+ ǫ, (3)

where y is a vector of phenotypic values, µ is the overall mean,
Za is a design matrix that relates the observations to genomic
values and a is a vector of random additive genetic values with
distribution a ∼ N(0,GAσ 2

a ). The additive genetic variance
is given by σ 2

a , while ǫ is the vector of residual and non-
modelled genetic effects, assumed to be normally distributed
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TABLE 2 | Within marker locus coding for Full Tetraploid model (Slater).

Genotype Locus coding

AAAA 1 0 0 0 0

AAAB 0 1 0 0 0

AABB 0 0 1 0 0

ABBB 0 0 0 1 0

BBBB 0 0 0 0 1

For a genotype “AAAA,” there are five columns with the first column assigned a 1 and the

rest 0’s.

ǫ ∼ N(0, σ 2
ǫ ), with variance denoted by σ 2

ǫ . GA is the additive
genomic relationshipmatrix (from allele dosages) based on the
work of VanRaden (2008) and extended by Ashraf et al. (2016).
The calculation of this additive genomic relationship matrix is
applicable to autotetraploids and was constructed with the R
package AGHmatrix (Amadeu et al., 2016).

• Additive + Dominance GBLUP:

y = µ + Zaa+ Zdd + ǫ, (4)

where y, µ, a, and ǫ are the same as seen in Equation
(3). Za and Zd are design matrices to relate observations to
additive genetic effects and dominance effects. The vector of
dominance effects is indicated by d and follows a normal
distribution: d ∼ N(0,GDσ 2

d
), where σ 2

d
is the dominant

genetic variance. The digenic dominant relationship matrix
GD was built using the AGHmatrix R-package, as derived by
Endelman et al. (2018).

• Epistatic GBLUP:

y = µ + Zaa+ Zdd + Zee+ ǫ (5)

Equation (5) is an extension of Equation (4), with the inclusion
of a term to capture epistatic effects. Ze relates the observations
to the epistatic effects e, which follow the normal distribution,
e ∼ N(0,GEσ

2
e ) with epistatic genetic variance σ 2

e .
This paper considers first order epistasis (additive ×

additive), and to calculate GE, the Hadamard product of GA

(GA#GA) was used (Su et al., 2012; Endelman et al., 2018).
• Full Auto-tetraploid GBLUP:

y = µ + Zf + ǫ, (6)

Proposed in the paper by Slater et al. (2016) is the full
auto-tetraploid model which accounts for additive and non-
additive effects by assuming each genotype has its own effect.
Tetraploids have five possible genotypes (AAAA, AAAB,
AABB, ABBB, BBBB), therefore f , the vector of effects in
Equation (6), has length 5R where R is the number of markers
(see Table 2). These effects f , follow the normal distribution,
f ∼ N(0,GFσ

2
f
) with genetic variance σ 2

f
. The details for

calculation of the relationship matrix GF can be found in the
associated literature (Slater et al., 2016), and was constructed
using the AGHmatrix R-package.

• RKHS: The model for Reproducing Kernel-Hilbert Space
(RKHS) is the same as described in Equation (3), but the
random genetic values have a different distribution: a ∼

N(0,Kσ 2
g ). The genomic relationship matrix GA, is replaced

by the kernel matrix, K = exp−
D
θ , where D is a Euclidean

distance matrix between genotypes, and θ a tuning parameter.
The tuning parameter controls how fast the relationship
between two genotypes decays as the distance between the
corresponding pairs of marker vectors increases (Jiang and
Reif, 2015) and is estimated from the data by maximizing
the log-likelihood (Endelman, 2011). The genetic variance
is no longer the result of allele substitution, as seen in the
additive model (Equation 3) with additive genetic variance,
σ 2
a . The genetic variance captured by RKHS (σ 2

g ), includes
additive and first order epistatic (additive × additive) effects
(Gianola and van Kaam, 2008).

• Bayesian LASSO:

y = µ + Xb+ ǫ (7)

The first five genomic predictions described above estimate
genotypic effects, the Bayesian models however estimate
marker effects. Equation (7) includes terms for phenotype (y),
overall mean (µ), and non genetic (or unmodelled) influences
plus error (ǫ). Where it differs from our previous GPmodels is
in the term Xb, which directly links the marker design matrix
X, to the marker effects b. The marker effects are assumed to
come from a distribution and in the case of Bayesian LASSO,
a double exponential (Laplace) distribution, b ∼ Lap(0, λ),
or alternatively:

b ∼ 5R
j=1

λ

2
e−λ|bj|

The λ parameter is inversely proportional to the variance
of the distribution and is estimated from the data. The
probability density function is multiplied across all markers
(each indicated by subscript j), up to a total of Rmarkers.

• Bayes A: The statistical model is similar to that seen in
Equation (7), however Bayes A assumes that marker effects
come from a scaled-t distribution with v degrees of freedom,
bj ∼ tv(0, σ

2
b
), where σ 2

b
is the variance of marker effects.

• BAYES Cπ : The Bayes Cπ model assumes that marker effects
come from a mixture distribution where a proportion of
markers (π) have zero effect and the remainder (1 − π) have
non-zero effects from a normal distribution, such that:

bj =

{
0 :with probability π

∼ N(0, σ 2
b
) :with probability 1− π

Because markers are separated into either having an effect or
having no effect, this model is performing marker selection.
The proportion of zero effect markers π , is estimated from
the data.

The three Bayesian models are better suited for traits controlled
by few large effect loci, whereas the models mentioned before
are better for predicting traits with many small effect loci
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TABLE 3 | Marker configurations under different effect assumptions.

AAAA AAAB AABB ABBB BBBB

Additive 0 1 2 3 4

Simplex dominant (B>A) 0 4 4 4 4

Duplex dominant (B>A) 0 0 4 4 4

(de los Campos et al., 2013). For all GP models, except RKHS,
parameters were estimated using Bayesian statistics (Gibbs
Sampler) with the package BGLR (Pérez and de los Campos,
2014), with 10,000 iterations and 2,500 iterations used as burn-in.
Maximum likelihood was used to implement the RKHS model,
and choose the most likely value for the tuning parameter.

Assessing Prediction Accuracy
With 147 varieties containing both phenotypic and genotypic
information, cross-validation was performed by sampling a
training set of 105 individuals to train the model, and using the
trained model to predict the remainder of individuals (validation
set) (Wilson et al., n.d.). These 105 individuals were sampled
in order to minimise the genetic distance between the training
and validation sets, using a sampling method based on the
coefficient of determination (Rincent et al., 2012). This training
set construction procedure uses marker information in the
form of a genomic relationship matrix, as well as phenotypic
information to construct the training set. Prediction accuracy
is defined as the Pearson correlation between the BLUEs and
the predicted genotypic values, and was averaged over the
100 repetitions.

Genome Wide Association Study (GWAS)
To suggest an explanation for the differences betweenGPmodels,
a GWAS was performed to investigate the genetic architecture
of the traits analysed. The proposed GP models assume different
biological processes for controlling trait expression: many small
effect loci vs. a few large QTLs as well as additive vs. dominant
effects. For a given trait, the genetic architecture uncovered by
GWAS will help explain why a particular GP model has higher
prediction accuracy than another.

y = µ + Xβ + g + ǫ (8)

In Equation (8), y is the vector of BLUEs, µ is the overall mean.
The polygenic effect is captured by the term g, and is distributed
g ∼ N(0,GAσ 2

g ), where GA is the same genomic relationship
matrix across all chromosomes, used for the GBLUP prediction
in Equation (3). The error term ǫ captures non-genetic residuals
plus error, and is assumed to follow a normal distribution as
seen in prior models. The term β represents the marker effect
and X is the marker matrix containing genetic information that
may be coded differently depending on the assumed type of effect
(see Table 3).

From Table 3, we see the coding of the design matrix, where
the additive effect assumes the size of the effect is proportional
to the number of alternative alleles present. Simplex dominant

(for the alternative allele) indicates that there are two levels
for effects: when there is no alternative allele present and
another for when there is at least one alternative allele. This
simplex dominant configuration of allele effects corresponds with
our GBLUP dominance prediction model (Equation 4). Duplex
dominance means that the second level of effect occurs when
at least two alternative alleles are present. Duplex dominance
was not included in any GP models, however exploring the level
of dominance can reveal genetic architecture information and
therefore, help explain the differences between GP accuracies,
allowing for expansion in future studies. For both simplex and
duplex dominance, the reference allele was also regarded as the
dominant allele, and therefore five different SNP design matrices
(additive, simplex dominance for the reference allele, simplex
dominance for the alternative allele, duplex dominance for the
reference allele and duplex dominance for the alternative allele)
were used in the GWAS of each trait. This analysis was done using
the GWASpoly package (Rosyara et al., 2016).

The impact of population structure on the GWAS analysis
was evaluated by looking at the quantile-quantile plots of the p-
values for marker effects transformed to a log scale (−log10p).
Not correcting for population structure will result in spurious
associations, and this was investigated by a visual assessment for
inflation of p-values.

The threshold for identifying significantly associated markers
was corrected for multiple testing using the method proposed by
Li and Ji (2005). This is calculated as the significance level divided
by the number of effective regions ( α

Neff
), where Neff is estimated

from the eigen values of the marker matrix. This resulted in
222 effective regions from the 39,000 markers. For each marker
effect assumption (additive, simplex dominance etc.), significant
markers were extracted and used as explanatory variables, along
with the first three principal components (extracted from the
relationship matrix constructed on allelic dosage), in a linear
regression model. The R2 statistic of this model is the fraction
of the total sum of squares due to genotypic differences, that can
be explained by markers (Wallace et al., 2016; Inostroza et al.,
2018). For a given trait, we will be able to distinguish which
effect, additive, dominance, or the effect of population structure,
explains more of the phenotypic variance.

RESULTS

Population Structure
Using the marker matrix X (described previously in the
Materials and Methods) an assessment of population structure
was conducted via Principal Components analysis (Figure 2),
analysis of molecular variance (AMOVA) and Wright’s FST
statistic (Table 4). A list of the seven distinct market classes are
as follows, with the number of individuals belonging to each class
given in parentheses: ancient (1), chip processing (39), French fry
processing (42), fresh consumption (1), cooking (56), starch (7),
and the rest (1).

Figure 2 illustrates that there is a lack of separation between
market classes. For FST and AMOVA calculations, the three
small market classes were not included as they did not
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FIGURE 2 | Illustration of the population structure explained by the first three Principal Components (PCA) of the entire genome, with market class membership

indicated by colour.

TABLE 4 | FST statistic between sub-populations.

FST Cooking French fry Chip

French fry 0.0088

Chip 0.0116 0.0098

Starch 0.0323 0.0341 0.0130

Numbers close to zero indicate populations that are more genetically similar.

meet the requirement of minimum population size for these
analyses (Willing et al., 2012; Nazareno et al., 2017). Population
classifications contributed only 6.7% of the total molecular
variation according to the results of AMOVA, further supporting
what we see in Figure 2. The four major market classes showed
very little separation with FST values close to zero (Table 4),
indicating that these sub-populations are genetically similar. The
starch market class is closer to the chip processing group than the
cooking and French fry processing classes as shown in Table 4,
and illustrated in Figure 2.

All population structure analyses were performed using the
R packages StaMPP (Pembleton et al., 2013) and Adegenet
(Jombart and Ahmed, 2011), because of their suitability for
polyploid population genetics (Dufresne et al., 2014).

Phenotypic Analysis
Phenotypes were first adjusted for local trends within each trial
as seen in Equation (1). At this level of analysis, outliers were

detected and removed and the extracted BLUEs were then pooled
across all trials as described in theMaterials andMethods section.
The resulting distributions and correlations between phenotypic
values can be seen in Figure 3.

Broad-sense heritability was calculated for tuber weight, tuber
count, tuber length, and dry matter resulting inH2 values of 0.78,
0.79, 0.91, and 0.96, respectively. These heritability estimates are
quite high and most likely because of the repeated trials at three
locations and 2 years.

Genomic Prediction
The results of GP analyses on the four traits, compared across
eight statisticalmodels can be seen in Figure 4. Accuracies ranged
from 0.32, when tuber count was predicted with a Bayesian
LASSO model, to 0.77 when dry matter content was predicted
with a Bayes-A model. With the highest heritability, it is not
surprising that dry matter has the highest prediction accuracy.
Tuber length was predicted more accurately than tuber count,
and this corresponds with the ordering of their heritability
estimates. The trait with the second highest prediction accuracy
was tuber weight, which was unexpected as it had the lowest
heritability, and was the only trait that did not agree with the
order of heritability estimates.

There is no clear ranking of model performance across all
traits, however Figure 4 allows us to observe some trends. The
three Bayesian models, that differ in their assumed distribution
of marker effects, show little difference between them across all
traits (differences of at least 0.03 will be considered relevant).
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FIGURE 3 | Distribution and correlation between the four analysed traits: Tuber Weight (TW), Tuber Count (TC), Tuber Length (TL), Dry Matter (DM).

FIGURE 4 | GP results of the four analysed traits, with prediction accuracy on the y-axis, and the x-axis indicating the model used: Add (GBLUP with additive

genomic relationship matrix), A+D (GBLUP with additive and dominance relationship matrices), A+D+Ep (GBLUP with additive, dominance, and epistatic relationship

matrices), RKHS (Reproducing Kernel-Hilbert Space model), BayesC (Bayes Cπ model), BayesL (Bayesian LASSO model), FT (Full Tetraploid as proposed by Slater

et al., 2016). Standard errors of estimates are illustrated with the bars around the points.
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Bayesian models were among the better performing models, for
those traits that were also predicted well by an additive GBLUP
model. Extending an additive model to include dominance or
dominance + epistasis did not significantly improve prediction
accuracies for the traits analysed, except for tuber count. For
dry matter content and tuber length, the addition of these
non-additive effects decreased prediction accuracy, but these
decreases were not relevant. With tuber count again being the
exception, the performance of the RKHS model was comparable
to the model that best predicted a given trait. The full tetraploid
model (FT) was generally outperformed by all the other models,
more so for dry matter content and tuber length.

Model ranking can better be assessed on a per trait basis,
as the best performing model depends on the trait analysed.
Figure 4 shows that models that directly estimate marker effects
are the most suitable for predicting dry matter. Tuber length
can be predicted efficiently with either an additive GBLUP or
one of the Bayesian models. Tuber weight prediction appears to
benefit from modelling non-additive effects, but the source of
that effect is not completely clear. There is a small increase in
prediction accuracy as we move from additive, to an additive-
dominant model, to a model that includes additive, dominance
and additive× additive epistatic effects. This trend could suggest
the presence of a non-additive effect not explicitly modelled by
the GBLUP models, such as an effect that is of a higher order
than the additive × additive epistatic interaction. The RKHS
model produced the highest accuracies for this trait, and is unique
among the models tested as all other models are parametric
while the RKHS model is semi-parametric. The RKHS model
captures the same first order epistasis as the parametric model,
however it gives themost noticeable improvement in comparison
to the standard additive GBLUP model (from 0.56 to 0.59). For
predicting tuber count, extending the additive GBLUP model to
include dominance effects improved the accuracy of prediction
by 17%, from 0.35 to 0.41, which we consider as a relevant change.
The explicit modelling of this particular non-additive effect is
clearly beneficial for the prediction of this trait, more so than any
other trait analysed.

An additional result from the Bayes Cπ model is the fraction
of markers selected because of their potential QTL effects. For
dry matter 0.27 markers were selected while the for tuber weight,
half (0.5) of the markers were selected. The proportion of
selected markers for tuber length and count was 0.35 and 0.34,
respectively. This gives an idea of trait architecture which is
investigated further in the next section.

GWAS
Trait architecture is responsible for the particularity between the
accuracy of a GP statistical model and the trait analysed. To
uncover some of the underlying genetic behaviour responsible for
the expression of our four traits, Equation (8) was applied. Two
further models were tested, one that included fixed effects for
market class assignments and another that included fixed effects
for the first three principal component axes. A look at the QQ-
plot showed no significant inflation of p-values when these fixed
effects were excluded (results not shown), and no difference when
they were introduced to the GWASmodel. This can be attributed

to the lack of population structure as reported previously, thus
a model simply with a genomic relationship matrix was enough
to avoid spurious associations between markers and traits. The
threshold for identifying significant markers was−log10p = 3.65,
after the 0.05 threshold was adapted for multiple testing ( 0.05222 ).
The signals detected when coding markers for additive or non-
additive effects (in this case two levels of dominance) can be seen
for dry matter and tuber count in Figure 5. Manhattan plots for
tuber length and tuber weight are not shown as these plots were
not very informative, however analyses on the significantmarkers
for these traits still follow.

Across the five tested GWAS models for dry matter content,
the most significant association with markers is observed when
an additive effect is assumed (Figure 5). When compared to
the plots assuming dominance we see that additivity gives
both the highest scores [−log10(p)] and the most abundant
markers appearing above the threshold. For tuber count we
see significant markers in more abundance when a dominant
coding of the marker matrix is considered. There are multiple
flanking “hits” on chromosomes 1 and 3 when we assume
simplex dominance for the reference allele. Chromosomes 4
(the two significant markers overlap on the plot) and 8 also
show neighbouring markers with significant associations to tuber
count when dominance is assumed to occur in the presence of a
single alternative allele.

Manhattan plots of tuber weight did not show much evidence
of significant QTLs in this analysis (Supplementary Figure 2).
There are a few markers associated when dominant effects
are modelled: these occur when the alternative allele is
simplex or duplex dominant. Similarly, GWAS for tuber length
analysis did not show any clear profile of associated markers
(Supplementary Figure 2). Still we observed more significant
markers when they were coded as duplex dominant for the
alternative allele, however the highest scores were observed for
additive effects and duplex dominance for the reference allele.

Manhattan plots can be ambiguous, therefore further analysis
was done by performing a linear regression to uncover which
marker effect type is more important for trait expression.
Reported in Table 5 is the fit statistic for each regression
(R2), which can be interpreted as the amount of phenotypic
variance that can be explained by the significant markers and/or
population structure.

Of the four traits, the variance of dry matter is best explained
frommarker information, and also has the biggest influence from
principal components alone. This does not agree with previous
population structure analysis (Figure 2), but those previous
analyses were across the entire genome. For this trait, using only
the significant additive markers found on chromosome 3, we can
explain over 50% of phenotypic variation (not shown). For dry
matter, the inclusion of dominance adds no information as seen
in the GP results (Figure 4 and Table 5). Tuber count, as seen
in GP, is controlled by dominance effects. This dominance effect
comes from the alternative allele as opposed to the reference allele
which was not clear from Figure 5, and more than doubles the
explained phenotypic variance (12.50–35.92%) in comparison to
additive effects. Explained phenotypic variation of tuber weight
remains unchanged under simplex dominance assumptions. We
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FIGURE 5 | Manhattan plots for dry matter (DM) and tuber count (TC). Five marker matrices were tested: additive, simplex dominant in favour of the alternative allele

and reference allele (1-dom-alt and 1-dom-ref, respectively), duplex dominant in favour of the alternative allele and reference allele (2-dom-alt and 2-dom-ref,

respectively). The red horizontal line indicates the threshold for significant markers.

TABLE 5 | Percentage of variance explained (R2) from regression of each trait against: first three principal components only, significant additive markers after correcting

for the first three principal components, significant dominance effect markers (under various configurations) after correcting for additive effects and the first three

principal components.

Trait 3 PCs only 3 PCs + Add markers

3 PCs + Add + Dom markers

1-dom-alt 1-dom-ref 2-dom-alt 2-dom-ref

Tuber weight 5.55 12.92 12.26 12.26 30.40 16.88

Tuber count 0.07 12.50 35.92 14.99 23.43 15.78

Tuber length 6.13 42.43 53.24 44.68 57.75 47.73

Dry matter 41.77 67.01 67.96 66.64 68.49 66.24

see strong evidence that the level of dominance occurs at a duplex
level, where the explained phenotypic variation increases from
12.92 to 30.40%, when compared to additive assumptions. A
significant portion of the phenotypic variation of tuber length can
be explained by additive effects (42%) and we do see an increase
when dominance from the alternative allele is modelled (simplex
or duplex), but this increase was not as noticeable as the increase
shown when tuber count and weight are coded for dominant
effects. In general the effect of population structure on explaining
the variation of tuber traits (length, weight, and count) is small.

DISCUSSION

The primary focus of this study was to explore and compare
statistical models for genomic prediction in tetraploid potato.
As a secondary focus, a genome wide association analysis was

conducted to identify trait architecture and thus explain the
reasons for differences in prediction accuracies from trait to trait.
The same marker profile was used for both GP and GWAS.
It is worth noting that Bayes-R and Genome-wide Complex
Trait Analysis (GCTA) can simultaneously perform GP and
GWAS, therefore deserving of further study. However, for this
study, we focused on a tetraploid species and therefore wanted
to ensure that both the GP and GWAS analyses were tailored
for tetraploids.

Translating these findings to a traditional breeding program
expose the limitations of this study. Only 147 cultivars were
analysed in this study, spread over several market classes.
In a traditional breeding program thousands of new hybrids
can be evaluated within one particular market class. Despite
these limitations, the work done here still shows that there is
merit using genomic selection, especially after the first round
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of phenotypic selection where a majority of the material has
been discarded. After this stage genomic selection can then
significantly speed up the breeding cycle.

Heritability
Broad-sense Heritability estimates were quite high. Asmentioned
previously, our heritability estimates can more accurately be
defined as repeatability estimates (Falconer et al., 1996), because
we are averaging across six trials. Our high estimates show that
there is not too much genotype by environment interaction
(GxE) and thus high repeatability. The order of heritability
estimates was unexpectedly not in agreement with the order of
GP accuracies, and this was also found in a similar study (Stich
andVan Inghelandt, 2018). The order of our heritability estimates
is not a ranking of which traits would best be explained bymarker
information, although it does give some indication. Instead it
is a ranking of which traits show the least to most GxE, with
dry matter having the least GxE and tuber weight having the
most. Regardless, one would expect heritability to translate to
marker effects and GP accuracies not be so low in relation to
heritability estimates.

Genomic Prediction Models
For most traits, the differences between GP models were very
small (Habyarimana et al., 2017; Sverrisdóttir et al., 2017;
Amadeu et al., 2020). Amadeu et al. (2020) concluded that there
is little difference in prediction accuracy between modelling
strategies, and use of an additive GBLUP model would be
sufficient for GP in auto-tetraploids. Only two traits in potato
were analysed in that study: yield and specific gravity. Specific
gravity is closely related to dry matter (Simmonds, 1977; Kumar
et al., 2005), and in this study we also found that the additive
GBLUP model is suitable. Tuber length also supports the
conclusion by Amadeu et al. (2020), where a GBLUP additive
model performs whole genome prediction as well as other
models. For the other two traits analysed in this study, tuber
count and yield, we have shown that other model considerations
should be made to maximise prediction accuracy.

Capturing Dominance and Epistatic Effects
For tuber count, the modelling of dominance gave a 17%
increase in prediction accuracy (from 0.35 to 0.41). The
trait architecture revealed in the GWAS section, showed that
significant dominant markers explained the most phenotypic
variation, therefore targetting these non-additive effects resulted
in the highest prediction accuracy. Trying to capture these non-
additive effects with the full tetraploid model did not increase
prediction accuracy.

Yield was one of the traits analysed by Amadeu et al. (2020),
however, the RKHS model was not tested in that study. In this
study, we show that the parametric models that included a term
to capture epistasis did show evidence that there is an epistatic
effect controlling tuber weight (which we consider as yield). The
semi-parametric RKHS model produced the highest prediction
accuracies for this trait. This is in agreement with findings
from other studies that concluded epistasis is better captured
by semi-parametric (and non-parametric) in comparison to

parametric models (Howard et al., 2014; Jacquin et al., 2016;
Momen et al., 2018). Based on GWAS results, there may be
important dominance effects that were not explicitly modelled in
our GP analyses of this trait. The GWAS results showed that, like
tuber count, yield had the highest explained phenotypic variance
when markers were coded as dominant. However, these markers
that explained a significant portion of phenotypic variance
for yield were coded as duplex dominant (instead of simplex).
The dominance relation matrix used in our GP models assume
simplex dominance, and there are no current adaptations to
expand to higher levels of dominance (Amadeu et al., 2020).

The explicit modelling of epistasis for specific gravity in
Endelman et al. (2018) gave a substantial increase in prediction
accuracy, however that study also did not include the RKHS
model. It would have been interesting to see if an RKHS model
would have performed better, based on what we observed for
epistasis in tuber weight and other previous studies as mentioned
before. Interestingly, dry matter was not improved with the
modelling of epistasis in this study, which contradicts the results
of Endelman et al. (2018).

The full tetraploid model (Slater et al., 2016), developed to
implicitly capture non-additive effects in auto-tetraploids, did
not improve accuracies in this study and one other (Amadeu
et al., 2020). In our analyses, this model performed least
favourably for most traits. A possible reason for this is the use of
genotype frequency instead of allele frequency. The marker data
was dominated significantly with nulliplex and simplex dosages
(> 75% of information) and therefore genotype frequencies
for other dosages may be severely under-represented. GBS data
for tetraploid data has been said to bias against the alternate
allele (Endelman, personal communication, November 07, 2019),
which is most likely the cause of the imbalance of dosage classes
for the data in this study. For this reason, it would be worthwhile
to have another look at this model in a study with a more
balanced marker profile.

Mixed Models (GBLUP) vs. Bayesian Models
Marker effect models are expected to perform better than mixed
model GP models (GBLUP) when traits are controlled by a few
high impact loci (de los Campos et al., 2013). Like the previous
GP studies for potato (Habyarimana et al., 2017; Sverrisdóttir
et al., 2017; Amadeu et al., 2020), this study also revealed very
little difference between these two model classes. Despite the
negligible differences, two traits did give some surprising results.

GWAS for dry matter found a few markers that were able
to explain more than 50% of phenotypic variability. Therefore,
for this trait, we would have expected a relevant increase going
from a mixed model to marker effect model. Tuber yield showed
a small but irrelevant increase (< 0.03) when moving from
mixed to marker effect modelling, however GWAS findings
were unable to explain this result. The significant additive
markers for yield explained very little phenotypic variation
(12.92%), therefore it was unexpected that a marker effect
model would have even slightly outperformed a GBLUP model.
Habyarimana et al. (2017) also found that the Bayesian model
gave more accurate predictions for yield than the traditional
GBLUP model.
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CONCLUSIONS

• For GP in auto-tetraploids, there are very little differences
between different types of shrinkage methods, and models that
do both shrinkage and variable selection.

• GWAS can assist in deciding what model strategies should
be considered, especially when considering capturing non-
additive effects. When GWAS reveals significant dominant
effect markers (simplex), this should be modelled specifically
in GP models.

• Tuber weight shows evidence of epistasis, therefore semi-
and non-parametric models should be used to predict
this trait. Further investigation can include extending the
dominance relationship matrix to include duplex dominance
and modelling higher levels of epistasis.

• There is no one-size-fits-all model, especially when capturing
non-additive effects. Understanding the nature of these effects,
example dominance in tuber count vs. epistasis in tuber
weight, is important information when choosing the most
suitable model.
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Reciprocal recurrent genomic selection is a breeding strategy aimed at improving

the hybrid performance of two base populations. It promises to significantly advance

hybrid breeding in wheat. Against this backdrop, the main objective of this study was

to empirically investigate the potential and limitations of reciprocal recurrent genomic

selection. Genome-wide predictive equations were developed using genomic and

phenotypic data from a comprehensive population of 1,604 single crosses between 120

female and 15 male wheat lines. Twenty superior female lines were selected for initiation

of the reciprocal recurrent genomic selection program. Focusing on the female pool,

one cycle was performed with genomic selection steps at the F2 (60 out of 629 plants)

and the F5 stage (49 out of 382 plants). Selection gain for grain yield was evaluated

at six locations. Analyses of the phenotypic data showed pronounced genotype-by-

environment interactions with two environments that formed an outgroup compared to

the environments used for the genome-wide prediction equations. Removing these two

environments for further analysis resulted in a selection gain of 1.0 dt ha−1 compared to

the hybrids of the original 20 parental lines. This underscores the potential of reciprocal

recurrent genomic selection to promote hybrid wheat breeding, but also highlights the

need to develop robust genome-wide predictive equations.

Keywords: grain yield, hybrid breeding, long-term selection gain, genotype-times-year interaction, abiotic stress

INTRODUCTION

Since the discovery of the advantages of hybrid breeding through increased performances due to
the exploitation of heterosis (Shull, 1908), it has proven to be a successful strategy in allogamous
species such as maize (Troyer, 1999), sunflower (Reif et al., 2013), sugar beet (Li et al., 2010), and
rye (Geiger and Miedaner, 2015). Besides, hybrids display higher yield stabilities (Mühleisen et al.,
2014), especially in marginal environments (Hallauer et al., 1988) and facilitate the stacking of
major genes (Longin et al., 2012). These advantages stimulated investments in the implementation
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of hybrid breeding also in autogamous species, with the
main challenge to develop economically competitive varieties
that can compete against the line varieties on the market as
the autogamous biology makes economic seed production
challenging. Therefore, hybrid varieties must outperform
significantly line varieties and the yield surplus must compensate
for the higher costs in seed production. Recent advances enabled
the introduction of hybrid breeding in autogamous species such
as barley (Mühleisen et al., 2013), wheat (Melonek et al., 2021),
and most successfully rice (Huang et al., 2017) but a major
challenge is the selection gain per unit time: Classical hybrid
breeding uses heterosis but exploits less additive variance and the
breeding schemes are longer compared to line breeding (Longin
et al., 2012).

A promising approach to breed high-yielding hybrids is to
maximize the exploitation of beneficial heterosis. The concept
of reciprocal recurrent selection (RRS) was originally proposed
by Comstock et al. (1949) and optimizes the use of general
and specific combining ability by selecting genotypes from one
population based on the performance of their progeny resulting
from crosses with another population. Ideally, this selection
strategy results in a reciprocal shift in gene frequencies among
the two populations from which female and male genotypes shall
derive. Recurrent selection cycles are applied to further manifest
this tendency. The success of RRS has been demonstrated in
outcrossing species such as maize (Eyherabide and Hallauer,
1991; Tardin et al., 2007; Souza et al., 2010; Kolawole et al., 2018)
and sugar beet (Doney and Theurer, 1978; Hecker, 1985). To the
authors knowledge, no studies were published that investigate the
potentials and limits of RRS in autogamous cereals such as wheat.

A disadvantage of RRS compared to recurrent selection is
the elongation of breeding cycles due to the need to produce
sufficient progeny based on which genotypes can be rated. In
recurrent selection, the implementation of genomic selection has
the potential to shorten the length of selection cycles and raise
selection gain (Santantonio et al., 2020; Atanda et al., 2021), but
empirical studies providing insights into the long-term effect
in recurrent genomic selection are still missing. Research in
animal breeding has suggested to complement RRS with genomic
selection (Kinghorn et al., 2010). In oil palm, simulations have
shown that genomic selection could potentially reduce the
generation time of an RRS breeding cycle from 20 to 6 years (Cros
et al., 2015). Integration of genomic selection into RRS would
furthermore allow the combination of RRS and speed breeding
approaches as proposed by Watson et al. (2018). Empirical
evidence of the superiority of reciprocal recurrent genomic
selection (RRGS) breeding programs, however, is still missing.

Many breeding programs are aimed at producing genotypes
adapted to so-called mega-environments. Mega-environments
are geographic regions that show similar growing conditions
limiting the variance of the interaction effects between genotype
and environments (Braun et al., 1996). In Germany, breeders
generally aim for genotypes that are capable to meet the
requirement criteria of the Federal Plant Variety Office
(Bundessortenamt, Hannover), to release registered varieties. The
Federal Plant Variety Office tests candidate genotypes in its
official trials at up to 15 locations representing wheat growing

regions in Germany. It is important to note here that Germany
is not further subdivided in the Federal Plant Variety Office tests
into target mega-environments for wheat breeding.

This study provides the first empirical results on the
potential and limits of an RRGS breeding program in wheat
targeted for Germany. The objectives were to (1) investigate
the utility of genomic selection to identify superior females
through genomic estimation of the general combining ability,
(2) evaluate the selection gain for grain yield achieved by an
RRGS breeding strategy, and (3) examine the impact of genotype-
by-environment interaction on the effectiveness of a long-term
breeding strategy.

MATERIALS AND METHODS

Design of the Reciprocal Recurrent

Genomic Selection Program
We implemented an RRGS program based on genomic and
phenotypic data of a large hybrid wheat population (further
denoted as HYWHEAT population) presented in detail in
previous studies (Longin et al., 2013; Zhao et al., 2013, 2015;
Gowda et al., 2014; Liu et al., 2016, 2020a,b; Jiang et al., 2017;
Schulthess et al., 2018; Thorwarth et al., 2018, 2019). Briefly,
120 female and 15 male winter wheat lines adapted to Central
Europe were crossed using chemical hybridization agents (e.g.,
Croisor 100; Kempe et al., 2014) applying standard in house
protocols. 1,604 single-cross hybrids were produced. The 1,604
hybrids, their 135 parents, and 10 commercial varieties (As
de Coeur, Colonia, Genius, Hystar, JB Asano, Julius, Kredo,
Tabasco, Tobak, Tuerkis) were evaluated for grain yield in 11
environments, i.e., 5 and 6 locations (Adenstedt, Boehnshausen,
Hadmersleben, Harzhof, Hohenheim, and Seligenstadt), in the
growing seasons 2011/2012 and 2012/2013, respectively, in
Central Europe, resulting in high quality phenotypic data
(Supplementary Table 2 in Zhao et al., 2015). The 135 parental
lines were genotyped using a 90,000 SNP array based on an
Illumina Infinium assay and after quality tests, 17,372 high-
quality SNP markers were retained. The phenotypic and the
genomic data were combined, and a ridge regression best linear
unbiased prediction (RRBLUP)model was trained fitting additive
and dominance effects using the package rrBLUP (Endelman,
2011) in the R software environment (R Core Team, 2020). The
implementation of the RRBLUP model was described in detail
elsewhere (Zhao et al., 2015). Briefly, the model was:

Y = 1nµ + ZAa+ ZDd + e, (1)

where Y refers to the grain yield data of the 135 parent lines
and their 1,604 hybrids, µ was the overall mean, 1n was an n-
dimensional vector of ones, a and ZA denoted the additive effects
and the corresponding design matrix, and d and ZD denoted
the dominance effects and the corresponding design matrix. The
estimated a and d effects were used to predict the genotypic values
of the hybrid performances when crossed with the 15 male lines.

In the recurrent genomic selection program, we focused on
the female pool and selected 20 out of the 120 female lines.
The selection was based on the first-year estimates of general
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combining abilities and further criteria such as for example being
carrier of the dwarfing gene Rht2. The 20 female lines formed
the C0 cycle and were crossed following a single round robin
design (A x B, B x C, C x D, . . . , T x A), i.e., every line was
used in two crosses resulting in 20 F1’s. The 20 F1’s were grown
in the following season and selfed to the F2 generation in the
green house. Seeds were harvested and around 30 F2 plants were
grown for each of the 20 biparental families amounting to a
total of 629 F2 plants. The 629 F2 plants were genotyped before
flowering using the above-mentioned SNP array. The general
combining abilities of the 629 F2 plants when crossed with the
15 original male lines were estimated using the SNP profiles and
the above outlined RRBLUP model. The best 3 F2 plants per
family, i.e., 60 F2 plants in total, were selected and selfed toward
the F5 generation resulting in 2,886 F5 genotypes. Descendants
from each of the 20 initial crosses were represented in this panel
with a mean number of genotypes of 144, ranging from 76 to
277. Seeds of the 2,886 F5 genotypes were grown in single row
plots in the season 2016/2017 and a fraction of 382 F5 : 6 families
were visually selected based on overall agronomic performance
(disease resistance) and considering plant height and flowering
time to facilitate hybrid seed production when crossed with three
out of the 15 above outlined male lines. The 382 F5 : 6 families
were genotyped using the above-mentioned SNP array. The
general combining abilities of the 382 F5 : 6 families when crossed
with the 15 original male lines were estimated using the SNP
profiles and the above outlined RRBLUP model. Based on the
estimated general combining ability effects, 50 outstanding F5 : 6
families were selected (denoted as C1S). All of the 20 biparental
F2 families were represented in this set of families.

