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Dendritic cells (DC) are among the first 
cells to encounter pathogens and damage in 
peripheral tissues and, upon activation, DC 
migrate to lymph nodes where they activate 
and educate T cells to initiate and shape the 
immune response. DC present pathogen-
derived antigen to T cells and drive T cell 
differentiation into particular effector cells 
through the expression and secretion of 
co-stimulatory molecules and cytokines 
respectively. The study of DC biology has 
included the identification of multiple DC 
subsets in tissues and lymphoid organs, 
the differentiation and plasticity of DC 
subsets, the functional consequences of DC  
interaction with pathogen, control of  
DC migratory properties and the impact of 
DC on T cell activation and differentiation. In  
recent years sophisticated systems biology 
approaches have been developed to deepen 
our understanding of DC function. These 
studies have identified differences between 

DC subsets located in various tissues and critical factors that drive the outcome of the interaction 
between DC and T cells. DC are currently being used in in various clinical therapeutic settings, 
including as vaccines for cancer and autoimmune disease. A clear understanding of DC factors 
that contribute to specific immune responses is vital to the success of DC based therapies. This 
research topic will give a comprehensive overview of current issues in DC biology and provides 
an update on the clinical uses of DC in the therapy of autoimmunity and cancer. 
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Two photon image of a dendritic cell (green) 
interacting with a specific T cell (red) in the 
pancreatic lymph node of an NOD mouse.
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Dendritic cells (DC) play a critical role in the initiation of the
immune response, acting as sentinels in the tissues, reacting to
invading pathogens and then inducing the activation and differ-
entiation of naïve T cells. Since their discovery by Ralph Steinman
in the 1970s, we have learned a great deal about DC biology and
function. Distinct DC subsets exist in specific tissue niches and
within the secondary lymph nodes, and the study of the phenotype
and function of DC subsets in mice and humans has been an area
of great interest. DC influence the immune response by directing
the differentiation of T cells into functional subtypes important
for elimination of the relevant pathogen. DC also contribute to
disease pathogenesis, such as autoimmunity and cancer, through
failures in self-tolerance and promotion of an immunosuppres-
sive environment, respectively. In addition, because of their role
in molding T cell responses, DC have been tested in therapeutic
settings in both autoimmunity and cancer. In this research topic,
11 articles cover many aspects of current DC biology, ranging from
the classification and function of DC subsets, roles of DC in disease
pathogenesis to current use of DC in the therapeutic setting.

The topic begins with two reviews of normal DC function; one
is focused on the important topic of cross-presentation (1) and
the other on human plasmacytoid (p)DC (2). Cross-presentation
is the means by which DC are uniquely able to take up, process,
and present exogenous antigens in MHC class I molecules and
this review (1) describes novel findings on the role of intracel-
lular vesicular traffic in this process and how it is influenced
by inflammatory signals. pDCs were first identified as type 1
interferon-producing cells following acute viral infection and have
also been shown to have tolerogenic properties. The review by
Mathan et al. (2) focuses on interactions between human pDCs
and other cells of the immune system with a particular emphasis
on cell surface proteins that facilitate these interactions.

The next four articles in this research topic are original research
focusing on various aspects of DC function in vivo and in vitro
(3–6). DC maturation is induced by interaction with pathogen-
derived molecules such as LPS, but infections also induce produc-
tion of a large number of cytokines. Work by Hartmann et al. (3)
examined the effects of virally induced cytokines on the matura-
tion and function of human DC. These studies identified a set of
five cytokines that are critical for the induction DC maturation.
In addition, this study emphasizes a systems approach to studying
the complex effects of cytokine-induced DC maturation (3). DC
play an important role in maintaining tolerance to self-antigens

and the second article in this section describes the role of early
IL-10 production in induction of tolerance to a self-antigen (6).
This article builds on the intriguing observation by the same group
that immunization with foreign antigen induces a rapid upregu-
lation of pancreatic enzymes in splenic DC that is correlated with
the induction of immunity. The present article shows that immu-
nization with a self-antigen fails to induce pancreatic enzymes and
demonstrates a role for IL-10 in this phenomenon (6). Work by
Kokulus et al. (5) demonstrates the influence of mild chronic cold
stress on the phenotype and function of DC in normal and tumor-
bearing mice. These studies highlight the importance of regulating
ambient temperature when conducting experiments with experi-
mental animals and the impact of non-physiologic temperature.
Chronic human inflammatory diseases are often characterized by
changes in circulating monocyte and DC populations. The final
article in this section describes a novel flow cytometry panel, using
CD4 as a lineage marker that allows the enumeration of mono-
cyte, DC, and lymphocyte populations in a single panel (4). This
panel was validated in patients with immunodeficiency, cancer,
and inflammatory conditions.

The final group of five reviews highlights the role of DC in
either causing or ameliorating disease (7–11). Autoimmune dis-
eases are characterized by a breakdown of self-tolerance followed
by an immune response that causes damage to normal tissues. DC
play roles at all stages of the autoimmune response and these are
outlined in a review that focuses specifically on type 1 diabetes
(T1D) (11). This review also highlights the potential for using DC
to prevent or treat T1D and discusses the latest clinical trials using
or targeting DC in this disease (11). The second review focuses
on the many types of immunoregulatory DC and their role in
preventing inflammatory conditions such as autoimmunity, trans-
plant rejection, and atopic diseases (9). The last three reviews in
this research topic focus on the therapeutic use of DC as cancer
vaccines. In the first of these reviews, the importance of tertiary
lymphoid structures in the development of effective anti-tumor
immunity is discussed (8). The authors show that injection of DC,
expressing the transcription factor Tbet, into the tumor stimulates
the generation of tertiary lymphoid structures and contributes to
tumor eradication. The second provides an overview of the prepa-
ration, functional characteristics, and use of human DC in cancer
vaccines, with particular emphasis on the culture methods, mat-
uration cocktails, antigen formulation, and routes of delivery that
are currently in use (7). The final review in this research topic
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Morel and Butterfield DC control of immunity

focuses on the barriers to the generation of effective DC vac-
cines in cancer patients (10). In particular, this review outlines
the challenges posed by immunosuppressive monocyte popula-
tions, prevalent in cancer patients, which impede the generation
of immunostimulatory DC vaccines.

Thus, this research topic provides a timely overview of some of
the recent advances in DC biology and we look forward to many
new developments in this exciting field.
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Cross-presentation involves the presentation of peptides derived from internalized cargo
on major histocompatibility complex class I molecules by dendritic cells, a process critical
for tolerance and immunity. Detailed studies of the pathways mediating cross-presentation
have revealed that this process takes place in a specialized subcellular compartment with
a unique set of proteins. In this review, we focus on the recently appreciated role for
intracellular vesicular traffic, which serves to equip compartments such as endosomes
and phagosomes with the necessary apparatus for conducting the various steps of cross-
presentation. We also consider how these pathways may integrate with inflammatory
signals particularly from pattern recognition receptors that detect the presence of microbial
components during infection. We discuss the consequences of such signals on initiating
cross-presentation to stimulate adaptive CD8 T cell responses.

Keywords: cross-presentation, major histocompatibility complex class I, pattern recognition receptor, Toll-like
receptor, vesicular traffic, phagosomes, endosomes, dendritic cells

INTRODUCTION
Classically, endogenous antigens such as proteins synthesized by
virally infected cells or tumor cells, are presented on major his-
tocompatibility class I (MHC I) molecules for detection by CD8
T cells. However, a seminal study by Bevan (1) showed that in
animals immunized with fully allogeneic cells, cytotoxic CD8 T
cell responses were seen specific for minor antigens from the
graft that were presented on MHC I molecules of the host (1).
This finding indicated that antigens from the transplanted cells
could be internalized by antigen presenting cells (APC) of the
host and presented on the host MHC I molecules. Bevan termed
the activation of CD8 T cells to this process of antigen trans-
fer as “cross-priming,” and later the actual process of antigen
transfer was called “cross-presentation” (2). A once poorly defined
phenomenon, cross-presentation is now considered to be a crit-
ical mechanism to mediate immune responses against infectious
agents and tumors as well as to induce peripheral tolerance (3).

The importance of cross-presentation becomes apparent given
the existence of several viruses that exhibit strict tissue tro-
pisms such as papilloma virus where infection is mainly con-
fined to epithelial cells in the skin barrier (4). Other examples
for viruses that do not infect APC include encephalomyocardi-
tis virus (EMCV) and semliki forest virus (SFV) (5). Addition-
ally, some viruses such as herpes simplex virus (HSV), measles,
retrovirus, canarypox virus, vaccinia virus, and lymphocytic chori-
omeningitis virus infect APC, but impair direct presentation of
antigen (6–13). Additionally, cross-presentation has been demon-
strated to play a critical role in mediating CD8 T cell immune
responses against parasitic infections such as Toxoplasma gondii
(14). Cross-priming has also been studied in the context of

bacterial infections such as Listeria monocytogenes and Mycobac-
terium tuberculosis. In these infections, host defense is primar-
ily mediated by dendritic cells (DC) that phagocytose infected
apoptotic cells and mediate cross-priming, thus allowing for
effective cytotoxic T lymphocytes (CTL) responses against the
pathogens (15–17). Hence, cross-presentation allows for a mech-
anism through which the antigen can be presented by the APC
without the need for direct infection.

Although other phagocytes have been reported to cross-present
antigen, DC are considered to be the primary cross-presenting cell.
The superior ability of DC to cross-present is largely attributed
to their antigen processing capacity. Endocytic pathways in DC
preserve and retain antigen epitopes via low lysosomal proteolysis
and expression of protease inhibitors (18). This aspect makes sense
when one considers that DC pick up antigen in the peripheral tis-
sue and migrate for several hours-days (12–24 h for dermal DC and
3 days for Langerhans cells) reaching the lymph nodes (19). Thus,
instead of being processed and degraded prematurely, retention
of antigen would allow optimal cross-presentation for subsequent
recognition by lymph node resident naïve CD8 T cells. However,
DC subsets are heterogeneous in their ability to cross-present
antigens. Subsets such as conventional splenic and lymph node
resident CD8α+ DC, migratory DC populations such as lung and
dermal CD103+ DC as well as monocyte-derived inflammatory
DC excel at cross-presentation (20–24). It is still unclear why these
DC subsets are specialized for cross-presentation. Interestingly,
conventional CD8α+ DC as well migratory CD103+ DC popula-
tions appear to rely exclusively on Batf3 and IRF8 transcription
factors for their development (25–28). Therefore, it is curious to
ask if the ability to cross-present is developmentally controlled by
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Nair-Gupta and Blander Updates on mechanisms regulating cross-presentation

the Batf3/IRF8 transcription programs that enable these subsets to
have unique and specialized compartments geared toward cross-
presentation. On the other hand, in vitro studies argue that the
ability of splenic CD8α+ DC to cross-present antigen is induced
as a subsequent step in maturation aided by cytokines such as
granulocyte-macrophage colony-stimulating factor (GMCSF) or
exposure to microbial products (29).

Recent studies in human DC have proposed the lymphoid and
non-lymphoid resident BDCA3+ (CD141+) DC to be the human
counterparts of the cross-presenting murine lymphoid CD8α+

DC and non-lymphoid CD103+ DC (30–34). The BDCA3+ DC
subset is indeed an attractive candidate for the human homolog as
it shares with the murine CD8α+ and CD103+ DC several cell sur-
face markers, including DNGR1 and XCR1, transcription factors
such as Batf3 and IRF8, along with excelling at in vitro cross-
presentation assays. However, evidence also exists contradicting
the superiority of the BDCA3+ DC subset at cross-presentation
(35–37). Furthermore, patients harboring an autosomal domi-
nant mutation in IRF8 selectively lose BDCA-1+ DCs but not
BDCA3+ DCs in the peripheral blood, indicating that BDCA3+

DC is at least not developmentally regulated in the same manner
as murine cross-presenting subsets (38). Additionally although
Batf3 deficiency impairs development of BDCA3+ DC in vitro,
humanized mice reconstituted with Batf3 deficient progenitors
still display sufficient and comparable numbers of BDCA3+ DCs
(39). Thus, even though the human BDCA3+ DC subset appears
to be functionally related to the murine CD8α+ and CD103+ DC,
further studies are warranted to determine their developmental
program and subsequent specialization for cross-presentation.

Several groups have also focused their efforts on revealing
the intracellular pathways and molecular mechanisms mediating
cross-presentation at steady state. Three major mechanisms have
been determined. The phagosome-to-cytosol pathway involves
escape of the antigen into the cytosol, possibly mediated by
Sec61, followed by degradation by the proteasome and transport
of peptides into the endoplasmic reticulum (ER) by the trans-
porter associated with antigen presentation (TAP) to be loaded
onto MHC I molecules (40, 41). The ER-phagosome fusion path-
way involves fusion of the ER-Golgi intermediate compartment
(ERGIC) with the phagosome, leading to the formation of a so
called “ERgosome,” where ERGIC components such as TAP and
components of the peptide loading complex are recruited directly
to the phagosome. This recruitment is mediated through pair-
ing of the ER SNARE Sec22b with the plasma membrane SNARE
syntaxin-4, which is also found on phagosomes (42). In this model,
the antigen still requires escape into the cytosol for proteasomal
degradation and is then imported back to the “ERgosome” by TAP
to be loaded onto MHC I molecules (43, 44). In contrast to the
cytosolic pathways, the vacuolar pathway involves direct process-
ing of the antigen within the phagosome by endocytic proteases
such as cathepsins and subsequent loading of peptides onto MHC
I molecules (45).

Some of the above pathways suggest that cross-presentation
takes place in a specialized intracellular compartment. This com-
partment could be endosomes or phagosomes depending on the
size of the exogenous antigen and mode of internalization. For
instance, in the ERgosome model, cross-presentation takes place

in a subcellular compartment bearing characteristics of both the
ERGIC and the endosome/phagosome. In this review, we elaborate
on the vesicular pathways that serve to bring various components
of the cross-presentation machinery to such specialized intra-
cellular compartments. We discuss the unique combination of
proteins in these compartments that make it attractive for cross-
presentation at steady state and how this compartment might be
modified and further optimized for efficient cross-presentation in
the scenario of infection. We also review evidence for regulation
of cross-presentation during microbial stimulation and discuss if
this process can still take place at steady state.

NATURE OF THE CROSS-PRESENTING COMPARTMENT AT
STEADY STATE
In recent years, several groups have elucidated the architecture
of the “cross-presenting” compartment at steady state. This com-
partment contains several identified proteins brought in by dis-
tinct vesicular pathways. These proteins may all be present in
the compartment. Alternatively, these vesicular pathways may be
mutually exclusive of one another, culminating in the presence
of only some of these identified proteins. Regardless, these pro-
teins serve as important players in executing different steps of the
cross-presentation response (Figure 1).

MAINTENANCE OF OPTIMAL ALKALINE pH
As antigens are internalized by endocytosis or phagocytosis, they
undergo gradual proteolytic degradation along their journey from
early endosomes and phagosomes to lysosomes (Figure 1A). Once
in lysosomes, antigens are degraded by lysosomal proteases, which
could destroy potential peptide epitopes crucial for T cell activa-
tion. DC circumvent this problem by expressing low levels of lyso-
somal proteases (18). Additionally, since most of these proteases
function optimally at acidic pH (46), maintenance of a strongly
alkaline pH in the cross-presentation compartment would inhibit
protease activity, thus preventing overt and premature degradation
of antigens. To this end, DC were reported to have high phago-
somal pH, reaching values of 7.5–8 in contrast to macrophages
which rapidly acidified their phagosomes, reaching values of 4.5–
5 following phagocytosis of inert latex beads (47). Alkalinization
of phagosomes in DC was attributed to selective recruitment,
assembly and functioning of nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase NOX2. Finally, NOX2 activity was
shown to be crucial for cross-presentation as genetic deletion of
NOX2 subunit gp91phox led to abrogation of cross-presentation.

How does NOX2 reach the cross-presenting compartment?
Recruitment of NOX2 is facilitated by Rab27a (48), a small guano-
sine tri-phosphatase (GTPase), which was initially characterized to
mediate regulatory exocytosis of secretory vesicles in hematopoi-
etic and non-hematopoietic cells (49). In a separate study, the
Rac2 GTPase was demonstrated to also control the recruitment
and assembly of phagosomal NOX2 in splenic CD8α+ DC as well
as in in vitro derived bone-marrow derived DC (50). Additionally,
VAMP-8, a SNARE protein which interacts with plasma membrane
and phagosomal SNAREs syntaxin-4 and SNAP-23 (51), has also
been recently reported to play a role in NOX2 recruitment and
in mediating cross-presentation of phagocytic antigen (52). Inter-
estingly, the protozoan Leishmania specifically cleaves VAMP-8
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FIGURE 1 |The cross-presentation compartment at steady state. Several
vesicular pathways have been proposed to mediate delivery of key proteins
that play an integral role in the crucial steps of cross-presentation including
maintenance of alkaline pH (A), processing of antigen to peptides (B) and
subsequent loading of peptides onto MHC I molecules (C). (A) Delivery of
NOX2 via Rab27a, VAMP-8, and Rac2 is critical for maintaining an alkaline pH
in intracellular cross-presenting compartments. Alternatively, recruitment of
ERGIC via Sec22b also regulates pH and proteolytic activity in phagosomes.
The ERGIC may contain protease inhibitors such as Cystatin C and lipid bodies
(LB) that could directly alter phagosomal pH and enzymatic activity of
proteases. (B) In the vacuolar pathway, antigen is directly processed into
peptides by phagosome resident proteases such as cathepsins. In the
cytosolic pathway, the antigen may need to be first unfolded by GILT prior to
exit into the cytosol via a channel. This mystery translocon may be Sec61 and

could be present in ERGIC, thereby recruited to the cross-presenting
compartment via Sec22b. Once in the cytosol, antigen is then degraded into
peptides and shuttled back into the phagosome via phagosomal TAP. TAP is
dependent on Sec22b for its recruitment from ERGIC to endocytic
compartments. Finally, IRAP, which is present on Rab14+ and Syntaxin 6+

endosomes, is recruited to phagosomes and mediates trimming of imported
peptides that are further optimized for cross-presentation. (C) Lastly,
processed and trimmed peptides have to now be loaded onto MHC I
molecules. Source of MHC I in such compartments is unclear and could
either be recruited from (1) ERGIC via Sec22b or (2) recycling from plasma
membrane or (3) recruitment from endolysosomal compartments via CD74. In
all cases, the peptide loading complex (PLC) is recruited from ERGIC via
Sec22b to the compartment and can chaperone loading of exogenous foreign
peptides to create “cross-presentable” peptide-MHC complexes.

in phagocytes to prevent NOX2 assembly, thereby acidifying the
phagosomes, in order to evade the cross-presentation response.
However, it is still unclear if these GTPases and SNARE proteins
act in concert or independently of one another to mediate recruit-
ment of NOX2 and in turn to control cross-presentation. Given
that VAMP-8 also participates in trafficking of secretory vesicles
(53, 54), it is tempting to speculate that VAMP-8 and Rab27a
might be present in similar secretory granules and are routed to
the cross-presenting compartment upon entry of antigen.

In a second pathway, Sec22b mediated recruitment of ERGIC
components has additionally been implicated in the maintenance
of an alkaline pH (42). Sec22b silenced DC phagosomes have
higher levels of mature cathepsin D, increased proteolytic activ-
ity, leading to accelerated degradation of antigen. These results
therefore suggest that the ERGIC contains protease inhibitors.
Which protease inhibitors could be involved? The cystatin family
of protease inhibitors has been implicated to play a role in antigen
presentation. Cystatin C was demonstrated to inhibit degrada-
tion of CD74, leading to enhanced accumulation of MHC II in
endolysosomal compartments (31). Interestingly, cystatin C is
abundantly expressed by CD8α+ DC compared to CD8α− DC
from the spleen (32), and only partially colocalizes with endolyso-
somal compartments (31, 32). Given that the cellular localization
of cystatin C as well as its role in cross-presentation is still unclear,

a feasible possibility is that cystatin C could perhaps colocalize
with ERGIC and play a role in cross-presentation.

Another explanation for why recruitment of ERGIC would
delay phagosome maturation is that the ERGIC may contain lipid
bodies (LB) that have been implicated in regulating phagosomal
alkalinization and antigen cross-presentation (55). These LB accu-
mulate in the cytosol and on DC phagosomes in an interferon
(IFN)-inducible ER-resident GTPase (Igtp) dependent manner.
Specifically, Igtp was shown to interact with LB resident adipose
differentiation related protein (ADFP) to mediate formation of
LB, which were crucial for cross-presentation (55).

ANTIGEN PROCESSING
The cytosolic pathway model of cross-presentation stipulates that
once antigen is internalized, it has to make its way out of the
endosome/phagosome and into the cytosol for proteasomal degra-
dation (Figure 1B). It is generally thought that prior to export
into the cytosol, antigens may need to be unfolded. For certain
antigens, this is a challenge owing to specific di-sulfide bonds
holding the structure of the antigen together. In this case, gamma-
interferon-inducible lysosomal thiolreductase (GILT) has been
shown to be critical for cross-presentation of di-sulfide bonds
containing antigen derived from HSV infected cells (56). Once
unfolded, antigen is then routed to the cytosol through a channel,
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the identity of which still remains enigmatic and controversial.
Sec61, a translocon involved in the ER associated degradation
pathway (ERAD) was regarded as a top candidate given that
blocking Sec61 activity by using Pseudomonas aeruginosa bacteria
exotoxin A resulted in loss of cross-presentation of soluble OVA
antigen (41). However, the evidence for exotoxin A directly and
solely blocking Sec61 channel activity is still lacking. Interestingly,
DC lacking Sec22b SNARE protein via short hairpin ribonucleic
acid (shRNA) targeted deletion, showed impaired antigen export
from endocytic compartments, thus arguing for the recruitment
of an ERGIC resident translocon channel (42). Further studies
analyzing phagosomal proteomics of these Sec22b sufficient and
deficient DC would be integral to revealing the identity of the
enigmatic translocon.

Once in the cytosol, it is well accepted that the antigen under-
goes proteasomal degradation resulting in the generation of
peptides. These peptides are then reimported by TAP into the
lumen of the cross-presenting compartment (57). TAP is an ER
and ERGIC resident protein that has been demonstrated to be
recruited to phagosomes in a Sec22b dependent manner (42). Sev-
eral groups have confirmed the dependence of cross-presentation
on TAP, although in the case of certain bacterial antigens, cross-
presentation can take place even in the absence of TAP via the
vacuolar pathway where antigens are processed within endosomes
and phagosomes by resident proteases (3).

Upon internalization of exogenous antigens, newly gener-
ated peptides can be trimmed by endosomal insulin-regulated
aminopeptidase (IRAP) to be further optimized for cross-
presentation (58). IRAP−/− DC are impaired in their ability to
cross-present soluble and particulate antigen, thus implicating
the importance of IRAP in cross-presentation. IRAP colocalizes
with Rab14+ and syntaxin 6+ endosomes at steady state, and is
recruited to phagosomes after antigen uptake (58, 59). Whether
IRAP depends on Rab14 GTPase and syntaxin 6 SNARE proteins
for its delivery to the phagosomes remains to be studied.

PEPTIDE LOADING ON MHC I
Processed and trimmed peptides are now faced with the possibil-
ity of being loaded on MHC I molecules that are present within
endosomes and phagosomes (Figure 1C). A question that remains
is where these MHC I molecules are recruited from. An attractive
possibility is that MHC I molecules are present in the ERGIC and
that perhaps Sec22b can deliver MHC I along with its chaperone
proteins such as calreticulin and tapasin to the cross-presenting
compartment. However, analysis of MHC I molecules in cell
lines has revealed that MHC I molecules are transiently trafficked
through the ERGIC at steady state. In fact, MHC I accumulated in
ERGIC only in conditions where these molecules are not bound to
high affinity peptides which could occur in the absence of TAP or
calreticulin or when traffic out of the ERGIC is blocked (60–64).
Whether MHC I trafficking in APC occurs similarly is still unclear.

An alternative possibility is that MHC I may be derived from the
plasma membrane. Indeed, endocytosis and subsequent recycling
of MHC I has been extensively documented in several cell lines
where internalized MHC I are delivered to endosomal recycling
compartments (ERC) in a step prior to being re-routed to the
plasma membrane (63). Trafficking patterns of MHC I in APC are

less clear. Some studies in APC confirm the reliance on plasma
membrane derived MHC I, where internalization of surface MHC
I molecules was shown to be dependent on a conserved tyrosine
within the cytosolic domain of the MHC I, and to a lesser extent
on a conserved serine phosphorylation site (65, 66). Mutations in
these conserved sites resulted in inhibition of cross-presentation
both in vitro and in vivo. However, given the strong evidence in
cell lines for accumulation of MHC I in ERC, further studies are
warranted to determine the contribution of MHC I molecules
recycling through the ERC to cross-presentation.

Finally, it was also recently shown that CD74, which was orig-
inally characterized to route MHC II molecules from the ER to
lysosomal compartments (67), was also important in mediating
cross-presentation of viral and cell-associated antigen (68). CD74
was found in complex with immature endoglycosidase sensitive
MHC I, indicating that it associates with newly synthesized MHC
I in the ER (69). In CD74−/− DC, MHC I molecules were present
to a lesser extent in LAMP-1+ compartments, implying that CD74
delivers MHC I from the ER to endolysosomal compartments.

NATURE OF THE CROSS-PRESENTING COMPARTMENT
DURING INFECTION
In spite of these studies detailing the molecular and cellular
makeup of cross-presenting compartments at steady state, the
mechanisms underlying regulation and remodeling of this com-
partment during infection remain largely undefined. Upon uptake
of microbial or infected cellular cargo, the phagosomal or endoso-
mal compartment can be substantially modified by the acquisition
of pattern recognition receptors (PRRs) (16). PRRs are evolu-
tionarily conserved receptors that recognize and respond to con-
served pathogen-associated molecular patterns (PAMPs) which
are unique to microbes (70). Upon PRR engagement, intracellular
signal transduction pathways are initiated such as those mediated
by nuclear factor-κB (NF-κB), mitogen-activated protein kinases
(MAPKs), and IFN-regulatory factors (IRFs) (71). These path-
ways are critical for providing immunity against several pathogen
infections.

Several families of mammalian PRRs have been identified,
namely Toll-like receptors (TLRs), nucleotide-binding oligomer-
ization domain-like (NOD-like) receptors (NLRs), RIG-I like
receptors (RLRs), and C-type lectin receptors (CLRs) (72). Indeed,
TLRs were the first family of PRRs to be studied in detail (73–
75). We focus here on recent developments in the biology of TLR
that enable the recruitment of these receptors and assembly of
their signaling machinery. This recruitment aids in the transduc-
tion of responses from the compartment itself, allowing localized
phagosomal or endosomal specific control of responses, including
presentation of exogenous antigen on MHC I and MHC II mol-
ecules. To signal and regulate presentation of exogenous antigen
from endosomal compartments, TLRs first need to be recruited to
the relevant compartment.

TLR4
TLR4 is a plasma membrane resident “surface” TLR that can
be endocytosed and also signal from intracellular compartments
upon interaction with its ligand lipopolysaccharide (LPS).
TLR4 initially engages toll-interleukin 1 receptor (TIR)
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domain-containing adaptor protein (TIRAP) and myeloid dif-
ferentiation primary-response protein (MyD88) to initiate sig-
nal transduction from the plasma membrane (76). Subse-
quently, TLR4 is internalized into endocytic compartments
and engages TRIF-related adaptor molecule (TRAM) and TIR-
domain-containing adaptor inducing IFN-β (TRIF) (76). In
fact, blocking TLR4 endocytosis using dynamin inhibitors selec-
tively inhibits TRIF-TRAM mediated IRF3 dependent type I IFN
responses without affecting TIRAP-MyD88 dependent signal-
ing (77).

Recently, CD14 was shown to regulate the endocytosis of TLR4
from the plasma membrane during stimulation with LPS (78).
TLR4 acts as a cargo for CD14, which transports the receptor and
LPS to endosomes in a Syk and PLCγ2 dependent process where
TRIF signaling leads to IFN-β production. While CD14 is critical
for TLR4 endocytosis and IFN-β production in response to soluble
LPS, TLR4 endocytosis in DC can proceed in the absence of CD14
during phagocytosis of E. coli or LPS-coated beads, although a
lower percent of TLR4 is internalized compared to soluble LPS.
Notably, despite lower percent TLR4 internalization in response
to these particles, IFN-β production, which relies on TLR4 signal-
ing from endocytic compartments, was unaffected in the absence
of CD14. This result suggests that in the case of phagocytosed
cargo, TLR4 can accumulate on phagosomes from another source
independently of the plasma membrane.

Indeed, the small GTPase Rab11a was shown to play a cru-
cial role in trafficking TLR4 from ERC to phagosomes containing
gram-negative and not gram-positive bacteria, leading to IRF3
activation and IFN-β transcription (79). Additionally, adaptor
protein 3 (AP-3) also plays a role in recruiting TLR4 and MyD88
from intracellular stores to phagosomes containing TLR4 lig-
ands (80). Interestingly, AP-3 dependent recruitment of TLR4 and
MyD88 was crucial for mediating production of pro-inflammatory
cytokines selectively in response to phagocytic cargo and not to
soluble LPS. Hence, the mode of uptake can dictate the pathway
of delivery of TLR4.

It is curious to ask if the recruitment of TLR4 via these regu-
latory transport proteins contributes toward antigen presentation
and adaptive immunity. For MHC II presentation, phagosome
autonomous TLR4 signaling led to accelerated phagosome matu-
ration and subsequent degradation of CD74 specifically in phago-
somes bearing TLR ligands and not other phagosomes in the
same DC (81, 82). Additionally, impaired recruitment of TLR4
to phagosomes in AP-3 deficient mice also led to decreased MHC
II presentation (80). However, whether any of these proteins reg-
ulate cross-presentation of antigen internalized via endocytosis or
phagocytosis remains to be investigated.

TLR9
TLR9 is an endosomal receptor and begins its journey in the ER,
where it associates with the chaperone protein Unc-93 homolog
B (UNC93B), which mediates its transport to endosomes (83).
Recently, recruitment of TLR9 and UNC93B was demonstrated
selectively to phagosomes that contained DNA and anti-DNA
immunoglobulin (Ig) complexes (84). Importantly, phagosomal
TLR9 recruitment did not depend on its ability to sense the pres-
ence of TLR9 ligand DNA but instead relied on Fc receptor γ

(FcRγ) mediated engagement by Ig complexes. These data sug-
gest that Ig mediated FcRγ signaling leads to recruitment of
TLR9 to phagosomes. When these phagosomes also contain the
TLR9 ligand DNA, TLR9 signaling is engaged, resulting in IFN-α
secretion. Given that engagement of FcRγ prepares phagosomes
for optimal TLR9 signaling, it is tempting to speculate that this
synergy between FcRγ and TLR9 may also impact subsequent
cross-presentation responses of antigen complexed with DNA-Ig
aggregates.

TLR2
TLR2 is a cell surface TLR that synergizes with other surface TLRs
such as TLR1 and TLR6 to mediate MyD88 dependent signal trans-
duction responses. Similar to TLR4, there are reports showing
TLR2 localization to endosomal compartments specifically early
endosomes, lysosomes, and Rab11a+ vesicles in monocytes (85).
Some studies also indicate TLR2 dependent induction of type I
IFN signaling from endocytic compartments (86, 87). How TLR2
is directed to such compartments is still unclear.

PRR REGULATION OF CROSS-PRESENTATION
Studies looking at the role of PRRs in cross-presentation have
been largely limited to TLRs and CLRs. These receptors are well
suited to regulate cross-presentation as they are present at the
plasma membrane as well as along the endocytic pathway, where
they encounter microbial antigen and initiate signaling to regulate
adaptive immune responses such as cross-presentation. Here, we
present evidence supporting regulation by these receptors.

TOLL-LIKE RECEPTORS
There are several studies that show that TLR signaling enhances
cross-priming of CD8 T cells (88). The in vivo contribution
of TLR3 to cross-priming became clear after an elegant study
demonstrated that signaling via TLR3 leads to maturation of DC
and therefore promotes virus-specific CD8 T cell responses (5).
Another study showed that injecting mice with apoptotic vesi-
cles derived from M. tuberculosis infected macrophages, activates
DC via TLR2 in a MyD88 dependent manner and can cross-prime
CD8 T cells, thereby protecting mice from developing tuberculosis
infection (17). Moreover, by employing biodegradable micros-
pheres for the delivery of phagocytic cargo to DC, Schlosser et al.
were able to demonstrate that the presence of both TLR ligand
and antigen within the same phagosome yielded efficient CTL
responses as compared to when the ligand and antigen are located
in separate phagosomes (89).

One caveat of the studies above is the inability to distinguish
the effects of TLR signaling on cross-presentation versus cross-
priming. For example, a couple of studies revealed that TLR3 and
TLR9 ligands could both induce cross-presentation of OVA by DC
(90, 91). This induction of cross-presentation was found to be
dependent on TLR signaling as DC from Tlr9−/− and Myd88−/−

mice were unable to cross-present antigen after exposure to TLR
ligands. However, the authors of these studies relied exclusively
on T cell activation as a measure of displayed peptide-MHC I
complexes. Given that TLR signaling also controls DC maturation
and expression of co-stimulatory molecules that are pivotal for T
cell activation, it is difficult to rule out the confounding factor of
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impaired co-stimulation and decreased DC maturation seen with
TLR deficient DC. In fact, the inability of Myd88−/− DC to acti-
vate CD8 T cells after phagocytosis of virally infected cells was
fully restored by treatment with a CD40 cross-linking antibody
suggesting that defective cross-priming was due to impaired TLR
induced co-stimulation rather than cross-presentation per se in
this particular case (92).

The most direct way to assess cross-presentation is to use
a conformation dependent antibody directly against preformed
peptide-MHC I complexes on the surface of the APC. However,
these antibodies are quite insensitive and work successfully only
when DC were pulsed with large amounts of antigen. Neverthe-
less, Christian Kurts’ group successfully used 25D1.16 antibody
to detect SIINFEKL-MHC I complexes and thus demonstrated
increased cross-presentation with TLR signaling after uptake of
soluble OVA in the presence of LPS (93). This increase in cross-
presentation was mediated by TLR4, MyD88 and not TRIF signal-
ing. However, this study was focused on the cross-presentation of
soluble antigen and hence whether TLR signaling enhances cross-
presentation of phagocytosed particulate antigen remains to be
determined.

C-TYPE LECTIN RECEPTORS
C-type lectin receptors contain at least one carbohydrate recog-
nition domain via which they bind to sugar moieties on self or
microbial derived antigens. CLRs can regulate cross-presentation,
although most of them do so by regulating antigen uptake. For
example, CD209 and mannose receptor have been reported to
increase internalization of cargo and target antigens to early
endosomes for cross-presentation (94, 95). DNGR1 was also
reported to enhance cross-presentation of cellular antigens derived
from necrotic dying cells (96). Interestingly, despite intact mat-
uration phenotypes and maintenance of signals to relay co-
stimulation in DNGR1 deficient DC, these DC were impaired
in cross-presentation, suggesting specific regulation of cross-
presentation rather than cross-priming (97). DNGR1 is also
expressed at high levels in subsets of DC specialized for cross-
presentation including murine CD8α+ DCs and tissue-resident
CD103+ CD11b− DCs as well as in human counterparts BDCA3+

DC (39).

CAN CROSS-PRESENTATION STILL TAKE PLACE AT STEADY
STATE?
In the absence of inflammation or infection, cross-presentation of
self-antigens at steady state can take place, leading to tolerance to
host antigens and deletion of potentially auto-reactive CD8 T cells.
Indeed, generation and activity of CTL must be tightly controlled
to avoid auto-reactivity to self, given the potency of CTL in killing
infected target host cells (98, 99). Here, we review existing evidence
for the role of cross-presentation in both central and peripheral
tolerance mechanisms.

PERIPHERAL TOLERANCE
Peripheral tolerance constitutes mechanisms of tolerance that
take place after mature lymphocytes enter into the periphery.
There are several studies that argue for the constitutive TLR or
PRR-independent nature of cross-presentation for the induction

of peripheral cross-tolerance to non-inflammatory self-antigens,
leading to deletion of self-reactive CTL. Many of these models
employed the expression of neo-self-antigens under the control
of tissue-specific promoters like the rat insulin promoter (RIP).
These models ensure that the antigens are expressed outside of
the thymus, allowing researchers to specifically study peripheral
tolerance.

Cross-tolerance was first demonstrated when OVA specific
OT-I CD8 T cells were efficiently deleted after being adoptively
transferred into a mouse expressing OVA under control of the
RIP (RIP-mOVA) (100). Cross-tolerance was also shown to be
important for the control of endogenous auto-reactive CD8 T
cells specific for naturally expressed self-antigen (101). In this
study, the authors bred the RIP-mOVA mice with mice lacking
GTPase Rac1 in CD11c+ cells to generate Rac1-RIP mice. Conve-
niently, deficiency in Rac1 GTPase selectively affected the ability
of CD8α+ DC to internalize antigen (33), resulting in impaired
cross-presentation while leaving the classical MHC II and MHC I
pathways of antigen presentation unaffected (101). Consequently,
they were able to demonstrate that DC in Rac1-RIP mice failed
to cross-present transgenic self-antigen and hence failed to delete
transferred OT-I T cells. Moreover these mice developed symp-
toms of diabetes. Interestingly, mice that just had Rac1 deleted
in CD11c+ cells also had higher numbers of endogenous CD8
T cells, although the mice seemed healthy and did not develop
autoimmunity. However, when CD25 depleted T cells from these
mice were transferred into lymphopenic hosts, the hosts devel-
oped several signs of autoimmunity as a result of homeostatic T
cell proliferation. Hence, the above studies clearly demonstrate the
role of cross-presentation under steady state to induce peripheral
tolerance.

An interesting study by Christian Kurts’ group looked to see
if tolerogenic DC could be converted into autoimmunogenic DC
after exposure to stimulating conditions such as TLR ligands (102).
TLR ligands were able to induce CTL mediated autoimmunity only
in cases where antigen specific CD4 T cell help was provided con-
comitantly. These results demonstrated that the mere presence of
TLR ligands, such as those present in commensal bacteria or those
derived from the use of vaccine adjuvants, is not sufficient to break
cross-tolerance mechanisms.

CENTRAL TOLERANCE
In addition to peripheral tolerance, cross-presentation was also
implicated in the induction of central tolerance (103). Cen-
tral tolerance is induced in the thymus where developing thy-
mocytes that recognize peptide-MHC complexes are positively
selected to express either CD4 or CD8 molecules. Subsequently,
thymocytes that are able to recognize self-peptide-MHC com-
plexes with high affinity are efficiently deleted via negative selec-
tion. Medullary thymic epithelial cells (mTECs) and DC play a
critical role in mediating negative selection. mTECs exclusively
express a broad range of tissue-specific antigens (TSA) (104,
105). In spite of expressing both MHC II and MHC I molecules,
mTECs are poor APC. Bevan’s group was the first to show that
bone-marrow derived cells in the thymus were capable of cross-
presenting antigen captured from mTECs (103). However, this
study also showed that mTECs, by themselves, were capable of
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direct presentation on MHC I molecules and were sufficient to
induce CD8 T cell deletion, thus diminishing the importance of
cross-presentation in central tolerance. A recent report does point
to the relevance of cross-presentation by human thymic DC. Upon
analyzing peptides eluted from both MHC I and MHC II mole-
cules of human thymic DC, the authors observed that around
22% of the MHC I ligands were derived from proteins present
in the vesicular/extracellular compartment the presentation of
which would typically be associated with the classical MHC II
pathway (30).

CONCLUSION
The studies we reviewed here certainly point to the constitu-
tive nature of cross-presentation, however, an increasingly large
body of work now provides strong evidence for the capacity to
enhance cross-presentation by signals from inflammatory PRRs.
Having mechanisms of regulation in place allows for the genera-
tion of robust CTL responses during an infection while maintain-
ing induction of tolerance at steady state. Further insight into
these regulatory mechanisms may potentially help in tailoring
better therapeutic strategies to combat infectious agents as well
as tumors, while preventing autoimmunity. Hence, elucidating
the mechanistic differences in vesicular trafficking between steady
state and inflammatory cross-presentation would be important
for developing new rationales in the design of safe and effec-
tive vaccines for anti-viral, anti-bacterial as well as anti-tumor
immunity.
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Plasmacytoid dendritic cells (pDCs) are a specific subset of naturally occurring dendritic
cells, that secrete large amounts of Type I interferon and play an important role in the
immune response against viral infection. Several studies have highlighted that they are
also effective antigen presenting cells, making them an interesting target for immunother-
apy against cancer. However, the modes of action of pDCs are not restricted to antigen
presentation and IFN secretion alone. In this review we will highlight a selection of cell
surface proteins expressed by human pDCs that may facilitate communication with other
immune cells, and we will discuss the implications of these molecules for pDC-driven
immune responses.

Keywords: cross talk, surface markers,T lymphocytes, viral infection, pDC migration

INTRODUCTION
Within the heterogeneous dendritic cell (DC) family, two main
subsets of naturally occurring blood DCs can be discriminated
based on their phenotype and functional characteristics: myeloid
DCs (mDCs) and plasmacytoid dendritic cells (pDCs). The mDC
subset can be further divided in CD1c+ and CD141+, which show
a high level of similarity in protein expression yet have also specific
functions in the initiation of adaptive immune responses. CD1c+

mDCs have been shown to readily stimulate naïve CD4+ T cells
and to secrete high amounts of IL-12 in response to toll-like recep-
tor (TLR) ligation, whereas CD141+ DCs do not secrete much
IL-12 but are well equipped to take up dead and necrotic cells
for subsequent cross presentation of derived antigens to CD8+

T cells (1–4). In contrast to mDCs, pDCs have a very different
protein expression profile reflecting their important and unique
function in the secretion of IFN-α and anti-viral immune response
(1, 2, 5). We and others have however recently demonstrated that
like mDCs, pDCs are also very well capable of presenting both
soluble and particulate exogenous antigens on both major histo-
compatibility complex (MHC) class I and II (6). In recent years,
numerous studies have been performed to characterize the expres-
sion of pathogen recognition receptors (PRRs), TLRs, Fc receptors,
C-type lectin (CTL) receptors, and other surface receptors on these
cells (7–13). Furthermore, these studies have emphasized both
similarities and differences between DC subtypes in their cytokine
release profiles, and their ability to acquire, process, and present
antigens (5, 14–17). These characteristics of the different DC sub-
types have recently been reviewed extensively elsewhere (2, 4, 6,
18). Here, we will focus our attention specifically on pDCs, their
role in immunity and, more specifically, their (potential) direct
interactions with cells of the innate and adaptive immune system

via cell surface molecules. Before going into detail about these cell
surface receptors and how they mediate intercellular communica-
tion, we will first give a brief summary on general pDC function
and localization to provide a context in which these intercellular
communications take place. Although studies on murine pDCs are
numerous, and commonalities between human and murine pDCs
certainly exist, major differences between pDC of both species have
also been reported. Therefore, in order to prevent confusion we
limited ourselves to human pDCs unless explicit stated otherwise.

pDC FUNCTION
A perturbation of the homeostatic condition that sets off the
immune system can trigger either an immunogenic (immunos-
timulatory) or a tolerogenic (immunosuppressive) response,
depending on the local circumstances and type of disease.
By default, immature pDCs are tolerogenic, whereas activated
(mature) pDCs can have both immunogenic and tolerogenic
capacities depending on the local environment in which they
are activated (19–21). pDCs are characterized as Lin− MHC-
II+ CD123 (IL3R)+ CD4+ CD303(BDCA-2)+ CD304(BDCA4;
Neuropilin-1)+ and are mostly known for their ability to quickly
produce large amounts of the Type I interferons (IFNs), IFN-α, and
IFN-β, following viral infection, implicating pDCs as an impor-
tant contributor during the early phase of anti-viral response
(2, 22, 23).

The most important documented enveloped viruses known
to stimulate Type I IFN release by pDCs are human immun-
odeficiency virus type 1 (HIV-1), herpes simplex virus (HSV),
and influenza virus (24–27). Furthermore, parasites and bacteria
containing DNA with unmethylated CpG sequences can trigger
pDC activation (28–31). In addition to the anti-viral capacity,
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Type I IFN release by pDCs has also been reported to be impor-
tant for pDC survival, (m)DC-mediated CD4+ and CD8+ T cell
responses, mDC differentiation, cross presentation, upregulation
of co-stimulatory MHC molecules and activation of natural killer
(NK), and B cells (32–34).

Because of their expression of the endosomal TLRs TLR7 and 9,
pDCs, in contrast to other (immune) cells, do not need to become
infected to respond to viruses or intracellular bacteria (35, 36).
TLR7 recognizes guanosine or uridine-rich, single-stranded RNA
from viruses or synthetic products like guanosine analogs such
as R848. TLR9 senses single stranded DNA containing unmethy-
lated CpG motifs, which are usually found in bacterial and viral
genomes, and additionally senses for synthetic oligonucleotides,
such as CpG-ODN (37, 38). pDCs show differential responses
based on the type of virus/bacteria that is recognized, which has
been suggested to be attributed to a different site of TLR activation
within the endosomal system (39). For example, depending on the
subtype of CpG recognized (CpG-A, CpG-B, CpG-C) the outcome
of the response can be different. While CpG-A, that triggers TLR9
in early endosomes, induces IFN-α release, CpG-B, signaling from
late endosomes, leads to tumor necrosis factor α (TNF-α) and
IL-6 production by pDCs (40). In addition, the interplay of the
various PRRs tailors the pDC response to a specific pathogenic
threat. In addition to TLRs, pDCs express several CLRs, including
BDCA-2, DEC-205, dectin-1 and DCIR, and Fc receptor CD32,
but they lack for instance DC-SIGN (22, 41–45). Although the full
repertoire of receptors is still under investigation, most of these
receptors drive antigen uptake, and in concert with TLR7 and 9,
coordinate pDC-mediated immune responses.

pDC LOCALIZATION
Immature pDCs circulate in the blood but have been equipped
with migratory capacities as they are found within lymph nodes
(LNs), tumors, and near sites of viral/bacterial infection (46,
47). At all these sites pDCs are able to promote inflammatory
responses by attracting other immune cells through chemokine
release, and the subsequent modulation of these cells via cytokines
or direct cell–cell interactions (48–51). However, in contrast to
human myeloid mDCs or murine pDCs studies, reports addressing
which inflammatory chemokines and adhesion receptors specif-
ically drive migration of human pDCs are scarce (52). Human
pDCs express chemotactic receptors C-C chemokine receptor
type 7 (CCR7), chemokine (C-X-C motif) receptor 3 (CXCR3),
CXCR4, and ChemR23 (CMKLR1) that likely mediate migration
of pDCs into lymphoid organs and/or into inflamed tissue (48,
52–55). However, due to conflicting reports the role of classi-
cal lymphoid tissue CCR7− Chemokine (C-C motif) ligand 21
(CCL21)/CCL19 pathways in resting human pDCs, is not conclu-
sive yet (53, 56). Several studies show a high expression of CCR7 on
“resting” blood DCs while others have reported a very low or a lack
of expression on resting pDCs (53, 57–60). Similar to mDCs and
murine pDCs, human pDCs upregulate expression of CCR7 upon
TLR stimulation and migrate toward CCL21 molecules, suggesting
an important role of CCR7 at least for the migration of mature
pDCs to the LN (55). Furthermore IL-3 produced by T cells in
the LN or by activated endothelial cells can lead to the upregula-
tion of chemokine receptor 6 (CCR6) and CCR10 that may drive

migration of activated IFN producing pDCs to inflamed skin or
mucosa (61).

