
EDITED BY :  Amit Kumar Yadav, Sanjay Kumar Banerjee,  

Kumardeep Chaudhary and Bhabatosh Das

PUBLISHED IN :  Frontiers in Genetics, Frontiers in Neuroscience and  

Frontiers in Physiology 

SYSTEMS BIOLOGY AND OMICS 
APPROACHES TO UNDERSTAND 
COMPLEX DISEASES BIOLOGY

https://www.frontiersin.org/research-topics/14579/systems-biology-and-omics-approaches-to-understand-complex-diseases-biology
https://www.frontiersin.org/research-topics/14579/systems-biology-and-omics-approaches-to-understand-complex-diseases-biology
https://www.frontiersin.org/research-topics/14579/systems-biology-and-omics-approaches-to-understand-complex-diseases-biology
https://www.frontiersin.org/research-topics/14579/systems-biology-and-omics-approaches-to-understand-complex-diseases-biology
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/physiology


Frontiers in Genetics 1 April 2022 | Systems, Omics and Disease Biology

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-88976-078-7 

DOI 10.3389/978-2-88976-078-7

https://www.frontiersin.org/research-topics/14579/systems-biology-and-omics-approaches-to-understand-complex-diseases-biology
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact


Frontiers in Genetics 2 April 2022 | Systems, Omics and Disease Biology

Topic Editors:
Amit Kumar Yadav, Translational Health Science and Technology Institute (THSTI), 
India
Sanjay Kumar Banerjee, National Institute of Pharmaceutical Education and 
Research (Guwahati), India
Kumardeep Chaudhary, Council of Scientific and Industrial Research (CSIR), India
Bhabatosh Das, Translational Health Science and Technology Institute (THSTI), 
India

Citation: Yadav, A. K., Banerjee, S. K., Chaudhary, K., Das, B., eds. (2022). Systems 
Biology and Omics Approaches to Understand Complex Diseases Biology. 
Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88976-078-7

SYSTEMS BIOLOGY AND OMICS 
APPROACHES TO UNDERSTAND 
COMPLEX DISEASES BIOLOGY

https://www.frontiersin.org/research-topics/14579/systems-biology-and-omics-approaches-to-understand-complex-diseases-biology
https://www.frontiersin.org/journals/genetics
http://doi.org/10.3389/978-2-88976-078-7


Frontiers in Genetics 3 April 2022 | Systems, Omics and Disease Biology

05 Editorial: Systems Biology and Omics Approaches for Understanding 
Complex Disease Biology

Amit Kumar Yadav, Sanjay Kumar Banerjee, Bhabatosh Das and  
Kumardeep Chaudhary

08 A Transcriptomics-Based Meta-Analysis Combined With Machine 
Learning Identifies a Secretory Biomarker Panel for Diagnosis of 
Pancreatic Adenocarcinoma

Indu Khatri and Manoj K. Bhasin

24 Integrative Computational Approach Revealed Crucial Genes Associated 
With Different Stages of Diabetic Retinopathy

Nidhi Kumari, Aditi Karmakar, Saikat Chakrabarti and  
Senthil Kumar Ganesan

37 Anticonvulsants and Chromatin-Genes Expression: A Systems Biology 
Investigation

Thayne Woycinck Kowalski, Julia do Amaral Gomes, Mariléa Furtado Feira, 
Ágata de Vargas Dupont, Mariana Recamonde-Mendoza and  
Fernanda Sales Luiz Vianna

47 Analysis of Pan-omics Data in Human Interactome Network (APODHIN)

Nupur Biswas, Krishna Kumar, Sarpita Bose, Raisa Bera and  
Saikat Chakrabarti

61 Mechanistic Modeling of Gene Regulation and Metabolism Identifies 
Potential Targets for Hepatocellular Carcinoma

Renliang Sun, Yizhou Xu, Hang Zhang, Qiangzhen Yang, Ke Wang, 
Yongyong Shi and Zhuo Wang

77 Changes of Metabolites in Acute Ischemic Stroke and Its Subtypes

Xin Wang, Luyang Zhang, Wenxian Sun, Lu-lu Pei, Mengke Tian, Jing Liang, 
Xinjing Liu, Rui Zhang, Hui Fang, Jun Wu, Shilei Sun, Yuming Xu,  
Jian-Sheng Kang and Bo Song

85 Single-Cell Transcriptomics: Current Methods and Challenges in Data 
Acquisition and Analysis

Asif Adil, Vijay Kumar, Arif Tasleem Jan and Mohammed Asger

97 Omics Approaches for Understanding Biogenesis, Composition and 
Functions of Fungal Extracellular Vesicles

Daniel Zamith-Miranda, Roberta Peres da Silva, Sneha P. Couvillion,  
Erin L. Bredeweg, Meagan C. Burnet, Carolina Coelho, Emma Camacho, 
Leonardo Nimrichter, Rosana Puccia, Igor C. Almeida, Arturo Casadevall, 
Marcio L. Rodrigues, Lysangela R. Alves, Joshua D. Nosanchuk and  
Ernesto S. Nakayasu

113 Multiomics Analysis Reveals Molecular Abnormalities in Granulosa Cells 
of Women With Polycystic Ovary Syndrome

Rusong Zhao, Yonghui Jiang, Shigang Zhao and Han Zhao

123 Machine Learning Assisted Prediction of Prognostic Biomarkers 
Associated With COVID-19, Using Clinical and Proteomics Data

Rahila Sardar, Arun Sharma and Dinesh Gupta

Table of Contents

https://www.frontiersin.org/research-topics/14579/systems-biology-and-omics-approaches-to-understand-complex-diseases-biology
https://www.frontiersin.org/journals/genetics


Frontiers in Genetics 4 April 2022 | Systems, Omics and Disease Biology

133 Exploration of Crucial Mediators for Carotid Atherosclerosis Pathogenesis 
Through Integration of Microbiome, Metabolome, and Transcriptome

Lei Ji, Siliang Chen, Guangchao Gu, Jiawei Zhou, Wei Wang, Jinrui Ren, 
Jianqiang Wu, Dan Yang and Yuehong Zheng

148 Deciphering the Protein, Modular Connections and Precision Medicine 
for Heart Failure With Preserved Ejection Fraction and Hypertension 
Based on TMT Quantitative Proteomics and Molecular Docking

Guofeng Zhou, Jiye Chen, Chuanhong Wu, Ping Jiang, Yongcheng Wang, 
Yongjian Zhang, Yuehua Jiang and Xiao Li

164 Hypoxia Induced Sex-Difference in Zebrafish Brain Proteome Profile 
Reveals the Crucial Role of H3K9me3 in Recovery From Acute Hypoxia

Tapatee Das, Avijeet Kamle, Arvind Kumar and Sumana Chakravarty

https://www.frontiersin.org/research-topics/14579/systems-biology-and-omics-approaches-to-understand-complex-diseases-biology
https://www.frontiersin.org/journals/genetics


Editorial: Systems Biology and Omics
Approaches for Understanding
Complex Disease Biology
Amit Kumar Yadav1*, Sanjay Kumar Banerjee2, Bhabatosh Das1 and
Kumardeep Chaudhary3†

1Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India, 2Department of
Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India, 3Charles Bronfman
Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States

Keywords: multi-omics, systems biology, transcriptomics, proteomics, metabolomics, network biology, disease
biology, machine learning

Editorial on the Research Topic

Systems Biology and Omics Approaches to Understand Complex Disease Biology

High-throughput omics technologies have seamlessly galvanized the fields of big data and systems
biology (Karczewski and Snyder, 2018). The amalgamation of omics techniques (genomics,
transcriptomics, proteomics, metabolomics, and lipidomics etc.) and computational methods
have enhanced our understanding of diseases in exquisite molecular detail (Adela et al., 2019;
Aggarwal et al., 2020). Since computational methods help to unlock the potential of big-data (Shilo
et al., 2020; Subramanian et al., 2020; Tolani et al., 2021), we solicited articles that applied systems
biology approaches to complex diseases. The hosted topic received an excellent response and 13
manuscripts were accepted after careful editing.

Few studies harnessed the power of publicly available transcriptomic datasets. Khatri et al. studied
19 transcriptomics datasets to understand pancreatic ductal adenocarcinoma (PDAC). They
constructed a support vector machine (SVM) classification model to predict a 9-gene biomarker
panel of secretory proteins capable of predicting disease outcomes and patient risk stratification.
Kowalski et al. evaluated the expression of epigenetics-related genes after valproic acid,
carbamazepine, or phenytoin exposure in fetal development. Using weighted gene co-expression
network analysis (WGCNA) on transcriptome data, they identified genes that correlated with Fetal
Valproate Syndrome, and Fetal Hydantoin Syndrome.

Some studies applied proteomics or metabolomics analysis to study complex diseases. Using
quantitative proteomics (iTRAQ), Das et al. studied the slow recovery in zebrafishmales compared to
females, following hypoxic-ischemic insult. The analysis exposed a sex-based difference in the
neuronal cell recovery, with the increased levels of H3K9me3 in males confirmed through ChIP-
qPCR. This can be used to develop novel targets for gender-specific therapeutic strategy. Another
proteomics study by Zhou et al. used tandem mass tag (TMT) proteomics to understand the
connection between “Heart failure with preserved ejection fraction” (HFpEF) and hypertension
(HTN). The functional and network analysis revealed seven common differentially expressed
proteins in HFpEF and HTN, for which molecular docking studies were performed to identify
therapeutic targets. Sardar et al. integrated proteomics and clinical data to identify biomarkers of
COVID-19 progression using artificial intelligence. Using feature selection and cross-validation on
normalized protein expression data, a LogitBoost model was developed. They also identified 18
potential proteins for drug repurposing, when understanding of COVID-19 disease was in its early
stages (Chatterjee et al., 2020). The prominent clinical abnormalities also included cardiovascular
functions (Shen et al., 2020), which was also studied recently (Rizvi et al., 2022). The authors
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developed CovidPrognosis webserver for predicting patient
survival, for assisting in rapid patient triaging. Wang et al.
studied the serum metabolome of 99 patients with acute
ischemic stroke to identify biomarkers and its heterogeneous
subtypes. Using PCA and OPLS-DA analysis, the authors
identified 18 metabolites including oleic acid, linoleic acid,
arachidonic acid, which could differentiate between stroke
patients and healthy individuals. The authors also identified
differences in ischemic stroke subtypes to explore
pathophysiological mechanisms.

Integrating multiple omics data was another popular theme
for some articles. Zhao et al. presented an interesting study on the
pathogenesis of polycystic ovary syndrome (PCOS)- the most
common, endocrine and metabolic disease in women of
reproductive age. Limited studies have been performed with
multiomics analyses of granulosa cells (GCs) considering
epigenetics as a regulatory factor. The authors systematically
investigated the differences in the mRNA-miRNA-lncRNA
transcriptome and genome-wide DNA methylation
modification profiles and their regulatory networks. The data
revealed that all differentially expressed genes were associated
with steroid biosynthesis and glycolysis/gluconeogenesis
pathways. Diabetic retinopathy (DR) requires early diagnostic
markers and effective treatment strategies. Another interesting
integrative computational approach by Kumari et al. was devised
to capture differentially expressed genes that were also the targets
of miRNA, as well as depicted atypical methylation patterns. The
authors identified hub genes and network modules from the PPIs
of the early and late disease genes. They also identified the
pathways related to oxidoreductase activity, extracellular
matrix binding, immune response, cell adhesion, PI3K-Akt
signaling pathway, ECM receptor interaction and leukocyte
migration. They reported 7 hub genes and 9 early genes as
potential candidates for prognostic, diagnostic, or therapeutic
application. A fascinating approach to integrate metabolism with
the regulatory-metabolic network using transcriptomics data was
demonstrated by Sun et al. to understand tumour heterogeneity
in hepatocellular carcinoma (HCC). The authors studied disease
perturbation in regulation and metabolism using unified
mechanistic modeling approach, which used transcriptomics
data with regulatory-metabolic network model to understand
HCC stratification. They identified transcription factors and
target genes impacting tumorigenesis and integrated this
information with constraint-based models identifying five
important genes associated with cancer growth. Non-negative
matrix factorization was used for stratification of differential
genes from TCGA samples to understand HCC pathways and
find potential targets. In another excellent multiomics approach,
the pathogenesis of carotid atherosclerosis (CAS) (a cause of
stroke) was studied by Ji et al. with respect to the interactions
between gut microbiome and metabolome. Authors attempted an
integrated analysis of the transcriptome (from GEO) with in-
house generated metabolome and microbiome data for in-depth
understanding of the “microbiota–metabolite–gene” axis in the
pathogenesis of CAS. Interestingly, the study identified α-N-
Phenylacetyl-L-glutamine as an increased metabolite in CAS
patients. FABP4 was the most upregulated gene and was

positively associated with Acidaminococcus, an anaerobic
bacteria living in the human gut. The authors integrated and
overlaid different omics data to understand CAS pathogenesis.
However, the study could have benefitted more from generating
transcriptome data from the same patients as themicrobiome and
metabolome data.

Biswas et al. developed a sophisticated analysis platform-
ADOPHIN, to allow the analysis of pan-omics data in context
of the Human interactome. They developed a meta-
interactome network with protein-protein interactions
(PPIs), regulatory interactions between miRNAs and their
respective target genes, transcription factors and their
targets. The authors discovered topologically important
nodes (TINs) with regulatory networks between various
biomolecules (proteins, transcription factors, or miRNAs),
linked to signaling and metabolic pathways. The genes,
proteins or miRNA from multi-omics data are mapped onto
the compiled interactome to capture the biological context-
specific interactions, as demonstrated by authors in cervical,
breast and ovarian cancers. Such meta-interactome mining
approaches with cross-pathway links and connectivity
analysis, provide a user-friendly method to explore multi-
omics data.

Though excellent studies in their own right, some of the
studies may require, and even benefit from independent
validation. Furthermore, the power of such integrated analysis
can increase with more data types, beyond methylation and
transcription/gene expression (Hasin et al., 2017; Yan et al.,
2018). This can help in triaging more functional
interconnections and discovery of relevant candidates for
further research.

Apart from exceptional articles, the topic also had two
excellent reviews. The review by Zamith-Miranda et al.
appraises the biogenesis, composition and functions of fungal
extracellular vesicles using multi-omics studies. Shedding of
extracellular vesicles is a conserved process across all three
kingdoms of life. The mechanisms and sites of fungal
extracellular vesicle formation, their nucleic acid content and
importance in virulence, pathogenicity and antimicrobial
resistance are discussed. The review concludes with the
current knowledge gaps in the extracellular vesicles biology
and their future. An excellent review on the current
landscape of Single-Cell Transcriptomics (scRNA-seq) data
acquisition and bioinformatics analysis is presented by Adil
et al. scRNA-seq has emerged as an instrumental technique to
decipher cellular heterogeneity in complex diseases. However,
the volume, granularity and sparsity of data poses outstanding
challenges-in data generation and downstream analysis. An
overview of scRNA-seq profiling techniques and biophysical
cell-isolation methods is followed by the widely-used tools for
sequencing read-alignment and mRNA expression
quantification. The bottlenecks and current software
solutions reviewing the methods for normalization, batch-
effect removal, imputation, dimensionality reduction,
subtype/cluster identification are also covered. Finally, the
review discusses the multiple evolving strategies to integrate
multi-omics datasets at the single-cell level.
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The topic has covered multiple omics with different
computational methods, network analysis and modeling to
study a diverse array of biological problems in complex
diseases. We hope this interesting assortment of article
collection invigorates the readers towards novel
applications of multiomics for deeper dissection of disease
biology.
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Pancreatic ductal adenocarcinoma (PDAC) is generally incurable due to the late
diagnosis and absence of markers that are concordant with expression in several
sample sources (i.e., tissue, blood, plasma) and platforms (i.e., Microarray, sequencing).
We optimized meta-analysis of 19 PDAC (tissue and blood) transcriptome studies from
multiple platforms. The key biomarkers for PDAC diagnosis with secretory potential were
identified and validated in different cohorts. Machine learning approach i.e., support
vector machine supported by leave-one-out cross-validation was used to build and
test the classifier. We identified a 9-gene panel (IFI27, ITGB5, CTSD, EFNA4, GGH,
PLBD1, HTATIP2, IL1R2, CTSA) that achieved ∼0.92 average sensitivity and ∼0.90
average specificity in distinguishing PDAC from healthy samples in five training sets
using cross-validation. These markers were also validated in proteomics and single-cell
transcriptomics studies suggesting their prognostic role in the diagnosis of PDAC. Our
9-gene classifier can not only clearly discriminate between better and poor survivors
but can also precisely discriminate PDAC from chronic pancreatitis (AUC = 0.95), early
stages of progression [Stage I and II (AUC = 0.82), IPMA and IPMN (AUC = 1), and
IPMC (AUC = 0.81)]. The 9-gene marker outperformed the previously known markers in
blood studies particularly (AUC = 0.84). The discrimination of PDAC from early precursor
lesions in non-malignant tissue (AUC > 0.81) and peripheral blood (AUC > 0.80) may
assist in an early diagnosis of PDAC in blood samples and thus will also facilitate risk
stratification upon validation in clinical trials.

Keywords: biomarker, pancreatic cancer, secretory, transcriptome, validation

Abbreviations: AUC, area under the curve; CA 19-9, carbohydrate antigen 19-9; CDF, chip definition file; CP, chronic
pancreatitis; DE, differentially expressed; GEO, gene expression omnibus; GGH, γ-glutamyl hydrolase; FDR, false
discovery rate; HPA, human protein atlas; IPMA, intraductal papillary-mucinous adenoma; IPMC, intraductal papillary-
mucinous carcinoma; IPMN, intraductal papillary mucinous neoplasm; LOOCV, leave-one-out cross-validation; noTM,
no transmembrane segments; PanIN, pancreatic intraepithelial neoplasia; PC, pancreatic cancer; PDAC, pancreatic ductal
adenocarcinoma; ROC, receiver operating characteristic; SVM, support vector machines; TCGA, tissue cancer genome atlas.

Frontiers in Genetics | www.frontiersin.org 1 September 2020 | Volume 11 | Article 5722848

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.572284
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.572284
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.572284&domain=pdf&date_stamp=2020-09-10
https://www.frontiersin.org/articles/10.3389/fgene.2020.572284/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-572284 September 8, 2020 Time: 18:23 # 2

Khatri and Bhasin Secretory Biomarker Panel for PDAC

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is the most common
type of pancreatic cancer (PC), which is one of the fatal cancers
in the world with 5-year survival rate of <5% due to the
lack of early diagnosis (Fesinmeyer et al., 2005). One of the
challenges associated with an early diagnosis is distinguishing
PDAC from other non-malignant benign gastrointestinal diseases
such as chronic pancreatitis (CP) due to the histopathological
and imaging limitations (Brand and Matamoros, 1998). Although
imaging techniques such as endoscopic ultrasound and FDG-
PET have improved the sensitivity of PDAC detection but have
failed to distinguish PC from focal mass-forming pancreatitis in
>50% cases. Dismal prognosis of PC yields from asymptomatic
early stages, speedy metastatic progression, lack of effective
treatment protocols, early loco regional recurrence, and absence
of clinically useful biomarker(s) that can detect PC in its
precursor form(s) (Ballehaninna and Chamberlain, 2012).
Studies have indicated a promising 70% 5-year survival for
cases where incidental detections happened for stage I pancreatic
tumors that were still confined to pancreas (Frena, 2001;
Schneider and Schulze, 2003). Therefore, it only seems rational
to aggressively screen for early detection of PDAC. CA19-9 is
the most common and the only FDA approved blood-based
biomarker for diagnosis, prognosis, and management of PC but it
has several limitations such as poor specificity, lack of expression
in the Lewis negative phenotype, and higher false positive
elevation in the presence of obstructive jaundice (Ballehaninna
and Chamberlain, 2012). A large number of carbohydrate
antigens, cytokeratin, glycoprotein, and Mucinic markers and
hepatocarcinoma–intestine–pancreas protein, and PC-associated
protein markers have been discovered as a putative biomarkers
for management of PC (Ballehaninna and Chamberlain, 2013).
However, none of these have demonstrated superiority to CA19-
9 in the validation cohorts. Previously, our group discovered
a novel five-genes-based tissue biomarker for the diagnosis of
PDAC using innovative meta-analysis approach on multiple
transcriptome studies. This biomarker panel could distinguish
PDAC from healthy controls with 94% sensitivity and 89%
specificity and was also able to distinguish PDAC from CP, other
cancers, and non-tumor from PDAC precursors at tissue level
(Bhasin et al., 2016). The relevance of tissue-based diagnostic
markers remains unclear owing to the limitations of obtaining
biopsy samples. Additionally, most current studies are based
on small sample sizes with limited power to identify robust
biomarkers. Provided the erratic nature of PC, the major unmet
requirement is to have reliable blood-based biomarkers for early
diagnosis of PDAC.

The crucial requisite for better PDAC diagnosis has driven
a large number of genome-level studies defining the molecular
landscape of PDAC to identify early diagnosis biomarkers and
potential therapeutic targets. Despite many genomics studies,
we do not have a reliable biomarker that is able to surpass the
sensitivity and specificity of CA19-9. The independent studies
suffer from inherent statistical limitations where the datasets
derived from different batches, techniques and platforms and
analytic methods result in the lack of concordance (Ramasamy

et al., 2008). The published gene signatures of individual
microarray studies are not concordant with comparative analysis
and meta-analysis studies when standard approaches are used
due to variability in analytical strategies (Ramasamy et al., 2008).

In our work, we have included all the available gene expression
datasets for PDAC versus healthy subjects from GEO1 and
ArrayExpress database2 measured via microarray or sequencing
platforms. We have included the datasets derived from blood and
tissue sources excluding cell lines in our analysis, which was not
included previously. The cell lines were excluded for they do not
depict normal cell morphology and do not maintain markers and
functions seen in vivo.

The approach of combining multiple studies has previously
been stated to reveal biological insight by increasing the
reproducibility and sensitivity which is generally not evident
in the independent original datasets (Wang et al., 2004). Using
the uniform pre-processing, normalization and batch correction
approaches in the meta-analysis can assist in eliminating
false-positive results. Therefore, we used multiple datasets in
combinations and further divided them in training, testing and
validation sets to identify and validate the markers with secretory
signal peptides. We hypothesize that proteins with secretory
potential will be secreted out of the tissue into the blood and these
markers can be used as prognostic markers in a non-invasive
manner. There were no previous studies on identification of
marker genes that could be used with least-invasive methods.
Also, a set of multiple genes targeting different pathways and
biological processes are more reliable and sensitive than single
gene-based marker for complex diseases like cancer (Ramasamy
et al., 2008). We also corroborated the protein expression of our
markers in proteomics datasets obtained from human protein
atlas (HPA)3.

MATERIALS AND METHODS

Dataset Identification
The publicly available microarray repositories i.e., ArrayExpress
(see text footnote 2) and GEO (see text footnote 1) were searched
for gene expression studies of human pancreatic specimens.
The selected datasets were divided into five training sets and
fourteen independent validation sets for initial development and
validation of biomarkers. To avoid the representation of the
datasets only from tissues the few blood studies available were
divided across all training and validation phase of this study.

Each training dataset (GSE18670, E-MEXP-950, GSE32676,
GSE74629, and GSE49641) included a minimum of four samples
of normal pancreas and a minimum of four samples of PDAC.
In training set we included minimum two datasets with source
pancreatic tissue and peripheral blood. This was done to identify
a predictor based on genes that are detectable in both pancreatic
tissue and blood. Datasets GSE18670 (Set1: 6 normal, 5 PDAC),
GSE32676 (Set6: 6 normal, 24 PDAC) and E-MEXP-950 (Set3: 10
normal, 12 PDAC) was derived from pancreatic tissue, whereas

1https://www.ncbi.nlm.nih.gov/geo/
2https://www.ebi.ac.uk/arrayexpress/
3https://www.proteinatlas.org/
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GSE74629 (Set4: 14 normal, 32 PDAC) and GSE49641 (Set5: 18
normal, 18 PDAC) contain transcriptome profile of peripheral
blood PDAC patients.

Further, 14 validation sets were also divided into three groups,
one “Test sets” (Table 1A); second “Validation Sets” (Table 1A)
and third “Prospective Validation Sets” (Table 1B). Five Tissue
studies were included: one from microdissected tissue samples
(Set6: 6 normal, 6 PDAC) and four from whole tissues (Set7: 45
normal, 40 PDAC; Set8: 6 normal, 6 PDAC; Set9: 8 normal and
12 PDAC and Set10: 15 normal, 33 PDAC). One blood study from
peripheral blood was also validated using the biomarker (E-Set11:
14 normal, 12 PDAC).

For Phase I Validation we selected five datasets from different
platforms from whole tissues and blood platelets, including
comparison of normal versus PDAC samples similar to training
and test sets. Four whole tissue datasets (V1: 61 normal, 69 PDAC;
V2: 20 normal, 36 PDAC; V3: 9 normal, 45 PDAC; and V4: 12
normal, 118 tumor) and one dataset from blood with samples
from blood platelets (V5: 50 normal, 33 PDAC) were included.

In Prospective Validation, the performance of the developed
PDAC biomarker panel was tested on four additional
independent datasets i.e.,: (i) PDAC versus normal (pancreatic)
tissue from TCGA database (PV1: 4 normal, 150 PDAC), (ii)
PDAC versus normal pancreatic tissues in early stages [PV2:
61 normal, 69 PDAC (Stage I and II)], (iii) PDAC versus
CP (PV3: 9 pancreatitis, 9 PDAC), and (iv) PDAC precursor
lesions (IPMA, IPMC, and IPMN) with associated invasive
carcinoma [PV4: 6 normal, 15 PDAC precursors (5 IPMA, 5
IPMC, 5 IPMN)] versus normal pancreas tissues (Table 1B).
Three datasets utilized oligonucleotide- based microarray
platforms (two versions of Affymetrix GeneChips and Gene
St 1.0 microarrays in one dataset) whereas the cancer genome
atlas (TCGA) data is the sequencing data obtained using
RNA-sequencing technology.

Quality Control and Outlier Analysis
Stringent quality control and outlier analysis was performed on
all datasets used for training and validation to remove low quality
arrays from the analysis. The technical quality of arrays was
determined on the basis of background values, percent present
calls and scaling factors using various bioconductor packages
(Wilson and Miller, 2005; Kauffmann et al., 2009). The arrays
with high quality were subjected to outlier analysis using array
intensity distribution, principal component analysis, array-to-
array correlation and unsupervised clustering. The samples that
were identified to be of low quality or identified as outliers were
eliminated from the analysis.

Mapping of Platform Specific Identifiers
to Universal Identifier
To facilitate the collation of the differentially expressed (DE)
genes identified by analysis of individual datasets, the platform
specific identifiers associated with each dataset were annotated to
corresponding universal gene symbol identifiers. Gene symbols
were used in subsequent analyses including comparative analysis
of different datasets as well as predictor development. Briefly

Affymetrix data was annotated using the custom CDF from
brainarray4. Affymetrix probe set IDs that could not be mapped
to an Entrez gene identifiers were removed from the gene lists.
For Agilent- 028004, HumanHT-12 V4.0 and Gene St 1.0 studies
the raw matrix was directly retrieved from the GEO interactive
web tool, GEO2R5, which were further processed and normalized.
The normalized and annotated genes for TCGA was obtained
from Broad GDAC Firehose database6. We have removed 29 non-
PDAC samples from TCGA during validation as our classifier was
trained using PDAC samples (Peran et al., 2018).

Pre-processing and Normalization of
Microarray Datasets
Potential bias introduced by the range of methodologies used in
the original microarray studies, including various experimental
platforms and analytic methods, was controlled by applying
a uniform normalization, preprocessing and statistical analysis
strategy to each dataset. Raw microarray dataset were normalized
using vooma (Law, 2013) algorithm which estimates the mean-
variance relationship and use the relationship to compute
appropriate gene expression level weights. Similarly, RNA-
sequencing datasets were normalized using voom algorithm (Law
et al., 2014). The normalized datasets were used for performing
meta-analysis as well as predictor development.

Differential Gene Expression Analysis for
Generating Meta-Signature
To generate PDAC meta-signature, we performed differential
expression analysis on individual datasets from training sets
by comparing normal versus cancer samples. To identify DE
genes, a linear model was implemented using the linear model
microarray analysis software package (LIMMA) (Ritchie et al.,
2015). LIMMA estimates the differences between normal and
cancer samples by fitting a linear model and using an empirical
Bayes method to moderate standard errors of the estimated
log-fold changes for expression values from each probe set. In
LIMMA, all genes were ranked by t-statistics using a pooled
variance, a technique particularly suited to small numbers of
samples per phenotype. The DE probes were identified on the
basis of absolute fold change and Benjamini and Hochberg
corrected P-value (Benjamini and Hochberg, 1995). The genes
with multiple test corrected P-value < 0.05 were considered as
DE. Comparative analyses were performed to identify those genes
that are significantly DE across multiple PDAC datasets. Genes
that are concordantly over or under expressed in three PDAC
datasets (two tissues and one blood study) were included in
PDAC meta-signature.

Secretory Gene Set Identification
To identify a non-invasive predictor based on genes with
secretory potential, we selected genes that had signal peptide for
secretory proteins with no transmembrane segments (noTM).

4http://brainarray.mbni.med.umich.edu
5www.ncbi.nlm.nih.gov/geo/geo2r/
6http://gdac.broadinstitute.org
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The Biomart package in R (Durinck et al., 2005) with quering
the gene symbols to SignalP database facilitated the analysis.
The Ensembl Biomart database enables users to retrieve a vast
diversity of annotation data for specific organisms. After loading
the library, one can connect to either public BioMart databases
(Ensembl, COSMIC, Uniprot, HGNC, Gramene, Wormbase and
dbSNP mapped to Ensembl) or local installations of these. One
set of functions can be used to annotate identifiers such as
Affymetrix, RefSeq and Entrez-Gene, with information such
as gene symbol, chromosomal coordinates, OMIM and Gene
Ontology or vice-versa.

Training and Independent Validation of
PDAC Classifier Using Support Vector
Machine
The upregulated secretory genes DE from PDAC meta-signature
was used for training of PDAC classifier. Classifier was generated
by implementing the random forest (RF) using caret{R} and
support vector machines (SVM) approach using e1071{R}.
Polynomial kernel was used to develop the classifier. RF and
SVM was first tuned using 10-fold cross-validation at different
costs and the best cost and gamma functions were later used to
perform classification on testing and validation sets. Classifiers
were trained using normalized, preprocessed gene expression
values from each of the five training datasets independently. To
independently validate our model in each dataset, performance
of classifiers in the training sets was evaluated using internal

LOOCV. We assessed the classifier of five to ten genes selected
from the set of upregulated genes to identify the biomarker
panel that works best in both tissue and blood-based studies.
The complete sets of possible combinations of five to ten genes
were drawn from the upregulated genes and the accuracy of
each classifier was assessed. The performance of classifiers was
measured using threshold-dependent (e.g., sensitivity, specificity,
accuracy) and threshold-independent ROC analysis. In ROC
analysis, the AUC provides a single measure of overall prediction
accuracy. The biomarker panel with the highest performance
in the training sets (both tissue and blood-based studies) was
chosen for assessment of predictive power in six independent
test datasets using threshold-dependent and -independent
measures i.e., AUC. SVM outperformed the RF models in the
training datasets.

Survival Analysis
To determine the association of key genes with survival in
PC, we performed survival analysis using the TCGA database7.
The survival analysis was performed on PDAC mRNA of
150 patients [excluding samples related to normal tissues and
non-PDAC tissues (Peran et al., 2018)]. Survival analysis was
performed on the basis of individual mRNA expression using
the Kaplan-Meier (K-M) approach (Kaplan and Meier, 1958).
The normalized expression data for each gene was divided
into high and low median groups. The survival analysis was

7https://cancergenome.nih.gov/

TABLE 1A | Datasets used for development and validation of secretory genes based PDAC classifier.

Groups Dataset Normal Tumor Sample type Platform Accession

Training Sets Set 1 6 5 Enriched U133 Plus 2.0 E-GEOD-18670

Set 2 6 24 Whole Tissue U133 Plus 2.0 E-GEOD-32676

Set 3 10 12 Microdissected U133A E-MEXP-950

Set 4 14 32 Peripheral Blood HumanHT-12 V4.0 GSE74629

Set 5 18 18 Peripheral Blood Gene St 1.0 GSE49641

Test sets Set 6 6 6 Microdissected U133A E-MEXP-1121

Set 7 45 40 Whole Tissue Gene St 1.0 GSE28735

Set 8 6 6 Whole Tissue Gene St 1.0 GSE41368

Set 9 8 12 Whole Tissue U133 Plus 2.0 E-GEOD-71989

Set 10 15 33 Whole Tissue U133 Plus 2.0 E-GEOD-16515

Set 11 14 12 Peripheral Blood U133 Plus 2.0 E-GEOD-15932

Validation Sets V1 61 69 Whole Tissue Gene St 1.0 E-GEOD-62452

V2 20 36 Whole Tissue U133 Plus 2.0 E-GEOD-15471

V3 9 45 Whole Tissue Agilent-028004 GSE60979

V4 12 118 Whole Tissue U219 GSE62165

V5 50 33 Blood Platelet HiSeq-2500 GSE68086

TABLE 1B | Datasets used for prospective validation of secretory genes based PDAC classifier.

Group Dataset Group Pancreatic tumor Sample type Platform Accession

Prospective Validation Sets PV1 4 Normal 150 PDAC Tissue RNA-Seq TCGA

PV2 61 Normal 69 PDAC (Stage I and II) Whole Tissue Gene St 1.0 E-GEOD-62452

PV3 9 (Pancreatitis) 9 (PDAC) Whole Tissue U95Av2 E-EMBL-6

PV4 7 (Normal) 15 (IPMA, IPMC, IPMN) Microdissected U133 Plus 2.0 GSE19650
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performed using K-M analysis from survival package in R.
The results of the survival analysis were visualized using
K-M survival curves with log rank testing. The results were
considered significant if the P-values from the log rank test
were below 0.05. The effects of mRNA on the event were
calculated using univariate Cox proportional hazard model
without any adjustments.

Pathways Analysis
The biological pathways for the genes was performed using
ToppFun software of ToppGene suite (Chen et al., 2009).
ToppGene is a one-stop portal for gene list enrichment
analysis and candidate gene prioritization based on functional
annotations and protein interactions network. ToppFun
detects functional enrichment of the provided gene list
based on transcriptome, proteome, regulome (TFBS and
miRNA), ontologies (GO, Pathway), phenotype (human
disease and mouse phenotype), pharmacome (Drug-Gene
associations), literature co-citation, and other features.
The biological pathways with FDR < 0.05 were considered
significantly affected.

RESULTS

PDAC Differential Expression Analysis
and Meta-Signature Development
To develop a gene based minimally invasive biomarker for
differentiating PDAC from normal/pancreatitis, we identified
19 microarray and RNA sequencing studies containing PDAC
and normal samples. These datasets based on their origin i.e.,
blood or tissue were divided into training sets, independent test
sets, validation sets and prospective validation sets (Figure 1;
Overview of meta-analysis strategy). For classifier training,
we performed meta-analysis on 3-tissue and 2-blood-based
PDAC studies to identify meta-signature that are DE in blood
and tissue during PC. To account for the differences in
microarray/sequencing platform used in studies, we processed
and normalized studies according to their platforms and selected
the genes that are common across multiple studies. The number
of DE secretory genes ranged from 480 to 810 genes, totaling
2,010 significantly DE genes in the five training datasets. We
identified 74 genes (35 downregulated and 39 upregulated) with
concordant directionality in at least two of the three tissue
datasets and one of the two blood datasets (Figure 2A, shown in
red color and Supplementary Table S1).

The 74 genes showed consistent expression across the PDAC
samples in the selected five datasets (3 tissue and 2 blood
datasets) as compared to the normal pancreas (Figure 2B),
with the extent of over-expression or under-expression denoted
by red or green shading, respectively. Pathway analysis of
these 74 common PDAC genes depicted significant enrichment
(P-value < 0.05) in multiple extracellular matrix-associated
pathways (e.g., Ensemble of genes encoding extracellular matrix
and extracellular matrix-associated proteins, remodeling of the
extracellular matrix, structural ECM glycoproteins, Cell adhesion
molecules) (Supplementary Figure S1). These pathways play

important roles in the adhesion of cells that is a key process in
progression of PDAC.

Variables Selection and Class Prediction
Analysis in Training Sets
The 39 upregulated genes from the 74 common genes
were selected for predictor development. We have specifically
targeted upregulated genes for their therapeutics and diagnostic
applications. We plotted boxplots of these 39 genes across all
the five training sets and removed the genes with opposite
direction in any of these five sets. The 27 concordantly
upregulated genes (Supplementary Table S2) were selected
after the boxplot analysis. These combined gene set clearly
discriminated between PDAC and normal pancreas samples in
all the datasets of training set, as depicted in the heatmap
for 27 genes (Supplementary Figure S2A) and principal
component analysis (PCA) plots (Supplementary Figure S2B).
The predictors based on 5 to 10 genes were developed and
assessed by LOOCV implementing with a polynomial kernel
based SVM classifier. All the possible combination of five to
ten genes were tested from 27 upregulated genes. The classifiers
containing the selected 9 genes i.e., IFI27, ITGB5, CTSD, EFNA4,
GGH, PLBD1, HTATIP2, IL1R2, and CTSA performed with
highest accuracy. These 9 genes were upregulated in PDAC
as compared to the normal pancreas in all the five training
sets (Figures 2C,D).

We performed LOOCV cross-validation analysis of the
9-gene PDAC classifier across the five training datasets to
determine its predictive performance. For each of the five
training datasets individually, sensitivity ranged from 0.83 to 1.0
and specificity 0.71 to 1.00 for the predictor (Supplementary
Figure S3A, Table 2). Comparison of the 9-gene PDAC
classifier performance in tissues (Set1-Set3) and blood datasets
(Set 4 and Set 5) showed approximately 0.94 sensitivity
and 0.97 specificity for the tissue datasets, in contrast to
0.88 sensitivity and 0.80 specificity for the blood datasets
(Supplementary Figure S3B, Table 2). AUC for the three
tissue datasets ranged from 0.89 to 1.00 with median = 0.96
(Supplementary Figure S3B) and for two blood datasets from
0.92 to 0.96 with median = 0.94 (Table 2, Supplementary
Figure S3C and Figure 2E), demonstrated threshold independent
performance). The average gene expression plots with all the
samples combined from the five training sets (Supplementary
Figure S4A) and the PCA plots of training sets (Supplementary
Figure S4B) from 9 genes supported the discriminatory
power of the marker combinations in identification of PDAC
subjects from normal.

Biological Significance of Selected
Genes
CTSA and CTSD are involved in extracellular matrix associated
proteins; IFI27 and IL1R2 in cytokine signaling in immune
system; ITGB5 and HTATIP2 in apoptotic pathway and
EFNA4, GGH and PLBD1 are involved in Ephrin signaling,
fluoropyrimidine activity and glycerophospholipid biosynthesis,
respectively. The genes selected based on the presence of signal
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FIGURE 1 | Overview of the meta-analysis approach for development and validation of PDAC biomarker panel. Predictor was developed using the data from
Set1-Set5 (S1-S5 in Step 4) and was further tested on Set5-Set10 and validated on V1-V5 and PV1-PV4 datasets.

peptide for secretion are supposed to be secretory; however,
the signal peptide is also present in several membrane proteins
(Uhlen et al., 2015). In the selected classifier genes, CTSD,
EFNA4 and IL1R2 are predicted to be secretory proteins
whereas CTSA, GGH, PLBD1, IFI27, ITGB5 and HTATIP2 are
predicted to be intracellular or membrane bound proteins in
HPA. Furthermore, CTSA and PLBD1 are also localized in
Lysosomes and GGH is secretory protein as per UniProtKB8

predictions. Since our 9 gene markers could be detected with
a detectable expression in both tissues and blood samples from

8www.uniprot.org

PDAC patients, we further validated the performance of these
genes for PDAC Diagnosis.

Independent Performance of Classifier in
Differentiating PDAC From Normal
The biomarker set designed above was further tested in six
independent sets with five tissue and one blood based PDAC
studies. The classifier genes depicted an upregulation pattern in
most of independent validation sets Supplementary Figure S5.
The boxplot revealed higher expression of all the 9 genes,
averaged over test sets, in the tumor samples as compared to the
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FIGURE 2 | Meta-signature of genes that are consistently DE in multiple datasets and candidate PDAC diagnostic biomarker panel. (A) Venn diagram of the five
training datasets for the DE genes. 74 genes (marked in red) with concordant directionality are common to at least 2 of the 3 tissue datasets (Set 1 to Set 3) and one
of the 2 blood datasets (Set 4 and Set 5). (B) Heatmap of the 74 meta-signature genes DE in PDAC from five training datasets. Red = upregulated,
Green = downregulated. (C) Heatmap of the 9-upregulated marker genes in training sets for PDAC biomarker panel. (D) Description of the genes from the 9-gene
based PDAC biomarker panels. (E) AUC plot [CI: 95%] for 9-gene PDAC classifier across the five training sets using leave one out cross-validation (LOOCV). Set1
and Set 2 are matched normal samples i.e., obtained from same individual. Set 3 normal samples are not matched, Normal samples are obtained from the patients
undergoing surgery with other pancreatic diseases. Set 4 and Set 5 are blood sourced studies therefore the normal subjects were matched for gender, age and
habits.

healthy (Figure 3A). For each of the six datasets individually,
sensitivity ranged from 0.75 to 1.00 and specificity from 0.71
to 1.00 for the predictor (Figure 3B, Table 2). Comparison of
the 9-gene PDAC classifier performance in tissue and blood
showed an average 0.94 sensitivity and 0.97 specificity for the
tissue datasets, in contrast to 0.75 sensitivity and 0.71 specificity
for the blood dataset. AUC for the five tissue datasets ranged
from 0.94 to 1.00 and for one blood datasets AUC was 0.80
(Figure 3C, Table 2).

High Accuracy of Our 9-Gene PDAC
Classifier in Predicting PDAC in 5
Independent Validation Sets
In five validation sets, the 9-gene PDAC classifier accurately
predicted the class of PDAC compared to normal with maximum
AUC of 1.00 in the independent validation tissue (V2) set
that contained 20 normal and 36 PDAC samples. More than
0.95 AUC was observed in three independent validation tissue
sets (V2, V3 and V4) that contained 36, 45 and 118 PDAC
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TABLE 2 | The performance matrix of the 9-gene PDAC classifier on the training, testing, validation and prospective validation sets.

Groups Datasets Accuracy Sensitivity Specificity AUC

Training Sets Set 1 1.00 1.00 1.00 1.00

Set 2 1.00 1.00 1.00 1.00

Set 3 0.87 0.83 0.90 0.89

Set 4 0.82 0.93 0.71 0.93

Set 5 0.86 0.83 0.89 0.97

Test Sets Set 6 1.00 1.00 1.00 1.00

Set 7 0.92 0.90 0.93 0.94

Set 8 1.00 1.00 1.00 1.00

Set 9 0.95 0.91 1.00 1.00

Set 10 0.96 0.93 1.00 0.94

Set 11 0.73 0.75 0.71 0.80

Validation Sets V1 0.79 0.76 0.83 0.83

V2 0.98 0.97 1.00 1.00

V3 0.94 1.00 0.89 0.98

V4 0.95 1.00 0.91 0.99

V5 0.83 0.84 0.82 0.89

Prospective Validation Sets PV1 0.82 0.94 0.72 0.93

PV2 0.74 0.74 0.75 0.82

PV3 0.83 0.78 0.89 0.95

PV4-IPMA 1.00 1.00 1.00 1.00

PV4-IPMC 0.84 0.83 0.86 0.81

PV4-IPMN 1.00 1.00 1.00 1.00

and 20, 9 and 12 normal pancreas samples, respectively,
(Figure 4A and Table 1B). The boxplot revealed higher
expression of all the 9 genes, averaged over validation sets,
in the tumor samples as compared to the healthy samples
(Figure 4B). In a tissue dataset (V1) containing 61 normal and
69 tumor samples a specificity of 0.83 and sensitivity of 0.76
was determined. In 50 normal and 33 PDAC blood platelet
sample (V5) 0.84 sensitivity, 0.82 specificity and 0.88 AUC was
achieved. The prediction of the PDAC class in comparison
to normal was accurate with a sensitivity ranging 0.76–1.00
and specificity ranging between 0.82 and 1.00 (Figure 4C
panel II, Table 2). Supplementary Figure S6 presents the
heatmap of the nine genes in individual validation datasets
and the PCA plots depicting the discrimination of PDAC
from normal samples.

Cross-Platform Performance of
Classifier on TCGA Pancreatic Samples
We further estimated the cross-platform performance of
classifiers on the most widely used PC sample resource namely
TCGA. TCGA dataset contains 150 PDAC samples and 4
normal samples and gene expression pattern analysis is not in
consistence with other studies (Supplementary Figure S7C).
The cross-platform validation of classifier on TCGA data also
achieved high sensitivity (0.94) and specificity (0.72) indicating
the stability of the classifier in handling the cross-platform
variation in absolute gene expression signal (Figure 5 PV1).
The classifier achieved an excellent AUC of 0.93 (Table 2). The
lower specificity of TCGA datasets might be due to the limited
number of normal samples in the dataset. Heatmap of the 9

genes and PCA plots depicts the discrimination of two classes
with the nine genes in the TCGA samples (Supplementary
Figure S7 PV1).

The markers did not show concordance in the TCGA
dataset; however, the significance of these genes in the
survival analysis can be very well established using the
TCGA database. The samples were partitioned at median for
selected nine-genes and survival analysis was performed on two
clusters (Supplementary Figure S8). The results showed the
combined survival of genes was able to clearly discriminate
between better and poor survivors (P-value significance of
0.05 and hazard Ratio of 0.85), indicating their prognostic
role in PDAC. High CTSD, EFNA4, HTATIP2, IFI27, ITGB5
and PLBD1 expression is associated with shortened survival
time. Also, the survival analysis of these genes with a
hazard ratio of >1 at significant P-value indicates their
prognostic importance.

Performance of Classifier in Identifying
Early Stage PDAC
As it is well established in literature that lack of established
strategies for early detection of PDAC result in poor
prognosis and mortality, we therefore tested performance
of our classifiers on stage I and II PDAC. The predictor
could distinguish stage I and II PDACs from normals
with 0.74 sensitivity and 0.75 specificity and an AUC 0.82
(Figure 5 PV2, Table 2). Heatmap of the nine genes and
PCA plots depicts the discrimination of two classes with the
nine genes in early stages PDAC samples (Supplementary
Figure S7 PV2).
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FIGURE 3 | Performance of 9-gene PDAC Classifier on test sets using leave one out cross-validation (LOOCV). (A) The boxplot of the averaged expression of the
genes across all the six test datasets. The P-values as calculated by t-test between the groups are on the individual genes. (B) Diagnostic performance of the
9-gene PDAC classifier on the six test sets of PDAC vs. normal pancreas. Sensitivity (Sens.) and specificity (Spec.) indicated besides each set. (C) AUC plot for
9-gene [CI: 0.95–0.99] PDAC classifier across the six test datasets.

Performance of Classifier in
Discriminating PDAC From Pancreatitis
Identification of CP and discriminating it from PDAC is a key
challenge. As our 9-gene PDAC classifier accurately established
the differences between PDAC and CP, it is important to include
further validation steps for the biomarker panel. The array
U95Av2 have the recorded signal intensity values for all the genes
except PLBD1, hence only 8 genes were tested as a classifier for
the discrimination of CP from PDAC. We tested the biomarker
on the PV3 dataset wherein there were nine samples each for
CP and PDAC. The classifier genes on PV3 dataset depicted
significantly altered expression pattern between PDAC from
CP (Supplementary Figure S7 PV3). The classifier achieved a

specificity of 0.89 and sensitivity of 0.78 with an overall accuracy
of 0.83 and an AUC of 0.95 in discriminating PDAC from CP
(Figure 5 PV3, Table 2).

Classifier Discriminated Pre-cancerous
Lesions From Normal Pancreas With
Good Accuracy
To estimate the ability of the biomarker panel in discriminating
precancerous lesions from a normal pancreas, we tested its
performance on independent dataset containing normal main
pancreatic duct epithelial cells microdissected by lasers and
neoplastic epithelial cells from potential PDAC precursor
lesions i.e., IPMA, IPMC and IPMN [15]. Classifier genes
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FIGURE 4 | Performance of 9-gene PDAC Classifier on validation sets using leave one out cross-validation (LOOCV). (A) The boxplot of the averaged expression of
the genes across all the five validation datasets. The P-values as calculated by t-test between the groups are mentioned on the individual genes. (B) Diagnostic
performance of the 9-gene PDAC classifier on the five validation sets of PDAC vs. normal pancreas. Sensitivity (Sens.) and specificity (Spec.) indicated besides each
set. (C) AUC plot [CI: 0.95–0.99] for 9-gene PDAC classifier across the five validation datasets.

were consistently overexpressed in the PDAC samples,
GGH was under-expressed in IPMA samples whereas it
was overexpressed across the other PDAC precursors, IPMC
and IPMN (Supplementary Figure S9). The 9-gene PDAC
classifier separated all potential PDAC precursor (IPMA,
IPMC, IPMN) samples from the normal pancreatic duct
samples except for one normal sample and one IPMC sample
(Figure 5 PV4). The biomarker panel differed IPMA and
IPMN from normal pancreas with 1.00 sensitivity and
1.00 specificity, achieving an AUC of 1.00 (Figure 5 PV4).
The predictor separated IPMC from healthy pancreas with

0.83 sensitivity and 0.86 specificity, achieving an AUC of
0.81 (Table 2).

Classifier Performed Better Than
Previously Known Markers
To estimate the performance of our current marker as
compared to the previously established markers we compared
the performance of our marker with each study [Bhasin
et al. (2016), Balasenthil et al. (2017), Kisiel et al. (2015),
and Immunovia (Mellby et al., 2018)]. We used polynomial
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FIGURE 5 | Performance of 9-gene PDAC Classifier on prospective validation sets using leave one out cross-validation (LOOCV). AUC plot [CI: 0.95–0.99] for
9-gene PDAC classifier and the diagnostic performance of (A) the classifier for PV1 dataset, (B) the classifier for PV2 dataset. (C) The classifier for IPMA, IPMC and
IPMN subjects in PV4 dataset and (D) the classifier for PV3 dataset.

kernel for each set of markers and selected best model to
record the performance on all the training, test and validation
datasets (Supplementary Figure S10 and Supplementary
Table S3). We found that all the methods performed well
in tissue biopsies samples whereas when applied to the
blood studies the performance of our marker set is the
best (Figure 6). Our set of markers has performed well
in tissues as well as blood studies and will be an ideal
minimally invasive biomarker for studying in future studies and
clinical trials.

Validation of the Markers in Single-Cell
Transcriptomics Studies
Furthermore, as the markers are derived from bulk sequencing
protocols it is important to know if the markers discovery is
not influenced by different cell-types in normal and cancerous
pancreas. Therefore, we used single-cell RNA-sequencing data
published by Peng et al. (2019) suggesting heterogeneity in
PDAC tumor to plot expression of our markers on different cell-
types. Using standard Seurat single-cell analysis methodology
(Butler et al., 2018; Stuart et al., 2019), we identified that our
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FIGURE 6 | Comparative performance of 9-gene PDAC Classifier with different previously established biomarkers. AUC plot [CI: 0.95–0.99] for 9-gene PDAC
classifier across the three tissue and three blood datasets. The boxes colored in mustard color have greater than 0.80 AUC.

markers are not associated with any cell-types and are expressed
across major cell types in pancreatic cancer (Supplementary
Figure S11). All our markers depicted upregulation in various
tumor microenvironment cells including immune cells and
endothelial cells.

Validation of Markers in Blood-Based
Proteomics Study
The nine-gene markers in the classifier were discovered and
validated from the transcriptomics studies, hence the validation

of their expression at the protein level is necessary. Therefore,
we confirmed the expression of the nine genes at the protein
level in publicly available proteomics studies and HPA. The
immunolabeling of the proteins of the respective genes in HPA
(Supplementary Figure S12) suggest higher staining of the
proteins in tumors as compared to the normal samples except
IFI27 where the expression of the protein cannot be detected.
To further validate the protein expression of our markers we
searched for the corresponding proteins in multiple pancreatic
cancer proteomics studies (Chen et al., 2005; Crnogorac-Jurcevic
et al., 2005; Cui et al., 2009; McKinney et al., 2011; Kosanam et al.,
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2013; Wang et al., 2013; Iuga et al., 2014). CTSD, a cathepsin
family protein, and Ephrin and Interferon gamma family markers
are found to be highly expressed in multiple proteomics studies
(Chen et al., 2005; Cui et al., 2009; McKinney et al., 2011).

DISCUSSION

We applied a data mining approach to a large number of publicly
available transcriptome datasets derived from pancreatic cancer
and healthy blood and tissues, followed by class prediction
analysis using machine learning and validation of the classifier in
the independent datasets to discover candidate PDAC biomarkers
(Harsha et al., 2009; Ranganathan et al., 2009). We explored
the genes with secretory peptide DE in the PDAC as compared
to normal pancreas/blood, for the first time to investigate
an accurate secretory/non-invasive biomarker panel for the
PDAC diagnosis. We report here a 9-gene PDAC classifier that
differentiates PDAC as well as the precursor lesions from the
normal with high accuracy. This 9-gene PDAC classifier was
validated independently in 12 different blood and tissue studies.
The 9-gene PDAC classifier encodes proteins with secretory
potential in pancreas and few other tissues.

Approximately 2500 candidate biomarkers have been
associated with PDAC previously while some of these biomarkers
are in various evaluation stages only CA19-9 is approved
by FDA (Koprowski et al., 1979, 1981; Hyöty et al., 1992).
However, accuracy of CA19-9 is not accurate enough for
screening, especially for an early detection of PDAC. Presently,
the extensive validation of diagnostic or predictive gene/protein
expression biomarkers for accurate discrimination between
healthy patients, benign, premalignant and malignant disease are
still lacking. Therefore, we aimed to identify a biomarker panel
with greater sensitivity and specificity and identified a 9-gene
marker panel that performs with high accuracy in discriminating
PDAC with normal pancreas across multiple platforms, using
either whole/microdissected tissue or peripheral blood.

To determine whether the genes in our classifier reflect key
pathophysiological pathways associated with the development of
PDAC, we reviewed available information for the role of these
genes. Most of our 9-gene classifier genes have been linked to
tumorigenesis, indicating a causal role in the development and
progression of PDAC. HTATIP2 is involved in apoptosis function
in liver metastasis related genes (Shi et al., 2009), gastric cancer
(Xu et al., 2010) and pancreatic cancer (Ouyang et al., 2014).
IFI27, functioning in immune system, has been suggested as a
marker of epithelial proliferation and cancer (Grutzmann et al.,
2003; López-Casas and López-Fernández, 2010). ITGB5 involved
in integrin signaling have been found to be upregulated in several
analysis studies (Van den Broeck et al., 2012). The Integrin and
ephrin pathways have been proposed to play a crucial role in
pancreatic carcinogenesis and progression, including ITGB1, a
paralog of ITGB5, and EPHA2 as most important regulators
(Van den Broeck et al., 2012). EPHA2 belongs to ephrin receptor
subfamily and is involved in developmental events, especially in
the nervous system and in erythropoiesis. To this family belongs
one of our genes EFNA4 which activates another ephrin receptor

EPHA5. IL1R2 was identified as possible candidate gene in
PDAC that can lead to defects of the apoptosis pathway (Rückert
et al., 2010). Moreover, Il1, the ligand of IL1R2, is secreted by
the pancreatic cells (Arlt et al., 2002) and has an important
function in inflammation and proliferation that can also trigger
the apoptosis (Dupraz et al., 2000; Ruckdeschel et al., 2002;
Yoshida et al., 2004). CTSD have been shown to be upregulated
in the PDAC cancer (Iacobuzio-Donahue et al., 2003). AGR2,
a surface antigen, has been shown to promote the progression
of PDAC cells through regulation of Cathepsins B and D genes
(Dumartin et al., 2011). CTSA was identified as one of the 76
deregulated genes in a study aiming for the development of early
diagnostic markers as well as potential novel therapeutic targets
for both familial and sporadic PDAC (Crnogorac-Jurcevic et al.,
2013). PLBD1 has been found to be upregulated in various studies
with five-fold increase in cell lines (Makawita et al., 2011) and
in study where the effect of pancreatic β-cells inducing immune-
mediated diabetes was studied (Salem et al., 2014). Metabolism-
related GGH has been found to be relevant and upregulated in
gallbladder carcinomas (Washiro et al., 2008).

Most of the genes in the 9-gene classifier (ITGB1, EPHA2,
IL1R2) are involved in the migration, immune pathways,
adhesion and metastasis of PDAC or other cancers, that
are specifically associated with the developmental events and
signaling in the progression of cancer. To corroborate the
involvement of these genes in PDAC progression and early stages
of PDAC development, we evaluated the expression levels of these
genes in the early lesions of PDAC precursors i.e., LIGD-IPMN,
HGD-IPMN and InvCa-IPMN (Figure 5) [15]. Eight genes
except GGH are upregulated in IPMA, IPMN, and IPMC as well
as in PanINs, as compared to a normal pancreas, demonstrating
their enhanced expression is linked with the progression of
PDAC that occurs early during development of malignancy.
The outcomes of our study clearly show that our 9-gene
classifier reflect drivers of early defects during progression and
development of PDAC. This argument is further strengthened by
the survival analysis of the genes where five of the nine genes
(CTSA, CTSD, EFNA4, IFI27 and IL1R2) are strongly related to
discriminating better and poor survivors.

Since individuals with CP are at increased risk of developing
PDAC and pathological discrimination is challenging between
CP and PDAC which makes it important for a classifier to
discriminate between these two disease stages. While other
studies have performed meta-analysis of transcriptome data
for PDAC to identify the genes that are overexpressed in
PDAC (Iacobuzio-Donahue et al., 2003; López-Casas and López-
Fernández, 2010; Munding et al., 2012), they are irrelevant in
identifying the markers for prognosis of PDAC. Our 9-gene
biomarker classifier accurately distinguished premalignant and
malignant pancreatic lesions such as PanIN, IPMA, IPMN and
IPMC from healthy pancreas. As all 9 genes of our classifier are
upregulated in PanIN (as compare to normal pancreas) already,
it indicates that these 9 genes are dysregulated in early lesions
during the process of PDAC development and therefore could
assist in an early detection of PDAC.

Further, to analyze the potential of the 9-gene biomarker in
accurate classification of PDAC subjects versus healthy subjects
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we compared our biomarker combination with previously known
and established biomarkers. Our analysis also indicates that the
9-gene biomarker panel including multiple genes, rather than
a single biomarker, is more powerful and had possibility to
improve the specificity and selectivity for an accurate detection of
PDAC. The idea behind generation of biomarker panel with the
better identification in blood sample, in corroboration with the
tissue studies, is fulfilled here. The previously established markers
worked well in the tissue studies but could not show their similar
potential in blood studies.

Further, the protein expression of selected biomarker genes
was also examined to determine their association with PDAC
at protein levels. The analysis depicted that multiple gene
product/proteins corresponding to biomarkers genes depicted
higher expression in pancreatic cancer tissues. Interestingly
some marker (e.g., EFNA4, GGH) also depicted over-expression
in other cancers indicating their association with tumor
development and progression related hallmark processes. In
recent years, multiple proteomics studies were performed to
understand the proteome landscape of the PDAC but still
lack in generating comprehensive picture due to technological
limitations. Most of the proteomics technique can measure the
expression of 2,000-3,000 proteins that is far from generating
the global overview of proteome. High expression of Cathepsin
family proteins specifically CTSD is noted in several proteomics
studies which was also the case for Ephrin and Interferon
gamma family markers (Chen et al., 2005; Cui et al., 2009;
McKinney et al., 2011). Also, the expression of these genes is
not found to be related to a particular cell-type in pancreatic
cancer cell lineage. However, the fact that the overall study
is based on bulk sequencing data cannot be overlooked and
these cells may comprise of multiple cell-types which may
or may not influence the overall methodology of marker
selection. Overall, the protein-expression of the selected genes
and their expression in multiple cell-types of pancreatic cancer
is established. However, the aforementioned limitations have to
be challenged before designing the diagnostic panel. The 9-gene
markers identified here still needs validation in a bigger cohort
for its potential in identifying accurately the early stages but
this marker combination potentially has shown its discriminatory
power across various blood and tissue datasets obtained from
different sources and different platforms.
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FIGURE S1 | Pathway enrichment analysis of the 74 PDAC-specific
secretory genes.

FIGURE S2 | Upregulated Secretory genes in training datasets. (A) Heatmap of
27 upregulated secretory genes in PDAC for two of the three tissues and one of
the two blood datasets. (B) PCA plots for each training datasets using 27
upregulated secretory genes.

FIGURE S3 | Performance of 9-gene PDAC classifier on training sets using leave
one out cross-validation (LOOCV). (A) Diagnostic performance of the 9-gene
PDAC classifier on the five training sets. Sensitivity (Sens) and Specificity (Spec)
are indicated for each dataset. (B) AUC plot for 9-gene PDAC classifier on the
three tissue training datasets. (C) AUC plot for 9-gene PDAC classifier on the two
blood training datasets.

FIGURE S4 | The metrics for training datasets using the 9-biomarker panel genes.
(A) Boxplot of the averaged expression of the genes across all the five training
datasets. (B) PCA plots for each training datasets using the 9-biomarker panel
genes.

FIGURE S5 | The assessment metrics for testing datasets using the 9-biomarker
panel genes. (A) Heatmap of the 9 PDAC-upregulated marker genes. (B) PCA
plots in six independent testing datasets.

FIGURE S6 | The assessment metrics for validation datasets using the
9-biomarker panel genes. Heatmaps (A) and PCA plots (B) based on biomarker
panel genes in validation sets.

FIGURE S7 | The assessment metrics for PV1-3 dataset using the 9-biomarker
panel genes. (A) PCA plots of three different prospective validation datasets. (B)
Heatmaps of the 9-marker genes panel. (C) Boxplots of the expression of the
genes.

FIGURE S8 | Survival curve of 9-gene-based PDAC classifier and combined
genes.

FIGURE S9 | The assessment metrics for PV4 dataset using the 9-biomarker
panel genes. (A) PCA plots for precursor lesions in three stages IPMA, IPMN and
IPMC. (B) Heatmaps of the 9-marker genes panel. (C) Boxplots of the expression
of the genes in precursor lesions.

FIGURE S10 | Comparative performance of 9-gene-based PDAC classifier with
different previously established biomarkers. AUC plot for 9-gene-based PDAC
classifier across the training and validation datasets. The measures of
performances e.g., accuracy, sensitivity, specificity and AUC are mentioned in
Supplementary Table S3.

FIGURE S11 | Expression of 9-gene markers in different pancreas cell-types in
both healthy and tumor states. The expression of these genes is high in tumor
state (CTSA, CTSD, EFNA4, GGH, HTATIP2, IFI27, and ITGB5) or they are not
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expressed at all in healthy state (IL1R2 and PLBD1). This is also consistent with
protein expression of the genes as measured by antibody staining
experiments by HPA.

FIGURE S12 | Immunolabeling of protein expression of nine genes selected for
the classifier in pancreatic cancer. Light blue is low staining; blue is moderate
staining and brown is high.

TABLE S1 | Log2 fold change of the significantly DE genes identified from different
training datasets.

TABLE S2 | Direction of differentially upregulated genes validated via boxplot
analysis. Upregulated are shown with green background and ones with opposite
direction are colored black.

TABLE S3 | Comparative performance of 9-gene PDAC Classifier with different
previously established biomarkers in training, test and validation datasets. Sets
with green background are datasets derived from blood. All mustard colored cells
have AUC > 0.80 whereas light blue cells indicate low specificity or sensitivity
despite of high AUC. For black shaded cells all the genes corresponding to the
mentioned studies cannot be identified.
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The increased incidence of diabetic retinopathy (DR) and the legacy effect associated
with it has raised a great concern toward the need to find early diagnostic and treatment
strategies. Identifying alterations in genes and microRNAs (miRNAs) is one of the most
critical steps toward understanding the mechanisms by which a disease progresses,
and this can be further used in finding potential diagnostic and prognostic biomarkers
and treatment methods. We selected different datasets to identify altered genes and
miRNAs. The integrative analysis was employed to find potential candidate genes
(differentially expressed and aberrantly methylated genes that are also the target of
altered miRNAs) and early genes (genes showing altered expression and methylation
pattern during early stage of DR) for DR. We constructed a protein-protein interaction
(PPI) network to find hub genes (potential candidate genes showing a greater number
of interactions) and modules. Gene ontologies and pathways associated with the
identified genes were analyzed to determine their role in DR progression. A total of
271 upregulated-hypomethylated genes, 84 downregulated-hypermethylated genes,
11 upregulated miRNA, and 30 downregulated miRNA specific to DR were identified.
40 potential candidate genes and 9 early genes were also identified. PPI network
analysis revealed 7 hub genes (number of interactions >5) and 1 module (score = 5.67).
Gene ontology and pathway analysis predicted enrichment of genes in oxidoreductase
activity, binding to extracellular matrix, immune responses, leukocyte migration, cell
adhesion, PI3K-Akt signaling pathway, ECM receptor interaction, etc., and thus their
association with DR pathogenesis. In conclusion, we identified 7 hub genes and 9 early
genes that could act as a potential prognostic, diagnostic, or therapeutic target for DR,
and a few early genes could also play a role in metabolic memory phenomena.

Keywords: diabetic retinopathy, integrative approach, candidate genes, hub genes, early genes, biomarker

Abbreviations: DEGs, differentially expressed genes; DFU, diabetic foot ulcer; DMGs, differentially methylated genes;
DN, diabetic nephropathy; DR, diabetic retinopathy; FVM, fibro-vascular membrane; NPDR, non-proliferative diabetic
retinopathy; NV, neovascularization; PDR, proliferative diabetic retinopathy.
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INTRODUCTION

Diabetic retinopathy (DR), one of the major microvascular
complications of diabetes, is affecting approximately 34.6% of
diabetic individuals and has become the greatest threat to
vision (Yau et al., 2012). It starts with few microaneurysms and
dot hemorrhages during its initial stage, i.e., Non-Proliferative
Diabetic Retinopathy (NPDR), and progresses to the sight-
threatening stage called Proliferative Diabetic Retinopathy
(PDR). Various structural abnormalities like thickening of
basement membrane, pericyte loss, breakdown of blood-
retinal barrier, etc., are also associated with DR. Studies
have shown that neurodegeneration of ganglion cells is the
most initial event of DR pathogenesis, which starts even
before the formation of microaneurysm and dot hemorrhages
(Barber and Baccouche, 2017). DR remains asymptomatic in
its initial stages; however, symptoms like dark string floating
in the visual field, blurred vision, etc., start appearing as
the disease progresses and, if not treated, may end with
loss of vision. DR is associated with alteration in various
metabolic pathways like polyol pathway, hexosamine pathway,
protein kinase C (PKC) pathway, accumulation of advanced
glycosylation end products (AGEs), etc., which aggravates
oxidative stress and inflammatory responses and thus the
disease condition. Organelles like mitochondria and endoplasmic
reticulum are highly affected in DR conditions. The alterations
in the expression level, methylation pattern, and several
other genetic and epigenetic modifications of various genes,
especially those related to oxidative stress, inflammation,
and angiogenesis, drive the pathogenesis and progression of
DR by affecting multiple molecular pathways and functions
(Wong et al., 2016).

Various epigenetic modifications such as DNA methylation,
histone modifications, microRNA (miRNA), etc., occurring
during the early stage of diabetes do not only regulate the
expression of various genes but are also responsible for the
metabolic memory phenomena (deleterious effect induced by
prior glycemic exposure regardless of later glycemic control)
associated with diabetes (Mishra and Kowluru, 2016; Kumari
et al., 2020). This triggers the need for developing early
diagnosis and treatment methods. Further, limitations of
available treatments like its cost-effectiveness, variation in
responses from patients to patients, unavailability in remote
areas, etc., have raised the concern for better diagnosis and
treatment strategies.

Almost all the complications are the result of and also
lead to significant alterations in the expression pattern of
various genes. There are various epigenetic, genetic, as well as
other modifications responsible for such alterations. Identifying
aberrantly expressed genes, miRNAs, altered methylation, and
acetylation patterns are the first and the most critical step
toward understanding the mechanisms by which the disease
progresses, and this can be further used in finding the potential
prognostic and treatment methods and also in identifying various
biomarkers. Microarray profiling of genes is an emerging tool to
screen significantly altered genes or miRNAs present in a specific
disease condition. This tool can be exploited to identify candidate

genes and diagnostic and prognostic biomarkers for a particular
disease (Tarca et al., 2006; Moradifard et al., 2018).

The individual analysis of the array data is not very reliable
and precise. This limitation can be overcome to some extent
by overlapping usage of various relevant datasets (Curran and
Hussong, 2009; S. Kim and Park, 2016). In the present study,
integrative analysis of gene expression profiling microarray
data, gene methylation profiling microarray data, and miRNA
expression profiling microarray data were performed and various
bioinformatics tools were utilized to find potential candidate
genes and genes altered during early stage of DR, which may
be used as a diagnostic or prognostic biomarkers specific for
DR. Protein-protein interaction network construction, pathways,
and functional analysis of identified genes were performed to
investigate the molecular mechanisms associated with DR.

MATERIALS AND METHODS

Microarray Data and Processing
The data of gene expression profiling, gene methylation profiling,
and miRNA expression profiling were obtained from Gene
Expression Omnibus (GEO) datasets available at National Center
for Biotechnology Information (NCBI)1. The first preference was
given to datasets containing human samples for the specific
disease followed by datasets containing greater number of
samples and then the datasets from recent studies. The statistical
significance, normalization, and quality of data present in
datasets were ensured from the literature containing respective
studies. We employed GEO2R tool1 to download all the raw data
(p-value adjusted to false discovery rate [FDR]) of a particular
group of samples present in the selected dataset and identified the
differentially expressed genes (DEGs), differentially methylated
genes (DMGs), or differentially expressed miRNAs. In order
to identify genes altered during early stage of DR, separate
comparisons for PDR and NPDR were made from DR datasets
containing PDR and NPDR samples.

The diabetic retinopathy (DR) gene expression profiling
dataset GSE60436 (platform: GPL6884 Illumina HumanWG-
6 v3.0 expression BeadChip) consisted of total 9 human
samples (Japanese population) out of which 3 were taken from
the normal retina and 6 from the fibrovascular membrane
(FVM) of proliferative diabetic retinopathy (PDR) patients.
The samples from PDR patients were grouped into active
FVM (3 samples) and inactive FVM (3 samples) on the basis
of presence or absence of neovascularization (NV) in the
FVM, respectively (Ishikawa et al., 2015). To identify DEGs,
we performed two sets of comparison: first, normal retina
vs. inactive FVM (A), and second, normal retina vs. active
FVM (B), with cut-off of p-value < 0.05 and absolute log
fold change value (|log FC|) ≥ 1.5. However, we merged the
data of both sets (A + B) as both contained the samples
from PDR patients.

The diabetic retinopathy (DR) gene methylation profiling
dataset GSE57362 (platform: GPL13534 Illumina Human

1https://www.ncbi.nlm.nih.gov/gds
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Methylation450 BeadChip [HumanMethylation450_15017482])
consisted of total 265 human samples (Spanish population)
out of which 8 were from normal neuroretina, 8 were from
neuroretina of non-proliferative diabetic retinopathy (NPDR)
patients, 9 were from FVM of DR patients, and the rest were
from patients suffering from other ocular diseases (Berdasco
et al., 2017). Here also two sets of comparison were performed:
first, normal neuroretina vs. neuroretina of NPDR with |log FC|
> = 0.2 (G), and second, normal neuroretina vs. FVM of PDR
with |log FC| > = 0.5 (H), to identify DMGs with p-value < 0.05.
Here, we have set less threshold for |log FC| with the assumption
that fold change depends on many factors like type of study
performed, stage of disease at which sample was collected,
methods used to perform the study, etc. Hence we assumed that
the fold change in methylation profiling study might be far lower
than that in the expression profiling study (Maag et al., 2017;
Raman et al., 2018; Abdulrahim et al., 2019; He et al., 2019; Yang
et al., 2019).

The diabetic retinopathy (DR) miRNA expression profiling
dataset GSE140959 (platform: GPL16384 [miRNA-3] Affymetrix
Multispecies miRNA-3 Array) consisted of total 73 human
samples (from United States) of macular hole (MH), PDR, and
NPDR patients from aqueous humor (10 MH, 4 NPDR, 10 PDR),
vitreous humor (10 MH, 4 NPDR, 10 PDR), and plasma (10
MH, 4 NPDR, 11 PDR) (Smit-McBride et al., 2020). For this
dataset a total of 4 comparisons were made with p-value < 0.05
and |log FC| > = 1.5: first, aqueous and vitreous humor of
normal vs. NPDR (C’); second, aqueous and vitreous humor of
normal vs. PDR (D’); third, plasma of normal vs. NPDR (E’);
and fourth, plasma of normal vs. PDR (F’). Plasma samples
were compared separately with the thought of identifying any
circulatory biomarker.

The diabetic nephropathy (DN) gene expression profiling
dataset GSE1009 (platform: GPL8300 [HG_U95Av2] Affymetrix
Human Genome U95 Version 2 Array) consisted of total 6
human samples (from Netherlands) out of which 3 were from the
glomeruli of normal kidney and 3 from the glomeruli obtained
from the diabetic nephropathy kidney (Baelde et al., 2004), and
the DEGs were identified by performing comparison between
glomeruli of normal kidney vs. glomeruli of DN kidney (1) with
cut-off of p-value < 0.05 and |log FC| ≥ 1.5.

The diabetic nephropathy (DN) miRNA expression profiling
dataset GSE51674 (platform: GPL10656 Agilent-029297 Human
miRNA Microarray v14 Rev.2 [miRNA ID version]) consisted
of total 16 human samples (from Italy) out of which 4 were
from kidney of healthy control, 6 were from kidney of DN
patients, and 6 from kidney of diabetic patients with membranous
nephropathy (Conserva et al., 2019), and comparison was made
between kidney tissue sample of normal vs. DN individuals (3)
with p-value < 0.05 and |log FC| ≥ 1.5.

The diabetic foot ulcer (DFU) gene expression profiling
dataset GSE80178 (platform: GPL16686 [HuGene-2_0-st]
Affymetrix Human Gene 2.0 ST Array [transcript (gene)
version]) consisted of total 12 human samples (from
United States) out of which 6 were of diabetic foot ulcer, 3
of diabetic foot skin, and 3 of non-diabetic foot skin (Ramirez
et al., 2018), and DEGs were identified from comparison between

non-diabetic foot skin vs. diabetic foot ulcer (2) with cut-off
value of p-value < 0.05 and |log FC| ≥ 1.5.

The diabetic foot ulcer (DFU) miRNA expression profiling
dataset GSE84971 (platform: GPL17537 nCounter Human
miRNA Expression Assay, V2) consisted of total 6 human foot
fibroblast samples (from United States) out of which 3 were
from diabetic foot ulcer and 3 from non-diabetic foot (Liang
et al., 2016), and the comparison between foot fibroblast samples
of non-diabetic foot vs. diabetic foot ulcer (4) was made with
p-value < 0.05 and |log FC| ≥ 1.5.

Datasets and the sets of comparison are summarized in
Table 1, and the overall work-flow of the study is summarized
in Figure 1.

Determination of Specific and
Overlapping Genes and miRNAs
We got two sets of data from each comparison [upregulated (log
FC ≥ 1.5) and downregulated (log FC ≤ −1.5) from expression
data and hypermethylated (log FC ≥ 0.2 for NPDR and log
FC ≥ 0.5 for PDR) and hypomethylated (log FC ≤ −0.2 for
NPDR and log FC≤ −0.5 for PDR) from methylation data]. The
specific and overlapping genes or miRNAs were determined using
online software Draw Venn Diagram1.

DR Specific Genes and miRNAs
We performed stepwise comparisons. Initially, to find DR
specific aberrantly expressed genes (specific AB) and DR specific
aberrantly expressed miRNAs [specific (C’+D’+E’+F’)], we
compared differentially expressed genes or miRNAs data of DR
with that of DN and DFU (Figure 1) and excluded all those
genes and miRNAs that were not exclusively present in DR from
further analysis.

Potential DR Candidate Genes
We assumed potential DR candidate genes as the genes that
showed altered expression as well as methylation pattern and
were also the target of altered miRNAs. To identify potential
candidate genes for DR, we compared DR specific differentially
expressed genes (specific AB), differentially methylated genes
(G+H), and targets of the DR specific altered miRNA
(C+D+E+F) (Figure 1). The genes that were common among all
the three groups were considered as potential candidate genes for
DR. To find the targets of altered miRNA, we used miRTarBase2

and chose the targets on the basis of strong experimental evidence
such as Reporter assay, Western blot, and qPCR.

Genes Involved in Early Stage of DR
The criteria for choosing early genes, i.e., the genes involved in
an early stage of DR, was to find genes that show differential
expression and aberrant methylation pattern in the early stage
(NPDR) of DR. So, we compared DR specific differentially
expressed genes (specific AB), differentially methylated genes
in NPDR (G), and differentially methylated genes in PDR (H).
Genes that were present in (specific AB) and (G) were considered
as the genes altered during early stage of the disease and can be
targeted for early diagnosis and treatment (Figure 1).