As further reference point besides C0, 60 F2 plants out of
the above outlined 629 F2 plants of the 20 biparental families
were randomly selected. Here, a total of 3 F2 plants were
randomly drawn from each of the 20 biparental families and
selfed toward the F5 generation resulting in 714 F5 genotypes.
Seeds of the 714 F5 genotypes were multiplied in single row plots
in the season 2016/2017. A subfraction of 30 F5 : 6 families were
visually selected considering plant height and flowering time to
facilitate hybrid seed production when crossed with three out
of the above outlined 15 male lines. The subfraction of 30 F5 : 6
families were denoted as C1R. The 30 genotypes of the C1R
cycle were genotyped using the above-mentioned SNP array.
The integrated data set was filtered by excluding markers with
more than 5% missing values, resulting in 4,031 unique and
polymorphic markers.

Evaluation of the Selection Gain in Field

Trials and Phenotypic Data Analyses
The data set comprised 376 genotypes, including 3 male lines
previously used to produce the 1,604 original F1 hybrids,
20 female lines from C0, 49 female lines (one out of the
above mentioned 50 lines were discarded because hybrid seed
production failed entirely) from C1S, 30 female lines from C1R,
267 F1 hybrids, and 7 commercial varieties (Julius, Colonia,
Tobak, Elixer, RGT Reform, Hystar, and Genius). The hybrids
were derived by crossing the 99 female and the 3 male lines using

a factorial mating design. For 267 of the potential 297 single-cross
hybrids, enough seeds were harvested for intensive field trials.

All 376 genotypes were evaluated in yield plots for grain yield
and plant height at 6 locations in the growing season 2018/2019.
The locations were Hadmersleben (latitude 51.98N, longitude
11.30 E), Mintraching (latitude 48.95N, longitude 12.25 E),
Adenstedt (latitude 52.20N, longitude 10.18 E), Sossmar (latitude
52.2N, longitude 10.08 E), Wohlde (latitude 52.8N, longitude
9.98 E), and Boehnshausen (latitude 51.85N, longitude 10.95)
(Supplementary Table 1). The same seeding rate of 230 grains
per m2 was used for both parental lines and hybrids. The
plot size ranged from 7.2 to 12 m². Harvesting was performed
mechanically and adjusted to a moisture concentration of 140 g
H2O kg−1. The field design was an alpha lattice with block size
11 where each environment corresponded to one replication. The
yield trials were treated with fertilizers, fungicides, and herbicides
according to farmers practice for intensive wheat production.

The quality of the outlier-controlled phenotypic data from
each environment was assessed by estimating the genomic
repeatability employing the package BGLR (Perez and de los
Campos, 2014) in the software environment R (R Core Team,
2020). For this purpose, the following genomic prediction model
was used for lines:

y = 1nµ + g + e, (2)

where y was the n-dimensional vector of phenotypic records of
each environment, 1n was an n-dimensional vector of ones, uwas
a common intercept, g was an n-dimensional vector of additive
genotypic values and e was the residual term. It was assumed that
u was a fixed parameter, g ∼ N(0,Gσ 2

g ) and e ∼ N(0, Inσ
2
e ),

where In denoted the n × n identity matrix and G denoted the
n×n genomic relationship matrix among genotypes as proposed
by VanRaden (2008). For each environment, a 5-fold cross-
validation scheme was implemented. Therefore, the population
of tested lines was randomly divided into five subsets of equal
size. One subset was predicted after the model was trained based
on the phenotypic and genotypic data from the remaining four
subsets. The correlation between the observed and predicted
values defined the prediction ability. After performing 100 5-
fold cross-validations, genomic repeatability was obtained by the
mean of the prediction abilities.

For assessing the quality of the outlier-controlled phenotypic
data for the hybrids tested in each environment, genomic
repeatability was estimated employing the following model using
the package BGLR (Perez and de los Campos, 2014) in the
software environment R (R Core Team, 2020):

y = 1nµ + ZAa+ ZDd + e, (3)

where y was the n-dimensional vector of phenotypic records of
each environment, 1nwas an n-dimensional vector of ones, µ

was the common intercept, a and ZA denoted the additive effects
and the corresponding design matrix, and d and ZD denoted
the dominance effects and the corresponding design matrix. The
cross validation of hybrids was executed in the same manner as
described for lines.
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After outlier tests, the following model was used to obtain best
linear unbiased estimations (BLUEs) across environments:

yijk = µ + gi + rj + bk + eijk, (4)

where yijk referred to the phenotypic performance of the ith
genotype at the jth location in the kth block, µ referred to the
intercept, gi referred to the genetic effect of the ith genotype, rj
referred to the effect of the jth location, bk referred to the kth
block in the jth location and eijk denoted the residual. Genotype
was treated as fixed and the remaining effects as random. Outlier
detection test was performed following the method M4r as
described by Bernal-Vasquez et al. (2016), where the standardized
residuals were used in combination with the Bonferroni-Holm
test to identify an outlier. The detected outliers (3 for grain
yield) were removed for further analysis. Moreover, we estimated
variance components with the following model:

yimfnk = µ + a+ ln + bnk + pi + g′f + g′′m + gfm

+(g′l)fn + (g′′l)mn + (pl)in + emfink, (5)

where yifmnk referred to the phenotypic performance of the ith
genotype at the nth location in the kth block, ln referred to the
nth location, bnk referred to the kth block at the nth location,
pi referred to the effect of the ith parental line, g′f referred to

the general combining ability (GCA) effect of the fth female
line, g′′m referred of the GCA effect of the mth male line, gfm
referred to the specific combining ability (SCA) effect of the fmth
genotype, (g′l)fn referred to the interaction effect between the

GCA of the fth female and the nth environment, (g′′l)mn referred
to the interaction effect between the GCA of the mth male and
the nth environment, (pl)in referred to the interaction effect of
the ith parental line and the nth environment emfink referred to
the residual. Dummy variables were used to distinguish between
checks, lines, and hybrids. Based on the variance components,
heritability (h2) was estimated separately for lines and hybrids

as h2 =
σ 2
G

σ 2
G+

σ2GxE+σ2e
l

, where σ 2
G refers to the genetic variance

of lines or hybrids, σ 2
GxE refers to the genotype-by-environment

variance σ 2
e refers to the residual variance, and l denotes the

average number of environments in which the genotypes were
tested. Linear mixed models have been executed using ASReml
version 4.0 (Butler et al., 2017) in the software environment R (R
Core Team, 2020).

GCAFemale-by-environment interaction effects were estimated
by using the samemodel as in Equation (5) to further characterize
the environments in which the genotypes were evaluated. The
GCAFemale-by-environment interaction effects were estimated
for the experiments of the growing season 2018/2019 only and
furthermore in a combined data set consisting of the training
environments of the growing seasons 2011/2012 and 2012/2013
and the test environments of the growing season 2018/2019.
The GCAFemale-by-environment interaction effects were used
to perform principal component analyses (PCA) and obtain
Euclidean distances based on which the environments were
clustered in a complete-linkage approach.

The observed response to selection was estimated as Robs = Ŝ,
where Ŝ = µsel−µpop denoted the observed selection differential,
with µsel being the phenotypic mean of the selected genotypes
and µpop being the mean of the population from which the
selected genotypes were drawn. The C1 hybrids of the underlying
RRGS breeding program have been produced using female lines
deriving from a population of 629 genotypes. The capacity for all
of the 629 genotypes to produce hybrids has not been estimated
in field experiments but only through genomic prediction. For
this reason, the mean performance of the C0 hybrids evaluated
in the growing season 2018/2019 has been considered as an
approximation for µpop.

The expected response to selection was estimated as Rexp =

i • h • σA, where i denoted the intensity of selection, h refers
to the square root of the heritability, and σA denoted the
standard deviation of the breeding values. Selection intensity was
calculated as i (N,G) = i (α) − G−N

2N(G+1)i(α)
, where N was the

number of selected genotypes, G was the size of the population
from which the selected genotypes were drawn, and i (α) = i

(
N
G

)

referred to the standardized selection differential according to
tabulated values (e.g., Becker, 1975).

Selection was performed in two steps. In the first step, 60 F2
plants were selected out of a population of 629, resulting in a
selection intensity of i (N,G) = i (60, 629) = 1.78. Since the
selection was based on genomic predictions of the GCA effects
of the female lines evaluated in the HYWHEAT experiments,
the relevant variance of breeding values corresponds to σ 2

GCA ,
estimated in the experiments of the growing seasons 2011/2012
and 2012/2013 (Zhao et al., 2015). The selection was performed
in a population of F2 plants derived from crosses of genotypes
from the aforementioned population. Specifically, three F2 plants
were selected from each family. From quantitative genetic theory,
it can be inferred that half of the genetic variance can be exploited
if a selection is performed within an F2 family (Hallauer et al.,
2010). It follows that for the first step of selection, σGCA_F2 =√

1
2σ

2
GCA = 1.2. The square root of the heritability, h, was

assessed using as a conservative estimate the prediction abilities
obtained in a chessboard-like cross-validation considering two
out of the three different test sets T2, T1, and T0: T2 test
sets included hybrids sharing both parental lines, T1 test sets
comprised hybrids sharing one parental line, and T0 test sets
contained hybrids having no parental line in common with the
hybrids in the related training sets. In the RRGS program, male
testers were not changed and thus, the C1 lines reflected a mix
between the T1 and T2 scenario with a prediction ability of 0.55
and 0.76, respectively. For simplicity, the mean of the prediction
abilities for scenarios T1 and T2 was considered, resulting in
h = 0.66.

In the second step of selection, 50 plants were selected
from a population of 382 F5 : 6 plants. While h is considered
equal to the first step, i (N,G) and σGCA changed, with
i (50, 382) = 1.63. According to quantitative genetic theory
(Hallauer et al., 2010), the σGCA exploited in the second step

amounted to σCGAF5 : 6 =

√
7
8σ

2

GCA_F2
= 1.1. The total response

to selection was the sum of the responses of the first and
second step.
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Characterization of Field Locations
In the recent decades, Germany has become more prone to
drought events with harmful effects to agro-ecosystems. Personal
communication with responsible field technicians indicated
adverse field conditions in some of the environments in which
the genotypes of the RRGS program were tested. Therefore,
GCAFemale-by-environment interaction effects were obtained
frommodel (5) to estimate Euclidean distances between each pair
of environments.

To further investigate the range in which the environments
differed regarding physical stress, we used data from
meteorological and satellite-based approaches estimating
the plant available water and the condition of the regional
vegetation, respectively. The German drought monitor provides
data on plant available water beginning from 2015. Information
for the plant available water at each location was extracted
from the German drought monitor for the growing season
2018/2019 (Zink et al., 2016). In addition, the Vegetation
Condition Index (VCI) was employed to quantify the severity
of drought stress around the test locations. Geospatial data
sets based on the MOD13Q1 images were accessed from the
Application for Extracting and Exploring Analysis Ready
Samples (https://lpdaacsvc.cr.usgs.gov/appeears/) by USGS. Data
from MOD13Q1 images were available for the growing seasons
2011/2012, 2012/2013, and 2018/2019, qualifying them for the
comparison of the HYWHEAT and RRGS environments. For
each location, an area of 500 ha centered for the coordinates
of the test site was selected. The VCI based on the Enhanced
Vegetation Index (EVI) was obtained from the equation:

VCIi =
EVIi − EVImin

EVImax − EVImin
, (6)

where VCIi referred to the VCI on day i, EVIi referred to the
EVI on day i, EVImin referred to the minimum EVI in the area
observed in the period 2010–2019, and EVImax referred to the
maximum EVI in the area observed in the period 2010–2019. The
recommended practice for drought monitoring using the VCI
was applied as suggested by the United Nations Office for Outer
Space Affairs (2021). The mean value of the selected area around
the test site was applied in further considerations.

Based on the data for PAW and VCI, matrices with
the individual weather profile of each environment were
constructed. From these matrices, principal component analyses
were performed, and complete-linkage clusters based on the
Euclidean distances were obtained to identify environments with
special conditions.

RESULTS

Analysis of Population Structure Revealed

Genomic Traces of Selection
The population structure of the 3 male tester lines, the 20
founder female lines (C0) of the RRGS program, their 30 resulting
randomly drawn (C1R) recombined, and 49 selected progenies
(C1S) was analyzed based on 4,031 polymorphic SNP markers.
The principal component analysis derived from the eigenvectors

FIGURE 1 | Principal Component Analysis (PCA) of the 20 founder wheat lines

(C0 females), the 3 male lines, the 30 female lines drawn from random after

recombining the 20 founder lines (C1R), and the 49 female lines from the first

selection cycles (C1S). PCA were derived from the eigenvectors of the 3 male

and 20 female founder lines. The proportion of variance displayed by the

principal components (PC) were presented in brackets.

of the parental lines revealed that male and female lines tended
to be separated by the first principal component (Figure 1). With
respect to the second principal component, C1R was more widely
spread than C1S. Overall, C1S appeared to be more separated
from the male parents than C1R.

Phenotypic Data Indicated Pronounced

Interactions Between Genotypes and

Environments
Genomic repeatabilities were moderate to high, ranging from
0.13 in Wohlde to 0.51 in Hadmersleben with an average
of 0.34 in lines and ranging from 0.17 in Mintraching
to 0.58 in Adenstedt with an average of 0.34 in hybrids
(Supplementary Table 1). This underlines the overall high
quality of the yield trials. Interestingly, we observed that
correlations between grain yields in each environment were
low for some pairs (Table 1). For example, grain yields of lines
and hybrids studied at Wohlde and Hadmersleben were not
significantly correlated (r = 0.09; P > 0.36 for lines; and r =

−0.08; P > 0.20 for hybrids). The grain yield trial conducted
at Hadmersleben was not an outlier but correlated significantly
with the grain yield trial conducted at Boehnshausen (r = 0.51;
P < 0.001 for the lines; and r = 0.23; P < 0.001 for the
hybrids), a second location in Saxony-Anhalt. These pronounced
differences among locations were also visible in the contribution
of genotype-by-environment interaction effects (G×E) to the
phenotypic variance (Table 2). Genotypic variances σ 2

G were
significantly greater than zero (P < 0.01, Table 2) for lines as well
as hybrids, with σ 2

G being 5.85-times smaller in hybrids than in
lines. The ratio of σ 2

GxE/σ
2
G amounted to 0.81 in lines and the

ratio of σ 2
GCA(Female)xE

/σ 2
GCA (Female)

to 1.13 for general combining
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TABLE 1 | Pearson moment correlations between grain yield of 109 wheat lines (below diagonal) and 264 hybrids (above diagonal) evaluated at six locations in the year

2019 to assess the selection gain of the reciprocal recurrent genomic selection program.

Inbred/hybrid Adenstedt Boehnshausen Hadmersleben Mintraching Sossmar Wohlde

Adenstedt 1.00 −0.01 0.05 0.10 −0.02 0.17**

Boehnshausen 0.42*** 1.00 0.23*** 0.15* 0.12* −0.07

Hadmersleben 0.22* 0.51*** 1.00 0.13* 0.14* −0.08

Mintraching 0.29** 0.22* 0.26** 1.00 0.14* −0.01

Sossmar 0.54*** 0.55*** 0.39*** 0.17” 1.00 −0.01

Wohlde 0.44*** 0.12 0.09 0.32*** 0.24* 1.00

”, *, **, and *** significantly different from zero at the 0.05, 0.01, 0.001, and 0.0001 level of probability.

TABLE 2 | Estimates of variance components (residual variance indicated as σe)

and heritability (h2) for winter wheat for grain yield (dt/ha).

Source Grain yield Grain yield

(dt/ha) (dt/ha)

6 locations 4 locations

Lines

σ2LINES 17.21*** 17.91***

σ2LINESxE 14.01*** 10.05***

h2 (Lines) 0.84 0.76

F1 hybrids

σ2SCA 1.07** 1.05

σ2SCAxE 6.86** 7.50

σ2GCA(Female) 1.73** 2.14*

σ2GCAxE(Female) 1.97*** 2.20*

σ2GCA(Male) 0.00 0.00

σ2GCAxE(Male) 1.57NS 1.95NS

σ2HYBRIDS 2.94 3.20

σ2HYBRIDSxE 10.40 11.65

σ2e 5.73*** 5.77***

h2 (hybrids) 0.54 0.44

Parents and checks were grouped together as lines. The panel was evaluated at 6

locations and comprised 109 lines (7 checks, 99 females and 3 males) and 264 hybrids. In

a further analysis, only 4 locations with no stressful growing conditions were investigated.

NS, Not significant.

*, **, and *** significantly different from zero at the 0.01, 0.001, and 0.0001 level

of probability.

ability effects of the females, which was of special interest during
the selection. This underlines the substantial contribution of
genotype-by-environment-interaction effects to the phenotypic
variance. The estimated heritability (h2) was high for lines (0.84)
and moderate (0.54) for hybrids.

Drought Stress Was Associated With the

Pattern of Genotype-by-Environment

Interactions
The pronounced differences among locations encouraged us to
investigate the pattern of interaction effects between genotypes
and environments in more detail. Due to the exploitation of
additive effects in the recurrent genomic selection program, we
focused on the interaction effects between the GCA effects of

FIGURE 2 | Dendrogram based on the Euclidean distances among six

locations estimated using the GCAFemale-by-environment interaction effects

from the grain yield trials performed in the year 2019 to assess the selection

gain of the reciprocal recurrent genomic selection program. The locations were

ADE, Adenstedt; BOE, Boehnshausen; HAD, Hadmersleben; MIN,

Mintraching; SOS, Sossmar; WOH, Wohlde.

females with environments and performed a cluster analysis.
The analysis revealed that the Boehnshausen and Hadmersleben
locations formed a distinct group, separate from the other
locations of the RRGS experiment (Figure 2). We assessed
the clustering of the locations in more detail by analyzing
two published meteorological and satellite-based parameters:
the plant available water in the soil (PAW) and vegetation
condition index (VCI). Boehnshausen and Hadmersleben were
the locations with the lowest PAW during the early growing
season (Figure 3A) and both locations also clearly clustered
separately from the remaining locations when applying a
principal component analyses based on the PAW of the entire
growing season (Figure 3B). A similar picture was observed for
the VCI profiles. Boehnshausen and Hadmersleben showed low
VCI values throughout the growing season and distinguished
from the other locations in particular during the autumn and
winter months of the growing season (Figure 3C). The principal
component analyses based on the VCI profiles of the entire
growing season separated the Boehnshausen and Hadmersleben
locations from the remaining ones (Figure 3D). Thus, the
pronounced genotype-by-environment interactions were most
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FIGURE 3 | Characterization of the locations used to assess the selection gain of the reciprocal recurrent genomic selection program. (A) Line plot of the plant

available water (PAW) in the soil and (B) a principal component analyses (PCA) based on the PAW profiles of the locations recorded in the growing season [September

1st in the year of sowing (2018) to September 1st in the year of harvest (2019)]. (C) Line plot of the mean vegetation condition index (VCI), and PCA based on the

mean VCI profiles of the locations recorded in the growing season (D). The locations were indicated as ADE, Adenstedt; BOE, Boehnshausen; HAD, Hadmersleben;

MIN, Mintraching; SOS, Sossmar; WOH, Wohlde.

likely caused by severe drought stress occurring in the region of
Saxony-Anhalt in the growing season 2018/2019.

Pattern of Genotype-by-Environment

Interactions for Integrated Phenotypic

Data of the Training and the RRGS

Populations
The HYWHEAT training population was phenotyped at five
locations in the 2011/2012 season and at six locations in the
season 2012/2013, and the RRGS program was evaluated at six
locations in the 2018/2019 season. Three overlapping locations

albeit in different years were used for both, the HYWHEAT and
for the RRGS trials. Interestingly, for the overlapping genotypes
(27 for lines and 48 for hybrids) between the HYWHEAT and
the RRGS experiments, we observed a much higher correlation
between grain yield estimated in the growing seasons 2011/2012
and 2012/2013 within the HYWHEAT experiment (r= 0.49; P <

0.00 for lines and r= 0.43; P< 0.00 for hybrids) than between the
RRGS experiment and the HYWHEAT experiment in 2011/2012
(r = −0.04; P < 0.80, for lines and r = 0.08; P < 0.80, for
hybrids) and in 2012/2013 (r = 0.05; P < 0.40 for lines and r
= −0.17; P < 0.80, for hybrids). A closer look at the correlations
between grain yield of the RRGS experiment in each environment
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TABLE 3 | Correlations of phenotypic data from single environments of the RRGS experiments (2018–2019) with phenotypic data from HYWHEAT experiments and with

single years of the HYWHEAT experiment.

RRGS: 2018–2019 Hywheat: 2012 Hywheat: 2013 Hywheat: total

Lines Adenstedt 0.24 0.30 0.40*

Boehnshausen 0.04 −0.14 −0.11

Hadmersleben 0.03 −0.30 −0.24

Mintraching 0.38 −0.07 0.11

Sossmar 0.11 −0.11 0.03

Wohlde 0.43* 0.41* 0.54**

Hybrids Adenstedt 0.37* 0.37** 0.47***

Boehnshausen -0.26” -0.27” −0.32*

Hadmersleben −0.20 −0.23 −0.32*

Mintraching −0.20 −0.04 −0.13

Sossmar −0.09 −0.07 −0.07

Wohlde 0.13 0.27” 0.24

A number of 27 overlapping lines and 48 overlapping hybrids were included into the estimation.

”, *, **, and *** significantly different from zero at the 0.05, 0.01, 0.001, and 0.0001 level of probability.

FIGURE 4 | Characterization of the environments of the HYWHEAT and RRGS experiments of the growing seasons 2011/2012, 2012/2013, and 2018/2019, based

on the phenotypic performances of overlapping tested hybrids. (A) Dendrogram based on the Euclidean distances among 17 location times year combinations

(location_year) estimated using the GCAFemale-by-environment interaction effects from the grain yield trials performed in the year 2012 and 2013 for the training

population (HYWHEAT) and in the year 2019 to assess the selection gain of the reciprocal recurrent genomic selection program. (B) PCA based on the

GCAFemale-by-environment interaction effects of 16 location times year combinations. The locations were indicated as ADE, Adenstedt; BOE, Boehnshausen; HAD,

Hadmersleben; HAR, Harzhof; HOH, Hohenheim; MIN, Mintraching; SEL, Seligenstadt; SOS, Sossmar; WOH, Wohlde.

and the HYWHEAT experiments revealed strong interaction
effects with years (Table 3). The RRGS experiment conducted
in Wohlde and Adenstedt showed the highest correlations with
the HYWHEAT experiments with a decreasing trend toward
Mintraching, Sossmar, Boehnshausen, and Hadmersleben.

A complete-linkage clustering based on the Euclidean
distances estimated using the GCAFemale-by-environment
interaction effects was performed to further investigate the
relationships among the environments of the HYWHEAT and
the RRGS experiments (Figure 4A). The location Seligenstadt in
2013, and Boehnshausen in 2012 and Harzhof in 2012 formed
outgroups. Apart from Seligenstadt in 2012, which grouped
together with the environments Seligenstadt, Boehnshausen,

Hadmersleben, Sossmar, Mintraching, and Wohlde from the
RRGS experiment, the remaining HYWHEAT environments
constituted a distinguished cluster including the environment
of Adenstedt in 2019. A PCA based on the GCAFemale-
by-environment interaction effects showed that apart from
Seligenstadt in 2013, the environments of the HYWHEAT
experiment grouped together with the RRGS environments
Adenstedt, Mintraching and Wohlde in 2019 (Figure 4B). The
RRGS environments Boehnshausen, Hadmersleben and Sossmar
grouped separately from the remaining environments of the
RRGS and the HYWHEAT experiments.

A distance matrix obtained from the VCI profiles of the 17
environments of the RRGS and the HYWHEAT experiments
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was calculated. The comparison to the distance matrix derived
from the GCAFemale-by-environment interaction effects revealed
a correlation of 0.17 which was significantly different from
zero (P < 0.01) according to a Mantel test (Mantel, 1967).
The cluster which was derived from the VCI profiles of the
17 environments indicated the presence of two subgroups
among the HYWHEAT and RRGS experiments (Figure 5A). The
environments of the RRGS experiment grouped apart from the
HYWHEAT experiments, with the environment of Mintraching
in 2019 behaving exceptionally as it was situated within the
HYWHEAT experiments. Within the HYWHEAT experiments,
the location Adenstedt of the growing season 2011/2012
appeared as outgroup. The remaining HYWHEAT environments
formed two subgroups distinguished mostly by the year of the
evaluation. A PCA was executed based on the VCI profiles of
all environments in which the genotypes were tested during the
HYWHEAT and RRGS experiments (Figure 5B). This analysis
exposed shifts of the growing conditions across the growing
seasons in which the genotypes were evaluated. Based on the 1st

principal component, the environments in the RRGS experiment
showed to be largely separated from all remaining environments
from the HYWHEAT experiments. Only Mintraching situated
closely to some of the HYWHEAT experiments. The 2nd

principal component separated the RRGS experiments into three
groups: Mintraching and Seligenstadt, Sossmar and Adenstedt,
and Boehnshausen and Hadmersleben. The first principal
component explained 32.71% of the variance, the second
principal component explained 16.78% of the variance.

Selection of Test Locations Affected the

Assessment of Breeding Success
Evaluation of effectiveness of RRGS was conducted at six
locations during the 2018/2019 growing season, between which
pronounced genotype-by-environment interaction effects were
observed. Moreover, the 2018/2019 growing season locations
showed high genotype-by-year interactions compared to the
HYWHEAT experiments conducted in the 2011/2012 and
2012/2013 growing seasons, based on which the genomic
selection model was trained. In particular, the Boehnshausen
and Hadmersleben locations of the 2018/2019 growing season
showed low correlations to the environments of the HYWHEAT
experiment (Table 3). By comparing the BLUEs for the
overlapping genotypes of the RRGS experiment with the BLUEs
from the HYWHEAT experiment, correlations of 0.13 and−0.10
were observed for lines and hybrids, respectively. After excluding
the locations Boehnshausen and Hadmersleben from the RRGS
experiment, correlations between the RRGS experiment and
the HYWHEAT experiment based on overlapping genotypes
increased to 0.37 for lines and 0.21 for hybrids. Furthermore,
exclusion of the Boehnshausen and Hadmersleben locations
resulted in a drop of σ 2

GxE/σ
2
G from 1.13 to 1.02 for the

GCA of the female lines, indicating a lower proportion of
genotype-by-environment interactions among the remaining
locations of the RRGS experiment (Table 2). These findings
encouraged us to investigate the influence of genotype-by-
environment interactions on the selection gain of the RRGS

breeding programs. To this end, we estimated the selection
gain based on phenotypic data collected in all six environments
of the RRGS experiment and alternatively we excluded two
environments with negative average correlations to the single
environments of the HYWHEAT data set and estimated the
selection gain based on the remaining four locations.

Including all six environments from the growing season
2018/2019, the randomly drawn female lines of the C1 cycle
showed comparable (P > 0.1) average yields as the female parent
lines of the C0 cycle (Figure 6A). The genomically selected
females showed no significant differences of 1.0 dt ha−1 (P> 0.1)
average yields compared to the randomly selected female lines.
Surprisingly, genomically selected female lines of the C1 cycle
showed lower (P > 0.1) average yields than the female lines of
the C0 cycle. Both differed by 1.15 dt ha−1. The average yield of
the C0-hybrids, the genomic-selected fraction of the C1-hybrids
(C1S) and the randomly drawn fraction of the C1-hybrids (C1R)
did not show any significant (P > 0.1) difference. The midparent
heterosis was not significantly (P > 0.1) larger for C1S (10.3%)
as compared to C1R (9.7%) and C0-hybrids (9.8%) (Figure 7A).
The same was observed for better parent heterosis (Figure 7C).

Excluding the two outlier locations from the growing season
2018/2019, randomly drawn female lines of the C1 cycle showed
comparable (P > 0.1) average yields as the female parent lines
of the C0 cycle (Figure 6B). Genomically selected female lines
of the C1 cycle and randomly selected female lines of the C1

cycle showed no significantly different (P > 0.1) grain yield
performance. The female parent lines of the C1 cycle performed
comparable (P > 0.1) to the female parent lines of the C0 cycle.
While C1R hybrids showed no significant difference (P > 0.1) in
average yield performance compared to C0 hybrids, C1S hybrids
outperformed (P < 0.05) C0 hybrids by 1.0 dt ha−1, achieving
a selection gain of 1%. Moreover, C1S hybrids outperformed (P
< 0.1) C1R hybrids by 0.7 dt ha−1. Midparent heterosis was
not significantly different (P > 0.1) in C1R (11.5%) compared
to C0 (11.3%), while C1S (12.8%) showed a clear advancement
and performed significantly better than C0 (P< 0.05) and C1R (P
< 0.05) (Figure 7B). A different pattern was observed for better
parent heterosis. C0 (11.3%) and C1R performed comparable (P
> 0.1). C1S (10.0%) did not perform significantly different from
C0 (P > 0.1) and C1R (P > 0.1) (Figure 7D).

The observed selection differential and hence the observed
response to selection varied depending on which environments
were considered for the evaluation. When all six environments
were included, it amounted to Robs_6E = −0.4 dt ha−1.
When environments with severe stress conditions were excluded
and only four environments were considered, the observed
selection differential and hence observed response to selection
was Robs_4E = 1.0 dt ha−1.

DISCUSSION

We conducted one cycle of an RRGS program in wheat, including
field evaluation of the resulting hybrids, which took a total of
6 years from the first crosses. It is important to note that each
subsequent selection cycle lasts only one additional year at most,
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FIGURE 5 | Characterization of the environments of the HYWHEAT and RRGS experiments of the growing seasons 2011/2012, 2012/2013, and 2018/2019, based

on satellite-based images. (A) Dendrogram based on the mean vegetation condition index (VCI) profiles of 16 location times year combinations (location_year) used to

perform grain yield trials in the year 2012 and 2013 for the training population and in the year 2019 to assess the selection gain of the reciprocal recurrent genomic

selection program. (B) PCA based on the mean VCI profiles of 16 location times year combinations. The locations were indicated as ADE, Adenstedt; BOE,

Boehnshausen; HAD, Hadmersleben; HAR, Harzhof; HOH, Hohenheim; MIN, Mintraching; SEL, Seligenstadt; SOS, Sossmar; WOH, Wohlde.

FIGURE 6 | Grain yield performance depending on the status of genotypes evaluated in the 2019 experiment. (A) Performances of the fractions from the breeding

population with all six environments of 2018/2019 included. (B) Performances of the fractions from the breeding population with only 4 environments of 2018/2019

included. Status indicates the affiliation of each group of genotypes to a specific fraction within the breeding program. Female parent lines from the C0 cycle are

indicated as C0F, female parent lines from the randomly selected fraction of the C1 cycle are indicated as R, female parent lines from the genomic-selected fraction of

the C1 cycle are indicated as S, checks are indicated as “check,” hybrids from the C0 cycle are indicated as C0H, hybrids from the randomly selected fraction of the

C1 cycle are indicated as C1R, hybrids from the genomic-selected fraction of the C1 cycle are indicated as C1S.

which illustrates the great opportunity to accelerate classical RRS
programs. The RRGS program focused exclusively on the female
pool and can be viewed as a special case of RRGS in which only
the allele frequencies in the pool of female parent lines have been
shifted with respect to the frequencies of favorable alleles in the
pool of male parent lines.

This situation implies consequences for the determination
of selection directions, especially in the case of overdominance,

k > 1, with k = d
a , where d denotes the dominance effect

and a denotes the additive effect. If overdominance is present
at a given locus, RRGS aims to fix different alleles in the pool

of female parental lines and in the pool of male parental lines,
thus guarantees the desired complementarity among the two
heterotic groups. For loci with k > 1, at which the pool
of male parent lines has a fixed allele, RRGS will result in
the fixation of the complementary allele in the pool of female
parent lines. If the allele is not fixed in the pool of the male
lines, and no selection is applied to the pool of male parental
lines, complementarity among the heterotic groups cannot
be achieved.

If 0 < k ≤ 1, i.e., in the presence of partial dominance, RRGS
aims to ultimately fix the favorable allele in both heterotic groups.

Frontiers in Plant Science | www.frontiersin.org 10 September 2021 | Volume 12 | Article 703419182

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Rembe et al. RRGS Is Impacted by GxE

FIGURE 7 | Midparent heterosis (MPH) and better parent heterosis (BPH) for hybrids generated in the reciprocal recurrent selection program. MPH [%] estimated

based on trials performed (A) at 6 locations and (B) 4 locations, excluding 2 stress environments. BPH [%] estimated based on trials performed (C) at 6 locations and

(D) 4 locations, excluding 2 stress environments.

In the case where the male heterotic group is not fixed for the
favorable allele, the optimal configuration cannot be achieved if
the male heterotic group is not subject to selection.

For loci that exhibit negative dominance, i.e., k < 0, the
desired selection direction is to fix the favorable allele in both
heterotic groups. Complications arise when the unfavorable allele
is present in the male heterotic group. Furthermore, if k < −1,
i.e., negative overdominance is present, RRGS is directed toward
fixation of the favorable allele only if the frequency, p, of the
favorable allele is above the threshold p > (k + 1)/2k (Rembe
et al., 2019).

In the present breeding program, the male heterotic group
was kept constant between the C0 and the C1 cycle. As described
above, this approach would not be expedient to reach the
ideal allelic configurations between the two heterotic groups.
However, the applied selection scheme is capable to evaluate
the effectiveness of a selection that is conducted with respect to
the allele frequencies within both heterotic groups. Therefore,
the experimental design can serve as a model case for an RRGS
breeding program.

The results of the field trials indicate that heterosis increased
through RRGS (Figure 7). The selected fraction of the C1S
hybrids showed significantly higher midparent heterosis than
the C0 hybrids, but no significantly different better parent
heterosis. In contrast, the C1R hybrids did not show increased
midparent or better parent heterosis compared to the C0

hybrids. These findings highlight that the implemented selection
models, which focused on additive and dominance effects,
had an impact.

To evaluate the success of the RRGS program in more
detail, the expected response to selection was compared to
the observed response to selection. The expected response
considering genomic selection at the F2 and F5 : 6 levels was
Rexp = 2.6 dt ha−1, which was much lower than the
observed response considering all six environments (Robs_6E =

−0.4 dt ha−1) or the four environments (Robs_4E = 1.0 dt ha−1).
The difference between Robs_6E and Robs_E clearly suggests that
different growing conditions in the environments impacted the
assessment of the response to selection. But even Robs_4E was
2.6 times smaller than the expected response of selection Rexp,
indicating that the implemented RRGS breeding program falls
short of expectations. This observation can be mainly attributed
to a high amount of genotype-by-year interactions between the
2011/2012, 2012/2013, and 2018/2019 experiments as highlighted
in the detailed analyses of the interaction between genotypes and
years (Figures 4, 5). Multi-year testing could be an option to
reduce the risk of unsuitable selection decisions.

So far, there are no experimental studies that have evaluated
the effectiveness of an RRGS breeding program in cereals.
In an RGS breeding program in wheat for the less complex
trait grain fructans compared to grain yield, significant
genotype-by-environment interactions were observed with little
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effects on prediction accuracies (Veenstra et al., 2020). In
contrast, in an RRS program in tropical maize focusing
on grain yield, Kolawole et al. (2018) also observed that
genotype-by-environment interactions negatively affected the
observed response to selection.

As an alternative approach to estimate the expected response
of selection, realized prediction ability was examined as the
correlation between predicted average hybrid performances and
the observed average hybrid performance of the 30 randomly
drawn female parent lines from the C1 cycle. When all six
environments of the season 2018/2019 were included in the
analysis, a realized prediction ability of 0.13 was observed.
Excluding environments with stressful growing conditions for
the 2018/2019 data set resulted in a realized prediction ability
of 0.27. These realized prediction abilities of the 2018/2019
growing season are substantially lower than the prediction
abilities estimated by cross validations based on the data
of the HYWHEAT experiment conducted in the 2011/2012
and 2012/2013 growing seasons (Zhao et al., 2015). This can
only partly be explained by the small sample size of 30
randomly drawn female parent lines from the C1 cycle used
to estimate the prediction abilities. Moreover, it is unlikely that
the low realized prediction abilities have been caused through
recombination.More likely, the lower realized prediction abilities
are due to interaction effects between genotypes, locations,
and years.

