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Editorial on the Research Topic

Understanding the Interplay Between the Tumor Immune Microenvironment and Genetic
Alterations in Thoracic Malignancies

Harnessing immune response to attack tumor cells has proven to be a successful treatment strategy
against advanced thoracic malignancies. This immune checkpoint blockade (ICB) strategy with
anti-PD-(L)1 and anti-CTLA4 monoclonal antibodies has reported durable responses and has
significantly improved the overall survival rates either as monotherapy in selected tumors, or as a
combination with immunotherapy and/or chemotherapy in all thoracic malignancies, except
thymic epithelial tumors (TET) (1–3). PD-L1 expression in tumor cells is the most robust
predictive biomarker for the efficacy of the ICB strategy. Nowadays, an increasing body of
literature suggests a crucial role for the tumor microenvironment (TME) in cancer progression
and therapeutic responses. Therefore, other potential biomarkers are being explored such as tumor-
infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and cancer-associated
fibroblasts (CAFs). Likewise, tumor mutational burden and immune-related genetic signatures are
being tested with the aim to select those patients most likely to obtain a true benefit from this
strategy, and avoid exposure to potential toxicity in patients who will not obtain clinical benefit
(Chen et al.). In this Research Topic, a group of international authors discuss the current advances
in the study of the interplay between the TME and genetic alterations in thoracic malignancies, such
as non-small cell lung cancer (NSCLC), small cell lung cancer (SCLC), pleural mesothelioma (PM),
and thymic epithelial tumors (TETs). This Frontiers in Oncology issue includes novel data (Alves
et al.; Cao et al.; Chen et al.; Du et al.; Pezzuto et al.; Xu et al.) and review papers (Behrouzfar et al.;
Grard et al.; Hiltbrunner et al.; Principe et al.; van Genugten et al.Wadowski et al.).

The predictive and prognostic role of the TME as a whole and the correlation of specific
phenotypes with differential gene expressions and clinical-pathological features of lung
adenocarcinoma has been recently investigated. The construction of a TME-score on the basis of
the genetic signatures involved in T-cell activation, lymphocyte proliferation, and mononuclear cell
March 2022 | Volume 12 | Article 87154415

https://www.frontiersin.org/articles/10.3389/fonc.2022.871544/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.871544/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.871544/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.871544/full
https://www.frontiersin.org/research-topics/14562/understanding-the-interplay-between-the-tumor-immune-microenvironment-and-genetic-alterations-in-tho
https://www.frontiersin.org/research-topics/14562/understanding-the-interplay-between-the-tumor-immune-microenvironment-and-genetic-alterations-in-tho
https://doi.org/10.3389/fonc.2021.581030
https://doi.org/10.3389/fonc.2021.621050
https://doi.org/10.3389/fonc.2021.621050
https://doi.org/10.3389/fonc.2021.587744
https://doi.org/10.3389/fonc.2021.581030
https://doi.org/10.3389/fonc.2021.693353
https://doi.org/10.3389/fonc.2021.653497
https://doi.org/10.3389/fonc.2021.667148
https://doi.org/10.3389/fonc.2021.679609
https://doi.org/10.3389/fonc.2021.695770
https://doi.org/10.3389/fonc.2021.660039
https://doi.org/10.3389/fonc.2021.672747
https://doi.org/10.3389/fonc.2021.786089
https://doi.org/10.3389/fonc.2021.684025
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:giulia.pasello@iov.veneto.it
mailto:giulia.pasello@unipd.it
https://doi.org/10.3389/fonc.2022.871544
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.871544
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.871544&domain=pdf&date_stamp=2022-03-10


Pasello et al. Editorial: Immune-Genetic Interplay in Thoracic Cancers
proliferation has been suggested as a useful prognostic and
predictive tool for patients receiving ICB (Chen et al.).

CD8+ T cells are one of the central effector cells in the immune
microenvironment and play a vital role in the development and
progression of lung adenocarcinoma (LUAD). Du et al. explored
the key genes related to CD8+ T-cell infiltration in 529 LUAD-
related samples from TCGA and developed a novel prognosis
model based on these genes. The risk score was negatively related
to CD8+T-cell infiltration and correlatedwith the advanced tumor
stage (Du et al.). Clinical applicability of this score could be relevant
in the coming future as the adjuvant ICB strategy is accepted in
completely resected PD-L1-positive stage II-IIIA NSCLC (4).

The crucial role of T-cell activation and TME modeling in
predicting the survival of lung cancer patients has also been
highlighted by the work by Cao et al., which showed longer
survival in lung cancer patients functionally enriched with
platelet endothelial cell adhesion molecule-1, a molecule
involved in T-cell response regulation and migration (Cao et al.).

In the coming future it would be relevant to explore the role of
potential biomarkers that select patients who cannot obtain benefit
from the ICB strategy. As an example, in LUAD, the STK11 and
KEAP1 mutations confer worse outcomes to immunotherapy
among patients with KRAS mutant NSCLC but not among KRAS
wild-type LUAD (5). Similarly, Grard et al. reviewed the role of
homozygous co-deletion of type I interferons andCDKN2A, due to
their co-localization in chromosome 9, in thoracic cancers and its
consequences for therapy such as oncolytic therapy. Indeed, this co-
deletion has been observed in a large proportion of mesothelioma
patients and, together with the status of tumor suppressor BRCA-
associated protein 1 (BAP1), is part of the genetic effect on the
immune phenotype, as reviewed byWadowski et al. In this and the
complementary review by Hiltbrunner et al., they summarized the
different studiesdocumenting immunecells, differential infiltration,
and the association with clinical outcome in mesothelioma.
CDKN2A encodes for two proteins, p16/INK4A and p14/ARF,
and Pezzuto et al. report that mesothelioma with strong
immunoreactivity for p14/ARF has a high expression of ICB
target PD-L1. It would be interesting to explore nuclear BAP1,
which is used as a surrogate for wild-type function (6), in such a
context. Indeed, in the TCGA study (7), the researchers found that
type-I IFN signaling is associated with the status of BAP1.

Although mesothelioma is the sixth of the 31 most prevalent
cancer types with a 38-interferon-stimulated genes signature (8),
one aspect that is still underexplored is the priming for viral
mimicry induction (9) which has been observed in an
experimental model of mesothelioma development (10).

During the course of immunotherapy it will be important to
follow immune responses longitudinally (11) and predict outcome,
since it allows researchers to stratify patients into responders and
non-responders. Principe et al. highlight the potential of doing so
using pleural effusion, which is minimally invasive, and therefore
easy to implement.

TETs are a heterogenous group of thoracic malignancies, mostly
considered cold tumors except B3-thymoma and thymic carcinoma
(12), reflecting a different TME according to the histologic subtype,
whichmay negatively impact the tumormutational burden, affecting
Frontiers in Oncology | www.frontiersin.org 26
ICBefficacy.Xu et al. report thatTP53mutation is higher inhotTETs
and correlates with worse prognosis compared with TETs without
TP53 mutations. Therefore, the genomic profile may have an
influence in the immune sensitivity of TETs.

Alterations in microenvironmental metabolic characteristics are
recognized as important means for cancer cells to interact with the
infiltrating T cells within this TME (13). Molecular imaging has
developed a wide array of tracers targeting metabolic pathways to
understand metabolic reprogramming in cancer cells, as well as its
effects on immune cells. van Genugten et al. provide an overview of
currently available molecular imaging tracers for clinical studies and
discuss theirpotential roles in thedevelopmentof effective ICBstrategies.

In the same way, the interconnection between metabolic
pathways and immune response regulation has been suggested and
a role of metabolic biomarkers as predictors of response to ICB is
currently under investigation. Glycogen synthase kinase-3 (GSK3)-
beta is a serine/threonine kinase involved in the phosphorylation of
different components of the PI3K/AKT pathway as well as in PD-1/
PD-L1 expression regulation and CD8+ T-cell activation. Positive
expressionof this biomarker inNSCLCsamples showeda correlation
with worse clinical stage and survival as well as with high PTEN but
not with PD-L1 expression (Alves et al.).

Beyond genetic alterations in cancer cells, host genetics may
influence thoracic cancer risk and pathogenesis and may shape
TME features, thus representing a determinant predictor of
treatment outcome.

Recent evidence has focused on genome-wide association studies
(GWAS), which suggested a polygenic pattern of predisposition to
lung cancer in some series (14). Likewise, single-nucleotide
polymorphisms, somatic mutations, and epigenetic alterations are
involved in TME refining and prediction of response to ICB. Lacking
GWAS evidence on uncommon thoracic cancers such as PM and
TET lead to in vivomodels able tomimichumancancerdevelopment
andfinally to the identificationof host genetic variants.Among these,
the Cross Collaborative MexTAg mouse model offers a wide picture
of host genetic make-up predisposing to the risk of asbestos-related
mesothelioma anddeterminingTMEcomposition and the biological
pathway involved in the immune response (Behrouzfar et al.).

In conclusion, evidence from original works and literature
reviews collected within the present topic expands knowledge
about the characterization of TME, its prognostic and predictive
role in thoracic cancer malignancies, and finally deepens the
relationship between the antitumor immune response and
genetics of cancer and host. These findings may help clinicians
to improve the risk-benefit ratio of treatment with ICB for
patients with thoracic malignancies incorporating immune-
related signatures in the future design of clinical trials.
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Background and Objective: Increasing evidence has elucidated the clinicopathological
significance of individual TME component in predicting outcomes and immunotherapeutic
efficacy in lung adenocarcinoma (LUAD). Therefore, we aimed to investigate whether
comprehensive TME-based signatures could predict patient survival and therapeutic
responses in LUAD, and to assess the associations among TME signatures, single
nucleotide variations and clinicopathological characteristics.

Methods: In this study, we comprehensively estimated the TME infiltration patterns of
493 LUAD patients and systematically correlated the TME phenotypes with genomic
characteristics and clinicopathological features of LUADs using two proposed
computational algorithms. A TMEscore was then developed based on the TME
signature genes, and its prognostic value was validated in different datasets.
Bioinformatics analysis was used to evaluate the efficacy of the TMEscore in predicting
responses to immunotherapy and chemotherapy.

Results: Three TME subtypes were identified with no prognostic significance exhibited.
Among them, naïve B cells accounted for the majority in TMEcluster1, while M2 TAMs and
M0 TAMs took the largest proportion in TMEcluster2 and TMEcluster3, respectively. A
total of 3395 DEGs among the three TME clusters were determined, among which 217
TME signature genes were identified. Interestingly, these signature genes were mainly
involved in T cell activation, lymphocyte proliferation and mononuclear cell proliferation.
With somatic variations and tumor mutation burden (TMB) of the LUAD samples
characterized, a genomic landscape of the LUADs was thereby established to visualize
the relationships among the TMEscore, mutation spectra and clinicopathological profiles.
In addition, the TMEscore was identified as not only a prognosticator for long-term survival
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in different datasets, but also a predictive biomarker for the responses to immune
checkpoint blockade (ICB) and chemotherapeutic agents. Furthermore, the TMEscore
exhibited greater accuracy than other conventional biomarkers including TMB and
microsatellite instability in predicting immunotherapeutic response (p < 0.001).

Conclusion: In conclusion, our present study depicted a comprehensive landscape of
the TME signatures in LUADs. Meanwhile, the TMEscore was proved to be a promising
predictor of patient survival and therapeutic responses in LUADs, which might be helpful
to the future administration of personalized adjuvant therapy.
Keywords: lung adenocarcinoma, tumor microenvironment, signature, survival, therapeutic response
INTRODUCTION

Lung adenocarcinoma (LUAD) is the commonest histological
type of all lung cancers, accounting for approximately 50% of
them (1, 2). Nowadays, surgical resection remains as the
standard treatment for early-stage LUADs. Meanwhile,
chemotherapy plays an important role in LUAD patients at all
stages of the disease. Recently, blockade of immune checkpoint
has been proved as a promising therapy for patients with
LUADs (3, 4) which seems to be an alternative to conventional
chemotherapy. Nevertheless, the fact that most patients do not
derive any benefit from PD-1/PD-L1 blockade combined
with the risk of serious immune-related adverse events (5, 6)
and the significant up-front costs, underscore the need for
developing accurate tools for predicting therapeutic response
to chemotherapy and immune checkpoint blockade (ICB) (7).

Nowadays, an increasing body of literature suggests a crucial
role for the tumor microenvironment (TME) in cancer
progression and therapeutic responses (8–11). The TME
context in LUADs has been reported not only to reflect the
potential benefits from treatment (12–14), but also to predict
patient survival (15, 16), which includes tumor-infiltrating
lymphocytes (e.g., CD8+ T cells, CD4+ T cells), tumor-
associated macrophages (TAMs), cancer-associated fibroblasts
(CAFs), and other cell types. With the introduction of
computational methods to assess the abundance of cells
infi ltrating in the TME, several studies using these
methodologies have explored the clinical utility of TME
context (13, 17–19). However, the comprehensive landscape of
TME infiltrates and its predictive power for therapeutic
responses in LUADs have not been fully investigated.

In our present study, two previously proposed computational
algorithms (20, 21) were employed to estimate the fractions of
23 immune and stromal cells based on LUAD gene expression
profiles from The Cancer Genome Atlas (TCGA) database. The
TME infiltrating patterns of LUAD samples were investigated
and correlated with both transcriptomic characteristics and
clinicopathological features. Unsupervised clustering was
applied to quantify the TME infiltrating patterns which were
calculated as a TMEscore. Consequently, the TMEscore was
proved to be a promising prognostic biomarker and a robust
predictive factor for the therapeutic responses in LUADs.
29
MATERIALS AND METHODS

LUAD Datasets and Preprocessing
The transcriptomic dataset of LUAD from TCGA database was
downloaded from the UCSC Xena browser (https://xenabrowser.
net/datapages/). LUAD patients without survival information
were removed from further evaluation, among whom 499 were
available to construct the TMEscore. Data of somatic mutations
(MuSE Variant Aggregation and Masking) were downloaded
from TCGA database, which included 567 LUAD specimens.
Somatic mutation data, transcriptomic data and survival
information were available in 493 of the 499 specimens, of
which clinical characteristics were accessible in 474. The raw
data in TCGA dataset generated from Illumina were processed
using the lumi software package according to a previous study (8).

The microarray data (GSE68465) generated by Affymetrix were
obtained from the Gene Expression Omnibus (https://www.ncbi.
nlm.nih.gov/geo/) (GEO) as a validation dataset, which included
422 LUAD specimens with expression profiles and clinical
outcomes available. The raw data for the dataset from Affymetrix
were processed using the Range Migration Algorithm (RMA) for
background adjustment in the Affy software package (22). The
RMA was used to perform background adjustment, quantile
normalization, and final summarization of oligonucleotides per
transcript using the median polish algorithm. The detailed
information of the LUAD datasets is listed in Supplementary
Table 1.

Assessment of Infiltrating Cells in TME
To calculate the proportions of immune cells in the LUAD
samples, we used the CIBERSORT (cell type identification by
estimating relative subset of known RNA transcripts) algorithm
(20) and the LM22 gene signature, which allows for highly
sensitive and specific discrimination of 22 human immune cell
phenotypes (8). CIBERSORT is a deconvolution algorithm that
uses a set of reference gene expression values (a signature with
547 genes) considered a minimal representation for each cell type
and, based on those values, infers different cell type proportions
in tumor samples using support vector regression (8). Gene
expression profiles were prepared using standard annotation
files, and data were uploaded to the CIBERSORT web portal
(http://cibersort.stanford.edu/), with the algorithm run using the
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LM22 signature and 1,000 permutations. Proportions of stromal
cells were estimated by applying the Microenvironment Cell
Populations (MCP)-counter method, which allows for robust
quantification of the absolute abundance of immune and stromal
cell populations in heterogeneous tissues from transcriptomic
data (21).
Consensus Clustering for TME-Infiltrating
Cells
Hierarchical agglomerative clustering (based on Euclidean
distance and Ward’s linkage) was employed to group the
samples with qualitatively different TME cell infiltration
patterns. Unsupervised clustering methods (K-means) (23) for
dataset analysis were used to identify TME patterns and classify
patients for further analysis. A consensus clustering algorithm
was applied to determine the number of clusters (8), which was
repeated 1000 times to ensure the stability of classification using
the ConsensuClusterPlus R package (24).
Generation and Analysis of TME
Gene Signatures
To identify genes associated with TME cell infiltrating patterns,
we classified patients into three TMEclusters. Differentially
expressed genes (DEGs) among these three groups were
determined using the R package limma (25). DEGs among
different TME patterns were determined by significance criteria
(adjusted p value < 0.05; |logFC|>0.58). An unsupervised
clustering method (K-means) for analysis of DEGs was
employed to classify patients into two groups for further
analysis. TME signature genes were then obtained using the
random forest classification algorithm to screen redundant
genes. Gene-annotation enrichment analysis using the
clusterProfiler R package (26) was performed on TME
signature genes. Gene Ontology (GO) terms were identified
with a strict cutoff of p < 0.01 and false discovery rate (FDR)
of less than 0.05.
Establishment of TME Scores
Cox regression model was applied to assess the prognostic value
of each signature gene which was classified according to its Cox
coefficient. A method similar to gene expression grade index (24)
was used to define the TMEscore of each patient:

TMEscore = S   log2(X + 1) − S   log2(Y + 1)

where X is the expression level of genes whose Cox coefficient is
positive, and Y is the expression level of genes whose Cox
coefficient is negative. The cut-off values of each dataset were
evaluated based on the association between patient overall
survival (OS) and TMEscore in each separate dataset using the
survminer package (8). The R package MaxStat (27) which
iteratively tests all possible cut points to find the one achieving
the maximum rank statistic, was used to dichotomize
TMEscore, and patients were then divided into low- and high-
TMEscore subgroups.
Frontiers in Oncology | www.frontiersin.org 310
Analysis of Tumor Mutation Profiles
Somatic mutation data were obtained from the publicly available
TCGA database. Notably, one sample with merely silent
mutation was excluded from the aforementioned 493 samples
in our analysis. We prepared the Mutation Annotation Format
(MAF) of somatic variants, and implemented the R package
Maftools (https://bioconductor.org/packages/release/bioc/html/
maftools.html) which provides a multiple of analysis modules
to perform the visualization process (28) to display somatic
landscape. In addition, the R package SomaticSignatures
(https://bioconductor.org/packages/release/bioc/html/
SomaticSignatures.html) was used to characterize the mutation
signatures of the LUAD samples (29). Mutational signatures
were extracted using 96 nonnegative components (single-base
somatic substitutions and their immediate sequence context) and
compared to the validated consensus mutational signatures in
the Catalogue Of Somatic Mutations In Cancer (COSMIC) (30),
version 2 (https://cancer.sanger.ac.uk/cosmic/signatures_v2) to
identify the set of COSMIC mutational signatures in TCGA
datasets (31). Moreover, the estimation of TMB in LUAD
samples was conducted according to a previous study (32).