In contrast to mDCs, which migrate from peripheral tissue to
secondary lymphoid organs via afferent lymphatic vessels, pDCs
have been described to migrate to the LN mostly directly from the
blood via high endothelial venules (HEVs) (62, 63). Since pDCs
first need to engage and traverse the endothelial cells lining of
the blood vessels, endothelial cells likely represent the first cellular
contact pDCs will engage in after leaving the blood stream. pDC
would require a similar migration capacity to enter into inflamed
or tumor tissue, which also requires interaction with endothelial
cells and extravasation. Next, within the LN, or at the site of infec-
tious or cancerous lesions, pDCs may encounter various immune
cells. In the LN, pDC have been found in close contact with T
lymphocytes, Invariant Natural Killer T (iNKT) cells, B lympho-
cytes, and NK cells (21, 24, 42, 64–66). At sites of infection pDCs
might activate or get activated by mDCs and NK cells, whereas
within the tumor microenvironment pDCs are known to interact
predominantly with tumor cells and regulatory T (Treg) cells (67,
68). Below we have summarized the evidence reported thus far
for each of these (potential) interactions, and the circumstances
under which they occur (Figure 1).

ENDOTHELIAL CELLS
Depending on their location (peripheral tissue or LN) and acti-
vation state, endothelial cells have been shown to express distinct
cell surface molecules and to secrete a variety of chemokines and
cytokines that may aid leukocyte transmigration and regulate the
activation state of the migrating cells (69). Endothelial cells thus
not only facilitate pDC transmigration into the site of infection,
the tumor lesion, or the LN but may also have the potency to
influence pDCs mediated immune responses trough pro- or anti-
inflammatory cytokines as well as growth factors (69). Indeed,
endothelial cells also produce IL-3 and VEGF that bind and trig-
ger pDC marker proteins CD123 and BDCA4 respectively, and
likely will promote pDC survival and migration after crossing
the endothelial barrier. Documentation however of the crosstalk
between human pDCs and endothelia is scarce and limited to a
few recent studies that we will discuss. Intriguingly, and in con-
trast to murine pDCs, both resting and matured human pDCs
(stimulated by influenza virus) uniquely express the receptor for
chemerin, ChemR23 (48). Chemerin is present on the surface of
endothelial cells in the lumen of HEVs as well as in blood vessels of
inflamed tissue. The interaction between endothelial cell-bound
chemerin and pDC ChemR23 seems to play a crucial role in the
migration of pDC from the blood both into LNs and into inflamed
tissue (Figure 2) (48, 70, 71). Like pDCs, T cells also migrate from
the blood to the LN via HEVs and thus pDCs may exploit a similar
set of molecules as used by T cells. Indeed, pDCs express adhesion
molecules CD31, CD43, CD44, CD47, CD62L, CD99, and CD162
(SELPLG, CLA) that may play an important role in the tethering
and rolling of pDCs on endothelial cells, but for most of these mol-
ecules, functional data for a role on human pDCs is lacking (54, 72,
73). The Lymphocyte function-associated antigen 1 (LFA-1) and
very late antigen 1 (VLA-1) (CD49a/CD29) molecules might play
an important role in subsequent firm adhesion and transmigration
of pDCs (72). Although the expression of all these molecules was
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FIGURE 1 | Plasmacytoid dendritic cell have the capacity to interact with
various immune cells through an array of surface molecules. The
expressed surface molecules of each cell type are divided into confirmed and
potential interactions. The “confirmed” molecules have been reported to have

a functional effect. Molecules listed in the “potential” column are molecules
that have been found on human pDC but without functional data reported in
literature. Molecules playing a potential role in humans, but already confirmed
with functional studies in mouse are depicted in red.

FIGURE 2 | Ligand/receptor paring of a pDC with an endothelial cell and the maturation state/activation stimuli associated with ligand or receptor
expression on the pDC surface.
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initially only detected by microarray, with the exception of CD44,
most were confirmed by flow cytometry (74). Furthermore, flow
cytometry demonstrated that expression of both CD62L (moder-
ately) and CD99 was downregulated upon exposure to IL-3 and
HSV, indicating that activated pDCs may take different migra-
tory routes compared to their immature counterparts (74). While
immature pDCs express CD62L and use HEVs to migrate into the
LN, downregulation of CD62L on mature pDCs suggests that these
cells enter LN without passing HEV, but rather through the lym-
phatic vessels. Furthermore, another study identified a cleavage of
CD62L after entering the HEV suggesting this molecule may have
become obsolete for pDCs following this pathway (75). In skin, in
contrast, after transversing the vessel wall expression of CD62L on
pDC remains high, indicating that in this case it may still have a
function at a later stage (54).

In summary, although there is evidence for Intercellular Adhe-
sion Molecule 1 (ICAM-1)/LFA, CD31/CD38, and CD34/CD62L
interaction between pDCs and endothelial cells, until now, only
the chemerin/ChemR23 interaction has been conclusively demon-
strated to play a role during the migration process. The migratory
function of the other adhesion molecules reportedly expressed by
human pDC are currently only hypothetical and based on knowl-
edge from other leukocytes or murine cells. Furthermore also the
role of endothelia in the regulation of the pDC activation state
awaits further study.

T CELLS
During infection, immature DCs located in the inflamed tissue get
activated through pathogenic interaction and pro-inflammatory
cytokines. Mature (activated) DCs subsequently translocate to the
LN and induce naïve T cells to differentiate into effector T cells.
Based on the repertoire of danger signals, effector T cells will
have different characteristics and will evoke a different immune

response. pDCs have an important role in coordinating such an
immune response, since the molecules involved in the interaction
between DCs and T cells determine T cell polarization (Th1, Th2,
Th17). Numerous studies have established that pDCs are bona
fide antigen presenting cells (APCs), capable of presenting exoge-
nous antigens on both MHC class I and II molecules and thus
can trigger both CD4+ T helper (Th) cells and CD8+ cytotoxic
T cells (5, 26, 76–78). The nuances of pDCs antigen process-
ing and presentation have recently been reviewed by Guery and
Hugues (42) and Nierkens et al. (79). Here, we focus our atten-
tion on how pDC cell surface receptors may skew T cell function
(Figure 3). Freshly isolated (immature) pDCs are known to induce
CD4+ T cell anergy presumably because they lack co-stimulatory
molecules; conversely, activated pDC clearly induce a broad spec-
trum of T cell differentiation, for example, Th1, Th2, Th17, and
Treg, based on the cytokines secreted and cell surface proteins
expressed (21, 80–84). Like mDCs, activated pDC express high
levels of MHC molecules and the co-stimulatory molecules CD80
(B7-1), CD86 (B7-2), and CD83 to present antigens and fully
license and activate T cells (5,6). Several studies have demonstrated
that (virally) matured pDCs, through the release of cytokines,
mostly induce a Th1 phenotype (IFN-γ/Il-12 in response to CpG,
virus) but Th2 (IL-4) and Th17 (IL-17) skewing has also been
reported when pDC are activated with IL-3 or CD40 and TLR7
ligands, respectively (82, 85–87). Furthermore IL-21 (produced
in the LN) was shown to trigger the release of Granzyme B by
TLR-activated pDCs thereby dampening CD4+ T cell prolifer-
ation (88). Together these studies show how pDCs may regulate
immune responses. Apart from cytokines released by pDCs, several
pDC surface receptors may directly affect T cell skewing and func-
tion, including the inducible T-cell co-stimulator ligand (ICOSL).
pDCs express ICOSLG when activated by CpG-(A, B, and C) IL-
3/CD40L or virus (Flu/HSV) (83). ICOSLG is the ligand for the

FIGURE 3 | Ligand/receptor paring of a pDC with aT cell and the maturation state/activation stimuli associated with ligand or receptor expression on
the pDC surface.
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T-cell-specific cell surface receptor inducible costimulator (ICOS)
and has been shown to trigger naive CD4+ T cells to produce IL-10
during both pDC Th1 or Th2 skewing in response to CpG/virally
or IL-3/CD40L-matured pDCs, respectively (83, 84). It has been
suggested that ICOSL-activated pDCs generate IL-10 producing
Tregs to dampen immune responses, preventing excessive inflam-
mation (83). Furthermore TLR activated, but not resting pDCs
and mDCs, express programed death receptor-ligand 1 (PD-L1),
which may induce T cells anergy/suppresses T cell activation by
binding to its receptor, program death ligand 1 (PD1), which
is expressed by T cells (89, 90). The immunosuppressive effect
of PD-L1 has been confirmed by using blocking antibodies on
DCs, and additionally in follow-up studies where blocking the
PD-L1/PD1 interaction lead to “enhanced tumor-specific T cell
expansion and activation” (6, 91, 92). The surface receptor OX40,
which is expressed on IL-3 activated pDCs, can induce a Th2 T cell
response resulting in IL-4, IL-5, and IL-13 release by CD4+ T cells
(93, 94).

Furthermore, after stimulation either with synthetic TLR7 and
9 agonists or with the natural TLR7 agonists, like influenza virus or
UV-inactivated HSV type 1(HSVUV) pDCs can induce programed
cell death/apoptosis, by expressing tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL) (74, 95, 96). TRAIL expression
on pDCs uniquely correlates with viral load, and the capacity to
kill HIV-infected CD4+ T cells by binding to the TRAIL receptor,
a process described as “TRAIL-dependent pDC-mediated killing”
(97). However, given the very limited cell numbers, it remains to be
seen how important TRAIL+ pDCs are in clearing a viral infection
via the direct killing of infected cells (97, 98).

Another surface molecule expressed on TLR-activated pDCs
that may affect T cell function is the lectin-like transcript 1 (LLT1),
which in addition to activated pDCs, is expressed by most acti-
vated lymphocytes (including B cells, T cells, and NK cells) and
mature monocyte-derived DCs (99). LLT1 is a ligand of CD161
(NKR-P1A), which is expressed by subsets of T cells (e.g., Th1,
Th17, and a subpopulation of CD8+ T cells) and NK cells. When
ligated LLT1 triggers T cell proliferation and IFN-γ secretion as
well as inhibition of NK cell cytotoxicity (99–102). Thus, LLT1 on
pDCs may serve as a co-stimulatory molecule, and after binding
to CD161 expressing T cells, could drive proliferation and IFN-γ
secretion (51).

So far, we discussed how pDC receptors may affect T cell func-
tion but of course, conversely, T cells may also influence pDC
function. In a multicellular immune cell signaling cascade the pre-
sentation of viral antigens by pDCs brings about IL-2 release by
T cells as well as CD40L expression. T cell CD40L upon binding
to CD40 on pDCs, triggers IL-6 release by pDC, which in turn
enables B cell plasma blasts to become antibody-secreting plasma
cells (Figure 8) (21, 64).

In summary, while immature pDCs predominantly induce T
cell anergy, their activated counterparts may have either inhibitory
or activating effects on T cells. Which of the latter in the case
depends on stimuli that trigger pDC maturation and which
cytokines and surface molecules are expressed as a result. Thus
pDCs play pivotal role in T cell activation and fine tuning of the
adaptive immune response.

iNKT CELLS
Natural Killer T (NKT) cells form a specialized T cell subset
expressing a semi-invariant T cell receptor (TCR-αβ) and surface
antigens traditionally associated with NK cells. The unique TCR
on their cell surface enables NKT cells to recognize glycolipid anti-
gens rather than peptides, presented in the context of the MHC
class I-like molecule, CD1d (103). The most well characterized
subset of NKT cells are called iNKT cells, since they express an
invariant TCR-α chain, and are reactive to the potent NKT cell
agonists α-galactosylceramide (α-GalCer) (103).

Studies have shown that pDCs interact with iNKT cells directly,
both via cell–cell interactions and by cytokine release (104). In con-
trast to the mDCs, pDCs lack the expression of CD1d, which is an
important molecule for crosstalk with iNKT cells (105). Nonethe-
less, over the past few years the ability of iNKT cell to“sense”subtle
changes within their microenvironment in a CD1d-independent
mechanism, uncovered that cytokines released by pDCs are essen-
tial (106, 107). Indeed, CpG activated pDCs upregulate activation
markers on iNKT cells via TNF-α and IFN-α release, and selec-
tively enhance double-negative iNKT cell survival but not that
of other NKT cell populations (104). However, the interplay of
iNKT cells with pDCs alone is not sufficient for iNKT expansion
and does not lead to a cytokine release by iNKT cells. Rather,
the CpG activated pDCs enables the iNKT cells to productively
interact with CD1d expressing mDCs, thus initiating an immune
response (61). Both iNKT cells and mDCs lack expression of TLR9
and are therefore unresponsive to CpG; hence, cytokines released
upon ligation of TLR9 on pDCs modulate the tissue microenvi-
ronment. Not only cytokines, but also a direct interaction between
pDCs and iNKT cells may be of importance; CpG-stimulated
pDCs express the ligand CD252 (OX40L), which binds CD134
(OX40) present on the surface of iNKT cells, and augments IFN-γ
release by iNKT cells in response to lipid antigen presentation by
mDCs (Figure 4) (66). Further support for such a direct interac-
tion between pDCs and iNKT cells via OX40L/OX40 comes from
murine studies (108–110).

In summary, the interaction between iNKT cells and pDCs can
be both via cytokines and via direct cell interaction. The role so
far seems to facilitate the activation of iNKT by CD1d expressing
mDCs. This may become important particularly in situation when
TLR9 ligands are available. So far, only OX40L/OX40 are known
to play a role in the direct pDC/iNKT cell cross talk.

B CELLS
B cells are the only cells that produce antibodies, and therefore,
have a critical role in the humoral immune response. Release of
Type I IFNs by pDCs leads to an increase of TLR7 and several
activation markers on B cells (111, 112). Moreover, as outlined
above, pDCs, in concert with T cells, control B cell differentiation
into plasma cells via the secretion of IFN-α and IL-6 (64). In addi-
tion, pDCs can affect B cells via direct cell–cell contact. Several
studies have shown the importance of CD40-CD40L interactions
between B cells and pDCs (Figure 5) (24, 64, 65). In addition, upon
activation with CpG, pDCs were demonstrated to interact with B
cells via CD70/CD27 molecules. This interaction results in B cell
growth, differentiation, and immunoglobulin secretion (113).
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FIGURE 4 | Ligand/receptor paring of a pDC with an iNKT cell and the maturation state/activation stimuli associated with ligand or receptor
expression on the pDC surface.

FIGURE 5 | Ligand/receptor paring of a pDC with a B cell and the maturation state/activation stimuli associated with ligand or receptor expression
on the pDC surface.

Furthermore, recent in vitro studies have shown that activated B
cells are able to stimulate matured pDC to produce IFN-α by direct
cell–cell contact (114). Blocking the surface molecules OX40L,
CD27, CD40, or CD40L with monoclonal antibodies did not
influence the effect of B cells on pDC-derived IFN-α production.
However, the IFN-α production by pDCs was significantly reduced
when blocking LFA-1 or PECAM-1 (CD31) by 50% and 80%,
respectively, indicating that these molecules are at least partially
responsible for B cell mediated pDCs activation (114).

Taken together, pDCs and B cells are able to induce recip-
rocal cytokine release and activation by both soluble mediators
and direct cell–cell interaction, and so far have been found to be
predominantly stimulatory in nature (64, 113, 114).

mDCs
Synergism of mDCs and pDCs are not restricted to the activation
of NKT cells. pDCs and mDCs have been demonstrated to be in
close contact in vivo at steady state as well as under inflammatory
conditions, and it has been suggested that they act synergistically
to induce more potent immune responses (115–117). Upon stim-
ulation both mDCs and pDCs function as APCs and follow a sim-
ilar maturation program, and express the co-stimulatory markers

CD40, CD80, CD83, and CD86 to interact with T cells (17, 118).
However, there are complementary differences especially in the
expression of PRRs (e.g., TLRs, CLRs) and thus in their response
to pathogenic triggers. Whereas mDC subtypes express TLR1, 2, 3,
4, 5, 6, 8, and 10, but no TLR7 and 9, the expression of these TLRs
on pDCs is the exactly opposite except from TLR2 and 10, which
are shared (7, 8, 35, 119–122). pDCs respond to TLR7 and 9 lig-
ands with large amounts of IFN-α and TNF-α (123). In contrast,
mDCs release very different cytokines, primarily IL-1β, IL-8, IL-
6, IL-10, IL-12p70, TNF-α to variable extents, upon triggering of
their TLRs (7, 118, 122). Upon viral infection pDCs are known to
respond quicker and with larger amounts of cytokines than mDCs
(124). Thus pDCs and mDCs have non-overlapping sensitivities
to invading pathogens, and accumulating reports suggest that
pDC and CD1c-mDC may cross-activate each other for a more
effective immune response. Crosstalk may occur in a paracrine
fashion through cytokines like Type I IFNs and TNF-α but also
via direct cell contact (118, 125). In a paracrine fashion TNF-
α expressed by pDC can cross-activate co-cultured CD1c-mDCs
(126). However, there is clear evidence to suggest that CD1c-mDCs
and pDCs in other cases require close contact for some parts of this
crosstalk, until now it is unclear what molecules are involved (118).
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Recent studies by Piccioli et al. implies that several members of
the TNF family, CD40L/CD40, OX40L, HEVML, RANKL, CD27,
CD30L, glucocorticoid-induced tumor necrosis factor receptor-
ligand (GITRL), and 4-1BB are redundant in the CD1c-mDC/pDC
cross talk (9). Experimental evidence for the absence of a role for
any of these interactions however was so far not reported but only
came from unpublished blocking experiments mentioned in these
studies, making it extremely hard to deduce whether these interac-
tions can and should be excluded completely (9, 118). Interestingly,
murine models do suggest that the TNF member CD40/CD40L
may have a crucial role in the CD1c-mDC/pDC cross talk, yet
this result needs to be recapitulated in human CD1c-mDC/pDC
assays (9).

So far only for the NOTCH receptor-ligand interaction evi-
dence is provided for a role in the communication between
pDCs and CD1c-mDCs but again experimental evidence is scant
(Figure 6) (117). With co-culture experiments they demonstrated
that LPS-activated CD1c-mDCs caused an upregulation of mat-
uration marker (CD25, CD86) on the pDC surface and increased
IL-6 and CCL19 release in the supernatant. To confirm the involve-
ment of NOTCH pathway, experiments with γ-secretase/NOTCH
inhibitor DAPT and soluble NOTCH ligands were preformed and
showed a reduced effect on Notch target genes. Activation of
the NOTCH pathway upon CD1c-mDC/pDC interaction suggests
that this intercellular contact promotes an immune stimulatory
response, however, further experiments are needed to unravel the
exact mechanism and other molecules potentially involved in this
CD1c-mDC/pDC cross talk (117).

Another possible candidate for the interaction between pDC
and CD1c-mDC is ICAM-1, expressed on both, pDCs and
mDCs, and known as an widespread adhesion molecule with
co-stimulatory activity on other immune cells (127). ICAM-1
was found to be strongly upregulated on pDC upon stimula-
tion with TLR9 ligand CpG, while its matching receptor LFA-1
(CD11a/CD18) is constitutively expressed on CD1c-mDCs (9).

Taken together, there is clear evidence that direct cellular inter-
actions are indeed important for CD1c-mDC/pDC cross talk in
humans, similar to what was observed in murine studies. However,
besides NOTCH receptor-ligand interactions, any experimental
evidence that argues in favor of or against the involvement of other
specific receptor-ligand interactions is so far lacking (9, 118).

NK CELLS
Natural killer cells belong to the innate immune system and are
able to respond rapidly to virally infected cells and to tumor for-
mation. This is due to their unique ability to recognize stressed
cells or the absence of MHC on the surface of infected or malig-
nantly transformed cells, and their subsequent ability to lyse these
cells. The bi-directional pDC-NK cell interaction is known to play
an important role in host defense, and again is mediated both
by cytokines and via direct cell contact (128, 129). Type I IFNs
secreted by pDCs have long been known to enhance the cytolytic
potential of NK cells, and NK cells co-cultured with pDCs are
more activated, and have increased cytolytic activity (49, 50, 130–
133). pDCs and NK cells have been found in close proximity in
the T cells areas of human tonsils (50). In addition, during infec-
tion or in case of a malignancy, pDCs and NK cells may migrate
simultaneously to the site of the lesion, for example during Her-
pes simplex infection (25). These reports demonstrate the ample
opportunities for these cells to engage in direct interactions, which
is further supported by the findings that, when co-cultured, pDCs
and NKs cells readily interact (134). Upon stimulation by a virus
or CpG, pDCs express GITRL that can bind GITR expressed by NK
cells (Figure 7). Via the (GITRL)-GITR interaction mature pDCs
enhance NK cell mediated killing as well as IFN-γ production.
To affect NK cells, however, pDCs expressing GITRL do require
the simultaneous presence of IFN-α (50). Furthermore, while the
upregulation of CD69 on the surface of NK cells depends on the
release of IFN-α and TNF-α by mature pDCs, upregulation of
HLA-DR on the surface of a subpopulation of NK cells depends
on direct pDC-NK cells contact (49). HLA-DR expressed on NK
cells is thought to play an important role in handling bacterial
infections such as Mycobacterium bovis (BCG) (135). Although
the interaction responsible for HLA-DR upregulation remains to
be elucidated, it is known that the maturation state of the pDC
is not important for the induction of HLA-DR expression on NK
cells, indicating the HLA-DR inducing factor is not affected by
pDC maturation (49, 130, 132, 136).

The bi-directional crosstalk between pDCs and NK cells also
affects pDC function; IL-2, immune complex or IL-12/IL18-
stimulated NK cells induce pDCs to release IFN-α which was
shown to depend largely on LFA-1-mediated interactions between
NK cells and pDCs, and to a lesser extent on NK cell secreted

FIGURE 6 | Ligand/receptor paring of a pDC with a mDC and the maturation state/activation stimuli associated with ligand or receptor expression on
the pDC surface.
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FIGURE 7 | Ligand/receptor paring of a pDC with an NK cell and the maturation state/activation stimuli associated with ligand or receptor expression
on the pDC surface.

MIP1α (132, 134). LFA-1 and FcγRIIIA on the pDC also increase
cytokine release by NK cells (137). Furthermore, IL-2 stimu-
lated NK cells induced pDCs to express the maturation marker
CD83, but not CD80 and CD86, in a contact dependent manner,
which also indicates the existence of different stimulatory path-
ways that can induce expression of different maturation markers
on pDCs (132).

Contact with NK cells potentially puts pDCs in danger of
becoming lysed. However, immature pDCs are protected from
NK cell mediated lysis, and this is at least partly due to the high
expression of HLA class I, and the absence of Nectin-2, the lig-
and for NK cell activating receptors DNAM-1 (132, 138). Culture
of pDCs with IL-3 however causes the upregulation of Nectin-
2 on pDCs, and makes them more susceptible to DNAM-1 and
NKp30-mediated killing (138). Activation of pDCs by TLR7 and 9
may help to prevent NK cells lysis as they express the LLT1 (LLT1
or CLEC2D; above), which is a ligand of NK cell surface protein
P1A (NKR-P1A; CD161). P1A is expressed by both NK and NKT
cells and when ligated inhibits NK cell cytolytic function and IFN-
γ release (51, 99, 101, 139). Taken together, pDCs in various modes
of action, seem to be differentially susceptible to NK cell-mediated
lysis through the absence of activating NK cell receptor-ligands, as
well as the regulated expression of ligands for NK cell inhibitory
receptors. Also, high MHC I expression is protective.

In summary, non-lethal pDC/NK cell interactions seem to play
an important role in enhancing the early immune response to a
viral or bacterial infection as pDCs activate the NK cell by pro-
ducing IFN-α and via GITRL. This feed-forward system likely
promotes NK cells to rapidly lyse infected cells (132). NK cell
activity in turn induces a further increase of IFN-α by pDCs
and promotes their maturation, which may in turn increase the
recruitment and survival of mDCs (Figure 8).

TUMOR CELLS
Several early studies have reported decreased numbers of pDCs
and mDCs in the blood of patients suffering from various types
of cancers (140–143). However, a recent study with melanoma
patients detected no significant difference between the levels of
immature pDCs in healthy donors and patients (144). Compared
to healthy volunteers, pDCs derived from melanoma patients did,

however, show a higher expression of CCR6, and increased ability
to migrate toward Chemokine (C-C motif) ligand 20 (CCL20),
a ligand for CCR6 (144). CCL20 is expressed by keratinocytes in
the skin and by melanoma cells, suggesting that the CCL20/CCR6
interaction is involved in the pDC migration process from the
blood to the tumor (145–147). Indeed, high pDC infiltration have
been observed in many types of cancer including melanoma, head
and neck cancer, ovarian and prostate cancer, and these infil-
trates mostly negatively correlate with patient survival. On the
other hand, an increase of pDCs in tumor-draining LN may be
beneficial [reviewed in (143, 148)]. pDCs infiltrated in tumor
microenvironment are mainly immature, and therefore seem to be
predominantly immunosuppressive/tolerogenic (148). In recent
years, evidence has accumulated that tumors may block anti-
tumor response by maintaining pDCs in an inactive/tolerogenic
state. Mechanisms responsible for keeping the pDC in this state
include the secretion of prostaglandin 2 (PGE2) and TGF-β, which,
in a synergistic manner inhibit pDC-derived IFN-α and TNF-α
production in response to TLR7 and 9 ligands, as well as inhibiting
CCR7 expression, thereby impairing the migration of pDCs to the
tumor-draining LN to prime T cells with tumor antigens (148–
150). In addition, there is evidence that PGE2-stimulated pDCs
indirectly support tumor cell proliferation, migration, and inva-
sion, as well as tumor angiogenesis, via the release of IL-6 and IL-8
(151–158). Furthermore, tumor-resident pDCs may also influence
tumor growth indirectly through the induction of Tregs. In epithe-
lial ovarian cancer the majority of Foxp3+ Treg cells accumulating
in the tumor microenvironment expressed the ICOS, and tumor
pDCs expressing the ICOSL were shown to be essential for the
expansion and suppressive function of these regulatory Foxp3+

Tregs (67, 68).
On their surface, unstimulated pDCs (uniquely with respect

to all other leukocytes) express the immunoglobulin-like tran-
script 7 (ILT7) protein, which is activated by binding to bone
marrow stromal cell antigen 2 (BST2, CD317; reviewed in (159)).
BST2 is expressed on human cancer cells, monocytes, and vas-
cular endothelium in response to IFN-α (Figure 9) (160–162).
Similar to BDCA-2, ILT7 forms a complex with FcεRIγ, which,
when ligated activates an immunoreceptor tyrosine-based acti-
vation motif (ITAM)-mediated signaling pathway that dampens
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FIGURE 8 | Direct cell interaction dependent on GITR/GITRL or CD40/CD40L binding and their effect on a certain cell type.

FIGURE 9 | Ligand/receptor paring of a pDC with a tumor cell and the maturation state/activation stimuli associated with ligand or receptor
expression on the pDC surface.

TLR-7 and 9-induced IFN-α and TNF-α production (163, 164).
ILT7 is downregulated upon stimulation of the pDCs by CpG,
HSV, or IL-3, suggesting that pDC maturation prior to entering the
tumor site may partly protect it from this suppressive mechanism
(159, 164, 165). In addition to ILT7, immature pDCs also express
the ITIM motif containing receptors ILT2 and ILT3 that bind to
MHC class I molecules, and an unknown ligand, respectively. Both
receptors are associated with immune tolerance, probably through
the suppression of T cell responses, and in agreement with this
notion, these receptors are downregulated upon pDC activation
(166–168). Whether these molecules may also have an active role
in the pDC-tumor cell interaction, or rather regulate pDC-T cell
activation, remains to be investigated. Likewise, there may be a yet
unappreciated role for pDC expression of NKp44, which has been
demonstrated to down modulate pDC IFN-α responses upon lig-
ation, and may be utilized by the tumor to dampen pDC-mediated
immune responses (169). Indeed, an inhibitory NKp44 ligand
complex containing HLA I and PCNA was recently reported to
be expressed by several tumor cells (159, 165, 170).

So far, most studies point out an immune suppressive role
for pDCs favoring tumor progression, however several other
studies demonstrate that the situation may be very different
if pDCs are properly activated. In this case pDCs may trigger
anti-tumor T cell-mediated immune responses (above) or even
actively kill tumor cells (171, 172). As previously discussed, in
relation to the T cell/pDC interaction, activated pDCs express
TRAIL, which induces an apoptotic process by binding to the
TRAIL receptors. Tumor cells are known to be sensitive to TRAIL,
and via this interaction could directly induce tumor cell apop-
tosis (171). Avoiding this apoptotic pathway by downregulation
of TRAIL has been reported for several cancers by numerous
studies (173).

Taken together, the suppressive tumor microenvironment
decreases the immune stimulatory functions of pDCs resulting
in tumor progression. Preventing these processes, while at the
same time activating pDCs, forms a promising target for anti-
tumor therapies. Moreover, in a recent clinical feasibility study
in our department, we demonstrated that the administration of
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autologous ex vivo-matured tumor antigen loaded pDCs proved
to be successful and induced objective clinical responses in several
patients (60).

LESS EXPLORED IN pDC CELLULAR INTERACTIONS: THE
SLAM FAMILY
Above we have provided an overview of the interactions pDCs
likely engage in during their lifecycle, as based on experimental
evidence and in vivo proximity. In addition we discussed the mol-
ecules likely to participate in these interactions. There is, however,
a poorly understood family of proteins which are highly expressed
pDCs, and which deserve more attention. This is the SLAM family
of receptors, for which a role in a diverse range of cellular inter-
actions is highly suspected, yet currently unexplored. Five family
members are expressed on the pDC surface (largely) indepen-
dent of its activation state: SLAMF2 (CD48; BLAST1), SLAMF5
(CD84), SLAMF3 (CD229; Ly9), SLAM7 (CD319, CRACC), and
NTBA (CD352) (74, 102). Except for SLAMF2 (below), these pro-
teins have in common that they engage mostly in homotypic
interactions; such interactions may occur between homotypic
cells, but also between different cell types, opening up the possibil-
ity that these molecules mediated direct cell interactions of pDCs
with each other, or with others cells also expressing these receptors
(174). Homotypic SLAM family interactions have the ability to
regulate cell activation and proliferation as well as cytolytic activ-
ity (174). SLAMF5 is highly expressed by many immune cells, and
has been shown to play a role in T cell-B cell adhesion, and for opti-
mal germinal center formation (175, 176). Furthermore SLAMF5
was detected on leukemic pDCs, and can work as an inhibitor
for FcεRI-mediated signaling in mast cells (177, 178). SLAMF3 is
also expressed on T cells. Here it reduces IFN-γ production and
ERK activation upon stimulation, and thus via this molecule pDCs
might trigger a similar response (175, 179). SLAM7, in contrast, is
widely expressed on activated B lymphocytes, NK cells, and CD8+

T lymphocytes (74, 180–182) and has been shown to promote B
cell proliferation, activate NK cell cytotoxicity (but not NK cell
proliferation) (180, 182, 183). Finally, NTBA in addition to pDCs,
is present on NK, T, and B cells where it may affect cytotoxicity
as well as the IFN-γ and TNF-α release (174, 184, 185). Interac-
tions between NTBA on pDCs and NK cells may therefore have
the potential to positively regulate both NK cells and pDCs.

In contrast to the other family members, SLAMF2 which is also
present on the surface of pDCs, engages in a heterotypic interac-
tion with family member 2B4 (CD244), and could thus play a role
in the interaction of pDCs with 2B4-expressing NK or T cells (74,
175, 186). SLAMF2 via 2B4 can activate NK cells (186).

Overall, although experiments are largely lacking, the pres-
ence of such a high number of SLAM family members on pDCs,
their homotypic interactions, as well as the known effects of their
triggering on other immune cells makes us speculate that pDCs
may very well exploit these receptors to communicate with other
immune cells.

CONCLUSION AND OUTLOOK
In this review we summarized the existing data which supports
the idea that during their life cycle, human pDCs interact with

numerous immune cells. Additionally, we have attempted to pro-
vide a contemporary overview of the molecules that drive these
interactions, and the consequences of their expression on pDCs. It
is clear that pDCs play a pivotal role in ensuring a rapid immune
response, especially upon viral infection, by strong IFN-α release,
but also via direct cell–cell interaction. Depending on the pDC
activation state, cytokines released by pDCs and direct pDCs sur-
face receptors may inhibit or activate other immune cells. This
large influential capacity of pDCs suggest that they are master
regulators of both innate and adaptive immune responses. Besides
secretion of the highly potent yet broadly acting IFN-α, pDCs have
a highly versatile repertoire of cell surface molecules to further
fine tune immune responses. These characteristics make them an
interesting and potential highly valuable therapeutic target to be
exploited or targeted in cancer therapy, infectious or autoimmune
disease. Importantly, controlling cytokine secretion and the sur-
face expression of specific receptors is essential to steer the immune
response into the desired direction. In cancer therapy, lifting the
suppressive actions of tumor-resident pDCs may greatly enhance
existing/endogenous anti-tumor immune response (187). In addi-
tion, anti-cancer immune responses may be initiated or boosted
by vaccination with autologous tumor antigen loaded pDCs (60).
A preliminary clinical trial using pDCs in melanoma vaccination
therapy, carried out by our department, has demonstrated the use
of thick born virus vaccine (FSME)-matured pDCS in cancer vac-
cination is safe and feasible, and despite low patients numbers,
showed an improved survival of pDCs vaccinated patients (60).
In particular, the extremely low doses ranging from 0.5 to 3 mil-
lion pDC per patient demonstrate the potency of these cells. The
exact reason for the success of pDCs however is not yet completely
understood, but in addition to IFN-α production and the induc-
tion of tumor-specific T cells, we envision there may also be a
significant role for the effective combination of surface receptors
expressed by the pDCs and their resulting interaction with other
immune cells.

In conclusion, research over the past few years has greatly
increased our knowledge of the repertoire of pDC-expressed sur-
face receptors and cellular interaction partners, and has empha-
sized that there is more to the pDCs than IFN-α alone. Impor-
tantly, however, further studies are required to identify the role of
these molecules and interactions in pDC function and immune
responses in general.
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The physiological function of the immune system and the response to therapeutic
immunomodulators may be sensitive to combinatorial cytokine micro-environments that
shape the responses of specific immune cells. Previous work shows that paracrine
cytokines released by virus-infected human dendritic cells (DC) can dictate the matura-
tion state of naïve DCs.To understand the effects of paracrine signaling, we systematically
studied the effects of combinations cytokines in this complex mixture in generating an anti-
viral state. After naïve DCs were exposed to either IFNβ or to paracrine signaling released
by DCs infected by Newcastle disease virus (NDV), microarray analysis revealed a large
number of genes that were differently regulated by the DC-secreted paracrine signaling.
In order to identify the cytokine mechanisms involved, we identified 20 cytokines secreted
by NDV infected DCs for which the corresponding receptor gene is expressed in naïve
DCs. By exposing cells to all combinations of 19 cytokines (leave-one-out studies), we
identified five cytokines (IFNβ,TNFα, IL-1β,TNFSF15, and IL28) as candidates for regulating
DC maturation markers. Subsequent experiments identified IFNβ, TNFα, and IL1β as the
major contributors to this anti-viral state. This finding was supported by infection studies
in vitro, by T-cell activation studies and by in vivo infection studies in mouse. Combina-
tion of cytokines can cause response states in DCs that differ from those achieved by the
individual cytokines alone.These results suggest that the cytokine microenvironment may
act via a combinatorial code to direct the response state of specific immune cells. Further
elucidation of this code may provide insight into responses to infection and neoplasia as
well as guide the development of combinatorial cytokine immunomodulation for infectious,
autoimmune, and immunosurveillance-related diseases.

Keywords:TNFa, IL1b, IFNb, anti-viral signaling, DC maturation, combinatorial effect

INTRODUCTION
The limitations of single cytokine therapy have motivated interest
in evaluating the effects of combinatorial treatment. Individual
therapeutic cytokines often fail to achieve full or sustained clin-
ical benefits for many patients. For example, IFNα, which is the
current therapy for chronic hepatitis C infection, fails to clear
HCV titers in half of treated patients (1). The cytokine inter-
feron beta (IFNβ) has limited activity against multiple sclerosis
in a large segment of patients (2). Cytokine combination therapy,
where two or more cytokine-based medications are simultane-
ous administered to treat a single disease, has shown promise in
multiple medical conditions, such as cancer (3), myocardial infarc-
tion (4), and osteoporosis (5). Recent studies have also begun
to reveal how combined extracellular stimuli can synergistically
direct the responses of immune cells. Retinoic acid combined with
IL-15 causes dendritic cells (DCs) to skew the T-cell polarization
toward TH17 cells (6). SCF and IL-2 have a synergistic effect on
the proliferation NK cells (7). TNFα and IFNγ act together on
smooth airway cells to enhance CXCL-10 expression (8). IL17
together with TNFα or IL1β induces MCP-1 and MIP-2 in murine

mesangial cells (9). Despite its potential, studying combinations of
cytokines is experimentally difficult and relatively little systematic
exploration in this important area has been reported.

We previously reported that paracrine signaling mediated by
the complex mixture of cytokines secreted by virus-infected DCs
in culture causes naïve uninfected DCs to develop an anti-viral
state characterized by upregulation of DC maturation markers,
increased phagocytic activity, and greater resistance to viral infec-
tion (10). Since the discovery of type I interferon, paracrine
cytokine signaling has been recognized as a crucial component
in orchestrating the immune responses to virus infection. How-
ever, IFNβ pretreatment alone is not sufficient to induce this
paracrine induction of anti-viral activated DCs (10). In the present
study, we investigate the combinatorial cytokine code underlying
this effect, by studying combinations of the single components
of the secretome of virus-infected DCs. Understanding how this
combinatorial cytokine code modulates immune responses may
guide the development of better combination therapy approaches
and help elucidate how the microenvironment directs appropriate
responses in specific cell types during infection.
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MATERIALS AND METHODS
DIFFERENTIATION OF DCs
All human research protocols for this work have been reviewed
and approved by the IRB of the Mount Sinai School of Medi-
cine. Monocyte-derived DCs were obtained from healthy human
blood donors following a standard protocol described elsewhere
(11). Briefly, human peripheral blood mononuclear cells were iso-
lated from buffy coats by Ficoll density gradient centrifugation
(Histopaque, Sigma Aldrich) at 1450 rpm and CD14+ monocytes
were immunomagnetically purified by using a MACS CD14 iso-
lation kit (Miltenyi Biotech). Monocytes were then differentiated
into naïve DCs by 5–6 days incubation at 37°C and 5% CO2 in
DC growth media, which contains RPMI Medium 1640 (Invitro-
gen/Gibco) supplemented with 10% fetal calf serum (Hyclone),
2 mM of l-glutamine, 100 U/mL penicillin and 100 g/mL strep-
tomycin (Pen/Strep) (Invitrogen), 500 U/mL hGM-CSF (Prepro-
tech), and 1000 U/mL hIL-4 (Preprotech). All experiments were
replicated using cells obtained from different donors. Overall, we
used DCs from 21 different donors for this study.

VIRUS PREPARATION AND VIRAL INFECTION
The Newcastle disease virus (NDV) (rNDV/B1) was gener-
ated in Prof. Peter Palese’s laboratory (12). NDV-RFP, Influenza
A/California/04/09 (H1N1), and A/Puerto Rico/8/1934 (H1N1)
were obtained from Prof. Adolfo Garcia-Sastre’s laboratory (13).
For infection, virus stocks were diluted in serum free medium and
added directly onto pelleted DCs at a multiplicity of infection of 1.

GENERATION OF AVDCs
Anti-viral activated dendritic cells (AVDCs) were generated by
employing a trans-well system. The trans-well system consists
of an upper and a lower chamber separated by a 0.4 µm PET
membrane (Millipore) that allows diffusion of cytokines and
chemokines through the membrane but avoids the interaction
of the cells in both chambers. To generate the AVDCs, naïve DCs
were infected as described above. After the 40 min incubation, the
cells were washed with PBS, and cultured in the trans-well system.
Infected and non-infected DCs were allocated in the upper and
lower chamber, respectively. Two independent wells were set-up
with infected or naïve non-infected DCs as positive and negative
controls. The cultures were incubated at 37°C in 5% CO2 for 18 h.
All cells were then washed in PBS and harvested for flow cytometry
analysis and RNA isolation. The supernatant was kept at −80°C
for ELISA analysis of cytokines/chemokines.

MICROARRAY ANALYSIS
Samples from AVDCs, DCs infected with NDV, and DCs treated
with IFNβ for 8 h were used for microarray analysis. Naive DCs
served as negative control. Three samples were taken per treat-
ment. RNA was extracted with the RNeasy plus kit (Qiagen) fol-
lowing the manufacturer’s protocol. Gene expression was assayed
using broad human genome specific HG-U133_Plus_2 GeneChip
expression probe arrays (Affymetrix). Raw data was processed with
the Partek Pro software using the RMA background correction,
with an adjustment of GC content as pre-background adjustment.
Data was normalized to its quantile, data was log transformed to a
base of two, and probe sets were summarized to its mean. Principal

component analysis (PCA) of samples plotted in genespace was
performed for all probe sets. Robustness of the PCA was tested
by randomization (Figure S1 in Supplementary Material). One-
way ANOVA was calculated by using Method of Moments (14).
Fisher’s least significant difference with FDR as multiple testing
correction was used to calculate the following contrasts AVDC vs.
IFNβ, AVDC vs. CTRL, IFNβ vs. CTRL, NDV vs. CTRL. List were
generated by a fold change and p-value (FDR adjusted) criteria.
Bioinformatic analysis was performed using Ingenuity software.
The data used are deposited in NCBI’s gene expression omnibus
(15) and are accessible through GEO series accession number
GSE52081 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE52081).

ELISA
In order to minimize the supernatant volume to assay, a Beadlyte
Human Multiplex ELISA analysis (Millipore) was used follow-
ing manufacturer instructions. Briefly, 100 µl from each com-
partment/well was incubated in a 96-well filter PVDF 1.2 µm
plate specially designed to retain cytokines/chemokines, with
a mixture of anti-cytokine IgG conjugated beads for the dif-
ferent cytokines/chemokines assayed. After 2 h incubation, the
plate was filtered and washed three times with Assay solution
(PBS pH 7.4 containing 1% BSA, 0.05% Tween-20, and 0.05%
sodium azide). The washes were followed by 1.5 h incubation with
biotin-conjugated anti-cytokine IgG. After Assay solution wash-
ing, Streptavidin–Phycoerythrin, was added followed by addition
after 30 min Stop solution [0.2% (v/v) formaldehyde in PBS pH
7.4]. The plate was then filtered and each well resuspended in
125 µl of Assay buffer, and read in a Luminex 100 machine.
Single cytokine ELISA (IFNβ) was also performed according to
manufacturers protocol (PBL).

CYTOKINE TREATMENTS
Dendritic cells were exposed to 1.3 µg/mL TNFα (Symansis),
9 µg/mL CCL3 (Symansis), 3.8 µg/mL IL8 (Symansis), 20 µg/mL
CXCL10 (Peprotech), 0.5 µg/mL CCL5 (Peprotech), 9 µg/mL
IL6 (Peprotech), 2.8 µg/mL IFNα2 (PBL InterferonSource),
0.03 µg/mL CXCL12 (Peprotech), 2 µg/mL IFNALPHA16 (PBL
InterferonSource), 0.03 µg/mL IL12a (Symansis), 4.4 µg/mL IL18
(R&D SYSTEMS), 0.2 µg/mL IL1a (R&D SYSTEMS), 1 µg/mL
IL1RA (R&D SYSTEMS), 4 µg/mL IL28a (AbD Serotec), 4 µg/mL
IL29 (R&D SYSTEMS), 0.1 µg/mL TNFSF15 (AbD Serotec),
0.1 µg/mL TNFSF4 (R&D Systems), 0.1 µg/mL TNFSF10 (R&D
Systems), 0.2 µg/mL IL1β (eBiosciences), and 8.89 µg/mL IFNβ

(PBL InterferonSource) in various combinations for 8 h. For the
first screening with 20 cytokines, we used cells from three differ-
ent donors. To adjust for overall differences between individuals,
we normalized data of each individual to the median of all treat-
ments. All other cytokine screening experiments were carried out
with replicated from the same donor and then repeated with at
least two additional donors.

FLOW CYTOMETRY ANALYSIS
Cells were washed with FACS staining buffer (Beckman Coul-
ter) and stained with monoclonal antibodies for HLA-DR and
CD86 (BD Biosciences). NDV-GFP cells were analyzed without
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any additional staining. Cells were assayed on an LSRII flow
cytometer (BD Biosciences) and analyzed with Cytobank soft-
ware (16). Raw data as well as analyses can be downloaded at:
https://www.cytobank.org/cytobank/experiments?project=565

IMAGING FLOW CYTOMETRY ANALYSIS OF BEAD UPTAKE AND
APOPTOSIS
For analysis for apotosis and infectivity cells were fixed after
treatment with 1% paraformaldehyde (Electron Microscopy Sci-
ence), permeabilized with Methanol (Sigma), and washed in PBS
and stained with influenza NP specific antibodies (Abcam) and
Hoechst 33342 (Invitrogen) as nuclear dye. Single cell images were
acquired using the IS 100 Imaging flow cytometer (Amnis). Apop-
totic cells were identified by fragmentation of nucleus (intensity
of nuclear image at a 30% threshold) and shape of the bright-
field image (contrast) using IDEAS software (Amnis). To detect
phagocytosis, 1 µm 488 nm fluorescence labeled latex micros-
pheres (Polysciences Corp.) at a concentration of 50 beads per
cell were co-cultured for 2 h at 37°C with cytokine pretreated cells.
Single cell images were acquired using extended depth field imag-
ing distortion in order to identify beads in different focal planes
within a cell. The numbers of beads incorporated by cells were
quantified in the images captured using image analysis software
(IDEAS Software, Amnis Corp).