2https://www.ncbi.nlm.nih.gov/geo/geo2r/
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TABLE 1 | Datasets and the set of comparisons.

Dataset Comparisons No. of sample
control/diseased

Platform References

GSE60436 (DR_mRNA) Normal retina vs. inactive FVM
of PDR (A)
Normal retina vs. active FVM of
PDR (B)

3/3

3/3

GPL6884 Ishikawa et al., 2015

GSE57362 (DR_methylation) Normal neuroretina vs.
neuroretina of NPDR (G)
Normal neuroretina vs. FVM of
PDR (H)

8/8

8/9

GPL13534 Berdasco et al., 2017

GSE140959 (DR_miRNA) Aqueous and vitreous humor of
normal vs. NPDR (C’)
Aqueous and vitreous humor of
normal vs. PDR (D’)
Plasma of normal vs. NPDR (E’)
Plasma of normal vs. PDR (F’)

10/4 and 10/4

10/10 and 10/10

10/4
10/11

GPL16384 Smit-McBride et al., 2020

GSE1009 (DN_mRNA) Glomeruli of normal kidney vs.
DN kidney (1)

3/3 GSL8300 Baelde et al., 2004

GSE51674 (DN_miRNA) Kidney tissue sample of normal
vs. DN (3)

4/6 GPL10656 Conserva et al., 2019

GSE80178 (DFU_mRNA) Non-diabetic foot skin vs.
DFU (2)

3/6 GPL16686 Ramirez et al., 2018

GSE84971 (DFU_miRNA) Foot fibroblast sample of
non-diabetic foot vs. DFU (4)

3/3 GPL17537 Liang et al., 2016

PPI Network Construction, Hub Gene,
and Module Identification
We considered hub genes as those potential candidate genes
of DR that possess a large number of interactions. Search
Tool for the Retrieval of Interacting Genes (STRING) database
is one of the most familiar tools to determine the known
and predicted interactions among a set of proteins. STRING
version 11.03 was used to construct the interaction network
between potential candidate genes with sources of interactions
including experiments, databases, text mining, co-occurrence,
co-expression, and protein homology. A high confidence cut off
≥ 0.7 of minimum interaction score was used to extract the
interactions. With the help of Molecular Complex Detection
(MCODE) (Bader and Hogue, 2003) and CytoHubba (Chin
et al., 2014) applications of Cytoscape (Shannon et al., 2003) we
determined highly interconnected clusters or module and hub
genes, respectively, present in our PPI networks (Figure 1).

Gene Ontology and Pathway Analysis
Though gene ontology (GO) provides various biological
processes, molecular functions, and sub-cellular localizations of
genes, it doesn’t contain any information about the pathways
that are associated with the genes. Various subsets of GO and
pathways are interdependent and interconnected with each other,
so to understand the mechanisms by which a gene works, it is
necessary to determine various gene ontologies along with their
associated pathways. In this study, gene ontology and pathway
analysis were performed for potential DR candidate genes, genes
altered during the early stage of DR, i.e., NPDR stage, hub genes,
and genes present in the interconnected module. Gene Ontology

3https://string-db.org/

Resource (GOR)3 and Database for Annotation Visualization and
Integrated Discovery (DAVID)4 are among the most well-known
tools to perform gene enrichment analysis. The enrichment
analysis of Gene Ontology (GO) (GO biological process complete
and GO molecular function complete) was performed using GOR
database while that of KEGG pathways was performed using
DAVID database with cutoff value of FDR p < 0.05. Further, to
go into the details of each individual genes present in the hub
genes and early genes of DR, we determined the GO and KEGG
pathways for each of those genes separately using QuickGo5 and
KEGG6 databases (Figure 1).

RESULTS

Identification of Altered Genes and
miRNAs in DR
The GEO2R analysis of different gene expression profiling
datasets identified total 743 upregulated and 971 downregulated
genes in DR, 855 upregulated and 408 downregulated genes
in DN, 353 upregulated and 864 downregulated genes in
DFU, respectively. In the case of gene methylation profiling
of DR dataset total 81 hypermethylated genes in NPDR, 83
hypomethylated genes in NPDR, 584 hypermethylated genes in
PDR, and 3699 hypomethylated genes in PDR were identified.
The miRNA expression profiling of different datasets identified
total 11 upregulated and 30 downregulated miRNA in DR,
126 upregulated and 35 downregulated miRNA in DN, 27

4https://david.ncifcrf.gov/
5https://www.ebi.ac.uk/QuickGO/
6https://www.genome.jp/kegg/pathway.html
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FIGURE 1 | Diagrammatic representation of overall work-flow. (A): (DEGs in inactive FVM of PDR); (B): (DEGs in active FVM of PDR); (G): (DMGs in neuroretina of
NPDR); (H): (DMGs in FVM of PDR); (1): (DEGs in glomeruli of DN kidney); (2): (DEGs in DFU); (3): (differentially expressed miRNAs in kidney tissue of DN); (4):
(differentially expressed miRNAs in foot fibroblast sample of DFU); (C’): (differentially expressed miRNAs in Aqueous and vitreous humor of NPDR); (D’): (differentially
expressed miRNAs in Aqueous and vitreous humor of PDR); (E’): (differentially expressed miRNAs in plasma of NPDR); (F’): (differentially expressed miRNAs in
plasma of PDR); (Specific AB): (DEGs specific for DR); (Specific C’–F’): (differentially expressed miRNAs specific for DR); (C–F): (targets of DR specific differentially
expressed miRNA).
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upregulated and 1 downregulated miRNA in DFU, respectively
(Supplementary Table 1).

Identification of Potential DR Candidate
Genes
DR Specific Genes and miRNAs
The Venn diagram revealed various specific and overlapping
genes. Comparing gene and miRNA expression datasets of
DR, DN, and DFU revealed total 681 upregulated genes
[specific (AB).u], 884 downregulated genes [specific (AB).d],
11 upregulated miRNA, and 30 downregulated miRNA specific
for DR (Figures 2, 3). Table 2 enlists all miRNA specific for
DR. Further, among 681 up-regulated genes, 271 genes were
also found to be hypo-methylated, and 78 were the targets of
down-regulated miRNA, and among 884 down-regulated genes
84 genes were also hyper-methylated and 8 were the targets of
up-regulated miRNA (Figure 4 and Supplementary Table 1).

Potential DR Candidate Gene
A total of 40 potential DR candidate genes (genes showing altered
expression as well as methylation pattern and were also the target
of altered miRNAs) were identified. All of them were upregulated,
hypomethylated, and targets of downregulated miRNA (Figure 4
and Supplementary Table 1).

Genes Involved in Early Stage of DR
Various pathological changes in retina of diabetic individual
start even before the appearance of DR associated symptoms
(Vujosevic et al., 2019). Thus DR remains asymptomatic during
its initial stages, and by the time symptoms appear, the individual
already suffers with some vision loss. The available treatment
can preserve the remaining vision but can’t compensate for
the already lost vision (Ellis et al., 2013). Further, metabolic
memory phenomenon is believed to occur due to various
epigenetic modifications occurring during the early stage of the
disease (Intine and Sarras, 2012; Maghbooli et al., 2015). Hence,
determining genes that play a critical role during early stage
of the disease could help in preventing the disease progression
during early stage of DR and could also help in finding a way
to abolish metabolic memory phenomenon. We found a total of
9 genes showing differential expression and methylation pattern
in the early stage of DR, i.e., NPDR out of which 5 (NR1H4,
ROCK2, HTATIP2, UHRF1, and NTM) were upregulated-
hypomethylated and 4 (MAPT, FAM69C, FHOD3, and IGSF21)
were downregulated-hypermethylated genes (Figure 5, Table 3,
and Supplementary Table 1). The identified early genes were
found to be involved in one or more crucial events associated with
DR progression like angiogenesis, oxidative stress, inflammation,
etc. Further, some of the early genes like ROCK2 (Koch et al.,
2014; Lu et al., 2020), UHRF1 (Ramesh et al., 2016), and
MAPT (C. C. Zhang et al., 2016) are shown to participate in
neurodegeneration, which is one of the earliest events in DR
development. Also, in the present study, one of the identified
early genes, i.e., NR1H4, was also found to be the target of one
of the downregulated miRNAs (has-mir-192) identified in plasma
sample of NPDR cases.

FIGURE 2 | Genes specific for DR. (A) Up-regulated genes: total 743
(681 + 18 + 1 + 43) up-regulated genes are present in DR out of which 681
are uniquely present in DR cases. (B) Down-regulated genes: total 971
(884 + 42 + 3 + 42) down-regulated genes are present in DR out of which 884
are uniquely present in DR cases (A+B).u: (up-regulated genes in inactive and
active FVM of DR); (1).u: (up-regulated genes in DN); (2).u: (up-regulated
genes in DFU); (A+B).d: (down-regulated genes in inactive and active FVM of
DR); (1).d: (down-regulated genes in DN); (2).d: (down-regulated genes in
DFU).

FIGURE 3 | microRNA specific for DR. (A) Upregulated miRNA: 11
up-regulated miRNAs are uniquely present in DR cases. (B) Downregulated
miRNA: 30 down-regulated miRNAs are uniquely present in DR cases
(C’+D’+E’+F’).u: (up-regulated miRNA in DR); (3).u: (up-regulated miRNA in
DN); (4).u: (up-regulated miRNA in DFU); (C’+D’+E’+F’).d: (down-regulated
miRNA in DR); (3).d: (down-regulated miRNA in DN); (4).d: (down-regulated
miRNA in DFU).

PPI Network Construction, Hub Genes,
and Module Identification
The PPI network of potential candidate genes showed a total
of 26 interacting nodes with minimum interaction score of
0.7 (high confidence) (Figure 6A). MCODE detected 1 module
having MCODE score 5.67 and number of node 13 (Figure 6B)
while CytoHubba revealed 7 hub genes (FN1, IL-6, COL1A2,
COL4A1, COL4A2, SPARC, and MMP9) (Table 3) with number
of interactions >5 in the PPI network. DR specific miRNAs
associated with hub genes are listed in Table 4. Most of the
identified hub genes belong to the collagen group of extracellular
matrix. Though evidence suggests involvement of extracellular
matrix component in DR pathogenesis, not much study has been
completed on collagen in association with DR. However, genes
like COL4A1 (Alavi et al., 2016), COL4A2 (Alavi et al., 2016), and
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TABLE 2 | Differentially expressed DR specific miRNA.

Up-regulated miRNA hsa-mir-320a, ssc-mir-24-2*, hsa-mir-320d-2,
hsa-mir-455, hsa-mir-320d-1, tni-mir-23a-2*,
tni-mir-23a-1*, ssc-mir-24-1*, hsa-let-7b,
lca-mir-23a*, tni-mir-23a-3*

Down-regulated miRNA hsa-mir-16-2, hsa-mir-486, hsa-mir-20b,
hsa-mir-15b, hsa-let-7i, hsa-mir-16-1, hsa-mir-30e,
hsa-mir-502, hsa-mir-17, hsa-mir-20a,
hsa-mir-532, hsa-mir-18a, hsa-mir-222,
hsa-mir-363, hsa-mir-194-2, hsa-mir-660,
hsa-mir-194-1, hsa-mir-29a, hsa-let-7g,
hsa-mir-130a, hsa-mir-27a, hsa-mir-192,
hsa-mir-106b, hsa-mir-150, hsa-mir-106a,
hsa-mir-25, hsa-mir-451, hsa-mir-15a,
hsa-mir-30d, hsa-mir-126

∗microRNA from species other than human. Human homologous of these miRNA
were considered to find their targets.

FN1 (Moradipoor et al., 2016) are found to have association with
the DR pathogenesis. Studies have also found SPARC (Fu et al.,
2019), IL-6 (Rojas et al., 2011), and MMP9 (Kowluru et al., 2012)
playing roles in DR development by affecting one or more factors
responsible for DR like angiogenesis, inflammation, etc.

Gene Ontology and KEGG Pathway
Analysis
The gene ontology and KEGG pathway analysis revealed many
biological processes, molecular functions, and pathways linked
with potential candidate genes, hub genes, genes present in
module, and some of the early genes of DR that can play
an essential role in the pathogenesis of DR by regulating
each other, enhancing pathological activities, and forming other
cross communications.

The enrichment analysis revealed that the potential candidate
genes, hub genes, and genes present in modules were enriched
in molecular functions like binding to protein, organic
cyclic compound, ions and extracellular matrix; hydrolase,
oxidoreductase, transferase, and catalytic activity; transcription

regulation; signaling receptor; enzyme and receptor regulation,
etc. Further, the enriched biological processes were various
cellular processes like signal transduction, movement of cells,
cellular metabolic processes, cellular response to stimulus,
regulation of various biological processes and molecular
functions, immune response, leukocyte migration, oxidation-
reduction process, metabolic processes, cell adhesions, etc.
The enriched KEGG pathways were PI3K-Akt signaling
pathway, ECM-receptor interaction, Focal adhesion, TNF
signaling pathway, Toll-like receptor signaling pathway, Protein
digestion and absorption, NOD-like receptor signaling pathway,
Chemokine signaling pathway, etc. Some of the enriched GO
and KEGG pathways of hub genes are shown in Table 5 while the
list of probable DR associated enriched GO and KEGG pathways
of potential candidate genes, hub genes, and genes present in
module are provided in Supplementary Table 2.

The gene ontology and pathway analysis of individual hub
genes and early genes showed that many of those genes
were involved in biological processes, molecular functions, and
pathways that are or can be associated with DR pathogenesis. For
example, biological processes like angiogenesis, inflammatory
response, neurogenesis, blood vessel development, extracellular
matrix organization, etc.; molecular functions like protein
binding, receptor binding, collagen binding, growth factor
activity, extracellular matrix structural constituent, etc.; KEGG
pathways like ECM receptor interaction, AGE-RAGE signaling
pathways, PI3K-Akt signaling pathway, focal adhesion, etc. were
associated with one or more genes. Supplementary Table 3
enlists the gene ontologies and KEGG pathways of individual hub
genes and early genes based on their probable association with
DR pathogenesis.

DISCUSSION

The complications associated with human health results from
alterations in gene expression pattern, either by genetic,

FIGURE 4 | Potential DR candidate genes. (A) Upregulated genes_Down-regulated miRNA targets_Hypomethylated genes: 40 up-regulated and hypomethylated
genes were also the target of DR specific down-regulated miRNA. (B) Down-regulated genes_Up regulated miRNA targets_Hypermethylated genes: 0
down-regulated and hypermethylated were the target of DR specific up-regulated miRNA (specific AB).u: (up-regulated genes specific for DR); (C+D+E+F).d: (targets
of DR specific down-regulated miRNA); (G+H).hypomet: (hypomethylated genes in NPDR and PDR); (specific AB).d: (down-regulated genes specific for DR);
(C+D+E+F).u: (targets of DR specific up-regulated miRNA); (G+H).hypermet: (hypermethylated genes in NPDR and PDR).
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FIGURE 5 | Early genes. (A) Up-regulated and hypomethylated genes: total
83 genes were hypomethylated during NPDR while 3699 during PDR out of
which 271 genes were also up-regulated in DR cases. 5 up-regulated and
hypomethylated genes were present in NPDR stage of DR.
(B) Down-regulated and hypermethylated genes: total 81 genes were
hypermethylated during NPDR while 584 during PDR out of which 84 genes
were also downregulated in DR cases. 4 down-regulated and
hypermethylated genes were present in NPDR stage of DR (specific AB).u:
(up-regulated genes specific for DR); (G).hypomet: (hypomethylated genes in
NPDR); (H).hypomet: (hypomethylated genes in PDR); (specific AB).d:
(down-regulated genes specific for DR); (G).hypermet: (hypermethylated
genes in NPDR); (H).hypermet: (hypermethylated genes in PDR).

TABLE 3 | List of probable DR associated genes.

Categories Genes

Hub genes FN1 (Fibronectin 1), IL6 (Interleukin 6),
COL1A2 (Collagen Type I Alpha 2
Chain), COL4A1 (Collagen Type IV
Alpha 1 Chain), COL4A2 (Collagen Type
IV Alpha 2 Chain), SPARC (Secreted
Protein Acidic And Cysteine Rich),
MMP9 (Matrix Metallopeptidase 9)

Early genes Upregulated
and
hypomethylated

NR1H4 (Nuclear Receptor Subfamily 1
Group H Member 4), ROCK2 (Rho
Associated Coiled-Coil Containing
Protein Kinase 2), HTATIP2 (HIV-1 Tat
Interactive Protein 2), UHRF1 (Ubiquitin
Like With PHD And Ring Finger
Domains 1), NTM (Neurotrimin)

Downregulated
and
hypermethylated

MAPT (Microtubule Associated Protein
Tau), FAM69C (Family With Sequence
Similarity 69 Member C), FHOD3
(Formin Homology 2 Domain
Containing 3), IGSF21 (Immunoglobin
Superfamily Member 21)

Hub genes: potential candidate genes of DR which possess large
number of interaction. Early genes: genes showing altered expression and
methylation pattern during an early stage of DR.

epigenetic modifications or other mechanisms. Today, the
increased rate of diabetic incidences has also increased the rate
of its associated complications, and diabetic retinopathy that
affects approximately 34.6% of diabetic individuals (Yau et al.,
2012) accounts for about 4.8% cases of blindness worldwide
(Drake, 2007). Also available DR treatments suffer from one or
more limitations such as economic burden, variability in drug
response among patients, accessibility of the healthcare in rural
areas, etc. Further, metabolic memory phenomena associated

with diabetes has increased a great concern for early diagnosis
and treatment strategies. Therefore, determining DR specific
potential genes, genes altered during early stage of DR, their
functions, molecular pathways, and interacting partners may
lead to the finding of early diagnostic and better treatment
methods. DNA methylation and miRNAs are among the various
epigenetic modifications that are responsible for alterations in
various genes expression during DR pathogenesis (Maghbooli
et al., 2015; X. Zhang et al., 2017). Thus, they may play a crucial
role in regulation of various biological processes, functions,
and pathways associated with DR. Hence integration of gene
expression profiling, gene methylation profiling, and miRNA
expression profiling data could help in identification of more
accurate and specific genes that may play an indispensable role
in DR progression and pathogenesis.

Abnormal inflammation, oxidative stress, and
neovascularization are the prime events responsible for
vision loss in DR. The inflammatory responses like adhesion
of leukocytes with endothelial cells and their migration
toward the inflamed area aggravates the pathogenesis. Further
neurodegeneration is another event observed during early
stages of DR. Hence, the product of any genes whose pathways,
functions, or processes affect these events either directly or
indirectly can be involved in the disease progression.

Regarding the individual genes, we find that most of the
hub genes belong to the collagen group of extracellular matrix.
Studies have shown various extracellular matrix components to
be involved in the development of DR, but only a few studies
have been done on collagen in context to DR. There is not much
study done on COL1A2 (Collagen Type I Alpha 2 Chain) about
DR. However, Type IV collagen, the major protein of basement
membrane matrix, shows increase in its expression level in
vitreous and probably also in serum with the duration of diabetes
and is exalted in DR condition (Kotajima et al., 2001). Mutation
in COL4A1 (Collagen Type IV Alpha 1 Chain) and COL4A2
(Collagen Type IV Alpha 2 Chain) has been found to elevate
the risk of DR development by causing various abnormalities
like vascular lesions, raising the expression of Vegfa, Pdgfb, and
Pgf leading to neovascularization (Alavi et al., 2016). COL4A1 is
also associated with obesity, one of the risk factors of diabetes.
Moreover, FN1 (Fibronectin 1), a gene encoding fibronectin, is
found to be up-regulated in T2DM and might be involved in
angiogenesis, inflammatory response, and cell adhesion. Its level
is increased in various tissues including retina, thus changing
extracellular matrix (ECM) in endothelium and promoting
damage to vessels wall. Also, endothelin- (ET-) dependent
pathway is involved in the up-regulation of FN-1 during diabetes
that involves activation of NF-kβ and AP1 transcription factors
(Moradipoor et al., 2016). Further, IL-6 (Interleukin-6), which
is a potent proinflammatory cytokine, plays an essential role
in DR pathogenesis. Knockout of IL-6 resulted in reduced
leukocytes adhesion in retinal blood vessels and TNF-alpha
level in microglial cells of retina (Rojas et al., 2011). However,
one study showed that IL-6 protects muller cells from glucose
toxicity, thus playing a protective role in DR (Coughlin et al.,
2019). MMP9 (Matrix Metallopeptidase 9) encodes protein that is
involved in the breakdown of extracellular matrix. It is involved
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FIGURE 6 | Interaction network and module of potential DR candidate genes. (A) Protein-protein interaction (PPI) network of potential DR candidate genes: the
intensity of node color denotes the degree of interactions it has with other nodes (dark purple color denotes the highest number of interactions followed by blue, light
blue, green, light green, etc., and yellow denotes the lowest number of interaction). (B) Module (MCODE score 5.67 and number of nodes 13) obtained from PPI
network of potential DR candidate genes.
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in DR development and progression by accelerating apoptosis of
retinal capillary cells in the early phase of DR and angiogenesis in
the later phase (Kowluru et al., 2012). The level of MMP-9 differs
with the stages of DR and was found to contribute more than
MMP-1 in DR pathogenesis (Kwon et al., 2016). Various histone
modifications, DNA methylations, and their role in metabolic
memory formation (Mishra and Kowluru, 2016; Kumari et al.,
2020) are reported for MMP9 during hyperglycemic conditions.
SPARC (Secreted Protein Acidic And Cysteine Rich), a gene that
encodes cysteine-rich acidic matrix-associated protein, is also
involved in the development of DR. Retinal basement membrane
of Type2DM patients showing thickening and permeability
changes is found to secrete the protein encoded by SPARC
(Watanabe et al., 2009). Further, SPARC was also found to
mediate cellular adhesion, cell migration, and angiogenesis.

Moving to genes altered in early stage of DR, except for
one study on IGSF21 (Immunoglobin Superfamily Member 21)
(Lin et al., 2016), none of the genes have been studied in
context to DR. However, ROCK2 (Rho Associated Coiled-Coil
Containing Protein Kinase 2) (Koch et al., 2014; Lu et al.,

TABLE 4 | Hub genes and the associated altered miRNA.

Hub genes* miRNA*

FN1 hsa-let-7g

IL6 hsa-mir-451, has-mir-106a

COL1A2 hsa-let-7g, has-mir-25, has-mir-29a

COL4A1 hsa-mir-29a

COL4A2 hsa-mir-29a

SPARC hsa-mir-29a

MMP9 hsa-mir-451, has-mir-15b

∗All hub genes were up-regulated and their associated miRNAs were down-
regulated.

2020), UHRF1 (Ubiquitin Like With PHD And Ring Finger
Domains 1) (Ramesh et al., 2016), and MAPT (Microtubule
Associated Protein Tau) (C. C. Zhang et al., 2016) are shown
to be associated with neurodegeneration. As neurodegeneration
has been observed as one of the earliest events in the onset of
DR, these genes might be responsible for retinal pathological
changes in early DR and might also play a role in metabolic
memory formation. Additionally, there are so many studies done
on ROCK1 but not on ROCK2. However, ROCK has an essential
role in the pathogenesis of DR. It affects the expression and
function of adhesion molecules and its inhibitor significantly
reduced this adhesion process by reducing the activation of
ROCK. ROCK pathway also plays a critical role in angiogenesis
(Arita et al., 2010). Moreover, abnormal ROCK pathways are
responsible for various neurological disorders. In one study
ROCK inhibitor was shown to increase the regeneration of retinal
ganglion cell (Lingor et al., 2007). Another study showed increase
in ROCKII protein level in NMDA-induced retinal neurotoxicity,
and its inhibitor acted as neuroprotective agent by abolishing the
increase in ROCKII level (Kitaoka et al., 2004). Apart from this,
UHRF1, which encode a protein that regulates DNA and histone
methylation, and NR1H4 (Nuclear Receptor Subfamily 1 Group
H Member 4), which encode ligand-activated transcription
factor, are also found to be linked with inflammation (Fiorucci
et al., 2010; Wang et al., 2018), oxidative stress (Gai et al., 2017;
J. K. Kim J. K. et al., 2020), and angiogenesis (Guo and Mo,
2020). Interestingly, in the present study, NR1H4 was also found
to be one of the targets of down-regulated miRNA identified in
a plasma sample of NPDR cases and thus can act as a preferred
candidate in studies concerned with identification of circulatory
prognostic biomarker for DR.

This study revealed many hub genes and few early genes
that have the potential to act as a target in future DR research,
but this study suffers from its own limitations. During the

TABLE 5 | List of some of the enriched GO and KEGG pathways of hub genes.

Terms GO/KEGG pathways FDR value

Biological Processes (BP) Extracellular structure organization (GO:0043062) 1.59E-06

Endodermal cell differentiation (GO:0035987) 1.21E-03

Cellular response to organic substance (GO:0071310) 1.27E-03

Cellular response to chemical stimulus (GO:0070887) 2.88E-03

Response to organic substance (GO:0010033) 3.11E-03

Circulatory system development (GO:0072359) 4.70E-03

Platelet activation (GO:0030168) 9.50E-03

Collagen-activated tyrosine kinase receptor signaling Pathway (GO:0038063) 9.96E-03

Blood vessel development (GO:0001568) 1.02E-02

Positive regulation of cell migration (GO:0030335) 1.08E-02

Molecular Functions (MF) Platelet-derived growth factor binding (GO:0048407) 7.15E-03

Extracellular matrix structural constituent conferring tensile strength (GO:0030020) 7.24E-04

Collagen binding (GO:0005518) 1.69E-03

Extracellular matrix structural constituent (GO:0005201) 3.76E-06

Structural molecule activity (GO:0005198) 1.48E-03

KEGG pathways hsa04512:ECM-receptor interaction 0.018044733

hsa04151:PI3K-Akt signaling pathway 0.028095395

hsa05200:Pathways in cancer 0.047128876
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selection of probable candidate genes in the early stage of
DR (early genes), only gene methylation dataset was taken
into consideration due to unavailability of NPDR samples in
the gene expression (mRNA expression) dataset, and this is
one of the major limitations of this study. The miRNA data
was also not considered here because targets of miRNAs are
diverse, which may include many unrelated genes and therefore
may decrease the specificity of the identified genes to the
particular context.

Further, as different datasets differ in the source of population
for sample collection, and also in some cases single dataset
contains sample from different parts of body, integration of these
may lead to heterogeneity and affect the results. However, by
maintaining the statistical significance of data, the integration
of multiple datasets can be beneficial in capturing multiple
molecular alterations, thus improving the prediction accuracy
while the presence of diverse source of population and different
regions of body can also lead to identification of potential global
candidate genes for the disease.

Also, not sufficient studies are available for the identified
genes with respect to DR. Furthermore, validation of the
obtained results is necessary for the genes to be considered as a
representative gene for DR.

CONCLUSION

Diabetic retinopathy is a consequence of multiple altered
metabolic processes, biological functions, and pathways that are
linked among themselves in one or the other ways, and these
alterations are in turn associated with one or more altered
expression of genes.

The study identified 7 hub genes (FN1, IL-6, COL1A2,
COL4A1, COL4A2, SPARC, and MMP9) that could play a
potential role in the aggravation of DR pathogenesis. Further,
some of the early genes like NR1H4 and those participating
in neurodegeneration (ROCK2, UHRF1, and MAPT) could be
responsible for early pathological changes in DR and formation
of metabolic memory and can be used as a potential prognostic
biomarker and early therapeutic targets for DR.
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Embryofetal development is a critical process that needs a strict epigenetic control,
however, perturbations in this balance might lead to the occurrence of congenital
anomalies. It is known that anticonvulsants potentially affect epigenetics-related
genes, however, it is not comprehended whether this unbalance could explain the
anticonvulsants-induced fetal syndromes. In the present study, we aimed to evaluate the
expression of epigenetics-related genes in valproic acid, carbamazepine, or phenytoin
exposure. We selected these three anticonvulsants exposure assays, which used murine
or human embryonic stem-cells and were publicly available in genomic databases.
We performed a differential gene expression (DGE) and weighted gene co-expression
network analysis (WGCNA), focusing on epigenetics-related genes. Few epigenetics
genes were differentially expressed in the anticonvulsants’ exposure, however, the
WGCNA strategy demonstrated a high enrichment of chromatin remodeling genes for
the three drugs. We also identified an association of 46 genes related to Fetal Valproate
Syndrome, containing SMARCA2 and SMARCA4, and nine genes to Fetal Hydantoin
Syndrome, including PAX6, NEUROD1, and TSHZ1. The evaluation of stem-cells under
drug exposure can bring many insights to understand the drug-induced damage to the
embryofetal development. The candidate genes here presented are potential biomarkers
that could help in future strategies for the prevention of congenital anomalies.

Keywords: WGCNA, epigenetics, antiepileptics, teratogen, valproic acid, phenytoin, fetal hydantoin syndrome,
fetal valproate syndrome

INTRODUCTION

Embryogenesis is a stepwise controlled process, which requires specific gene expression
orchestrated by signaling networks (Rape, 2017). During the embryo development, epigenetics
modifications are essential for the correct expression of these highly orchestrated genes, hence
enabling the transition from pluripotent stem-cells until its final differentiation state (Rape, 2017;
Jambhekar et al., 2019).

Frontiers in Neuroscience | www.frontiersin.org 1 November 2020 | Volume 14 | Article 59119637

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.591196
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.591196
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.591196&domain=pdf&date_stamp=2020-11-25
https://www.frontiersin.org/articles/10.3389/fnins.2020.591196/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-591196 November 19, 2020 Time: 16:40 # 2

Kowalski et al. Anticonvulsants and Chromatin-Genes Expression

The lack of proper chromatin modifications can be lethal
during embryogenesis or lead to the occurrence of congenital
anomalies (Jambhekar et al., 2019). Embryogenesis failures can be
caused by genetic factors or external stimuli, named teratogens
(De Santis et al., 2004; Worley et al., 2018). According to
epidemiologic studies, it is believed that teratogens cause 10–15%
of all the congenital anomalies (Gilbert-Barness, 2010); however,
there are many barriers in regard to the proper teratogen
identification and understanding of its molecular mechanisms.

Few studies have assessed the potential of a teratogenic drug
disrupting epigenetics mechanisms, being these studies restricted
especially to alcohol and valproic acid use during pregnancy, and
their induced histone hyperacetylation (Tung and Winn, 2010;
Gupta et al., 2016; Mazzu-Nascimento et al., 2017). On the other
hand, assays in embryonic stem-cells are constantly used in the
developmental toxicity field, providing a better comprehension
of the drug-induced perturbation in development (Worley et al.,
2018; Leigh et al., 2020). These perturbations could be assessed
by evaluating how these proteins interact with each other in a
biological network, which is systems biology field of research.

From a systems biology perspective, these gene expression
perturbations could be identified by network and co-expression
analyses, helping to hypothesize which epigenetics mechanisms
are teratogen-affected.

Hence, the aim of the present study is to evaluate the
effect of anticonvulsant drugs, known for their teratogenic
effects, in the expression of epigenetics machinery genes. For
its accomplishment, we performed a secondary expression
analysis in murine or human embryonic stem-cells (mESC
and hESC) exposed to these drugs, and evaluated the results
through systems biology strategies, especially the weighted
gene correlation network analysis (WGCNA). WGCNA is a
consolidated screening method to identify biomarker candidates
or therapeutic targets; it associates gene expression and external
traits to identify modules of highly correlated genes (Langfelder
and Horvath, 2008). Finally, we hypothesized the main genes
and epigenetics mechanisms that might be perturbed in these
teratogens’ exposure.

METHODS

Teratogens Selection
Careful literature research was performed to select only drugs
with proven teratogenic effects in the human embryo or
fetus, and with established animal models. These molecules
were named major teratogens and assessed in the DrugBank
database to obtain its pharmaceutical class and variant names.
Anticonvulsants were the chosen class of study by convenience,
according to the availability of genomic expression assays.

Bioinformatics Analysis
Gene expression studies were obtained through research
mechanisms in the ArrayExpress and Gene Expression Omnibus
(GEO) databases, using the name of the drugs selected in the
search mechanism. Filters were applied to select only exposure
studies in murine or human embryonic stem-cells (mESC or

hESC). Despite only microarray studies being selected, RNA-seq
assays were also considered.

Differential gene expression analysis was performed in the
R v.3.6.2, applying robust multiaverage (RMA) normalization,
and using the affy and limma packages. The following
comparisons were executed: valproic acid, carbamazepine,
phenytoin, methotrexate, and warfarin exposure assays were set
against unexposed stem-cells; mESC and hESC selected assays
were evaluated separately. All the genes with logFC > 1.5
and adjusted P-value for false discovery rate (FDR) < 0.05
were considered upregulated; logFC < −1.5 and the same
adjusted P-value for FDR were set as parameters for the
downregulated genes.

Gene ontologies and Reactome enrichment analysis were also
performed in the R v.3.6.2, using the clusterprofileR package,
considering only significantly enriched ontologies or pathways
(FDR < 0.05). Orthologs assessment was performed using
the BiomaRt package. Only orthologs of high confidence were
included, according to the Ensembl Orthology Quality Contro1.

Human Phenotype Ontology (HPO) database was assessed in
the link2. Venn diagrams were performed in the Bioinformatics
and Evolutionary Genomics webtool, from the Ghent
University3.

Systems Biology Analysis
Weighted gene correlation network analysis (WGCNA) was
performed in the R v.3.6.2 with the homonym package; as in DGE
analysis, mESC, and hESC datasets were evaluated separately.
Data heterogeneity included differences in dose and time of
exposure for the mESC studies, hence a consensus analysis was
used, as recommended in the WGCNA package tutorials. The
20% probes with larger expression variance were included in the
analysis. A thresholding power was set in 12, according to the
topology of the data. Default minimum and maximum module
sizes were used, comprising of at least 30 and maximum of 3,000
genes per module. Gene significance was set in 0.1. This measure
helps to obtain the biologically relevant genes. We selected 0.1
as a threshold value because this is an exploratory study, hence
we wanted to collect all the biologically relevant genes. Further
phenotype-associated genes were still to be filtered, what would
also help to reduce any noise (non-relevant genes).

More information about the WGCNA parameters can be
encountered in the tutorials provided by the developers4.

Protein-protein interaction networks were generated with the
STRING v.11 database webtool, comprising only query proteins,
and with a minimum required interaction score of 0.4 (default).
The confidence score is a probability that evaluates whether the
proteins are included in the same metabolic pathway (von Mering
et al., 2005). The medium score we selected might include false
positives, therefore, we filtered for experimental data only, to
exclude computational predicted interactions. Further network

1https://www.ensembl.org/info/genome/compara/Ortholog_qc_manual.html
2https://hpo.jax.org/app/
3http://bioinformatics.psb.ugent.be/webtools/Venn/
4https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/
WGCNA
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statistics were performed in the Cytoscape v.3.7.2. Considering
the size of the network, we performed global centrality analysis,
evaluating betweenness centrality as the size and closeness
centrality as the color of the nodes. The DyNet v. 1.0.0 Cytoscape
application was used for network comparison, using a prefuse
force directed layout in the network combinations for the
WGCNA results and HPO data for the teratogenic syndromes.

RESULTS

Teratogens, Expression Datasets
Selection, and Epigenetics Genes
We searched for gene expression studies in stem-cells exposed
to 28 different teratogens. After a careful evaluation, the
anticonvulsants valproic acid, carbamazepine, and phenytoin
were chosen for expression and systems biology analysis; the
three drugs are folic acid antagonists (Matok et al., 2009).
For comparison purposes, methotrexate and warfarin were
selected. Methotrexate is an antineoplastic agent and a folic
acid antagonist, whilst warfarin is an anticoagulant (De Santis
et al., 2004). Supplementary Table 1 comprises the phenotypical
spectrum of the embryopathies induced by the drug selected.

Four studies were selected for gene expression and systems
biology analysis: E-MTAB-300, E-TABM-1205, and E-TABM-
1216 (van Dartel et al., 2011; Theunissen et al., 2012, 2013), from
ArrayExpress database (European Bioinformatics Institute, EBI),
and GSE64123 (Schulpen et al., 2015) from the Gene Expression
Omnibus (GEO) database (National Center of Biotechnology and
Information, NCBI). The studies comprised assays evaluating
valproic acid (n = 32), carbamazepine (n = 24), and phenytoin
(n = 16) exposure in mESC, being all performed in the same
platform, of the same laboratory. For comparison purposes,
methotrexate (n = 8), warfarin (n = 8), and non-exposed cells
(n = 13) were also used in the analysis. Separately, one assay of
valproic acid (n = 28) or carbamazepine (n = 26) in hESC was
evaluated and compared to unexposed cells (n = 27). The studies
selected were all microarray assays from the Affymetrix platforms
(Thermo Fisher Scientific, United States). Full characteristics of
the assays are available in the ArrayExpress and GEO databases.

In this study, we aimed to focus only in the expression effects
on the epigenetics machinery genes. Hence, we performed a
Gene Ontology (GO) research, to select all the genes that might
be relevant in this scenario. We encountered 593 ontologies
related to epigenetics mechanisms (Supplementary Table 2)
that were used to filter the epigenetics genes after the DGE
and WGCNA analyses were completed. This selection provided
2,091 Homo sapiens genes and 1,918 Mus musculus genes
(Supplementary Table 3).

The diagram available in Figure 1 demonstrates the gene
filters applied in the following bioinformatics and systems
biology analysis.

Differential Gene Expression Analysis
Despite the epigenetics machinery genes being restrictedly
regulated, we evaluated whether the selected teratogens could
influence in their gene expression. We evaluated each dataset

separated by concentration, time of exposure, and teratogen.
Similar results to the ones already published by the group
that performed the primary analysis in these datasets were
encountered (Theunissen et al., 2012, 2013; Schulpen et al., 2015).
Hence, we do not present it. Then, we joined the samples of
cells exposed to different concentrations in different time-points
for a same drug. This union was especially with the intention
of evaluating which epigenetics-related genes are deregulated,
independently of the concentration and time of exposure. We
compared the differentially expressed genes to the epigenetics-
related ones selected with the GO analysis.

Using the epigenetics machinery genes filter for the mESC
assays, only the genes Tshz1 and Pax6 were upregulated in
phenytoin or valproic acid exposure; however, both were
downregulated in carbamazepine, methotrexate, or warfarin
exposure. An opposite effect was seen for Eomes gene,
which was downregulated when in exposure of valproic
acid or phenytoin, and upregulated after carbamazepine,
warfarin, or methotrexate treatment. Lef1 and Meis1 also
had discordant results between the teratogens. Supplementary
Table 4 comprises a complete list of the logFC values, GO, and
these genes’ main functions, which were identified as mainly
related to chromatin binding (GO:0003682).

When evaluating the hESC study, only one gene related
to epigenetics mechanisms was downregulated in valproic
acid exposure, and eight were upregulated. In carbamazepine
treatment, only two downregulated genes were identified. None
were in common between both drugs. Supplementary Table 5
comprises the main characteristics for the genes differentially
expressed in the hESC exposure assay.

In summary, few epigenetics-related genes were differentially
expressed in the anticonvulsants’ exposure. However, it was not
possible to confirm whether these genes correlated expression
was also unaffected. Hence, to perform a co-expression
evaluation, we proceeded with the WGCNA analysis.

Weighted Gene Correlation Network
Analysis (WGCNA)
WGCNA analysis was applied to better comprehend which
genes of the epigenetics machinery are mostly affected by
the chosen drugs.

According to its developers, WGCNA can only be applied
in sets with a high number of samples (preferentially above
15), hence methotrexate and warfarin were excluded from
this analysis. All the samples used were of the fourth day
after exposure to different drug concentrations (Supplementary
Table 6), and they were all retrieved from E-TABM-1205 and
E-TABM-1216. As in the DGE analysis, we wanted to verify the
variable co-expression when using different concentrations of
these drugs. According to the suggestions given by the WGCNA
package developers, a variance filter was applied to select only the
genes with higher deviation from the genes’ mean expression.

Supplementary Figure 1 graphically represents the filters
applied in the mESC datasets, until we obtained a final list of
genes related to epigenetic mechanisms. First, a variance filter was
applied in mESC assays and provided 7,588 probes for WGCNA
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FIGURE 1 | Diagram demonstrating the gene filters for each bioinformatic and systems biology analysis performed.

analysis. The following modules were encountered for each
anticonvulsant: eight for carbamazepine, 13 for phenytoin, and
nine for valproic acid. Second, we evaluated the highly significant

modules, considering only the modules with a gene ratio of at
least 0.1; this cutoff implies all the modules selected had a high
ratio of clustered genes that might be associated to phenotypical
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traits. Hence, of the 7,588 probes with greatest variance, it was
possible to identify one highly significant module for valproic
acid, containing 1,124 genes, and two modules for carbamazepine
and phenytoin each. Carbamazepine modules contained 113 and
50 genes, whilst phenytoin modules had both 227 genes included.
Cluster dendrogram is available in Supplementary Figure 2.

Finally, we evaluated the genes enriched in these modules,
filtering only for the ones that were related with epigenetics
mechanisms, according to the list we previously obtained, which
is available in Supplementary Table 3. In regard to this GO
analysis, 120 probes of the valproic acid significant module
were related to epigenetics mechanisms, 40 from the two
significant phenytoin modules and 16 from the carbamazepine
ones had epigenetics role. Prdm14 was the hub gene for one
of the significant modules presented in phenytoin exposure; the
other modules did not have epigenetics gene as their main or
most connected hub.

The same process was applied in the hESC exposure assay,
and is graphically represented in Supplementary Figure 3. First,
WGCNA analysis was performed in the 10,943 probes with
greater variance. The dendrogram with the hierarchical clustering
method applied by WGCNA is available in Supplementary
Figure 4. Second, there were 217 and 3,776 genes presented
in significant modules for carbamazepine and valproic acid,
respectively. These genes were presented in three significant
modules of the 13 identified, when evaluating the cells with
carbamazepine exposure, and four significant modules in eight
were identified, when in valproic acid treatment. Finally, we
filtered for the genes related to epigenetics mechanisms, and
obtained a list of eighteen probes of the carbamazepine assay, and
170 probes of the valproic acid treatment. One of the significant
modules for valproic acid has an epigenetics machinery gene as
its main hub: ZMYND11.

In summary, at the end of WGCNA, it is possible to identify
modules of highly clustered genes, that might have an association
with phenotypical traits, or even experimental conditions. For all
the modules identified, we selected only the epigenetics related
genes. From this filtered list, we performed an ortholog analysis
to obtain a final list of genes for the three drugs evaluated,
also comprising the genes identified in differential expression
analysis. Hence, at the end of these analyses, 278 genes for
valproic acid, 40 genes for carbamazepine, and 35 genes for
phenytoin (Figure 1). The complete list of the genes is available
in Supplementary Table 7.

After achieving a final list of genes, we aimed to evaluate its
association to the clinical traits by performing network statistics
analysis and evaluating gene-phenotype association.

Network Statistics
Besides the WGCNA analysis, other network statistics were
applied to evaluate the main characteristics of the genes identified
in the previous step. Our aim was to verify whether the
epigenetics mechanisms deregulated by the different teratogens
were similar for each drug.

When evaluating carbamazepine and phenytoin candidate
genes, it was not possible to assemble a protein-protein
interaction network, probably because of the small number of

genes selected. Hence, a valproic acid network was generated, and
compared to a network containing all the genes selected for the
three drugs (Figure 2A).

Network statistics analysis was also performed for valproic
acid, evaluating betweenness and closeness centrality to
identify the genes with bigger information flow (Figure 2B).
CREBBP was the gene with the bigger betweenness centrality,
although we highlight the chromatin remodeling genes
(SMARCA4, SMARCA2, SMARCD1, and SMARCD3) in the
center of the network.

To verify what are the main epigenetics mechanisms
associated to the selected genes, we performed another GO
analysis, and evaluated the main pathways they were included,
according to the Reactome database. Significantly enriched GO
and Reactome pathways can be assessed in Figures 3A–F. Besides
epigenetics pathway ontologies, many embryo development
ontologies were also enriched.

Therefore, after network statistics evaluation, chromatin
remodeling was the main epigenetic mechanism suggested to
be affected in the anticonvulsants’ exposure. The following
analysis was intended to understand if these genes might
have a role in the phenotypical spectrum of these teratogens-
induced embryopathies.

Gene-Phenotype Associations
Systems biology analyses provided several epigenetic genes
potentially deregulated by the anticonvulsant drugs here
evaluated. To better comprehend how these genes could also
influence in the teratogenic potential of these drugs, we evaluated
the phenotypical spectrum of the embryopathies caused by these
teratogens, as comprised in Supplementary Table 1.

To assess the gene-phenotype association, Human
Phenotype Ontology (HPO) database was used. Carbamazepine
teratogenesis is not registered in this repository, however Fetal
Valproate Syndrome (ORPHA 1906) and Fetal Hydantoin
Syndrome (ORPHA 1912) phenotypes caused by valproic acid
and phenytoin, respectively, were annotated.

A comparison between the genes associated for each
phenotype was executed against the list of candidate genes
obtained through the systems biology analyses here executed.
Valproic acid evaluation provided 46 genes in common,
between HPO and 278 epigenetic genes we selected, including
chromatin remodeling genes SMARCA2 and SMARCA4, and
CREBBP, with the bigger value of betweenness centrality in
the network statistical analysis (Figure 4). KMT2A and SMC1A
were associated to five phenotypes, each. For phenytoin, of the
35 selected genes, nine were registered in the HPO database,
including genes identified in the differential expression analyses,
such as PAX6, NEUROD1, and TSHZ1. PAX6 was associated to
eight phenotypes. The complete list of genes associated to HPO
phenotypes is available in Supplementary Table 8.

DISCUSSION

The present study aimed to investigate the effect of valproic acid,
carbamazepine, and phenytoin in the expression of genes with
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FIGURE 2 | (A) Network for the candidate genes encountered for valproic acid (blue), compared to the genes obtained in carbamazepine and phenytoin evaluations.
(B) Network statistics for valproic acid selected genes. Warm colors: high closeness centrality score. Node size: big nodes for genes with high betweenness
centrality score.

epigenetic-related mechanisms. This objective was accomplished
by performing a careful systems biology evaluation using assays
available in public genomic repositories and suggesting possible
candidate genes for future researches.

With the differential gene expression analysis combined with
WGCNA, 278 epigenetics genes were associated to valproic
acid exposure, 40 to carbamazepine, and 35 to phenytoin.
Combining HPO database evaluation, 46 epigenetics-related
genes were associated to Fetal Valproate Syndrome and nine to
Fetal Hydantoin Syndrome. The elevated number of “chromatin
remodeling” enriched Gene Ontologies suggest this mechanism

as a relevant mechanism for teratogenic disruption, which must
be further evaluated in developmental toxicity assays.

The anticonvulsants here evaluated are known as
neuroteratogens, because they might affect brain development,
especially in second trimester, the period of continuous growth
and maturation of the human brain (Ornoy, 2006; Tomson
et al., 2019). Fetus exposed to these drugs—carbamazepine,
phenytoin, and valproic acid—might present major congenital
anomalies (especially craniofacial ones) and development delay
related to this exposure, even in monotherapy (Ornoy, 2006;
Tomson et al., 2019). Despite the similarities regarding the
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FIGURE 3 | Gene ontologies enrichment for carbamazepine (A), phenytoin (B), and valproic acid (C) selected genes, and Reactome database enriched pathways
for carbamazepine (D), phenytoin (E), and valproic acid (F) drugs.

therapeutic effects, the dysmorphic features for each syndrome
is very specific. This pattern might be explained by distinct
molecular mechanisms for each drug, which may cause a
dissimilar biological perturbation in the brain development.
Hence, the main purpose of performing the WGCNA analysis
was to identify these perturbations, by assessing potential
biomarkers and candidate genes that might help in the
comprehension of the phenotypical spectrum for each syndrome.
This is the main goal of the WGCNA package, as proposed by its
developers (Langfelder and Horvath, 2008).

It is well established that maternal exposure to different agents
trigger epigenetic mechanisms, altering the gene expression and,
consequently, impairing the embryofetal development (Salilew-
Wondim et al., 2014). Despite that, few studies have evaluated
the potential epigenetic disruption led by a teratogen exposure;
recreational drugs such as alcohol and tobacco have been mainly
assessed, as well as maternal infections (Banik et al., 2017; Chang
et al., 2019). However, few drugs have been evaluated about these
same mechanisms. It is estimated 90% of the women take at
least one medication during pregnancy (Mitchell et al., 2011).
Hence, the present study is an exploratory assay which attempts
to fill these gaps in the understanding of teratogenesis and
epigenetics linkage.

Together with antineoplastic agents, valproic acid has been
one of the few drugs with a proposed epigenetic mechanism of
teratogenesis (Mazzu-Nascimento et al., 2017). Valproic acid is
a potent inhibitor of the histone deacetylase enzymes (HDAC),
hence promoting an increased level of these proteins’ acetylation.
Other studies have demonstrated valproic acid also demethylates
DNA (Milutinovic et al., 2007), what might be linked to its role
as a folic acid antagonist. Here, we identified not only valproic

acid association to DNA methylation and histone acetylation
mechanisms, but also to chromatin remodeling genes. These
candidate genes proposed are potentially important for the
understanding not only of Fetal Valproate Syndrome, but also
of other neurodevelopment disorders. Valproic acid is a known
inducer of autism in rodent models (Nicolini and Fahnestock,
2018). Some researches point to histone acetylation alterations
as associated to neurogenesis impairment, leading to postnatal
autistic-like behaviors (Contestabile and Sintoni, 2013), although
other epigenetics mechanisms must also be further investigated.

The ortholog analysis also brought potential candidates for
Fetal Hydantoin Syndrome. Despite teratogenesis outcomes
being variable between species, the mechanisms of many
congenital anomalies have been suggested after extensive
animal model assays (Shahbazi and Zernicka-Goetz, 2018).
The candidates for phenytoin embryopathy, however, must be
carefully evaluated before being extrapolated. Some of the genes
we encountered have stablished roles in epigenetics mechanisms.
Prdm14 was the hub gene in WGCNA analysis in mESC cells
with phenytoin exposure. The encoded protein is a transcription
regulator with a consolidated role in pluripotency and epigenome
establishment, especially wide DNA demethylation, in mESC. In
hESC, its role is more associated with pluripotency regulation
(Nakaki and Saitou, 2014). This gene has not been registered
in HPO, neither in the Online Mendelian Inheritance in Man
(OMIM) database; therefore, its role in genetic syndromes or
teratogenic-induced embryopathies must be further investigated.

For the WGCNA analysis in hESC, one of the main hubs
identified was ZMYND11. It is responsible for the reading
of the histone H3K36 trimethylation, specific for H3.3, a
H3 histone variant (Wen et al., 2014). This mechanism has
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FIGURE 4 | (A) Comparison of valproic acid candidate genes obtained in the present study (red) and former HPO database registered genes for Fetal Valproate
Syndrome (green). Common genes between both strategies are represented in blue, which can be better visualized in the zoom in (B).

been evaluated in tumor suppression, but not in embryo
development (Wen et al., 2014). Nevertheless, ZMYND11 is
registered in HPO, being associated with intellectual disability
and facial dysmorphisms. These are common phenotypes
in Mendelian disorders related to the epigenetics machinery

genes (Bjornsson, 2015). Teratogenic-induced malformations are
phenotypically similar to the ones caused by genetic syndromes,
named phenocopies (Cassina et al., 2017). Therefore, genes like
ZMYND11, already associated to genetic syndromes, are good
candidates for the understanding of teratogenic embryopathies.
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Our study lacks proper validation of the candidate genes
proposed. Nevertheless, we highlight this as an exploratory
research that used only previously validated experimental data for
the systems biology and bioinformatics analysis. Much time and
effort can be saved by conducting previous hypotheses-generator
studies, targeting for biologically relevant genes or proteins
(Kowalski et al., 2019). Systems biology is a feasible area for
these strategies, due to its integrative and holistic characteristic
(Hood et al., 2008; Le Novère, 2015). Notwithstanding, valproic
acid was not only the target of our study, but also a marker
of the analysis. The identification of histone acetylation genes
included in significant modules for valproic acid exposure, was
an incidental marker that the method was correctly applied in
this investigation.

One of the strong points of our study is that many
chromatin remodelers were indicated as good candidates for Fetal
Valproate Syndrome understanding, including for genes of the
SMARCA subgroup, part of the SWI1/SNF1 family (Pulice and
Kadoch, 2016). These complexes enable chromatin accessibility
by providing a dynamic control in an ATP-dependent mechanism
(Clapier and Cairns, 2009). SMARCA-deficiencies are associated
to several malignancies and birth defects; its homozygous loss
lead to embryo lethality (Pulice and Kadoch, 2016). Valproic acid
is known to alter the expression of SMARCA4 and SMARCD1
in neuroblastoma cells (Hu et al., 2020), and SMARCA genes
are suggested as members of the neurogenic transcriptional
network control (Higgins et al., 2019). Hence, valproate-induced
perturbances in SMARCA genes might be sufficiently disruptive
to explain Fetal Valproate Syndrome.

Finally, it has been hypothesized the understanding of
epigenetic mechanisms of teratogenesis could be later used
in primary prevention of congenital anomalies (Martínez-
Frías, 2010). To its accomplishment, it is necessary to better
comprehend these drugs’ effects in chromatin during embryo
development. This study was a first step in this investigation,
which in future might help counseling many women who need
to use these drugs during pregnancy.
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Analysis of Pan-omics Data in Human Interactome Network (APODHIN) is a platform
for integrative analysis of transcriptomics, proteomics, genomics, and metabolomics
data for identification of key molecular players and their interconnections exemplified in
cancer scenario. APODHIN works on a meta-interactome network consisting of human
protein–protein interactions (PPIs), miRNA-target gene regulatory interactions, and
transcription factor-target gene regulatory relationships. In its first module, APODHIN
maps proteins/genes/miRNAs from different omics data in its meta-interactome network
and extracts the network of biomolecules that are differentially altered in the given
scenario. Using this context specific, filtered interaction network, APODHIN identifies
topologically important nodes (TINs) implementing graph theory based network topology
analysis and further justifies their role via pathway and disease marker mapping. These
TINs could be used as prospective diagnostic and/or prognostic biomarkers and/or
potential therapeutic targets. In its second module, APODHIN attempts to identify cross
pathway regulatory and PPI links connecting signaling proteins, transcription factors
(TFs), and miRNAs to metabolic enzymes via utilization of single-omics and/or pan-
omics data and implementation of mathematical modeling. Interconnections between
regulatory components such as signaling proteins/TFs/miRNAs and metabolic pathways
need to be elucidated more elaborately in order to understand the role of oncogene and
tumor suppressors in regulation of metabolic reprogramming during cancer. APODHIN
platform contains a web server component where users can upload single/multi omics
data to identify TINs and cross-pathway links. Tabular, graphical and 3D network
representations of the identified TINs and cross-pathway links are provided for better
appreciation. Additionally, this platform also provides few example data analysis of
cancer specific, single and/or multi omics dataset for cervical, ovarian, and breast
cancers where meta-interactome networks, TINs, and cross-pathway links are provided.
APODHIN platform is freely available at http://www.hpppi.iicb.res.in/APODHIN/home.
html.
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INTRODUCTION

Technological advances have made different types of omics
data accessible in large scale. Different types of omics data
are outcomes of profiling of different bio-entities, namely
RNA (RNA transcriptomics), miRNA (miRNA transcriptomics),
proteins (proteomics, phosphoproteomics), genes (genomics,
epigenomics), metabolites (metabolomics), lipids (lipidomics),
and pharmacogenomics. These bio-entities are functionally
inter-related in a complex fashion. Extrapolation from single
omics data of one type of bio-entity fails to provide the
true biological status of various linked bio-entities (e.g., RNA,
protein, metabolites). Hence, to inquire the causative phenomena
underlying the genesis and progression of systemic/genetic
diseases, an integrative analysis considering the profiles of above
mentioned bio-entities appears as a requisite. Moreover, because
of the heterogeneous nature of the diseases, even if patients
having similar pathological features are treated similarly, the
disease prognosis differs a lot. It shows the inadequacy of
symptom-based diagnosis and demands patient-specific analysis
of omics data. Collective analysis of these multi-dimensional
omics data is referred to as “pan-omics” (Sandhu et al., 2018)
which are also considered as “big” data in the context of
biological data analysis. Pan-omics data enable us to predict
novel functional interactions between molecular mediators at
multiple levels. Also, these data have the potential to uncover
crucial biological observations into hallmarks and pathways that
would otherwise not be obvious through single-omics studies.
Patient-specific pan-omics data analysis is going to disclose the
genetic, epigenetic, and other functional profiles responsible for
the disease of an individual which might eventually lead to
the development of individualistic “precision medicine” and will
provide right treatment to right patient at right time.

Cancer is a leading cause of death worldwide, being
responsible for 9.6 million deaths in 2018 (Bray et al., 2018).
Cancer is a heterogeneous disease caused by aberrations of
genes and proteins. “Precision oncology” promises identification
of disease subtypes, specific biomarkers and subsequently
prediction and translation toward the development of treatment
procedures. Pan-omics or multi-omics analysis in breast cancer
has revealed significant differences in molecular subtype
distribution (Kan et al., 2018). Genomics and transcriptomics
analysis of breast cancer data of Korean and Caucasian cohorts
showed underlying molecular differences, which are responsible
for the occurrence of breast cancer at the younger age in the
Asian population compared to the western population (Kan
et al., 2018). Multi-omics analysis extended to different types of
cancers confirms the existence of broadly two types of cancers,
cancers caused by recurrent mutations and cancers caused by
copy-number variations (Mcgrail et al., 2018). Computational
methodologies like, artificial intelligence are being used widely
to extract patient-specific information from these big data,
discussed in a recent review (Biswas and Chakrabarti, 2020).
Machine learning based pan-omics analysis of pan-cancer data
shows the existence of clusters within different types of cancers
(Ramazzotti et al., 2018), identifies cell-model selective anti-
cancer drug targets for breast cancer (Gautam et al., 2019).

Multiple data portals like TCGA (TCGA, 2020) and ICGA
(Zhang et al., 2011) have been developed to make multi-
omics data conveniently accessible. LinkedOmics contains pan-
omics data of several types of cancers (Vasaikar et al., 2018).
Databases like, GliomaDB (Yang et al., 2019) and MOBCdb (Xie
et al., 2018) are dedicated to integrate multi-omics data for
specific type of cancers. Standalone software packages and web-
servers are also being developed for the analysis pan-omics data.
Table 1 compares the analytical tools which are being used by
researchers. R package mixOmics (Rohart et al., 2017), based on
multi-variate analysis is available for the integration of multi-
omics data. It finds subsets of important features but excludes
network analysis. OmicsNet provides a web-based platform
to create different types of interactive molecular interaction
networks for single or multiple types of omics data (Zhou
and Xia, 2018). Network-based integration of multi-omics data
using iOmicsPASS, allows to predict subnetworks of molecular
interactions within a single type or multiple types of omics data
(Koh et al., 2019). R package Miodin (Ulfenborg, 2019) provides
a software infrastructure for vertical and horizontal integration
of multi-omics data but lacks a comprehensive network analysis
and visualization. PaintOmics allows integrated visualization of
multiple types of omics data in KEGG pathway diagrams (Hern
et al., 2018). Software package, Multi-Omics Factor Analysis
(MOFA) (Argelaguet et al., 2018) integrates omics data in
an unsupervised approach implementing generalized principal
component analysis (PCA). pathfindR (Ulgen et al., 2019) finds
active sub networks for genes in omics data and perform pathway
enrichment analysis. R package Mergeomics (Shu et al., 2016)
provides a pipeline to identify important pathways and key
drivers in biological systems. However, platforms required for
systematic analysis of the landscape of genetic, epigenetic, and
metabolomics alterations and biological and clinical relevance of
multi-layer signature in cancers are still limited.

Different types of omics data carry information on different
types of bio-entities, e.g., genes, proteins, miRNAs, metabolites,
etc. Hence, integrative analysis of pan-omics data needs a
meta-interactome consisting of a protein–protein interaction
network (PPIN) as well as different regulatory networks. The
web server for the Analysis of Pan-omics Data in Human
Interactome Network (APODHIN) provides a unique platform
where users can analyze different types of omics data using a
human cellular meta-interactome network. Graph theory based
network analysis has become an essential tool for analysis of
PPIN for extracting proteins important in the construction and
information flow of the network (Jeong et al., 2001; Barabási
and Oltvai, 2004; Mistry et al., 2017; Ashtiani et al., 2018),
APODHIN provides options to identify topologically important
nodes (TINs) such as hubs, bottlenecks, and central nodes (CNs)
and their subsequent modules via protein–protein interaction
(PPI) and regulatory relationship network analyses and pathway
enrichment analysis. TINs are also correlated as prospective
diagnostic and/or prognostic biomarkers. APODHIN can also
analyze and compare multiple omics data set for a single omics
layer, such as transcriptomics, proteomics data collected from
different patient cohorts and/or different stage/grade of the
same cohort.
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TABLE 1 | Comparison of APODHIN with other existing pan-omics data analysis tools.

Feature APODHIN OmicsNet [14] mixOmics [13] iOmicsPASS [15] Miodin [16]

Platform Web Web Standalone Standalone Standalone

Programming language Python, R, perl R R C++ R

Types of omics data as input

mRNA transcriptomics Yes Yes Yes Yes Yes

miRNA transcriptomics Yes Yes Yes No Yes

Proteomics Yes Yes Yes Yes Yes

Phospho-proteomics Yes No Yes No No

Genomics Yes Yes Yes Yes Yes

Epi-genomics Yes No No No Yes

Metabolomics Yes Yes Yes No No

Multiple lists of same type of omics data Yes No Yes Yes Yes

Finding deregulated proteins/genes/miRNAs Yes No No No No

Map in meta-interactome Yes No No No No

3D interactive network Yes Yes No No No

Network topology analysis Yes No No No No

Prognostic status of proteins/genes (in cancer) Yes No No No No

Pathway enrichment analysis Yes Yes Yes Yes No

Analysis for regulatory network protein links Yes No No No No

Additionally, utilizing multi-omics data APODHIN calculates
cross-pathway regulatory and PPI links connecting signaling
proteins or transcription factors (TFs) or miRNAs to metabolic
enzymes and their metabolites using network analysis and
mathematical modeling. These cross-pathway links were shown
to play important roles in metabolic reprogramming in cancer
scenarios such as glioblastoma multiforme in a previous work
(Bag et al., 2019).

In addition to the server part, APODHIN shares analysis
of multi-omics data from various cancer cell lines where TINs
and cross-pathway links were identified using publicly available
omics datasets collected for various gynecological cancers.
APODHIN platform is freely available at http://www.hpppi.iicb.
res.in/APODHIN/home.html.

MATERIALS AND METHODS

Server Description
Analysis of Pan-omics Data in Human Interactome Network web
server is dedicated for the integration and subsequent analysis
using single or multiple types of omics data. For single type of
omics data, APODHIN can analyze multiple datasets (up to 3)
which may correspond to either different stages of a disease from
a single cohort or from dataset collected from multiple patient
cohorts and/or cell lines.

For multiple types of omics data, APODHIN allows single
input data file for each type of omics data. Following sections
briefly describe the various analytical part of the APODHIN
server.

Data Collection
Analysis of Pan-omics Data in Human Interactome Network
web server is preloaded with a human cellular meta-interactome

network. This meta-interactome consists of human protein–
protein interaction network (HPPIN), network of human
miRNAs and their target genes and network of human TFs and
their target genes. The PPI data was collected from STRING
(Szklarczyk et al., 2019) database (version 11). Interactions
having a medium threshold of experimental score ≥700 were
considered (Ferretti and Cortelezzi, 2011) for construction of
the PPIN. Target gene information of miRNAs was collected
from the TarBase (Vergoulis et al., 2012) and miRTarBase (Chou
et al., 2016) databases. From the TarBase database (version
6) we have taken reliable interactions supported only by low-
throughput experiments (e.g., reporter gene assay, western
blot, qPCR, etc.) whereas miRNA target interactions with
strong confidence (i.e., validated by either of report assay,
western blot, qPCR experiments) from miRTarBase (version
6) were considered for APODHIN meta-interactome network.
We trusted on the more reliable low-throughput experimental
data to build the parent miRNA-target mRNA interactome
network. We found 2492 target genes for 544 miRNAs creating
6917 interactions. TFs and their target genes were downloaded
from Human Transcriptional Regulation Interactions database
(HTRIdb) (Bovolenta et al., 2012). We found 11887 target
genes for 284 TFs creating 18153 interactions. These three
networks were merged together to form the APODHIN meta-
interactome consisting of two types of biomolecular nodes
i.e., proteins/genes and miRNAs along with three types of
interactions, i.e., protein–protein, miRNA-target gene, and TF-
target gene, respectively.

Additionally, we have also included a network of metabolites
as substrate and product with their corresponding metabolic
enzymes in the APODHIN server. For constructing this network,
we downloaded metabolic reactions from MetaNetX database
(Moretti et al., 2016) and extracted the metabolites along with
the corresponding metabolic enzymes and further filtered those
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enzymes and metabolites which have been listed in the Human
Metabolome Database (HMDB) database (Wishart et al., 2018).

Pan-omics Data Integration and
Meta-Interaction Network Extraction
In APODHIN web server, user can upload single or multiple
types of omics data. The server accepts RNA transcriptomics,
miRNA transcriptomics, proteomics, phosphoproteomics,
genomics, epigenomics, and metabolomics data. The current
version of the server accept only processed format of the omics
data where differential expression/abundance of corresponding
biomolecules are provided with logFC for defining up and
down regulation of genes/miRNAs/proteins and threshold
probability or p-value. For RNA transcriptomics, miRNA
transcriptomics and proteomics data user should select threshold
values of logFC for defining up and down regulation of
genes/miRNAs/proteins and corresponding adjusted p-value.
Uploaded files should contain list of genes/miRNAs/proteins
along with logFC and p-values. Sample file formats for different
omics data are provided in the APODHIN help page. For
genomics, epigenomics, and phosphoproteomics data, genes
that are mutated and/or methylated and proteins, which
are phosphorylated are considered, respectively. APODHIN
help page also provides guidelines to process GEO (Barrett
et al., 2013) transcriptomics data for using in APODHIN.
Packages and tools for GEO series data are also enlisted in
the APODHIN “Help” page. For other types, of omics data
like, proteomics, genomics, metabolomics, useful links for
data processing is provided in the APODHIN help page and
it will be made more enriched gradually depending on the
requirements from users.

Analysis of Pan-omics Data in Human Interactome Network
web server extracts the interactome networks from the parent
meta-interactome for the genes, mRNAs, miRNAs, proteins, and
metabolites that are either deregulated or altered according to the
user supplied single or multiple omics data. It creates a filtered
meta-interactome network comprising of deregulated or altered
nodes and their 1st or 2nd level (as chosen by user) interactors
and/or regulators. For metabolomics data, the web server finds
out the proteins linked with metabolites and constructs network.
These single or multi omics data specific meta-interactome
networks are subsequently displayed in an interactive three-
dimensional (3D) network viewer within the APODHIN server.
For creating omics data mapped network, and subsequently
network analysis, APODHIN does not provide any special weight
or scores to any type of omics data.

For the module “pathway connectivity analysis,” RNA
transcriptomics, miRNA transcriptomics, and proteomics data
were considered as primary data and submission of at least one
of them is mandatory to define deregulated miRNAs and/or
genes/proteins. In case of “pathway connectivity analysis,” the
logFC values for each of the uploaded omics data is normalized
in the scale of−1 to+1 following Eq. 1,

log FCnormalized =
log FC∣∣log FC

∣∣
max

(1)

where positive and negative values indicate up and down
regulated entities, respectively. If more than one primary
omics data, for example, transcriptomics and proteomics are
provided, APODHIN web server sums up the normalized
logFC values from the different omics data for the same node
(RNA/protein) and if the sum is non-zero, gene/protein is
considered deregulated. Primary omics data determines whether
the gene is deregulated or not. Also, if a gene is found not
altered in supplied primary omics data, APODHIN does not
consider this gene for further analysis, irrespective of its status
in the supplied secondary omics data. Details of the utilization
of the normalized omics values in mathematical modeling based
pathway connectivity link identification are provided later. In this
module, the information on metabolites for any enzyme can be
obtained in the associated table on selection of enzyme.

Network Analysis and Identification of
TINs
Once the context specific meta-interactome network is formed
via utilization of user supplied single or multiple omics data,
APODHIN web server primarily finds three types of TINs,
namely, hubs, CNs (Bhattacharyya and Chakrabarti, 2015) and
bottlenecks (BNs) (Yu et al., 2007). To find the important nodes,
network and node indices like degree, betweenness, closeness and
clustering coefficients are calculated from the extracted meta-
interactome network. These node parameters were calculated
using previously reported methods and protocols (Bhattacharyya
and Chakrabarti, 2015). For transcriptomics and proteomics
data, TINs are identified from the expressed nodes only. For
phosphoproteomics, genomics, epigenomics and metabolomics
data, TINs are identified from phosphorylated, mutated,
methylated proteins/genes and metabolic enzymes, respectively.

Hubs are nodes that have high degrees. Degree distribution is
normalized following Eq. 2,

xi,normalized =
xi

xmaximumn
(2)

where xi is degree value of a node i and xmaximum is the
maximum degree of the network. APODHIN web server
converts normalized degree distribution to corresponding
z-score distribution. The plot of probability distribution function
(PDF) of z-scores for all nodes in network is sent to the user
by email. This email shares intermediate results only. From
the plot of PDF, users are asked to provide the threshold
value for hub identification. After receiving the threshold value,
APODHIN initiates hub identification program. Nodes having
degree greater than the threshold value are considered as hub. It
is also mentioned in the help page. Scores concerning individual
centrality parameters like, betweenness, closeness and clustering
coefficients are calculated and the cumulative centrality scores
(CCS) are estimated by summing over the combined scores for
first layer interactors (Bhattacharyya and Chakrabarti, 2015).
CCSs are normalized following Eq. 2 where x is equal to CCS.
Normalized CCS are converted into z-scores. The PDF of z-scores
for all nodes of network are sent to the user by email and CNs
are chosen based on the user provided threshold value of z-score
following similar procedure as mentioned while identifying hubs.
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Bottleneck nodes are characterized based on their betweenness
values. Normalized betweenness values were obtained from
Eq. 2 where x is betweenness and subsequently, converted into
z-scores. Similar to hubs, bottleneck nodes are also chosen based
on the user provided threshold z-score, chosen from the PDF plot
of z-score for all nodes.

Further, sub-network consisting of TINs and their first or
second layer interactors are constructed and displayed in an
interactive three-dimensional (3D) network viewer.

The overlap of TINs, as well as all nodes of the network,
as prognostic cancer marker is checked after extraction of
prognostic marker information from the Human Protein Atlas
database (version 19) (Uhlen et al., 2017). The prognostic
data was obtained from Kaplan-Meier survival analysis. The
cancer type, for which prognostic status have minimum p-value,
is shown in the “Node information” table in the page of
“network view of identified important nodes.” On mouse hover
on the cancer type, more detail information for other cancer
types, is available.

Pathway Mapping and Network of
Mapped Pathways
For each identified TIN, particularly for genes and proteins,
APODHIN maps the corresponding pathways listed in the
KEGG database (Kanehisa et al., 2017). APODHIN performs a
hypergeometric Fishers Exact test and selects enriched pathways
satisfying p-value (pHGD) ≤0.05 using the following contingency
table and formula. [

a b− a
c d− c

]
Where,

a = Number of genes in the pathway.
b = Number of genes in the gene list.
c = Total number of genes in the pathway.
d = Total number of genes in all pathways in KEGG.

pHGD =

(
b
a

) (
d
c

)
(

b + d
a + c

) (3)

Further, a network representation of important nodes along with
their enriched mapped pathways is displayed in an interactive
three-dimensional (3D) network viewer. Figure 1A shows the
flow chart of “pan-omics data mapping and network analysis”
module of APODHIN.

Pathway Connectivity Analysis and
Cross-Pathway Links
This module of the APODHIN web server aims to construct
regulatory interaction networks and subsequently identifies
cross-pathway interaction links connecting different cellular
pathway proteins [e.g., signaling proteins (S)], regulatory proteins
[e.g., transcription factor (TF)] or miRNAs with metabolic
pathway proteins (M).

For this purpose, APODHIN web server was preloaded with
cross-pathway links or paths where protein–protein interactors
(P) connect X nodes (X can be S or target gene of TF or target
genes of miRNAs) with M (metabolic) proteins. We have limited
the number (n) of protein–protein interactors (P) to a maximum
value of three between X and M proteins. This limit provides
four types of paths, XM (n = 0), XPM (n = 1), XPPM (n = 2),
XPPPM (n = 3). These cross-pathway linking paths are filtered
and selected based on expression and/or abundance status of the
biomolecules supplied by user uploaded pan-omics data for a
given disease or context. The filtering criteria for any given path is
set when the terminal nodes are found to be deregulated and the
remaining nodes are at least expressed within the user provided
single or multi-omics datasets.

We implemented an established probabilistic approach
based on the Hidden Markov Model (HMM) (Tuncbag
et al., 2013; Vinayagam et al., 2014; Bag et al., 2019)
utilizing the information of experimentally established PPIs
and gene regulatory information to extract novel paths and
interconnections between regulatory nodes such as signaling
proteins, TFs and miRNAs and metabolic pathway proteins (M).
Within these important X-M pairs, important cross-pathway
connecting paths are again scored by considering all filtered
paths between X-M pairs. To find important X-M pairs, weights
are assigned on nodes and edges depending on network and
biological properties. Edge weight is assigned in terms of
normalized interaction probability which is proportional to the
product of their expression scores.

Two types of node weights, network entropy, and effect-on-
nodes are considered. Network entropy includes local entropy
of the node. Another node weight parameter, “effect-on-node”
considers the impact of interactors of a particular gene in
the cross-connected network. The “effect-on-node” considers
both biological and network properties of the node. Biological
properties include deregulated gene, signaling crosstalk gene and
rate limiting enzyme. Network properties include hubs, CNs,
and bottlenecks.

Analysis of Pan-omics Data in Human Interactome Network
web server allows the user to choose maximum four weight
options out of the six weights. If a node satisfies any of the
selected weight options, weight value 1 is assigned for each
satisfied option. To identify important cross-connecting X-M
pairs we have evaluated “path score” (PS) based on a HMM
implemented within the core mathematical model that calculated
the significant cross-pathway linking paths. “Path scores” are
converted to z-scores and paths having z-score≥1 are considered
as important cross-connecting paths. A detailed description of
the mathematical models and path calculation is available in our
previous publication (Bag et al., 2019). Figure 1B shows the flow
chart of “pathway connectivity analysis” module of APODHIN.

APODHIN Architecture
Analysis of Pan-omics Data in Human Interactome Network web
server is created using HTML, PHP, PYTHON, and JAVA scripts.
Client/user side scripts are written in HTML, PHP and JAVA
scripts. User uploaded data is analyzed using PYTHON scripts.
For network analysis, PYTHON package networkX (version
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FIGURE 1 | Flow charts showing work flow in APODHIN web-server for module (A) data mapping and network analysis and (B) pathway connectivity analysis.

1.8.1) is used. For visualization of 3D presentation of networks
JAVA scripts based open source technologies (three.js and 3d-
force-graph.js) were utilized.

Analysis of Pan-omics Data in Human Interactome Network
has two separate parts A. APODHIN server and B. APODHIN
example data analysis.

APODHIN Server
Analysis of Pan-omics Data in Human Interactome Network
web server is preloaded with human interactome network
containing PPIN, target gene network of miRNAs and target gene
network of TFs. Proteins participating in signaling and metabolic
pathways are also marked separately. Metabolites along with their
target enzymes are also included within APODHIN. This meta-
interactome network is used as framework of cellular interactions
and is further used to map user supplied single or multiple types
of “omics” data to perform the following analyses.

• Omics data mapping and network analysis: This module
has two sub-modules. On clicking first submit button,
this web server provides meta-interactome network filtered

by uploaded omics data where deregulated and/or altered
nodes along with their interactors are included. Users can
further proceed for finding important interacting nodes
from the “pan-omics” data mapped interaction network by
clicking second submit button. Tabular, graphical and 3D
network representations of the identified TINs are provided
for better appreciation. Overlap of the TINs is shown
both in tabular and interactive 3D network visualization.
Additionally, TINs and their enriched pathways are also
shown in tabular and interactive 3D network visualization
manner.

Sample input files for each omics data type and
example analysis output are provided for the ease of use
and apprehension.
• Pathway connectivity analysis: As mentioned before, this

sub-module highlights significant PPI and regulatory paths
connecting signaling proteins/TF/miRNAs to metabolic
proteins. These cross-pathway links are thought to
be supra-molecular regulatory links/signatures connected
with metabolic rearrangement or reprogramming events
that are observed during cancer. In APODHIN, these
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cross-pathway regulatory links can be constructed from
three types of interaction networks.

1. Integrated network where signaling (S) and metabolic (M)
pathway proteins are connected through protein–protein
interactors (P).

2. Integrated network where target genes of TFs and
metabolic (M) pathway proteins are connected through
protein–protein interactors (P).