Predictive Value of TMEscore to Estimate
Therapeutic Effect
Tumor Immune Dysfunction and Exclusion (TIDE) (http://tide.
dfci.harvard.edu/) (33), a computational method to predict ICB
response based on melanoma patients who underwent anti-PD-1
or anti-CTLA-4 agent, was used to investigate the predictive
value of TMEscore for immunotherapy. TIDE uses a set of gene
expression markers to estimate two distinct mechanisms of
tumor immune evasion, including dysfunction of tumor
infiltrating cytotoxic T lymphocytes (CTL) and exclusion of
CTL by immunosuppressive factors (34). Patients with higher
TIDE score have a higher chance of antitumor immune escape,
thus exhibiting lower response rate of ICB treatment (33). The
TIDE score was shown to have a higher accuracy than PD-L1
expression level and tumor mutation burden (TMB) in
predicting survival outcome of cancer patients treated with
ICB agents (34–37). The R package MaxStat (27) was also
employed to dichotomize the TMB level. The R package
pRRophetic (38) was used to determine whether TMEscore
could accurately predict clinical chemotherapeutic responses.

Immunohistochemistry Staining
LUAD samples resected from a cohort of chemo- and/or radio-
naïve patients (Supplementary Table 2) were obtained from the
Second Affiliated Hospital of Soochow University, which was
approved by the Institutional Review Board (IRB NO.JD-HG-
2020-09). The chairperson of the ethics committee waived the
need for patient consent. The sections of tumor tissues were
firstly deparaffinized and rehydrated. Endogenous peroxidase
was then quenched using 10% H2O2 for 10 min at room
temperature. Subsequently, nonspecific proteins were blocked with
10% goat serum for 1 h. Afterwards, the sections were rinsed and
incubated with anti-BTK (YM0083, Immunoway; diluted 1: 400)
overnight at 4°C. The DAB Horseradish Peroxidase Color
Development Kit (Beyotime, China) was used for color
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development. Finally, the sections were counterstained with
hematoxylin and mounted.

As described in our previous study (39), the staining index was
calculated as a product of staining intensity (negative = 0, weak = 1,
moderate=2, and strong=3)multiplied by staining extent (0%=0,
1%–10% = 1, 11%–50% = 2, and > 50% = 3). A final score of 0–2
indicated low BTK expression, and a score of > 2 indicated high
BTK expression.
Statistical Analysis
For comparisons of two subgroups, unpaired Student t tests was
used to estimate statistical significance for normally distributed
variables, andWilcoxon rank-sum testwasused for analyzingnon-
normally distributed variables. To identify significant genes in the
DEG analysis, Benjamini-Hochberg method was applied to
converting the p values to FDRs (40). The Kaplan-Meier method
was used to generate survival curves for the subgroups in each
dataset, and the Log-rank test was used to determine the statistical
significanceofdifferences.Thehazard ratios forunivariate analyses
Frontiers in Oncology | www.frontiersin.org 411
were calculated using a univariate Cox proportional hazards
regression model. A multivariate Cox regression model was used
to determine independent prognostic factors. The R package
pROC (41) was used to plot and visualize receiver operating
characteristic (ROC) curves to calculate the area under the curve
(AUC) and confidence intervals to evaluate thediagnostic accuracy
of TMB and TMEscore. For comparison of AUCs, likelihood ratio
test for two correlated ROC curves was used. All statistical analyses
were conducted using R (https://www.r-project.org/) or SPSS
software (version 25.0). A two-tailed p-value < 0.05 was
considered statistically significant.
RESULTS

Characterization of TME in LUADs and
Distinct Patterns of TME Subtypes
The general flowchart of our study is shown in Supplementary
Figure 1A. A TCGA dataset comprised of 499 patients with
A B

C

FIGURE 1 | Characterization of TME in LUADs and distinct patterns of TME subtypes. (A) Cellular interaction of tumor microenvironment (TME) cell types in LUADs;
(B) Barplot showing the specific 23 immune fractions represented by various colors in each TMEcluster; (C) Unsupervised clustering of TME cell types and histologic
subtypes for LUAD patients.
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their transcriptomic data were included in our initial analysis.
By applying CIBERSORT algorithm and MCP-counter method, we
obtained the proportions of 23 different immune and stromal cells in
the499 samples (SupplementaryFigure1B).Meanwhile, aTMEcell
network was used to depict the comprehensive landscape of tumor-
immune cell interactions and their effects on the OS of patients with
LUADs (Figure 1A and Supplementary Table 3).

Unsupervised learning using K-means algorithm was used
on the dataset to perform group clustering, which identified
K=3 according to the elbow method and gap statistic
(Supplementary Figures 2A, B). To identify the aforementioned
optimal cluster number, we assessed clustering stability using
the ConsensusClusterPlus R package which displayed the
clustering stability using 1,000 iterations of hierarchical
clustering. The consensus matrix supported the existence of
three robust clusters of LUADs (Supplementary Figure 2C).
As shown in Figures 1B, C, the proportions of infiltrating
immune cells and histologic subtypes differ significantly among
the three TME subtypes. We found that naïve B cells accounted
for the majority in TMEcluster1, while M2 TAMs and M0 TAMs
took the largest proportion in TMEcluster2 and TMEcluster3,
respectively. However, log-rank test revealed no significant
difference in survival among different TMEclusters (p = 0.45)
(Supplementary Figure 2D).
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Construction and Validation of the
TMEscore in Different LUAD Datasets

A total of 3395 DEGs among the three TME clusters were
determined by significance criteria (adjusted p value < 0.05;
|logFC| > 0.58) as implemented in the R package limma
(Supplementary Figure S3A). An unsupervised clustering
method (K-means) for analysis of DEGs was then employed to
classify the patients into two groups (Supplementary Figure
3B). Among these DEGs, 217 TME signature genes were
obtained using the random forest classification algorithm, on
which Gene-annotation enrichment analysis using the
clusterProfiler R package (26) was performed. Consequently,
the data indicated that these TME signature genes significantly
enriched in pathways associated with T cell activation,
lymphocyte proliferation and mononuclear cell proliferation
(Supplementary Figure 3C).

Cox regression model was used to assess the prognostic value
of each signature genes according to the Cox coefficient, by
which the TMEscore was established for each patient. As shown
in Figure 2A, the TMEscore could effectively distinguish
significantly different OS in the entire cohort. Notably, patients
with high TMEscore (n = 120) had significantly better survival
than those with low TMEscore (n = 354) (p < 0.0001).
A B

C

FIGURE 2 | Construction and validation of the TMEscore in different LUAD datasets. (A) Kaplan-Meier curves of high- and low-TMEscore subgroups in the entire
TCGA cohort; (B) Alluvial diagram showing the relationships among TME subtypes and TMEscore subgroups as well as clinical outcomes; (C) Forest plot showing
the prognostic value of TMEscore in different datasets.
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Additionally, we visualized the relationships of TME subtypes
and TMEscore subgroups as well as patient outcomes using an
alluvial diagram (Figure 2B). Moreover, TMEscore remained
efficient in stratifying the patients with early-stage disease (stage
I-II) into different OS (Supplementary Figures 4A, B), which
exhibited its value in the external validation cohort from the
GEO database as well (Supplementary Figure 4C). To be noted,
even for smokers in the validation cohort, significantly different
OS was also observed among the subgroups stratified by the
TMEscore (Supplementary Figure 4D). A forest plot was used
to summarize the predictive value of TMEscore in different
patient cohorts (Figure 2C).
Association Between TMEscore and
Cancer Somatic Genomes
We analyzed the somatic variations of the 492 LUAD samples in
TCGA database which revealed missense mutation as the leading
type of single nucleotide variant (SNV) (Supplementary Figure
5A). Meanwhile, SNV was identified as the major variant in
LUADs that occurred more frequently than insertion or deletion
Frontiers in Oncology | www.frontiersin.org 613
(Supplementary Figure 5B). In addition, it was observed that
C>A was the predominant SNV type in LUADs (Supplementary
Figure 5C). Besides, we calculated the TMB and showed the
mutation type with different colors in LUAD samples
(Supplementary Figures 5D, E), as well as the top 10 mutated
genes in LUADs with ranked percentages (Supplementary
Figure 5F). We also mapped the landscape of mutation
profiles among the three TMEclusters, which characterized the
mutation types of the frequently mutated genes (Supplementary
Figure 6). Waterfall plots were then used to exhibit the mutation
profiles of patients with high/low-TMEscore in which various
colors with annotations at the bottom represented the different
mutation types and TMB levels (Figures 3A, B). Meanwhile,
boxplots were applied to showing the mutation frequency of each
frequently mutated genes in high- and low-TMEscore subgroups,
respectively (Figures 3C, D).

There are six classes of base substitution—C>A, C>G,C>T,
T>A, T>C, T>G(all substitutions are referred to by the
pyrimidine of the mutated Watson–Crick base pair)—and as
we incorporated information on the bases immediately 5’ and 3’
to each mutated base, there are 96 possible mutations in this
A B

DC

FIGURE 3 | Mutation profiles of different TMEscore subgroups. (A, B) Waterfall plots exhibiting the mutation profiles of patients with high/low-TMEscore in which
various colors with annotations at the bottom represented the different mutation types and tumor mutation burden; (C, D) Boxplots showing the mutation frequency
of the 10 most frequently mutated genes in high- and low-TMEscore subgroups.
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A B

D

E

C

FIGURE 4 | Visualization of mutational signatures and TME signatures in TME subgroups. (A, B) Mutation spectra showing the 96 substitution classification defined
by the substitution class and sequence context immediately 3’ and 5’ to the mutated base in the high- and low-TME subgroups. (C, D) Barplot showing the
differential mutation signatures between the high- and low-TME subgroups. The y-axis indicates exposure of 96 trinucleotide motifs to overall signature. The plot title
indicates best match against validated COSMIC signatures and cosine similarity value along with the proposed etiology. (E) Unsupervised analysis and hierarchical
clustering of the 217 TME signature genes and their associations with clinicopathological characteristics.
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classification (30). This 96 substitution classification is
particularly useful for distinguishing mutational signatures that
cause the same substitutions but in different sequence contexts
(30). A previous study (30) applied this approach to the 30
cancer types and revealed 21 distinct validated mutational
signatures. Each mutational signature was characterized by
different substitutions and was associated with epidemiological
and biological features of particular cancer types. Therefore the
frequency distribution of the 96 mutations based on the six
classes of base substitution were analyzed in both TMEscore
subgroups (Figures 4A, B). Moreover, by comparing the
extracted signatures from our samples with those in COSMIC,
we identified different mutational signatures between the two
TMEscore subgroups. The identified signatures in both groups
similarly showed a strong resemblance to COSMIC signature 13
and COSMIC signature 4 (Figures 4C, D). A high similarity to
COSMIC signature 7 was also found in the high-TMEscore
subgroup (Figure 4C). Meanwhile, a mutational signature
similar to COSMIC signature 5 was present in the low-
TMEscore subgroup (Figure 4D). As reported previously (30),
COSMIC signature 13 and COSMIC signature 4 were associated
with APOBEC and smoking, respectively, while COSMIC
signature 7 was mainly associated with ultraviolet light.

A genomic landscape of the LUADs was thereby plotted by
integrating the TMB information and clinical characteristics with
TME profiles including the 217 TME signature genes and
TMEscore (Figure 4E).
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Predictive Value of TMEscore as a
Biomarker for Therapeutic Effect
TIDE to evaluate TMEscore as a predictor of immunotherapy,
interestingly, no significant difference (p = 0.8) was observed in
TIDE score between the high- (n = 120) and low-TMEscore
(n = 354) subgroups (Figure 5A). However, we observed
significantly different PD-L1 expression levels between the
high- and low-TMEscore subgroups (p < 0.001) (Figure 5B).
Since microsatellite instability (MSI), the spontaneous loss or
gain of nucleotides from repetitive DNA tracts, is a promising
predictive biomarker for patient survival and response to
immunotherapy (42, 43), TMEscore was compared between
the two subgroups stratified by MSIscore which was calculated
by TIDE (44). As shown in Figure 5C, TMEscore in the high-
MSI subgroup (n=314) was significantly higher than that in the
low-MSI one (n = 160) (p < 0.001). Meanwhile, TMEscore in the
high-TMB subgroup (n = 257) was significantly lower than that
in the low-TMB one (n = 217) (p < 0.001) (Figure 5D).
Furthermore, the AUC indicated that TMEscore was superior
to TMB alone in predicting response to ICB (p < 0.001) which
exhibited greater accuracy in combination with TMB (Figure
5E). Additionally, comparison of the 50% inhibitory
concentration (IC50) of chemotherapy drugs indicated that the
low-TMEscore subgroup had higher sensitivity to cisplatin (p =
0.019) (Figure 6A) while the high-TMEscore subgroup was
prone to the benefits from gemcitabine (p = 0.00042)
(Figure 6B).
A B
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FIGURE 5 | Predictive value of TMEscore as a biomarker for immunotherapy. (A, B) Violin plot showing TIDE score and PD-L1 level between the high- and low-
TMEscore subgroups; (C, D) Violin plot showing TMEscores in groups with different microsatellite instability (MSI) status and with different TMB levels; (E) ROC
curves to compare the accuracy of TMB, MSI and TMEscore in predicting responses to immunotherapy.
March 2021 | Volume 11 | Article 581030

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Microenvironment-Based Immune Signatures in LUAD
DISCUSSION

Our findings indicated that assessment of the immune and
stromal statuses via the TME signature provided a potent
predictor of survival in early-stage patients with LUAD and a
promising biomarker for therapeutic responses as well. Based on
the DEGs and GO enrichment analysis, we observed that the
TME signature genes significantly enriched in pathways mainly
associated with lymphocyte activation and proliferation.
Moreover, missense mutation was identified as the leading type
of SNV which was identified as the major variant in LUADs.
Meanwhile, the established TMEscore could stratify the patient
cohort from TCGA database into two subgroups with distinct
mutation profiles and COSMIC signatures. A genomic landscape
of the LUADs was also characterized by integrating the TMB
information and clinical characteristics with TME profiles. To
our best knowledge, the present study is the first bioinformatics-
based study to comprehensively investigate the associations
among clinicopathological features, the mutation spectra and
the TME profiles of LUADs, which also developed a
computational algorithm and demonstrated its predictive value
for both ICB and chemotherapeutic agents.