REAL-TIME PCR
mRNA expression levels were quantified by real-time reverse tran-
scriptase polymerase chain reaction (PCR). RNA was isolated from
cells using Qiagen Micro RNeasy kit following the manufactures
protocol (QIAGEN). cDNA was synthesized from total RNA with
AffinityScript™ Multi-Temp RT (Stratagene) with oligo dT18 as
primer. For real-time PCR PlatinumTaq DNA polymerase (Invit-
rogen) and a SYBR green (Molecular Probes) containing buffer
were used. The real-time PCRs were performed using a thermo-
cycler (ABI7900HT; Applied Biosystems) as previously described
(21). The RNA levels for the house keeping genes ribosomal pro-
tein S11, tubulin, and β-actin were also assayed in all samples to
be used as an internal controls. mRNA measurements were nor-
malized using a robust global normalization algorithm. All control
crossing threshold (Ct) values were corrected by the median dif-
ference in all samples from Actb. All samples were then normalized
by the difference from the median Ct of the three corrected control
gene Ct levels in each sample, with the value converted to a nomi-
nal copy number per cell by assuming 2500 Actb mRNA molecules
per cell and an amplification efficiency of 93% for all reactions.
PCR results from DCs exposed to combinations of cytokines were
normalized to values from untreated cells and log 2 transformed
prior further statistical analysis. To get a picture of overall induc-
tion of those genes assayed, we summarized the log transformed
expression levels on the most right column of Figure 7. Primers
for genes can be found in the Table S3 in Supplementary Material.

T-CELL ACTIVATION ASSAY
PBMCs were exposed to inactivated native measles virus for 4 days.
From these samples, CD3 cells were isolated by negative selec-
tion using the Pan T-Cell Isolation Kit II (Miltenyi) and stained
with CFSE (Invitrogen). Those cells were then co-cultured with

cytokine pretreated DCs which were also pulsed with inactivated
native measles virus. T-cell proliferation was measured by the
reduction of CFSE intensity of cells.

IN VIVO EXPERIMENTATION
Animal studies were performed in compliance with the U.S.
Department of Health and Human Services Guide for the Care
and Use of Laboratory Animals and protocols were approved by
the Institutional Animal Care and Use Committee (IACUC) of
the Mount Sinai School of Medicine. Animals were pretreated
with murine 3.5 mg/kg BW IFNβ (PBL InterferonSource), murine
1.3 mg/kg BW TNFα (Peprotech), and 0.5 mg/kg IL1β (Peprotech)
6 and 3 h prior infection with the influenza A strain PR8 in an
inhalation chamber.

STATISTICAL ANALYSIS
Micro array analysis was performed with the Partek Pro software
1-way ANOVA was calculated by using Method of Moments (14).
Genes were compared by asymptotic unpaired t -test comparisons
followed by a Benjamini–Hochberg multiple testing correction.
All other data was analyzed with R. Maturation marker expression,
apoptosis induction, and infectivity levels were first analyzed with
ANOVA, followed with pairwise comparisons using the Tukey’s
“Honest Significant Difference” method. PCR of the gene expres-
sion after combinatorial treatment was also analyzed with ANOVA
followed Tukey’s “Honest Significant Difference” method and an
additional Bonferroni multiple testing correction for the sum-
marized data. Bead uptake data were analyzed with a pairwise
Wilcoxon Rank Sum Test with the Bonferroni method for multiple
testing correction. Survival of mice was analyzed with a Mantel–
Haenszel test for survival analysis. Data as well as the R analysis
can de downloaded from the supplementary data.

RESULTS
EXPOSURE TO PARACRINE SIGNALING FROM INFECTED DCs INDUCES
GENE EXPRESSION PROFILE DISTINCT FROM THAT CAUSED BY IFNβ

ALONE
The effects of paracrine signaling from infected DCs on naive
DCs, transforming them to what we have previously referred to
as anti-viral activated DCs [AVDC, Ref. (6)], were studied using
microarrays (Figure 1). To compare the effects of paracrine sig-
naling to the effects of a single cytokine treatment, we exposed
naive DCs either to paracrine signaling from NDV infected cells
(which generates AVDCs) or to IFNβ at a concentration found in
the supernatants of NDV infected DCs. RNA samples from naive
cells (CTRL) and NDV infected cells (NDV) were also assayed.

A PCA on the samples was performed in order to test how much
individual samples are similar to the biological replicates within a
group and how the different groups relate to each other. The PCA
showed that cells exposed to paracrine signaling from infected
DCs had a different overall expression profile than cells exposed
to IFNβ alone (Figure 1A). Top genes for vectors were CXCL11,
ISG20, ISG20, IDO1, IFI27, IFITM1, IFIT2, OASL, and CXCL9 for
principal component (PC) 1; IFIT2, CXCL11, CCDC88A, NEXN,
MALAT1, TNFSF10, P2RY12, SAMD9L, SMCHD1, and NEXN for
PC2 PPBP, MMP1, ADAM12, IRG1, AKAP12, SLC28A3, DNAJC6,
FABP4, ITGA9, and FABP4 for PC3. ANOVA (FDR p < 0.05) and
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FIGURE 1 | Paracrine signaling from virus-infected DCs cells induce a
different gene expression pattern compared to cells exposed to IFNβ

alone. Microarray profiles were obtained from human monocyte-derived DCs
exposed to paracrine signaling from NDV infected DCs or to IFNβ alone.
Sample groups: NDV: DCs infected with NDV; IFNβ: DCs exposed to IFNβ

alone; AVDCs: DCs exposed to paracrine signaling from NDV infected cells in
a trans-well system; CTRL: naive unexposed and uninfected DCs.

(A) Principal component analysis of samples on all genes represented on the
microarray. First three principal components showing 41.9% (PC1), 14.1%
(PC2), and 9.94% (PC3) of the overall change in gene expression in the data
set. (B) Venn diagram comparing genes which differed (twofold, FDR
p < 0.05) between each pair of conditions. (C) Genes which are differed
between AVDC vs. CTRL and AVDC vs. IFNβ and have a gene ontology
association with anti-viral immune processes.

twofold change threshold relative to control cells identified 7088
genes altered by NDV infection, 3600 genes altered by paracrine
signaling (AVDC), and 3336 genes changed by IFNβ alone.

The number of genes differentially expressed between each pair
of the four groups studied is indicated in Figure 1B. A compari-
son between cells exposed to paracrine signaling and IFNβ alone
showed 705 differentially expressed genes. From those 705 tran-
scripts, which showed a significant change between exposure to
paracrine signaling and single cytokine IFNβ treatment, 81 were
significantly altered by the paracrine signaling but did not show
significant induction by NDV infection or IFNβ treatment when
compared to control [Group (A) in Figure 1B], 191 genes were
significantly induced by paracrine signaling and NDV infection

but not IFNβ treatment when compared to control [Group (B) in
Figure 1B] and 111 genes were significantly induced by paracrine
signaling, NDV infection, and IFNβ treatment when compared to
control [Group (C) in Figure 1B]. Three genes were changed by
paracrine signaling and IFNβ treatment when compared to control
but still differed significantly when compared between exposure
to paracrine signaling and IFNβ treatment. Heat maps of all genes
in groups A, B, C, and D can be seen in the supplementary mate-
rial (Figure S2 in Supplementary Material). Fifty genes from the
list of 389 transcripts being significantly different when exposed
to paracrine signaling vs. IFNβ alone, as well as when exposed to
paracrine signaling and naive cells could be linked to anti-viral
immunity (Figure 1C). Among those, 50 genes were regulators
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of inflammation and immune response including VCAM-1 (17),
AQP9 (18), RIPK2 (19), IRAK2 (20), CCL3L1 (21); cytokines like
IL6, OSM (22); genes linked to anti-viral immunity CCL3L3 (23),
CSF1 (24), CD274 (25), CD40 (26), IL7R (27); immune cell acti-
vation CLEC5A (28), EDN (29), CST7 (30), and also a suppressor
of apoptosis PTGER4 (31).

BYSTANDER DCs ARE EXPOSED TO A COMPLEX CYTOKINE
ENVIRONMENT
To identify cytokines and chemokines induced during NDV infec-
tion, to which uninfected bystander DC cells are exposed, we
analyzed the 7088 transcripts induced by NDV. Seventy-eighty
transcripts could be associated to the gene ontology terms cytokine
activity or chemokine activity (Figure 2A). We further narrowed
this list by setting an expression threshold of 6.5 based on the inter-
section of the two populations of expressed and non-expressed
genes (Figure 2B) and identifying which cytokines/chemokines
could be associated with receptor genes also expressed in DCs.
This analysis linked CCL4 to CCR5 (32, 33), CCL3 to CCR5 (34),
CCL3 to CCR1 (35), CCL2 to CCR2 (36, 37), CCL7 to CCR5 (33),
CCL7 to CCR3 (38), CCL8 to CCR2 (39), CXCL10 to CCR3 (40),
CXCL9 to CCR3 (40), CXCL11 to CCR3 (40), CCL15 to CCR3
(41), CCL15 to CCR1 (41), CCL5 to CCR3 (36), CCL5 to CCR5
(42, 43), CXCL12 to CXCR4 (44), CXCL3 to CXCR2 (36), CXCL5
to CXCR2 (45), CXCL1 to CXCR2 (46), IL6 to IL6R (47), IL1a
to IL1R1 (48), IL1β to IL1R2 (49), IL1β to IL1R1 (50), TNF to
TNFRSF1B (51),TNF to FAS (52),TNF to TNFRSF1A (53), IL15 to
IL15RA (54), IL7 to IL7R (55), IL7 to IL2RG (56), IFNβ to IFNAR1
(57), IFNβ to IFNAR2 (58), IFNW1 to IFNAR1 (59), IFNA2 to
IFNAR (60), IFNE to IFNAR1 (61), TNFSF10 to TNFRS10B (62),
CCL19 to CCR7 (63), TNFSF15 to TNFRSF6B (64), IL28A to
IL10RB (65), IL29 to IL10RB (65), IL12A to IL12RB1 (66), IL12A
to IL12RB1 (67), and CSF1 to CSF1R (68) (Figure 2C).

The level of expression of cytokines and chemokines identi-
fied by this bioinformatics analysis was measured in an 18-h time
course experiment (1) in supernatant from DCs infected by NDV,
(2) in the supernatant associated with AVDCs in trans-well exper-
iments, and (3) in supernatant of cells exposed to IFNβ alone
by ELISA (Figure 3A) or in cellular mRNA by real-time PCR
(Figure 3B). Cytokines which did not exhibit detectable expression
by ELISA or PCR (not shown) were excluded for further screen-
ing. This led to the selection of the following 20 cytokines and
chemokines for further study that were induced in NDV infected
DCs: TNFα, CCL3, IL8, CXCL10, CCL5, IL6, IFNα CXCL12,
IFNALPHA16, IL12a, IL18, IL1RA, IL28, IL29, TNFSF15, TNFSF4,
TNFSF10, IL1α, IL1β, and IFNβ.

IDENTIFICATION OF INDIVIDUAL CYTOKINES CONTRIBUTING TO
COMBINATORIAL EFFECTS
We next studied the combinatorial effects of the 20 cytokines iden-
tified above on the induction of maturation marker expression
in naïve DCs. Because studying all combinations of 20 cytokines
was impractical, we identified combinatorial cytokine candidates
by comparing the effect of all 20 cytokines on naïve DCs to
the effects of all possible 19-cytokine combinations lacking one
of the cytokines. These experiments used the maximum con-
centration measured by ELISA or, for cytokines measured by

PCR, the concentration was estimated from transcript levels by
comparing the PCR and ELISA levels of IFNβ. Many cytokines
peaked at about 10 h during the 18 h time course. Therefore,
we expose DCs to the cytokine mixtures for 8 h to best approx-
imate the conditions of the paracrine signaling during viral
infection. In this experiment, we used cells from three different
donors for biological replicates, which resulted in a high variance
of marker expression between donors. To adjust for differences
between individuals, we normalized data to the overall median
values.

The absence of TNFα, IL18, IL28, and IFNalpha16 reduced the
expression of CD86, when compared to the exposure to all 20
cytokines (Figure 4). The absence of IFNa2, IL18, IL1α, TNFSF15,
IL1β, and IFNβ reduced the expression of HLA-DR (Figure 4). We
studied nine cytokines (IFNα, IFNALPHA16, IFNβ, IL1α, IL1β,
IL18, IL28, TNFα, TNFSF15) in similar leave one cytokine out
experiments as well as single cytokine exposure studies. These nine
cytokines gave the same responses as the original 20, indicating
that the 11 cytokines excluded from further study are not major
contributors to maturation marker induction during paracrine
signaling (Figure 5). The cytokine minus one studies with the
remaining nine cytokines suggested the importance of IFNβ, for
CD86 upregulation and IFNβ, IL28, and TNFSF15 for HLA-DR
upregulation. When DCs were exposed to individual cytokines,
IFNβ and IL1β induced CD86 and IFNβ and TNFα induced HLA-
DR. Therefore five cytokines (IFNβ, IL28, TNFSF15, TNFα, IL1β)
were selected for further study.

TNFα, IFNβ, AND IL1β INDUCE A PARACRINE ACTIVATED ANTI-VIRAL
STATE
We studied the effects of combinations of the five cytokines on
maturation marker expression, viral resistance, and phagocytic
activity. For the maturation marker expression studies, human
DCs were exposed to combinations of the five cytokines for 8 h
and the levels of CD86 and HLA-DR were measured by flow
cytometry. IFNb alone increases the expression of both mark-
ers. The additional increases observed with all combinations of
cytokines did not achieve statistical significance in comparison to
IFNb alone with tight control for family wise error. IL28 did not
cause any trend toward an increase in maturation marker expres-
sion (Figure 6A). To improve statistical power, we performed
maturation marker induction experiments using four cytokines
IFNβ, TNFSF15, TNFα, and IL1b. Here, the combinations of
IFNβ with either TNFα or IL1b showed a significantly higher
induction of CD86 when compared to the effects of IFNβ alone
(Figure 6B). The combination of IFNβ with IL1b showed a signif-
icantly higher HLA-DR induction when compared to IFNb alone
(Figure 6C).

As one of the most important features observed in paracrine
activated AVDCs is resistance to viral infection (6), we pretreated
DCs with combinations of the five cytokines for 8 h and sub-
sequently infected them with an RFP expressing NDV for 8 h.
Infectivity was measured by using flow cytometry to quantify RFP
expression. Because infectivity by RFP-NDV is so sensitive to IFNβ,
its concentration was reduced for this study. Still, due to the effect
of the RFP insertion which makes the virus less viable and more
susceptible to the effects of IFNβ, changes observed with cytokine
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Hartmann et al. Combinatorial cytokines in antiviral induction

FIGURE 2 | Candidate NDV induced cytokines in DCs for a paracrine
effect on DCs. (A) Cytokines and chemokines induced by NDV (twofold FDR
p < 0.05) compared to naive DCs. (B) Expression level of all genes expressed

in naive DCs. A cutoff of expression above 6.5 was used to identify potentially
expressed cytokine and chemokine receptors. (C) Ingenuity analysis linking
induced cytokines/chemokines to receptor genes also expressed in DCs.

combinations were statistically not significant when compared to
single cytokine IFNβ exposure. The combination of IFNβ and IL1β

showed the largest reduction of infection (Figure 6D).

Another feature of AVDCs is the heightened phagocytic activity
(10). Therefore, we tested fluorescent bead phagocytosis following
exposure to combinations of IFNβ, TNFSF15, TNFα, and IL1β.
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FIGURE 3 |Time course of expression of cytokines/chemokines in
NDV infected DCs, AVDC, and IFNβ exposed DCs determined by
(A) multiplex ELISA or IFNβ ELISA or (B) real-time PCR over an 18 h
period. NDV (red line) indicates measurements from supernatants
(ELISA) or cells (PCR) which were infected with NDV at an MOI of 1.

AVDC (black line) indicates measurements from supernatants from
infected and co-cultured naïve DCs at a 1:1 ratio (ELISA) or naïve DCs
which were co-cultured with infected cells (PCR). IFNβ (blue line)
indicates measurements from supernatants (ELISA) or cells (PCR) from
naïve DCs exposed to IFNβ alone.

To improve statistical power and in view of the lack of effect
on maturation markers, IL28 was excluded from this study. Cells
were pretreated with cytokine combinations for 8 h, and then co-
cultured with fluorescent beads for 4 h. The number of beads in
each cell was then counted using imaging flow cytometry. The
highest rates of phagocytosis were seen with all four cytokines

exposed together and with exposure to IFNβ with either IL1β or
TNFSF15 (Figure 6E).

We also looked at the capacity of combinations of the five
cytokines to regulate 16 immune related genes that had been iden-
tified as preferentially induced by paracrine signaling in compari-
son with IFNβ exposure alone (see Figure 1C). Here, we exposed
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FIGURE 4 | Contribution of individual cytokines in 20 cytokine paracrine signal. Maturation marker expression of DCs after 8 h to exposure to all 20
cytokines (all) or the leave-one-out combinations of 19 cytokines. Note that a reduction in expression with a cytokine absent indicates that the cytokine may
contribute to induction.

FIGURE 5 | Contribution of individual cytokines in nine cytokine
paracrine signal. Maturation marker expression of DCs after 8 h to exposure
to all nine cytokines, all leave-one-out combination of eight cytokines and

each individual cytokine treatment (Single cytokine) (*p≤0.002 to cells
exposed to all nine cytokines in Cytokine-1 treatment and to untreated cells in
the single cytokine treatments).

DCs for 8 h to all possible combinations of IFNβ, IL28, TNFSF15,
TNFα, IL1β, mRNA, and performed qPCR. Gene expression is
plotted on a heatmap (Figure 7). The genes assayed were VCAM-1,
AQP9, RIPK2, IRAK2, CCL3L1, IL6, OSM, CCL3L3, CSF1, CD274,
CD40, IL7R, CLEC5A, EDN, CST7, and PTGER4). Nine of these
genes showed the highest induction when treated with the triple
combination of IFNβ,TNFα, and IL1β (Figure 7). The genes show-
ing combinatorial cytokine preferences are associated with anti-
viral immunity (CCL3L3, CSF1, IL7R), regulation of inflammation
(AQP9, IRAK2, RIPK2), and immune cell activation (CST7, EDN,
cytokine OSM ). The induction of IL6 was also high with the triple
cytokine treatment. Overall, these experiments demonstrate that

IFNβ, TNFα, and IL1β acting together are the principal drivers of
the paracrine induced anti-viral state in DCs.

We next performed concentration response studies to deter-
mine if the combinatorial effects of the cytokines were syn-
ergistic. At lower concentrations, all three cytokines together
produced the highest levels of both CD86 expression although
at higher concentrations, equivalent levels could be achieved
with the combination of TNFα and IFNβ alone (Figure 8).
For HLA-DR expression, the combination of all three cytokines
at lower concentrations produced the highest levels, although
at higher concentrations TNFα and IL1β induced similar lev-
els. For both maturation markers, the effects of combinatorial
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FIGURE 6 | Effects of combinatorial cytokine treatment. (A) Maturation
marker expression after exposure to combinations of IFNβ, IL28, TNFSF15,
TNFα and IL1β, measured by flow cytometry (*p≤0.05 compared to
untreated cells). (B) CD86 expression after exposure to combinations of
IFNβ, TNFSF15, TNFα and IL1β, measured by flow cytometry (*p≤0.05
compared to cells treated with IFNβ alone). (C) HLA-DR expression after

exposure to combinations of IFNβ, TNFSF15, TNFα and IL1β, measured by
flow cytometry (*p≤0.05 compared to cells treated with IFNβ alone).
(D) Infectivity of NDV after cytokine combination pretreatment for 8 h in
DCs measured by RFP expression. (E) Phagocytosis assay measured by
bead uptake by imaging flow cytometry (*p≤0.05 compared to
untreated cells).

exposure dramatically exceeded the effects of any individual
cytokine. Statistical values for pairwise comparisons within each
dilution step are shown in Tables S1 and S2 in Supplemen-
tary Material. We also investigated the effect of combinations
of various combinations of the two cytokines IFNβ and TNFα,

which showed a synergistic induction with CD86 (Figure
S3 in Supplementary Material). These results support the
view that the effects of combinatorial exposure produce a
qualitatively different cellular effect than do the individual
cytokines.
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Hartmann et al. Combinatorial cytokines in antiviral induction

FIGURE 7 | Gene expression of immune relevant genes after combinatorial IFNβ, IL28,TNFSF15,TNFα, and IL1β treatment. Heat map is normalized to the
lowest (blue) and highest (red) expression level for each individual gene (*p≤0.05 compared to cells exposed to the triple combination of TNFα, IFNβ, and IL1b).

FIGURE 8 | Maturation marker expression by combinations of IFNβ,TNFα, and IL1β. DCs were exposed to combinations of three cytokines at a range of
concentrations relative to that found in supernatants of NDV infected DCs.

COMBINATORIAL EFFECTS OF TNFα, IL1β, AND IFNβ ON PATHOGENIC
VIRUSES
The studies described above rely on NDV, which is not pathogenic
in humans and does not express immune antagonists having activ-
ity in human cells. We were interested in studying the effects of
combination cytokine exposure on a human pathogen and stud-
ied the recent pandemic Influenza A virus Cal/09. We pretreated
DCs with all combinations of IFNβ, TNFα, and IL1β for 8 h and

subsequently infected them with influenza A/California/7/2009
and measured infectivity, maturation marker induction as well
as induction of apoptosis. The triple combination of all three
cytokines as well as the dual cytokine mixture of IL1β and
IFNβ significantly increased the suppression of infectivity when
compared to IFNβ pretreatment alone (Figure 9A). The triple
combination also caused the highest induction of CD86, HLA-
ABC, and HLA-DR in virus NP-expressing cells (Figures 9B–D).
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Apoptosis was assayed in the same samples using imaging flow
cytometry to measure nuclear fragmentation (Figures 9F,G).
Interestingly, pretreatment with single cytokines did not reduce
influenza-induced apoptosis, whereas the triple combination as
well as the dual cytokine combinations with IFNβ could reduce cell
death (Figure 9E). These data suggests that the triple combination
of cytokines improves DC survival, resistance to infectivity, and
increases costimulatory marker expression for T-cell activation.

COMBINATORIAL EFFECT OF TNFα, IL1β, AND IFNβ ON INDUCTION OF
VIRUS SPECIFIC T-CELL RESPONSE
In order to see if the induction of the costimulatory mark-
ers by the triple combination of IFNβ, TNFα, and IL1β has an

effect on T-cell activation, we studied the induction of measles
specific T-cell proliferation after co-culture with cytokine pre-
treated and measles primed T-cells. We exposed the CD14 depleted
PBMCs from the same donors which were used for DC genera-
tion to measles vaccine and harvested T-cell 5 days later. Those
T-cells were co-cultured for 3 days with measles primed DCs
exposed to combinations of IFNβ, TNFα and IL1β. Prolifera-
tion was measured by the dilution of the membrane bound dye
CFSE by flow cytometry. The triple combination of IFNβ, TNFα,
and IL1β significantly increased cell proliferation compared to
non-pretreated DCs (Figure 10). These results indicate that the
costimulatory marker upregulation also affects activation of the
adaptive immune system.

FIGURE 9 | Effects of combinatorial of IFNβ,TNFα, and IL1β treatment
on DCs infected with the pandemic influenza A Cal/09 strain.
(A) Infectivity assayed by NP expression (*p≤0.05 compared to cells
exposed to IFNβ). (B) Expression of the maturation marker CD86.
(C) Expression of the maturation marker HLA-ABC. (D) Expression of the

maturation marker HLA-DR (*p≤0.05 compared to cells exposed to the
triple combination of TNFα, IFNβ, and IL1b). (E) Apoptosis assayed by
assessing nuclear fragmentation and cell granularity by imaging flow
cytometry (*p≤0.05 compared to untreated cells). (F) Sample images of
non-apoptotic cells. (G) Sample images of apoptotic cells.
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FIGURE 10 | Antigen specific proliferation ofT-cells exposed to cytokine
pretreated DCs. Measles antilogous specific T-cells were co-cultured with
cytokine pretreated DCs which were also pulsed with measles vaccine.
Proliferation was measured by the dilution of CFSE.

COMBINATORIAL EFFECT OF TNFα, IL1β, AND IFNβ ON INFLUENZA
MORBIDITY IN VIVO
We next studied the effects of IFNβ, TNFα, and IL1β on influenza
virus pathogenicity in vivo using a well-characterized aerosolized-
virus mouse infection model (69). Cytokines were injected
intraperitoneally both 3 h before and after inhalation infection
with PR8 virus. While the differences were modest, the triple
combination was found to improve survival times significantly
compared to control (p: 0.0456) following PR8 infection in mice
(Figure 11).

DISCUSSION
In this study, we show that IFNβ, TNFα, and IL1β are secreted by
virus-infected DCs and act combinatorially to alter the anti-viral
response state of uninfected DCs. This combination is responsible
for maturation marker upregulation in naive as well as in infected
cells, reduction of virus induced apoptosis, heightened phagocytic
activity, specific autologous T-cell activation,and resistance to viral
infection in vitro as well as in in vivo.

The importance of cellular micro-environments in dictating
immune cell responses is supported by the report that the inflam-
matory state of macrophages can be reprogramed by exposure to
an anti- or pro-inflammatory stimuli (70). Another report has
suggested that the initial exposure to a cytokine signal determines
and fixes the final state of the macrophage (71). These reports, as
well as the finding that the combination of IL-4, IL-10, and TGFb
skew the development of myeloid cells into M2 macrophages, sup-
port the importance of combinatorial cytokine signals in immune
regulation (72). DCs themselves are differentiated into different
lineages by exposure to different cytokines including GMCSF and
Flt3 (73).

FIGURE 11 | Effects of IFNβ,TNFα, and IL1β combinations on mortality
with PR8 virus in vivo. Mice received cytokine injection i.p. 6 h before and
6 h after infection with PR8 virus.

Since the discovery of type I interferon, paracrine cytokine
signaling has been recognized as a crucial component in orches-
trating the immune responses to virus infection. Recent studies
have begun to reveal the importance of combinatorial extracellular
stimuli in directing the responses of immune cells. For example,
when DCs are exposed to lipopolysaccharide in the context of
apoptotic cells, they induce TH17 cells, a response that is not
achieved by either stimulus alone (74). Retinoic acid acts alone
on T-cells to induce Treg cells. However, retinoic acid combined
with IL-15 causes DCs to skew the T-cell polarization toward TH17
cells (6). TLR7/8 ligand combined with either TLR3 or TLR4 lig-
ands synergistically increases IFNβ and IFNλ1 expression in DCs
(75). SCF and IL-2 have a synergistic effect on the proliferation
NK cells (7). TNFα and IFNγ act together on smooth airway cells
to enhance CXCL-10 expression (8). IL17 together with TNFα

or IL1β induces MCP-1 and MIP-2 in murine mesangial cells
(9). These combinatorial effects are likely to prove clinically rel-
evant, for example, by contributing to individual differences in
the response to cytokine treatment (76). While beyond the scope
of the present investigation, the role of relative timing of com-
binatorial cytokine signals is another important area for further
study. We have also not addressed the potential combinatorial role
of alarmins, which can work in concert with cytokines to induce
different cell states (77).

To our knowledge, this is the first report of IFNβ, TNFα, and
IL1β working in concert to alter the response state of any immune
cell. Previous studies have implicated pairs of this triad in influ-
encing immune responses. The combination of IL-1β and IFNβ

has been reported to promote immune control of West Nile virus
infection in the CNS (78). TNFα and IFNβ have also been found
to affect macrophages and fibroblasts in reducing the infectivity
of poxviruses (79, 80).
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Several of the transcripts that are preferentially induced in DCs
by the exposure to all three cytokines have been found to serve
important roles in inflammation and immunity: CCL3L3 sup-
presses HIV proliferation (23); AQP9 is a marker for inflammation
(81); CSF1 is a biomarker for respiratory syncytial virus infec-
tion (24); RIPK2 knockout in mice causes hyper-susceptibility to
infection with influenza A virus (82); EDN possesses anti-viral
activity against single stranded RNA viruses like respiratory syn-
cytial virus, Hepatitis and HIV (83); IL7R expression inversely
correlates with FoxP3 and suppressive function of human CD4+

T reg cells (84); OSM is a pro-inflammatory cytokine (22); and
IRAK2 is needed to sustain cytokine production during prolonged
activation of the TLR signaling pathway (85). When maturation
marker induction was studied by cytokine induction alone, we
found that CD86 is most strongly driven by IFNβ with syner-
gistic effects of TNFα or IL1β. HLA-DR was little changed by
individual cytokines but was strongly induced by TNFα and IL1β

together. The gene VCAM-1 was most induced by the TNFα

and IL1β together and PTGER4 was most induced by IFNβ

and TNFα. While the overall DC cell state observed requires all
three cytokines, the differences in the cytokines most impor-
tant for various components of these DC responses provides
the basis for future studies to dissect the underlying signaling
and transcriptional mechanisms involved in these combinatorial
effects.

Surprisingly, the triple combination of IFNβ, TNFα, and IL1β

reduced influenza-induced cell death in infected DCs. This is inter-
esting as IFNβ is known to be an inducer of apoptosis in DCs (86),
and indicates how the effects of one cytokine may be very different
depending on which other cytokines are stimulating a cell. Matu-
ration marker induction as well as cell survival are important for
the activation of the adaptive immune system. The observation of
a heightened proliferation of virus specific T-cells when exposed
to DCs pretreated with the triple combination supports this view.
The modestly increased survival of mice to PR8 infection when
treated with the three cytokines suggests the combinatorial coding
of cell responses has significance in vivo.

The large number of cytokines secreted by infected DCs is
remarkable. We identify combinatorial effects involving only three
of these secreted factors on DCs. It is probable that combi-
natorial signaling of different cytokine mixtures influences the
activation state of other immune cells and that other immune
cells also serve as the source of complex cytokine signals. The
specific activation state of any immune cell can depend on
both the cytokine mixture present and their concentration (see
Figure 8). Thus the immune system can potentially generate
many distinct micro-environments that shape the local activa-
tion state of various immune cells. This provides the poten-
tial for a dynamic and spatially distributed complexity of the
set point of the immune system that could be crucial in orga-
nizing the local and system responses to infection, neoplasia,
and injury. Unraveling this combinatorial code may have ben-
efits in guiding combination immunotherapy for autoimmune
diseases, for chronic infections and for other immune system
influenced diseases as well as for personalizing interventions
in relationship to individual variation in background cytokine
expression.
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Dendritic cells (DC) in the spleen are highly activated following intravenous vaccination with
a foreign-antigen, promoting expansion of effector T cells, but remain phenotypically and
functionally immature after vaccination with a self-antigen. Up-regulation or suppression
of expression of a cohort of pancreatic enzymes 24–72 h post-vaccination can be used
as a biomarker of stimulatory versus tolerogenic DC, respectively. Here we show, using
MUC1 transgenic mice and a vaccine based on the MUC1 peptide, which these mice per-
ceive as a self-antigen, that the difference in enzyme expression that predicts whether DC
will promote immune response or immune tolerance is seen as early as 4–8 h following
vaccination. We also identify early production of IL-10 as a predominant factor that both
correlates with this early-time point and controls DC function. Pre-treating mice with an
antibody against the IL-10 receptor prior to vaccination results in DC that up-regulate CD40,
CD80, and CD86 and promote stronger IFNγ+ T cell responses. This study suggests that
transient inhibition of IL-10 prior to vaccination could improve responses to cancer vaccines
that utilize self-tumor antigens.

Keywords: IL-10, dendritic cells, cancer vaccine, MUC1,T cell response

INTRODUCTION
The impact of IL-10 on the cells of the immune system is well
studied and varied. Originally identified as cytokine synthesis
inhibitory factor, IL-10 can play a role in the development and
maturation of almost all immune cells (1, 2). Signaling through
the IL-10 receptor (IL-10R) occurs through a STAT3 intermediate
and is known to induce SOCS-3 expression, to suppress IFN sig-
naling by blocking STAT1 phosphorylation, and to inhibit NF-κB
signaling by preventing its nuclear translocation as well as inhibit-
ing its binding to DNA (2, 3). In dendritic cells (DC), known for
being the most important professional antigen presenting cells, IL-
10 can reduce expression of MHC Class II and the costimulatory
molecules CD80/86 and CD40, as well as reduce IL-12 secretion
(3–6). This is true even for DC previously activated with IFNγ.
IL-10 can also prevent monocyte differentiation into DC (2).

IL-10 has a profound effect on T cells as well. For example,
reduced IL-12 production by DC affected by IL-10 antagonizes
the development of T helper type 1 (Th1) responses while reduced
MHC II levels on DC result in presentation of low density antigen
that preferentially stimulates differentiation of regulatory CD4 T
cells (7, 8). IL-10 can also act directly on T cells to inhibit synthesis
of cytokines like IL-2 and IFNγ in CD4 T cells or to inhibit their
proliferation (3). The effect of IL-10 on CD8 T cells is less clear
although some studies have shown that IL-10 can favor activation
of CD8 T cells (9–11).

Recently, our group implicated IL-10 in controlling in part the
function of DCs post-vaccination with antigens derived from self-
proteins. Using the MUC1 transgenic (MUC1.Tg) mouse model
and a peptide derived from the extracellular domain of the tumor
antigen MUC1, we showed that 24 h following vaccination, there is
an IL-10 dependent suppression of DC activation that is detectable

via suppression of expression of a newly discovered biomarker: a
cohort of pancreatic enzymes. These enzymes, expressed in the
spleen only by DC and represented by trypsin 1 and carboxypepti-
dase B1 (CPB1), are up-regulated post-vaccination with a foreign
but not a self-antigen and identified a DC population that has
higher MHC Class II, higher costimulatory molecule expression,
and a higher T cell stimulatory capacity (12).

In this study, we present new evidence of an important role
for IL-10 in the suppression of splenic DC following intravenous
vaccination with a self-antigen. We show an early (4–8 h) up-
regulation in IL-10 levels in spleens of self-antigen vaccinated
mice that is not seen in mice that see that same antigen as for-
eign and coincides with the time when we also see differences in
biomarker enzyme expression. Furthermore, DC in the spleens of
self-antigen vaccinated mice have an increased sensitivity to IL-10.
When the effect of IL-10 is blocked by pre-vaccination treatment
of mice with an anti-IL-10R blocking antibody, there is a signifi-
cant increase in the activation level and stimulatory capacity of DC
at 24 h post-vaccination and a significant increase in CD4 T cell
responses 7 days post-vaccination. These data implicate IL-10 in
the regulation of antigen-specific immunity versus tolerance at a
previously underappreciated early time post-vaccination, and sug-
gest that manipulating its function at the time of vaccination might
overcome tolerance and improve responses to cancer vaccines that
utilize self-antigens.

MATERIALS AND METHODS
MICE
Human MUC1.Tg mice (13) on the C57Bl/6 background were a
generous gift from Dr. Sandra Gendler (Mayo Clinic) and were
bred and maintained in the University of Pittsburgh Animal
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Facility. C57Bl/6 (WT) mice were purchased from The Jackson
Laboratory. All experiments were approved by the Institutional
Animal Care and Use Committee of the University of Pittsburgh.

MUC1 VACCINATION
A 100-aa peptide containing five repeats of the MUC1 VNTR
sequence HGVTSAPDTRPAPGSTAPPA, was synthesized as previ-
ously described (14) by the University of Pittsburgh Genomics and
Proteomics Core Laboratories. For soluble peptide vaccinations,
100 µg of this 100mer peptide admixed with 50 µg polyinosinic–
polycytidylic acid and poly-l-lysine (Poly-ICLC; Hiltonol) was
brought up to 100 µL with PBS and injected via tail vein. For
DC-based vaccinations, DC were prepared as previously described
(15). Briefly, RBC lysed bone marrow cells were put into cul-
ture for 6 days in AIM-V supplemented with 10 ng/mL GM-CSF
(Miltenyi), feeding once on day 3. On day 6, semi-adherent
cells were collected by gentle agitation and put into culture
overnight in AIM-V containing 33 µg/mL MUC1 100mer pep-
tide and 25 µg/mL Poly-ICLC. The next day, mature DC were
collected and resuspended in PBS at a final concentration of
0.5−1

× 106 cells/mL. One hundred microliters of this solution was
then injected intravenously via tail vein.

IL-10R BLOCKADE
Where indicated, mice were given 250 µg of an antibody against
the IL-10R (Bio X Cell, Clone 1B1.3A) or an isotype-matched
control antibody (Bio X Cell, Clone HPRN), intraperitoneally.
Twenty-four to forty-eight hours following treatment, mice were
vaccinated as described in “MUC1 vaccination” above and ana-
lyzed as described.

QUANTITATIVE RT-PCR
RNA was extracted from whole spleen using TRIzol (Invitrogen)
according to the manufacturer’s protocol. Following extraction,
cDNA was generated using oligo(dT) primers and SuperScript
III reverse transcriptase (Invitrogen). qPCR was performed using
QuantiTect SYBR Green PCR kit (Qiagen) according to the man-
ufacturer’s protocol. Reactions were run on a StepOnePlus instru-
ment (Applied Biosystems). The following primer pairs were
used: trypsin 1 (forward: 5′ACTGTGGCTCTGCCCAGCTC3′;
reverse: 5′AGCAGGTCTGGTTCAATGACTGT3′), CPB1 (for-
ward: 5′GCCCTGGTGAAAGGTGCAGCAAAGG3′; reverse: 5′AG
CCCAGTCGTCAGATCCCCCAGCA3′), IL-10 (forward: 5′CTTC
CCAGTCGGCCAGAGCCA3′; reverse: 5′ CTCAGCCGCATCCTG
AGGGTCT3′), and HPRT (forward: 5′TGAGCCATTGCTGAGGC
GGCGA3′; reverse: 5′CGGCTCGCGGCAAAAAGCGGTC3′).

INTRACELLULAR CYTOKINE STAINING/FLOW CYTOMETRY
For ex vivo T cells assays, 7–9 days post MUC1 vaccination, mice
were sacrificed and spleens were removed. Single-cell suspen-
sions were made by mashing the spleens through a 40-µm fil-
ter. Total T cells were then bead isolated (Pan T Cell Isolation
Kit II, Miltenyi) and cultured with day 6 MUC1-loaded BMDC
(prepared as described in “MUC1 vaccination”) for 4–6 h in the
presence of GolgiStop (BD biosciences). Cells were then stained
with the indicated antibodies using the BD Cytofix/Cytoperm™
kit (BD Bioscience) according to the manufacturer’s proto-
col. All samples were run on a Fortessa (BD bioscience) flow

cytometer and analyzed using FACSDiva (BD Bioscineces) and
FlowJo software (Tree Star Inc.). Antibodies used: CD3-PerCP,
CD11c-BV421, CD80-FITC, CD86-APC/Cy7, CD40-APC, CD3-
PeCy5, CD4-V450, CD8-AF700, IFNγ-PeCy7, TNFα-PE, IL-2-
APC, CD44-FITC, CD3-APC/Cy7, and CD8 PerCP.

PHOSPHOFLOW
Twenty-four hours following MUC1 vaccination, splenocytes were
harvested as above. Post isolation, cells were put into AIM-V
with or without 30 ng/mL IL-10 (PeproTech) for 20 min. At the
end of culture, cells were immediately fixed in 1.6% PFA for
10 min at room temperature. After 10 min, four volumes of ice-
cold methanol were added and samples were stored at −80°C.
At the time of staining cells were put at room temp for 10 min
and then immediately spun down and resuspended in flow buffer
(PBS containing 1% BSA, 0.02% sodium azide, and 2 nM EDTA).
After 10 min incubation at room temperature, cells were spun
down and washed with flow buffer twice. Samples were then
stained with antibodies against cell surface antigens CD11c,NK1.1,
and CD3 and phospho-specific anti-pSAT3 antibody for 1 h at
room temperature and prepared for analysis via standard proto-
col and as described above. Antibodies used: CD11c-Pacific Blue,
pSTAT3-AF647, NK1.1-PE, and CD3-APC/Cy7.

EX VIVO DC STIMULATORY CAPACITY ANALYSIS
MUC1 transgenic mice were pretreated with antibodies and vac-
cinated as in “IL-10R Blockade.” Post-vaccination, DC were bead
isolated (CD11c MicroBeads, Miltenyi) from the spleens of the
vaccinated animals. These DC were put into culture with bead iso-
lated (CD4 T cell Isolation Kit II, Miltenyi) CFSE stained MUC1
specific VFT CD4 T cells (15) at a ratio of 1 DC to 5 VFT cells in
complete DMEM. Twenty-four hours after the start of culture half
of the media was removed and saved for cytokine analysis. IL-2
was analyzed by ELISA (BD OptEIA Mouse IL-2 ELISA set, BD)
according to the manufacturer’s protocol. The media was replaced
with fresh cDMEM and the cultures were allowed to incubate for
three more days. T cell proliferation was then analyzed by CFSE
dilution.

ELISPOT
Millipore MultiScreen® Filter Plates (Millipore) were pretreated
according to the manufacturer’s instructions using the Mouse
IFNg ELISPOT kit (Mabtech). Bead isolated CD4 and CD8 T cells
(CD4 T cell Isolation Kit II and CD8α Isolation Kit II, Miltenyi)
were cultured as above (see Intracellular Cytokine Staining/Flow
Cytometry) with MUC1 pulsed BMDC and analyzed according to
the established protocol. DC alone, media alone, and T cells alone
were used to establish background cytokine production.

STATISTICAL ANALYSIS
Where appropriate, statistical significance was determined by per-
forming an unpaired Student’s t -test. *Denotes a p-value <0.05
and **denotes a p-value of <0.01. When indicated, to allow for
pooling of data from multiple experiments, values have been trans-
formed to account for minor variations in instrument settings and
other potential sources of variation (i.e., minor batch to batch vari-
ance in DC vaccine prep, etc.). Briefly, all experimental values were

www.frontiersin.org February 2014 | Volume 5 | Article 59 | 47

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


Marvel and Finn IL-10 inhibits self-antigen vaccine responses

FIGURE 1 | Splenic DC activation is suppressed as early as 4–8 h
post-vaccination with a self-, but not a foreign-antigen and correlated
with early IL-10 production in the spleens of these animals. WT (squares)
and MUC1.Tg mice (triangles) were vaccinated with MUC1p plus Poly-ICLC
via tail vein. Spleens were removed at indicated hours post-vaccination and
total splenic mRNA levels of trypsin 1 (A), carboxypeptidase B1 (CPB1) (B),

and IL-10 (C) were determined relative to the control gene HPRT. Values
shown represent expression relative to the baseline expression in mice of
that genotype (WT and MUC1.Tg) at 0 h post-vaccination. Data are
representative of three pooled mice were group per time point shown. Data
points show mean±SEM of three technical replicates and are representative
of two independent experiments.

divided by the mean value of the control group from the experi-
ment in which they were run. “Relative” values therefore represent
a standardized deviance from control.

RESULTS
IL-10 EXPRESSION IN THE SPLEEN IS INCREASED 4–8H
POST-VACCINATION WITH MUC1p AS SELF-ANTIGEN AND
CORRELATES WITH DC SUPPRESSION
In order to determine how quickly post-vaccination with a self-
versus a foreign-antigen DC phenotype and function begin to
diverge and to obtain a more accurate picture of what factors might
be responsible for supporting this divergence, we vaccinated intra-
venously WT and MUC1.Tg mice with the MUC1 100mer peptide
(MUC1p) admixed with the Poly-ICLC adjuvant. MUC1.Tg mice
express the human tumor antigen MUC1 under the control of
its endogenous promoter and therefore MUC1p is seen as a self-
antigen in these mice, whereas it is seen as a foreign-antigen in WT
animals. Mice were sacrificed 4, 6, 8, and 16 h post-vaccination and
the spleens removed for mRNA isolation and analysis. As early as
4 h post-vaccination, two newly discovered biomarkers of DC acti-
vation, trypsin 1 and CPB1 (12), were up-regulated in the spleens
of WT mice but suppressed in MUC1.Tg mice (Figures 1A,B).
In addition to differences in the levels of these enzymes, which
our previous study showed to be expressed only in DC and repre-
sentative of a larger cohort of “pancreatic” enzymes that robustly
activated DC expression, we also detected at this early-time point
higher levels of IL-10 mRNA in the spleens of vaccinated MUC1.Tg
mice compared to WT mice. At 24 h post-vaccination and later,
IL-10 production was at equal levels in self- and foreign-antigen
vaccinated mice (Figure 1C and data not shown).

DC FROM SPLEENS OF MUC1p (SELF-ANTIGEN)-VACCINATED MUC1.Tg
MICE ARE MORE SENSITIVE TO IL-10 THAN MUC1p
(FOREIGN-ANTIGEN)-VACCINATED WT MICE
The above data showing differences in IL-10 levels early post-
vaccination but no difference at 24 h and later would indicate
a modest and transient effect by IL-10 on DC. This was, how-
ever, inconsistent with our previous observations that functional
differences between DC post self-antigen versus foreign-antigen

vaccine were evident as late as 72 h post-vaccination (12). We
considered the possibility that the early action of IL-10 on DC,
along with other factors, might increase their sensitivity to IL-10
at the later-time points. To query this, DC were removed from the
spleens of WT and MUC1.Tg mice 24 h post MUC1p vaccination
and exposed to IL-10. As signaling through the IL-10R is known
to occur through a STAT3 intermediate, the sensitivity of DC to
IL-10 was assessed by phosphoflow, measuring phospho-STAT3
levels post ex vivo exposure to IL-10. As hypothesized, there was
a significant increase in the number of DC showing STAT3 phos-
phorylation as well as higher levels of pSTAT3 in the spleens of
MUC1p-vaccinated MUC1.Tg mice (Figures 2A–C) indicating
that DC in the spleens of MUC1.Tg mice are not only exposed
to more IL-10 early on, but are also more sensitive to it at the
later-time points.