When the prediction abilities estimated based on the 30
randomly drawn female parent lines from the C1 cycle are used
to estimate the expected response to selection, the value decreases
to Rexp_6E = 0.09 dt ha−1 and Rexp_4E = 1.22 dt ha−1,
depending on whether stressful environments are included or
not. In this case, Robs_4E was only 1.22 times smaller than the
expected response of selection Rexp. Consequently, it is pivotal
to obtain genome-wide prediction models that are not biased
due to interaction effects between genotypes, locations, and
years. One promising approach to achieve this, is to account
for interaction effects between genotypes and environments
by implementing environmental cofactors into genome-wide
prediction models (de los Campos et al., 2020). This facilitates to
reduce the adverse effects due to interactions between genotypes
and environments and to develop more sustainable genome-
wide prediction models. In addition, aggregation of available

medium size genomic and phenotypic data across different
projects and perhaps even breeding programs into large data
sets can help substantially to reduce confounding effects of
genotype-environment interactions (Zhao et al., 2021). These
adjustments seem urgently needed to further leverage the
potential of RRGS.
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Crop Breeding With Genomic 
Prediction Aided Sparse Phenotyping
Sang He 1,2*, Yong Jiang 3, Rebecca Thistlethwaite 4, Matthew J. Hayden 1,5, 
Richard Trethowan 4,6 and Hans D. Daetwyler 1,5*

1 Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia, 2 CAAS-IRRI Joint Laboratory for 
Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of 
Agricultural Sciences, Shenzhen, China, 3 Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop 
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Increasing the number of environments for phenotyping of crop lines in earlier stages of 
breeding programs can improve selection accuracy. However, this is often not feasible 
due to cost. In our study, we investigated a sparse phenotyping method that does not 
test all entries in all environments, but instead capitalizes on genomic prediction to predict 
missing phenotypes in additional environments without extra phenotyping expenditure. 
The breeders’ main interest – response to selection – was directly simulated to evaluate 
the effectiveness of the sparse genomic phenotyping method in a wheat and a rice data 
set. Whether sparse phenotyping resulted in more selection response depended on the 
correlations of phenotypes between environments. The sparse phenotyping method 
consistently showed statistically significant higher responses to selection, compared to 
complete phenotyping, when the majority of completely phenotyped environments were 
negatively (wheat) or lowly positively (rice) correlated and any extension environment was 
highly positively correlated with any of the completely phenotyped environments. When 
all environments were positively correlated (wheat) or any highly positively correlated 
environments existed (wheat and rice), sparse phenotyping did not improved response. 
Our results indicate that genomics-based sparse phenotyping can improve selection 
response in the middle stages of crop breeding programs.

Keywords: sparse phenotyping, genomic prediction, multi-environment trials, response to selection, correlations 
between environments

INTRODUCTION

Genomic selection is a promising tool to assist plant breeding by accelerating selection gain 
per unit time (Endelman et  al., 2014; Slater et  al., 2016; Crossa et  al., 2017; Voss-Fels et  al., 
2019). In crop breeding programs, there is a consensus that genomic selection should be applied 
in the early stages as phenotyping intensity during this period is low, especially for grain yield 
and hard-to-measure traits (Endelman et  al., 2014; He et  al., 2016). However, this genomic 
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selection strategy depends on an independent and robust 
reference population, normally consisting of historical data 
collected across several years (Dawson et  al., 2013; Rutkoski 
et  al., 2015; Jarquin et  al., 2016).

Another way to deploy genomic selection in breeding is 
through phenotype imputation (Hori et  al., 2016), which does 
not require an independent reference population. In the middle 
stages of breeding programs (e.g., sometimes referred to as 
stages one or two), crop lines are regularly phenotyped in 
only a few environments. Increasing the number of testing 
environments during these stages with genomic selection could 
markedly boost selection accuracy, compared to the advanced 
stages where most selection candidates are intensively tested 
in many environments (He et  al., 2016). However, budget and 
seed availability constraints make complete phenotyping of all 
selection candidates in many environments impractical earlier 
in the breeding program. Nevertheless, the phenotype imputation 
scheme proposed by Hori et  al. (2016) suggests that lines do 
not need to be  tested in each environment, i.e., sparse 
phenotyping. Instead, the phenotype of lines in untested 
environments is reliably predicted using methods such as multi-
environment genomic prediction approaches based on the 
remaining observations in tested environments. Consequently, 
a multi-environment trial (MET) with more testing environments 
could improve overall selection accuracy.

Traditionally, the correlation between the best linear unbiased 
estimation (BLUE) of genetic value and the genomic estimated 
genetic value (GEGV) is used to evaluate genomic prediction 
accuracy (Heslot et  al., 2012; Rutkoski et  al., 2015; He et  al., 
2016; Jarquin et  al., 2016). BLUEs are assumed to be  the best 
benchmark of GEGV because they are derived directly from 
per se performance, which is trusted by plant breeders. However, 
the true genetic value is unknown and whether BLUE or GEGV 
is closer to the true genetic value is difficult to establish. Thus, 
rather than prediction accuracy, the focus could be  on the 
actual breeders’ interest, e.g., the response to selection, which 
can be  inferred from a simulation-based approach (Piepho 
and Möhring, 2007) to directly evaluate the effectiveness of 
genomic selection. To our knowledge, no study has applied 
this approach to assess the effectiveness of genomic selection.

Our study utilized an Australian pre-breeding wheat 
population and a publicly available rice pureline population, 
both with complete and orthogonal phenotypic records of grain 
yield across 3 years and two sowing times, to investigate the 
potential of genomics-assisted sparse phenotyping to improve 
selection response in the context of multi-environment trials. 
We  also investigate the relationship among environments and 
how this affects the effectiveness of the proposed genomics-
assisted sparse phenotyping method.

MATERIALS AND METHODS

Wheat Data Set
The wheat grain yield data set used in this study originated 
from the data set used in He et  al. (2019), which consisted 
of five individual data sets including 1,351 genotypes.  

The genotypes were evaluated from year 2012 to 2017 with 
two times of sowing (TOS) per year at Narrabri in north-
western New South Wales, Australia. The randomized complete 
block design with two replicates was applied to measure five 
agronomic traits incl. Grain yield, plant height, protein content, 
screenings percentage, and thousand kernel weight. The 
experiments in the current study were based on 189 lines 
consistently tested from year 2015 to 2017 at two TOS per 
year. These lines composed an orthogonal data set with a 
dimension of 189 lines and six environments.

Phenotypic analysis was implemented for each data set to 
derive the repeatability estimate per environment (year–TOS 
combination) and best linear unbiased estimates (BLUEs) per 
line in each environment, as described in He et  al. (2019). 
Specifically, the phenotypic data of each environment were 
analyzed using a mixed linear model. The field design relevant 
effects such as range, row, and replicates as well as residual 
effect were all designated as random effects which followed 
an identical and independent normal distribution. Genetic 
effects were in tandem treated as fix and random to derive 
the best linear unbiased estimates (BLUE) and repeatability of 
each environment. Another mixed linear model based on BLUE 
of the 189 genotypes in each environment was fitted to estimate 
the heritability of grain yield, which was formulated as 
y 1 Z r Z ln r l= + + +m ,ee  where n is the number of BLUE values, 
y  is n-dimensional vector of genotype BLUEs across 
environments, m  is the common intercept, 1n is a n-dimensional 
vector of ones, r is the vector of environment effects, l is the 
vector of genetic effects of genotypes, Zr and Zl are incidence 
matrices for r and l, and ε is the random residual. Effects r, 
l, and ε were fitted as random effects following identical and 
independent normal distributions. The heritability of grain yield 
was estimated using formula: 1

2
2

-
c

ls
, where c  is the mean 

variance of a difference between two best linear unbiased predictions 
(BLUP) of genetic effects of genotypes (Cullis et  al., 2006).

The genotypic data of the 189 lines used in this study were 
drawn from the genotypic data of 1,351 wheat lines fingerprinted 
with 41,666 90 K single nucleotide polymorphisms (SNP) in 
He et  al. (2019). As the number of genotypes was reduced, 
SNPs were refiltered by removing those with a minor allele 
frequency of less than 0.05, which left 32,800 SNP for subsequent 
analyses. The genetic diversity of the 189 genotypes was inspected 
based on a cluster analysis using Rogers’ distance (Roger, 1972) 
estimated by the 32,800 SNP. The correlation between 
environments was estimated by Pearson correlation coefficient 
between the BLUEs of the 189 genotypes in 
different environments.

Rice Data Set
The publicly available rice data set (Spindel et al., 2015) included 
358 rice lines phenotyped for six agronomic traits across 4 years 
and two seasons, i.e., eight environments (year–season 
combinations). As in wheat, phenotypic analyses included 
estimation of repeatability per environment and BLUEs per 
line. Based on the BLUEs, we  selected six environments with 
the greatest range in correlations between environments out 

188

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


He et al.	 Genomic Prediction Aided Sparse Phenotyping

Frontiers in Plant Science | www.frontiersin.org	 3	 October 2021 | Volume 12 | Article 735285

of the total eight environments to evaluate the effectiveness 
of the sparse phenotyping method. Finally, 160 lines were 
available with orthogonal yield phenotypic data in all six 
environments. Genotyping-by-sequencing (GBS) genotypes for 
108,024 SNPs were quality controlled as follows. Low-quality 
SNPs with MAF less than 0.05 and call rate less than 0.9 
were removed. Eventually, 46,232 SNPs were available for the 
160 used lines. The correlation between environments was 
estimated by Pearson correlation coefficient between the BLUEs 
of the 160 genotypic lines in different environments.

Multi-Environment Genomic Prediction 
Model
A multi-environment genomic prediction model explicitly 
describing genotype-by-environment interactions was used:
	 y 1 Z v Z g gv emn v g= + + + +m

where m is the number of environments, n is the number of 
genotypes, y is a m × n vector of BLUEs of genotypes in each 
environment, m  is the common intercept, v is the m-dimensional 
vector of environment main effect, g is the n-dimensional 
vector of additive genetic main effect of genotypes, gv is the 
m × n vector of genotype-by-environment interaction effects, e 
is the random residual, Zv is the incidence matrices for v, 
and Zg is the incidence matrices for g. We assumed v 0 I~ N , vs

2( ) ,  
g 0 G~ N , gs

2( ), gv Z GZ Z Zg g v v~ N , gv0
2′ ′



( ) s , and 

e 0 I~ N , es
2( ) , where   is the Hadamard product of matrices, 

sg
2 , sgv2 ,  and se2 are their variance components, respectively, 

for genotype, genotype-by-environment interaction effects, and 
random residual. G is the genomic relationship matrix proposed 
by VanRaden (2008) constructed based on SNP genotypic 
profiles. The genomic prediction model was run in R (R Core 
Team, 2016) using the BGLR package (de los Campos and 
Pérez-Rodríguez, 2016). Iteration times were fixed to 30,000, 
and the first 5,000 times were set as burn-in.

Sparse Phenotyping Method
We compared the selection response of the complete phenotyping 
trial in fewer environments with a sparse genomic phenotyping 
method in additional environments. In this sense, all possible 
combinations of three environments out of the total six 
environments were used as the complete phenotyping trials, 
which retained total phenotypic values (BLUEs per environment). 
Phenotypic values in combinations of four, five, and six 
environments (there is just one combination using all six 
environments) were proportionally masked to create the sparse 
phenotyping trials. The percentage of phenotypic values retained 
in the 4-, 5-, and 6-environment combinations was 75, 60, 
and 50%, respectively, which made the phenotyping intensity 
in all 3-, 4-, 5-, and 6-environment combinations equivalent. 
Thus, the number of BLUEs and the amount of phenotype 
data collected was the same in all scenarios. There were 20 
different combinations of three environments out of the total 
six environments. Each 3-environment combination was extended 
to three 4- or 5-environment combinations by including one 

or two environments from the remaining three environments. 
According to the phenotyping proportions (75, 60, and 50%) 
of 4-, 5-, and 6-environment combinations, phenotypic values 
in each 4-, 5-, and 6-environment combination were randomly 
masked one hundred times according to the cross-validation 
strategy two (CV2) in He et  al. (2019). Specifically in this 
study, each genotype has six environment-specific BLUEs. 
We  first attempted to randomly mask one BLUE of genotypes 
in the 4-, 5-, and 6-environment combinations to make the 
phenotyping proportions the same as the 3-environment complete 
phenotyping trial. If masking one BLUE was insufficient to 
meet the required phenotyping proportion, another BLUE of 
genotypes was masked until the required phenotyping proportion 
was reached.

Response to Selection
The genomic prediction model, also known as a mixed linear 
model, can be used to directly estimate the response to selection 
through a simulation-based approach following Piepho and 
Möhring (2007). Briefly, the multi-environment genomic 
prediction model was fitted using phenotypic records of complete 
phenotyping trial (3-environment combination) and phenotypic 
records of sparse phenotyping trials (4-, 5-, and 6-environment 
combinations). We  were mainly interested in the relationship 
between the true genetic main effect g and its best linear 
unbiased prediction (BLUP) g , because the selection was based 
on the BLUP, while the response of selection was determined 
by the true values. In fact, the joint distribution of g and g  
is multivariate normal and the corresponding variance–covariance 
matrix WW=








var

g
g

 can be  derived from the mixed model 

equations. Then, WW  was eigendecomposed as WW LL GGGG= ′ ′D D = , 
where D is the matrix of eigenvectors and Λ is the diagonal 
matrix of eigenvalues, GG LL= D . The vector combining the 

true and predicted genetic main effects w g
g

=











 could 

be  simulated by w z= GG , where z is a 2n-dimensional vector 
of independent standard normal deviates because 
var var varw z z( )= ( )= ( ) = =′ ′GG GG GG GGGG WW  as desired.

For each 3-environment complete phenotyping trial, the 
responses to selection under varying selection ratios 
(corresponding to different selection intensities) ranging from 
10 to 90% with a gap of 10% were simulated 10,000 times. 
In each simulation run, the vector w combining the true and 
predicted genetic main effects was simulated and a subset of 
genotypes (Sq) with top p% (p = 10–90) of g  was selected. 
The response to selection of the simulation run (qth) was 

calculated as R
g

S
q

i S
i

q

q=
( )
∈∑

#
, where # Sq( )  is the size of Sq. 

For each selection ratio (10–90%), the average value of response 
to selection of the 10,000 runs was finally used as the achieved 
responses to selections of the complete phenotyping trial, i.e., 

R

R
q

q

= =∑ 1

10000

10000
. The responses to selections of each extended 
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4-, 5-, and 6-environment sparse genomic phenotyping trial 
scenario were simulated in the same manner based on only 
unmasked phenotypic values. The effectiveness of genomic 
selection was determined by comparing the achieved selection 
response between each complete phenotyping trial and its 
extended different sparse phenotyping trials. The difference 
between the achieved response of the complete phenotyping 
scenarios and responses from one hundred replicates of the 
corresponding extended sparse phenotyping scenarios (with 
random phenotype masking) under each selection ratio (10–90%) 
was statistically tested with Student’s t tests.

RESULTS

Phenotypic Data and Population Structure
For the wheat data set, the overall heritability of grain yield 
was 0.38 and repeatability of each environment was above 
0.4, indicating that the phenotypic data were of high quality 
(Figure  1A). The distribution of BLUEs in different 
environments was asymptotically normal (Figure 1B). Several 
large families were identified by clustering analysis and 
linkages existed across families (Supplementary Figure  1). 
The Rogers’ distance values between any pair of genotypes 
ranged from 0.01 to 0.53. For the rice data set, the overall 
heritability was 0.83 and repeatability of each environment 
was over 0.4 (Supplementary Figure  2A). The distribution 
of BLUEs across different environments was near normal 
(Supplementary Figure  2B).

Correlations Between Environments
In the wheat data set, pairwise correlations ranged from −0.35 
to 0.84 among the six environments (Figure  2). Among the 
3-environment combinations, five combinations showed all 
positive pairwise correlations. Each 3-environment combination 
displayed at least one positive pairwise correlation 
(Supplementary Table  1). Inspecting the pairwise correlations 
within the twenty 3-environment combinations, four groupings 
became clear: (1) one pair of environments had high positive 
correlation 0.84, i.e., combinations 1–4; (2) environments where 
all pairwise correlations were positive, i.e., combinations 5, 11, 
and 19; (3) one pair of environments had negative correlations, 
i.e., combinations 6–7, 12–13, and 17–18; and (4) two pairs 
of environments had negative correlations, i.e., combinations 
8–10, 14–16, and 20 (Supplementary Table  1).

In the rice data set, correlations of pairs of environments 
varied from 0.05 to 0.67 (Supplementary Figure  3). Among 
the 3-environment combinations, in one combination all 
correlations were below 0.18 and four combinations had one 
highly positive correlation of 0.67 (Supplementary Figure  3). 
Based on the pairwise correlations within the twenty 
3-environment combinations, there were four distinct groupings: 
(1) one pair of environments with high positive correlation 
0.67, i.e., combinations 10, 16, 19, 20; (2) all pairwise correlations 
moderately positive above 0.18, i.e., combinations 12, 13, 17, 
18; (3) one pair of environments lowly positively correlated 
below 0.18, i.e., combinations 3, 4, 6–9, 11, 14, 15; and (4) 
more than one pair of environments lowly positively correlated 
below 0.18, i.e., 1, 2, 5 (Supplementary Figure  3).

A B

FIGURE 1  |  Wheat – (A) heritability of grain yield and repeatability in each environment. The highest and lowest repeatability of specific environments 
evaluated in different data sets are shown in two grayscales; (B) distribution of best linear unbiased estimate (BLUE) of genotypes in different 
environments.

190

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


He et al.	 Genomic Prediction Aided Sparse Phenotyping

Frontiers in Plant Science | www.frontiersin.org	 5	 October 2021 | Volume 12 | Article 735285

Simulated Response to Selection
For the wheat data set, twenty-one 4-environment combinations 
with sparse phenotyping applied had statistically significant 
higher responses to selection, compared to their equivalent 
3-environment combination with complete phenotyping under 
each selection ratio, i.e., 10–90% (Figure  3). Most of the 
combinations contained one negative correlation between the 
three base environments with complete phenotypic records and 
one highly positive correlation (0.84) between the extension 
environment and the base environments (Figure  3). For the 
5- and 6-environment combinations, there were twenty-three 
and seven sparse combinations showing higher response, 
respectively (Figures  4, 5). One negative correlation between 
the base environments and one highly positive correlation 
between expansion environment and base environments were 
also observed in the 5- and 6-environment combinations 
(Figures 4, 5). Comparison of the responses of all 3-environment 
combinations and their extended 4-, 5-, and 6-environment 
combinations identified five 3-environment combinations where 
the sparse phenotyping combinations did not result in a 
significantly higher response than the corresponding full 
3-environment scenarios (combinations 1–4, 19; 
Supplementary Table  2). For most 3-environment complete 
phenotyping combinations, the responses achieved by the 
extended 4-environment sparse phenotyping scenarios were the 
highest compared to the 5- and 6-environment combinations 
(Figure  6).

For the rice data set, twenty-five 4-environment combinations 
sparse phenotyping scenarios showed statistically significant 
higher responses to selection than their corresponding 
3-environment complete phenotyping combination under each 
selection ratio, i.e., 10–90% (Supplementary Figure  4). Most 
of these included two lowly positive correlations (<0.18) within 
the three complete phenotyping environments and/or one highly 
positive correlation (0.67) between the extended environment 
and one complete phenotyping environment 

(Supplementary Figure  4). For the 5- and 6-environment 
combinations, there were twenty-one and seven combinations, 
respectively, displaying higher response 
(Supplementary Figures  5, 6). Again, one highly positive 
correlation between the expansion environment and base 
environments and at least two lowly positive correlations within 
the base environments were observed in the 5- and 6-environment 
combinations (Supplementary Figures 5, 6). The 3-environment 
combinations with one highly positive correlation, i.e., group 1, 
showed no improved response from sparse phenotyping 
(Supplementary Figures 4–6). The responses of 4-environment 
sparse combination with one extended environment tended to 
be higher than those of 5- and 6-environment sparse combinations 
(Supplementary Figure  7).

DISCUSSION

Our study investigated the potential of a genomics-assisted 
sparse phenotyping method via simulated selection responses 
based on a wheat and a rice data set. Results of both data 
sets showed that the sparse phenotyping can lead to a similar 
or greater response and provides information on genotype 
performance in more environments, compared to fully replicated 
trials. As the level of phenotyping (i.e., the number of 
observations) was the same in all scenarios, the advantage of 
sparse phenotyping was achieved with a similar budget. While 
families existed in the populations, our sparse phenotyping 
method tested each genotype in at least one environment. 
Consequently, as all genotypes were included in the reference 
set, the families did not introduce bias due to relatedness 
discrepancy to genomic prediction in the different phenotype 
masking scenarios.

Inclusion of Environment Correlation in 
Genomic Prediction Model Reduces the 
Benefit of Genomics-Assisted Sparse 
Phenotyping
In our study, a basic multi-environment genomic prediction 
model considering environments independent was used to 
simulate response to selection. Nevertheless, a sophisticated 
model that accommodates correlation between environments 
seems more reasonable in theory and more suited to 
be  implemented. Jarquin et  al. (2014) and Saint Pierre et  al. 
(2016) demonstrated using environmental descriptors such as 
weather data to describe environmental relationship could 
improve genomic prediction accuracy. However, such 
environmental data are not always available. Martini et  al. 
(2020) proposed to straightforwardly use phenotypic correlation 
of overlapped genotypes in different environments to specify 
the environmental relationship matrix. Thus, we  also tested 
the effectiveness of the model in the wheat data set using 
correlation between BLUEs of unmasked genotypes in both 
environments to compile the environmental relationship matrix. 
Results showed that the sophisticated model including 
environmental correlation reduced the number of cases where FIGURE 2  |  Wheat – pairwise correlation between environments.
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the sparse phenotyping method displayed significantly higher 
response than complete phenotyping, as compared to the basic 
model (Supplementary Figures  8–10). This may be  attributed 

to the number of genotypes used in our study being insufficient 
to reliably estimate the environmental relationship matrix 
(Martini et  al., 2020). For the sparse phenotyping scenarios, 

FIGURE 4  |  Wheat – 3-environment combinations with complete phenotypic values showing statistically significant (p < 0.05) lower response to selection than their 
extended 5-environment combinations using genomics-assisted sparse phenotyping. Labels of horizontal axis are the scenario numbers of 3-environment 
combinations. Black dots represent correlation coefficients between the three base environments with complete phenotypic values. Triangles with different colors 
indicate correlation coefficients between separate added environments, i.e., the first or second added environment, and base environments.

FIGURE 3  |  Wheat – 3-environment combinations with complete phenotypic values showing statistically significant (p < 0.05) lower response to selection than their 
extended 4-environment combinations using genomics-assisted sparse phenotyping. Labels of horizontal axis are the scenario numbers of 3-environment 
combinations. Black dots represent correlation coefficients between the three base environments with complete phenotypic values. Red triangles indicate correlation 
coefficients between the added environment and base environments.
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the number of genotypes that can be  used to estimate 
environmental relationship matrix, i.e., unmasked genotypes 
in both environments, would decrease even more. Particularly, 
when a total six environments were used, there was only one 
combination in which the sparse phenotyping performed 
significantly better (Supplementary Figure 10). This is because 
when the number of expansion environments increased, the 
number of unmasked genotypes with phenotypes in all 
environments reduced (Supplementary Figure  11), leading to 
a reduction in the reliability of correlation estimates. Alternatively, 
a more sophisticated model with unstructured environment 
covariances was also fitted (Burgueño et  al., 2012). However, 
the phenotypic variance–covariance matrix was not always 
invertible when the sparse phenotyping pattern changed. Based 
on these results, we  recommend to use the basic multi-
environment genomic prediction model to compare the 
effectiveness of sparse and complete phenotyping strategies 
unless there are adequate common genotypes in different 
environments available to reliably estimate the environmental 
relationship matrix.

Effectiveness of Sparse Phenotyping 
Could Be Further Improved by Selective 
Phenotyping
Our study used a simple stochastic masking design to simulate 
the sparse phenotyping patterns on the basis that each genotype 
was tested in at least one environment. However, a more 

sophisticated selective phenotyping design could help improve 
the effectiveness of sparse phenotyping (Heslot and Feoktistov, 
2020; Jarquin et  al., 2020). Jarquin et  al. (2020) proposed to 
completely phenotype a small proportion of genotypes in all 
environments to facilitate the estimation of environmental 
variance. As a result, substantial savings of phenotyping cost 
can be achieved while a high prediction accuracy was maintained. 
Heslot and Feoktistov (2020) demonstrated that precisely selecting 
a subset of genotypes for phenotyping based on relatedness 
could optimize the estimation of marker effect and tremendously 
increase prediction accuracy compared to randomly selecting 
a subset with equal size. This suggests that the unit of selection 
could shift to alleles being sufficiently replicated across 
environments. Therefore, instead of phenotyping each line in 
at least one environment, selecting a subset of lines would 
capitalize on genetic relationship and adding emphasis by testing 
some individuals in more environments to boost the overall 
phenotyping intensity could in turn further improve the 
effectiveness of sparse phenotyping. In this sense, further studies 
are needed to substantiate the merit of selective phenotyping 
design on promoting simulated response to selection of 
sparse phenotyping.

The Benefit of Sparse Phenotyping Can 
Be Anticipated From Correlations Between 
Environments
The correlations between environments in the wheat data set 
included high (e.g., 0.84), moderate (e.g., 0.32 and 0.38), low 
(e.g., 0.04 and 0.06), and negative (e.g., −0.28 and −0.35), 
which is representative of the types of environments encountered 
in plant breeding. These four groupings of 3-environment 
combinations are illustrated in Table  1 and can be  used to 
understand when sparse phenotyping can be  beneficial.

Group  1 had a highly positive correlation (0.84) between 
environments and the sparse phenotyping method did not 
result in additional selection response, regardless of the number 
of expansion environments added (Table  1; Figures  3–5).

In group 2, all pairwise correlations were positive and when 
the extended environment was highly positively correlated (0.84) 
with any of the complete phenotyping environments, sparse 
phenotyping was always superior (Table  1; Figure  3; 
Supplementary Tables 1, 2). However, this superiority was 
not maintained when additional environment(s) were included 
that were only poorly correlated with the complete phenotyping 
environments (Figures  4, 5; Supplementary Tables 1, 2). As 
there was no expansion environment with a high positive 
correlation (0.84) with the complete phenotyping environments 
in combinations 1–4, it was not possible to determine whether 
adding such a highly positively correlated expansion environment 
would be  beneficial or not. It is therefore possible the efficacy 
of sparse phenotyping is actually very similar in groups 1 and 2.

Group  3 had two pairs of environments with a positive 
correlation and one pair with a negative correlation. Here, the 
sparse phenotyping method consistently resulted in an additional 
selection response when the expansion environment was highly 
positively correlated (0.84) or even when several expansion 

FIGURE 5  |  Wheat – 3-environment combinations with complete phenotypic 
values showing statistically significant (p < 0.05) lower response to selection 
than using total six environments with genomics-assisted sparse 
phenotyping. Labels of horizontal axis are the scenario numbers of 
3-environment combinations. Black dots represent correlation coefficients 
between the three base environments with complete phenotypic values. 
Triangles with different colors indicate correlation coefficients between 
separate added environments, i.e., the first, second, or third added 
environment, and base environments.
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environments were moderately positively correlated with the 
complete phenotyping environments (Table  1; Figures  3, 4; 
Supplementary Tables 1, 2). This suggests that the robustness 
of group  3 is less than groups 1 and 2, and the superiority 
of including two expansion environments in group  3 depends 
on the relationship between the two expansion environments. 
In combination 17–18, no expansion environment was highly 
positively correlated with any of the complete phenotyping 
environments. However, two expansion environments were 
highly correlated (0.84), i.e., Year2015_TOS1 and Year2015_TOS3, 
and each was moderately positively correlated with one of the 
complete phenotyping environments, which made sparse 
phenotyping superior (Figure  4; Supplementary Table  2). In 
contrast, their per se 4-environment sparse phenotyping scenario 
did not show superiority (Figure  3; Supplementary Table  2).

For group 4, where one pair of environments had a positive 
correlation and two pairs a negative correlation, i.e., combinations 
8–10, 14–16, and 20, sparse phenotyping resulted in a greater 
response when one expansion environment was highly correlated 
(0.84) or all expansion environments had moderate positive 
correlations with the complete phenotyping environments 
(Table  1; Figures  3–5; Supplementary Tables 1, 2). In some 
cases, such as combination 16 and 20, even one extended 
environment with a moderate positive correlation with the 
complete phenotyping environments was superior (Table  1; 
Figure 3). This suggests that when environments are dissimilar, 
the sparse phenotyping method is particularly useful; a finding 

corroborated by the largest number of superior 5- and 
6-environment combinations in group  4 (Figures  4, 5).

The relationship between correlations of environments and 
the benefit of sparse phenotyping was confirmed in the rice 
data set even though the range of correlations between 
environments was not as great as that observed in wheat.

Breeders are advised to consider the expected phenotypic 
correlation between environments when deciding whether 
genomics-assisted sparse phenotyping is of value. For instance, 
inspecting the correlations between environments observed in 
the wheat data set shown in Table  1, when the environments 
projected for complete phenotyping contain a highly positive 
correlation, the sparse phenotyping method does not increase 
selection response. For any other combination of complete 
phenotyping environments, adding one expansion environment 
that is positively highly correlated with any of the complete 
phenotyping environments will always be  beneficial. When 
most complete phenotyping environments are negatively 
correlated, including more (≤3) expansion environments also 
consistently improved the response as long as one positive 
highly correlated expansion environment was added. It is worth 
noting that while adding one highly positively correlated 
expansion environment was of benefit, breeders could choose 
this environment for complete phenotyping if some prior 
knowledge was available, which would revert the combination 
to group  1. Nevertheless, adding positive correlation sparse 
phenotyping scenarios was generally of benefit (group  4, 

FIGURE 6  |  Wheat – responses to selection of 4-environment (one extended environment), 5-environment (two extended environments) and 6-environment (three 
extended environments) sparse phenotyping combinations belonging to each 3-environment complete phenotyping combination. Labels of horizontal axis are the 
scenario numbers of 3-environment combinations.
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Figure  3). However, in practice, breeders tend to choose 
environments that are distinct to select germplasm that are 
widely adapted.

It is also worth noting that the sparse phenotyping scenarios 
with less testing environments, e.g., one extended environment 
(4-environment combination) showed higher responses to selection 
than those with more environments, e.g., two and three extended 
environments (5- and 6-environment combinations; Figure  6; 
Supplementary Figure 7), which in part contradicts the experience 
on regular complete phenotyping that more testing environments 
imply higher selection accuracy and response to selection. 
Therefore, breeders may want to use one expansion environment 
when applying the sparse phenotyping approach as it would 
lead to a higher response. This would also facilitate the selection 
of extended environments as sparse phenotyping with more than 
one extended environment needs consideration of correlations 
between extended environments, which complicates the efficacy 
of the sparse phenotyping method.

Finally, although the budgets of the sparse phenotyping 
method with different number of expansion environments are 
theoretically identical, the actual cost would rise if the number 
of environments was increased, regardless of size. Hence, breeders 
should assess the practicality of the genomics-assisted sparse 
phenotyping approach based on both the relationship between 
testing environments and complexity of breeding 
program deployment.

CONCLUSION

Our study demonstrated that a genomics-assisted sparse 
phenotyping method can improve selection response for crop 

breeding, especially at the middle stages of a breeding program 
when multi-environment trials are not feasible due to cost. 
The sparse phenotyping approach was optimal when most of 
the complete phenotyping environments were negatively or 
lowly positively correlated and at least one of the extension 
environments was positively highly correlated with any of the 
complete phenotyping environment.
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TABLE 1  |  Wheat – grouping of 3-environment combinations according to their utility of genomics-assisted sparse phenotyping over complete phenotyping.

Group Complete phenotyping 
group correlation 
characteristics

Complete 
phenotyping three-
environment 
combinations

Genomic sparse phenotyping better?

Plus 1 sparse environment Plus 2 sparse environments Plus 3 sparse 
environments

1
One highly positive 
correlation

1, 2, 3, 4 No No No

2 All correlations positive 5, 11, 19

Yes, when additional environment 
was positively highly correlated 
with the complete phenotyping 
environment

No No

3 One negative correlation 6, 7, 12, 13, 17, 18

Yes, when additional environment 
was positively highly correlated 
with the complete phenotyping 
environment

Yes, when additional environments 
were positively highly or moderately 
correlated with the complete 
phenotyping environment, where the 
two moderately correlated 
environments need to be highly 
correlated

No

4 Two negative correlations 8, 9, 10, 14, 15, 16, 20

Yes, when additional environment 
was positively highly correlated 
with any or positively correlated 
with all complete phenotyping 
environments

Yes, when one additional 
environment was positively highly 
correlated with the complete 
phenotyping environment

Yes, when one additional 
environment was positively 
highly correlated with the 
complete phenotyping 
environment
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University, Jeju-si, South Korea, 7Global Wheat Program, International Maize and Wheat Improvement Center, Texcoco,

Mexico

Genomic selection (GS) has the potential to improve the selection gain for complex traits

in crop breeding programs from resource-poor countries. The GS model performance

in multi-environment (ME) trials was assessed for 141 advanced breeding lines under

four field environments via cross-predictions. We compared prediction accuracy (PA)

of two GS models with or without accounting for the environmental variation on four

quantitative traits of significant importance, i.e., grain yield (GRYLD), thousand-grain

weight, days to heading, and days to maturity, under North and Central Indian conditions.

For each trait, we generated PA using the following two different ME cross-validation

(CV) schemes representing actual breeding scenarios: (1) predicting untested lines in

tested environments through the ME model (ME_CV1) and (2) predicting tested lines

in untested environments through the ME model (ME_CV2). The ME predictions were

compared with the baseline single-environment (SE) GS model (SE_CV1) representing

a breeding scenario, where relationships and interactions are not leveraged across

environments. Our results suggested that the ME models provide a clear advantage

over SE models in terms of robust trait predictions. Both ME models provided 2–3

times higher prediction accuracies for all four traits across the four tested environments,

highlighting the importance of accounting environmental variance in GS models. While

the improvement in PA from SE to MEmodels was significant, the CV1 and CV2 schemes

did not show any clear differences within ME, indicating the MEmodel was able to predict

the untested environments and lines equally well. Overall, our results provide an important

insight into the impact of environmental variation on GS in smaller breeding programs

where these programs can potentially increase the rate of genetic gain by leveraging the

ME wheat breeding trials.

Keywords: single-environment, multi-environments, genotyping by sequencing, genomic selection (GS), genomics

predictions, best linear unbiased predictions, wheat
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INTRODUCTION

Wheat (Triticum aestivum L.) is an essential cereal to secure
global food security (Curtis andHalford, 2014). Significant efforts
are needed to accelerate high-yielding varieties to fulfill future
global wheat demand by 2050 (Hellin et al., 2012). Hence, the
enhancement of grain yield (GRYLD) is a foremost target for
wheat breeders. GRYLD is a complex trait administered by many
small-effect loci with significant loci × loci interactions (Arzani
and Ashraf, 2017; Sehgal et al., 2017). Moreover, the GRYLD trait
is associated with strong genotype × environment interaction,
which makes its genetic enhancement a difficult work.

Genomic selection (GS) integrates genome-wide dense
markers and, as presented by Meuwissen et al. (2001), is a
different marker-assisted selection approach. GS proves to be a
powerful tool to improve the selection accuracy and prediction
for quantitative traits in crop breeding (Crossa et al., 2017). GS
utilizes a large set of, usually unidentified markers, spread over
the whole genome in the same way as every quantitative trait
locus (QTL) is in linkage disequilibrium (LD). GS is particularly
beneficial for traits that cannot be evaluated on a few plants and
for traits that are hard to estimate. It is still a vital issue for
plant breeders to upsurge the accuracy of genomic prediction for
selecting the advanced breeding lines.