Previously, Yue et al. (45) identified a prognostic gene signature
associated with TME, and validated its predictive accuracy for OS
in LUAD patients. However, they omitted to analyze whether the
signature could predict therapeutic responses to ICB or
chemotherapy. In their study, univariate Cox regression analysis
was initially employed to screen out 23 prognostic TME-related
DEGs. Afterwards, Yue et al. (45) used selection operator (LASSO)
and multivariate Cox regression analyses to identify three key
genes for constructing a prognostic model, in which the analytical
methods were different from ours. Interestingly, there are five
common DEGs between their 23 TME-related DEGs and our 217
signature genes, including BTK, CCDC69, CD33, CD52, and
LY86. Among the five common DEGs, only BTK was selected
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out as a signature gene in both their and our studies. We therefore
validated the prognostic impacts of the five DEGs using the LUAD
cohort from TCGA database (Supplementary Figures 7A–E).
Additionally, the role of BTK as a prognostic factor was also
validated in our domestic cohort using IHC (Supplementary
Figure 7F). Similar to our data, Bi et al. (46) who performed a
study based on TCGA mining also found that BTK was an
immune-related gene and a promising prognostic factor for
LUAD. Recently, Tan et al. (47) performed a bioinformatics
study to characterize the immune landscape of LUADs, in
which they divided the patients with LUAD into two
immunophenotypes based on the tumor microenvironment. The
two immunophenotypes were denoted as the Active Immune
Class and Exhausted Immune Class. The former showed
significant IFN, T‐cells, M1 macrophage signatures, and better
prognosis, while the latter presented an exhausted immune
response with activated stromal enrichment, M2 macrophage
signatures, and immunosuppressive factors such as WNT/
transforming growth factor‐b. In addition, Tan and his
colleagues (47) identified their developed Immune Class as a
useful tool to predict the response to ICB. However, merely 32
patients in a metastatic melanoma cohort were included in their
prediction of PD-L1 inhibitor response. In addition, the
relationships of clinicopathological characteristics and
immunophenotypes were not comprehensively characterized,
neither were the somatic landscape and COSMIC signatures.
Additionally, Huang et al. (48) identified two LUAD subtypes
with specific immune and metabolic state based on the
bioinformatic analyses of TME, who constructed a TME score
to predict TME phenotypes in LUADs. Interestingly, they
constructed the TME score using the principal component
analysis algorithm based on the TME signature genes, which
could represent the signature of the two TME clusters in their
study (48). Differently, their TME score was applied to evaluating
the expression patterns of immune-associated genes in LUADs,
A B

FIGURE 6 | Predictive value of TMEscore as a biomarker for chemotherapy. (A) Violin plot comparing IC50 of cisplatin between the high- and low-TMEscore
subgroups; (B) Violin plot comparing IC50 of gemcitabine between the high- and low-TMEscore subgroups.
March 2021 | Volume 11 | Article 581030

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Microenvironment-Based Immune Signatures in LUAD
which merely exhibited diagnostic value. It remained unknown
whether the TME score raised by Huang et al (48) could accurately
predict patient survival and therapeutic responses to ICB or
chemotherapy. Meanwhile, the data of somatic variations in
LUADs were unavailable in their study.

Hitherto, several bioinformatics studies (34, 47, 49, 50) have
identified the immune-related signatures as a prognostic
biomarker in LUADs. However, the roles of immunophenotype-
derived signatures in predicting response to chemotherapy have
not been fully clarified. Notably, a number of clinical
investigations (51–53) have highlighted adjuvant chemotherapy
as a prognostic factor for improved survival in patients with stage
IB LUADs. Under the circumstances, our study not only proved
TMEscore as a survival-related predictor, but also identified its
potential in stratifying patients with distinct sensitivity to different
chemotherapy regimens. According to our analysis, low-
TMEscore subgroup had higher sensitivity to cisplatin while
high-TMEscore group was more likely to respond to
gemcitabine, which offered insights into the administration of
personalized adjuvant therapy.

There are some limitations that should not be ignored in our
study: 1) lack of domestic sequencing data to validate the
associations between the TME infiltrating patterns and
clinicopathological characteristics as well as mutation spectra;
2) lack of external validation cohort to confirm the roles of
TMEscore in predicting therapeutic responses; 3) possessing
predictive power though, the chosen set of signature genes are
not necessarily valid in terms of their biological significance. For
instance, the differences in IC50 scores between high- and low-
TMEscore subgroups in Figure 6 do not seem to be obvious
although statistically significant differences were obtained. It
raises the possibility that the observed differences may not be
biologically important; however, they are statistically significant
due to a large number of samples included in the analyses. More
prospective clinical trials are warranted to verify the potentials of
TMEscore in predicting patient outcomes and response to both
chemotherapeutic agents and ICB.

In conclusion, our present study depicted a comprehensive
landscape of the TME signatures in LUADs. Meanwhile, the
TMEscore was proved to be a promising predictor of patient
survival and therapeutic responses in LUADs, which might
be helpful to the future administration of personalized
adjuvant therapy.
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Supplementary Figure 1 | General flowchart and TME infiltrates of LUAD
samples in our study. (A) Overview of the study design; (B) The specific 23 immune
and stromal fractions represented by various colors in each LUAD sample from The
Cancer Genome Atlas (TCGA) database.

Supplementary Figure 2 | Determination and assessment of different
TMEclusters. (A, B) Elbow method and gap statistic to determining the optimal
number of clusters in the dataset; (C) Consensus matrix of the LUAD cohort for
K=3, displaying the clustering stability using 1000 iterations of hierarchical
clustering; (D) Kaplan-Meier curves showing the survival stratified by different
TMEclusters.

Supplementary Figure 3 | Characterization of DEGs among the three
TMEclusters and the derived TME signature genes. (A) Venn diagram illustrating the
number of differentially expressed genes (DEGs) among the three TMEclusters;
(B) Consensus matrix of DEGs for K=2, displaying the clustering stability using 1000
iterations of hierarchical clustering; (C) Gene Ontology (GO) enrichment analysis of
the TME relevant signature genes. The x axis indicates the number of genes within
each GO term.

Supplementary Figure 4 | Survival analyses of LUAD patients in different
datasets stratified by TMEscore. (A, B) Kaplan-Meier curves exhibiting the survival
of patient cohort from TCGA dataset with stage I-II disease stratified by TMEscore;
(C) Kaplan-Meier curves for the two subgroups of patients from the Gene
Expression Omnibus (GEO) dataset (GSE68465) stratified by TMEscore;
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(D) Kaplan-Meier curves for the survival of smokers in the GEO dataset stratified
by TMEscore.

Supplementary Figure 5 | Summary of the mutation information with statistical
calculations. (A–C) Classification of mutation types according to different
categories, in which missense mutation accounts for the most fraction of SNV, SNV
showed more frequency than insertion or deletion, and C>A was the most common
of SNV; (D–E) tumor mutation burden and variant classification in specific samples;
(F) the top 10 mutated genes in LUADs.
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Supplementary Figure 6 | Mutation landscape of the top 10 mutated genes in
TCGA LUAD cohort stratified by TME subtypes and its association with histologic
subtypes.

Supplementary Figure 7 | Survival curves of patient cohorts stratified by TME-
related signature genes. (A–E) Kaplan-Meier curve showing OS of TCGA cohort
stratified by (A) BTK, (B) LY86, (C) CCDC69, (D) CD33, and (E) CD52 expression,
respectively; (F) Kaplan-Meier curve showing OS of domestic cohort stratified by
BTK expression.
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Investigative Pathology, Fortaleza, Brazil, 3 Departments of Patholoy, Oncology and Thoracic Surgery, Messejana Heart and
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School of Brown University, Providence, RI, United States

Background: Glycogen Synthase Kinase-3 beta (GSK-3b) regulates diverse cell
functions including metabolic activity, signaling and structural proteins. GSK-3b
phosphorylates target pro-oncogenes and regulates programmed cell death-ligand 1
(PD-L1). This study investigated the correlation between GSK-3b expression and clinically
relevant molecular features of lung adenocarcinoma (PDL1 score, PTEN expression and
driver mutations).

Methods: We evaluated 95 lung cancer specimens from biopsies and surgical
resections. Immunohistochemistry was performed to analyze the expression of GSK-
3b, PTEN, and PDL1. Epidemiological data, molecular characteristics and staging were
evaluated from medical records. The histologic classification was performed by an
experienced pulmonary pathologist.

Results: Most patients were female (52.6%) and the majority had a positive smoking
history. The median age was 68.3 years, with individuals over 60 years accounting for
82.1%. The predominant histological subtype was adenocarcinoma (69.5%), followed by
squamous cell carcinoma (20.0%). GSK-3b expression in tumors was cytoplasmic with a
dotted pattern and perinuclear concentration, with associated membranous staining.
Seven (7.3%) tumors had associated nuclear expression localization. Seventy-seven
patients (81.1%) had advanced clinical-stage tumors. GSK-3b was positive in 75 tumors
(78%) and GSK3-positive tumors tended to be diagnosed at advanced stages. Among
stage III/IV tumors, 84% showed GSK3 positivity (p= 0.007). We identified a statistically
significant association between GSK-3b and PTEN in the qualitative analysis (p 0.021); and
when comparing PTEN to GSK-3b intensity 2+ (p 0.001) or 3+ expression (> 50%) – p
0.013. GSK-3b positive tumors with a high histological score had a worse overall survival.
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Conclusion: We identified the histological patterns of GSK-3b expression and evaluated
its potential as marker for overall survival, establishing a simple histological score to
measure the evaluated status in resected tissues. The use of GSK-3b expression as an
immune response biomarker remains a challenge. Future studies will seek to explain the
role of its interaction with PTEN.
Keywords: glycogen synthase kinase-3 beta (GSK-3 beta), lung cancer, non-small cell carcinoma, immunotherapy,
programmed death-ligand 1 (PD-L1), phosphatase and tensin homolog deleted on chromosome 10 (PTEN)
INTRODUCTION

Lung cancer represents a serious public health problem. In addition
to its high incidence, this malignancy has the highest mortality rate
worldwide (1). Glycogen synthase kinase-3 (GSK3) is a serine/
threonine kinase, initially described as an ATP-Mg-dependent
protein phosphatase (2), subdivided into two isoforms: GSK3 a
and b (3). GSK3 was initially found to be related to various
inflammatory processes, psychiatric disorders, neurodegenerative
diseases, diabetes, cardiac dysfunction, autoimmune disorders, and
more recently, it has been associated with cancer development (4, 5).
It has been shown that GSK3 phosphorylates various components
(TSC2, RICTOR, PTEN, and AKT) of the PI3K-AKT signaling
network, an essential pathway for cell proliferation. Growth factors,
cytokines, and chemokines are some of the signals that stimulate
this process (6).

GSK3 is a central regulator of programmed cell death protein-1
(PD-1) expression, and GSK3 inhibition may downregulate PD-1
and enhance CD8+ cytolytic T cell (CTL) function (7). PD-1 and its
ligand (PD-L1) are involved in the immune checkpoint pathway
mechanism, of which activation promotes negative regulation of
anti-tumor actions (8–11). In the same context, immunotherapy has
become the new frontier to be explored in the cancer therapeutic
arsenal, especially in lung cancer (12) (13). The level of PD-L1
expression measured by immunohistochemistry correlates with
treatment response through the immune checkpoint inhibitor
(14) (15). However, its quantification can be influenced by
numerous variables, such as tumor heterogeneity, prior systemic
therapy, radiation therapy, the molecular status of the neoplasia,
type of sample analyzed, and different test methods (16).

PTEN negatively regulates the PI3K/AKT pathway, playing an
important role in intracellular growth, leading to decreased
phosphorylation of AKT substrates, including BAD (BCL-2-
associated agonist of cell death) and GSK-3 (17, 18). PTEN
functions as a tumor suppressor gene that antagonizes PI3K
activity (19). Several mechanisms can identify PTEN loss, such as
mutations, deletions, absence of protein expression, and promoter
methylation. In lung tumors, the absence of immunohistochemical
expression is seen in 30%–50% of cases (20). (Figure 1).

Considering these interactions with components of tumor
growth pathways, GSK-3b has become a critical molecule to be
used in the fight against cancer and the development of new
drugs (30). In the search for the improvement and innovation in
biomarkers, recognizing its potential to influence carcinogenesis,
and considering its role in other inflammatory pathologies, our
study analyzed the GSK-3b expression in lung cancer and its
221
correlation with PDL1, the best predictor of response to
immunotherapy used in clinical practice.
MATERIALS AND METHODS

Patient and Tissue Selection
We sequentially selected 95 patients diagnosed with lung cancer
between 2013 and 2019 in the State of Ceará, using available
material (paraffin blocks) and follow-up information from an
approximate cohort of 450 newly diagnosed patients from the
same period. All patients had clinically and pathologically
confirmed tumors as primary lung cancer. The Ethics Review
Board reviewed and approved this research study. Cases were
diagnosed by a single Thoracic Pathologist based on the current
WHO criteria (31, 32).The inclusion criteria consisted of non-
small cell lung cancer with enough tissue sample (paraffin blocks
with tissue containing more than 100 tumor cells after all recuts)
and availability for additional immunohistochemical studies. All
patients with secondary tumors of the lung were excluded from
the study. Epidemiology and clinicopathological characters (such
as gender, age, smoking status, comorbidities, TNM stage,
survival, molecular mutations) were obtained from medical
records or by contacting the patients.

Tumor necrosis was defined as any amount of necrotic tumor,
as an area of increased eosinophilia without tumor cell nuclei,
only the shadow of membranous tumor cells or with nuclear
shrinkage or fragmentation.

Immunohistochemistry
Immunohistochemistry (IHC) was performed on histological
sections of tumors obtained from biopsies or resections. The
sections were cut and mounted on electrically charged glass slides.
GSK-3b (Cell Signaling, clone 27C10) and PTEN (Clone SP218;
Roche Diagnostics Limited, Burgess Hill, UK) IHC analyses were
performed on the Ventana® platform (BenchMark ULTRA IHC/
ISH Staining Module, Ventana Medical Systems, Tucson, AZ). The
PD-L1 IHC analysis (22C3 pharmDx, Agilent, clone 22c3) was
recovered using PT-Link (Dako PT100), followed by target recovery
with EnVision ™ FLEX pH 6.0 buffer, using the Agilent
Technologies®, USA visualization system in Autostainer Link
48® equipment.

GSK-3ß was recorded according to the cytoplasmic and
membranous staining intensity as 0 (negative), 1+(weak), 2+
(moderate), and 3+ (strong), and the percentage of stained
tumor cells. A final histological score was established ([% of weak
March 2021 | Volume 11 | Article 621050
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staining × 1] + [% of moderate staining × 2] + [% of strong staining
× 3]) to determine the overall percentage of GSK-3ß positivity
across the entire stained tumor sample, yielding a range from 0 to
300. Any tumor with a score >200 was considered as showing high
GSK-3ß expression.

PD-L1 was assessed as membranous positivity in tumor cells,
following the Tumor Proportion Score (TPS) as practiced
currently (33). We tried different cutoff points to reflect clinical
scenarios: <1%, 1%–49%, ≥50%. In investigating the correlation
with PTEN, we use yet another method of quantification,
characterizing PD-L1 as positive or negative expression if
tumor cells had a positivity above 1%.

PTEN protein was considered lost if the cytoplasmic and
nuclear staining intensity was markedly decreased or entirely
negative across >10% of tumor cells when compared to
surrounding benign tissue, which provides internal positive
controls. Other molecular data (EGFR, ALK, BRAF, and KRAS
status) were retrieved from medical records, and correlation with
the protein expression findings was attempted.
Frontiers in Oncology | www.frontiersin.org 322
Statistical Analysis
Patients were followed for up to 68.3 months (mean follow-up of
18.8 months, SD 14.3 months). Distant metastasis was defined as
recurrence at any site other than the abovementioned ones and
was confirmed by imaging studies and histopathological evidence,
when necessary. Overall survival (OS) was defined as the interval
between the initial diagnosis and death (event) or the last follow-
up date.

Statistical evaluation was performed by Stata® version 13
statistical software (StataCorp LP, College Station, TX, USA).
Initially, a descriptive analysis of the study population variables
was performed, calculating absolute and relative frequencies.
Subsequently, bivariate analysis was performed using Pearson’s or
Fisher’s chi-square test (when expected values of the contingency
table cell were <5), with their respective 95% confidence intervals
and statistical significance (p <0.05).

Also, multiple regression was run to predict the overall
survival based on the variables age, gender, smoking, histology,
treatment (QT), clinic stage, EGFR, PD-L1, and GSK3b
FIGURE 1 | Several ligands on the cell surface stimulate the production of PIP3 (phosphatidylinositol trisphosphate) by PI3K. These molecules act as a substrate for
protein activation, including AKT. This protein phosphorylates GSK3, inhibiting its function (6). The tumor suppressor gene PTEN blocks AKT activity by
dephosphorylating PIP3 and PIK3 (21). In addition, Akt can activate the IkB complex (IKK), which phosphorylates IkB, becoming an important stimulus for NFkB (22).
The NFkB is translocated to the nucleus, promoting the production of COX-2, an enzyme associated with angiogenesis, invasion, and metastasis (23). A complex
consisting of AXIN, APC, and GSK3 is responsible for the destruction and negative regulation of B-catenin (24). The Wnt/b-catenin signaling pathway is related to cell
proliferation, stem cell self-renewal, and cell differentiation (25). When active and in accumulation, B-catenin is translocated to the nucleus. Cyclin D1 and C-myc are
oncogenes associated with cell proliferation and differentiation. Previous publications demonstrated they are target genes for the Wnt/B-catenin signaling pathway
(26). T-box transcription factor protein 21 (TBX21)—also known as Tbet—is present in tumor cells, causing local immune response dysregulation and carcinogenesis
(27). GSK3 inhibition promotes increased Tbet transcription (28). Previous reports demonstrated that GSK3 can cause PDL1 degradation by the proteasome
pathway (29). GSK3, Glycogen Synthase Kinase-3; PI3K, Phosphatidylinositol-3-kinase; AKT, protein kinase B; MAPK, Mitogen-Activated Protein Kinase; APC,
Adenomatous polyposis coli; Axin, Axis inhibitor; NFkB, Nuclear factor-k light chain enhancer of activated B cells; PTEN, Phosphatase and tensin homolog; COX-2,
Cyclooxygenase-2; EGFR, Epidermal growth factor receptor; MyC, Myelocytomatosis—proto oncogene; Tbet, transcription factor T-box expressed in T cells; RAS,
Rat sarcoma—oncogene; PD-L1, Programmed death-ligand 1.
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expression. The assumptions of linearity, independence of errors,
homoscedasticity, unusual points, and normality of residuals
were tested using SPSS 24.0 (SPSS Inc., Chicago, IL, USA).
RESULTS

Patient Demographics and Treatment
We evaluated 95 patients with primary lung cancer (90 samples
from lung parenchyma and five from pleural tissue). Most patients
were female (52.6%), and the majority had a positive smoking
history (77.7% of themales and 52% offemales). Themedian age at
diagnosis was 68.3 years (range, 32.1–94.9 years), with individuals
over 60 years accounting for 82.1%. All data regarding the clinical
and pathological factors are presented in Table 1.