IL-10R BLOCKADE INCREASES COSTIMULATORY MOLECULE
EXPRESSION ON DC FOLLOWING VACCINATION WITH MUC1p AS
SELF-ANTIGEN
Given the inverse correlation between IL-10 production and DC
pancreatic enzyme expression in the first 24 h following vaccina-
tion and previously published data showing that IL-10 is necessary
for suppression of trypsin 1 and CPB1 following vaccination with
a self-antigen (12), we hypothesized that blocking IL-10 signaling
in self-antigen vaccinated mice would improve DC activation and
costimulatory molecule expression. We injected MUC1.Tg mice
with an antibody against IL-10R and vaccinated intravenously 24–
48 h later with MUC1p plus Poly-ICLC. At 24 h post-vaccination,
the surface phenotype of splenic DC was analyzed by flow cytome-
try. As hypothesized, there was an increase in the level of cell surface
expression of CD40, CD80, and CD86 in DC from mice pretreated
with the antibody to IL-10R, but not from mice treated with the
isotype control antibody (Figures 3A–C). Increases in CD40 and
CD86 were statistically significant, which is of interest because
these two molecules were shown previously to be specifically inhib-
ited in mice vaccinated with a self- but not a foreign-antigen (12).
In addition to being less active as measured by surface marker
expression, these DC are also less capable of stimulating MUC1
specific CD4 T cells in vitro. DC isolated from MUC1.Tg mice
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FIGURE 2 | Dendritic cell from spleens of mice vaccinated with
self-antigen have higher levels of phosphorylated STAT3 after IL-10
treatment than DC from spleens of mice vaccinated with
foreign-antigen. WT (solid line) and MUC1.Tg (dashed line) mice were
vaccinated with MUC1p via the tail vein. Twenty-four hours post-vaccination
splenocytes were removed and treated with 30 ng/mL of IL-10 for 20 min.
Following incubation, cells were fixed and phospho-STAT3 expression in
CD11c+NK1.1− splenocytes was analyzed via phoshpoflow.
(A) A representative flow plot is shown. The shaded histogram represents

the fluorescence level when cells are treated with standard surface markers
and an isotype-matched control instead of the phosphospecific antibody.
pSTAT3 positivity (B) and MFI (C) were analyzed. In (B) symbols correspond
to individual animals and are representative of two independent
experiments. (C) Values shown have been normalized to the expression
level of the control group (WT) in order to allow for pooling of data from
separate experiments run on multiple days. Bars are representative of nine
mice from two combined experiments and show the mean±SEM.
*Indicates a p-value of <0.05.

pretreated with an antibody against the IL-10R prior to MUC1
vaccination and put into culture with MUC1 specific CD4 T cells
induce higher levels of IL-2 (Figure 4A) and CD4 T cell prolif-
eration (Figures 4B,C) compared to DC from MUC1.Tg mice
pretreated with an isotype-matched control antibody.

BLOCKING IL-10 SIGNALING PRIOR TO VACCINATION WITH MUC1p AS
SELF-ANTIGEN IMPROVES CD4 T CELL RESPONSE
The increase of costimulatory molecule expression when IL-10
signaling was blocked just prior to vaccination suggested that
there would be a resultant increase in the T cell response. To
test this, we again pretreated mice with an anti-IL-10R antibody
or an isotype-matched control and injected with a vaccine com-
posed of DC loaded with MUC1p. We chose the DC-based vaccine
expecting that it would optimally stimulate both CD4 and CD8 T
cells, as has been previously shown (16). Seven to nine days post-
vaccination, splenic T cells were isolated and their production of
relevant cytokines analyzed by ELISPOT and intracellular flow
cytometry. In MUC1.Tg mice treated with anti-IL-10R, there was
a significant increase in MUC1p specific, IFNγ+CD4 T cells when
compared to mice treated with an isotype-matched control anti-
body (Figures 5A,C). The level of the response was equivalent to
the response of WT mice pretreated with the isotype control anti-
body (Figure 5A). There was no increase over the isotype control
of the T cell response in WT mice pretreated with the anti-IL-10R
antibody (Figures 5A,C), indicating that the effect of IL-10 we saw
in MUC1.Tg mice was specific for controlling responses to self-
but not foreign-antigens. There was a small but not significant
increase in the CD8 response that was detectable only by the more
sensitive ELISPOT (Figures 5B,D).

DISCUSSION
Vaccines against cancer have garnered a lot of attention in recent
years. Much of this was sparked by the relatively recent approval
of Sipuleucel-T, the first vaccine to show survival benefit in a solid
metastatic tumor (17, 18). Implementation of Gardasil®, a quadri-
valent human papilloma virus specific vaccination intended to
prevent cervical cancer in women (19, 20) has also sparked new
efforts in designing prophylactic cancer vaccines not just for viral
cancers but for many tumor types (21–24). Most non-viral tumor
antigens fall into the category of self- or altered self-antigens.
Mounting an effective immune response against them represents
a unique challenge. One must design vaccines that overcome the
natural tolerizing forces acting on responses to self-antigens, while
minimizing adverse autoimmune effects.

Our work with the MUC1 tumor antigen in the MUC1.Tg
mouse model system has shown that hyporesponsiveness to the
MUC1 peptide vaccines in these mice is neither due to the elimi-
nation of MUC1 peptide-specific T cells by central tolerance, nor
solely to their conditioning in the periphery, but rather by the
control of their activation (15). Indeed, even when unconditioned
MUC1 specific T cells are transferred into MUC1.Tg hosts, they
are hyporesponsive to MUC1 peptide vaccination but respond vig-
orously in WT hosts. Most recently, we determined that the major
reason for the lack of T cell response is profound, albeit transient,
tolerization of DC in MUC1p-vaccinated MUC1.Tg mice early
post-vaccination (12). Here, we show that this is likely due to the
very early and exaggerated effect of IL-10 on these DC in the first
4–24 h post-vaccination. IL-10 is known to reduce MHC Class II
and costimulatory molecule expression on DC (4–6), DC motility
(25, 26), and overall T cell stimulatory capacity (27, 28), all

www.frontiersin.org February 2014 | Volume 5 | Article 59 | 49

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


Marvel and Finn IL-10 inhibits self-antigen vaccine responses

FIGURE 3 | Pretreatment with an antibody against the IL-10
receptor increases the level of costimulatory molecule expression
on DC in the spleens of self-antigen vaccinated mice. MUC1.Tg
mice were pretreated with an antibody against the IL-10 receptor
(IL-10R, solid lines) or were given a non-specific isotype control (iso,
dashed lines). One to two days later they were vaccinated as in
Figure 1 and 24 h post-vaccination, splenocytes were removed and
analyzed via flow cytometry. The expression level of CD40 (A), CD86
(B), and CD80 (C) on splenic DC (CD11C+, MHC Class II+) was
determined. Shaded histograms represent fluorescence in samples
stained with isotype alone. Bar graph values shown have been
normalized to the expression level of the control group (iso) in order to
allow for pooling of data from separate experiments run on multiple
days. (A,C) Data are combined from two independent experiments and
representative of six mice. (B) Data are combined from three
independent experiments and are representative of 10 mice. Bars
represent mean±SEM. p-Values are as stated unless designated by a
*, which indicates a p-value of <0.05.

FIGURE 4 | Blocking of the IL-10 receptor prior to intravenous MUC1
peptide vaccination increases the ability of splenic DC from MUC1.Tg
mice to stimulate MUC1 specific CD4T cells ex vivo. MUC1.tg mice
were treated as in Figure 3. Twenty-four hours post MUC1 vaccination,
splenocytes from three to four mice per treatment group were pooled and
bead isolated DC from these pooled splenocytes were put into culture with
CFSE labeled MUC1 specific CD4 T cells (VFT cells) at a ratio 1DC:5VFT.
Twenty-four hours after the start of culture, half of the culture media was
removed and the concentration of IL-2 was measured by ELISA (A).
Cultures were allowed to incubate three more days for a total of four and
VFT proliferation was analyzed by CFSE dilution (B,C). (B) Bars represent
the mean percentage of CD3+CD4+T cells that had proliferated at 4 days
of three technical replicates ±SEM. (C) A representative flow plot is shown.
Data are representative of two to three independent experiments.
*Indicates a p-value of <0.05.

of which are characteristics of DC in the spleens of MUC1p-
vaccinated MUC1.Tg mice (12).

The effects of IL-10 on vaccines have been observed previously.
In the therapeutic setting, IL-10R blockade alone or along with
vaccination can improve Th1 responses and enhance pathogen
clearance (29–31). In a prophylactic setting, mice given the BCG
vaccination for prevention of Mycobacterium tuberculosis show
improved Th1 responses and enhanced resistance to pathogen
challenge when IL-10R is blocked at the time of vaccination (32).
In this paper, we describe a distinct new role for IL-10 in impacting
vaccine outcome that is unique in its specificity for self-antigen.
The same MUC1 peptide, given as a self-antigen to MUC1.Tg mice
but as a foreign-antigen to WT mice, causes only low levels IL-10
production in WT mice and increased production in MUC1.Tg
mice. In previously published studies showing improvement in
immune responses after IL-10R blockade, IL-10 was produced
in response to acute or persistent pathogen infections, whereas
in this case it was specifically triggered in response to the pres-
ence of a self-antigen or specifically inhibited in the presence of a
foreign-antigen.
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FIGURE 5 |Treatment with anti-IL-10R antibody at the time of
vaccination increases the number of MUC1p specific, IFNγ+ CD4T cells
without an effect on CD8T cells. WT and MUC1.Tg mice were pretreated
with an antibody against the IL-10 receptor (IL-10R, black bars) or a
non-specific isotype control (iso, gray bars). One to two days following
antibody treatment, mice were vaccinated with DC loaded with MUC1p.
Seven to nine days post-vaccination, spleens were removed and bead
isolated CD4 (A,C) and CD8 T cells (B,D) were cultured with MUC1p loaded
bone marrow derived DC overnight and analyzed by ELISPOT (A,B), or were
cultured for 6–8 h in the presence of brefeldin-A and analyzed by intracellular

flow cytometry (C,D). (A) Data are combined from two independent
experiments with each spot indicating an individual animal. Data are
representative of three independent experiments. (B) Bars indicate the
average of three technical replicates pooled from three individual animals
per group. Data are representative of two independent experiments. (C,D)
Values shown are normalized to the response of mice of that genotype (WT
versus MUC1.Tg) given the control treatment (iso). Data are combined from
two independent experiments and are representative of five to six mice per
group. Bars represent mean±SEM. *Indicates a p-value of <0.05;
**indicates a p-value of <0.005.

We have yet to identify the source in the spleen of this early
IL-10 production in self-antigen vaccinated mice. Every cell of
the immune system can produce IL-10 given proper stimulation.
However the kinetics and pattern of IL-10 production in MUC1p-
vaccinated MUC1.Tg mice limits the possibilities considerably.
The fact that IL-10 production was antigen dependent suggests a
cell of the adaptive immune system. Regulatory T cells have previ-
ously been shown to be important in preventing MUC1p specific
immune responses in MUC1.Tg mice (12, 33). However, prelim-
inary experiments have been unable to identify IL-10 producing
regulatory T cells in MUC1.Tg mice at rest or immediately fol-
lowing vaccination (data not shown), as has been shown in some

models after self-peptide administration (34). Given that regula-
tory T cells can modulate the function of a wide variety of innate
cells, including NK cells (35, 36) and DCs (37, 38), it is possible
that through secretion of another cytokine or through direct inter-
actions, they induce IL-10 production either directly or indirectly
in another cell population.

Irrespective of the source, the self-antigen specific role of IL-
10 reported in this paper supports IL-10 inhibition as a way
of improving the efficacy of vaccines against self-antigens that
are candidate tumor antigens. While our major success in this
study was in improving CD4 T cell responses, we would hypoth-
esize that CD8 T cell responses generated upon boosting would
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be improved as well in these animals as a consequence of gen-
eration of a larger population of helper CD4 T cells that are
required for effective CD8 T cell memory differentiation (39, 40).
The concern remains that any manipulation leading to enhanced
responses to self/tumor antigens might cause adverse autoimmune
reactions. However, current research has shown this concern can
be addressed by proper antigen selection. For example, vaccines
against self/tumor antigens MUC1 and α-lactalbumin have shown
clinical and preclinical efficacy with no induction of autoimmu-
nity (23, 41, 42). And vitiligo, caused by successful anti-melanoma
vaccines is an autoimmune event that can be easily tolerated (43–
45). Furthermore, while long term IL-10 deficiency can cause
adverse autoimmune effects (46, 47), our data suggest that in order
to improve the vaccine response, IL-10 would need to be blocked
only transiently at the time of initial vaccination.
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The ability of dendritic cells (DCs) to stimulate and regulate T cells is critical to effective
anti-tumor immunity.Therefore, it is important to fully recognize any inherent factors which
may influence DC function under experimental conditions, especially in laboratory mice
since they are used so heavily to model immune responses.The goals of this report are to
1) briefly summarize previous work revealing how DCs respond to various forms of phys-
iological stress and 2) to present new data highlighting the potential for chronic mild cold
stress inherent to mice housed at the required standard ambient temperatures to influ-
ence baseline DCs properties in naïve and tumor-bearing mice. As recent data from our
group shows that CD8+ T cell function is significantly altered by chronic mild cold stress
and since DC function is crucial for CD8+ T cell activation, we wondered whether housing
temperature may also be influencing DC function. Here we report that there are several
significant phenotypical and functional differences among DC subsets in naïve and tumor-
bearing mice housed at either standard housing temperature or at a thermoneutral ambient
temperature, which significantly reduces the extent of cold stress.The new data presented
here strongly suggests that, by itself, the housing temperature of mice can affect funda-
mental properties and functions of DCs.Therefore differences in basal levels of stress due
to housing should be taken into consideration when interpreting experiments designed to
evaluate the impact of additional variables, including other stressors on DC function.

Keywords: cold stress, thermoregulation, norepinephrine, mouse models of cancer, anti-tumor immunity

INTRODUCTION
Dendritic cells (DCs) play a vital role in the generation of effective
and long-term immune protection from cancer and other diseases.
DCs are antigen presenting cells, which educate tumor-specific T
cells and provide signals for T cell proliferation and expansion
(1, 2). Importantly, DCs bridge the innate and adaptive immune
responses so their presence and functional capacity affect both
arms of anti-tumor immunity (3, 4). Properties of DCs that are
investigated to determine their stage of development include sur-
face expression of major histocompatibility complex (MHC) class
II molecules and co-stimulatory CD86 as well as cytokine pro-
duction. Additionally, DCs are also being used clinically in cancer
vaccines (5, 6) and this approach has rendered promising results;
however, considerable room for improvement remains (7–9).

In addition to anti-tumor immunity and immune surveillance,
DCs also participate in tolerizing the immune system to tumor
antigens, which can render the anti-tumor immune response inef-
fective (10). Cross-presentation, a process that DCs undergo in
order to activate CD8+ T cells, plays a major role in generating
anti-tumor immunity (11), however; when DCs of tumor-bearing
hosts undergo this vital process, T cell tolerance often results (5).
Recently, it has been reported that DCs able to up-regulate MHC
II (signal 1) in the absence of CD86 (signal 2) become tolero-
genic DCs (12, 13). Although considerable progress has been made

toward understanding how DCs become tolerogenic (10, 14, 15),
the precise mechanisms by which tumors modulate cross-priming
to suppress the CD8+ T cell response remain largely unknown.
This incomplete understanding of the role DCs play in immune
evasion remains a vital question as DCs are being actively investi-
gated in mouse models to help reveal their role in the anti-tumor
immune response. Therefore, it is important to fully recognize
the impact of any inherent physiological factors in mice, which
can alter DC function and to understand the impact these factors
could have on experimental models of antigen presentation and
immunotherapy.

We have been interested in the effects of various types of bio-
logically relevant stress on the functional properties of immune
cells (16) and have previously reported on the impact of mild
(fever-range) heat stress on DC function (17, 18). It is impor-
tant to note that there are a wide variety of stressors including
physical, environmental, and emotional forms of stress that can
alter homeostasis in cells or in the whole organism (19). Two
major hormonally driven mechanisms are believed to mediate
the influence of stress on the immune response. Glucocorticoids
are released following stress leading to increased glucose metab-
olism necessary to provide extra energy to combat that stressor.
Additionally, catecholamines, such as norepinephrine (NE), are
released from sympathetic nerves and bind receptors on immune
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cells thereby impacting the immune response. Both of these hor-
monal mediators can influence immune processes including cell
proliferation, migration, and cytokine production (20). Here, we
first briefly summarize some of the previous work done to inves-
tigate the more specific effects of stress on DC function. While
some studies show that acute, short term, stress may enhance DC
function in vitro, resulting in a better ability to prime naïve T
cells, other studies, particularly those which utilize the addition of
exogenous stress hormones, reveal that stress impedes DC func-
tion in vivo. We outline reports suggesting a vital role of the stress
hormone NE on DC function in vivo but not in vitro. We also sum-
marize literature showing beneficial effects of a mild thermal stress
on DC function both in vitro and in vivo. Finally, we report that
when mice used to investigate DC function are housed at standard
ambient temperatures they experience an underappreciated form
of chronic physiological cold stress that alters the baseline used
to understand the impact of experimental stressors or other treat-
ments on DC function. We suggest that chronic mild cold stress,
similar to other forms of stress inherent to mouse caging condi-
tions including stress caused by lack of exercise and overeating
(21), should be taken into consideration when assessing baseline
properties of DCs in naïve or tumor-bearing mice.

STRESS CAN TARGET DC FUNCTION
Dendritic cells have already been the subject of many studies inves-
tigating the impact of stress on immune function. Acute stressors,
lasting minutes to hours, have been shown to augment DC func-
tion as seen by enhanced maturation and increased trafficking
from skin to lymph nodes (22, 23). Prior to immunization, spe-
cific kinds of acute stress, such as psychological stress induced by
placing mice in restraints or on a slow moving shaker works as
an adjuvant leading to increased DC migration from the skin to
the lymph nodes and also improves antigen-specific T cell prim-
ing (24, 25). The impact of such acute psychological stress on
DCs has also been investigated in humans. Social stress in human
participants (induced by public speaking) generates a decrease in
skin DCs, which the authors suggest indicates that these cells have
trafficked to the lymph node (26) where they are available to inter-
act with T cells and initiate immune activation. However, while
some stressors may elicit beneficial effects on DC function and
general immunity, chronic or excessive exposure to stress is gener-
ally thought to negatively influence immune function (27). Many
studies, particularly those using exogenous administration of glu-
cocorticoids, stress hormones which signal to turn down immune
activity, suggest inhibitory effects of stress on DC function (28,
29). Both oral (30) and topical (31) application of glucocorticoids
leads to a marked reduction in DC numbers. Many studies specifi-
cally investigate the impact of dexamethasone (DEX), a commonly
prescribed glucocorticoid, on DC development and function. It
has been shown that DEX greatly reduces epidermal DC numbers
in mice (32, 33) as well as in the spleen, lymph node, and liver
(34, 35). DEX treatment also limits DC migration to the draining
lymph node (36). Additionally, DEX is correlated with reduced
expression of surface maturation markers on DCs including CD86
and MHC class II (35, 37, 38). In vitro, DEX treatment reduces the
ability of bone marrow (39, 40) and skin derived DCs (32, 41)
as well as a murine epidermal DC line (42) to stimulate T cells.

DEX also impairs antigen presentation by DCs reducing T cell
activation in vivo (35). It has also been shown that following DEX
treatment, DCs are unable to fully mature and these immature
DCs induced a subpopulation of immunosuppressive regulatory
T (Treg) cells (39). Additionally a reduction of interleukin (IL)-1β

and IL-12p70 secretion from DCs has been shown following DEX
treatment (37). Compared to control cells, glucocorticoid-treated
DCs produce less granulocyte macrophage colony-stimulating fac-
tor (GM-CSF), tumor necrosis factor-alpha (TNF-α) and IL-1α,
all cytokines required for survival and maturation, and are less apt
to initiate antigen presentation and migration (43). Further, treat-
ment with other glucocorticoids (hydrocortisone or clobetasol)
led to DC apoptosis identified by DNA damage, caspase-3 activity,
and CD95 up-regulation (43).

Catecholamines, such as NE and epinephrine, also play an
important role in mediating the relationship between stress and
DCs. Manipulating the function of stress induced catecholamines
has been linked to altered DC function (44). For example, when
healthy patients were administered a β-adrenergic agonist (oral
salbutamol),which mimics NE signaling, IL-12 production by DCs
was decreased, inhibiting Th1 development (45). Another study
found that NE similarly suppressed IL-12 production in a dose-
dependent manner and that this was reversible with a glucocorti-
coid agonist, RU 486 (46). As Th1 and Th2 responses are mutually
inhibitory, this leads to an increasingly prominent Th2 environ-
ment, which is defined by various immunosuppressive properties
including inhibition of macrophage activation, T cell prolifera-
tion, and pro-inflammatory cytokine production (47). The effects
of catecholamines may be most important to DCs in the early
stages of antigen processing (44). Short term exposure of bone
marrow-derived DCs to NE or epinephrine at the early stage of
stimulation inhibits IL-12 and favors IL-10 production as well as a
reduced ability to stimulate T cells (48). Skin DCs are also sensitive
to catecholamine signaling. In vitro, treatment with NE, epineph-
rine, or β-adrenergic agonist (isoproterenol) hindered skin DCs
from presenting antigen and this effect was reversed by treatment
with ICI 118,551, a β2-adrenergic antagonist (49). DC migration is
NE dependent as demonstrated by decreased DC migration in vivo
following NE depletion with 6-hydroxydopamine treatment (25).
Additionally, NE has been shown to enhance phosphatidylinositol
3-kinase mediated antigen uptake by DCs (50). Taken together,
these reports suggest that although some types of stress may ben-
efit DCs under certain circumstances, it is generally accepted that
chronic stress dampens many aspects of DC function.

EFFECTS OF MILD HYPERTHERMIA ON DCs
Environmental conditions have long been manipulated to cre-
ate physiologically relevant stress. Thermal stress, induced when
environmental conditions are either too hot or too cold to allow
basal metabolism to maintain normal body temperature, is a
classically studied stress in mice and humans (51). While con-
ditions of severe heat or cold can be quite damaging to immu-
nity, mild heat stress has been studied for its positive effects
since ancient times because of its potential relationship to fever
(52–55). In response to infection, body temperature increases to
varying extents among different animals, but in all cases, homeo-
static functions shift toward producing and conserving heat (52).
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Generally, temperature elevation during fever ranges between 1
and 5°C above normal body temperatures (56–58). The physio-
logical effects of fever have been mimicked experimentally by using
mild hyperthermia treatments in mice, where body temperature
is temporarily raised to fever-range (16). Many studies, including
those from our own group, have examined how mild hyperthermia
affects DCs and their function (17, 59–64).

Dendritic cell maturation is determined by the up-regulation
of surface markers including MHC class II and CD86 (65, 66).
Mild thermal stress increases levels of both of these markers on
DCs (59). In vitro heating accelerates DC maturation as demon-
strated by up-regulation of both CD86 and MHC class II (60, 61,
67). In vivo studies have also shown that up-regulation of both
MHC class II and CD86 molecules on the surface of DCs from
mice treated with whole body hyperthermia (61, 68). Addition-
ally, hyperthermia in combination with other treatments including
ionizing radiation (69), magnetic nanoparticles (70, 71), radiofre-
quency ablation (72) and vaccination (73, 74) results in enhanced
DC function.

Dendritic cell migration to the lymph node is an important
function required for efficient antigen presentation and our group
and others have shown that mild heat stress can promote migra-
tory activity of DCs. DCs in ear skin subjected to thermal stress
in culture show increased migration compared to control sam-
ples (75), while increased DC migration into the lymph nodes of
thermally stressed mice has also been demonstrated (61).

Heat treatment results in improved stimulatory function
of DCs (59, 63, 67). Heated OVA-loaded DCs induce greater
interferon-gamma (IFN-γ) responses from SINFEKL-specific T
cells (64). Heat-treated SINFEKL pulsed DCs elicit greater antigen-
specific CD8+ T cell proliferation than unheated DCs (67). Heat
also enhances the ability of DCs to cross-present to CD8+ T (76)
and activates CD4+ T cells leading to antigen dependent mem-
ory (77). Additionally, mild hyperthermia alters the production
of cytokines and chemokines from DCs, which are important for
ensuring effective T cell priming. Mild heating increases DC pro-
duction of inflammatory cytokines including IFN-γ, IL-17, IL-10,
IL-12, and TNF-α (60, 61, 63). Taken together, the growing body
of literature describing the effects of mild heat stress on DCs indi-
cates that mild heat stress enhances DC function by promoting
maturation and migration and increasing inflammatory cytokine
production to assist with mediation of T cell priming to elicit T
cell proliferation.

EFFECTS OF COLD STRESS ON DCs
We have summarized some of the previously reported complex
effects of stress on DCs, including the general beneficial effects of
temporary mild hyperthermia. We wondered whether the base-
line function of DCs in these types of studies is influenced by
ambient temperature used to house mice in research facilities. Lab-
oratory mice are under a mild, yet constant cold stress as they are
group housed at a cool (sub-thermoneutral) temperature (78–80).
Additionally, since laboratory mice are provided with unlimited
access to food and housed in small cages, which do not allow
adequate room to exercise, they also experience additional meta-
bolic stresses (21). Although these stressors have been identified
as being important in other fields of research, such as obesity

(81), they are not generally accounted for in the field of cancer
immunology.

The fact that mice are mildly, yet chronically, cold stressed is not
determined simply by body temperature measurements. In fact,
while body temperature appears normal (~37°C) for mice housed
at standard ambient temperatures required for research facilities
(55), thermal preference studies over many decades have shown
that mice prefer a warmer housing temperature near thermoneu-
trality (57, 78, 82, 83) indicating the degree of cold stress prompted
by such housing. The degree to which underlying chronic cold
stress has impacted the interpretation of the effects of other types
of stress on immune function remains to be determined. Impor-
tantly, NE is released in response to stressors, including cold stress
and, as detailed above, has a very significant influence on DC
function.

Recent literature has detailed the impact of chronic cold stress
in mice. The relationship between cold stress and metabolism has
been investigated and alterations in insulin production (84), NE
secretion (85), function of uncoupling proteins (81), and energy
expenditure (86, 87) have been identified. Developmental and
behavioral effects including differences in limb and tail length
(88), cardiac tone and heart rate (89), and sleep (90) have also
been observed when comparing cold stressed to non-stressed mice.
Most recently, our group has shown that mild cold stress associated
with standard housing conditions negatively impacts CD8+ T cell
dependent anti-tumor immune responses (55). To test whether
DC function is influenced by chronic cold stress, we studied the
impact of sub-thermoneutral housing temperatures on DC phe-
notype and function comparing the results to that seen from mice
housed at thermoneutrality. Importantly, core body temperature
in both groups of mice is the same, as shown previously (55).

We examined splenocytes from tumor-free and 4T1 tumor-
bearing mice housed at standard (ST; 22°C) and thermoneutral
(TT; 30°C) temperature. Because at 30°C the metabolic cold stress
is greatly reduced, these mice represent un-cold stressed animals
whereas their counterparts at 22°C are under chronic cold stress.
We found that the number of splenocytes is similar in naïve
(tumor-free) mice at ST and TT (Figure 1A). However, inoc-
ulation of mice with tumors induces an increase in splenocyte
number at both ambient temperatures, however, this increase is
larger at ST than at TT (Figure 1A). Confirming previous data
(55), tumors grew slower in mice at TT compared to ST; tumor
weight (Figure 1B) and volume (Figure 1C) were reduced in TT
mice compared to ST mice. We also examined body weight for
mice housed at each ambient temperature and found that prior to
tumor inoculation mice at ST gained weight faster than mice at
TT (Figure 1D). As tumors began to grow, mice at ST continued
to gain even more weight than mice at TT (Figure 1D). These data
show that animals housed at TT are physically smaller than those
mice used as standard control models, while 4T1 tumor growth is
accelerated in ST control mice.

We previously reported that spleens from mice at TT have fewer
CD11b+GR-1+ myeloid derived suppressor cells (MDSCs) (55),
so we wondered whether pan myeloid cells (CD11b+) were sim-
ilarly impacted by temperature (Figure 2A). We first determined
that tumor-bearing mice at ST have significantly more CD11b+

myeloid cells as well as a higher percentage of CD11b+ cells
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FIGURE 1 | Splenocytes, tumor size, and body weight are increased
when mice are maintained at ST compared toTT. 4T1 tumor-bearing
BALB/c mice and age-matched controls were maintained at ST or TT.
(A) Splenocytes obtained from control and tumor-bearing mice were
counted and (B) tumor weight and (C) volume were measured. Data

presented as mean±SEM; n=5/group; Student’s t -test; *p < 0.05,
**p < 0.01. (D) Change in weight from the start of the experiment was
measured. - - - - indicates day of tumor inoculation. Data presented as
mean±SEM; n=5/group; two-way ANOVA with Bonferroni post-tests;
*p < 0.05, **p < 0.01, ***p < 0.001.

compared to tumor-bearing mice at TT (Figure 2B). The number
and proportion of splenic myeloid cells in tumor-free animals was
unchanged (Figure 2C). These results suggest that the effects of
4T1 tumor growth on the accumulation of myeloid cells in the
spleen may be overestimated in mice housed under standard con-
ditions since the cellular increase is also dependent on ambient
temperature.

It has been reported that DC numbers in cancer patients are
reduced compared to healthy controls (91); thus, we next investi-
gated numbers of splenic DCs in tumor-free and tumor-bearing
mice maintained at ST and TT based on CD11c expression. Total
DCs were identified as CD11c+ cells. We found that absolute
numbers of splenic DCs (Figure 3A) increased following tumor
implantation in mice at ST but not at TT (Figure 3B). However,
the proportion of DCs decreased at both ST and TT following
tumor inoculation (Figure 3C). We next examined plasmacytoid
DCs (B220+CD11c+) (Figure 3D) which, following stimulation,
are major interferon producers (92). We discovered that absolute
numbers of plasmacytoid DCs increase following tumor inocula-
tion in mice at ST but not at TT (Figure 3E), whereas percentages
significantly decrease following tumor inoculation in mice at TT
but not at ST (Figure 3F). When we investigated non-plasmacytoid
DCs (B220−CD11c+) (Figure 3D) (93–95), we again found that
absolute numbers increase following tumor inoculation in mice at
ST but not at TT (Figure 3G) but that percentages of these cells
significantly decrease following tumor inoculation in mice at TT

only (Figure 3H). These data demonstrate that the number of DCs
found in the spleens of laboratory mice do not show the expected
increase in numbers after tumor inoculation when mice are main-
tained at thermoneutrality. Thus, ambient temperature should be
considered when interpreting data regarding immune cell subsets
in the spleens from mice used for cancer immunology studies.

We further dissected the non-plasmacytoid cell population by
quantifying a subset of immature (MHCII−CD86−) and two sub-
sets of mature (CD11c+MHCII+CD86,CD11c+MHCII+CD86−)
cells among CD8α+ and CD4+ non-plasmacytoid DCs
(Figure 4A). CD8α+ DCs are major producers of IL-12, able
to initiate a robust inflammatory response as well as efficiently
presenting antigen to CD8+ T cells (96–99). We found that
both absolute numbers (Figure 4B) and percentages (Figure 4C)
of immature CD8α+ non-plasmacytoid DCs are increased to
a greater extent following tumor inoculation in mice at ST
compared to TT. Absolute numbers of CD86− mature CD8α+

non-plasmacytoid DCs increased following tumor inoculation in
mice at ST but not TT (Figure 4D). The percentage of CD86−

mature CD8α+ non-plasmacytoid DCs decreased at ST but not
TT following tumor inoculation (Figure 4E). CD86+ mature
CD8α+ non-plasmacytoid DCs were unchanged in absolute num-
ber (Figure 4F) but their proportion in the spleen was modestly,
yet significantly decreased at both ST and TT following tumor
inoculation (Figure 4G). The increased numbers of immature and
CD86− mature CD8α non-plasmacytoid DCs present in mice at
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FIGURE 2 | Splenic myeloid cells are increased in tumor-bearing mice
maintained at ST compared toTT. Single cell suspensions of splenocytes
from 4T1 tumor-bearing mice and age-matched controls were stained for
CD11b and analyzed by flow cytometry. (A) Representative dot plots from
each group show the gating strategy used to select CD11b+ cells. Percentage

of cells are shown above their respective gate. (B) The absolute number of
CD11b+ cells calculated from the total number of splenocytes counted in each
individual mouse. (C) The percentage of CD11b+ cells of the total population
of live cells as determined by DAPI staining. Data presented as mean±SEM;
n=5/group; Student’s t -test; *p < 0.05, **p < 0.01, ***p < 0.001.

ST suggests that many of the DCs from these mice may not be able
to become activated.

Further, we investigated the same subsets of immature and
mature CD4+ non-plasmacytoid DCs (Figure 4A). We also found
a major increase in absolute numbers (Figure 4H) and percent-
age (Figure 4I) of immature CD4+ non-plasmacytoid DCs in
mice at ST but not TT following tumor inoculation. At ST, there
was an increase in absolute number (Figure 4J) and a decrease
in the percentage (Figure 4K) of CD86− mature CD4+ non-
plasmacytoid DCs in response to tumor, but no significant changes
were observed at TT. Again we saw no changes in absolute num-
bers of CD86+ mature CD4+ non-plasmacytoid DCs at either
temperature (Figure 4L). We did see a reduced percentage of
CD86+ mature CD4+ non-plasmacytoid DCs at ST but not at TT
following tumor inoculation (Figure 4M). Interestingly, despite
the increased number of non-plasmacytoid DCs in mice at ST
(Figure 3G), there are no differences in the number of mature
DCs (Figures 4F,L) suggesting that although DC numbers appear
to be increased in cold stressed mice, many of these cells are unable
to become activated in the presence of a 4T1 tumor.

Due to the increased overall numbers but relatively low number
of mature splenic DCs seen in mice at ST, we asked whether DCs
from mice at ST were impaired at antigen presentation and their
ability to activate naïve T cells. To answer this question, we per-
formed mixed lymphocyte reactions using irradiated splenocytes
from ST and TT tumor-free and tumor-bearing mice as stimulator
cells and T cells from naïve ST mice as the responders. Responder
and stimulator cells were co-cultured at a 2:1 ratio for 72 h and then
T cell proliferation was measured by 3H-thymidine incorporation.
As expected, we found that stimulator cells from tumor-free mice
at both ST and TT were able to induce significant T cell prolifera-
tion (Figure 5; tumor-free). However, stimulator cells from tumor-
free mice at ST elicited significantly more T cell proliferation than
those from mice at TT (Figure 5; tumor-free,+T cells). Interest-
ingly, when we looked at tumor-bearing mice, we found that stim-
ulator cells from mice at TT were able to initiate T cell proliferation
while those from mice at ST were not (Figure 5; tumor-bearing).

These results suggest that the activated DCs found in 4T1 tumor-
bearing mice at TT are more efficient antigen presenting cells than
DCs from tumor-bearing ST mice as demonstrated by the supe-
rior ability of TT splenocytes to elicit T cell proliferation. As the
in vitro portion of this work was all done at 37°C, these findings
also suggest that cold stress can alter DC function over a prolonged
period of time after DCs are removed from the mouse.

DISCUSSION
The relationships between stress and DC function are complex
and depend upon the type and duration of stress, and whether
the stressor is applied in vivo or in vitro. The type of DC (i.e., iso-
lated from the bone marrow or skin) or stage of DC maturation
when a stressor is encountered may also influence the impact of a
particular stress (39). Additionally, DC function is dependent on
the timing of antigen exposure and/or the type of antigen used,
so these factors may also affect the observed relationship between
stress and DC function (44).

In addition to summarizing some of the existing data on the
effects of various stressors and stress hormones on DC function,
we show here that the numbers and percentages of different sub-
sets of DCs can be dependent upon housing temperature. Since
sub-thermoneutral housing temperature is the standard condi-
tion under which mice are housed throughout the world, our
data suggests that only using mice which are mildly cold stressed
could be limiting our full understanding of the role of DCs in
immune responses, including their role in anti-tumor immunity.
Specifically, we have shown that tumor-bearing mice at ST have
significantly more DCs compared to tumor-bearing mice at TT.
However, the increased DCs seen at ST primarily display an imma-
ture phenotype (MHC II−CD86−) or they up-regulate MHC II
but not CD86 rendering them unable to activate CD8+ T cells.
The induction of signal 1 in the absence of signal 2 has been
shown to lead to immune tolerance (12, 13). Thus, our studies
suggest the potential for greater tolerance in mice at ST versus TT
as splenocytes from ST mice were unable to activate T cell prolif-
eration likely contributing to faster tumor growth. We observed
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FIGURE 3 |Tumor-bearing mice maintained at ST have an increased
frequency of DCs compared to those atTT. Single cell suspensions of
splenocytes from 4T1 tumor-bearing mice and age-matched controls were
stained for CD11c and (D–H) B220 and analyzed by flow cytometry.
(A) Representative dot plots from each group show the gating strategy used
to select CD11c+ cells. Percentage of cells are shown above their respective
gate. (B) The absolute number of CD11c+ cells calculated from the total
number of splenocytes counted in each individual mouse. (C) The percentage
of CD11c+ cells of the total population of live cells as determined by DAPI
staining. (D) Representative dot plots from each group show the gating

strategy used to select B220+CD11c+ and B220−CD11c+ cells. Percentage of
cells are shown above their respective gate. (E) The absolute number of
B220+CD11c+ cells calculated from the total number of splenocytes counted
in each individual mouse. (F) The percentage of B220+CD11c+ cells of the
total population of live cells as determined by DAPI staining. (G) The absolute
number of B220−CD11c+ cells calculated from the total number of
splenocytes counted in each individual mouse. (H) The percentage of
B220−CD11c+ cells of the total population of live cells as determined by DAPI
staining. Data presented as mean±SEM; n=5/group; Student’s t -test;
*p < 0.05, ***p < 0.001, ****p < 0.0001.

enhanced T cell stimulatory ability by splenocytes from tumor-
free mice at ST versus TT; however, when tumors were present the
ability of ST splenocytes to activate T cells was diminished. While
these data presented here is limited by the fact that we used whole
splenocytes instead of isolated DCs to quantify the ability of cells
from mice at ST and TT to activate T cells, the results presented
strongly suggest that DCs from mice under mild cold stress are less
able to undergo maturation prime T cells and elicit efficient T cell
responses than mice maintained under thermoneutral conditions.

One possible explanation for the differences in tumor growth
in mice from ST and TT is that DCs from mice at ST are more
suppressive than those from mice at TT. It has been shown that a
subset of murine DCs become particularly suppressive through-
out tumor growth (100–103). Our previous observations suggest
that when a tumor is present, the impact of cold stress is greatly
exacerbated (55). This idea is further supported by these findings

showing that T cell stimulation is greatly suppressed by splenocytes
from mice at ST, but not TT.

The data presented here, along with other recent publications
(81, 84–90) strongly suggest that the effects of chronic mild cold
stress are important to consider when working with mouse models.
Moreover, when studying the impact of experimentally induced
stress, such as social or psychological stress, on DCs and other
immune cells, it may be important to recognize that baseline data
could be significantly influenced by inherent cold stress induced
by standard housing conditions for laboratory mice.

FUTURE RESEARCH QUESTIONS
New questions emerge from the data presented here with regard to
the effects of stress on DCs. Most importantly, what is the mech-
anism by which mild cold stress influences DC function? NE is
involved in activation of thermogenesis in order to increase heat
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FIGURE 4 |Tumor-bearing mice maintained at ST have proportionally
more non-plasmacytoid DCs than those atTT, but these DCs primarily
display an immature phenotype. Single cell suspensions of splenocytes
from 4T1 tumor-bearing mice and age-matched controls were stained for
CD8α, CD4, CD11c, MHCII, CD86 and analyzed by flow cytometry.
(B–G) Quantification of data describing CD8α+ non-plasmacytoid DCs.
(A) Representative dot plots from each group show the gating strategy
used to select CD4 and CD8α cells from the non-plasmacytoid parent
population shown in Figure 3D. Percentage of cells are shown above their
respective gate. (B) The absolute number of CD8α+MHC II−CD86−

B220−CD11c+ cells calculated from the total number of non-plasmacytoid
cells. (C) The percentage of MHC II−CD86− cells of the total population of
CD8α+ non-plasmacytoid cells. (D) The absolute number of CD8α+MHC
II+CD86−B220−CD11c+ cells calculated from the total number of
non-plasmacytoid cells. (E) The percentage of MHC II+CD86− cells of the
total population of CD8α+ non-plasmacytoid cells. (F) The absolute number

of CD8α+MHC II+CD86+B220−CD11c+ cells calculated from the total
number of non-plasmacytoid cells. (G) The percentage of MHC II+CD86+

cells of the total population of CD8α+ non-plasmacytoid cells.
(H–M) Quantification of data describing CD4+ non-plasmacytoid DCs.
(H) The absolute number of CD4+MHC II−CD86−B220−CD11c+ cells
calculated from the total number of non-plasmacytoid cells. (I) The
percentage of MHC II−CD86− cells of the total population of CD4+

non-plasmacytoid cells. (J) The absolute number of CD4+MHC
II+CD86−B220−CD11c+ cells calculated from the total number of
non-plasmacytoid cells. (K) The percentage of MHC II+CD86− cells of the
total population of CD4+ non-plasmacytoid cells. (L) The absolute number
of CD4+MHC II+CD86+B220−CD11c+ cells calculated from the total
number of non-plasmacytoid cells. (M) The percentage of MHC II+CD86+

cells of the total population of CD4+ non-plasmacytoid cells. Data
presented as mean±SEM; n=5/group; Student’s t -test; *p < 0.05,
**p < 0.01, ***p < 0.001.

production to maintain normal body temperature (51, 85) and
has already been strongly implicated for its roles in immunosup-
pression (20) and in regulating the polarization of macrophages
(85). These observations strongly point to NE being a key player
in the underlying relationship between cold stress and impaired
DC function (55).

As mentioned earlier, cytokines affected by glucocorticoid
treatment (43) or mild heating (60, 61, 63) include TNF-α,
IFN-γ, IL-1α, IL-17, IL-10, and IL-12. How is the expression
of these cytokines impacted by pre-existing mild cold stress in
mice? In order to fully understand the impact of other types
of stress in mouse models, it will be imperative to understand
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FIGURE 5 |T cells are activated better by splenocytes from mice atTT
than ST. Total splenocytes from tumor-free and tumor-bearing BALB/c mice
and lymphocytes from C57BL/6 mice were cultured 1:2. T cell proliferation
was measured by 3H-thymidine incorporation. Data presented as
mean±SEM; n=5/group; Student’s t -test; *p < 0.05, **p < 0.01,
***p < 0.001.

if cytokine production by DCs differs when mice are housed at
sub-thermoneutrality compared to TT.

Here, we looked at DC expansion in response to inoculation
with the 4T1 murine mammary carcinoma cell line. Do DCs in the
presence of other tumor models respond similarly to cold stress?
Similar analysis of mice at ST and TT using hematological tumors
and other widely used cell lines representing different types of solid
tumors, as well as human derived cell lines and patient xenograft
models in immunosuppressed mice may elicit different findings
regarding tumor growth control and DC function. Further, use
of carcinogen-induced or transgenic mouse tumor models will all
be important to establish the overall impact of cold stress on DC
function.

We have shown that eliminating cold stress influences baseline
properties of DCs in tumor-free and tumor-bearing mice. There-
fore, a major question which should be addressed is how this
may be influencing data interpretation of experiments in which
additional stressors (such as social isolation) are imposed on pre-
existing cold stress. It is also possible that previously demonstrated
beneficial effects of mild hyperthermia on DC function could be
related to the fact that control (non-heated) mice are actually cold
stressed. In other words, applications of mild heat could have a
similar effect on DCs as thermoneutural housing in which body
temperature is not elevated. It is clear that the study of stress
responses in mice should be done at more than one ambient tem-
perature in order to understand the impact of this variable on
data interpretation. Conducting experiments under thermoneu-
tral conditions as well as sub-thermoneutral housing would help
to eliminate the impact of pre-existent cold stress while studying
the effects of other stressors on DC function.

In summary, since a complete understanding of DCs is crit-
ical for development of effective immunotherapies for cancer

patients, it is essential to recognize that the function of these crit-
ical cells may be dependent upon ambient housing temperature
and other factors which influence physiologic or metabolic stress
experienced by laboratory mice used in preclinical studies.

MATERIALS AND METHODS
MICE
Female,8–10-week-old BALB/cAnNcr (BALB/c) and C57BL/6NCr
(C57BL/6) mice were purchased from the NCI (Bethesda, MD,
USA). Prior to experimentation, BALB/c mice were acclimated to
ST or TT for 2 weeks.

MOUSE HOUSING AT ST AND TT
Mice were maintained in specific pathogen-free facilities and were
treated in accordance with the guidelines established by the IACUC
at Roswell Park Cancer Institute (Buffalo, NY, USA). Cages con-
taining Enrich-o’Cobs bedding (The Andersons, Inc., Maumee,
OH, USA) housed mice 5 to a cage. Cages were held in Preci-
sion® Refrigerated Plant-Growth Incubators (Thermo Scientific;
Waltham, MA, USA) maintained at 22 or 30°C. Humidity was con-
trolled using a Top Fin® Air Pump AIR 1000 with Top Fin® airline
tubing.

CELL LINE
4T1 murine mammary carcinoma cells were purchased from
ATCC (Manassas, VA, USA). Cells were cultured in RPMI
1640 (Gibco, Grand Island, NY, USA) with 10% FBS, 10 mM
l-glutamine, and 100 µg/ml penicillin/streptomycin. When cells
reached ~90% confluence in culture, 1× 104 4T1 cells were
injected orthotopically into the fourth mammary fat pad of
BALB/c, mice.