The GS has been widely used in wheat breeding to
predict various traits, such as yield, disease resistance, grain
weight, heading, iron and zinc contents, end-use quality, and
physiological traits (Charmet et al., 2014; Velu et al., 2016;
Hayes et al., 2017; Juliana et al., 2017a,b; Norman et al., 2017;
Lozada et al., 2019; Tomar et al., 2021). As such, GS embraces
the prospects for the genomic enhancement of qualitative and
quantitative traits. Many available GS models have been tested
on various breeding and trait scenarios. Earlier numerous
comparative studies of the GSmodel predictions in wheat showed
that Random Forest and Reproducing Kernel Hilbert Space
models performed better for traits of interest. However, any
single GS model could not outperform other models (Pérez-
Rodríguez et al., 2012; Charmet et al., 2014). Earlier studies
have stated that many interconnected factors impact the overall
model performance (Jannink et al., 2010; Heslot et al., 2012),
such as heritability, population structure, statistical models, i.e.,
parametric and nonparametric models, cross-validation (CV)
approaches, the genetics of traits, training population size and
composition, marker density, and LD among markers and QTLs
(Jannink et al., 2010; Pérez-Rodríguez et al., 2012; Crossa et al.,
2017; Norman et al., 2018; Lozada et al., 2019).

The GS delivers the promise to accelerate genetic gain by

increasing precision in selecting and shortening the breeding

cycles. However, GS is a relatively new and advanced method for

smaller and low-resource South Asian wheat breeding programs.
Previously, substantial progress has been made in testing and
validating various models for GRYLD and related traits in wheat
in South Asia, albeit on larger breeding populations (De los
Campos et al., 2009; Crossa et al., 2010, 2011, 2016; Heffner
et al., 2011; Burgueño et al., 2012; Pérez-Rodríguez et al., 2012;
Rutkoski et al., 2015; Juliana et al., 2017a,b, 2019; González-
Camacho et al., 2018). These studies have highlighted the impact

of environment and genotype × environment on the GS model
performance. Therefore, to optimize the genetic gain from GS,
the group of field-testing environments can be leveraged.

In this study, high-yielding, advanced wheat breeding lines
from The International Maize and Wheat Improvement Center
(CIMMYT) were evaluated for two consecutive wheat seasons
(2017 and 2018) to adapt to the diverse environments of North
and Central India. To evaluate the performance of multi-
environment (ME) GS models on our specific set of selection
environments, we tested different GS CV schemes mimicking
the breeding schemes where untested lines and environmental
performance are highly valuable to achieve the desired selection
gains. This study is highly relevant particularly in the South Asian
context where trial sizes are relatively small and broadly adapted
wheat lines are sought after.

MATERIALS AND METHODS

Plant Material
A set of 141 South Asian spring wheat lines (T. aestivum L.)
were selected from the International Yield Trial of CIMMYT
International Nurseries (elite germplasm). These lines constitute
a diverse association panel. The seeds of 141 genotypes
were obtained from the Germplasm Resource Unit, CIMMYT
(Mexico). Detailed information with a pedigree for each genotype
is given in Supplementary Table 1.

Field Trials and Phenotypic Evaluation
The panel of selected lines was evaluated in field trials
at the Borlaug Institute for South Asia (India) at Jabalpur
(JBL) (23◦14′00.6N and 80◦04′40.7E) and Ludhiana (LDH)
(30◦59′28.74N and 75◦44′10.87E), locations during the crop
season for 2 years (2017 and 2018), genotypes were phenotyped
and evaluated across all trials for four traits [days to maturity
(DAYSMT), days to heading (DTHD), GRYLD, and thousand-
grain weight (TGW)] (Supplementary Table 2). The experiment
was conducted in two replications following the Randomized
Block Design (RBD). The normal agronomic practice was
followed for trial management. The row-to-row distance was
maintained at 20 cm.

Genotyping-by-Sequencing and SNP
Filtering
Genomic DNA was extracted from the fresh leaves of seedling
wheat using the modified cetyltrimethylammonium bromide
(CTAB) method (Dreisigacker et al., 2016). Genotyping-by-
sequencing (GBS) was performed in Illumina HiSeq 2500 using
a protocol suggested by Poland et al. (2012). Single nucleotide
polymorphism (SNP) calling was performed using TASSEL
version 5.2.43 (Bradbury et al., 2007) using the TASSEL-GBSv2
pipeline. Using Beagle version 4.1, the missing data were imputed
with default settings. After quality control (filter criteria: sample
call rate > 0.8, Minor allele frequency (MAF) ≥ 0.05, SNP call
rate > 0.7), 14,563 polymorphic SNPs and 141 genotypes were
selected for the follow-up analysis (Supplementary Table 3).
Among polymorphic SNP markers, 40.66, 50.66, and 8.68% were
from the A, B, and D genomes, respectively. With a genomic
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coverage of 13.9 GB and 14,563 markers across the genome, the
average marker density was one marker per 0.95Mb. The highest
marker density with one marker per 0.54Mb of chromosome 2B
and the lowest marker density with one marker per 6.854Mb at
chromosome 4D were observed.

Statistical Analysis of Phenotypes
Each location-year combination is treated as a distinct
environment for analysis purposes. Broad-sense heritability for
each trait/environment combination was estimated at the plot
level, and raw phenotypic values were adjusted to derive the best
linear unbiased predictions (BLUPs) (Supplementary Table 4)
for each trait at each environment using META-R (Alvarado
et al., 2020) by using the following formula:

Yik = µ + Repi + Genk + ǫik(within environments)

Yijk = µ + Envi + Repj (Envi) + Genk + Envi × Genk

+ ǫijk(across environments)

where Yik is the trait of interest, µ is the mean effect, Repi is the
effect of the ith replicate, Genk is the effect of the kth genotype,
ǫik is the error associated with the ith replication and the kth
genotype, which is assumed to be normally and independently
distributed, with mean 0 and homoscedastic variance. For across
environments, Yijk is the trait response and the ith environment,
Repj(Envi) is the effect of jth Rep in the ith environment, and
Envi × Genk is the environment × genotype interaction. The
resulting analysis produced the adjusted trait phenotypic values
in the form of BLUPs within and across environments. The
BLUPs model considers genotypes as random effects, minimizing
the effect of screening time and other environmental effects.

In addition, the components of the phenotypic variance of a
given trait at an individual environment and across environments
were also extracted to calculate the broad-sense heritability using
the formula as follows:

H2
=

σ 2
g

σ 2
g +

σ 2
e

nReps

(within environments)

H2
=

σ 2
g

σ 2
g +

σ 2
ge

nEnvs +
σ 2
e

(nEnvs × nReps)

(across environments)

where σ 2
g and σ 2

e are the genotype and error variance

components, respectively, σ 2
ge is genotype × environment

interaction variance, nEnvs is the number of environments, and
nReps is the number of replicates. All effects are considered
random for calculating the BLUPs (Supplementary Table 4) and
the broad-sense heritability. The BLUPs phenotypic distributions
of GRYLD and other traits at each environment were plotted
to check normality assumptions. Phenotypic and genetic
correlations were calculated for each trait and environment
combination in R software version 4.0.2. (R Core Team, 2019)
using FactoMineR version 2.4 (Lê et al., 2008) and factoextra
version 1.0.7 (Kassambara and Mundt, 2020).

Baseline Single-Environment (SE) Genomic
BLUP Model (GBLUP), CV Schemes, and
Predictive Ability
The baseline SE genomic prediction analysis was implemented
in the BWGS program (Charmet et al., 2020). BWGS performs a
GBLUP analysis using a marker-based relationship matrix. CV
delivers an unbiased evaluation for the performance of a GS
model; therefore, a 5-fold CV approach was implemented for
reducing the unwanted bias (Kohavi, 1995), where the genotypes
(for each trait separately) were randomly split into five equal-
sized folds. SE_CV1 model was fitted with missing phenotypic
values for the tested individuals. Prediction accuracy (PA) was
subsequently calculated as the correlation of predicted breeding
values with the observed phenotypic values for the missing
genotypes. This step was repeated for each environment and fold
separately. The genomic PA was then calculated by iteratively
assigning 1-fold as the validation set and the remaining folds as
the training set. This five-fold validation process was repeated 50
times to randomly shuffle the lines in each fold. The accuracy
of the genomic predictions was measured as the Pearson’s
correlation between the predicted and actual trait BLUPs.

A mixed model of the simplified form was fitted for genomic
predictions as follows:

y = Xb+ Zg+ e

where y is a vector of adjusted phenotypes, X is a design matrix
relating the fixed effects to each genotype, b is a vector of fixed
effects, Z is a design matrix connecting records to genetic values,
g is a vector of additive genetic effects for a genotype, and e is a
vector of random normal deviates with variance δ2e .

Advanced ME GBLUP Model, CV Schemes,
and Predictive Ability
The advanced ME genomic prediction analysis was implemented
in Solving Mixed Model Equations in the R (sommer) package
(Covarrubias-Pazaran, 2016). Two types of ME_CV schemes
representing actual breeding scenarios were implemented. The
first scenario represents a use case where some genotypes are
missing across all environments (ME_CV1). ME_CV1 was fitted
by masking the phenotypic values of genotypes belonging to
the test set across all environments. PA was calculated as the
correlation of predicted and observed phenotypic values for the
missing genotypes at each environment separately. In the second
scenario, the entire trial or all genotypes are missing at one of
the environments (ME_CV2). ME_CV2 was fitted by masking
the phenotypic values of all lines in an SE. The trained model
was then used to predict the breeding values of lines in the
missing environment. PA was calculated as the correlation of
predicted and observed phenotypic values of the tested lines. The
CV schemes are illustrated in Figure 1.

In ME genomic predictions, the SE model was rewritten and
implemented as follows:

yij = gj + Ei + gEij + eij

where yij represents response of jth line in the ith environment
(i = 1, 2,. . . . . . i, j = 1, 2,. . . . . . j; gj is the effect of jth line with
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FIGURE 1 | Prediction scheme for the single-environment (SE) and multi-environment (ME) genomic prediction models with two cross-validation schemes (CV1 and

CV2) used in this study. SE_CV1 model: the SE prediction model with CV scheme 1 where a trait [e.g., grain yield (GRYLD)] is predicted at a time; we used 80% of

individuals as the training set (phenotyped and genotyped, light green) and 20% of the individuals as the testing set (genotyped only, light gray with validation code for

the trait to be predicted, yield as an example here). ME_CV1 model: the ME prediction model with CV scheme 1 for new un-phenotyped individuals; we used 80% of

individuals as the training set (phenotyped for all traits and genotyped; light green) and 20% of the individuals as the validation set (genotyped but not phenotyped for

any trait; light gray with validation code for the trait to be predicted, GRYLD as an example here). ME_CV2 model: the ME prediction model with CV scheme 2 where

100% of the information from other traits are available for the individuals to be predicted; we used 80% of individuals as the training set (phenotyped for all traits and

genotyped; light green) and 20% of individuals as the validation set (phenotyped for associated traits but not for the targeted traits, and genotyped; light gray with

predication code for the trait to be predicted, yield as an example here). Rectangles represent genotypes, and colors represent whether the phenotypic information

was used (light green) or not (light gray with validation code for the trait to be predicted, GRYLD as an example) for the population. A similar scheme was applied for

predicting days to heading (DTHD), days to maturity (DAYSMT), and thousand-grain weight (TGW).

g = (g1........gj)T∼N(0, δ21Gg), δ21 is the genomic variance, Gg is

the genomic relationship matrix. Ei represents the effect of the

ith environment. gEij is the random term that takes into account

the interaction between the genomic effect of jth line and the

ith environment with gE= (g1 . . . . . . . . . gj)T∼N (0, δ22II⊗ G),
where δ22 is the interaction variance. Eij is a random residual effect

of the jth line in the ith environment [N (0, δ22)], where δ22 is the
residual variance.

RESULTS

Heritability, Correlations, and Trait
Characterization
A range of variation was detected for GRYLD and other
related traits across environments/years (LDH17 and LDH18
and JBL17 and JBL18). The highest averaged GRYLD over
environments/years was observed at JBL18 (9.4 ton/ha),
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TABLE 1 | Variability analysis of various yield-related agronomic traits for four environments at two locations.

Loc# Env Trait## H2 G Var R Var G Mean LSD CV G Sig

JBL JBL17 DTHD 0.84 10.98 4.04 81.96 3.65 2.45 0

DAYSMT 0.86 5.86 1.89 124.82 2.52 1.10 0

GRYLD 0.48 0.29 0.63 7.87 1.08 10.09 0.000151

TGW 0.86 26.59 8.92 54.66 5.47 5.47 0

JBL18 DTHD 0.78 12.79 7.30 79.26 4.71 3.41 0

DAYSMT 0.71 4.89 3.96 124.67 3.32 1.60 9.08E-13

GRYLD 0.47 0.15 0.34 8.76 0.79 6.67 0.000172

TGW 0.80 12.53 6.34 46.22 4.45 5.45 0

LDH LDH17 DTHD 0.96 12.61 1.19 94.85 2.11 1.15 0

DAYSMT 0.74 4.79 3.29 148.73 3.09 1.22 6.88E-15

GRYLD 0.74 0.21 0.15 7.06 0.66 5.55 2.73E-14

TGW 0.81 15.42 7.03 45.48 4.73 5.83 0

LDH18 DTHD 0.88 8.58 2.44 103.71 2.89 1.51 0

DAYSMT 0.88 8.18 2.25 144.52 2.80 1.04 0

GRYLD 0.62 0.16 0.20 7.26 0.69 6.11 1.92E-08

TGW 0.83 14.66 6.13 44.30 4.47 5.59 0

#Loc, location; Env, Environment; H2, heritability; G Var, genotypic variance; R Var, residual variance; LSD, least significant difference; CV, critical variance; G Sig, genotypic significance;

LDH, Ludhiana; JBL, Jabalpur.
##DTHD, days to heading; DAYSMT, days to maturity; GRYLD, grain yield; TGW, thousand-grain weight.

TABLE 2 | Variability analysis of various yield-related agronomic traits for four environments at two locations.

Traits H2 G Var G × E Var R Var G Mean LSD CV n Rep n Env G Sig G × E Sig

DTHD 0.90 8.94 2.29 3.74 89.94 2.69 2.15 2 4 8.93E-73 1.16E-18

DAYSMT 0.83 4.00 1.94 2.83 135.68 2.32 1.24 2 4 4.34E-44 2.01E-21

GRYLD 0.38 0.05 0.15 0.33 7.74 0.49 7.43 2 4 0.0003 3.69E-13

TGW 0.78 9.90 7.41 7.10 47.67 4.07 5.59 2 4 1.13E-33 4.23E-35

H2, heritability; G Var, genotypic variance; R Var, residual variance; LSD, least significant difference; CV, critical variance; G Sig, genotypic significance; DTHD, days to heading; DAYSMT,

days to maturity; GRYLD, grain yield; TGW, thousand-grain weight.

followed by JBL17 (8.7 ton/ha), LDH17 (8.2 ton/ha), and
LDH18 (7.9 ton/ha). Similarly, the TGW trait also showed
variation across environments. The highest averaged TGW over
environments/years was observed at JBL17 (69 g), followed
by JBL18 (59.5 g), LDH17 (58.4 g), and LDH18 (53.5 g). We
observed significant G × E interaction for the GRYLD and
DAYSMT in JBL18 and LDH17 (Tables 1, 2). For all traits, the
broad-sense heritability ranged from 0.47 to 0.96. The broad-
sense heritability of DTHD was the highest (0.96) in LDH17,
while GRYLD, the lowest (0.47) was in JBL18, and the highest
(0.74) was in LDH17. TGW had the highest stability and
relatively high heritability (0.80–0.86) across environments.

The phenological traits DTHD and DAYSMT displayed
the strongest positive correlation (0.88), followed by a weak
positive correlation TGW-GRYLD (0.15), while GRYLD and
DTHD (−0.73) demonstrated negative correlations. The lowest
correlation was observed between GRYLD andDAYSMT (−0.76)
traits. The principal component analysis (PCA) of multivariate
analysis enables the easier understanding of effects and networks

among different traits and elucidates genotypic difference
among a set of given traits, i.e., the first two PCs explained
92% of the total variation. The PC1 explained 70.3% of the
total variance and PC2 explained 21.7% of the total variance
(Figure 2).

Baseline SE Model: Performance of
Untested Lines in the Same Environment
A GS scenario representing SE breeding programs was tested.
In this model, the PAs of the GS models for each of the four
traits were separately generated for all four tested environments.
In other words, the environments were treated as independent.
Overall, the PA of the SE model was significantly lower among
the three tested GS scenarios (Table 4; Figure 3). PA was the
highest for TGW (0.34) and the lowest for GRYLD (0.18) traits.
A relatively low moderate PA ranging between 0.24 and 0.25
was observed for DAYSMT and DTHD traits. Among the tested
environments, JBL18 had the lowest overall PA (0.01–0.02)
compared to the rest of the three environments for DTHD and
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FIGURE 2 | The principal component analysis shows the correlation among GRYLD, TGW, DAYSMT, and DTHD in four environments (LDH17, LDH18, JBL17, and

JBL18).

DAYSMT (0.25–0.40). TGW was the only trait where a highly
consistent and moderate PA (0.32–0.35) across all environments
was observed. PA for GRYLD was the highest for LDH18 (0.32)
and the lowest for JBL17 (0.08).

Advanced ME Model: Performance of
Tested Lines in Untested Environments and
Untested Lines in Tested Environments
The inclusion of environmental information in ME models
significantly improved the PA over SE models across all traits
and environments (Figure 3). A very high and consistent PA

ranging from 0.69 to 0.85 was observed for all traits and

environments for both ME models (ME_CV1 and ME_CV2).

The most considerable improvement in PA due to ME was

observed for the GRYLD trait, where PA increased from 0.18
to 0.73 for SE and ME models (Table 4). Interestingly, identical

trait rankings were also observed for two ME models, where

the DTHD ranked the highest (0.85) and GRYLD ranked the
lowest (0.69–0.73) among all four traits. While the ME models

had identical trait rankings, the environments ranked slightly
differently for the two models for all traits. For instance, both
years (2017 and 2018) at the LDH location had higher overall PA
compared to JBL for all traits.

DISCUSSION

Crop breeders regularly evaluate the performance of genotypes

and collect multiple traits data in various environments. The

genotype-based selection on phenotypic and GBS marker
information using genomic prediction models is gradually
acquiring acceptance in breeding with the initiation of
economical next-generation sequencing (NGS) technologies
(Poland and Rife, 2012). Limited study has been conducted using
the multi-environment genomic prediction (ME-GP) methods
due to the complexity and higher computing requirements
(Oakey et al., 2016; Rincent et al., 2017; Montesinos-López et al.,
2018; Roorkiwal et al., 2018; Bhandari et al., 2019; Tolhurst et al.,
2019; Pandey et al., 2020).
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FIGURE 3 | Bar plots showing the prediction accuracy (PA) of DAYSMT, DTHD, GRYLD, and TGW using SE and ME models from individual experiments across

locations (LDH17, LDH18, JBL17, and JBL18). SE_CV1 predicting SE at a time, ME_CV1 predicting new lines with genotypic information only, and ME_CV2

predicting partially phenotyped lines by using genotypic and phenotypic information from all traits from individuals in the training set, and genotypic and correlated

phenotypic traits in the testing set.

TABLE 3 | Genetic and phenotypic correlations in agronomic important traits.

Genetic correlations Phenotypic correlations

Traits DTHD DAYSMT GRYLD Traits DTHD DAYSMT GRYLD

DAYSMT 0.94 DAYSMT 0.83

GRYLD −0.30 −0.29 GRYLD −0.22 −0.08

TGW −0.33 −0.26 0.22 TGW −0.29 −0.24 0.07

DTHD, days to heading; DAYSMT, days to maturity; GRYLD, grain yield; TGW, thousand-grain weight.

Trait Correlation and Characterization: A
Vital Factor for Improving Accuracy in
ME-GP
In this study, advanced breeding lines as part of the bread wheat
program of CIMMYT were evaluated under irrigated conditions
at two locations (JBL and LDH) for 2 years (2017 and 2018) (i.e.,

four environments). This study evaluated four traits (i.e., DTHD,

DAYSMT, GRYLD, and TGW) for use in an ME trait GP model.

GRYLD and related traits were positively correlated to each other
in two sets (i.e., 1: DAYSMT and DTHD; and 2: GRYLD and
TGW) (Figure 4). This positive correlation of GRYLDwith TGW
in this study points out that the GRYLD was mainly distinct by
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TABLE 4 | Genomic prediction accuracies averaged across four environments for

four traits and three modeling scenarios (a) single-environment CV1 (SE_CV1), (b)

multi-environment CV1 (ME_CV1), and (c) multi-environment CV2 (ME_CV2).

Traits Average prediction accuracy

SE_CV1 ME_CV1 ME_CV2

DAYSMT 0.24 0.78 0.78

DTHD 0.25 0.85 0.85

GRYLD 0.18 0.69 0.73

TGW 0.34 0.82 0.83

DTHD, days to heading; DAYSMT, days to maturity; GRYLD, grain yield; TGW, thousand-

grain weight.

the TGW factor. The negative relationship between GRYLD and
DTHD indicates that the early-headed genotypes play a vital role
in the stability of advanced breeding line yield during grain filling
and finally affecting the yield component (Sharma and Smith,
1986).

Yield and Related Trait Heritability
Difference Among Environments
Our results showed that the heritability of the traits ranged
from moderate (i.e., GRYLD) to high (i.e., DAYSMT, DTHD,
and TGW). Among the four traits, the phenological traits (i.e.,
DTHD and DAYSMT) and TGW particularly showed high
stable broad-sense heritability ranging from 0.71 to 0.96. It
suggests the high quality of the phenotypic measurements and
significant predictive potential of the traits. GRYLD, a highly
quantitative and environmentally sensitive trait (Maphosa et al.,
2014; Würschum et al., 2018), showed considerable fluctuation
across environments with JBL environment having relatively
lower heritability (0.47–0.48) compared to LDH (0.62–0.74). The
variance explained by agronomic traits was significant (Table 1)
and indicating a large G × E impact on GRYLD resulted in
a lower heritability compared to other traits. Hence, lower
heritability estimates for GRYLD were expected as numerous
genes govern it. The low heritability and yield variances also
could be the possible effect of the smaller plot size and lower
sowing density (Rode et al., 2011; Sallam et al., 2015; Thorwarth
et al., 2017; Bhatta et al., 2018) (Tables 1, 2). The climate in
these two environments is considerably different. While the
growing season length is relatively shorter in JBL due to the high
overall temperature, the LDH location has a moderately colder
climate and longer growing season (Mondal et al., 2016). On
the one hand, these highly variable environments do underscore
a highly challenging phenotypic landscape; it also presents a
significant opportunity to leverage the ME trial framework for
trait improvement (Lillemo et al., 2005; Braun et al., 2010). The
presence of significant genetic and environmental correlations
(i.e., positive correlation in TGW and GRYLD, and DAYSMT
and DTHD) in our experiments led us to hypothesize that
the correlated traits and environmental relationships can be
leveraged to improve the selection accuracy through marker-
based ME-GS models (Figure 4). Therefore, we proceeded with

applying the ME model to test this hypothesis on our selected set
of lines (Table 3).

SE and ME Genomic Prediction Across
Years and Sites and ME Model Utilities in
Crop Breeding
While weak predictive capability continues to be a major issue in
successfully applying GS (Crossa et al., 2013), numerous studies
have demonstrated that GS could be beneficial for quantitative
traits such as GRYLD with low heritability and also on how
GS can be utilized in a breeding program by using even low to
moderate GP in early generation selection (Belamkar et al., 2018;
Lado et al., 2018; Michel et al., 2018). There are several aspects
influencing the PA of GP models. Some of the crucial aspects
associated with this study of ME were the genetic relationship
between the testing and training sets, the size of the training set,
heritability and trait architecture, and correlations among traits
and environments (Asoro et al., 2011; Crossa et al., 2013; Heslot
et al., 2013; Sallam et al., 2015; Zhang et al., 2015; Duangjit et al.,
2016; Lado et al., 2016; Wang et al., 2016; Thorwarth et al., 2017;
Akdemir and Isidro-Sánchez, 2019; Olatoye et al., 2020). Even
though the size of the population was small in our study, the
GP using correlated traits in theME_CV1 andME_CV2 schemes
had higher PA, indicating that correlated traits up to some extent
could balance the impact on the sizes of small population.

Models that leverage E and G × E components have been
shown to improve the genomic prediction accuracies for highly
quantitative traits such as phenology and GRYLD (Burgueño
et al., 2012; Dias et al., 2018). To evaluate the potential of genomic
predictions in highly productive but variable environments of
JBL and LDH, we simulated three different genomic prediction
scenarios representing actual breeding programs. A comparison
of single and ME models showed a 2- to 3-fold improvement in
model performance for all traits (Table 4; Figure 3). Among the
four traits, GRYLD showed the highest (3.8X) absolute increase
in PA from SE to MEmodels, highlighting the significance of ME
modeling in GRYLD predictions. For the SE model, TGW had
the most consistent PA across four environments (0.32–0.34),
which was in agreement with the highly stable heritability and a
lower fraction of G× E observed for this trait (Table 2; Figure 3).
Interestingly, the PA of the two ME models (CV1 and CV2)
showed no significant change, suggesting that the ME model was
able to predict well the untested environments and lines equally.
A model can be highly predictive of untested environments in
scenarios where environments are highly correlated (Malosetti
et al., 2016; Jarquín et al., 2017), which seems to be the case
for our environments as reflected by the low G × E and
high heritability (Table 1; Figure 3). Similarly, a remarkable
improvement in the predictive performance of ME_CV1 can
be partially attributed to the fact that our sampled set of lines
came from the same breeding program and the sample size of
141 lines was relatively moderate. From the perspective of a
breeding program, the strong performance of the twoMEmodels
suggests that our breeding program can increase the overall
population size without losing any significant predictive power
through sparse testing at these two environments (Cullis et al.,
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FIGURE 4 | Distributions, scatter plots, and correlations between agronomic traits using best linear unbiased predictions from combining and four experiments

[Ludhiana (LDH)17, LDH18, Jabalpur (JBL)17, and JBL18]. The distribution of DTHD, DAYSMT, GRYLD, and TGW values is displayed on the diagonal with

environments indicated by colors. The top row represents the distribution of traits as boxplots. The upper right triangle shows pairwise correlation values as overall

correlation in black color while other colors are represented individually as explained earlier. The correlations among environments are displayed as scatter plots in the

lower triangular area and as the Pearson’s correlation coefficients in the upper triangular area. Numbers indicate a correlation that is significantly different from 0 at an

alpha level of 0.05. DTHD, DAYSM, GRYLD, and TGW. ## level of significance; ***p < 0.001, **p < 0.01, *p < 0.1, and p <0.15.

2020; Jarquin et al., 2020). A high population size from the sparse
testing framework here can deliver a high selection gain through
increased selection intensity.

CONCLUSION

Breeding for quantitative traits is challenging due to the
complex genetic architecture of traits that are highly affected
by the complex G × E interactions in field trials. A suitable
genomic prediction modeling strategy can potentially address

this challenge through ME genomic prediction models. In
this study, we evaluated genomic prediction accuracies of
advanced spring wheat lines under four diverse environments
in two wheat-growing regions in India. The ME-GS models
showed significant improvement over SE models in terms
of prediction accuracies. Our results suggest that ME can
be leveraged to improve the breeding selection efficiency
for major agronomic and phonological traits. Over the
years, CIMMYT has established an extensive network of
field-testing sites in South Asian countries including India,
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Pakistan, Bangladesh, and Nepal. Our results suggest that
the wheat breeding programs in these countries can greatly
benefit from GS through better modeling of environmental
variance and sparse testing of a larger cohort of breeding
lines. Future research efforts will be directed toward including
high-throughput phenotyping traits such as plant height,
Normalized Difference Vegetation Index (NDVI), and
senescence into the genomic prediction framework to improve
the selection efficiency of spring wheat in the South Asian
breeding programs.
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Malthe Schmidt 3, Jan-Christoph Richter 3, Henner Simianer 2,4 and

Timothy M. Beissinger 1,2

1Division of Plant Breeding Methodology, Department of Crop Sciences, University of Goettingen, Goettingen, Germany,
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The development of crop varieties with stable performance in future environmental

conditions represents a critical challenge in the context of climate change. Environmental

data collected at the field level, such as soil and climatic information, can be

relevant to improve predictive ability in genomic prediction models by describing more

precisely genotype-by-environment interactions, which represent a key component of

the phenotypic response for complex crop agronomic traits. Modern predictive modeling

approaches can efficiently handle various data types and are able to capture complex

nonlinear relationships in large datasets. In particular, machine learning techniques have

gained substantial interest in recent years. Here we examined the predictive ability of

machine learning-based models for two phenotypic traits in maize using data collected

by the Maize Genomes to Fields (G2F) Initiative. The data we analyzed consisted of

multi-environment trials (METs) dispersed across the United States and Canada from

2014 to 2017. An assortment of soil- and weather-related variables was derived and

used in prediction models alongside genotypic data. Linear random effects models were

compared to a linear regularized regression method (elastic net) and to two nonlinear

gradient boosting methods based on decision tree algorithms (XGBoost, LightGBM).

These models were evaluated under four prediction problems: (1) tested and new

genotypes in a new year; (2) only unobserved genotypes in a new year; (3) tested and

new genotypes in a new site; (4) only unobserved genotypes in a new site. Accuracy

in forecasting grain yield performance of new genotypes in a new year was improved

by up to 20% over the baseline model by including environmental predictors with

gradient boosting methods. For plant height, an enhancement of predictive ability could

neither be observed by using machine learning-based methods nor by using detailed

environmental information. An investigation of key environmental factors using gradient

boosting frameworks also revealed that temperature at flowering stage, frequency

and amount of water received during the vegetative and grain filling stage, and soil

organic matter content appeared as important predictors for grain yield in our panel of

environments.

Keywords: machine learning, genotype-by-environment interactions, gradient boosting, maize, yield, genomic

prediction, plant breeding
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1. INTRODUCTION

The development of environmental sensing technologies,
including local weather stations, soil and crop sensors has
progressively enabled field-level climate data to be incorporated
into the analysis of plant breeding experiments (Tardieu
et al., 2017; Ersoz et al., 2020; Crossa et al., 2021). When
used to enhance genomic prediction, climate data can be
useful to estimate the differential response of genotypes to
new environmental conditions, i.e., genotype-by-environment
interactions (GxE), almost omnipresent in multi-environment
trial (MET) experiments (Cooper and DeLacy, 1994; Chenu,
2015). In plant breeding, an environment generally refers to
the set of growing conditions associated with a given location
in a given year. Various statistical models, such as factorial
regression methods, have been developed to model genotype
sensitivity to continuous environmental covariates (ECs) (van
Eeuwijk et al., 1996; Malosetti et al., 2004) or even to simple
geographic coordinates (Costa-Neto et al., 2020b) capturing
primarily genotype-by-location interaction effects explained by
crop management or soil characteristics.

Before the emergence of environmental data in breeding, large
whole-genome marker datasets, generated by high-throughput
genotyping platforms, have progressively enabled the routine
implementation of genomic prediction (GP) methods (Haley
and Visscher, 1998; Meuwissen et al., 2001). GP allows to
predict performance of untested genotypes based on their genetic
similarity, estimated with marker data, with other phenotyped
genotypes. GP has since been expanded to achieve predictions
in a multi-environment context, for instance by implementing
a multivariate GBLUP approach (Burgueño et al., 2012) to
use genetic correlations among environments. Despite the
overall success of genomic prediction, a lingering challenge
has regularly been to incorporate interactions between high-
dimensional genomic data and high-dimensional environmental
data. A solution proposed by Jarquín et al. (2014) is to use
reaction norm models, where markers and environmental effects
are modeled using covariance structures. Interactions between
markers and environmental covariates are computed with the
Hadamard product which avoids the need to fit all first-order
interaction terms. This extension of the GBLUP GxE mixed
effects models has been applied on a large number of datasets in
different species (Pérez-Rodríguez et al., 2015; Pérez-Rodríguez
et al., 2017; Jarquín et al., 2017; Sukumaran et al., 2017, 2018;
Monteverde et al., 2019; Rincent et al., 2019; De Los Campos
et al., 2020). Several studies have also focused on the integration
of crop growth models in genomic prediction to better model
the differential impact of abiotic stress depending on the crop
developmental stage (Heslot et al., 2014a; Rincent et al., 2017,
2019). Rincent et al. (2019) proposed a method to select the
optimal subset of ECs from the output of a crop growth model on
the basis of the correlation between the environmental covariance
matrix, which is based on ECs, and the covariance matrix
between GxE interactivity of environments obtained by AMMI
decomposition. Overall, many studies have found that using
quantitative environmental information in genomic prediction
models in the form of additional covariates can result in an

enhancement of prediction accuracies (Heslot et al., 2014b;
Jarquín et al., 2014; Malosetti et al., 2016; Millet et al., 2019;
Monteverde et al., 2019; Costa-Neto et al., 2020a) and a better
characterization of the genotype-by-environment interaction
effects (Rogers et al., 2021).

However, modeling interaction effects with nonlinear
techniques is a crucial topic that has not been conclusively
explored for genomic prediction in MET. In particular, machine
learning techniques have gained attention over the last two
decades due to their ability to handle nonlinear effects (Hastie
et al., 2009) and to uncover higher-order interactions between
predictor variables (Lampa et al., 2014; Behravan et al., 2018).
With machine learning algorithms, the mapping function linking
input variables to the outcome—i.e., a phenotypic trait—is
learned from training data and no strong assumptions about its
form need to be explicitly formulated beforehand. Hence, these
methods represent relatively flexible frameworks for data-driven
integration of different data types. Among these new techniques,
ensembles of trees, such as methods based on bagging (e.g.,
random forests), or on boosting (e.g., gradient boosted trees)
have become increasingly popular. Ensemble methods designate
predictive modeling techniques which aggregate the predictions
of a group of base learners, and thereby generally allow better
predictions than by using only the single best learner (Friedman,
2001; Hastie et al., 2009; Géron, 2019). Broad applications of
these approaches include human disease prediction (Fukuda
et al., 2013; Romagnoni et al., 2019; Yu et al., 2019; Kopitar
et al., 2020), bioinformatics (Yu et al., 2019), ecology (Moisen
et al., 2006; Elith et al., 2008) and agricultural forecasting
(Fukuda et al., 2013; Delerce et al., 2016; Jeong et al., 2016;
Crane-Droesch, 2018; Shahhosseini et al., 2020). In the field
of genomic prediction, ensemble methods have progressively
been used, as they appear especially interesting for capturing
non-additive effects such as epistasis or dominance effects,
which can be important for predicting complex phenotypic traits
(Ogutu et al., 2011; González-Recio et al., 2013; Azodi et al.,
2019; Abdollahi-Arpanahi et al., 2020). Abdollahi-Arpanahi et al.
(2020) concluded from results obtained on both a real animal and
simulated datasets that gradient boosting was the best predictive
modeling approach when the genetic architecture included non-
additive effects. While these new predictive modeling approaches
can also potentially enable superior prediction results, special
attention must be paid to an appropriate optimization of
hyperparameters during the training phase in order to prevent
overfitting on new test data (Friedman, 2001; Hastie et al., 2009;
Géron, 2019).

In addition, these new predictive modeling frameworks,
coupled with large volumes of environmental data, can
provide powerful data mining opportunities to identify critical
environmental factors affecting economically important
phenotypic traits in the field. Much research has already been
done to examine the expected impact of climate change on the
vulnerability of major staple food crops. Extreme weather events
are expected to happen at a higher frequency in the future,
characterized for instance by heat waves or prolonged drought
periods according to various climate scenarios (Rahmstorf
et al., 2012; Trnka et al., 2014). When occurring at crucial
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crop developmental stages, risks for important yield losses are
augmented. Different studies onmaize have for instance reported
a physiological sensitivity to higher temperatures, heightened
during the reproductive phase, which often results in grain yield
reduction when a certain threshold is exceeded (Cicchino et al.,
2010; Butler and Huybers, 2015; Lizaso et al., 2018). In addition,
nonlinear effects of environmental covariates, especially of
temperature and precipitation on maize plants, have also been
regularly described in the literature (Schlenker and Roberts, 2009;
Mushore et al., 2017). Therefore, machine learning techniques
break new ground to get an extended comprehension of the
effect—both in direction and magnitude—of environmental
conditions in the context of breeding for abiotic stress resilience.