Seventy-seven patients (81.1%) had advanced clinical-stage
tumors at diagnosis (Stages III–IV). Treatment consisted of
systemic therapy (including cytotoxic therapy, immunotherapy,
or both) in 70.5% patients, lobectomy in 25.2% patients,
segmentectomy in 2.1%, and pneumonectomy in 2.1%.
Patients following chemotherapy standard protocol represented
85.5% of the cohort, with an additional 25.5% undergoing anti-
PD1 immunotherapy regimens. Tyrosine kinase inhibitors
corresponded to treatment in 20.2% of cases. Antiangiogenics
were found as part of therapy in only 10% of patients. Radiation
therapy was administered as a therapeutic modality in 51.1% of
patients. It was used to control bone pain, definitive therapy
concomitant with chemotherapy, or finally approach brain
metastasis. Tumors were in the right upper lobe in 27.4%,
followed by the left superior in 25.3%, left inferior in 18.9%,
right inferior in 17.9%, and the middle lobe in 5.3%.

Pathological Classification
The predominant histological subtype was adenocarcinoma (69.5%)
followed by squamous cell carcinoma (20.0%). The remainder were
unclassifiable non-small cell carcinoma with characteristics of large-
cell carcinoma (WHOrecommendation). Invasive adenocarcinomas
with predominant acinar and solid patterns of growth were themost
often identified (39.4% and 37.9%, respectively). There were seven
lepidic-predominant (10.6% of adenocarcinomas), one mucinous,
and one minimally invasive adenocarcinoma (1.5% each). Most
squamous cell carcinomas were moderately differentiated non-
keratinizing, tumors, showing the usual histology. Non-small cell,
not otherwise specified carcinomas, did not show glandular,
squamous or neuroendocrine differentiation either by light
microscopy morphology or immunohistochemistry. Tumor
necrosis was present at least focally in 40% of cases (38 cases) and
showed a strong correlation with solid growth pattern [high-grade,
(R=0.335, p=0.012)].

GSK-3 Beta Protein Expression
GSK-3b was identified in 75 tumors (78%), being considered
high in 17 cases (22.7%) and low in 58 cases (77.3%) (Figures 2
and 3). There was no difference in GSK-3b positivity when
comparing gender, age, or smoking history. GSK-3b-positive
tumors were more prevalent in advanced-stage tumors. Among
stage III/IV tumors, 84% showed GSK3 positivity, in contrast
Frontiers in Oncology | www.frontiersin.org 423
with 55.6% of stage I/II tumors, with statistical significance in the
univariate and multivariate analyses (p = 0.007) (Table 2).
Interestingly, when evaluating by size alone, we identified a
greater number of patients with GSK-3b expression in T1/T2
tumors (95%CI 0.86–1.32, p = 0.523), compared to T3/T4
cancers, but without statistical significance.

We found no statistically significant differences regarding
GSK-3b and driver mutations, such as EGFR, ALK, ROS1, or
BRAF (Table 1). Only 11 patients were tested for KRAS
mutations. Three cases were KRAS mutated (27.2%), while
eight were KRAS wild type (72.8%). There was no direct
correlation between GSK-3b expression and PD-L1 positivity
or PD-L1 percentage. When considering the PDL1 score most
often used in clinical trials and treatment guidelines (negative,
1%–49% and > 50%), no correlation was found. The data is
summarized in Table 1. Tumor necrosis was also found to be
statistically significant with PD-L1 expression regardless of PD-
L1 cutoff levels (p<0.001), but there was no correlation between
tumor necrosis and GSK-3b expression in the cohort.

Multivariate logistic regression analysis further showed that
overall survival was related to EGFR gene mutation (p=0.023),
final clinical staging (p=0.033) and GSK-3b expression
(p=0.035). These results indicate that the expression of GSK-
3b could be potentially a marker of overall prognosis
independent of driver mutation status and is correlated with
smoking status and clinical stage (Table 3).

Of note, we identified a statistical correlation between GSK3
and PTEN (95% CI 0.72–28.73, p = 0.021) with the greater
number of PTEN positivity in cases where GSK3 intensity score
was = 2 (95%CI 1.04–39.7, p = 0.001) (Table 2).

Survival Analysis
Patients were followed for up to 68.3 months (median 14.1, range
1.0–68.3). Patients with adenocarcinomas survived on average
19.6 months and patients with squamous cell carcinomas, 14.5
months. Solid-predominant tumors had a poor survival rate when
compared to the remainder (p<0.01). There was a significant
difference when comparing the survival of patients with high GSK
expression with patients with low or absent GSK (p<0.0062;
Figure 4, Kaplan-Meier). We also found a significant difference
in survival in patients presenting with higher stage and lymph
node metastasis, as expected (p=0.010). There was no statistical
difference regarding survival when comparing PDL1, ALK, or
EGFR status alone or in combination with GSK-3b. Patients with
PTEN positivity had a better overall survival (p=0.026).
DISCUSSION

Immune manipulation is a chapter of extensive research in
oncology. Knowledge about biomarkers predicts better
outcomes and results. Our article studied GSK-3 beta protein
expression, tumorprognosis, andpossible interactions innon-small
cell lung cancer. The high expression of GSK-3 was correlated to a
worse prognosis, underscoring the importance of studies
hypothesizing that blocking GSK can be a potential therapeutic
target in non-small lung cancer. After understanding their
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TABLE 1 | Analysis of clinico-pathologic characteristics of studied population by GSK-3b expression, with bivariate and multivariate analysis.

GSK Bivariate Multivariate

Total Negative Positive RP CI95% P-value RP* CI95%* P-value*
N (%) N (%) N (%)

Gender
Female 50 (52.6) 8 (16.0) 42 (84.0) 1.14 0.92–1.42 0.203
Male 45 (47.4) 12 (26.7) 33 (73.3) Ref
Ethnic group
Caucasian 42 (44.2) 6 (14.3) 36 (85.7) Ref 0.73 0.41–1.27 0.265
African-Brazilian 2 (2.1) 2 (100) –

Multiracial 51 (53.7) 12 (23.5) 39 (76.5) 0.89 0.73–1.08 0.261
Age (years)
<60 17 (17.9) 4 (23.5) 13 (76.5) Ref
≥60 78 (82.1) 16 (20.5) 62 (79.5) 1.04 0.78–1.38 0.782
Smoking
No 34 (35.8) 4 (11.8) 30 (88.2) Ref 0.43 0.12–1.47 0.178
Yes 61 (64.2) 16 (26.2) 45 (73.8) 0.83 0.69–1.01 0.097
Site (lobe)
Inferior Right 17 (17.9) 5 (29.4) 12 (70.6) Ref
Inferior Left 18 (18.9) 4 (22.2) 14 (77.8) 1.10 0.74–1.63 0.628
Middle 5 (5.3) 5 (100)
Superior Right 26 (27.4) 6 (23.1) 20 (76.9) 1.09 0.75–1.58 0.642
Superior Left 24 (25.3) 5 (20.8) 19 (79.2) 1.12 0.77–1.62 0.529
Histology
Adenocarcinoma 66 (69.5) 13 (19.7) 53 (80.3) 1.34 0.79–2.25 0.151
Squamous Cell Carcinoma 19 (20.0) 3 (158) 16 (84.2) 1.40 0.82–2.41 0.148
Other 10 (10.5) 4 (40.0) 6 (60.0) Ref
Adenocarcinoma subtype
Acinar 26 (39.4) 3 (11.5) 23 (88.5) 2.06 0.87–4.91 0.009
Lepidic 7 (10.6) 4 (57.1) 3 (42.9) Ref
Minimally invasive 1 (1.5) 1 (100)
Invasive mucinous 1 (1.5) 1 (100)
Solid 25 (37.9) 5 (20.0) 20 (80.0) 1.87 0.78–4.49 0.053
T (primary tumor)
1 + 2 51 (56.7) 9 (17.6) 42 (82.4) 1.07 0.86–1.32 0.523
3 + 4 39 (43.3) 9 (23.1) 30 (76.9) Ref
N (regional lymph node)
0 + 1 41 (45.1) 11 (26.8) 30 (73.2) Ref
2 + 3 50 (54.9) 8 (16.0) 42 (84.0) 1.15 0.92–1.43 0.206
TNM Stage
I + II 18 (18.9) 8 (44.4) 10 (55.6) Ref 4.59 1.43–14.72 0.010
III + IV 77 (81.1) 12 (15.6) 65 (84.4) 1.51 0.99–2.32 0.007
EGFR
Inconclusive 2 (2.1) 1 (50.0) 1 (50.0) Ref
Negative 45 (47.4) 10 (22.2) 35 (77.8) 1.55 0.38–6.27 0.364
Positive 20 (21.1) 2 (10.0) 18 (90.0) 1.80 0.45–7.25 0.116
ALK
Negative 55 (57.9) 11 (20.0) 44 (80.0) Ref
Positive 6 (6.3) 1 (16.7) 5 (83.3) 1.04 0.71–1.52 0.845
PDL1
Negative 62 (65.3) 14 (22.6) 48 (77.4) Ref
Positive 29 (30.5) 5 (17.2) 24 (82.8) 1.07 0.86–1.32 0.559
PDL1 score
<1% 61 (64.2) 14 (22.9) 47 (77.1)
1-49% 17 (17.9) 3 (17.6) 14 (82.4) 1.07 0.82–1.38 0.639
≥50% 13 (13.7) 2 (15.4) 11 (84.6) 1.09 0.84–1.44 0.547
ROS1
Uncertain 1 (1.1) 1 (100)
Inconclusive 2 (2.1) 1 (50.0) 1 (50.0) Ref
Negative 26 (27.4) 4 (15.4) 22 (84.6) 1.69 0.42–6.38 0.281
BRAF
Negative 15 (15.8) 4 (26.7) 11 (13.3) 0.551
Positive 1 (1.1) 1 (100)
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intracellular interactions, GSK3 inhibitors have been researched in
the treatment of cancer (34). Many types of drugs have been
developed (35) and are being tested in pre-clinical and phase I
studies, with promising results (36).

We identified a greater number of advanced-stage III/IV
tumors in patients with high GSK3 expression (p=0.007). This
translates into a possible more aggressive biological component in
this population, or even an association with different genotypes,
since higher tumor mutation burden (TMB) has been associated
with advanced lung tumors. In contrast, recent studies have shown
that tumors with high TMBmay respond better to nivolumab and
pembrolizumab (37). Somatic mutations can produce
neoantigens, immunogenic peptides that activate the immune
response. TMB and PDL1 have the same clinical applicability.
However, TMB represents a complement and not a substitute for
PDL1 (38). Another interesting finding in the current study is the
correlation of tumor necrosis and PD-L1 expression. These are in
accordance to other studies that showed tumors with higher PD-
L1 expression with a greater tendency to necrosis, a more
aggressive tumor phenotype and higher proliferation rate (39, 40).

Tumor cells have developed several mechanisms to escape
immune surveillance. GSK3 stands out in the regulation of the
PD-1/PD-L1 inhibitory checkpoint. This immune activation
process can occur through PD-1 interaction or modulation in
the tumor molecule PD-L1. Li et al. demonstrated that GSK-3b
correlates to PD-L1 and induces phosphorylation-dependent
degradation of PD-L1 by b-TrCP (41). The inhibition of GSK3
also acts to promote PD1 downregulation. When associated with
Frontiers in Oncology | www.frontiersin.org 625
anti-PD1 or anti-PDL1 block, it enhances the cytotoxic capacity
of T cells (42). Taylor et al. demonstrated that GSK-3 participates
in the regulation of PD-1 transcription. GSK-3 inhibition
increases Tbet activity, reducing PD-1 transcription, with a
further intensification of T lymphocyte cytolytic action (28).
Despite the theoretical rationale supporting this association, we
did not identify a relationship between PDL1 and GSK-3b scores
in our cohort. A recent publication about the positivity of PDL1
in the same region of northeastern Brazil showed that 59.5% of
patients were PDL1 negative (43).
A B

DC

FIGURE 2 | Examples of tumors and corresponding immunohistochemical
stains in (A) Solid-predominant adenocarcinoma with tumor necrosis (center)
and over atypia; (B) GSK-3b expression in the tumor above showing strong
(3+) positivity in both nuclei and cytoplasm. Note weak GSK-3b expression in
small lymphocytes (arrowheads). (C) Acinar adenocarcinoma metastatic to the
parietal pleura (adipose tissue) showing (D) cytoplasmic staining in tumor cells.
A

B

C

FIGURE 3 | Immunohistochemical findings of GSK-3b in lung adenocarcinomas,
demonstrating semi-quantitative score examples and showing distinct
membranous and cytoplasm expression. (A) GSK-3b weak (1+) expression in
acinar predominant lung adenocarcinoma; (B) Moderate expression (2+) in acinar
predominant lung adenocarcinoma evaluated in a transbronchial biopsy sample;
(C) Strong expression in a solid-predominant adenocarcinoma with focal nuclear
localization and association with tumor necrosis.
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Matsuo et al. studied the importance of AKT, mTOR, and
GSK3 in the occurrence of lymph node involvement in oral
cavity squamous cell carcinomas. Elevated expression of GSK3
and pGSK3-bSer9 was associated with metastasis in cervical
lymph nodes (p = 0.004 and p = 0.03) (44) and advanced
stages (cTNM), suggesting the relationship of GSK3 with tumor
invasion and metastases. In our study, of the few squamous cell
carcinomas studied, the expression score of GSK3 was more
evident in poorly differentiated tumors and advanced stages.
Blocking GSK-3b reduced cell proliferation, stimulated
apoptosis, maintained cells in the GO/G1 phase and increased
cell invasion. A study published by Zeng et al. focused on the
association between GSK3 and survival. The positive expression
of GSK3 by immunohistochemistry was also related to a worse
prognosis (45). Therefore, the relationship between GSK3 and
direct survival has been hypothesized.
Frontiers in Oncology | www.frontiersin.org 726
Cigarette exposure corresponds to a cluster of toxic substances
thatpromotedamage toalveolar cells (46).Themechanisms involved
are still not fully understood. Besides, it induces beta-catenin
accumulation (47). Nagahori et al. analyzed a polymorphism of the
GSK3geneand its connectionwith smokinghabits. Inacohortof384
patients, rs334558 was associated with smoking in genotype and
allelic frequency (48). Numajiri M et al. also published an article
describing the relationship between a polymorphism of the GSK3
gene and its relationship with nicotine dependence (49). Despite the
possible inhibition ofGSK3 by smoking, we foundno statistical basis
for this association in our population (p=0,097).

Anaplastic lymphoma kinase (ALK) is a tyrosine kinase with
altered expression in several tumors. In lung cancer, ALK-EML4
rearrangement occurs in about 3%–5% of cases (50), allowing the
use of target drugs and achieving better survival results (51).
Malagon et al. analyzed the relationship between ALK and GSK3
TABLE 2 | Bivariate analysis and correlations of GSK-3b expression and PTEN status in lung tumors.

Total
n (%)

PTEN Bivariate

Negative Positive RP CI95% P-value
N (%) N (%)

GSK-3b
Negative 7 (25.9) 6 (85.7) 1 (14.3) Ref
Positive 20(74.1) 7 (35.0) 13(65.0) 4.55 0.72–28.73 0.021
GSK Intensity
0 7 (25.9) 6 (85.7) 1 (14.3) Ref
1 6 (22.2) 4 (66.7) 2 (33.3) 2.33 0.27–19.8 0.416
2 12(44.4) 1 (8.3) 11(91.7) 6.42 1.04–39.7 0.001
3 2 (7.4) 2 (100)
GSK score
<1% 7 (25.9) 6 (85.7) 1 (14.3) Ref
1%–49% 6 (22.2) 3 (50.0) 3 (50.0) 3.50 0.48–25.4 0.164
≥50% 14(51.8) 4 (28.6) 10(71.4) 5.00 0.79–31.6 0.013
PDL1
Negative 20(76.9) 8 (40.0) 12(60.0) Ref
Positive 6 (23.1) 4 (66.7) 2 (33.3) 0.55 0.17–1.82 0.251
PDL1 score
<10% 22(81.5) 10 (45.4) 12(54.6) Ref
≥10% 5 (18.5) 3 (60.0) 2 (40.0) 0.73 0.23–2.29 0.557
PDL1 analysis
<1% 21(77.8) 9 (42.9) 12(57.1) 1.42 0.46–4.45 0.489
1%–49% 5 (18.5) 3 (60.0) 2 (40.0) Ref
≥50% 1 (3.7) 1 (100.0)
March
 2021 | Volume 11 | Article
TABLE 3 | Multiple regression to predict overall survival based on clinic variables and GSK-3b expression.