FLOW CYTOMETRY
Cells were collected from the spleen, tumor, and draining lymph
node. Tissues were excised, washed, and filtered into a single
cell suspension. Cells were counted with a hemocytometer and
Trypan Blue solution. Cells were stained with Brilliant Violet
711™ anti-mouse CD4 (clone RM4-5; BioLegend; San Diego,
CA, USA), Brilliant Violet 650™ anti-mouse CD3 (clone 17A2;
BioLegend), Pacific Blue™ anti-mouse CDllb (clone M1/70;
BioLegend), APC anti-mouse CD11c (clone N418; BioLegend),
FITC anti-mouse CD86 (clone GL1; BD Pharmingen; San Jose,
CA, USA), PerCp/Cy5.5 anti-mouse MHC (clone M5/114.15.2;
BioLegend). Live cells were determined by staining cells with
4′,6-diamidino-2-phenylindole (DAPI; Life Technologies; Grand
Island, NY, USA) and defined as DAPI-negative. Samples were ana-
lyzed on an LSRII flow cytometer (BD Pharmingen) and analyzed
using FlowJo (Ashland, OR, USA) version 10.0.6.

MIXED LYMPHOCYTE REACTIONS
Spleens were excised from tumor-free and tumor-bearing BALB/c
mice, and lymph nodes were excised from C57BL/6 mice. BALB/c
splenocytes were irradiated at 30 Gy. BALB/c splenocytes (stim-
ulator cells) and C57BL/6 lymphocytes (responder cells) were
filtered, washed, and cultured at a ratio of one stimulator cell
to two responder cells in 200 µl RPMI (10% FBS, 100 mM
l-Glutamate, and 100 U/ml Penicillin–Streptomycin). After 72 h
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1 µCi 3H-thymidine was added for 14–18 h. T cell proliferation
was determined by 3H-thymidine incorporation.

DATA ANALYSIS AND STATISTICS
All data are presented as mean± SEM All p values were deter-
mined using Student’s t -tests or two-way ANOVA with Bonfer-
roni post-tests. All statistical analysis was completed using Prism
software.
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Dendritic cells (DCs) and monocytes are critical regulators and effectors of innate and
adaptive immune responses. Monocyte expansion has been described in many pathologi-
cal states while monocyte and DC deficiency syndromes are relatively recent additions to
the catalog of human primary immunodeficiency disorders. Clinically applicable screening
tests to diagnose and monitor these conditions are lacking. Conventional strategies for
identifying human DCs and monocytes have been based on the use of a lineage gate to
exclude lymphocytes, thus preventing simultaneous detection of DCs, monocytes, and
lymphocyte subsets. Here we demonstrate that CD4 is a reliable lineage marker for the
human peripheral blood antigen-presenting cell compartment that can be used to identify
DCs and monocytes in parallel with lymphocytes. Based on this principle, simple modifi-
cation of a standard lymphocyte phenotyping assay permits simultaneous enumeration of
four lymphocyte and five DC/monocyte populations from a single sample.This approach is
applicable to clinical samples and facilitates the diagnosis of DC and monocyte disorders in
a wide range of clinical settings, including genetic deficiency, neoplasia, and inflammation.

Keywords: dendritic cells, monocytes, flow cytometry, immunodeficiency, humans

INTRODUCTION
Dendritic cells (DCs) and monocytes are bone marrow derived
mononuclear cells involved in a wide range of immune functions.
Blood DCs comprise three subsets: plasmacytoid DCs (pDCs),
CD1c+ myeloid DCs (mDCs), and CD141+ mDCs (1–5). pDCs
typically lack the myeloid antigens CD13, CD33, and CD11b and
express CD123 (IL-3 receptor), CD303 [CLEC4C; Blood DC anti-
gens (BDCA)-2], and CD304 (neuropilin; BDCA-4) (1). They are
specialized to produce a rapid type I interferon response to viral
infections (6). mDCs share markers in common with monocytes
and granulocytes including CD13, CD33, and CD11b and perform
the classical functions of DCs in taking up and presenting anti-
gen on HLA class II molecules. DCs resembling all three subsets
are found in lymph nodes (7, 8) both mDC subsets have tissue
counterparts (5).

Monocytes also comprise a number of distinct functional sub-
sets delineated by expression of CD14 and CD16 in humans.
CD14+ CD16− “classical monocytes” perform inflammatory
functions including phagocytosis, production of reactive oxygen
species, nitric oxide, and TNFα (9). Two additional populations
have been described: CD16+ CD14low “non-classical” monocytes
and CD14+ CD16+ “intermediate” monocytes (3, 10). There is
variation in how these cells are divided, with a position paper
on nomenclature suggesting that intermediate monocytes may be
grouped with non-classical monocytes (both linked by the expres-
sion of CD16) while more recent gene expression studies suggest
that intermediate monocytes are more closely linked to classical

monocytes (11). Both by flow cytometry and gene set enrich-
ment analysis, intermediate monocytes appear to be part of a
continuum (12). It is clear, however, that the non-classical pole
of the spectrum contains cells with higher class II expression, allo-
stimulatory capacity, and cytokine production that have led to
their classification as a type of DC (2, 13). CD16+ non-classical
monocytes are also smaller and become closely associated with
the endothelium upon adoptive transfer into mice (11). A wide
range of studies show that non-classical monocytes are increased
by exercise, autoimmune disease, bacterial sepsis, tuberculosis, and
HIV infection, reviewed in Ref. (10).

Routine analysis of human blood DCs and monocytes is usually
confined to the enumeration of classical monocytes by automated
blood counters. The complexity of changes in DC and monocyte
subsets is not visible in most clinical scenarios. Flow cytometry is
frequently used to analyze lymphocyte subsets but simultaneous
detection of DCs and monocytes is hampered by the lack of a
positive lineage marker. Although robust platforms for DC count-
ing have been described, these invariably depend upon identifying
MHC class II (HLA-DR) expression by lineage (lin) negative cells,
a population defined by the exclusion of T cells (CD3), B cells
(CD19, CD20), NK cells (CD56), monocytes (CD14, CD16), and
progenitors (CD34) (2, 14, 15). The exclusion of lin+ lympho-
cytes and monocytes either precludes simultaneous measurement
with DCs or demands large number of fluorescence channels (4,
15). Differential DC and monocyte counting is therefore rarely
performed as a clinical test.
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Blood DC antigens 1–4 are helpful for identifying human DC
subsets (1) but are often used to define pDC and mDC subsets
within the HLA-DR+ lin− population (4, 16). This is especially
true for CD1c (BDCA-1), which identifies the main population
of mDCs but is also expressed on B cells (1). CD303 (BDCA-2;
CLEC4C) and CD304 (BDCA-4; neuropilin) are relatively robust
markers for pDCs and give reliable counting even from unselected
peripheral blood mononuclear cells. CD141 (BDCA-3) defines a
very small population of mDCs (1, 2).

Early reports demonstrated that DCs and monocytes both
express CD4, but at lower levels than T helper cells (17–19). While
the CD4 glycoprotein acts as a co-receptor for the T cell recep-
tor on T helper cells, its role on myeloid cells is less clear. CD4
also functions as a receptor for IL-16 (lymphocyte chemoattrac-
tant factor), which is capable of both recruiting CD4+ immune
cells and driving cell growth (20). Studies in HIV suggest that
CD4 may augment Fc receptor signaling (21). Numerous studies
report the presence of CD4 on myeloid hematopoietic precursors
including myeloid malignancies (22). While in mice, expression
of CD4 is retained by T lymphocyte and myeloid precursors but
lost by B lymphocyte precursors (23), the function and fate of
CD4 expressing precursors in humans has not been adequately
mapped.

Here we show that CD4 has significant utility as positive lin-
eage marker of human blood antigen-presenting cells, allowing
delineation of all the currently recognized subsets of human
blood monocytes and DCs. This allowed us to adapt a standard
6-color flow cytometry protocol for lymphocyte immunopheno-
typing to allow simultaneous quantification of DC and monocyte
subsets.

MATERIALS AND METHODS
PARTICIPANTS
For assay development, blood was collected into EDTA from 33
patients and 5 healthy controls. Patients were randomly selected
from the regional clinical immunology laboratory. Patients were
aged 2–83 (median 44) and had unknown conditions for further
investigation [11], immunodeficiency [7], autoimmunity [7], or
atopy [3]. To test the assay in pathological states, fresh blood
was obtained from a 33-year old man with DCML deficiency
due to GATA-2 deficiency and a 77-year old man with blastic
plasmacytoid dendritic cell neoplasm (BPDCN). To recapitulate
septic conditions with left-shifted myelopoiesis, eight samples
of cryopreserved G-CSF-mobilized peripheral blood stem cells
(PBSC) were thawed and washed for analysis. Ethical approval
was granted by Newcastle and North Tyneside Research Ethics
Committee 1.

PROCESSING AND ANALYSIS
TruCount™ tubes (Becton Dickinson; BD) containing a defined
number of polyfluorescent beads per test were used in a single step
“lyse-no wash” method to enumerate blood cells, according to the
manufacturer’s instructions. Fifty microliters of blood was trans-
ferred directly to the TruCount™ tube. Antibodies were added
directly and staining was performed at 4°C for 20 min. Red cell lysis
was achieved by addition of 450 µl of the proprietary reagent at
room temperature for 10 min. Samples were then directly analyzed

by flow cytometry and the number of cells per microliters of blood
was calculated from the number of events and the fraction of beads
analyzed, according to the formula:

Cells/µl of population x =
(
population x events/bead events

)
×

(
beads per test/50

)
The TBNK reagent (BD catalog number 337166) contains six

reagents as described in Table 1 for the detection of CD45, CD3,
CD4, CD8, CD19, and CD16/56. Combined with TruCount tubes
this reagent allows the enumeration of CD4+ and CD8+ T cells,
B cells, and NK cells. The modification for detecting DCs and
monocytes was to add CD14-APC-Cy7 to the CD8 channel and
CD304-APC to the CD19 channel.

Flow cytometry was performed on FACSCanto two or three
laser instruments running DiVa version 6 (BD). Instrument PMTs
were set using whole blood stained with single antibodies. FSC and
SSC thresholds were set at zero to in order to capture TruCount™
bead events. A threshold was set on CD45, allowing detection of
leukocytes, but discounting platelet and red cell debris. Thresh-
olds were 1000 on 635 780/60 channel for the 8-color panel
and 1000 on 488 760LP channel for the 6-color panel. Isotype
controls were performed for all antibodies at the initial set up
and are shown specifically for CD4. Automatic compensation
was performed using compensation beads (BD). Approximately
200,000 CD45+ events were acquired per sample (Table 2). Analy-
sis was performed with FlowJo version 9.5.2 (TreeStar). Graph-
ing and statistical analysis were performed with Prism version 6
(GraphPad).

Table 1 | Antibody panels used for flow cytometry analysis.

Fluorochrome 8-Color DC panel Modified 6-color panel

FITC CD3 a(345763; BD) CD3

CD19 (345776; BD)

CD20 (345792; BD)

CD56 (345811; BD)

PE CD16 (555407; BD) CD16, CD56

PERCPCy5.5 CD123 (558714; BD) CD45

PECy7 CD14 (557742; BD) CD4

APC CD141 (130-090-907;

Miltenyi)

CD19
CD304 (130-090-900; Miltenyi)

APCCy7 CD14 (557742; BD) CD8

CD14 (557831; BD)

V450 CD11c (560369; BD)

V500 HLA-DR (561224; BD)

a(Catalog number; supplier).

CD4 V500 (560768; BD), CD4 PE (555347; BD), CD3 PE (345765; BD), CD19 PE

(555413; BD), and CD56 PE (345812; BD) were used in additional experiments.

Bold text indicates the antibodies added to modify the 6-colour TBNK(TM) panel

(337166; BD).
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Table 2 | Flow cytometry events recorded for analysis of monocyte

and DC subsets.

Cell population 8-Color DC panel

events collected

median (IQ range)

Modified 6-color panel

events collected

median (IQ range)

DC PANEL COMPARISON (N = 24)

Total 204634 (125021) 197925 (101726)

CD14 monocytes 24422 (13512) 9289 (5981)

CD16 monocytes 1590 (2973) 570 (934)

CD14 CD16 monocytes 1381 (1443) 633 (499)

DC 971 (697) 369 (327)

DC SUBSET DISCRIMINATION (N = 14)

Total 112172 (39906) 130255 (116775)

mDC 408 (218) 239 (98)

pDC 154 (295) 81 (190)

RESULTS
CD4 IS A LINEAGE MARKER FOR BLOOD ANTIGEN-PRESENTING CELLS
We designed a flow cytometry panel to examine known subsets
of monocytes and DCs. Working with whole blood, the standard
approach of lineage exclusion and HLA-DR selection required a
minimum of eight fluorescence channels to categorize all mono-
cyte and DC subsets. Throughout the study we used this 8-color
panel as the standard reference panel for DC and monocyte enu-
meration (Figure 1A). In the CD45+ SSClow gate, we first gated
on HLA-DR+ lineage negative cells (CD3, CD19, CD20, CD56) to
obtain all the monocyte and blood DC populations. Monocytes
were analyzed by CD14 vs. CD16 and the double negative cells
further separated into pDCs and two subsets of mDCs. We then
explored the expression of CD4 on different leukocytes. We used
specific fluorophores to identify each lineage-positive fraction and
the schema outlined in Figure 1A to identify DCs and monocytes.
CD4+ T cells are seen in the CD3+ fraction but B cells and NK
cells are CD4 negative (Figure 1B). Back-gating illustrates where
each population lies on the HLA-DR vs. lineage plot. This indi-
cates that NK cells are most likely to broach the lin-DR+ gate. As
many NK cells express CD16, the gate must be placed sufficiently
low on the lineage axis to prevent subsequent NK contamination
of the CD16 monocyte gate. All monocyte and DC populations
express CD4 above isotype control (Figures 1C,D). Back-gating
shows the relative HLA-DR expression of these populations. The
position of the HLA-DR vs. lineage gate is critical as some mono-
cytes express low HLA-DR. The lower border of the gate on the
HLA-DR axis was judged according to isotype controls for HLA-
DR (not shown) and the inclusion of a maximum number of
CD14+ monocytes, the cells with the lowest HLA-DR expression.
To ensure that all monocytes and DCs were being captured by this
strategy, the gate was also drawn simply as a lineage negative gate
(Figure S1 in Supplementary Material). Although this results in the
inclusion of HLA-DR negative myeloid precursors and basophils
(4), these are subsequently excluded out by the down-stream gat-
ing on monocytes and DCs. This at least confirms that no cells
are lost by the HLA-DR+ lineage negative gate as it was defined in
Figure 1A.

CD4 EXPRESSION IDENTIFIES MONOCYTES AND DCs WITHIN A
LYMPHOCYTE PHENOTYPING PANEL
Having established the expression of CD4 by different leuko-
cytes, we explored the ability of this marker to capture DCs
and monocytes. The previous results predicted that a 2D plot
of CD4 vs. CD3 should display a population of CD4+ CD3−

cells containing DCs and monocytes, with slightly lower CD4
expression than CD4+ T cells. Both these markers are found
within a standard lymphocyte phenotyping panel, offering the
potential to enumerate DCs monocytes and lymphocytes simul-
taneously. We used the TBNK™ reagent (BD) containing six col-
ors to detect T, B, and NK lymphocytes and provide CD4:CD8
ratios from a single tube. As with the previous panel, mononu-
clear cells are initially separated from granulocytes, beads and
debris by FSC and SSC properties (Figure 2A) and CD45+

cells selected (not shown). The subsequent 2D plot of CD4
vs. CD3 shows the predicted population of CD4+ CD3− cells
(Figure 2B) that does not contain B cells (Figure 2C) or NK cells
(Figure 2D).

To characterize these cells further, we modified the TBNK
reagent by re-using fluorescence channels that had already been
excluded by the gating, namely APC (conjugated to CD19) and
APCCy7 (conjugated to CD8). CD14 APCCy7 in combination
with CD16/56 thus allows resolution of monocyte subsets and
the CD14− CD16− parameter space, containing DCs (Figure 2E).
Note that the CD4+ CD16+ population identified in Figure 2D
is confirmed as the CD16+ non-classical monocyte by low to
medium expression of CD14. Further display of the CD14−

CD16− population by CD4 vs. CD304-APC enabled the assay
to differentiate between mDCs and pDCs (Figures 2F,G). This
also confirms that pDCs have the highest CD4 expression among
DCs and monocytes. The TBNK reagent and its modification are
detailed in Table 1.

THE MODIFIED TBNK PANEL PROVIDES ACCURATE ENUMERATION OF
MONOCYTES AND DCs
To provide a proof-of-concept that modification of the 6-color
TBNK reagent with CD14 APCCy7 could reproduce the enumer-
ation of DCs and monocytes, we ran 24 samples in parallel with
the standard 8-color panel (using HLA-DR vs. lineage as an initial
gate). A further 14 samples were run including both CD14 APCCy7
and CD304 APC with the TBNK reagent to evaluate the ability to
split DCs into pDCs and mDCs. To reproduce the conditions of
a clinical test as closely as possible, we took samples referred to
the regional clinical immunology lab and prepared and analyzed
them independently on separate machines.

Both panels were run using TruCount tubes to achieve absolute
quantification per microliters of blood. Results from the modified
TBNK reagent were highly correlated with those of the standard
8-color panel. The least correlated results were produced for total
DCs and mDCs. This is probably due to the fact that the 6-color
strategy did not include a positive marker of mDCs (except for
CD4); they were defined by the exclusion of other populations
so it is possible for a variable low level of contaminating cells to
be included. Approximately 200,000 total events were recorded
in order to collect at least 100 events for rare subsets of DCs
(Table 2).
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FIGURE 1 | CD4 is differentially expressed on monocytes and DCs. (A) In
an 8-color DC profiling panel FSC and SSC parameters are used to distinguish
mononuclear cells from granulocytes, counting beads, and debris.
Mononuclear cells are confirmed as CD45+ SSC low (gate not shown).
Lineage markers (CD3, 19, 20, 56) are used to remove T, B, and NK cells from
analysis and DR+ monocytes and DCs are selected. The CD14 vs. CD16 plot
reveals three subsets of monocytes and CD14− CD16− DCs. Plasmacytoid
DCs are defined as CD11clow CD123+. Two subsets of CD11c myeloid DC are
split by CD141. Percentage values shown indicate the proportion of gated
cells relative to CD45+ SSC low cells. (B) CD3+ T cells (black), CD56+ NK cells

(green), and CD19+ B cells (blue) are back-gated onto the lineage vs. DR plot
to demonstrate the locations of these populations. Expression of CD4 was
then tested (colored histograms) relative to isotype control (gray). Note that a
small population of activated DR+ CD4+ T cells overlaps the B cell population.
(C) CD14+ monocytes (black), CD16+ monocytes (green), and CD14+16+

monocytes (blue) are back-gated onto the lineage vs. DR plot. Expression of
CD4 is shown (colored histograms), relative to isotype control (gray).
(D) Myeloid DC (green) and plasmacytoid DC (blue) are back-gated onto the
lineage vs. DR plot. Expression of CD4 is shown (colored histograms), relative
to isotype control.

DETECTION OF DC AND MONOCYTE DISORDERS IN CLINICAL
SPECIMENS
To further test the clinical utility of the modified TBNK reagent,
we selected two cases where highly abnormal numbers of DC and
monocytes were detected using the 8-color panel and re-examined
them with the modified TBNK test. The results are plotted on
Figure 3.

Case 1
A 33-year-old man presented to rheumatology with a history
of pyogenic infections, chronic papillomatosis, and recurrent
erythema nodosum. Automated blood counts were normal except
for a monocyte count 0.03× 109/l. DC, monocyte B, and NK
lymphoid (DCML) deficiency was suspected and GATA-2 muta-
tion subsequently confirmed by sequencing (24). A blood sample
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Jardine et al. Detection of human DC and monocyte disorders

FIGURE 2 | Using CD4 as a lineage marker allows monocytes and DCs
to be counted with a 6-color immunophenotyping panel. (A) In a
6-color immunophenotyping panel modified by addition of CD14 antibody,
mononuclear cells are gated based on FSC and SSC parameters. (B) CD3
negative cells, including DCs and monocytes, B cells and NK cells are
gated out from T cells. (C) CD19+ B cells are removed from the CD3−

population. (D) CD16+ CD56+ NK cells are removed from analysis and the
CD4+ population selected. (E) Visualized on a CD14 vs. CD16 plot, the
CD4+ population contains three subsets of monocytes and CD14− CD16−

DC. (F) Adding CD304 antibody to the assay allows further separation of
the CD14− CD16− DC population into (G) CD4+ CD304− mDCs and
CD4bright CD304+ pDCs.

obtained during routine clinical monitoring was analyzed with
the modified TBNK panel (Figure 3C). Significant and parallel
depletion of all monocyte and DC subsets was observed by both
methods.

Case 2
A 77-year-old man presented to dermatology with progressive
skin nodules and plaques. Immunohistochemistry of a skin biopsy
revealed a dense infiltrate of mononuclear cells positive for CD4,
CD56, and CD123 consistent with a diagnosis of BPDCN. The
leukemic expansion of pDCs was evident with both 8-color and
modified TBNK (Figure 3D) tests. In addition,a relative expansion
of intermediate and non-classical monocytes was also found by
both methods. In the pDC analysis, the 8-color method appeared
to underestimate; we attribute this to the expression of CD56 by
BPDCN which caused some cells to be lost from the HLA-DR+

lineage− gate as they shifted into the lineage+ fraction. In this case,
using CD4 as a positive DC marker proved to be a more reliable
approach.

ENUMERATION OF DCs AND MONOCYTES IN INFLAMMATORY STATES
Septic shock and other inflammatory conditions are associated
with an expansion of monocytes bearing lower HLA-DR. We
therefore explored whether detecting monocytes and DCs by CD4
expression would circumvent the problem of counting cells with

low HLA-DR expression in an HLA-DR+ lineage− gate, or be
subject to similar pitfalls. As a model of septic shock we took
samples of G-CSF mobilized peripheral blood cells, which also
show expanded monocytes with low HLA-DR, and compared
counts derived from the two panels. The HLA-DRlow fraction of
the DC/monocyte gate also expressed lower CD4 (Figures 4A,B)
but as with the HLA-DR+ lineage− gating approach (Figure S1
in Supplementary Material), it was possible to extend the lower
limit of the gate to include the cells with lower expression of CD4
(Figure 4C) resulting in positively correlated results between the
two methods (Figure 4D).

DISCUSSION
In this study we show that CD4 expression may be used within a
lymphocyte typing panel to identify DCs and monocytes and that
this has clinical utility in enabling the simultaneous detection of
nine subsets of lymphocytes, monocytes, and DCs with only six
flow cytometry channels.

Dendritic cells and monocytes have been known to express
CD4 since the early descriptions of blood DCs and from studies
of infectivity by HIV (17–19) but recent strategies for analysis of
DCs and monocytes have typically relied upon resolving HLA-
DR+ lineage− cells (3, 4). CD4 has been used in combination
with a lineage cocktail to identify DCs but lymphocytes are still
excluded by this approach (16). The use of CD4 as a positive lineage
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FIGURE 3 |The modifiedTBNK assay allows rapid quantitation of APC
subsets, consistent with conventional methods. (A) Correlation between
monocyte and DC counting performed using the 6-color immunophenotyping
panel modified by addition of CD14 vs. the standard 8-color DC panel (n=24).
Red dots indicate results for case 1 (DCML deficiency). Green dots indicate
case 2 (BPDCN). Linear regressions, r 2 and p values stated on the plots
exclude these outlier cases. (B) Correlation between mDC and pDC counting

using the 6-color panel modified with CD14 and CD304 vs. the standard
8-color DC panel (n=14). (C) The modified TBNK assay applied to case 1
(DCML deficiency). Note the scarcity of CD3− cells relative to CD3+ T cells.
This arises from reduction in B cells, absence of NK cells, and virtual absence
of all monocyte and DC subsets. The small population of CD3− CD4bright cells
gated out in the initial plot are activated T cells with reduced CD3 expression.
(D) The modified TBNK assay applied to case 2 (BPDCN).

marker, in combination with CD3, preserves the identification
of lymphocyte subsets. Multiplexing fluorescence channels with
more than one antibody appears to be a reliable means of expand-
ing the number of parameters. Although we cannot exclude that

aberrant expression of surface markers in some conditions may
distort the analysis, this is true of any flow cytometry assay and our
modified 6-color strategy actually enhanced the detection of the
malignant CD4+ CD56+ pDC clone compared with an HLA-DR
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FIGURE 4 | CD4 is expressed on both DR low and DR bright populations
following G-CSF mobilization.The modifiedTBNK assay allows clear
discrimination of lymphocyte, monocyte, and DC populations in
left-shifted blood. (A) The lineage DR plot used for 8-color DC profiling
shows DRbright and DRlow populations of monocytes and DCs in G-CSF

mobilized blood. (B) CD4 expression is highest on lin− DRbright cells but also
positive on lin− DRlow cells. (C) The modified TBNK assay applied to G-CSF
mobilized peripheral blood stem cells (PBSC) permits effective discrimination
of lymphocyte, monocyte, and DC populations. (D) Correlation between
8-color and modified TBNK methods for DCs and monocytes in PBSC.

vs. lineage approach. Employing a single standard mononuclear
cell profiling panel and multiplexing antibodies is likely to prove
especially beneficial where resources and flow cytometry parame-
ters are restricted, as in many clinical service laboratories. Here we
provide proof-of-concept but additional validation and generation
of local normal ranges will be required for clinical use.

This type of assay will be useful for identifying DC deficiency
as recently described in a number of novel human syndromes
(24–26). A typical approach to identifying immunodeficiency uses
screening investigations to refine the differential diagnosis fol-
lowed by more specialist investigations to specify the defect (27).
The capacity to enumerate monocytes and DCs as part of an exist-
ing lymphocyte immunophenotyping platform, is an important
addition to the screening repertoire. Between the 2009 and 2011
revision of the IUIS Primary Immunodeficiency Classification,
7 of the 15 new disease entities concerned the myeloid antigen-
presenting cell compartment (28). The development of means to
rapidly enumerate DCs and monocytes is therefore an unmet need
of clinical importance (29).

Expansion of specific monocyte subsets has been observed
in infection and inflammation in many clinical contexts. The
delineation of monocytes is not always straightforward in relation

to other cells such as NK cells through the expression of CD56 (30)
or owing to the loss of HLA-DR expression during neoplasia or
inflammation (31, 32). HLA− DRlow monocytes also express less
CD4. Rigorous comparison of gating strategies has shown that
all monocytes may be collected using only HLA-DR, CD14, and
CD16 (32); here we show that a CD4 gate with a lower threshold
also captures the same events.

Bringing blood DC and monocyte subset analysis into routine
clinical practice will most likely reveal even greater variety and
subtlety of DC and monocyte deficiency states. New correlations
between human disease and the behavior of this compartment are
anticipated.
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Type 1 diabetes (T1D) is a T cell mediated autoimmune disease characterized by immune
mediated destruction of the insulin-producing β cells in the islets of Langerhans. Den-
dritic cells (DC) have been implicated in the pathogenesis of T1D and are also used as
immunotherapeutic agents. Plasmacytoid (p)DC have been shown to have both protective
and pathogenic effects and a newly described merocytic DC population has been shown
to break tolerance in the mouse model of T1D, the non-obese diabetic (NOD) mouse. We
have used DC populations to prevent the onset of T1D in NOD mice and clinical trials of
DC therapy in T1D diabetes have been initiated. In this review we will critically examine
the recent published literature on the role of DC subsets in the induction and regulation of
the autoimmune response in T1D.

Keywords: dendritic cells, type 1 diabetes,T regulatory cells, autoimmunity, tolerance

INTRODUCTION
Type 1 diabetes (T1D) is an autoimmune disease characterized
by immune mediated destruction of the insulin-producing β cells
in the islets of Langerhans of the pancreas. The pathogenesis of
T1D is multifactorial with genetic, immunological, metabolic, and
environmental factors all contributing (1). It begins with a loss of
self-tolerance to islet-derived self-antigens, which usually occurs
early in life. This could occur as a result of a viral infection target-
ing the pancreas or following pancreatic remodeling. These insults
lead to the death of β cells, release of self-antigens, and induction
of inflammatory cytokines such as TNF-α and IL-1-β. Dendritic
cells (DC) present within the pancreas take up released β-cell-
derived antigens and migrate to the draining lymph nodes (LN)
and activate naïve islet-specific CD4 and CD8 T cells. Depending
on the signals delivered to the T cell by DCs the T cells will dif-
ferentiate into either inflammatory effector cells such as T helper
(Th)1 cells or anti-inflammatory Th2 or regulatory (Treg) cells.
Activated islet-specific T cells then migrate to the pancreas where
they infiltrate and collect around the islets. The early infiltrates
appear to be dominated by Th2 and Treg cells; this is termed peri-
insulitis as there is little invasion into the islet. At some point, the
infiltrate becomes invasive and begins to enter and destroy the β

cells, and the balance between the regulatory and inflammatory T
cell populations is lost. The precise factors that trigger both loss of
self-tolerance and the development of invasive insulitis are not well
understood. DCs play important roles at all stages of the autoim-
mune response in T1D due to their pivotal role in activating naïve T
cells and in maintaining self-tolerance (2). This review will explore
recent developments in our understanding of the roles DC play in
the pathogenesis, and prevention, of T1D (Figure 1) as well as the
therapeutic potential of DCs for the prevention and treatment of
T1D. Much of the work in this area has been focused on the non-
obese diabetic (NOD) model of the disease. This mouse strain
spontaneously develops diabetes and shares many of the genetic
and immunological features of the human disease (3). Where pos-
sible we will highlight similarities and differences between NOD
mouse studies and relevant studies in human T1D patients.

DENDRITIC CELL SUBSETS
Since their discovery by Ralph Steinman in the 1970s (4–6) DCs
have been the subject of intense study. DCs are antigen presenting
cells (APC) that bridge the innate and adaptive immune systems
(7). They act as sentinels of the immune system through their
location in peripheral tissues, where they form a dense network,
and their ability to respond to pathogens through expression of
pathogen recognition receptors such as Toll-like receptors (TLR).
While in peripheral tissues DCs have an immature phenotype
characterized by low levels of major histocompatibility complex
(MHC) and co-stimulatory molecules (CD80, CD86) and a high
endocytic rate; the function of tissue DCs is the detection and pro-
cessing of antigen. Upon interaction with a pathogen DCs become
activated, undergo maturation and migrate to the draining LN.
This maturation leads to an increase in the expression of MHC,
CD80, and CD86, a decrease in endocytosis and a change in the
pattern of chemokine receptor expression. Mature DCs entering
the T cell zone of the draining lymph node are primed to present
antigen to naïve T cells. Even in the absence of pathogen there is
a steady state migration of DC from the periphery to the LN and
this is necessary for the maintenance of peripheral tolerance (8).

DC PHENOTYPE
There are two main classes of DC: plasmacytoid DCs (pDCs)
and conventional or classical DCs (cDCs) (7). pDCs are primarily
located in the blood and lymphoid organs and produce high levels
of type 1 interferon (IFN) following engagement of TLRs with for-
eign nucleic acids (9). pDCs express a restricted set of TLRs, TLR7,
and TLR9, that recognize foreign RNA and DNA respectively as
well as several unique markers that distinguish them from cDCs.
These include BDCA-2 and ILT7 for human pDCs and SiglecH
and Bst2 for murine pDCs. In the mouse pDCs are commonly
identified as CD11clow B220+ SiglecH+ Bst2+. Human pDCs are
CD11c− and in addition to BDCA-2 and ILT7 also express CD123
and BDCA-4 (9). There are two main populations of cDCs in
mouse: CD11c+ CD11b− CD8α+ Clec9A+ and CD11c+ CD11b+

CD8α− Clec9A− commonly referred to as CD8 DC and CD11b
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Morel Dendritic cell subsets in type 1 diabetes

FIGURE 1 | Summary of the roles of cDC and pDC in the prevention and induction ofT1D.

cDC respectively. Both CD8 and CD11b cDC arise from a com-
mon precursor characterized by expression of the C-type lectin
receptor DNGR-1, but it appears that pDC arise from a distinct
precursor as yet to be defined (10, 11). Recently the CD11b cDC
population has been further subdivided on the basis of endothelial
cell selective adhesion molecule (ESAM) expression (12). Simi-
lar populations can be identified in human such that CD11c+

Clec9A+ BDCA-3+ DCs correspond to CD8 cDC and CD11c+

CD11b+ BDCA-1+DCs are analogous to CD11b cDC. These pop-
ulations mainly reside in the secondary lymphoid organs and are
present during steady state. Similar populations exist in periph-
eral tissues but they express a slightly different set of markers (7).
CD11c+ CD11b− CD103+ DC and CD11c+ CD11b+ CD103+

DC in the periphery are equivalent to the CD8 cDC and CD11b
cDC populations respectively (13).

FUNCTIONAL DICHOTOMY IN cDC SUBSETS
The two cDC populations also have distinct functions with respect
to pathogen recognition, cytokine production, and T cell activa-
tion. CD8 and CD103 cDCs express a unique pattern of TLR and
other pathogen recognition receptors: they are the only subset to
express TLR3 and TLR11 and also uniquely express the C-type
lectin Clec9A, DEC205 (CD205), and langerin (CD207) (7, 9).
CD8 and CD103 cDC are specialized in the cross-presentation of
externally derived antigen on MHC class I for the activation of
naïve CD8 T cells. The recent advances in the molecular mecha-
nisms of cross-presentation are covered in a review included in this
Research Topic (14). In addition, CD8 cDC appear to preferentially
activate CD8 T cells due to the fact that they produce high levels
of the cytokines interleukin (IL)-12 and IL-15 that are important
for the differentiation and survival of CD8 T cells (15–17). CD8
and CD103 cDCs are the main producers of IL-12, an important
cytokine in the differentiation of inflammatory Th1 cells (15, 16,
18). There are also reports suggesting a role for CD8 and CD103
cDCs in the maintenance of peripheral self-tolerance through the

deletion of self-reactive T cells (19, 20) and the induction of Treg
cells (21). While CD11b cDC are capable of cross-presentation and
CD8 T cell activation they appear to be most effective in antigen
presentation and activation of CD4 T cells (22) In addition the
dermal and intestinal CD11b+ CD103+ DCs are strong induc-
ers of Treg due to their expression of aldehyde dehydrogenase, the
enzyme that converts Vitamin A to retinoic acid, necessary for Treg
conversion (23, 24). Several comprehensive reviews on DC subsets
and their development have recently been published and can be
consulted for further details (7, 9, 13).

DC AND THE MAINTENANCE OF SELF-TOLERANCE
T and B cell tolerance to self-antigens is acquired during devel-
opment through clonal deletion of self-reactive cells. DC play an
important role in the process of central tolerance in the thymus as
they present an array of self-antigens to developing T cells (25). If
the T cells have a high affinity for self-antigen they undergo apop-
tosis and are deleted. Those T cells with a moderate affinity for
self are induced to differentiate into forkhead transcription factor
(Foxp3)+ suppressor cells (26) known as thymus (t)Treg (27). In
contrast, peripheral (p)Treg cells arise in the periphery upon Ag
contact and several subsets of pTreg can be induced depending on
the signals they encounter (28). These include IL-10 (29), TGF-β
(30), retinoic acid or vitamin D3 (31, 32), low Ag dose (33), and
specific DC subsets (21, 34, 35). As the study of DC biology has
evolved, it has become apparent that it is possible to induce the
differentiation of Treg using DCs conditioned by immunomodu-
latory agents (36–39). For example, the presence of TGF-β during
the primary stimulation induces the production and expansion of
Foxp3+ Treg (35). In addition it has been possible to induce IL-
10-producing T cells with DC generated using a combination of
GM-CSF, TNF-α, and IL-10 (39). Studies have shown that DC pro-
ducing IDO induce the generation of Treg from naïve T cells (40).
Other reports have suggested that immature DC induce the devel-
opment of functional suppressor cells (36) and that immature DC
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might, therefore, be therapeutically useful in autoimmunity (37,
38). Recent studies using both nominal and self-Ags have demon-
strated that targeting Ags to CD8 cDC in the LN or spleen in
the absence of an inflammatory stimulus results in the genera-
tion of Treg (41, 42). Similar results have been obtained when Ags
were targeted to CD8− DCIR2+ DC (21). The CD11b cDC sub-
set has been shown to induce Treg proliferation and expansion
in the presence of GM-CSF (43). A recent paper has described a
feedback loop in which the number of Tregs in the periphery can
be manipulated by altering the relative number of DCs suggesting
that DCs play an important role in regulating pTreg numbers (44).
We have recently suggested that DC in the periphery may function
to maintain tolerance by presenting endogenous self-antigens to
naïve T cells thereby inducing pTreg (45).

THE ROLE OF DENDRITIC CELLS IN THE
PATHOGENESIS/PREVENTION OF T1D
DC DEVELOPMENT IS DEFECTIVE IN T1D
Early studies of NOD mouse revealed abnormalities in the devel-
opment of myeloid cells demonstrating a reduced proliferative
capacity of the bone marrow in response to GM-CSF and M-CSF
(46). Several groups, including our own, have identified defects in
the development of specific DC subsets in the spleen and other
lymphoid organs (47–49). These defects result in a decrease in the
numbers of the CD8 cDC population (50, 51), a population which
has been shown to have regulatory function (52–54), with a con-
comitant increase in the CD11b cDC population. Recent studies
have also shown that treatment of NOD with Flt 3 ligand (FL)
protects mice from diabetes development and this is correlated
with an enhancement in the number of CD8 cDC (55, 56). Our
own studies demonstrated that treatment of NOD mice with FL
increased the number of CD8 cDC and that transfer of these cells
to prediabetic NOD mice could have a partial effect in preventing
diabetes (50). However a recent study suggested that the timing
of FL treatment was critical since disease would be exacerbated if
autoimmune CD8 T cells were already present (57).

Several studies have examined the function of bone marrow-
derived and isolated DC populations with respect to cytokine
production and T cell differentiation and the results have not
been consistent. It has been reported by some investigators that
NOD DC produce higher levels of the Th1-driving cytokine IL-12
(58–60) while others failed to find such an association (49, 50,
56). Macrophages also appear to be an important source of IL-
12 in NOD mice (51, 61). Adenosine plays an important role in
modulating the immune response to tissue inflammation (62, 63)
and a recent study found that NOD DC express higher levels of
adenosine deaminase (ADA), the enzyme responsible for catabolic
degradation of adenosine, and that transfer of ADA deficient DC to
NOD mice protected them from diabetes (64). These studies sug-
gest that NOD mice have imbalances in DC subsets and alterations
in DC function that may contribute to pathogenesis of T1D.

DC AND THE MAINTENANCE OF TOLERANCE IN T1D
Dendritic cells are important in both central and peripheral toler-
ance through the deletion of self-reactive cells and the induction
of Treg. NOD mice have defects in central and peripheral toler-
ance mechanisms (65, 66). Recent studies have shown that the

number and/or function of Treg cells decrease as NOD mice age
and this is associated with onset of diabetes (67). The development
and maintenance of Treg in NOD mice is highly dependent on
the presence of co-stimulatory molecules CD80 and CD86 (68).
In addition it was recently shown that interaction between the
inhibitory molecules PD-1 on T cells and PDL-1 on DC is neces-
sary for the maintenance of tolerance in NOD mice (69). Blockade
of this interaction resulted in increased DC/T cell interaction time
in the islets and T cell activation leading to the generation of
autoreactive effector cells (69). Another study came to the same
conclusion by using different antigen constructs to increase the
time of antigen presentation (70). IL-2 and signaling via IL-2R are
also critical for Treg development and maintenance (71). Recent
studies have identified defects in IL-2R signaling in T1D patients
(72) and the diabetes susceptibility locus, Idd3, which contains IL-
2 was recently shown to control Treg function through an effect on
APC (73–75). Several early reports demonstrated that the inflam-
matory cytokine TNF-α plays an important role in the initiation
of T1D (76) and more recently this has been attributed to effects of
TNF-α on DC subsets (77). In this study administration of TNF-
α to NOD mice was shown to decrease the number of CD8 DC,
increase the CD11b DC population,and the DC had a more mature
phenotype and activated islet-specific T cells (77) A recent study
describing the depletion of Treg in NOD mice showed that the
increase in diabetes in these animals was associated with aggres-
sive infiltration of pancreatic islets by DC rather than CD4 T cells
(78). These results suggest that tTreg in this context may prevent
autoimmunity by controlling the migration of cDC into the islet.

DC CONTRIBUTE TO THE DEVELOPMENT OF T1D
Analysis of the phenotype and function of BM-derived DC in
NOD mice have suggested that these cells produce higher levels
of IL-12p70, and that this related to increased expression of NFκB
(58). Our own studies suggest that BM-derived DC from NOD
can produce higher or lower levels of IL-12p70 depending on the
culture conditions and activation stimuli used (49, 79, 80). Recent
studies using DTR transgenic mice that allow the targeted deple-
tion of macrophages or DC have demonstrated that the CD11b
cDC population is responsible for presenting antigen to autore-
active T cells (81). Ablation of these cells protected NOD mice
from diabetes development. The interaction of iNKT cells with
cDC was shown to lead to either protection via induction of Treg
or exacerbation of disease if the interaction occurred at the same
time as TLR4 ligation (82).

The role of pDC in diabetes pathogenesis is somewhat more
controversial and there are conflicting reports in the literature.
Depletion of pDC using the CD11c-DTR system caused accel-
erated disease (81), suggesting a protective role for pDC. The
protection induced by pDC was correlated with increased local
production of IDO and increased numbers of NKT cells in the
pancreas. In a model of virus infection it was shown that activa-
tion of iNKT cells stimulated TGF-β production from pDC, which
led to the induction of Treg and protection from diabetes (83). In
contrast, another study found that IFN-α could be detected in the
pancreas of NOD mice at early ages and that blocking the ability
of mice to respond to IFN-α prevented diabetes (84). Furthermore
these investigators showed that depletion of pDC using a depleting
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antibody reduced the incidence of diabetes (85). Another study
revealed a crosstalk between B-1a B cells, neutrophils and pDC
that contributed to the induction of diabetes via type 1 IFN pro-
duction (86). This study suggests that DNA from dying β cells
together with antibodies from B-1a B cells form complexes that
are potentiated by neutrophils and lead to the induction of type 1
IFN by pDC (86). The authors show that this is seen only in NOD
mice and speculate that this is related to the defects in the ability
of NOD macrophages to clear debris (87). Several studies have
examined the role of pDC, type 1 IFN and viral infection in the
induction of T1D; reviewed in Swiecki et al. (88). The situation
is complex with some studies showing exacerbation of diabetes
(89, 90) with viral infection and others showing protection (91,
92). It has been suggested that whether viral infection leads to
diabetes induction is related to the tropism of the virus and the
local environment in which type 1 IFN is produced (88). Thus a
virus infecting the pancreas may induce local type 1 IFN, which
protects islets from infection and damage, whereas in other situa-
tions the type 1 IFN, produced by pDC following viral infection,
could result in activation of autoreactive T cells and diabetes exac-
erbation (88). It has been reported that pDC also accumulate in
the islets of NOD mice (93) at a later time point, around 10 weeks
of age. The infiltrating pDC were shown to express IDO, which is
characteristic of a more tolerogenic phenotype of DC (94) leading
to the speculation that these cells may be attempting to control
ongoing T cell activation. Studies in the next few years will hope-
fully clarify these contrasting results on the role that pDC play in
diabetes pathogenesis.

A novel population of cDC, termed merocytic (mc)DC, have
recently been identified and shown to be responsible for cross-
presentation of islet antigens to CD8 T cells and direct presentation
to CD4 T cells (95, 96). The mcDC express CD11c but are neg-
ative for both CD11b and CD8, they accumulate in the spleen as
NOD mice age and were shown to secrete large amounts of type
1 IFN (95, 96). In addition transfer of mcDC pulsed with irra-
diated islets to non-diabetic NOD mice accelerated the onset of
diabetes (95, 96). The number of mcDC was recently mapped to
the Idd13 congenic interval suggesting that the relative number
of these cells is genetically determined (97). Further studies are
required to determine the significance of this DC population, and
whether a counterpart of these cells exists in human.

Dendritic cells are constitutively present within islets of nor-
mal mice and have been shown to express peptide-MHC (pMHC)
complexes containing peptides derived from islet antigens (98).
Two major DC subsets can be found within islets; the CD11b
cDC and CD103 cDC (99, 100). CD103 DC depend on FL for
their homeostasis whereas islet CD11b DC appear to arise from
monocytes and are unaffected by the absence of FL (101). The
number of DCs in the islets remains relatively stable but these
numbers increase following T cell infiltration and inflammation
(98, 99, 102). In addition the phenotype of the DC becomes more
inflammatory with increases in the expression of co-stimulatory
molecules and MHC (2). The evidence suggests that the initiation
of the autoimmune response occurs within the draining pancre-
atic lymph node (PLN) since removal of the PLN prevents diabetes
(103) and several studies have shown that the initial proliferation
of islet-specific CD4 and CD8 T cells takes place in the PLN (104,

105). Islet CD103 DC migrate to the PLN where they present islet
antigens to specific CD4 and CD8 T cells (2, 101), and when T cells
infiltrate the islet they localize to DC-rich areas (2). The movement
of DC and T cells within the islet can now be visualized using a
novel two-photon imaging technique (106). In addition pancre-
atic CD103 DC from NOD mice have been shown to express less
IL-10 than similar populations from non-diabetic strains suggest-
ing that these have lost their ability to induce tolerance (107). Islet
CD11b DC are relatively poor at presenting antigen under steady
state conditions but they accumulate as inflammation increases
and become more mature. Since CD11b DC do not appear to
migrate to PLN their role appears to be in the modulating the
local tissue response (101).

DC IN HUMAN T1D
Several studies have examined the blood of newly diagnosed T1D
patients for the presence of DC subsets. pDCs have been shown
to be increased (108) or decreased (109) at the time of diagnosis.
A recent detailed longitudinal analysis of immune parameters in
newly diagnosed T1D children has revealed that reduced numbers
of cDC1s and NKT cells at the time of diagnosis are correlated
with reduced residual β cell function 1 year later (110). Another
study found decreased numbers of cDCs and pDCs in newly diag-
nosed pediatric T1D patients and also observed a decrease in
the expression of CCR2 on these cells (111). Other studies have
found correlations with vitamin D levels and immune cells in T1D
patients (112). A study of pancreatic biopsies on a small number
of new onset T1D patients revealed the presence of infiltrating
macrophages and DC that produce TNF-α (113). A recent descrip-
tion of three cases of fulminant T1D secondary to enterovirus
infection revealed marked islet infiltration of activated DC and
macrophages and the presence of inflammatory cytokines (114).
Thus it is likely that DCs will be shown to contribute to the onset
of human T1D.