3. Integrated network where miRNA target genes and
metabolic (M) pathway proteins are connected through
protein–protein interactors (P).

Cross-pathway linking paths are filtered and selected based on
expression and/or abundance status of the biomolecules supplied
by user uploaded single or pan-omics data for a given disease or
context. These paths are shown both in tabular and interactive 3D
network visualization.

APODHIN Example Data Analysis
Analysis of Pan-omics Data in Human Interactome Network
example data analysis page showcase few example analysis of
multi-omics data for different cancer cell lines. We have used
the APODHIN web server to construct individual cancer and
dataset centric meta-interactome network using cell line specific
single and/or multi-omics data collected from various resources
such as GEO (Barrett et al., 2013), PRIDE (Perez-Riverol et al.,
2019), publication reports and data sources for cervical, ovarian,
and breast cancers, respectively. Further, these cancer and dataset
specific meta-interactome networks were analyzed and important
interacting nodes and cross-pathway links were identified and
provided within the APODHIN example data analysis module.
We have used cancer cell line derived omics data freely available
from different public resources. Options are provided for the
users to select single and/or multi-omics data to construct the
meta-interactome networks and further analyze them to identify
and important interacting nodes and cross-pathway links specific
for the selected dataset.

RESULTS

Input Options
Analysis of Pan-omics Data in Human Interactome Network
server provides two different but linked analysis options for
the users who would like to utilize single or multiple types of
omics data for a given context. APODHIN web server provides
options to upload seven types of “omics” data comprising of
mRNA transcriptomics, miRNA transcriptomics, proteomics,
phosphoproteomics, genomics, epigenomics, and metabolomics.
The file formats for each data type is specified in the “Help”
page and sample input files are also available in the server
input page. Information on preparing input files for using in
APODHIN is also shared in the “Help” page. For transcriptomics
and proteomics data, maximum and minimum threshold values
for the differential expression/abundance (logFC) and statistical
significance of that (p-values) need to be provided. As the
calculations are computation intensive, results are sent via email.

Similarly, for cross-pathway connectivity analysis users need
to upload single or multiple types of “omics” data for a given
context. At least one “primary” type (see Methods) of omics
data need to be uploaded. Now, in this case, users also need
to specify the type of connectivity they would like to explore,
for example, signaling to metabolic proteins, TFs to metabolic
proteins, or miRNAs to metabolic proteins. Only one type of
pathway connectivity can be explored at a time for a given set
of “omics” data. Additionally, users also need to select the kind
of weights (see section “Materials and Methods”) that would be
applied while calculating the scores of the selected cross-pathway
regulatory and PPI paths. E-mail address needs to be supplied
for APODHIN server to send the result link of the identified
cross-pathway connections.

Output Options
Output option for the “Data mapping and network analysis”
module has two stages. At first stage (Figure 2A), the context
specific meta-interactome network (“filtered network”) can be
visualized via a user interactive 3D network viewer where
information regarding each node and edge are provided in
graphical as well as tabular view (Figure 2B). Status of the
“omics” data mapping is shown in various color codes for the
nodes whereas different relationship like PPI, miRNA-target
gene interaction, and TF and target in connections are shown
varied color codes. Additional details about the protein nodes
can be obtained via GeneCards (Stelzer et al., 2016) link while
miRNA details can be found via miRTarBase (Chou et al., 2016)
link. List of metabolites mapped onto the protein nodes are
also provided both in the network viewer as well as in the
adjacent tabular format. If network analysis is opted, along with
filtered network, APODHIN provides the PDFs for the opted
TINs (Figure 2C). Filtered nodes (genes/proteins/miRNAs) that
satisfied the selected threshold criteria are characterized as TINs
and further utilized for meta-interactome network construction.
If multiple files of single type of omics data is uploaded, users
can see the number of TINs (as hub, bottlenecks, and CNs)
and their mutual overlap using interactive Venn diagram by
clicking the “link for analysis” option for single or combination
of “omics” data (Figure 2D). Combined analysis of multiple
types of omics data files is shown if multiple types of omics
data files are provided. Here also, the resultant page (Figure 2E)
provides three output options. First, the regulatory and PPI
connectivity specific to the hubs, bottleneck and CNs can be
seen via corresponding link where networks of deregulated
hubs, bottleneck, and CNs can be seen separately and saved
accordingly (Figure 2F). Association to various kinds of cancers
for the identified TINs as favorable/unfavorable prognostic
markers are also provided here after mapping the TINs (see
Methods) to the data provided in Human Protein Atlas (Uhlen
et al., 2017). Another option provides the network of common
TINs (Figure 2G) whereas a separate link provides network
of enriched pathways with the identified TINs (Figure 2H).
Enriched pathway networks of deregulated hubs, bottleneck, and
CNs can be seen separately and saved accordingly. In all these
three network output options, data can be downloaded in text
format for further analysis.
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FIGURE 2 | Snapshots of outputs of module “data mapping and network analysis.” (A) Page showing link for filtered network and probability distribution function.
(B) Filtered network. (C) Probability distribution function for network analysis. (D) Output page of a single omics data. (E) Network analysis page for multi-omics
data. (F) Network of important interacting nodes. (G) Network of important nodes. (H) Network of pathway mapping.

Similar to “Data mapping and network analysis,” “Pathway
connectivity analysis” module also provides a tabular result with
a summary of the user uploaded data (Figure 3A). Users can
see the cross-pathway links for multiple types of omics data
(Figure 3B). For multiple types of files with single type of omics
data (Figure 3C), the comparison (Figure 3D) is shown in
Venn diagram as well as in network visualization. In the 3D
network visualization window, significant PPI and regulatory
paths connecting signaling proteins/TFs/miRNAs to metabolic
proteins are shown in color coded fashion. As described before,

these cross-pathway links or paths connect X nodes (X can
be S or target gene of TF or target genes of miRNAs) with
metabolic (M) proteins. These linking paths are filtered and
selected based on expression and/or abundance status of the
biomolecules supplied by the users where for any given path the
terminal nodes are found to be deregulated and the remaining
nodes are at least expressed. The corresponding pathways
and biological functions of the proteins are also provided in
tabular format adjacent to the network viewer. Additionally,
the metabolites connected to the metabolic proteins that are
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FIGURE 3 | Snapshots of outputs of module “pathway connectivity analysis.” (A) Output page shows user provided data in tabular form along with link for network
view. (B) Output page showing network of signaling to metabolic proteins connecting paths for multiple types of omics data. (C) Output page when multiple files for
single type of omics data is provided. (D) Venn diagram shows overlap of signaling to metabolic proteins connecting paths for different omics data set.

part of the selected cross-pathway links are also provided
in the same page.

Example Data Analysis Option
Analysis of Pan-omics Data in Human Interactome Network
example data analysis page contains important nodes
(genes/proteins/miRNAs), pathways, and their networks with
interacting partners specific for cancers affecting women such as
cervical, ovarian, and breast cancer. This section also contains
important paths linking signaling proteins/TFs/miRNAs to
metabolic enzymes, which could perhaps be responsible for
metabolic reprogramming in cancer. The example content is
produced by APODHIN web server using publicly available
cervical, ovarian, and breast cancer specific cell line based omics
data. Figure 4 briefs the statistics derived from APODHIN
example analyses for mRNA transcriptomics data of different
cell lines of cervical, ovarian, and breast cancer. Figure 4A shows
the overlap of deregulated genes. It reveals lesser overlap among
deregulated genes across cell lines for all cancers. However,
there is almost complete overlap of pathways mapped by
deregulated genes (Figure 4B). Nodes satisfying any two types
of TINs are considered as important interacting nodes (IINs).
Figure 4C shows overlap for common IINs between cell lines
across cancer types are observed. Similarly, Figure 4D shows
much higher overlap of common pathways mapped by IINs.
This demonstrates that IINs and their pathways represent the
common core genes and processes related to a cancer type in a
better way than that achieved by the initial deregulated genes
obtained from the omics data. We also checked whether the

mapped pathways are related to cancer pathways enlisted in
KEGG database (Kanehisa et al., 2017). Figure 5A shows that
pathways mapped by IINs are more cancer specific compared
to the pathways mapped by deregulated genes for all cell lines.
Figures 4E,F show the number and overlap of deregulated
genes and IINs as prognostic markers of respective cancer type.
Figure 5B shows that compared to the deregulated genes, IINs
possess higher fractions of prognostic markers for all cancer cell
lines, except MDAMB231. This advocates the usefulness of the
IINs over deregulated genes. Moreover, as the number of IINs is
much smaller than that of deregulated genes the false discovery
rate is also expected to be lower.

Figure 6 shows overlap of cross-pathway links or paths
connecting signaling (S) proteins, TFs, and miRNAs to metabolic
(M) proteins identified using omics data derived from the
cell lines of three types of cancers. For signaling to metabolic
connection, four common paths for three cervical cell lines were
observed. However, no such overlap was found for breast and
ovarian cancer cell lines.

Analysis of pan-omics data considering transcriptomics,
genomics, epigenomics, metabolomics data in different
combinations are available for different cell lines in the
example data analysis section of APODHIN.

DISCUSSION

Large-scale genomics, transcriptomics and proteomics
approaches have made it possible to characterize different
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FIGURE 4 | Statistics derived from APODHIN database for mRNA transcriptomics data derived from different cell lines of cervical (HeLa, SiHa, and CaSki), ovarian
(IGROV1, SKOV3, OVCAR3), and breast cancer (MCF7 and MDAMB231). Transcriptomics data was derived from the GEO datasets GSE9750, GSE19352, and
GSE71363, respectively. (A) Deregulated genes, (B) Overlap of pathways mapped by deregulated genes, (C) Overlap of IINs, (D) Overlap of pathways mapped by
IINs, (E) Deregulated genes as prognostic marker, and (F) IINs as prognostic marker.
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FIGURE 5 | (A) Comparison of number of cancer specific pathways mapped by deregulated genes and IINs. (B) Comparison of fraction of prognostic markers
within the deregulated genes and network analysis derived important nodes, such as IIN and various TIN (e.g., Hubs, CN, and BN, respectively). Dashed lines are
drawn to separate cell lines of different cancer types.

clinical spectra associated with cancers. Use of pan-omics
platforms and approaches in the analysis of systemic disease like
cancer will not only help to identify numerous useful biomarkers
but also will expose areas for further improvement in therapeutic
intervention. Here, we present APODHIN web server, which
extracts cellular interactome networks from the parent meta-
interactome for the genes, mRNAs, miRNA, proteins, and
metabolites that are either deregulated or altered according to
the user supplied single or multiple omics data. These single
or multi-omics data specific meta-interactome networks are
utilized to identify TINs and their sub-modules enriched with
PPI and regulatory relationship via utilization of graph theory
based network analyses and biological pathway enrichment
analysis. Important interacting nodes (proteins and miRNAs),
IINs are identified based on the overlap of key nodes such as
hubs and bottlenecks. Using data from The Human Protein
Atlas database, APODHIN provides the probable prognostic
status of the IINs. Also, as observed in our earlier works
(Bhattacharyya and Chakrabarti, 2015), IINs extracted from
network topology, could correlate to be prospective diagnostic

and/or prognostic biomarkers or even turn out to be potential
therapeutic targets.

Molecular mechanisms for cancer progression and
development of potential therapeutics to inhibit these complex
diseases are difficult from the independent knowledge of
signaling, TFs, miRNAs, and metabolic pathways. Metabolic
reprogramming is an essential hallmark of cancer (Hanahan
and Weinberg, 2011). Understanding the coordination among
various cellular pathways, such as gene-regulatory, signaling and
metabolic pathways is crucial and may provide clues into the
molecular mechanism of metabolic adaptation in cancer and
associated cells. Therefore, there is an urgent need for systems
biology model, which can coordinate among signaling-induced
proliferation of tumor cells/growth, transcription factor/miRNA
based gene regulation and metabolic processes. Hence, we
emphasized to design a mathematical approach to identify
significant proteins forming interconnections between signaling,
regulatory and metabolic pathways. We have constructed an
integrated network where signaling (S), regulatory (TFs and
miRNAs), and metabolic (M) pathway entities are connected
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FIGURE 6 | Statistics derived from “pathway connectivity analysis” module of APODHIN database for mRNA transcriptomics data derived from different cell lines of
cervical (HeLa, SiHa, and CaSki), ovarian (IGROV1, SKOV3, OVCAR3), and breast cancer (MCF7 and MDAMB231). Transcriptomics data was derived from the GEO
datasets GSE9750, GSE19352, and GSE71363, respectively. (A) Overlap of cross-pathway links connecting signalling (S) to metabolic (M) proteins, (B) Overlap of
pathway links connecting target genes of TFs to metabolic (M) proteins, and (C) Overlap of cross-pathway links connecting target genes of miRNAs to metabolic (M)
proteins.

through protein–protein and gene regulatory interactions.
Interconnections between regulatory components such as
signaling proteins/TFs/miRNAs and metabolic pathways need to
be elucidated rigorously to understand the role of oncogene and
tumor suppressors in regulation of metabolism alongside their
normal functions. Analyses of such cross-connected network
and linking paths will facilitate probable way(s) to inhibit cancer
progression in a more specific manner.

Considering the growing demand of multi-omics data
integration followed by systems biology based analytical
interpretation of the large-scale “omics” data, implementation
of a robust and user-friendly web-based platform is very much
due. In order to make better sense out of the various “omics”
data, it is imperative to utilize them in a way so that the global

scenario of the complex and multi-layer cellular interactome can
be recapitulated. Several data portals have been coming up to
make multi-omics data accessible, visible and more importantly,
interpretable. Various programs and web portals are being
made to interpret omics data in different perspectives. Each
of these tools has its own merits and limitations also. Table 1
provides a qualitative comparison of features and functionalities
of APODHIN with respect to existing omics data analysis
tools. Web servers like OmicsNet (Zhou and Xia, 2018) is a
technically powerful web based platform specifically meant for
better visualization of molecular networks. It mainly provides
varied and efficient ways of network visualization including
different components. However, it provides minimal emphasis
on networks analysis and identification and interpretation of
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important interacting nodes and cross-pathway links. Similarly,
this server only accept differential omics data for genes/proteins
and metabolites, it does not have the option to include
the epigenetic modification, miRNA expression data, and
phosphoproteomics data. mixOmics (Rohart et al., 2017) is
a software package which is based on multi-variate analysis.
It performs data reduction, and then identifies combination
of biomarkers. It offers a network visualization but does not
consider network topology. It does not consider any meta-
interactome. Software package iOmicsPASS (Koh et al., 2019)
considers a meta-interactome by including PPIN and TF
regulatory network within omics data. But it excludes miRNA-
mRNA regulatory network. It considers only three types of omics
data, transcriptomics, proteomics, DNA copy number data, thus
limiting its applicability. Another R package Miodin (Ulfenborg,
2019) provides opportunity of creating a workflow of data
analysis. It considers different omics data, but not metabolomics
data. It requires pre-installation of several R packages. Miodin
provides Venn diagram of differentially expressed genes,
overlapped within different datasets. However, Miodin does
not consider any meta-interactome and does not construct
any network. None of these tools perform network topology
analysis and provide cross-pathway connectivity information of
proteins. APODHIN is perhaps the only available web based
platform that offers to (a) integrate multi-omics data onto
an exhaustive multi layered cellular meta-interactome network,
(b) extract and analyze the context specific networks and
sub-networks to identify TINs that could serve as potential
biomarkers and/or therapeutic targets (c) rationalize the role
of the identified TINs to the given context via pathway
enrichment and prognostic marker correlation, and (d) identify
cross-pathway interconnections between regulatory components
such as signaling proteins/TFs/miRNAs and metabolic pathways
for better understanding the role of oncogenes and tumor
suppressors in regulation of metabolic reprogramming during
cancer. Additionally, being a web based tool, APODHIN requires
no installation of software, good computing systems, and
technical expertise. We believe these features make APODHIN
useful as well as a user-friendly application.

However, there is still scope for improvement for the
APODHIN server. The example data analysis part can be
enriched to upgrade as a database. For example, in future we

would like to equip the server to accept and process raw “omics”
data directly and further create the processed data for genetic
or epigenetic alterations, differential expression and abundance,
respectively. We would also like to add components for handling
large number of datasets which will be able to analyze cohort data.
Current version is mostly aimed to patient-specific personalized
data. Similarly, the server and along with a database should
be enriched in such a way that it could be utilized for deep
learning and artificial intelligence based tools to predict the
disease outcome, recurrence and drug resistance, respectively.
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Zhuo Wang*
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Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and has
long been among the top three cancers that cause the most deaths worldwide.
Therapeutic options for HCC are limited due to the pronounced tumor heterogeneity.
Thus, there is a critical need to study HCC from a systems point of view to
discover effective therapeutic targets, such as through the systematic study of
disease perturbation in both regulation and metabolism using a unified model. Such
integration makes sense for cancers as it links one of the dominant physiological
features of cancers (growth, which is driven by metabolic networks) with the primary
available omics data source, transcriptomics (which is systematically integrated with
metabolism through the regulatory-metabolic network model). Here, we developed an
integrated transcriptional regulatory-metabolic model for HCC molecular stratification
and the prediction of potential therapeutic targets. To predict transcription factors
(TFs) and target genes affecting tumorigenesis, we used two algorithms to reconstruct
the genome-scale transcriptional regulatory networks for HCC and normal liver
tissue. which were then integrated with corresponding constraint-based metabolic
models. Five key TFs affecting cancer cell growth were identified. They included the
regulator CREB3L3, which has been associated with poor prognosis. Comprehensive
personalized metabolic analysis based on models generated from data of liver HCC in
The Cancer Genome Atlas revealed 18 genes essential for tumorigenesis in all three
subtypes of patients stratified based on the non-negative matrix factorization method
and two other genes (ACADSB and CMPK1) that have been strongly correlated with
lower overall survival subtype. Among these 20 genes, 11 are targeted by approved
drugs for cancers or cancer-related diseases, and six other genes have corresponding
drugs being evaluated experimentally or investigationally. The remaining three genes
represent potential targets. We also validated the stratification and prognosis results
by an independent dataset of HCC cohort samples (LIRI-JP) from the International
Cancer Genome Consortium database. In addition, microRNAs targeting key TFs and
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genes were also involved in established cancer-related pathways. Taken together,
the multi-scale regulatory-metabolic model provided a new approach to assess key
mechanisms of HCC cell proliferation in the context of systems and suggested
potential targets.

Keywords: regulatory-metabolic integration, metabolic model, molecular stratification, potential therapeutic
target, hepatocellular carcinoma, metabolic reprogramming

INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common type
of primary liver cancer and is the third leading cause of
cancer-related death (Ferlay et al., 2015). Obesity, diabetes,
fatty liver, virus infection, and many other diseases can lead
to HCC. Treatment of HCC largely depends on surgery.
Radiochemotherapy is unsatisfactory in part because of the
current difficulty in early diagnosis. Furthermore, although
drugs like Sorafenib and Lenvatinib had been approved by
the Food and Drug Administration (FDA), the drug–response
rates are relatively low probably due to the pronounced tumor
heterogeneity. For example, in one trial the median survival
was only 2–3 months longer compared to the placebo arm in
Asians and Caucasians (Cheng et al., 2009). More precise patient
stratification and discovery of novel drug targets are necessary to
improve treatment outcomes of HCC.

Several recent studies classified the molecular subtypes of
HCC based on proteomic data. In one study, the classification
of early-stage Chinese HCC samples revealed the mechanism
of early tumor cell development (Jiang et al., 2019). In the
other study, the classification of hepatitis B virus (HBV)-related
HCC samples identified three subgroups with distinct features
in metabolic reprogramming, microenvironment dysregulation,
and cell proliferation (Gao et al., 2019).

Metabolic reprogramming is an important characteristic and
driver of cancer. Genome-scale metabolic models (GEMs) have
been successfully used to characterize cancer metabolism and
to identify drug targets for cancer treatment. GEMs are a
powerful framework to mechanistically represent the relationship
between genotype and phenotype by computationally modeling
the biochemical constraints imposed on the phenotype. The
models are capable of simulating various biological tasks under
given conditions (Mardinoglu and Nielsen, 2012, 2015). This
allows the identification of essential genes or reactions for a
particular objective function. Many disease-related genes and
metabolites have been experimentally validated by comparing the
altered metabolism between normal and tumor tissue models.
Folger et al. (2011) used microarray data to identify key genes for
non-small-cell lung cancer. Mardinoglu et al. (2014) utilized data
from the Human Protein Atlas Database with the INIT algorithm
to successfully construct 69 cell-specific models and 16 cancer-
specific models. More recently, Uhle et al. (2017) employed
RNA-Seq data from The Cancer Genome Atlas (TCGA) database
together with the INIT algorithm to reconstruct 6753 patient-
specific metabolic models for various cancers.

Although many anti-cancer drugs developed by target-based
approaches have been approved by the FDA (Assoun et al., 2017;

Howie et al., 2018), there are still few effective therapeutic
targets for HCC. Bidkhori et al. (2018) recently addressed this
by utilizing metabolic network topology analysis to divide 179
liver HCC (LIHC) samples from the TCGA-LIHC database into
three subtypes and identify potential subtype-specific therapeutic
targets. However, metabolic networks are dramatically affected
by complex transcriptional regulatory networks, while the
changes in transcriptional regulation can lead to changes in
enzyme abundance or activity, which in turn lead to changes
in physiological states (e.g., cancer cell growth). The close
crosstalk between metabolic and regulatory mechanisms during
the complex tumor development necessitates the investigation
of multi-level mechanisms by integrating both regulation and
metabolism. Since the regulatory role of miRNA in liver cancer
remains largely in the work-in-progress phase, it is hard to get
the full spectrum of dysregulated miRNA in HCC (Sartorius
et al., 2019), we focused on the genome-scale transcriptional
regulatory network between TFs and genes, which was then
mechanistically combined with genome-scale liver metabolic
model. Several studies are constructing global transcriptional
regulatory networks for liver tissue or HCC tissue (Zhu et al.,
2012; Chen et al., 2017), but to our knowledge, no computational
studies have integrated regulation and metabolism into a unified
genome-scale model in studying HCC.

In this study, schematically summarized in Figure 1, we
used integrated regulatory-metabolic modeling to investigate the
possible mechanism of HCC using all TCGA-LIHC samples. We
have previously developed the Integrated Deduced Regulation
And Metabolism (IDREAM) algorithm (Wang Z. et al., 2017),
which uses a bootstrapping linear regression model on large-
scale gene expression datasets (e.g., 2,929 microarray for
Saccharomyces cerevisiae) to predict TF regulation on enzyme-
encoding genes, followed by a probabilistic regulation of
metabolism approach to apply regulatory constraints to the
metabolic network. The integrated model can predict the
influence of each TF knockout on certain objective functions,
such as cell growth. The model has been successfully applied in
S. cerevisiae to effectively predict the influence of transcriptional
regulation on the metabolic phenotype. It also can reveal novel
synthetic lethal pairs of TFs and metabolic genes with an
important interaction mechanism. But IDREAM requires a large-
scale expression dataset to infer regulatory network, which is
limited for HCC, so we modified it extensively for the application
in liver cancer study herein. We inferred the tumor/normal
regulatory networks using two independent algorithms, MERLIN
and CMIP. Then The regulatory relationships deduced by
both algorithms were regarded as “high confidence” regulations
and were tagged in the transcriptional regulatory networks
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for further integration with the metabolic model. Using the
integrated model, we classified HCC patients into different
subgroups by expression data of transcription factors (TFs) and
genes in the integrated network. The classification results were
evaluated by overall survival (OS) outcomes. The integrated
regulatory-metabolic model allows the identification of the
mechanisms of HCC tumor cell progression, the genes associated
with poor prognosis, and potential therapeutic targets. In
addition, microRNAs (miRNAs) regulating the influential TFs
and metabolic genes were incorporated to validate whether
the genes identified by the integrated model were important
for HCC tumorigenesis and their value as targets for clinical
treatment. The results were consistent with previous in-silico and
experimental studies.

MATERIALS AND METHODS

HCC Gene Expression Data
RNA-Seq expression data were obtained from 315 HCC samples
with clinical outcomes from the TCGA-LIHC Project, 232
HCC samples with clinical outcomes from the International
Cancer Genome Consortium-Liver Cancer RIKEN (ICGC-LIRI)
Project, and 50 HCC paired tumor-normal samples from the
Gene Expression Omnibus (GEO) database (GSE77314) (Liu
G. et al., 2016). The three gene expression datasets were,
respectively, employed to construct the integrated regulatory-
metabolic network model. The GSE77314 dataset was also used
to infer tumor and normal liver regulatory networks.

Metabolic Network Models
The genome-scale metabolic model of liver tissue used for
integration was retrieved from the Human metabolic Atlas
(HMA) Database (the1). It was built based on the combination
of the HMR2 model with RNA-Seq data of liver tissue to provide
an approach to explore metabolic and proteomic functions in
cancer (Uhlén et al., 2015). The patient-specific GEMs of HCC
used for metabolic analyses were retrieved from the BioModels
Database2. Uhle et al. (2017) utilized the tINIT algorithm to
perform the reconstruction. The characteristics of the metabolic
pathways in each model were determined by the protein-coding
genes expression level detected from individual patient RNA-
Seq data in the TCGA-LIHC Project. Biomass representing cell
growth (whose formula was also obtained from Uhle et al., 2017)
was set to be the objective function. We selected 315 of 338 HCC
individual models with clear clinical stage information (excluding
“not reported”) for metabolic reprogramming analysis.

Construction of Regulatory Networks
Two independent algorithms—the modular regulatory network
learning with per-gene information (MERLIN) (Roy et al.,
2013) and conditional mutual information measurement using
a parallel computing framework CMIP (Zheng et al., 2016)—
were used to construct the tumor/normal regulatory networks

1https://metabolicatlas.org/gems/repository
2https://www.ebi.ac.uk/biomodels/

from the expression data (GSE77314), which were implemented
using the Part 1 script in Supplementary File 1. MERLIN
combines the per-gene method and per-module concept based
on a probabilistic graphical model to infer regulatory network.
Thus, MERLIN cannot include only memberships deduced from
individual genes. The algorithm must also take the similarity
within a group of genes into consideration. The algorithm
is effective in predicting transcriptional changes in human
differentiation neural progenitor cells (Roy et al., 2013). In
addition, MERLIN outperforms several other state-of-the-art
algorithms. We used default settings, except for the use of five-
fold cross-validation.

The CMIP algorithm quantifies the interactions between genes
on the basis of conditional mutual information measurement to
avoid neglecting subtle relations under certain conditions. For
example, if both A and B are strongly connected to C, then the
actual relationship between A and B may be confusing because
of the interference of C. The performance was evaluated by the
average Area Under Curve (AUC) of 10 benchmark datasets
provided by the DREAM3 algorithm. CMIP performed better
than the other algorithms. Additionally, parallelized computation
enabled it to handle genome-scale datasets and to complete tasks
within a relatively short time compared to other popular methods
presented in DREAM3 Projects (Marbach et al., 2009). CMIP was
run using default parameters to let the algorithm automatically
decide the threshold of the dynamic removal of gene-pairs.

The regulatory relationships deduced by both algorithms
were regarded as “high confidence” regulations and were tagged
in the regulatory networks for further integration with the
metabolic model.

Metabolic Analysis
The COBRA Toolbox incorporated in MATLAB was used for
the metabolic analysis (Heirendt et al., 2019). Flux Balance
Analysis predicts feasible phenotypic states by setting appropriate
constraints gained from prior knowledge or assigned conditions.
By identifying the metabolic task to be studied, the flux
distribution of all reactions in the model can be calculated and
solved as follows:

maximum : Cell growth
subject to : S · v = 0

aj ≤ v ≤ bj

where v is a flux vector representing a particular flux
configuration, S is the stoichiometric matrix, and aj and bj are the
minimum and maximum fluxes, respectively, through reaction j.

We mainly used the “SingleGeneDeletion” function to find
metabolic genes whose knockout led to decreased cell growth.
The “OptimizeCbModel” function was used to calculate the
optimal growth rate and corresponding flux distribution.

Integration of Regulatory Network and
Metabolic Model for HCC
Modeling the regulatory networks of HCC and normal liver
tissue required the determination of TFs functioning in liver
tissue. To do this, we used liver regulatory network information
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FIGURE 1 | The schema of the integrated model for stratification and key targets discovery.

from RegulatoryCircuits (Daniel et al., 2016)3, which was inferred
based on the interactions of TFs-promoters, TFs-enhancers,
promoters-genes, and enhancers-genes. The data were validated
by introducing ChIP-Seq, expression quantitative trait loci
(eQTL), and RNA-Seq data. We also used the human regulatory
network from the RegNetwork (Zhi-Ping et al., 2015)4, which
was constructed by considering prior knowledge of TF binding
sites and post-transcriptional regulation by miRNAs. In addition,
convincing published results were also included.

The union of these two public human regulatory networks
yielded 1,366 TFs. We used these 1,366 TFs along with the
2,456 metabolic genes contained in the liver tissue model in
the HMA database together with GSE77314 RNA-Seq expression
data to determine the regulatory associations in the HCC and
normal liver metabolic models. Different from the bootstrapping
linear regression model used for regulatory associations inference
in IDREAM, here we applied two independent algorithms,
MERLIN and CMIP to calculate the interactions. The union
of the results predicted by the two methods represented the
regulatory network. The overlapping interactions represented
‘high confidence’ interactions. Then we used the probabilistic
regulation of metabolism approach to build the integrated
regulatory-metabolic model and predicted TFs affecting cell
growth in tumor and normal liver. We first calculated the

3http://regulatorycircuits.org/
4http://www.regnetworkweb.org/

probability of a target gene being ON when TF was OFF,
designated as Prob(Gene = ON| Factor = OFF). The constraints
on the corresponding reaction flux were Vmax × Prob, where
Vmax was derived by flux variability analyses. We then
simulated the changes in cell growth and each reaction flux. The
implementation of the integrated model construction code by
MATLAB is provided in Part 2 of Supplementary File 1.

Stratification, Survival, and Analysis of
Differentially Expressed Genes (DEGs)
In total, there are 3,492 expressed genes in the integrated
regulatory-metabolic network (1,366 TFs and 2,456 metabolic
genes), excluding overlapping genes and those with no expression
data. The expression data of these 3,492 genes were used to
stratify 315 TCGA-LIHC samples using the non-negative matrix
factorization (NMF) consensus clustering method from the
“NMF” R package (Attila and Mattias, 2008). This machine-
learning algorithm aims to distinguish different molecular
patterns in high-throughput genomic data. We used 200
iterations to determine the best clustering number between two
and 10? and selected the three best-value clusters according to the
cophenetic correlation coefficient and average silhouette width.

Clinical outcomes of the TCGA samples were used to
evaluate the clustering results. The Kaplan-Meier survival curve
implemented in the “survival” R package was applied to assess
the OS rate. The NMF clustering subtypes showed significant
differences in survival outcomes.
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For the analysis of DEGs, we used a linear model and
moderated t-statistics based algorithm implemented in the
“Limma” package, with absolute value log2(fold change) ≥1 and
P≤ 0.05. We compared the three clusters in pairs and selected the
intersection of DEGs between Class2:Class1 and Class2:Class3 as
the significantly upregulated/downregulated genes of the subtype
with the worst prognosis.

Functional enrichment analyses of the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways were performed
using Database for Annotation, Visualization, and Integrated
Discovery (DAVID;5). Adjusted P ≤ 0.05 indicated
significant enrichment.

Network Topology Analysis
Cytoscape software was used for topology explorations (Su
et al., 2014). The “Tools”–“Merge”–“networks” function with the
optional parameter “difference” was used to detect differences
between tumor and normal liver networks. The principle was to
remove all identical nodes to identify TFs/metabolic genes that
were present only in HCC or the normal regulatory network. We
highlighted the hub genes being responsible for the abnormity on
the topological structure.

RESULTS

Differences of Regulatory Networks
Between Tumor and Normal Liver Cells
There are many algorithms designed to infer regulatory networks
from transcriptome profiles. The results have been validated in
model organisms that include S. cerevisiae and Escherichia coli.
We used the MERLIN and CMIP algorithms together with paired
RNA-Seq data obtained from the GEO database (GSE77314)
(Wang Z. et al., 2017) to construct the regulatory networks

5https://david.ncifcrf.gov/

of HCC and paired normal tissue, implemented by the Part1
script in Supplementary File 1. There were a total of 15,143
pairs and 29,127 pairs of regulation between TFs and target
genes deduced from tumor and normal samples (Supplementary
Table 1). Of these, 1,654 pairs were the same. Cytoscape was used
to visualize the topology difference between these two networks.
After removing the nodes that had little influence, the core
structure was obtained (Figure 2). In the core structure, NME2
and NFKBIA were the hub TFs that were important in normal
liver models (Figure 2A). These two TFs were absent in the HCC
tumor model (Figure 2B). Nuclear factor κB (NF-κB) affects
multiple biological processes by regulating the immune response
and inflammation. NF-κB is a hallmark in cancer progression
(Fengting et al., 2014). NFKBIA is a member of a cellular protein
family that can mask the nuclear localization signals of NF-
κB and block its binding to DNA. Because of this inhibition
ability, NFKBIA has long been considered as a tumor suppressor
(Laos et al., 2006). NME, which is located on chromosome
17q21, is a gene family associated with the suppression of cancer
metastasis and invasion (Steeg et al., 1988). In particular, the
NME2 product inhibits metastasis of breast cancer and lung
cancer (Hennessy et al., 1991; Krishna et al., 2014). Therefore, the
reconstructed regulatory networks effectively revealed the critical
known differences between liver cancer and normal tissues.
NME2 and NFKBIA represent putative tumor suppressor factors
for future studies.

Integrative Regulatory-Metabolic
Network Identified Abnormality of Hippo
Signaling as Key Misregulation in HCC
We integrated the regulatory network with metabolic models to
identify potential TFs vital to the growth of HCC cells using the
source code of Part2 in Supplementary File 1. The compositions
of the integrated models for HCC and normal liver tissue are
listed in Supplementary Table 1. The basic metabolism was

FIGURE 2 | Core structure of different nodes between topology of normal/tumor regulatory networks. (A) Differences between normal and tumor networks.
(B) Differences between tumor and normal networks; Nodes filled with green are TFs while nodes filled with red are metabolic genes.
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consistent, while the TFs and target genes differed. There were
1313 and 1312 TFs in the HCC and normal model, respectively.
These TFs included 33 that were HCC-specific and 32 that were
specific for a normal liver.

Reactome database analysis of the 32 specific TFs (including
NME2 and NFKBIA) not involved in the HCC regulatory
network revealed that they were enriched for the YAP1-
and WWTR1 (TAZ)-stimulated gene expression pathways.
They are transcriptional co-activators interacting with TEAD
family genes to promote the expression of TFs critical to
cell proliferation and apoptosis through the Hippo signaling
pathway (Lehmann et al., 2016). The findings suggested that
depletion of these 32 TFs might lead to abnormal Hippo
signaling and might induce a wide range of cancers. In
addition, the 33 specific TFs in the HCC integrated model
were mainly enriched in cancer metabolism and transcriptional
misregulation pathways.

For each TF knockout simulation, we changed the constraints
on corresponding reactions according to activation/inhibition
interactions and then simulated the cell growth rate to calculate
the growth ratio relative to wildtype, as implemented in Part3
script in Supplementary File S1. We found TFs affecting both
tumor and normal cell growth, as well as TFs that only reduced
the growth of tumor cells (Supplementary Table 2). For example,
disruption of SMAD2, HEY2, ELK1, and CREB3L3 was predicted
to lead to >80% reduction in tumor cell growth while having no
effect on normal cells. In particular, the involvement of HEY2 and
SMAD2 in HBV induced HCC development was evident. The
important TFs are likely to be effective targets for the inhibition
of tumor cells of HCC.

Precise Stratification of TCGA-LIHC
Samples Based on Metabolic and
Transcriptional Gene Expression
The identification of genes or pathways that could be valuable
as targets for treatment has been a goal for a long time.
Precise clinical diagnosis has been hindered by the pronounced
heterogeneity of HCC. This heterogeneity partly reflects

TABLE 1 | HCC Cell growth ratio by influential TFs knockouts.

Ratio after knockout of common TFs in all three classes of TCGA-LIHC

TF Class 1 Class 2 Class 3

CTBP1 0.926 0.926 0.926

HTATIP2 0.926 0.926 0.926

ETV7 0.234 0.12 0.09

Ratio after knockout of specific TFs in lowest survival class

TF TCGA-LIHC LIRI-JP

NR1I3 0.978 0.978

HNF4A 0.969 0.984

RORC 0.935 0.888

F2 0.975 0.967

CREB3L3 0.856 0.876

the inefficient current TNM stage classification. Molecular
stratification of HCC patients and identification of corresponding
therapeutic targets are current research goals. Bidkhori et al.
(2018) utilized a metabolic network-based method to divide
179 TCGA-LIHC samples into three subtypes and identified
their specific characteristics. Jiang et al. (2019) used proteomic
data to classify HCC patients and explored the mechanism of
an early-stage HCC tumor cell. Here, we used the expression
data of 3,492 genes in the integrated model to stratify all the
HCC samples with actual clinical survival information from
the TCGA-LIHC dataset and to identify altered metabolism
among different subgroups and specific characteristics of the
poor prognosis subgroup.

Using an NMF consensus clustering analysis, three major
classes were identified in the TCGA-LIHC cohort: Class 1
(n = 130), Class 2 (n = 127), and Class 3 (n = 58). The survival
curves (Figure 3A) revealed a significantly lower OS rate for Class
2 (P = 0.00049). Comparison of the 159 overlapped samples in a
previous study (Bidkhori et al., 2018) and this study revealed the
relatively good agreement in identifying the lowest OS subgroup:
91% (48 of 53; former results that are also in ours) and 70%
(49 of 70, our results that are also in the former findings).
Consequently, we focused on determining the characteristics of
the Class 2 poor prognosis subgroup at the transcriptome and
metabolism levels.

A supervised analysis using Limma (Matthew et al., 2015)
revealed 399 differentially expressed genes having distinguishable
pattern in Class 2 compared to Class 1 and 3, as shown
in the heatmap in Figure 3B, comprising 287 upregulated
genes [including three potential therapeutic targets: ALDOA,
G6PD, and ACSS1 specific to the lowest OS subgroup identified
by Bidkhori et al. (2018)] and 112 downregulated genes
(Supplementary Table 3) enriched in 17 and 13 non-overlapping
KEGG pathways, respectively (Figure 3C).

To validate the effectiveness of our stratification strategy, we
applied the same strategy for the LIRI-JP dataset in the ICGC
database to form three subgroups with significant prognosis
differences (Figure 4A; P = 0.0018). We found 332 differentially
expressed genes revealed distinguishable pattern between the
poor prognosis subgroup and other two subgroups, as shown
in heatmap of Figure 4B, and the pathways enriched for DEGs
were very consistent with DEG-enriched pathways of TCGA-
LIHC data (Figure 4C). Specifically, the upregulated genes were
mainly enriched in established cancer-related pathways involved
in improved cell proliferation. Notably, viral carcinogenesis
and HBV pathways were upregulated and could be directly
linked with HCC development. Another example is increased
glucose uptake as a principal nutrient source in central carbon
metabolism of cancer, cell cycle, and fructose metabolism.
We also found that hypoxia-inducible factor signaling was
upregulated. This signaling consists of master regulators of
oxygen homeostasis that allow tumor cells to adapt to a
hypoxic environment by enhancing oxygen delivery and also
affect important growth factors like the vascular endothelial
growth factor gene. In contrast, the downregulated genes were
generally found in pathways contributing to drug metabolism.
An example is the peroxisome proliferator-activated receptor
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FIGURE 3 | Stratification of 315 TCGA-LIHC samples. (A) Kaplan-Meier curve shows the survival outcomes of Class 1 (red), Class 2 (blue), and Class 3 (yellow); the
P-value is 0.00049, which is significant. (B) Heatmap of 399 differentially expressed genes revealed a distinguishable pattern between Class 2 and Class 1 and 3.
Red color represents upregulated while dark gray represents downregulated. (C) Enrichment analysis of KEGG pathways of 287 upregulated and 112
downregulated genes, respectively.

signaling pathway, which has also been identified in less
aggressive HCC subtypes through proteomics analysis, as well as
drug cytochrome P450 metabolism, which is reduced in advanced
cancer patients (Rivory et al., 2002).

Phosphoinositide 3-Kinase (PI3K)-Akt
and Mammalian Target of Rapamycin
(mTOR) Signaling Pathways Are Critical
to HCC Tumor Cell Growth
By using IDREAM, eight, 13, and five TFs were identified as
being vital for HCC cell growth in Class 1, Class 2, and Class
3, respectively, of TCGA-LIHC, after excluding TFs that also
affected normal tissue. Three TFs were common in all three
classes (Table 1).

The knockout of ETV7 produced the greatest decrease in
growth rate in all three classes, as shown in Table 1. ETV7 is
a TF belonging to the ETS family, which is responsible for the
development of different tissues as well as the progression of
several cancers, such as HCC (Peeters et al., 1997; Matos et al.,
2009). Due to its translocation function, the overexpression of
ETV7 has been associated with tumorigenic transformation and
restriction of apoptosis by blocking the Mys-induced apoptosis
pathway (Cardone et al., 2005; Carella et al., 2006; Federica et al.,
2018). Accumulating experimental evidence indicates that ETV7
also plays a significant role in the mTOR signaling pathway

by assembling the mTOR3 complex, which can stimulate cell
proliferation and is not sensitive to rapamycin, a common anti-
tumor agent, unlike mTOR1/2 (Harwood et al., 2018). Therefore,
ETV7 depletion may cause the inactivation of mTOR3 and lead
to tumor cell death after treatment.

CTBP1 is a well-known cancer hallmark. The gene is linked
with a pro-tumorigenic process and can affect the regulatory
network (Blevins et al., 2017). It can bind to the C-terminus
of the adenovirus protein E1A to promote cell proliferation
and invasion (Hildebrand and Soriano, 2002). In addition, the
characteristic elevated NADH level of cancer cells makes it
possible for CTBP1 to bind to NADP with a high affinity, thus
triggering a conformational change that leads to hyper-activity of
both tumorigenesis and tumor progression.

To explore the characteristics of TFs leading to low survival
rate and poor prognosis, we selected TFs whose knockout only
influenced samples in Class 2 of the TCGA-LIHC dataset. Five
TFs were specific for Class 2 (threshold: ratio <0.98). Four of the
five TFs were also associated with the lowest survival subgroup
(Class 3) of the LIRI-JP dataset (the ratio of HNF4A somewhat
exceeded the threshold), as shown in Table 1.

The knockout of CREB3L3, which was predicted to decrease
the growth rate of tumor cells by over 15% but which had no
effect on normal tissues, is reportedly activated with PPARα for
lipid metabolism in liver-specific tissue (Vecchi et al., 2013).
They both play important roles in the utilization of fatty acid
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FIGURE 4 | Stratification of 232 LIRI-JP samples. (A) Kaplan-Meier curve shows the survival outcomes of Class 1 (red), Class 2 (blue), and Class 3 (yellow); the
P-value is 0.0018, which is significant. (B) Heatmap of 332 differentially expressed genes revealed a distinguishable pattern between Class 3 and Class 1 and 2. Red
color represents upregulated while dark gray represents downregulated. (C) Enrichment analysis of KEGG pathways of 210 upregulated and 122 downregulated
genes, respectively.

for energy in a fasting state and in cell proliferation. Thus, it
was not surprising that its absence was predicted to result in a
decreased growth rate in tumor cells. The expression of CREB3L3
is linked with restricted apoptosis, cell survival, and HBV-
associated HCC development by regulating hepatic genes in the
PI3K-Akt and AMPK signaling pathways. The alignment of in-
silico analyses and biological knowledge suggests that CREB3L3
is a potential therapeutic target, especially for advanced-stage
HCC patients.

Metabolic Genes in Cholesterol
Biosynthesis Are Druggable Targets in
HCC Treatment
We incorporated patient-specific models established by Uhle
et al. (2017) to do metabolic analyses, including identification of
metabolic genes essential for tumor cell growth and annotation
of the specific reactions altered during tumor development.
All 315 metabolic models were built to represent tumor
growth. Using the genetic human metabolic model HMR2
and RNA-Seq expression data from TCGA-LIHC, a task-driven
model reconstruction algorithm called tINIT was employed to
construct all models.

We performed a single gene deletion simulation using a
function provided in the COBRA Toolbox. The total gene

number of each model ranged from 1,106 to 2,169. We first
identified the essential genes in the three subtypes of TCGA-
LIHC samples calculated by the NMF stratification strategy. We
then collected genes that were essential in at least half of the
samples in each class. Nineteen, 20, and 18 genes remained
for Class 1, Class 2, and Class 3, respectively, after filtering
those having no influence on tumor cell growth. Of these, the
18 genes found in Class 3 (relatively high OS rate) were are
also found in the other two classes. ACADSB was shared by
Class 1 and Class 2, and CMPK1 was only identified in Class 2.
We assessed prior knowledge about the therapeutic potential of
these 20 genes in DrugBank6. The findings are summarized in
Table 2.

The DrugBank analysis identified 11 genes (CRAT, EBP,
ACADSB, CMPK1, SLC22A5, HMGCR, HSD17B7, NSDHL,
DHCR7,FDPS, and CYP51A1) that have already been targeted by
approved drugs in the treatment of cancer or relative diseases.
Six other genes have corresponding drugs being evaluated
experimentally or investigationally. Both CMPK1 and ACADSB
seem to be vital to tumor cell growth in HCC models with
a lower survival rate. These genes have been implicated as
prognosis biomarkers associated with worse survival in multiple
tumors for a long time (Ryu et al., 2011; Ohmine et al., 2015;

6https://www.drugbank.ca/
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TABLE 2 | Lethal metabolic genes as potential targets and corresponding drugs in DrugBank.

Lethal gene Target drug Drug state Brief description of drug

IDI1 Dimethylallyl diphosphate Experimental Unknown

SQLE Ellagic acid Investigational Antioxidant and anti-proliferative/anti-cancer effects

FDFT1 TAK-475 Investigational Target rate-limiting enzyme in the hepatic biosynthesis of
cholesterol

CRAT Levocarnitine Approved Treatment of primary systemic carnitine deficiency

EBP Tamoxifen Approved Treatment of metastatic breast cancer

ACADSB Isoleucine Approved Anti-proliferative effects useful in cancer therapy

Valproic Acid Approved

SLC22A5 Levocarnitine Approved Treatment of primary systemic carnitine deficiency, affect fatty
acid synthesis

HMGCR Lovastatin Approved Lowering LDL cholesterol and triglycerides,
hypercholesterolemia;

Cerivastatin Approved Target rate-limiting enzyme in the hepatic biosynthesis of
cholesterol

Simvastatin Approved

Atorvastatin Approved

Rosuvastatin Approved

Meglutol Experimental

CMPK1 Gemcitabine Approved Various advanced cancers

Lamivudine Approved Treatment of HBV

Sofosbuvir Approved Treatment of HCV

Reduce incidence of HCC

MVK Farnesyl thiopyrophosphate Experimental Unknown

HSD17B7 NADH Approved Treating Parkinson’s disease, chronic fatigue syndrome,
Alzheimer’s disease and cardiovascular disease

NSDHL NADH Approved Treating Parkinson’s disease, chronic fatigue syndrome,
Alzheimer’s disease and cardiovascular disease

DHCR7 NADH Approved Treating Parkinson’s disease, chronic fatigue syndrome,
Alzheimer’s disease and cardiovascular disease

ACACB Soraphen A Experimental Anti-HCV viral activity

LSS R048-8071 Experimental Unknown

Lanosterol Experimental

FDPS Pamidronic acid Approved Treating severe hypercalcemia of malignancy

Zoledronic acid Approved Treating Paget’s disease of bone

Alendronic acid Approved Treating bone metastases from solid tumors

Ibandronate Approved, investigational Treating osteolytic lesions of multiple myeloma

Risedronic acid Approved, investigational Experimental drugs’ targets are still unknown

ISOPENTENYL PYROPHOSPHATE Experimental

Dimethylallyl Diphosphate Experimental

Farnesyl diphosphate Experimental

Geranyl Diphosphate Experimental

Geranylgeranyl diphosphate Experimental

Isopentyl Pyrophosphate Experimental

Incadronic acid Experimental

CYP51A1 Levoketoconazole Investigational Treating fungal infections in immunocompromised and
non-immunocompromised patients

(S)-econazole Experimental Treating diabetes mellitus type 2.

Miconazole Approved, investigational, vet_approved

Itraconazole Approved, investigational

Tioconazole Approved

PMVK Unknown Unknown Unknown

MVD Unknown Unknown Unknown

SC5D Unknown Unknown Unknown
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Liu N.Q. et al., 2016; Zhou et al., 2017a,b; Zhang B. et al., 2019).
CMPK1 is also the target of three FDA approved cancer drugs
(Gemcitabine, Lamivudine, and Sofosbuvir) for the treatment of
diseases induced by a virus infection, such as HCC caused by
HBV/hepatitis C virus. Li et al. (2019) recently reported that
in Kaposi’s sarcoma, a common acquired-immunodeficiency-
syndrome-related malignancy caused by infection of Kaposi’s
sarcoma-associated herpesvirus, the invasiveness and motility of
cells can be increased by overexpression of CMPK. This effect has
also been validated by the knockout experiments carried out in
cell lines. FDPS has been targeted by 11 drugs, among which five
types of drugs are approved for mainly treating osteoporosis as
well as bone metastases from solid tumors. CYP51A1 has been
the targets of three approved drugs, which are mainly used for
treating fungal infections.

Among the 18 genes lethal in all three classes, 15 genes
participate in cholesterol biosynthesis via the desmosterol
(DESMOL) pathway, which is the dominant form of liver
cholesterol biosynthesis (Song et al., 2005). The HMGCR,
MVK, PMVK, MVD, and IDI1 genes involving in the
mevalonate pathway that converts acetyl-CoA to dimethylallyl
pyrophosphate (DMAPP). The enzyme encoded by FDPS aids
DMAPP in synthesizing farnesyl pyrophosphate (FAPP). FDFT1
catalyzes the dimerization of two FAPP into squalene (SQNE). In
the next step, SQLE and LSS play important rate-limiting roles in
cholesterol biosynthesis by catalyzing the conversion of SQNE to
lanosterol (LNSOL). LNSOL then goes through demethylation,
oxidation, and reduction steps catalyzed by CYP51A1, NSDHL,
and HSD17B7 to form zymosterol (ZYMOL), the precursor in the
DESMOL pathway. The EBP, SC5D, and DHCR7 gene catalyze
the conversion of ZYMOL to DESMOL. Finally, DESMOL
is reduced by DHCR24 to produce cholesterol. Knockout of
any of these genes will disrupt cholesterol biosynthesis and
lead to the depletion of cholesterol, which is disastrous for
tumor cell growth.

There are only three predicted essential genes that have
not been recorded in DrugBank. The high hit rate of drug
targets (17/20) suggested that those three metabolic genes are
potential targets and worthy of exploration in future studies.
As mentioned above, PMVK and MVD are involved in the
mevalonate pathway that converts acetyl-CoA to DMAPP.
It has been reported that a key enzyme HMGCR, in the
mevalonate pathway was confirmed to be closely related
to cancer (Jiang et al., 2019). These three genes together
help the transformation from Mevalonic acid to Isopentenyl
diphosphate (IPP). SC5D catalyzes a dehydrogenation to
introduce C5-6 double bond into lathosterol in cholesterol
biosynthesis. Krakowiak et al. (2013) found that the mouse
with SC5D disruption had elevated lathosterol, decreased
cholesterol levels, and abnormal hedgehog signaling, which
is considered to be related to tumorigenesis (Patrycja et al.,
2003). Furthermore, SC5D regulates the enzyme converting
lathosterol to 7-Dehydrocholesterol. And the downstream gene
DHCR7, which converts 7-Dehydrocholesterol to cholesterol,
has been targeted by drugs inhibiting HBV infection (Xiao
et al., 2020). Therefore, although the three genes are currently
not targets of existing drugs, they are all related to the

main-effect pathway cholesterol biosynthesis and important for
tumorigenesis of HCC.

Enhancement of Glutathione and Fatty
Acid Biosynthesis Are Important
Metabolic Reprogramming Events
Associated With Poor Prognosis
It is widely accepted that tumor cells reprogram metabolic
pathways to enable unlimited cell proliferation, aggressive
invasiveness, and restricted apoptosis. We investigated 1,329
reactions in all 315 patient-specific models to identify flux
patterns and enzymes that differed between the poor prognosis
subgroup (Class 2) and the other two classes. We conducted
flux balance analysis with cell growth as the objective function
to calculate the flux distribution for each patient, and selected
candidate reactions having similar flux changes in over half
samples of each subgroup. Four flux alteration patterns were
evident. The first was from negative flux value in Class 1 and
Class 3 to positive flux in Class 2. The second was from positive
flux value in Class 1 and Class 3 to negative flux in Class 2. The
third was from a non-zero flux in Class 1 and Class 3 to zero flux
in Class 2. The fourth was from zero flux in Class 1 and Class
3 to non-zero flux in Class 2. The altered reactions, formulas,
enzymes, and corresponding types of flux patterns are shown in
Supplementary Table 4.

Two reactions simulated type 1 and type 2 flux change,
respectively. According to these four reactions, the production of
glutathione (GSH) was suspected to increase in Class 2 samples
due to the enhancement of AKG biosynthesis and cysteine
accumulation in the cytosol. GSH is a key member of the cell
immune response system. The lack of GSH can easily lead to
cell death. Several labs have confirmed its common occurrence
in all cancers (Mehrmohamadi et al., 2014) and it is considered
a potential therapeutic target. Additionally, loss of the enzyme
catalyzing these reactions (encoded by SLC25A11) inhibits tumor
cell growth in non-small cell lung cancer (Lee et al., 2019). Baulies
et al. (2018) suggested that the overexpression of SLC25A11
works as an adaptive mechanism of HCC to provide enough GSH
for abundant cell growth, while SLC25A11 induces the export of
AKG to the cytosol to activate the mTOR pathway to promote cell
growth and anabolism through egl-9 family hypoxia-inducible
factors (EGLNs) (Villar et al., 2015).

Eleven reactions displayed no flux in Class 2 but a positive
flux in Class 1 and 3 (type 3). Four of these reactions are
part of porphyrin metabolism. The enzyme encoded by UROD
is involved in this pathway and was recently identified as
a potential anti-cancer target due to its ability to convert
uroporphyrinogen to coproporphyrinogen (Yip et al., 2014).
Another enzyme encoded by ALAD is overexpressed in breast
cancer patients with a favorable clinical outcome. Its upregulation
can suppress cell proliferation and invasion (Ge et al., 2017). In
addition, a set of enzymes responsible for carnitine shuttling,
which are encoded by SLC22A1, SLC25A20, SLC25A29, and
CPT2, are downregulated in HCC tumor cells. These enzymes
play rate-limiting roles in controlling fatty acid oxidation
(Meihua et al., 2018). Their low expression has been significantly
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associated with worse patient survival (Heise et al., 2012) and
differentiation state by impairing production of nitric oxide and
the mTOR signaling pathway mediated by arginine. In some
situations, this can lead to severe autophagy (Lifeng et al., 2016;
Keshet and Erez, 2018).

Three reactions displayed non-zero flux in Class 2 but zero
flux in Class 1 and 3 (type 4). These involved fatty acid activation
responsible for providing adequate ATP and CoA for tumor
cell growth; glycine, serine, threonine metabolism, which helps
reduce reactive oxygen species pressure through the serine–
glycine-one-carbon metabolic network during tumor metastasis
(Amelio et al., 2014); and arginine/proline metabolism, which
can regulate response to nutrient and oxygen deprivation in
oncogenesis, thus avoiding cell apoptosis (Phang et al., 2015).
Furthermore, exploration of enzymes revealed that ACADSB
(which was also highlighted by previous analyses), ACSL3, and
ACSL4 regulate proteins that stimulate tumor cell proliferation,
including p-AKT, LSD1, and β-catenin (Wu et al., 2015).

The altered reactions specific to Class2 samples promote
tumor cell growth and decrease sensitivity towards normal
apoptosis signals. Several key enzymes have already been
implicated as biomarkers in cancers. Metabolic reprogramming
accounting for poor prognosis also supports our stratification of
the HCC patients.

miRNAs Regulating Influential Genes for
HCC Cell Proliferation
To investigate the interplay between regulation and metabolism
of HCC further, we retrieved miRNAs regulating the influential
genes highlighted in our previous analyses. These include the
three common TFs that were influential in all three classes,
the five overlapping TFs that specifically affected the lowest
survival subgroup of TCGA-LIHC (Class 2) and LIRI-JP (Class
3), and the 20 metabolic genes revealed by single-gene deletion
result (Supplementary Table 5). Evaluation of the MIRNET
database identified the miRNAs functioning in liver tissue with
higher connections to target TFs/genes. We found six miRNAs
connected to the 28 genes of interest (Supplementary Table 5).
Three of these were directly linked with HCC. MiR-124-3p and
miR-1-3p have been reported to be downregulated in HCC
patients compared to normal subjects (Lang and Ling, 2012;
KöBerle et al., 2013). MiR-24-3p is involved in an HCC diagnosis
panel because of its abnormal overexpression.

The specific mechanism concerning how the loss-of-function
or gain-of-function of these miRNAs contribute to tumorigenesis
remains unclear. However, there are some experiment-based
hypotheses. Figure 5A depicts the core network comprising
miRNAs, TFs, and genes involved in HCC. The data will inform
further studies in HCC development.

In particular, miRNA-124-3p appears to be the key miRNA
during oncogenesis in many cancers (Murakami et al., 2006; Dai
et al., 2009; Vlierberghe et al., 2010). Zheng et al. (2012) opined
that miR-124-3p participates in reducing tumor cell motility and
invasion by controlling epithelial–mesenchymal cell transition
as well as cytoskeletal events through a cpG-island methylation
(Furuta et al., 2010).

Zhang H. et al. (2019) suggested that miR-1-3p overexpression
can inhibit cell proliferation and induce apoptosis by targeting
the PI3K-Akt and mTOR pathways through ETV7. The
downregulation of mir-24-3p can assist this process by
deactivating the Fas receptor in the NOTCH pathway and
inhibiting HNF4A to drive a feedback loop that leads to cancer-
related inflammatory reaction (Salam et al., 2016). Additionally,
Wang G. et al. (2017) and Chen et al. (2016) indicated that
the regulatory impact of miR-24-3p includes an altered cell
cycle by inducing p53 mutation as well as the avoidance of cell
death by targeting the Fas receptor in the NOTCH pathway
(Nicolas et al., 2003).

In addition, miR-26b-5p, which was connected to nine of
the 28 genes, has been experimentally validated to be under-
expressed in HCC patients with a worse prognosis. It can
suppress tumor invasion as well as inducing apoptosis by
targeting SMAD1 (Wang et al., 2016), which is consistent
with our conclusion about the SMAD gene. Three of the
genes obtained by our integrated regulatory-metabolic analysis
(CMPK1, ACADSB, and RORC) are directly regulated by
miR-26b-5p. The fact that they are all specific genes for
Class 2 (the class with the worst OS rate) substantiates the
previous association.

Ingenuity Pathway Analysis (Krämer et al., 2013) of the 28
candidate genes and six top-connected miRNAs was performed
to explore the biological connection among them. As shown
in Figure 5B, EGFR was inferred and linked with our core
gene set. EGFR is one of the most crucial genes responsible for
cancer cell growth. Its overexpression can lead to unlimited cell
proliferation, just like that in tumor cells. The gene is a potential
therapeutic target in cancer therapy. Multiple FDA approved
drugs, such as Gefitinib and Lapatinib, are effective in EGFR-
related non-small-cell lung cancer and several other cancers
(Rawluk and Waller, 2018; Voigtlaender et al., 2018).

DISCUSSION

Integrated Regulatory-Metabolic
Network Differences Between HCC and
Normal Liver Cells
The curated information linking the reactions of genes and
proteins in GEMs has enabled the identification of many
potential disease-related biomarkers by metabolic analyses. The
interconnectedness between metabolism and regulation permits
the integration of regulatory with metabolic models, which in
turn allows the more precise description of the phenotypic
impact of mutations and environmental perturbations. This
integration has proven effective in model organisms, including
S. cerevisiae and E. coli, but has not yet been applied to the study
of human diseases.

Here we leveraged the mechanistic modeling of transcriptional
regulatory network and metabolic network for HCC study,
by extensively improving our IDREAM framework. We used
two different approaches to construct transcriptional regulatory
networks for HCC and normal liver tissue samples. Through
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FIGURE 5 | Multi-scale network exploration of HCC mechanism. (A) Core miRNA relation network of potential therapeutic targets. The octagon represents
metabolic genes while the square represents TFs and the circle represents miRNAs; The orange color represents genes/TFs that have been experimentally validated
as crucial genes in HCC tumor cells. (B) Biological connection of 34 genes (28 candidate genes and top 6 miRNAs).

topology analysis, NME2, and NFBIKA were implicated as tumor
suppressor TFs because of their absence in a tumor regulatory
network and high connectivity in a non-tumor network. We
integrated the regulatory networks with a human liver metabolic
model, and compared the effects of TFs on cell growth in tumor
and normal models. TFs that only reduced the growth of tumor
cells were predicted to be potential targets. These included the
SMAD2, HEY2, ELK1, and CREB3L3 genes.

Three Subtypes of HCC Samples
Demonstrate Significantly Different
Prognosis
By allocating TCGA-LIHC samples using pre-filtered 3,492 genes,
we defined three patient subgroups distinguished by the OS rate.
Patients in Class 2 displayed the worst survival. We identified
three essential TFs for HCC tumor cell growth that were common
in all three groups. Among these, ETV7 displayed the greatest
impact, decreasing cell growth rate by approximately 88% in
Class 2. ETV7 is a TF belonging to the ETS family. It is
responsible for the progression of several cancers, including
HCC. Because of its translocation function, the overexpression
of ETV7 has been associated with tumorigenic transformation
and restricted apoptosis by blocking the Mys-induced apoptosis
pathway. There is growing evidence of a significant role of ETV7
in the mTOR signaling pathway, which involves the assembly of
the mTOR3 complex to stimulate cell proliferation and prevent
cell damage by rapamycin, a common anti-tumor agent.

In addition, we identified potential TFs related to poor
prognosis based on the simulated knockouts of five TFs, which

were predicted to specifically affect patients in Class 2. Among
these five TFs, CREB3L3 was also predicted as being influential
for advanced-stage HCC samples by the TF knockout simulation
in the generic integrated regulatory-metabolic model. It has been
reported that the expression of CREB3L3 is linked with cell
survival and HBV-associated HCC development by regulating
hepatic genes in the PI3K-Akt and AMPK signaling pathways
(Vecchi et al., 2013).

The poor prognosis group (Class 2) also exhibited a specific
pattern of altered metabolism. Flux alterations in Class 2 samples
included the accumulation of both AKG and cysteine, which
indicated the over-production of GSH, a key member of the
cellular immune response system that improves cell proliferation
and avoids apoptosis. Besides the biosynthesis of fatty acids,
mTOR signaling was also hyper-activated, and pathways that
included those of glycine, serine, and threonine metabolism
reduce reactive oxygen species stress during tumor homeostasis.

We used the same stratification strategy for the LIRI-
JP dataset. Survival outcomes likewise displayed significant
differences among the subgroups. The predicted outcomes of TFs
affecting the lowest survival subgroup were consistent with that
of the TCGA-LIHC dataset.

Key Metabolic Genes in Cholesterol
Biosynthesis Identified by
Patient-Specific Models Are Potential
Targets
The metabolic analyses based on patient-specific models revealed
20 metabolic genes with important roles in HCC tumor
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cell growth by participating in the cholesterol biosynthesis
pathway. Recent research uncovered that cholesterol biosynthesis
supports the growth of hepatocarcinoma lesions depleted of fatty
acid synthase, concomitant targeting de novo lipogenesis and
cholesterol biosynthesis are highly detrimental for the growth of
human HCC cells (Che et al., 2019)

According to DrugBank, eleven genes have already been
therapeutically targeted in various cancers or cancer-related
diseases, and six other genes have corresponding drugs being
evaluated experimentally or investigationally. Although the
remaining three genes, PMVK, MVD, and SC5D are currently
not targets of existing drugs, they are all related to the
main-effect pathway cholesterol biosynthesis and important for
tumorigenesis of HCC, which might become novel potential
therapeutic targets and worthy of exploration in future studies.
We further found that ACADSB and CMPK1 appeared to be
specifically essential in Class 2. These two genes could be
associated with poor prognosis and may be the targets for the
treatment of more serious HCC patients.

Multi-Scale Regulatory-Metabolic
Network Reveals a Critical Mechanism
of HCC Cell Proliferation
In addition to the integration of transcriptional regulation
with metabolism, it is well known that dysregulated miRNAs
also played an important regulatory role in tumorigenesis. We
incorporated the miRNAs regulating the identified influential TFs
and metabolic genes generated from an integrated transcriptional
regulatory-metabolic network model. Based on the highlighted
genes (total of 28 key genes), we predicted miRNAs regulating
these candidates using MIRNET. Three miRNAs (miR-124-3p,
miR-1-3p, and miR-24-3p) have been described as important
factors associated with HCC tumorigenesis and function in
established cancer-related pathways, including NOTCH, PI3K-
Akt, and mTOR. We illustrated the core network of HCC
cell proliferation involving interactions between miRNAs-TFs,
miRNAs-Targets, and TFs-Targets (Figure 5A), and emphasized
the targets that were highlighted in the combined analyses.
In general, the inhibition of miRNAs on overexpressed genes
in HCC were consistent with their validated function such
as suppressing tumorigenesis. The findings suggest potential
mechanisms associating the key genes predicted from our
regulatory-metabolic network analysis with cancer cell growth
outcomes. Notably, the direct regulation of miR-26b-3p on
ACADSB and CMPK1 provides experimental evidence to support
the idea that these two metabolic genes are linked with lower
OS in HCC. Moreover, the biological connection inferred by
the Ingenuity Pathway Analysis indicated these highlighted
genes are closely connected to EGFR, which plays a significant
role in cancer cell proliferation, providing evidence for our
comprehensive analyses.
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Existing techniques have many limitations in the diagnosis and classification of ischemic
stroke (IS). Considering this, we used metabolomics to screen for potential biomarkers
of IS and its subtypes and to explore the underlying related pathophysiological
mechanisms. Serum samples from 99 patients with acute ischemic stroke (AIS) [the
AIS subtypes included 49 patients with large artery atherosclerosis (LAA) and 50
patients with small artery occlusion (SAO)] and 50 matched healthy controls (HCs)
were analyzed by non-targeted metabolomics based on liquid chromatography–mass
spectrometry. A multivariate statistical analysis was performed to identify potential
biomarkers. There were 18 significantly different metabolites, such as oleic acid, linoleic
acid, arachidonic acid, L-glutamine, L-arginine, and L-proline, between patients with
AIS and HCs. These different metabolites are closely related to many metabolic
pathways, such as fatty acid metabolism and amino acid metabolism. There were also
differences in metabolic profiling between the LAA and SAO groups. There were eight
different metabolites, including L-pipecolic acid, 1-Methylhistidine, PE, LysoPE, and
LysoPC, which affected glycerophospholipid metabolism, glycosylphosphatidylinositol-
anchor biosynthesis, histidine metabolism, and lysine degradation. Our study effectively
identified the metabolic profiles of IS and its subtypes. The different metabolites between
LAA and SAO may be potential biomarkers in the context of clinical diagnosis. These
results highlight the potential of metabolomics to reveal new pathways for IS subtypes
and provide a new avenue to explore the pathophysiological mechanisms underlying IS
and its subtypes.

Keywords: ischemic stroke, metabolites, non-targeted metabolomics, TOAST, biomarkers

INTRODUCTION

Stroke is one of the main causes of human death and disability (Wang et al., 2014) and is associated
with a high rate of disability and recurrence. According to population-based studies (Benjamin
et al., 2017), ischemic stroke (IS) accounts for more than 80% of all strokes. According to its
etiology and imaging, IS can be categorized into five subtypes (Adams et al., 1993; Chen et al.,
2012), including large artery atherosclerosis (LAA), small artery occlusion (SAO), cardioembolism,
stroke of other determined cause, and stroke of undetermined cause. The classification of IS can
help with the early treatment and prevention of long-term recurrence in patients (Montaner et al.,
2008). However, the diagnosis and classification of IS mainly rely on neuroimaging techniques,
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which are scarce, expensive, and time-consuming (Latchaw et al.,
2009). Therefore, new biomarkers for the rapid and accurate
prediction, diagnosis, and classification of IS might play a
positive role in clarifying the pathophysiological mechanism of
IS and promoting the secondary prevention and management of
patients with IS.

It is difficult to release macromolecules from the brain into
the blood due to the presence of the blood–brain barrier (Jickling
and Sharp, 2015). Some conventional detection methods make
it difficult to detect specific sensitive different metabolites in
patients with IS. However, with the development of the emerging
science of metabolomics, it may be possible to identify specific
small molecular biomarkers in patients with IS and determine
the underlying etiology. Metabolomics is an effective method
to reveal biomolecules’ phenotypes. This method enables the
identification of changes in small molecular metabolites in
various diseases, which can greatly help in understanding and
diagnosing diseases. Many studies using metabolomics have
revealed the differences in metabolites between patients with
acute ischemic stroke (AIS) and healthy controls (HCs) (Jung
et al., 2011; Kimberly et al., 2013). To date, few studies have
explored the differences in metabolites between the LAA and
SAO subtypes of IS. In this study, non-targeted metabolites based
on liquid chromatography–mass spectrometry (LC–MS) were
used to study the different metabolites between patients with
AIS and the HCs and between patients with the LAA and SAO
subtypes of IS. The proposed method offers important advantages
over traditional alternatives, ensuring that it is feasible to screen
potential biomarkers and further explore the relevant underlying
pathophysiological mechanisms.

MATERIALS AND METHODS

Study Population
In this study, 99 patients with AIS within 7 days of onset were
included in the AIS group, including 49 patients with LAA and
50 patients with SAO. Among the 99 AIS patients, the time
from onset to blood withdrawal was within 24 h among 45
patients and within 72 h among 38 patients. The remaining
16 patients showed transient ischemic attack symptoms within
7 days, but the blood samples were only collected at around
72 h after the symptoms begin to persist. A total of 50 HCs
with age, sex, and risk factors matched with the AIS group
were recruited. All patients needed to meet the following
conditions: (1) no history of stroke or coronary heart disease,
(2) no history of malignant tumor or autoimmune disease, (3)
blood samples can be obtained within 24 h of enrollment, and
(4) head magnetic resonance imaging and angiography were
completed during hospitalization. The patients in the AIS group,
who were hospitalized in the Department of Neurology from
October 2015 to December 2016, and the samples of the AIS
group were acquired from the ischemic cerebrovascular disease
database and blood database of The First Affiliated Hospital of
Zhengzhou University. The details of the database and related
articles have been published elsewhere (Song et al., 2013; Kelly
et al., 2016; Wang et al., 2020). All patients with AIS were

diagnosed according to the diagnostic criteria of the World
Health Organization [WHO] (1989). The TOAST classification
was evaluated back to back by two professional neurologists.
Written informed consent was obtained from all participants or
their representatives.

Serum Sample Preparation
Blood samples of patients with AIS were collected within 24 h
after admission; when collecting, it was ensured that the patients
have fasted for at least 8 h. The serum was centrifuged and
extracted within 1 h and refrigerated at −80◦C. To separate
metabolites with different polarities, the same sample underwent
two different treatment methods. After melting in ice at 4◦C for
30–60 min, 40 µl of serum was taken into a 1.5-ml centrifuge tube
for a reversed-phase ultra-performance liquid chromatographic
analysis, adding 300 µl methanol and 1 ml methyl tert-butyl
ether to precipitate the protein for 15 s. The sample was then
placed in a centrifuge at 12,000 rpm at a constant temperature
of 4◦C for 10 min, the upper solution (400 µl) was then
evaporated, and the sample was finally redissolved in 100 µl
methanol. For the serum analyzed by Hydrop interaction liquid
chromatography (HILIC), 50 µl plus 150 µl acetonitrile was
added to the centrifuge tube to precipitate the protein, and 100 µl
of the upper solution was centrifuged under the above-mentioned
conditions to be determined.

Chromatographic Condition
For the C18 separation, mobile phase A consisted of
acetonitrile/water (60/40), and mobile phase B was
isopropanol/acetonitrile (90/10); both A and B contained
0.1% formic acid and 10 mmol/L ammonium acetate. The
column was an HSS T3 column (2.1 × 100 mm, 1.8 µm, Waters)
operated at 45◦C. The flow rate was 300 µl/min, and the injection
volume was 1 µl. For the HILIC separation, mobile phase A
was acetonitrile, and mobile phase B was water; both A and B
contained 0.1% formic acid and 10 mmol/L ammonium acetate.
The column was a BEH amide column (2.1 × 100 mm, 1.7 µm,
Waters) operated at 40◦C. The flow rate was 300 µl/min, and the
injection volume was 1 µ l.

LC–MS Detection
A metabolomics analysis was performed using a Thermo
Scientific Q Exactive hybrid quadrupole Orbitrap mass
spectrometer equipped with a HESI-II probe. The positive
and negative HESI-II spray voltages were 3.7 and 3.5 kV,
respectively, the heated capillary temperature was 320◦C, the
sheath gas pressure was 30 psi, the auxiliary gas setting was 10 psi,
and the heated vaporizer temperature was 300◦C. Both the sheath
gas and the auxiliary gas consisted of nitrogen. The collision gas
was also nitrogen at a pressure of 1.5 mTorr. The parameters
of the full mass scan were as follows: resolution of 70,000,
auto gain control target under 1 × 106, maximum isolation
time of 50 ms, and m/z range of 50–1,500. The LC–MS system
was controlled using Xcalibur 2.2 SP1.48 software (Thermo
Fisher Scientific), and data were collected and processed using
the same software.
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Untargeted Metabolome Data
Processing
All data obtained from the four assays in the two systems in both
positive and negative ion modes were processed using Progenesis
QI data analysis software (Non-linear Dynamics, Newcastle,
United Kingdom) to impute raw data, peak alignment, picking,
and normalization to produce peak intensities for retention time
(tR) and m/z data pairs. The ranges of automatic peak picking for
the C18 were between 1 and 16 min and between 1 and 12 min,
respectively. Next, the adduct ions of each “feature” (m/z, tR) were
deconvoluted, and these features were identified in the human
metabolome database (HMDB) and Lipidmaps.

To monitor a system’s stability and performance and the
reproducibility of the sample, quality control (QC) samples were
prepared by pooling equal volumes of each serum sample. The
pretreatment of serum QC samples was performed in accordance
with real samples. For repeatable metabolic analyses, three
features of the analytical system must be stable: (1) retention
time, (2) signal intensity, and (3) mass accuracy. In this study,
three QCs were continuously injected at the beginning of the run.
QC samples are then injected at regular intervals of six or eight
samples throughout the analytical run to provide data from which
repeatability can be assessed.

The features were selected based on their coefficients of
variation (CVs) with QC samples; features with CVs over 15%
were eliminated.

Statistical Analysis
The classified variables and continuous variables in the baseline
information on participants were compared by χ2 test and t-test
in SPSS, respectively. Data are presented as mean ± SD or
the percentage, as appropriate. A multivariate statistical analysis
was performed using principal component analysis (PCA)
and orthogonal projections to latent structures—discriminant
analysis (OPLS-DA) multivariate statistical methods in SIMCA
(14.1) software. In this study, the variable importance in the
projection (VIP) value of the OPLS-DA model (threshold > 1)
and the P-value of t-test (P < 0.05) were used to identify
the different metabolites. The qualitative method of different

metabolites consists of searching in HMDB (to compare the m/z
or molecular mass, error limit 0.01 Da). The OPLS-DA model
was then validated by permutation tests. A pathway analysis was
performed using MetaboAnalyst 4.0.

RESULTS

Baseline Characteristics
In this study, there were 99 people in the AIS group and 50 people
in the control group. The baseline characteristics are shown in
Table 1. There were 73 males and 26 females with an average
age of 58.06 years in the AIS group and 36 men and 14 women
with an average age of 57.60 years in the control group. We found
no significant difference in age, sex, hyperlipidemia, and diabetes
mellitus between the AIS and control groups (P > 0.05).

PCA and OPLS-DA
The PCA of the unsupervised model was used to analyze the
differences and intra-group variation among the LAA, SAO, and
HC groups, in which R2X was used to judge the quality of
the model, and Q2 represented the predictable variables of the
model. As shown in Figures 1A–C, there was a slight separation
among the three groups on the score plots in both the C18
column and the HILIC column (C18-positive: R2X = 0.789,
Q2 = 0.547; C18-negative: R2X = 0.817, Q2 = 0.616; HILIC:
R2X = 0.732, Q2 = 0.453). To obtain the metabolite information
that leads to this difference, supervised models and OPLS-DA
were performed. The serum samples in the AIS group and
the HC group were separated in the C18 column and HILIC
column (C18-positive: R2Y = 0.883, Q2 = 0.726; C18-negative:
R2Y = 0.964, Q2 = 0.857; HILIC: R2Y = 0.985, Q2 = 0.914) as were
the LAA group and the SAO group (C18-positive: R2Y = 0.916,
Q2 = 0.778; C18-negative: R2Y = 0.909, Q2 = 0.800; HILIC:
R2Y = 0.953, Q2 = 0.726), highlighting the excellence of the
models (Figures 1D–I).