Variables Unstandardized Coefficients Standardized Coefficients t Sig.

B Std. Error Beta

Death (Constant) 3.994 0.917 4.353 0.000
Age -0.005 0.006 -0.126 -0.895 0.376
Gender -0.149 0.148 -0.161 -1.010 0.319
Smoking 0.147 0.146 0.155 1.006 0.321
Histology 0.111 0.150 0.119 0.741 0.463
Treatment -0.187 0.261 -0.123 -0.719 0.477
PDL1 -0.200 0.142 -0.203 -1.411 0.167
EGFR -0.453 0.192 -0.446 -2.361 0.023
Clinic stage -0.185 0.084 -0.354 -2.207 0.033
GSK-3b -0.375 0.171 -0.328 -2.189 0.035
6

Bold text indicates significant differences (p < 0.05).
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in neuroblastomas and neural crest cells. They suggest a positive
regulation of GSK3 via ALK tyrosine kinase (52). McDonnell
SRP et al. studied anaplastic large-cell lymphoma, a pediatric
disease, in which the NPM-ALK alteration is present in 70%–
80% of cases. They revealed that ALK activity acts on the
phosphorylation of S9-GSK-3 via PI3K/AKT, making GSK3 an
important regulator of ALK carcinogenesis (53).

EGFR is a surface receptor, a HER family component, also
known as erbB1, HER1, or even as EGFR (54). Its activation triggers
intracellular cascades, promoting cell growth and oncogenesis (55).
It is especially important in lung tumors, acting as a predictor of
response to tyrosine kinase inhibitors (56). Fitzgerald et al. studied
the role of EGFR in the intracellular signaling pathways of
pancreatic tumors. EGFR activates the Ras/Raf/MEK/ERK
pathway. Consequently, it stimulates the ETS transcription factor
that binds to the GSK-3beta promoter and induces the expression of
GSK-3 and IKK. Subsequently, this regulates the production of NF-
kappa-B, leading to gene transcription and cell proliferation (57).
This exemplifies a possible relationship between EGFR mutations
and GSK3 expression.

In the current study, an additional analysis in a subset of 27
resection samples demonstrated a statistically significant association
between GSK-3b and PTEN analysis by immunohistochemistry
(p = 0.021). This relationship was more evident in cases with strong
GSK-3b expression or the expression in > 50% of the tumor.
Zhengyu H et al. demonstrated that PTEN overexpression
reduces fibroblast proliferation by inhibiting the PI3K/AKT/GSK3
pathway (26). Gao C. et al. showed by measuring the levels of GSK-
3b, PTEN, and AKT in breast tumor cell lines, that the PTEN/PI3K/
AKT pathway can be regulated by GSK3 (58). PTEN inactivation is
associated with lower survival and resistance to systemic treatment
(59). These findings underscore the importance of GSK activation in
tumor survival and growth regulation (60).
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Although previously identified as a tumor suppressor, PTEN
is not currently used in clinical practice as a lung cancer
biomarker. While active PTEN has anti-tumor action, resulting
in better outcomes (18, 61, 62). This is in contrast to our results,
which shows a positive correlation. Further research involving
GSK3 and PTEN blockers in lung cancer is necessary for better
clarification and therapeutic use to manipulate these
intracellular checkpoints.

In conclusion, GSK-3b is a molecule involved in multiple
signaling pathways. Positive tumor expression was associated
with a more advanced tumor stage and worse overall survival in
lung cancer. To the best of our knowledge, this is the first study
to identify the expression of GSK-3b as a potential marker for
overall survival and establish a simple histological score to be
measured in resected tissues. The use of GSK-3b expression as an
immune response biomarker remains a challenge. Future studies
will seek to explain the role of its interaction with PTEN.
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Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy

Introduction: The CDKN2A gene plays a central role in the pathogenesis of malignant
pleural mesothelioma (MPM). The gene encodes for two tumor suppressor proteins, p16/
INK4A and p14/ARF, frequently lost in MPM tumors. The exact role of p14/ARF in MPM
and overall its correlation with the immune microenvironment is unknown. We aimed to
determine whether there is a relationship between p14/ARF expression, tumor
morphological features, and the inflammatory tumor microenvironment.

Methods: Diagnostic biopsies from 76 chemo-naive MPMs were evaluated. Pathological
assessments of histotype, necrosis, inflammation, grading, and mitosis were performed.
We evaluated p14/ARF, PD-L1 (tumor proportion score, TPS), and Ki-67 (percentage) by
immunohistochemistry. Inflammatory cell components (CD3+, CD4+, CD8+ T
lymphocytes; CD20+ B-lymphocytes; CD68+ and CD163+ macrophages) were
quantified as percentages of positive cells, distinguishing between intratumoral and
peritumoral areas. The expression of p14/ARF was associated with several clinical and
pathological characteristics. A random forest-based machine-learning algorithm (Boruta)
was implemented to identify which variables were associated with p14/ARF expression.

Results: p14/ARF was evaluated in 68 patients who had a sufficient number of tumor
cells. Strong positivity was detected in 14 patients (21%) (11 epithelioid and 3 biphasic
MPMs). At univariate analysis, p14/ARF-positive epithelioid mesotheliomas showed
higher nuclear grade (G3) (p = 0.023) and higher PD-L1 expression (≥50%) (p = 0.042).
The percentages of CD4 and CD163 in peritumoral areas were respectively higher and
lower in p14/ARF positive tumors but did not reach statistical significance with our sample
size (both p = 0.066). The Boruta algorithm confirmed the predictive value of PD-L1
percentage for p14/ARF expression in all histotypes.

Conclusions: p14/ARF-positive epithelioid mesotheliomas may mark a more aggressive
pathological phenotype (higher nuclear grade and PD-L1 expression). Considering the
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results regarding the tumor immune microenvironment, p14/ARF-negative tumors seem
to have an immune microenvironment less sensitive to immune checkpoint inhibitors,
being associated with low PD-L1 and CD4 expression, and high CD163 percentage. The
association between p14/ARF-positive MPMs and PD-L1 expression suggests a possible
interaction of the two pathways. Confirmation of our preliminary results could be important
for patient selection and recruitment in future clinical trials with anticancer immunotherapy.
Keywords: immune microenvironment, MPM, p14/ARF, malignant pleural mesothelioma, tumor microenvironment
INTRODUCTION

Malignant pleural mesothelioma (MPM), an occupational disease
mainly due to asbestos exposure, is characterized by rapidly
progressive and diffusely local growth, late metastases and poor
prognosis. Asbestos fibers lead to a protracted immune response
and make mesothelioma a neoplasm characterized by a clear
immune infiltrate (1). In recent years, the awareness of a strict
interaction between tumor cells and tumor microenvironment
(TME) (2) have offered new therapeutic opportunities with
immunotherapeutic agents (3). One such strategy is based on
the treatments targeting the programmed cell death pathway (PD-
1/PD-L1) (4). Nevertheless, some limitations persist. They are
mainly related to the complexity of the TME structure and the
mechanisms of resistance and inhibition, likely associated with the
complex genetic profiling of the tumor (5).

The genetics of MPM appear extremely intricate and not
completely unraveled. The complexity resides mainly in the
variety of genetic aberrations that can occur, the crosstalk
between genetics and the microenvironment, and the inter-
patient and intra-tumoral variability (6).

In MPM, heterogeneity is indeed also an intrinsic aspect of
the neoplasia that has its roots in the histological classification
into three major histological types (epithelioid, biphasic, and
sarcomatoid) (7), confirmed and emphasized by large-scale
molecular profiling studies (8, 9). This is principally true for
the epithelioid histotype that includes a wide range of
architectural patterns and cytological and stromal features,
each of which is supposed to be associated with a different
behavior (10). In this complex scenario, the identification of a
biomarker makes it possible to stratify the population. When
associated with a certain clinical course, this would be useful for
diagnostic, prognostic and therapeutic purposes.

Major molecular changes lead to altered expression of the
genes involved in oncogenic mechanisms, especially the onco-
suppressor genes at 9p21 (INK4) and 22q (NF2) foci (8, 9).
The 9p21 locus includes the genes cyclin-dependent kinase
inhibitor 2B (CDKN2B), cyclin-dependent kinase inhibitor
2A (CDKN2A) and S-methyl-5’-thioadenosine phosphorylase
(MTAP). Frequent involvement of the CDKN2A gene in the
pathogenesis of MPM has recently been confirmed (8, 9). The
gene encodes for two proteins, p16/INK4A and p14/ARF, both
acting as tumor suppressors through the regulation of the cell
cycle. p14/ARF is involved in cell cycle regulation, mainly
inhibiting MDM2 and promoting p53 function that in turn
231
activates p21. This last protein binds and inactivates cycline-
cycline dependent kinase complexes, thus blocking the
transition from the G1 to S phases of the cell cycle. The
deletion interferes with the p53-MDM2 pathway, leading to
accumulation of MDM2 and loss of p53 function with cell
cycle deregulation. Even if less common, several p53-
independent actions have been attributed to p14/ARF (11).
Although p14/ARF deletion or silencing has been found in
several solid tumors (12), the role of p14/ARF in the
pathogenesis of MPM remains unclear with most evidence
dating back to the last decade and being based only on
experimental models (13).

In human cell lines, the inactivation/absence of p14/ARF
was found to interact with p53 function in case of DNA
damage and thus in the apoptotic process (14). p14/ARF
(called p19 in mice) alterations were also studied in mouse
mesothelioma cells, making mice a feasible model to study
molecular features of human MPM (15). Indeed, more
recently, p19 status was also studied in in vivo experiments,
resulting as an important factor for MPM tumorigenesis (16,
17). Interestingly, p14/ARF transfected mesothelioma cells
were used to explore new therapeutic approaches, favoring
p53 activity and apoptosis, and modulating the cytolytic
effects of drugs (18, 19).

Although the role of p14/ARF in tumorigenesis has been
widely suggested, its prognostic significance remains unknown
(12). Only few studies have clinically evaluated p14/ARF in
MPM, achieving inconclusive results (20, 21). In particular the
association of p14 with TME has not yet been explored.

Thus, the aim of this study was to investigate p14/ARF
expression in MPM and to explore if p14/ARF-positive MPM
samples show pathological and immunohistochemical features,
with specific focus on immune TME.
MATERIALS AND METHODS

Study Population
We retrospectively analyzed biopsies from chemo-naive patients
with MPM recruited in three Italian centers and one Slovenian
center from 2011 to 2019. Clinical information about patients
enrolled in the study were reported and included in an electronic
shared data base. Written informed consent was given by all
subjects included in the research. The study was approved by the
Ethics Committee.
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Histological and Immunohistochemical
Evaluation
For histological analyses, tissue samples were fixed in 4% buffered
formalin and embedded in paraffin. Each case was classified into
epithelioid, biphasic and sarcomatoid, according to the 2015
World Health Organization (WHO) classification (7).

Histological parameters and immunohistochemical evaluations
were performed only when biopsies met the following criteria:
1) size adequacy: at least 2 cm2/>60% neoplastic cells.

In epithelioid histotypes, the specific architectural pattern was
reported and a nuclear grading system (I-II-III) was performed
as originally described by Kadota et al. (22). The proliferative
index Ki67 antigen was investigated (1:80, Immunotech, clone
MIB-1) and expressed as number of positive cells on total
cell number.

Necrosis and inflammation were morphologically evaluated
both in intratumoral and peritumoral areas and quantified in
percentage over the entire tumor surface. The tumor-infiltrating
immune cell analysis was based on the guidelines from the
International Immuno-Oncology Biomarkers Working Group
(23). Briefly, the tumor-infiltrating immune cell analysis was
carried out within the borders of the invasive tumor and areas
within the tumor. Areas with necrosis, fibrosis/scar or adjacent
normal tissue were excluded.

Inflammatory cells were further classified into lymphocytes (B
and T) and macrophages (also considering M2 type). The TME
characterization was performed by using the following primary
antibodies: anti-CD20 (1:200, Dako, clone L26, CD20CY), anti-
CD3 (1:200, Leica, clone NCL-L-CD3-565), anti-CD8 (1:200,
Dako, clone C8/144B), anti-CD4 (1:200, Dako, clone 4B12),
anti-CD68 (1:200, Dako, clone PG-M1), anti-CD163 (1:200,
Novocastra, NCL-L3CD163). Immunoreactivity was expressed
as percentage of positive cells with respect to the total number
of inflammatory cells.

PD-L1 (1:200, cell signaling, clone E1L3N) was evaluated in
neoplastic cells and considered to be positive when it was higher
than 1%. In a previous study (2) we used an anti-human Ventana
PD-L1 rabbit monoclonal primary antibody (clone SP263, pre-
diluted, 1,61 mg/mL). After that, we have started to use PD-L1
(clone E1L3N) following a laboratory validation test that
demonstrated a similar rate of positivity of the two antibodies.
In tumor cells, PD-L1 was scored as Tumor Proportion Score
(TPS). p14/ARF (1:100, Santa Cruz, clone 4C6/4ARF) was defined
as positive when neoplastic cells showed strong nuclear or both
cytoplasmic and nuclear/staining. In all immunostainings negative
controls for non-specific binding were included omitting the
primary antibodies.

Immunohistochemistry was performed by using the Bond
automated system (Leica Bond III, Leica Microsystems Srl,
Wetzlar, Germany).

Statistical Analysis
Data are expressed as medians (interquartile range). Univariate
analyses were conducted with the non-parametric Mann-
Whitney U or Kruskal-Wallis tests for continuous variables
and Fisher’s exact test for categorical variables. Feature
Frontiers in Oncology | www.frontiersin.org 332
selection was implemented using a machine-learning algorithm
based on random forest (Boruta). The Boruta algorithm aims to
identify all the relevant predictors that impact the outcome of
interest (in our case, being in the p14/ARF+ or p14/ARF- group).
It implements a random forest on an augmented set of
covariates. Additional covariates, called shadow variables, are
copies of the original ones obtained by permuting the
observations and thus removing any possible association with
the outcome. For each explanatory variable, an importance
measure is computed, i.e., a Z score, which is the average
improvement in the predictive performance of the random
forest with the considered explanatory variable divided by its
standard deviation. The obtained important predictors are those
that show a Z score higher than the one observed for the variable
with the maximum Z score among the shadow variables. The
procedure is repeated until an importance measure is assigned to
each predictor or until the maximum number of random forests
is reached. The Boruta R package (24) was used for the analysis.
The Boruta feature selection is a heuristic algorithm of machine
learning that was used to highlight the most important variables
that were able to distinguish the p14/ARF positiveness. The
algorithm is based on the random forest algorithm and permits
to compare variables randomizing both data and variables in
order to obtain independent decision trees that are finally used to
produce a decision about the most influencing, group-diving
features. Survival was evaluated using Kaplan-Meyer curves and
Log-rank test. Moreover, survival curves were also compared
with the non-parametric restricted mean survival time as a
summary measure of the survival time distribution adjusted for
age, sex, and chemotherapy and/or surgery treatments at 6 and
12 months with the survival and survRM2 R packages. Graphs
were made with the ggstatsplot R package. R (v. 4.0.3) was used
for the analysis (25).
RESULTS

Patients
Seventy-six chemo naive MPM patients were enrolled in the
study. p14/ARF was evaluable in 68 (89%) MPM samples
containing a sufficient number of tumor cells. Most patients
were males (51/68, 75%), with a median age of 72 (61.8-76; Q1-
Q3) years. A positive history of asbestos exposure was obtained
from 62%. According to the Eastern Cooperative Oncology
Group (ECOG), performance status (PS) was 0 in 32%, 1 in
62% and 2 in 6%. Median survival was 9.3 (5.5-12.9; Q1-Q3)
months. The main clinical data are summarized in Table 1.

Morphological Characteristics, TME/PD-
L1 and p14/ARF Expression
Forty-seven cases were epithelioid (69%), 17 biphasic (25%) and 4
sarcomatoid (6%). Epithelioid histotype displayed a solid
prevalent growth pattern (25 out of 47, 53%). The majority of
epithelioid MPM had mild/moderate nuclear grading (13 cases
with G1, 21 G2) while 28% (13 G3) showed severe nuclear grading.
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Necrosis was detected in 48 cases (71%) with a median
percentage of 10.0 (5.0-18.5; Q1-Q3). Loss of nuclear
immunoreactivity of p14/ARF was evident in 54 cases (79%).
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Strong nuclear expression was mainly detected in epithelioid
mesotheliomas (11 out of 14, 79%). In 79% of positive cases
cytoplasmic immunoreactivity was detected in addition to the
nuclear staining.