DENDRITIC CELLS AS THERAPY FOR T1D
The fact that DCs play an important role in the induction and
maintenance of self-tolerance has made them attractive targets
for therapeutic interventions. Three main strategies have been
employed and these include the adoptive transfer of specific DC
subsets, the in vitro expansion of Tregs with specific DCs and the
in vivo targeting of DC subsets (115). As discussed above the com-
plexity of DC subsets and the plasticity of their function have made
this a challenging objective, since there is a fine balance between
the immunostimulatory and immunoregulatory functions of DC
(45, 116, 117). DCs with a so called semi-mature phenotype, which
consists of increased MHC and co-stimulatory molecule expres-
sion but low inflammatory cytokine production are thought to be
most effective in inducing tolerance in the context of autoimmu-
nity (118, 119). This maturation state can be induced by exposing
DC to the cytokine TNF-α and DCs treated in this way have been
shown to prevent experimental allergic encephalomyelitis (EAE)
(118). In general the function of these DCs is to induce the expan-
sion of Treg or other regulatory mechanisms such as Th2 cells.
The attraction for using DCs as therapeutic agents is that since
they present specific antigen to T cells it is possible to envision the
generation of antigen-specific tolerance (120).
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ADOPTIVE TRANSFER OF THERAPEUTIC DC
Dendritic cells were first used as therapeutic agents to prevent dia-
betes in NOD mice over 20 years ago by Clare-Salzler et al. (121).
In this study DCs isolated from the PLN of NOD mice and trans-
ferred to prediabetic NOD mice were able to prevent disease onset
whereas DCs from other LN or spleen were not effective. Later
studies by the same group have suggested that DC in the PLN
are more mature and that this is important for their therapeutic
effect (122). We have previously shown that the injection of semi-
mature bone marrow-derived DC prior to the onset of destructive
insulitis prevents the subsequent development of diabetes (123,
124). The therapeutic DC populations expressed high levels of co-
stimulatory molecules (CD80, CD86, and CD40) and produced
low levels of IL-12p70 following CD40 ligation (49). Further inves-
tigation revealed that the therapeutic DC population changed the
cytokine milieu in treated NOD mice. Whereas NOD mice gen-
erally exhibit a strong bias toward type 1 cytokine production,
injection of DC induced the production of type 2 cytokines (125).
In addition we (124) and others (126, 127) showed that injection
of DC transduced with the IL-4 gene could effectively prevent
diabetes in NOD mice when given at later time points, past the
onset of invasive insulitis. We also confirmed, using in vitro stud-
ies, that therapeutic DC could drive the differentiation of Th2 cells
(79), whereas non-therapeutic DC did not. The therapeutic DCs
were not treated with any tolerogenic agents and did not require
the addition of islet-derived peptides but the cultures were per-
formed in FBS, which was subsequently shown to induce a Th2
environment that may have been non-specifically contributing to
the therapeutic effect (128). In more recent experiments we have
shown that the therapeutic DC population induces the expansion
of Treg in the presence of low dose antigen (129) and DCs cultured
in the absence of FBS are equally able to induce Treg expansion
(unpublished observations). In addition it has been shown that
DC grown in autologous serum were able to prevent diabetes but
only when pulsed with insulin-derived peptides (130).

In order to ensure that DCs maintain a tolerogenic pheno-
type and drive tolerance rather than immunity several approaches
aimed at conditioning the DC have been explored. These have
included treating DC with cytokines such as IL-10 (130, 131), IL-
10/TGF-β (132), and TSLP (IL-25) (133), pharmacological agents
such as dexamethasone and vitamin D3 (134), carbon monox-
ide (CO) (135), anti-CTLA-4 antibody (136), secretory IgA (137)
among others. In general, the treatment of DCs with these agents
induces a semi-mature phenotype in the DC characterized by
reduced expression of co-stimulatory molecules, reduced inflam-
matory cytokine production and resistance to further maturation
stimuli. The infusion of these modified DC into NOD mice results
in the deletion of autoreactive CD4 T cells and the generation
of islet-specific Treg (130, 131, 133, 136, 137). One exception to
this was the treatment of NOD mice with CO-treated DC, which
reduced β1-integrin expression by CD8 T cells and thus inhibited
their migration into the islet (135). Another approach has been the
use of anti-sense oligonucleotides to down-regulate the expression
of the co-stimulatory molecules, CD40, CD80, and CD86 on DC
(138). This approach prevented diabetes in NOD mice through the
induction of Treg and a phase 1 clinical trial using this approach
was initiated (139).

DC USED TO EXPAND REGULATORY T CELLS IN VITRO
Dendritic cells have also been used in vitro in order to expand Treg
cells, and these Treg can be adoptively transferred into individu-
als with autoimmunity with the hope of curbing or arresting the
inflammatory response. An early study expanded Treg, isolated
from an islet-specific TCR transgenic NOD mice (BDC2.5), with
peptide pulsed DC and IL-2 and showed that these cells could
prevent diabetes in prediabetic NOD mice (34). Further stud-
ies from this group indicated that DC expressing higher levels
of the co-stimulatory molecule, CD86 were the most efficient at
inducing Treg expansion (140). The CD11b cDC subset has been
shown to induce Treg proliferation and expansion in the presence
of GM-CSF (43). A recent study examining the mechanism by
which GM-CSF treatment prevents diabetes has further suggested
that the expression of OX40L and the Notch3 ligand Jagged1 on
DC was necessary for Treg expansion in vitro, although this study
did not determine whether these polyclonal expanded Treg were
effective in preventing diabetes (141). Some of the approaches to
generate tolerogenic DC are being developed for clinical trial in the
context of transplantation (142) but these are not yet being fully
developed for use in autoimmune disease. A recent study com-
pared the ability of several DC conditioning regimens to induce
suppressive Treg in the human system (143). This study found that
DC pretreated with IL-10 induced the most suppressive Treg, while
TGF-β, rapamycin, and dexamethasone were less effective (143).

IN VIVO TARGETING OF DC
In general these types of therapies have involved the use of reagents
that deliberately target specific DC subsets but these can also
include approaches that, while not directly targeting DC, act by
changing the local DC environment. Recent studies using both
nominal and self-antigens have demonstrated that targeting anti-
gens to CD8 cDC in the LN or spleen using anti-CD205 antibodies
coupled to specific antigens in the absence of an inflammatory
stimulus results in the generation of Treg (41, 42). Similar results
have been obtained when antigens were targeted to CD11b cDC
(21). A recent study used anti-CD205 antibodies coupled to the
peptide mimetope for the CD4 BDC2.5 T cell to target DC in
NOD mice (144). This resulted in the generation of long-lived and
stable BDC2.5 Treg but this had no impact on the development
of diabetes. However when the anti-CD205 was coupled to the
proinsulin protein diabetes was prevented (144). Similar studies
using an anti-CD205 coupled to HA and given to INS-HA/TCR-
HA mice also demonstrated efficacy in the prevention of diabetes
(145). In this mouse model the foreign antigen HA is expressed
in the pancreas under the control of the rat insulin promoter and
the T cells are all transgenic for an HA-specific TCR (145). These
results suggest that the choice of antigen for targeting will be crit-
ical if this approach is to move forward. A similar approach has
been used to induce tolerance in islet-specific CD8 T cells. These
studies reported initial activation of adoptively transferred islet-
specific CD8 cells followed by deletion of these cells, but the impact
of these on diabetes development was not reported (146).

It has been known for some time that varying the dose of the
stimulating antigen has a profound effect on T cell differentiation
(147–149). Interest in this area has been renewed by the obser-
vation that the induction of Treg is optimal in situations of low
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TCR signal strength (33, 129, 150). The induction of Treg by low
dose antigen occurs optimally when DC are presenting the antigen
(129), and while the addition of TGF-β is not necessary a recent
study showed that TGF-β production by T cells is required (151).
Interestingly the most effective induction of Treg in vivo occurs
when low doses of a high affinity peptide are used, rather than
higher doses of low affinity peptides (152). Furthermore it was
recently shown that the affinity of the peptide affects the duration
of DC/T cell contacts in vivo providing an explanation for why low
dose of more potent pMHC complexes are most effective at dri-
ving Treg expansion in vivo (153). Several approaches have been
attempted to deliver low dose antigen in vivo including the con-
tinuous delivery of low dose antigen via osmotic pump (154) and
the direct targeting of DC subsets as discussed above (21, 41, 42).
In the context of T1D a recent study demonstrated that low doses
of a high affinity insulin peptide mimetope was more effective
at preventing diabetes than the native peptide (155). These results
suggest that long-lasting peripheral tolerance could be achieved by
delivering the appropriate dose of antigen to steady state DC in the
periphery. The challenge will be translating this to the human situ-
ation although a recent paper showed that human insulin-specific
Treg could be induced by low dose stimulation (156).

Another way to target DC in vivo is to use microparticles
(157). A recent study used microspheres loaded with anti-sense
oligonucleotides specific for CD40, CD80, and CD86 and showed
prevention of diabetes along with an increase in Treg in treated
NOD mice (158). These investigators further showed that repeated
treatment with these microspheres could reverse diabetes in newly
diagnosed NOD mice. The microspheres were taken up by resident
DC in the spleen and these DC showed reduced expression of the
co-stimulatory molecules (158).

In a study of combined therapy with oral anti-CD3 and intra-
venous anti-CD20 antibodies the prevention of diabetes seen in
these animals was correlated with an increase in Treg and IL-10-
producing T cells. Furthermore a population of IL-27 producing
DCs was found to be responsible for the induction of IL-10-
producing T cells in this system (159). As discussed above FL
treatment of NOD mice in some circumstances prevents T1D (55,
56) but the timing of FL administration has to be before the onset
of autoimmunity otherwise disease is exacerbated (57). Treatment
of NOD mice with soluble CTLA-4 has been shown to restore the
tolerance inducing properties of DC through the IFN-γ dependent
activation of IDO. In this model CTLA-A binds to B7 molecules
on DC and this stimulates the release of IFN-γ, which activates the
immunosuppressive mechanism of tryptophan catabolism (160).
A novel approach has been to induce accumulation of thymic DC
populations which results in an increase in suppressive Tregs. A
recent study identified the delta-like ligand 4 (Dll4)-Notch signal-
ing pathway as important in controlling the number of thymic
DCs (161). These investigators found that blockade of the Dll4-
Notch pathway resulted in an increase in thymic DC numbers and
thymic Treg. Treatment of NOD mice with these blockers not only
prevented the establishment of disease in prediabetic animals but
also was able to reverse disease in newly diagnosed diabetic animals
(161). This protection was dependent on the presence of Treg since
treatment of non-diabetic animals with a Treg-depleting antibody
reversed the protection (161). Several studies have reported the

use of α-GalCer, an agonist for iNKT cells, as a means to prevent
disease in NOD mice (162–164). Recent studies have suggested
that α-GalCer treatment induces tolerogenic DC populations that
induce non-inflammatory islet-specific T cells (165), and novel
derivatives of α-GalCer have been developed that have the same
effect without some of the profound suppressive effects on iNKT
function (166).

CLINICAL TRIALS IN T1D INVOLVING DC
As discussed above a phase I clinical trial utilizing autologous
monocyte-derived DC treated with anti-sense oligonucleotides to
down-modulate co-stimulatory molecules has been conducted. In
this trial of 10 patients with established T1D, 7 were given the
immunosuppressive DC and 3 were given unmanipulated DC.
In this trial no adverse events were observed and there were few
changes noted in terms of insulin requirements, immune cell
phenotype, and cytokine production (139). Interestingly, further
analysis of this clinical trial revealed an increase in certain B cell
populations and subsequent in vitro studies revealed that human
DC treated with these anti-sense oligonucleotides could induce the
proliferation of immunosuppressive B cells (167). A second trial
using this same approach is now ongoing but results are not yet
available. The field of DC-based vaccines is much more advanced
in the setting of cancer and many clinical trials have been con-
ducted; reviewed in the current Research Topic (Butterfileld, under
review). Many features of cancer DC vaccines have been studied
and it has become apparent that characteristics such as the form
of the antigen used to pulse the DC, the conditioning regimen of
the DC, and the route of administration all play critical roles in
determining the outcome of the DC-based immunization. These
features will need to be taken into consideration as more DC-based
therapies are proposed for the treatment of T1D. There have been
numerous clinical trials in T1D with the aim of inducing antigen-
specific tolerance (168). These trials utilize islet-derived antigens,
such as insulin GAD65 or hsp 70, and various routes of admin-
istration have been tested including oral, nasal, and intradermal.
So far these trials have failed to have a significant impact on dis-
ease although in some cases evidence for immune tolerance was
observed (168). It is to be expected that the success of such trials
will depend on the APC, most likely a DC, targeted by these anti-
gen formulations. At the present time not much attention is being
paid to the nature of the DC presenting the antigen in these trials
but, in view of our increasing understanding of the complexity of
DC phenotype and function this is likely to change.

FUTURE PERSPECTIVES
As discussed at the beginning of this review many of the stud-
ies that examine the therapeutic potential of DC in the treat-
ment/prevention of T1D have been performed in the NOD mouse.
This has been a very useful model for identifying susceptibility
genes and understanding the progression to disease but thera-
peutic approaches that have successful in this mouse model have
not translated well to the clinic (169). DCs play a pivotal role in
setting the tone of the immune response. On the one hand they
contribute to the development and maintenance of self-tolerance
and on the other they contribute to the breaking of that tolerance
and the initiation of disease. A deeper understanding of how DC
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can influence the development of autoimmune diabetes will aid
in the development of novel therapeutic strategies. A great deal of
progress has been achieved in the last several years and we have a
better understanding of how DC can both maintain and break self-
tolerance. The challenge in the future will be to use this knowledge
to achieve the ultimate goal of inducing antigen-specific tolerance
to prevent autoimmunity without causing widespread immune
suppression.
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We recognize well the abilities of dendritic cells to activate effector T cell (Teff cell)
responses to an array of antigens and think of these cells in this context as pre-eminent
antigen-presenting cells, but dendritic cells are also critical to the induction of immuno-
logic tolerance. Herein, we review our knowledge on the different kinds of tolerogenic or
regulatory dendritic cells that are present or can be induced in experimental settings and
humans, how they operate, and the diseases in which they are effective, from allergic to
autoimmune diseases and transplant tolerance. The primary conclusions that arise from
these cumulative studies clearly indicate that the agent(s) used to induce the tolerogenic
phenotype and the status of the dendritic cell at the time of induction influence not only the
phenotype of the dendritic cell, but also that of the regulatoryT cell responses that they in
turn mobilize. For example, while many, if not most, types of induced regulatory dendritic
cells lead CD4+ naïve or Teff cells to adopt a CD25+Foxp3+ Treg phenotype, exposure of
Langerhans cells or dermal dendritic cells to vitamin D leads in one case to the downstream
induction of CD25+Foxp3+ regulatory T cell responses, while in the other to Foxp3− type
1 regulatory T cells (Tr1) responses. Similarly, exposure of human immature versus semi-
mature dendritic cells to IL-10 leads to distinct regulatoryT cell outcomes.Thus, it should be
possible to shape our dendritic cell immunotherapy approaches for selective induction of
different types ofT cell tolerance or to simultaneously induce multiple types of regulatoryT
cell responses.This may prove to be an important option as we target diseases in different
anatomic compartments or with divergent pathologies in the clinic. Finally, we provide an
overview of the use and potential use of these cells clinically, highlighting their potential
as tools in an array of settings.

Keywords: dendritic cell, tolerance, regulatoryT cell, immunoregulation, IL-10, retinoic acid,TGFβ, vitamin D

During the 1960s, it was thought that macrophages, with their
capacity to phagocytose antigens, were required to initiate immu-
nity to foreign substances (1). It was known that lymphocytes
were mediators of immunity, but we knew little about how
antigens from an invading pathogen would reach the lymph
node-sequestered naïve lymphocytes (2). There was a gap in the
understanding of the initiation of adaptive immunity, a gap that
Ralph Steinman and Zanvil Cohn set out to fill. When Stein-
man began to study the spleen and lymph nodes, he observed
new cells that were distinct from macrophages in appearance
and function. These dendritic cells, so named because of their

Abbreviations: AHR, airway hyperresponsiveness; APCs, antigen-presenting cells;
BAL, bronchoalveolar lavage; BDCA, blood dendritic cell antigen; CTLA4, cytotoxic
T lymphocyte antigen-4; DC10 or DC-10, semi-mature or immature, respectively,
IL-10-differentiated dendritic cells; DC-SIGN, dendritic cell-specific intracellular
adhesion molecule 3-grabbing non-integrin; Foxp3, the transcription factor fork-
head box P3; ICOS and ICOS-L, inducible costimulator and inducible costimulator
ligand, respectively; IDO, indoleamine-2,3-dioxygenase; ILT, immunoglobulin-like
transcript; iTreg, induced CD25+Foxp3+ regulatory T cells; MHC, major histocom-
patibility complex; nTreg, naturally-occurring CD25+Foxp3+ regulatory T cells;
OVA, ovalbumin; RALDH2, retinaldehyde dehydrogenase 2; Teff cell, effector T cell;
TLR, toll-like receptor; Treg cell, regulatory T cell.

dendrite-like projections, had few lysosomes and only moder-
ate phagocytic activity (3, 4), but they expressed high levels of
major histocompatibility complex (MHC) molecules required for
presentation of extra-cellular antigens (5). He also observed that
dendritic cells were highly potent immune stimulators (6), and
now we often speak of dendritic cells as the most proficient of
professional antigen-presenting cells (APCs). By 1991, we had
accumulated substantial knowledge on the role of the dendritic
cell in the induction of immunity, but we were just beginning
to recognize that extrathymic dendritic cells could also play cen-
tral roles in the induction of tolerance (7), and it was not long
before we began to understand more about tolerogenic dendritic
cells and their potential applications (8–10). We now appreciate
that there are numerous discreet populations of naturally occur-
ring regulatory dendritic cells, but focusing on understanding the
immunobiology of these cells within their individual niches has
given us substantial insights on how we can generate and employ
regulatory dendritic cells for immunotherapeutic applications.
While dendritic cells can activate either CD4+ or CD8+, or even
CD4−CD8− T, B, and NK cells to become regulatory cells, this
review will be confined to a discussion on tolerogenic DC in the
context of CD4+ T cells and their responses. We will first describe
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the populations of dendritic cells found in vivo and then look at
the major populations of regulatory dendritic cells that have been
induced ex vivo, as well as the effector molecules employed by these
cells.

OVERVIEW OF DENDRITIC CELL BIOLOGY
In general, dendritic cells express MHCII but lack T cell (CD3), B
cell (CD19), and NK cell (CD56) lineage markers (11); some sub-
sets of dendritic cells express the monocyte/macrophage (CD14)
or NK cell/neutrophil and monocyte/macrophage (CD16) lin-
eage markers, and others the CD4 and/or CD8 T cell subset
markers. Dendritic cells are formed from bone marrow prog-
enitors that in general give rise to circulating dendritic cell pre-
cursors (12, 13) that seed the peripheral tissues as immature
cells (14). As quiescent or immature cells, they express recep-
tors for, and have an innate capacity to respond to an array
of inflammatory signals, including ligands for toll-like receptor
(TLR), NOD-like receptors, and scavenger receptors, as well as
inflammatory mediators, cytokines, and chemokines. The various
sub-populations of dendritic cells can respond in a qualitatively
and quantitatively distinct fashion to such environmental trig-
gers and differentiate extensively to become immunocompetent
accessory cells, such that they provide a crucial link between
the innate and adaptive immune responses (15). They upregu-
late cell-surface expression of their antigen-presentation machin-
ery, including processed antigen peptide-loaded MHCII (16) and
co-stimulatory molecules as well as receptors for lymph node-
homing chemokines (e.g., CCR7), and they downregulate their
phagocytic activities and receptors for local inflammatory sig-
nals (e.g., CCR5, CCR6) (14, 17). As dendritic cells mature,
they lose their ability to process new peptides (18, 19) and
migrate to their tissue-draining lymphoid organ, where they
present their processed antigens to T cells in the context of
cell-surface MHC (APC signal 1) together with supporting co-
stimulatory molecules (e.g., CD40, CD86; APC signal 2) and
T cell-polarizing cytokine signals such as IL-12 (20) (APC sig-
nal 3), inducing the T cells to differentiate into antigen-specific
effector T cells (Teffs; e.g., Th1, Th2, or Th17 cells) (13). But
dendritic cells can also provide a fourth APC signal of sorts
to T cells, by which they direct the trafficking of the edu-
cated T cell. In the gut, retinoic acid and transforming growth
factor (TGF)-β produced by dendritic cells together induce T
cells to express the α4β7 and CCR9 gut-homing receptors (21),
while in the skin-draining lymph nodes vitamin D metabolites
released by the dendritic cell induce T cells to express CCR10,
such that they become responsive to the skin-homing chemokine
CCL27 (22).

Tissue-resident dendritic cells that acquire innocuous envi-
ronmental or self antigens in the absence of local inflammatory
responses similarly migrate to the draining lymph nodes but, as
more quiescent cells, overall they express lower levels of MHCII,
co-stimulatory molecules, and IL-12, and secrete instructional reg-
ulatory mediators such as IL-10 or retinoic acid (23, 24). In this
way dendritic cells that are presenting innocuous environmental
antigens activate one of several types of regulatory T cell (e.g., Treg,
Tr1, or Th3) responses that are associated with immune tolerance
(Figure 1).

FIGURE 1 | Induction of immunologic tolerance by regulatory dendritic
cells. Immature or semi-mature dendritic cells that are incubated with, or
differentiated in the presence of, tolerogenic factors (e.g., IL-10, vitamin D3,
corticosteroids, or retinoic acid) (1) adopt a regulatory phenotype. When
these converted regulatory dendritic cells are pulsed with antigen and
exposed to cognate naïve or effector T (Teff) cells (2), they present their
processed antigen peptides in the context of MHCII, and also lower levels
of co-stimulation (e.g., CD40, CD86) to the T cells, but at the same time
many types of tolerogenic cells also provide inhibitory receptor (e.g., ILT2,
ILT4) signaling to the T cell. Counter-signaling from the engaged T cell
activates dendritic cell production of polarizing mediators (e.g., IL-10, TGFβ),
which together instruct the T cell to adopt a regulatory phenotype. The
nature of the instructional signals from the dendritic cell to the T cell
determine whether it adopts an IL-10-secreting CD25+Foxp3+ Treg
phenotype or an IL-10/TGFβ-secreting Foxp3− Tr1 phenotype (3). These
regulatory T cells are able to suppress the responses of cognate or
by-stander naïve or effector T cells in their microenvironment (4) and also to
convert endogenous tissue dendritic cells to adopt a regulatory phenotype
through induction of infectious tolerance (5), and thereby reinforce the
tolerance phenotype.

NATURALLY OCCURRING POPULATIONS OF DENDRITIC
CELLS
A large number of reports have described an array of dendritic cell
types and subtypes in different organ systems and animals, and it is
almost undoubtedly true that more will be described as we explore
further. Many of these sub-populations are or can be tolerogenic as
they are found in their steady state (e.g., pulmonary plasmacytoid
or myeloid dendritic cells), but for most if not all of these there
are inflammatory signals that can override this tolerogenic pheno-
type, converting these cells to an immunostimulatory phenotype.
In some tissues (e.g., gut, liver) dominantly tolerogenic signals are
constitutively expressed at high levels, while in other sites that are
not routinely exposed to the external environment these signals
may be much more subtle.

DENDRITIC CELLS IN THE BLOOD
Several distinct types of dendritic cells can be identified
in human peripheral blood. There are two sub-populations
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of MHCII+CD11c+CD123lo myeloid dendritic cells, includ-
ing CD1c/blood dendritic cell antigen (BDCA)-1+ cells and
CD141/BDCA-3+ cells, as well as MHCII+CD1c−CD123hi plas-
macytoid dendritic cells that also express BDCA-2/CD303, BDCA-
4/CD304, IL-3RA,and ILT7 (11,25). The CD141+MHCII+CD11c+

myeloid dendritic cell is the human counterpart of the murine
CD8α+ dendritic cell (25). In the mouse, the identities of circu-
lating tissue dendritic cell precursor(s) have not been all that well
documented (26). We know that murine splenic and lymph node
dendritic cells are continuously replaced from a pool of blood-
borne precursors (27), that splenic CD8α+ dendritic cells most
likely gain access to this organ via the vasculature (28), and that
MHCIIloCD11clo pDC do accumulate in the blood of mice (13,
28). While immunostimulatory (29) and tolerogenic (30) den-
dritic cells can be readily differentiated ex vivo from peripheral
blood monocytes in humans, it was only recently that LPS stimu-
lation of murine monocytes was reported to induce dendritic cell
differentiation (31). These murine monocyte-derived dendritic
cells express CCR7 and dendritic cell-specific intracellular adhe-
sion molecule 3-grabbing non-integrin (DC-SIGN) and localize
to T cell areas of lymph nodes, where they are highly effective in
presenting and cross-presenting antigens (31).

In humans, the BDCA-1+ and -3+ myeloid dendritic cell
populations can be mobilized from the bone marrow with Flt3
ligand alone while optimal plasmacytoid dendritic cells mobiliza-
tion reportedly calls for use of Flt3 ligand and G-CSF (25). The
circulating BDCA-1+/CD1c+ myeloid dendritic cell can secrete
abundant IL-12 and prime cytotoxic T cell responses (32), while
BDCA-3+ myeloid dendritic cells and BDCA-2+ plasmacytoid
dendritic cells instead secrete IFNγ and IFNα, respectively, on acti-
vation (32). A minor population of tolerogenic IL-10-expressing
CD1c−CD303−CD14+ dendritic cells has recently been described
in human peripheral blood, although much of the data regarding
their tolerogenic activities has come from studies with an in vitro
analog of the circulating cell (33).

INTESTINAL DENDRITIC CELLS
The intestinal immune system routinely faces the challenge
of discriminating pathogens from harmless commensal organ-
isms and other (e.g., food) antigens, as a prelude to trig-
gering effector and regulatory T cell responses, respectively
(34). The gut-associated dendritic cells include those in the
mesenteric lymph nodes (MLNs), intestinal lamina propria,
and the isolated lymphoid follicles (35, 36). The lamina
propria contains two populations of CD11c+ mononuclear
cells, including CD11chiCD103+CD11b+CX3CR1- cells and
CD11cintCD103-CD11b+CX3CR1+ cells; the CD103+ cells are
bona fide dendritic cells while the latter CD103− cells are now
thought to be resident tissue macrophages (37). Under steady-
state conditions, the CD103+ dendritic cells express retinalde-
hyde dehydrogenase 2 (RALDH2) (23, 38), TGF-β (39), and
indoleamine-2,3-dioxygenase (IDO) (40), such that targeting of
antigens to these cells leads to tolerance outcomes, while gut
inflammation dampens TGFβ and RALDH2 expression in these
cells, such that they instead induce vigorous T and B cell responses
(41, 42). CD103, the α chain of the E-cadherin ligand αEβ7 inte-
grin (43), is expressed on almost all lamina propria dendritic cells

and a subset of MLN dendritic cells (44). It has been reported that
gut luminal bacteria recruit lamina propria CD103+ dendritic cells
into the gut epithelium, from which they extend filipodia into the
lumen to sample gut antigens (37). RALDH2 is an enzyme that cat-
alyzes the synthesis of retinoic acid, a vitamin A derivative, which
plays a major role in immunologic tolerance within the gastroin-
testinal tract (45). Expression of CD103 and retinoic acid together
induce gut T cells to express the gut-homing receptors CCR9 and
α4β7 (44, 46). CCR9 and its CCL25 ligand regulate recruitment of
lymphocytes to the vasculature of the small intestine (47), while
α4β7 integrin expression confines extravasation of these T cells to
the intestinal post-capillary venules (48). Retinoic acid and TGFβ

together promote the differentiation of Foxp3+ Treg from naive T
cells (39), while retinoic acid further reinforces tolerance by damp-
ening Th17 cell differentiation (49). Retinoic acid also fosters B cell
isotype switching to IgA antibodies as well as their expression of
CCR9 and α4β7 (50–52), and thereby contributes further to local
tolerance responses.

PULMONARY DENDRITIC CELLS
Pulmonary dendritic cells can be differentially positioned in either
the conducting airway or the interstitium of the lung (15, 53). In
mice, CD11chi myeloid cells are found in both compartments,
while CD11c− cells are reportedly confined to the airway mucosa
(53). The airway dendritic cells form a prototypical network of
interdigitating cells positioned beneath the epithelium (54–56),
with many of these cells extending dendritic processes into the
airway lumen to sample airway antigens (57), just as occurs in the
gut (37). In mice these airway cells express CD11c+, MHCII+,
and CD11b+, but not CD8α− (15); they also express CD103
and tight junction proteins (claudin-1 and -7, and zonula occlu-
dens protein 2), which would play important roles vis-à-vis their
positioning within the epithelium (43). After airway antigen sam-
pling and processing, these cells can activate cognate T cells in
their immediate environment (57, 58), but also migrate to the
lung-draining lymph nodes where they present to T cells in that
compartment (58). In rats the airway-associated dendritic cells
are somewhat more heterogeneous (53). Bronchoalveolar lavage
(59) and tissue digest (60) studies of the human lung have revealed
three populations of dendritic cells, including CD11c+CD1c+ and
CD11c+BDCA-3+ myeloid cells, and CD11c−BDCA-2+ plasma-
cytoid dendritic cells, and these are considered analogous to the
CD11b+CD103− and CD11b−CD103+langerin+ conventional
and plasmacytoid dendritic cell subsets, respectively, in mice (61).
Further analysis in chronically inflamed (e.g., COPD) lung tissues
have revealed langerin-positive and DC-SIGN-expressing den-
dritic cell sub-populations (31, 62) that were proposed to represent
the human equivalent of the murine CD11b−CD103+langerin+

and monocyte-derived inflammatory dendritic cells, respectively
(31, 62). The CD103+ dendritic cells that comprise the bulk
of the dendritic cells found in the lung-draining lymph node
migrate there from the lung mucosa under the influence of
lymph node-homing chemokines that signal via the CCR7 (43).
In humans, the lung plasmacytoid dendritic cells express CD123
and BDCA-2, while the mouse plasmacytoid dendritic cell is
B220hiLy6ChiGr1loCD11b−CD11clo (63). Plasmacytoid dendritic
cells, which contribute importantly to tolerance responses to
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innocuous airway antigens (64), also express CD45RA, Ly49Q,
BST2/tetherin [or murine plasmacytoid dendritic cell anti-
gen (mPDCA)], sialic acid-binding immunoglobulin-type lectin
(siglec)-H, inducible costimulator ligand (ICOS-L), programed
death 1 ligand (PD-L)-1, and IDO (65), but produce copious
amounts of IFNα in response to viral challenge (66). Under
tolerogenic conditions, the CD103− and CD103+ dendritic cells
reportedly are specialized in presenting antigen to CD4+ ver-
sus CD8+ T cells, respectively (67, 68). However, under viral
challenge the CD103+ dendritic cells efficiently migrate to the
draining lymph nodes where they cross-present viral antigens to
CD8+ T cells, while the CD103− cells tend to remain within the
lung parenchyma, where they present to CD4+ T cells in a pro-
inflammatory manner (67, 68). This separation of function is also
observed in asthmatic animals,wherein the CD103− dendritic cells
present allergen to parenchymal CD4+ T cells, while the CD103+

subset presents allergen in the draining lymph node (69).
It is clear that the pulmonary dendritic cell contributes not only

to the induction of asthma, but also to allergen-tolerance. Whole-
sale depletion of CD11c+ cells abolishes disease onset following
allergen exposure in experimental animals (70), but plasmacy-
toid dendritic cell depletion in animals challenged with otherwise
innocuous aeroallergens leads to development of allergen-specific
asthmatic responses (64). Steady-state plasmacytoid dendritic cells
express an immature/semi-mature phenotype, with low levels of
MHCII and co-stimulatory molecules and intermediate levels of
PDL-1 (15, 71), which would contribute to their tolerogenic phe-
notype, but IDO expression by these cells also strongly inhibits T
cell proliferative responses (72). Nevertheless, CD103+ dendritic
cells from the lungs of allergen-tolerant mice would also affect
tolerance, inasmuch as they express RALDH and secrete retinoic
acid, which contributes together with TGFβ to local induction of
Foxp3+ regulatory T cells (73). Finally, it is important to note the
contributions of other populations within the lung to tolerance.
Tissue-resident (74) and alveolar (75) macrophages both express
TGFβ and RALDH under steady-state conditions, such that they
can also induce CD4+ T cells to which they present innocuous
antigens to convert into Foxp3+ Treg. Alveolar macrophages can
also suppress the immunostimulatory properties of steady-state
lung-resident dendritic cells (76) and thereby further contribute
to steady-state tolerance in the lung.

CUTANEOUS DENDRITIC CELLS
As with the intestinal tract and lungs, the skin is constantly
exposed both to pathogens, which require induction of pro-
tective Teff responses, and to innocuous environmental agents
for which tolerance is the desired outcome. There are at least
three subsets of skin-derived dendritic cells, including the self-
renewing epidermal langerin+CD103− Langerhans cell (77), and
the langerin+CD103+ (78, 79) and langerin−CD103− (80) der-
mal subsets; others have reported that the dermis contains five
distinct subsets of dendritic cells (81). The epidermal Langer-
hans cell is probably the best known dendritic cell – as in other
interfaces with our environment, these superficial cells form a
contiguous network of interdigitating cells that are well posi-
tioned to detect and respond to cutaneous insults (82). In gen-
eral, skin dendritic cells that acquire local antigens for lymph

node presentation downregulate their E-cadherin epithelial recep-
tors and upregulate CCR7, thereby acquiring responsiveness to
chemokines expressed in the T cell zones of the draining lymph
nodes (e.g., CCL19, CCL21) (14). In the lymph node, the den-
dritic cell presents its processed antigen peptides to the T cell,
along with its co-stimulatory and polarizing signals. In addition,
vitamin D3 metabolites expressed by the antigen-presenting den-
dritic cell induces T cell upregulation of CCR10, the receptor for
the skin-homing chemokine CCL27 (22).

Langerin+ migratory skin dendritic cells (i.e., CD103+ dermal
dendritic cells and Langerhans cells) can promote T cell tolerance
responses to self antigens (83). The Langerhans cell appears to be
unique in some respects, however, such that exposure to potent
inflammatory adjuvants by itself does not override their innate
tolerogenicity (84), perhaps in part because they do not express
a number of important microbial pattern recognition receptors
(e.g., TLR2, TLR4, or TLR5) (85). They are also unique in that,
even while in a tolerogenic mode, they strongly express APC co-
stimulatory markers and express IL-12. Nevertheless they fail to
effectively activate NF-κB (i.e., translocate RelB into the nucleus)
following adjuvant exposure (84), which is critical to induction of
the immunostimulatory phenotype in dendritic cells (86). While
dermal dendritic cells can effectively induce anti-bacterial immune
responses, and would need to do so in situations where micro-
bial organisms successfully penetrate the epithelial barrier, the
default function of the Langerhans cell instead leads to regu-
latory T cell responses, perhaps as a means of preventing the
integrity of the epidermal barrier from being compromised (85).
Indeed, Langerhans cell depletion (e.g., by UV-B light exposure)
has long been recognized to augment pathology in multiple con-
tact sensitivity settings (87, 88). The Langerhans cell is efficient
at capture and presentation of contact irritants, but this process
can culminate in anergy and/or deletion of responding CD8+ T
cells, with induction of ICOS+CD4+Foxp3+ regulatory T cell
responses (89). The resident CD141+ dermal dendritic cell in
humans can also effect tolerance through their expression of the
inhibitory receptor ILT3 and of IL-10, which together upregulate
CD25+ regulatory T cells that protect against allograft rejection
(90). Migratory CD103+langerin+ dermal dendritic cells can also
induce CD25+Foxp3+ Treg outgrowth from naïve T cells, at least
in part through their expression of TGFβ (91).

HEPATIC DENDRITIC AND OTHER TOLERANCE-PROMOTING CELLS
It is well recognized that operational tolerance occurs more fre-
quently with liver transplants than with other organs, suggesting
that this organ may have a unique tolerogenic capacity (92).
Human liver dendritic cells comprise most prevalently BDCA-1+

DC that, unlike blood dendritic cells, secrete substantial amounts
of IL-10 on TLR ligation, and this contributes to their high level
induction of CD25+Foxp3+ Treg (11). It has also been reported
that, in the steady state, hepatic myeloid and plasmacytoid den-
dritic cells can both induce tolerogenic T cell responses, although
by distinct mechanisms – the myeloid cells express a mature phe-
notype and produce high levels of regulatory factors such as IL-10,
IL-27, retinoic acid,and prostaglandin E2 (93–96),whereas hepatic
plasmacytoid dendritic cells express a more immature phenotype
and secrete high levels of IL-10 (97, 98). The non-parenchymal
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hepatic stellate cell, the major storage site for retinol in the body
(99), would potentially also play a role in hepatic tolerance through
provision of retinoic acid and thereby by-stander contributions to
hepatic regulatory T cell induction (100, 101). Another factor to
consider in hepatic tolerance is the resident liver macrophage, the
Kuppfer cell. Kuppfer cells are present in very large numbers in the
liver and express MHCII and co-stimulatory molecules, although
as quiescent cells they only poorly present antigen. Nevertheless,
just as the hepatic stellate cells are a rich source of retinoic acid,
Kuppfer cells constitutively express abundant prostaglandin E2
and 15d-prostaglandin J2, which strongly inhibit T cell responses
to immunostimulatory dendritic cells (102). Thus, there are mul-
tiple mechanisms that may contribute to the innate tolerogenic
phenotype of the liver.

EXPERIMENTAL APPLICATION OF TOLEROGENIC DENDRITIC
CELLS
STEADY-STATE AND IMMATURE DENDRITIC CELLS
For practical reasons it is unlikely that steady-state dendritic cells
freshly purified from donor tissues would be used clinically, but
investigations into such cells have provided substantial insights
into the immunobiology of tolerogenic dendritic cells. Steady-state
dendritic cells from lymphoid organs (103, 104) and non-inflamed
tissues (91, 104, 105) express a relatively immature phenotype – in
general, such cells are tolerogenic (105, 106). For example, treat-
ment with small numbers of antigen-pulsed steady-state CD8α+

splenic dendritic cells can induce asthma tolerance in mouse mod-
els, reversing the asthmatic animals’ bronchial hyperresponsive-
ness and airway eosinophil and Th2 cytokine recall responses to
allergen challenge; expression of IL-10, TGFβ, and IDO, as well as
direct dendritic cell–Teff cell contact each contribute to the tolero-
genic activities of these cells (107). It is important to their activity
that such steady-state dendritic cells remain quiescent while being
purified or manipulated ex vivo, as even overnight exposure of
CD8α+ dendritic cells to GM-CSF, for example, converts them
into potent inducers of cytotoxic CD8+ T cell responses (108).
Steady-state CD8α+ dendritic cell signaling leads to attenuated
IL-2 expression by T cells and increased apoptosis, at least in part
through the dendritic cell’s expression of FasL (109–111).

Tissue dendritic cells that acquire antigens in situ in such a way
that they do not become activated also remain tolerogenic. Thus,
as noted, steady-state airway mucosal dendritic cells routinely
migrate to the draining lymph nodes and present innocuous
allergens in a tolerogenic fashion – indeed, this is the default
mechanism by which ≈80% of the human population remains
allergen-tolerant (112). Similarly, targeting antigens to dendritic
cells with anti-DEC205, for example, does not activate the cells and
thus leads to antigen-specific tolerance in multiple models (113–
115). And dendritic cells that phagocytose apoptotic cells remain
in a largely quiescent state and thus are also tolerogenic (116, 117),
at least in part via induction of TGFβ expression in the draining
lymph nodes with consequent activation of Foxp3+ Treg (118).

There is also a large body of data regarding the tolerogenic prop-
erties of immunologically immature dendritic cells that have been
generated in vitro from bone marrow or blood of mice or humans.
These cells tend to express low levels of MHCII and co-stimulatory
markers and have thus been thought of as largely ineffective

in activating T cells through the classical TCR signaling path-
ways (119–122), although it has also been suggested that PD-L1
and PD-L2 expression by these cells contributes to their tolero-
genic activities (123). There are ≈100 genes that are differentially
expressed in immature versus immunostimulatory mouse bone
marrow-derived dendritic cells, including a number of cytokines
(e.g., Flt3L, TNF), chemokines (e.g., MIP2, RANTES), chemokine
receptors (e.g., CCR2, CCR5), and other (e.g., RP105, Ax1) mark-
ers (124). Passive transfer of antigen-pulsed immature dendritic
cells has been shown to induce tolerance either in vivo or in vitro in
numerous experimental models and with human cells (125–132).
An important caveat with use of immature dendritic cells to treat
overtly inflammatory conditions is that the pro-inflammatory
environment they face in vivo can activate these cells, such that
they activate pathogenic (e.g., Th1, Th17) as opposed to regulatory
T cell responses (133, 134), as discussed below.

INDUCED TOLEROGENIC DENDRITIC CELLS
Some of the first insights into the induction of a tolerogenic phe-
notype within dendritic cells arose from the studies of Langerhans
cells that had been exposed to either ultraviolet B radiation (8)
or IL-10 (8, 9). Dendritic cells from IL-10-expressing melanoma
tumors (135) and IL-10-exposed immature monocyte-derived
dendritic cells (136) were then also shown to be tolerogenic. This
potential for using tolerogenic cells, whether dendritic cells or
subsequently induced regulatory T cells, to dampen pathogenic
responses has burgeoned into a field of immunology into itself.
We now know that a large array of mediators can induce a tolero-
genic phenotype within dendritic cell populations. These include
IL-10 (9, 30, 33, 135–149) and other cytokines (150–158), corti-
costeroids (143, 159–162), vitamin D3 (160, 163–172), rapamycin
(143, 160, 173–175), and neuropeptides (176, 177) (Table 1),
each of which we will discuss. Although we will not discuss the
following populations, it has been reported that dendritic cells
can also be rendered tolerogenic by exposure to: anti-CD3 (178);
Aspergillus oryzae protease (162); aspirin (179); atorvastatin (180);
butyric or mycophenolic acids (181); the α7β0 isoform of C4b-
binding protein (182); the FasL decoy receptor, decoy receptor-3
(183); galectin-1 (184, 185); growth-related oncogene (GRO)-
gamma (186); intravenous immunoglobulin (IVIg) (187, 188);
protein kinase C inhibitors (189); or retinoic acid (190–193),
or by inhibition of miRNA let-7i (194). IL-10-, vitamin D3-,
dexamethasone-, and rapamycin-induced tolerogenic dendritic
cells stand out as populations that have had been particularly
well-studied in mouse and/or human systems, so we will con-
centrate our discussions on these cells, with the interested reader
referred to the cited reports for these alternate populations. Fur-
thermore, given the potential ethical issues with use of dendritic
cells transfected with viruses that express tolerogenic molecules
(e.g., IL-10, CTLA4Ig) or that suppress stimulatory molecules (e.g.,
co-stimulatory, immunostimulatory, or pro-apoptotic molecules,
such as CD80, IL-12, or TRAIL, respectively (195)), we will not
devote significant discussion to these approaches at this time.

INTERLEUKIN-10-INDUCED REGULATORY DENDRITIC CELLS
As noted, IL-10 was one of the first mediators shown to induce
human dendritic cells to adopt a tolerogenic phenotype (8, 9, 122,
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Table 1 | Phenotypes of human tolerogenic dendritic cells differentiated using different agents.

Agent DC DCreg markers Effector Mechanisms of

tolerance (outcomes)

Treg induced Reference

Nil Immature MDDC ↓ Co-stim, MHCII, IL-12 ↓ Co-stim,

MHCII

Induction of T cell

anergy

N.D. (119–122)

Apoptot. cells Immature MDDC ↓ Co-stim, MHCII, IL-12 ↓ Co-stim,

MHCII

Induction of T cell

anergy

Foxp3+ Treg (116, 118)
↑TGFβ

IL-10 Semi-mature MDDC

(“DC10”)

↓ Co-stim, MHCII, IL-12 IL-10 and

contact-depend

↓ Autol. T cell prolif. CD25+Foxp3+

Treg

(30, 143,

196–198)↑ IL-10, ILT-2, -3, and -4,

PD-L1 and -L2, GILZ

Immature MDDC ↓ Co-stim, MHCII N.D. ↓ Allo. T cell prolif. N.D. (136, 158, 164)

↑ ILT3, IL-10, GILZ, TLR2

Immature MDDC

(“DC-10”)

↓ Co-stim, MHCII IL-10, ILT4,

HLA-G

↓ Allo. T cell prolif. Tr1 (33)
↑ ILT-2, -3, -4, HLA-G ↑Tr1

Vit D3 Immat. MDDC ↓ Co-stim and CD83, MHCII N.D. ↓ Allo. T cell prolif. Not CD25+

Foxp3+ Treg

(160)
↑ HLA-DR

MDDC+LPS Intermed co-stim/MHCII PD-L1 ↓ Allo. T cell prolif.,

Teff > IL-10 Treg

CD25+Foxp3+

Treg or ND

(163, 170–172,

199)↑ IL-10, TNF, PD-L1 and ILT3

MDDC+TLR stim. hMDDC, LPS maturation LPS� IL-10 med ↓ Allo. T cell prolif. N.D. (164)

MDDC+LPS ↑ Surface TNF Surface TNF ↑Treg induction N.D. (167)

↓ Secr. TNF

Dermal DC N.D. IL-10 ↓ Allo. T cell prolif. Tr1 cells (200)

Langerhans cells N.D. TGFβ ↓ Allo. T cell prolif. CD25+Foxp3+

Treg

(200)

CD141−CD1c+ blood

DC

↑ CD83 IL-10 CD25+Foxp3+

Treg

(90)
↑ CD141, CD14, ILT3, MØ

mann. R

Dex Immat. MDDC ↑ CD86, MHCII IL-10 ↓ Allo. T cell prolif. N.D. (160)

CD83 med

MDDC+LPS Intermed co-stim/MHCII

↑ IL-10

N.D. ↓ Allo. T cell prolif.,

Teff > IL-10 Treg

IL-10-secreting,

contact-depend.