Different Metabolites
The analysis of OPLS-DA in the supervised model is summarized
in Table 2. A total of 18 significantly changed metabolites (SCMs)

TABLE 1 | Comparison of baseline characteristics between the patients and the healthy controls.

Patients (n = 99) Controls (n = 50) P-value

LAA (n = 49) SAO (n = 50) Total

Age (years), mean ± SD 58.08 ± 12.827 58.04 ± 10.234 58.06 ± 11.531 57.60 ± 2.718 0.781

Male, n (%) 36 (73.5) 37 (74.0) 73 (73.7) 36 (72.0) 0.821

Medical history, n (%)

Hypertension 29 (52.9) 24 (48.0) 53 (53.5) 13 (26.0) 0.001

Diabetes 13 (26.5) 7 (14.0) 20 (20.2) 8 (16.0) 0.535

Hyperlipidemia 5 (10.2) 4 (8.0) 9 (9.1) 8 (16.0) 0.210

Coronary heart disease 3 (6.1) 2 (4.0) 5 (5.1) 1 (2.0) 0.664

Smoking 21 (42.9) 20 (40.0) 41 (41.4) 9 (18.0) 0.004

Drinking 18 (36.7) 19 (38.0) 37 (37.4) 16 (32.0) 0.518

LAA, large artery atherosclerosis; SAO, small artery occlusion.
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FIGURE 1 | Multivariate statistical analysis of serum metabolic profiling between acute ischemic stroke (AIS) and healthy control (HC) groups. (A) Principal
component analysis (PCA) score plots in the C18-positive column (R2X = 0.789, Q2 = 0.547). (B) PCA score plots in the C18-negative column (R2X = 0.817,
Q2 = 0.616). (C) PCA score plots in the Hydrop interaction liquid chromatography (HILIC) column (R2X = 0.732, Q2 = 0.453). (D) Orthogonal projections to latent
structures—discriminant analysis (OPLS-DA) score plots of patients with AIS and HCs in the C18-positive column (R2Y = 0.883, Q2 = 0.726). (E) OPLS-DA score
plots of patients with AIS and HCs in the C18-negative column (R2Y = 0.964, Q2 = 0.857). (F) OPLS-DA score plots of the patients with AIS and HCs in the HILIC
column (R2Y = 0.985, Q2 = 0.914). (G) OPLS-DA score plots of the large artery atherosclerosis (LAA) and the small artery occlusion (SAO) groups in the
C18-positive column (R2Y = 0.916, Q2 = 0.778). (H) OPLS-DA score plots of the LAA and the SAO groups in the C18-negative column (R2Y = 0.909, Q2 = 0.800).
(I) OPLS-DA score plots of the LAA and the SAO groups in the HILIC column (R2Y = 0.953, Q2 = 0.726).

(VIP > 1, P < 0.05) were screened between the AIS group and
the HC group through different chromatographic columns, and
a total of eight SCMs were screened between the LAA and SAO
groups from the HMDB.

Compared with the HCs, the AIS patients exhibited
higher levels of oleic acid, linoleic acid, arachidonic acid
(AA), docosahexaenoic acid (DHA), L-palmitoylcarnitine,
tetradecanoylcarnitine, dodecanoylcarnitine, and
decanoylcarnitine and lower levels of Cer (14:0), Cer (16:0), non-
adecanoic acid, 4-hydroxyproline, phosphatidylethanolamine
(PE) (18:1), PE (18:0), propionylcarnitine, L-glutamine,
L-arginine, and L-proline as shown in the heat map in
Figure 2. In comparison to the SAO group, the LAA group
was characterized by decreased levels of L-pipecolic acid,
1-methylhistidine, PE (18:2), LysoPE (18:2), LysoPC (18:3),
LysoPC (20:0), and LysoPC (18:2) and by increased levels of PE
(16:0). Detailed information is shown in Table 2.

Metabolic Pathways
MetaboAnalyst 4.0 was used to analyze the different metabolic
pathways of the groups. The potential different metabolic

pathways between the AIS patients and the HCs include
linoleic acid metabolism, AA metabolism, arginine and proline
metabolism, and alanine, aspartate, and glutamate metabolism.
The metabolic pathways of the LAA group and the SAO
group probably differ in glycerophospholipid metabolism,
glycosylphosphatidylinositol (GPI)-anchor biosynthesis,
histidine metabolism, and lysine degradation (Figure 3).

DISCUSSION

We obtained the serum metabolic profiling of stroke patients by
non-targeted metabolomics and discovered that the AIS patients
had metabolic disorders. Furthermore, the metabolic profiles
of the LAA and SAO subtypes of IS were different. Among
the abnormal metabolic indicators, the metabolic disorders of
lipids and amino acids are the most obvious. Changes in
metabolite patterns lay the foundation for us to further clarify
the pathophysiological mechanisms of stroke and find ways to
implement innovative clinical diagnoses of stroke classifications.

The brain consumes approximately 20% of total human
energy consumed. Approximately 20% of the energy consumed
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TABLE 2 | Characteristics of the different metabolites.

Metabolites Retention time (min) Mass-to-charge ratio VIP value Fold change P-value

Between the AIS and HCs groups

Oleic acid 5.116 281.249 2.107 2.216 <0.00001

Linoleic acid 4.465 279.233 1.844 1.970 0.00001

Cer (d18:0/14:0) 8.993 512.503 1.735 0.212 <0.00001

Cer (d18:0/16:0) 9.546 540.534 1.732 0.213 <0.00001

Arachidonic acid 4.421 303.233 1.556 1.564 0.00030

Non-adecanoic acid 6.306 297.280 1.371 0.652 <0.00001

Docosahexaenoic acid 4.207 327.233 1.306 1.342 0.00964

4-Hydroxyproline 5.939 132.066 1.270 0.520 <0.00001

PE[18:2(9Z,12Z)/18:1(9Z)] 8.534 742.538 1.099 0.492 <0.00001

PE[18:2(9Z,12Z)/18:0] 8.989 744.553 1.099 0.514 <0.00001

L-Palmitoylcarnitine 1.433 400.342 1.098 1.338 <0.00001

Propionylcarnitine 2.604 218.139 1.097 0.716 <0.00001

Tetradecanoylcarnitine 1.473 372.311 1.095 1.382 0.00015

L-Glutamine 6.353 147.077 1.094 0.810 <0.00001

L-Arginine 7.316 175.119 1.093 0.742 <0.00001

Dodecanoylcarnitine 1.522 344.280 1.094 1.349 0.00695

L-Proline 5.346 116.071 1.092 0.758 <0.00001

Decanoylcarnitine 1.593 316.248 1.090 1.330 0.02110

Between the LAA and SAO group

L-Pipecolic acid 4.735 130.087 1.578 1.790 0.00065

1-Methylhistidine 7.267 170.093 1.317 1.625 0.04886

PE [22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:0] 8.209 764.521 1.270 0.780 0.02704

PE [P-18:0/18:2(9Z,12Z)] 9.314 728.557 1.192 1.276 0.01645

LysoPE [18:2(9Z,12Z)/0:0] 2.428 478.292 1.113 1.446 0.00011

LysoPC [18:3(9Z,12Z,15Z)] 1.991 518.323 1.045 1.387 0.00144

LysoPC (20:0) 5.009 552.402 1.033 1.254 0.00669

LysoPC [18:2(9Z,12Z)] 2.455 520.339 1.000 1.336 0.00013

LAA, large artery atherosclerosis; SAO, small artery occlusion; AIC, acute ischemic stroke; HC, healthy control; PE, phosphatidylethanolamine.

by the brain is provided by the oxidative reaction of fatty acids
(Ebert et al., 2003). Neurons are very sensitive to conditions
such as ischemia and hypoxia. In order to regulate the lack
of energy caused by the AIS, the brain can initiate energy
production responses such as fatty acid degradation through
negative feedback to maintain homeostasis (Schwartz et al.,
2000; Belgardt and Brüning, 2010). Oleic acid and linoleic
acid are long-chain fatty acids that can cross the blood–brain
barrier to provide energy to the brain (Panov et al., 2014), and
L-palmitoylcarnitine is also involved in fatty acid degradation.
In this study, compared with the HC group, the increase in
oleic acid, linoleic acid, and L-palmitoylcarnitine in the AIS
group may be associated with increased fatty acid catabolism
in the acute phase of the IS to maintain energy homeostasis.
In addition, previous studies have reported that changes in
lipid metabolism are associated with mitochondrial dysfunction
caused by oxidative stress (Tobe, 2013), which is one of the
three main pathophysiological reactions (neurotoxicity, oxidative
stress, and inflammation) in IS (Fukuyama et al., 1998; Chamorro
et al., 2012; Lai et al., 2014). This result is consistent with the
transcriptomic profiling results of IS (Li et al., 2015; Cai et al.,
2019). Cai et al. (2019) assessed the patterns of transcriptomic
changes at different stages of IS using a mouse model. The results

showed that mmu-miR-199a-5p and mmu-miR-199b-3p inhibit
the inflammatory response during the recovery phase of IS and
exert neuroprotective effects by regulating the Taok1 gene (Cai
et al., 2019). This may imply that fatty acid metabolism is related
to the regulation of these genes. However, this requires further
verification in animal experiments.

Both AA and DHA are polyunsaturated fatty acids which are
released from the metabolic pathway of glycerol phospholipid
degradation and are the main components of the phospholipid
membrane. AA and DHA participate in membrane fluidity,
signal transduction, and gene transcription during the whole life
process (Rapoport et al., 2001). They are also involved in many
pathological processes, including stroke (Rapoport, 2008). AA is
stored in the phospholipid membranes of cells, which produce
free AA by deacylation mediated by phospholipase A2 (PLA2).
In pathological environments such as stroke, free AA increases
the production of free radicals through the “arachidonic acid
cascade reaction” (Rink and Khanna, 2011). This reaction can
occur as early as 1 h after a stroke (Shohami et al., 1982), a major
factor in the oxidative damage of tissues after a stroke. Consistent
with the results of our study, previous studies reported a
significant increase in the types of reactive oxygen species and AA
metabolism after reperfusion in IS (Gürsoy-Ozdemir et al., 2004).
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FIGURE 2 | Heat map of different serum metabolites between patients with acute ischemic stroke and healthy control groups.

FIGURE 3 | Different metabolic pathways (A) between patients with acute ischemic stroke and healthy control groups and (B) between the large artery
atherosclerosis and the small artery occlusion groups.

Ceramide is a type of waxy lipid composed of sphingosine
and fatty acids, which plays a role in plaque formation (Holland
and Summers, 2008). In addition, ceramide levels in the high-
risk groups with IS were higher than those in the low-risk groups
(Wang et al., 2017). However, previous studies reported that the

level of ceramide in patients with AIS is lower than that in the
HC group, which may be related to ceramide-mediated apoptosis
(Taha et al., 2006). The specific mechanism warrants further
study. Glutamine (Gln) and glutamate (Glu) can be converted
into each other in the human body. The level of glutamine and

Frontiers in Neuroscience | www.frontiersin.org 6 January 2021 | Volume 14 | Article 58092982

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-580929 December 28, 2020 Time: 17:16 # 7

Wang et al. Metabolomic Study on Ischemic Stroke

the ratio of Gln to Glu were negatively correlated with the risk
factors of cardiovascular disease (including body mass index,
waist circumference, fasting blood glucose, insulin, triglyceride,
etc.) (Cheng et al., 2012). Zheng et al. (2016) demonstrated that
the ratio of Gln to Glu was associated with a reduced risk of
cardiovascular disease. Similarly, glutamine levels in the AIS
group were lower than those in the HC group of our study.

In the different metabolites of the LAA group and the SAO
group, L-pipecolic acid mainly affects the lysine degradation
pathway because lysine is produced in the process of L-pipecolic
acid degradation, and lysine has previously been shown to
decrease in patients with IS (Kimberly et al., 2013; Lee et al.,
2017). 1-Methylhistidine is involved in histidine metabolism,
which is a metabolic byproduct of the antioxidant molecule
carnosine and its analogs in the brain (Bellia et al., 2011).
Hu et al. (2019) showed that the level of L-pipecolic acid in
patients with post-stroke depression is lower than that in HCs
but higher than that in patients with stroke. PE, LysoPC, and
LysoPE participate in glycerophospholipid metabolism and GPI-
anchor biosynthesis. LysoPE is a product of PE hydrolyzed
by PLA2, which plays a role in cell-mediated cell signaling
and the activation of other enzymes (Park et al., 2007). PE
and LysoPC are intermediate products of glycerophospholipid
metabolism, while AA and DHA are glycerophospholipid
degradation products. It should be noted that the metabolic
changes of glycerophospholipids can not only help diagnose
AIS but also help distinguish different subtypes of IS. This
might shed insight on our exploration of the pathological
mechanisms of different subtypes. Studies have confirmed the
correlation between lipid metabolites and AIS using lipidomic
and metabolomics techniques (Yang et al., 2017; Au, 2018). Our
results are consistent with these (Liu et al., 2017). To date, there
has been no research exploring the mechanisms of different
metabolite isomers showing different behaviors. This may require
further lipidomic assessments in a larger sample size and further
verification in animal models.

In this study, non-targeted metabolomics based on LC–MS
was used to identify the different metabolites between patients
with AIS and the HCs and between the LAA and SAO groups,
providing new insights and encouraging further study of the
pathophysiological mechanisms among different subtypes of
IS. However, this study still has many limitations. First, this
was a single-center study with a relatively small sample size.
Multicenter studies with larger sample sizes will be needed to
validate our findings. In addition, because the metabolites in the
human body change dynamically, we collected the serum after
the onset of the disease, which may have affected the estimation of
the correlation between the metabolic differences and the disease.
A longitudinal comparison of multiple blood samples, after the
onset, from the same patient will enable a clearer assessment

of the changes in serum metabolites in AIS patients. Finally,
targeted metabolomics technology in another set of samples is
needed to further verify the different metabolites. In the future,
to validate the results and investigate the potential of metabolites
as biomarkers, we will include patients and follow them up
prospectively to obtain their modified Rankin Scale scores and
further explore metabolites associated with prognosis.

CONCLUSION

In summary, this study identified the different metabolites and
metabolic pathways in patients with AIS and HCs and between
the LAA and SAO subtypes of IS by non-targeted metabolomics.
We demonstrated that metabolomics might be used to diagnose
AIS and distinguish its subtypes. Further research is needed
to explore the pathophysiological mechanisms that affect the
changes in metabolites and lead to new clinical diagnoses and
potential interventions.
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Rapid cost drops and advancements in next-generation sequencing have made
profiling of cells at individual level a conventional practice in scientific laboratories
worldwide. Single-cell transcriptomics [single-cell RNA sequencing (SC-RNA-seq)] has
an immense potential of uncovering the novel basis of human life. The well-known
heterogeneity of cells at the individual level can be better studied by single-cell
transcriptomics. Proper downstream analysis of this data will provide new insights
into the scientific communities. However, due to low starting materials, the SC-
RNA-seq data face various computational challenges: normalization, differential gene
expression analysis, dimensionality reduction, etc. Additionally, new methods like 10×
Chromium can profile millions of cells in parallel, which creates a considerable amount
of data. Thus, single-cell data handling is another big challenge. This paper reviews
the single-cell sequencing methods, library preparation, and data generation. We
highlight some of the main computational challenges that require to be addressed
by introducing new bioinformatics algorithms and tools for analysis. We also show
single-cell transcriptomics data as a big data problem.

Keywords: single-cell transcriptomics, Sc-RNA-seq, big data, single-cell big data, normalization, single-cell
analysis, downstream analysis

INTRODUCTION

The human body exhibits a diverse range of cells that undergo transit from one state to another in
life (development, disease, and regeneration). Though derived from the same zygote, the cell, with
its types and states, is greatly influenced by the internal processes and external factors (Song et al.,
2019). In its progression through proliferation and the differentiation states to generate multiple cell
types for organ formation, complex heterogeneities in the cellular architecture are observed. The
cellular heterogeneity in terms of morphology, function, and gene expression profiles lie between
various tissues, but has also been observed among the same cell types that allow them to perform
different roles. Dysregulation in any particular cell type (irrespective of tissues, organs, and organ-
system) influences the entire system that progresses to disorders and even severe diseases like cancer
(Macaulay et al., 2017).

Recent technological advancements have enabled biologists to profile cells at individual levels on
a variety of omics layers (genomes, transcriptomes, epigenomes, and proteomes) (Hu et al., 2016);
among these, single cell (SC) transcriptomics is widely studied. The cells of a human body, being
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heterogeneous, often show a drastic variation at the individual
level (Wang and Bodovitz, 2010; Xin et al., 2016). The SC
experiments were found much conclusive compared with bulk
cell sequencing that involves sequencing in bulk (assuming cells
of a particular type are identical) and estimating an average of
expressions. The SC transcriptomics was awarded as method
of the year by Nature in 2013 (Xue et al., 2015). With the
advent of next-generation sequencing, it becomes possible to
develop sequencing methods to probe the dynamics of the
genome and variations thereof. Of them, RNA sequencing (RNA-
seq)-mediated transcriptomic profiling revealed information of
novel RNA species that deepened our understanding of the
transcriptome dynamics (Tang et al., 2009; Wang et al., 2009;
Ozsolak and Milos, 2011). Lately, these sequencing approaches
have been extended to study intra-population heterogeneity of
SCs (Wills et al., 2013), whereby it enabled the study of cell
fates, their transition to different subtypes, and the dynamics of
gene expression masked in bulk population studies (Altschuler
and Wu, 2010; Trapnell et al., 2014). Compared with bulk
sequencing, where libraries are prepared from thousands of cells,
libraries for single-cell RNA sequencing (SC-RNA-seq) are cell-
specific towards investigating cellular functionalities of DNA
and RNA in different cellular subsets (Gross et al., 2015; Xue
et al., 2015). Though SC-RNA-seq has revealed novel findings in
different cellular backgrounds, it poses specific challenges: Pre-
processing of the SC-RNA-seq data is majorly different from
bulk RNA-seq, stricter protocols for library preparation and low
starting material. Another challenge is the lack of analytical
approaches required to accommodate large datasets generated
during SC-RNA-seq experiments. Keeping this in view, we
investigated the methods adopted in SC experiments, sequencing
approaches, and challenges thereof, as part of realizing the goal of
precision medicine.

SINGLE-CELL RNA SEQUENCE
PROFILING TECHNIQUES

With the first report in 2009, a surge in the SC transcriptomics
methods capable of sequencing millions of cells with great
accuracy and viability in a short span of time was observed (Tang
et al., 2009). These methods are generally different from each
other in terms of cell isolation methods, cell lysis procedure,
amplification process, cDNA generation, transcript coverage, and
Unique Molecular Identifier (UMI) tagging (at either 3′ end or
5′ end). The most critical distinction in the SC-RNA profiling
techniques is that some provide full-length transcript coverage
and some only partially sequence from either 3′ end or 5′ end of
the transcript (Chen et al., 2019). Table 1 highlights widely used
SC-RNA profiling methods in terms of different properties.

OPTIMAL METHODOLOGY OF
SINGLE-CELL TRANSCRIPTOMICS

Of the various sequencing platforms, Drop-seq, InDrop, and 10×
Chromium are well-known platforms for sequencing hundreds

TABLE 1 | Current SC-RNA-seq profiling techniques, based on transcript
coverage and UMI insertion possibility.

Method Length of
transcript

UMI insertion
possibility

References

ScNaUmi-seq Full length Yes Lebrigand et al., 2020

MATQ-seq Full length Yes Sheng and Zong, 2019

10× Chromium 3′ end Yes Zheng et al., 2017

CEL-seq2 3′ end Yes Hashimshony et al., 2016

Drop-seq 3′ end Yes Macosko et al., 2015

InDrop 3′ end Yes Klein et al., 2015

Smart-seq2 Full length No Picelli et al., 2014

STRT-seq 5′ end Yes Islam et al., 2014

MARS-seq 3′ end Yes Jaitin et al., 2014

Smart-seq Full length No Ramskold et al., 2013

SC-RNA-seq, single-cell RNA sequencing; UMI, Unique Molecular Identifier.

and thousands of cells in an unbiased manner (Kulkarni et al.,
2019). In SC transcriptomics, each cell needs to be isolated from
its originating tissue. The Droplet-based techniques, which at the
core use microfluidics to attach cells with beads containing a
unique barcode, are widely incorporated to separate cells. The
performance criteria for isolation methods are based on three
parameters: throughput, purity, and recovery (Tomlinson et al.,
2013; Gross et al., 2015).Throughput indicates the number of cells
that can be isolated per unit time, purity refers to the number
of cells collected after separation from tissue, and recovery is
the final amount of the target cells, in hand, after separation.
The morphological complexity of cells like those of the central
nervous system (CNS) makes the separation process a little
challenging. The segregation process exposes them to specific
environmental, chemical, and harsh dissociation steps that often
bias data analysis (Kulkarni et al., 2019). The dissociation of intact
cells from a frozen postmortem tissue is also challenging, as cell
membranes are prone to damage from mechanical and physical
stresses as part of the freeze–thaw process (McGann et al., 1988).
Though each cell separation methods currently in use shows an
advantage different for the above three parameters, it becomes
imperative to select a well-suited method for the isolation of a cell.
The current methodology of cell separation is broadly categorized
into two groups based on (1) cellular properties like cell density,
cell shape, cell size, etc., and (2) biological characteristics of a
cell that comprises affinity methods (Tomlinson et al., 2013).
Tables 2, 3 show some of the widely used methods concerning the
operational mode, throughput, advantages, and disadvantages.

Though high-throughput SC-RNA approaches such as 10×
Chromium allows analysis of cells in an unbiased manner,
it lacks in providing an in-depth information on sequence
diversity, splicing, and chimeric transcripts generated in the
process (Lebrigand et al., 2020). The problem is overcome
by performing Nanopore long-read sequencing [using a cell
barcode (cellBC) assignment to long reads] to obtain a full-
length sequence corresponding to the 10× Chromium system’s
data. As SC library preparation requires robust amplification,
chimeric cDNA generation and amplification bias issues are
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TABLE 2 | Commonly used methods for cell isolation based on biological characteristics.

Technique Mode of operation Throughput Advantages Disadvantages References

Fluorescence-
activated cell
sorting

Automatic High High rate of rare cell
sorting, high purity

Cost-intensive, high skills
required

Herzenberg et al., 2002;
Gross et al., 2015

Magnetic-activated
cell separation

Automatic High High purity, cost-efficient Cell capture is non-specific Schmitz et al., 1994; Welzel
et al., 2015

TABLE 3 | Commonly used methods for cell isolation on the bases of physical characteristics.

Technique Mode of
operation

Throughput Advantages Disadvantages References

Microfluidic cell separation Automatic High Works with low starting
materials, amplification
integration

High skills required,
dissociated cells

Wyatt Shields et al., 2015

Micromanipulation manual
cell picking

Manual Low More control over cell, live
and intact cell separation

Laborious, high skills
needed

Citri et al., 2012

Laser-capture
microdissection

Manual Low Undamaged live cell
capture, highly advanced

Too complex to operate,
threat of contamination by
neighboring cells

Espina et al., 2006

Density gradient
centrifugation

Manual Low Cost-efficient Too slow and laborious, low
yield

Beakke, 1951

currently addressed by employing a 3′ or 5′ end tag-
based approach (Trombetta et al., 2015; Natarajan et al., 2019).
The sequence length method determines the quality of alignment
across the total length of a gene, while tag-based methods
integrate UMIs at either 3′ end or 5′ end of the transcript
(Kivioja et al., 2012; Smith et al., 2017; Sena et al., 2018).
The UMI addition makes it easier to identify and quantify the
individual transcripts by eliminating PCR artifacts and minimizes
false annotation of PCR-generated chimeric cDNAs as novel
transcripts. The full length-based methodology provides an all-
inclusive coverage of the reads, yet they contribute a bias for long
genes, as the genes with shorter length are often missed (Phipson
et al., 2017). Additionally, the higher sequencing error rate of
long-read sequencers and UMI problems account for a serious
issue pertaining to these platforms (Gupta et al., 2018; Lebrigand
et al., 2020; Volden and Vollmers, 2020). Despite this, the Tag-
based methods have shown a fair dominance in SC-RNA library
preparation for quantifying the transcripts in SC analysis when
cell number is large (Figure 1).

QUANTIFICATION OF EXPRESSION AND
QUALITY CONTROL

Like bulk RNA-seq, the transcripts in SC-RNA are sequenced
into reads that generate the raw fastq data. The quality of the
sequence reads generated in a sequencing method is considered
an important quality indicator of SC-RNA-seq data. As the
alignment of the transcript reads for SC-RNA-seq is same as
bulk RNA-seq, the methods and tools used for the gene or
transcript quantification for bulk RNA-seq can also be used
for quantifying transcripts generated by SC-RNA-seq (Li and
Homer, 2010; Fonseca et al., 2012). HISAT2 (Kim et al., 2019),
TopHat2 (Kim et al., 2013), and STAR (Dobin et al., 2013)

are currently the most popular alignment tools, which can
map billions of reads to a reference transcriptome with greater
accuracy and high speed. Transcriptome reconstruction can
be either de novo (for samples lacking reference genome) or
reference based, also called genome-guided assembly (Chen et al.,
2011). However, the former technique sometimes lacks accuracy
in comparison with the reference-based assembly approach
(Garber et al., 2011). For SC-RNA-seq methods that generate
data on a whole-transcriptome basis, Smart-seq2 (Picelli et al.,
2014) and MATQ-seq (Sheng and Zong, 2019) use Cufflinks,
RSEM, Stringtie, etc., for the quantification of transcripts, while
methods that incorporate the 3′ end UMI tagging [like Drop-seq
(Macosko et al., 2015), InDrop (Klein et al., 2015), MARS-seq
(Jaitin et al., 2014), etc.] require specific algorithms to generate
the expression count for the transcript. Another efficient tool
for the UMI-based methods was developed by Huang and
Sanguinetti (2017) for calculating the expression count of SCs
accurately. Table 4 provides information about the current tools
for read alignment and expression quantification. The SC-RNA-
seq exhibits certain limitations, which results in higher technical
noise (Kolodziejczyk et al., 2015). In SC-RNA-seq data, many
transcripts appear to be lost during reverse transcription due to
the small number and low capture efficiency of RNA molecules
in SCs (Saliba et al., 2014). Consequently, in one cell, some
transcripts are highly expressed but are missing in another cell.
This pattern is described as a “dropout” event. It has been
reported that even the most sensitive protocol for SC-RNA-seq
fails to detect some of the transcripts as part of Dropout events
(Haque et al., 2017). When the cells are dissociated or isolated,
a certain number of cells become dead or get destroyed. The
SC-RNA-seq methods generate low-quality data from these cells
(Ilicic et al., 2016). After alignment and quantification of the
transcripts, the quality control check of cells is necessary to
remove low-quality cells for an accurate downstream analysis.
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FIGURE 1 | Single-cell analysis in disease and health. Starting from the dissociation of target cells from the target tissue/organ, their isolation based on
fluorescence-activated cell sorting (FACS) or other microfluidic techniques to RNA extraction. The RNA extraction is followed by cDNA synthesis by reverse
transcriptase, followed by amplification and sequencing. From the sequencing, the reads are aligned and subjected to quantification that results in a quantification
matrix or Gene Expression Matrix.

TABLE 4 | Widely used tools for read alignment and expression quantification.

Tool Function Feature URL References

Salmon Expression quantification k-mer-based read quantification https://combine-lab.github.
io/salmon/

Patro et al., 2017

Kallisto Expression quantification Pseudoalignment-based rapid read
determination

https://pachterlab.github.
io/kallisto/

Bray et al., 2016

StringTIe Expression quantification Alignment based, splice aware https://ccb.jhu.edu/
software/stringtie/

Pertea et al., 2015

HISAT2 Read alignment Alignment based, splice aware https://daehwankimlab.github.io/
hisat2/

Sirén et al., 2014

Sailfish Expression quantification k-mer-based read quantification http://www.cs.cmu.edu/
~{}ckingsf/software/sailfish/

Patro et al., 2014

RNA-Skim Expression quantification Sig-mer (a type of k-mer)-based
read quantification of transcripts

http:
//www.csbio.unc.edu/rs/

Zhang and Wang,
2014

TopHat2 Read alignment Alignment based, splice aware https:
//ccb.jhu.edu/software/
tophat/index.shtml

Kim et al., 2013

STAR Read alignment Alignment based, splice aware https://github.com/
alexdobin/STAR

Dobin et al., 2013

Bowtie Read alignment Maintains quality threshold, hence
less no. of mismatches

http:
//bowtie-bio.sourceforge.
net/index.shtml

Langmead et al.,
2009

Cufflinks Expression quantification Alignment based, splice aware https://github.com/cole-
trapnell-lab/cufflinks

Trapnell et al., 2010

CHALLENGES IMPEDING SINGLE-CELL
RNA SEQUENCE DATA ANALYSIS

Though SC-RNA-seq has deepened our understanding of the
cellular heterogeneity and molecular basis of life, it is impeded
by several technical and computational challenges. The foremost
among them is that its datasets exhibit a considerable amount of
noise attributed to meager starting materials that often causes
faulty downstream analysis and erroneous results (Brennecke
et al., 2013). The SC-RNA-seq data analysis is performed as subtle

execution in computational steps; read alignment, expression
count generation, cell quality control, normalizing the data,
and then further downstream analysis including SC clustering,
differential gene expression (DGE), pseudo-temporal analysis,
etc. In addition to low starting materials, the technical noise
in the datasets is contributed by various factors, like batch
effects (Haghverdi et al., 2018) and the low capture efficiency
of protocols (Hwang et al., 2018). A few of the analytical
steps, including read alignment and generation of count matrix,
can be resolved using already available computational methods
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designed for bulk RNA-seq. However, data processing tasks like
normalization, DGE analysis, cell imputation, and dimensionality
reduction, etc., call for the development of novel computational
techniques, algorithms, and tools for smooth execution of SC-
RNA-seq data analysis. The nature of the challenges that SC-
RNA-seq data possess, including big data problem (Costa, 2012;
Yu and Lin, 2016; Angerer et al., 2017; He et al., 2017), is
highlighted in the following subsections:

Normalization

In SC-RNA-seq, coverage of sequences between the libraries
exhibit systematic differences from experimental procedures,
dropout events, depth of the sequencing, and other technical
effects (Stegle et al., 2015). These differences must be corrected
by normalizing the data such that there is no interference in the
comparison of the gene expression between cells. Being crucial,
normalization of the SC-RNA-seq datasets eventually leads to
lucid downstream analysis, including identifying different cell
subsets and revealing differential expression of genes. In bulk
RNA-seq, expression counts from various libraries are usually
normalized by computing the fragments per kilobase of transcript
counts of per million mapped fragments (FPKM) (Mortazavi
et al., 2008), transcripts per million (TPM) (Li and Dewey,
2011), reads per kilobase of transcripts per million mapped
reads (RPKM), upper quartile (UQ) (Bullard et al., 2010),
DESeq (Love et al., 2014), removed unwanted variation (RUV)
(Risso et al., 2014), and Gamma regression model (Ding et al.,
2015). Generally, there are two types of normalization: (1)
normalization of data within the sample, and (2) normalization
of the data between the sample (Vallejos et al., 2015, 2017).
In the former, FPKM/RPKM or TPM are used to exclude
gene-specific biases (Vallejos et al., 2017) such as guanine–
cytosine (GC) content and gene length, while in the latter,
the normalization method tunes the sample-specific differences
such as sequencing depth and capture efficiency. While ignoring
the underlying stochasticity, normalization generates a relative
expression estimate (Stegle et al., 2015), assuming the overall
processed RNA per sample is equal (AlJanahi et al., 2018;
Olsen and Baryawno, 2018). The bulk-based strategies for
normalization have been reported unsuitable for SC-RNA-seq
datasets because the datasets are highly zero-inflated and have
higher technical noise. Multiple methods have been developed for
normalizing the SC-RNA-seq data (Vallejos et al., 2015; Lun et al.,
2016; Sengupta et al., 2016; Bacher et al., 2017; Yip et al., 2017).
However, O(nlogn) is considered more efficient than others in
performing normalization of SC-RNA-seq data (Yip et al., 2017).

Dimensionality Reduction
High dimensionality is yet another challenge that SC-RNA-seq
data present. Owing to the data coming from cells showing high
dimensions, i.e., a large number of genes, it is necessary to reduce
(while optimally preserving the critical properties) the set of
random variables and work with the principle variables which
describe the data profoundly (Andrews and Hemberg, 2019). The
two most frequently used methods for dimensionality reduction

are principal component analysis (PCA) (Van Der Maaten et al.,
2009) and T-distribution stochastic neighbor embedding (t-SNE)
(Van Der Maaten and Hinton, 2008; Kobak and Berens, 2019).
PCA uses a linear process to transform a set of variables (possibly
correlated) into an uncorrelated variable known as a principal
component, while t-SNE is a non-linear probability distribution-
based approach. Both PCA and t-SNE methods of dimensionality
reduction have certain limitations (Chen et al., 2019); based on
the assumption that approximately all the data are distributed
normally, PCA does not effectively amount to the underlying
complexities in the structure of SC-RNA-seq data, and t-SNE
has a larger time complexity reaching O(n2) (Pezzotti et al.,
2017). The most recent algorithm employed for dimensionality
reduction “UMAP” (Uniform Manifold Approximation and
Projection) (McInnes et al., 2018; Becht et al., 2019) outperforms
PCA and t-SNE for SC-RNA-seq in terms of high reproducibility
and meaningful organization of cells (Becht et al., 2018). UMAP
is a non-linear graph-based algorithm that tends to identify
the closest neighbors of a data point and assigns them a
larger weight, thereby preserving the topological structure of the
data. The idea is to project a low-dimensional representation
of the data while preserving the nearest neighbours of an
individual data point (i.e., cells). This helps to group more
closely related neighbours and partly conserves the relation of
points in the “long-range” using the intermediate data points.
Although the interpretation of the distances in a reduced space
becomes difficult, UMAP has been largely able to uncover the
elusive features of the data. UMAP is computationally faster
than t-SNE, preserves the global structure, and maintains the
continuity of cell subsets (Becht et al., 2018). At the core, UMAP
assumes the subsistence of a “manifold structure” in the data.
This assumption makes it find the manifolds in the noise of
data. Since SC-RNA-seq suffers from a significant amount of
noise, it is necessary to consider it before applying UMAP
(McInnes et al., 2018).

Another method to perform dimensionality reduction is
the linear discriminant analysis (LDA). LDA is a supervised
dimensionality reduction method that tends to maximize
the separability between the predetermined classes, using
the covariance of “between-class” and “within-class.” It first
calculates the mean of the distances between the classes and then
the mean of distances within the classes. The goal is to find a
projection to maximize the ratio of between-class variability to
the lower within-class variability (Tharwat et al., 2017; Qiao and
Meister, 2020).

The SC-RNA-seq exhibits potential challenges similar to text
mining, such as polysemy and synonymy, noise, and sparsity.
Recently, a popular text mining technique, latent semantic
analysis (LSA), has been used in SC-RNA-seq dimensionality
reduction (Cheng et al., 2019). LSA at core uses a linear algebra-
based method, called singular value decomposition (SVD), to
cluster the semantically similar terms. SVD approximates a
low-rank matrix to the given cell-gene matrix, such that the
dimensions of the new matrix are much less than the original.
This approximation is made by taking a combined product of
the matrices of left-singular vector, right-singular vector, and the
diagonal singular values.
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Differential Gene Expression Analysis
The expression of genes is stochastic in a cell; expression
values thus observed are quite heterogeneous at the individual
level among seemingly similar cells. The DGE analysis helps
to understand the innate cellular processes and stochasticity of
gene expressions (McDavid et al., 2013). The problem faced in
DGE analysis is identifying genes that are largely expressed in
a group of cells without any or no preliminary information of
primary cell subtypes (Stegle et al., 2015). Additionally, gene
expressions in individual cells show multimodality (Kippner
et al., 2014). As expression variability of genes between cells of the
same type indicates transcriptional heterogeneity (Johnson et al.,
2015; Angermueller et al., 2016), it needs robust computational
approaches to detect the true heterogeneity. In addition to
multimodality, the sparsity due to—but not limited to—dropout
events brings irregularities in the data, consequent of which the
differential genes are difficult to detect. Various parametric as
well as non-parametric approaches like Single-cell Differential
Expression, Model-based Analysis of Single-cell Transcriptome
(MAST), D3E, scDD, SigEMD, and DEsingle (Kharchenko et al.,
2014; Finak et al., 2015; Delmans and Hemberg, 2016; Korthauer
et al., 2016; Miao et al., 2018; Wang and Nabavi, 2018) have
been developed/proposed for the DGE analysis in the SC-RNA-
seq data. However, these tools try to manage either the gene
dropouts or multimodality (Wang et al., 2019). For the subtle
DGE analysis, these two crucial challenges need to be taken
care of together.

Cluster Analysis
Cluster analysis of SC-RNA-seq data is required to identify both
known and unknown rare cell types (Menon, 2018). Along with
the technical dropout events, the cells show a huge variation in
gene expression levels even from the same set. As mentioned
above, SC-RNA-seq suffers from massive inflation of zeros.
There are three reasons for the observation of zeros in data:
(1) the transcript was absent explicitly, hence a “true zero”;
(2) the depth of sequencing was very low, and the transcript
was present but not accounted for; and (3) at the time of
library preparation, the transcript could not be captured or
failed to amplify. The measurements from the latter two are
considered to be the “false zeros.” The concentration of too
many zeros in the data brings in irregularities. These technical
and biological factors lead to significant noise, due to which
cluster analysis becomes challenging. For this, methods like
Seurat, DropClust, and SCANPY (Satija et al., 2015; Ntranos
et al., 2016; Yip et al., 2017; Sinha et al., 2018) have been
proposed for clustering of SCs. There are certain limitations
associated with these as well. Seurat and SCANPY work well
with large datasets but underperforms when the dataset is
smaller (Kiselev et al., 2019). The anticipated complexity in
data and the rate of generation of SC data will be a challenge
for all these tools. UMAP is yet another method for cluster
identification of SC-RNA-seq data; however, as UMAP tends to
preserve the local-topological structure, it is rather difficult to
establish a relationship between clusters when the underlying cell
subtypes are unknown.

In addition to the sparsity in data, SC-RNA-seq data suffer
from a huge level of noise from faulty experimental designs
usually referred to as “batch-effects.” The noise in the data may
contribute to the overfitting of the data. The overfitting can
be avoided using regularization. Regularization is a process of
restricting or reducing the features at the time of modeling.

So far, the clustering methods cluster the cells as per the
transcription similarity, but the biological annotation of cell
clusters remains a challenge. A possible solution could come from
the generation of the data itself, as the more data are accumulated,
the more can unknown clusters be matched with the previously
known clusters. Another popular approach for cluster annotation
is to use Gene Ontology (GO) analysis of the marker genes
(Ashburner et al., 2000).

Single-Cell Spatial Transcriptomics and
RNA Velocity
Spatial transcriptomics (ST) gives measurement of gene
expression changes with reference to geographical coordinates of
the cells in tissues. It allows measurements of the transcripts with
an advantage of conserving the spatial information, providing
an additional analytical edge (Burgess, 2019). ST conform to
in situ methods like seqFISH (Shah et al., 2016), seqFISH+ (Eng
et al., 2019), FISSEQ (Fluorescence in situ Sequence) (Lee et al.,
2015), MERFISH (Chen et al., 2015), and SC-RNA-seq-based
methods like slide-seq (Rodriques et al., 2019) and Niche-seq
(Medaglia et al., 2017). In situ labeling of the transcripts in
tissues is advantageous for visualizing the location; however, a
chance of molecular overcrowding results in fluorescence signal
overlap. This overcrowding can be overcome by using SC spatial
RNA-seq; however, the dissociation of cells prior to sequencing
makes it difficult to link the transcriptomes back to their original
locations (Burgess, 2019). These complementary strengths and
limitations make it necessary to integrate the datasets generated
by each technology.

In ST, a pair of images are generated, one containing whole
tissue with fairly visible spots and the other having clearly
visible fluorescence array spots (Wong et al., 2018). To leverage
the ST, the image data from ST need to be integrated with
the SC-RNA-seq data. As the principle challenges in both ST
and SC-RNA-seq are the sparsity of the data and noise from
technical and biological sources, an accurate data normalization
and transformation is necessary before any downstream analysis
(Wagner et al., 2016). Few tools have been developed to
determine the cell types with respect to their spatial identities
(Edsgärd et al., 2018; Svensson et al., 2018; Dries et al., 2019;
Queen et al., 2019). These tools lack interactive processing of
images and fails in providing a comprehensive three-dimensional
view of the tissue. Recently, STUtility (Bergenstråhle et al.,
2020b)—an R package using non-negative matrix factorization
(NMF) for reducing the dimensions, spatial correlation (based
on Pearson correlation), and K-means clustering—was found
capable of providing a holistic view of the expression in tissues.
SpatialCPie (Bergenstråhle et al., 2020a) is another easy-to-use R
package that uses clustering at various resolutions to interactively
uncover the gene expression patterns. Elosua-Bayes et al. (2021)
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FIGURE 2 | (A) There is a steep rise every year for the publications of studies addressing the big data and SC-RNA-seq. For big data papers on PubMed, we used
the query “[big data (All Fields) AND MapReduce (All Fields) AND Hadoop (All fields)].” For SC-RNA-seq and big data papers on PubMed, we used “[(scRNA-seq OR
Big Data) OR (Single-cell AND big data)].” (B,C) Numbers were collected from the Human Cell Atlas Data portal of some exemplary projects.

developed SPOTlight, which uses NMF along with non-negative
least squares (NNLS). NMF helps in dimensional reduction,
followed by selection of marker genes using seurat package
and then using NNLS to deconvolute each captured location
(Elosua-Bayes et al., 2021).

The SC-RNA measurements have advanced our
understanding of the intrinsic cellular functionalities; however,
the destruction of cells in the process ceases the possibility of
further resampling for an additional transcriptional state analysis.
A new methodology, RNA velocity, is capable of deducing the
future transcriptional state of a cell (La Manno et al., 2018). The
idea behind the study is that the transcriptional upregulation of
gene at a particular stage leads to the short-spanned abundance of
unspliced transcripts. Similarly, the downregulation of the gene
at a point of time results in a decrease of spliced transcripts. The
ratio of this variation between unspliced and spliced transcripts
is used to estimate the future state of a cell.

Single-Cell Multi-omics and Data
Integration
Biological activities in cells are perplexing, and the measurements
of these processes show contrasting variation at temporal and
histological levels. To comprehensively understand the intricate
biological process of cells and organisms, it is necessary to
investigate them at a multi-omics scale. Contingent upon the
research question, SC experiments have flexed its reach to variety
of layers, the majority of which include the following: (1) SCI-
seq for Single-cell Genome Sequencing (Vitak et al., 2017), (2)
scBS-seq for Single-cell DNA methylation (Smallwood et al.,
2014), (3) scATAC-seq for Single-cell chromatin accessibility
(Buenrostro et al., 2015), (4) CITE-seq for cell Surface Proteins
(Stoeckius et al., 2017), (5) scCHIP-seq for Histone Modifications
(Gomez et al., 2013), and (6) scGESTALT (Frieda et al., 2017)
and MEMOIR (Raj et al., 2018) for chromosomal conformation.
A universal challenge for all the SC technologies is that
the measurements from a very low starting material led to
generation of highly sparse and extremely noisy data. Hence, the
integration of this data requires a statistically sound and robust
computational framework. A primary challenge thereof remains
to find an empirical strategy to normalize, batch-effect correction
and linking the data from different sources so that the biological
meaning and inference remain uncompromised.

For the integration and analysis of the SC multi-omics
data, several methods developed for the variety of SC-mono-
omics data have been fused or extended further to fulfill the
requirement. However, each tool follows a different strategy for
the analysis, which can be categorized as follows: (1) correlation
and unsupervised cluster analysis; (2) data integration of different
samples from a single measurement type and a single experiment
type, e.g., SC-RNA-seq; (3) analysis and integration of data from
different experiments and a single measurement type across
different samples, e.g., sc-Spatial Transcriptomics; (4) integration
of data from SC population, with more than one measurement
type, different samples, and a single experiment; and (5)
integration of data across multiple cells, multiple experiments,
and multiple measurement types, e.g., combination of the SC-
RNA-seq, scATAC, scCHIP-seq, CITE-seq, etc., of different cells
collected at different time points (Stuart et al., 2019; Lähnemann
et al., 2020; Lee et al., 2020).

Computational methods and tools for integration of biological
data are evolving gradually. A number of techniques have been
developed that have been discussed in section “Cluster Analysis.”
Seurat (Butler et al., 2018) is currently at the top of integrative
analysis of SC multi-omics data, integrating the datasets based
on the second principle. Along with Seurat, mutual nearest
neighbor (MNN)-based method (Haghverdi et al., 2018) has been
exploited to analyze the data combined on the basis of the second
category. For the fourth category, analytical methods developed
for bulk cellular analysis like MOFA (Argelaguet et al., 2018),
MINT (Rohart et al., 2017a), mixOmics (Rohart et al., 2017b),
and DIABLO (Singh et al., 2019) are being utilized. Cardelino
(McCarthy et al., 2018), MATCHER (Welch et al., 2017), and
cloealign (Campbell et al., 2019) are currently the tools used for
integrative analysis under the fourth category. To our knowledge,
there are no tools available for the last category.

Big Data Pertaining to Single-Cell RNA
Sequencing
The data-intensive scientific discoveries rely on three
paradigms—theory, experimentation, and simulation modeling
(Tolle et al., 2011). As big data is described with three
characteristics (volume, velocity, and variety) (Stephens
et al., 2015; Adil et al., 2016), data generated by SC-RNA-seq
are tantamount to these three quantitative characteristics
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(Ivanov et al., 2013). With the introduction of new methods
in microfluidics (Zare and Kim, 2010), combinatorial indexing
procedures (Fan et al., 2015), and rapid drop in the sequencing
cost, SC assay profiling has widely become a routine practice
among biologists for analyzing millions of cells in hours, paving
the way for the accumulation of a large amount of data. The most
popular next-generation sequencing platform, Illumina HiSeq,
results in the accumulation of around 100 gigabytes of raw RNA-
seq data per study. It usually takes hours to align these raw data to
their reference genome. SC experiments generating petabytes of
data on a variety of layers contribute to the big data paradigm.
A human genome has 20,000–25,000 genes composed of 3
million base pairs, totaling to 100 gigabytes of data, equivalent to
102,400 photos1; it is expected that more or less “25 petabytes”
of genomic data will be generated annually around the globe
by the year 2030 (Khoury et al., 2020). It is anticipated that
human genomic data can potentially overtake the data produced
by online social networks (Check Hayden, 2015). The Human
Cell Atlas (HCA)—a project to prepare a reference map of each
cell in the human body at various stages, will accumulate a
massive amount of data by the end of its completion (Regev
et al., 2017). There is a need for comprehensive integration
of big data and SC-RNA-seq technologies. A large number
of publications on SC-RNA and big data have emerged lately
(Figure 2A). The datasets of 4.5 million cells are already
published in Data2, the largest of which contains more than 1.5
million CD34+ hematopoietic cells of human bone marrow (Setty
et al., 2019) and 1.3 million transcriptomes of mouse brain cells
(Figures 2B,C).

Consequently, the data acquired from these experiments
constitute a data revolution in the field of SC biology
(Lähnemann et al., 2019). As SC-RNA-seq data have a greater
potential of uncovering the hidden patterns at the molecular
level, the data pertaining to it thus require an extremely parallel,
scalable, and statistically sound computational framework as
its handling tools. Big data technologies like Apache’s Hadoop
(Taylor, 2010; O’Driscoll et al., 2013) and Spark (Zaharia et al.,
2016; Guo et al., 2018) embody the required computational
parallelism and data distribution mechanisms. Hadoop uses
MapReduce technology for parallel and scalable processing
(Dean and Ghemawat, 2008) to disintegrate the larger problems
into smaller subproblems on a distributed file system called
1 https://www.experfy.com/blog/intersection-genomics-big-data
2 https://data.humancellatlas.org/

Hadoop Distributed File System (HDFS). Incorporating big data
technologies in the analysis of rapidly increasing SC genomics
data will help in transforming and processing it with limitless
scalability and fault tolerance at a very low cost.

CONCLUSION AND FUTURE
PERSPECTIVE

As a consequence of meager RNA capture rate, low starting
materials, and challenging experimental protocols, the SC-RNA-
seq faces computational and analytical challenges. The noise and
sparsity due to the technical (dropout events) and biological
factors make the downstream analysis of SC-RNA-seq data a
complicated task. Additionally, the rapidity in the development
of new and exciting experimental methods for SC-RNA-seq is
paving the way for a large accumulation of data. This large
agglomeration of data is nothing but the genomic face of
“big data.” These two challenges together give rise to a new
paradigm of Big Single-Cell Data Science. Although a plethora of
algorithms and computational tools have already been developed,
it is essential to address these challenges collectively and produce
a robust, accurate, parallel, and scalable framework.

AUTHOR CONTRIBUTIONS

MA and ATJ conceived the idea, edited the manuscript,
and contributed to the compilation of data for designing of
figures. AA, VK, and ATJ contributed to the writing of the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

ATJ is grateful to DST-SERB for financial support
(CRG/2019/004106) that helped in to establishing the
infrastructural facilities.

ACKNOWLEDGMENTS

The authors would like to thank their colleagues for the help in
improving the contents of the manuscript.

REFERENCES
Adil, A., Kar, H. A., Jangir, R., and Sofi, S. A. (2016). “Analysis of multi-diseases

using big data for improvement in healthcare,” in Proceedings of the 2015 IEEE
UP Section Conference on Electrical Computer and Electronics, UPCON 2015,
Allahabad. doi: 10.1109/UPCON.2015.7456696

AlJanahi, A. A., Danielsen, M., and Dunbar, C. E. (2018). An introduction to the
analysis of single-cell RNA-sequencing data. Mol. Ther. Methods Clin. Dev. 10,
189–196. doi: 10.1016/j.omtm.2018.07.003

Altschuler, S. J., and Wu, L. F. (2010). Cellular heterogeneity: do
differences make a difference? Cell 141, 559–563. doi: 10.1016/j.cell.2010.
04.033

Andrews, T. S., and Hemberg, M. (2019). M3Drop: dropout-based feature selection
for scRNASeq. Bioinformatics (Oxford, England) 35, 2865–2867. doi: 10.1093/
bioinformatics/bty1044

Angerer, P., Simon, L., Tritschler, S., Wolf, F. A., Fischer, D., and Theis, F. J.
(2017). Single cells make big data: new challenges and opportunities in
transcriptomics. Curr. Opin. Syst. Biol. 4, 85–91. doi: 10.1016/j.coisb.2017.07.
004

Angermueller, C., Clark, S. J., Lee, H. J., Macaulay, I. C., Teng, M. J., Hu, T. X.,
et al. (2016). Parallel single-cell sequencing links transcriptional and epigenetic
heterogeneity. Nat. Methods 13, 229–232. doi: 10.1038/nmeth.3728

Argelaguet, R., Velten, B., Arnol, D., Dietrich, S., Zenz, T., Marioni, J. C., et al.
(2018). Multi-omics factor analysis—a framework for unsupervised integration

Frontiers in Neuroscience | www.frontiersin.org 8 April 2021 | Volume 15 | Article 59112292

https://www.experfy.com/blog/intersection-genomics-big-data
https://data.humancellatlas.org/
https://doi.org/10.1109/UPCON.2015.7456696
https://doi.org/10.1016/j.omtm.2018.07.003
https://doi.org/10.1016/j.cell.2010.04.033
https://doi.org/10.1016/j.cell.2010.04.033
https://doi.org/10.1093/bioinformatics/bty1044
https://doi.org/10.1093/bioinformatics/bty1044
https://doi.org/10.1016/j.coisb.2017.07.004
https://doi.org/10.1016/j.coisb.2017.07.004
https://doi.org/10.1038/nmeth.3728
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-591122 April 19, 2021 Time: 7:28 # 9

Adil et al. Era of Single-Cell Transcriptomics

of multi-omics data sets. Mol. Syst. Biol. 14:8124. doi: 10.15252/msb.2017
8124

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al.
(2000). Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29.
doi: 10.1038/75556

Bacher, R., Chu, L. F., Leng, N., Gasch, A. P., Thomson, J. A., Stewart, R. M.,
et al. (2017). SCnorm: robust normalization of single-cell RNA-seq data. Nat.
Methods 14, 584–586. doi: 10.1038/nmeth.4263

Beakke, M. K. (1951). Density gradient centrifugation: a new separation technique.
J. Am. Chem. Soc. 73, 1847–1848. doi: 10.1021/ja01148a508

Becht, E., Dutertre, C.-A., Kwok, I., Ng, L. G., Ginhoux, F., and Newell, E. (2018).
Evaluation of UMAP as an alternative to t-SNE for single-cell data. bioRxiv
[Preprint]. doi: 10.1101/298430

Becht, E., McInnes, L., Healy, J., Dutertre, C. A., Kwok, I. W. H., Ng, L. G., et al.
(2019). Dimensionality reduction for visualizing single-cell data using UMAP.
Nat. Biotechnol. 37, 38–44. doi: 10.1038/nbt.4314

Bergenstråhle, J., Bergenstråhle, L., and Lundeberg, J. (2020a). SpatialCPie: an
R/Bioconductor package for spatial transcriptomics cluster evaluation. BMC
Bioinform. 21:161. doi: 10.1186/s12859-020-3489-7

Bergenstråhle, J., Larsson, L., and Lundeberg, J. (2020b). Seamless integration
of image and molecular analysis for spatial transcriptomics workflows. BMC
Genomics 21:482. doi: 10.1186/s12864-020-06832-3

Bray, N. L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal
probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527. doi: 10.
1038/nbt.3519

Brennecke, P., Anders, S., Kim, J. K., Kołodziejczyk, A. A., Zhang, X., Proserpio, V.,
et al. (2013). Accounting for technical noise in single-cell RNA-seq experiments.
Nat. Methods 10, 1093–1098. doi: 10.1038/nmeth.2645

Buenrostro, J. D., Wu, B., Litzenburger, U. M., Ruff, D., Gonzales, M. L., Snyder,
M. P., et al. (2015). Single-cell chromatin accessibility reveals principles of
regulatory variation. Nature 523, 486–490. doi: 10.1038/nature14590

Bullard, J. H., Purdom, E., Hansen, K. D., and Dudoit, S. (2010). Evaluation of
statistical methods for normalization and differential expression in mRNA-Seq
experiments. BMC Bioinformatics 11:94. doi: 10.1186/1471-2105-11-94

Burgess, D. J. (2019). Spatial transcriptomics coming of age. Nat. Rev. Genet.
20:317. doi: 10.1038/s41576-019-0129-z

Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating
single-cell transcriptomic data across different conditions, technologies, and
species. Nat. Biotechnol. 36, 411–420. doi: 10.1038/nbt.4096

Campbell, K. R., Steif, A., Laks, E., Zahn, H., Lai, D., McPherson, A., et al. (2019).
Clonealign: statistical integration of independent single-cell RNA and DNA
sequencing data from human cancers. Genome Biol. 20:54. doi: 10.1186/s13059-
019-1645-z

Check Hayden, E. (2015). Genome researchers raise alarm over big data. Nature
312–314. doi: 10.1038/nature.2015.17912

Chen, G., Ning, B., and Shi, T. (2019). Single-cell RNA-seq technologies and
related computational data analysis. Front. Genet. 10:317. doi: 10.3389/fgene.
2019.00317

Chen, G., Wang, C., and Shi, T. L. (2011). Overview of available methods for diverse
RNA-Seq data analyses. Sci. China Life Sci. 54, 1121–1128. doi: 10.1007/s11427-
011-4255-x

Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S., and Zhuang, X. (2015).
Spatially resolved, highly multiplexed RNA profiling in single cells. Science
348:6090. doi: 10.1126/science.aaa6090

Cheng, C., Easton, J., Rosencrance, C., Li, Y., Ju, B., Williams, J., et al. (2019).
Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell
RNA-seq data. Nucleic Acids Res. 47:e143. doi: 10.1093/nar/gkz826

Citri, A., Pang, Z. P., Südhof, T. C., Wernig, M., and Malenka, R. C. (2012).
Comprehensive qPCR profiling of gene expression in single neuronal cells. Nat.
Protoc. 7, 118–127. doi: 10.1038/nprot.2011.430

Costa, F. F. (2012). Big data in genomics: challenges and solutions. G.I.T. Lab. J.
1–4.

Dean, J., and Ghemawat, S. (2008). MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 107–113. doi: 10.1145/1327452.132
7492

Delmans, M., and Hemberg, M. (2016). Discrete distributional differential
expression (D3E) - a tool for gene expression analysis of single-cell
RNA-seq data. BMC Bioinform. 17:110. doi: 10.1186/s12859-016-09
44-6

Ding, B., Zheng, L., Zhu, Y., Li, N., Jia, H., Ai, R., et al. (2015). Normalization
and noise reduction for single cell RNA-seq experiments. Bioinformatics 31,
2225–2227. doi: 10.1093/bioinformatics/btv122

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al.
(2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.
doi: 10.1093/bioinformatics/bts635

Dries, R., Zhu, Q., Eng, C. H. L., Sarkar, A., Bao, F., George, R. E., et al. (2019).
Giotto, a pipeline for integrative analysis and visualization of single-cell spatial
transcriptomic data. bioRxiv [Preprint]. doi: 10.1101/701680

Edsgärd, D., Johnsson, P., and Sandberg, R. (2018). Identification of spatial
expression trends in single-cell gene expression data. Nat. Methods 15, 339–342.
doi: 10.1038/nmeth.4634

Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I., and Heyn, H. (2021). SPOTlight:
seeded NMF regression to deconvolute spatial transcriptomics spots with
single-cell transcriptomes. Nucleic Acids Res. gkab043. doi: 10.1093/nar/
gkab043

Eng, C. H. L., Lawson, M., Zhu, Q., Dries, R., Koulena, N., Takei, Y., et al. (2019).
Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+.
Nature 568:235. doi: 10.1038/s41586-019-1049-y

Espina, V., Wulfkuhle, J. D., Calvert, V. S., VanMeter, A., Zhou, W., Coukos,
G., et al. (2006). Laser-capture microdissection. Nat. Protoc. 1, 586–603. doi:
10.1038/nprot.2006.85

Fan, H. C., Fu, G. K., and Fodor, S. P. A. (2015). Combinatorial labeling of single
cells for gene expression cytometry. Science 347:1258367. doi: 10.1126/science.
1258367

Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A. K., et al. (2015).
MAST: A flexible statistical framework for assessing transcriptional changes and
characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol.
16:278. doi: 10.1186/s13059-015-0844-5

Fonseca, N. A., Rung, J., Brazma, A., and Marioni, J. C. (2012). Tools for mapping
high-throughput sequencing data. Bioinformatics 28, 3169–3177. doi: 10.1093/
bioinformatics/bts605

Frieda, K. L., Linton, J. M., Hormoz, S., Choi, J., Chow, K. H. K., Singer, Z. S., et al.
(2017). Synthetic recording and in situ readout of lineage information in single
cells. Nature 541, 59–64. doi: 10.1038/nature20777

Garber, M., Grabherr, M. G., Guttman, M., and Trapnell, C. (2011). Computational
methods for transcriptome annotation and quantification using RNA-seq. Nat.
Methods 8, 469–477. doi: 10.1038/nmeth.1613

Gomez, D., Shankman, L. S., Nguyen, A. T., and Owens, G. K. (2013). Detection of
histone modifications at specific gene loci in single cells in histological sections.
Nat. Methods 10, 171–177. doi: 10.1038/nmeth.2332

Gross, A., Schoendube, J., Zimmermann, S., Steeb, M., Zengerle, R., and Koltay, P.
(2015). Technologies for single-cell isolation. Int. J. Mol. Sci. 16, 16897–16919.
doi: 10.3390/ijms160816897

Guo, R., Zhao, Y., Zou, Q., Fang, X., and Peng, S. (2018). Bioinformatics
applications on apache spark. GigaScience 7:giy098. doi: 10.1093/gigascience/
giy098

Gupta, I., Collier, P. G., Haase, B., Mahfouz, A., Joglekar, A., Floyd, T., et al. (2018).
Single-cell isoform RNA sequencing characterizes isoforms in thousands of
cerebellar cells. Nat. Biotechnol. 36, 1197–1202. doi: 10.1038/nbt.4259

Haghverdi, L., Lun, A. T. L., Morgan, M. D., and Marioni, J. C. (2018). Batch effects
in single-cell RNA-sequencing data are corrected by matching mutual nearest
neighbors. Nat. Biotechnol. 36, 421–427. doi: 10.1038/nbt.4091

Haque, A., Engel, J., Teichmann, S. A., and Lönnberg, T. (2017). A practical guide
to single-cell RNA-sequencing for biomedical research and clinical applications.
Genome Med. 9, 1–12. doi: 10.1186/s13073-017-0467-4

Hashimshony, T., Senderovich, N., Avital, G., Klochendler, A., de Leeuw, Y., Anavy,
L., et al. (2016). CEL-Seq2: Sensitive highly-multiplexed single-cell RNA-Seq.
Genome Biol. 17:77. doi: 10.1186/s13059-016-0938-8

He, K. Y., Ge, D., and He, M. M. (2017). Big data analytics for genomic medicine.
Int. J. Mol. Sci. 18, 1–18. doi: 10.3390/ijms18020412

Herzenberg, L. A., Parks, D., Sahaf, B., Perez, O., Roederer, M., and Herzenberg,
L. A. (2002). The history and future of the fluorescence activated cell sorter and
flow cytometry: a view from Stanford. Clin. Chem. 48, 1819–1827.

Hu, P., Zhang, W., Xin, H., and Deng, G. (2016). Single cell isolation and analysis.
Front. Cell Dev. Biol. 4:116. doi: 10.3389/fcell.2016.00116

Huang, Y., and Sanguinetti, G. (2017). BRIE: transcriptome-wide splicing
quantification in single cells. Genome Biol. 18:123. doi: 10.1186/s13059-017-
1248-5

Frontiers in Neuroscience | www.frontiersin.org 9 April 2021 | Volume 15 | Article 59112293

https://doi.org/10.15252/msb.20178124
https://doi.org/10.15252/msb.20178124
https://doi.org/10.1038/75556
https://doi.org/10.1038/nmeth.4263
https://doi.org/10.1021/ja01148a508
https://doi.org/10.1101/298430
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1186/s12859-020-3489-7
https://doi.org/10.1186/s12864-020-06832-3
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1038/nmeth.2645
https://doi.org/10.1038/nature14590
https://doi.org/10.1186/1471-2105-11-94
https://doi.org/10.1038/s41576-019-0129-z
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1186/s13059-019-1645-z
https://doi.org/10.1186/s13059-019-1645-z
https://doi.org/10.1038/nature.2015.17912
https://doi.org/10.3389/fgene.2019.00317
https://doi.org/10.3389/fgene.2019.00317
https://doi.org/10.1007/s11427-011-4255-x
https://doi.org/10.1007/s11427-011-4255-x
https://doi.org/10.1126/science.aaa6090
https://doi.org/10.1093/nar/gkz826
https://doi.org/10.1038/nprot.2011.430
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1186/s12859-016-0944-6
https://doi.org/10.1186/s12859-016-0944-6
https://doi.org/10.1093/bioinformatics/btv122
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1101/701680
https://doi.org/10.1038/nmeth.4634
https://doi.org/10.1093/nar/gkab043
https://doi.org/10.1093/nar/gkab043
https://doi.org/10.1038/s41586-019-1049-y
https://doi.org/10.1038/nprot.2006.85
https://doi.org/10.1038/nprot.2006.85
https://doi.org/10.1126/science.1258367
https://doi.org/10.1126/science.1258367
https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1093/bioinformatics/bts605
https://doi.org/10.1093/bioinformatics/bts605
https://doi.org/10.1038/nature20777
https://doi.org/10.1038/nmeth.1613
https://doi.org/10.1038/nmeth.2332
https://doi.org/10.3390/ijms160816897
https://doi.org/10.1093/gigascience/giy098
https://doi.org/10.1093/gigascience/giy098
https://doi.org/10.1038/nbt.4259
https://doi.org/10.1038/nbt.4091
https://doi.org/10.1186/s13073-017-0467-4
https://doi.org/10.1186/s13059-016-0938-8
https://doi.org/10.3390/ijms18020412
https://doi.org/10.3389/fcell.2016.00116
https://doi.org/10.1186/s13059-017-1248-5
https://doi.org/10.1186/s13059-017-1248-5
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-591122 April 19, 2021 Time: 7:28 # 10

Adil et al. Era of Single-Cell Transcriptomics

Hwang, B., Lee, J. H., and Bang, D. (2018). Single-cell RNA sequencing
technologies and bioinformatics pipelines. Exp. Mol. Med. 50, 1–14. doi:
10.1038/s12276-018-0071-8

Ilicic, T., Kim, J. K., Kolodziejczyk, A. A., Bagger, F. O., McCarthy, D. J., Marioni,
J. C., et al. (2016). Classification of low quality cells from single-cell RNA-seq
data. Genome Biol. 17:29. doi: 10.1186/s13059-016-0888-1

Islam, S., Zeisel, A., Joost, S., La Manno, G., Zajac, P., Kasper, M., et al.
(2014). Quantitative single-cell RNA-seq with unique molecular identifiers. Nat.
Methods 11, 163–166. doi: 10.1038/nmeth.2772

Ivanov, T., Korfiatis, N., and Zicari, R. V. (2013). On the Inequality of the 3V’s of
Big Data Architectural Paradigms: A Case For Heterogeneity. Available online at:
https://arxiv.org/abs/1311.0805

Jaitin, D. A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., Zaretsky, I., et al.
(2014). Massively parallel single-cell RNA-seq for marker-free decomposition
of tissues into cell types. Science 343, 776–779. doi: 10.1126/science.1247651

Johnson, M. B., Wang, P. P., Atabay, K. D., Murphy, E. A., Doan, R. N., Hecht, J. L.,
et al. (2015). Single-cell analysis reveals transcriptional heterogeneity of neural
progenitors in human cortex. Nat. Neurosci. 18, 637–646. doi: 10.1038/nn.
3980

Kharchenko, P. V., Silberstein, L., and Scadden, D. T. (2014). Bayesian approach
to single-cell differential expression analysis. Nat. Methods 11, 740–742. doi:
10.1038/nmeth.2967

Khoury, M. J., Armstrong, G. L., Bunnell, R. E., Cyril, J., and Iademarco,
M. F. (2020). The intersection of genomics and big data with public health:
opportunities for precision public health. PLoSMed. 17:e1003373. doi: 10.1371/
journal.pmed.1003373

Kim, D., Paggi, J. M., Park, C., Bennett, C., and Salzberg, S. L. (2019). Graph-based
genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat.
Biotechnol. 37, 907–915. doi: 10.1038/s41587-019-0201-4

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S. L. (2013).
TopHat2: accurate alignment of transcriptomes in the presence of insertions,
deletions and gene fusions. Genome Biol. 14:R36. doi: 10.1186/gb-2013-14-4-
r36

Kippner, L. E., Kim, J., Gibson, G., and Kemp, M. L. (2014). Ingle cell
transcriptional analysis reveals novel innate immune cell types. PeerJ 2:e452.
doi: 10.7717/peerj.452

Kiselev, V. Y., Andrews, T. S., and Hemberg, M. (2019). Challenges in unsupervised
clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20, 273–282. doi: 10.
1038/s41576-018-0088-9

Kivioja, T., Vähärautio, A., Karlsson, K., Bonke, M., Enge, M., Linnarsson, S.,
et al. (2012). Counting absolute numbers of molecules using unique molecular
identifiers. Nat. Methods 9, 72–74. doi: 10.1038/nmeth.1778

Klein, A. M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., et al.
(2015). Droplet barcoding for single-cell transcriptomics applied to embryonic
stem cells. Cell 161, 1187–1201. doi: 10.1016/j.cell.2015.04.044

Kobak, D., and Berens, P. (2019). The art of using t-SNE for single-cell
transcriptomics. Nat. Commun. 10:5416. doi: 10.1038/s41467-019-13056-x

Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C., and Teichmann, S. A.
(2015). The technology and biology of single-cell RNA sequencing. Mol. Cell 58,
610–620. doi: 10.1016/j.molcel.2015.04.005

Korthauer, K. D., Chu, L. F., Newton, M. A., Li, Y., Thomson, J., Stewart, R.,
et al. (2016). A statistical approach for identifying differential distributions in
single-cell RNA-seq experiments. Genome Biol. 17:222. doi: 10.1186/s13059-
016-1077-y

Kulkarni, A., Anderson, A. G., Merullo, D. P., and Konopka, G. (2019). Beyond
bulk: a review of single cell transcriptomics methodologies and applications.
Curr. Opin. Biotechnol. 58, 129–136. doi: 10.1016/j.copbio.2019.03.001

La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V.,
et al. (2018). RNA velocity of single cells. Nature 560, 494–498. doi: 10.1038/
s41586-018-0414-6

Lähnemann, D., Köster, J., Szczurek, E., Mccarthy, D. J., Hicks, S. C., Mark, D.,
et al. (2019). 12 grand challenges in single-cell data science. PeerJ 7:e27885v3.
doi: 10.7287/peerj.preprints.27885v2

Lähnemann, D., Köster, J., Szczurek, E., McCarthy, D. J., Hicks, S. C., Robinson,
M. D., et al. (2020). Eleven grand challenges in single-cell data science. Genome
Biol. 21:31. doi: 10.1186/s13059-020-1926-6

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol. 10:R25. doi: 10.1186/gb-2009-10-3-r25

Lebrigand, K., Magnone, V., Barbry, P., and Waldmann, R. (2020). High
throughput error corrected Nanopore single cell transcriptome sequencing.
Nat. Commun. 11, 1–8. doi: 10.1038/s41467-020-17800-6

Lee, J., Hyeon, D. Y., and Hwang, D. (2020). Single-cell multiomics: technologies
and data analysis methods. Exp. Mol. Med. 52, 1428–1442. doi: 10.1038/s12276-
020-0420-2

Lee, J. H., Daugharthy, E. R., Scheiman, J., Kalhor, R., Ferrante, T. C., Terry,
R., et al. (2015). Fluorescent in situ sequencing (FISSEQ) of RNA for gene
expression profiling in intact cells and tissues. Nat. Protoc. 10, 442–458. doi:
10.1038/nprot.2014.191

Li, B., and Dewey, C. N. (2011). RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome. BMC Bioinform. 12:323.
doi: 10.1186/1471-2105-12-323

Li, H., and Homer, N. (2010). A survey of sequence alignment algorithms for
next-generation sequencing. Brief. Bioinform. 11, 473–483. doi: 10.1093/bib/
bbq015

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550.
doi: 10.1186/s13059-014-0550-8

Lun, A. T. L., Bach, K., and Marioni, J. C. (2016). Pooling across cells to normalize
single-cell RNA sequencing data with many zero counts. Genome Biol. 17:75.
doi: 10.1186/s13059-016-0947-7

Macaulay, I. C., Ponting, C. P., and Voet, T. (2017). Single-cell multiomics: multiple
measurements from single cells. Trends Genet. 33, 155–168. doi: 10.1016/j.tig.
2016.12.003

Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M.,
et al. (2015). Highly parallel genome-wide expression profiling of individual
cells using nanoliter droplets. Cell 161, 1202–1214. doi: 10.1016/j.cell.2015.
05.002

McCarthy, D. J., Rostom, R., Huang, Y., Kunz, D. J., Danecek, P., Bonder, M. J., et al.
(2018). Cardelino: integrating whole exomes and single-cell transcriptomes to
reveal phenotypic impact of somatic variants. bioRxiv [Preprint]. doi: 10.1101/
413047

McDavid, A., Finak, G., Chattopadyay, P. K., Dominguez, M., Lamoreaux, L.,
Ma, S. S., et al. (2013). Data exploration, quality control and testing in single-
cell qPCR-based gene expression experiments. Bioinformatics 29, 461–467. doi:
10.1093/bioinformatics/bts714

McGann, L. E., Yang, H. Y., and Walterson, M. (1988). Manifestations of cell
damage after freezing and thawing.Cryobiology 25, 178–185. doi: 10.1016/0011-
2240(88)90024-7

McInnes, L., Healy, J., Saul, N., and Großberger, L. (2018). UMAP: uniform
manifold approximation and projection. J. Open Source Softw. 3:861. doi: 10.
21105/joss.00861

Medaglia, C., Giladi, A., Stoler-Barak, L., De Giovanni, M., Salame, T. M., Biram,
A., et al. (2017). Spatial reconstruction of immune niches by combining
photoactivatable reporters and scRNA-seq. Science 358, 1622–1626. doi: 10.
1126/science.aao4277

Menon, V. (2018). Clustering single cells: a review of approaches on high-and low-
depth single-cell RNA-seq data. Brief. Funct. Genomics 18:434. doi: 10.1093/
bfgp/ely001

Miao, Z., Deng, K., Wang, X., and Zhang, X. (2018). DEsingle for detecting
three types of differential expression in single-cell RNA-seq data. Bioinformatics
(Oxford, England) 34, 3223–3224. doi: 10.1093/bioinformatics/bty332

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B. (2008).
Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat.
Methods 5, 621–628. doi: 10.1038/nmeth.1226

Natarajan, K. N., Miao, Z., Jiang, M., Huang, X., Zhou, H., Xie, J., et al.
(2019). Comparative analysis of sequencing technologies for single-cell
transcriptomics. Genome Biol. 20:70. doi: 10.1186/s13059-019-1676-5

Ntranos, V., Kamath, G. M., Zhang, J. M., Pachter, L., and Tse, D. N. (2016).
Fast and accurate single-cell RNA-seq analysis by clustering of transcript-
compatibility counts. Genome Biol. 17, 1–14. doi: 10.1186/s13059-016-
0970-8

Frontiers in Neuroscience | www.frontiersin.org 10 April 2021 | Volume 15 | Article 59112294

https://doi.org/10.1038/s12276-018-0071-8
https://doi.org/10.1038/s12276-018-0071-8
https://doi.org/10.1186/s13059-016-0888-1
https://doi.org/10.1038/nmeth.2772
https://arxiv.org/abs/1311.0805
https://doi.org/10.1126/science.1247651
https://doi.org/10.1038/nn.3980
https://doi.org/10.1038/nn.3980
https://doi.org/10.1038/nmeth.2967
https://doi.org/10.1038/nmeth.2967
https://doi.org/10.1371/journal.pmed.1003373
https://doi.org/10.1371/journal.pmed.1003373
https://doi.org/10.1038/s41587-019-0201-4
https://doi.org/10.1186/gb-2013-14-4-r36
https://doi.org/10.1186/gb-2013-14-4-r36
https://doi.org/10.7717/peerj.452
https://doi.org/10.1038/s41576-018-0088-9
https://doi.org/10.1038/s41576-018-0088-9
https://doi.org/10.1038/nmeth.1778
https://doi.org/10.1016/j.cell.2015.04.044
https://doi.org/10.1038/s41467-019-13056-x
https://doi.org/10.1016/j.molcel.2015.04.005
https://doi.org/10.1186/s13059-016-1077-y
https://doi.org/10.1186/s13059-016-1077-y
https://doi.org/10.1016/j.copbio.2019.03.001
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.7287/peerj.preprints.27885v2
https://doi.org/10.1186/s13059-020-1926-6
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1038/s41467-020-17800-6
https://doi.org/10.1038/s12276-020-0420-2
https://doi.org/10.1038/s12276-020-0420-2
https://doi.org/10.1038/nprot.2014.191
https://doi.org/10.1038/nprot.2014.191
https://doi.org/10.1186/1471-2105-12-323
https://doi.org/10.1093/bib/bbq015
https://doi.org/10.1093/bib/bbq015
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-016-0947-7
https://doi.org/10.1016/j.tig.2016.12.003
https://doi.org/10.1016/j.tig.2016.12.003
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1101/413047
https://doi.org/10.1101/413047
https://doi.org/10.1093/bioinformatics/bts714
https://doi.org/10.1093/bioinformatics/bts714
https://doi.org/10.1016/0011-2240(88)90024-7
https://doi.org/10.1016/0011-2240(88)90024-7
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.1126/science.aao4277
https://doi.org/10.1126/science.aao4277
https://doi.org/10.1093/bfgp/ely001
https://doi.org/10.1093/bfgp/ely001
https://doi.org/10.1093/bioinformatics/bty332
https://doi.org/10.1038/nmeth.1226
https://doi.org/10.1186/s13059-019-1676-5
https://doi.org/10.1186/s13059-016-0970-8
https://doi.org/10.1186/s13059-016-0970-8
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-591122 April 19, 2021 Time: 7:28 # 11

Adil et al. Era of Single-Cell Transcriptomics

O’Driscoll, A., Daugelaite, J., and Sleator, R. D. (2013). Big data”, Hadoop and cloud
computing in genomics. J. Biomed. Inform. 46, 774–781. doi: 10.1016/j.jbi.2013.
07.001

Olsen, T. K., and Baryawno, N. (2018). Introduction to single-cell RNA sequencing.
Curr. Protoc. Mol. Biol. 122:57. doi: 10.1002/cpmb.57

Ozsolak, F., and Milos, P. M. (2011). RNA sequencing: Advances, challenges and
opportunities. Nat. Rev. Genet. 12, 87–98. doi: 10.1038/nrg2934

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., and Kingsford, C. (2017).
Salmon provides fast and bias-aware quantification of transcript expression.
Nat. Methods 14, 417–419. doi: 10.1038/nmeth.4197

Patro, R., Mount, S. M., and Kingsford, C. (2014). Sailfish enables alignment-free
isoform quantification from RNA-seq reads using lightweight algorithms. Nat.
Biotechnol. 32, 462–464. doi: 10.1038/nbt.2862

Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T.,
and Salzberg, S. L. (2015). StringTie enables improved reconstruction of a
transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295. doi: 10.1038/
nbt.3122

Pezzotti, N., Lelieveldt, B. P. F., Van Der Maaten, L., Höllt, T., Eisemann, E., and
Vilanova, A. (2017). Approximated and user steerable tSNE for progressive
visual analytics. IEEE Trans. Visualization Comp. Graphics 23, 1739–1752. doi:
10.1109/TVCG.2016.2570755

Phipson, B., Zappia, L., and Oshlack, A. (2017). Gene length and detection bias
in single cell RNA sequencing protocols. F1000Research 6:595. doi: 10.12688/
f1000research.11290.1

Picelli, S., Faridani, O. R., Björklund, ÅK., Winberg, G., Sagasser, S., and Sandberg,
R. (2014). Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc.
9, 171–181. doi: 10.1038/nprot.2014.006

Qiao, M., and Meister, M. (2020). Factorized Linear Discriminant Analysis for
Phenotype-Guided Representation Learning of Neuronal Gene Expression Data.
Available online at: https://arxiv.org/abs/2010.02171v4

Queen, R., Cheung, K., Lisgo, S., Coxhead, J., and Cockell, S. (2019). Spaniel:
analysis and interactive sharing of spatial transcriptomics data. bioRxiv
[Preprint]. doi: 10.1101/619197

Raj, B., Wagner, D. E., McKenna, A., Pandey, S., Klein, A. M., Shendure, J.,
et al. (2018). Simultaneous single-cell profiling of lineages and cell types
in the vertebrate brain. Nat. Biotechnol. 36, 442–450. doi: 10.1038/nbt.
4103

Ramskold, D., Luo, S., Wang, Y., Li, R., Deng, Q., Omid, R., et al. (2013). Full-
Length mRNA-Seq from single Cell levels of RNA and individual circulating
tumor cells. Nat. Biotechnol. 30, 777–782. doi: 10.1038/nbt.2282.Full-Length

Regev, A., Teichmann, S., Lander, E., Amit, I., Benoist, C., Birney, E., et al. (2017).
Science forum: the human cell atlas. eLife 6:e27041.