TME was evaluable in 68 cases. Inflammation showed a
median of 10.0 (5.0-17.5; Q1-Q3), higher in epithelioid than
non-epithelioid (14.0 vs 10.0). PD-L1 was expressed in 37 (54%)
cases (23 epithelioid and 14 non-epithelioid: 12 biphasic and 2
sarcomatoid). PD-L1 was strongly positive with a TPS ≥ 50% in
17 (25%) cases.
Relationship Between p14/ARF and
Clinicopathological Data
Censored patients were 4 in the p14-positive group and 14 in the
negative group.While there was no significant difference in median
overall survival (9.3 vs 9.8 months), it was noted that more patients
with lack of p14/ARF expression showed survival beyond 10
months. Including chemotherapy, surgery, or their combination
as covariates in the survival analysis, the results did not change
(Figure 1). Restricted mean survival time at 6 and 12 months
showed no differences between the two arms adjusted for age and
sex: 6 months estimate -0.24 (95% CI -1.02; 0.53, p = 0.536): 12
months estimate -0.34 (95%CI -2.10; 1.71, p = 0.742). p14/ARF
expression was correlated with histotype, necrosis, inflammation,
all inflammatory cell subtypes and PD-L1 values; at univariate
analysis, a significant association was achieved between p14/ARF
positivity and high PD-L1 expression in tumor cells (p = 0.015)
(Figure 2). This strict correlation was also confirmed by the Boruta
feature selection that, among all variables evaluated, showed a
predictive significance for this parameter (Figure 3). Moreover, the
percentages of CD4 and CD163 in peritumoral areas were
respectively higher and lower (but not significantly) in p14/ARF
TABLE 1 | Main clinical features of patients affected by malignant pleural
mesothelioma.

p14/ARF
positive
(n = 14)

p14/ARF
negative
(n = 54)

TOTAL
(n = 68)

Sex [F:M] 5:9 12:42 17:51
Age [yrs, median
(Q1-Q3)]

64 (61.2-73.5) 72.5 (63.0-76.0) 72.0 (61.8-76.0)

Overall Survival [months,
median (Q1-Q3)]

9.3 (5.8-11.7) 9.8 (5.6-14.4) 9.3 (5.5-12.9)

Asbestos Exposure [%]
Yes 63 57 62
No 28 43 32

Not available 9 0 6
ECOG PS [%]
0 22 35 32
1 64 61 62
2 14 4 6

EORTC PrS [median
(Q1-Q3)]

1.75 (1.5-1.8) 1.67 (1.15-1.82) 1.72 (1.15-1.82)

Surgery [%]
Yes 0 100 22
No 26 74 78

Chemotherapy [%]
Yes 22 78 75
No 43 57 10
Not available 0 100 15

Multimodal Treatment
[%]
Yes 0 100 22
No 26 74 78
ECOG, Eastern Cooperative Oncology Group; PS, performance status; EORTC,
European Organization for Research and Treatment of Cancer; PrS, prognostic score.
FIGURE 1 | Kaplan Meier curves of p14/ARF positive and negative cases showing a lower survival rate in patients with p14/ARF expression. Censored patients are
depicted as crosses intersecting the curve.
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FIGURE 2 | Pie chart of PD-L1 expression in p14/ARF-positive and negative samples. A higher percentage of PD-L1≥50% was noted in p14/ARF-positive samples
than in p14/ARF-negative MPMs (A). Panel figures of two representative cases of p14/ARF-negative (B, D, F) and p14/ARF-positive MPM (C, E, G). (B) Histology
showing trabecular pattern of MPM (hematoxylin and eosin, original magnification x 200). (D) Immunohistochemistry for PD-L1: TPS<1% (immunohistochemistry,
original magnification x 200). (F) Immunohistochemistry for p14/ARF: negative (immunohistochemistry, original magnification x 200). (C) Histology showing prevalent
solid pattern of MPM (hematoxylin and eosin, original magnification x 200). (E) Immunohistochemistry for PD-L1: TPS≥50% (80%) (immunohistochemistry, original
magnification x 200). (G) Immunohistochemistry for p14/ARF: positive (immunohistochemistry, original magnification x 200).
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positive tumors (both p = 0.066) (Figure 4). The results are
summarized in Table 2.

For epithelioid MPM, 13 cases (28%) had a high nuclear grade
(G3). p14/ARF expression was significantly associated with a
higher nuclear grade (p = 0.023) (Figure 5). As would be
expected since almost all p14/ARF positive MPM samples were
epithelioid, a high PD-L1 expression was associated with p14/
ARF expression (p = 0.042). No other differences were found
between the two groups.

The Boruta feature selection showed that nuclear grade and
PD-L1 expression were the two most important variables in
determining the p14/ARF status, although significance was not
achieved (Figure 6).
DISCUSSION

In the present study, we detected tissue expression of p14/ARF in
only 21% of MPM, mainly epithelioid histotype (79%) thus
confirming previous studies on MPM that showed a more
frequent loss of the CDKN2A gene (10).

An interesting finding of our study was that MPM with p14/
ARF expression showed a higher nuclear grading, more extensive
necrosis (this parameter also did not reach statistical
significance) and a higher PD-L1 TPS value. All these findings
seem to characterize more aggressive pathological forms. The
CDKN2A locus expresses two partially overlapping transcripts
that encode two distinct proteins, namely p14/ARF and p16/
INK4a, which present no sequence identity. While several
experimental studies showed that both proteins are potent
tumor suppressors, the importance of p14/ARF alterations in
several human cancers remains unclear (23). Novel data
collected in recent years have challenged the traditional and
established role of this protein as a tumor suppressor. In
particular it has been demonstrated that several tumors
retaining p14/ARF expression evolve to metastatic and invasive
Frontiers in Oncology | www.frontiersin.org 635
phenotypes and in humans are associated with a poor prognosis
as detected in a subset of our cases (26, 27).

There are only two previous clinical studies that investigated
the expression of p14/ARF in MPM which used molecular
analysis or immunostaining (20, 21) that did not however
allow for univocal interpretation of clinical correlations,
particularly the correlation with survival. In our study, Kaplan-
Meier curves separated patients with low expression from
patients with high expression (Figure 1). Curves seem to
diverge around 10 months but the different and small numbers
of the two groups did not allow a clear evaluation of the two
profiles. Restricted mean survival time at 6 and 12 months did
not show evidence of different survival in the two groups.

Our findings are apparently in contradiction with those
obtained in the study by Walter et al. who reported elevated
p14/ARF expression correlated with prolonged survival.
However, the authors evaluated p14/ARF using a different
methodology: by qPCR.

mRNA is usually translated into protein under the
assumption that there is some sort of correlation between level
of mRNA and level of protein. However, there may be reasons
for the typically poor correlations between mRNA and protein
levels, and these reasons may not be mutually exclusive. In
particular, low expression of mRNA and protein abundance
may be related to the fact that proteins have very different
half-lives as the result of varied protein syntheses and
degradations. Indeed, protein turnover can vary significantly
depending on a number of different conditions. Future more
in-depth studies are needed to investigate both in vitro and in
vivo post-transcriptional p14/ARF activity.

In contrast with the exclusively nucleolar localization of p14/
ARF observed in most in vitro models and in several tumors,
abnormal p14/ARF nucleo-cytoplasmic accumulation was found
in the majority of our cases. This has been observed in other
tumors (27, 28).

It does not seem likely that this is a consequence of
nonspecific staining, as a distinct nucleolar signal has been
obtained with the same antibody and under the same
conditions in other tumor tissues (28). The presence of other
nuclear markers (WT1; Ki67) without cytoplasmic spreading
demonstrated that our observations are not an artifact related to
loss of nuclear integrity. We ignore the significance of
nucleocytoplasmic staining—it would be expected that under
conditions of massive p14/ARF induction the nucleoplasmic
fraction would become detectable as was in many of our cases.

In the present study it was demonstrated that there was an
association between p14/ARF and PD-L1 expression in
mesothelial cells, which may be explained by the response of
neoplastic cells to immune attack. Several experimental and
clinical studies have demonstrated that p14/ARF is a critical
modulator of the inflammatory response although its exact role
in the complex regulation of an inflammatory tumor
microenvironment is still unclear. Inflammatory tumor
microenvironments contribute to the carcinogenesis and
progression of several types of solid and hematologic cancers.
PDL-1 is an immune modulatory molecule in cancer cells that
FIGURE 3 | Boruta feature selection showing predictive significance for PD-L1
expression in p14/ARF positivity. Unfilled circles indicating outliers.
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inhibits cytotoxic T cell activity (29) thereby enabling tumor
growth (30). Chronic inflammation due to inhaled asbestos in
the pleura and/or into the lung has been thought to play a major
role in MPM pathogenesis. Recently, the use of immune
checkpoint inhibitor (ICI) as single agents or in combination
in previously treated and naïve patients has been shown to
potentially prolong MPM patient survival even if the value of
Frontiers in Oncology | www.frontiersin.org 736
single agent checkpoint inhibitors is rather limited yielding
overall response rates with immunotherapy around 30% (31).
Even if more recently the Checkmate-743 study demonstrated a
significant improvement in overall survival for the combination
of nivolumab and ipilimumab (32), some issues about the
expected response and the acceptable toxicity need to be
addressed. While the clinical efficacy of ICI has been claimed
FIGURE 4 | CD4+ and CD163+ distribution in peritumoral areas. T helper lymphocytes and M2 macrophages were respectively higher and lower in p14/ARF-positive
tumors than in negative samples (A). Panel figures of two representative cases of p14/ARF-negative (B–D) and p14/ARF-positive MPM (E–G). (B) Immunohistochemistry
for p14/ARF: negative (immunohistochemistry, original magnification x 70). (C) Immunohistochemistry for CD163 showing a high percentage in peritumoral areas
(immunohistochemistry, original magnification x 70). (D) Immunohistochemistry for CD4 showing a low percentage in peritumoral areas (immunohistochemistry, original
magnification x 70). (E) Immunohistochemistry for p14/ARF: positive (immunohistochemistry, original magnification x 70). (F) Immunohistochemistry for CD163 showing a
low percentage in peritumoral areas (immunohistochemistry, original magnification x 70). (G) Immunohistochemistry for CD4 showing a high percentage in peritumoral
areas (immunohistochemistry, original magnification x 70).
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to correlate with a high tumor mutational burden as in
melanoma or NSCLC patients, mesothelioma has consistently
been demonstrated to harbor a low mutation burden (10). This
may explain the low sensitivity to the ICI targeting PD-1/PDL-1;
however, the possible influence of some genes that could have the
same efficacy of ICI in MPM patients is also important. A role for
p14/ARF in the innate immune response has been previously
demonstrated, although the underlying mechanisms are unclear
(33–35). The mechanisms include the modulation of
angiogenesis, matrix remodeling, and immune suppression
(36). In vitro and in vivo models have demonstrated a
significant influence of p19/ARF in regulating the plasticity
and polarization of macrophages. Mice lacking the p19/ARF
gene showed a balance with prevalent M2 macrophage
phenotypes characterized by the expression of a series of
chemokines, cytokines, and proteases that promote
immunosuppression (33–36). This seems to be in line with our
results as ARF-negative MPM showed higher levels of CD163
than positive MPM.

It could be speculated that p14/ARF and PD-L1 positive
mesothelioma characterizes tumor phenotypes with an
inflammatory TME that might be more sensitive to the
ICI treatment.

There were some limitations of the present study. First, due to
the small sample size, the study could be underpowered.
Nonetheless, we implemented robust and reliable methods to
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limit the probability of getting significant results by chance.
Moreover, the strength of our research is that all patients
included in the current study were chemo-naive and that it
overcomes an important selection bias that could influence the
evaluation of TME and PD-L1. Concerning p14/ARF
immunostaining, there is no standardization for defining p14/
ARF positivity. In this regard, further studies are required
considering that the absence of a cut-off value may influence
the detection rate of positive samples. This is also true for the
evaluation of PD-L1 that is not standardized in MM, neither in
terms of clones nor type of expression evaluation and threshold.

Finally, although a significant association between PD-L1 and
p14/ARF expression was identified, the molecular substrate that
influences this association remains unknown. Nonetheless, this
study may serve as an important starting point for future genetic
and functional studies.

In conclusion, we found an association between p14/ARF-
positive MPM and a peculiar MPM phenotype, characterized by
a higher nuclear grading, PD-L1 expression, and peculiar
inflammatory TME (high number of peritumoral CD4 T-
lymphocyte and low number of M2 macrophages). The
significant correlation between p14/ARF positive MPM and
PD-L1 expression suggests a possible interaction of the
two pathways.

There is an urgent need for biomarkers to select the optimal
candidates for immunotherapy among MPM patients moreover
TABLE 2 | Main histological features of malignant pleural mesothelioma distinguishing p14/ARF positive and negative cases.

p14/ARF positive (n = 14) p14/ARF negative (n = 54) TOTAL (n = 68) p-value

Histotype (n, %)
Epithelioid 11 (23%) 36 (77%) 47 (69%) 0.339
Biphasic 3 (18%) 14 (82%) 17 (25%)
Sarcomatoid 0 4 (100%) 4 (6%)

Necrosis [%, median (Q1-Q3)] 15.0 (10.0–15.0) 7.0 (5.0–19.0) 10.0 (5.0–18.5) 0.229
Mitoses [n/mm2, median (Q1-Q3)] 4.0 (3.0–4.8) 3.0 (2.0–5.0) 3.0 (2.0–5.0) 0.478
Proliferative index [%, median (Q1-Q3)] 40.0 (25.0, 65.0) 30.0 (20.0, 52.5) 30.0 (20.0–57.5) 0.553
PD-L1 tumor cells
<50% 7 (50%) 44 (81.5%) 51 (75%) 0.015*
≥50% 7 (50%) 10 (18.5%) 17 (25%)

CD8 [%, median (Q1-Q3)]
Peritumoral 20.0 (15.0–30.0) 20.0 (8.5–30.0) 20.0 (10.0–30.0) 0.614
Intratumoral 20.0 (10.0–30.0) 20.0 (5.0–50.0) 20.0 (6.2–50.0) 0.910

CD4 [%, median (Q1-Q3)]
Peritumoral 20.0 (1.2–37.5) 2.5 (0.0–16.2) 5.0 (0.0–20.0) 0.066
Intratumoral 5.0 (0.5–10.0) 0.0 (0.0–10.0) 0.0 (0.0–10.0) 0.174

CD20 [%, median (Q1-Q3)]
Peritumoral 25.0 (15.0–40.0) 20.0 (5.0–40.0) 20.0 (6.2–40.0) 0.626
Intratumoral 0.0 (0.0–4.0) 0.0 (0.0–5.0) 0.0 (0.0–5.0) 0.841

CD20 [%, median (Q1-Q3)]
Peritumoral 25.0 (15.0–40.0) 20.0 (5.0–40.0) 20.0 (6.2–40.0) 0.626
Intratumoral 0.0 (0.0–4.0) 0.0 (0.0–5.0) 0.0 (0.0–5.0) 0.841

CD3 [%, median (Q1-Q3)]
Peritumoral 40.0 (16.2–57.5) 30.0 (10.0–40.0) 30.0 (13.8–50.0) 0.266
Intratumoral 17.5 (10.0–46.2) 20.0 (5.0–40.0) 20.0 (5.0–, 42.5) 0.813

CD68 [%, median (Q1-Q3)]
Peritumoral 30.0 (25.0–47.5) 30.0 (15.0–40.0) 30.0 (20.0–40.0) 0.250
Intratumoral 27.5 (20.0–40.0) 40.0 (20.0–60.0) 40.0 (20.0–, 60.0) 0.129

CD163 [%, median (Q1-Q3)]
Peritumoral 45.0 (22.5–65.0) 70.0 (40.0–90.0) 60.0 (40.0–80.0) 0.066
Intratumoral 35.0 (22.5–47.5) 40.0 (30.0–80.0) 40.0 (30.0–70.0) 0.192
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FIGURE 5 | Pie chart of nuclear grading in p14/ARF-positive and negative samples. p14/ARF-positive samples showed higher nuclear grade (G3) than p14/ARF-
negative MPM (A). Panel figures of two representative cases of p14/ARF-negative (B, D, F) and p14/ARF positive MPM (C, E, G). (B) Histology showing an
epithelioid MPM with low nuclear grading (G2 sec. Kadota et al.) (hematoxylin and eosin, original magnification x 200). (D) Immunohistochemistry for p14/ARF
showing complete negative immunostaining (immunohistochemistry, original magnification x 200). (F) Immunohistochemistry for PD-L1: TPS<1%
(immunohistochemistry, original magnification x 200). (C) Histology showing an epithelioid MPM with high nuclear grading (G3 sec. Kadota et al.) (hematoxylin and
eosin, original magnification x 200). (E) Immunohistochemistry for p14/ARF showing strong nuclear and cytoplasmic immunostaining in most tumor cells
(immunohistochemistry, original magnification x 200). (G) Immunohistochemistry for PD-L1: TPS≥50% (immunohistochemistry, original magnification x 200).
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in terms of efficacy to the ICI treatment. The confirmation of our
preliminary results could be useful for patient selection and
recruitment in future clinical trials with anticancer
immunotherapy to optimize the benefit and the effectiveness of
these drugs in MPM.
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Background: Lung cancer is a malignant disease that threatens human health. Hence,

it is crucial to identify effective prognostic factors and treatment targets. Single-cell RNA

sequencing can quantify the expression profiles of transcripts in individual cells.