Treg

(171)

MDDC±TLR stim. Intermed co-stim/MHCII N.D. ↓ Allo. T cell prolif. (164)

ILT3+, IL-10+, GILZ+, TLR2+

DC2.4 cells ↓ IL-12 N.D. ↓ Allo. T cell prolif. CD25+Foxp3+

Treg

(201)

Steroid MDDC GILZ+ N.D. N.D. (202)

VitD3+Dex MDDC ↓ Co-stim and CD83, MHCII IL-10 ↓ Allo. T cell prolif. Tr1 or N.D. (165, 203)

> CD14, HLA-DR, CD80,

CD273

↓ CD25+Foxp3+ Treg
↑Tr1 and Breg

VIP-DC Immature MDDC ↓ Co-stim, MHCII

↑ IL-10

N.D. Weak naïve allo T cell

activation

Tr1 and CD4+

CD28−CTLA4+

Treg

(176, 204)

Rapamycin Immat. MDDC ↓ Co-stim med. MHCII IL-10? ↓ Allo. T cell prolif. CD25+Fopx3+

Treg

(160, 205, 206)
↑ Foxp3+CD25+ Treg
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135, 136, 141, 148, 150, 209–212). These reports together indi-
cated that IL-10-differentiated monocyte-derived dendritic cells
display reduced levels of MHCII and co-stimulatory markers, and
can induce Teff cell anergy. Sometime later it was shown that
IL-10-induced semi-mature CD14+ monocyte-derived dendritic
cells (DC10) from atopic asthmatic individuals suppress specific
allergen-driven proliferative and Th2 cytokine responses of autol-
ogous peripheral blood CD4+CD25−/loFoxp3− Teff cells, and
convert these Teff cells into regulatory T cells (30). The maturation
status of these DC10 was attributable to their exposure during dif-
ferentiation to a stimulatory cocktail containing IL-1β, TNF, IL-6,
and PGE2, in addition to IL-10 (30), but these cells are resistant
to further, LPS-induced, maturation (209). DC10 express low lev-
els of MHCII, co-stimulatory markers, 4-1BBL and OX40L, but
they strongly express DEC205, IFNα1, CCR7, ILT2 (an inhibitory
HLA-G receptor), as well as IL-10 (Table 2). They induce Teff
cells to differentiate into IL-10-secreting CD25+Foxp3+LAG-
3+CTLA4+ regulatory T cells, which in turn suppress allergen-
driven responses of autologous Teff cells in a contact-dependent
fashion (30). Others found that similar semi-mature IL-10-
differentiated dendritic cells express high levels of ILT3, ILT4,
PD-L1, and PD-L2, that they (but not immature cells) respond
strongly to the lymph node-homing chemokine CCL19 (143), and
that they induce regulatory T cells that also suppress allogeneic
T cell responses in a contact, but not IL-10- or TGFβ-dependent
fashion (196). These DC10 also express glucocorticoid-induced
leucine zipper (GILZ), which is both necessary and sufficient
for expression of IL-10, ILT3, and PD-L1 by these cells – GILZ
silencing eliminates their tolerogenic activities (197, 198). IL-10-
differentiated human monocyte-derived dendritic cells that have
never been exposed to maturation-inducing agents are also tolero-
genic (33, 148, 212). As noted above, a minor population of IL-10-
producing circulating dendritic cells, called DC-10, was recently
identified in humans (33), and those investigators also generated

an analogous population of immature IL-10-differentiated den-
dritic cells (DC-10) that similarly express IL-10 (Table 2), as well
as the inhibitory receptors ILT2, ILT3, ILT4, and HLA-G (33).
Others have noted that such cells also express signaling lympho-
cyte activation molecule (SLAMF1, CD150) (148), which inhibits
CD40-mediated signal transduction (213), and would therefore
interfere with two-way dendritic cell-T cell conversations. These
cells have been reported to suppress Teff cell responses in a man-
ner that is contact-dependent, and independent of any role for
secreted soluble mediators (148), although others note that IL-10
secretion and cell-surface inhibitory receptors are both important
to the regulatory activities of such immature IL-10-differentiated
dendritic cells (33). It is very intriguing that exposure of semi-
mature human dendritic cells to IL-10 leads to their induction of
classical CD25+Foxp3+ Treg (30, 196), while exposure of imma-
ture human dendritic cells to IL-10 leads to induction of Foxp3−

Tr1 cells (33). It will be interesting to determine whether expo-
sure of such immature regulatory dendritic cells to inflammatory
(i.e., maturation-promoting) conditions would qualitatively or
quantitatively affect their immunobiology.

Murine DC10 can prevent the onset of asthma in exper-
imental mice, as well as reverse the asthmatic phenotype in
severely affected animals (137, 138, 140, 214–216), just as do
dendritic cells that have been virally transfected to express very
high levels of IL-10 (146). These DC10, which are not exposed
to maturational stimuli during differentiation, display low lev-
els of cell-surface MCHII and co-stimulatory markers, are avidly
phagocytic and chemotactically responsive to MIP-1α, and express
elevated levels of IL-10, TGFβ (137, 138, 215), and PD-L1 (Li
et al., unpublished observation). They are highly effective ther-
apeutically in mouse models of ovalbumin (OVA) – (138, 140,
214–216) and house dust mite – (137) asthma. In both set-
tings, DC10 abrogate airway hyperresponsiveness (AHR) within
3 weeks of treatment and dampen the allergic Th2 phenotype

Table 2 | Impact of phenotype on the levels of IL-10 secretion by regulatory dendritic cells.

Differentiating agent DC (IL-10 levels) Reference

NON-REGULATORY DENDRITIC CELLS

TNF Semi-mature MDDC (≈35 pg/ml) (30)

Nil semi-mature MDDC (LPS, >700 pg/ml; CD40L, >2 ng/ml) (207)

TOLEROGENIC DENDRITIC CELLS

Vitamin D3/dexamethasone MDDC (9 ng/ml) (203)

C1Q MDDC (5 ng/ml) (208)

Vasoactive intestinal peptide MDDC (LPS, ≈5 ng/ml) (176)

Galectin-1 MDDC (LPS, ≈500 pg/ml) (185)

Vitamin D3 Dermal DC (CD40L, ≈300–700 pg/ml) (90)

MDDC (unstim or LPS, ≈100 pg/ml) (160, 164)

MDDC (LPS or CD40L, ≈2 ng/ml) (167)

MDDC (CD40L, 4 ng/ml) (163)

IL-10 Immat. MDDC (unstim, 200–750 pg/ml; CD40L, 1.5 ng/ml) (33, 143, 163, 164)

Semi-mature MDDC (unstim, 300 pg/ml; LPS, 7 ng/ml) (30, 158)

Dexamethasone Immat MDDC (unstim, 25–200 pg/ml) (143, 159, 160, 198)

MDDC (LPS or CD40L, 0.5–3 ng/ml) (159–161, 198)

Rapamycin MDDC (unstim or LPS, 50–100 pg/ml) (143, 160)

TGFβ MDDC (unstim, 200 pg/ml; LPS, ≈2 ng/ml) (143, 158)
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in an allergen-specific fashion (137, 138, 140, 215). This sup-
pression of allergen-induced airway eosinophil and Th2 cytokine
responses and circulating allergen-specific IgE and IgG1 levels is
progressive, such that at 8 months after a single DC10 treatment
these parameters are at near background levels (138), although
four DC10 treatments bring the asthma phenotype to near back-
ground within 2 months (138). Cell tracking studies indicate that
DC10 that are delivered intraperitoneally accumulate maximally
in the lungs and lung-draining lymph nodes within 1 week, but
few, if any, DC10 can be detected within any anatomic compart-
ment at 3 weeks post-treatment (214). This indicates that while
tolerance induced by DC10 is long-lived, most of its impact is
realized only after the treatment cells have disappeared from the
body. That is consistent with the observation that DC10 treat-
ments induce CD4+CD44hiCD69hiCD62LloCD25loFoxp3− Teff
cells to transdifferentiate into CD4+CD25+Foxp3+ Treg, with
maximal Treg activation occurring at 3 weeks after DC10 treat-
ment (215). Human DC10-induced CD25+Foxp3+ Treg express
LAG3 and CTLA3 (30), while the analogous Treg in DC10-treated
asthmatic mice express LAG3, cytotoxic T lymphocyte antigen-4
(CTLA4) (137, 215), ICOS, PD-1, GITR (215), and neuropilin-
1, but lower levels of Helios (217). Infectious tolerance is also
evident in these animals, as the endogenous pulmonary CD11c+

dendritic cells of DC10-treated asthmatic animals also take on a
regulatory phenotype (Li et al., unpublished observation). While
DC10 engage CD4+CD25+Foxp3+ natural (n)Treg in a pro-
ductive fashion and these T cells have a modest role in the
asthma tolerance within DC10-treated animals, DC10-induced
CD25+Foxp3+ (i)Treg are many-fold more effective than naturally
occurring CD25+Foxp3+ regulatory T cells (nTreg) of identical
TCR specificity in suppressing the asthma phenotype (217).

IL-10 expression by immature or otherwise quiescent dendritic
cells has been reported numerous times to be important to tol-
erance induced by these cells (24, 107, 218), and DC10 (as well
as DC-10) express yet higher levels of this regulatory cytokine
(30, 33, 137, 138, 140, 215, 216) (Table 2). Indeed, expression
of IL-10 by DC10 is critical (140, 214) although not sufficient
for tolerance induction, inasmuch as MHCII-knock-out DC10,
which expresses otherwise therapeutic levels of IL-10, do not
induce tolerance (214). Moreover, combined IL-10 and MHCII
expression by DC10 is still not sufficient for full expression of tol-
erance – allergen-presenting CD80/CD86 double knock-out (214)
or CD40-knock-out (W. Dawicki, H. Huang and J.R. Gordon,
unpublished observations) DC10 still do not induce tolerance at
levels equivalent to wild-type DC10 (214). This underscores that
conversion of Teff cells to regulatory T cells by DC10 requires not
only delivery of tolerogenic signals to the T cell, but also productive
feedback from the engaged T cell to the DC10.

VITAMIN D3-INDUCED REGULATORY DENDRITIC CELLS
Vitamin D and its metabolites would appear to have a signif-
icant influence within the immune system, such that there is
substantial evidence of an unrealized potential for its use in an
array of immunologic disorders [reviewed in Ref. (219, 220)].
It is clear that vitamin D3 can induce differentiation of tolero-
genic dendritic cells (DC-VitD3) (163, 170, 221, 222). Addition of
vitamin D3 to mouse bone marrow (177, 223, 224) or human

monocyte-derived (164, 170, 172, 225) dendritic cell cultures
induces cells that express low levels of MHC II and co-stimulatory
molecules, and produce IL-10 instead of IL-12 (Table 2). Semi-
mature monocyte-derived DC-VitD3 express augmented levels of
TNF and PDL-1, and this PDL-1 is reportedly critical to their
induction of IL-10-expressing contact-dependent Treg (171), as
is expression of membrane-bound TNF by these dendritic cells
(226). As with IL-10-differentiated dendritic cells, DC-VitD3 only
respond to the lymph node-homing chemokine CCL19 if they
have been exposed to maturational stimuli (143). This again raises
the question of whether such chemokine-dependent lymph node
homing might reasonably be expected to contribute, if not be
critical, to the tolerogenic activities of regulatory dendritic cells.
Addition of vitamin D3 to cultures of human skin Langerhans
cells leads to expression of TGFβ by these cells and thereby down-
stream induction of CD25hiCD127loFoxp3+ cells (i.e., classical
inducible Treg) (200). It similarly induces CD141−CD1c+ human
blood dendritic cells to differentiate into IL-10-expressing dermal
dendritic cell-like CD141+CD14+ILT3+ cells that induce develop-
ment of CD25hiCTLA4+Foxp3+ Treg responses (90). In contrast,
addition of vitamin D3 to cultures of human dermal dendritic
cells upregulates expression of IL-10 and their induction of IL-
10-expressing Foxp3− Tr1 cells (200). This highlights again that
exposure of different dendritic cell populations to the same medi-
ator can have very divergent outcomes in terms of the type(s)
of regulatory T cells so induced. DC-VitD3 have been shown to
be tolerogenic in vivo as well. Treatment of diabetic mice with
pancreatic islet antigen-pulsed DC-VitD3 prior to pancreatic islet
transplantation significantly decreases subsequent islet rejection
(166), while sensitization of mice with H-Y antigen-pulsed DC-
VitD3 leads to prolongation of male skin grafts in female recipients
(177, 223, 224).

DEXAMETHASONE-INDUCED TOLEROGENIC DENDRITIC CELLS
The anti-inflammatory and immunosuppressive properties of cor-
ticosteroids have been known and employed clinically since their
discovery some 75 years ago (227). While glucocorticoid treat-
ments have significant clinical benefits in terms of suppressing
inflammation, and it has been shown that they increase the num-
bers of CD4+CD25hi cells and Foxp3 expression levels in multiple
inflammatory settings, these increases are not necessarily asso-
ciated with augmented Treg activity (228). Corticosteroids do
induce immature dendritic cells to adopt a tolerogenic pheno-
type and thereby contribute to the anti-inflammatory properties
of these agents (159, 229, 230), but the fact that mature dendritic
cells undergo apoptosis in response to in vitro or in vivo dex-
amethasone treatment suggests that its effects on dendritic cells
are somewhat more complex (231). Dendritic cells that are dif-
ferentiated in the presence of dexamethasone (DC-Dex) express
low levels of co-stimulatory markers and MHC II, produce ele-
vated levels of IL-10 and less IL-12 (159, 161, 164, 171, 229,
230, 232), and express modestly elevated levels of ILT2 (198) and
ILT3, but high levels of GILZ (164). As with semi-mature IL-
10-differentiated dendritic cells, GILZ expression by DC-Dex is
critical to their expression of IL-10, ILT3, and B7-H1/PDL-1 (197);
both populations also maintain their immunosuppressive pheno-
type even after stimulation with TLR4 agonists (209, 233, 234).
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The similarities between DC10 and dexamethasone-conditioned
dendritic cells extends further – dexamethasone-exposed DC2.4
dendritic cells also induce Foxp3+ Treg differentiation in vitro
(201), while use of DC-Dex immunotherapy for experimen-
tal corneal allografts similarly leads to increased tissue levels of
intragraft Foxp3+ T cells, reduced levels of graft inflammatory
cell infiltrates, and prolonged graft survival (235). And others
have reported that repetitive stimulation of T cells with DC-Dex
induces the T cells to adopt a contact-dependent regulatory T
cell phenotype (171). DC-Dex treatment of murine recipients
of MHC-mismatched heart transplants leads to delayed rejec-
tion of the allografts (234) although, oddly, DC-Dex treatments
reportedly accelerate antibody-mediated graft rejection responses
to transplanted MHC-mismatched pancreatic islets in rats (236).
Interestingly, the contact-dependent regulatory T cells induced by
DC-Dex, but not those induced by DC-VitD3, reportedly suppress
T cell responses in an antigen-independent fashion (171),although
others have shown that, as a general feature, activated regulatory
T cells readily suppress by-stander Teff cell responses (237, 238).

VITAMIN D3 AND DEXAMETHASONE-INDUCED TOLEROGENIC
DENDRITIC CELLS
While vitamin D3 and dexamethasone each can induce a tolero-
genic phenotype in dendritic cells, some investigators have further
assessed the regulatory activities of cells generated in the presence
of both vitamin D3 and dexamethasone (DC-Dex/VitD3). DC-
Dex/VitD3 produce much high levels of IL-10 (i.e., 9 ng/ml) (203)
than either DC-VitD3 or DC-Dex (i.e., 0.1–4 ng/ml) (Table 2)
(143, 159, 160, 163, 164, 167, 198), and thus display a higher IL-
10/IL-12 expression ratio and poorly stimulate allogeneic T cell
proliferation responses (165). They reportedly cannot effectively
prime naïve CD8 T cells but, interestingly, while a single DC-
Dex/VitD3 treatment drives expansion of memory CD8 T cells, any
subsequent DC-Dex/VitD3 exposure leads to collapse of the CD8+

T cell populations (239). DC-Dex/VitD3 have been shown to be
somewhat effective in suppressing colitis pathology in a mouse
model, apparently also in an antigen-independent manner (240).

NEUROPEPTIDE-INDUCED TOLEROGENIC DENDRITIC CELLS
Vasoactive intestinal peptide (VIP) is a 28-amino acid
immunomodulatory neuropeptide that binds to B-class G-
protein-coupled receptors such as the VPAC1 and VPAC2 (241,
242). VIP treatments induce regulatory T cell responses in exper-
imental animals and with human Teff cells (243). For example,
VIP treatment of mice with TNBS-induced colitis induces tol-
erance responses, dampening TLR2- and TLR4-induced inflam-
mation and increasing expression of Foxp3 and TGFβ (244), as
it does in a rat model of collagen-induced arthritis (245). But
VIP can act directly on the Teff cells – culture of CD25−Foxp3−

Teff with VIP induces their differentiation into CD25+Foxp3+

Treg that express high levels of IL-10 and CTLA4 and are pro-
tective in a mouse model of graft versus host disease (GVHD)
(246). Nevertheless, VIP can also induce dendritic cells to adopt
a regulatory phenotype and thereby affect tolerance by this
means. Differentiation of human dendritic cells in the presence
of VIP (DC-VIP) or the neuropeptide pituitary adenylate cyclase-
activating polypeptide (PACAP) induces the development of cells

that secrete of high levels of IL-10, and strongly induce regula-
tory T cell responses. DC-VIP treatments dampen pathology in a
number of experimental settings, including experimental allergic
encephalomyelitis (EAE), rheumatoid arthritis (247), bone mar-
row transplant-induced GVHD (248), and colitis (249). While
a number of reports indicate that DC-VIP induce Tr1 pheno-
type regulatory cells, as determined by secretion of IL-10/TGFβ,
but not IFNγ, IL-2, IL-4, or IL-5 (204, 250–252), other reports
indicate that DC-VIP instead induce CD4+CD25+Foxp3+ Treg
responses (253–255) in some of the same model systems. DC-
VIP can also induce IL-10-secreting CD28−CTLA4+CD8+ Treg
(176, 252). VIP-secreting VIP-lentivirus-transfected DC are simi-
larly tolerogenic in mouse models of acute and chronic EAE and
cecal ligation-and-puncture sepsis (177). It has been speculated
that DC-VIP would be more effective therapeutically when target-
ing Th1 rather than Th2 responses (176), ostensibly because VIP
skews Th1 or Th17 T cells to a Th2 phenotype (256). This raises
an important question in dendritic cell immunotherapeutics, and
that is whether the specific type of regulatory cell to be employed
(e.g., DC-Dex versus DC-VIP) needs to be carefully matched with,
for example, the Th1, Th2, or Th17 nature of the target disease in
order to ensure optimized outcomes.

RAPAMYCIN-INDUCED TOLEROGENIC DENDRITIC CELLS
Rapamycin is a macrolide immunosuppressive agent that dampens
dendritic cell maturation through binding to the serine/threonine
protein kinase mammalian target of rapamycin (mTOR). Signal-
ing via mTOR has broad-ranging effects in many systems, includ-
ing the nervous system, nutrition, and others, where it regulates
cell growth, proliferation, motility, and survival (257). Antigen
recognition by naïve CD4+ and CD8+ T cells activates mTOR and
thereby fosters cellular progression to a committed Foxp3− Teff
phenotype (205), while suppression of mTOR with rapamycin
leads instead to induction of fully functional CD25+Foxp3+

Treg (258). Thus it was reported some time ago that rapamycin
increases the regulatory activities of CD4+CD25+Foxp3+ Treg
(206). Clinically, rapamycin has been widely used to prevent allo-
graft rejection, particularly in renal transplant patients (206),
although the potential for rapamycin-related adverse cutaneous
manifestations in these patients has limited its broad applicability
(259). Rapamycin affects both T cells and dendritic cells, although
it displays divergent effects on myeloid and monocyte-derived
dendritic cells, augmenting the allostimulatory capacity of the for-
mer cells but markedly dampening the immunostimulatory phe-
notype of monocyte-derived dendritic cells (260). In experimen-
tal systems rapamycin treatments impair Flt3L mobilization of
murine dendritic cells, their upregulation of co-stimulatory mole-
cule and inflammatory cytokine expression, and their allostimula-
tory activity (261), even after exposure to activating agents such as
LPS or anti-CD40 (262). Mouse dendritic cells that are differenti-
ated in the presence of rapamycin (DC-Rap) induce naïve T cells
to differentiate into CD25+Foxp3+ Treg (263). Moreover, such
DC-Rap enhance apoptotic death among alloreactive CD8 T cells
(264), further contributing to the tolerance response of transplant
recipients. DC-Rap treatment of murine heart transplant recipi-
ents similarly induces outgrowth within the transplants of Foxp3+

Treg and, as a consequence, long term organ survival (262), just
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as has been shown in numerous other studies (173, 206, 261, 262,
265, 266).

IMPACT OF DELIVERY ROUTE AND INFLAMMATION ON
THERAPEUTIC OUTCOMES
SELECTING THE CORRECT DELIVERY ROUTE FOR TOLEROGENIC
DENDRITIC CELLS
Not all routes for delivery of tolerogenic dendritic cells will neces-
sarily provide the desired outcomes. For example, we reported that
CD45.2+ DC10 that are delivered intraperitoneally to congenic
CD45.1+ mice with a severe asthma phenotype appear within
the lungs and airways of recipient mice within 2 days of delivery,
achieve maximal numbers in this compartment by 7 days and then
wane thereafter. DC10 appear in the lung-draining (mediastinal)
lymph node of these animals in lower numbers, but with approx-
imately the same kinetics, and also in the spleen but not cervical
nodes, MLNs, blood, bone marrow, or liver. Within 3 weeks of
delivery the treatment cells are no longer detectable in the lungs
or mediastinal lymph nodes (214), suggesting that the natural
lifespan of such DC10 may be 2–3 weeks. We know that DC10
treatments correct ~50% of the pathognomic bronchial hyperre-
sponsiveness seen in asthma phenotype mice within 2 weeks of
treatment and that by 3 weeks this airway response is completely
normalized (138). Moreover, the time of maximal activation of
regulatory T cells in the lungs of these animals is 3 weeks after
DC10 delivery, but it was not determined whether the primary
site within which the DC10 induce Teff cells to differentiate into
regulatory T cells was in situ in the lungs or in the mediastinal
lymph nodes (or both) (215). This remains an important, but
unanswered question.

We also assessed the relative effects of intraperitoneal (i.p.),
transtracheal (t.t.), subcutaneous (back skin; s.c.), or intravenous
(i.v.) DC10 delivery to asthmatic animals and found that i.p. or t.t.
delivery were equally effective, fully reversing bronchial hyperre-
sponsiveness, and rapidly dampening airway eosinophil and Th2
cytokine responses to allergen challenge and circulating allergen-
specific IgE and IgG1 levels (138). The s.c. DC10 treatments
dampened the airway recall responses to allergen challenge, but not
bronchial hyperresponsiveness, nor did they significantly reduce
systemic IgE levels (138). On the other hand, multiple investiga-
tors have reported that s.c. delivery of tolerogenic dendritic cells
is protective in rat models of EAE (267–271), which suggests that
the anatomic site of the target pathology in immunotherapeu-
tic applications may be important in selecting the delivery route
for the treatment dendritic cells. Intravenous delivery of DC10
has no discernible impact of the disease phenotype in a mouse
model of asthma (138, 272) or a rat model of EAE (271), but in
mouse models of cardiomyopathy (147), experimental immune
myocarditis (149, 273), and diabetes (274, 275) i.v. delivery of
tolerogenic dendritic cells significantly reduces local pathology
and induces tolerance. Similarly, i.v. infusion of DC-VitD/IL-10
in a rhesus macaque model of allogeneic kidney transplanta-
tion significantly prolonged survival relative to control animals
(rapamycin/CTLA4Ig treatment, but no dendritic cells) (276).
There has not been a sufficient number of comprehensive studies
on the impact of the route of dendritic cell delivery on tolerance
outcomes to generate specific guidelines at this point in time, but it

does appear that the disease or compartment being targeted may
be an important consideration. Certainly, we would expect that
the cells should be migration-competent (i.e., express appropriate
chemokine receptors), such that they are able to travel to the dis-
ease target site or its draining lymph nodes in order to best interact
with the cognate Teff cells.

USE OF TOLEROGENIC DENDRITIC CELLS IN INFLAMMATORY SETTINGS
An important consideration in clinical use of tolerogenic dendritic
cells, particularly when targeting inflammatory diseases (e.g., col-
itis, inflammatory bowel disease), is whether pre-existing adverse
conditions that these cells might encounter after delivery can alter
or ablate their tolerogenic activity. If so, could an inflammatory
milieu convert the treatment dendritic cells into immunostimu-
latory populations that might exacerbate rather than ameliorate
disease severity? While immature dendritic cells can have substan-
tial tolerogenic activities, we know that exposure of these cells (133,
134) or even some populations of semi-mature dendritic cells (133,
134) to inflammatory environments can induce them to differen-
tiate into potently immunostimulatory cells that augment disease
severity. With this in mind, many investigators have assessed the
impact of maturation-provoking (30, 90, 143, 165, 197) or other-
wise inflammatory (163, 164, 167, 170, 171, 177, 222) signals on the
tolerogenic phenotype of their differentiated dendritic cells. Den-
dritic cells express receptors for and can be activated by a number
of pro-inflammatory cytokines (e.g., IL-1, TNF, IFN, TSLP) (277)
and they can express numerous pattern recognition receptors [e.g.,
protease-activated receptors (PARs), TLR, C-type lectin receptors
(78, 164, 278–281)], retinoic acid-inducible gene-1 (RIG-1) and
the melanoma differentiation-associated gene-5 (MDA-5) (281),
through which they interact with microbial and non-microbial
agents. For example, a number of “natural” allergens (e.g., house
dust mite) trigger inflammatory responses through their abilities
to activate cells via PAR2 (282, 283) or C-type lectin receptors
such as DC-SIGN and dectin-2 (284), while TLR signaling can
potently activate expression of inflammatory signals by immature
or mature dendritic cells. There have been a number of excellent
reviews that address the expression of TLR by human and mouse
dendritic cells [e.g., Ref. (281)], such that we will not address this
issue herein.

Toll-like receptor signaling within tolerogenic dendritic cell
populations does not always have a detrimental outcome. For
example, BDCA-1+ human liver dendritic cells secrete substan-
tial amounts of IL-10 on TLR ligation, and this contributes to
their high level induction of CD25+Foxp3+ Treg (11). Human
DC10, DC-Dex, and DC-VitD express the same panel of TLR
as monocyte-derived dendritic cells, such that all are responsive
to Pam3CSK4, polyinosinic-polycytidylic acid, LPS, and flagellin
(164), but the tolerogenic populations uniquely upregulate expres-
sion of TLR2 on TLR engagement (164). Moreover, TLR2 or TLR4
signaling in human DC-VitD3 and DC-Dex induces expression of
the tolerance-promoting cytokines IL-10 and IL-27 (160, 285).
Others have reported that human DC-Dex are refractory to chal-
lenge with an array of heat-killed gram-negative bacteria (e.g.,
Escherichia coli, Protheus mirabillis, Klebsiella pneumoniae, Sal-
monella thyphimurium) (286), while DC-Rap (160) and DC-VIP
(252) are resistant to reversal of their tolerogenic phenotype by
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LPS challenge. Interestingly, while isolated LPS challenge induces
an IL-12 response by immature monocyte-derived dendritic cells,
simultaneous exposure of these cells to LPS and IFNγ reportedly
leads to a transient IL-12 response that is replaced within 24–48 h
with a robust IL-10 response (287).

Finally, while we may well be able to design and generate tolero-
genic dendritic cells that are resistant to reversal of phenotype
by inflammatory environments, it is clear that the tolerance they
induce is also dependent on transference of that phenotype to the
regulatory T cells with which they interact. Moreover, infectious
tolerance also involves the conversion of endogenous tissue den-
dritic cells into tolerogenic populations by the induced regulatory
T cells (226, 288). Indeed, it has been suggested that a defect in such
infectious tolerance processes may contribute to the development
of an asthma phenotype in affected individuals (289). The desired
outcome in dendritic cell immunotherapy is the induction of reg-
ulatory T cells that can reverse pathogenic Teff cell responses, but
at least some populations of regulatory T cells can be converted
into pathogenic Teff cells in the context of inflammatory environ-
ments – it has been shown that Foxp3+ Treg can convert to Th17
cells in animals with colitis (290, 291), but we seem to have only
scant evidence regarding the extent to which other populations of
regulatory cells (e.g., Tr1 or Th3 cells) can be enticed to such rever-
sal of phenoytpe in vivo. In considering whether inflammatory
environments may differentially affect the phenotype of regula-
tory T cells (or dendritic cells), we query whether the regulatory
T cells that are naturally associated with a specific compartment
(e.g., Th3 cells in the gut) might be more resistant to reversal of
phenotype by challenges they would routinely encounter in that
compartment than other regulatory T cells (e.g., Treg, Tr1). Finally,
we raise the issue of whether in some specific settings, it might be
advisable to activate multiple types of regulatory T cell responses,
such that the tolerance so induced might be less susceptible by
reversal by subsequent coincidental inflammatory events.

CLINICAL APPLICATION OF TOLEROGENIC DENDRITIC CELLS
The first tolerogenic dendritic cell study in humans was
undertaken by Ralph Steinman’s lab. They demonstrated that
s.c. administration of antigen-loaded immature dendritic cells
(2× 106 cells/subject) was well tolerated by the study subjects and
also that the treatments could suppress antigen-specific CD8+ T
cell responses (128) for≤6 months (127). More recently a clinical
trial was undertaken with 10 subjects with type 1 diabetes, each of
whom was given 1× 107 autologous dendritic cells intradermally
four times at 2 week intervals; the treatment cells had been trans-
duced with anti-sense oligonucleotides to silence co-stimulatory
molecules (i.e., CD40, CD80, and CD86), although efficacy data
on that silencing was not reported (292). The authors had devel-
oped their silencing protocols in a mouse model of type 1 diabetes
and shown that the dendritic cell treatments had had statistically
significant, though quite modest, disease-sparing effects (293). As
with the earlier study by Steinman (127,128), there were no adverse
events related to the dendritic cell treatments in this latter study,
but there were few if any immunologically discernible tolerance
outcomes attributable to the dendritic cell treatments (292).

There have been a large number of in vitro studies performed
as proof of principle that tolerogenic dendritic cells can efficiently

reduce Teff cell responses in humans. As noted above, it was
shown that semi-mature IL-10-differentiated dendritic cells (i.e.,
DC10) generated from atopic asthmatic donors can suppress
the responses of autologous T cell to specific allergen. More-
over, the DC10 induce the outgrowth of immunosuppressive
CD4+CD25+Foxp3+LAG3+CTLA4+ Treg from the peripheral
blood Teff cell pool (30). Others have reported that DC-VitD/Dex
from individuals with rheumatoid arthritis (294) or DC-VitD3
from subjects with relapsing-remitting multiple sclerosis (295)
are both able to suppress autologous CD4+ Teff cell responses
to specific antigen-presenting mature dendritic cells.

In conclusion, it is clear that multiple mediators can induce a
tolerogenic phenotype in dendritic cells, and that these substan-
tially influence the conversations that occur between the dendritic
cell and naive or Teff cells. These tolerogenic dendritic cells employ
both secreted mediators (e.g., IL-10, retinoic acid) and inhibitory
receptors to drive regulatory T cell induction, but can also provide
additional signals (e.g., integrins) to direct these nascent Treg to
the appropriate anatomic compartment (Figure 1). A major chal-
lenge we will face in the application of such tolerogenic dendritic
cells for immunotherapy will be to carefully match or optimize
the type(s) of tolerogenic dendritic cells to be employed with the
clinical targets and desired endpoints.
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Ectopic lymphoid tissue, also known as tertiary lymphoid organs (TLO) develop adap-
tively within sites of chronic tissue inflammation, thereby allowing the host to efficiently
crossprime specific immune effector cells within sites of disease. Recent evidence sug-
gests that the presence ofTLO in the tumor microenvironment (TME) predicts better overall
survival. We will discuss the relevance of extranodal T cell priming within the TME as a
means to effectively promote anti-tumor immunity and the strategic use of dendritic cell
(DC)-based therapies to reinforce this clinically preferred process in the cancer-bearing host.
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INTRODUCTION
In the classical model of peripheral T cell activation, tissue-
resident dendritic cells (DCs) capture antigens (such as foreign
pathogens, tumor cell debris, etc.) in an inflammatory microen-
vironment, leading to the migration of antigen-laden CCR7+

DC to regional draining lymph nodes [LN; aka secondary lym-
phoid organs (SLO)], where activation of cognate T cells occurs
(1–3). After appropriate proliferative expansion and maturation,
T effector cells may then enter the blood circulation and be
recruited into tissue sites where they are competent to recog-
nize and react against relevant antigen-presenting cells, such as
virally infected host cells or tumor cells (4). Recent evidence
obtained in a range of translational and clinical models suggests,
however, that this classical/conventional paradigm may be oper-
ationally overly simplistic, and that extranodal (cross)priming
of antigen-specific T cells can occur in peripheral tissues, often
times in conditionally established tertiary lymphoid organs
(TLO) (5–9).

SLO/TLO DEVELOPMENT: NATURAL AND INDUCED
The developmental formation of SLO is believed to require the
interaction of so-called lymphoid tissue inducer cells (LTi) bear-
ing a CD3−CD4+CD45+IL-7R+c-Kit+ phenotype that produce
lymphotoxin α/β [LTα/β; Ref. (10, 11)] with LTβR+ stromal
“organizer” cell populations that may derive from adipocyte pre-
cursors (12), leading to corollary stromal cell elaboration of the
SLO homeostatic chemokines CCL19, CCL21, and CXCL13 (8, 9,
13–15). These chemokines sustain recruitment of LTi and other
lymphocytes into SLO, resulting in the development of a mature
lymphoid organ architecture [i.e., based on the formation of fol-
licular structures containing B cells and surrounding “cortical”
zones that are diffusely populated by CD4+ and CD8+ T cells,

antigen-presenting cells (including CD11c+ DC), and PNAd+

high-endothelial venules (HEV; (8, 15–19))].
Naive (CD62L+CCR7+) T cells enter SLO via interaction

with PNAd+ HEV which are “decorated” with the CCR7 ligand
chemokines CCL19 and CCL21 on their luminal surface, thereby
facilitating lymphocyte extravasation/directed motility from the
blood into the lymph node (20). Of these two chemokines, CCL21
may play the more dominant role in recruiting naïve lympho-
cytes into SLO, while CCL19 may be differentially cytoprotective
in sustaining nodal populations of lymphocytes (20–22). Pro-
longed CCR7-mediated signaling into recruited T cells, leads to
intrinsic upregulation of the sphingosine-1 phosphate receptor
1, EDG1 (23), which is involved in the ultimate departure of
primed T cell populations from SLO into the peripheral blood
circulation (24, 25).

While classical SLO are encapsulated structures that develop in
predictable locations as a consequence of normal immune system
development, under pathologic conditions, ectopic lymphoid tis-
sues (aka TLO) may develop in peripheral tissue sites of chronic
inflammation (13, 26). TLO formation has been reported within
inflamed organs of patients with rheumatoid arthritis (27–29),
psoriatic arthritis (30), diabetes mellitus (31–33), autoimmune
gastritis [AIG; Ref. (32)], juvenile dermatomyositis (34), and Sjö-
gren’s syndrome (35), among others. TLO formation has also been
identified in the lungs of influenza virus-infected mice (36), the
livers of hepatitis C virus (HCV)-infected patients (37) and in
the stomachs of patients infected with Helicobacter pylori (38).
“Dysfunctional” human lung allografts exhibiting chronic inflam-
matory responses have also been found to commonly contain
TLO (17).

Furthermore, a burgeoning literature supports tumor-
associated TLO as important sites of extranodal T cell priming
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and epitope spreading in the responder T cell repertoire (13, 39).
TLO have been identified in a subset of human melanoma lesions,
in which mature DC were found to maintain intimate contact
with recruited T cell populations, consistent with the notion of
operational extranodal (cross)priming within the tumor microen-
vironment (TME) (40, 41). Similar results have been reported
for murine melanoma models (7, 8). In line with this model,
naïve lymphocytes have been identified in TLO within pulmonary
lesions of patients with lung cancer, making it likely that these
immune cells encounter their cognate antigen for the first time
and develop into antigen-specific T effector cells within the TME
in vivo (16, 42). TLO featuring DC/Type-1 T cell clusters proximal
to B cell “nests” have also been identified in human non-small-
cell lung cancer specimens (43). In such instances, the density of
mature DC found in TLO appeared to be associated with improved
long term survival (6, 43). In a subset of patients with breast can-
cer, HEV have been found in close proximity to LTβ+LAMP+

DC in association with profound B/T cell infiltrates in the TME
and a more favorable clinical outcome (44). Furthermore, Mulé
and colleagues have recently performed a metagene analysis on
human (Stage IV, non-locoregional) melanoma metastases and
identified a 12-chemokine gene signature (i.e., CCL2, CCL3,
CCL4, CCL5, CCL8, CCL18, CCL19, CCL21, CXCL9, CXCL10,
CXCL11, CXCL13) correlating with the presence of TLO (con-
taining CD20+ B cell follicles with prominent areas of CD4+ and
CD8+ T cells, but not FoxP3+ Treg cells), with better overall sur-
vival noted in the TLO+ subset of patients (41). In a similar vein,
Gu-Trantien et al. (45) have also recently observed that the pres-
ence of breast cancer infiltrating follicular CD4+ T helper cells
(Tfh; expressing CD200, FBLN7, ICOS, SGPP2, SH2D1A, TIGIT,
and PDCD1/PD-1, and producing the CXCL13 chemokine) may
be directly correlated with; (i) the degree of tumor-infiltrating
lymphocytes (TIL), (ii) the formation of TLO-like structures
in cancer tissue, and (iii) improved patient clinical response
to pre-operative chemotherapy and/or post-surgical disease-free
survival.

The conditional formation of TLO in peripheral tissues appears
to require the coordinate participation of a similar cast of cellular
participants, soluble mediators, and signaling pathways associ-
ated with the orchestration of SLO development (14, 15). Ectopic
delivery of LTα/β or LIGHT (aka TNFSF-14 or CD258) promotes
PNAd+HEV,CCL19/CCL21 production,massive naïve T cell infil-
tration, and (tumor-specific) cross-priming in the context of TLO
structures (9, 18, 36, 46–49). For example, targeted therapeutic
delivery of LTα into the TME via the administration of a fusion
protein encompassing the LTα molecule linked to an antibody
recognizing a tumor plasma membrane-associated disialoganglio-
side GD2 (i.e., ch14.18-LTα) resulted in slowed tumor progression
and the establishment of mature TLO structures within 9 days
of treatment initiation (8). The LTβR ligands LTα/β and LIGHT
appear to act directly on endothelial cells and DC in activating
NFκB and promoting the expression of adhesion molecules, such
as PNAd, VCAM-1, E-selectin, and ICAM-1 by HEV and IL-12p70
production from DC (50–52). In particular, LIGHT is essential
for DC-mediated cross-priming of antigen-specific Type-1 T cells
(53). Indeed, ectopic expression of LIGHT in the TME elicits
profound infiltration and cross-priming of naïve anti-tumor T

cells in concert with upregulated stromal cell production of TLO-
associated chemokines (CCL21, CXCL9, CXCL10, and CXCL13),
increased expression of vascular adhesion molecules (MAdCAM-
1, VCAM-1, PNAd), and the presence of mature DC within the
TME (9). Interestingly, DC, natural killer (NK) cells, and even
B cells can serve as LTα/β producers in pro-inflammatory envi-
ronments, allowing for the establishment of an autocrine feed-
forward loop promoting TLO development in peripheral tissues
(36, 54–59). Consistent with these findings noted for pro-TLO
immunobiology of LTβR ligands, blockade of the LTβR precludes
formation of TLO in vivo (60).

In a similar manner, induced expression or ectopic delivery of
LTβR downstream mediators,CCL19 or CCL21, in the TME results
in inhibition of tumor growth or complete rejection of established
tumors associated with increased infiltration by CD3+CCR7+

T cells and/or DCs in a range of cancer models (32, 61–70).
Interestingly, these interventional maneuvers may also reduce fre-
quencies of tumor-associated immunosuppressive Treg cells and
MDSC (61).

During the ontogeny of TLO in peripheral tissues, lymphatic
vessels (i.e., PNAd+, MAdCAM-1+, LYVE-1+, and/or Prox-1+

HEV) and disorganized clusters of APC and infiltrating lympho-
cytes appear in advance of canonical mature lymphoid organ
architecture characterized by B cell follicular regions (19, 71). Sig-
nals that instigate the diffuse-to-organized structural transition of
TLO may be provided by cognate T cell recognition of relevant tar-
get cell populations within nascent TLO (15, 72). It is important
to note, however, that immature TLO have been oft-associated
with locoregional immune sequelae including manifestations of
autoimmunity and anti-tumor efficacy (5, 32, 71). Hence, while
mature TLO may ultimately develop in the chronic disease setting,
clinical meaningful immunobiology occurs in advance of such
structural developments.

THERAPEUTIC PROMOTION OF TLO
If the formation of TLO allows for extranodal (cross)priming of
antigen-specific T cells that are linked to disease pathogenesis (i.e.,
autoimmunity) or resolution (i.e., infectious disease, cancer), then
means by which to prevent or enhance TLO development, respec-
tively, in affected tissues would be anticipated to impact clinical
outcome. Perhaps the most strategically simple means by which to
apply this paradigm in the cancer setting reflects the implantation
of SLO/TLO directly into the TME. Recently, scaffold-based lym-
phoid tissue engineering has been developed as a means to trans-
plant “intact” TLO directly into tumors in order to affect clinical
benefit (73). A previously mentioned alternative to this strategy is
clearly the delivery of the LTβR ligands LTα,LTβ, or LIGHT,agonist
anti-LTβR antibodies or downstream TLO-associated chemokines
(CCL19, CCL21, CXCL13) via protein-based or genetic therapy in
order to instigate the locoregional development of TLO in the
TME leading to inhibition of tumor growth in vivo and extended
overall survival (8, 9, 48, 74, 75).

USE OF DC-BASED THERAPY TO PROMOTE EXTRANODAL
PRIMING OF ANTI-TUMOR T CELLS
It also appears that the administration of appropriately acti-
vated/engineered DC is sufficient to nucleate and/or maintain the
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development of TLO in vivo (36, 72). For instance, mice vaccinated
sub-cutaneously with syngenic DC loaded with apoptotic/necrotic
B16 melanoma cell debris develop operational TLO [pseudocap-
sule; PNAd+ vascular endothelial cells (VEC), T cell/DC infil-
trates] at sites of injection, leading to the activation of protective
anti-tumor immunity (72). DC genetically engineered to secrete
high-levels of CCL21 (DC.CCL21) and injected directly into
B16 murine melanomas promote strong extranodal T cell cross-
priming/recruitment into the TME, even in LTα −/− mice that
lack SLO (8, 68). The superiority of DC.CCL21 in enhancing the
cross-priming of protective Type-1 anti-tumor T cell responses
has also been confirmed in alternate murine models (76, 77).

In our recent paper (5), we noted that DC engineered to express
the Type-1 transactivator protein T-bet (DC.Tbet) and injected
directly into sarcomas growing progressively in C57BL/6 mice,
led to the cross-priming of protective immunity that was inde-
pendent of host CD11c+ or BATF3+ DC or the ability of the
injected DC.Tbet to migrate to SLO. Instead, we detected the
rapid recruitment of NK cells and naïve T cells into the TME
within 48 h of DC.Tbet administration, and the differentiation of
these TIL into Type-1 effector cells in situ within the TME. As
shown in Figure 1, we observed a diffuse but interactive collec-
tion of CD11c+ DC and Tbet+ cells [including both T cells (5)
and B220+ B cells] within the TME of MCA205 sarcomas by 48 h
post-treatment with DC.Tbet, but not control DC. PNAd+ HEV
were not evident at this early time point, but were readily imaged in
proximity to large DC-Tbet+ lymphocyte clusters by 5 days post-
treatment with DC.Tbet (but not control DC). These data suggest
that extranodal priming of protective immunity using therapeutic
DC delivery occurs in advance of the formal adoption of clas-
sical TLO anatomic structures within the TME (Figure 2), and
that indeed, the development of such Type-1 cognate immunity

(and its pro-inflammatory signals) in the TME may be required for
subsequent evolution of mature TLO formatting, as described by
Schrama et al. (8). Interestingly, a gene array analysis of DC.Tbet
versus control DC did not reveal any striking differences in expres-
sion of LTA, LTB, LIGHT, CCL19, CCL21, or CXCL13 mRNA
transcripts, suggesting a potentially novel mechanism associated
with early TLO development triggered by this DC-based ther-
apy [(5) and Chen, unpublished data]. In this regard, we noted
a striking enhancement in DC.Tbet production of IL-36γ/IL-1F9
(>34-fold; Chen, unpublished data). IL-36γ is a novel IL-1 family
member cytokine that has been previously reported to be a potent
recruiter and activator of naïve T cells that develop strong Type-1
functional polarity (78, 79). As in the case of LTβR ligands, IL-
36 also triggers NFκB activation in IL-36R+ DC (79–82), which
may prove pivotal for autocrine potentiation of Type-1 DC func-
tion and a pro-TLO TME. Whether tumor-associated VEC express
IL-36R and activated NFκb in response to IL-36 remains an unan-
swered question. We are currently evaluating the impact of IL-36γ

knock-down in DC.Tbet in order to determine the direct relevance
of IL-36γ in the development of TLO and protective immunity
in the TME of mice treated with intratumoral administration of
DC.Tbet.