Risso, D., Ngai, J., Speed, T. P., and Dudoit, S. (2014). Normalization of RNA-
seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32,
896–902. doi: 10.1038/nbt.2931

Rodriques, S. G., Stickels, R. R., Goeva, A., Martin, C. A., Murray, E., Vanderburg,
C. R., et al. (2019). Slide-seq: a scalable technology for measuring genome-
wide expression at high spatial resolution. Science 363, 1463–1467. doi: 10.1126/
science.aaw1219

Rohart, F., Eslami, A., Matigian, N., Bougeard, S., and Lê Cao, K. A. (2017a). MINT:
a multivariate integrative method to identify reproducible molecular signatures
across independent experiments and platforms. BMC Bioinform. 18:128. doi:
10.1186/s12859-017-1553-8

Rohart, F., Gautier, B., Singh, A., and Lê Cao, K. A. (2017b). mixOmics: an
R package for ‘omics feature selection and multiple data integration. PLoS
Comput. Biol. 13:1005752. doi: 10.1371/journal.pcbi.1005752

Saliba, A. E., Westermann, A. J., Gorski, S. A., and Vogel, J. (2014). Single-cell
RNA-seq: Advances and future challenges. Nucleic Acids Res. 42, 8845–8860.
doi: 10.1093/nar/gku555

Satija, R., Farrell, J. A., Gennert, D., Schier, A. F., and Regev, A. (2015). Spatial
reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502.
doi: 10.1038/nbt.3192

Schmitz, B., Radbruch, A., Kümmel, T., Wickenhauser, C., Korb, H., Hansmann,
M. L., et al. (1994). Magnetic activated cell sorting (MACS) - a new
imrnunomagnetic method for megakarvocvtic cell isolation. Eur. J. Heamatol.
52, 267–275.

Sena, J. A., Galotto, G., Devitt, N. P., Connick, M. C., Jacobi, J. L., Umale, P. E., et al.
(2018). Unique Molecular Identifiers reveal a novel sequencing artefact with

implications for RNA-Seq based gene expression analysis. Sci. Rep. 8:13121.
doi: 10.1038/s41598-018-31064-7

Sengupta, D., Rayan, N. A., Lim, M., Lim, B., and Prabhakar, S. (2016). Fast, scalable
and accurate differential expression analysis for single cells. bioRxiv [Preprint].
doi: 10.1101/049734

Setty, M., Kiseliovas, V., Levine, J., Gayoso, A., Mazutis, L., and Pe’er, D. (2019).
Characterization of cell fate probabilities in single-cell data with Palantir. Nat.
Biotechnol. 37, 451–460. doi: 10.1038/s41587-019-0068-4

Shah, S., Lubeck, E., Zhou, W., and Cai, L. (2016). In situ transcription profiling
of single cells reveals spatial organization of cells in the mouse hippocampus.
Neuron 92, 342–357. doi: 10.1016/j.neuron.2016.10.001

Sheng, K., and Zong, C. (2019). Single-cell RNA-Seq by multiple annealing and
tailing-based quantitative single-cell RNA-Seq (MATQ-Seq).MethodsMol. Biol.
1979, 57–71. doi: 10.1007/978-1-4939-9240-9_5

Singh, A., Shannon, C. P., Gautier, B., Rohart, F., Vacher, M., Tebbutt, S. J.,
et al. (2019). DIABLO: an integrative approach for identifying key molecular
drivers from multi-omics assays. Bioinformatics 35, 3055–3062. doi: 10.1093/
bioinformatics/bty1054

Sinha, D., Kumar, A., Kumar, H., Bandyopadhyay, S., and Sengupta, D. (2018).
Dropclust: Efficient clustering of ultra-large scRNA-seq data. Nucleic Acids Res.
46:e36. doi: 10.1093/nar/gky007

Sirén, J., Välimäki, N., and Mäkinen, V. (2014). HISAT2 - fast and sensitive
alignment against general human population. IEEE/ACM Trans. Comput. Biol.
Bioinform. 11, 375–388. doi: 10.1109/TCBB.2013.2297101

Smallwood, S. A., Lee, H. J., Angermueller, C., Krueger, F., Saadeh, H., Peat,
J., et al. (2014). Single-cell genome-wide bisulfite sequencing for assessing
epigenetic heterogeneity. Nat. Methods 11, 817–820. doi: 10.1038/nmeth.
3035

Smith, T., Heger, A., and Sudbery, I. (2017). UMI-tools: modeling sequencing
errors in Unique Molecular Identifiers to improve quantification accuracy.
Genome Res. 27, 491–499. doi: 10.1101/gr.209601.116

Song, Y., Xu, X., Wang, W., Tian, T., Zhu, Z., and Yang, C. (2019). Single cell
transcriptomics: Moving towards multi-omics. Analyst 144, 3172–3189. doi:
10.1039/c8an01852a

Stegle, O., Teichmann, S. A., and Marioni, J. C. (2015). Computational and
analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–
145. doi: 10.1038/nrg3833

Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron, M. J.,
et al. (2015). Big data: astronomical or genomical? PLoS Biol. 13:e1002195.
doi: 10.1371/journal.pbio.1002195

Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B.,
Chattopadhyay, P. K., Swerdlow, H., et al. (2017). Simultaneous
epitope and transcriptome measurement in single cells. Nat. Methods
9:2579.

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M., et al.
(2019). Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21.
doi: 10.1016/j.cell.2019.05.031

Svensson, V., Teichmann, S. A., and Stegle, O. (2018). SpatialDE: Identification of
spatially variable genes. Nat. Methods 15, 343–346. doi: 10.1038/nmeth.4636

Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., et al. (2009).
mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6,
377–382. doi: 10.1038/nmeth.1315

Taylor, R. C. (2010). An overview of the Hadoop/MapReduce/HBase framework
and its current applications in bioinformatics. BMC Bioinform. 11:S1. doi: 10.
1186/1471-2105-11-S12-S1

Tharwat, A., Gaber, T., Ibrahim, A., and Hassanien, A. E. (2017). Linear
discriminant analysis: a detailed tutorial. AI Commun. 30, 169–190. doi: 10.
3233/AIC-170729

Tolle, K. M., Tansley, D. S. W., and Hey, A. J. G. (2011). The fourth Paradigm: Data-
intensive scientific discovery. Proc. IEEE 99, 1334–1337. doi: 10.1109/JPROC.
2011.2155130

Tomlinson, M. J., Tomlinson, S., Yang, X. B., and Kirkham, J. (2013). Cell
separation: Terminology and practical considerations. J. Tissue Eng. 4, 1–14.
doi: 10.1177/2041731412472690

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., et al.
(2014). The dynamics and regulators of cell fate decisions are revealed by
pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386. doi:
10.1038/nbt.2859

Frontiers in Neuroscience | www.frontiersin.org 11 April 2021 | Volume 15 | Article 59112295

https://doi.org/10.1016/j.jbi.2013.07.001
https://doi.org/10.1016/j.jbi.2013.07.001
https://doi.org/10.1002/cpmb.57
https://doi.org/10.1038/nrg2934
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1038/nbt.2862
https://doi.org/10.1038/nbt.3122
https://doi.org/10.1038/nbt.3122
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.12688/f1000research.11290.1
https://doi.org/10.12688/f1000research.11290.1
https://doi.org/10.1038/nprot.2014.006
https://arxiv.org/abs/2010.02171v4
https://doi.org/10.1101/619197
https://doi.org/10.1038/nbt.4103
https://doi.org/10.1038/nbt.4103
https://doi.org/10.1038/nbt.2282.Full-Length
https://doi.org/10.1038/nbt.2931
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1186/s12859-017-1553-8
https://doi.org/10.1186/s12859-017-1553-8
https://doi.org/10.1371/journal.pcbi.1005752
https://doi.org/10.1093/nar/gku555
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1038/s41598-018-31064-7
https://doi.org/10.1101/049734
https://doi.org/10.1038/s41587-019-0068-4
https://doi.org/10.1016/j.neuron.2016.10.001
https://doi.org/10.1007/978-1-4939-9240-9_5
https://doi.org/10.1093/bioinformatics/bty1054
https://doi.org/10.1093/bioinformatics/bty1054
https://doi.org/10.1093/nar/gky007
https://doi.org/10.1109/TCBB.2013.2297101
https://doi.org/10.1038/nmeth.3035
https://doi.org/10.1038/nmeth.3035
https://doi.org/10.1101/gr.209601.116
https://doi.org/10.1039/c8an01852a
https://doi.org/10.1039/c8an01852a
https://doi.org/10.1038/nrg3833
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1038/nmeth.4636
https://doi.org/10.1038/nmeth.1315
https://doi.org/10.1186/1471-2105-11-S12-S1
https://doi.org/10.1186/1471-2105-11-S12-S1
https://doi.org/10.3233/AIC-170729
https://doi.org/10.3233/AIC-170729
https://doi.org/10.1109/JPROC.2011.2155130
https://doi.org/10.1109/JPROC.2011.2155130
https://doi.org/10.1177/2041731412472690
https://doi.org/10.1038/nbt.2859
https://doi.org/10.1038/nbt.2859
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-591122 April 19, 2021 Time: 7:28 # 12

Adil et al. Era of Single-Cell Transcriptomics

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren,
M. J., et al. (2010). Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell differentiation. Nat.
Biotechnol. 28, 511–515. doi: 10.1038/nbt.1621

Trombetta, J., Gennert, D., Lu, D., and Sattija, R. (2015). Preparation of single-cell
RNA-seq libraries for NGS. Curr. Protoc. Mol. Biol. 19, 161–169. doi: 10.3851/
IMP2701.Changes

Vallejos, C. A., Marioni, J. C., and Richardson, S. (2015). BASiCS: Bayesian analysis
of single-cell sequencing data. PLoS Comput. Biol. 11:e1004333. doi: 10.1371/
journal.pcbi.1004333

Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S., and Marioni, J. C. (2017).
Normalizing single-cell RNA sequencing data: challenges and opportunities.
Nat. Methods 14, 565–571. doi: 10.1038/nmeth.4292.Normalizing

Van Der Maaten, L. J. P., and Hinton, G. E. (2008). Visualizing high-dimensional
data using t-sne. J. Machine Learn. Res. 9, 2579–2605.

Van Der Maaten, L. J. P., Postma, E. O., and Van Den Herik, H. J. (2009).
“Dimensionality reduction: a comparative review,” inTechnical Report TiCC-TR
2009-005 (Tilburg: Tillburg University).

Vitak, S. A., Torkenczy, K. A., Rosenkrantz, J. L., Fields, A. J., Christiansen, L.,
Wong, M. H., et al. (2017). Sequencing thousands of single-cell genomes with
combinatorial indexing. Nat. Methods 472, 90–94. doi: 10.1038/nmeth.4154

Volden, R., and Vollmers, C. (2020). Highly multiplexed single-cell full-length
cDNA Sequencing of human immune cells with 10X genomics and R2C2.
bioRxiv [Preprint]. doi: 10.1101/2020.01.10.902361

Wagner, A., Regev, A., and Yosef, N. (2016). Revealing the vectors of cellular
identity with single-cell genomics. Nat. Biotechnol. 34, 1145–1160. doi: 10.1038/
nbt.3711

Wang, D., and Bodovitz, S. (2010). Single cell analysis: the new frontier in “omics.”.
Trends Biotechnol. 28, 281–290. doi: 10.1016/j.tibtech.2010.03.002

Wang, T., Li, B., Nelson, C. E., and Nabavi, S. (2019). Comparative analysis of
differential gene expression analysis tools for single-cell RNA sequencing data.
BMC Bioinform. 20:40. doi: 10.1186/s12859-019-2599-6

Wang, T., and Nabavi, S. (2018). SigEMD: a powerful method for differential gene
expression analysis in single-cell RNA sequencing data. Methods 145, 25–32.
doi: 10.1016/j.ymeth.2018.04.017

Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: A revolutionary tool for
transcriptomics. Nat. Rev. Genet. 10, 57–63. doi: 10.1038/nrg2484

Welch, J. D., Hartemink, A. J., and Prins, J. F. (2017). MATCHER: manifold
alignment reveals correspondence between single cell transcriptome
and epigenome dynamics. Genome Biol. 18:138. doi: 10.1186/s13059-017-
1269-0

Welzel, G., Seitz, D., and Schuster, S. (2015). Magnetic-activated cell sorting
(MACS) can be used as a large-scale method for establishing zebrafish neuronal
cell cultures. Sci. Rep. 5:7959. doi: 10.1038/srep07959

Wills, Q. F., Livak, K. J., Tipping, A. J., Enver, T., Goldson, A. J., Sexton, D. W.,
et al. (2013). Single-cell gene expression analysis reveals genetic associations
masked in whole-tissue experiments. Nat. Biotechnol. 31, 748–752. doi: 10.1038/
nbt.2642

Wong, K., Navarro, J. F., Bergenstråhle, L., Ståhl, P. L., and Lundeberg, J. (2018). ST
Spot Detector: a web-based application for automatic spot and tissue detection
for spatial transcriptomics image datasets. Bioinformatics 34, 1966–1968. doi:
10.1093/bioinformatics/bty030

Wyatt Shields, C. IV, Reyes, C. D., and López, G. P. (2015). Microfluidic cell sorting:
a review of the advances in the separation of cells from debulking to rare cell
isolation. Lab Chip 5, 1230–1249. doi: 10.1039/c4lc01246a

Xin, Y., Kim, J., Ni, M., Wei, Y., Okamoto, H., Lee, J., et al. (2016). Use of the
Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet
cells. Proc. Natl. Acad. Sci. U.S.A. 113, 3293–3298. doi: 10.1073/pnas.160230
6113

Xue, R., Li, R., and Bai, F. (2015). Single cell sequencing: technique, application,
and future development. Sci. Bull. 60, 33–42. doi: 10.1007/s11434-014-0634-6

Yip, S. H., Wang, P., Kocher, J. P. A., Sham, P. C., and Wang, J. (2017). Linnorm:
improved statistical analysis for single cell RNA-seq expression data. Nucleic
Acids Res. 45:e179. doi: 10.1093/nar/gkx828

Yu, P., and Lin, W. (2016). Single-cell transcriptome study as big data. Genomics
Proteomics Bioinform. 14, 21–30. doi: 10.1016/j.gpb.2016.01.005

Zaharia, M., Franklin, M. J., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I., et al.
(2016). Apache spark. Commun. ACM 59, 56–65. doi: 10.1145/2934664

Zare, R. N., and Kim, S. (2010). Microfluidic platforms for single-cell analysis.
Annu. Rev. Biomed. Eng. 12, 187–201. doi: 10.1146/annurev-bioeng-070909-
105238

Zhang, Z., and Wang, W. (2014). RNA-skim: a rapid method for RNA-Seq
quantification at transcript level. Bioinformatics 30, i283–i292. doi: 10.1093/
bioinformatics/btu288

Zheng, G. X. Y., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z. W., Wilson, R.,
et al. (2017). Massively parallel digital transcriptional profiling of single cells.
Nat. Commun. 8:14049. doi: 10.1038/ncomms14049

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Adil, Kumar, Jan and Asger. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 12 April 2021 | Volume 15 | Article 59112296

https://doi.org/10.1038/nbt.1621
https://doi.org/10.3851/IMP2701.Changes
https://doi.org/10.3851/IMP2701.Changes
https://doi.org/10.1371/journal.pcbi.1004333
https://doi.org/10.1371/journal.pcbi.1004333
https://doi.org/10.1038/nmeth.4292.Normalizing
https://doi.org/10.1038/nmeth.4154
https://doi.org/10.1101/2020.01.10.902361
https://doi.org/10.1038/nbt.3711
https://doi.org/10.1038/nbt.3711
https://doi.org/10.1016/j.tibtech.2010.03.002
https://doi.org/10.1186/s12859-019-2599-6
https://doi.org/10.1016/j.ymeth.2018.04.017
https://doi.org/10.1038/nrg2484
https://doi.org/10.1186/s13059-017-1269-0
https://doi.org/10.1186/s13059-017-1269-0
https://doi.org/10.1038/srep07959
https://doi.org/10.1038/nbt.2642
https://doi.org/10.1038/nbt.2642
https://doi.org/10.1093/bioinformatics/bty030
https://doi.org/10.1093/bioinformatics/bty030
https://doi.org/10.1039/c4lc01246a
https://doi.org/10.1073/pnas.1602306113
https://doi.org/10.1073/pnas.1602306113
https://doi.org/10.1007/s11434-014-0634-6
https://doi.org/10.1093/nar/gkx828
https://doi.org/10.1016/j.gpb.2016.01.005
https://doi.org/10.1145/2934664
https://doi.org/10.1146/annurev-bioeng-070909-105238
https://doi.org/10.1146/annurev-bioeng-070909-105238
https://doi.org/10.1093/bioinformatics/btu288
https://doi.org/10.1093/bioinformatics/btu288
https://doi.org/10.1038/ncomms14049
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fgene-12-648524 April 28, 2021 Time: 14:15 # 1

REVIEW
published: 03 May 2021

doi: 10.3389/fgene.2021.648524

Edited by:
Bhabatosh Das,

Translational Health Science
and Technology Institute (THSTI),

India

Reviewed by:
Yifan Ge,

Massachusetts General Hospital
and Harvard Medical School,

United States
Ali Salehzadeh-Yazdi,

University of Rostock, Germany
Krishnamohan Atmakuri,

Translational Health Science
and Technology Institute (THSTI),

India

*Correspondence:
Daniel Zamith-Miranda

daniel.zamithmiranda@einsteinmed.org
Ernesto S. Nakayasu

ernesto.nakayasu@pnnl.gov

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Systems Biology,
a section of the journal

Frontiers in Genetics

Received: 31 December 2020
Accepted: 06 April 2021
Published: 03 May 2021

Citation:
Zamith-Miranda D,

Peres da Silva R, Couvillion SP,
Bredeweg EL, Burnet MC, Coelho C,
Camacho E, Nimrichter L, Puccia R,

Almeida IC, Casadevall A,
Rodrigues ML, Alves LR,

Nosanchuk JD and Nakayasu ES
(2021) Omics Approaches

for Understanding Biogenesis,
Composition and Functions of Fungal

Extracellular Vesicles.
Front. Genet. 12:648524.

doi: 10.3389/fgene.2021.648524

Omics Approaches for
Understanding Biogenesis,
Composition and Functions of
Fungal Extracellular Vesicles
Daniel Zamith-Miranda1,2*†, Roberta Peres da Silva3†, Sneha P. Couvillion4,
Erin L. Bredeweg5, Meagan C. Burnet4, Carolina Coelho3, Emma Camacho6,
Leonardo Nimrichter7, Rosana Puccia8, Igor C. Almeida9, Arturo Casadevall6,
Marcio L. Rodrigues10,11, Lysangela R. Alves10, Joshua D. Nosanchuk1,2 and
Ernesto S. Nakayasu4*

1 Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States, 2 Division
of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States, 3 MRC Centre
for Medical Mycology, University of Exeter, Exeter, United Kingdom, 4 Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA, United States, 5 Environmental and Molecular Sciences Laboratory, Pacific Northwest National
Laboratory, Richland, WA, United States, 6 Department of Molecular Microbiology and Immunology, Johns Hopkins
Bloomberg School of Public Health, Baltimore, MD, United States, 7 Laboratório de Glicobiologia de Eucariotos, Instituto
de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 8 Departamento
de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo,
Brazil, 9 Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX,
United States, 10 Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas-FIOCRUZ PR, Curitiba, Brazil,
11 Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Extracellular vesicles (EVs) are lipid bilayer structures released by organisms from all
kingdoms of life. The diverse biogenesis pathways of EVs result in a wide variety
of physical properties and functions across different organisms. Fungal EVs were
first described in 2007 and different omics approaches have been fundamental to
understand their composition, biogenesis, and function. In this review, we discuss
the role of omics in elucidating fungal EVs biology. Transcriptomics, proteomics,
metabolomics, and lipidomics have each enabled the molecular characterization of
fungal EVs, providing evidence that these structures serve a wide array of functions,
ranging from key carriers of cell wall biosynthetic machinery to virulence factors. Omics
in combination with genetic approaches have been instrumental in determining both
biogenesis and cargo loading into EVs. We also discuss how omics technologies
are being employed to elucidate the role of EVs in antifungal resistance, disease
biomarkers, and their potential use as vaccines. Finally, we review recent advances in
analytical technology and multi-omic integration tools, which will help to address key
knowledge gaps in EVs biology and translate basic research information into urgently
needed clinical applications such as diagnostics, and immuno- and chemotherapies to
fungal infections.

Keywords: extracellular vesicles, fungi, virulence, systems biology, proteomics, metabolomics, lipidomics,
transcriptomics
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INTRODUCTION

Cells secrete a variety of molecules to the extracellular
milieu, from the smallest metabolites to large proteins and
glycoconjugates. These secreted molecules range from toxic
catabolites to cell communication molecules, virulence factors,
and enzymes involved in nutrient acquisition. One particularly
intriguing mechanism of secretion is the release of extracellular
vesicles (EVs). Organisms from all kingdoms have been
described to release EVs (Toyofuku et al., 2019; Woith et al.,
2019; Rayamajhi and Aryal, 2020; Rizzo et al., 2020b). In
fungi, EVs were first described and partially characterized in
Cryptococcus neoformans (Rodrigues et al., 2007). Since the
original description, different omics approaches have been
instrumental for the characterization of EVs, from their putative
mechanisms of biogenesis to their function in the fungal biology.
In this article, we review the contribution of different omics
approaches to study fungal EVs.

INITIAL CHARACTERIZATION OF
FUNGAL EXTRACELLULAR VESICLES

Cryptococcus neoformans EVs comprise a heterogeneous
population of lipid bilayer vesicles, including pigment-
containing, electron-lucid, electron-dense, and
membrane-associated electron-dense vesicles. The first
proteomic analysis of cryptococcal EVs led to the identification
of 76 proteins involved in a variety of functions, including
virulence, oxidative stress, unfolded-protein response,
cellular metabolism, protein translation, signal transduction,
cytoskeleton organization, and also proteins found in the
plasma membrane (Rodrigues et al., 2008). Subsequent
studies in Histoplasma capsulatum identified 206 EV-
associated proteins with a similar diversity of functions to
C. neoformans EVs, besides proteins involved in cell synthesis
and remodeling (Albuquerque et al., 2008). Lipidomic analysis of
H. capsulatum EVs led to the identification of 18 phospholipids,
including phosphatidylethanolamine, phosphatidylcholine, and
phosphatidylserine species (Albuquerque et al., 2008). These
initial characterization of fungal EVs opened new questions
about their biogenesis and roles in infection, along with their
potential use for clinical and biotechnological applications, as
discussed in the subsequent sections.

CELLULAR SITES AND MECHANISMS
OF EXTRACELLULAR VESICLE
FORMATION IN FUNGI

The precise cellular sites and mechanisms of fungal EVs
formation are still not fully defined. At first, there was some
skepticism in the field that EVs may be products of dying cells
whereby released lipids self-assembled into vesicles. Skepticism
about EVs was also fueled by concerns of how such large
structures could cross the cell wall, which was viewed as a rigid
structure that would preclude vesicular transport. However, we

have shown that heat-killed C. neoformans failed to secrete EVs
(Rodrigues et al., 2007). With regard to the cell wall transit,
recent studies have shown that this structure is easily penetrated
by vesicles (Walker et al., 2018). To further investigate this
issue, we compared lipidomic analysis data of H. capsulatum
EVs (Cleare et al., 2020) and whole cells (Burnet et al., 2020).
We found a significant depletion of the energy storage lipid,
triacylglycerol, and of the mitochondrial lipid, cardiolipin, in
EVs when compared with whole cells (Figure 1). The fact that
EVs and whole cells have distinct lipid composition suggests
they are formed by specific EVs biogenesis process(es), rather
than being a product of cell death, and/or breakdown. Lipidomic
analysis of EVs from two Paracoccidioides brasiliensis isolates
of different phylogenetic groups showed differences in sterol
and fatty acid composition of EVs when compared with whole
cells, also suggesting the involvement of specific organelles in
EVs biogenesis (Vallejo et al., 2012a). In addition, the deletion
of the sterol biosynthesis gene Erg6 induced changes in the
lipid and protein content of C. neoformans EVs, suggesting a
role for sterols in EVs formation (Oliveira et al., 2020). Studies
have shown that fungal EVs can originate from intracellular
organelles, such as endosomes (Oliveira et al., 2010; Zarnowski
et al., 2018; Zhao et al., 2019; Park et al., 2020), or at
the plasma membrane (Rodrigues et al., 2000, 2013; Rizzo
et al., 2020a). Morphological studies of C. neoformans showed
structures resembling multivesicular bodies (MBVs) that can fuse
to the plasma membrane, resulting in the release of intraluminal
MBV vesicles into the fungal periplasm (Takeo et al., 1973).
Those images suggested that populations of fungal EVs might
correspond to exosomes, which are mammalian EVs released to
the extracellular milieu by the fusion of MVBs to the plasma
membrane (Raposo and Stoorvogel, 2013). This biogenesis
pathway was supported by recent studies in C. neoformans
(Park et al., 2020) and Candida albicans (Zarnowski et al.,
2018), in which deletion of genes affecting MVB formation
resulted in aberrant vesicles and/or decreased EVs production. In
Saccharomyces cerevisiae, deletion of several regulators of either
conventional or unconventional secretion resulted in alterations
of EVs composition, as measured by proteomic analysis (Oliveira
et al., 2010). In C. neoformans, the deletion of SEC6, a gene
participating in the post-Golgi secretory pathway, also resulted
in reduced EVs formation (Panepinto et al., 2009). In the
filamentous fungus Neurospora crassa, GFP-localization of SEC-
6, -5, -8, and -15 subunits of the exocyst complex each form a
crescent just beyond the cluster of vesicles of the Spitzenkörper
at an extending hyphal tip (Riquelme et al., 2014). The exocyst
allows a physical linkage of the vesicle cluster to the apical
membrane. The cellular events of these EVs is also a matter of
debate, including fusion or vesicle budding and secretion (Rizzoli
and Jahn, 2007; Miura and Ueda, 2018). These studies show that
intracellular regulators of secretory pathways, such as the post-
Golgi pathway, participate in fungal EVs formation, similar to
what occurs in mammalian EVs.

As observed in protozoan parasites (Marcilla et al., 2014;
Szempruch et al., 2016) and mammals (Raposo and Stoorvogel,
2013; Stahl and Raposo, 2019), fungal EVs can also be formed
at the plasma membrane. Immunofluorescence of C. neoformans
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FIGURE 1 | Comparative lipidomic analysis of H. capsulatum EVs and whole cells. Lipidomics data from previous publications (Burnet et al., 2020; Cleare et al.,
2020) of yeast cells grown in F12 medium. Each lipid class was normalized by the total ion intensity of the identified lipid species. Lipid classes significantly (p ≤ 0.05
by Student’s t-test) enriched in extracellular vesicles and whole cells are shown by asterisks and hash signs, respectively. (A) Lipids quantified by mass spectrometry
in the positive ionization mode. (B) Lipids quantified by mass spectrometry in the negative ionization mode.

surface lipids revealed plasma membrane projections, suggesting
that the plasma membrane could bud and release EVs (Rodrigues
et al., 2000). The participation of the plasma membrane in
fungal EVs formation was also shown using “wall-less” Aspergillus
fumigatus cells (Rizzo et al., 2020a). Ultra-resolution microscopy
analyses of these fungal protoplasts demonstrated the occurrence
of EVs budding from the plasma membrane. Shedding of
these plasma membrane-derived EVs was increased during cell
wall synthesis, suggesting their participation in this process.
Accordingly, protoplast EVs contain cell-wall polysaccharides
and polysaccharide synthases, which are plasma membrane-
associated enzymes (Rizzo et al., 2020a). These morphological
and compositional studies support the presence of plasma
membrane-derived EVs in fungi similar to the mammalian
microvesicles (or ectosomes; Raposo and Stoorvogel, 2013;
Stahl and Raposo, 2019). However, additional mechanisms of
plasma membrane-derived EVs formation that differ from those
described for mammalian microvesicles have been described in
fungi. In S. cerevisiae, electron tomography studies revealed deep
invaginations of the plasma membrane organized as two parallel
membranes extending a few hundred nanometers toward the
cell center. These structures can curve back to the cell surface,
resulting in fusion with the plasma membrane and EVs formation
(Rodrigues et al., 2013). Based on these observations, it has been
proposed that fungal EVs might also originate from cytoplasmic
content loading into a vesicle derived from the reshaping of
the plasma membrane. The mechanisms behind this process are
currently unknown, but they could represent a new pathway
of EVs formation.

Overall, the studies described above show that fungi
release exosome-like and microvesicle-like EVs, suggesting a
conserved mechanism of EVs formation in lower and higher
eukaryotes.

CELL WALL REMODELING BY
EXTRACELLULAR VESICLE CARGO

The cell wall is responsible for shaping fungal cells and for their
resistance to diverse types of stress (Nimrichter et al., 2016).
Nutrient availability, ambient pH, temperature, osmotic stressors,
and other extracellular stimuli can lead to cell wall remodeling,
which includes structural changes in their major components
such as chitin, glucan, and glycoproteins (Nimrichter et al., 2016).
The interplay between rigidity and plasticity of the cell wall is a
key factor for fungal adaptation, survival, growth, and virulence
(Nimrichter et al., 2016; Beauvais and Latgé, 2018). Although
the cell wall synthesis and shaping are classically attributed to
plasma membrane proteins, EVs might also play a role in this
process (Vallejo et al., 2012b; Nimrichter et al., 2016; Ikeda et al.,
2018; Zhao et al., 2019; Dawson et al., 2020). In P. brasiliensis,
60% of the non-covalently bound cell wall proteins, detected by
proteomic analysis of two distinct isolates, have been described
in fungal EVs (Longo et al., 2014). The EVs content can vary
deeply depending on the growth conditions and fungal species
(Vallejo et al., 2012a,b; Longo et al., 2014; Peres et al., 2015;
Alves et al., 2019; Peres da Silva et al., 2019; Cleare et al., 2020).
In addition, enrichment of cell wall remodeling enzymes is a
conserved feature across fungal EVs (Vallejo et al., 2012b; Longo
et al., 2014; Ikeda et al., 2018; Zhao et al., 2019; Dawson et al.,
2020). Cell wall synthases or hydrolases have been found in
EVs from Candida auris, C. albicans, Cryptococcus deneoformans,
Cryptococcus deuterogattii, C. neoformans, Fusarium oxysporum,
P. brasiliensis, Sporothrix brasiliensis, S. cerevisiae, H. capsulatum,
and Trichoderma reesei (Vallejo et al., 2012b; Wolf et al.,
2014; Ikeda et al., 2018; Bleackley et al., 2019; de Paula
et al., 2019; Konečná et al., 2019; Zhao et al., 2019; Cleare
et al., 2020; Dawson et al., 2020; Zamith-Miranda et al., 2020;
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Rizzo et al., 2020c). When we compared the proteomic data of
H. capsulatum EVs (Cleare et al., 2020) with whole cells (Burnet
et al., 2020), the results showed that EVs were highly enriched
in cell wall synthases and hydrolases, such as β-glucanase, β-1,3-
glucanosyltransferase, chitin synthase, and chitinase (Figure 2).
In S. cerevisiae, supplementation with chitin synthase Chs3-
enriched EVs rescued the growth of cells treated with the cell
wall-targeting antifungal caspofungin, suggesting that the EVs
cargo per se is sufficient to supply components for cell remodeling
(Zhao et al., 2019). Enzymes that have already been described
in fungal EVs are involved in evasion of the immune system by
modifying cell wall epitopes. The presence of lactate or exposure
to hypoxia induced β-1,3-glucan masking in C. albicans. This
effect was mediated by the secreted exo-β-1,3-glucanase, Xog1,
which has been described as an EVs cargo in proteomic studies
(Nimrichter et al., 2016; Konečná et al., 2019; Childers et al.,
2020; Dawson et al., 2020). However, the direct participation of
EVs in this process still needs to be confirmed. The ability to
actively secrete cell wall synthases and hydrolases through EVs in
response to extracellular environmental signals could represent a
new mechanism of cell wall remodeling, which could affect the
exposure of epitopes during infection, consequently resulting in
modulation of the immune response.

EXTRACELLULAR VESICLES AND
ANTIFUNGALS

A seminal work by Andes laboratory showed that EVs were
involved in biofilm formation in C. albicans (Zarnowski
et al., 2018). Defective biofilm formation leads to an
increased susceptibility to fluconazole. The authors performed

gain-of-function experiments and showed that addition of
wild-type EVs to biofilm-deficient strains restored biofilm
formation and re-established fluconazole resistance. This work
is akin to the previously mentioned work of EV-associated
Chs3 restoring and rescuing cell wall defects and improving
tolerance to antifungals (Zhao et al., 2019). Proteomic analyses
performed in both studies showed that EVs carry a myriad of
functional enzymes. Interestingly, it is possible that the delivery
of a combination of enzymes in EVs allows for higher efficiency
in cell wall remodeling.

RNA CONTENT IN FUNGAL
EXTRACELLULAR VESICLES

Omic approaches caused a major impact in deciphering
the RNA content carried by EVs, being most of the data
available characterized using RNA-seq. In fungi, RNA export
via EVs was originally described in S. cerevisiae, C. albicans,
C. neoformans, and P. brasiliensis (Peres et al., 2015). Similar
to what has been published for mammalian EVs, the fungal
EVs transcripts were composed mainly of small RNA (sRNA)
sequences of up to 250 nt. The most abundant classes were
non-coding (nc)RNA sequences of the small nucleolar RNA
(snoRNAs), small nuclear RNA (snRNAs), and tRNA types
(Peres et al., 2015). Subsequent transcriptomics analysis of EVs
from H. capsulatum (Alves et al., 2019) and Paracoccidioides
(Peres da Silva et al., 2019) isolates revealed that the small
ncRNAs were mostly represented by short 25-nt fragments
that aligned to a specific region of a particular mRNA. The
presence of anti-sense RNA fragments in EVs might have
a role in gene silencing, maybe similarly to that of micro

FIGURE 2 | Comparative proteomic analysis of Histoplasma capsulatum extracellular vesicles and whole cells. Proteomics data from previous publications (Burnet
et al., 2020; Cleare et al., 2020) of yeast cells grown in F12 medium. The relative copy number of proteins in cells or extracellular vesicles was calculated using
intensity based absolute quantification (iBAQ) by normalizing to the total iBAQ of each sample. Proteins significantly (p ≤ 0.05 by Student’s t-test) enriched in
extracellular vesicles (A) and whole cells (B) are indicated as asterisk and hash signs, respectively.
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RNAs (miRNAs) and fungal exonic short interfering RNAs
(Nicolás and Ruiz-Vázquez, 2013; Son et al., 2017). The fungus
Malassezia sympodialis, a member of the human skin microbiota,
also exports EVs containing 16 to 22 nucleotides long RNAs.
However, M. sympodialis lacks an RNAi machinery, suggesting
that this fungal species might bear an alternative miRNA
production pathway (Rayner et al., 2017). In the dimorphic
fungus Pichia fermentans, the length of EVs RNAs ranges
from 25 to 130 nt. These transcripts are involved in the
transition of this fungus from yeast to pseudohyphal morphology,
which occurs in response to specific environmental conditions
(Leone et al., 2018).

Although most of the fungal EVs transcripts were small
ncRNAs, full-length mRNAs have also been found. In general,
they corresponded to genes of metabolic pathways, transcription
regulation, cell cycle, vesicle-mediated transport, cellular
responses to stress, and translation, depending on the species and
the species isolate studied (Peres et al., 2015; Alves et al., 2019;
Peres da Silva et al., 2019). An in vitro translation experiment
has shown that mRNAs carried by P. brasiliensis and P. lutzii
EVs are functional (Peres da Silva et al., 2019). Based on these
results, it is reasonable to speculate that EVs mRNAs can be
transferred and translated into the host cell, possibly modulating
gene expression that could benefit the pathogen infection and
survival. In Cryptococcus gattii, the EVs derived from a virulent
strain induced, inside macrophages, survival and proliferation
of a less virulent strain, which would normally be cleared by the
host cell. This phenotype was decreased by EVs pre-treatment
with RNase, supporting a role for EV-associated RNAs in the
transfer of virulence traits (Bielska et al., 2018). However, the
nature of these RNAs and their mechanism of action still needs
to be further investigated.

Regarding RNA loading into EVs, in mammals, the autophagy
protein LC3 has been reported as a recruiter of RNA-binding
proteins to these compartments (Leidal et al., 2020). In fungi, the
composition of RNA in the EVs can be affected by alterations in
the intracellular vesicle and secretion pathway. The knockout of
Golgi reassembly and stacking protein in C. neoformans deeply
affected the EVs RNA composition, suggesting a role of the Golgi
in the EVs RNA loading (Peres et al., 2018). To further evaluate
the existence of a specific mechanism of RNA loading into
fungal EVs, we compared the published transcriptomics data of
H. capsulatum EVs with that of the whole cell (Alves et al., 2019).
We observed a striking enrichment of specific RNA sequences in
EVs, while the most expressed RNAs in the cells were present
only in trace amounts in EVs (Figure 3). These results support
the hypothesis that RNA sorting to EVs is finely regulated. In
addition, robust RNA-seq data comparing the transcriptomics of
EVs with that of their corresponding C. albicans cells cultivated
both under control and mild stress conditions. We observed that
the EVs and the cell transcriptomics was distinct in all growth
conditions and that the RNA content of both EVs and cells was
modulated under the stress conditions analyzed (Leitão, 2017).

EXTRACELLULAR VESICLE
COMPONENTS AS DISEASE
BIOMARKERS AND CELL BIOLOGY
MARKERS

While the terms biomarkers and markers are often and
inappropriately used interchangeably, they have distinct
definitions. Biomarkers, by definition, are molecular signatures

FIGURE 3 | Comparative transcriptomic analysis of RNA content H. capsulatum extracellular vesicles and whole cells. The expression level is represented as
transcripts per million. Transcripts significantly (p ≤ 0.05 by t-test) enriched in extracellular vesicles (A) and whole cells (B) are shown by asterisk and hash signs,
respectively.
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that can be used in the clinic to diagnose or predict the
appearance or outcome of a disease (Strimbu and Tavel, 2010),
whereas cell biology markers are molecules that can differentiate
cell populations, cellular processes or cellular compartments
(Zhang et al., 2019). The distinct composition of EVs from
fungi and human cells make them good candidates for clinical
diagnostic biomarkers and/or disease follow-up, i.e., for early
assessment of chemotherapeutic outcomes and/or disease
progression. Unfortunately, this subject has been understudied
in fungi. In parasites, proteins from the murine malarial parasite
Plasmodium yoelii have been detected in proteomics analysis
of EVs from infected reticulocytes (Martin-Jaular et al., 2011).
Similar findings have been recently observed in EVs isolated from
plasma of a patient with chronic Chagas disease (Cortes-Serra
et al., 2020). The use of EVs as biomarkers has been better
explored in cancer biology. For instance, in prostate cancer,
urinary EVs has been shown to carry RNAs that are signature of
the disease outcome and are considered promising biomarker
candidates (Pang et al., 2020). More recently, the proteomic
analysis of EVs and particles from plasma and tissue showed that
they can distinguish between normal and cancer cells with >90%
sensitivity and specificity (Hoshino et al., 2020).

The discovery of specific markers of fungal EVs would have
a major impact in cell biology research toward understanding
their biogenesis, traffic, and function. In mammalian cells, good
markers are the tetraspanins CD9, CD63, and CD81 (Andreu
and Yáñez-Mó, 2014), which are currently unavailable for fungal
EVs. In 2012, Vallejo et al. showed that 63% of the P. brasiliensis
EVs proteins had orthologs described in EVs of H. capsulatum,
C. neoformans, and S. cerevisiae (Vallejo et al., 2012b). Dawson
et al. (2020) analyzed proteins that were enriched in EVs from
three different strains of C. albicans when compared to the
proteome of whole cells from the same strains. They found
47 commonly enriched proteins including Sur7, Evp1, and a
variety of cell-wall synthesis and remodeling proteins. It should
be noted, however, that the whole cell fraction that the authors
analyzed did not include plasma membrane and, therefore, the
results should be carefully considered (Dawson et al., 2020).
Due to presence of cell-wall synthases and hydrolases in EVs
from a variety of species (as discussed above) and since cell
wall is conserved across the kingdom Fungi, it is reasonable
to speculate that cell-wall synthesis and remodeling proteins
could be a common marker for fungal EVs. The validation of
these marker candidates and subsequent development of reagents
may open new avenues to study the cell biology of fungal EVs,
while biomarkers could be used for translational research as new
diagnostic and prognostic tools.

EXTRACELLULAR VESICLES AS
TRANSPORTERS OF VIRULENCE
FACTORS

Early characterization of EVs from C. neoformans showed
the presence of important previously described virulence
factors, specifically, glucoronoxylomannan (GXM), melanin,
monohexosylceramide, laccase, urease, and phosphatase

(Rodrigues et al., 2008; Eisenman et al., 2009). So far, however,
only a few studies have investigated the participation of fungal
EVs during infection in vertebrates. Using a murine model
of cryptococcosis, Huang and colleagues demonstrated that
the co-injection of C. neoformans with EVs facilitated the
yeast transversal of the blood-brain barrier and enhanced the
disease development (Huang et al., 2012). In addition, EVs are
associated with a higher fungal burden and an increased lesion
diameter in early stages of sporotrichosis caused by S. brasiliensis
(Ikeda et al., 2018). Over the last decade, a number of EVs
proteomic analysis carried out in diverse pathogenic fungal
species described the finding of proteins that are associated with
fungal virulence, but the association between effect and EVs
cargo is still speculative, due to the lack of appropriate molecular
tools, especially genetically deficient strains for most fungal
species and pharmacological inhibitors. These EV-associated
proteins include hydrolytic enzymes involved in protein and
lipid degradation, proteins that protect against host oxidative
responses and other types of stress (Table 1).

A combination of virulence factors is loaded in EVs from
Candida species, including aspartyl proteases (SAPs), adhesion
molecules, and lipases (Gil-Bona et al., 2015; Vargas et al.,
2015; Karkowska-Kuleta et al., 2020; Martínez-López et al., 2020;
Zamith-Miranda et al., 2020). In P. brasiliensis, six previously
characterized virulence factors were detected in EVs (Vallejo
et al., 2012b): gp43 (Torres et al., 2013), 14-3-3 (Marcos
et al., 2016), catalase (Tamayo et al., 2017), cytochrome C
peroxidase (Parente-Rocha et al., 2015), superoxide dismutase
(Tamayo et al., 2016), and PbCDC42 (Almeida et al., 2009).
In C. neoformans, proteomic studies revealed the presence of
antioxidant enzymes such as catalase, superoxide dismutase,
thioredoxin, thioredoxin reductase, and thiol-specific antioxidant
protein (Rodrigues et al., 2008). Antioxidant proteins were
found in H. capsulatum EVs, including catalase B, superoxide
dismutase, and a thiol-specific antioxidant protein (Albuquerque
et al., 2008), and A. fumigatus, of which Asp F3 and a putative
thioredoxin reductase were found (Souza et al., 2019). Rodrigues
and colleagues confirmed the urease and laccase activities in
EVs released by C. neoformans (Rodrigues et al., 2008). Urease
improves the survival of C. neoformans inside macrophages by
modulating the phagosomal pH (Fu et al., 2018). EVs urease
seems to be relevant during brain invasion (Huang et al., 2012).
Laccase promotes pathogenesis of cryptococcal infections via
multiple pathways: (1) synthesizing prostaglandins that may
suppress local inflammatory responses (Erb-Downward et al.,
2008); (2) inducing extrapulmonary dissemination to the brain
(Noverr et al., 2004); (3) inhibiting the Th17-type cytokine
response and neutrophils recruitment (Hansakon et al., 2020);
(4) enhancing fungal survival in macrophages by mediating its
escape through non-lytic exocytosis (De Oliveira Frazão et al.,
2020); and (5) catalyzing the synthesis of melanin. However, the
role in pathogenesis of these virulence factors present in EVs still
need to be investigated.

Lipidomic, glycomic, and metabolomic studies of fungal EVs
have also led to the identification of potential virulence factors.
Lipidomic analysis comparing EVs from two P. brasiliensis
isolates with different degrees of virulence showed distinct
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TABLE 1 | Effects and virulence factors in fungal EVs.

Fungus In vivo effect of EVs In vitro effect of EVs Virulence factors carried by EVs

C. neoformans Pathogenesis Stimulates cytokine production and antifungal activity in
macrophages (Oliveira et al., 2010)

GXM

(Promotes brain infection) Enhance adhesion and trans endothelial passage through
endothelial cells activating lipid rafts (Huang et al., 2012)

Catalase and superoxide
dismutase

Protection in G. mellonella and mice models
of cryptococcosis (Rizzo et al., 2020c)

Melanin synthesis (Rodrigues et al., 2008) Urease

Melanin/laccase

C. gattii nd* Associated with virulence transference (Bielska et al., 2018) Protein and RNA

C. albicans Yeast EVs: Yeast EVs: Yeast EVs Hyphae
EVs

Protection in G. mellonella and mice models
of candidiasis (Vargas et al., 2015, 2020)

Stimulates macrophages to produce NO and cytokines.
Stimulates dendritic cells to produce cytokine and
up-regulates MHCII and CD86 (Vargas et al., 2015)

**SAPs ***SAPs

Als3 and 4 Als3

Biofilm EVs: PLB PLB5 and
PLC2

Matrix production and biofilm drug resistance (Zarnowski
et al., 2018)

****Ece1p

Hyphae EVs:

Induced TNFα release in THP-1 cells (Martínez-López et al.,
2020)

C. auris Induces adhesion to epithelium and
activation of bone marrow-derived dendritic
cells (Zamith-Miranda et al., 2020)

Adhesion to epithelial cells Phosphatase

Peroxisomal catalase

Dendritic cell activation Superoxide dismutase

SAP10

Phospholipases B and D

Thioredoxin Reductase

C. glabrata nd nd Phospholipase B

C. parapsilosis nd nd Lipase (Lip2)

C. tropicalis nd nd SAP

Hwp1-like protein

Lysophospholipase

H. capsulatum nd Inhibits phagocytosis and killing by macrophages and
impacts ROS generation (Matos Baltazar et al., 2016;
Baltazar et al., 2018)

Catalase B, Superoxide
Dismutase and a Thiol-specific
antioxidant protein

P. brasiliensis nd Induces production of proinflammatory mediators and the
M1 polarization of macrophages.

gp43, 14-3-3, PbCdC42,
catalase, superoxide dismutase

Enhance the fungicidal activity of macrophages (da Silva
et al., 2016)

A. fumigatus Induces the production of TNF-alpha and CCL-2 by
macrophages

Asp F3 and a putative
thioredoxin reductase

Enhances the antifungal activity of macrophages and
neutrophils (Souza et al., 2019)

A. flavus Protection in G. mellonella model of
aspergillosis

Induces the production of inflammatory mediators (NO and
cytokines) and the M1 polarization of macrophages.
Enhance the fungicidal activity of macrophages (Brauer
et al., 2020)

nd

S. brasiliensis Increase in fungal burden and lesion
diameter in a mice model of sporotrichosis
(Ikeda et al., 2018)

Enhancement of yeast phagocytosis and fungal burden in
dendritic cells.

70 KDa-glycoprotein

Increase in cytokine production (IL-12p40 and TNF-alpha;
Ikeda et al., 2018)

*nd – not dertermined.
**So far SAP 4 was the only member never reported in yeast C. albicans EVs.
***In hyphae EVs SAP2, 4, 5, 6, 7, 8, 9, and 10 were identified.
****Key proteins were found in hyphae EVs, but the toxin peptide candidalysin was not detected.
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phospholipid and sterol contents, which might be associated
with differential virulence. The more virulent Pb18 isolate
had higher ergosterol to brassicasterol ratio than the Pb3
strain (Vallejo et al., 2012a), and considering the function of
ergosterol in triggering macrophage pyroptosis it can represent
a virulence mechanism (Koselny et al., 2018). EVs from
C. albicans and C. auris carry a variety of lysophospholipids
(Zamith-Miranda et al., 2020), which might be correlated
with expression of phospholipases in these organisms. In fact,
lysophosphatidylcholine well-characterized regulators of the host
immune response (Soehnlein et al., 2009; Carneiro et al.,
2013; Gazos-Lopes et al., 2014) and might have a role in
candidiasis virulence. Monohexosylceramides have been found
in EVs released by H. capsulatum, P. brasiliensis, C. neoformans,
C. albicans, and C. auris (Rodrigues et al., 2007; Vallejo
et al., 2012a; Cleare et al., 2020; Zamith-Miranda et al., 2020).
Monohexosylceramide has been associated with C. neoformans
ability to grow in neutral and basic pH (Rittershaus et al.,
2006), and to promote C. albicans infection (Rittershaus et al.,
2006). N-acetylsphingosine (also known as C2-ceramide), a
regulator of the T-cell function (Menné et al., 2000; Detre
et al., 2006), has been reported in EVs from C. auris (Zamith-
Miranda et al., 2020) but its function in virulence still need to
be investigated.

Peres da Silva et al. (2015) showed that P. brasiliensis and
P. lutzii have a polysaccharide (or hydrolysis fragments) with
glycogen structure and a galactofuranosylmannan oligomer
as the main glycans in EVs. Small amounts of 1,3- and 1,6-
cell wall glucans were also found. Indeed, β-1,3-glucan is
an important cell wall inflammatory pathogen-associated
molecular pattern. The study also included glycan and
plant/mammalian lectin microarray profiling of EVs surface,
revealing the presence of ligands of DC-SIGN receptors,
exposed mannose and N-acetylglucosamine residues, and
N-acetylglucosamine-binding lectin(s) that can potentially
mediate interaction with the host. P. brasiliensis EVs
carbohydrate content could indeed be implicated in the
transcriptome modulation of murine monocyte-derived
dendritic cells (Peres da Silva et al., 2015). A mechanism of
fungal resistance to the host defenses by EVs has been shown
in C. neoformans by shutting off the host inflammasome.
Metabolomic analysis identified that the aromatic metabolite
DL-Indole-3-lactic acid is secreted inside EVs, which in turn
could impair the inflammasome activation by the host cells
(Bürgel et al., 2020).

Overall, omics analyses have found a variety of molecules
associated with virulence and regulation of the host immune
response. However, how EVs promote virulence with their
molecules still needs additional investigations.

HOST RESPONSE TO EXTRACELLULAR
VESICLES

The presence of virulence factors and antigens suggests that
fungal EVs could modulate the host response to infection.
A. flavus and P. brasiliensis EVs enhance the phagocytosis

of their respective yeast cells by macrophages (da Silva
et al., 2016; Brauer et al., 2020). The EVs also induce the
polarization of macrophages toward the proinflammatory M1
phenotype, which has been associated with high antifungal
activity (da Silva et al., 2016; Brauer et al., 2020). Similar
induction of pro-inflammatory cytokines has also been reported
for EVs from C. neoformans, C. albicans, and A. fumigatus
(Oliveira et al., 2010; Vargas et al., 2015; Souza et al., 2019).
Conversely, EVs can also impair specific host responses.
EVs released by M. sympodialis drive the production of
the cytokine IL-4 by human peripheral blood mononuclear
cells (Gehrmann et al., 2011). It is believed M. sympodialis
EVs have a function in allergic responses. Proteomic analysis
identified that 10 of 13 previously characterized allergens
produced by the fungus are present in EVs. Two of these
proteins were enriched in EVs as compared to fungal cells
(Johansson et al., 2018).

Host immune factors, such as antibodies, can induce changes
in the composition of EVs (Matos Baltazar et al., 2016;
Baltazar et al., 2018). Incubation of H. capsulatum yeasts
with antibodies against HSP60 (heat-shock protein 60), a
protein enriched in cell wall and EVs, significantly changed
the EVs cargo (Matos Baltazar et al., 2016; Baltazar et al.,
2018). This treatment led to an increase in protein content
and the virulence factor urease, suggesting a counteraction of
the fungal resistance mechanisms against the host defenses
(Matos Baltazar et al., 2016). Moreover, the EVs from
antibody-treated H. capsulatum have an inhibitory effect on
phagocytosis by macrophages (Baltazar et al., 2018). EVs
from S. brasiliensis enhanced phagocytosis of the respective
cells and increased the fungal burden in dendritic cells
(Ikeda et al., 2018).

As potential targets for immunotherapies, EVs from
C. neoformans, C. albicans and A. flavus have been shown
to elicit at least a partial protection in the moth Galleria
mellonella or in mice (Vargas et al., 2015; Colombo et al.,
2019; Brauer et al., 2020; Rizzo et al., 2020c). The EVs
cargo seems to be crucial to modulate this response. The
presence of GXM and sterylglucosides in EVs reduces the
protective effects of EVs in G. mellonella (Colombo et al.,
2019). In macrophages, C. neoformans EVs containing
GXM trigger a lower antifungal immunological response
compared to EVs from a strain with reduced GXM production
(Oliveira et al., 2010). C. albicans EVs activate murine
macrophages and dendritic cells, inducing a protective
immune response in immunosuppressed mice (Vargas
et al., 2015; Vargas et al., 2020). Proteomic analysis revealed
several candidates that could be involved with this response,
including immunogenic proteins MP65 and Bgl2 (Nisini
et al., 2001; Gil-Bona et al., 2015). Purified MP65 induces
the expression of the antigen presentation protein MHC-II
and co-stimulatory molecules, such as CD86, in dendritic
cells (Pietrella et al., 2006). Similarly, the endo-β-1,3-
glucanase Bgl2 has been tested as a vaccine candidate with
promising results (Gil-Bona et al., 2015). These studies
highlight the potential of fungal EVs as candidates for
vaccine development.
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EXTRACELLULAR VESICLES AND
BIOMASS DEGRADATION

Biomass degradation by fungi is of major importance for
agriculture and for biotechnological purposes. In agriculture,
fungal infections and degradation of plants can cause major
losses, while in biotechnology fungi can be used to convert
biomass into biofuels or other bioproducts of economic value
(Almeida et al., 2019; Oh and Jin, 2020). F. oxysporum is
an environmental fungus that attacks cotton crops leading to
significant losses in productivity (Gordon, 2017). F. oxysporum
EVs induce damage on leaves from cotton and Nicotiana
benthamiana, a close relative of tobacco, but its spores or hyphae
do not cause the same damage. This effect, however, is not
intrinsic to fungal EVs, since EVs from S. cerevisiae are not
phytotoxic (Bleackley et al., 2019). Similarly, the wheat pathogen
Zymoseptoria tritici (Hill and Solomon, 2020) produces EVs,
which may be a part of its transition from apoplastic, non-
symptomatic growth to necrotrophy of wheat. While some
carbon-active enzymes associated with EVs were produced under
media-grown conditions, additional Zymoseptoria effectors are
expected in planta.

In biotechnology, degradation of cellulose from plants releases
carbon for biofuel production (Oh and Jin, 2020). Soluble
sugars released by fungal enzymes are built into ethanol,
lipids, secondary metabolites, or other bioproducts accessible
by fungal fermentation. T. reesei is a fungus that produces
large amounts of cellulolytic enzymes. The proteomic analysis
of EVs produced by this fungus revealed that enzymes with
cellulase activity are exported through EVs. The cellulolytic
activity of EVs from T. reesei is induced when the fungus
is cultivated in the presence of cellulose, suggesting that
cargo contained in fungal EVs is altered according to the
environment (de Paula et al., 2019). Engineering yeasts for
direct cellulosic degradation into ethanol producing yeasts could
lead to important gains in biofuel production (Oh and Jin,
2020). In further support of environmental cues regulating
EVs, growth conditions of submerged media vs. solid state
fermentation (SSF) have shown that Aspergilli produce different
secreted protein profiles. A. oryzae (Oda et al., 2006) secreted
4-6x more protein in SSF. A. brasiliensis ATCC9642 in SSF
produces several differentially expressed proteins which lack
secretion signals, suggesting an alternative route of secretion such
as EVs (Volke-Sepulveda et al., 2016). Dissecting the molecular
trafficking of EVs formation would create a novel compartment
for enzyme delivery, or bioproduct collection from a culture
without specialized transport proteins.

NEW METHODOLOGIES AND
INSTRUMENTATION

The small size and scarce amount of material obtainable in
preparations of EVs represent a major analytical challenge.
However, advances in omics technologies have immensely
improved the sensitivity, throughput, and robustness
of the measurements, leading to a more comprehensive

characterization of the EVs molecular composition. For instance,
back in 2008, EVs proteomic analysis in C. neoformans led to
identification of 76 proteins (Rodrigues et al., 2008). Current
high-resolution tandem mass spectrometry (HR-MS/MS)-based
approaches (Lesur and Domon, 2015), including nanoflow liquid
chromatography coupled to HR-MS/MS (nanoLC-HR-MS/MS;
Sanders and Edwards, 2020), allow to identify and quantify over
2,000 proteins in fungal EVs (Zhao et al., 2019; Cleare et al., 2020).
In this section, we will cover recent technological advances and
their current impact and perspectives in analyzing fungal EVs.

RNA-seq
The RNA yield recovered from EVs is quite variable when we
compare samples from different origins and that have been
isolated using distinct protocols. For fungal cells, there are many
media and growth conditions that can affect the number of EVs
obtained and, consequently, the amount of RNA. Usually, the
EVs RNA yield for C. neoformans, C. albicans, P. brasiliensis,
and H. capsulatum ranges from 1 to 15 ng when the EVs are
isolated from culture supernatant after two ultracentrifugation
steps, corresponding to EVs enrichment and washing (Peres et al.,
2015). Growing fungi in solid media, instead liquid cultures, can
improve the EV RNA recovery yield to up to 50 ng, as shown for
C. neoformans and C. gattii preparations (Reis et al., 2019).

In the recent years, the next-generation sequencing has
emerged as a robust tool to resolve the diversity of RNA sequences
in EVs. RNA-seq has enabled major advances in the analysis of
EVs RNAs, allowing the identification of low input amounts of
distinct RNA populations (Kim et al., 2017). Such technology
allows the comparison of EVs RNA across samples generated
under a variety of experimental designs, such as different growth
conditions, stresses, or even interspecies studies (Mateescu et al.,
2017; Yeri et al., 2018). Given that small RNAs are highly enriched
in EVs, most of the library construction protocols focus on the
fractioning of this RNA population. There are many kits available,
but most of them follow similar procedures, involving multiple
steps for the small RNA purification (Giraldez et al., 2018).
Overall, we believe that RNA-seq will have a major impact in
identifying EVs RNAs that could have a role in the host-pathogen
interaction. Especially those sequences regulating expression of
mRNAs in recipient cells and consequently, affecting the host
immune response or the fungal pathogenicity.

Recent Advances in Sample Preparation
for Mass-Spectrometry-Based
(multi)Omic Analysis
The eternal challenge of an analytical chemist is to improve
sensitivity, precision, and speed of the instrumentation, enabling
the accurate analysis of trace amounts of samples in large scale. In
this context, the recent developments in single-cell analysis might
have a major impact in analysis of EVs as most of the procedures
are easily adaptable for analyzing EVs. An important concept is
to keep the volumes and contact surfaces as small as possible
during the sample preparation and analysis to reduce losses due
to contact absorption. Online sample preparations can eliminate
losses associated with pipetting and sample transfer. One of such
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techniques, called SNaPP (simplified nanoproteomics platform
for reproducible global proteomics), allows the preparation and
analysis of proteomic samples from nanograms of proteins
(Huang et al., 2016). SNaPP has been successfully used to analyze
Nipah virus-like particles (Johnston et al., 2019), which are
secreted structures that share many characteristics with EVs,
including size and the presence of a lipid membrane. Therefore,
SNaPP has a great potential to be used for preparing EVs
samples. Another technique to prepare small scale samples, but
that has not yet been applied to study EVs, is the nanoPOTS
(nanodroplet processing in one pot for trace samples; Zhu et al.,
2018). nanoPOTS uses a microfluidic robot to prepare samples
in nanoliter volumes, virtually eliminating any losses associated
with absorption of proteins and peptides to the walls of pipettes
and tubes. This technique has enabled to identify and quantify
up to 2,500 proteins in single-cell proteomics analysis (Tsai
et al., 2020), therefore, it might have an impact on analyzing
EVs in the future.

Another analytical challenge in EVs studies is to obtain
multiple omics measurements from the same samples. Having
multiple measurements from the same samples is highly desirable
since it decreases variability between datasets and efforts/costs
associated with EVs preparation. Solvent phase separation-
based extraction of metabolites, lipids, and proteins have been
developed (Coman et al., 2016; Nakayasu et al., 2016). While
the simultaneous metabolite, protein, lipid extraction (SIMPLEX)
approach is based on methyl tert-butyl ether, methanol, and
water; the metabolite, protein, and lipid extraction (MPLEx)
technique uses a mixture of chloroform, methanol, and water for
phase separation. To our knowledge, there are no papers in the
literature reporting the analysis of EVs using SIMPLEX to extract
the samples, even though its potential has been highlighted in a
few review articles (Rosa-Fernandes et al., 2017; Ramirez et al.,
2018). MPLEx, on the other hand, has been successfully used to
analyze EVs from H. capsulatum, C. auris, and from the Gram-
positive bacterium Listeria monocytogenes (Coelho et al., 2019;
Cleare et al., 2020; Zamith-Miranda et al., 2020).

Small Scale and Increased Throughput
of Lipidomics, Metabolomics and
Proteomics
When compared to conventional LC-MS/MS, advanced
multidimensional analytical platforms such as LC-ion
mobility spectrometry (IMS)-MS/MS, which combines liquid
chromatography, ion mobility spectrometry, and tandem mass
spectrometry, offers improvements in separation peak capacity,
dynamic range, number of analytes detected, and quality of
mass spectra (Baker et al., 2010; Rainville et al., 2017). Thus, the
addition of IMS allows for improved coverage of metabolites,
lipids, and proteins in EVs. Ion mobility also allows to separate
isobaric molecules and enables detailed characterization of lipid
molecular structure, including double-bond location, cis/trans
orientation, and sn-positions of alkyl and/or acyl chains, none
of which are possible using conventional LC-MS technologies
(Zheng et al., 2018). Poad et al. (2018) have previously
demonstrated the successful incorporation of the online

ozonolysis into the existing LC-IMS-MS/MS instrumentation
to enable characterization of double bonds in lipid standards.
The IMS dimension significantly improves assignment of the
ozonolysis products to their precursor ions.

One important challenge of the metabolomics and lipidomics
fields is the reliable identification of molecules. Most of the
identifications to date are validated by comparing MS/MS spectra
and chromatographic elution profiles to bona fide standards.
The inclusion of IMS separations opens a new perspective in
the identification of small molecules without standards. The
separation in IMS can be predicted with high precision (<5%
error; Colby et al., 2019). Therefore, using multiple pieces of
information, i.e., high mass accuracy, ion mobility separation,
and tandem mass fragmentation might allow the identification of
molecules without the need to validate them against standards,
which would make metabolomic and lipidomic analyses much
faster. A major bottleneck for metabolite identification is the
reliance on reference databases that are constructed from
authentic reference materials. This approach is highly limiting
due to the cost and availability of authentic standards. Both
commercial and publicly available reference databases currently
only represent a small fraction of the possible metabolites that
exist in biological systems (Dobson, 2004). The recent emergence
of standards-free methods based on in silico methods such
as quantum chemistry, machine learning, and deep learning
have enabled accelerated building of very large reference
libraries (Colby et al., 2020) with better coverage of the known
chemical space, which was not feasible using authentic standards.
Standards-free metabolomic approaches can therefore provide
comprehensive coverage of the metabolome in EVs analyses,
accelerating the discovery of small molecules and improving our
understanding of their biological functions.

The low throughput of EVs analysis is a major challenge to
conduct clinical studies to assess the EVs potential as a disease
biomarker or to better understand their function in human
health. One way to increase the throughput of analysis is by
multiplexing samples. For proteomic analysis, isotope labeling or
isobaric labeling can be used to multiplex samples. In this context,
isobaric tags, such as isobaric tags for relative and absolute
quantitation (iTRAQ) and tandem mass tag (TMT), allow
multiplexing up to 16 samples (Li et al., 2020), thus increasing the
speed of sample analysis. Another advantage of multiplexing is
the relative increase in sample amount, as compared to analyzing
them individually, providing gains in sensitivity. However, such
techniques are not available for lipidomic and metabolomic
analyses. Therefore, the gain in throughput of such analyses relies
on reducing the time needed for the analysis of each sample. Ion
mobility spectrometry is not only fast (milliseconds per scan),
but also adds another dimension of separation to the LC-MS
analysis, which allows to shorten the chromatographic separation
time without compromising the depth of coverage. One of such
concepts has been developed by the Evosep company (Odense,
Denmark). The Evosep chromatographic system performs offline
sample solid-phase extraction (SPE) and elution gradient, which
is accumulated in a sample loop. During the analysis, the flow
passes through the loop carrying the samples to an analytical
column and subsequently to the mass spectrometer. This process
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eliminates the time needed for column regeneration and re-
equilibration, consequently increasing the number of samples
that can be analyzed in a day. The Evosep system coupled to IMS-
MS allows to analyze up to 60 samples a day with a coverage
that exceeds 5,000 proteins or more than 1,000 proteins with
5-min separation gradients (Meier et al., 2018; Bekker-Jensen
et al., 2020). For the analysis of lipids and metabolites, due to
the overall lower intrinsic complexity of their structures and MS
fragmentation profile, as compared to peptides, it is possible to
even reduce the time needed for the analysis each sample by an
IMS-MS-based approach, as recently proposed by Zhang et al.
(2016). These authors used an automated SPE platform coupled
to IMS-MS to analyze metabolites and xenobiotics in the human
urine (Zhang et al., 2016). They employed six SPE columns with a
broad range of chemical properties that allowed them to capture
distinct sets of molecules. In this configuration, each sample is
run 6 times, or 12 times if analyzed in both positive and negative
modes, but each cycle only takes 10 s. Therefore, each sample
only takes about 2 min to be analyzed, allowing the analysis of
hundreds of samples a day.

Integration of Multi-Omics Data
The combination of multiple omics measurements allows to
obtain a much deeper view of the EVs composition. Despite
the challenges associated with processing large amounts of
data, there are excellent tools to handle such tasks, which we
will not cover in this review. Integrating the results of each
omics measurement provides an opportunity to understand
much deeper details and the processes occurring in EVs and
cells. Despite some interpretations might be limited in EVs, the
integration of proteomics with metabolomics and lipidomics, for
instance, might show consistent changes in the levels of enzymes,
substrates, and products. We have applied this approach to
study whole cells of the multidrug-resistant fungus C. auris,
which showed consistent changes in the levels of enzymes with
their respective lipid and metabolite products in drug-resistant
strains (Zamith-Miranda et al., 2019). Further integration of
such data with RNA-seq results may further provide insights
into the transcriptional and post-transcriptional regulation of
genes. Nematode parasites, for instance, secrete miRNAs via EVs
that target and modulate the expression of host immune factors
(Buck et al., 2014).

CONCLUDING REMARKS, MAJOR
KNOWLEDGE GAPS AND
PERSPECTIVES

Omic approaches have been contributing to the field of fungal
EVs since the initial characterization of these extracellular
“organelles.” Proteomic, lipidomic, metabolomic and RNA-
seq technologies enabled a detailed characterization of the
molecular composition of the fungal EVs, bringing new insights
into their biogenesis, and biological and pathophysiological
functions. Multiple omics analyses of mutant strains defective
in different secretory pathway components have shown the
participation of the Golgi complex in EVs biogenesis. In terms

of EVs functions, omics analyses have played a key role
in showing the participation of EVs in cell-wall remodeling
and downstream function in antifungal resistance. Fungal EVs
have also been shown to carry a variety of virulence factors,
which opens new perspectives on how they are delivered to
and interact with the host. Here are some major knowledge
gaps in the field and how omics can contribute to close
such gaps:

• Biogenesis and EVs populations. Despite numerous
efforts of the field, the question regarding different EVs
populations, their composition, and biogenesis processes
is still open. Novel EVs purification techniques, such as
differential centrifugation and affinity purification, might
allow to separate different EVs populations, which in
combination with genetics can lead to the identification
of biogenesis pathways. Omics analyses can contribute
by comprehensively characterizing the composition of
different EVs populations.

• Markers and biomarkers. The absence of markers and
biomarkers is a major impairment to perform cell biology
and clinical studies on EVs, respectively. Ideally, would
be to perform omics analysis of dozens of fungal species
to identify EVs markers, whereas for developing clinically
relevant biomarkers it often requires the analysis of
hundreds to thousands of samples from multiple cohorts.
Therefore, faster and more sensitive techniques will
empower such studies.

• Mechanisms of virulence. Omics analysis will continue
to detect or identify new virulence factors and their
mechanisms. A major bottleneck is to study their
mechanisms of action in host cells and animal models. We
believe that techniques, such as co-affinity purification,
followed by nanoLC-HR-MS/MS or an orthogonal
analytical approach such as IMS-MS/MS, may have a
pivotal role in identifying targets of virulence factors in
the host cells, leading to a better understanding of the
pathogenic mechanisms.

• Structure-function relationship of fungal EVs molecules.
Structure-function relationship is another major gap in
fungal EVs research. Thus far, most aforementioned studies
that have identified fungal EVs molecules by proteomic,
lipidomic, transcriptomic, and other omic approaches are
descriptive in nature. In the coming years, investigators
in the field should make greater strides to study the
structure-function relationship of some of these fungal
molecules, particularly those that have known or potential
bioactivity, based on published data on fungi or other
pathogen(s). This would require considerable improvement
in (a) gene expression and knockout techniques for fungi;
(b) purification and structural analysis of fungal molecules;
and (c) chemical and/or enzymatic synthesis of fungus-
specific molecular targets such as lipids, glycoconjugates,
and metabolites.

Technological advances and Science are highly dependent on
each other to progress, which is not different for EVs biology and
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omic analyses. We foresee that advances in omic technologies will
continue having major impact in studying EVs biology.
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Polycystic ovary syndrome (PCOS) is the most common complex endocrine and
metabolic disease in women of reproductive age. It is characterized by anovulatory
infertility, hormone disorders, and polycystic ovarian morphology. Regarding the
importance of granulosa cells (GCs) in the pathogenesis of PCOS, few studies have
investigated the etiology at a single “omics” level, such as with an mRNA expression
array or methylation profiling assay, but this can provide only limited insights into the
biological mechanisms. Here, genome-wide DNA methylation together with lncRNA-
miRNA-mRNA profiles were simultaneously detected in GCs of PCOS cases and
controls. A total of 3579 lncRNAs, 49 miRNAs, 669 mRNAs, and 890 differentially
methylated regions (DMR)-associated genes were differentially expressed between
PCOS cases and controls. Pathway analysis indicated that these differentially expressed
genes were commonly associated with steroid biosynthesis and metabolism-related
signaling, such as glycolysis/gluconeogenesis. In addition, we constructed ceRNA
networks and identified some known ceRNA axes, such as lncRNAs-miR-628-5p-
CYP11A1/HSD17B7. We also identified many new ceRNA axes, such as lncRNAs-
miR-483-5p-GOT2. Interestingly, most ceRNA axes were also closely related to steroid
biosynthesis and metabolic pathways. These findings suggest that it is important to
systematically consider the role of reproductive and metabolic genes in the pathogenesis
of PCOS.

Keywords: polycystic ovary syndrome, methylome, transcriptome, metabolism, steroid biosynthesis

INTRODUCTION

Polycystic ovary syndrome (PCOS) is a life-long reproductive, neuroendocrine, and metabolic
disorder that affects up to 6–15% of women of reproductive age (Risal et al., 2019). Its main clinical
manifestations are ovulatory dysfunction, hyperandrogenemia, and polycystic ovaries, which can
lead to infertility (Fauser et al., 2012). In addition to the above reproductive disorders, PCOS is often
accompanied by metabolic abnormalities, such as insulin resistance (IR). IR can increase pituitary
luteinizing hormone (LH) secretion, testosterone secretion in theca cells, and P450scc activity in
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granulosa cells (GCs), which interferes with follicle maturation
and leads to the development of PCOS (Li et al., 2019). Studies
have shown that the abnormal ovarian hormone production is
mainly attributed to the hypertrophy of follicular theca cells and
the altered expression of key steroid biosynthesis enzymes in GCs
(Aste et al., 1998).

As the most abundant cells in the ovary, GCs are closely
associated with the development of oocytes and play an
essential role in both normal folliculogenesis and steroidogenesis
(Hummitzsch et al., 2015). Previous studies have shown that
cumulus and mural GCs contribute to the process of oocyte
maturation by tight regulation and controlled changes in
steroid hormones in the pathogenesis of PCOS (Holesh et al.,
2020). Oocytes lack the capacity to carry out some metabolic
processes, such as glycolysis and amino acid uptake. They rely
on GCs to deliver nutrients and remove waste. In addition, the
metabolic profile of GCs is associated with the fate of their
accompanying oocyte (Gioacchini et al., 2018; Yilmaz et al., 2018;
Fontana et al., 2020).

Previous studies have separately screened differentially
expressed mRNAs, miRNAs (DEMs) and lncRNAs (DELs) in
GCs to explore the regulatory mechanism of PCOS. Few
studies have indicated that genome-wide DNA methylation
changes may affect the expression of different genes in PCOS
ovaries, as revealed by methylated DNA immunoprecipitation
(MeDIP) experiments (Yu et al., 2015; Xu et al., 2016).
However, to date, no studies have been performed to identify
the whole transcriptome and methylome in same GCs of
women with PCOS. In this study, the lncRNA-miRNA-mRNA
expression profiles and DNA methylation of GCs in PCOS
were comprehensively analyzed. Our goal was to integrate
multiomics data to identify differentially expressed genes (DEGs)
and differentially methylated regions (DMRs) in PCOS and
to construct molecular networks that could help us to better
understand the etiology of PCOS.