Motivated by previous studies emphasizing the benefit
of nonlinear methods, we tested two machine learning
ensemble methods, based on gradient boosted trees, which,
to our knowledge, have never been examined for data-driven
predictions and interpretation using MET experimental datasets
from the Maize Genomes to Fields initiative. The Maize
Genomes to Fields (G2F) initiative (www.genomes2fields.org)
includes yearly evaluations of inbred and hybrid maize across
a large range of climatically-distinct regions in North America.
The project makes publicly available phenotypic and genotypic
(genotyping-by-sequencing datasets relating to the inbred
lines) information, as well as weather (field weather stations),
agronomic practices and soil data (Falcon et al., 2020; McFarland
et al., 2020). The large number of phenotypic observations, and
the assortment of various data types makes the application of
machine learning models here particularly relevant to evaluate
their performance, as well as their usefulness to disentangle
hidden relationships. Our objectives in this study were (1) to
evaluate recent gradient boosting methods for prediction of
two phenotypic traits (plant height and grain yield) across four
different cross-validations, and compare them to traditional
prediction models classically used for multi-environment trials;
(2) to examine if the use of environmental information, in
addition to genomic predictor variables, could lead to a gain
of predictive ability of genotype performance based on these
various prediction models; and (3) to better understand the
influence of some environmental factors on maize grain yield
using tools derived from the machine learning framework.

2. MATERIALS AND METHODS

2.1. Phenotypic Data Cleaning and Analysis
Phenotypic datasets (years 2014–2017) were downloaded from
the official website of the Genomes to Fields project. The
full dataset represents a large collection of trials located
on the North-American continent run by different principal
investigators and institutions, but the experimental design used
for most of the hybrid trials was a randomized complete
block design with two replications per environment. A total
number of 71 trial experiments remained for further analysis
(Supplementary Figure 1; Supplementary Table 1) after having
eliminated environments with critical missing information,
such as flowering time (Supplementary Table 2). Plots with
low phenotypic quality, as interpreted by the researcher

groups who collected field data, were removed before within-
experiment analysis. Replicates within a same ID experiment but
planted seven or more days apart were considered as different
environments and treated as unreplicated environments, due to
the difference in the weather conditions they experienced at their
respective phenological stages.

Each environment (Year-Site combination) was
independently analyzed to obtain best linear unbiased estimates
(BLUEs) for each hybrid in each environment for grain yield,
plant height and silking date. We performed this analysis with
the lme4 package (Bates et al., 2015) in R version 3.6.0 (R Core
Team, 2019) based on the following model:

Yij = µ + Gi + Rj + εij,

where Yij is the observed phenotypic response variable of the i-
th hybrid genotype (G) in the j-th replicate (R), µ is the general
mean, Gi is the effect of the i-th hybrid genotype, Rj is the
effect of the j-th replicate and εij is the error associated with
the observation Yij. We treated genotype as a fixed effect and
replicate as a random effect.

Phenotypic observations with absolute studentized
conditional residuals greater than three were identified as
potential outliers and removed from the dataset. The plant
material and phenotypic datasets are described in more
details in previous publications (AlKhalifah et al., 2018;
McFarland et al., 2020) and on the project website (https://
www.genomes2fields.org/home/). Ultimately, 18,325 and
16,951 phenotypic observations for grain yield and plant
height, respectively, with available silking date, genotypic and
environmental data, were used as target response variable in the
prediction models.

2.2. Genotypic Data
Genotype-by-sequencing (GBS) data of inbred lines used in
Genomes to Fields hybrid experiments were downloaded on
CyVerse. SNPs with more than two observed alleles were
removed before analysis. Taxa with less than 70% site coverage
and more than 8% heterozygosity were discarded. Monomorphic
markers were removed, as were those missing or heterozygous in
more than 5% of the parental lines. These filtering analyses were
performed with TASSEL 5 (Bradbury et al., 2007). After filtering,
246,818 SNPs remained for analysis. These were imputed using
the software LinkImpute (Money et al., 2015). The genotype
matrix was coded as the number of minor alleles at each locus (0,
1, or 2). Markers with minor allele frequency less than 2% and in
high linkageDisequilibrium (LD)were further removed using the
pruning function of Plink (Purcell et al., 2007) with a window of
size 100 markers, a step of 5, and a LD threshold of 0.99. In silico
genotypes of maize hybrids, for which phenotypic data had been
analyzed, were constructed based on the processed genotypes
of parental lines, and a final minor allele frequency filtering of
2% was applied. The final hybrid genotype dataset contained
107,399 SNPs characterizing 2,033 hybrids. Additional details
regarding the genotype-by-sequencing procedure implemented
by the Genomes to Fields project has been previously published
(Gage et al., 2017).
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2.3. Weather Data
All field experiment locations in the Genomes to Fields project
had a WatchdogTM Model 2700 weather station (Spectrum
Technologies Inc., East-Plainfield, Illinois, 60585, USA) on-
site. Weather records were recorded every 30 min during the
growing season. Measurements for air temperature (◦C), relative
humidity (%), rainfall (mm), solar radiation (W/m2) and wind
speed (m/s) were specifically analyzed. In-field weather station
measurements provide climatic information of a very localized
scale in comparison to weather service stations. Therefore, we
prioritized the use of weather-station data whenever data quality
criteria were fulfilled and the proportion of missing data was
reasonable. When quality criteria were not met, weather data was
acquired from nearby weather service stations.

In the first step, we summarized the hourly or semi-hourly
records for each climatic variable on a daily basis using various
quality control criteria (consistent number of weather records per
day; threshold tests; persistence tests, i.e., flagging observations
with null variability during the day; internal consistency tests,
i.e., verification of the relation between measured variables).
These criteria were applied based on the recommendations from
the official published guidelines on quality control procedures
for data acquired from weather stations (Zahumenský, 2004;
Estévez et al., 2011) and are detailed in Supplementary Table 3.
Data from the field weather station were compared against
weather data obtained from public climate summaries to
check for possible large data divergences and to fill out
missing values. Data from the Global Historical Climatology
Network (GHCN) and from the Global Surface Summary of
the Day (GSOD) were retrieved from the National Oceanic
and Atmospheric Administration (NOAA) website to investigate
American locations, while data for Canadian locations were
downloaded from the Environment and Climate Change Canada
(ECCC) website, based each time on a 70-kilometer radius from
the geographic coordinates for each field experiment. In case
data from the field weather station data were missing or assigned
as erroneous, data from the closest publicly accessible weather
station were used, if it was located less than 2 km from the
field. If the distance to the nearest station was large, interpolation
by spatio-temporal kriging or inverse distance weighting was
performed using the R package gstat to impute the missing data
(Pebesma, 2004; Gräler et al., 2016). For wind data, we only
used results obtained from inverse distance weighting because
of the consistency regarding the standard height measurement
obtained from GSOD data. Similarly, in-field weather stations
solar radiation data were characterized by a high percentage of
missing values and inconsistencies; we used instead the R package
nasapower (Sparks, 2018), which enables an easy access to NASA
POWER surface solar radiation energy data. Some environments
were irrigated: for those of which the precise amount was tracked
during the growing season, these data were added to the final
daily precipitation data.

Hence, the daily weather data consisted of the daily
maximum, minimum and mean temperature (average of
minimum and maximum daily temperatures), average wind
speed, precipitation, humidity, incoming solar radiation. Based
on these processed weather data, we were then able to calculate

the daily growing degrees (Baskerville and Emin, 1969), the
photothermal time (product between GDs and day length
in hours, for each day, also referred as an environmental
index; Li et al., 2018), the mean vapor pressure deficit, the
reference evapotranspiration (ET0) using FAO-56 Penman-
Monteith method (Allen et al., 1998). These latter variables
were computed because they incorporate crop physiological
parameters which make them sometimes more relevant than the
initial weather data.

2.4. Derivation of Environmental Variables
per Hybrid Growth Stage
The next step was to obtain pertinent environmental predictors
from daily weather summaries for the predictive modeling
framework. The objective was to relate each hybrid phenotypic
performance (e.g., yield) in a particular environment,
individually characterized by its specific flowering dates, to
the corresponding weather series during the growing season.
To develop a unified framework across the different growing
season lengths, which varied throughout locations and years,
we used three critical maize growth stages, as was performed
in previous similar work for other crops (Heslot et al., 2014b;
Delerce et al., 2016; Gillberg et al., 2019; Monteverde et al.,
2019). This approach was needed to account for the differential
impact of weather-based variables according to the crop
developmental stage. Each intermediate plant developmental
stage could not be precisely determined since visual scoring for
all stages is in practice highly time-consuming and expensive.
However, the sowing date and the flowering date, i.e., when
50% of plants in a plot have visible silk, were recorded for
each hybrid kept after phenotypic data analysis. Based on
these known dates, three hybrid maize growth periods could
be estimated: vegetative (from the planting date to 1 week
before the 50% silking date); flowering (from 1 week before
50% silking date to 2 weeks after that date, which corresponds
approximately to the end of the pollination period); and the
grain filling stage (from the end of the flowering period to
65 days after, after which maturity should be reached). By
definition, these three periods do not overlap. The typical
duration of the grain filling stage varies according to the
hybrid and the environment; nonetheless, based on literature
and agronomic knowledge, the corn plant is normally at
physiological maturity (R6) about 55–65 days after silking
(Ritchie et al., 1993).

Based on these dates, 13 weather-based environmental
predictor variables were computed for each phenological stage
and therefore were both environment- and hybrid-specific
(Table 1). We included stress covariates related to heat, as
it is expected that an excess of heat can be detrimental,
especially during the flowering stage, and results in a lower
yield. To examine the presence of clusters of environments
based on climatic similarity, a principal component analysis
on the weather-based covariates using the R package factoextra
(Kassambara and Mundt, 2017) was applied.

In addition to climatic variables, our framework
accommodates four soil-based environmental variables: soil
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TABLE 1 | Environmental predictor variables used in the prediction models.

Acronym General description

P.V, P.F, P.G Accumulated precipitation + irrigation (mm) by

growth period

FreqP5.V, FreqP5.F,

FreqP5.G

Frequency of days with more than 5 mm

precipitation by growth period

MeanT.V, MeanT.F, MeanT.G Average of daily mean temperature (◦C) by

growth period

MinT.V, MinT.F, MinT.G Average of minimum daily temperature (◦C) by

growth period

MaxT.V, MaxT.F, MaxT.G Average of maximum daily temperature (◦C) by

growth period

GDD.V, GDD.F, GDD.G Cumulative growing degree days, Base 10◦C

(◦C) by growth period

Photothermal.Time.V,

Photothermal.Time.F,

Photothermal.Time.G

Cumulative photothermal time (GDD x Day

Length) by growth period

FreqMaxT30.V,

FreqMaxT30.F,

FreqMaxT30.G

Frequency of days with maximum temperature

above 30◦C by growth period

FreqMaxT35.V,

FreqMaxT35.F,

FreqMaxT35.G

Frequency of days with maximum temperature

above 35◦C by growth period

St30.V, St30.F, St30.G Sum of the daily maximal temperatures above

30◦C (◦C)

CumSumET0.V,

CumSumET0.F,

CumSumET0.G

Accumulated reference evapotranspiration

(mm), under standard conditions, according to

the FA0-56 Penman-Monteith methodology for

each growth period

CumDailyWaterBalance.V,

CumDailyWaterBalance.F,

CumDailyWaterBalance.G

Cumulative daily water balance, i.e., daily

precipitation + irrigation - daily reference

evapotranspiration (mm)

Sdrad.V, Sdrad.F, Sdrad.G Accumulated incoming daily solar radiation (MJ

m-2 day-1) by growth period

SandProp.SC Sand composition (%)

Silt.Prop.SC Silt composition (%)

ClayProp.SC Clay composition (%)

OM.SC Percentage of organic matter (%)

The suffixes refer to: V, vegetative period; F, flowering period; G, grain fill period; SC, soil

covariate.

quality types (percentages of sand, silt, and clay composition)
and percentage of soil organic matter. The majority of the soil
information originates from the soil samples realized at each
G2F field location; otherwise, when the location presented
missing information, we defined an area of interest based on field
geographical coordinates using the Web Soil Survey application
for American locations, and the web mapping application
Agricultural Information Atlas for Canadian locations, and
retrieved the aforementioned data of interest. In the rest of the
paper, the abbreviation “W” refers to the set of weather-based
and soil-based environmental covariates. For the trait plant
height, weather-based covariates from the grain filling stage were
not used as explanatory variable for prediction, since this trait
was usually measured shortly after flowering time.

2.5. Prediction Models Implemented
2.5.1. Linear Random Effects Models (LRE Models)
In multi-environment trial analysis and plant breeding
experiments, linear random effects models, abbreviated to
LRE models thereafter, are often used as genomic prediction

models and were compared in this study with machine learning
techniques, according to the models outlined in Jarquín et al.
(2014). In particular, GxE can be modeled with a covariance
function equal to the product of two random linear functions of
markers and of environmental covariates, which is equivalent to
a reaction norm model (Jarquín et al., 2014). An environment
always refers to a Site x Year combination.

Main effects models

(1) Model G + E: Marker + Environment Main Effects
(baseline model)

The response variable is modeled as the sum of an overall mean
(µ), plus random deviations due to the environment Ei and to the
genotypic random effect of the jth hybrid genotype gj based on
marker covariates (G-BLUP component), plus an error term εij:

yij = µ + Ei + gj + εij, (1)

where Ei
IID
∼ N(0, σ 2

E ), g
IID
∼ N(0,Gσ 2

g ) and εij
IID
∼ N(0, σ 2

ε ),
and N(.,.) denotes a normally distributed random variable,
IID stands for independent and identically distributed, and
σ 2
E , σ 2

g are the corresponding environmental and genomic
variances, respectively.
gj corresponds to a regression on marker covariates of the form

gj =
∑p

m=1 xjmbm, linear combination of p markers and their
respective marker effects. Marker effects were regarded as IID

draws from normal distributions of the form bm
IID
∼ N(0, σ 2

b
), m

= 1,...,p. The vector g=Xb follows a multivariate normal density
with null mean and covariance-matrix Cov(g) = Gσ 2

g , where

G = XX′

p is the genomic relationship matrix, X representing

the centered and standardized genotype matrix and p is the total
number of markers.

(2) Model G + S: Marker + Site Main Effects

The present model allows to gain information from a site
evaluated over several years, as it includes the site effect:

ykj = µ + Sk + gj + εkj (2)

Here ykj corresponds to the phenotypic response of the jth

genotype in the kth site with Sk
IID
∼ N(0, σ 2

S ), k = 1,...,K.

(3) Model G+E+W: Marker + Ennvironment + Environmental
Covariates Main Effects

This model incorporates additionally the main effect of the
environmental covariates (including the longitude and latitude
coordinates). We can model the environmental effects by
a random regression on the ECs (W), that represents the
environmental conditions experienced by each hybrid in each

environment: wij =
∑Q

q=1Wijqγq, where Wijq is the value of the

qth EC evaluated in the ijth environment x hybrid combination,
γq is the main effect of the corresponding EC, and Q is the total
number of ECs.We considered the effects of the ECs as IID draws
from normal densities, i.e., γq ∼ N(0, σ 2

γ ). Consequently, the
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vector w = Wγ follows a multivariate normal distribution with
null mean and covariance matrix �σ 2

w, where � ∝ WW′, and
the matrix W, which is centered and standardized, contains the
values of the ECs. The model becomes then:

yij = µ + Ei + gj + wij + εij (3)

with w ∼ N(0,�σ 2
w).

In this model, as explained in Jarquín et al. (2014),
environmental effects are subdivided in two components, one
that originates from the regression on numeric environmental
variables, and one due to deviations from the Year-Site
combination effect which cannot be accounted for by the
ECs. Indeed, the environmental variables might not be able
to fully explain the differences across environments. The
modeling of the covariance matrices � and G allows to
borrow information between environments and between hybrid
genotypes, respectively.

Models with interaction

(4) Model G+E+GxE: main effects G+E with Genomic x
Environment Interaction

The model G+E was extended by including the interaction term
between environments and markers (GxE):

yij = µ + Ei + gj + gEij + εij (4)

with gE ∼ N(0, [ZgGZ
′
g]◦ [ZEZ

′
E]σ

2
gE), εij

IID
∼ N(0, σ 2

ε ), where Zg

andZE are the designmatrices that connect the phenotype entries
with hybrid genotypes and with environments, respectively; σ 2

gE

is the variance component of the gEij interaction term; and ◦

denotes the Hadamard product between two matrices.

(5) Model G+S+GxS: main effects G+S with Genomic x
Site Interaction

Similar to the previous model, this model extends model G+S by
including the interaction term between sites and markers (GxS):

ykj = µ + Sk + gj + gSkj + εkj (5)

where gS ∼ N(0, [ZgGZ
′
g] ◦ [ZSZ

′
S]σ

2
gS), εkj

IID
∼ N(0, σ 2

ε ), where

ZS and σ 2
gS are the design matrix for sites and the associated

variance component for this interaction, respectively.

(6) Model G+E+S+Y+GxS+GxY+GxE: main effects G+E+S+Y
with Genomic x Environment Interaction, Genomic x Site
Interaction and Genomic x Year Interaction

This model corresponds to the most complete model using
only basic GxE information (year and site information)
about environments:

yjkm = µ+ gj+Sk+Ym+Ekm+ gSjk+ gYjm+ gEjkm+ εjkm (6)

where gY ∼ N(0, [ZgGZ
′
g] ◦ [ZYZ

′
Y]σ

2
gY ), εkj

IID
∼ N(0, σ 2

ε ), where

ZY and σ 2
gY are the design matrix for years and the associated

variance component for this interaction, respectively.

(7) Model G+E+W+GxW: main effects G+E+W with interactions
between markers and environmental covariates

The model G+E+W was extended by adding the interaction
between genomic markers and environmental covariates. Jarquín
et al. (2014) demonstrated that this interaction term induced
by the reaction-norm model can be described by a covariance
structure which corresponds, under standard assumptions, to
the Hadamard product of two covariance structures: one
characterizing the relationships between lines based on markers
information (e.g., G), and one describing the environmental
resemblance based on ECs (e.g.,�). The vector of random effects,
denoted gw represents the interaction terms between markers
and ECs, is assumed to follow a multivariate normal distribution
with null mean and covariance structure [ZgGZ

′
g]◦�. The model

can be expressed as follows:

yij = µ + Ei + gj + wij + gwij + εij, (7)

with gw ∼ N(0, [ZgGZ
′
g] ◦ �σ 2

gw).

(8) Model G+E+W+GxW+GxE: main effects G+E+W with
Genomic x Environment Interaction and Genomic x
Environmental Covariates Interaction

The interaction term gEij is incorporated in this model, because
some GxE might not be completely captured by the interaction
term gwij, and the model becomes:

yij = µ + Ei + gj + wij + gwij + gEij + εij (8)

Main and interactions effects included in the different models
described above are summarized in Supplementary Table 5.
Models using W, i.e., the matrix of environmental covariates,
were tested with and without longitude and latitude data
included. Additional combinations of main effects and
interactions not detailed here were also evaluated and results
are presented as Supplementary Material. These models were
implemented in a Bayesian framework using the R package
BGLR (Pérez and de Los Campos, 2014), for which the MCMC
algorithm was run for 42,000 iterations and the first 2000 cycles
were removed as burn-in with thinning equal to 5.

2.5.2. Machine Learning Based-Methods Used
The potential of machine learning models was explored using
the following three algorithms: the linear regularized Elastic
Net (Zou and Hastie, 2005), XGBoost (Chen and Guestrin,
2016) and LightGBM (Ke et al., 2017). All the machine learning
regression models were conducted in R version 3.6.1 (R Core
Team, 2019) using the tidymodels framework (Kuhn and
Wickham, 2020) and wrapper functions of treesnip (https://
github.com/curso-r/treesnip/). Elastic net is a regularized linear
regression method that has proven to be useful with datasets
characterized by multicollinearity to identify the most relevant
predictor variables as well as reducing the computing time
(Zou and Hastie, 2005). It corresponds to a linear combination
of two penalty terms: the lasso (L1 regularization), noted
‖β‖1 =

∑p
j=1 |βj| and the ridge (L2 regularization), noted

‖β‖22 =
∑p

j=1 β2
j . While the L2 penalty tends to contract the
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coefficients of highly correlated features toward each other, the
L1 penalty supports a sparse solution, as many coefficients are
zeroed. However, this method does not account for interactions
between features.

Originally introduced by Friedman (2001), gradient boosting
approach sequentially builds an ensemble of decision trees, with
each new tree improving the predictions of the previous one by
fitting on its residual errors. Two implementations of gradient
boosting of decision trees (GBDT) for regression were used: Light
Gradient Boosting Machine (LightGBM) and eXtreme Gradient
Boosting (XGBoost). The two GBDT frameworks stand out
from other similar boosting algorithms regarding their efficiency,
which can be achieved by their common implementation of
a histogram-based method for split finding, which groups
continuous features into discrete bins. Hence, the algorithm
does not iterate through all feature values, which is extremely
time-consuming, but instead performs splitting on the bins.
This speeds up training for very large datasets, as well as
reducing memory usage. LightGBM, developed more recently,
incorporates additional features, among others a downsampling
during the training on basis of gradients. GBDT frameworks
can handle well various types of data (binary, continuous
data), and they are relatively robust to the effects of outliers
among predictor variables (Hastie et al., 2009). Decision trees
can capture, by construction, higher-order interactions between
features, as well as nonlinear relationships between predictors
and response variable (Friedman, 2001). Hence, interactions
do not need to be explicitly provided as input data, since
new splits are built conditional on preceding splits made on
other predictors.

2.5.3. Data Pre-processing for Machine

Learning-Based Models
For data processing, we used the R package recipes (Kuhn and
Wickham, 2020). To reduce genomic data dimensionality, we did
not input SNP data into our prediction models directly. Instead,
we used the top 275 or 350 principal components (PCs) of SNP
data, for the traits grain yield and plant height, respectively.
This set of PCs was chosen after evaluation of the predictive
ability using different sets of top PCs explaining a various
proportion of the variance in the data. Covariates which had no
variance were removed using the step_nzv function. Retained
covariates were standardized to zero mean and unit variance.
As for linear random effect models, we tested the influence
on prediction of longitude and latitude data by including and
removing them as predictor variables across the different cross-
validation scenarios. The year was also included as an input
variable as a predictor variable in some models to account for
environmental variation not fully captured by environmental
covariates. In that case, the factor variable was converted into
four new variables corresponding to each level of the original
predictor. To model the site effect in models without numerical
environmental information, we used the simple geographic
coordinates of each location instead of using its label. Indeed,
in decision trees, the use of a categorical predictor with a
high number of levels can lead to overfitting (Hastie et al.,
2009).

2.5.4. Optimization of Hyperparameters and

Hyperparameter Importance for Machine

Learning-Based Models
Bayesian optimization using an iterative Gaussian process was
used for hyperparameter tuning. It represents a much faster
approach than grid search while allowing more flexibility in how
the parameter space is covered. The Gaussian process builds a
probability model based on an initial set of performance metrics
obtained for various hyperparameter combinations during an
initialization step, and predicts new tuning hyperparameters to
test based on these previous results (Williams and Rasmussen,
2006; Snoek et al., 2012). Bayesian optimization incorporates
prior assumptions on model parameter distribution and update
it after each iteration, seeking to minimize the root mean
square error (RMSE). Hyperparameter tuning was evaluated
with 30 iterations under resampling based on a fivefold
cross-validation (CV) with two repeats on the training set.
Supplementary Table 4 indicates the set of hyperparameters
tuned for each method during this optimization step. This set
of hyperparameters was then used to fit the whole training
data and predict the test set, which was unused during the
optimization of hyperparameters. The general procedure for this
nested cross-validation is illustrated in Figure 1. Fine-tuning
of hyperparameters is required in order to prevent overfitting
and to achieve the best prediction accuracy and representation
of the data.

In addition, we examined the role of each hyperparameter on
the overall model performance. This analysis provide insights
into the most important hyperparameters to primarily tune in
order to yield accurate models. We focus here on the LightGBM
algorithm and XGBoost. A method based on random forests
and functional ANOVA (fANOVA) was proposed by Hutter
et al. (2014) to quantify the marginal contribution of each
hyperparameter and pairwise interaction effects. Briefly, we used
the output table of performance metrics of each algorithm
with different hyperparameter combinations, which was obtained
during the optimization step. The metric (root mean square
error) is then used as target variable while hyperparameters
represent the explaining variables to fit a random forest
algorithm. fANOVA is then applied to evaluate the importance
of each hyperparameter used in the grid search.

2.5.5. Assessment of Prediction Accuracy for New

Environments
In order to mimic real plant breeding problems, we considered
four different cross-validation strategies aiming at predicting
genotypes in environments that were never tested before, namely
CV0-Year, CV0-Site, CV00-Year, and CV00-Site, described in
Jarquín et al. (2017). The CV0 cross-validation scheme allows to
borrow information in the training set about the performance
of predicted genotypes in other tested environments, while the
CV00 cross-validation scheme consists of the prediction of newly
developed genotypes. This means that for implementation of
the CV00 cross-validation, any observation from a genotype
included in the test set (i.e., new environments) was removed
from the training set. Predictions of untested genotypes can
be achieved by exploiting information from marker data on
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FIGURE 1 | Nested cross-validation diagram for evaluation of model performance in the leave-1-year-out CV scheme with a machine learning approach.

genetic similarities between genotypes from the training set
and from the test set. Four scenarios in total were examined,
which differ according to whether site or year were used
to build the test set, and to the degree of relationship
between training and test set: (1) CV0-Year, where phenotypic
information about the performance of genotypes evaluated in
the same year was masked; (2) CV00-Year, where phenotypic
information about the performance of any genotypes present
in the test set in other years was additionally masked; (3)
CV0-Site, where phenotypic information about the performance
of genotypes evaluated in the same site was masked and
(4) CV00-Year, where phenotypic information about the
performance of any genotypes present in the test set in
other sites was additionally masked. In this procedure, the
number of observations contained in each outer fold is not
the same, due to the unbalanced character of the dataset.
This approach reflects a common issue arising in multi-
environment plant breeding trials, as all selection candidates
cannot be grown in all environments. However, we can ensure
a fair model comparison by having the same data splits across
tested models.

Regarding evaluation metrics, we define the prediction
accuracy as the Pearson correlation between the predicted
and the observed performance in a given environment, i.e.,
correlations were computed on a trial basis.

In order to take into account the difference in sample
sizes between environments, we evaluated the weighted average
predictive ability across environments according to Tiezzi et al.
(2017), for each combination of prediction model, predictor
variables and trait, as following:

rw =

∑J
j=1

rj
V(rj)

∑J
j=1

1
V(rj)

,

with rj the Pearson’s correlation between predicted and observed

values at the jth environment, V(rj)=
1−r2j
nj−2 its sampling

variance and nj the total number of phenotypic observations

in the jth environment.

2.6. Variable Importance and Partial
Dependence Plots for Grain Yield
We used the gain metric to quantify the feature importance in the
XGBoost model fitted to the full dataset. This metric corresponds
to the relative contribution of the variable to the ensemble model,
calculated by considering each variable’s contribution for each
boosting iteration. A superior value of the gain for one feature
compared to another feature means that this feature is more
important to generate a‘prediction.
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Overall partial dependence plots (PDPs) were computed using
the R package DALEX (Biecek, 2018) using the four trained
datasets from the CV0-Year scheme and the full dataset. PDPs
are relevant to study how the predicted outcome of a machine
learning model is partially influenced by a subset of explanatory
variables of interest, by marginalizing over the values of all
other variables.

The partial dependence profile of f(X) is defined as following
by Friedman (2001):

fS(XS) = EXC f (XS,XC),

where the XS represents the set of input predictor variables
for which the effect on the prediction is analyzed, and XC

represent the complement set of other predictor variables
used in the model. The following partial function can be used as
an estimator:

SfS(XS) =
1

N

N∑

i=1

f (XS, xiC),

where x1C, x2C, ..., xNC are the values of XC observed in the
training data. This means that we estimate this expected value as
the average of the model predictions, over the joint distribution
of variables in XC, when the set of joint values in XS is fixed. As
emphasized by Hastie et al. (2009), partial dependence functions
represent hence the influence of XS on f(X), after taking into
account the average effects of the other variables XC on f(X).

2.7. Code Availability
A Github repository containing the various R scripts and Bash
scripts used for phenotypic analysis, processing of weather
data, spatio-temporal interpolation of missing weather data, and
predictive modeling is available: https://github.com/cjubin/G2F_
data.

3. RESULTS

3.1. Variability of Climatic Conditions in the
Panel of Environments
Figure 2 reveals a partitioning of environments into clusters
corresponding mostly to different US climate zones. It suggests
that the sample of environments was broad enough to cover
a large spectrum of environmental conditions across the
North-American continent. The first two principal components
explained more than 55% of total variation among environments
on the basis of weather-based environmental covariates. The
loading plot shows that MinT.F and GDD.F, FreqMaxT30.G,
which are covariates related to temperature during flowering
and grain filling stage, strongly influenced the first principal
component (PC1). Environments from the South/Southeast
(Arkansas, Texas, Georgia) showed positive PC1 and PC2 scores,
which can be explained by a common humid subtropical climate,
according to the Köppen climate type classification (Köppen
and Geiger, 1930). One exception was one location in Texas
(denoted 2014_TXH2), associated with more semi-arid climatic
conditions. These results indicate that a closer geographical

distance does not necessarily imply similar environmental
conditions, based on climate types. For instance, environments
from Delaware were closer to environments from the Midwest
than Northeastern environments. Environments from the
Midwest, associated with a humid continental climate, were
situated mostly around the origin of the plot, and environments
further north or in Canada exhibited the lowest temperatures
among this set of sampled environments and presented a negative
PC1 score.

3.2. Hyperparameter Importance for
Gradient Boosting Approaches
Computing by fANOVA the marginal contribution of each tuned
hyperparameter, using the performance data gathered during
the hyperparameter optimization step on the different training
sets, highlights large differences regarding their respective impact
on model performance (Supplementary Figure 3). For the two
gradient boosting algorithms, the learning rate (named eta in
XGBoost) and the maximum depth of the tree were the most
relevant algorithm parameters, as well as their interaction. The
number of boosting iterations did not play a major role in
model performance. We also found an advantage of using
the hyperparameter feature_fraction and colsample_bytree,
implemented in LightGBM and XGBoost, respectively, as it
allowed an important reduction of the training time without
having any observed negative effect on the accuracy of the
predictions. It should be emphasized that we did not fully explore
the influence of all possible hyperparameters implemented in
these algorithms because of computational limitations, and
therefore many of these were fixed during the hyperparameter
optimization step.

3.3. Comparison of Model Performance
Across Two Traits and Four Different CV
Scenarios

CV0-Year

When the aim was to predict yield performance of already
tested hybrids in new environments, the weighted average
correlation of the baseline LREmodel (G+E) was 0.356 (Figure 3;
Supplementary Table 6). When the GxE term was added,
the average correlation improved to 0.362. The model that
included all interactions (G+E+W+GxW+GxE) was the best LRE
model, while using only interactions between environmental
covariates and genomic information (model G+E+W+GxW)
slightly decreased the predictive ability of the baseline model
to 0.347. In this prediction scenario, the two GBDT methods
outperform all LRE models; model XGBoost-G+W+Y+Lon+Lat
improved upon the baseline model by 18%. In addition,
a small increase of predictive ability could be observed
when environmental covariates were included as features for
the machine learning-based frameworks. Furthermore, models
that included geographical coordinates as predictor variables
resulted in better prediction accuracies, and this revealed true
across all prediction problems; therefore, Figures 4, 5 display
results from LRE models using W as including longitude and
latitude as predictor variables. For plant height, the baseline
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FIGURE 2 | Principal component analysis (PCA) plot of environmental data from the 71 environments, using the median flowering date as reference in each

environment. (A) Maize trial experiments located in the US and in Canada used in analyses. Name of the locations and their geographical position are given in

Supplementary Table 1. (B) Correlation plot of the weather-based covariates used in the PCA.
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model performed best (Figure 4; Supplementary Table 8), and
gradient boosting models incorporating environmental predictor
variables performed consistently worse than models based only
on genotypic data, geographical data and year information.

CV00-Year

CV00-Year produced lower average correlation coefficients
for the two traits and for all models compared to CV0-
Year, which illustrates that genomic prediction in multi-
environment trials achieves better results when the training
set includes information from the same genotypes evaluated in
other environments. Regarding the trait grain yield (Figure 3;
Supplementary Table 6), modeling the effect of sites instead of
environments resulted in a small improvement of the predictive
ability (4% better than the G+E model). Adding the GxE term
to the LRE baseline model also positively affected the predictive
ability (8% better than the G+E model). However, the LRE
model with main site and genotype-by-site interaction effects
(G+S+GxS) outperformed LRE models based on the modeling of
year-location (E) effects. Overall the best predictivemodel for this
trait was again the GBDT model XGBoost-G+W+Y+Lon+Lat,
which displayed an average correlation of 0.301 (20% higher than
the baseline model). GBDT models incorporating W performed
between 6 and 13% better than GBDT models excluding W,
which demonstrates the usefulness of environmental data for
prediction of yield performance of new genotypes in an untested
year. Among LRE models, the LRE model with all interactions
and using enviromental data was the best model and resulted in
an improvement of 17% over the baseline model. Regarding the
trait plant height (Supplementary Table 8), the best predictive
model was the baseline LRE model with an average weighted
correlation of 0.604. Among LRE and GBDT models, models
which did not include any environmental data performed
better than those using these. An explanation for this lack of
improvement with environmental data for plant height in this
prediction problem can be that year and geographical position
are appropriate and sufficient data to efficiently characterize
environments for prediction of plant height, while using all
environmental variables might generate noise here.

CV0-Site

The prediction of already tested genotypes in all environments
associated with a common site revealed higher predictive
abilities than with the CV0-Year prediction problem
(Figures 3, 4; Supplementary Tables 7, 9). Indeed, based
on our dataset, which covers many different sites across the
US (see Supplementary Figure 1), the leave-one-site-out CV
strategy generates large ratios across all training/test splits.
This greater amount of data available to predict environments
from one site can explain why this CV scheme obtained
higher predictive abilities than the CV0-Year strategy. For
the trait grain yield (Figure 3; Supplementary Table 7), the
XGBoost-G+Lon+Lat+Y outperformed other models, showing
an increase of 9% compared to the baseline LRE model.
LightGBM models showed also better predictive abilities than
LRE models. Only for LRE models did the use of environmental
data yield a very small increase in predictive ability; the best

result within this type of statistical approach was obtained
by the model including all interactions (0.477, 3% higher
than the baseline model). However, for the trait plant height
(Figure 4; Supplementary Table 9), LRE models performed
better than machine learning-based methods, with the model
G+E+S+Y+GxS+GxY+GxE, which uses only basic information
on environments, showing a mean correlation of 0.742.
LightGBM and XGBoost methods with geographical and year
information predicted reasonably well compared to the latter
model (average r between 0.7 and 0.72), and again, the addition
of environmental covariates decreased the predictive ability of
GBDT models G+Lon+Lat+Y.