SUMMARY AND FUTURE PERSPECTIVES
In the cancer setting, the ability of the host to develop ectopic
lymphoid organs (TLO) within or proximal to sites of active
disease appears to represent a positive prognostic factor for over-
all patient survival. TLO represent a regional “factory” in which
naïve T cells (and B cells) may be cross-primed by tumor-resident
antigen-presenting cells, such as DC, leading to poly-specific adap-
tive immunity that may limit disease progression and conceivably
metastatic spread. By limiting the need for antigen-loaded DC to

FIGURE 1 | Intratumoral administration of dendritic cells engineered to
expressT-bet/TBX21 (DC.Tbet) promote the rapid infiltration of
Type-1-polarized lymphocytes and dendritic cells and the development of
PNAd+ endothelial cells (i.e., HEV). Tbet-ZsGreen Tg mice were injected
sub-cutaneously with syngenic MCA205 sarcoma cells and tumors allowed to
progressively grow for 7 days, at which time control DC (Control) or DC
engineered with recombinant adenovirus to express murine T-bet cDNA were
inoculated directly into tumors, as previously described (5). Two or 5 days after
DC injection, the mice were euthanized and tumor sections evaluated by

fluorescence microscopy for expression of Tbet-ZsGreen protein, CD11c (a
marker of DC), B220 (a B cell marker), and PNAd (i.e., Peripheral lymph Node
Addressin; a high endothelial venule (HEV) cell marker). PNAd+ HEV were not
observed by 2 days post-treatment, but became prevalent by 5 days
post-injection of DC.Tbet cells. B, T, and NK cell infiltrates into DC.Tbet [Figure
1 and (5)] exhibited a diffuse distribution pattern in day 2 and day 5
DC.Tbet-treated tumors. Type-1 polarity in infiltrating cells is denoted by
nuclear expression of Tbet-ZsGreen. Data are representative of images
obtained in three independent experiments performed.
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FIGURE 2 | Hypothetical paradigm for extranodal priming ofT cells
after intratumoral administration of DC.Tbet cells. Injection of DC.Tbet
(but not control DC) into the TME leads to the conditioning of
tumor-associated stromal cells and vascular endothelial cells (VEC),
resulting in stromal cell production of chemokines recruiting naïve
leukocytes (B, T, NK cells) and VEC expression of adhesion molecules, such
as VCAM-1, as early as day 2 post-treatment [Figure 1 and (5)]. Recruited
lymphocytes are assembled in diffuse patterns around CD11c+ (both
injected and host) DC and have already acquired Type-1 functional
polarization, based on expression of the Tbet reporter protein
(Tbet-ZsGreen) in vivo. PNAd+ HEV are not formally required for early

recruitment of naïve T cells into the TME since these structures do not
become discernible until later time points [i.e., day 5; Figure 1 and (5)].
B220+ B cells recruited into the TME as a consequence of treatment with
DC.Tbet cells are not organized into follicle-like structures during the day
2–5 time period, but may become organized in this manner at even later
time points (i.e.,≥day 9 post-therapy), based on previous reports employing
alternate immunotherapeutic interventions, such as ch14.18-LTα (8). While
therapeutic benefits in our model were largely T cell-dependent and
detectable prior to the establishment of formal TLO structures (based on
the development of B cell follicles), the presence of “mature” TLO in
human tumors has been associated with better clinical prognosis.

migrate to tumor-draining SLO, and the corollary requirement
of SLO-primed T cells to be recruited back into tumor sites,
TLO may operationally increase the efficiency of anti-tumor T
cell cross-priming and the therapeutic action of such T effec-
tor cells in the TME. Translational studies clearly suggest that
TLO formation in the TME may be therapeutically fostered by
the directed delivery of LTβR ligands in both protein- and gene-
based formats. At present, LTβR agonist-based therapies are in
their infancy with only rhLTα thus far evaluated in phase I clinical
trials, where minimal anti-tumor efficacy was observed in patients
with melanoma or renal cell carcinoma (83). The inability to focus
this potent TLO induction agent in appropriate sites of disease in
order to most effectively recruit and activate protective immunity
in treated patients must be considered a possible limitation to
the current treatment strategy. The ligation of rhLTα to a cancer-
specific antibody or the intratumoral administration of this agent
could improve anti-tumor efficacy and coordinately reduce cur-
rent off-target toxicities [i.e., grade III chill, grade III fever, and
grade III dyspnea; Ref. (83)].

Improved targeted delivery of LTβR ligand or downstream
chemokine gene therapies is conceptually attractive given

pre-clinical results in murine tumor models. To date, however,
only a recombinant adenovirus encoding hCCL21 has been devel-
oped for phase I clinical application, with the intent to deliver
rAd.CCL21-infected patient DC directly into tumors in patients
with late stage human lung cancer (84) or in vaccine formulations
applied to patients with melanoma (85). Although this approach
requires further optimization of the clinical vector based on low
levels of CCL21 produced by engineered DC, melanoma patients
treated at the lowest dose tier of DC.CCL21 did develop lymph
node-like structures based on immunohistochemical analysis of
vaccination site biopsies (James Mulé, personal communication).
Our own pre-clinical data would support the clinical application
of DC.Tbet directly into accessible tumor lesions as a means to
drive TLO development and protective immunity in the TME.
Motivation for the development of prospective phase I trials using
DC.Tbet cells will be intensified when the underlying mechanism
of action for this treatment modality has been defined.

Finally, in a related note, antagonists of LTβR ligands (such as
BTLA and CD160) have been shown to be immunosuppressive
molecules in inhibiting DC homeostasis as well as the protective
effector functions mediated by T cells and NK cells (74, 86–90).
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It is therefore conceivable that endogenous levels of TLO devel-
opment and corollary anti-tumor immunity may be bolstered
therapeutically as a consequence of administering agents (i.e.,
antagonist antibodies or DC genetically engineered to produce
specific inhibitors locoregionally in the TME) that are capable of
blocking the action of BTLA or CD160 in vivo.
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Dendritic cells (DC) have been tested in cancer immunotherapy clinical trials for tw
decades. Over this time, the methods of DC culture (or manufacture) have evolved, th
approaches for antigen loading have broadened, the maturation signals have varied an
different sites of administration have been tested.The post-vaccination immunologic ques
tions asked have also varied between trials and over time. In this review, I will conside
multiple aspects of DC-based vaccines tested in cancer patients, including the cell culture
antigen loading, maturation, and delivery, as well as what we have learned from testin
immune responses in vaccinated patients who have benefited clinically, and those wh
have not measurably benefited.
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INTRODUCTION
BEGINNINGS
Dendritic cells (DC) were first identified in the early 1970s (1).
However, the extremely low frequency of these cells in peripheral
blood and many tissues made experimentation with DC challeng-
ing. General agreement on cell surface markers to uniquely identify
“DC” from other myeloid lineage cells was another early hurdle in
the field that was surmounted (DC are, at a minimum, large, gran-
ular lymphocytes that are MHC class I, MHC class II, and CD86
high, Figure 1). The more widespread investigation of DC identity
and biology, and subsequent clinical testing of DC-based vaccines
required methods for small and large-scale culture and expansion
of DC progenitors in vitro (2). Methods were initially identified
for expanding DC from human peripheral blood monocytes with
granulocyte-macrophage-colony stimulating factor (GM-CSF) (3,
4) and eventually, similar approaches and surface markers were
found that could be utilized for both human and murine systems.
After these advances, the field was wide open.

In one of the earliest trials, Mukherji et al. (5) used intradermal
injection of MHC class I-restricted MAGE-1 peptide-pulsed and
GM-CSF-cultured monocytes to treat three HLA-A1+ patients
with advanced metastatic melanoma. They observed autologous
melanoma-reactive and peptide-specific CD8+ T cell responses,
but no significant therapeutic responses. Such very early clinical
results supported the safety and immunologic activity of these cells
in cancer patients.

FIRST GENERATION CLINICAL TRIALS
The early clinical trials of DC-based cancer immunotherapy estab-
lished the general safety and feasibility of this cancer vaccine strat-
egy, and its lack of toxicity compared with other cancer treatment
approaches (e.g., chemotherapy, radiation). Importantly, a small
number of positive clinical responses and the clear demonstration

that the goal of anti-tumor immune activation was achieved, bol-
stered the field, and supported additional trials. There have been
several recent DC vaccine reviews published that are excellent, and
that give additional details (6–8). The few early trials highlighted
below are important, but small, and did not utilize standardized
manufacture procedures throughout the clinical trial.

One of the first reported clinical trials that described the abil-
ity of tumor antigen-pulsed DCs to elicit a tumor-specific T cell
response and yield a clinical response was published by Hsu et al.
(9). In this study, four patients were treated with low-grade follic-
ular B-cell lymphoma resistant to chemotherapy. The DCs were
pulsed with target antigens of clonal immunoglobulin (idiotype)
expressed by the non-Hodgkin’s lymphoma, a tumor-specific,
unique antigen. Patients were immunized with DC followed by
booster injections of idiotype protein and keyhole limpet hemo-
cyanin (KLH, as an immunogenic xenoantigen as well as heterol-
ogous “help” to activate CD4+ T cells) as well as a final DC boost
infusion given 5–6 months later. All four patients developed cellu-
lar proliferative responses specific to their own idiotype protein.
More importantly, one patient had a complete tumor regression, a
second patient had a partial regression, and a third patient resolved
all evidence of disease. This very small study was an important
proof of principal for the clinical potential of DC vaccines.

While the study performed by Mukherji et al. (above) evalu-
ated monocyte-derived antigen presenting cells (APC), it may not
have formally tested a more fully differentiated DC because the
culture contained GM-CSF, but it lacked IL-4. The first clinical
trial using the monocyte-derived DC that have been most com-
monly used in clinical trials (including both GM-CSF and IL-4 in
the monocyte precursor culture) was performed by Nestle et al.
(10). Sixteen melanoma patients were treated using autologous
monocyte-derived DC pulsed with a cocktail of gp100, MART-
1, tyrosinase, MAGE-1, or MAGE-3 peptides chosen to suit the
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Butterfield Dendritic cell clinical trials

individual patient’s class I HLA molecules. In addition, DC pulsed
with autologous tumor lysate were used to treat another four
patients. To provide antigen non-specific CD4+ T cell-mediated
help for the CD8+ T cells, KLH was included during antigen
pulsing. DC were injected directly into uninvolved lymph nodes.
Patients received 6–10 injections of 1× 106 cells every 1–4 weeks.
Tumor regression was seen in 5 of the 16 patients, including
two complete responses lasting over 15 months. Tumor regres-
sions occurred in skin, soft tissue, lung, and pancreas indicating
an impact on the clinical course of metastasizing melanoma,
regardless of metastatic site.

As with many of the early trials (examples here and others), a
variable number of DC vaccine administrations, consisting of dif-
ferent cell numbers and boost injections were delivered, and mul-
tiple types of antigen loading strategies were used. These earliest
clinical studies were more proof of principle for the in vivo activity
of DC, and less a formal testing of a specific DC vaccine approach.

In another melanoma clinical trial, Banchereau et al. (11) evalu-
ated immune and clinical responses in 18 patients with metastatic
melanoma after injecting DCs pulsed with peptides (MART-1,
tyrosinase, MAGE-A3, and gp100) subcutaneously. They utilized
CD34+ hematopoietic progenitor cells as an alternative source of
DC. DC were administered in a dose-escalation design. Enhanced
antigen-specific immune responses to at least one of the peptides
were seen in 16 or 18 patients, and 6 of 7 patients with immunity to
two or fewer antigens had progressive disease after the study ended,
while only 1 of 10 patients who responded to more than two anti-
gens had tumor progression. This larger and more standardized
study showed that broad immune responses to multiple tumor
antigen-derived peptides correlated with better clinical outcome,
one of the first studies showing that statistically significant corre-
lation between immunity induced from DC vaccines and clinical
outcome.

It is clear from the clinical trials described above, that most
clinical trials are unique, they involve individual patient vaccina-
tion approaches and single clinical trial arms, and it is difficult
to compare them. Monocytes and CD34+ progenitors; com-
plex tumor lysates containing normal, tumor-associated/shared
and tumor-specific/private antigens, or synthetic MHC class I-
restricted peptides; injection into blood (i.v.), skin (s.c. or i.d.),
or lymph nodes (i.n.); are all parameters playing unclear roles
in any clinical responses seen (Figure 2). The initial lessons
learned were simply that DC-based vaccines were safe, feasible,
and had the potential to promote clinically significant tumor
regressions.

LIMITED CLINICAL RESULTS FOR DC-BASED VACCINES
In 2004, Rosenberg et al. published an article on the state of active
specific immunotherapy cancer trials (12). They analyzed 9 years
of data (1995–2004), essentially all of the early, or“first generation”
trials. Overall, they reviewed 1,306 solid tumor patients using the
modified Response Evaluation Criteria in Solid Tumors (RECIST)
in which clinical response is defined as at least 50% reduction
in the sum of the products of the perpendicular diameters of all
lesions without 25% growth of any lesion or the appearance of new
lesions. With an overall therapy-induced tumor regression rate of
only 3.3% in patients vaccinated with synthetic peptides, “naked”

FIGURE 1 | Common DC vaccine phenotypic and functional
assessments. The diagram shows the most common identity (flow
cytometric phenotyping) and potency (cytokine production) tests
performed.

FIGURE 2 | DC vaccine loading and administration approaches that
have previously been tested in clinical trials, and which are still being
investigated today.

DNA, peptide-pulsed DC, recombinant vaccinia viruses, recom-
binant fowlpox viruses, or recombinant adenoviruses expressing
various tumor-associated antigen (TAA), the results were grim for
vaccine approaches in general. Of these immunization methods,
peptide-pulsed DCs seemed to be the most effective strategy, with
7.1% of treated patients exhibiting tumor regression. While this
frequency of response was higher than those frequencies found for
other vaccination strategies, the clinical response was still low.

DC VACCINE COMPLEXITIES
Unlike chemotherapy, immunological vaccines have not followed
a linear dose-response effect. Instead, because immunologic vac-
cines depend on the complex interactions of a large number of
variables, many of which are difficult to test: (1) the administration
route (s.c., i.d., i.v., i.n., and more recently, intra-lymphatic, i.l.),
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(2) minimum immunogenic dose, (3) higher dose effects, (4) vac-
cination schedule (weekly, monthly, or multiple times in a week
or month), (5) immunological adjuvant type, and (6) the exist-
ing state of host immunological competence. There have been
attempts to make “immune competence” a criterion for trial
enrollment. A standardized skin test to recall antigens like tetanus
and mumps was investigated, but the results were unrelated to vac-
cine immune response. Better measures of “immune health” are
under investigation (13) but there are no clear definitions to date
that might serve to identify patients who are most likely to bene-
fit. Any alterations of these many variables can impact the patient
immunologic as well as clinical outcome following therapeutic
immunization.

The majority of patients treated in these earlier studies were
late-stage metastatic patients that were heavily pretreated with
conventional chemotherapeutic drugs prior to immunizations.
Not only do late-stage tumors have potent immune-inhibitory
functions well established both in the tumor microenvironment
and systemically, but many traditional chemotherapies have also
been shown to non-specifically decrease the number of leuko-
cytes in recipients, making metastatic patients severely immune-
compromised. Such patients would also be expected to have mul-
tiple tumor resistance mechanisms in place (e.g., infiltrated regu-
latory T cells, myeloid-derived suppressor cells, and other imma-
ture and skewed macrophages, immuno-inhibitory cytokines, and
genetic heterogeneity in tumor subclones). Assessment of tumor
infiltration and inflammation is being investigated as a bio-
marker for responsiveness to not only vaccines, but also other
immunotherapy approaches and traditional cancer treatments
(14, 15), but these areas of investigation are relatively recent and
still being validated.

There are several other possibilities to explain the poor clinical
response to these vaccines. The immune system, while potentially
effective, is limited by the frequency of responders that can be
stimulated by vaccinations. Even if TAA-specific responses were
stimulated by immunization, it is possible that the bulk tumor
mass was too large at the time of treatment for the available effec-
tor T cell population to infiltrate it and eliminate it efficiently.
It is also possible that while the vaccine-targeted antigens are
expressed by the tumors, their derivative peptides are not present-
ing on the cell surface in the context of MHC class I molecules,
making the tumor cells effectively invisible to CD8+ T cell recog-
nition. Tumors can down-regulate antigen processing machinery
molecules, including β-2-microglobulin (16, 17). Another possi-
bility is that TAA used for vaccinations were not expressed by
targeted tumors because metastatic deposits do not necessarily
express the same repertoire of antigens as the primary tumor or
that TAA-derived peptides used were not effective at eliciting high-
avidity T cell responders. This heterogeneity has been observed in
melanoma (18). The highest avidity T cells specific for self antigens
may have been deleted during the development of the immune
system by normal negative selection. Therefore, for some patients
treated in early DC vaccine trials, instead of receiving a vaccine
tailored to the individual patient’s TAA repertoire, these individu-
als may have been treated with arguably irrelevant non-presented
or weakly immunogenic antigens that led to a clinically meaning-
less immune response. Vaccines targeting only CD8+ T cells, with

short MHC class I-restricted peptides, may have only been able
to activate “helpless” CD8+ T cells with functional defects (19).
Lastly, some tumors have evolved cell-autonomous resistance to
immune-mediated killing.

SOURCES OF TUMOR ANTIGEN: IMMUNE TARGET COMPLEXITIES
Tumors are not homogenous tissues that can be effectively treated
with a single antigen epitope vaccination tactic. Tumors vary in
physiological location (primary tumor sites and metastatic sites),
TAA repertoire, vascularization, surrounding stroma, and other
properties. Some tumor types are considered more “immuno-
genic” due to spontaneous immune infiltration and have, there-
fore, been an early focus for many DC-based immunotherapy trials
(melanoma, renal cell cancer). These variations in tumor biology,
immune infiltration, and microenvironment biology are observed
between patients, the tissues affected, and at different time points
in the malignant process. For example, when considering inclu-
sion criteria, “stage IV cancer patients” are not a homogeneous
group. Whether patients with brain metastases can be included,
or those with LDH levels above normal limits must be consid-
ered, as immunotherapy vaccine clinical responses can need time
to evolve, and not all clinical settings are expected to allow for
immune response evolution.

When considering autologous tumor-based immunization
strategies, there are types of cancer that are not generally sur-
gically removed (pancreatic cancer, hepatocellular cancer treated
with ablative techniques), so the ability to load DC with autologous
tumor as a source of all potential public and private TAA may not
be feasible. Established cell lines are an immortal source of anti-
gen, but may have limited antigenic overlap with a specific patient’s
tumor. Cell lines may express a few known, shared TAAs, however
they may not express any tumor-specific and/or mutated/private
antigens that the patient’s tumor expresses and which may be crit-
ical to clinical outcomes. Similarly, some tumor types may have
only a few characterized shared TAA with even fewer well-defined
HLA-matched peptide epitopes. Importantly, since the expression
of TAA is not uniform among tumor cells and metastases, it may
be critical to co-administer several antigens, rather than a single
one, to avoid the possibility that the sole TAA will prove non-
immunogenic or that its epitopes may not be adequately presented
on the tumor cell. A long term goal in the field has been to iden-
tify the “best” TAA for targeting with vaccines. The optimal TAA
would be critical to survival of the tumor cells, expressed at distant
metastatic sites (not downregulatable), specific to the tumor (not
expressed on normal tissues), and immunogenic. Characterized
TAA were ranked by a group of experts (20), but the ideal, defined,
shared targets have not been identified for many tumor types, and
there remains some disagreement in the field exactly what type of
antigen should be targeted.

TECHNICAL ISSUES AND REMAINING QUESTIONS
REGARDING DC VACCINES
MATURATION
An early lesson learned in DC vaccine development was that the
DC obtained after 5–7 days of culture with GM-CSF+IL-4 were
not in an optimal state for T cell activation. These DC were subse-
quently referred to as“immature” and potentially tolerogenic until
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triggered by a pathogen and/or inflammatory signal. Such signals
serve to upregulate antigen presentation and co-stimulation mole-
cules and function, and reduce antigen uptake. Early cocktails were
sometimes donor-specific and undefined (monocyte-conditioned
medium), weakly stimulatory (TNF), or contained molecules
which were subsequently shown to have some negative effects
(PGE2). Currently employed cocktails can incorporate specific
pathogen-derived molecules, toll-like-receptor ligands (TLRs) and
other “type 1” skewing agents including interferons (21). Con-
versely for clinical settings other than cancer, immune suppressive
cocktails can be used to push DC toward their tolerizing capa-
bilities, for autoimmune or transplantation settings. For example,
anti-sense oligo co-culture of DC with anti-sense CD80, CD86,
and CD40 for treatment of autoimmune diabetes has been tested,
or DC culture with vitamin A for inhibition of transplant-specific
immunity is being developed (22, 23). Overall, as environmental
sensors, DC can be significantly modulated by instructions deliv-
ered by maturation signals and optimal signals for DC vaccines
are still being developed.

DOSE AND ROUTE
Many new therapeutic drugs are tested for the effective, maximum
tolerated, and toxic doses in early clinical trials. Their routes of
administration are often intravenous for quick dissemination to
many anatomic sites. DC vaccine development has not yet shown
significant toxicity at any dose delivered (24, 25), and there have
been few suggestions of minimum required dose. Doses are largely
defined as the “maximally feasible dose” from a blood draw or
leukapheresis procedure of a specific duration (90 min to 4 h).
Regarding route of delivery, many options have been tested and
questions remain, each has positive and negative aspects to con-
sider. For intradermal delivery, too many DC in a small volume
might die in situ. Intra-nodal delivery may deliver the DC to an
optimal site, unless they are not injected into a cellular region and
are injected in fat or stroma instead (26). Intravenous delivery may
send cells to lungs and liver and not secondary lymphoid tissues.
Not all tumors are accessible for intra-tumoral injection (which
has been tested with unloaded DC to allow DC to directly sample
TAA), and that environment might be harsh and result in quick
loss of DC function or viability in vivo. Intra-lymphatic delivery
may also be immunologically ideal (like intra-nodal), but is clini-
cally challenging to administer. The optimal DC vaccine dose and
route also remains to be established for human clinical trials.

SECOND GENERATION TRIALS AND LESSONS LEARNED
A new generation of clinical trials was conducted from 2004 to
2012, testing new hypotheses based on the lessons learned from
the first generation, proof-of-principle studies. One key area of
change has been the use of defined, optimized cytokine cock-
tails and pathogen-derived agonists to mature DC. The individual
constituents of these cocktails have an important impact on DC
biology, including the relative level of cell surface molecules (e.g.,
co-stimulatory molecules CD80, CD86, or maturation markers
CD83 or CCR7), the amount, timing, and duration of cytokine
production by DC (e.g., IL-12p70, IL-12p40, IL-10), DC lifespan,
and the trafficking potential and response to chemokine gradi-
ents (21). Early, high level production of IL-12p70 may not be

as optimal for T cell activation in vivo as delayed IL-12 produc-
tion until after DC have arrived from the site of injection to the
lymph node. Newer DC vaccines are not simply “mature” by a
few phenotypic markers, but are treated to elicit specific types
of “maturity” or immunologic skewing, based on culture condi-
tions, and planned antigen loading and injection route strategies.
Some trials testing more optimal cocktails have been performed
and published results should be available soon. Other cytokine
culture conditions have been tested in vitro [with IL-15 or IL-13
(7, 8)] but access to clinical grade reagents has been a limita-
tion until more relaxed guidelines from the US FDA, at least
for the earliest stage trials (“Guidance for Industry: CGMP for
Phase I Investigational Drugs” http://www.fda.gov/downloads/
Drugs/GuidanceComplianceRegulatoryInformation/Guidances/
ucm070273.pdf).

Shorter duration of DC cell culture (2–3 days instead of 5–
7 days with different DC maturation triggers has also been tested
(27). It is difficult to identify superior DC in vitro given that DC
differentiation may not be fixed once the DC are administered,
and very few randomized trials have been performed which com-
pare different DC in vivo. This also leads to one of the major
limitations in DC trials. The size of most trials is quite small and
hence, there are not multiple trial arms to compare experimen-
tal groups and learn the answers to important questions (with
any statistical confidence). Even when trials are “negative,” show-
ing minimal positive clinical effects, there are still many variables
which might explain weak results, including unavoidable patient–
patient variation in generation of an autologous cellular product,
and insufficient funding available to run larger, randomized trials
testing specific variables, like maturation cocktails, antigen choice,
antigen loading, dose, and route (28).

A blow to the field was the result of the randomized Phase
III trial comparing DTIC chemotherapy for melanoma (which
has a very poor efficacy record) with a matured, peptide-pulsed
DC vaccine (29). The trial was stopped early due to lack of dif-
ferences between the trial arms, which had similar overall clinical
response rates of <6%. Many of the variables discussed above have
been hypothesized to have played a part in the disappointing DC
vaccine results, including DC vaccine quality and consistency in
manufacture between different manufacturing sites, site of deliv-
ery (s.c. instead of i.d.), and lack of tumor-specific helper epitopes
or heterologous help to promote CD4+ T cell activation. With so
many open questions on how best to prepare DC vaccines, there
are still many possible causes for minimal clinical responses.

However, there have been a number of more successful trials
published in this period. Objective clinical responses and signifi-
cant immunologic responses were observed in a trial in renal cell
carcinoma patients testing Muc-1 peptide+heterologous PADRE
pulsed DC (s.c.) (30). These DC vaccines were combined with low
dose IL-2. In another study, acute myeloid leukemia patients in
remission from previous standard therapy receiving WT-1 mRNA-
loaded DC vaccines showed immune activation and improved
clinical outcomes (31). Another trial tested DC-tumor fusions in
myeloma patients before or after autologous stem cell transplant,
and observed both anti-tumor immune activation and reduction
of disease (32). Interestingly, these trials all employed a DC vaccine
combination strategy.
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NEXT GENERATION TRIALS: WHERE ARE WE GOING?
DC FOR CANCER PREVENTION?
A new clinical setting for tumor antigen vaccination has been pro-
posed, focused on prevention of cancer development in high risk
patients without current disease (33). This vaccination setting was
recently reported for a Muc-1 peptide-based vaccine in subjects
with advanced colonic adenomas (but not yet colorectal cancer).
The results showed that the peptide vaccine was immunogenic in
43% of the subjects and response was inversely correlated with
circulating MDSC levels (34). A related Muc-1 vaccine improved
survival in a murine model of colitis-associated colorectal can-
cer (35), supporting the further testing of preventative cancer
vaccination, including utilizing DC, in a prevention setting.

ANTIGEN LOADING
For antigen loading, peptide-pulsing, transfection/transduction,
and protein-pulsing continue to be used, as well as tumor lysate
loading. The procedure followed for tumor lysate preparation has
recently been examined. The simplest approach has been multi-
ple rounds of freezing (in a dry ice/ethanol bath or at −80°C)
and thawing (by 37° water bath). This procedure can break open
cells in a manner mimicking necrosis and allow subsequent tumor
protein isolation. However, there are other approaches. Tumor cell
exposure to UV and gamma irradiation has been shown to mimic
apoptosis, which delivers different signals to DC than necrotic
cells. Recently, tumor treatment with hypochlorous acid before
lysate purification was tested (36), and this method of oxida-
tion and rapid necrosis may be superior for DC vaccine loading.
Another important element may be the changes in tumor antigen
expression when tumors are cultured in hypoxic conditions (5%
instead of 20%) specifically mimicking in situ hypoxic tumor oxy-
gen levels (37). Such improved antigen preparation approaches
may yield improved clinical outcomes.

ROUTE OF DELIVERY
Based on data demonstrating that DC vaccines delivered intrader-
mally (i.d.) show very low level (<2%) migration to lymph nodes
(based most often on 111In-labeling (38, 39), and that ultrasound-
guided intra-nodal delivery has a risk of the vaccine being injected
into fat instead of a cellular area (26), other routes of delivery have
been tested. The results have varied between mice and humans,
and in patients, and all tested routes of delivery have proven to
be immunogenic in terms of T cell response induction. With-
out higher rates of objective clinical responses, identification of
superior routes of delivery remain unknown. Thus far, there has
also been no strict correlation between phenotypic measures, like
CCR7 level on the DC surface (40), and subsequent migration.
There are suggestions that the maturation cocktail used impacts
migration (40) but there are no definitive answers yet. More
recently, newer MRI-based DC vaccine labels have been tested
(41) (D. Bartlett and P. Kalinski, personal communication, 2013)
and prolonged, semi-continuous intra-lymphatic delivery of DC
has been tested [(42), and P. Kalinski, personal communication,
2013]. Continued efforts at tracking DC migration in vivo and
optimizing routes of delivery may yield more potent DC vaccines.
A few such DC trials are underway.

SUPPRESSIVE DC
While the cancer and infectious disease communities have inves-
tigated optimally immune stimulating DC, the organ transplan-
tation and autoimmunity fields have sought approaches to either
maintain an “immature” DC status, or differentiate DC toward a
tolerogenic or immune suppressive activity. Such strategies include
pulsing DC with anti-sense oligonucleotides for co-stimulatory
molecules CD40, CD80, and CD86 to downregulate these mol-
ecules (22) for prevention and treatment of diabetes, or culture
with vitamin D3 and IL-10 for allograft tolerance (23). A recent
Phase I clinical trial testing anti-sense CD40/80/86 oligo pulsed
DC in type 1 diabetic patients showed that the cells were safe,
well-tolerated, and resulted in a reduction in a subset of B cells
(22). In recent preclinical primate modeling of kidney allograft
survival, i.v. infusion of vitamin D3/IL-10 regulatory DC was also
safe and resulted in significantly improved allograft survival (23).
Further clinical development of these strategies are underway.

DC VACCINE COMBINATIONS
The field of cancer immunotherapy is now in the position of
having more effective drugs encompassing not only vaccines in
development, but small molecule inhibitors of key signal transduc-
tion pathways and immunologic checkpoint inhibiting antibodies.
While all of these modalities, like the traditional standards of care
(surgery, chemotherapy, radiation) have strengths and weaknesses,
the current generation of clinical trials focuses on combinations
of these approaches. DC vaccines may have limitations as stand-
alone therapeutics, but in combinations they could play a role in
initiating and boosting anti-tumor immunity, promoting in vivo
cross-presentation, and promoting long term immunologic mem-
ory. Cytotoxic treatments can have multiple positive effects on the
immune system, from simple release of tumor antigens as can-
cer cells die, to cytotoxic agent-specific effects. Release of tumor
antigens allows endogenous DC to take up and present them,
or for larger numbers of tumor bed injected DC to take up the
broad array of released tumor antigens for T cell activation. Cyto-
toxic agent-specific immune effects can include: upregulation of
immune stimulatory molecule expression on tumor cells (e.g.,
DAMPs), increased tumor antigen expression, reduced suppres-
sor cells frequencies, as well as increased CTL proliferation and
activation. The pioneering studies in this area have largely been
performed in murine models, but the immune-promoting effects
of non-immune-based therapeutics are now being assessed in clin-
ical trials. Future DC vaccine combinations with rationally chosen
agents may increase the effectiveness of DC vaccines (43, 44).

DC TRANSCRIPTOME ANALYSIS
An important technological breakthrough has been the ability
to test the DC vaccine transcriptome. This detailed molecular
characterization allows for a broader understanding of DC vac-
cines. Manufacturing conditions, different maturation cocktails
(45, 46), and their impact on DC biology, over and above even a
very thorough examination of DC surface phenotype and cytokine
production (47) can be examined on a molecular basis. To date,
surface expression of standard DC markers (CD80, CD83, CD86,
MHC class I, MHC class II, CCR7) has not correlated significantly
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with in vivo vaccine effects. The type-1-skewing cytokine pro-
duced by DC, IL-12p70, is actively being investigated as a potency
assessment, based on its significant correlation with clinical out-
come was demonstrated (48). This assay was employed after it
was standardized for both spontaneous and induced expression
of IL-12p70 heterodimers (47). Transcriptome analysis allows
for a much broader assessment of DC vaccines, and may prove
informative for predictive biomarkers of immune and/or clinical
response. Such profiling has identified a type-1-skewing genetic
profile expressed by DC matured with IFNγ+LPS (45), and a list
of candidate genes that may be helpful for identity, stability, and
potency measures of DC vaccines (46). This approach may also
identify patient-to-patient variation of immunologic significance.

IMMUNOLOGIC MONITORING
Each DC vaccine clinical trial is based on the hypothesis that opti-
mal tumor antigen presentation will promote clinically effective
anti-tumor immunity. Understanding the effects of the vaccines
on each patient’s immune system is of utmost importance in mov-
ing the field forward. Most trials examine effector T cells activated
by antigen-pulsed DC, but the cross-talk between DC and innate
immune cells may also be mechanistically very important. Vaccine
cell interaction with innate immune cells is expected to be vari-
able with different types of DC cultured and loaded in different
ways. DC modulation of suppressor cells, like regulatory T cells
and myeloid-derived suppressor cells, may occur, and the over-
all immune effects may vary in magnitude and quality between
peripheral blood and the tumor site. Some studies have found
similar results in blood and tumor, while others have not, and
studies examining DC vaccine effects at the tumor site are limited.
Obtaining tumor biopsies can be challenging but well is worth the
difficulties in order to understand the direct tumor site impact.
Larger sized DC trials may involve multiple clinical sites, as well as
vaccine manufacture sites, which necessitates careful standardiza-
tion of blood processing vaccine culture and immune monitoring
assay methodologies (49) as well as data reporting (50). Despite
the technical challenges, careful immunologic monitoring, partic-
ularly with multiple functional assays, yields critical mechanistic
insights.

CONCLUSION
Yes, we are making progress in the DC vaccine field. A more
rational, defined, and data-driven approach is being employed in
culturing, maturing, and antigen loading of DC (51). Fully char-
acterizing DC vaccine transcription profiles moves far beyond the
limited cell surface phenotypes previously employed. Performing
more standardized trial designs where patients receive the same
type of vaccine reduces variables to patient-to-patient variation
instead of adding variables and may identify the most critical vac-
cine parameters to carry forward. More thorough, robust and
standardized immune monitoring assessments are allowing to
field to draw more meaningful conclusions from each trial. In
the future, the next generation of optimized vaccines identified
may selectively be used for individual patients, based on their
tumor biology. A new generation of DC vaccine trials are under-
way (52) which have the potential to move this area of personalized
medicine forward.
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Dendritic cells are an important target in cancer immunotherapy based on their critical
role in antigen presentation and response to tumor development.The capacity of dendritic
cells to stimulate anti-tumor immunity has led investigators to use these cells to mediate
anti-tumor responses in a number of clinical trials. However, these trials have had mixed
results. The typical method for generation of ex vivo dendritic cells starts with the purifi-
cation of CD14+ cells. Our studies identified a deficiency in the ability to generate mature
dendritic cell using CD14+ cells from cancer patients that corresponded with an increased
population of monocytes with altered surface marker expression (CD14+HLA-DRlo/neg).
Further studies identified systemic immune suppression and increased concentrations of
CD14+HLA-DRlo/neg monocytes capable of inhibitingT-cell proliferation and DC maturation.
Together, these findings strongly suggest that protocols aimed at immune stimulation via
monocytes/dendritic cells, if optimized on normal monocytes or in systems without these
suppressive monocytes, are unlikely to engender effective DC maturation in vitro or effi-
ciently trigger DC maturation in vivo. This highlights the importance of developing optimal
protocols for stimulating DCs in the context of significantly altered monocyte phenotypes
often seen in cancer patients.

Keywords: CD14+HLA-DRlo/neg, MDSC, dendritic cells, immunotherapy, monocytes

DENDRITIC CELLS AS CANCER VACCINES
Dendritic cells are potent signal transducers in the immune sys-
tem. These cells present antigen, are the essential bridge between
the innate and adaptive arms of the immune system, and serve
as regulators to modulate immune response to pathogenic inva-
sion, tissue injury, and tumor development. As such, dendritic
cells have received significant focus as a promising vehicle for the
development of vaccines for cancer immunotherapy. We now have
a more complete understanding of DC ontology with the realiza-
tion that DCs exist in diverse subsets, all capable of activating T
cells but possessing unique functions. DCs are classified into two
broad categories. The first are monocyte-derived DCs resulting
from stimulation due to inflammation or infection. The second
category are steady-state DCs which include resident CD8+ DCs
located in the thymus, resident CD8−DCs in the spleen, plasmacy-
toid DCs (pDCs), migratory DCs, and Langerhans cells [reviewed
in Ref. (1, 2)]. Each of these classes of DCs has been demonstrated
to play a key role in immune surveillance and response but for the
purpose of DC-based vaccines for immunotherapy in cancer, the
focus has been on CD14+ monocyte-derived DCs.

The in vivo pathways associated with the development of den-
dritic cells from monocyte precursors and the mechanisms and
consequences of pathogenic activation have been described (3,
4). Briefly, DCs arise from monocyte progenitors into an imma-
ture state (iDC) responsible for immune surveillance via pathogen
detection. Once activated, iDC further differentiate into mature

dendritic cells (mDC) and travel to lymph nodes to activate the
adaptive (typically T- and B-cell responses) and innate immune
response (5). DCs also play a role in limiting the immune response
against self antigen (self-tolerance) as well as limiting response to
tissue damage in the absence of pathogenic signals (6). iDC can
suppress immunity and have been shown to be capable of eliminat-
ing antigen-specific T cells (7). Restriction of the capacity of iDC
to differentiate into mDC has been a mechanism used by viruses,
parasites, and bacteria to maintain a state of self-tolerance and to
enable microbial pathology (8–10). Thus, manipulation and main-
tenance of a state of iDC with a block on the ability to differentiate
into mDC is a key mechanism of immune suppression.

To generate mDC in vitro for clinical use, the CD14+ mono-
cytes are the preferred precursor due to their abundance and
ease of collection. CD14+ monocytes are purified from mononu-
clear cells via adherence to plastic, antibody selection, or size
centrifugation and used as source material to differentiate DC.
To drive the immune response, the DCs are pulsed with tumor
antigens in the form of peptides, RNA, or lysates derived from
whole tumors or cell lines (11, 12). Additionally, viruses can be
a potent mechanism to deliver tumor antigens (13–15). Manu-
facturing methods reported among clinical trials vary greatly. As
a variety of methods with subtle optimizations of DC cultures
have been published, there are few constants (DC activation state,
tumor source, patient status, underlying disease etc.) that allow
useful comparisons between the growing numbers of trials and
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the underlying methods and characteristics used to generate and
describe the drug (in this case DC). Often, this key aspect of drug
development (optimizing and describing the purity and potency
of the drug) is overlooked. However, one constant regarding the
majority of the trials remains; that is the use of CD14+ cells as a
starting material.

MONOCYTE PRECURSORS OF DC ARE OFTEN ALTERED IN
CANCER PATIENTS AND ARE IMMUNE SUPPRESSIVE
In our efforts to establish a DC vaccine protocol, we worked
to optimize the maturation of DCs in cancer patients. During
those studies, we discovered that in many patients, CD14+-isolated
monocytes were incapable of differentiation into mDC using stan-
dard DC generation protocols (16–18). This result that monocytes
from cancer patients were potentially altered in their capacity to
differentiate into DC, led us to search for correlative markers. We
identified an increased population of monocytes with an altered
surface marker expression (CD14+HLA-DRlo/neg) in a number
of malignancies (16–20) (Figure 1A). This phenotype has also
been reported by others in melanoma (21–23), bladder cancer
(24), non-small cell lung cancer (25), and hepatocellular can-
cer (26, 27). Our studies in glioblastoma identified evidence of
systemic immune suppression and increased concentrations of
CD14+HLA-DRlo/neg monocytes capable of inhibiting T-cell pro-
liferation and DC maturation that could also be re-capitulated
in vitro co-culture systems using tumor cell lines (18). These
same immunosuppressive monocytes have been characterized
with increased populations in bladder carcinoma that significantly
correlate with decreased T-cell proliferation and IFN-γ produc-
tion (24). These cells suppress immune function in multiple ways
(Table 1), and therefore must be considered for any approach to
DC vaccine strategies.

There is also mounting evidence that correlates increased
concentrations of CD14+HLA-DRlo/neg monocytes in patients
with poor clinical outcome. Populations of CD14+HLA-DRlo/neg

monocytes and TGF-β levels were significantly expanded in
metastatic melanoma patients as compared to healthy donors and
correlated to a lack of response to administered granulocyte–
macrophage colony-stimulation factor (GM-CSF) vaccine (22).
Increased CD14+HLA-DRlo/neg monocytes correlated to both
extrathoracic metastasis and poor response to chemotherapy
in non-small lung cancer patients (25). Increased CD14+HLA-
DRlo/neg monocytes are associated with more aggressive disease
and poorer prognosis in lymphoma (16) and hepatocellular car-
cinoma (40). Increased CD14+HLA-DRlo/neg monocytes were
associated with decreased time to progression in patients with
chronic lymphocytic leukemia (CLL) (19). Increased CD14+HLA-
DRlo/neg monocytes and decreased CD4+ T cells can predict poor
overall survival across a number of malignancies (20).

The finding that CD14+HLA-DRlo/neg monocytes are
detectable systemically in patients with a variety of malignancies
and that they are functionally immune suppressive raises impor-
tant questions regarding their influence in ex vivo DC vaccine
preparations. To address this, we have studied the effects of these
altered monocytes on mDC generation across several cancer types
using an ex vivo culture system. Briefly, CD14+ mononuclear cells
were isolated from buffy coats or apheresis leukoreduction system

FIGURE 1 | Monocyte and dendritic cell defects in cancer. (A) Cancer
patients have an increased percentage of CD14+HLA-DRlo/neg monocytes in
circulation. Peripheral blood of healthy volunteers and cancer patients was
analyzed by flow cytometry for immune phenotype. (B) Monocytes from
cancer patients have decreased capacity to differentiate to mDC (CD83+)
under a variety of stimulation conditions. Monocytes were selected from
blood of healthy volunteers (HV) or cancer patients (GBM, glioblastoma
multiforme LYM, B-cell lymphoma; RCC, renal cell carcinoma; SR, sarcoma)
by CD14+ immunomagnetic beads and cultured under different methods as
labeled in X axis. Method A, fast-DC (28); B, ex vivo media with 5 days
culture as described (29, 30); C, 5 days culture in StemLine media and
GM-CSF, maturation factors TNFα and PGE2 added in the last 2 days of
culture; D, method C with IL-4 added for 5 days of culture; E, method D with
poly I:C added to maturation factors; F, method D with CpG used as
maturation factor in place of TNF-α (*p < 0.05). (C) Decreased generation of
mDC correlates with increased percentage of CD14+HLA-DRlo/neg in the
monocytes selected for culture (Method B).
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Table 1 | Methods of CD14+HLA-DRlo/neg immune suppression.

CD14+HLA-DRlo/neg

functions

Targeted effect Reference

Altered STAT signals Resistance to

cytokine/TLR signaling

(16, 24)

Increased IDO expression Inhibits T-cell function (31–33)

Increased arginase

expression

Inhibits T-cell function (12, 24, 34)

Prevention of DC

maturation

Promotes immune

tolerance

(16–18)

Altered co-stimulatory

expression

Reduces T-cell stimulation (12, 14, 15, 35)

Altered cytokine

expression

Reduces T-cell stimulation (15, 35)

Decreased antigen uptake Reduces antigen-specific

T-cell responses

(35)

Increased iNOS and NOX2

production

Reduces T-cell stimulation (36)

Increased VEGF Inhibits DC differentiation (37)

Depletion of cytosine Inhibit T-cell activation (38, 39)

chambers of normal donors using immunomagnetic selection
(41). Control DCs were cultured with 1% human AB serum, stim-
ulated with GM-CSF and IL-4 (base media) for 3 days when one-
third volume of fresh base media was added. Non-adherent cells
were collected on day 6, re-suspended in base media with the addi-
tion of tumor necrosis factor alpha (TNF-α) and prostaglandin E2
(PGE2) to mature the DCs. This recipe is based on a classic method
of generation of mDCs (28, 29, 41). Alternatively, the system was
modified using a serum-free media and changes in cytokines to
generate mDCs (Figure 1B).

Cancer patients showed significant deficits in the ability to gen-
erate mDCs independent of the underlying tumor. There is also
substantially more variability in the efficiency of DC generation
using monocytes from cancer patients (Figure 1B). While we pri-
marily used CD83 up-regulation as indicative of DC maturation,
we also noted a lack of CD80 expression and specific functional
deficient of these cells. Increased efficiency of DC maturation can
be correlated with decreased presence of CD14+HLA-DRlo/neg

monocytes in the starting culture (Figure 1C). However, we could
consistently improve the ability to generate mDCs using serum-
free methods with the addition of IL-4. Even so, it was difficult to
recapitulate the efficient generation of mDCs we observed using
monocytes from healthy volunteers compared to cancer patients.
Knowing that CD14+HLA-DRlo/neg monocytes have significant
capacity to influence ex vivo DC cultures implies that these cells
and the pathways to both generate and eliminate them are high-
value targets to improve cancer therapies. It is striking to note that
these effects occurred in the complete absence of tumors and in
the continual presence (for days) with the cells in excess cytokines.
This deficit likely represents a significant block in the differen-
tiation pathway. This strongly suggests that immune stimulation

in vivo, even with precise targeting of the pathways known to
convert mature DC, is unlikely to efficiently trigger mDC matu-
ration in patients. Further understanding of the biology of these
CD14+HLA-DRlo/neg monocytes is needed; strategies to overcome
the effects of these cells can lead to better DC generation and
immune reconstitution.

IMPLICATIONS OF CD14+HLA-DRlo/neg ON DC-BASED
CANCER VACCINES
Most currently active DC-based cancer immunotherapy protocols
differ in either the cell source or some of the methods associ-
ated with the generation of DC. The most common approach has
been the ex vivo generation of mature DCs from patient myeloid-
derived monocyte precursors by co-culturing with GM-CSF and
various cocktails of cytokines and TLR agonists to produce mature
DCs. Optimizing DC culture conditions using normal healthy
donors will likely not directly translate into the protocols needed
for cancer patients. It will be important for those protocols that use
CD14+ cells to generate their DC product from primary patient
samples to confirm and optimize the manufacturing method and
assure that potent DCs are being generated. In our hands, a serum-
free method that includes IL-4 is a good starting point. Adequate
sampling size of the patient population is needed to determine the
range of differentiation efficiency in each specific cancer patient
population to inform the design of release criteria for vaccine
manufacturing. Our data also have clear implications for other
approaches attempting to mediate anti-tumor immune stimula-
tion. Adjuvants known to work in healthy people may not work
in cancer patients if their approach is to target the DC or DC
differentiation pathways.

As we improve our understanding of the importance of
CD14+HLA-DRlo/neg monocytes in promoting immunosuppres-
sion, it is imperative that we adjust our clinical practices to ensure
effective outcomes for patients using DC-based immunotherapy.
This will require continued efforts to develop optimal protocols
for generating ex vivo DC vaccine preparations and testing these
protocols in individual patients. The complexity of the human
immune system and individual tumor micro environments will
likely require an element of individualized protocol development
to achieve optimal clinical benefit.
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