MATERIALS AND METHODS

Sample Selection
Five women with PCOS and five age/body mass index (BMI)-
matched control subjects from the Center for Reproductive
Medicine, Shandong University, Jinan, China, were included in
this study. All patients gave informed consent, and the study was
approved by the institutional review board of the Reproductive
Hospital Affiliated to Shandong University. The definition of
PCOS was based on the 2003 Rotterdam criteria (Rotterdam
ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group,
2004). Women considered as suffering from PCOS had at
least two of the following three characteristics: polycystic
ovaries on ultrasound, irregularity/absence of menses, and
hyperandrogenism. Cases with congenital adrenal hyperplasia,
androgen-secreting tumors, Cushing’s syndrome, thyroid disease,
and hyperprolactinemia were excluded. The control group was
selected from healthy women who attended the center for
IVF with their husbands due to a male factor. All relevant
clinical information was obtained from the Electronic Medical

Records System. BMI was calculated as weight (kg)/height2

(m). Peripheral blood was collected on the 3rd to 5th
days of the menstrual cycle to measure serum hormone
levels. The levels of follicle-stimulating hormone (FSH), LH,
estrogen (E2), prolactin (PRL), and testosterone (T) were
measured with a chemiluminescence analyzer (Beckman Coulter,
United States). Type B ultrasound was used to determine the
antral follicle counts (AFC).

Retrieval of GCs
GCs were collected from follicular fluid obtained via ultrasound-
guided transvaginal oocyte retrieval after informed consent had
been given by the patients who received the long gonadotropin-
releasing hormone agonist protocol. Oocyte retrieval was
performed 36 h after human chorionic gonadotropin (hCG)
injection by transvaginal ultrasound-guided needle puncture for
follicles >15 mm in diameter. At the time of oocyte retrieval,
follicular fluid aspirates were collected in sterile tubes and
centrifuged. GCs were isolated and purified from the follicular
fluid with Ficoll-Percoll (Solarbio, Beijing, China) as previously
described (Iwase et al., 2009), and then immediately stored at
–80◦C for further analysis.

RNA−Seq Analysis and Quality
Assessment
Total RNA was extracted using TRIzol Reagent (Invitrogen, CA,
United States) and purified using an RNeasy Mini Kit (Qiagen,
CA, United States). The quality of RNA was assessed using an
Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA, United States).
The rRNA-depleted RNA samples were further processed in
accordance with the Illumina protocol (New England Biolabs,
Massachusetts, United States). After cDNA synthesis, the samples
were sequenced with an Illumina HiSeq 2500 using the paired-
end (PE) sequencing strategy. The raw data were recorded. The
overall quality of the RNA−seq data was evaluated by FastQC.
Clean reads were aligned to the reference genome (Ensembl
release 95, Homo sapiens) using TopHat2 (v2.0.14) (Kim et al.,
2013) with the default parameters.

MeDIP-Seq Library Construction
MeDIP is a method for immunoprecipitating the methylated
portion of the genome using an antibody capable of recognizing
5mC (Wilson and Beck, 2016). Following the manufacturer’s
instructions, MeDIP was performed to analyze genome-wide
methylation using the Zymo Research DNA Methylation
IP Kit (Cat #D5101; Zymo Research, CA, United States).
Immunoprecipitated DNA was PCR-amplified, purified,
quantified, and sequenced on the Illumina HiSeq 2500 platform.
MeDIP−seq reads were mapped to the human genome using
BWA software (Li et al., 2012). MACS2 was used to call peaks.
To study the DNA methylation differences between two groups,
DMRs were identified using the Cummerbund (Trapnell et al.,
2012) and ChIPpeakAnno (Zhu et al., 2010) packages in R.
Briefly, DMRs were assigned to genomic regions based on gene
annotations available from JGI and in-house repeat annotation
in GFF3 format. The following gene regions were included:
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3’UTR, 5’UTR, promoter, coding DNA sequence (CDS), intron,
upstream 1 kb, and downstream 1 kb.

Screening and Clustering Analysis of
Differentially Expressed mRNAs, DELs,
and DEMs
Data preprocessing and follow-up analysis were performed in the
R programming environment (version 3.6.1), and Bioconductor
packages were applied for the analysis of DEGs. The lists of
DEGs, DELs, and DEMs between controls and PCOS cases were
generated using the edgeR package (version 3.32.0) (Robinson
et al., 2010). To normalize the raw data, log-fold change |
(logFC)| > 1.2 (mRNA and miRNA), | (logFC)| > 2.0 (lncRNA)
and p-value <0.05 were considered to indicate statistically
significant differences between the PCOS and control groups.
To generate an overview of the lncRNA, miRNA and mRNA
expression profiles and compare them between the two groups,
hierarchical clustering analysis was performed based on the
expression levels of all transcripts and significantly differentially
expressed transcripts using the pheatmap R package based on
Euclidean distance.

lncRNA, miRNA, and mRNA Prediction
and Coexpression Network Construction
The miRNA target genes were predicted using the prediction
results of the TargetScan and miRcode (Jeggari et al., 2012)
databases. The potential target genes transcribed within a 10-
kb region upstream or downstream of the lncRNAs were paired
and predicted using the UCSC Genome Browser1 (Song et al.,
2019). The expression of differentially expressed mRNAs, DEMs
and DELs was analyzed by Pearson’s correlation coefficient
using the stats and pcaPP R packages. The miRNA-mRNA
network and the lncRNA-mRNA coexpression network were
constructed based on analysis of the correlations among the
differentially expressed mRNAs, DEMs, and DELs. A p-value of
<0.05 for the miRNA-mRNA network and one of <0.01 for the
lncRNA-mRNA network were considered statistically significant.
The target genes that overlapped with the DEGs were then
identified and used to construct the miRNA-mRNA network
and lncRNA-mRNA network using Cytoscape software (version
3.8.1) (Saito et al., 2012).

Functional Enrichment Analysis
The Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis in each module and network was
conducted using the Database for Annotation, Visualization and
Integrated Discover (DAVID). DEGs and enriched pathways
were mapped using KEGG pathway annotation with KOBAS3.02.
The top 10 KEGG pathways were selected and ranked by
the enrichment factor. To perform literature-based functional
analysis, a total of 370 follicle development- and 437 steroid
metabolism-related genes were obtained from the Ovarian

1http://genome.ucsc.edu/
2http://kobas.cbi.pku.edu.cn/kobas3/

Kaleidoscope Database (OKDB)3. To identify key transcription
factors (TFs), a total of 1496 human TFs were obtained from the
Human Protein Atlas Database (HPA)4. Subsequently, the Venn
diagram tool was used to help identify the common genes that
were the focus of this work.

Statistical Analysis
Regarding the clinical characteristics of PCOS patients and
controls, quantitative variables are expressed as the mean ± SD.
P < 0.05 was considered significant. The clinical data analyses
were performed with Statistical Package for Social Science (SPSS
25.0; IBM Corp, Armonk, NY, United States).

RESULTS

Clinical Features
Table 1 presents the basic statistics of both PCOS and control
subjects regarding the most important characteristics, such as
FSH, LH, E2, T, P, PRL, and AFC levels, as well as age and BMI.
Significant differences between the two groups were found for
LH, T, and AFC, all of which had higher levels in PCOS cases
(P < 0.05).

Differential Expression Analysis
To identify the DEGs, GCs from five healthy women and five
women with PCOS were studied. As indicated in Figure 1A, a
correlation plot was used to determine the correlation between
samples and to verify the homogeneity between biological
replicates. As presented in the histogram in Figure 1B, 669
mRNAs, 49 miRNAs and 3579 lncRNAs were differentially
expressed between the PCOS and control groups. Among
them, 546 and 123 mRNAs, 31 and 18 miRNAs, and 2226
and 1353 lncRNAs were upregulated and downregulated in
PCOS, respectively. Hierarchical clustering heatmaps of the
differentially expressed RNAs are shown in Figures 1C,E,G.
All differentially expressed mRNAs, DEMs and DELs are

3http://okdb.appliedbioinfo.net/
4https://www.proteinatlas.org/

TABLE 1 | Clinical characteristics of women with polycystic ovary
syndrome and controls.

PCOS Control P-value

Age, years 29 ± 1.0 28.4 ± 2.07 0.576

BMI, kg/m2 22.23 ± 1.87 22.26 ± 2.00 0.984

FSH, IU/L 6.53 ± 0.87 6.46 ± 0.51 0.874

LH, IU/L 12.20 ± 3.59 4.32 ± 2.43 0.004

E2, pg/ml 55.14 ± 18.34 34.35 ± 14.27 0.08

PRL, ng/ml 28.50 ± 26.10 18.31 ± 10.51 0.442

T, ng/dl 52.42 ± 8.14 15.07 ± 9.40 0.001

AFC, n 38.0 ± 16.40 17.00 ± 1.41 0.045

Data are presented as the mean ± SD.
BMI, body mass index; LH, luteinizing hormone; FSH, follicle-stimulating hormone;
T, testosterone; AFC, antral follicle counts.
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FIGURE 1 | Global differentially expressed mRNAs, lncRNAs, miRNAs, and differentially methylated regions (DMRs) identified in PCOS and control granulosa cells.
(A) Correlation heatmap between PCOS and control samples. (B) The numbers of differentially expressed mRNAs, differentially expressed lncRNAs (DELs) and
differentially expressed miRNAs (DEMs). (C) Hierarchical clustering presentation of DEGs in the PCOS and control groups. (D) Volcano plot of DEGs in the PCOS
and control groups. (E) Hierarchical clustering presentation of DELs in the PCOS and control groups. (F) Volcano plot of DELs in the PCOS and control groups.
(G) Hierarchical clustering presentation of DEMs in the PCOS and control groups. (H) Volcano plot of DEMs in the PCOS and control groups. (I) The distribution of
DMRs. (J) The correlation of DMR-associated genes and mRNA expression.
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listed in Supplementary Table 1. The volcano plots showed
the differential expression of mRNAs, miRNAs and lncRNAs
between the PCOS group and control group (Figures 1D,F,H).
DNA methylation analysis of the MeDIP-seq data showed
890 CpG sites that were differentially methylated in PCOS
GCs compared with control GCs (Supplementary Table 1).
In terms of the gene structures associated with the CpG
sites, the proportions of CDS, intron, downstream 1 kb,
upstream 1 kb, 3’UTR, and 5’UTR were 126 (14.16%), 717
(80.56%), 16 (1.8%), 14 (1.57%), 16 (1.8%), and 1 (0.11%),
respectively (Figure 1I). We identified 545 hypomethylated
and upregulated genes, 19 hypermethylated and downregulated
genes, 306 hypermethylated and upregulated genes, and 39
hypomethylated and downregulated genes by integrating the
DNA methylation and gene expression data (Figure 1J).
Moreover, the chromosomal locations of the DMRs were
examined, and they were found to be present on all chromosomes
except the Y chromosome (Supplementary Figure 1).

Functional Enrichment Analysis of DEGs,
DELs, DEMs, and DMR-Associated
Genes
To investigate the key pathways, the DEGs, DELs, DEMs
and DMR-associated genes were evaluated and compared in
terms of potential functional pathways in the KEGG database
(Supplementary Table 2). As shown in Figure 2A, the results
revealed that the DEGs were mainly involved in steroid
biosynthesis and many metabolism-related pathways, such as
type II diabetes mellitus, glycolysis/gluconeogenesis, carbon
metabolism, biosynthesis of amino acids, HIF-1 signaling.
Combining the known genes with human TFs, we found that the
expression of FOXA1, HIF3A, and STMN1 was upregulated in
PCOS GCs (Supplementary Figure 2A). The most significantly
enriched biological functions of these TFs were the TGF-
beta signaling pathway, IL-17 signaling pathway, endocrine
resistance, human T-cell leukemia virus 1 infection, estrogen
signaling pathway, Toll-like receptor signaling pathway, IR,
GnRH secretion and TNF signaling pathway (Supplementary
Figure 2B). For the known genes related to follicle development
and steroid metabolism, AMH, FSHR, ESR2, DDX4, and SMAD9
expression was upregulated in the GCs of PCOS patients, while
INHA, SOD2, and CYP11A1 expression was downregulated
(Supplementary Figures 2C,D). All these functions and
pathways have been proven to be closely correlated with the
pathogenesis of PCOS.

To further study the role and potential mechanisms of
DELs, we identified 124 of their target mRNAs. KEGG analysis
identified a total of 40 significantly enriched pathways, including
metabolic pathways and steroid biosynthesis (Figure 2B).
Notably, the metabolic pathways included carbon metabolism,
biosynthesis of amino acids, IR, HIF-1 signaling pathway,
terpenoid backbone biosynthesis and glycolysis/gluconeogenesis.
Analysis of DEM target genes also identified a number of
pathways. Further investigation by KEGG revealed that these
miRNAs participated in the regulation of metabolism and
steroid synthesis, such as 2-oxocarboxylic acid metabolism,

glycerolipid metabolism, arginine and proline metabolism, the
FoxO signaling pathway, ovarian steroidogenesis and steroid
hormone biosynthesis (Figure 2C). The DMR-associated genes
were also involved in metabolic pathways and steroid pathways.
Specifically, these genes were associated with glycosaminoglycan
biosynthesis, collecting duct acid secretion, bacterial invasion
of epithelial cells, adherens junction, steroid biosynthesis,
biosynthesis of unsaturated fatty acids and the notch signaling
pathway (Figure 2D). Notably, all four omics enrichment
analyses identified the steroid biosynthesis pathway. In addition,
all three RNA omics analyses revealed the enrichment of
metabolic pathways, which are key players in steroidogenesis by
acting as a source of energy and substrate for steroid production.
These multiomics enrichment results suggest a common etiology
of abnormal metabolism and abnormal ovarian steroid formation
in GCs of women with PCOS.

Construction of a lncRNA-miRNA-mRNA
ceRNA Network
According to the predicted correlations among lncRNAs,
miRNAs and mRNAs, a competing endogenous RNA (ceRNA)
network was constructed using ceRNA mechanism analysis.
The miRNA-mRNA coexpression network was constructed
based on the correlation analysis between the DEGs and
DEMs. A total of 67 differentially expressed target genes
were predicted for 13 DEMs, which were used to construct
the miRNA-mRNA coexpression network (Figure 3A). This
network included 10 interactions and was associated with
metabolic pathways, as determined by searching the KEGG
database. The interactions included hsa-miR-548i-SOD2/IDH1,
hsa-miR-500a-5p-NSDHL, hsa-miR-483-5p-GOT2, and hsa-
miR-214-5p-BRCA1/MKI67. Among all DEM interactions in
this regulatory network, FOXO1-hsa-miR-324-5p to DGKA-
hsa-miR-148b-5p, FAM160A1-hsa-miR-628-5p, and HOMER2-
hsa-miR-130b-5p-PRLR were revealed to represent continuous
network connections. Similar to the miRNA-mRNA network, the
lncRNA-mRNA coexpression network was constructed based on
analysis of the correlation between the DELs and DEGs. In total,
34 lncRNAs and 112 mRNAs involved in 326 interactions were
selected to generate the network map (Figure 3B).

There were 217 nodes in the ceRNA network, which
consisted of 79 lncRNAs, 6 miRNAs and 11 mRNAs, forming
8 pathways (Supplementary Table 3 and Figure 3C). The top
five pathways of lncRNAs, miRNAs and mRNAs are displayed
in Figure 3D, indicating the important biological significance
of these molecules. KEGG pathway analysis was also performed
to determine the involvement of coexpressed genes in different
biological pathways. Five pathways overlapped with the enriched
genes in the integrated ceRNA network, namely, glycerolipid
metabolism, metabolic pathways, biosynthesis of unsaturated
fatty acids, steroid biosynthesis, and peroxisome. For example,
the AY603498-hsa-miR-628-5p-CYP11A1 and BC036229-hsa-
miR-628-5p-HSD17B7 ceRNA axes, which contribute to steroid
hormone biosynthesis, were downregulated in PCOS. The
AK097578-hsa-miR-548i-IDH1 and AK128202-hsa-miR-483-
5p-GOT2 networks were also identified to be associated with
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FIGURE 2 | KEGG pathway analysis of RNA-seq and methylation results in PCOS and control GCs. The top 10 affected biofunctions are grouped by disease.
(A) Enriched KEGG pathways of DEGs. (B) Enriched KEGG pathways of DELs. (C) Enriched KEGG pathways of DEMs. (D) Enriched KEGG pathways of DMRs.

metabolic pathways. These analyses identified coexpressed genes
that were associated with PCOS development.

DISCUSSION

In the present study, we systematically investigated the
differences in the mRNA-miRNA-lncRNA transcriptome and
methylation modifications in control and PCOS GCs. Previous
studies have focused on only single methylation modifications
(Xu et al., 2016; Sagvekar et al., 2019) or single transcriptomics
(Jones et al., 2015; Lan et al., 2015) in GCs. In addition, there
were some multiomics studies on whole blood (Li et al., 2017),
follicular fluid (Naji et al., 2018) and adipose tissue (Kokosar et al.,
2016; Pan et al., 2018). However, few studies have performed
multiomics analyses of GCs in patients with PCOS. Although
many factors have been proven to play important roles in PCOS
development in recent decades, no multiomics study has been
performed in ovarian GCs. In this study, we systematically
investigated control and PCOS ovarian GC mRNA-miRNA-
lncRNA-DNA profiles and their potential regulatory networks.

In fact, some studies have shown that in GCs of PCOS
patients, there is notable disruption of the entrainment of
hormones and metabolic rhythms during the menstrual cycle
(Wawrzkiewicz-Jalowiecka et al., 2020). The interaction of
glucose/lipid metabolism and steroid synthesis shows obvious
effects on both the development and the clinical manifestations
of PCOS, mainly by increasing androgen availability, changing
the function of GCs and disrupting follicle development
(Pasquali et al., 2006). Follicle development depends on the
synchronization of oocyte maturation and GC proliferation and
differentiation. At the same time, the maturation of oocytes relies
on the steroids and nutrients provided by GCs (Sutton-McDowall
et al., 2010). From the perspective of follicle development, some
of the DEGs identified in this study were related to androgen
excess, impaired ovulation, and oxidative stress. Examples of such
DEGs include CYP11A1, HSD17B7, and FOXO1, which have
been identified to participate in the occurrence and development
of PCOS (Sagvekar et al., 2019). PCOS is also characterized
by IR and hyperinsulinemia. In PCOS, we also identified the
involvement of some metabolic genes, such as IRS1 and INSR,
showing increased expression, and IDH1 and GOT2, showing
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FIGURE 3 | Construction of the competing endogenous (ceRNA) regulatory network. (A) miRNA-mRNA interaction network. (B) lncRNA-mRNA coexpression
network. (C) Sankey diagram of integrative network analysis of multi-RNA-seq data. (D) ceRNA interaction network of miRNA-mRNA-lncRNA interactions. This plot
shows the potential regulatory linkage of different RNAs and biological pathways. The four modules represent lncRNAs, miRNAs, mRNAs, and pathways.
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decreased expression at the transcriptional level, which may
confer a genetic predisposition to developing this condition
(Feng et al., 2015). Of note, TF analysis showed a higher level
of the ZBTB16 gene in PCOS GCs, which is consistent with
the findings of recent PCOS susceptibility gene studies. A large-
scale genome-wide meta-analysis of PCOS patients of European
ancestry suggests that a variant at the ZBTB16 locus was strongly
associated with ovulatory dysfunction and polycystic ovarian
morphology (Day et al., 2018). The SNP rs1784692 in the ZBTB16
gene was associated with PCOS and BMI levels in Han Chinese
women (Yang et al., 2020).

PCOS is a complex and heterogeneous condition that results
from the interaction of diverse genetic and environmental
factors (Rosenfield and Ehrmann, 2016). In our study, we
identified some key common enriched pathways, including
glycolysis/gluconeogenesis, steroid biosynthesis, and IR, in the
KEGG analysis of lncRNA-miRNA-mRNA interactions and
DMR-associated genes. By constructing a ceRNA network,
we also observed that the most highly enriched ceRNA axes
might play a role in regulating metabolic pathways and steroid
biosynthesis in the development of PCOS. Among them,
both lncRNA-miR-628-5p-CYP11A1 and lncRNA-miR-628-5p-
HSD17B7 ceRNA regulatory axes are associated with steroid
hormone biosynthesis and metabolic pathways. A differential
expression study showed that an increase in miR-628-5p serum
levels at 20 weeks of gestation was observed in women who
developed severe preeclampsia (Martinez-Fierro et al., 2019).
In this study, the miR-628-5p-CYP11A1/HSD17B7 network was
downregulated in PCOS GCs. A randomized clinical trial showed
that frozen embryo transfer resulted in an increased risk of
preeclampsia in twin pregnancy in women with PCOS (Zhang
et al., 2018). Other preliminary evidence described that women
with PCOS and the highest maternal testosterone levels in
the early second trimester had the highest risk of developing
preeclampsia (Valdimarsdottir et al., 2020). A transcriptome
study showed that HSD17B7 and CYP11A1 expression was
repressed in DHT-treated ovaries and that the dysregulation
of HSD17B7 and CYP11A1 expression was associated with the
biosynthesis and metabolism of steroids and cholesterol and
lipids (Salilew-Wondim et al., 2015). Therefore, miR-628-5p
may be an important hub regulator of HSD17B7 and CYP11A1
and may increase the risk of pregnancy complications by
affecting steroid hormone biosynthesis and metabolic pathways
in PCOS patients.

We also observed a downregulated axis consisting of
lncRNAs-miR-483-5p and GOT2 associated with metabolic
pathways in the ceRNA network. A previous study reported that
miR-483-5p expression was significantly decreased in cumulus
cells of PCOS patients (Shi et al., 2015). Other miRNA expression
profiles revealed that miR-483-5p can regulate Notch3/MAPK3
expression (Xu et al., 2015) and progesterone concentrations
(Sang et al., 2013) in cumulus GCs and follicular fluid of PCOS
patients. Although few studies have focused on the function of
GOT2 in PCOS, an important conclusion was reached by Yang
et al. (2015), who found that GOT2 participates in mitochondrial
metabolism through acetylation (Borst, 2020). Moreover, miR-
483-5p is associated with future onset of both diabetes and

cardiovascular disease (Gallo et al., 2018) and increases hepatic
LDL receptor levels by inhibiting PCSK9 production (Dong et al.,
2020). According to these results, it can be speculated that miR-
483-5p may regulate GOT2 to contribute to the IR of PCOS and
is worthy of further investigation.

In summary, the results show that women with PCOS
have multiple transcriptional and epigenetic changes in GCs
that are related to steroid hormone synthesis and metabolic
pathways. Several genes and pathways, such as lncRNAs-miR-
628-5p-CYP11A1/HSD17B7 and lncRNAs-miR-483-5p-GOT2,
play important roles in the etiology of PCOS and may be novel
candidate biomarkers or treatment targets for PCOS.
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With the availability of COVID-19-related clinical data, healthcare researchers can
now explore the potential of computational technologies such as artificial intelligence
(AI) and machine learning (ML) to discover biomarkers for accurate detection, early
diagnosis, and prognosis for the management of COVID-19. However, the identification
of biomarkers associated with survival and deaths remains a major challenge for early
prognosis. In the present study, we have evaluated and developed AI-based prediction
algorithms for predicting a COVID-19 patient’s survival or death based on a publicly
available dataset consisting of clinical parameters and protein profile data of hospital-
admitted COVID-19 patients. The best classification model based on clinical parameters
achieved a maximum accuracy of 89.47% for predicting survival or death of COVID-
19 patients, with a sensitivity and specificity of 85.71 and 92.45%, respectively. The
classification model based on normalized protein expression values of 45 proteins
achieved a maximum accuracy of 89.01% for predicting the survival or death, with a
sensitivity and specificity of 92.68 and 86%, respectively. Interestingly, we identified 9
clinical and 45 protein-based putative biomarkers associated with the survival/death of
COVID-19 patients. Based on our findings, few clinical features and proteins correlate
significantly with the literature and reaffirm their role in the COVID-19 disease progression
at the molecular level. The machine learning–based models developed in the present
study have the potential to predict the survival chances of COVID-19 positive patients
in the early stages of the disease or at the time of hospitalization. However, this has to
be verified on a larger cohort of patients before it can be put to actual clinical practice.
We have also developed a webserver CovidPrognosis, where clinical information can
be uploaded to predict the survival chances of a COVID-19 patient. The webserver is
available at http://14.139.62.220/covidprognosis/.
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INTRODUCTION

In December 2019, the COVID-19 disease initiated as an
outbreak caused by SARS-CoV-2, which quickly snowballed into
a catastrophic worldwide healthcare crisis (Srivastava et al., 2020).
On March 11, 2020, the World Health Organization (WHO)
declared COVID-19 a global pandemic with more than 118,000
cases in 114 countries and over 4,000 deaths, much more than the
morbidity and mortality caused by related viruses such as SARS
and MERS. As of March 14, 2021, the pandemic has caused more
than 119 million confirmed COVID-19 cases and ∼2.64 million
deaths worldwide1.

Compared to other respiratory diseases such as influenza, the
COVID-19 human-to-human transmission is facilitated through
respiratory droplets (particles > 5–10 nm in diameter) from
coughing and sneezing. The clinical symptoms associated with
COVID-19 patients vary from asymptomatic or symptomatic
forms (Cascella et al., 2020). A study published in JAMA
consists of data from 72,314 cases, including records from
confirmed, suspected, diagnosed, and asymptomatic COVID-
19 patients, shared by the Chinese Center for Disease
Control and Prevention (China CDC), demonstrating the
epidemiologic curve of the Chinese outbreak. As per this
report, the mortality of critically ill patients was 49.0%
in contrast to 2.3% for the overall COVID-19 patients.
The mortality was also higher for patients with various
comorbidities such as cardiovascular disease, diabetes, chronic
respiratory disease, and oncological diseases, whereas patients
with the age of 9 or younger did not have any fatal cases
(Wu and McGoogan, 2020).

At present, no SARS-CoV-2 specific drug or reliable
prognostic biomarker is available for COVID-19 treatment
(González-Pacheco et al., 2020; Pandey et al., 2020). Various
therapeutic measures to enhance the immune systems by
immune modulators have been proposed (Zhong et al., 2020).
Recommended preventive measures include social distancing,
proper health, and hygiene management (Al-Rohaimi and Al
Otaibi, 2020). It is also known that the severity of COVID-19
largely depends on the host and viral factors. The latter highlights
the importance of identifying the host features associated
with the disease severity at the molecular level (Zhang et al.,
2020). Given the facts enumerated above, it is desirable to
have the correct prognostic assessment of patients for proper
clinical management.

Artificial intelligence (AI) is being employed to meet
new healthcare requirements, in view of the pandemic,
for example, tracking the SARS-CoV-2 virus spread and
quickly identifying high-risk patients (Sharma et al., 2020).
Machine learning (ML) methods have been exploited
to analyze various kinds of biological datasets such as
proteomics data, NGS data, and metabolomics data to
predict the biomarkers for classification of samples and
genes associated with a particular disease state (Dumancas
et al., 2017; Cambiaghi et al., 2018). The mitigation potential
of AI technology has been extensively demonstrated for

1https://covid19.who.int/

various pandemics and infectious diseases, for example, SARS,
Ebola, HIV, and COVID-19 (Lalmuanawma et al., 2020;
Overmyer et al., 2020).

To date, there are several reports on clinical biomarkers
associated with the disease prognosis. However, there are only
a few published articles on protein-based biomarkers, and
hence, further research is required to confirm the existing
findings (Graziani et al., 2020; Kaur et al., 2020; Kermali
et al., 2020). Integrated data analysis on COVID-19 genomes
has been performed to identify several crucial factors involved
in host–pathogen interaction. However, limited attempts have
been made to integrate high throughput datasets (Sardar et al.,
2020). Yan et al. (2020b) developed a machine learning model
with more than 90% accuracy on 485 COVID positive patients
to predict the clinical biomarkers associated with individual
patients’ mortality. Another study by Yao H. et al. (2020)
aimed to predict the disease severity among the patients by
utilizing the data on 137 COVID-19 infected patients using
an ML-based model on the blood and urine examination
parameters. However, these methods are not free from errors,
limitations, and challenges, rendering them unfit to be used in
real-world problems.

Motivated by the availability of appropriate clinical datasets,
we used such a dataset for training ML algorithms to exploit
its potential for the prognosis of COVID-19 positive patients.
We designed a pipeline to predict features, namely proteins
and clinical parameters, associated with the disease severity
and survival of the COVID-19 patients. Interestingly, we have
identified 9 clinical features and 45 proteins related to the
survival/death of COVID-19 patients. Few of the identified
clinical features and proteins correlate well with the literature
and reaffirm their role in the COVID-19 disease progression
at the molecular level (Shen et al., 2020; Wynants et al., 2020;
Yan et al., 2020a). The potential role of identified proteins
in various pathways, their native functions, potential to be a
drug target, etc., are described in the subsequent sections. The
ML-based models developed in the present study possess an
immense potential to predict the survival chances of COVID-19
positive patients in the early stages of the disease or at the time
of hospitalization.

MATERIALS AND METHODS

Data Source
We downloaded the clinical and normalized protein
expression profile data for 306 COVID-19 patients and
78 other patients (control subjects) from the Olink
website (Filbin et al.). We downloaded three files, namely
"MGH_COVID_OLINK_NPX.txt," "MGH_COVID_Clinical_
Info.txt," and "variable_descriptions.xlsx," containing protein
data (with relative quantification values given in Olink’s
proprietary Normalized Protein expression (NPX) units),
essential clinical data (associated with each sample), and a
worksheet (with a description of the clinical variables presented),
respectively. Although clinical and protein data were present in
two different files, the data were linked based on the subject IDs.
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Data Preprocessing
Data preprocessing is essential for a machine learning study.
Hence, we checked the data for any experimental impurities
through semiautomated ways. As depicted in Figure 1, clinical
and proteomic data were missing for a few patients. In the case
of clinical data, we replaced missing values with "-1." Thus, we
used the clinical data of 42 dead and 264 survivors (Whole dataset
I) for training the "Clinical Information" based classification
models for days 0–7. However, in the proteomics data, the protein
expression values were missing for 165 and 248 patients for days
3 and 7, respectively. Therefore, we used only proteomics data
for the Day 0 proteomics information-based classification model
generation. For only one COVID-19 positive patient (who died
within 28 days of hospitalization), protein expression values (for
few of the 1,428 proteins) were missing, while protein expression
values were missing for 15 patients among the survivors (for few
of the 1,428 proteins); hence, we excluded these records from
the study (Figure 1). Thus, we used the proteomics data (Whole
dataset II) of 41 dead and 249 survivors to train and validate the
machine learning–based models.

As evident from the downloaded data, the number of
survivors and deaths in clinical as well as proteomics data were
imbalanced. The survivor’s data (for both clinical and proteomics
data) were split into five, almost equal-sized, divisions (P1–
P5). Furthermore, we trained and validated the models using
each of the five divisions and the dataset of dead patients. The
tools, techniques, and statistical measures used to evaluate the
model performances and the retrieved results are given in the
subsequent sections.

Tools Used for the Development of
Classification Models
WEKA (Frank et al., 2016), a popular and widely used data
mining and machine learning tool, was used for training and
validation of the various machine learning–based classification
models developed in this study. All the techniques available
with the WEKA (v3.8.2) were used to train and validate the
classification models. For clinical data, five types of models are
generated, i.e., the models based on (1) Day 0 clinical parameters,
(2) Day 3 clinical parameters, (3) Day 7 clinical parameters, (4)
Days 0–7 clinical parameters, and (5) Selected clinical parameters
(out of Days 0–7 clinical parameters). On the other hand, for
proteomic data, two types of models are generated, i.e., (1) Day
0, all 1428 protein parameters, and (2) Day 0 protein parameters
based on feature selection.

We trained and evaluated 44 different types of ML
classification algorithms available in WEKA (v3.8.2). However,
several combinations of various parameters for these algorithms
and the number of input parameters used (for the training
and validation of classification models) resulted in thousands of
models (for details, check http://14.139.62.220/covidprognosis/
supple.php). For example, in the case of Day 0 clinical
parameters-based model (using the P1 dataset), a total of 85
models were trained and evaluated using Day 0 all 33 clinical
parameters. Thus, for P1–P5 splits, a total of 425 models (85 ×
5) were developed to determine the best classification models.

Feature Selection
In different machine learning–based classification studies, all
the input features do not play an equally significant role in
classification (Sharma et al., 2016; Jablonka et al., 2020; Kumar
et al., 2020). Therefore, to identify the most significant clinical
and proteomics features, all the feature selection techniques
available with WEKA were applied to the Days 0–3 clinical
features dataset (consisting of 33 clinical parameters) and Day 0
proteomics data (for the 1,428 proteins).

Cross-Validation Techniques Used
The availability of enormous data is essential for preparing
training and validation datasets during a machine learning–based
study. However, due to limited patients’ records, it was impossible
to prepare separate training and validation datasets. Therefore,
the leave-one-out cross-validation (LOOCV) technique was used
to utilize the available information optimally. In the LOOCV
technique, the models are trained and validated so that each
record is used for training and testing. The LOOCV technique has
widely been used to solve several classification problems (Mete
et al., 2016; Nath and Subbiah, 2016; Jiang et al., 2019).

Formulae Used to Evaluate Performance
of the Models
The performance of the models was evaluated using statistical
measures such as sensitivity, specificity, accuracy, and Mathew’s
correlation coefficient (MCC). The formulae used are given
below:

Sensitivity =
TP

TP+ FN
× 100

Specificity =
TN

TN+ FP
× 100

Accuracy =
TP+ TN

TP+ FP+ TN+ FN
× 100

MCC =
(TP)(TN)− (FP)(FN)

√
[TP+ FP][TP+ FN][TN+ FP][TN+ FN]

× 100

where TP and TN are correctly predicted positive and negative
examples, respectively. Similarly, FP and FN are wrongly
predicted positive and negative examples, respectively. The
models with the highest MCC value and almost equal sensitivity
and specificity values are considered best prediction models.

Pathway Analysis and Identification of
Drug Targets
To understand the biological functions of the shortlisted proteins,
pathway analysis was performed using the DAVID tool (Jiao
et al., 2012). Targeting host proteins appears to be a promising
approach in antiviral research. To identify the drugs against the
selected proteins, all the drug target information was downloaded
from the TTD database, and only validated and clinically proven
drugs were used for the analysis (Wang et al., 2020). The drugs
that have been withdrawn or not in use were removed from the
drug-targets based analysis.
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FIGURE 1 | ML-based pipeline to identify key features associated with survival based on clinical and proteomics data. (The figure images were generated using
biorender.com).

Webserver Development
The CovidPrognosis webserver has been developed using efficient
and open-source Linux-Apache-MySQL-PHP/ Perl/Python
(LAMP) server technologies. The user interface (UI) or web
interface is developed using HTML, CSS, PHP (v7.1.28), and
AJAX. Moreover, the predictions are performed using the
WEKA-based machine learning models, trained and validated on
clinical parameters.

RESULTS

Models Based on Whole Clinical
Parameters
The classification models were developed using clinical
information, as given in Supplementary Table 1. A total of five
types of models (thousands in number; based on all available
techniques in the WEKA package) were developed using the
Day 0 (Sr. No. 3-21), Day 3 (Sr. No. 3-14 and 22-28), Day
7 (Sr. No. 3-14 and Sr. No. 29-35), and Days 0–7 (Sr. No.
3-35) clinical parameter values (Supplementary Table 1).
However, two models achieved the highest performance using
Day 0 and Days 0–7 information, while “Whole dataset I”
based models showed a large difference between sensitivity

and specificity values. This difference may be attributed to
the imbalance between the number of records for survived
and died patients. The Day 0 clinical parameters-based model
(using the "IterativeClassifierOptimizer" technique) achieved a
maximum accuracy of 87.37% with the highest sensitivity (%),
specificity (%), MCC, and ROC values of 88.10, 86.79, 0.75,
and 0.863, respectively (Table 1). Using "RandomForest" as the
classification technique and Days 0–7 clinical parameters (33)
as input features, a maximum accuracy of 89.47% was achieved
with the highest sensitivity (%), specificity (%), MCC, and ROC
values of 85.71, 92.45, 0.79, and 0.921, respectively (Table 1).

Feature Selection for Clinical Parameters
For the clinical data, three clinical parameters, namely, age,
absolute lymphocyte count (Day 0), and creatinine level (Day 0),
and nine clinical parameters, i.e., age, absolute lymphocyte count
(Day 0), creatinine level (Day 0), preexisting heart disease(s),
preexisting hypertension, preexisting kidney disease(s), D-dimer
level (Day 0), any GI-related symptoms at the time of hospital
presentation, and cardiac event-Trop_72 (hs-cTn = > 100 within
the first 72 h of presentation) clinical parameters or features
were selected by the majority of the techniques2. Therefore,

2http://14.139.62.220/covidprognosis/supple.php
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TABLE 1 | Performance of best models based on whole clinical parameters.

Dataset (no. of clinical parameters used) Day(s) Sensitivity (%) Specificity (%) Accuracy (%) MCC ROC WEKA technique used

Whole dataset I (19) 0 50 94.7 88.56 0.48 0.806 AttributeSelectedClassifier

P1 (19) 0 88.1 86.79 87.37 0.75 0.863 IterativeClassifierOptimizer

Average of P1–P5 splits (19) 0 81.90 82.94 82.48 0.65 0.808 IterativeClassifierOptimizer

Whole dataset I (33) 0, 3, 7 47.62 96.21 89.54 0.51 0.739 J48

P2 (33) 0, 3, 7 85.71 92.45 89.47 0.79 0.921 RandomForest (with -K 4)

Average of P1–P5 splits (33) 0, 3, 7 75.24 81.43 78.68 0.57 0.868 RandomForest (with -K 4)

these three clinical parameters (selected by CfsSubsetEval as
“Attribute Evaluator” with BestFirst as “Search Method”) and
nine clinical parameters [selected by “InfoGainAttributeEval”
as “Attribute Evaluator” with Ranker algorithm (attributes
with ranking value > 0 were selected)] have been used
for the training and evaluation of the machine learning–
based models.

Models Based on Selected Clinical
Parameters
From the analysis of the clinical data, it is found that the
patients from the age group of 65–80+ years, with lower elevated
lymphocyte count at Day 0 (<1.00), D-dimer ≥ 1,000 (units),
are at a higher risk of death during hospitalization and require
immediate treatment (Figure 2).

The “Whole dataset I”–based models showed a large difference
between sensitivity and specificity values. A maximum accuracy
of 87.37% was achieved with sensitivity (%), specificity (%),
MCC, and ROC values of 85.71, 88.68, 0.74, and 0.845, from
the three selected clinical features, respectively. While from
the nine selected clinical parameters, a maximum accuracy
of 86.32% was achieved with sensitivity (%), specificity (%),
and MCC, and ROC values of 83.33, 88.68, 0.72, and 0.81,
respectively, as shown in Table 2. The identified clinical
features such as serum creatinine (Day 0), age, absolute
lymphocyte count (Day 0), and D-dimer (Day 0) along with
comorbidities such as preexisting heart disease(s), preexisting
kidney disease(s), preexisting hypertension, GI symptoms
at presentation, and Trop-72 can be highly useful in the
classification of patients with survival or dying probabilities.
These identified features can be evaluated as biomarkers
that can help identify the patients who require immediate
medical attention.

Models Based on Whole NPX Proteomics
Data
To understand the role of the protein expression profile in the
classification of COVID-19 patients who survived vs. are dead,
the expression values of 1428 proteins were used to develop
machine learning–based classification models. The “Whole
dataset II”–based models showed a large difference between
sensitivity and specificity values. It is evident from Table 3 that
an accuracy of 83.52% was achieved (using the dataset P4) with
a sensitivity (%), specificity (%), MCC, and ROC values of 82.93,
84, 0.67, and 0.868, respectively.

Identification of Proteins Associated
With Survival vs. Deaths
The feature selection technique was applied to determine the
most significant proteins that are helpful for the classification
of patients who survived COVID-19 vs. those who died.
Therefore, for proteomics data, different feature selection
techniques resulted in the selection of a different set of proteomic
features (see text footnote 2). Thus, a total of 45 proteins
were identified through WEKA using CfsSubsetEval as the
“Attribute Evaluator” with BestFirst as the “Search Method”
(Supplementary Tables 2, 3).

As evident from Table 4, an accuracy of 89.01% was achieved
(using the dataset P2) with sensitivity (%), specificity (%), MCC,
and ROC values of 92.68, 86, 0.78, and 0.953, respectively. On
the other hand, “Whole dataset II”–based models showed a large
difference between sensitivity and specificity values.

Expression and Pathway Analysis of the
Shortlisted Proteins
The shortlisted proteins include lipid metabolism proteins
(APOM), a protease inhibitor (FETUB), serine protease
(FA7, GGH), growth factors (EGFR, PDGFB, TGFA, and
GDF8), chemokines, interleukins (IL8, IL17C), and others
(Supplementary Table 2). Recent studies have shown that APOM
is downregulated in severe COVID-19 patients (Shen et al., 2020).
The dysregulation of APOM is also associated with hepatitis
B virus (HBV) infected patients (Gu et al., 2011). Another
important protein associated with survival is angiopoietin
(AGP), which is recently reported to cause inflammatory
intussusceptive angiogenesis and diffuse alveolar damage in
COVID-19, and the progression of carcinogenetic events in
cancer patients (Saha and Anirvan, 2020). Q96PL1_SG3A2 is
highly expressed and shows antifibrotic activity in the lungs
(Cai et al., 2014).

These shortlisted proteins were further analyzed to
understand their role in human physiology and COVID-19
prognosis. From the pathway analysis, we found that the selected
45 proteins are associated with pathways such as the IFN-gamma
pathway, IL5 and IL3 mediating signaling events, cytokine,
chemokine, and VEGF signaling, as shown in Figure 3.

Identification of Potential Drug Targets
Among the Shortlisted Proteins
To date, no reliable drug has been approved to treat COVID-19.
From the drug target database (Supplementary Table 4), we were
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FIGURE 2 | Selected features from clinical data to classify COVID-19 patients who survived vs. those who died.

TABLE 2 | Performance of best models based on selected clinical parameter values.

Dataset (no. of clinical parameters used) Day(s) Sensitivity (%) Specificity (%) Accuracy (%) MCC ROC WEKA technique used

Whole dataset I (3) 0 50 94.7 88.56 0.48 0.806 J48

P2 (3) 0 85.71 88.68 87.37 0.74 0.845 RandomSubSpace

Average of P1–P5 splits (3) 0 83.33 80.31 81.64 0.63 0.831 RandomSubSpace

Whole dataset I (9) 0 50 94.7 88.56 0.48 0.806 AttributeSelectedClassifier

P2 (9) 0, 3 83.33 88.68 86.32 0.72 0.81 IterativeClassifierOptimizer

Average of P1–P5 splits (9) 0, 3 81.43 78.02 79.54 0.59 0.823 IterativeClassifierOptimizer

TABLE 3 | Performance of best models based on all 1428 proteins NPX values.

Dataset (no. of proteins used) Day(s) Sensitivity (%) Specificity (%) Accuracy (%) MCC ROC WEKA technique used

Whole Dataset II (1428) 0 39.02 95.18 87.24 0.4 0.791 AdaBoostM1

P4 (1428) 0 82.93 84 83.52 0.67 0.868 LogitBoost

Average of P1–P5 splits (1428) 0 69.76 71.90 70.94 0.42 0.755 LogitBoost

TABLE 4 | Performance of best models based on selected 45 protein NPX values.

Dataset (No. of proteins used) Day(s) Sensitivity (%) Specificity (%) Accuracy (%) MCC ROC WEKA technique used

Whole dataset II (45) 0 80.49 92.77 91.03 0.67 0.948 BayesNet

P2 (45) 0 92.68 86 89.01 0.78 0.953 BayesNet

Average of P1–P5 splits (45) 0 82.44 82.72 82.59 0.65 0.902 BayesNet

P5 (45) 0 85.37 91.84 88.89 0.78 0.886 SMO; NormalizedPolyKernel

Average of P1–P5 splits (45) 0 83.42 79.97 81.51 0.63 0.817 SMO; NormalizedPolyKernel
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FIGURE 3 | Pathway analysis of the selected 45 proteins.

able to identify clinically used drugs that target 18 proteins among
the shortlisted 45 proteins. The maximum number of drugs was
found to target growth factor associated proteins, i.e., VGFR2 and
EGFR, followed by FA7 and ANGP2 (Supplementary Figure 1).
It is observed that during viral infection through respiratory
viruses, EGFR gets activated via the NADPH oxidase signaling
pathway in the airway epithelium. The activation of EGFR
causes suppression of IFN regulatory factor (IRF) 1-dependent
CXCL10 production showing their role in antiviral defense
(Kalinowski et al., 2014).

The Development and Utility of the
CovidPrognosis Webserver
The utility of a machine learning–based method relies upon
its ease of use. Therefore, to enhance the real-life usage of the
developed prediction models by researchers or clinicians, we
have developed the webserver CovidPrognosis. The webserver
is freely available for scientific use and clinical validation at
http://14.139.62.220/covidprognosis/. In the current version, the
users can input three parameters for Day 0 or 33 parameters
for Days 0, 3, and 7. The survival chances of the patient,
represented by the input parameters, are predicted based on
the user-supplied values. A detailed description of the clinical
parameters is available on the CovidPrognosis webserver’s
website at http://14.139.62.220/covidprognosis/help.php. Day
0 denotes the day on which the patient was admitted to
a hospital, while Days 3 and 7 represent the third and
seventh day after hospitalization, respectively. The Day 0–
based model helps in the early estimation of the seriousness
of the case, while the days 0–7-based model may prove
useful while monitoring the patient’s health status at the
time of hospital stay. Figure 4 shows the prediction results
by the CovidPrognosis webserver’s three clinical parameters-
based model using Day 0 clinical information of a COVID-19
patient. The webserver may prove to be a valuable resource
for researchers and clinicians for independent validation and
further improvement.

DISCUSSION

COVID-19 is caused by the novel coronavirus SARS-CoV-2 that
belongs to the SARS-CoV and MERS family of viruses. To date,
the disease has led to millions of deaths worldwide. COVID-
19 can be diagnosed by real-time PCR (RT-PCR), chest X-ray
images, CT scan images, and serological blood tests (Augustine
et al., 2020, p. 19). However, these diagnostic methods have low
accuracy with a high false-positive rate of prediction (Surkova
et al., 2020; To et al., 2020) and cannot help distinguish patients
with different severity of illness. In addition to the respiratory
illness, COVID-19 can cause many other illnesses such as kidney
failure, heart disease, and venous thromboembolism and may
damage the CNS leading to mortality (Kollias et al., 2020; Larsen
et al., 2020; Shi et al., 2020; Wu et al., 2020).

The most common clinical abnormalities observed in
COVID-19 positive patients are lymphopenia, leukopenia,
thrombocytopenia, elevated CRP and inflammatory markers,
elevated cardiac biomarkers, decreased albumin, and abnormal
renal and liver function (Paranjpe et al., 2020; Zhu et al., 2020).
The increase in SARS-CoV-2 spread and mortality has motivated
researchers to develop vaccines or antiviral drugs. Similarly,
clinicians too are trying different treatment strategies to improve
prognosis, reduce treatment period, and alleviate the suffering
of COVID-19 patients. Therefore, it is necessary to identify
factors/biomarkers associated with the patients’ mortality and
survival on available patient datasets to reduce the mortality rate.

Based on clinical parameters, researchers have identified
several biomarkers (using an ML-based approach) like using
a multivariable logistic regression model. Yao Y. et al. (2020)
showed that the value of D-dimer > 2mg/L was associated
with mortality among COVID-19 patients. The group has
observed a significant correlation between D-dimer levels and
disease severity measured by the CT, oxygenation index, and
clinical staging. Another group, Yan et al. (2020a), identified
lactic dehydrogenase (LDH), lymphocyte, and high-sensitivity
C-reactive protein (hs-CRP) that were associated with the
survival of individual patients. Similarly, in the present study, we
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FIGURE 4 | A screenshot showing the functionality of the CovidPrognosis webserver with three clinical parameters for Day 0.

have applied ML-based prediction on a cohort of 306 COVID
positive patients with 33 clinical parameters and 1,428 protein
expression values. From the number of WEKA models on clinical
data, RandomSubSpace and IterativeClassifierOptimizer perform
best with the accuracy of 87.37 and 84.32%, respectively. These
models identified nine shortlisted features from among 33 clinical
parameters, namely, age category, absolute lymphocyte count
(Day 0), creatinine level (Day 0), preexisting heart disease(s),
preexisting hypertension, preexisting kidney disease(s), D-dimer
level (Day 0), GI symptoms, and cardiac event-troponin level
72 h (hs-cTn = > 100 within the first 72 h of presentation).
Of the nine shortlisted clinical parameters, D-dimer, lymphocyte
count, and kidney disease are reported to play an important
role in the survival prediction of COVID-19 patients, thus
validating the findings of the present study (Cheng et al.,
2020; Pan et al., 2020; Yan et al., 2020a). Moreover, some
previously not identified clinical parameters such as creatinine,
age, and cardiac troponin, along with GI symptoms, heart disease,
and hypertension, could predict the COVID-19 prognosis and
disease severity.

While employing LogitBoost on 1428 protein expression data,
survival prediction models were able to achieve an accuracy of
83.52% with sensitivity (%), specificity (%), MCC, and ROC
values of 82.93, 84, 0.67, and 0.868, respectively. However,
the accuracy was further improved after applying the feature
selection algorithms (available in WEKA), and the highest
accuracy of 89.01% (with the balanced dataset) was achieved
with sensitivity (%), specificity (%), MCC, and ROC values of

92.68, 86, 0.78, and 0.953, respectively. Thus, the model led
to identifying 45 proteins enriched in various pathways such
as angiogenesis, interleukin, cytokine, chemokine, and VEGF
signaling. The enrichment of host immune system pathways
suggested that SARS-CoV-2 uses the host immune system defense
mechanism to hijack the body’s mucous membrane cells.

Shen et al. have identified 93 proteins associated with the
severity of COVID-19 disease based on the data of 46 COVID-
positive patients using machine learning models (Bojkova et al.,
2020; Qiu et al., 2020; Shen et al., 2020). Interestingly, some of
the shortlisted 45 proteins, such as PROC, IL16, EGFR, ANGP2,
APOP1, coagulation factor VII, and FEUTB (identified in the
present study), are already well reported in the literature for their
role in the disease prognosis and severity, thus validating the
current findings (Bojkova et al., 2020; Qiu et al., 2020; Shen et al.,
2020; Shu et al., 2020; Yin et al., 2020). In our analysis, other
protein classes such as different growth factors and phospholipase
factors are newly discovered, which can be explored further for
their role in disease severity. The role of phospholipase A2 in
the inhibition of coronavirus replication is well established by
EM and confocal microscopy, which can also be confirmed for
SARS-CoV-2 (Müller et al., 2017).

From the drug-target network construction, it is observed that
FDA-approved drugs target growth factor associated proteins,
i.e., VGFR2 and EGFR, followed by FA7 and ANGP2, suggesting
their potential implication in drug repurposing.

From the present study, we show that the ML-based
prediction/classification models can efficiently help in the
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prognosis of COVID-19 patients based upon identified
clinical and protein biomarkers associated with COVID-19
severity/survival. The clinicians and researchers can test new
COVID-19 cases to predict the patients who are likely to survive
within 28 days after hospitalization. The results obtained from the
ML-based techniques may also lead to the biomarker discovery
for COVID-19 for early prognosis, potentially reducing mortality
rate and may also serve as useful drug targets.

To increase the utility of the present work, we have developed
an easy-to-use CovidPrognosis webserver to assist researchers
and clinicians in quickly evaluating the machine learning model
or identifying the prognostic biomarkers associated with the
survival or death of COVID-19 patients. The webserver is
available at http://14.139.62.220/covidprognosis/. The current
version of the model is a proof of concept that machine learning–
based prognostic tools can be developed. The CovidPrognosis
webserver will be regularly updated with the latest COVID-19
datasets in order to increase its efficiency, reliability, and utility.
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Background: Carotid atherosclerosis (CAS) is an important cause of stroke. Although
interactions between the gut microbiome and metabolome have been widely
investigated with respect to the pathogenesis of cardiovascular diseases, information
regarding CAS remains limited.

Materials and Methods: We utilized 16S ribosomal DNA sequencing and untargeted
metabolomics to investigate the alterations in the gut microbiota and plasma metabolites
of 32 CAS patients and 32 healthy controls. The compositions of the gut microbiota
differed significantly between the two groups, and a total of 11 differentially enriched
genera were identified. In the metabolomic analysis, 11 and 12 significantly changed
metabolites were screened in positive (POS) and negative (NEG) modes, respectively.
α-N-Phenylacetyl-L-glutamine was an upregulated metabolite in CAS patients detected
in both POS and NEG modes and had the highest | log2(fold change)| in POS mode. In
addition, transcriptomic analysis was performed using the GSE43292 dataset.

Results: A total of 132 differentially expressed genes (DEGs) were screened. Among the
upregulated DEGs in CAS patients, FABP4 exhibited the highest | log2(fold change)|.
Furthermore, FABP4 was positively associated with Acidaminococcus and had the
highest Spearman’s correlation coefficient and the most significant p-value among the
microbiota–DEG pairs.

Conclusion: In this study, we investigated the potential “microbiota–metabolite–gene”
regulatory axis that may act on CAS, and our results may help to establish a theoretical
basis for further specialized study of this disease.
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INTRODUCTION

Atherosclerosis (AS) is a diffuse, slowly progressing disease
that affects large- and medium-sized arteries. Advanced
atherosclerotic plaques can invade the arterial lumen, impeding
blood flow, and resulting in tissue ischemia (Faxon et al., 2004;
Libby et al., 2019). Carotid atherosclerosis (CAS) is a preventable
cause of 20–30% of stroke, approximately 21% of people aged
30–79 years have carotid plaque, and 1.5% have carotid stenosis
(Petty et al., 2000; Song et al., 2020). The pathophysiological
features of AS are primarily linked to lipid accumulation, chronic
inflammation, calcification, and thrombosis (Libby et al., 2019).
Many studies have vastly improved our understanding of the
pathogenesis of AS, but, despite these advances, we still lack
definitive evidence to translate basic results to the bedside (Weber
and Noels, 2011). Although AS is a systemic disease sharing
common major risk factors, differences exist in the strength
and impact per arterial site (Aboyans et al., 2018). Medical
interventions that result in the prevention of CAS are especially
centered on statins, but which are not targeted enough when
CAS is regarded as a unique form of AS (Artom et al., 2014).

Findings from the past decade have suggested that the
structure and composition of the gut microbiota are associated
with AS in humans and animal models (Jonsson and Backhed,
2017). The contributions of the gut microbiota to AS can
be divided into three main categories. First, local or distant
infections might aggravate atherogenesis. Second, patients with
AS have altered lipid metabolism, and bacterial taxa in the
gut were observed to correlate with plasma cholesterol levels
(Koren et al., 2011). Third, diet and specific components that
are metabolized by gut microbiota can have various effects
on AS. Metabolites filtered or produced by gut microbiota,
such as trimethylamine-N-oxide, short-chain fatty acids (SCFAs),
and secondary bile acids, have been observed to affect the
development of AS (Wang et al., 2011; Wahlstrom et al.,
2016; Chen et al., 2018). Most studies of the relationship
between CAS and microbiota could be classified into the first
category mentioned earlier. A wide variety of microbial DNA
has accordingly been found in carotid atherosclerotic plaques in
different populations (Ziganshina et al., 2016; Lindskog Jonsson
et al., 2017). Bacteria observed in the atherosclerotic plaques are
also detected at other body sites, predominantly the gut, which
might thus serve as reservoirs of these potentially pathogenic
microorganisms (Jonsson and Backhed, 2017). However, limited
information is available focusing on the gut microbiota

Abbreviations: AS, atherosclerosis; CAS, carotid atherosclerosis; CKD, chronic
kidney disease; DEG, differentially expressed gene; EPA, eicosapentaenoic acid;
GEO, Gene Expression Omnibus; GO-BP, gene ontology-biological process;
KEGG, Kyoto Encyclopedia of Genes and Genomes; LDA, linear discriminant
analysis; LEfSe, linear discriminant analysis effect size; NEG, negative mode;
NF-κB, nuclear factor kappa-B; OTU, operational taxonomic unit; PAGly,
phenylacetylglycine; PCA, principal component analysis; PERMANOVA,
permutational multivariate analysis of variance; PICRUSt, phylogenetic
investigation of communities by reconstruction of unobserved states; POS, positive
mode; QIIME, quantitative insights into microbial ecology; RF, random forest;
ROC, receiver operating characteristic; SCFA, short-chain fatty acid; UHPLC-
QTOFMS, ultra-high-performance liquid tandem chromatography/quadrupole
time-of-flight mass spectrometry.

composition in CAS patients. With respect to metabolomics,
several studies have found a number of metabolites associated
with CAS on the different stages (Vojinovic et al., 2018; Lee
T. H. et al., 2019), which were used as non-causal biomarkers,
but further study is necessary to elucidate the pathogenesis of
CAS. Also, considerable uncertainty remains concerning the
relationship between CAS and metabolites.

Taken together, both human and animal studies have indicated
that alterations of the gut microbiota and plasma metabolites
might be involved in the progression of AS, but the details
of these alterations in patients with CAS have not been fully
characterized. To address this question, we performed multi-
omics combined 16S ribosomal DNA (rDNA) gene sequencing
using fecal samples and untargeted liquid chromatography–
mass spectrometry using plasma samples from 32 CAS patients
and 32 healthy controls with gene expression profiling from
the Gene Expression Omnibus (GEO) database to characterize
the gut microbial community and plasma metabolic profiles.
Also, we performed an integrated analysis of the microbiome,
metabolome, and transcriptome. These results may ultimately
provide a more in-depth understanding of the “microbiota–
metabolite–gene” axis in the pathogenesis of CAS.

MATERIALS AND METHODS

Medical Ethics
The Ethics Committee of the Peking Union Medical College
Hospital (PUMCH) has approved this study (institutional
approval number: JS-2629). Each participant provided signed
informed consent before participating in the present study.

Patients Recruitment
CAS patients were recruited from the Department of Vascular
Surgery, Peking Union Medical College Hospital. The inclusion
criteria for recruitment were as follows: (1) Diagnosis with
carotid atherosclerosis by ultrasound or CT angiography; (2)
age ≥ 45 years; the exclusion criteria were applied to both
CAS patients and healthy controls: (1) Antibiotic usage within
6 months; (2) probiotic usage within 6 months; (3) history of
gastrointestinal diseases (such as inflammatory bowel disease);
(4) history of abdominal surgery (such as gastrectomy); (5) major
dietary change 1 week before sample collection.

We first recruited 71 CAS patients and 39 healthy controls.
Next, 39 CAS patients were excluded due to antibiotic usage
(n = 14), probiotic usage (n = 6), digestive disease (n = 8), and
abdominal surgery (n = 11). Meanwhile, seven healthy controls
were excluded due to antibiotic usage (n = 4), probiotic usage
(n = 2), and abdominal surgery (n = 1). Finally, each group had
32 subjects for further analysis.

Sample Collection
Peripheral blood and stool samples were collected in the morning
after an overnight fast (≥ 8 h). Plasma samples were obtained
by centrifugation at 3,000 rpm for 10 min at room temperature.
All plasma and stool samples were rapidly frozen and stored at
−80◦C until analysis.
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Genomic DNA Extraction and 16S
Ribosomal DNA Sequencing
Genomic DNA extraction was performed using QIAamp R© Fast
DNA Stool Mini Kit (Qiagen, Hilden, Germany) and examined
using Thermo NanoDrop 2000 (Thermo Fisher Scientific,
New York, NY, United States). The V3-V4 region of the bacterial
16S rDNA was amplified using KAPA HiFi Hotstart ReadyMix
PCR Kit (KAPA Biosystems, Wilmington, MA, United States)
with the primers 314F (CCTACGGGRSGCAGCAG) and 806R
(GGACTACVVGGGTATCTAATC) and sequenced using an
Illumina PE250 platform (Illumina, California, United States).

Ultra-High-Performance Liquid Tandem
Chromatography/Quadrupole
Time-of-Flight Mass Spectrometry
Metabolomic Profiling of Patient Plasma
Samples
Plasma samples of patients were prepared for ultra-high-
performance liquid tandem chromatography/quadrupole time-
of-flight mass spectrometry (UHPLC-QTOFMS) analysis by
application of validated protocols (Dunn et al., 2011). The
UHPLC separation was carried out using a 1290 Infinity
series UHPLC System (Agilent Technologies Inc., Santa Clara,
California, United States), equipped with a UPLC BEH Amide
column. The TripleTOF 6600 mass spectrometry (AB Sciex,
Foster City, CA, United States) was used for its ability to acquire
tandem mass spectrometry spectra on an information-dependent
basis during a liquid chromatography–mass spectrometry
experiment. Both positive ion mode (POS) and negative ion
mode (NEG) were used to obtain maximal coverage for
plasma metabolites.

Transcriptomic Profiling of
Atherosclerotic Samples From the Gene
Expression Omnibus Database
To have a comprehensive understanding of CAS pathogenesis
from a multi-omics perspective, we also acquired transcriptomic
profiling data of CAS samples from the GEO database
(GSE43292) (Edgar et al., 2002). The transcriptomic dataset was
not measured from the same cohort of patients from whom the
16S and metabolomic datasets were generated. The probes in
the series matrix file were annotated by gene symbols using the
platform data table (GPL6244), and a gene expression matrix was
obtained for further transcriptomic analysis.

Statistical Analysis
Operational taxonomic units (OTUs) were obtained by ultra-fast
sequence analysis (USEARCH) v11.0 with a sequence similarity
of 0.97 (Edgar, 2013). α- and β-diversities were calculated using
Quantitative Insights Into Microbial Ecology (QIIME, version
1.7.0) based on OTU counts (Caporaso et al., 2010). The “vegan”
package in R version 3.6.2 was used to perform a permutational
multivariate analysis of variance (PERMANOVA) to compare
β-diversity between the two groups. Next, we performed a
differential abundance analysis using the linear discriminant

analysis (LDA) method on the LDA effect size (LEfSe) platform
and the Wilcoxon rank-sum test (Segata et al., 2011). To
determine the functional alterations in the gut microbiota of
CAS patients, Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was conducted through phylogenetic
investigation of communities by reconstruction of unobserved
states (PICRUSt) to predict the functional composition profiles
of microbiota based on OTUs (Langille et al., 2013).

UHPLC-QTOFMS data were analyzed by SMICA (version
15.0.2, Sartorius Stedim Data Analytics AB, Umea, Sweden) to
conduct multivariate statistical analysis. Differential metabolites
were obtained by comparing CAS patients and healthy controls
using a t-test. KEGG pathway analysis was also conducted for
these different metabolites.

For transcriptomic profiling data, differentially expressed gene
(DEG) analysis was performed based on gene expression matrix
using the “limma” R package. A | log2(fold-change)| of > 1 and
an adjusted p-value < 0.01 were selected as the threshold for DEG
screening. In addition to KEGG pathway analysis, gene ontology-
biological process (GO-BP) analysis was conducted using the
Database for Annotation, Visualization and Integrated Discovery
version 6.81; the enrichment analysis was also conducted using
Reactome version 752 to further demonstrate the biological
functions of DEGs.

To integrate the multi-omics data, Spearman’s correlation
indices between differential omics data were calculated and
visualized by heatmap (Shannon et al., 2003). Finally, receiver
operating characteristic (ROC) analysis was performed using
Statistical Product and Service Solutions version 25.0 (SPSS
Inc., 2017, Chicago, IL, United States). Random forest (RF)
analysis was conducted using the Biomarker analysis section
of MetaboAnalyst version 3.0 (www.metaboanalyst.ca). The
area under the curve was calculated to demonstrate the
potential diagnostic value of differentially enriched genera,
metabolites, and genes.

To further improve the accuracy of the analyses of
microbiome and metabolome, the adjustment for covariates
in differential genera and metabolites was performed. First, in
the microbiome analysis, the associations between genera and
clinical characteristics of CAS patients and healthy controls
were evaluated using a generalized linear model, and p < 0.05
was considered to be statistically significant (Qian et al., 2018).
Second, in the metabolome analysis, PERMANOVA was used
to test the statistically significant differences between metabolic
profiles and clinical characteristics. The p-value was corrected for
multiple tests using a cutoff of 0.05.

RESULTS

Flowchart of Our Study
The workflow of our study is shown in Figure 1. A total
of 32 CAS patients and 32 healthy controls were included
in our study. Fecal and plasma samples were taken for

1https://david.ncifcrf.gov/
2https://reactome.org/
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FIGURE 1 | Workflow of our study. *A total of 39 patients were exclude in CAS Group, due to antibiotic usage (n = 14), probiotic usage (n = 6), digestive disease
(n = 8), and abdominal surgery (n = 11). A total of seven healthy controls were excluded due to antibiotic usage (n = 4), probiotic usage (n = 2), and abdominal
surgery (n = 1).

microbiome and metabolome analysis, respectively. Differentially
enriched microbiota and metabolites were identified. KEGG
pathways were predicted to show the functional composition
profiles of differentially enriched microbiota and metabolites.
Then, DEG and related functional annotation analyses were
conducted based on a messenger RNA (mRNA) microarray
dataset (GSE43292) to explore the differences between CAS
patients and healthy controls from a transcriptomic level.
Furthermore, correlation analyses were performed between
differentially enriched microbiota, metabolites, and DEGs to
integrate omics. Finally, the potential clinical significance of
differentially enriched microbiota, metabolites, and DEGs was
determined by ROC and RF analyses.

Clinical Characteristics of Carotid
Atherosclerosis Patients and Controls
For microbiome and metabolome analysis, 64 fecal and plasma
samples were used for 16S rDNA sequencing and untargeted
metabolomic analysis (UHPLC-QTOFMS). The baseline of our
study cohort is shown in Table 1. Although the body mass index is
marginally higher in the CAS group (24.7 ± 2.7 for CAS patients
and 23.2 ± 2.2 for healthy controls, p = 0.047), there were no
significant differences in age and sex between CAS patients and
healthy controls.

Microbial Profiling of Carotid
Atherosclerosis Patients and Controls
Gut Microbiota Richness, Composition, and Diversity
We used 2,300,644 high-quality reads from 64 patients
for downstream analysis. The rarefaction curves of richness
(observed_species and chao1) were plotted. Curves for the

TABLE 1 | Characteristics of study cohort.

Control (n = 32) CAS (n = 32) p-value

Age (years) 66.2 ± 4.8 64.5 ± 6.7 0.263

Male (%) 28 (87.5) 28 (87.5) > 0.999

BMI (kg/m2) 23.2 ± 2.2 24.7 ± 2.7 0.047*

Hypertension (%) 6 (18.8) 12 (37.5) 0.095

Diabetes (%) 3 (9.4) 6 (18.8) 0.281

Coronary heart disease (%) 0 (0) 9 (28.1) < 0.001*

White blood cell (× 109/L) 6.5 ± 1.3 6.2 ± 1.5 0.420

Monocyte (× 109/L) 0.37 ± 0.15 0.38 ± 0.10 0.136

Hcy (µmol/L) 16.5 ± 7.0 16.6 ± 6.3 0.958

TC (mmol/L) 4.5 ± 1.3 3.2 ± 0.7 < 0.001*

TG (mmol/L) 1.3 ± 0.8 1.2 ± 0.6 0.754

HDL-C (mmol/L) 1.3 ± 0.3 1.0 ± 0.2 < 0.001*

LDL-C (mmol/L) 2.9 ± 0.6 1.8 ± 0.6 < 0.001*

Normally distributed variables between two groups were analyzed by Student’s t-
test. Mann–Whitney U test was applied for data of this type that were not normally
distributed. χ2-Square test or Fisher’s exact test compared categorical variables.
*p < 0.05.

CAS and control groups were near saturation as the reads
increased, suggesting that the sequencing depth was adequate
(Supplementary Figures 1A,B). The Venn diagram showed
overlapping and different enriched OTUs in each group
(Supplementary Figure 1C). Next, OTUs were annotated using
the Ribosomal Database Project database3, and the relative
abundance of the gut microbiota is shown (Figure 2A and
Supplementary Figures 1D–G).

3http://rdp.cme.msu.edu/
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FIGURE 2 | Microbial diversity of CAS patients and healthy controls. (A) Relative abundance of gut microbiota for two groups from genus level. (B,C) α-Diversity
(chao1 and observed_species) for two groups showed no significant difference. (D–F) β-Diversity is significantly increased for CAS patients.

The microbial α-diversity is shown in Supplementary Table 1.
The Wilcoxon rank-sum test compared the α-diversity between
the two groups, and no significant difference was found, which
was also consistent with the rarefaction curve (Figures 2B,C).
However, the gut microbiota communities between the CAS
group and healthy control group were significantly different, as
shown by β-diversity (Figures 2D–F).

Differential Gut Microbiota Enriched in
Carotid Atherosclerosis Patients and
Healthy Controls
Using LEfSe analysis, we screened 29 different features at the
phylum (n = 1), class (n = 3), order (n = 5), family (n = 9),

and genus (n = 11) levels with a threshold of LDA > 2
(Figure 3A). The Wilcoxon rank-sum test was also used to
explore changes in microbiota, and 30 differentially enriched taxa
were identified (Figures 3B–D, Supplementary Figure 2, and
Supplementary Table 2). The differential microbiota at the genus
level from the Wilcoxon test were the same as those that we
had screened using LEfSe analysis (Table 2). Acidaminococcus,
Christensenella, and Lactobacillus were enriched in CAS patients;
Anaerostipes, Fusobacterium, Gemella, Parvimonas, Romboutsia,
and Clostridium XVIII/XlVa/XlVb were enriched in healthy
controls. The correlation between different genera was shown by
Spearman’s correlation test (Figure 3E), and these microbiota
genera were further utilized in correlation analysis with
differential metabolites and DEGs.

TABLE 2 | Differentially enriched gut microbiota from genera level.

Gut microbiota Mean (AS) Mean (Con) p-value Median (AS) Median (Con)

g__Acidaminococcus 0.000880977 0.00010395 0.004853071 −10.30582176 −9.853309555

g__Anaerostipes 0.001823025 0.00227001 0.033041905 −11.23182118 −10.38382427

g__Christensenella 4.28794E-05 3.89813E-06 0.027190901 −13.55374927 −12.96878677

g__Clostridium XVIII 0.000165021 0.000632796 0.008816879 −12.96878677 −12.23182118

g__Clostridium XlVa 0.014102131 0.024426975 0.011581483 −6.754083402 −5.596422402

g__Clostridium XlVb 0.001576143 0.00431263 0.000456455 −9.352776212 −8.268347055

g__Fusobacterium 0.000284563 0.002597453 0.043528042 −13.55374927 −12.39278523

g__Gemella 3.89813E-06 2.079E-05 0.014781178 −14.55374927 −14.55374927

g__Lactobacillus 0.004282744 0.000174116 0.001399704 −10.74639435 −11.96878677

g__Parvimonas 1.29938E-06 1.68919E-05 0.012301771 −14.55374927 −14.55374927

g__Romboutsia 0.000267672 0.001351351 0.000467579 −11.74639435 −10.55657256

Acidaminococcus, Christensenella, and Lactobacillus were enriched in CAS patients, whereas other genera were enriched in healthy controls.
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FIGURE 3 | Differentially enriched gut microbiota for CAS patients and healthy controls. (A) A total of 29 different features screened by LEfSe at phylum (n = 1), class
(n = 3), order (n = 5), family (n = 9), and genus (n = 11) level with a threshold of LDA > 2. (B) PCA plot demonstrated that CAS group is significantly different from
control group based on differential genera. (C,D) Differentially enriched gut microbiotas were visualized in heatmap and box plot. (E) Associations between
differential microbiotas were by correlation heatmap. Bluer color indicates a more positive correlation, whereas redder color indicates a more negative correlation.

Different Functional Composition
Profiles of Gut Microbiota Between
Carotid Atherosclerosis Patients and
Healthy Controls
Through PICRUSt, functional composition profiles of gut
microbiota were predicted based on relative abundance and
compared between CAS patients and healthy controls. In total,
65 of 265 differentially enriched KEGG pathways (level 3)
were identified (Supplementary Table 3) with a threshold of
p < 0.05, of which 39 were enriched in the CAS group, whereas
26 were enriched in healthy controls. Different pathways with
the highest relative abundance were visualized by heatmap and
boxplot (Figure 4).

Metabolic Profiling of Carotid
Atherosclerosis Patients and Controls
In total, 1,425 and 1,580 peaks were detected for the POS and
NEG modes of UHPLC-QTOFMS, respectively, after filtering
internal standards and pseudo-positive peaks.

Differential Metabolites Screening
Two multivariate statistical analysis methods, principal
component analysis (PCA) and orthogonal projections to
latent structures-discriminant analysis, were utilized to classify
plasma samples. Both methods showed that plasma samples for
CAS patients and controls were clearly separated (Figures 5A,B
and Supplementary Figures 3A,B). In addition, the permutation
test indicated that the orthogonal projections to latent structures-
discriminant analysis model is valid and that no overfitting exists
(Supplementary Figures 3C,D).

With the thresholds of VIP > 1 and p < 0.05, 165 and
96 significantly changed metabolites were screened in POS
and NEG modes, respectively (Supplementary Figure 3E and
Supplementary Table 4). The patterns of differential metabolism
were visualized by heatmaps and volcano plots (Figures 5C,D
and Supplementary Figures 3F,G). Next, we added | log2(fold-
change)| > 1 as another threshold and combined POS and NEG
modes to select differential metabolites (Table 3) for correlation
analysis with different omics data. With the addition of this
threshold, 11 and 12 metabolites were screened in POS and NEG
modes, respectively. PAGln, upregulated in CAS patients, was the
only metabolite detected in both modes and had the highest |
log2(fold-change)| in POS mode.

Metabolic Pathway Analysis for
Differential Plasma Metabolites
Differential metabolites were subjected to the KEGG database
to analyze the pathways in which these metabolites were
involved. The bubble plot and tree plot demonstrated the p-value
and topological impact of each enriched pathway (Figure 6,
Supplementary Figure 4, and Supplementary Table 5).

Adjustment for Covariates in Differential
Genera and Metabolites
Most of the identified features still remain after performing
adjustments for the covariates, including age and sex. First, in
the differential genera after adjustments using the generalized
linear model. Anaerostipes, Clostridium_XVIII, Gemella, and
Lactobacillus were found to be significantly associated with sex.
Clostridium_XlVa and Parvimonas were found to be significantly
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FIGURE 4 | KEGG pathways (level 3) predicted by PICRUSt. (A,B) Differential
KEGG pathways with top relative abundance were visualized as heatmap and
box plot. Warmer color indicates higher relative abundance, whereas colder
color indicates lower relative abundance.

associated with age and sex. In the differential metabolites after
adjustment using PERMANOVA, no metabolites were found
to be associated with covariates (p > 0.05). The details of the
adjustments for differential genera and metabolites could be,
respectively, seen in Supplementary Tables 6, 7.

Transcriptomic Profiling of Carotid
Atherosclerosis Patients and Controls
Differentially Expressed Gene Screening
There were 32 CAS patients in the GEO datasets we selected
(GSE43292). The gene expression profiles of carotid atheroma
and paired macroscopically intact tissue adjacent to the atheroma
plaque of each patient were shown by mRNA microarray. To
reduce the effect of confounding factors, we performed a paired
DEG analysis, and a total of 132 DEGs were screened, of which 76
were upregulated and 56 were downregulated with the thresholds
of | log2(fold-change)| > 1 and adjusted p< 0.01 (Figures 7A,B).
DEGs with the top-20 | log2(fold-change)| were selected for
correlation analysis (Table 4).

Functional Annotation Analysis for Differentially
Expressed Genes
To obtain the biological functions of the DEGs, GO-BP and
KEGG pathway analyses were performed. Count number > 2
and p-value < 0.05 were selected as the thresholds for
significantly enriched GO-BP terms and KEGG pathways. We
have also performed enrichment analysis on the DEGs using
the Reactome database. These DEGs were mainly associated
with inflammatory and immune responses, as both KEGG
and Reactome pathways enrichment analyses have shown
(Figures 7C,D and Supplementary Tables 8, 9).

Integration of Multi-Omics Data
Spearman’s correlation test was conducted between differentially
enriched genera, differential metabolites, and DEGs to investigate
the associations among multi-omics results (Supplementary
Table 10). The results were visualized as correlation heatmaps
(Figures 7E–G). The correlation analysis was also adjusted
by using FDR (Supplementary Figure 5 and Supplementary
Table 10).

Finally, to show the potential diagnostic value of multi-
omics data to discriminate CAS patients and healthy controls,
we performed ROC and RF analyses for differentially enriched
genera, differential metabolites, and DEGs (Figure 8 and
Supplementary Table 11).

DISCUSSION

In this multi-omics study, gut microbiota and metabolite data
were obtained from samples of CAS patients and healthy
controls from PUMCH, and mRNA microarray data were
obtained from GSE43292, which includes 32 atheromas and
32 paired control samples. The microbiome study showed
significantly different β-diversity between CAS patients and
healthy controls, although the α-diversity between the two groups
was not significantly different, suggesting a significant difference
in microbial composition, although there were similarities in
microbial richness. At the genera level, 11 differentially enriched
microbiota were identified (Table 2). In these differentially
enriched microbiota, Acidaminococcus, Christensenella, and
Lactobacillus genera were enriched in CAS patients. The
metabolome analysis screened 165 and 96 differentially expressed
metabolites in the POS and NEG modes, respectively. Next,
22 differential metabolites were further selected for correlation
analysis by adding | log2(fold-change)| > 1 as an additional
threshold (Table 3). In transcriptomic analysis, 76 upregulated
and 56 downregulated genes were screened, and DEGs with top-
20 | log2(fold-change)| were included for correlation analysis
(Table 4). Spearman’s correlation indices showed the association
among different omics results.