Methods: GSE117570 profiles were downloaded from the Gene Expression

Omnibus database. Key ligand-receptor genes in the tumor and the normal groups

were screened to identify integrated differentially expressed genes (DEGs) from the

GSE118370 and The Cancer Genome Atlas Lung Adenocarcinoma databases. DEGs

associated with more ligand-receptor pairs were selected as candidate DEGs for Gene

Ontology (GO) functional annotation, Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis, and survival analysis. In addition, we conducted validation

immunohistochemical experiments on postoperative specimens of 30 patients with

lung cancer.

Results: A total of 18 candidate DEGs were identified from the tumor and the normal

groups. The analysis of the GO biological process revealed that these DEGs were mainly

enriched in wound healing, in response to wounding, cell migration, cell motility, and

regulation of cell motility, while the KEGG pathway analysis found that these DEGs

were mainly enriched in proteoglycans in cancer, bladder cancer, malaria, tyrosine

kinase inhibitor resistance in Epidermal Growth Factor Receptor (EGFR), and the ERBB

signaling pathway. Survival analysis showed that a high, rather than a low, expression of

platelet endothelial cell adhesion molecule-1 (PECAM-1) was associated with improved

survival. Similarly, in postoperative patients with lung cancer, we found that the overall

survival of the PECAM-1 high-expression group shows a better trend than the PECAM-1

low-expression group (p = 0.172).

Conclusions: The candidate DEGs identified in this study may play some important

roles in the occurrence and development of lung cancer, especially PECAM-1, which

may present potential prognostic biomarkers for the outcome.

Keywords: non-small cell lung cancer, single-cell RNA-seq, gene expression omnibus database (GEO), the Cancer

Genome Atlas (TCGA), PECAM-1 (CD31)
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INTRODUCTION

Lung cancer (LC) is the leading cause of cancer-related deaths
among men and the third most common type of cancer among
women, accounting for an estimated 2.1 million new cases and
∼1.9 million deaths worldwide in 2018. Non-small cell LC
(NSCLC) is the most common type of LC, accounting for about
85% of cases (1). Tumors of NSCLC typically undergo extensive
genomic changes. Recently, molecularly targeted therapies and
immune checkpoint inhibitors have dramatically improved the
survival of patients with genomic changes to somatic cells (2).
However, patients with LC often have different outcomes with
the same therapy, and resistance to targeted therapies and
immunotherapies remains problematic. Hence, the identification
of a new biomarker of prognosis is needed.

Single-cell genomics is a powerful tool to explore genetic
and functional heterogeneity, reconstruct evolutionary lineages,
and detect rare subpopulations (3). Single-cell RNA sequencing
(scRNA-seq) of human tumors has revealed new insights
into tumor heterogeneity and the identification of different
cell subpopulations, which are crucial to elucidate the
mechanisms underlying tumorigenesis (4, 5). Furthermore,
a better understanding of the gene expression profiles of the
tumor microenvironment (TME) may help to improving
prognosis and identifying molecular therapeutic targets.

Recently, intra-tumor mutational diversification analysis of
LC at the single-cell level has been conducted (2, 6, 7). However,
the scRNA-seq analysis has not yet been implemented to compare
the gene expression profiles of non-small cell LC with those of
normal tissues.

In the present study, the genomic features of LC cells and
adjacent normal cells were obtained from GSE117570 and were
analyzed to sort and screen key genes coding for ligand receptors.
Then, candidate differentially expressed genes (DEGs) from The
Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAC)
and GSE118370 databases were used for an enrichment analysis
to identify those associated with crucial ligand-receptor activities
to improve the efficacy of individualized treatment regimens
for LC.

MATERIALS AND METHODS

Patients
This analysis enrolled patients with newly diagnosed,
pathologically confirmed NSCLC at the Shanghai Chest Hospital
(Shanghai, China) from December 1, 2012 to December 31,
2017. All patients underwent complete resection, and no distant
metastases were observed. All patients underwent follow-up of
survival once a year. Paraffin-embedded lung adenocarcinoma
specimens were obtained from all participants, and clinical, as
well as pathological, data were collected. The present study was
approved by the Institutional Review Board for Clinical Research
of the Shanghai Chest Hospital.

Data Curation
The GSE117570 and GSE118370 datasets were
downloaded from the Gene Expression Omnibus database

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi). The
expression profiles of LC samples were downloaded from
TCGA-LUAD database (https://portal.gdc.cancer.gov/).

Quality Control
The DropletUtils function of the R package was used to
characterize the gene expression profiles of individual cells and to
filter out any gene with counts of zero for all barcodes (8). Then,
further screening was conducted of each cell with <100 unique
molecular identifiers. The calculateQCMetrics scater package (9)
was used to filter cells with ≤5% of mitochondrial genes and
≥10% of ribosomal genes. The expression matrix of each sample
was normalized with the NormalizeData function included with
the Seurat package (10).

Principle Component Analysis (PCA) and
t-Distributed Stochastic Neighbor
Embedding (t-SNE)
The FindVariableFeatures function of the Seurat package was
used to screen the top 2,000 genes with the highest standard
deviations and defined as high variants. Focusing on high variant
genes by downstream analysis helps to highlight biological signals
in single-cell data sets. Then, the ScaleData function of the
Seurat package was used to linearly scale the expression data.
Finally, the RunPCA function of the Seurat package was used
for linear dimensionality reduction analysis. After the selection
of the principal components with large SDs, the FindNeighbors
and FindClusters functions of the Seurat package were used for
cell clustering analysis. Later, the RunTSNE function of the Seurat
package was used for the non-linear dimensionality reduction
analysis via t-SNE.

Marker Gene Identification
The FindAllMarkers function of the Seurat package was used to
identify DEGs between each cluster and other cell types [logFC≥

0.25 (expression ratio of the cell population ≥0.25); p ≤ 0.05] as
marker genes. Cell clusters were labeled and visualized according
to existing annotations in the CellMarker database (11).

Screening of DEGs
Genes in TCGA-LUAD and the GSE118370 databases with
a significant difference in mean values among all samples
(ANOVA; p ≤ 0.05) were selected for PCA. Samples with
appropriate phenotypes were selected for differential expression
analysis with the use of GSE118370 chip data with the Limma
package and of TCGA sequencing data with the edgeR package
after log2 conversion of each sample (|log2FC| ≥ 0.5849625).
Then, DEGs were collected.

Ligand Receptor Network Analysis
Based on the ligand-receptor pairing data, related ligand-receptor
pairs of various cell types were analyzed, counted, and organized
by networks (12).

Gene Function Enrichment Analysis
Functional enrichment analysis of DEGs was conducted with the
use of the Gene Ontology (GO) and the Kyoto Encyclopedia
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FIGURE 1 | Cell cluster compositions of tumor tissues and normal tissues. (A) Top 10 genes with the most significant differences in SDs. (B) Gene contributions in

two principal components (PC), namely PC_1 and PC_2. (C) Distribution of cells in two dimensions based on the PC_1 and PC_2 components. (D,E). Cell clusters of

t-distributed stochastic neighbor embedding (t-SNE) and identified marker genes.
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FIGURE 2 | Filtering of differentially expression genes (DEGs). (A,B) Heat maps of DEGs of (A) GSE118370 and (B) The Cancer Genome Atlas (TCGA). (C,D) Volcano

plot of DEGs of (C) GSE118370 and (D) TCGA. (E,F) The intersection of (E) upregulated DEGs and (F) downregulated DEGs of GSE118370 and TCGA.
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of Genes and Genomes (KEGG) biochemical pathway databases
(13, 14). The Fisher’s exact test was used to determine the specific
functions of DEGs. The p-value and the false discovery rate were
calculated for each DEG. The smaller the p-value, the greater the
relationship between the functional item and the input gene, as
most DEGs in the same group had similar functions.

Gene Set Enrichment Analysis (GSEA)
Based on the genes included in the GSE118370 database, GSEA
was used to compensate for the deficiency of a single gene (15).

Immunohistochemistry (IHC)
Anti-PEACM1 antibody (1:50, ab28364, Abcam) was used for
IHC staining. After the staining was completed, two pathologists
independently scored the stained samples according to the
staining intensity and the percentage of positively stained cells.

The staining intensity was scored as follows: 0 (no staining),
1 (yellow or yellow-brown), and 2 (brown). The percentage of
positive cells was scored as follows: 0 (none), 1 (<10%), 2 (10–
50%), and 3 (<50%). Then, the relative expression index was
calculated by multiplying these two scores; the final score <

3 indicates low expression, and the final score ≥ 3 indicates
high expression.

Survival Analysis
According to the TCGA database, we defined the median
value of the expression of candidate DEGs in all patients as
the cut-off value and performed the Kaplan-Meier Survival
analysis and the COX regression analysis by using the survival
package. Correlations among the characteristics of patients in
different groups were analyzed with the Fisher’s exact test and

TABLE 1 | Statistic result of differentially expressed genes(DEGs).

Resources Platform Sample size of

Tumor

Sample size of

Normal

FC P_value Up Down

GSE118370 GPL570 6 6 1.5 0.05 1,798 2,143

TCGA HiSeq 526 59 1.5 0.05 631 482

FIGURE 3 | Functional enrichment analysis of DEGs. (A–C) Enrichment result of downregulated DEGs in (A) the biological process (BP), (B) the cellular component

(CC), and (C) the molecular function (MF) pathway of Gene Ontology (GO). (D) Enrichment result of downregulated DEGs of the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway. (E) Gene set enrichment analysis result of GO:0001525 (ANGIOGENESIS).
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performed using the SPSS software version 22 (IBMCorporation,
Chicago, IL).

RESULTS

Cell Cluster Compositions of Tumor
Tissues and Normal Tissues
Approximately, 11,233 cells from the GSE117570 database
passed quality control and were selected for further analysis
(Supplementary Figure 1A). The top 2,000 genes with the most
significant differences in SDs were screened, and the top 10
genes are revealed in Figure 1A. The distribution of these genes
between the tumor group and the normal group was detected
by PCA and t-SNE. The top 46 significantly correlated genes are
shown in Supplementary Figure 1B. We mapped the cells into
two dimensions based on the PC_1 and PC_2 components, and
other components were calculated with an estimated p-value, and
the significant components were selected for subsequent analysis
(Figures 1B,C). To further precisely cluster the populations of
cells, t-SNEwas adopted for the visualization of high dimensional
data (Figure 1D). In total, 15 distinct cell clusters were identified
by clustering analysis and classified based on the top 10 DEGs,
which included CD4+T cells, CD8+ T cells, cancer stem cells,
plasma cells, natural killer cells, M1 macrophages, macrophages,
M2 macrophages, regulatory B cells, T helper 17 (Th17) cells,
dendritic cells, effector T cells, cancer cells, endothelial cells, and
Th2 cells (Figure 1E).

Filtering and Functional Enrichment
Analysis of DEGs
Of the 3,941 DEGs identified in the GSE118370 dataset, 1,798
were up-regulated and 2,143 were downregulated (Figures 2A,C;
Table 1). Of the 1,113 DEGs identified in the TCGA dataset, 631
were upregulated and 482 were downregulated (Figures 2B,D;
Table 1). Of the 457 shared DEGs in the two databases, 199

were upregulated and 258 were downregulated (Figures 2E,F).
To further investigate cell functional states associated with
LC and potential molecular regulators, functional enrichment
analyses, including GO and KEGG analyses, of these DEGs were
conducted. Three main categories of the GO function analysis
[biological process (BP), cellular component (CC), andmolecular
function (MF)] revealed that the downregulated DEGs were
significantly enriched in the following functions: cell motility, cell
migration, and cell component movement (GO BP, Figure 3A);
vesicle (GO CC, Figure 3B); and cell adhesion molecule binding,
actin binding, and extracellular matrix structural constituent
(GO MF, Figure 3C). According to the results of the KEGG
analysis, the downregulated DEGs were mainly enriched in
tight junctions, complement and coagulation cascades, and
phagosomes (Figure 3D).

To identify the potential functions of the DEGs in the tumor
group and the normal group, GSEA was conducted to search GO
terms enriched in the GSE118370 dataset (Figure 3E). The results
showed that some of the genes expressed in the normal group
were significantly and negatively correlated with the angiogenesis
pathway (GO: 0001525).

Ligand Receptor Network Analysis
Previous analyses of the ligand-receptor relationships of all
marker genes in each cell type were presented as arrow diagrams
(Supplementry Figure 1D; Figure 4A) (11). Finally, screening of
nine ligand-receptor pairs with the most interactions identified a
distinct network in individual cells (Figure 4B).

Selection and Enrichment Analysis of
Candidate DEGs
The DEGs were compared with screened ligand-receptor
pairs and the following top 18 transcripts were selected as
candidate DEGs: AXL, C1QA, CAV1, CD36, CD93, CDH1,
COL1A1, DDR1, EFNB2, ERBB2, ERBB3, GNAI2, HBEGF,

FIGURE 4 | Ligand receptor network analysis. (A) Network diagram of the detailed relationship between ligand receptors in various cell types. (B) Based on the

network pairing relationship, the top none most ligand-receptor relationship pairs are selected, and the number of relationships between them with cell group is

counted, including SDC4-MDK (16 pairs); SDC4-TFPI (16 pairs); LRP1-MDK (12 pairs); CAV1-ICAM1 (16 pairs); CAV1-APP (20 pairs); CAV1-GNAI2 (16 pairs);

LRP1-TFPI (12 pairs); LRP1-APP (15 pairs); FPR1-GNAI2 (12 pairs). Diamond-shaped nodes represent ligands, and the arrows from ligands to cell types means

V-shaped nodes represent receptors.
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FIGURE 5 | Selection and enrichment analysis of candidate DEGs. (A–C) Gene function enrichment analysis of candidate DEGs in (A) GO BP, (B) GO CC, and (C)

GO MF. (D) Gene function enrichment analysis of candidate DEGs in the KEGG pathway.

LPL, MDK, PECAM-1, PROS1, and SDC1. Compared to
normal tissues, CDH1, COL1A1, DDR1, ERBB2, ERBB3,
MDK, and SDC1 were upregulated in LC, and AXL, C1QA,
CAV1, CD36, CD93, EFNB2, GNAI2, HBEGF, LPL, PECAM-
1, and PROS1 were downregulated. According to the GO
analysis, the candidate DEGs were significantly enriched in
wound healing, response to wounding, and cell migration
(BP, Figure 5A), extracellular space, cell surface, and vesicle
(CC, Figure 5B), and growth factor binding, transmembrane
receptor protein kinase activity, and protein tyrosine activity
(MF, Figure 5C). According to KEGG analysis, the candidate
DEGs were significantly enriched in proteoglycans in cancer,

bladder cancer, malaria, tyrosine kinase inhibitor resistance
in the EGFR, the ERBB signaling pathway, ECM-receptor
interactions, fluid shear stress and atherosclerosis, cell
adhesion molecules, and cholesterol metabolism in endometrial
cancer (Figure 5D).

Survival Analysis of Candidate DEGs
Further analysis of the expression and clinical information
of candidate DEGs in TCGA-LUAD database. We performed
survival analysis on half of the patients with high expression
levels and half of the patients with low expression levels of
candidate DEGs and found that the expression of PECAM-1 had
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FIGURE 6 | Survival analysis of PECAM-1. (A) Disease-free survival (DFS) of PECAM-1 expression. (B) Overall survival (OS) of PECAM-1 expression. (C) Univariate

cox analysis of PECAM-1. (D) Multivariate cox analysis of PECAM-1.

a significant impact on the survival of patients with LC at the
threshold expression value of 8,615 (Figures 6A–D).

High expression of PECAM-1 apparently lead to a longer
overall survival than its low expression [p= 0.00854, hazard ratio
(HR) = 0.675, Figure 6B]. Univariate Cox analysis showed that
PECAM-1 is a protective factor [HR = 0.998, 95% confidence
interval (95%CI) = 0.996–0.999, p = 0.0076, Figure 6C].
Multivariate analysis was used for factors found to be obviously
significant in univariate analysis, and the results of multivariate
Cox analysis showed that PECAM-1 tended to have a protective
effect (HR= 0.998, 95%CI= 0.996–1, p= 0.0024, Figure 6D).