CV00-Site

As expected, the prediction of new genotypes in new sites resulted
in lower mean correlations than CV0-Site for the two traits
under study across predictive models. This highlights again
the importance of the relationship between training and test
sets. For the trait grain yield (Figure 3; Supplementary Table 7),
the weighted average predictive ability of the reference model
(G+E) was 0.248, and the model using sites instead of
environment main effect was slightly better with a mean
correlation of 0.265 (7% over G+E model). When the GxE
term was added to the baseline model, the weighted average
predictive ability was improved to 0.269 (8% over G+E model).
It is worth to underline that models incorporating genotype-
by-site effects performed even better (10% and 11% higher
than the reference model). Modeling the interaction between
ECs and genotypes and between environments and genotypes
(model G+E+W+GxW+GxE) yielded an improvement of the
baseline model by 19% (average r = 0.296), which was closely
followed by the LightGBM and XGBoost models incorporating
environmental covariates (between 11 and 16 % increase over
the baseline model). As for the CV0-Year and CV00-Year CV
schemes, the use of environmental data slightly increased the
average predictive ability for grain yield. For the trait plant height
(Figure 4; Supplementary Table 9), the baseline model with
interactions by environment (G+E+GxE) outperformed other
models. As for the previous prediction problems, environmental
data decreased predictive abilities over all implemented models
for the trait plant height.

When comparing the predictive abilities across traits, grain
yield was the trait showing the lowest predictive ability across
all CV schemes. Across all CV schemes, Elastic Net was the
worst predictive modeling approach, which can be related to the
absence of interactions between predictors in this model, if these
are not explicitly provided as new features.

Figure 5; Supplementary Tables 10, 11 display the detailed
within-environment correlation results for grain yield for
two (CV0-Year and CV0-Site) cross-validation schemes. If
a predicted environment is over the identity line, this
means that there was an increment of the predictive ability
by using environmental information. For CV0-Year, the
machine learning-based model including environmental data
outperformed the model only using geographical and year
information in 44 of the 71 considered environments. For CV0-
Site, however, the model with environmental features was better
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FIGURE 3 | Weighted average predictive ability across 71 environments obtained for four cross-validation schemes and 16 models for the trait grain yield. G, main

effect of SNPs markers (genomic relationship matrix for LRE models; principal components derived from marker matrix for machine learning-based approaches); Y,

year effect; S, site effect; GxS, genotype-by-site interaction; E, environment effect; GxY, genotype-by-year interaction; GxS, genotype-by-site interaction; GxE,

genotype-by-environment interaction; GxW, interaction between W and SNPs; Lon, longitude; Lat, latitude; W, effect of weather- and soil-based covariates. For linear

random effects models, results with models including longitude and latitude data in the matrix W are depicted here.

FIGURE 4 | Weighted average predictive ability across 71 environments obtained for four cross-validation schemes and 16 models for the trait plant height. G, main

effect of SNPs markers (genomic relationship matrix for LRE models; principal components derived from marker matrix for machine learning-based approaches); Y,

year effect; S, site effect; GxS, genotype-by-site interaction; E, environment effect; GxY, genotype-by-year interaction; GxS, genotype-by-site interaction; GxE,

genotype-by-environment interaction; GxW, interaction between W and SNPs; Lon, longitude; Lat, latitude; W, effect of weather- and soil-based covariates. For linear

random effects models, results with models including longitude and latitude data in the matrix W are depicted here.

than the less complex one in only 34 environments. This can
be interpreted as a failure to explain a large part of the GxE
by the computed ECs, and by a more efficient representation of
environmental effects by simple geographic information.

3.4. Variable Importance
Regarding the trait grain yield, many of the identified top
variables were related to temperature, such as the average
minimum temperature during the flowering stage, or the
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FIGURE 5 | Comparison of the within-environment predictive ability with different sets of predictors for the trait grain yield for XGBoost (A) with the CV0-Year scenario

and (B) CV0-Site scenario. The x-axis corresponds to the within-environment correlation obtained with the model incorporating PCs derived from SNPs, year and

geographical coordinates. The y-axis corresponds to the within-environment correlation obtained with the model incorporating PCs, year, W (i.e., weather- and

soil-based covariates) and geographical coordinates. The line indicates the identity. Blue-colored points with a label indicate environments for which the absolute

difference between the two predictive abilities was superior to 0.13. Black-colored points with a label indicate the least and the most accurately predicted

environments.

frequency of days during which the maximum temperature was
above 35◦C (Figure 6). Organic soil matter concentration was the
thirdmost important feature, which demonstrates that fields with
fertile soils were associated with higher yields. The amount of
water received by the field (P.V) during the vegetative and grain
filling stage was also a major feature for the model, as well as
the frequency of days during the vegetative stage for which the
amount of water was greater than 5mm. Regarding the trait plant
height, variables based on soil information played amajor role for
trait prediction, as they likely affect the crop shoot architecture.
The amount of water received during the vegetative stage was also
an important explanatory variable for plant height.

Partial dependence plots (Figure 7) show that minimum
temperature at flowering stage was strongly impacting yield from
approximately 20◦C onwards. Maximum temperature during the
vegetative stage had a detrimental effect on yield, suggesting that
very elevated temperatures can impair a normal plant growth,
eventually required to achieve optimal grain yield, although it
tended to have a more gradual effect than minimum temperature
at flowering stage. The relationship with yield of the total amount
of precipitation during the vegetative stage was positive, before
reaching a plateau. A high soil organic matter content yielded in
superior yield predicted values.

4. DISCUSSION

Breeders, working on the development of climate resilient
cultivars, risk making incorrect selection decisions if genotype-
by-location and genotype-by-year interactions are not properly
accounted for (Jarquín et al., 2017; De Los Campos et al.,

2020). By incorporating environmental variables in our models,
we assessed the value of these predictor variables for genomic
prediction of complex phenotypes across four cross-validation
scenarios. Gradient boosting frameworks based on decision
trees have demonstrated high prediction performance for
traits affected by non-additive effects (Abdollahi-Arpanahi
et al., 2020), as well as model interpretability to extract
important insights from the model’s decision making process
(Shahhosseini et al., 2020). Thus, a second objective was
to evaluate these new prediction methods on the basis of
prediction accuracies and for identification of the most relevant
environmental variables.

4.1. Comparison of Prediction Methods
Across the Two Traits
We observed that GBDT frameworks produced a slightly
improved predictive ability for grain yield compared to the linear
random effects models in three (CV0-Year, CV00-Year, and
CV0-Site) out of the four CV schemes. However, no advantage
was observed when GBDT was used to predict plant height.
Overall, GBDT methods were competitive to LRE models, but
we did not find any case where these machine learning-based
methods considerably exceeded the predictive ability of LRE
models. Previous studies have suggested that machine learning-
based approaches can provide superior accuracy for prediction
of phenotypic traits characterized by substantial non-additive
effects. For instance, results from Zingaretti et al. (2020) in
strawberries suggest that traits, exhibiting large epistatic effects,
can be better predicted by convolutional neural networks (CNN),
than by Bayesian penalized linear models. On the other hand, for
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FIGURE 6 | Feature importance ranking based on the average relative gain per feature obtained with the model XGBoost-G+W, for the two traits grain yield and plant

height. The metric was estimated using a model fitted on the full dataset. The gain represents the improvement in accuracy when using a feature for splitting, across

all trees in the model. The order of features is based on feature performance within covariate class for the trait grain yield. The sum of all feature contributions is equal

to 1. Weather-based variables from the grain filling stage were not used to predict plant height.

moderately to highly heritable traits, no real advantage of using
machine learning-based methods was observed in their study.
Bellot et al. (2018) pointed out that human height, a trait with a
prevailing additive component and a polygenic architecture, was
better predicted by linear methods than by CNNs. For other traits
they examined in their study, a deep learning approach did not
significantly outperform other methods in terms of prediction
accuracy. Similar conclusions were drawn by Azodi et al. (2019)
who reported an inconsistency of performance for non-linear
machine learning-based algorithms in comparison with linear
algorithms, according to the trait under study.

In our study, we incorporated not only genomic-based, but
also environmental-based predictor variables. Yield component
traits are controlled by numerous physiological processes under
the influence of environmental factors, which can explain the
large contribution of the GxE variance component for the
phenotypic variance of grain yield, while for plant height, the
proportion of variance explained by GxE is generally much
lower than the proportion of variance related to genetic effects
(Olivoto et al., 2017; Rogers et al., 2021). Nonlinear relationships
between some environmental factors, such as temperature or
rainfall amounts, and grain yield are well-known in the field
of ecology and agriculture (Troy et al., 2015; Li et al., 2019).

Hence, the slightly better prediction performance for grain yield
with GBDT frameworks might originate from their ability to
model nonlinear effects of environmental predictor variables, as
observed with the partial dependence plots, as well as interactions
with other predictor variables like genomic-based principal
components. This asset was also described by Heslot et al.
(2014b) when implementing soft rule fit (a modified ensemble
method) capturing nonlinear interactions between markers and
environmental stress covariates. Additional studies are required
to validate this hypothesis using other phenotypic traits showing
various genetic architectures. Moreover, it should be noted that
we used only linear kernels in the reaction normmodels to model
genetic and environmental similarities. This means that we did
not account for the specific combining ability (i.e., nonlinear
genetic effects, due to dominance or epistasis, of specific hybrid
combinations) which can influence the magnitude of yield
heterosis in maize hybrids. Alternative approaches exist to model
additive and dominant genetic effects, as well as environmental
relatedness with nonlinear kernels (Bandeira e Sousa et al., 2017;
Cuevas et al., 2018; Costa-Neto et al., 2020a). Bandeira e Sousa
et al. (2017) and Cuevas et al. (2018) obtained better predictive
abilities when using a Gaussian kernel rather than a linear
GBLUP kernel withmulti-environment G–E interactionsmodels.
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FIGURE 7 | Partial dependence plots (PDPs) showing the behavior of the expected value of predicted yield as a function of four top-ranked predictor variables. The

Y-axis value of a PDP is calculated average of all model predictions obtained from the training dataset, when the value of the predictor variable is equal to X. The four

training sets from the leave-1-year-out cross-validation scheme (CV0-Year) and the full dataset, separately trained with XGBoost, were used. Tick marks indicate

individual observations. (A) MaxT.V, maximum temperature during the vegetative stage; (B) MinT.F, minimum temperature during the flowering stage; (C) OM.SC,

percentage of soil organic matter; (D) P.V, Amount of precipitation and irrigation during the vegetative stage.

More recently, Costa-Neto et al. (2020a) implemented Gaussian
and arc-cosine kernels-based approaches on both genomic and
environmental datasets from a MET maize dataset, and noted
an improvement in prediction accuracy using these methods
across various cross-validation strategies. These results highlight
the potential of nonlinear methods to better unravel nonlinear
relationships existing in the input space.

4.2. Model Performance Under Various
Prediction Problems
The four cross-validation schemes we evaluated represent
challenging prediction problems. They seeked to assess the ability
of the models to predict the effect of unknown combinations
of environmental stresses on the studied phenotypic traits in a
new year (CV0-Year and CV00-Year) or in a new site (CV0-
Site and CV00-Site). Previously published work has revealed
somewhat similar ranges of prediction accuracies for this trait
in maize (Costa-Neto et al., 2020a; Jarquin et al., 2020). In
winter wheat, Jarquín et al. (2017) and Sukumaran et al. (2017)
reported the predictions of yield performance in future years
(CV0-Year) as the most challenging prediction problem on the
basis of results obtained for various cross-validation schemes,

and results of Sukumaran et al. (2018) showed that modeling site
effect instead of environment effect based on basic information
about the environments (year and location) had a positive effect
on predictive ability with CV0-Year, as we could also observe for
CV0-Year, CV00-Year, and CV00-Site in our results. Indeed, this
type of models allows to exploit information from the same site
tested across several years. Another factor which is important to
take into account in multi-year breeding data, as emphasized by
Bernal-Vasquez et al. (2017), is the degree of genetic relatedness
between the training and validation sets. Hence, CV00-Year
and CV00-Site were more challenging prediction problems
than CV0-Year and CV0-Site, respectively, and yielded lower
weighted mean correlations across all models.

Regarding the usefulness of environmental information, the
best model for grain yield based on mean predictive ability
included these data for three (CV0-Year, CV00-Year, and CV00-
Site) out of the four CV schemes. In addition, it must be
taken into account that much less phenotypic observations
were masked for CV0-Site (1/28, about 3.6% on average, with
some sites being present more often than others across years
in our dataset) than for CV0-Year (1/4, about 25% as the
dataset is unbalanced). Hence, we can consider CV0-Year and
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CV00-Year as more challenging prediction problems than CV0-
Site and CV00-Site in our study. The improvement due to
the incorporation of environmental data was however less
remarkable and less consistent across CV schemes than expected,
which was in contrast with previous results. Monteverde
et al. (2019) also implemented a leave-1-year-out scenario,
with one unique location present in the dataset, and the
best prediction accuracies for grain yield were always reached
by the models integrating environmental predictors alongside
genomic predictors. Findings from Costa-Neto et al. (2020a)
also show a significant increase of prediction accuracy with the
linear GB kernel incorporating environmental data in a CV0
scheme, but the authors additionally modeled dominant genetic
effects, which were not accounted for in our study. On the
other hand, Jarquin et al. (2020) also used the same Genomes
to Fields dataset and reported a lack of enhancement when
using a model that solely incorporated interactions between
genotype and environmental covariates (i.e., without using the
environment label). The best predictive models for the CV0 and
CV00 schemes, that they implemented, included both genotype-
by-environment and genotype-by-EC interactions, similarly to
our results (Supplementary Tables 6–9). In agreement with
the reasons invoked by the authors of this study, we argue
that environmental data are especially relevant for predictions
when a larger number of environments is used, e.g., by testing
sites within a limited geographical range with relatively similar
environmental conditions across multiple years. This was for
example achieved in the study of De Los Campos et al. (2020),
where 16 sites located in France were tested over 16 years. A
reasonable hypothesis is that historical weather data obtained
across multiple years for a specific geographical area can lend
the model reliable information on the effect of year-to-year
climatic variation on phenotypic performance, in addition to
site-based factors (soil and geographical position). A finding
supporting this hypothesis is that the environments, which
showed the best prediction accuracies with an environmental
model, corresponded generally to the sites which were repeated
across years, like Madison (WI) or College Station (TX)
(Supplementary Tables 10, 11). Interestingly, 2014_TXH2, a
location for which data were only included for a single year,
showed a moderate prediction accuracy with the XGBoost model
without environmental information in CV0-Year (r = 0.28;
Supplementary Table 10), which was superior to the model
with environmental covariates (r = 0.21 with all environmental
covariates included). We can suppose that the inclusion of
environmental information, when predicting a new environment
with properties that are very different from environments
covered by the training set, is not useful to enhance the predictive
ability of the model using basic predictors, such as the year
factor and geographic coordinates. Extreme weather events can
make some environments very unpredictable. 2017_ARH1 and
2017_ARH2 exhibited a very low prediction accuracy for grain
yield (< 0 for 2017_ARH2) in both CV0-Year and CV0-Site
(Supplementary Table 11), which is likely to be related to the
effect of the tropical storm Harvey at the end of August 2017,
which caused substantial lodging due to wind and excessive

rainfall affecting the yield, and was reported by collaborators in
the metadata.

4.3. Incorporation of Weather-Covariates in
the Predictive Models
The use of environmental information yielded a small gain in
average prediction accuracy for many models tested on grain
yield, but did not lead to any improvement for plant height.
For this latter trait, the large influence of soil-based variables,
illustrated by the variable importance ranking (Figure 6),
can also possibly explain why prediction models using only
geographical coordinates outperformed more elaborate models.
For this trait, latitude and longitude data might indirectly capture
information which is site-specific and repeatable across years,
e.g., related to the quality of soil. For instance, environments
from the Corn Belt, which were present in our dataset, usually
exhibited fertile soils with much higher organic soil matter
content than environments located in other US regions. Costa-
Neto et al. (2020b) highlighted that simple geographic-related
information, such as longitude and latitude data, can also
efficiently represent environmental patterns that are specific to a
site (for instance related to soil characteristics), and hence capture
well genotype-by-site interaction while using only two variables.

In general, the lack of real enhancement of predictive ability
may result from the way we incorporated developmental stages
into our models, as we defined only three main developmental
stages (i.e., vegetative, flowering and grain filling stages). Trial
data often lack a rigorous collection of phenological data due
to phenotyping costs. A possible solution to predict plant
developmental stages can be to use crop models, such as APSIM
(Holzworth et al., 2014) or SiriusQuality (Keating et al., 2003),
as done in related studies (Heslot et al., 2014b; Rincent et al.,
2017, 2019; Bustos-Korts et al., 2019). In our case, we did
not implement a crop model since we aimed at estimating the
flowering stage at the hybrid level as accurately as possible, as it
is known to be a critical period for the determination of yield-
related components. Therefore, we based our environmental
characterization on available field data (sowing date and silking
date scored) in order to derive environmental covariates for three
main developmental stages, similarly to Monteverde et al. (2019)
in rice. The reported variability among crop growth models
(CGM) in simulating temperature response can complicate the
task of choosing the most appropriate one (Bassu et al., 2014).
In addition, the task of integrating genetic variation for earliness
in crop growth models can also be rather challenging, with the
risk that the predicted developmental crop stages might not
appropriately reflect the plant developmental stages observed in
the field if the model does not properly account for genotype-
specific parameters (Rincent et al., 2019). Technow et al. (2015)
developed a complex framework combining both CGM and
whole-genome prediction, where the CGM is used to predict
grain yield as a function of several physiological traits and of
weather and management data. Genotype-specific physiological
parameters were estimated in this study by running a Bayesian
algorithm which models them as linear functions of the effects
of genomic features. It would be of high interest to apply CGM
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models on this dataset by taking advantage of the flowering
time data that are available. We should also mention that other
types of input data could be incorporated in future analyses,
such as the type of field management, the field disease pressure,
preceding crop, or the presence of external treatments (organic,
nitrogen fertilizers).

4.4. Prerequisites to Use Machine
Learning-Based Models and Their
Usefulness to Understand Significant
Environmental Factors
Specific techniques should be employed to ensure an efficient
application ofmachine learning-basedmodels. These can provide
better results when expert knowledge is incorporated (Kagawa
et al., 2017; Roe et al., 2020; Brock et al., 2021). Here, we
restricted weather information to the duration of the growing
season, transformed some raw weather information into new
variables (evapotranspiration) and built stress indices besides
typical climate covariates based on previous biological knowledge
(e.g., detrimental temperature thresholds for maize (Greaves,
1996; Schlenker and Roberts, 2009; Lobell et al., 2014; Zhu et al.,
2019; Mimić et al., 2020). Prior understanding of the role of
input features can help mitigate the risk of using irrelevant
information in the model. As expected, the correlation matrix
between environmental covariates (Supplementary Figure 2)
showed that numerous predictor variables were highly correlated
with each other, especially those related to temperature and
heat stress. We did not perform feature selection based on
the Pearson correlation coefficients between environmental
covariates, because of the risk of dropping highly predictive
variables, since the metric ignores the relationship to the output
variable. In addition, methods based on decision trees can
perform internal feature selection, making them robust to the
inclusion of irrelevant input variables and to multicollinearity
(Hastie et al., 2009; Kuhn et al., 2013). If two variables are strongly
correlated, the decision tree will pick either one or the other
when deciding upon a split, which should not eventually affect
prediction results. Another approach to reduce the number of
features and reduce training time is to apply feature extraction,
as we did by deriving principal components from the genotype
matrix and use these as new predictor variables in the machine
learning-based models. This procedure did not seem to affect
model performance.

Machine learning models often require an elaborated
hyperparameter optimization strategy, implying for example a
nested cross-validation approach which can be computationally
expensive (Varma and Simon, 2006), since it involves a series of
train/validation/test set splits to prevent data leakage. Inadequate
model tuning can result in a suboptimal performance of the
algorithm. Here, we found that the hyperparameters such as
the learning rate or tree depth were relevant regularization
parameters to reduce the model complexity, thereby dealing with
overfitting. In accordance with these results, other authors had
also reported these two hyperparameters as the most important
ones for another gradient boosting library similar to LightGBM,
Adaboost (Van Rijn and Hutter, 2018). In general, lower values

of the learning rate (< 0.01) are recommended to reach the
best optimum (Ridgeway, 2007). Nonetheless, as the learning
rate is decreased, more iterations are needed to get to the
optimum, which implies an increase of the computation time
and of additional memory (Ridgeway, 2007; Kuhn et al., 2013).
With regard to the tree depth, a relatively low maximal depth
generally helped to prevent overfitting, and better results were
generally obtained with our data using a tree depth lower than
to 8. The deeper a tree is, the more splits it contains, resulting
in very complex models which do not generalize well on new
data. Knowledge regarding themost important hyperpararmeters
to tune is useful if limited computational resources hamper the
investigation of numerous hyperparameter combinations during
the training phase. Our results demonstrated similar predictive
abilities of LightGBM and XGBoost, with a clear speed advantage
for LightGBM, which ran often more than twice as fast. This
asset relies in particular on a feature implemented in LightGBM,
the gradient-based one-side sampling method (GOSS), which
implies that not all data actually contribute equally to training.
Training instances with large training error (i.e., larger gradients)
should be re-trained, while data instances with small gradients
are closer to the local minima and indicate that data is well-
trained. Hence, this new sampling approach focuses on data
points with large gradients and keeps them, while randomly
sampling from those with smaller gradient values. A drawback of
this method is the risk of biased sampling whichmight change the
distribution of data, but this issue is mitigated in LightGBM by
increasing the weight of training instances with small gradients.
The main advantage is that it makes LightGBM much faster
with comparable accuracy results. Another crucial aspect when
applying machine learning models is the adequacy of the dataset
for machine learning applications, which should be large enough
to allow the algorithm to learn from the data (Géron, 2019). In
our case, we benefited from a very large training dataset and a
low feature-to-instance ratio (316/18,325).

In our study, on top of prediction applications, tree-
based methods were also used to obtain estimates of feature
importance, and thereby contributed to a better understanding of
key abiotic factors driving the response of the tested genotypes.
Feature importance rankings and partial dependence profiles
showed that the minimal temperatures and indices related to
prolonged heat stress, or to amounts of water received in the
field, especially at the flowering stage, ranked among the most
important variables for grain yield. When comparing these
results with established agronomic knowledge, it was reported
that, above a certain threshold, high minimum temperature can
lead to an increase of the rate of senescence and reduce the ability
of the plant to produce grain across many plant species (Hatfield
et al., 2011; Hatfield and Prueger, 2015). Previous research
also revealed that increases in average night temperatures were
associated with a reduction of grain yield in maize (Millet et al.,
2019) and in rice (Welch et al., 2010). In an alternative study
on rice cultivars in Colombia, Delerce et al. (2016) identified
high minimum temperature (above 22.7◦C) as one of the most
important environmental factors negatively impacting grain yield
by using a machine learning approach based on conditional
inference trees. Exposure to temperatures exceeding 35◦C during
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the flowering stage was also a key factor in our study (best
predictor variable for grain yield), which can be related to a loss
of pollen viability, and consequently to a reduced final kernel
set (Hatfield et al., 2011). In our study, water availability at
vegetative and grain-filling stages appeared to affect yield, in
accordance with the literature outlining that any water deficit
during these growth stages can impact grain yield (Denmead
and Shaw, 1960; Cakir, 2004), with a more significant impact
when water stress occurs during the grain-filling stage (Cakir,
2004). Caution should nonetheless be taken regarding feature
importance ranking due to the important correlations between
some environmental variables. Furthermore, only 4 years of field
trials were used in our analyses, therefore variable importances
could be refined with additional data from following years, to
mitigate the influence of some environments characterized by
adverse climatic conditions and potentially acting as outliers.

4.5. Applications
The usefulness of medium to high prediction accuracies,
when predicting the performance in a new environment, must
always be related to our predictability of the environmental
variation. If the weather fluctuates considerably year to year,
then the environmental predictors used to compute these
predictions might be very different from the true value in the
corresponding year. In addition, even if more precise climate
change models were available to improve upon the precision
of environmental predictors, predictions of observations falling
outside the applicability domain, i.e., the range of predictor space
in the training set for which the model can give relativey accurate
predictions (Netzeva et al., 2005), might not be trustworthy and
should be used cautiously (Kuhn et al., 2013). The degree of
similarity of the new test set to the training set should hence
always be carefully considered.

While some environmental factors are repeatable from year
to year, such as the soil type or agronomic practices, a large
part of the GxE variation is attributable to weather patterns.
Hence, the success of this type of prediction scenario depends
on the relative stability of the climate in the targeted regions
across years. Nonetheless, we posit that our approach presents
two key advantages to predict performance in future years.
First, because they are fundamentally data-directed, the tree-
based models can take into account new phenotypic data in
the training set in a more flexible manner than classical mixed
models, without the need to explicitly specify interactions for
example. The development of high-throughput phenotyping
technologies announces a future enhancement of rapid and
accurate training data (Juliana et al., 2019). The predictive
frameworks we presented here can make use of new information
to refine the estimated effects of the predictor variables. Secondly,
we were able to predict a quantitative phenotype in a new
environment by using a novel configuration of genotypic and
environmental predictors describing it. A point of interest relates
to resource allocation and the possibility to select more efficiently
candidates to test in field trials. Based on the exploration
of different plausible climatic scenarios—within a range of
conditions experienced by the training set—these models can
help to evaluate which genotypes might be more adapted to

which range of environmental conditions. For regions or target
population of environments presenting relatively stable climatic
conditions across years, the probability of success of this type of
predictive modeling approach is heightened.

5. CONCLUSIONS

Encouraged by the effectiveness of machine learning-based
frameworks reported in the recent literature across various
research fields, we compared two popular ensemble models
with linear random effects models implemented in a Bayesian
framework and a regularized linear model. In three CV schemes
with the trait grain yield, the use of gradient boosting models
resulted in a slight improvement of the average predictive
ability but not for plant height. This finding indicates that
machine learning-based approaches can be envisaged for
genomic prediction but their efficiency may vary according
to the trait under study and its degree of responsiveness to
environmental variation. For a trait strongly under the influence
of environmental factors, machine learning-based models could
provide predictive abilities similar or slightly superior to linear
random effects, and could additionally be used for interpretation
of feature ranking and to build partial dependence plots
detailing relationships between predictor variables and outcome.
Provided further efficiency gains in machine learning algorithms,
as well as the standardization and harmonization of large-
scale environmental data, new opportunities in the field of
predictive modeling for developing climate resilient varieties
appear forthcoming.
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In the two decades of continuous development of genomic selection, a great variety

of models have been proposed to make predictions from the information available in

dense marker panels. Besides deciding which particular model to use, practitioners

also need to make many minor choices for those parameters in the model which are

not typically estimated by the data (so called “hyper-parameters”). When the focus is

placed on predictions, most of these decisions are made in a direction sought to optimize

predictive accuracy. Here we discuss and illustrate using publicly available crop datasets

the use of cross validation to make many such decisions. In particular, we emphasize the

importance of paired comparisons to achieve high power in the comparison between

candidate models, as well as the need to define notions of relevance in the difference

between their performances. Regarding the latter, we borrow the idea of equivalence

margins from clinical research and introduce new statistical tests. We conclude that

most hyper-parameters can be learnt from the data by either minimizing REML or by

using weakly-informative priors, with good predictive results. In particular, the default

options in a popular software are generally competitive with the optimal values. With

regard to the performance assessments themselves, we conclude that the paired k-fold

cross validation is a generally applicable and statistically powerful methodology to assess

differences in model accuracies. Coupled with the definition of equivalence margins

based on expected genetic gain, it becomes a useful tool for breeders.

Keywords: genomic selection, cross validation, plant breeding, genomic models, model selection

1. INTRODUCTION

In essence, genomic models relate genotypic variation as present in dense marker panels to
phenotypic variation in a given population. These models were first introduced in breeding
(Meuwissen et al., 2001) as a change of paradigm with respect to traditional marker assisted
selection. They are currently used to accelerate genetic gain in many plant breeding programs with
the focus placed on improving predictive ability while remaining agnostic to the causative nature of
the genotype-phenotype relation. When fitting genomic models to data, practitioners need to make
multiple decisions, sometimes without a clear guide or approach on how to take them. Besides the
decision of choosing which model to use among the increasing number available (Whittaker et al.,
2000; Meuwissen et al., 2001; VanRaden, 2008; de Los Campos et al., 2010; Habier et al., 2011; Ober
et al., 2015), the practitioners also need to make many minor choices for those parameters which
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are not directly estimated by the data (so called “hyper-
parameters”). When the focus is placed on predictions, as it is
usual with genomic models, most of these decisions are made in
a direction sought to optimize predictive accuracy. This accuracy
is usually estimated in practice by means of cross validations.

Because of the impact of the prediction accuracy on genetic
gain, many benchmarks have been done seeking to compare
such accuracies among competing models. Most conclude that
there is no better model in general (Heslot et al., 2012), with
the recommendation that practitioners evaluate the entertained
models with their own data and for the specific prediction tasks
at hand (Azodi et al., 2019). The present work illustrates how the
different performance assessments and comparisons can bemade
with cross validations, with a focus placed on both identifying
differences of practical relevance and the decision making
required for model selection and hyper-parameter tuning. We
emphasize the importance of conducting paired cross validations
to achieve higher statistical power, and propose the use of
equivalence margins to identify the differences in accuracy which
are relevant in practice.

With these goals in mind, the present work is organized
as follows: we first assess the predictive ability of G-BLUP
(VanRaden, 2008), probably themost known genomicmodel, in a
well studied dataset, where we discuss the general aspects of cross
validation. We then move on to the comparison of predictive
abilities, which we first use to select the model complexity of
BayesA by tuning the prior average variance of marker effects.
We then consider general hyper-parameter tuning and evaluate
the impact each hyper-parameter has on the accuracy for a variety
of models. We explore general model comparisons, and describe
tools to identify relevant differences in accuracy. To show an
assessment of accuracy differences across multiple datasets we
explore whether a pattern observed in the previous section can
be generally extrapolated. We close with some final remarks.

2. MATERIALS AND METHODS

2.1. The Datasets
In the present work we used public datasets from three main
crops: wheat, rice and maize. The first dataset consists of 599
CIMMYT wheat lines, genotyped with 1,279 DArT markers.
The wheat lines were grown in four different environments and
grain yield was recorded for each line and each environment
(Crossa et al., 2010). This dataset is easily accessed from the R
package BGLR (Perez and de los Campos, 2014) and its relatively
small size allowed us to assess a greater number of models and
parameter combinations.

The remaining two datasets include both more lines and
genotyping by sequencing. They were included in the last section
‘Comparison across datasets’. The rice dataset consists of 1,946
lines, which were genotyped by the 3,000 Rice Genomes Project
(Wang et al., 2018). We used four quantitative traits available on
a high number of lines: grain weight, width and length and the
date on which 80% of the plants are heading. Finally, the maize
dataset consists of lines from the “282” Association Panel and
the NAM population. These lines were genotyped by the project
“Biology of Rare Alleles inMaize and itsWild Relatives” (Glaubitz

et al., 2014). For these lines we used four contrasting traits: the
germination count, the number of leaves, the days to tassel, and
plant height.

2.2. The Genomic Models
In the current work we assessed the performance of a variety
of statistical models coming from two families of common use
in genomic selection. The first family of models we considered
is the so-called “Bayesian alphabet” (Gianola et al., 2009)
and consists of regressions of phenotypes on markers. The
second family comprises models that use the markers to build
genomic relationship matrices (GRM), used in turn to model
the covariance among genetic effects. These latter models stem
from the linear mixed models tradition in breeding, which can be
traced back to Henderson (cf. Henderson, 1984).

Models of the first family, the Bayesian alphabet, are usually
formulated in a hierarchical structure of the form:

y = µ + Xβ + ε

β ∼ F(2)

where y is an n-length vector of trait phenotypes, µ is the vector
of means (possibly dependent on fixed-effect predictors), X is
an incidence matrix of the marker effects in the p-length vector
β , and ε is an n-length vector of normally distributed errors
(with environmental and unmodelled effects confounded). As the
number of markers (p) typically exceeds the number of different
genotypes (n), the regression equation is over-parameterized.
Bayesian alphabet models deal with this “n ≪ p” situation by
assuming a prior distribution F(2) for the marker effects. Each
model is distinguished by the distribution of such priors, which
we briefly describe in Box 1.

Note that, after Gianola et al. (2009), it is usual to marginalize
the marker effect distribution over all other marker-specific

BOX 1 | Priors of marker effects in models of the “Bayesian alphabet” used

in this work.

rrBLUP: βj ∼ normal distribution

βj ∼ N (0, σ 2
β )

see Whittaker et al. (2000),

BayesA: βj ∼ scaled t-student distribution

βj |σ
2
βj
∼ N (0, σ 2

βj
)

σ 2
βj
∼ Scaled-inv-χ2 (ν,S)

see Meuwissen et al. (2001),

BayesB: βj ∼ spike-slab with scaled t-student distribution

βj |σ
2
βj
∼ N (0, σ 2

βj
)

σ 2
βj
= 0, with probability π

σ 2
βj
∼Scaled-inv-χ2 (ν,S), with probability (1− π )

see Meuwissen et al. (2001),

BayesC: βj ∼ spike-slab with normal distribution

βj = 0, with probability π

βj ∼ N (0, σ 2
β ), with probability (1− π )

see Habier et al. (2011).
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parameters in the prior. As an example, by marginalizing over the
marker-specific variance (σ 2

βj
), BayesA is usually characterized

as having a scaled t-student distribution for the markers effects
priors. Also in the literature, priors with amass probability at zero
are called spike-slab (like those used in BayesB and BayesC). In
this work we do not interpret these Bayesian priors as statements
of belief, but rather as regularization devices (Gelman and Shalizi,
2013). They stabilize estimates and predictions by making fitted
models less sensitive to certain details of the data, and thus
alleviate the over-parameterization problem in genomic models.

The second family of models considered consists of mixed
linear models, where marker information is used to build-
up relationship matrices. All these models may be specified
as follows:

y = Xβ +
∑

i

Z(i)u(i) + ε

u(i) ∼ N (0,G(i)σ 2
u(i)

)

ε ∼ N (0, Iσ 2
e )

where y is an n-length vector of trait phenotypes, X is an
incidence matrix of the fixed effects in β , each Z(i) is an
incidence matrix of the individual genetic values in the n-
length vector u(i), and ε is an n-length vector of errors (with
environmental and unmodelled effects confounded). Each model
is distinguished by different (often one, possibly many) genomic
relationship matrices [G(i)] described in Box 2. These genomic
relationship matrices (GRMs) specify the covariance structure of
the genetic values.

BOX 2 | Genomic relationship matrices and the mixed models which use

them.

G-BLUP:

G ∝ (M− 2 · 1P)(M− 2 · 1P)′

see VanRaden (2008),

EG-BLUP:

H ∝ G⊙G, (where ⊙ is the hadamard product)

see Ober et al. (2015), Martini et al. (2016),

Categorical Epistasis:

Cmij ∝
1
p
·
∑

k [Mik = Mjk ], (where [proposition] : = 1 if true, else 0)

Ce ∝ 1
2 (Cm⊙ Cm+ Cm)

see Martini et al. (2017),

Gaussian Kernel:

Dij =
1
p
·
∑

k |Mik −M+ jk|2 (alternatively, Dij = Gii +Gjj − 2Gij )

Kij ∝ exp(Dij/h), (elementwise exponentiation)

see de Los Campos et al. (2010) and Alves et al. (2019),

Symbols:

Mik : allele incidence matrix

P: allele frequencies

GRMs are defined up to a multiplicative constant, which can be absorbed

into the corresponding variance parameter (σ 2
g ) in the mixed model.

2.3. Cross Validations for Model
Assessment
In this work we used k-fold cross validation in order to assess
each model’s predictive performance (cf. Friedman et al., 2001).
This procedure consists of dividing a dataset with n cases
(including both phenotypes and genotypic information) into a
number of folds (k) of approximately equal size. Data in k-1
folds are used for training the model to predict phenotypes in
the remaining fold (the testing fold), given the realized genotypes.
The prediction task is repeated using one fold at a time for testing,
and overall results are then combined. When the partitioning
into folds is repeated, say r times, the procedure is called an
r-replicated k-fold cross validation.

An important aspect in the design of a cross validation test
is to define an appropriate error measure to be minimized.
In this regard, a reasonable choice would be the mean square
error (MSE), which penalizes every departure in predictions
from the observed values. However, in the context of breeding
this measure can be too strict, as any constant or scaling
factor afflicting all predictions will inflate the MSE but will not
change the ranking. Instead, breeders have focused on estimating
the predictive accuracy (accuracy, for short), measured as the
correlation between predictions and observations.