In the genus-level analysis of differential gut microbiota,
Acidaminococcus, Christensenella, and Lactobacillus were
more abundant in the CAS group, whereas Anaerostipes,
Clostridium XVIII/XlVa/XlVb, Fusobacterium, Gemella,
Parvimonas, and Romboutsia were enriched in the healthy
controls. Acidaminococcus is known to be a normal commensal
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FIGURE 5 | Differential metabolites screening for CAS patients and healthy controls (POS mode). (A,B) PCA and orthogonal projections to latent
structures-discriminant analysis showed that CAS patients and healthy controls could be clearly separated. (C,D) Patterns of differential metabolites in POS mode
were demonstrated by volcano plot and heatmap.

TABLE 3 | Differential metabolites for correlation analysis.

Metabolites VIP p-value q-value Log2 (fold-change)

POS mode –

Ethanolamine 2.816546298 6.3964E-18 8.96521E-16 −2.509502083

Gly-Pro 2.796795801 1.88336E-19 4.55375E-17 −2.603752686

Propoxur 2.785113538 2.69771E-20 9.78414E-18 −2.406871344

Homocitrate 1.978541617 0.000652259 0.001823948 1.047764919

α-N-Phenylacetyl-L-glutamine 1.762051456 0.000569636 0.001635096 1.436216381

Diethylcarbamazine 1.642884521 0.000557875 0.001607395 1.208993076

Dimethylbenzimidazole 2.347024371 7.03818E-07 9.59896E-06 1.016050071

Eicosapentaenoic acid 1.807845477 4.49425E-05 0.00025414 −1.07267148

Decanoyl-L-carnitine 1.911522868 1.30652E-05 9.80438E-05 −1.289227648

3-Methoxy-4-Hydroxyphenylglycol Sulfate 1.673158751 0.000206213 0.000749297 1.007090541

O-Desmethylnaproxen 2.140136711 9.1044E-09 2.26664E-07 −1.017466992

NEG mode

Salicylic acid 1.734352898 0.01921337 0.0277024 4.145007415

3-Aminopropanesulphonic Acid 1.039813313 0.040379565 0.047806112 1.796022962

6-Hydroxynicotinic acid 1.206818152 0.029194166 0.037505435 2.079415637

Formylanthranilic acid 1.949132714 0.000220127 0.000651909 1.426589827

Xanthopterin 2.153639262 5.0361E-11 1.65249E-09 −1.016011938

N1-Methyl-4-pyridone-3-carboxamide 2.443377406 8.40619E-14 3.7485E-12 −1.180267083

3-Hydroxydodecanoic acid 1.872339097 5.84638E-05 0.000209662 −1.103961553

Salicyluric acid 1.428929548 0.027925205 0.036246094 1.744879658

Phenylacetylglycine 1.609315395 1.20649E-07 1.48763E-06 1.576664728

D-Biotin 2.385066256 4.85697E-11 1.60101E-09 −2.067524087

α-N-Phenylacetyl-L-glutamine 1.701961669 0.000390232 0.001051251 1.214340063

5,10-methylene-THF 1.922624936 8.93527E-07 8.64096E-06 −1.040847640

A threshold of | log2(fold-change)| > 1 was added based on basic threshold of VIP > 1 and p-value < 0.05 to further screen metabolites for correlation analysis.

Frontiers in Physiology | www.frontiersin.org 8 May 2021 | Volume 12 | Article 645212140

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-645212 May 19, 2021 Time: 18:21 # 9

Ji et al. Exploration of CAS via a Multi-Omics Approach

FIGURE 6 | KEGG pathway enrichment analysis for differential metabolites (POS mode). (A) Horizontal axis and size of bubble showed topological impact of
pathways. Vertical axis and color of bubble showed p-value of pathways. (B) Size of square showed topological impact of pathways, whereas color of square
showed p-value of pathways.

FIGURE 7 | DEG analysis and correlation between different types of omics data. (A,B) Expression patterns of DEGs were shown by heatmap and volcano plot.
(C,D) GO-BP terms and KEGG pathways with top-10 count number were visualized. Functional enrichment analysis for DEGs showed that these DEGs were mainly
associated with inflammatory and immune response. (E–G) Pairwise correlation between microbiome, metabolome, and transcriptome data. Reder color indicates a
stronger correlation, whereas bluer color indicates a weaker correlation.

of the human gut and has been occasionally related to infective
processes but always associated with polymicrobial infections
(D’Auria et al., 2011). Acidaminococcus was reported to be
enriched in the stool of patients with several inflammatory
diseases, such as rheumatoid arthritis, ankylosing spondylitis,
and ulcerative colitis (Altomare et al., 2019; Lee J. Y. et al., 2019;
Zhou et al., 2020). Moreover, according to a recent study by

Zheng et al. (2020), the abundance of Acidaminococcus is
positively correlated with a pro-inflammatory diet, indicating
that Acidaminococcus may be a pro-inflammatory microbiota
and represent inflammatory status in the development of AS.
Christensenella is a gram-negative, strictly anaerobic short rod
associated with weight loss (Morotomi et al., 2012). Several
studies have indicated that Christensenella was enriched in
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TABLE 4 | DEGs with top-20 | log2(fold-change)|.

Gene symbol Gene name Log2(fold-change) Adjusted p-value

FABP4 Fatty acid binding protein 4 2.454461 1.56E-05

CNTN1 Contactin 1 −1.911032 1.21E-05

IGJ Joining chain of multimeric IgA and IgM 1.893149 0.000118

TPH1 Tryptophan hydroxylase 1 −1.886626 3.76E-05

IGKV1D-33 Immunoglobulin κ variable 1D-33 1.884738 3.34E-05

IGHV3-52 Immunoglobulin heavy variable 3-52 1.8676 3.85E-05

IGKV3D-11 Immunoglobulin κ variable 3D-11 1.851044 6.82E-05

MMP7 Matrix metallopeptidase 7 1.840231 0.000405

MMP9 Matrix metallopeptidase 9 1.817804 8.07E-05

CD36 CD36 molecule 1.802205 0.000134

IBSP Integrin binding sialoprotein 1.794982 9.96E-06

CNTN4 Contactin 4 −1.792332 9.36E-06

IGKV1D-27 Immunoglobulin κ variable 1D-27 1.751979 0.000204

IGHV4-59 Immunoglobulin heavy variable 4-59 1.739775 6.03E-05

IGHV3-43 Immunoglobulin heavy variable 3-43 1.73119 5.12E-05

IGKV1OR2-3 Immunoglobulin κ variable 1/OR2-3 1.674665 9.21E-05

IGKC Immunoglobulin κ constant 1.672012 5.01E-05

CASQ2 Calsequestrin 2 −1.667664 1.07E-05

IGKV3D-20 Immunoglobulin κ variable 3D-20 1.667174 8.07E-05

IGKV2D-26 Immunoglobulin κ variable 2D-26 1.654989 0.000138

FIGURE 8 | Potential diagnostic value of differential gut microbiota, metabolites, and DEG with importance. (A) Microbial predictive model. Gut microbiota
significantly enriched in CAS group were included, and RF algorithm was used to construct this model. (B) Metabolomic predictive model. Phenylacetylglutamine,
phenylacetylglycine, ethanolamine, and eicosapentaenoic acid were included, and RF algorithm was used to construct this model. (C) FABP4 is the DEG with the
highest log2(fold-change), and potential diagnostic value of this gene was shown by ROC analysis.

type 1 diabetes patients with the decreased abundance of the
SCFA-producing microbiota, Roseburia. In addition, whole-
genome sequencing indicated that some genes of Christensenella
were related to lipopolysaccharide biosynthesis, and the
lipopolysaccharide from Christensenella can trigger a weak
inflammatory response through the nuclear factor kappa-B (NF-
κB) signaling pathway (Yang et al., 2018). Although Lactobacillus
is often described as an anti-inflammatory probiotic in many
studies of AS, the role of Lactobacillus in the pathogenesis of AS
remains controversial (Ding et al., 2017). Several Lactobacillus
species significantly reduce the inflammatory response via T
regulatory cells and alleviate arteriosclerotic level, but some
other species of Lactobacillus could promote the inflammatory
response, which may aggravate AS (Smits et al., 2005; Bhathena
et al., 2009; Karimi et al., 2009; Pan et al., 2011; Won et al.,

2011; Shah et al., 2012; Dimitrijevic et al., 2014). The increased
abundance of Lactobacillus in the CAS group may fall into
different species; therefore, additional research is needed to
address this question.

For the genera enriched in healthy controls, Anaerostipes,
Gemella, and Parvimonas were reported to be scarce and
primarily enriched in the healthy gut (Bodkhe et al., 2019; Hong
et al., 2019; Magruder et al., 2020). Clostridium XVIII/XlVa/XlVb,
Fusobacterium, and Romboutsia are all major SCFAs, particularly
butyrate producers in the process of human metabolism (Duncan
et al., 2002; Bui et al., 2014; Neijat et al., 2019). In humans,
SCFAs are produced from dietary fibers and resistant starches
that cannot be decomposed by digestive enzymes through
fermentation by the microbiota in the cecum and colon
(Cummings et al., 1987). SCFAs may suppress inflammation by
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reducing migration and proliferation of immune cells, thereby
reducing many types of cytokines and inducing apoptosis (Ohira
et al., 2017). Furthermore, data from animal experiments found
that compared with the sterile mice, the atherosclerotic plaque
of mice carrying Roseburia was significantly reduced after they
were fed with a high fiber diet. The mechanism was that
SCFAs could inhibit the activation of histone deacetylase, NF-
κB, and tumor necrosis factor-α signaling pathways, reduce the
expression of vascular cell adhesion molecule-1, and protect
endothelial function. On the other hand, SCFAs could promote
the conversion of cholesterol to bile acid, thereby alleviating AS
(Kasahara et al., 2018).

Based on the metabolomic analysis, the upregulated PAGln
was detected in both POS and NEG modes and had the highest
| log2(fold-change)| in POS mode. PAGln is a phenylalanine-
derived metabolite formed from the conjugation of glutamine
and phenylacetate (Aronov et al., 2011). Phenylalanine is one
of the essential amino acids for human metabolism. After
phenylalanine is ingested by the human body, most of this amino
acid is absorbed by the small intestine. Excessive phenylalanine
reaches the colon and can be metabolized into phenylpyruvic acid
further into phenylacetic acid by gut microbiota. Next, glutamine
and this microbial-derived phenylacetic acid are conjugated
in the human liver and kidney, and PAGln is produced (Li
et al., 2008; Witkowski et al., 2020). Increased level of plasma
PAGln was shown to be associated with increased major adverse
cardiac events (myocardial infarction, stroke, or death) by
untargeted metabolomics using a large cohort (n = 1,162) and
a validation cohort (n = 4,000) (Nemet et al., 2020). Bogiatzi
et al. (2018) also discovered that PAGln was elevated in AS
patients. Our results were consistent with the findings of these
previous studies. In addition, the KEGG pathway analysis in
our study found that differential metabolites were significantly
enriched in phenylalanine metabolic pathway for both POS
and NEG modes, suggesting that phenylalanine metabolism
and subsequently generated PAGln play vital roles in CAS
pathogenesis. A recent mechanistic study has shown that PAGln
increases thrombosis potential by activating platelet functions
through multiple approaches such as interacting with α2A,
α2B, and β2 adrenergic receptors (Nemet et al., 2020). Another
upregulated metabolite in the NEG mode, phenylacetylglycine
(PAGly), has a similar function as PAGln and can enhance
platelet function via adrenergic receptors. However, compared
with PAGln, PAGly was a major product in mice found in the
study of Nemet et al. (2020). Our study and previous findings
indicated that PAGln and phenylalanine metabolism are crucial
mediators in CAS pathogenesis and might serve as promising
pharmacotherapeutic targets to slow CAS progression.

Ethanolamine was the differential metabolite with the highest
VIP value in POS mode and downregulated in CAS patients.
The level of ethanolamine in HDL is positively correlated
with cholesterol efflux capacity and negatively associated with
plaque scores in chronic kidney disease (CKD) patients (Maeba
et al., 2018). The finding of downregulated ethanolamine in
CAS patients in our study was consistent with this previous
study and suggested that downregulation of ethanolamine might
promote AS progression. In contrast to this previous study,

the patients in our study were not CKD patients and might
be more representative. Another downregulated metabolite,
eicosapentaenoic acid (EPA), is an omega-3 fatty acid found in
fish oil. EPA and its derivatives were found to have protective
roles against cardiovascular disease in clinical trials (Leaf et al.,
1994; Sacks et al., 1995; Bhatt et al., 2020). EPA can be
enzymatically converted to resolvin E1 (RvE1) in vivo and affect
atherosclerotic inflammation and mediate the immune response
through the EPA/RvE1/ChemR23 pathway, thereby improving
the outcomes of atherosclerosis-related cardiovascular disease
(Carracedo et al., 2019). Our results indicated a deficiency of these
beneficial metabolites in CAS patients, and supplementation with
fish oil might benefit these patients.

In transcriptomic analysis, we observed that DEGs were
mainly associated with inflammatory and immune response
through GO-BP and KEGG pathway enrichment analysis. Our
findings at the transcriptome level agree with the consensus
that atherosclerosis is characterized by low-grade, chronic
inflammation of the arteries and infiltration of immune cells
such as macrophages, mast cells, and T lymphocytes (Hansson,
2005; Galkina and Ley, 2009; Bäck et al., 2019). Furthermore,
FABP4, fatty acid-binding protein 4, is the upregulated DEG
in CAS patients with the highest | log2(fold-change)|. FABP4
is mainly expressed in adipocytes and macrophages. This
protein can serve as an adipokine for the development of
atherosclerosis and insulin resistance (Hotamisligil and Bernlohr,
2015). In macrophages, FABP4 can induce an inflammatory
response through such pathways as NF-κB and JKN/AP-1
(Furuhashi, 2019).

In the correlation analysis between gut microbiota and plasma
metabolites, PAGln was negatively associated with Clostridium
XIVa, which belongs to the Lachnospiraceae family. In early
renal function decline patients, Barrios et al. (2015) found
that PAGln was negatively correlated with several genera in
the Lachnospiraceae family, and in patients with coronary
artery disease, Ottosson et al. (2020) identified one unknown
genus in the Lachnospiraceae family that was also negatively
correlated with PAGln. The results of our study were consistent
with the findings of previous studies and further identified a
new genus in this family that was negatively correlated with
PAGln in CAS patients. Although few studies on this topic
have been conducted, the association between Lachnospiraceae
and PAGln might be one of the microbiota–metabolite axes
mediating AS pathogenesis. EPA, the metabolite with anti-
inflammatory roles in AS patients, was negatively associated with
Acidaminococcus, a potentially pro-inflammatory microbiota
genus. Because a Mediterranean diet, which mainly includes
foods rich in unsaturated fatty acid (such as EPA), can have
an anti-inflammatory effect (Zheng et al., 2020), we could infer
that EPA might reduce atherosclerotic inflammation by targeting
Acidaminococcus.

In the correlation analysis between transcriptomic profiles
and the other two omics datasets, we also obtained some
findings that might deepen the current understanding of AS
pathogenesis. We found that Acidaminococcus was positively
associated with FABP4 and had the highest Spearman’s
correlation coefficient and the most significant p-value among
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all microbiota–DEG pairs (ρ = 0.39, p = 0.0014). Although the
pro-inflammatory roles of Acidaminococcus and FABP4 have
been widely studied (Hotamisligil and Bernlohr, 2015; Altomare
et al., 2019; Butera et al., 2020), our study was the first to
identify the association between them and might provide a new
perspective to explore CAS pathogenesis. Furthermore, in the
correlation analysis for DEGs and metabolites, FABP4 was also
positively associated with pro-atherosclerotic metabolites (PAGln
and PAGly) and negatively associated with anti-atherosclerotic
metabolite (ethanolamine), which implied that this adipokine
was not only associated with crucial gut microbiota but also might
interact with crucial metabolites in CAS pathogenesis.

In this study, we performed microbial and metabolomic
analyses using fecal and plasma samples from CAS patients
in PUMCH. Transcriptomic analysis was conducted based
on one GEO dataset (GSE43292) containing 32 CAS carotid
atheromas and paired controls. Differential gut microbiota,
metabolites, DEGs, and related pathways were identified. Finally,
the associations among various omics data were investigated by
correlation analysis. However, our study has some limitations.
First, the body mass index was marginally higher (24.7 ± 2.7 for
CAS patients and 23.2 ± 2.2 for healthy controls, p = 0.047) in
CAS patients; the risk factor role of obesity might account for this
difference (Rocha and Libby, 2009). Second, patients were only
recruited from PUMCH, and the sample size was small. Future
multicentric studies with large samples are needed to generalize
these findings. Third, transcriptomic data obtained from the
GEO database were not obtained from the same patients as the
microbiome and metabolome data. This difference would result
in batch effects, which need to be verified by the same cohorts.
Furthermore, in vitro and in vivo experiments are warranted to
elucidate further the mechanisms governing how gut microbiota,
plasma metabolites, and DEGs interact with one another.

CONCLUSION

Despite extensive researches investigating AS, in the past
decade, relatively little is known regarding the mechanisms
underlying the pathogenesis of CAS. Accumulating evidence
has shown that the gut microbiota serve as a pivotal
risk factor in cardiovascular diseases by influencing host
metabolism and immune homeostasis (Battson et al., 2018).
However, no direct evidence has established a direct and causal
relationship between altered gut microbiota and CAS. Through
an integrated analysis of multi-omics, we explored the possible
“microbiota–metabolite–gene” regulatory axis that may act on
CAS, thereby helping to establish a theoretical basis for the
further specialized study of CAS.
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Supplementary Figure 1 | Quality control for 16S rDNA sequencing and
microbial diversity of CAS and healthy control samples from different level. (A,B)
Rarefaction curves of richness (observed_species and chao 1) suggested the
sequencing depth is adequate. (C) The Venn diagram showed the overlapping
OTUs in microbiota among CAS patients and healthy controls. (D–G) The relative
abundance of gut microbiota for two groups from phylum, class, order, and family
levels, respectively.

Supplementary Figure 2 | Differentially enriched microbiota for CAS patients and
healthy controls from all levels. (A) The differentially enriched gut microbiotas from
all levels were visualized in heatmap. (B) PCA plot demonstrated that CAS group
is significantly different from control group based on differential microbiotas from
all levels. (C) The differentially enriched gut microbiotas were visualized in box plot.

Supplementary Figure 3 | Differential metabolites screening for CAS patients
and healthy controls (NEG mode) and permutation test for OPLS-DA model. (A,B)
The PCA and OPLS-DA showed that CAS patients and healthy controls can be
clearly separated. (C,D) The permutation test showed that the OPLS-DA model is
valid and no overfitting exist for both POS and NEG mode. (E) The Venn diagram
showed 17 overlapping different metabolites between POS and NEG mode. (F,G)
Patterns of differential metabolites in NEG mode were demonstrated by the
volcano plot and heatmap.

Supplementary Figure 4 | KEGG pathway enrichment analysis for differential
metabolites (NEG mode). (A) The horizontal axis and sized of the bubble showed
the topological impact of pathways. The vertical axis and color of bubble showed
the p-value of pathways. (B) The size of the square showed the topological impact
of pathways while the color of the square showed the p-value of the pathways.

Supplementary Figure 5 | FDR adjustment for correlation between different
types of omics data. (A–C) The FDR adjustment for correlation between
microbiome, metabolome, and transcriptome data. Redder color indicates
stronger correlation while bluer color indicates weaker correlation.

Supplementary Table 1 | The α-diversity for CAS and healthy controls.

Supplementary Table 2 | Differentially enriched microbiota from all levels.

Supplementary Table 3 | Differential KEGG pathways predicted by PICRUSt.

Supplementary Table 4 | All differential metabolites between CAS patients and
healthy controls.

Supplementary Table 5 | KEGG pathways for differential metabolites.

Supplementary Table 6 | Covariates adjustment for differentially enriched genera
between CAS patients and healthy controls using GLM analysis.

Supplementary Table 7 | Covariates adjustment for differential metabolites
between CAS patients and healthy controls using PERMANOVA analysis.

Supplementary Table 8 | Functional enrichment analysis for DEGs.

Supplementary Table 9 | Enrichment analysis on the DEGs using the
Reactome database.

Supplementary Table 10 | Details for correlation analysis.

Supplementary Table 11 | AUCs for differentially enriched gut microbiota,
metabolites, and DEGs.
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Background: Exploring the potential biological relationships between heart failure with
preserved ejection fraction (HFpEF) and concomitant diseases has been the focus of
many studies for the establishment of personalized therapies. Hypertension (HTN) is the
most common concomitant disease in HFpEF patients, but the functional connections
between HFpEF and HTN are still not fully understood and effective treatment strategies
are still lacking.

Methods: In this study, tandem mass tag (TMT) quantitative proteomics was used to
identify disease-related proteins and construct disease-related networks. Furthermore,
functional enrichment analysis of overlapping network modules was used to determine
the functional similarities between HFpEF and HTN. Molecular docking and module
analyses were combined to identify therapeutic targets for HFpEF and HTN.

Results: Seven common differentially expressed proteins (co-DEPs) and eight
overlapping modules were identified in HFpEF and HTN. The common biological
processes between HFpEF and HTN were mainly related to energy metabolism.
Myocardial contraction, energy metabolism, apoptosis, oxidative stress, immune
response, and cardiac hypertrophy were all closely associated with HFpEF and
HTN. Epinephrine, sulfadimethoxine, chloroform, and prednisolone acetate were best
matched with the co-DEPs by molecular docking analyses.

Conclusion: Myocardial contraction, energy metabolism, apoptosis, oxidative stress,
immune response, and cardiac hypertrophy were the main functional connections
between HFpEF and HTN. Epinephrine, sulfadimethoxine, chloroform, and prednisolone
acetate could potentially be effective for the treatment of HTN and HFpEF.

Keywords: hypertension, heart failure with preserved ejection fraction, molecular docking, modular, therapeutic
prediction
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INTRODUCTION

Heart failure with preserved ejection fraction (HFpEF), which is
a complex syndrome characterized by a normal left ventricular
ejection fraction and abnormal diastolic function, accounts
for more than 50% of heart failure (HF) patients (Pieske
et al., 2019). Current therapies for HFpEF include strategies
to manage the coexisting conditions, reduce symptoms, and
treat volume overload when necessary (Redfield, 2016). Although
there has been much progress in HFpEF-related research,
an effective strategy for HFpEF treatment has not yet been
established (Gazewood and Turner, 2017). Compared with
heart failure with reduced ejection fraction (HFrEF), HFpEF
is heterogeneous, and drugs effective against HFrEF are not
suitable for HFpEF (Graziani et al., 2018). Thus, a complete
clinical phenotypic classification of HFpEF, including tiology,
concomitant diseases, and risk factors, is required. Furthermore,
exploring the underlying biological functions involved in the
different types of HFpEF will help develop personalized therapies
and precision medicines for HFpEF (Borlaug, 2020; Ge, 2020).

Patients with HFpEF that are diagnosed with hypertension
(HTN) and coronary heart disease are regarded as having
vascular-related HFpEF (Ge, 2020). Studies have shown that
HTN is the most common complication in patients with
HFpEF, but the biological relationship between HTN and
HFpEF is still not fully understood (Tadic et al., 2018). In
addition, studies have suggested that HTN is an additional
risk factor for HFpEF (Dunlay et al., 2017). HFpEF and
HTN share many common pathogeneses, such as dysfunction
of cardiac autonomy, imbalance of the renin-angiotensin-
aldosterone system, and excessive oxidative stress. In addition,
some underlying biological mechanisms play an important role
in the transition from HTN to HFpEF. For example, hypertension
leads to diastolic dysfunction and concentric remodeled left
ventricular decompensation, resulting in HFpEF (Drazner, 2011;
Heinzel et al., 2015; Messerli et al., 2017; Nwabuo and Vasan,
2020). In addition, HTN also activates chronic inflammation
and increases collagen deposition, further exacerbating left
ventricular dysfunction (Paulus and Tschöpe, 2013). Studies
have reported that myocardial contractile dysfunction, right
ventricular dysfunction, arterial stiffness, ventricular-arterial
coupling, and microvascular dysfunction could increase the risk
of HFpEF in patients with HTN (Hicklin et al., 2020). However,
in clinical trials, drugs such as angiotensin-converting enzyme
inhibitors, angiotensin II receptor blockers, diuretics, and beta-
blockers, which showed beneficial effects against common
pathogeneses of HFpEF and HTN, did not produce significant
positive effects in patients with HFpEF (Kjeldsen et al., 2020).
Therefore, further research is needed to explore the potential
biological relationships between HFpEF and HTN.

Disease network construction provides a solution to explore
the relationships between diseases (Le and Pham, 2017),
where modules of disease-related networks are responsible
for various features of the diseases. Functional enrichment
analysis of the overlapping modules reflects the functional
links among related diseases (Dean et al., 2017). For example,
using this method, a previous study showed that the negative

regulation of transcription from RNA polymerase II promoter
RNA and the negative regulation of apoptotic processes are
overlapping biological functions among type-2 diabetes mellitus,
prostate cancer, and chronic myeloid leukemia (Liu et al.,
2019). Furthermore, another study showed that atherosclerosis,
cholesterol homeostasis, plasma lipoprotein particle remodeling,
and oxidative stress responses are common risk factors for stroke
and coronary heart disease (Zhang et al., 2014).

The Dahl salt-sensitive (DS) rat model has been implemented
for the study of HFpEF (Cho et al., 2017). Toward that,
DS rats diagnosed with HTN or HFpEF were analyzed using
proteomics. Cytoscape software and STRING platforms were
used to construct a disease network. Modules of the disease
network were divided using Molecular Complex Detection
(MCODE). Gene Ontology (GO) enrichment analysis was
performed to identify the significant functions and pathways
of overlapping modules found in the Database for Annotation,
Visualization, and Integrated Discovery (DAVID). Molecular
docking and module analyses were combined to contribute to the
development of personalized therapies and precision medicines
for HFpEF and HTN treatment. A flowchart of the research
design is shown in Figure 1.

MATERIALS AND METHODS

Animals and Experimental Protocols
Specific pathogen-free 6-week-old male DS rats (weight: 160–
180 g; Certificate No. 2016-0006) were obtained from the Charles
River Animal Laboratory (Beijing, China). Rats were housed in
groups of six rats per cage under controlled conditions (12 h
dark/light cycle, temperature: 20–24◦C, relative humidity: 40–
60%, dB ≤ 60) and with free access to water and food. After
a week of adaptation, the rats were randomly divided into the
following three groups: the HTN group (8% NaCl chow for
7 weeks, n = 6), the HFpEF group (8% NaCl chow for 11 weeks,
n = 6), and the control group (0.3% NaCl chow for 7 or 11 weeks,
n = 12). All experiments were reviewed by the Animal Ethics
Committee of the Shandong University of Traditional Chinese
Medicine (Ethics No. SDUTCM2018071501).

Tissue Collection
The rats in the HTN and HFpEF groups were euthanized after
7 and 11 weeks of the high-salt diet (HSD), respectively, and
the rats in the control group were randomly sacrificed after 7
or 11 weeks of the control diet. Pentobarbital (20 mg/kg, i.p.)
was used for anesthesia in rats, and the left ventricle (LV) was
collected from each rat and stored at−80◦C.

Tandem Mass Tag-Labeled Quantitative
Proteomics
Twelve LV samples [HTN group n = 3, HFpEF group n = 3,
control group (euthanized at 7 weeks) n = 3, control group
(euthanized at 11 weeks) n = 3] were collected for TMT
quantitative proteomics. Previous studies reported that data
with three samples in each group could reliably be statistically
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FIGURE 1 | Flowchart of the research design. Deciphering the protein networks and modular connections, and targeting precision medicines for HFpEF and HTN
using TMT quantitative proteomics and molecular docking analyses.

analyzed (Maitiabola et al., 2020; Yan et al., 2020). The tissue
was removed from the refrigerator at −80◦C, ground into
powder, and quickly transferred to a centrifuge tube pre-cooled
with liquid nitrogen. PASP protein lysate (100 mM ammonium
bicarbonate, 8 M urea, pH 8) was added to the liquid nitrogen,
shaken, mixed, and ultrasonicated in an ice water bath for
5 min, followed by centrifugation at 12,000 rpm for 15 min at
4◦C. Then, the supernatant was collected, 10 nM dithiothreitol
was added, and the mixture was incubated at 56◦C for 1 h.
Then, iodoacetamide was added and the reaction was allowed
to proceed for 1 h in the absence of light. Next, four volumes
of pre-cooled acetone were used for precipitation, followed by
centrifugation at 12,000 rpm for 15 min at 4◦C, after which
the precipitate was collected. The precipitate was resuspended
and washed with one milliliter of −20◦C pre-cooled acetone,
followed by a second centrifugation at 12,000 rpm for 15 min
at 4◦C. Then, the precipitate was collected and air dried,
and an appropriate amount of protein dissolving solution (8
M urea, 100 mM TEAB, pH 8.5) was used to dissolve the
protein precipitate.

The Bradford protein quantification kit (Beyotime, China)
was used to determine the protein concentration. DB protein
dissolving solution (8 M urea, 100 mM TEAB, pH 8.5) was added
to the protein sample to a volume of 100 µL, trypsin and 100 mM
buffer were added, and mixing and digestion were performed at
37◦C for 4 h. Then, pancreatin and CaCl2 were used for digestion
overnight. Formic acid was used to adjust the pH to less than

3, mixing was done at room temperature, and centrifugation
was performed at 12,000 rpm for 5 min. The supernatant was
then slowly passed through the C18 desalting column, and the
cleaning solution (0.1% formic acid, 3% acetonitrile) was used
for washing three times. In addition, an appropriate amount of
eluent (0.1% formic acid, 70% acetonitrile) was added, and the
filtrate was collected and lyophilized. One hundred microliters
of 0.1 M TEAB buffer was used for reconstitution, and 41 µL
of TMT labeling reagent was dissolved in acetonitrile. The
mixture was mixed at room temperature for 2 h, and 8%
ammonia was added to stop the reaction. An equal volume
of the labeled sample was used for mixing and freeze-drying
after desalting.

Mobile phase A solution (2% acetonitrile, 98% water, pH
10) and mobile phase B solution (98% acetonitrile, 2% water)
were prepared. The freeze-dried powder was dissolved in
solution A and centrifuged at 12,000 rpm for 10 min at room
temperature. An L-3000 HPLC system and a water VEHC 18
(4.6 mm × 250 mm, 5 µm) were used for this study, and
the column temperature was set to 45◦C. Details of the elution
gradient are shown in Table 1. One tube was collected every
minute, divided into 10 fractions, freeze-dried, and dissolved in
0.1% formic acid.

Mobile phase A solution (100% water, 0.1% formic acid)
and phase B solution (80% acetonitrile, 0.1% formic acid)
were prepared. One microgram of the supernatant from each
fraction was used for the test. The UHPLC system was upgraded
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TABLE 1 | The elution gradient table of peptide fraction separation
liquid chromatography.

Time (min) Flow rate
(mL/min)

Mobile phase
A (%)

Mobile phase
B (%)

0 1 97 3

10 1 95 5

30 1 80 20

48 1 60 40

50 1 50 50

53 1 30 70

54 1 0 100

with the EASY-nLC 1200 system. We prepared both the pre-
column (4.5 cm × 75 µm, 3 µm) and the analytical column
(15 cm × 150 µm, 1.9 µm). The elution conditions for liquid
chromatography are shown in Table 2. A Q Exactive series
mass spectrometer was used for this study, the ion source
was the Nanospray Flex, the ion spray voltage was 2.3 kV,
the temperature of the ion transfer tube was 320◦C, and the
data-dependent acquisition mode was used. The full scan range
of the mass spectrum was 350–1,500 m/z. The resolution of
the primary mass spectrometry was set to 60,000 (200 m/z),
the maximum capacity of the C-trap was 3 × 106, and the
maximum injection time of the C-trap was 20 ms. The top
40 precursor ions were selected for the full scan, and the
higher-energy collision dissociation (HCD) method was used
for the fragment, which contributed to the secondary mass
spectrometry detection. The isolation window of MS2 spectrum
is 2 m/z. HCD spectrum ranged from 120 to m/z (precursor
ion) × z (charge number) + 100 m/z. The resolution was
45,000 (200 m/z), the maximum capacity of the C-trap was
5 × 104, the maximum injection time of the C-trap was
86 ms, the threshold intensity was 1.2 × 105, and the dynamic
exclusion range was 20 s.

MS/MS raw files were processed using the MASCOT
engine (Matrix Science, London, United Kingdom; version
2.6) embedded into Proteome Discoverer software,
and searched against the UniProt database, including
Uniprot_RattusNorvegicus_36080_20180123 sequences1.
The search parameters included trypsin as the enzyme used
to generate peptides with a maximum of two missed cleavages
permitted. A precursor mass tolerance of 10 ppm was specified
along with a 0.05 Da tolerance for MS2 fragments. Except
for the TMT labels, carbamidomethyl (C) was set as a fixed
modification. The variable modifications were oxidation (M)
and acetyl (protein N-term). A peptide and protein false
discovery rate of 1% was enforced using a reverse database
search strategy. The quantitative values of proteins obtained
from two pairs of samples were examined using the t-test, and
the p-values were calculated. Fold change >1.1, fold change
<0.91, and P-value < 0.05, were considered to filter differentially
expressed proteins (DEPs). Proteomic data is provided as
Supplementary Material.

1http://www.uniprot.org

TABLE 2 | Elution gradient table of liquid chromatography.

Time (min) Flow rate
(nL/min)

Mobile phase
A (%)

Mobile phase
B (%)

0 600 94 6

2 600 85 15

78.5 600 60 40

80.5 600 50 50

81.5 600 45 55

90 600 0 100

Constructing the Protein-Protein
Interaction Networks for Heart Failure
With Preserved Ejection Fraction and
Hypertension
The STRING database (version 10.5)2 was used to predict protein
interactions and functional associations. The PPI networks
of HFpEF- and HTN-DEPs were obtained under controlled
parameters (interaction score >0.4). PPI networks were analyzed
using Cytoscape (version 3.6.1)3.

Functional Enrichment Analysis
HFpEF- and HTN-DEPs were submitted to the Database for
annotation, visualization, and integrated discovery for functional
enrichment, including GO and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses (version
6.8)4. The P-value was set at <0.05 for GO and KEGG pathway
enrichment, as is standard in the field (Yuan et al., 2016; Liu et al.,
2019).

Division and Identification of Network
Modules
Disease-related networks were analyzed using Cytoscape (version
3.6.1)5. Furthermore, the modules were divided by Molecular
Complex Detection (MCODE, version 1.3.2)6. The modules were
obtained under controlled parameters (degree cutoff = 2, node
score cutoff = 0.1, core threshold K = 2, flux density cutoff = 0.1,
K-core 2, max. depth = 100). The parameters for Cytoscape were
set as default, as recommended by previous studies (Yuan et al.,
2016; Liu et al., 2019).

Identification of Modern Medicine
Symptoms Related to Common
Differentially Expressed Proteins and
Links to Cardiovascular Diseases
The association between the co-DEPs and cardiovascular diseases
was analyzed using the Comparative Toxicogenomics Database
(CTD)7, which integrates the relationships between gene

2http://string-db.org/
3https://cytoscape.org/
4https://david.ncifcrf.gov/
5https://www.cytoscape.org/
6https://baderlab.org/Software/MCODE
7http://ctdbase.org/
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products, diseases, chemicals, and environments. Furthermore,
related MM symptoms of the co-DEPs were observed in
SymMap8 and in previous publications.

Drug Discovery and Molecular Docking
Small-molecule compounds related to the co-DEPs were
observed from the DrugBank9, through the target search.
Molecular docking analysis is a common strategy for drug
discovery. The structures of the co-DEPs were downloaded from
the Protein Data Bank (PDB)10, and the PDB IDs of the proteins
are shown in Table 3. The structures of the drugs were obtained
from PubChem11, and the CIDs are shown in Table 4. Eutectic
ligands and water molecules were removed, and residue repair,
side chain fixation, and hydrogenation were used for protein
preparation. The Surflex-Dock module of SYBYL 2.1 was used
for molecular docking. Furthermore, AMBR7 was used for energy
optimization, and the active pockets were obtained in automatic
mode. The parameters for SYBYL 2.1 were set as default,
as recommended by previous studies (Tan et al., 2020). The
molecular docking scores reflected the binding effects between
the small-molecule compounds and the co-DEPs, and the highest
scoring small molecules were considered as potential drugs.

RESULTS

Identification of Differentially Expressed
Proteins
A total of 83 DEPs, including 52 upregulated proteins, were
obtained by comparing the HFpEF group with the control
group sacrificed at 11 weeks (Figure 2A). A total of 132
DEPs, including 85 upregulated proteins, were identified by
comparing the HTN group with the control group sacrificed
at 7 weeks (Figure 2B). Among the HFpEF-DEPs and HTN-
DEPs, there were 7 co-DEPs, including haptoglobin (Hp),
coenzyme Q9 (COQ9), serotransferrin (Tf), major prion protein
(Prnp), acetyl-CoA acetyltransferase, mitochondrial (Acat1),
translocase of inner mitochondrial membrane 44 (Timm44),
and ATP-binding cassette sub-family B member 6 (Abcb6;
Figure 2C). Furthermore, the CTD database showed links

8https://www.symmap.org/
9https://www.drugbank.ca/
10http://www.rcsb.org/
11https://pubchem.ncbi.nlm.nih.gov/

TABLE 3 | PDB ID of protein.

Protein PDB ID

Hp 4X0lL

COQ9 6awl

Tf 1ryo

Prnp 2ol9

Acta1 2ib8

Timm44 2cw9

Abcb6 3nh6

TABLE 4 | CIDs of molecule compounds.

Molecule PubChem ID

Prednisolone acetate 5834

Bismuth subsalicylate 16682734

Phenoxymethylpenicillin 6869

Polyethylene glycol 40786

Prednisolone 5755

Chloroform 6212

Salicylic acid 338

Epinephrine 5816

Triptorelin 25074470

Benzylpenicillin 5904

Propofol 4743

Sulfadimethoxine 5323

between the co-DEPs and various cardiovascular diseases
(Figures 3A–G). Finally, the related MM symptoms of the
co-DEPs were determined using SymMap12 and previous
publications (Figure 3H).

Functional Enrichment Analysis
All HFpEF- and HTN-DEPs were submitted to DAVID for
GO and KEGG functional enrichment analyses. The DEPs
of HFpEF were mainly involved in immune response, energy
metabolism, inflammation response, and post-translational
modification (Figure 4). For example, DnaJ heat shock protein
family (Hsp40) member A1 (Dnaja1), Hp, immunoglobulin
heavy chain 6 (Igh-1a), milk fat globule EGF and factor
V/VIII domain containing (Mfge8), transforming growth
factor beta 1 induced transcript 1 (Tgfb1i1), apolipoprotein M
(Apom), paraoxonase 1 (Pon1), protein tyrosine phosphatase,
and non-receptor type 6 (Ptpn6) were closely related to
immune response; acetyl-CoA acetyltransferase, mitochondrial
(Acta1), Hp, mitochondrial inner membrane protein (Oxa1l),
glutamine fructose-6-phosphate transaminase 1 (Gfpt1), UDP-
N-acetylglucosamine pyrophosphorylase 1 (Uap1), calponin
3 (Cnn3), and follistatin-like 1 (Fstl1) were involved in
energy metabolism; serpin family A member 1 (Serpina1),
alpha-2-HS-glycoprotein (Ahsg), serpin family A member
10 (Serpina10), murinoglobulin 1 (Mug1), SMAD family
member 1 (Smad1), and kininogen 1 (Kng1) were connected
with inflammation response; mannosidase, alpha, class
2A, member 2 (Man2a2), N-glycanase 1 (Ngly1), protein
phosphatase 1, regulatory (inhibitor) subunit 14B (Ppp1r14b),
protein phosphatase 1, regulatory (inhibitor) subunit 14C
(Ppp1r14c), protein phosphatase 1, and regulatory (inhibitor)
subunit 14A (Ppp1r14a) were involved in post-translational
modification. For HTN, myocardial contraction, energy
metabolism, apoptosis, and oxidative stress were the main
biological functions (Figure 5). Carcass protein in high
growth mice 3 (Carp3), myosin light chain 3 (Myl3), titin
(Ttn), tropomodulin (Tmod1), hydroxysteroid (17-beta)
dehydrogenase 4 (Hsd17b4), actinin alpha 2 (Actn2), Acta1,

12https://www.symmap.org
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FIGURE 2 | Comparison of the DEPs in HFpEF and HTN. (A) Heatmap of HFpEF. (B) Heatmap of HTN. (C) The co-DEPs between HFpEF and HTN. Hp,
haptoglobin; COQ9, coenzyme Q9; Tf, serotransferrin; Prnp, major prion protein; Acat1, acetyl-CoA acetyltransferase, mitochondrial; Timm44, translocase of inner
mitochondrial membrane 44; Abcb6, ATP-binding cassette sub-family B member 6.

FIGURE 3 | Identification of co-DEP-related MM symptoms and links to cardiovascular diseases. (A) Abcb6, (B) Acat1, (C) COQ9, (D) Hp, (E) Prnp, (F) Tf, and
(G) Timm44. *, direct evidence. (H) The related MM symptoms of the co-DEPs. Hp, haptoglobin; COQ9, coenzyme Q9; Tf, serotransferrin; Prnp, Major prion protein;
Acat1, acetyl-CoA acetyltransferase, mitochondrial; Timm44, translocase of inner mitochondrial membrane 44; Abcb6, ATP-binding cassette sub-family B member
6.

myosin, light chain 4 (Myl4), Tf, alpha glucosidase (Gaa),
perilipin 2 (Plin2), ATPase Na+/K+ transporting subunit alpha
2 (Atp1a2), enolase 2 (Eno2), myosin heavy chain 7 (Myh7),

glutathione peroxidase 1 (Gpx1), tropomodulin 4 (Tmod4),
Acta1, Hp, and myosin light chain kinase 3 (Mylk3) were closely
related to myocardial contraction; glycogen synthase kinase

Frontiers in Physiology | www.frontiersin.org 6 October 2021 | Volume 12 | Article 607089153

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-607089 October 13, 2021 Time: 12:1 # 7

Zhou et al. Connections Between HFpEF and HTN

FIGURE 4 | Main biological processes enriched in HFpEF-DEPs. (A) Immune response, (B) energy metabolism, (C) inflammation response, and (D)
post-translational modification.

3 beta (Gsk3b), hydroxysteroid (17-beta) dehydrogenase 4
(Hsd17b4), alpha glucosidase (Gaa), 2,4-dienoyl-CoA reductase
1 (Decr1), acyl-CoA dehydrogenase, short/branched chain
(Acadsb), adiponectin C1Q and collagen domain containing
(Adipoq), Acta1, and glycogen phosphorylase B (Pygb) were
involved in energy metabolism; nucleolar protein 3 (Nol3),
prion protein (Prnp), serpin family B member 2 (Serpinb2),
glycogen synthase kinase 3 beta (Gsk3b), hexokinase 1 (Hk1),
ferritin heavy chain 1 (Fth1), four and a half LIM domains 2
(Fhl2), A-Raf proto-oncogene, serine/threonine kinase (Araf),
glutathione peroxidase 1 (Gpx1), nascent polypeptide associated
complex subunit alpha (Naca), and ring finger protein 7 (Rnf7)
were connected with apoptosis.

The top five biological processes among HFpEF-DEPs were
acute-phase response (count 5, P-Value 2.15E-05), regulation of
protein dephosphorylation (count 3, P-Value 2.75E-04), response
to lead ion (count 4, P-Value 6.39E-04), negative regulation of
catalytic activity (count 4, P-Value 0.003203462), and regulation
of phosphorylation (count 3, P-Value 0.003348677). Blood
microparticles (count 10, P-Value 1.80E-09), extracellular
exosome (count 33, P-Value 1.01E-08), extracellular space (count
18, P-Value 3.18E-05), mitochondrial inner membrane (count
7, P-Value 0.002195356), and extracellular matrix (count 6,
P-Value 0.00460952) related cell compositions were significantly
enriched. Furthermore, the main enriched molecular functions
were protein homodimerization activity (count 12, P-Value
5.67E-04), protein serine/threonine phosphatase inhibitor
activity (count 3, P-Value 9.62E-04), protein binding (count

16, P-Value 0.002503286), chaperone binding (count 4, P-Value
0.004337384), and endopeptidase inhibitor activity (count 3,
P-Value 0.007219962). The enriched KEGG pathways were
prion diseases (count 4, P-Value 3.21E-04) and the complement
and coagulation cascades (count 4, P-Value 0.003144821)
(Figure 6A). With respect to HTN-DEPs, the most enriched
biological processes were the regulation of heart contraction force
(count 6, P-Value 2.73E-07), cardiac muscle contraction (count
7, P-Value 5.96E-07), muscle contraction (count 6, P-Value
1.50E-05), fatty acid beta-oxidation (count 5, P-Value 1.95E-04),
and cardiac myofibril assembly (count 3, P-Value 0.002067005).
The main components were extracellular exosome (count 48,
P-Value 3.12E-11), mitochondrion (count 32, P-Value 3.12E-08),
striated muscle thin filament (count 4, P-Value 3.24E-05),
mitochondrial inner membrane (count 10, P-Value 2.30E-
04), and a band (count 4, P-Value 4.49E-04). The molecular
functions of HTN-PEGs were mainly enriched in protein
homodimerization activity (count 15, P-Value 4.74E-04), actin
filament binding (count 6, P-Value 0.001790743), tropomyosin
binding (count 3, P-Value 0.003348376), oxidoreductase
activity (count 5, P-Value 0.00825633), and actin monomer
binding (count 3, P-Value 0.010556462). The enriched KEGG
pathways were adrenergic signaling in cardiomyocytes (count
6, P-Value 0.004149388), carbon metabolism (count 5, P-Value
0.014082125), cardiac muscle contraction (count 4, P-Value
0.022270779), starch and sucrose metabolism (count 3, P-Value
0.023739862), and mineral absorption (count 3, P-Value
0.03637201) (Figure 6B).
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FIGURE 5 | Main biological processes enriched in HTN-DEPs. (A) Myocardial contraction, (B) energy metabolism, (C) apoptosis, and (D) oxidative stress.

FIGURE 6 | Functional enrichment analysis. (A) Functional enrichment analysis of HFpEF-DEPs from the DAVID database. (B) Functional enrichment analysis of
HTN-DEPs from the DAVID database.
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FIGURE 7 | Network analysis of HFpEF and HTN. (A) The PPI network of HFpEF-DEPs. (B) The PPI network of HTN-DEPs. (C) The nodes and edges of the PPI
network. (D) The parameters of the PPI network. (E) The count of the PPI network of HFpEF-DEPs. (F) The count of the PPI network of HTN-DEPs.

FIGURE 8 | The modules of the HFpEF- and HTN-DEPs. (A) The modules of the HFpEF-DEPs. (B) The modules of the HTN-DEPs.

Protein-Protein Interaction Network
Analysis and Modularity Analysis
In total, from the PPI network of HFpEF-DEPs (Figure 7A)
and that of the HTN-DEPs (Figure 7B), 80 nodes and
246 edges, and 126 nodes and 692 edges were identified,
respectively (Figure 7C). The parameters of the PPI network
of the HFpEF- and HTN-DEPs are shown in Figure 7D.
Furthermore, transthyretin (Ttr; degree = 22), kininogen-1

(Kng1; degree = 18), alpha-1-antiproteinase (Serpina1;
degree = 18), alpha-2-HS-glycoprotein (Ahsg; degree = 16),
and pentaxin (Crp; degree = 16) were identified as hub
proteins in the HFpEF-DEP PPI network (Figure 7E). Acetyl-
CoA acetyltransferase, mitochondrial (Acta1; degree = 38),
glycogen synthase kinase 3 beta (Gsk3b; degree = 33), 2,4-
dienoyl-CoA reductase 1 (Decr1; degree = 28), myosin heavy
chain 7 (Myh7; degree = 28), and actinin alpha 2 (Actn2;
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FIGURE 9 | Functional enrichment analysis of overlapping modules between the HFpEF and HTN networks. (A) The overlapping modules in HFpEF and HTN.
(B) Functional enrichment analysis of overlapping modules in HFpEF and HTN from the DAVID database. (C) Biological functions of overlapping modules in HFpEF
and HTN.

degree = 26) were identified as hub proteins in the HTN-
DEP PPI network (Figure 7F). Finally, three modules were
obtained from the HFpEF-DEP PPI network (Figure 8A),
and five modules were identified from the HTN-DEP PPI
network (Figure 8B).

Overlapping Modules Between the Heart
Failure With Preserved Ejection Fraction
and Hypertension Networks
The overlapping modules between the HFpEF and HTN
networks are shown in Figure 9A. The top five biological
processes among the overlapping modules were cardiac muscle
contraction (count 8, P-Value 5.59E-08), acute-phase response
(count 7, P-Value 2.79E-07), regulation of the heart contraction
force (count 6, P-Value 5.37E-07), muscle contraction (count
6, P-Value 2.89E-05), and response to lead ion (count 5,
P-Value 1.72E-04). Extracellular exosome (count 62, P-Value
3.45E-18), mitochondrion (count 33, P-Value 1.10E-07),
blood microparticle (count 9, P-Value 2.42E-06), extracellular
space (count 27, P-Value 2.68E-06), and a band (count 5,
P-Value 2.15E-05) related cell compositions were significantly
enriched. Furthermore, the main enriched molecular functions
were protein homodimerization activity (count 18, P-Value
6.42E-05), calcium ion binding (count 15, P-Value 4.86E-
04), identical protein binding (count 14, P-Value 7.87E-04),
actin filament binding (count 6, P-Value 0.003338211), and
tropomyosin binding (count 3, P-Value 0.004429531). The
enriched KEGG pathways included adrenergic signaling

in cardiomyocytes (count 7, P-Value 0.001472787), prion
diseases (count 4, P-Value 0.003172377), cardiac muscle
contraction (count 5, P-Value 0.005270334), complement
and coagulation cascades (count 4, P-Value 0.02702271), and
adrenergic signaling in cardiomyocytes (count 4, P-Value
0.040014194) (Figure 9B). Finally, the main functional biological
processes were myocardial contraction (30.77%), energy
metabolism (15.38%), apoptosis (12.82%), oxidative stress
(15.38%), immune response (10.26%), and cardiac hypertrophy
(5.13%) (Figure 9C).

Drug Discovery and Molecular Docking
Twelve small-molecule compounds were obtained from
the DrugBank, including prednisolone acetate, bismuth
subsalicylate, phenoxymethylpenicillin, polyethylene glycol,
prednisolone, chloroform, salicylic acid, epinephrine,
triptorelin, benzylpenicillin, propofol, and sulfadimethoxine.
The binding affinity between the co-DEPs and the small-
molecule compounds are shown in Figure 10A. For Hp,
the docking score between epinephrine and Hp was the
highest. Epinephrine generated hydrogen bonds with GLU314
and LEU334 of Hp (Figure 10B). For COQ9, epinephrine
was again the best match. The ASN154, LEU219, ASN252,
and GLU255 residues of COQ9 were suggested to be the
binding sites of epinephrine (Figure 10C). Furthermore, Tf
displayed the strongest binding affinity with sulfadimethoxine,
potentially through hydrogen bonding at the LEU294, ARG124,
and TYR188+ residues of Tf (Figure 10D). For Prnp, the
docking score between chloroform and Prnp was the highest

Frontiers in Physiology | www.frontiersin.org 10 October 2021 | Volume 12 | Article 607089157

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-607089 October 13, 2021 Time: 12:1 # 11

Zhou et al. Connections Between HFpEF and HTN

FIGURE 10 | Drug discovery and molecular docking. (A) Heatmap of the binding scores between the small-molecule compounds and co-DEPs. (B) The binding
sites and interactions between epinephrine and Hp. (C) The binding sites and interactions between epinephrine and COQ9. (D) The binding sites and interactions
between sulfadimethoxine and Tf. (E) The binding sites and interactions between chloroform and Prnp. (F) The binding sites and interactions between epinephrine
and Acta1. (G) The binding sites and interactions between sulfadimethoxine and Timm44. (H) The binding sites and interactions between prednisolone acetate and
Abcb6.

(Figure 10E). Epinephrine was the best match for Acta1,
with potential binding at the GLY97, GLY98, and ARG165
residues of Acta1 (Figure 10F). The binding affinity between
sulfadimethoxine and Timm44 was the strongest, with potential
hydrogen bonding at the ALA330 and TYR421 residues of
Timm44 (Figure 10G). Finally, prednisolone acetate was best
matched with Abcb6, and ARG739, GLY687, LYS743, and
VAL668 of Abcb6 were the potential targets of prednisolone
acetate (Figure 10H).

DISCUSSION

Heart failure with preserved ejection fraction is a complex
syndrome that includes many types of clinical phenotypes.
Huge pathophysiological differences exist among patients
with different clinical HFpEF phenotypes, and no treatment
strategy is suitable for all patients with HFpEF (Ge, 2020).
Exploring the underlying pathophysiological mechanisms of
different types of HFpEF will aid the discovery of personalized
therapies and precision medicines for HFpEF treatment.
Patients with HFpEF who are also diagnosed with HTN
are considered to have vascular-related HFpEF, so exploring
the functional connections between HFpEF and HTN will
contribute to finding effective therapeutic targets for HFpEF
and HTN treatment.

In this study, TMT-labeled quantitative proteomics was used
to identify HFpEF- and HTN-related proteins. The functional
links between HFpEF and HTN were analyzed at the network,
module, and protein levels. Furthermore, molecular docking
was used to determine precision medicine targets for HFpEF

and HTN treatment. Seven co-DEPs were found among the
HFpEF- and HTN-DEPs identified, including Hp, Tf, COQ9,
Acat1, Timm44, Abcb6, and Prnp. Notably, Hp levels are closely
related to hypertension and heart failure (Schröcksnadel, 1990;
Lu et al., 2019; Rodrigues et al., 2019). Moreover, clinical
studies have shown that inflammation plays an important role
in the transition from HTN to HFpEF (Quaye, 2008), and
that Hp is an indicator of inflammation in cardiovascular
diseases (Szelényi et al., 2015). This suggests that Hp could
be used to diagnose HTN and HFpEF and that Hp could be
an effective therapeutic target for HTN and HFpEF. COQ9
is involved in the basic functions of mitochondria (Ferko
et al., 2015), and the impairment of mitochondrial function
is a common pathophysiological mechanism underlying both
HTN and HFpEF (He et al., 2019; Zeng and Chen, 2019).
Thus, COQ9 is also a potential biomarker for HTN and
HFpEF. Several studies have shown that the expression of
Tf and Prnp is altered in many cardiovascular diseases and
that Tf and Prnp may be novel biomarkers for HTN and
HFpEF (Gao et al., 2013; Rahim et al., 2018; Roura et al.,
2018; Pang et al., 2020). Acta1 is involved in the pathological
progression of myocardial remodeling (Pagano et al., 2017; Cañes
et al., 2020), which is closely related to the prognosis of HTN
and HFpEF (Fortuño et al., 2001; Georgiopoulou et al., 2010;
Heinzel et al., 2015). Abcb6 and Timm44 are involved in
mitochondrial functions and are potential biomarkers for HTN
and HFpEF (Boswell-Casteel et al., 2017; Gao et al., 2020).
Analysis using the CTD database indicated that there were
strong connections between the co-DEPs and cardiovascular
diseases in humans, including HF and HTN. Additionally,
HFpEF was the most common type of HF, suggesting that
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the co-DEPs may be effective therapeutic targets for HFpEF
and HTN treatment.

Fever and anemia were found to be important co-DEP-
related MM symptoms, which is consistent with previous findings
(Bocchi et al., 2013; Tanimura et al., 2015; Burns et al., 2018).
The common biological processes of HFpEF and HTN were
closely related to energy metabolism. Previous studies have
also indicated that mitochondrial oxidative capacity plays an
important role in both HFpEF and HTN (Gueugneau et al., 2016;
De Jong and Lopaschuk, 2017).

Heart failure with preserved ejection fraction and HTN shared
eight overlapping modules, and the main biological functions
enriched in these modules were myocardial contraction,
energy metabolism, apoptosis, oxidative stress, immune
response, and cardiac hypertrophy. We also found that post-
translational modification and regulation of actin filaments
could play an important role in HFpEF and HTN. Previous
research has shown that phosphorylation of cardiac myosin-
binding protein-C influences the progress of cross-bridge
detachment and that deficient phosphorylation leads to diastolic
dysfunction (Rosas et al., 2015). Furthermore, fibroblasts with
abnormal proliferation contribute to the progression of HTN
to HFpEF (Oatmen et al., 2020). Further research into the
biological process of barbed-end actin filament capping may
provide new insights.

The study also suggested that chloroform, epinephrine,
sulfadimethoxine, and prednisolone acetate could be effective
drugs for treating HTN and HFpEF. In addition, epinephrine,
sulfadimethoxine, and prednisolone acetate have been widely
used in many clinical diseases, but chloroform was not approved
drug for human use. It suggested that chloroform maybe
an candidate drugs for HTN-HFpEF. Previous studies have
shown that gut microbiota dysfunction is closely related
to the development of HTN and HFpEF (Hsu et al., 2020;
Pakhomov and Baugh, 2020), and some antibiotics that
regulate the gut microbiota have shown beneficial effects
against HTN and other heart diseases (Chen et al., 2020;
Du et al., 2020; Wu et al., 2020). A previous study showed
that sulfadimethoxine could also regulate the gut microbiota
(Mourand et al., 2014) and contribute to the normalization of
blood pressure. Notably, chloroform injection can decrease the
mean blood pressure (Loyke, 1971). Furthermore, prednisolone
can prevent post-transplantation hypertension in rat renal
allograft recipients (de Keijzer et al., 1987), indicating that
prednisolone may be an effective drug for treating HTN
and HFpEF. For patients with mild essential hypertension,
intravenous infusion of small amounts of epinephrine has
shown beneficial effects on hemodynamics, renal electrolyte
excretion, and blood platelets (Kjeldsen et al., 1988). This
indicates that epinephrine may be an effective drug for
treating HTN and HFpEF. Most treatment strategies for
HFpEF are empiric and are greatly influenced by expert
consensus. In addition, some treatment strategies showed
beneficial effects in patients with HFpEF, including the
use of diuretics to control hypervolemia, treatment with
mineralocorticoid antagonists, exercise therapies, and classical
treatments for comorbidities. The results of this study, which

are based on molecular docking and bioinformatics analyses,
indicated that chloroform, epinephrine, sulfadimethoxine,
and prednisolone acetate could be effective medicines for
HTN and HFpEF. These drugs could be used to treat
HTN and HFpEF, to reduce the occurrence of HFpEF in
patients with HTN, or as personalized medicines for patients
with HFpEF. Further animal experiments and small-scale
clinical trials are needed to elucidate the functions and
effects of these drugs in HTN and HFpEF. Nevertheless,
it is important to note that chloroform is currently not
approved for human use.

According to the enrichment results of the overlapping
modules, myocardial contraction was the most important
biological function shared between HFpEF and HTN.
HTN influences the structure and function of the heart,
suppresses myocardial contractions, and increases the prevalence
of HFpEF (Chirinos et al., 2017). Previous studies have
also noted the importance of myocardial contraction, as
impaired diastolic function is a common phenotype of
HFpEF and HTN. Here, the co-DEPs Acat1, Tf, and Hp
were associated with myocardial contraction. Acta1 is involved
in skeletal muscle thin filament assembly, which influences
the contractile force of the heart (Winter et al., 2016). Tf
and Hp are related to the response to lead ion, and result
in myocardial contraction-related neurotoxic effects (Pappas
et al., 2015). Previous studies have indicated that epinephrine
treatment enhances myocardial contraction, but the effects of
sulfadimethoxine on myocardial contraction remain unclear
(Paur et al., 2012).

Here, we found that energy metabolism is closely
related to HFpEF and HTN. These findings are consistent
with earlier observations (Baltatu et al., 2017; De Jong
and Lopaschuk, 2017). Acta1, Timm44, and Abcb6 are
involved in fatty acid beta-oxidation and in the biological
functions of energy metabolism. In animal experiments,
fatty acid beta-oxidation is associated with the severity
of myocardial fibrosis. Additionally, it is associated
with a risk for HFpEF. Epinephrine, sulfadimethoxine,
and prednisolone also have beneficial effects on energy
metabolism (Park et al., 2001; Laskewitz et al., 2010;
Wang et al., 2019).

Furthermore, apoptosis was found to be an important
biological function in HTN and HFpEF. Activation of apoptosis
can lead to cardiac dysfunction (Ekhterae et al., 1999), and
inhibition of apoptosis can improve heart function and
lead to beneficial effects in HFpEF and HTN therapies (Liu
et al., 2018; Chen et al., 2019). Hp and Tf were involved
in the response to hypoxia, which promotes cardiomyocyte
apoptosis. Previous studies have indicated that Prnp is
associated with the negative regulation of apoptosis in
other diseases (Gao et al., 2019). As chloroform was best
matched with Hp, Tf, and Prnp, further studies exploring
the anti-apoptotic effect of chloroform in HFpEF and HTN
treatment are needed.

In our study, oxidative stress was important in both
HFpEF and HTN. Myocardial fibrosis, the major factor
leading to myocardial remodeling, was found to be a
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common pathological mechanism among HFpEF and
HTN. Previous studies using an animal model of HFpEF
and HTN have confirmed that the regulation of oxidative
stress contributes to the inhibition of myocardial fibrosis
(Wu et al., 2016; van der Pol et al., 2018). Similarly,
other studies showed that Hp and COQ9 are involved in
oxidative stress, including cellular oxidant detoxification
and negative regulation of oxidoreductase activity (Swain
et al., 2020; Yoshida et al., 2020). However, the effect of
epinephrine on oxidoreductase activity in HFpEF and HTN still
needs to be explored.

Immune responses are activated in both HFpEF and
HTN (Carnevale and Wenzel, 2018; Michels da Silva
et al., 2019). Although a treatment strategy targeting the
immune response achieved some positive results in HTN,
no obvious beneficial effects were observed in HFpEF
(Michels da Silva et al., 2019; Zhao et al., 2019). Previous
studies have shown that aging influences the immune
response in HFpEF and HTN, and here, we found that
Hp was associated with aging (De la Fuente et al., 2005;
Forman and Goodpaster, 2018). Furthermore, Prnp was
associated with the negative regulation of the T cell receptor
signaling pathway, which is known to influence the immune
response (Wong et al., 2017). Thus, chloroform may be an
effective drug for targeting the immune response in HFpEF
and HTN treatment.

The results showed that cardiac hypertrophy, which is
associated with diastolic function, was significantly associated
with HFpEF and HTN (Schmieder, 1990). Angiotensin II
receptor blockers (ARBs) have been used in clinical trials
for the treatment of HTN, as they not only reduce blood
pressure but also have beneficial effects on cardiac hypertrophy,
diastolic function, and renal function (Israili, 2000). ARBs
also affect the blood pressure of patients with HFpEF,
but do not have significant effects on echocardiographic
parameters, 6-min walk test distances, or brain natriuretic
peptide levels (Parthasarathy et al., 2009). Previous studies
have shown that epinephrine can also suppress cardiac
hypertrophy. Further research is necessary to determine whether
chloroform and prednisolone can induce similar beneficial effects
in HFpEF and HTN.

CONCLUSION

Seven co-DEPs were observed between the HFpEF-DEPs
and HTN-DEPs, including Hp, Tf, COQ9, Acat1, Timm44,
Abcb6, and Prnp. These co-DEPs were closely related to the
main functional similarities of HFpEF and HTN, including
myocardial contraction, energy metabolism, apoptosis, oxidative
stress, immune response, and cardiac hypertrophy. These
co-DEPs may serve as biomarkers and drug targets for
HFpEF and HTN. Furthermore, epinephrine, sulfadimethoxine,
chloroform, and prednisolone acetate may serve as precision
medicines for the treatment of HTN and HFpEF. Our
study provides several targets for of the development of

personalized therapies and precision medicines to treat HFpEF
and other comorbidities.

LIMITATIONS

There are some limitations to this study. Proteins with low
expression levels or those showing insignificant changes could
have been ignored in the analyses. Furthermore, these results
need to be validated through fundamental research and clinical
trials. Further animal experiments will help to explore the
function of these drugs in HTN and HFpEF, and small-
scale clinical trials will contribute to identifying whether
these drugs have similar effects in patients with HTN and
those with HFpEF.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found in the article/
Supplementary Material.

ETHICS STATEMENT

The animal study was reviewed and approved by the Animal
Ethics Committee of Shandong University of Traditional
Chinese Medicine.

AUTHOR CONTRIBUTIONS

GZ, JC, and CW conceived the study, acquired the data,
and wrote the manuscript. PJ designed the experiments and
interpreted the data. YW and YZ performed the experiments
and statistical analysis. YJ and XL designed the study and
revised the manuscript. All authors read and approved the
final manuscript.

FUNDING

This work has been supported by the National Natural Science
Foundation of China (No. 81673970) and the Construction
Project of National TCM Clinical Research Base for Hypertension
[Guo Zhong Yi Yao Fa (2008) No. 23].

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphys.2021.
607089/full#supplementary-material

Frontiers in Physiology | www.frontiersin.org 13 October 2021 | Volume 12 | Article 607089160

https://www.frontiersin.org/articles/10.3389/fphys.2021.607089/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2021.607089/full#supplementary-material
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-607089 October 13, 2021 Time: 12:1 # 14

Zhou et al. Connections Between HFpEF and HTN

REFERENCES
Baltatu, O. C., Amaral, F. G., Campos, L. A., and Cipolla-Neto, J. (2017). Melatonin,

mitochondria and hypertension.Cell. Mol. Life Sci. 74, 3955–3964. doi: 10.1007-
/s00018-017-2613-y

Bocchi, E. A., Arias, A., Verdejo, H., Diez, M., Gómez, E., and Castro, P. (2013).
The reality of heart failure in Latin America. J. Am. Coll. Cardiol. 62, 949–958.
doi: 10.1016/j.jacc.2013.06.013

Borlaug, B. A. (2020). Evaluation and management of heart failure with preserved
ejection fraction. Nat. Rev. Cardiol. 17, 559–573. doi: 10.1038/s41569-020-
0363-2

Boswell-Casteel, R. C., Fukuda, Y., and Schuetz, J. D. (2017). ABCB6, an ABC
Transporter Impacting Drug Response and Disease. Aaps J. 20:8. doi: 10.1208/
s12248-017-0165-6

Burns, J. A., Sanchez, C., Beussink, L., Daruwalla, V., Freed, B. H., Selvaraj, S.,
et al. (2018). Lack of Association Between Anemia and Intrinsic Left Ventricular
Diastolic Function or Cardiac Mechanics in Heart Failure With Preserved
Ejection Fraction. Am. J. Cardiol. 122, 1359–1365. doi: 10.1016/j.amjcard.2018.
06.045

Cañes, L., Martí-Pàmies, I., Ballester-Servera, C., Herraiz-Martínez, A., Alonso, J.,
Galán, M., et al. (2020). Neuron-derived orphan receptor-1 modulates cardiac
gene expression and exacerbates angiotensin II-induced cardiac hypertrophy.
Clin. Sci. 134, 359–377. doi: 10.1042/cs20191014

Carnevale, D., and Wenzel, P. (2018). Mechanical stretch on endothelial
cells interconnects innate and adaptive immune response in hypertension.
Cardiovasc. Res. 114, 1432–1434. doi: 10.1093/cvr/cvy148

Chen, Y. P., Sivalingam, K., Shibu, M. A., Peramaiyan, R., Day, C. H., Shen, C. Y.,
et al. (2019). Protective effect of Fisetin against angiotensin II-induced apoptosis
by activation of IGF-IR-PI3K-Akt signaling in H9c2 cells and spontaneous
hypertension rats. Phytomedicine 57, 1–8. doi: 10.1016/j.phymed.2018.09.179

Chen, Y., Zhu, Y., Wu, C., Lu, A., Deng, M., Yu, H., et al. (2020). Gut dysbiosis
contributes to high fructose-induced salt-sensitive hypertension in Sprague-
Dawley rats. Nutrition 7:110766. doi: 10.1016/j.nut.2020.110766

Chirinos, J. A., Phan, T. S., Syed, A. A., Hashmath, Z., Oldland, H. G., Koppula,
M. R., et al. (2017). Late Systolic Myocardial Loading Is Associated With Left
Atrial Dysfunction in Hypertension. Circ. Cardiovasc. Imaging 10:e006023. doi:
10.1161/circimaging.116.006023

Cho, J. H., Zhang, R., Kilfoil, P. J., Gallet, R., de Couto, G., Bresee, C., et al. (2017).
Delayed Repolarization Underlies Ventricular Arrhythmias in Rats With Heart
Failure and Preserved Ejection Fraction. Circulation 136, 2037–2050. doi: 10.
1161/circulationaha.117.028202

De Jong, K. A., and Lopaschuk, G. D. (2017). Complex Energy Metabolic Changes
in Heart Failure With Preserved Ejection Fraction and Heart Failure With
Reduced Ejection Fraction. Can. J. Cardiol. 33, 860–871. doi: 10.1016/j.cjca.
2017.03.009

de Keijzer, M. H., Provoost, A. P., Van Aken, M., Wolff, E. D., and Molenaar, J. C.
(1987). Prednisolone and posttransplantation hypertension in rat renal allograft
recipients. Transplantation 43, 353–357. doi: 10.1097/00007890-198703000-
00007

De la Fuente, M., Hernanz, A., and Vallejo, M. C. (2005). The immune system
in the oxidative stress conditions of aging and hypertension: favorable effects
of antioxidants and physical exercise. Antioxid. Redox. Signal. 7, 1356–1366.
doi: 10.1089/ars.2005.7.1356

Dean, J. L., Zhao, Q. J., Lambert, J. C., Hawkins, B. S., Thomas, R. S., and
Wesselkamper, S. C. (2017). Editor’s Highlight: application of Gene Set
Enrichment Analysis for Identification of Chemically Induced, Biologically
Relevant Transcriptomic Networks and Potential Utilization in Human Health
Risk Assessment. Toxicol. Sci. 157, 85–99. doi: 10.1093/toxsci/kfx021

Drazner, M. H. (2011). The progression of hypertensive heart disease. Circulation
123, 327–334. doi: 10.1161/circulationaha.108.845792

Du, Z., Wang, J., Lu, Y., Ma, X., Wen, R., Lin, J., et al. (2020). The cardiac protection
of Baoyuan decoction via gut-heart axis metabolic pathway. Phytomedicine
79:153322. doi: 10.1016/j.phymed.2020.153322

Dunlay, S. M., Roger, V. L., and Redfield, M. M. (2017). Epidemiology of heart
failure with preserved ejection fraction. Nat. Rev. Cardiol. 14, 591–602. doi:
10.1038/nrcardio.2017.65

Ekhterae, D., Lin, Z., Lundberg, M. S., Crow, M. T., Brosius, F. C. III, and Núñez,
G. (1999). ARC inhibits cytochrome c release from mitochondria and protects

against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ. Res. 85,
e70–77. doi: 10.1161/01.res.85.12.e70

Ferko, M., Kancirová, I., Jašová, M., Waczulíková, I., Èarnická, S., Kucharská,
J., et al. (2015). Participation of heart mitochondria in myocardial protection
against ischemia/reperfusion injury: benefit effects of short-term adaptation
processes. Physiol. Res. 64, S617–S625. doi: 10.33549/physiolres.933218

Forman, D. E., and Goodpaster, B. H. (2018). Weighty Matters in HFpEF and
Aging. JACC Heart Fail. 6, 650–652. doi: 10.1016/j.jchf.2018.06.016

Fortuño, M. A., Ravassa, S., Fortuño, A., Zalba, G., and Díez, J. (2001).
Cardiomyocyte apoptotic cell death in arterial hypertension: mechanisms
and potential management. Hypertension 38, 1406–1412. doi: 10.1161/hy1201.
099615

Gao, G., Xuan, C., Yang, Q., Liu, X. C., Liu, Z. G., and He, G. W. (2013).
Identification of altered plasma proteins by proteomic study in valvular heart
diseases and the potential clinical significance. PLoS One 8:e72111. doi: 10.1371/
journal.pone.0072111

Gao, L. P., Xiao, K., Wu, Y. Z., Chen, D. D., Yang, X. H., Shi, Q., et al.
(2020). Enhanced Mitophagy Activity in Prion-Infected Cultured Cells and
Prion-Infected Experimental Mice via a Pink1/Parkin-Dependent Mitophagy
Pathway. ACS Chem. Neurosci. 11, 814–829. doi: 10.1021/acschemneuro.
0c00039

Gao, Z., Peng, M., Chen, L., Yang, X., Li, H., Shi, R., et al. (2019). Prion
Protein Protects Cancer Cells against Endoplasmic Reticulum Stress Induced
Apoptosis. Virol. Sin. 34, 222–234. doi: 10.1007/s12250-019-00107-2

Gazewood, J. D., and Turner, P. L. (2017). Heart Failure with Preserved Ejection
Fraction: diagnosis and Management. Am. Fam. Phys. 96, 582–588.