In practice, genetic values are usually the ultimate prediction
targets rather than phenotypes. To account for this, the accuracy
can be re-scaled dividing by the square root of a heritability
estimate (notice it is important to use the same heritability
estimate for all accuracies compared to each other). It is possible,
though, to go one step further and directly focus on estimating
the expected genetic gain, which is easily obtained if we assume
truncation selection. We used this new re-scaling into expected
genetic gain in the section “Comparison across datasets” (in
results and discussion). The scaling factor can be easily derived
from the standard genetic gain formula (cf. Falconer andMackay,
1996, in “Response to selection”):

1G = iq · rg · σG

1G = iq · (rph/h) · σG

1G = iq · rph · (σP/σG) · σG

1G = iq · rph · σP

1G/σP = iq · rph

where rg is the predictive accuracy with respect to the
(unobserved) true genetic values, rph is the predictive accuracy
with respect to phenotypes, iq is the selection intensity (i.e., the
mean of a standardized Normal distribution truncated at the q
selection quantile), and 1G/σP is the estimate of genetic gain
(in phenotypic standard deviations). This genetic gain measure
is quite simplistic (as it assumes selection by truncation and
randommating), but on the other hand is easily interpretable and
of practical relevance.

There are two further important issues with regard to cross
validations. One concerns the partitioning between training and
testing sets. While here we always used random partitions, in
specific cases it can be more appropriate to use other schemes
such as splitting the dataset in generations, half-sib families
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FIGURE 1 | Power curve for paired and unpaired cross validations as a function of fold correlation between compared models.

or sub-populations. Also, in the context of multi-trait models,
available information about the different traits can vary between
selection candidates at the time of prediction; thus blurring the
distinction between training and testing sets (Runcie and Cheng,
2019).

The second issue concerns whether we are interested in
estimating the accuracy conditional on the available training
set or as a marginal expectation; i.e., averaged over different
possible training sets. In the context of a breeding plan, where
the genomic model gets updated with new data, the marginal
predictive accuracy might be the more appropriate. Fortunately,
this is the version of the accuracy which is thought to be better
estimated by a k-fold cross validation, while a leave-one-out cross
validation might be better tailored to estimate the conditional
predictive accuracy (cf. Friedman et al., 2001, section 7.12). In
summary, the cross validation should be designed to accurately
simulate the real-world usage of the genomic model.

2.4. Paired Cross Validations for Model
Comparison
The problem of identifying a superior model is different from the
performance assessment task such as discussed in the previous
section. While one could conduct model selection simply by
choosing the model with the highest estimated performance,
it is important to take the variability of those estimates into
account, as well as to provide some control for error probabilities
according to statistical established practice. When applying an
r-replicated k-fold cross validation procedure, variability in the
performance estimates arises from the r replicates and the k

folds. However, using the variability estimate of each assessment
independently (surprisingly an extended practice) ignores that
most variability is shared among models.

A much more reasonable approach when comparing
predictive accuracies between models is to perform paired
comparisons within the same partitioning of folds (Hothorn
et al., 2005). That is, for each fold one summarizes the difference
in accuracies between the compared models rather than the
individual accuracies. This often results in a huge reduction
in the variance of the performance estimates, because most of
the variability is usually shared across the different models. For
example, if the correlation across folds of the accuracy scores
for two models is over 0.8, then the variance of the estimate
of the accuracy difference can be reduced five times by taking
this approach, with a corresponding increase in statistical
power (see Figure 1). We employed this approach in all our
model comparisons.

2.5. Equivalence, Non-inferiority and
Superiority Tests
The comparison of model accuracies using paired differences
of cross validation can have high statistical power. This
allows detecting with high confidence very small differences in
performance. Such statistically significant differences of small
magnitude can be uninteresting because they are superseded by
considerations other than accuracy, or they might not be robust
to any changes in the application of the models. As the saying
goes, “With great power there must also come great responsibility”.
Here it is the responsibility of practitioners to evaluate the
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differences, not only by the statistical ability to detect them, but
also by their assessed practical relevance.

To help with this task, we propose defining an “equivalence
margin” [-1, 1] within which model performances are deemed
equivalent in practice. These kinds of equivalence margins are
standard used in clinical studies (e.g., Da Silva et al., 2009) but,
to the best of our knowledge, their use is not widespread in
plant breeding or the agricultural and environmental sciences in
general. Then, in addition to the conventional test for statistical
differences (sd)

• H0 : d = 0,

we use the machinery of statistical tests to provide
assertions on the practical relevance of these differences

BOX 3 | Representation of the null (H0) and alternative (H1) hypothesis for

speci�c tests:

sd: ++<-------)[](--------->

eq: ++<----](-----)[------->

noi: +<----](-------------->

sup: +<------------](------>

++++++<----|---+---|------->

++++++++++-1 ++0 ++1

Null hypotheses represented in gray, alternative hypotheses in black.

with some degree of error control. Specifically, by conducting
tests of

• Equivalence (eq), H0 : |d| > 1

• Non-inferiority (noi), H0 : d < −1

• Superiority (sup), H0 : d < 1

The hypothesis for these tests are illustrated in
Box 3.

We can use these tests to assess the practical relevance of
differences in predictive accuracy.With the result of these tests we
can produce labels similar to the “significance letters”, which we
argue have some advantages with regard to their interpretation:

• Equivalence letters: models sharing the same letter
have an accuracy difference confidently within the
equivalence margin (and thus are deemed equivalent for
practical purposes).

• Non-inferiority ranking: models with the same or higher

ordinal are confidently non-inferior (the accuracy difference
is within or above the equivalence margin).

• Superiority ranking: models with higher ordinal are

confidently superior (the accuracy difference is above
the equivalence margin).

To build these labels we use directed graphs where the
nodes are the models compared and they are connected
by an edge if the null hypothesis for the comparison
is rejected.

FIGURE 2 | Model performance estimation for the wheat dataset with varying number of cross-validation folds.
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• Equivalence letters: One letter is assigned to each clique of
the graph (which is effectively an undirected graph due to the
reflexivity of the equivalence test).

• Non-inferiority and Superiority rankings: The rankings are

built from the consensus ordering of all possible topological
orders for their respective directed graphs.

These algorithms are similar in nature to those used by statistical
software to compute the traditional significance letters. We
note, though, that traditional significance letters should not be
interpreted as meaning that elements with the same letter are
equivalent which, instead, is the correct interpretation for the
equivalence letters built with the construction above. Finally, we
would like to mention that the hypothesis tests covered in this
section have a general scope of application and are not restricted
to the comparisons of model performance.

2.6. Software
The GRMswere built with custom code in the Julia programming
language (Bezanson et al., 2017), available upon request from the
corresponding author. The remaining analyses were done in the
R programming language (R Core Team, 2021). In particular, the
“Bayesian alphabet” models were fitted with the BGLR package
(Perez and de los Campos, 2014) and the mixed models were
fitted with the EMMREML package (Akdemir and Godfrey,
2015). We used the bootstrap utilities from the package “boot”

(Davison and Hinkley, 1997; Canty and Ripley, 2021). Finally,
the functions for the analysis of cross validation results and
equivalence margin testing were organized into the R package
“AccuracyComparer” (available at https://github.com/schrauf/
AccuracyComparer).

3. RESULTS AND DISCUSSION

3.1. Model Predictive Ability Assessment
As a starting point and to illustrate the use of the cross validation
technique we estimate the ability of a G-BLUP model to predict
CIMMYT wheat yield across four environments. Figure 2 shows
the accuracies estimated by the K-fold cross validation when
using different numbers of folds (K = 3, 5 and 10). The means
bias downward for a smaller number of folds (panel b) but
the effect is small. For the variance of the estimate there is
no clear tendency (panel c). This is because of two competing
effects that balanced out. For one, as the size of the testing set
increases (less folds), this reduces the variance of the estimate
at each fold (panel a). In the opposite direction, as the number
of folds increases, the variance of the whole cross validation
estimate reduces. To estimate the marginal predictive error, both
5-fold and 10-fold seem reasonable choices, with smaller bias
than 3-fold cross validation and similar variances. As briefly
mentioned in materials and methods, a greater number of folds
should not be used unless the goal is to estimate the conditional

FIGURE 3 | BayesA predictive accuracy as function of prior mean of R2
geno for trait 1 of the wheat dataset. Average predictive accuracy of the default model in BGLR

(a weakly-informative prior for R2
geno) in dashed blue for the left panel. All accuracy differences in the right panel are taken with respect to the default model.
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predictive accuracy. In all the following sections we used 10-fold
cross validations.

3.2. Model Selection
3.2.1. Model Complexity and Penalization Parameter
Most genomic models have some penalization parameters which
regulate how flexibly the model adjusts to sample observations.
Finding an optimal value for these parameters is a typical task
for cross validation. Alternatively, these penalization parameters
can be learnt from the data by either minimizing the REML
criterion inmixedmodels (where the penalization parameters are
variance components, see Bates et al., 2014) or by using non or
weakly-informative priors in Bayesian alphabet models.

As an example, take the case of BayesA, where model
penalization is mainly controlled by the scale parameter of the
chi-squared distribution (S, in Box 1), which in turn determines
the a priori average variance of the marker effects (E[σ 2

βj
]). With

BGLR we can choose the value of this parameter by specifying
the proportion of phenotypic variance a-priori expected to
be explained by the marker effects (in the following “R2

geno,”
see Perez and de los Campos, 2014), which allows for an
easier interpretation.

To illustrate the usefulness of cross validation to elicit these
parameters, we conducted a 10-fold cross validation for BayesA
with a grid of values for R2geno when fitting wheat yield data. From
this we can observe a textbook accuracy curve which results from

the classical bias-variance tradeoff (cf. Friedman et al., 2001).
Starting with low values of R2geno we have rigid models, whose

accuracies improve with increasing R2geno, until the models begin
to overfit and the accuracy rapidly deteriorates (Figure 3, left
panel). This resulted in an intermediate optimal value.

In addition, we compared the difference in accuracies of
the specific variance proportions in a model with a weakly-
informative prior which is the default in BGLR (Figure 2, right
panel). We can see that the model which learns the variance
proportion from the data performs competitively with the best
pre-specified values of R2geno. We know that REML is a sound
criterion for learning variance components (Thompson, 2019)
and known theoretical results match REML estimates to the
mode of the posterior distribution of the parameter when a non-
informative prior is set in a Bayesian model (cf. Sorensen and
Gianola, 2002, chapter 9). It is possible then, that the soundness of
REML applies not only to Bayesianmixedmodels but also, at least
approximately, to other Bayesian regressions when using weakly
informative priors.

3.2.2. Hyper-Parameter Tuning
Beside penalization parameters, there are many hyper-
parameters without a clear impact on accuracy in the priors of
Bayesian regressions. On the other hand, mixed linear models
have fewer ones, a notable exception being the bandwidth of
the Gaussian kernel. Here we have summarized the impact of

FIGURE 4 | Accuracy sensitivity of multiple models to changes in the values of their hyper-parameters (alternative values compared with respect to defaults in BGLR

software).
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many of those hyper-parameters affecting the models when
fitting the wheat yield data. For each parameter we show the
change in accuracy with respect to the default value in BGLR
(Figure 4). We can see that, of these parameters, only changes in
the kernel’s bandwidth impact the accuracy with a statistically
significant change. An alternative to arbitrary choices is to use
multiple kernels in the same model, each kernel with a different
bandwidth (Alves et al., 2019). These multi-kernel models have
the ability to weight the contribution of each kernel, with results
close to optimal.

3.2.3. General Model Comparison
Beyond setting hyper-parameters, which in our exploration
resulted in minor changes in accuracy, the practitioners may
want to compare between distinctly different models. Here we
see how one may proceed to compare between more than
two models, when they are not necessarily organized by a
specific parameter. We used clustering to help interpretation,
and we chose the G-BLUP as a reference model to compare
accuracy differences (Figure 5). Still referring to wheat yield,
BayesB performed the worst and the Gaussian kernel methods

FIGURE 5 | Comparison of predictive accuracies across models for the trait 1 of the wheat dataset. Colors show a 3-group clustering of the models based on the

accuracy with a hierarchical clustering on the right side.

TABLE 1 | General model comparison for the wheat dataset.

Accuracy difference Hypothesis tests

Model Mean Lower Upper sd eq Sup

BayesB –0.006 –0.009 –0.004 a A 1

BayesC –0.002 -0.003 0.000 b A 1

BayesA –0.003 -0.004 –0.002 b A 1

GBLUP 0.000 - - c A 1

BRR 0.000 –0.001 0.001 c A 1

Catepi 0.025 0.022 0.027 d B 2

EGBLUP 0.033 0.030 0.037 e B 2

Gaussian-multi 0.062 0.056 0.069 f C 3

Gaussian-2 0.067 0.059 0.074 f C 3

Accuracy differences measured with respect to the G-BLUP model. Hypothesis tests (sd, statistical differences; eq, equivalence; sup, superiority). Meaning of letters and rankings in

section 2.5.
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FIGURE 6 | Difference in expected genetic gain from using a Gaussian kernel with respect to a GBLUP prediction model, for low and high panel densities, across

multiple crops and traits (color coded for legibility).

the best. Because of high power, we defined an “equivalence
margin” to identify the relevant differences. This allowed us
to identify easily interpreted groups of statistically equivalent
models (Table 1). Concretely, the 3 equivalent groups were the
additive models (A), models with only pairwise interactions
between markers (B), and finally the models with higher
order interactions (C). We explore further this relation
between marker interactions and predictive performance in the
following section.

3.2.4. Comparison Across Datasets
Sometimes we need to compare models across different datasets
or prediction tasks. For instance, we would like to see here if
the difference between additive and epistatic models observed in
the previous section is particular to the wheat dataset. Schrauf
et al. (2020) showed that marker density could be a relevant
factor for the advantage of models with marker interactions.
Recall that wheat lines were genotyped at low density with DaRTs,
whereas rice and maize lines were sequenced. So we compared
the models performance across datasets with both low and high
density marker panels from these latter species. Also, to assess
the relevance of the differences in accuracy, we converted them
to differences in expected genetic gain (assuming truncating
selection of the highest 10% genetic values). This scale could help
practitioners in deciding on relevant equivalence margins for
the equivalence, non-inferiority and superiority hypothesis tests.

We can see that the advantage for the Gaussian kernel over the
GBLUPmodel observed for wheat in the previous section ismuch
less clear for the maize and rice datasets (Figure 6). Further, the
improvements that can be observed are reduced when going from
a low density marker panel to a high density one. In particular,
the traits where the models were statistically equivalent rose from
under 10% with low density panels to half at high density panels
(Table 2). These results are in accordance with the phenomena of
phantom epistasis (Schrauf et al., 2020).

3.3. Final Remarks
In the present work we explored a variety of aspects related
to the performance assessment of genomic models via cross
validations. We identified several strategies which can help
practitioners avoid arbitrary decisions when implementing a
particular genomic prediction model. For instance, many hyper-
parameters can be effectively learnt from the data by either
minimizing REML or by using weakly-informative priors. In
particular, the default values of those hyper-parameters in
the software used (BGLR) are generally competitive with the
optimal values. An exception is the choice of bandwidth in
a gaussian kernel, for which different values can result in
qualitatively different predictive performances of the model.
For this particular case we recommended the use of multi-
kernel models.
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TABLE 2 | Difference in expected genetic gain from using a Gaussian kernel with respect to a GBLUP prediction model, for low and high panel densities.

Genetic gain difference Hypothesis tests

Markers Species Trait Mean Lower Upper sd eq noi Sup

High Maize Days to tassel 0.017 0.013 0.021 * * *

Germination count 0.001 –0.003 0.005 * *

Number of leaves 0.005 0.000 0.011 * *

Plant height 0.018 0.013 0.022 * * *

Rice Grain length 0.002 –0.003 0.008 * *

Grain width –0.005 –0.008 –0.003 * * *

Grain weight 0.010 0.006 0.013 * *

Days to heading 0.002 0.000 0.004 * *

0.63 0.5 1 0.25

Low Maize Days to tassel 0.037 0.032 0.041 * * *

Germination count 0.004 –0.001 0.008 * *

Number of Leaves 0.015 0.009 0.021 * *

Plant height 0.018 0.014 0.022 * * *

Rice Grain length 0.019 0.012 0.025 * * *

Grain width 0.007 0.004 0.010 * *

Grain weight 0.019 0.015 0.023 * * *

Days to heading 0.009 0.006 0.012 * *

Wheat Yield 1 0.100 0.084 0.116 * * *

Yield 2 0.105 0.087 0.123 * * *

Yield 3 0.079 0.064 0.094 * * *

Yield 4 0.008 -0.010 0.024 *

0.83 0.08 1 0.58

Hypothesis tests (sd, statistical differences; eq, equivalence; noi, non-inferiority; sup, superiority), and proportion of models with rejected nulls for high and low panel densities. Asterisks

indicate rejected nulls for the corresponding test (see Box 3).

Throughout the work we used paired cross validations to
compare methods. This was motivated by the fact that cross
validation estimates are greatly correlated betweenmodels.While
the cross validation estimate of the performance of a model
can have a high variability, the estimate of the difference in
performance between two models is usually much more precise
and allows for their comparison with higher statistical power.
We concluded that paired k-fold cross validations result in a
generally applicable and statistically powerful methodology to
assess differences in model accuracies.

Finally, we introduced the idea of equivalence margins as
a means to identify when those significant differences have
practical relevance for decisionmaking andmodel selection. This
is important because with high statistical power small differences
become detectable, which might not be of interest, or might
not be robust to even small changes between the validation
and the application of the models. We suggest to couple the
tool of equivalence margins, and the associated hypothesis tests,
with informative performance scales for the tasks at hand. In a
breeding context, such scale could be the potential genetic gain
from truncation selection.
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INTRODUCTION

Within the last 20 years, after the landmark paper by Meuwissen et al. (2001), genomic selection
(GS) has been widely incorporated in plant and animal breeding (Crossa et al., 2017; Hickey et al.,
2017). However, adoption happened at different speeds and with distinct focus.

Here, we give a short description of the history and the current state of GS implementation
in German dairy cattle breeding (as an example in animal breeding), at the private plant
breeding company KWS SAAT SE & Co. KGaA, and at the public breeding programs of the
International Maize and Wheat Improvement Center (CIMMYT) and the Consultative Group for
International Agricultural Research (CGIAR) in general. We close by highlighting some differences
in organizational structure and objectives of the considered breeding institutions, and comment on
how these differences may have influenced the adoption of GS.

GENOMIC SELECTION IN DAIRY CATTLE BREEDING

Dairy cattle breeding provided good conditions for the introduction of GS. Selection decisions
had been based for decades purely on additive genetic effects reflected in a sire’s breeding value,
and the use of pedigree-based estimated breeding values (PEBVs) had already been common
practice. However, reliabilities of early estimated breeding values from information on parents
only were low. Therefore, a testing scheme was used, in which bulls were mated to a more or less
representative sample of cows in a first step. The resulting daughters were then raised until their
performance could be measured, thus improving the reliabilities of their sires’ breeding values.
Only then, the best test bulls were selected and used broadly. This costly waiting period led to a
generation interval of more than five years. Using genomically estimated breeding values (GEBVs)
of young bulls, which are more reliable than PEBVs, permitted to reduce this waiting period, and
thus to increase selection gain per time. Although the accuracy of the breeding value of a bull
which has been extensively progeny tested over years is of higher accuracy than a young bull’s
GEBV, the costs in terms of waiting time do not pay off for the breeding program, when comparing

242
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a more accurate late selection to a less accurate
early selection based on the GEBV instead of
the PEBV.

With this setup, genomic breeding values for Holsteins and
Jerseys were first published in the USA in 2009 (Wiggans et al.,
2017), about a decade after the release of the first commercial SNP
chip (Wang et al., 1998). In Europe, four breeding organizations
(UNCEIA: France; VikingGenetics: Denmark, Finland, and
Sweden; DHV-vit: Germany; CRV: The Netherlands, Flanders)
joined forces and put a reference population together with 4,000
bulls each (Lund et al., 2011). After 1.5 years of development,
from August 2010 onwards, genomic breeding values, based on
the joint reference population, were published in these European
countries. This rapid evolution was only possible due to a long-
established international data infrastructure withMultiple Across
Country Evaluations (MACE) being in place since the 1990s at
the international evaluation center Interbull. MACE allows the
expression and use of estimated breeding values on the scale of
each participating country (Schaeffer, 1994). Since 2010, breeding
progress hasmore than doubled for all traits in GermanHolsteins
as seen from Figure 1, mostly due to the sharply decreased
generation interval for bulls.

The initial 50k Illumina SNP set is still the reference SNP set
for genomic evaluations at vit in Germany, although dozens of
different SNP chips have been integrated since then, especially
many low density chips. With dropping genotyping costs and
low density 10k SNP chips, female animals came also into the
focus. In 2019, cows were integrated in the German reference
population. As of the routine genetic evaluation in April 2021,
there were 43,699 bulls and 249,363 cows in the reference
population for milk traits. Current efforts aim at implementing
Single Step methodology (Aguilar et al., 2010) in the genetic
evaluation systems of most countries, which is a computationally
demanding task with big populations, requiring specialized
algorithms (e.g., Liu et al., 2014).

FIGURE 1 | Breeding progress in important traits in German Holsteins, measured as yearly mean EBVs of bulls, weighted by the number of inseminations with their

semen. The label “RZ” denotes that all breeding values are standardized to a genetic standard deviation of 12, and a mean of 100 in the female base population (year

of birth 2014–2016), all breeding values are expressed such that more positive values are more desirable from the breeder’s perspective. RZG, total merit index; RZM,

milk production index; RZS, somatic cell score; RZN, longevity; RZR, fertility index; RZKm, index of maternal calving traits; RZhealth, health trait index; RZcalfhealth,

calf survival. *Year 2020: incomplete data. Slightly modified from IT Solutions for Animal Production (vit - IT Solutions for Animal Production, 2021).

GENOMIC SELECTION AT KWS

Around 2008, KWS started own research activities in the field of
GS and participated in several large collaborations (e.g., Albrecht
et al., 2011; Hofheinz et al., 2012). Only a few years later, GS
became an established part of the breeder’s toolbox for all KWS
field crops.

The reason for this rapid adoption of GS is its attractiveness
for addressing several components of the breeder’s equation
simultaneously: Shorten the breeding cycle by replacing
phenotypic evaluation steps through a genomic evaluation,
increasing accuracy by integrating information from relatives
and multiple environments, and increasing selection intensity in
case that genotyping is cheaper than phenotyping.

Advances in genome analysis of major crops over the past
15 years led to the availability of a vast number of molecular
markers, a pre-requisite for GS application. New genotyping
technologies reduced costs of genotyping to a fraction of the costs
of phenotyping an individual in field trials.

As a consequence of these developments, GS influenced
the design of breeding schemes. With this tool at hand,
predictive breeding is used to plan crosses, to reduce breeding
cycle length, and to select for more stable performance using
multi-year training sets. Genomic prediction is now practiced
on many complex traits including yield, quality, biotic, and
abiotic stress.

For instance in sugar beet breeding, GS has become an
essential component to address the trait “sugar yield,” which is
a composite of “sugar content” and “yield.” These two traits
are addressed by both (i) within cycle prediction, which allows
higher selection intensity and (ii) across cycle prediction, which
allows early selection. Predictive ability in each breeding program
is constantly monitored. Besides routine application, KWS does
very active research to further enhance the efficiency of this
tool. Two factors have been the focus of genomic prediction
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research: chip design and size and composition of training
sets. For instance, for sugar beet, we saw that approximately
2,000 markers are sufficient for genomic prediction, potentially
due to high linkage disequilibrium in the breeding material.
The required training set size is highly dependent of the
relationship between training set and prediction set as well as
the heritability of the trait. We observe a diminishing return
on prediction accuracy for the phenotype of sugar yield when
having more than 300 individuals in the training set (which
may also be a consequence of the high linkage disequilibrium in
breeding populations).

Today, GS has become a routine application in breeding
programs at KWS. Thousands of GS analyses are performed
every year. Therefore, KWS has optimized genotyping processes
and analysis pipelines. With GS being implemented widely in
all breeding programs, KWS is extending prediction methods
using artificial intelligence and genotype by environment
(GxE) interactions.

GENOMIC SELECTION AT THE

INTERNATIONAL MAIZE AND WHEAT

IMPROVEMENT CENTER (CIMMYT)

CIMMYT has started to explore GS more aggressively as a new
breeding tool since 2010 (de los Campos et al., 2009; Crossa
et al., 2010, 2019; Dreisigacker et al., 2021). The estimation of
GEBVs for the germplasm is routinely implemented for themaize
and the wheat program, but it is a decision of the respective
breeder which weight is given to this information in the selection
process. The initial focus of GS application has been on greater
selection intensity in stage I yield trials by predicting the GEBVs
of germplasm which had not been included in the trials. Recent
projects aim to use GS for early selection and to shorten cycle
time. Standardized workflows for data storage, processing, and
subsequent analyses are currently advanced by the Excellence in
Breeding (EiB) platform and various projects at CIMMYT and
other CGIAR centers. CIMMYT has also worked on genomic
prediction of traits of germplasm bank accessions (Crossa et al.,
2016) to explore its potential for harnessing genetic resources
(Martini et al., 2021). The center has built the basis for more
informed screening of novel allelic diversity in the germplasm
collection by genotyping a substantial part of the available
accessions (Sansaloni et al., 2020).

The question which impact GS had on the annual genetic gain
for yield across breeding pipelines is more difficult to answer
than for the dairy cattle example presented above. Estimates of
genetic gain vary and GS has been used to different extend across
breeding pipelines. Since programs introduced GS gradually, it
is difficult to separate a potential increase in genetic gain due to
the use of GS, from other aspects which may have improved the
breeding pipelines. A recent publication by Gerard et al. (2020)
reports estimated yearly selection gains of 0.93% for low-rainfall
environments and 3.8% for high-rainfall environments for the
period of 2007–2016 for grain yield in wheat. However, we cannot
clearly attribute the credit of this selection gain to GS, since this
period is too short after GS has been implemented. However,

several dedicated experiments in maize outlined the potential of
GS. For instance, Beyene et al. (2015) used GS to select from bi-
parental maize populations for yield under drought stress and
reported a higher selection gain than for conventional breeding
methods. Comparing to previous studies, the authors concluded
that “the average gain observed under drought in our study using
GS was two- to fourfolds higher than what has been reported
from conventional phenotypic selection under drought stress.”
Moreover, CIMMYT’s Global Maize Program designed a rapid
cycle genomic selection (RCGS) of multi-parental crosses (Zhang
et al., 2017). Two cycles per year were performed, and the
authors found that “the genetic gains from the RCGS [. . . ] are
at the same or higher level than those observed in other studies
under phenotypic selection [. . . ].” Also, Beyene et al. (2019)
compared selection gain of phenotypic selection (PS) and GS
for two different environments (well-watered and water stressed)
and observed a higher selection gain for PS for well-watered
conditions, and a higher selection gain for GS under water
stress. The authors highlighted that GS provides “the potential
to bypass stage I trial evaluation and move material directly into
stage II” which “would reduce both the costs and cycle time but
will require accurate predictions from training sets composed of
historical data” (Beyene et al., 2019). This potential to reduce
cycle time has not yet been included in the study.

IMPLEMENTATION OF GENOMIC

SELECTION CGIAR-WIDE

The CGIAR has entered a phase of pushing the application
of GS for all crops, from maize to bananas (Nyine et al.,
2017; Wolfe et al., 2017; Ahmadi et al., 2020; Gemenet et al.,
2020; Atanda et al., 2021). The EiB platform provides technical
assistance and practical guidelines for the implementation of GS
and the modernization of breeding programs (see for instance
Covarrubias-Pazaran et al., 2021). Before EiB, several initiatives
advanced the use of GS in specific crops. For example, the
NextGen Cassava project took important steps toward the
successful implementation of GS for root, tuber, and banana
(RTB) crops (Wolfe et al., 2017; Maxmen, 2019). Those steps
included the development of a robust database system, matching
the genotyping logistics with the growing season, and automating
analytical pipelines. Similar steps have been taken by initiatives at
IRRI and CIMMYT (Crossa et al., 2017; Gao et al., 2020).

Crops currently using GS to reduce cycle time are cassava
and maize (Atanda et al., 2021; Esuma et al., 2021). Genomic
selection is being used to increase selection intensity in cassava,
maize, rice, and wheat (Ahmadi et al., 2020; Dreisigacker et al.,
2021). Finally, GS is used for increasing the selection accuracy
of yield trials by all the aforementioned and yams (Agre et al.,
2018). Other crops, including beans, pulses, forages, bananas,
and potato are developing and validating the necessary logistics
and tools to manage the data, genotyping, analytical pipelines,
and costs. This picture is rapidly changing since the ambition of
all breeding programs in the CGIAR is to use genome-assisted
prediction methodologies to reduce the length of the breeding
cycle to 2–3 years.
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CONCLUSION

Dairy Cattle Breeding Compared to Plant

Breeding
Genomic selection was adopted in dairy cattle breeding
almost instantly after genotyping costs dropped below the
anticipated break-even point, presumably because the routine
use of pedigree-based predictions, and a culture of centrally
processing data of fragmented production units, had already been
established (Schaeffer, 1994; Wiggans et al., 2017).

In contrast, plant breeding programs are traditionally
dedicated to more specific geographical regions aiming to
adapt the germplasm to certain environmental conditions, and
the data used for selection decisions have almost exclusively
focused on the most recent trials of the respective program. An
overarching approach for handling data across programs
or selection cycles had not been necessary. Moreover,
pedigree information had hardly been used for pedigree-
based predictions, since the pedigree information has often
been incomplete and “relatively wide” crosses of unrelated
material have been used (Dreisigacker et al., 2021). Moreover,
a PEBV may not provide additional information, since it
cannot capture the segregation within a family generated by a
certain cross.

Also, plant breeders traditionally tend to focus on product
development that is on identifying varieties, rather than
on population improvement, that is identifying parents for
new crosses. In other words, breeders are more interested
in the genotypic value comprising the complete genetic
contribution to the phenotype than in the additive genetic
value (the breeding value). A focus on the latter is natural
in dairy breeding, where the sire’s breeding value is defined
indirectly by the performance of its offspring, not by its own
phenotype (Mrode, 2014).

Only in recent years some concepts from animal breeding,
such as the focus on the breeding value, have been transferred
in more formal and more rigorous ways to plant breeding.
An example is the separation of population improvement from
product development (Gaynor et al., 2017) which allows to focus
on the breeding value for the population improvement step. The
impact of this paradigm shift on genetic gain is to be observed in
coming decade(s).

Public Compared to Private Plant Breeding
In general, the timelines for the exploration of the potential
of GS were relatively similar between the considered public
and private plant breeding organizations. CIMMYT and the
CGIAR are public research organizations that also pursue the
publication of novel, creative approaches, and follow in parts
a (research) project-based organization. In contrast, private
institutions naturally tend to focus more on the standardization

and optimization of routine processes for GS, which may have
had a lower priority in the public sector. The EiB platform
and associated projects are currently addressing a stronger
standardization of data storage and related analysis pipelines.
Moreover, the project-based organization in public institutions
comes with a variance in funding which leads to challenges for
mid to long-term planning on the use of GS.

Finally, CGIAR centers are plant improvement-breeding
centers that focus on delivering germplasm to National
Agricultural Research institutions (NARs), in particular in Africa
and Asia. This implies other priorities for traits, different
frameworks for the evaluation of material, and different cost
structures compared to, for instance, a commercial program
in North America. The economics of implementing GS may
therefore differ from those at private companies.

Overall, we think that the advent of GS has provided a
tipping point to catalyze the ongoing reform of plant breeding
institutions to data processing focused organizations. This
transformation will leverage both the historic data resources
amassed and the data generated annually to more effectively
drive breeding decisions. However, with the increasing number
of phenotypic records, and genotypic and environmental
information, we now face the challenge of how to use “big data”
most efficiently.
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We investigated increasing genetic gain for grain yield using early generation genomic
selection (GS). A training set of 1,334 elite wheat breeding lines tested over three
field seasons was used to generate Genomic Estimated Breeding Values (GEBVs) for
grain yield under irrigated conditions applying markers and three different prediction
methods: (1) Genomic Best Linear Unbiased Predictor (GBLUP), (2) GBLUP with the
imputation of missing genotypic data by Ridge Regression BLUP (rrGBLUP_imp), and
(3) Reproducing Kernel Hilbert Space (RKHS) a.k.a. Gaussian Kernel (GK). F2 GEBVs
were generated for 1,924 individuals from 38 biparental cross populations between
21 parents selected from the training set. Results showed that F2 GEBVs from the
different methods were not correlated. Experiment 1 consisted of selecting F2s with
the highest average GEBVs and advancing them to form genomically selected bulks
and make intercross populations aiming to combine favorable alleles for yield. F4:6 lines
were derived from genomically selected bulks, intercrosses, and conventional breeding
methods with similar numbers from each. Results of field-testing for Experiment 1
did not find any difference in yield with genomic compared to conventional selection.
Experiment 2 compared the predictive ability of the different GEBV calculation methods
in F2 using a set of single plant-derived F2:4 lines from randomly selected F2 plants.
Grain yield results from Experiment 2 showed a significant positive correlation between
observed yields of F2:4 lines and predicted yield GEBVs of F2 single plants from GK (the
predictive ability of 0.248, P < 0.001) and GBLUP (0.195, P < 0.01) but no correlation
with rrGBLUP_imp. Results demonstrate the potential for the application of GS in early
generations of wheat breeding and the importance of using the appropriate statistical
model for GEBV calculation, which may not be the same as the best model for inbreds.

Keywords: early generation genomic selection, linear and non-linear kernels genomic matrices, wheat breeding,
breeding methodology, response to selection

INTRODUCTION

Genomic selection (GS) (Meuwissen et al., 2001; Bernardo and Yu, 2007) has become possible
through the rapid development of next-generation sequencing technologies that allow the use
of abundant and low-cost molecular markers. Evidence in plant breeding literature has shown
that GS provides an important increase in prediction accuracy compared to pedigree and
marker-assisted selection for low heritability traits (de los Campos et al., 2009, 2010, 2013;
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Crossa et al., 2010, 2011, 2013, 2014; González-Camacho et al.,
2012, 2016; Heslot et al., 2012, 2014; Hickey and Gorjanc,
2012; Pérez-Rodríguez et al., 2012; Riedelsheimer et al., 2012;
Windhausen et al., 2012; Zhao et al., 2012). An initial review
of the main activities of GS in the International Maize and
Wheat Improvement Center (CIMMYT) maize and wheat
breeding programs was published by Crossa et al. (2014).
Simultaneously, breeding programs around the world have
been studying GS, initially performing extensive research, and
the development of new statistical models for incorporating
pedigree, genomic, and environmental covariables (climatic and
soil data). Models that incorporated genomic × environment
and marker × environment and genomic × environmental
covariables were earlier developed to improve the accuracy for
predicting unobserved cultivars in new environments (Burgueño
et al., 2012; Heslot et al., 2014; Jarquín et al., 2014; Lopez-Cruz
et al., 2015; Crossa et al., 2016).

After these initial studies, an increasing number of research
articles have been published effectively testing the integration
of GS into conventional plant breeding pipelines for different
traits measured in different environments (Crossa et al., 2017;
Dreisigacker et al., 2021). The application of GS has focused
on two approaches. One approach predicts the complete genetic
values of individuals and focuses on both additive and non-
additive effects, thereby estimating the genetic performance of
candidate cultivars (Crossa et al., 2017). Additive or genetic
values are predicted in breeding generations using as much
phenotypic information as possible obtained from different
environments in a complete or incomplete (sparse) multi-
environment testing scheme (Jarquin et al., 2020). A second
approach is predicting additive effects in early generations (bi-
parental F2, or multi-parental populations) to achieve a rapid
selection cycle with a short interval (Vivek et al., 2017; Zhang
et al., 2017; Beyene et al., 2021). In these instances, the main
focus is on the prediction of breeding values of the genotypes.
The application of GS offers attractive benefits but comes
with challenges when implemented into current conventional
breeding systems.