Ge, J. (2020). Coding proposal on phenotyping heart failure with preserved ejection
fraction: a practical tool for facilitating etiology-oriented therapy. Cardiol. J. 27,
97–98. doi: 10.5603/cj.2020.0023

Georgiopoulou, V. V., Kalogeropoulos, A. P., Raggi, P., and Butler, J. (2010).
Prevention, diagnosis, and treatment of hypertensive heart disease. Cardiol.
Clin. 28, 675–691. doi: 10.1016/j.ccl.2010.07.005

Graziani, F., Varone, F., Crea, F., and Richeldi, L. (2018). Treating heart failure with
preserved ejection fraction: learning from pulmonary fibrosis. Eur. J. Heart Fail.
20, 1385–1391. doi: 10.1002/ejhf.1286

Gueugneau, M., Coudy-Gandilhon, C., Meunier, B., Combaret, L., Taillandier, D.,
Polge, C., et al. (2016). Lower skeletal muscle capillarization in hypertensive
elderly men. Exp. Gerontol. 76, 80–88. doi: 10.1016/j.exger.2016.01.013

He, J., Liu, X., Su, C., Wu, F., Sun, J., Zhang, J., et al. (2019). Inhibition of
Mitochondrial Oxidative Damage Improves Reendothelialization Capacity of
Endothelial Progenitor Cells via SIRT3 (Sirtuin 3)-Enhanced SOD2 (Superoxide
Dismutase 2) Deacetylation in Hypertension. Arterioscler. Thromb. Vasc. Biol.
39, 1682–1698. doi: 10.1161/atvbaha.119.312613

Heinzel, F. R., Hohendanner, F., Jin, G., Sedej, S., and Edelmann, F. (2015).
Myocardial hypertrophy and its role in heart failure with preserved ejection
fraction. J. Appl. Physiol. 119, 1233–1242. doi: 10.1152/japplphysiol.003
74.2015

Hicklin, H. E., Gilbert, O. N., Ye, F., Brooks, J. E., and Upadhya, B. (2020).
Hypertension as a Road to Treatment of Heart Failure with Preserved Ejection
Fraction. Curr. Hypertens Rep. 22:82. doi: 10.1007/s11906-020-01093-7

Hsu, C. N., Yang, H. W., Hou, C. Y., Chang-Chien, G. P., Lin, S., Tan, Y. L.,
et al. (2020). Maternal Adenine-Induced Chronic Kidney Disease Programs
Hypertension in Adult Male Rat Offspring: implications of Nitric Oxide and
Gut Microbiome Derived Metabolites. Int. J. Mol. Sci. 21:7237. doi: 10.3390/
ijms21197237

Israili, Z. H. (2000). Clinical pharmacokinetics of angiotensin II (AT1) receptor
blockers in hypertension. J. Hum. Hypertens 14, S73–S86. doi: 10.1038/sj.jhh.
1000991

Kjeldsen, S. E., Os, I., Westheim, A., Lande, K., Gjesdal, K., Hjermann, I.,
et al. (1988). Hyper-responsiveness to low-dose epinephrine infusion in
mild essential hypertension. J. Hypertens Suppl. 6, S581–S583. doi: 10.1097/
00004872-198812040-00182

Kjeldsen, S. E., von Lueder, T. G., Smiseth, O. A., Wachtell, K., Mistry,
N., Westheim, A. S., et al. (2020). Medical Therapies for Heart Failure
With Preserved Ejection Fraction. Hypertension 75, 23–32. doi: 10.1161/
hypertensionaha.119.14057

Laskewitz, A. J., van Dijk, T. H., Bloks, V. W., Reijngoud, D. J., van Lierop,
M. J., Dokter, W. H., et al. (2010). Chronic prednisolone treatment reduces

Frontiers in Physiology | www.frontiersin.org 14 October 2021 | Volume 12 | Article 607089161

https://doi.org/10.1007-/s00018-017-2613-y
https://doi.org/10.1007-/s00018-017-2613-y
https://doi.org/10.1016/j.jacc.2013.06.013
https://doi.org/10.1038/s41569-020-0363-2
https://doi.org/10.1038/s41569-020-0363-2
https://doi.org/10.1208/s12248-017-0165-6
https://doi.org/10.1208/s12248-017-0165-6
https://doi.org/10.1016/j.amjcard.2018.06.045
https://doi.org/10.1016/j.amjcard.2018.06.045
https://doi.org/10.1042/cs20191014
https://doi.org/10.1093/cvr/cvy148
https://doi.org/10.1016/j.phymed.2018.09.179
https://doi.org/10.1016/j.nut.2020.110766
https://doi.org/10.1161/circimaging.116.006023
https://doi.org/10.1161/circimaging.116.006023
https://doi.org/10.1161/circulationaha.117.028202
https://doi.org/10.1161/circulationaha.117.028202
https://doi.org/10.1016/j.cjca.2017.03.009
https://doi.org/10.1016/j.cjca.2017.03.009
https://doi.org/10.1097/00007890-198703000-00007
https://doi.org/10.1097/00007890-198703000-00007
https://doi.org/10.1089/ars.2005.7.1356
https://doi.org/10.1093/toxsci/kfx021
https://doi.org/10.1161/circulationaha.108.845792
https://doi.org/10.1016/j.phymed.2020.153322
https://doi.org/10.1038/nrcardio.2017.65
https://doi.org/10.1038/nrcardio.2017.65
https://doi.org/10.1161/01.res.85.12.e70
https://doi.org/10.33549/physiolres.933218
https://doi.org/10.1016/j.jchf.2018.06.016
https://doi.org/10.1161/hy1201.099615
https://doi.org/10.1161/hy1201.099615
https://doi.org/10.1371/journal.pone.0072111
https://doi.org/10.1371/journal.pone.0072111
https://doi.org/10.1021/acschemneuro.0c00039
https://doi.org/10.1021/acschemneuro.0c00039
https://doi.org/10.1007/s12250-019-00107-2
https://doi.org/10.5603/cj.2020.0023
https://doi.org/10.1016/j.ccl.2010.07.005
https://doi.org/10.1002/ejhf.1286
https://doi.org/10.1016/j.exger.2016.01.013
https://doi.org/10.1161/atvbaha.119.312613
https://doi.org/10.1152/japplphysiol.00374.2015
https://doi.org/10.1152/japplphysiol.00374.2015
https://doi.org/10.1007/s11906-020-01093-7
https://doi.org/10.3390/ijms21197237
https://doi.org/10.3390/ijms21197237
https://doi.org/10.1038/sj.jhh.1000991
https://doi.org/10.1038/sj.jhh.1000991
https://doi.org/10.1097/00004872-198812040-00182
https://doi.org/10.1097/00004872-198812040-00182
https://doi.org/10.1161/hypertensionaha.119.14057
https://doi.org/10.1161/hypertensionaha.119.14057
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-607089 October 13, 2021 Time: 12:1 # 15

Zhou et al. Connections Between HFpEF and HTN

hepatic insulin sensitivity while perturbing the fed-to-fasting transition in mice.
Endocrinology 151, 2171–2178. doi: 10.1210/en.2009-1374

Le, D. H., and Pham, V. H. (2017). HGPEC: a Cytoscape app for prediction of
novel disease-gene and disease-disease associations and evidence collection
based on a random walk on heterogeneous network. BMC Syst. Biol. 11:61.
doi: 10.1186/s12918-017-0437-x

Liu, Q., Zhang, Y., Wang, P., Liu, J., Li, B., Yu, Y., et al. (2019). Deciphering
the scalene association among type-2 diabetes mellitus, prostate cancer, and
chronic myeloid leukemia via enrichment analysis of disease-gene network.
Cancer Med. 8, 2268–2277. doi: 10.1002/cam4.1845

Liu, Y., Li, L. N., Guo, S., Zhao, X. Y., Liu, Y. Z., Liang, C., et al. (2018). Melatonin
improves cardiac function in a mouse model of heart failure with preserved
ejection fraction. Redox Biol. 18, 211–221. doi: 10.1016/j.redox.2018.07.007

Loyke, H. F. (1971). The effect of injected chloroform on renal hypertension.
Anesth. Analg. 50, 825–828. doi: 10.1213/00000539-197150050-00025

Lu, D. Y., Lin, C. P., Wu, C. H., Cheng, T. M., and Pan, J. P. (2019). Plasma
haptoglobin level can augment NT-proBNP to predict poor outcome in patients
with severe acute decompensated heart failure. J. Investig. Med. 67, 20–27.
doi: 10.1136/jim-2018-000710

Maitiabola, G., Tian, F., Sun, H., Zhang, L., Gao, X., Xue, B., et al. (2020). Proteome
Characteristics of Liver Tissue from Patients with Parenteral Nutrition-
Associated Liver Disease. Nutr. Metab. 17:43. doi: 10.1186/s12986-020-
00453-z

Messerli, F. H., Rimoldi, S. F., and Bangalore, S. (2017). The Transition From
Hypertension to Heart Failure: contemporary Update. JACC Heart Fail. 5,
543–551. doi: 10.1016/j.jchf.2017.04.012

Michels da Silva, D., Langer, H., and Graf, T. (2019). Inflammatory and
Molecular Pathways in Heart Failure-Ischemia, HFpEF and Transthyretin
Cardiac Amyloidosis. Int. J. Mol. Sci. 20:2322. doi: 10.3390/ijms20092322

Mourand, G., Jouy, E., Bougeard, S., Dheilly, A., Kérouanton, A., Zeitouni,
S., et al. (2014). Experimental study of the impact of antimicrobial
treatments on Campylobacter, Enterococcus and PCR-capillary electrophoresis
single-strand conformation polymorphism profiles of the gut microbiota
of chickens. J. Med. Microbiol. 63, 1552–1560. doi: 10.1099/jmm.0.07
4476-0

Nwabuo, C. C., and Vasan, R. S. (2020). Pathophysiology of Hypertensive Heart
Disease: beyond Left Ventricular Hypertrophy. Curr. Hypertens Rep. 22:11.
doi: 10.1007/s11906-020-1017-9

Oatmen, K. E., Cull, E., and Spinale, F. G. (2020). Heart failure as interstitial cancer:
emergence of a malignant fibroblast phenotype. Nat. Rev. Cardiol. 17, 523–531.
doi: 10.1038/s41569-019-0286-y

Pagano, F., Angelini, F., Castaldo, C., Picchio, V., Messina, E., Sciarretta,
S., et al. (2017). Normal versus Pathological Cardiac Fibroblast-Derived
Extracellular Matrix Differentially Modulates Cardiosphere-Derived Cell
Paracrine Properties and Commitment. Stem Cell. Int. 2017:7396462. doi: 10.
1155/2017/7396462

Pakhomov, N., and Baugh, J. A. (2020). The Role of Diet-Derived Short Chain
Fatty Acids in Regulating Cardiac Pressure Overload. Am. J. Physiol. Heart Circ.
Physiol. 320, H475–H486. doi: 10.1152/ajpheart.00573.2020

Pang, B., Hu, C., Wu, G., Zhang, Y., and Lin, G. (2020). Identification of Target
Genes in Hypertension and Left Ventricular Remodeling. Medicine 99:e21195.
doi: 10.1097/md.0000000000021195

Pappas, C. T., Mayfield, R. M., Henderson, C., Jamilpour, N., Cover, C., Hernandez,
Z., et al. (2015). Knockout of Lmod2 results in shorter thin filaments followed
by dilated cardiomyopathy and juvenile lethality. Proc. Natl. Acad. Sci. U. S. A.
112, 13573–13578. doi: 10.1073/pnas.1508273112

Park, W. S., Chang, Y. S., Chung, S. H., Seo, D. W., Hong, S. H., and Lee, M. (2001).
Effect of hypothermia on bilirubin-induced alterations in brain cell membrane
function and energy metabolism in newborn piglets. Brain Res. 922, 276–281.
doi: 10.1016/s0006-8993(01)03186-9

Parthasarathy, H. K., Pieske, B., Weisskopf, M., Andrews, C. D., Brunel, P.,
Struthers, A. D., et al. (2009). A randomized, double-blind, placebo-controlled
study to determine the effects of valsartan on exercise time in patients with
symptomatic heart failure with preserved ejection fraction. Eur. J. Heart Fail.
11, 980–989. doi: 10.1093/eurjhf/hfp120

Paulus, W. J., and Tschöpe, C. (2013). A novel paradigm for heart failure with
preserved ejection fraction: comorbidities drive myocardial dysfunction and

remodeling through coronary microvascular endothelial inflammation. J. Am.
Coll. Cardiol. 62, 263–271. doi: 10.1016/j.jacc.2013.02.092

Paur, H., Wright, P. T., Sikkel, M. B., Tranter, M. H., Mansfield, C., O’Gara, P., et al.
(2012). High levels of circulating epinephrine trigger apical cardiodepression
in a β2-adrenergic receptor/Gi-dependent manner: a new model of Takotsubo
cardiomyopathy. Circulation 126, 697–706. doi: 10.1161/circulationaha.112.
111591

Pieske, B., Tschöpe, C., de Boer, R. A., Fraser, A. G., Anker, S. D., Donal,
E., et al. (2019). How to diagnose heart failure with preserved ejection
fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation
from the Heart Failure Association (HFA) of the European Society of
Cardiology (ESC). Eur. Heart J. 40, 3297–3317. doi: 10.1093/eurheartj/
ehz641

Quaye, I. K. (2008). Haptoglobin, inflammation and disease. Trans. R. Soc. Trop.
Med. Hyg. 102, 735–742. doi: 10.1016/j.trstmh.2008.04.010

Rahim, M. A. A., Rahim, Z. H. A., Ahmad, W. A. W., Bakri, M. M., Ismail, M. D.,
and Hashim, O. H. (2018). Inverse changes in plasma tetranectin and titin
levels in patients with type 2 diabetes mellitus: a potential predictor of acute
myocardial infarction? Acta Pharmacol. Sin. 39, 1197–1207. doi: 10.1038/aps.
2017.141

Redfield, M. M. (2016). Heart Failure with Preserved Ejection Fraction. N. Engl. J.
Med. 375, 1868–1877. doi: 10.1056/NEJMcp1511175

Rodrigues, K. F., Pietrani, N. T., Carvalho, L. M. L., Bosco, A. A., Sandrim, V. C.,
Ferreira, C. N., et al. (2019). Haptoglobin levels are influenced by Hp1-Hp2
polymorphism, obesity, inflammation, and hypertension in type 2 diabetes
mellitus. Endocrinol. Diabetes Nutr. 66, 99–107. doi: 10.1016/j.endinu.2018.
07.008

Rosas, P. C., Liu, Y., Abdalla, M. I., Thomas, C. M., Kidwell, D. T., Dusio, G. F.,
et al. (2015). Phosphorylation of cardiac Myosin-binding protein-C is a critical
mediator of diastolic function. Circ. Heart Fail. 8, 582–594. doi: 10.1161/
circheartfailure.114.001550

Roura, S., Gámez-Valero, A., Lupón, J., Gálvez-Montón, C., Borràs, F. E., and
Bayes-Genis, A. (2018). Proteomic signature of circulating extracellular vesicles
in dilated cardiomyopathy. Lab. Invest. 98, 1291–1299. doi: 10.1038/s41374-
018-0044-5

Schmieder, R. E. (1990). Risk reduction following regression of cardiac
hypertrophy. Clin Exp Hypertens A 12, 903–916. doi: 10.3109/
10641969009073508

Schröcksnadel, H. (1990). Haptoglobin and free haemoglobin in pregnancy-
induced hypertension. Lancet 336:1594. doi: 10.1016/0140-6736(90)93383-z

Swain, N., Samanta, L., Agarwal, A., Kumar, S., Dixit, A., Gopalan, B., et al. (2020).
Aberrant Upregulation of Compensatory Redox Molecular Machines May
Contribute to Sperm Dysfunction in Infertile Men with Unilateral Varicocele: a
Proteomic Insight. Antioxid. Redox. Signal. 32, 504–521. doi: 10.1089/ars.2019.
7828

Szelényi, Z., Fazakas, Á, Szénási, G., Kiss, M., Tegze, N., Fekete, B. C., et al. (2015).
Inflammation and oxidative stress caused by nitric oxide synthase uncoupling
might lead to left ventricular diastolic and systolic dysfunction in patients with
hypertension. J. Geriatr. Cardiol. 12, 1–10. doi: 10.11909/j.issn.1671-5411.2015.
01.001

Tadic, M., Cuspidi, C., Frydas, A., and Grassi, G. (2018). The role of arterial
hypertension in development heart failure with preserved ejection fraction: just
a risk factor or something more? Heart Fail. Rev. 23, 631–639. doi: 10.1007/
s10741-018-9698-8

Tan, Y., Zuo, W., Huang, L., Zhou, B., Liang, H., Zheng, S., et al.
(2020). Nervilifordin F alleviates intestinal ischemia/reperfusion-induced
acute lung injury via inhibiting inflammasome and mTOR pathway. Int.
Immunopharmacol. 89:107014. doi: 10.1016/j.intimp.2020.107014

Tanimura, M., Dohi, K., Matsuda, M., Sato, Y., Sugiura, E., Kumagai, N., et al.
(2015). Renal resistive index as an indicator of the presence and severity of
anemia and its future development in patients with hypertension.BMCNephrol.
16:45. doi: 10.1186/s12882-015-0040-6

van der Pol, A., Gil, A., Tromp, J., Silljé, H. H. W., van Veldhuisen, D. J., Voors,
A. A., et al. (2018). OPLAH ablation leads to accumulation of 5-oxoproline,
oxidative stress, fibrosis, and elevated fillings pressures: a murine model for
heart failure with a preserved ejection fraction.Cardiovasc. Res. 114, 1871–1882.
doi: 10.1093/cvr/cvy187

Frontiers in Physiology | www.frontiersin.org 15 October 2021 | Volume 12 | Article 607089162

https://doi.org/10.1210/en.2009-1374
https://doi.org/10.1186/s12918-017-0437-x
https://doi.org/10.1002/cam4.1845
https://doi.org/10.1016/j.redox.2018.07.007
https://doi.org/10.1213/00000539-197150050-00025
https://doi.org/10.1136/jim-2018-000710
https://doi.org/10.1186/s12986-020-00453-z
https://doi.org/10.1186/s12986-020-00453-z
https://doi.org/10.1016/j.jchf.2017.04.012
https://doi.org/10.3390/ijms20092322
https://doi.org/10.1099/jmm.0.074476-0
https://doi.org/10.1099/jmm.0.074476-0
https://doi.org/10.1007/s11906-020-1017-9
https://doi.org/10.1038/s41569-019-0286-y
https://doi.org/10.1155/2017/7396462
https://doi.org/10.1155/2017/7396462
https://doi.org/10.1152/ajpheart.00573.2020
https://doi.org/10.1097/md.0000000000021195
https://doi.org/10.1073/pnas.1508273112
https://doi.org/10.1016/s0006-8993(01)03186-9
https://doi.org/10.1093/eurjhf/hfp120
https://doi.org/10.1016/j.jacc.2013.02.092
https://doi.org/10.1161/circulationaha.112.111591
https://doi.org/10.1161/circulationaha.112.111591
https://doi.org/10.1093/eurheartj/ehz641
https://doi.org/10.1093/eurheartj/ehz641
https://doi.org/10.1016/j.trstmh.2008.04.010
https://doi.org/10.1038/aps.2017.141
https://doi.org/10.1038/aps.2017.141
https://doi.org/10.1056/NEJMcp1511175
https://doi.org/10.1016/j.endinu.2018.07.008
https://doi.org/10.1016/j.endinu.2018.07.008
https://doi.org/10.1161/circheartfailure.114.001550
https://doi.org/10.1161/circheartfailure.114.001550
https://doi.org/10.1038/s41374-018-0044-5
https://doi.org/10.1038/s41374-018-0044-5
https://doi.org/10.3109/10641969009073508
https://doi.org/10.3109/10641969009073508
https://doi.org/10.1016/0140-6736(90)93383-z
https://doi.org/10.1089/ars.2019.7828
https://doi.org/10.1089/ars.2019.7828
https://doi.org/10.11909/j.issn.1671-5411.2015.01.001
https://doi.org/10.11909/j.issn.1671-5411.2015.01.001
https://doi.org/10.1007/s10741-018-9698-8
https://doi.org/10.1007/s10741-018-9698-8
https://doi.org/10.1016/j.intimp.2020.107014
https://doi.org/10.1186/s12882-015-0040-6
https://doi.org/10.1093/cvr/cvy187
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-607089 October 13, 2021 Time: 12:1 # 16

Zhou et al. Connections Between HFpEF and HTN

Wang, Q., Wang, C., Wang, B., Shen, Q., Qiu, L., Zou, S., et al. (2019). Identification
of RyR2-PBmice and the effects of transposon insertional mutagenesis of the
RyR2 gene on cardiac function in mice. PeerJ. 7:e6942. doi: 10.7717/peerj.6942

Winter, J. M., Joureau, B., Lee, E. J., Kiss, B., Yuen, M., Gupta, V. A., et al. (2016).
Mutation-specific effects on thin filament length in thin filament myopathy.
Ann. Neurol. 79, 959–969. doi: 10.1002/ana.24654

Wong, G. K., Heather, J. M., Barmettler, S., and Cobbold, M. (2017). Immune
dysregulation in immunodeficiency disorders: the role of T-cell receptor
sequencing. J. Autoimmun. 80, 1–9. doi: 10.1016/j.jaut.2017.04.002

Wu, H., Chen, L., Xie, J., Li, R., Li, G. N., Chen, Q. H., et al. (2016). Periostin
expression induced by oxidative stress contributes to myocardial fibrosis in
a rat model of high salt-induced hypertension. Mol. Med. Rep. 14, 776–782.
doi: 10.3892/mmr.2016.5308

Wu, Q., Xu, Z., Song, S., Zhang, H., Zhang, W., Liu, L., et al. (2020). Gut microbiota
modulates stress-induced hypertension through the HPA axis. Brain Res. Bull.
162, 49–58. doi: 10.1016/j.brainresbull.2020.05.014

Yan, F., Gao, M., Gong, Y., Zhang, L., Ai, N., Zhang, J., et al. (2020). Proteomic
analysis of underlying apoptosis mechanisms of human retinal pigment
epithelial ARPE-19 cells in response to mechanical stretch. J. Cell. Physiol. 235,
7604–7619. doi: 10.1002/jcp.29670

Yoshida, S., Kurajoh, M., Fukumoto, S., Murase, T., Nakamura, T., Yoshida,
H., et al. (2020). Association of plasma xanthine oxidoreductase activity with
blood pressure affected by oxidative stress level: medCity21 health examination
registry. Sci. Rep. 10:4437. doi: 10.1038/s41598-020-61463-8

Yuan, Y., Zhang, Y., Zhang, X., Yu, Y., Li, B., Wang, P., et al. (2016).
Deciphering the genetic and modular connections between coronary heart
disease, idiopathic pulmonary arterial hypertension and pulmonary heart
disease. Mol. Med. Rep. 14, 661–670. doi: 10.3892/mmr.2016.5298

Zeng, H., and Chen, J. X. (2019). Sirtuin 3, Endothelial Metabolic Reprogramming,
and Heart Failure With Preserved Ejection Fraction. J. Cardiovasc. Pharmacol.
74, 315–323. doi: 10.1097/fjc.0000000000000719

Zhang, Y., Kong, P., Chen, Y., Yu, Y., Liu, J., Yang, L., et al. (2014). Significant
overlapping modules and biological processes between stroke and coronary
heart disease. CNS Neurol. Disord. Drug Targets 13, 652–660. doi: 10.2174/
1871527312666131223115112

Zhao, T. V., Li, Y., Liu, X., Xia, S., Shi, P., Li, L., et al. (2019). ATP release drives
heightened immune responses associated with hypertension. Sci. Immunol.
4:eaau6426. doi: 10.1126/sciimmunol.aau6426

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Zhou, Chen, Wu, Jiang, Wang, Zhang, Jiang and Li. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Physiology | www.frontiersin.org 16 October 2021 | Volume 12 | Article 607089163

https://doi.org/10.7717/peerj.6942
https://doi.org/10.1002/ana.24654
https://doi.org/10.1016/j.jaut.2017.04.002
https://doi.org/10.3892/mmr.2016.5308
https://doi.org/10.1016/j.brainresbull.2020.05.014
https://doi.org/10.1002/jcp.29670
https://doi.org/10.1038/s41598-020-61463-8
https://doi.org/10.3892/mmr.2016.5298
https://doi.org/10.1097/fjc.0000000000000719
https://doi.org/10.2174/1871527312666131223115112
https://doi.org/10.2174/1871527312666131223115112
https://doi.org/10.1126/sciimmunol.aau6426
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


Hypoxia Induced Sex-Difference in
Zebrafish Brain Proteome Profile
Reveals the Crucial Role of H3K9me3
in Recovery From Acute Hypoxia
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Understanding the molecular basis of sex differences in neural response to acute hypoxic
insult has profound implications for the effective prevention and treatment of ischemic stroke.
Global hypoxic-ischemic induced neural damage has been studied recently under well-
controlled, non-invasive, reproducible conditions using a zebrafish model. Our earlier report
on sex difference in global acute hypoxia-induced neural damage and recovery in zebrafish
prompted us to conduct a comprehensive study on themechanisms underlying the recovery.
An omics approach for studying quantitative changes in brain proteome upon hypoxia insult
following recovery was undertaken using iTRAQ-based LC-MS/MS approach. The results
shed light on the altered expression of many regulatory proteins in the zebrafish brain upon
acute hypoxia following recovery. The sex difference in differentially expressed proteins along
with the proteins expressed in a uniform direction in both the sexes was studied. Core
expression analysis by Ingenuity Pathway Analysis (IPA) showed a distinct sex difference in
the disease function heatmap. Most of the upstream regulators obtained through IPA were
validated at the transcriptional level. Translational upregulation of H3K9me3 in males led us to
elucidate the mechanism of recovery by confirming transcriptional targets through ChIP-
qPCR. The upregulation of H3K9me3 level in males at 4 h post-hypoxia appears to affect the
early neurogenic markers nestin, klf4, and sox2, which might explain the late recovery in
males, compared to females. Acute hypoxia-induced sex-specific comparison of brain
proteome led us to reveal many differentially expressed proteins, which can be further
studied for the development of novel targets for better therapeutic strategy.

Keywords: sex difference, IPA, pathway analysis, iTRAQ, hypoxia-ischemia recovery

HIGHLIGHTS

⁃ Sex disparity was observed in differentially regulated proteins; mostly downregulated
in males.

⁃ Five common transcription regulators [Myc, Mknk1, Nfe2l2 (Nrf2), Thrb, and Otx 2] have
differential activation states.

⁃ Upon CoIP, H3K9me3 targets of hypoxia were found to be totally different from normoxia.
⁃ H3K9me3 seems to be a key player in early neurogenesis.
⁃Novel finding: H3K9me3 appeals to play an important role in the delayed recovery of males from
acute hypoxia.
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INTRODUCTION

Oxygenation in vertebrates is always a life-or-death necessity for
any of the metabolic needs of cells and tissues (Sun, 1999). Over
the last decade, we have acquired adequate information on
cellular and molecular mechanisms in hypoxic-ischemic injury,
survival, and death (Muller andMarks, 2014; Sekhon et al., 2017).
Hypoxic-ischemic neural injury continues to be the leading cause
of death and disability worldwide (Catherine and Collaborators,
2019). The degree of disability does not simply reflect the severity
or distribution of the impaired blood supply (Dugan et al., 1999).
The most common condition of hypoxia-ischemia leads to
cerebral stroke due to the focal disruption of blood supply to
a part of the brain. Other conditions include transient
impairment of blood flow to the entire brain, termed global
ischemia, which occurs following cardiac arrest.

A low level of oxygen and the brain’s susceptibility to acute
hypoxia characterizes the key factor determining critical
dependency. Cerebral oxygenation is reduced in hypoxia and
neuronal damage can occur during a prolonged mismatch
between oxygen supply and demand (Goodall et al., 2014). All
the neurons in the brain can sense and, crucially, modify, their
activity in response to hypoxia. Most neurons respond to hypoxia
by decreasing metabolic demand and thus the need for aerobic
energy (Michiels, 2004). Deciphering cellular response to
energetic challenges that occur on the onset of acute hypoxia
may give insight into the ischemic condition in various diseases
(Bickler and Buck, 2007). Broad high throughput approaches in
global changes in protein expression allow uncovering the critical
signals underlying mechanisms in the disease condition. Acute
Hypoxia causes a significant perturbation in cellular energy
homeostasis before a hypoxia sensing and signal transduction
cascade needing energy demand initiates (Hochachka et al.,
1996). An early component of the responses to acute hypoxia
i.e., neural damage and recovery may have both post-
transcriptional and translational mechanisms. The rapid
response to acute hypoxia may preclude many pathways that
require many new gene expressions suggesting the mechanism
underlying recovery from acute hypoxia is mediated at least in
part by the activities of the existing pool of mRNA and protein.
An approach such as high throughput proteomic analysis is one
of the ideally suited approaches to understand the neural changes
induced by acute hypoxia with recovery (Li et al., 2019).

Previous proteomic studies have shown hypoxia-induced
changes in the zebrafish (Danio rerio) skeletal muscle
proteome (Chen et al., 2013) and have implicated a broad
range of cellular functions in response to hypoxia. Another
proteomics study on zebrafish brain upon chronic
unpredictable stress (Chakravarty et al., 2013) has recently laid
the groundwork for the analysis of neural proteome response to
stressors.

A recent review article on Proteomics-Based Approaches for
the Study of Ischemic Stroke (Li et al., 2019) discussed the
proteomics study of ischemic stroke using in vivo and in vitro
models, with and without interventions and taking tissue,
cerebrospinal fluid, or plasma. Although proteomic studies
have contributed with a long list of potential biomarkers for

diagnosis, prognosis, and monitoring of ischemic stroke, most of
these have not been implemented in clinical application
successfully. The shortcomings from the existing proteomics
data are small sample size, cell types, te age of experimental
animals, and using single-sex experimental animals all seem to be
responsible for blocking these results from achieving clinical
implementation.

Like many neurological disorders, cerebral stroke is reported
to have sex-specific differences in occurrence and mechanisms.
However, the molecular details underlying these sex-specific
differences have not yet been explored using a relevant animal
model. In fact, many factors including genetics, hormones
(estrogen and androgen), epigenetic regulation, and
environment contribute to sex-specific differences. Since
ischemic sensitivity varies over the lifespan, and the “ischemia
resistant” female phenotype diminishes after menopause, hence
the role of sex hormones cannot be ruled out. To understand the
role of hormonal status on the cerebral vasculature in pinpointing
sex-specific differences in stroke pathophysiology, a suitable,
simple animal model that can help to address these
complicated sex-specific differences is warranted.

Sex-specific differences in the hypoxic-ischemic brain have
profound implications for effective prevention and treatment.
Global hypoxic-ischemic damages and recovery are well studied
under the well-controlled, non-invasive, reproducible conditions
in zebrafish (Yu and Li, 2013; Braga et al., 2016; Silva et al., 2016;
Das et al., 2019). In our previous study, we have reported the sex-
specific difference in hypoxia-induced neural damage and
recovery, where we have concluded that as compared to males,
females showed a higher level of neural damage and an ability to
recover faster. This interesting finding led us to explore the global
proteome changes induced in recovery after the hypoxic stress, so
in the present study, we performed a high throughput proteomic
analysis on zebrafish brain by iTRAQ method. The iTRAQ
labeling method also allows the identification of different post-
translational modifications which are key to understand the
aetiology and develop better treatment.

EXPERIMENTAL PROCEDURE

Animal Procurement and Acute-Hypoxia
Treatment
Wild type strain of zebrafish was bred and raised at CSIR-IICT
zebrafish facility in accordance with protocol no IICT/CB/SC/
281114/30 under registration no# 97/1999/CPCSEA. All the
experimental animals were maintained in a controlled
environment with a 14 h light/10 h dark cycle at 28°C with
three feedings and constant aeration. Zebrafish aged
5–6 month were segregated on the basis of sex and used for
all the experiments. For an acute hypoxia treatment animals
were placed in an air-tight glass hypoxia chamber for a period
of 5 min with 0.6 mg/ltr dissolved oxygen following
reoxygenation at 7 mg/ltr dissolved oxygen in a recovery
tank, which is exactly described in (Das et al., 2019). After
4 h post-hypoxia, all the animals were sacrificed for brain
tissue collection.
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Protein Extraction for iTRAQ
The animals were euthanatized and decapitated to remove the
brain. The whole brain from each animal was homogenized in a
lysis buffer [50 mM ammonium bicarbonate pH 8.0, 0.1% SDS
with protease inhibitor cocktail (Sigma)] and for further efficient
disruption and homogenization of tissue, a mild sonication was
done using Bioruptor®. The obtained lysates were cold-
centrifuged at 14,000 rpm for 15 min and the supernatant was
quantified using Bradford assay with BSA as standard. Further
protein samples were cleaned up by acetone precipitation. For
each group, 80 µg of protein was taken and six volumes of chilled
acetone were added for precipitation. After decantation of
acetone the samples were resuspended in dissolution buffer
(Buffer pH is 8.5. Contains 0.5 M triethyammonium
bicarbonate) provided with the iTRAQ® Reagents-4plex
Applications kit-Protein (AB Sciex). Before trypsin digestion,
all the protein samples were reduced and cysteine blocked
using the reagents provided in the iTRAQ® Reagents-4plex
Applications kit-Protein (AB Sciex). Digestion and labeling of
proteins were done according to the manufacturer’s protocol. The
samples from normoxia male and female were labeled with
reagents 114 and 116 and the samples from hypoxia male and
female were labeled with reagents 115 and 117, respectively.
Subsequently, all the labeled samples were pooled and vacuum
dried, and further cleaned up using the C18 desalting column
(Thermo Fisher Scientific). The final fraction was concentrated
using a vacuum concentrator and reconstituted in 10 µl of 0.1%
formic acid for LC-MS/MS analysis.

LC-MS/MS Analysis
LC-MS/MS analysis of the trypsin digested iTRAQ labeled and
purified fractions were performed in LTQ - Orbitrap Velos
(Thermo Scientific, Germany). The fragmentation was carried
out using higher-energy collision dissociation (HCD) with 50%
normalized collision energy. The MS data were analyzed using
Proteome Discoverer (Thermo Fisher Scientific, Version 1.4).
MS/MS search was carried out using the SEQUEST search engine
against the NCBI zebrafish protein database. Search parameters
included trypsin as an enzyme with a maximum of two missed
cleavage allowed; precursor and fragment mass tolerance were set
to 10 ppm and 0.2 Da respectively; Methionine oxidation was set
as a dynamic modification while methylthio modification at
cysteine and iTRAQ modification at N-terminus of the peptide
were set as static modifications. The FDR was calculated by
enabling the peptide sequence analysis using a decoy database.
High confidence peptide identifications were obtained by setting
a target FDR threshold of 1% at the peptide level. Relative
quantitation of proteins was determined based on the ratios of
relative intensities of the reporter ions from hypoxia treated and
untreated samples released during MS/MS fragmentation of each
peptide. Appropriate quality control filters at the level of
peptides/peptide spectral matches (PSMs) and then at the
protein level were applied to the iTRAQ data. Proteins
identified from the triplicate runs as having more than 1.5-
log-fold changes in the hypoxia samples against the normoxia
samples were selected for upregulation and having less than 0.5-
log fold change considered to be downregulated for its differential

expression. Proteins based on their regulation were analyzed for
putative associations in different network pathways.

The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD027528".

Protein Enrichment Analysis
To perform the functional enrichment tests of the candidate
proteins, we used Ingenuity Pathway Analysis (IPA) software for
both canonical pathways and molecular networks altered. The
IPA system provides a more comprehensive pathway resource
based on manual collection and curation. The rich information
returned by IPA is also suitable for pathway crosstalk analysis as it
has more molecules and their connections included. For analysis,
we have provided the identified peptides with relative and
absolute expression fold change values and performed core
IPA analysis, biomarkers, and molecular and functional
comparison analysis.

Co-Immunoprecipitation
Zebrafish brain tissue was homogenized in nuclear extraction
buffer [50 mM HEPES (pH 7.8), 50 mM KCl, 300 mM NaCl,
0.1 M EDTA, 1 mM DTT, 10% (v/v) Glycerol and 1X protease
inhibitor] and further washed with PBS and incubated in RIPA
buffer [20 mM Tris (pH 7.5), 150 mM NaCl, 1% NP-40, 5 mM
EDTA, protease and phosphatase inhibitors] for 15 min on ice.
After centrifugation, the supernatant was collected and pre-
cleared with protein A agarose beads (Santa Cruz) at 4°C for
30 min. The pre-cleared lysate was then incubated with Anti-
Histone H3 (tri methyl K9) antibody (H3K9me3) (AB8898 1:250)
complexed to protein A beads at 4°C for 5–6 h, followed by
washes with a buffer containing 10 mM Tris (pH 7.5), 150 mM
NaCl, and 1 mM EDTA. The beads complexed with the
immunoprecipitated proteins were then boiled at 100°C in 3X
Laemmli buffer for 5 min. 2.5% of whole tissue lysate was taken as
input for each immunoprecipitation. Western blotting was
carried out by loading equal amounts of the
immunoprecipitated proteins.

Immunoblotting Analysis
For immunoblotting experiments, cells were lysed in 3X Laemmli
buffer [180 mM Tris (pH 6.8), 6% SDS, 15% glycerol, 7.5%
β-mercaptoethanol, and 0.01% bromophenol blue]. Images
were captured using Chemicapt (Vilber-Lourmat, Germany).
Densitometry analysis for blots was performed using ImageJ
software (NIH) and images were processed in Adobe
Photoshop CS3. The intensity values plotted or mentioned are
average values from the number of biological replicates indicated
in the legend.

Chromatin Immunoprecipitation Assay
ChIP was performed as described in (Weidemann et al., 2013)
with required minor modifications. Briefly, for each ChIP,
cross-linked samples from three animals were pooled together
both in the normoxia and hypoxia groups. The 30 μg of
chromatin from each sample was pre-cleared with
Dynabeads (Invitrogen) before incubation with an anti-rabbit

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 6359043

Das et al. Sex-Difference in Zebrafish-Brain on Hypoxia

166

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


H3K9me3 antibody (EPR16601) keeping non-immune rabbit IgG
antibody as a negative control. After reverse cross-linking and
sequential washes with different concentration salt buffers, DNA
was purified using phenol-chloroform-isoamyl alcohol (25:24:1
ratio, SIGMA). Specific primers for the gene-specific 5′
upstream region of the transcription start site were used for
quantifying the enrichment of the histone mark H3K9me3, for
10% input, in SYBR Green-based qPCR assays.

qPCR
The total RNA was isolated using TRIzol Reagent as per the
manufacturer’s instruction. The cDNA was synthesized employing
RevertAidHMinus First Strand cDNASynthesis Kit according to the
manufacturer’s protocol. The primer sequences are available on a
request basis. Real-time PCR was performed in triplicate using SYBR
Green PCR Master Mix Detection System (Applied Biosystems).
Normalization of mRNA expression levels was carried out using
β-actin as the housekeeping gene. Gene expression was normalized
against the ubiquitously expressed beta actin gene. Data were
analyzed using the Δ(ΔCT) method.

Statistical Analysis
Statistical analysis was performed using Microsoft Excel. Mean
differences between the normoxia and hypoxia groups were
determined using a two-tailed unpaired Student’s t-test with
confidence intervals of 95% since only two groups were used to
compare a single variable i.e., normoxia/hypoxia. A p-value of ≤0.05
was considered significant.

RESULTS AND DISCUSSION

Analysis of Zebrafish Brain Proteome
Induced by Acute Hypoxia and During
Recovery Using iTRAQ Based LC-MS/MS
As described previously by us (Das et al., 2019), 4 h post-acute
hypoxia treatment (for 5 min at DO � ±0.6 mg/litre) the brain
tissues from both hypoxia-treated and untreated male and female
zebrafish were isolated (n � 6 per group) and subjected to
comprehensive proteomic profiling. For this, male and female

FIGURE 1 | Analysis of zebrafish brain proteome by iTRAQ. Schematic representation of brain proteome analysis by iTRAQ labeling (A), Cluster heatmap of
proteins obtained from iTRAQ analysis for hypoxia male [HM] vs. normoxia male [NM] and hypoxia female [HF] vs. normoxia female [NF] (B), Pie chart showing the
analysis of expression of proteins resulted from iTRAQ in hypoxia male and female brain compared with normoxia male and female brain (C).
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zebrafish brains of nine individuals from each sex were pooled
together for iTRAQ based LC-MS/MS method and three
technical replicates were run in LC-MS/MS, as depicted in
Figure 1A. Differentially expressed proteins were identified

using iTRAQ and LC-MS/MS analysis on an LTQ Orbitrap
Velos mass spectrometer, by comparing hypoxia male (HM)
vs. normoxia male (NM) and hypoxia female (HF) vs.
normoxia female (NF) (Figure 1A). A total of 2,323 proteins

FIGURE 2 | Protein enrichment analysis by IPA showing types of protein and Comparative heat map. Pie chart showing types of protein mapped by IPA (A),
Disease function Heat map of male (B) and female (C) zebrafish brain proteome upon hypoxia treatment.
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TABLE 1 | IPA generated disease function analysis for zebrafish male and female brain proteome induced by hypoxia following recovery.

Male ZF brain proteome analysis (HM/NM)

Categories Diseases or functions
annotation

p-value Predicted
activation state

Activation
z-score

#
Molecules

Organismal survival Organismal death 2.31E-11 Increased 12.434 251
Cell death and survival Cell death 2.51E-11 Increased 4.843 218
Cell death and survival Necrosis 3.27E-09 Increased 4.131 154
Cancer, organismal injury and abnormalities, respiratory
disease

Development of lung tumor 9.13E-08 Increased 3.302 27

Cancer, organismal injury and abnormalities Incidence of tumor 0.000000893 Increased 2.199 87
Cell death and survival Apoptosis 0.000000991 Increased 4.38 153
Cancer, organismal injury and abnormalities Malignant genitourinary solid

tumor
0.00000154 Increased 2.272 33

Cancer, organismal injury and abnormalities Frequency of tumor 0.00000449 Increased 2.133 77
Cancer, organismal injury and abnormalities, respiratory
disease

Lung carcinoma 0.0000213 Increased 2.584 23

Cancer, organismal injury and abnormalities Tumorigenesis of epithelial
neoplasm

0.0000284 Increased 2.18 52

Cancer, organismal injury and abnormalities Development of
adenocarcinoma

0.0000307 Increased 2.525 28

Cell death and survival Apoptosis of neurons 0.0000414 Increased 3.077 39
Gastrointestinal disease, hepatic system disease, organismal
injury and abnormalities

Liver lesion 0.000048 Increased 2.594 53

Developmental disorder, embryonic development, organismal
survival

Death of embryo 0.0000693 Increased 4.258 22

Cancer, organismal injury and abnormalities Epithelial neoplasm 0.0000849 Increased 2.115 65
Cancer, organismal injury and abnormalities Development of carcinoma 0.0000998 Increased 2.229 39
Cancer, organismal injury and abnormalities, respiratory
disease

Development of lung carcinoma 0.000105 Increased 2.559 17

Cancer, organismal injury and abnormalities Adenocarcinoma 0.000142 Increased 2.587 30
Cancer, cell death and survival, organismal injury and
abnormalities

Cell death of tumor 0.000151 Increased 3.66 30

Cancer, cell death and survival, organismal injury and
abnormalities, tumor morphology

Necrosis of tumor 0.000254 Increased 3.66 29

Cancer, organismal injury and abnormalities, respiratory
disease

Lung adenocarcinoma 0.000393 Increased 2.375 15

Cancer, organismal injury and abnormalities, respiratory
disease

Non-small cell lung carcinoma 0.000584 Increased 2.559 17

Cancer, organismal injury and abnormalities Adenoma 0.00077 Increased 2.042 25
Developmental disorder, embryonic development Degeneration of embryo 0.000814 Increased 2.804 8
Cancer, organismal injury and abnormalities Carcinoma 0.00101 Increased 2.006 48
Developmental disorder, embryonic development, tissue
morphology

Degeneration of embryoblast 0.00135 Increased 2.433 6

Cancer, cell death and survival, organismal injury and
abnormalities, tumor morphology

Cell death of tumor cells 0.00151 Increased 3.536 26

Connective tissue disorders, developmental disorder,
organismal injury and abnormalities, skeletal and muscular
disorders

Dysplasia of skeleton 0.00204 Increased 2.2 7

Organismal survival Perinatal death 0.00223 Increased 6.322 60
Developmental disorder, embryonic development, tissue
morphology

Degeneration of embryonic
tissue

0.00329 Increased 2.63 7

Neurological disease, organismal injury and abnormalities Hydrocephalus 0.00329 Increased 3.138 11
Carbohydrate metabolism Glycolysis of cells 0.00522 Increased 2 8
Lipid metabolism, molecular transport, small molecule
biochemistry

Concentration of acylglycerol 0.00562 Increased 2.147 33

Cellular compromise Dysfunction of mitochondria 0.00654 Increased 2.213 5
Cancer, cell death and survival, organismal injury and
abnormalities, tumor morphology

Cell death of cancer cells 0.00661 Increased 3.252 20

Cancer, cell death and survival, organismal injury and
abnormalities, tumor morphology

Cell death of osteosarcoma cells 0.00721 Increased 3.742 14

Cancer, organismal injury and abnormalities Development of head and neck
tumor

0.00724 Increased 2.189 11

Cellular assembly and organization, cellular function and
maintenance

Organization of cytoskeleton 6.48E-08 Decreased −3.001 101

Nervous system development and function, tissue morphology Quantity of neurons 0.000000822 Decreased −2.239 53
Organization of cytoplasm 0.000000842 Decreased −3.001 103

(Continued on following page)
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TABLE 1 | (Continued) IPA generated disease function analysis for zebrafish male and female brain proteome induced by hypoxia following recovery.

Male ZF brain proteome analysis (HM/NM)

Categories Diseases or functions
annotation

p-value Predicted
activation state

Activation
z-score

#
Molecules

Cellular assembly and organization, cellular function and
maintenance
Cellular assembly and organization, cellular function and
maintenance

Microtubule dynamics 0.00000115 Decreased −3.268 86

Cell morphology, cellular assembly and organization, cellular
function and maintenance

Formation of cellular protrusions 0.00000314 Decreased −2.624 70

Cancer, organismal injury and abnormalities Growth of tumor 0.00000351 Decreased −3.22 75
Cellular movement Cell movement 0.00000707 Decreased −4.559 132
Tissue morphology Quantity of cells 0.00001 Decreased −3.306 171
Cellular growth and proliferation, connective tissue
development and function, tissue development

Proliferation of connective tissue
cells

0.0000108 Decreased −2.856 49

Cellular movement Migration of cells 0.0000139 Decreased −4.26 117
Cellular movement, nervous system development and function Migration of neurons 0.0000177 Decreased −2.055 30
Connective tissue development and function, tissue
development

Growth of connective tissue 0.0000256 Decreased −2.686 50

Cellular assembly and organization Quantity of intermediate
filaments

0.000211 Decreased −2 4

Nervous system development and function Sensation 0.00041 Decreased −2.482 30
Cancer, organismal injury and abnormalities Neoplasia of tumor cell lines 0.000582 Decreased −2.44 15
Cellular development, cellular growth and proliferation, nervous
system development and function, tissue development

Development of neurons 0.000782 Decreased −2.282 63

Cellular function and maintenance Cellular homeostasis 0.000792 Decreased −2.034 103
Organismal development Size of animal 0.00102 Decreased −2.322 22
Cell-to-cell signaling and interaction, nervous system
development and function

Auditory evoked potential 0.00126 Decreased −2.725 12

Behavior Learning 0.00151 Decreased −2.11 41
Lipid metabolism, small molecule biochemistry, vitamin and
mineral metabolism

Synthesis of steroid hormone 0.00168 Decreased −2.219 6

Tissue development Formation of gland 0.00313 Decreased −2.088 25
Embryonic development, organismal development Development of body trunk 0.00377 Decreased −3.116 95
Embryonic development, organ development, organismal
development, skeletal and muscular system development and
function, tissue development

Formation of muscle 0.00389 Decreased −2.398 32

Cancer, organismal injury and abnormalities Metastasis of tumor cell lines 0.00431 Decreased −2.556 10
Organismal development Development of genitourinary

system
0.0049 Decreased −3.43 86

Auditory and vestibular system development and function,
nervous system development and function

Hearing 0.00506 Decreased −2.157 15

Amino acid metabolism,post-translational modification, small
molecule biochemistry

Phosphorylation of L-amino acid 0.00686 Decreased −2 13

Female ZF brain proteome analysis (HF/NF)

Categories Diseases or functions
annotation

p-value Predicted
activation state

Activation
z-score

#
Molecules

Cellular assembly and organization, cellular function and
maintenance

Organization of cytoskeleton 6.83E-08 Increased 2.675 101

Cellular assembly and organization, cellular function and
maintenance

Organization of cytoplasm 0.000000884 Increased 2.675 103

Cellular assembly and organization, cellular function and
maintenance

Microtubule dynamics 0.0000012 Increased 2.941 86

Cell morphology, cellular assembly and organization, cellular
function and maintenance

Formation of cellular protrusions 0.00000326 Increased 2.483 70

Cancer, organismal injury and abnormalities Growth of tumor 0.00000365 Increased 2.325 75
Cellular movement Cell movement 0.00000746 Increased 2.14 132
Nucleic acid metabolism Metabolism of nucleic acid

component or derivative
0.000087 Increased 2.209 27

Cell morphology, cellular function and maintenance Autophagy 0.000186 Increased 2.393 24
Nucleic acid metabolism, small molecule biochemistry Metabolism of nucleotide 0.000212 Increased 2.209 23
Organismal survival Viability 0.000296 Increased 3.302 14
Nervous system development and function Sensation 0.000417 Increased 2.058 30
Cellular function and maintenance Cellular homeostasis 0.000821 Increased 2.663 103

(Continued on following page)
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were identified to be regulated differentially after the data analysis
from experimental runs in triplicate. The resuling proteins
(2,323) were used to generate a clustered heatmap for showing
the sex difference in expression patterns (Figure 1B). A majority
(i.e., 84%) of differentially regulated proteins, 1,968 in total, were
found downregulated in HM versus NM. In contrast, more than
half (51%) of differentially regulated proteins, 1,188 in total, were
found upregulated in HF versus NF (Figure 1C). 1,535 proteins
were differentially regulated, among those 1,518 (98%) proteins
were upregulated in females and downregulated in males whereas
only 17 (2%) proteins were upregulated in males and
downregulated in females, showing a clear differential
regulation in a sex-specific manner. Another 554 proteins
showed a similar expression pattern in both sexes, where 478
proteins were upregulated and 76 proteins downregulated. A list
of differentially regulated proteins is provided in Table 1.

Protein Enrichment Analysis for Zebrafish
Brain Proteome Induced by Acute Hypoxia
and During Recovery
Based on the zebrafish annotated database, IPA mapped 994
proteins out of 2,323 proteins identified in the iTRAQ analysis.
These 994 proteins included different types of proteins
i.e., transporters, transmembrane receptors, translation and
transcription regulators, phosphatases, peptidase, kinases,
enzymes, G-protein coupled receptors, ligand-binding receptors,

and cytokines (Figure 2A). Out of all the groups, the majority of
proteins belonged to the group “transcription regulators.”

The protein enrichment analysis on the altered proteome
was performed using the Ingenuity Pathway Analysis (IPA)
software. The disease function pathway-based heat map
generated by the IPA (Figures 2B,C) clearly showed a sex-
specific difference in the altered expression of proteins in
different disease pathway conditions.

The IPA analysis for disease function annotation showed a
predicted activation state with activation z-score and p-values
and molecules involved in each category of disease function.
Among all the 502 proteins mapped in IPA for the disease and
function analysis, in males 65 categories of disease function showed
the predicted activation state: 37 categories showed increased
activation states while 28 categories exhibited decreased activation
states. In females only 30 categories of disease function showed the
predicted activation state and among those, 21 categories of disease
function showed increased activation states and only 9 categories
showed decreased activation states.

The most striking feature was the contrasting regulation
between male and female in one of the disease and function
categories named “organismal survival” and “leads to organismal
death” with a very significant (p � 2.31E-11) activation z-score
(12.434) identifying 251 molecules with an increased activation
state, but the same 251 molecules showed a significantly (2.59E-
11) decreased activation state with a z-score (−7.796) in females
(Table 1). In males most of the increased activation state was

TABLE 1 | (Continued) IPA generated disease function analysis for zebrafish male and female brain proteome induced by hypoxia following recovery.

Male ZF brain proteome analysis (HM/NM)

Categories Diseases or functions
annotation

p-value Predicted
activation state

Activation
z-score

#
Molecules

Organismal development Size of animal 0.00104 Increased 2.322 22
Embryonic development, organismal development Growth of embryo 0.00133 Increased 2.454 46
Cellular movement, embryonic development Cell movement of embryonic

cells
0.00172 Increased 2.2 12

Embryonic development, organismal development Development of body trunk 0.00389 Increased 2.736 95
Cancer, organismal injury and abnormalities Metastasis of tumor cell lines 0.00434 Increased 2.008 10
Nervous system development and function, tissue morphology Quantity of neuroglia 0.00449 Increased 2.402 14
Nucleic acid metabolism, small molecule biochemistry Synthesis of nucleotide 0.00583 Increased 2.019 15
Respiratory system development and function Respiration of mice 0.00693 Increased 2 9
Embryonic development, organ development, organismal
development, skeletal and muscular system development and
function, tissue development

Development of striated muscle 0.00767 Increased 2.236 17

Organismal survival Organismal death 2.59E-11 Decreased −7.796 251
Developmental disorder, embryonic development, organismal
survival

Death of embryo 0.0000704 Decreased −2.198 22

Cancer, cell death and survival, organismal injury and
abnormalities

Cell death of tumor 0.000153 Decreased −2.141 30

Cancer, cell death and survival, organismal injury and
abnormalities, tumor morphology

Necrosis of tumor 0.000258 Decreased −2.141 29

Cancer, cell death and survival, organismal injury and
abnormalities, tumor morphology

Cell death of tumor cells 0.00154 Decreased −2.363 26

Connective tissue disorders, developmental disorder,
organismal injury and abnormalities, skeletal and muscular
disorders

Dysplasia of skeleton 0.00205 Decreased −2.2 7

Organismal survival Perinatal death 0.00228 Decreased −3.588 60
Organismal survival Death of perinatal stage

organism
0.00619 Decreased −2.137 11

Cellular compromise Dysfunction of mitochondria 0.00657 Decreased −2.213 5
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FIGURE 3 | Pathway based on the top networks. Comparative heatmap for canonical pathways of male and female brain proteome induced by hypoxia (A),
Predictive pathway for zebrafish male (B) and female (C) brain proteome induced by hypoxia, comparative heatmap for upstream regulators (D).

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 6359049

Das et al. Sex-Difference in Zebrafish-Brain on Hypoxia

172

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


TABLE 2 | IPA generated upstream regulators analysis for male and female zebrafish brain proteome induced by hypoxia following recovery.

Upstream regulators in male zebrafish brain with predicted activation state

S. No. Upstream regulator Molecule type Predicted
activation state

Activation
z-score

p-value of
overlap

Target molecules in dataset

1 MYC Transcription regulator Inhibited −2.24 4.52E-05 BUB1, CCNA2, ENO1, EZH1, GLS, GOT1, GOT2, GPI, HIF1A, LDHB, MCM6, MCM7, PA2G4,
PDHA1, PDK1, PGAM1, PGK1, PKM, TCF3

2 RB1 Transcription regulator Inhibited −3.183 0.000472 ACO2, Actn3, APAF1, ATP1A1, ATP5F1A, BCKDHA, CASP9, CCNA2, CKM, DLST, FABP2,
HSBP1, KRT18, MCM7, MFN2, MLYCD, MYH4, MYH6, MYH7, NDUFB10, RBL1, TIMM22

3 TSC2 Other Inhibited −2.433 0.000695 IRS1, IRS2, MCL1, PDGFRB, PRKCA, PSMC3
4 CSF2 Cytokine Inhibited −3.141 0.00347 BUB1, C3, CCNA2, CHTF18, E2F8, EXO1, FBXO5, FIGNL1, IL12B, KNTC1, MCM6, MNS1, NOS2,

POLD1, POLE, SMC2, TLR4
5 MKNK1 Kinase Inhibited −3.317 0.00792 APC, ATP1A3, CRMP1, DPYSL3, HADHA, KIF5A, MYO6, PRKAR1B, SNAP25, STXBP1, THRA
6 Gsk3 Group Inhibited −2.219 0.00826 COL2A1, KDR, MYH6, NOS2, STAT1
7 NFE2L2 Transcription regulator Inhibited −2.066 0.00931 ACTG1, ALAS2, APOA4, ATP1A1, CDKN2C, ESD, FKBP5, G6PD, GFAP, GSTP1, HMOX1, L1CAM,

MCFD2, NCKAP1, NOS2, NQO1, PDIA3, PFN2, PSMC1, PSMC3, PSMD11, RAN, SCG2, SREBF1,
SYP, TTR, VCP

8 THRB Ligand-dependent
nuclear receptor

Inhibited −3.054 0.0121 ABCD3, CSHL1, DDC, DIO1, FGFR3, IGFBP2, MAPK8, MYH6, MYH7, NCOR2, STAT5B, WNT4,
YWHAE

9 LEPR Transmembrane
receptor

Inhibited −2.791 0.0139 APOA1, APOA4, CREB3L2, CSHL1, EXOC4, GFAP, HIF1A, INPPL1, IRS2, MMP14, NBN, PLCB3,
SNAP25, SREBF1

10 IL1B Cytokine Inhibited −2.59 0.0182 A2M, ATP1A1, C3, COL2A1, FKBP5, FOXO1, HAS2, HIF1A, KIF15, MMP9, NOS2, STAT1
11 EGFR Kinase Inhibited −2.314 0.0258 ACY1, ATAD3A, CCNA2, CCT5, GFAP, HAS2, MMP14, MMP9, PA2G4, TUBA4A, UBA1
12 OTX2 Transcription regulator Inhibited −2.219 0.0435 A2M, EN1, PRDM1, SIX3, TF, TTR
13 UCHL1 Peptidase Inhibited −2 0.366 ANXA6, LDHB, MAPK6, SCP2
14 STAT6 Transcription regulator Inhibited −2.433 1 BCL6, Cmah, IL12B, IRS2, MMP14, MMP9, MYO6, NCOA3, SERPINA1
15 KDM5A Transcription regulator Activated 2.688 0.00249 ACO2, Actn3, ATP1A1, ATP5F1A, BCKDHA, DLST, HSBP1, MFN2, MLYCD, MYH4, MYH6, MYH7,

NDUFB10, TIMM22
16 26s Proteasome Complex Activated 2.236 0.00826 APAF1, BHLHE22, FOXO1, NOTCH1, PRKCA
17 HAND1 Transcription regulator Activated 2 0.0179 KDR, MLYCD, NOTCH1, NRP1
18 SATB1 Transcription regulator Activated 2 0.472 APC, ETS1, NCOR1, NR2C2

Upstream regulators in female zebrafish brain with predicted activation state

S. No. Upstream regulator Molecule type Predicted
activation state

Activation
z-score

p-value of
overlap

Target molecules in dataset

1 MYC Transcription regulator Activated 2.801 4.58E-05 BUB1, CCNA2, ENO1, EZH1, GLS, GOT1, GOT2, GPI, HIF1A, LDHB, MCM6, MCM7, PA2G4,
PDHA1, PDK1, PGAM1, PGK1, PKM, TCF3

2 INSR Kinase Activated 2.124 0.000466 ACO2, ACTA1, ACTN4, ALDH6A1, ATP5F1A, ATP5F1B, CS, DCTN4, FLNC, GOT2, HADHA,
HSPD1, IDH3A, IGF2R, INSR, MDH2, MMP9, MPEG1, MYH7, NAMPT, OGDH, PDHA1, PDHB,
PKLR, SCP2, SREBF1

3 Gm21596/Hmgb1 Transcription regulator Activated 2.219 0.00101 HIF1A, NOS2, PKM, SIGIRR, TLR4
4 PIK3R1 Kinase Activated 2.621 0.00711 FOXO1, HIF1A, HMOX1, IL12B, NOS2, PDHA1, PDK1, PKM
5 MKNK1 Kinase Activated 2.111 0.00798 APC, ATP1A3, CRMP1, DPYSL3, HADHA, KIF5A, MYO6, PRKAR1B, SNAP25, STXBP1, THRA
6 NFE2L2 Transcription regulator Activated 2.705 0.00943 ACTG1, ALAS2, APOA4, ATP1A1, CDKN2C, ESD, FKBP5, G6PD, GFAP, GSTP1, HMOX1, L1CAM,

MCFD2, NCKAP1, NOS2, NQO1, PDIA3, PFN2, PSMC1, PSMC3, PSMD11, RAN, SCG2, SREBF1,
SYP, TTR, VCP

7 EGR3 Transcription regulator Activated 2.219 0.0116 BCL6, ESD, LMO7, NOTCH1, PABPC1L
8 THRB Ligand-dependent

nuclear receptor
Activated 3.054 0.0122 ABCD3, CSHL1, DDC, DIO1, FGFR3, IGFBP2, MAPK8, MYH6, MYH7, NCOR2, STAT5B, WNT4,

YWHAE
9 MYB Transcription regulator Activated 2 0.019 CLTA, HSPA8, MAD1L1, NOTCH1, RGS8, SLC27A2, TULP4
10 OTX2 Transcription regulator Activated 2.219 0.0437 A2M, EN1, PRDM1, SIX3, TF, TTR
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observed in organismal injury, abnormalities, cell death,
connective tissue disorders, developmental disorder, skeletal
and muscular disorders, neurological, respiratory diseases, and
cancer; whereas in females cellular assembly and organization,
cellular function and maintenance, cell morphology, nucleic acid
metabolism, and cellular movement showed an increased
activation state. The disease function analysis clearly showed a
sex-specific difference in hypoxia-induced neural damage and
recovery as seen in our earlier studies (Das et al., 2019).

The IPA generated core expression analysis shed light on sex
differences in canonical pathways with their predictive
upregulation and downregulation in expression (Figure 3A).
Among all, the top five canonical pathways were Actin
Cytoskeleton Signaling, TCA Cycle II (Eukaryotic) 14-3-3-
mediated Signaling, Remodeling of Epithelial Adherens
Junctions, and Huntington’s Disease Signaling showed negative
score in males while in females, a positive score was observed.

Hypoxia can induce cytoskeletal injury and remodeling
through the activation of hypoxia-inducible factor-1α (HIF-1α)
and HIF-1α activation results in actin cytoskeleton signaling
(Weidemann et al., 2013; Huang et al., 2019). F-actin in non-
muscle cells is to organize the actin cytoskeleton, which is utilized
for cell locomotion, adhesion, and cell proliferation and we have
observed activation of Factin in females (Figures 3B,C)
indicating early proliferation in response to neural damage
induced by hypoxia.

The core expression analysis of IPA led us to decipher many
regulatory networks, disease function pathways, top upstream
regulators and their predicted activation state, and also some
biomarkers. Upon reviewing all the pathways involved, two
individual pathways were found very interesting in males and
females (Figures 3A,B), which clearly showed a gender-
specific difference in the expression of a number of proteins
in the pathway such as Rock1, Inppl1, Factin, Stat5ab, Ncor2,
SRC-family, Got, Ints7 and Pdgfr, which were downregulated
in the male brain but upregulated in the female brain. Though
the pathways involved many molecules and networks, they
were still centered around the AKT signaling pathway, which
regulates a wide range of cellular functions and is involved in
the resistance response to hypoxia-ischemia through the
activation of proteins associated with cell survival,
proliferation, and regulation of HIF-1α (Zhang et al., 2018).
The growth factors and inflammation markers noticed in the
pathway were studied in our previous study reported in (Das
et al., 2019; Das et al., 2020).

The upstream regulators analyzed in IPA were 155 in male and
165 in female; among these 18 upstream regulators in male and 24
in female showed the predicted activation state (Table 2). Among
the 18 upstream regulators in males, 14 were inhibited and only 4
were activated, and most of these were transcription regulators.
Among the 24 upstream regulators in females, 16 were activated,
with a majority of transcription regulators, and only with 8 were
inhibited, which were not found in the males. Five upstream
regulators [Myc, Mknk1, Nfe2l2 (Nrf2), Thrb, and otx2] were
found to be common in both males and females with differential
activation states, and interestingly these were in opposite
directions, i.e., inhibited in males while activated in females.T
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TABLE 3 | IPA generated regulatory effect analysis for male and female zebrafish brain proteome induced by hypoxia following recovery.

Male hypoxia regulator effects

ID Consistency
score

Regulators Target
total

Target molecules in dataset Diseases & functions Known
regulator-

disease/function
relationship

1 2.309 HAND1,THRB 12 CSHL1,FGFR3,IGFBP2,KDR,MAPK8,MLYCD,MYH6,NCOR2,NOTCH1,NRP1,STAT5B,WNT4 Cellular homeostasis,
development of body
trunk, development of
genitourinary system

67% (4/6)

2 2.111 MYC 11 BUB1,CCNA2,ENO1,GLS,GPI,HIF1A,PA2G4,PDHA1,PDK1,PKM,TCF3 Carcinoma, frequency of
tumor, growth of tumor,
incidence of tumor

100% (4/4)

3 2 NFE2L2 4 PSMC1,PSMD11,RAN,VCP Cell death of tumor cells 0% (0/1)
4 1.789 OTX2 5 A2M,EN1,PRDM1,SIX3,TF Quantity of cells 100% (1/1)
5 −5.715 MYC 6 ENO1,GPI,HIF1A,PDK1,PGK1,PKM Glycolysis of cells 100% (1/1)
6 −7.506 HAND1 3 KDR,NOTCH1,NRP1 Migration of cells 0% (0/1)
7 −16.743 HAND1 3 KDR,NOTCH1,NRP1 Organization of cytoplasm 0% (0/1)
8 −19.23 MYC 5 BUB1,CCNA2,GPI,HIF1A,PDK1 Growth of connective

tissue
100% (1/1)

Female hypoxia regulator effects

ID Consistency
score

Regulators Target
total

Target molecules in dataset Diseases & functions Known
regulator-

disease/function
relationship

1 3.051 Gm21596/
Hmgb1,PIK3R1,THRB

13 CSHL1,FGFR3,FOXO1,HIF1A,HMOX1,IL12B,MAPK8,MYH6,NCOR2,NOS2,STAT5B,TLR4,WNT4 Autophagy, development
of body trunk

50% (3/6)

2 −4.082 MKNK1 6 ATP1A3,HADHA,KIF5A,SNAP25,STXBP1,THRA Perinatal death 0% (0/1)
3 −4.491 PIK3R1 6 FOXO1,HIF1A,HMOX1,IL12B,NOS2,PDK1 Cell movement 100% (1/1)
4 −5.367 MKNK1 5 APC,CRMP1,DPYSL3,KIF5A,MYO6 Microtubule dynamics 0% (0/1)
5 −6.5 Gm21596/Hmgb1 4 HIF1A,NOS2,PKM,TLR4 Growth of tumor 100% (1/1)
6 −7.5 NFE2L2 4 G6PD,NOS2,NQO1,VCP Metabolism of nucleotide 0% (0/1)
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In Table 3 the regulator effects of males and females are shown,
where only one of the regulators, Nfe2l2, is common in both, but
with only one common target molecule VCP (valosin containing
protein), and all different target molecules in both the dataset VCP
was earlier reported to be an AKT binding protein, and its
expression was found enhanced in hypoxia (Klein et al., 2005).

Validation of Few Selected Regulator
Effects Molecules From IPA Analysis
A few of the target molecules (Eno1, Foxo1, Gp1, Hmox1, Nos2,
Pkm, Ran, and Vcp) from both the data sets were considered for

validation by quantitative Realtime PCR (Figure 4). eno1
(enolase 1) is one of the HIF target genes (Benita et al., 2009).
The qPCR analysis revealed more than ∼2-fold increase in eno1
and ran (ras-related nuclear protein) in females but it remained
unchanged in males. The foxo transcriptional factors are
important regulators of cell survival in response to various
stresses including oxidative stress (Bakker et al., 2007). foxo1 was
upregulated∼4-fold in females but unaffected inmales thus indicating
better survival response after hypoxia in females. The expression of
gp1 (Glycoprotein 1) and hmox1 (Heme Oxygenase 1) showed a
similar kind of expression pattern in both sexes, amild upregulation in
males, and ∼3-fold upregulation in females. (gp1) acts as a glycolytic

FIGURE 4 | Validation of few regulatory target molecules. Graph showing mRNA expression of eno1, foxo1, gp1, hmox1, nos2, pkm, ran, and vcp (A) The data are
expressed as themean ± SEM, (n � 6 pooled brains). Immunoblot showing expression of pCREB and pAKT in male and female brain (B), Densitometry for comparison of
protein expression in HM vs. NM and HF vs. NF (C).

TABLE 4 | Top 5 upregulated proteins retrieved from uniformly regulated (upregulated) in both male and female zebrafish brain induced by acute hypoxia.

S. No. Accession No. Description HM/NM HF/NF

1 56693350 Very long-chain acyl-CoA synthetase 3.234 1.690
2 71834420 Histone-lysine N-methyltransferase, H3 lysine-9 specific 5 3.188 1.603
3 189531944 Predicted: hypothetical protein LOC100148665 3.057 1.966
4 326666355 Predicted: zinc finger protein 208-like 2.984 2.606
5 326664965 Predicted: protein FAM5C 2.742 3.703

H3K9 which was the focus of manuscript and taken for further mechanistic analysis so made it bold.
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enzyme, as well as functioning as a tumor-secreted cytokine and an
angiogenic factor (AMF) that stimulates endothelial cell motility,
GPI is also a neurotrophic factor (Neuroleukin) for spinal and
sensory neurons. The role of neurotrophic factors in repair
mechanisms are well evident, therefore in our study 4 h post-
hypoxia females are better in recovery speed as compared to
males. Hmox1 has been shown to be induced by various stresses
including hypoxia (Panchenko et al., 2000); our study also
revealed an increase in its expression. The expression of nos2
(nitric oxide synthase) and pkm (pyruvate kinase M) is
inducible with hypoxia and hif1 targets showed a higher fold
upregulation in females as compared to males.

Various mediators like growth factors, glucose transporters,
solute carriers, neurotransmitters, inflammatory molecules, and
stress signals as well as factors known to modulate the intracellular
cAMP or Ca2+ levels can activate cAMP-responsive element-
binding protein (CREB) through phosphorylation of serine 133
(Ser133) by protein kinase A (PKA) and protein kinase B (PKB/
AKT) (Steven et al., 2016). The pathway generated by IPA in
Figures 3A,B was also centered on the AKT pathway with many
downstream interactingmolecules involved in cell death and repair
mechanisms. Among all themolecules, we evaluated the expression
of two of the major molecules in acute hypoxia recovery with
respect to sex difference and found a sex difference in the
expression of PCREB and PAKT (Figures 4B,C) where in
females activation of CREB and AKT leads to early cell death
survival and repair.

Analysis of Proteins Showing Uniform
(Either Upregulated or Downregulated)
Expression in Both the Sexes
Throughout the protein enrichment analysis by IPA sex-specific,
global proteome changes in the acute hypoxia zebrafish model
were observed, which is in concurrence with our previous study
(Das et al., 2019). But the question which remains unsolved is why the
recovery in females is quicker than inmales. At 4 h post-hypoxiawhen
both the sexes survived coping up with the neural damage then there
must be some common mechanism involved for recovery. So rather
than looking further into the differentially expressed markers, we
looked into the shared regulation of proteins. In Figure 1B we have
shown the analysis of proteins resulted from iTRAQ where 554
proteins have a common expression pattern in both the sexes and
among them 478 proteins were found regulated in one direction
i.e., upregulated in both male and female brain in response to acute
hypoxia. We hypothesized that as animals from both sexes are in the
recovery process, therefore, a common mechanism of regulation may
help to elucidate themechanism behind the later recovery of themales
fromneural damage induced by hypoxia-ischemia.While looking into
the 478 upregulated proteins, among the top five upregulated proteins
inmales, we identified histone-lysineN-methyltransferase H3 lysine-9
specific 5 protein, an epigenetic regulator displaying ∼3-fold
upregulation in the male brains and ∼1.6-fold upregulation in the
female brains (Table 4). Post-translational modifications of histones
are widely recognized as an important epigenetic mechanism in the

FIGURE 5 | Deciphering the role of H3K9me3 by co-immunoprecipitation. Immunoblot of H3K9me3 showing upregulation in hypoxia (A), CoIP of H3K9me3 in
zebrafish male brain nuclear protein (B), Schematic representation of CoIP analysis (C). ChIP qPCR showing H3K9 occupancy on target gene promoter. ChIP qPCR
showing the increase in H3K9me3 enrichment on the promoter region of klf4, sox2, and nestin in hypoxic male brain (D).

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 63590414

Das et al. Sex-Difference in Zebrafish-Brain on Hypoxia

177

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


organization of chromosomal domains and gene regulation.
Methylation of lysine 4 and acetylation of lysine 9 of histone H3
has been associated with regions of active transcription, whereas
methylation of H3K9 and H3K27 are generally associated with
gene repression (Litt et al., 2001; Nakayama et al., 2001; Maison
et al., 2002; Peters et al., 2002; Vakoc et al., 2006). Recently, hypoxia-
induced histone modifications in neural gene regulation have been
reported, and these were found on both hypoxia-activated and
hypoxia-repressed genes (Johnson et al., 2008). H3K9 methylation
is a critical epigenetic mark for gene repression and silencing. Hypoxia
induces H3K9 methylation at different gene promoters, which is
correlated with the repression and silencing of those genes following
hypoxia (Lu et al., 2011).

Deciphering the Role of H3K9me3 by
Co-Immunoprecipitation and ChIP qPCR
Based on the previous literature (Lindeman et al., 2010), we
hypothesized that H3K9 can be our prime target for
deciphering late recovery in males as it was significantly
upregulated in the male brain following hypoxia and being a
repressive epigenetic mark in nature its high level can repress
and/or silence a number of critical neural genes. Considering the
role of H3K9me3 in hypoxia (Chakravarty et al., 2016) we
immunoblotted for H3K9me3 using a specific antibody and

performed a co-immunoprecipitation (CoIP) to identify the
interacting proteins of H3K9me3 in hypoxic condition (Figures
5A–C). We could validate the expression of H3K9me3 through
immunoblotting with an upregulation of H3K9me3 in hypoxia
males when compared to normoxia males (Figure 5A). For CoIP
experiment, nuclear extract was isolated from male zebrafish
brains. The eluted proteins were then detected for
immunoprecipitated and co-immunoprecipitated proteins by
SDS-PAGE followed by western blotting. Then, 5% of the initial
lysates were used as the input (Figure 5B). A mass spectrometric
approach was used to identify the co-immunoprecipitated
proteins obtained by the pull-down of the target antibody. The
resultant peptides from MS/MS for four groups (normoxia
IgG, normoxia and hypoxia H3k9me3 pull-down) were
analyzed and after removing the background of IgG pooled
proteins we could obtain 153 proteins identified in male
normoxia H3K9me3 pull-down and 72 proteins identified in
male hypoxia H3K9me3 pull down. Surprisingly, there were no
common proteins in the normoxia and hypoxia H3K9me3 pull-
downs, showing hypoxia stress may lead to alteration in interacting
proteins. Further, we went through our iTRAQ data and tried
to see whether these co-immunoprecipitated proteins were also
found altered post-hypoxia in our high throughput proteomics
data where almost all the proteins were found to overlap
(Figure 5C).

FIGURE 6 | Validation ChIP analysis. mRNA expression at 4 h (A) and 10 h (B) post hypoxia in both male and female (n � pooled 6 brain). Expression of sox2
protein at different times of recovery from hypoxia (C). Expression of H3K9me3 at different times of recovery from hypoxia (D).
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The co-interacted proteins of H3K9me3 could not answer the
unresolved question of why themales are recovering later. Therefore,
we thought of evaluating the transcriptional targets of H3K9me3 to
get an answer to our question, as H3K9me3 is a repressive marker so
its upregulation inmalesmay repress any neurogenicmarker needed
for recovery from hypoxia-induced neural damage. An earlier report
on chromatin state of the developmentally regulated genes
(Lindeman et al., 2010) led us to explore the striking
upregulation of transcriptionally repressive epigenetic marker
H3K9me3 at 4 h post hypoxia in zebrafish male brain.

The ChIP-qPCR data showed the repression of early
neurogenesis markers nestin, klf4, and sox2 in the zebrafish male
brain 4 h post-hypoxia (Figure 5D). It is pertinent to mention here
that the ChIP assay was not performed on female zebrafish brains as
the male brain proteome showed a higher fold upregulation in
H3K9me3. For further validating the data the mRNA expression
levels for nestin, klf4, and sox2 at two-time points of recovery i.e., at
4 h (Figure 6A) and 12 h (Figure 6B) post hypoxia, was assessed.
The qPCR analysis showed at 4 h post-hypoxia the expression of
early neurogenic markers showed mild activation in males and later
at 12 h post-hypoxia the expression was much higher. The protein
level expression of Sox2 was evaluated at low concentration (25 μg)
of protein which showed in both males and females at 4 h post-
hypoxia but the expression was quite low in both the sexes; in the
male it was almost negligible, however in female a mild expression
was observed, which at the later time point i.e., 12 h post-hypoxia
showed noticeable upregulation in both male and female brain
(Figure 6C).

To further validate if the sox2 expression is dependent on
H3K9me3 level, the expression level of H3K9me3 was assessed
and predictably it was found upregulated in the male brain as shown
in the previous experiment, compared to the female brain at 4 h
post-hypoxia. Later at 12 h post-hypoxia, the level of H3K9me3 was
much less inmales thanwhat it was at 4 h post-hypoxia (Figure 6D).
This result suggested that with the activation of H3K9me3 the
expression levels of early neurogenic markers are getting
repressed. This could be the possible reason for late recovery in
males as early neurogenic markers are not fully activated in response
to hypoxia insult, in contrast to the female brain.

AmongCerebral strokes, ischemic stroke is themost common type
of stroke and a major cause of death and/or disability worldwide,
though there are continuous efforts to establish a proper diagnosis and
efficient therapy. The proteomics study complements both genomics
and transcriptomics and simultaneously provides information about
the proteins that can be implemented for main functional mediators
of cells such as their post-translational modification and their
interactions with biological molecules. However, post-stroke is
mostly related to protein function which can be a direct target for
therapeutic intervention. Therefore in the present study, we
performed a quantitative proteomics approach for hypoxia-induced
brain to identify favorable biomarkers involved in neuronal injury and
recovery (Li et al., 2019). In our previous study, clear sex-specific
differences were observed in acute hypoxia-induced neural damage
and recovery but to exploremore about themechanism of recovery in
the present study we have focused on a 4 h post hypoxia timepoint,
predicting this could possibly be a viable therapeutic window. To date,

many high throughput studies on hypoxia (Durukan and Tatlisumak,
2007; Cuadrado et al., 2010; Goldenberg et al., 2014; Chen et al., 2015;
Durukan and Tatlisumak, 2007; Cuadrado et al., 2010; Goldenberg
et al., 2014; Chen et al., 2015; Ton et al., 2003; van der Meer et al.,
20052005; Shah et al., 2019) gave sufficient information about the
genes and proteins involved in hypoxia and related diseases but the
roles of these hallmarked hypoxia markers are not well studied in a
sex-specific context. Therefore, we have attempted to emphasizemore
on the sex-specific neural regulation post-hypoxia, which will provide
a better insight into designing efficient therapeutics for patients who
suffered acute hypoxic insults. The prevalence of hypoxic brain
damage is increasing and prognostic factors for either poor or
good outcome are lacking (Heinz and Rollnik, 2015).

The advantage over traditional proteomics and iTRAQ based
proteomics is that in iTRAQ all four groups can be simultaneously
processed to reduce the error rate and post-translational
modifications can also be quantified. The present study on whole
zebrafish brain proteome upon global acute hypoxia sheds light on
many differential roles of protein markers which can be further
validated. Solute carrier (SLC) transporters are well-known
therapeutic targets (Lin et al., 2015) and in our study too we
have observed a very high activation in recovery. We tried to
elucidate the role of one of the histone-based epigenetic
regulatory mechanism (H3K9me3) that controls adult
neurogenesis during the recovery phase post-hypoxia-ischemia.
There is hardly any study on the epigenetic mechanisms in the
zebrafish brain to date. Here, we identified hundreds of transcription
factors involved in post-hypoxia recovery in a gender-specific
manner, which can add to the development of a better
therapeutic strategy.

CONCLUSION

To conclude we have studied the sex-specific difference in
global proteome changes in zebrafish brain induced by acute
hypoxia and during the recovery. We elucidated the
unresolved question from our previous study (Das et al.,
2019) regarding the delayed recovery in males following
hypoxic insult. With the striking upregulation of H3K9me3
in males at 4 h post-hypoxia, the early neurogenic markers like
nestin, klf4, and sox2 expression level got affected, which
might be the reason for late recovery in males, compared to
females. Acute hypoxia-induced sex-specific comparison of
brain proteome led us to reveal many differentially expressed
proteins including the novel ones, which can be further studied
for the development of novel targets and a better therapeutic
strategy.
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