Genomic selection is affected by a range of factors occurring
at different levels. For example, one complexity arises while
incorporating genotype × environment (G × E) interaction into
statistical models. Also important are the genome interactions
related to G × E interactions for multi-traits and the complexity
of the traits (complex vs. simple) evaluated in multiple
environments. Some of these complexities can be addressed
using parametric models where the effect of phenotypic lines
can be replaced by gj expressed as a linear regression of the
line phenotype on marker covariates (this approximates the
genetic value of the line). The matrix G is a genomic relationship
matrix with markers centered and standardized (VanRaden,
2007), which leads to what is known as Genomic Best Linear
Unbiased Predictor (GBLUP). The genomic relationship matrix
G is the most common parametric linear kernel that accounts for
the additive relationship between lines. Also, the effect of the line
can be replaced by A, the additive relationship matrix of the linear
kernel is derived from pedigree and proportional to the identical
by descent (IBD) probabilities.

Semi-parametric genomic regression methods are efficient
for capturing non-additive variation. The Reproducing Kernel
Hilbert Space (RKHS) method was initially used in animal
breeding (Gianola et al., 2006; Gianola and Van Kaam, 2008;
Gonzalez-Recio et al., 2008) and in wheat genomic-assisted plant
breeding with very promising practical results (de los Campos
et al., 2009, 2010; Crossa et al., 2010; González-Camacho et al.,
2012; Pérez-Rodríguez et al., 2012). Semi-parametric models use
kernel methods capturing non-linear relationships between the
phenotype and genotype for complex traits, such as grain yield.
The Gaussian Kernel (GK) or RKHS method is a non-linear
kernel (González-Camacho et al., 2012) that captures major and
complex marker effects in addition to their interaction effects.
Note that the non-linear kernels and the linear kernels can be
employed for a single environment model and on a genomic
multi-environment model, such as G × E. According to de los
Campos et al. (2009); Crossa et al. (2010); Pérez-Rodríguez et al.
(2012), and Cuevas et al. (2017), it is well known that the GK is
efficient for capturing additive× additive epistasis interactions in
multi-environment trials.

While GS is routinely deployed in the stage 1 yield trials of the
CIMMYT Global Wheat Program, genomic prediction has not
yet been applied in early generations due to a number of factors
including, but not limited to, genetic complexity of the crop,
logistics, and expense of establishing a faster cycle integrated
into the existing shuttle breeding method, which involves moving
seed within and/or outside Mexico each breeding generation.
However, from the 2009–2010 to 2014–2015 seasons, a large GS
proof-of-concept experiment was carried out with the objective of
incorporating genomic prediction for increased yield in the early
stages of population improvement in the context of the standard
methodology applied in the CIMMYT Wheat Breeding Program
in Mexico. Here, we present the results of this initial experiment,
which is the first reported in wheat applying GS as early as the
F2 generation. Note that the genome-based models incorporating
G× E were not yet available during the time this experiment was
conducted, so were not applied in this study.

MATERIALS AND METHODS

Training and Prediction Sets
Composition of the Base Training Set
The training set was comprised of 1,334 entries from the 17th
and 18th Semi-Arid Wheat Yield Trials (17th and 18th SAWYT),
and International Bread Wheat and Semi-Arid Wheat Screening
Nurseries (29th and 30th SAWSN, 45th IBWSN; Figure 1 and
Supplementary Table 1).

Development of Populations to Validate Early
Generation Genomic Prediction
This study sought to incorporate genomic prediction for
increased yield in the early stages of population development
in the context of the standard breeding methodology applied
at CIMMYT in Mexico. This method used selected bulks
and two field generations per year alternating between the
CIMMYT Experimental Station in Toluca (Lat 19◦ N, Long
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FIGURE 1 | Overview of the development of populations to validate early generation genomic prediction. Con-BPs, conventional biparental populations; Gen-BPs,
genomic biparental populations; GBLUP, genomic best linear unbiased prediction; rrGBLUP, Ridge Regression BLUP; SPLs, single plant-derived lines; GK, Gaussian
Kernel.

99◦ W Elevation 2,640 masl) and the Campo Experimental
Norman E. Borlaug (CENEB) station at Cd. Obregon (Lat
27◦ N, Long 110◦ W, Elevation 39 masl). The phenotypic
selection in segregating generations was for semidwarf plant
height, phenology equivalent to parents and checks and
disease resistance; notably stripe rust (Puccinia striiformis f. sp.
tritici), leaf rust (Puccinia triticina), and septoria tritici blotch
(Zymoseptoria tritici).

Thirty-eight biparental breeding populations were generated
from crosses between 21 parent lines selected from the training
set and advanced to F2 (Supplementary Table 2). Parents were
selected to limit segregation for height and phenology. From
these crosses, four sets of sub-populations were derived as follows
(Figure 1 and Supplementary Table 2).

Conventional Biparental Populations
Conventional biparental populations (Con-BPs) comprised lines
derived from a random sample of approximately 1,000 F2
seeds per cross. These Con-BP F2s were each sown in a
10 m × 1.6 m plot at the CENEB station in the 2011–
2012 season, and approximately 50 F2 plants with desirable
height, phenology, and disease reaction were selected to form
an F3 bulk. Approximately 1,000 seeds from each F3 bulk were
planted in 10 m × 1.6 m plots in Toluca in May 2012, and
50 plants with desirable plant type and disease reaction were
selected and harvested to form an F4 bulk. Again, 1,000 seeds
of each F4 bulk were planted in the same plot configuration,
50 plants per plot were selected for plant type and disease
reaction and each harvested individually to form F4:5 single

plant selections. These were increased in single 2 m double-row
beds over summer 2013 at the Toluca Station. We aimed to
select 20 lines from each cross based on uniformity, plant type,
and disease reaction. Selected rows were individually harvested
and threshed to generate the F4:6 lines that were planted in
field trials at the CENEB station in the 2013–2014 and 2014–
2015 seasons.

Genomic Biparental Populations
Genomic biparental populations (Gen-BPs) were formed from 50
F2 plants per cross that were space planted at the same time and
in the same field location with the Con-BP F2 subpopulations.
DNA was extracted from leaf tissue of F2 individuals for
genotyping-by-sequencing (GBS) and calculation of Genomic
Estimated Breeding Values (GEBVs). Individuals from each cross
were selected on the basis of GEBV, plant type, and disease
reaction. As GEBVs from the different prediction methods were
not highly correlated (see section “Results”), with no way to
know which was most predictive, F2s with the highest average
GEBV across the three prediction methods were selected. Selfed
seed from selected F2 plants within each cross was combined
to form F3 bulks. Gen-BPs were advanced from F3 bulk to
F4:6 line concurrently, with the same methods and in the
same field nurseries as the Con-BPs. In other words, selection
methodologies and intensities were identical for Gen-BPs and
Con-BPs from the F3 bulk stage. Similar numbers of lines were
derived from the Gen-BP and Con-BP subpopulations of most
crosses. Six crosses did not produce progeny with acceptable

Frontiers in Plant Science | www.frontiersin.org 3 January 2022 | Volume 12 | Article 718611250

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-718611 January 11, 2022 Time: 10:29 # 4

Bonnett et al. Early Generation GS at CIMMYT

TABLE 1 | Training set experiments summary data.

Trial 17SAWYT 18SAWYT 29SAWSN 30SAWSN 45IBWSN

Season 2009 2010 2009 2010 2009 2010 2010 2010 2011 2011 2010 2011 2011

Experiment

Type Bed Flat Bed Bed Bed Bed Flat Bed Bed Flat Bed Flat Bed ZT

Entries 50 50 43 43 264 264 264 264 264 264 780 780 780

Reps 2 2 1 2 1 3 3 1 3 3 3 3 3

Mean DTH 84.7 83.6 80.5 81.5 80.1 85.1 – 84.6 91.0 87.4 88.6 91.9 95.1

Mean HT 112.0 93.3 102.3 100.0 99.1 109.8 – 104.7 113.0 100.0

Mean YLD 7.15 6.87 6.85 5.65 7.20 7.16 6.95 7.12 7.17 5.82 7.70 7.66 6.63

H2 YLD 0.67 0.45 0.58 0.70 0.63 0.83 0.81 0.64 0.72 0.78 0.88 0.89 0.68

CV YLD 7.76 11.98 7.72 7.40 6.90 9.84 12.05 8.91 7.61 12.43 8.07 10.00 10.46

Data for the training sets included wheat lines tested in several international trails (17–18 SAWYT, 20SAWSN, 30SAWSN, and 45IDWSN) during seasons 2009, 2010, and
2011 using two planting systems bed and flat. Heritability (H2) and coefficient of variation (CV) of grain yield (YLD, ton/ha) and an average of days to heading (DTH, days),
and height (HT, cm).

combinations of plant type and disease reaction for Gen-BP and
Con-BP subpopulations.

Rapid Cycle Intercross Populations
Rapid cycle intercross populations (RCIs) were generated by
crossing selected F2 individuals, those with the highest average
GEBVs across prediction methods, within and between Gen-BP
subpopulations. For intercrosses within a population, average
GEBV and genetic distance based on the kinship matrix
(VanRaden, 2008) among individuals were used to increase the
probability of combining distinct, favorable alleles. All plants
selected for crossing also produced enough selfed seed to
contribute approximately the same number to the Gen-BP F3
bulks as plants that were not selected for intercrossing. A total of
37 RCI populations were generated. RCI F1s were space planted
by cross at the Toluca Research Station in the summer of 2012
in the same field and under the same conditions as the Gen-BP
and Con-BP F3 bulks. Plants were selected based on plant type
and disease reaction. Selected plants were bulked by cross to form
RCIF2 bulks and were then advanced concurrently with the same
selection methods as for the Con-BP and Gen-BP subpopulations
to produce RCI F2:4 lines for field trials at the CENEB station in
the 2013–2014 and 2014–2015 seasons. The 37 RCI populations
were represented by a variable number of selections although a
total of 26 populations produced 16 or more selections and only 5
populations produced fewer than 10 selections. Overall, 622 lines
were derived from RCI populations.

Single Plant-Derived Lines
Single plant-derived lines (SPLs) were developed from a subset
of 240 F2 plants from across the Gen-BP subpopulations. The
selection of F2 plants was based on a visual assessment of
acceptable plant height, phenology, and agronomic type, without
consideration of disease reaction or GEBV. F3 seed from each
selected plant was sown in a single row at CIMMYTs El
Batan Research Station in May of 2012. Rows were sprayed
with a fungicide to control diseases and were assessed for
uniformity, height, and phenology. Rows were discarded only if
they expressed excessive height, slow phenological development,

or high levels of within-row variability. From the 240 rows, 213
F2:4 SPLs were selected for field testing to assess response to
selection for F2 GEBV using each of the three different GEBV
calculation methods. SPLs were obtained from 36 of the 38 Gen-
BP subpopulations and tested in field trials at CENEB in the
2012–2013 and 2013–2014 seasons.

Field Trials and Phenotyping
Training Set
Phenotypic data for the training set of 1,334 lines were generated
in field trials at CENEB, Cd. Obregon over the 2008–2009,
2009–2010, and 2010–2011 growing cycles under irrigated
conditions with management to achieve high yield according to
local best practice. Summary data for these trials are outlined
in Table 1.

Testing Set
Field trials of the developed populations were conducted at
CENEB across three growing cycles (2012–2013, 2013–2014,
and 2014–2015) with equivalent management to that applied
to the training set. Plots were of 4.8 m2 (3 m × 1.6 m).
Each trial was conducted in two consecutive seasons. Trials in
each growing season were planted in late November or early
December and harvested in early May. Data were collected for
grain yield, plant height, and heading date. Details specific to
the trials related to each of the following components of our
research are provided in the following sections and summarized
in Table 2.

Validation of Genomic Predictions for
Wheat Grain Yield
Experiment 1 – Conventional Biparental, Genomic
Biparental, and Rapid Cycle Intercross Populations
Phenotypic data for the Con-BP, Gen-BP, and RCI-derived
lines (591, 630, and 622 lines, respectively) were generated
in field trials at CENEB, Cd. Obregon over the 2013–2014
and 2014–2015 crop cycles (Table 3). Entries were randomly
assigned to 1 of 10 different sub-experiment blocks with
each sub-experiment being a two-rep row-column design.
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TABLE 2 | Summary field trial data for Experiments 1 and 2.

Trial Experiment 1 Con-BP Experiment 2 SPL

vs. Gen-BP and RCI F2 GEBV validation

Season 2013–2014 2014–2015 2012–2013 2013–2014

Experiment

Type Bed Bed Bed Bed

Design Row-column Row-column Row-column Row-column

Entries 2,000 2,000 240 240

Reps 2 2 2 2

Mean DTHa 76 72.6 80.5 78.4

H2 DTHa 0.88 0.74 0.95 0.94

CV% DTHa 1.82 2.17 3.5 3.7

Mean HTb 99.6 105.1 104.2 101.3

H2 HTb 0.48 0.72 0.66 0.65

CV% HTb 5.08 3.21 4.1 4.2

Mean YLDc 5.98 4.72 7.12 5.98

H2 YLDc 0.60 0.41 0.73 0.82

CV% YLDc 9.63 13.41 9.27 6.95

Experiment 1 compares prediction accuracy of genomic bi-parental (Gen-BP), with
conventional bi-parental (Con-BP), and rapid cycling intercross population (RCI)
populations in cycles 2013–2014 and 2014–2015. Experiment 2 has single plant-
derived lines (SPL) F2:4 validation.
aDays to heading from sowing.
bHeight in cm to tip of ear.
cGrain yield in tons per hectare.

TABLE 3 | Experiment 1: Least significant difference (LSD), mean yield
comparison of different breeding populations and checks evaluated at Cd.
Obregon during 2013–2014 (Year-1) and 2014–2015 (Year-2) growing seasons.

Class N Mean (ton/ha) Tukey grouping

YEAR-1 [LSD (0.05) = 0.1341]

Checks 80 6.212 A

Con-BP 1,182 6.048 B

Gen-BP 1,260 5.990 B C

Parents 190 5.988 B C

RCI 1,288 5.902 C

YEAR-2 [LSD (0.05) = 0.1288]

Checks 80 4.916 A

Parents 190 4.800 A B

Gen-BP 1,260 4.741 C B

Con-BP 1,182 4.741 C B

RCI 1,288 4.664 C

Combined [LSD (0.05) = 0.093]

Checks 160 5.564 A

Con-BP 2,364 5.394 B

Parents 380 5.394 B

Gen-BP 2,520 5.366 B C

RCI 2,576 5.283 C

Breeding populations included the genomic bi-parental (Gen-BP), conventional bi-
parental (Con-BP), and rapid cycling intercross population (RCI) and parents.

All sub-experiments included common checks. Parents of the
populations were included in the experiments and assigned
randomly across sub experiments. Grain yield data of the
different population types were compared, and differences
were determined using the least significant difference (LSD

at 5% significance). The expected response to selection was
derived by multiplying the narrow sense heritability by the
selection differential (H2

× S). The latter was calculated by
dividing the mean of the selected lines by the mean of the
full population.

Experiment 2 – Validation of F2 Grain Yield Genomic
Estimated Breeding Values in Single Plant-Derived
F2:4 Lines
Single plant-derived lines were tested in field trials at CENEB,
Cd. Obregon in the 2012–2013 and 2013–2014 crop seasons.
Experiments were two replicate row-column designs. Grain yield
data for the F2:4 lines were examined for correlation to GEBVs of
their respective, individual F2 progenitor plant.

Genotyping
The wheat genotypes included in the training set and F2
plants, indexed by their genotypic identification number
(GID), were characterized using GBS following the same
procedure as described in Poland et al. (2012). Briefly,
genomic DNA was extracted from seedling leaf tissue using
the procedure described in Dreisigacker et al. (2016). Two
enzymes PstI (CTGCAG) and MspI (CCGG) were used to
digest genomic DNA. Individual samples were ligated with
barcoded adapters and pooled by plate into a single library.
Each library was sequenced on a single lane of Illumina
HiSeq2000. A total of 45,818 single nucleotide polymorphisms
(SNPs) markers were initially obtained. The filtering consisted
of removing markers whose minor allele frequency (MAF)
was less than 5% or had more than 80% missing values.
After initial filtering, 29,999 markers were available for
further analysis.

Statistical Models and Methods
The Base-Line Phenotype Model for the Training
Populations
This part of the analysis was performed on the six field trials that
included the 1,334 entries in the training set which are outlined
in Table 1. Best Linear Unbiased Estimates (BLUEs) for grain
yield across trials were generated using the following linear mixed
model:

Yijkl = µ+ gi + Yearj + Rk(j) + Bl(kj)
(
g × L

)
ij + eijkl

where Yijkl is the phenotype of wheat line i-th at location j-th in
replicate k-th within the block l-th, µ is the overall mean, Yearj
is the fixed effect of the year j-th, Rk(j) is the fixed effect of the
k-th replicate within year j-th, Bl(kj) is the random effect of the
incomplete block l-th within replicate k-th and year j-th assumed
to be independently and identically normal distributed (iid) with
mean zero and variance σ2

b, gi is the fixed effect of genotype i-th,(
g × L

)
ij is the fixed effect of the genotype × year interaction,

and eijkl is the random error assumed to be iid normal with mean
zero and variance σ2

e . Broad sense heritability (H2) was computed
on an entry-mean basis according to Bernardo (2010) as:

H2
=

σ2
g

σ2
g +

σ2
gy
y +

σ2
e

y × r
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where σ2
g is the genotypic variance, σ2

gy is the genotype × year
interaction variance, σ2

e is the estimated of the error variance, y
is the number of years, and r is the number of replicates. Note
that different trials had different numbers of testing years, 17–18
SAWYT data had trials in years 2009 and 2010, whereas the other
three trials had 3 years of testing (Table 1).

Genomic-Enabled Prediction Models
Meuwissen et al. (2001) were the first to propose whole-
genome regression methods (GS) by jointly fitting hundreds
of thousands of markers with major and small effects. In the
whole-genome regression methods, the number of markers (p)
greatly exceeds the number of data-points (n) available; thus,
implementing regression methods poses important statistical
and computational challenges. However, new developments
in the area of shrinkage estimation procedures allows the
implementation of whole-genome regression methods.

We considered three different models: GBLUP using additive
genomic relationships (VanRaden, 2008), the GK or RKHS
regression (Gianola et al., 2006) which is equivalent to a GBLUP
but with a non-linear kernel, and the rrGBLUP_imp where
missing markers were imputed (Endelman, 2011). The GBLUP
and RKHS models were fitted using routines kindly provided by
de los Campos (personal communication). Nowadays, GBLUP,
RKHS, and many other models can be fitted in the BGLR package
(Pérez-Rodríguez and de los Campos, 2014), which is available on
the CRAN website. This software was not available at the time our
study was conducted.

The Genomic Best Linear Unbiased Prediction Model
The regression model for wheat lines (i = 1, 2,. . ., n) is given by:

y = µ1+ u+ ε (1)

where y is the response vector of n phenotypic observations, µ

is the overall mean, and the random vectors of the genetic values
u and the errors ε are independent variables with u ∼ N(0, σ2

uK)
and ε ∼ N(0,σ2

ε I), respectively, where σ2
u is the variance of u, I is

the identity matrix, and K is a symmetric semi-positive definite
matrix representing the covariance of the genetic values, and
ε is the vector of random errors with normal distribution and
common variance, σ2

ε . The p bi-allelic centered and standardized
molecular markers are represented in incidence matrix X of order
n × p such that K = G = XX

′

p is a linear kernel. Model (1) is
known as GBLUP (VanRaden, 2007, 2008).

Under the conditions given above, model (1) estimates the
genomic relationship by means of its linear kernel XX

′

/p, where
p is the number of markers. However, a nonlinear kernel,
such as the GK, can also be used (Cuevas et al., 2016). The
model represented by Eq. 1 is computationally very efficient and
convenient when n >> p (de los Campos et al., 2012).

Gaussian Kernel or Reproducing Kernel Hilbert Space
Regressions
In general, the parametric genomic linear regression function
has a rigid structure comprising a set of assumptions, which
may not be met in GS problems. Thus, departures from
linearity can be addressed by semi-parametric approaches,

such as the GK or RKHS regressions (Kimeldorf and Wahba,
1971; Gianola and Van Kaam, 2008; Gianola, 2013). The GK
regression for semi-parametric, genomic-enabled prediction,
such as kernel regression, is necessary to reduce the dimension
of the parametric space and maybe able to capture complex
cryptic interaction among markers (Gianola et al., 2006, 2014).
Morota and Gianola (2014) pointed out that most studies carried
out so far suggest that whole-genome prediction coupled with
combinations of kernels may capture non-additive variation
(Gianola et al., 2014).

The basic idea underlying the GK approach to GS (Kimeldorf
and Wahba, 1971; Gianola, 2013) is to use the matrix of markers
X to build a covariance structure among genetic values u.
Therefore, u ∼ N(0,σ2

gKh) is independent of ε (Crossa et al.,
2010; de los Campos et al., 2010), Kh is a symmetric positive
semi-definite matrix of order n × n, known as the reproducing
kernel (RK) matrix, which depends on the markers and the
bandwidth parameter h > 0, σ2

g > 0, and ε is an n × 1 vector
of homoscedastic and independent normal errors.

This general approach requires choosing an RK, for example,
a GK function

Kh
(
xi, xj

)
= exp

(
−hd2

ij/q0.05

)
, (2)

where xi and xj are the marker vectors for the i-th and j-th
individuals, and q0.05 is the fifth percentile of the squared
Euclidean distance d2

ij (González-Camacho et al., 2012).

Ridge Regression Best Linear Unbiased Prediction With
Imputed Marker Data
The marker-based, additive relationship matrix was calculated
with the function A.mat in R package rrGBLUP, version 4.1
(Endelman, 2011), which centers (but does not standardize)
each marker by the population mean (VanRaden, 2008). The
relationship matrix was additionally calculated with the imputed
markers. Missing data were imputed with the “EM” option in
A.mat, which implements a multivariate normal expectation-
maximization (EM) algorithm (Poland and Rife, 2012).

A Fivefold Cross-Validation
A fivefold cross-validation was performed to evaluate the
prediction performance of the models on the training set. The
full dataset was randomly divided into five mutually exclusive
subsets, four of which formed the training set for fitting
the model, and the fifth was used as a test set. Predictive
abilities were calculated as the Pearson’s correlation coefficient
between the predicted values and the observed phenotypic values
of the test set.

RESULTS

Validation of Genomic Prediction Models
Predictions with GBLUP, rrGBLUP_imp, and GK in the
training population had similar levels of predictive ability
for a yield of 0.42–0.43 as determined by a fivefold cross-
validation (Table 4). The GEBVs produced by the three
methods showed high correlations of between 0.93 and 0.97
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TABLE 4 | Predictive power of GEBVs in a training population of 1,334 inbreds
and correlation between GEBV predictions for grain yield by three different
calculation methods (GBLUP, rrGBLUP_imp, and GK) among inbreds in the
training set and in a target population of 1,924 F2s.

Prediction model Yield (fivefold
cross validation)

GBLUP rrGBLUP_imp

Training/F2 Training/F2

GBLUP 0.43 – –

rrGBLUP_imp 0.42 0.96/0.44 –

GK 0.42 0.97/0.37 0.93/0.13

GBLUP, genomic best linear unbiased prediction; rrGBLUP, Ridge Regression
BLUP; GK, Gaussian Kernel.

FIGURE 2 | Experiment 2. Distribution of F2-predicted breeding values (grain
yield) of 213 randomly selected individuals estimated using GK (top, A),
GBLUP (Middle, B), and rrGBLUP (low, C) with imputed markers.

in the training set. In contrast, the models produced divergent
predictions in F2 populations. The shapes of the distribution
of GEBVs from each prediction method also differed with
GBLUP having a wide distribution from 5 to 11 ton/ha while
rrGBLUP_imp values were more narrowly grouped between
6.5 and 8.1 ton/ha (Figures 2A–C). The lack of correlation
and different distributions of values caused uncertainty about
which was the most appropriate method to use in the selection
of F2 plants to generate genomically selected bulks and to
intercross in a rapid cycle intercross strategy. As the GEBVs
were uncorrelated, not negatively correlated, individuals with
the highest GEBVs averaged across the prediction methods were
selected for selfing to form F3 bulks and for intercrossing to
form the RCI populations. Phenotypic selection was also applied
for plant height, phenology, and disease reaction in the same
way as for the Con-BP populations. For the RCI populations,
the additional criteria of maximizing genetic differences between
F2 individuals, if selected from the same biparental cross, were
applied in planning intercrosses.

Because populations were advanced through a selected bulk
method to develop the material tested in Experiment 1, this
experiment could not address the question of whether one
method was superior to another in F2 GEBV calculation.
Therefore, a random subsample of F2 plants was chosen to
develop single F2 plant-derived lines so a correlation between the
yield of a derived line and GEBV of an F2 could be measured.
This set of lines was the basis for Experiment 2.

Experiment 1 – Conventional Biparental,
Genomic Biparental, and Rapid Cycle
Intercross Populations
A total of 1,857 lines were derived from conventional,
phenotypically selected biparental (Con-BP), Gen-BP, and RCI
breeding methods with roughly similar numbers from each
(Supplementary Table 2). All methods used phenotypic selection

FIGURE 3 | Experiment 1. Box-plots comparing grain yield distribution of all
the lines for Genomic Bi-parental (Gen-BP), Conventional Bi-parental
(Con-BP), and Rapid Cycle Intercross population (RCI) populations (blue
box-plots) and their corresponding top 10% entries (red box-plots).
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TABLE 5 | Experiment 1: Comparing the expected response to selection under 5
and 10% selection intensity for different selection schemes for average grain yield
(AV_YLD ton/ha) derived from trials performed at the CENEB station in seasons
2013–2014 and 2014–2015.

TOP5% TOP10%

Class N AV_YLD AV_YLD S R AV_YLD S R

Gen-BP 630 5.366 6.326 0.960 0.576 6.189 0.823 0.494

Con-BP 591 5.394 6.347 0.953 0.572 6.216 0.822 0.493

RCI 635 5.286 6.312 1.026 0.615 6.177 0.891 0.534

Con-BPs, conventional biparental populations; Gen-BPs, genomic biparental
populations; RCI, rapid cycling intercross.
S = Selection differential (selected mean − population mean).
R = Expected response to selection = H2

× S.
Expected selection response (H2 = 0.6).

to progress material through selected bulk stages, while the Gen-
BP method used GEBVs of F2 plants to add a single cycle of GS
and RCI used the F2 GEBVs to select plants for intercrossing to
produce new populations that were subsequently passed through
the same phenotypic selection methodologies.

Field testing showed that Con-BP lines yielded an average
of 2% more than RCI lines (P < 0.001), Gen-BP lines yielded
an average of 1.5% more than RCI lines (P < 0.01), and there
was no significant difference between Gen-BP and Con-BP
(Table 3) populations. Similar comparisons of yield focusing
on the top 10% highest yielding lines in each population type
showed similar patterns with Con-BP having the highest yield,
significantly greater than GS-BP and RCI (Figure 3 and Table 5).
Although differences were statistically significant, they were only
approximately 1%. Gen-BP subpopulations in the top 10% were
not significantly different in yield to the top 10% of RCI lines.
Response to selection in the RCI populations was marginally
greater than for Con-BP and Gen-BP, but the difference was
small and likely reflects the lower mean yield and distribution
of grain yield in the RCI populations compared to the other
population types (Table 3 and Figure 4).

Experiment 2 – Validation of F2 Grain
Yield Genomic Estimated Breeding
Values in Single Plant-Derived F2:4 Lines
In Experiment 2, we compared the predictive ability of the
different GEBV calculation methods in F2 in a set of 213 single
plant-derived F2:4 lines from randomly selected F2 plants. Trials
of the F2:4 SPLs showed a significant positive correlation with F2
GEBVs from GK and GBLUP (Table 6 and Figure 5). Individuals
with the highest 10 and 20% GEBVs predicted by GK, produced
F2:4 progeny lines with realized grain yield gains of 4.7 and 4.2%,
respectively; significantly higher than the mean of 50 random
samples from across the full set of F2s (Table 7). The top 10 and
20% of F2s predicted by the GBLUP method showed realized
gains of 3.68 and 2.60%, respectively, in their F2:4 progenies;
significantly higher than the mean of 50 random samples of
the same proportions (Table 7). Contrarily, selecting the top
10 and 20% of F2 GEBVs estimated with rrGBLUP_imp did

FIGURE 4 | Experiment 1: Distribution of observed grain yield across 2 years
under different selection strategies: (A) Gen-BP, (B) Con-BP, and (C) RCI.
Con-BPs, conventional biparental populations; Gen-BPs, genomic biparental
populations; RCI, rapid cycling intercross.

TABLE 6 | Experiment 2: Correlations between F2:4 GEBVs from three prediction
methods (GBLUP, GK, and rrGBLUP_imp) from grain yield of 213 derived F2:4
lines across two seasons.

F2:4 observed yield

F2:4 predicted YLD Correlation P-Value

GBLUP 0.2870 0.000024

GK 0.3020 0.000009

rrGBLUP_imp −0.0733 0.290000

GBLUP, genomic best linear unbiased prediction; rrGBLUP, Ridge
Regression BLUP.

not produce F2:4 progenies with a higher mean performance
compared to random samples.
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FIGURE 5 | Experiment 2: Scatter plot showing the correlation between F2
predicted yield, estimated with different prediction models GK (top, A),
GBLUP (middle, B), and rrGBLUP_imp (low, C), with an observed yield of 213
derived F2:4 lines. GBLUP, genomic best linear unbiased prediction; rrGBLUP,
Ridge Regression BLUP; GK, Gaussian Kernel.

Within the subset of 213 F2s which were randomly sampled
to produce F2:4 bulks for yield testing, the correlations between
prediction methods were also low (Table 4 and Figure 6).
Figures 5A–C shows scatterplots of F2 single plant GEBVs vs.
realized yields of derived F2:4 lines (GEBVs on Y-axis, yields
on X-axis). From these, it is clear that correlations between F2
GEBVs and F2:4 yield for GK and GBLUP are not strong but
are not driven by outliers with high leverage. In both cases, the
selection of F2s with the highest GEBVs would avoid the selection
of the lowest yielding F2:4 lines.

DISCUSSION

The proof-of-concept Experiment 2 reported here demonstrates
the potential of early generation genomic prediction to increase
genetic gain over conventional selection methods by allowing

the ability to increase the number of crossing cycles per year.
In Experiment 2 of our study, F2 GEBVs generated by GK
and GBLUP methods showed significant positive correlations
with the yield of derived lines. The highest 10 and 20% of
GEBVs from the GK method showed 4.7 and 4.2% increases,
respectively, and the top 10 and 20% of F2s GEBVs predicted
by GBLUP showed realized gains of 3.68 and 2.60% over a 50×
random sample of the same proportion of lines from the same
populations. In contrast, a similar analysis of F2 GEBVs from the
rrGBLUP_imp method showed no difference from the mean of
the 50× random sampling.

Each of the three prediction methods used in this study
produced highly correlated GEBVs in inbreds and the same
levels of predictability of inbred performance based on cross
validation in a training set of elite CIMMYT inbreds. In contrast,
predictions in F2s derived from crosses between inbreds that
were part of the training set for the model showed little to no
correlation and differing levels of predictive ability compared
with a realized yield of F2 SPLs. These differences are likely due
to the different abilities of the prediction methods to handle
heterozygosity, which is generally not accurately characterized
with a GBS genotyping platform and the importance of non-
additive variation in wheat. This may be reflected in the much
narrower distribution of GEBVs from rrGBLUP_imp compared
to GBLUP and particularly GK. The difference in the distribution
of the GEBVs between the GBLUP and GK methods is likely due
to the different shrinkage applied in each method. On the other
hand, differences between GBLUP and rrGBLUP_imp are likely
due to the imputation method used.

In Experiment 1, we attempted to incorporate F2 genomic
prediction into a selected bulk breeding methodology closely
mirroring the typical breeding methodology in the CIMMYT
spring bread wheat program. The three different prediction
methods generated F2 GEBVs that showed little correlation with
one another. It should be noted that the low correlations between
the rrGBLUP_imp with GBLUP and GK were considered as
a rare result, especially knowing the equivalence between the
GBLUP and the rrGBLUP_imp. The reasons for the failure
of the rrGBLUP_imp in generating similar predictions to
GBLUP are unknown but may be attributable to different
factors. For example the nature of the imputation algorithm
or convergence issues with the Expectation-Maximization
algorithm in rrGBLUP_imp. Since the three methods had
similar ability to predict yield of inbreds and predictions were
correlated, it was difficult to discard one of the models based
on observed phenotypes and we decided to use an average
of the methods. If we had conducted additional research to
confirm that GK was the most predictive method or that
GBLUP also showed a useful level of predictability, we would
likely have made better selections of F2 individuals to form
selected bulks and to make early generation intercrosses. Given
that our selections were probably no better than random
and the number of F2s selected was less than in parallel
conventionally selected populations, it is hardly surprising
that a lower level of genetic variance (presumed by planting
only 5% of the number of F2s in Gen-BP vs. Con-BP) did
not result in a yield advantage in the genomically selected
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TABLE 7 | Yield of F2:4 lines based on selection of the top 10 and 20% of GEBVs from different methods (GBLUP, GK, and rrGBLUP_imp) compared to a random
sample of 10 and 20% of all F2:4 lines, with 50× sampling (the top 10 and 20% t-test: Two-Sample Assuming Unequal Variances.

Sample Best 20% F2:4-predicted lines Sample Best 10% F2:4-predicted lines

20% GK GBLUP rrGBLUP_imp 10% GK GBLUP rrGBLUP_imp

Mean yield (ton/ha) 6.52 6.76 6.69 6.49 6.52 6.83 6.80 6.47

Variance 0.0036 0.1536 0.1081 0.0808 0.0077 0.1107 0.1334 0.0989

Observations (n) 50 42 42 43 50 21 20 21

Mean difference (D) 0.24 0.17 −0.03 0.31 0.28 −0.05

% Mean difference 3.68 2.61 −0.46 4.75 4.29 −0.77

Degree of freedom 43 43 45 21 20 21

t-Value 3.9823 3.3382 −0.6783 4.2767 3.3561 −0.7761

P (t < = t) one-tail 0.0001 0.0009 0.2505 0.0002 0.0016 0.2232

t critical one-tail 1.6811 1.6811 1.6794 1.7207 1.7247 1.7207

P (t < = t) two-tail 0.0003 0.0017 0.5011 0.0003 0.0031 0.4463

t critical two-tail 2.0167 2.0167 2.0141 2.0796 2.086 2.0796

GBLUP, genomic best linear unbiased prediction; rrGBLUP, Ridge Regression BLUP; GK, Gaussian Kernel.

FIGURE 6 | Experiment 2: Relationship between genomic-enabled predictive values of 213 F2 which were later advanced to F4 (F2:4) using models GK, GBLUP,
and rrGBLUP_imp. GBLUP, genomic best linear unbiased prediction; rrGBLUP, Ridge Regression BLUP; GK, Gaussian Kernel.

biparental-derived inbreds (Gen-BP) and the early generation
intercross derived (RCI) inbred populations; both on average
and in the highest yielding 20% of lines from each of the
population types.

When comparing genome-based predictions, we should also
emphasize that in this study the accuracy of the three methods
(GBLUP, GK, and rrGBLUP_imp) for predicting F2 plants
was measured at the F2:4. Therefore, any attempt to make
a precise estimate of errors among the three methods and

benchmarking results from genome-based methods with those
under conventional breeding methods in terms of biases and
errors are complex and out of the scope of this research. It
would be worthwhile to investigate further methods to optimize
prediction power in early generation wheat populations. If a
robust method can be determined, there are useful increases in
genetic gain from early generation genomic prediction in wheat,
particularly, in populations that are not varying for some of the
obvious drivers of yield that are easily selected phenotypically,
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such as height or flowering time. Considering there are roughly
one million F2 plants generated per year in the CIMMYT spring
bread wheat program, early generation genomic prediction will
likely be best targeted to certain types of populations that provide
the greatest probability of higher response to selection or where
there is little obvious variation amenable to phenotypic selection.

These evaluations give the first indications of genetic gains
from early generation GS for a highly complex trait in a practical
wheat breeding program.
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