Validation of the Prognostic Effect of
PECAM-1
First, we collected the paraffin tissue and clinical data of
30 patients with postoperative LUAC (Table 2). Then, we
performed immunohistochemical tests to validate the expression

of PECAM-1 in those paraffin specimens (Figures 7A,B). The
median follow-up time is 50 months (three patients were lost).
The Kaplan–Meier survival analysis of the overall survival
of two groups showed that the PECAM-1 high-expression
group showed a better survival trend than the PECAM-1 low-
expression group, similar to our previous analysis (p = 0.172,
Figure 7C).

DISCUSSION

In the present study, cell clusters in the tumor group and the
normal group were identified. Screening of the top 18 candidate
DEGs in two groups identified those expressed predominantly
in ligand-receptor pairs with many interactions. Functional
enrichment and survival analyses indicated that the candidate
DEGs were significantly associated with the prognosis of LC,
especially PECAM-1.
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TABLE 2 | Demographic, clinical, and pathological characteristics of patients with

lung adenocarcinoma in the PECAM-1 high-expression group (PECAM-1+) and

the PECAM-1 low-expression group (PECAM-1-).

Parameters PECAM-1 + PECAM-1 − p-value

Age 1.000

≥60 6 5

<60 11 8

Gender 0.700

Male 10 9

Female 7 4

Smoking history 1.000

Non-smoker 16 13

Smoker 1 0

Lymph node metastasis 1.000

Yes 8 7

No 9 6

TNM stage 0.783

I 6 3

II 5 3

III 5 6

IV 1 1

Overall, 18 candidate DEGs that participate in many ligand-
receptor activities were subjected to scRNA-seq. The GO BP
analysis results revealed that these DEGs were mainly enriched
in the following top five functions: wound healing, response to
wounding, cell migration, cell motility, and regulation of cell
motility. Previous studies have demonstrated that the stroma
of solid tumors contains a variety of cellular phenotypes and
signaling pathways associated with wound healing. For example,
tumor stroma is formed by abnormal activation of the wound
healing pathways (16, 17). Both wound healing and TME
are dependent on changes to deposition of the extracellular
matrix, which promotes epithelial–mesenchymal transition and
increases the motility of both fibroblasts and tumor cells (18).
The GO CC analysis indicated that candidate DEGs enriched in
extracellular space, cell surface, and vesicles may have important
impacts on exosome production and tumor metastasis (19). The
GO MF analysis demonstrated that some of the candidate DEGs
were enriched in transmembrane receptor protein kinase activity
and protein tyrosine activity, suggesting that the difference in
the cellular processes of tumor cells vs. normal cells, such
as cell signaling, cell-cell communication, transport, energy
transduction, and enzyme activation, may be induced by receptor
protein kinases. (20). These results suggest that these DEGs are
involved in the establishment of the TME and the migration of
LC cells.

The KEGG pathway analysis showed that the identified
DEGs were mainly enriched in the following top five pathways:
proteoglycans in cancer, bladder cancer, malaria, tyrosine kinase
inhibitor resistance in EGFR, and the ERBB signaling pathway.
Proteoglycans exert diverse functions in the occurrence of cancer

(21–23) and are thought to regulate the phenotype of tumor cells
and angiogenesis in tumor metabolism, in addition to promoting
the formation of a temporary matrix for tumor growth, thereby
affecting cell-cell interactions and cell-matrix interactions and
tumor cell signal transduction (21). EGFR and the ERBB pathway
are common targets for the treatment of LC (24, 25). The results
of the present study showedDEGs have impact on tyrosine kinase
inhibitor resistance in EGFR and the ERBB signaling pathway,
which provide interesting insights for future studies of tyrosine
kinase inhibitors in LC.

There were a lot of research about the 18 candidate
DEGs. Expression of CDH1 (E-Cadherin) is associated with
physiological signaling pathways, such as cell proliferation,
maintenance of cell adhesion, cell polarity, and epithelial–
mesenchymal transition. It is considered a risk factor for diffuse
gastric and lobular breast cancer (26). COL1A1 expressions are
found in most connective tissues and are abundant in bones,
corneas, the dermis, and tendons (27). DDR1 is predominantly
expressed in epithelial cells and is reported to be involved
in the progression of cancer (28). Amplification of ERBB2 is
well-described in many kinds of solid cancer and has been
established as an important actionable target in multiple cancer
types (29). ERBB3 plays an important role in cancer, and the
mutation of ERBB is a potential tumor driver (30). MDK is
a heparin-binding growth factor and acts as a mediator for
the acquisition of critical hallmarks of cancer, including cell
growth, survival, metastasis, migration, and angiogenesis (31).
The expression of SDC1 often produces malignant phenotypes,
which arise from increased cell proliferation and cell growth,
cell survival, cell invasion and metastasis, and angiogenesis (32).
AXL is a receptor tyrosine kinase expressed in many cancer
types and has been associated with therapy resistance and poor
clinical prognosis and outcomes (33). C1QA encodes the A-chain
polypeptide of serum complement subcomponent C1q, which
is associated with lupus erythematosus and glomerulonephritis
(34). CAV1 encodes the scaffolding protein, which is the main
component of the caveolae plasma membranes found in most
cell types (35). CD36 is a scavenger receptor expressed in
multiple cell types, and it mediates lipid uptake, immunological
recognition, inflammation, molecular adhesion, and apoptosis
(36). CD93 is a transmembrane receptor that is upregulated
in tumor vessels in many types of cancer, including high-
grade glioma (37). EFNB2 is expressed at abnormally high
levels in some neoplasms, such as squamous cell carcinoma of
the head and neck and colorectal cancer (38). The expression
of GNAI2 in CD11c+ cells and IL6 in CD4+/CD11b+
DCs appears to promote colon tumor development in mice
(39). HBEGF is a ligand for the EGFR, one of the most
commonly amplified receptor tyrosine kinases in glioblastoma,
which may be a clinically relevant target (40). LPL has
been extensively investigated as a potential risk factor for
coronary artery disease (41). PROS1 encodes a vitamin K-
dependent plasma protein that functions as a cofactor for the
anticoagulant protease, an activated protein C to inhibit blood
coagulation. It plays an essential role in the resolution of
inflammation (42).

Frontiers in Oncology | www.frontiersin.org 9 March 2021 | Volume 11 | Article 58774449

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Cao et al. PECAM-1 Prognosis Value in Lung Cancer

FIGURE 7 | The expression of protein PECAM-1 in patients with lung adenocarcinoma. A-B Representative positive (A) and negative (B) expression of PECAM-1

were examined by immunohistochemistry in lung adenocarcinoma tissues (n = 30). Original magnification, ×200 (upper panel), ×400 (lower panel), ×800 (lower

panel). (C) The association of protein expression of PECAM-1 with OS (n = 30).

PECAM-1 (also known as a cluster of differentiation 31,
CD31) was primarily identified as an adhesion molecule
that plays various roles in cell proliferation, apoptosis, and
migration, in addition to cellular immunity. PECAM-1
is expressed by some tumor cells and may contribute to
tumor invasion (43, 44). However, the role of PECAM-
1 in LC remains unclear (45–50). Giovanna et al. found
that PECAM-1 acts as a checkpoint molecule and can
negatively regulate FcγR-mediated phagocytosis by monocytes
and macrophages, and downregulation of PECAM-1
correlated with decreased survival of chronic lymphocytic
leukemia cells (51, 52). Virman et al. found that high
expression of PECAM-1 was significantly associated with
improved survival.

At present, the research on PECAM-1 is not sufficient, but
many studies have shown that PECAM-1 may affect immune
regulation. This molecule may play a crucial and complex role
in the regulation of T-cell-mediated immune responses, with a

large impact on immunity in health and disease (53). Previous
studies have found that although the loss of PECAM-1 leads
to excessively cytotoxic killing, PECAM-1 also can delay T-
cell apoptosis and prolong the action time of T cells (54,
55). Studies have also found that the PECAM-1 protein can
promote the endothelial migration of lymphocytes and natural
killer cell, which take pivotal roles in eliminating the abnormal
cells, such as tumor cells (54, 56, 57). Analysis by our group
revealed that a high PECAM-1 expression was associated with
better overall survival and is a significant prognostic factor in
LC. Although multivariate Cox analysis showed that PECAM-
1 was not statistically significant, a suitable cutoff value of
PECAM-1 expression may help to indicate better survival of
patients with LC. Our research also found that, although it
is statistically non-significant, patients with LC with a high
PECAM-1 expression had a longer overall survival period,
which may be related to the effect of PECAM-1 on the tumor
immunemicroenvironment, promoting the transport of immune
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cells and enhancing the role of immune cells. However, the
potential impact of PECAM-1-mediated interactions on the
development and function of the immune system need to be
fully studied.

The results of the present study identified key genes and
pathways in LC, which will improve our understanding
of the molecular mechanisms underlying the development
and progression of LC. Eighteen genes that potentially play
pivotal roles in the pathogenesis of LC and may be closely
associated with tumor progression, especially PECAM-
1, were identified in the present study. In addition, we
conducted immunohistochemical analysis on the protein
expression of PECAM-1 in lung cancer tissues and
analyzed the survival of patients with LC with different
PECAM-1 expressions. We found that the PECAM-1
high-expression group has a clear survival advantage,
which further shows that PECAM-1 may be a protective
prognostic factor.
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The success of immunotherapy that targets inhibitory T cell receptors for the treatment of
multiple cancers has seen the anti-tumor immune response re-emerge as a promising
biomarker of response to therapy. Longitudinal characterization of T cells in the tumor
microenvironment (TME) helps us understand how to promote effective anti-tumor
immunity. However, serial analyses at the tumor site are rarely feasible in clinical
practice. Malignant pleural effusions (MPE) associated with thoracic cancers are an
abnormal accumulation of fluid in the pleural space that is routinely drained for patient
symptom control. This fluid contains tumor cells and immune cells, including lymphocytes,
macrophages and dendritic cells, providing a window into the local tumor
microenvironment. Recurrent MPE is common, and provides an opportunity for
longitudinal analysis of the tumor site in a clinical setting. Here, we review the
phenotype of MPE-derived T cells, comparing them to tumor and blood T cells. We
discuss the benefits and limitations of their use as potential dynamic biomarkers of
response to therapy.

Keywords: malignant pleural effusions (MPE), T cells, immune checkpoint therapy, checkpoint receptors,
memory T cells
MALIGNANT PLEURAL EFFUSION IS A COMPLICATION IN
THORACIC CANCERS

A malignant pleural effusion (MPE) is an abnormal accumulation of fluid in the pleural space
associated with advanced stage disease and poor clinical outcomes (1, 2). These effusions are present
at diagnosis in over 90% of patients with mesothelioma (3) and 40% of patients with advanced lung
cancer (1), and are a common feature of metastatic disease to the lung in patients with breast cancer,
lymphoma, ovarian and stomach cancers (2, 4). MPEs are an exudative fluid, resulting from
increased vascular permeability, inflammation and plasma leakage caused in part by tumor cells
blocking the outflow of fluid from the pleural space (5). This build up of fluid leads to symptoms of
various severity including breathlessness, chest pain and cough (5), with current therapy consisting
largely of palliative measures designed to drain or eliminate the pleural space to prevent
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accumulation of fluid (6–9). With the exception of pleurectomy,
recurrent MPE can occur throughout disease progression.

As MPE is adjacent to both primary and metastatic lung
tumor tissue, it is a unique peri-tumoral environment populated
with tumor cells, cytokines, growth factors, enzymes and
immune cells (10, 11). MPEs are routinely drained, providing
an attractive option to longitudinally study the tumor
microenvironment (TME) in thoracic cancers such as
mesothelioma, where a major hurdle is the inability to collect
serial tumor biopsies. Our review focuses on the adaptive
immune cells in MPEs, and how they could inform responses
to cancer immunotherapies.
THERE IS AN URGENT NEED TO
DEVELOP BIOMARKERS OF RESPONSE
TO IMMUNE CHECKPOINT BLOCKADE

Immune checkpoint blockade (ICB) targeting T cell inhibitory
receptors: cytotoxic T lymphocyte associated protein-4 (CTLA-
4) and programmed cell death protein-1/ligand-1 (PD-1/PD-L1)
have revolutionized cancer treatment. Single or dual agent ICB
provides an durable survival benefit in patients with
mesothelioma and non-small cell (NSCLC) lung cancer
patients (12–15). Four ICB therapies: pembrolizumab,
nivolumab, atezolizumab and durvulamab that target the PD-
1/PD-L1 pathway are approved first and second-line treatments
for patients with advanced NSCLC (16). Combination of
ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1)
provides a survival benefit over chemotherapy in malignant
pleural mesothelioma (14). Platinum-based chemotherapies
may synergize with ICB, with single arm studies showing that
combination chemo-immunotherapy reduces tumor burden and
shows promising progression-free and overall survival outcomes
for mesothelioma (17–19). In addition, complete tumor
regression has been observed in some NSCLC (20–22) and
SCLC (23–25) patients treated with chemo-immunotherapy.
Atezolizumab and durvalumab are also approved in
combination with platinum-based chemotherapy for advanced
SCLC patients (26). However, these best-case responses are only
observed in a minority of patients. ICB is also expensive and can
cause severe immune-related toxicities, highlighting the need to
develop biomarkers that can accurately predict patient outcomes
and inform clinical decisions (27). To date, several predictive
biomarkers have been associated with ICB outcomes in some
cancers, including intratumoral expression of the inhibitory
receptor PD-L1 (28), the tumor mutational landscape (29),
immune gene signatures within the TME (30, 31), and the
presence of tumor infiltrating lymphocytes (TILs) and their
expression of PD-1/PD-L1 (32–35). However, there is no
common biomarker that can accurately predict ICB outcomes
across different thoracic cancers, and there is a need to develop
more nuanced biomarkers of response.

As ICB primarily acts through T cells , in-depth
characterization of T cell subsets within the TME, and how
they correlate with ICB outcomes, has been extensively
Frontiers in Oncology | www.frontiersin.org 254
investigated. CD8+ T cell subsets characterized by expression
of activation/memory associated markers and their T cell
receptor (TCR) usage have been linked with outcome to ICB
(34, 36–39), highlighting the potential utility of T cell subsets to
inform ICB responses. As T cells are also enriched in MPEs, they
could offer insight into anti-tumor responses if they accurately
reflect TIL phenotype, frequency and function. Longitudinal
analysis of MPEs could reveal dynamic changes in the TME
without the need for serial biopsies, and aid development of a
biomarker of response.

Below, we review studies that have characterized matched
MPE, TME and peripheral blood derived T cells, focusing on
whether MPE T cells are similar in phenotype, function and
specificity to their tumor counterparts. We also review changes
in T cells derived from MPEs of patients undergoing ICB, and
whether these changes were associated with treatment outcomes.
Lastly, we discuss the unique opportunities and challenges a
longitudinal study of MPE T cells brings, in terms of improving
our understanding of therapeutic mechanisms, and developing a
biomarker of response to ICB.
CELLULAR CHARACTERISTICS OF
MALIGNANT PLEURAL EFFUSIONS
WITHOUT ICB

MPEs contain multiple cell types including tumor cells, pleural
mesothelial cells, and innate and adaptive immune cells (40).
Innate immune cells in the MPE include monocytes,
macrophages, neutrophils, mast cells, dendritic cells and
natural killer cells (41). These cells release cytokines, growth
factors and chemokines including monocyte chemotactic protein
(MCP-1), vascular endothelial growth factor (VEGF), IL-8, IL-6,
IL-1b, interferon gamma (IFN-g), tumor necrosis factor alpha
(TNFa), and transforming growth factor beta (TGFb) (40, 42–
48). These cytokines can be proinflammatory and in some cases
protumorigenic, promoting angiogenesis, vascular permeability
and protecting cancer cells from apoptosis. MPE have increased
lactate dehydrogenase, and a lower pH than non-malignant
pleural fluid, suggestive of an immunosuppressive environment
(11, 41, 49). The characterization of MPE proteins, cytokine
milieu, innate cells, tumor cells, and their relation to overall
survival have been extensively reviewed elsewhere (50–52), so
this review will focus on T cells.

MPE Are Enriched With T Cells
The proportion of total T cells in the MPE is greater than in
matched peripheral blood samples from both mesothelioma and
lung cancer patients (53, 54). CD4+ T cells are the predominant T
cell subset in MPE both prior to and after chemotherapy (41, 54–
57). Of these CD4+ T cells, an increased proportion of regulatory
T cells (CD4+CD25+) are recruited in MPEs by chemokines and
pro-inflammatory cytokines, compared to matched peripheral
blood (58–61). Despite this abundance of CD4+ T cells, several
studies have shown that the CD4+/CD8+ T cell ratio in MPEs is
similar to matched peripheral blood samples in patients with
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mesothelioma (54, 62). For lung cancer patients, CD8+ T cell
frequencies were greater in the peripheral blood compared to the
MPE for one study (53) but were similar between both
compartments in others (41, 63), suggesting CD8+ T cell
infiltration in the pleural space may be more cancer or
chemotherapy specific.

Several recent studies have examined the effect of
chemotherapy on the immune milieu of matched MPE and
tumor samples. At baseline, MPEs contain a lower frequency
of CD4+ and CD4+ regulatory (Foxp3+) T cells compared to
matched NSCLC tumor tissue, whereas CD8+ T cells were
increased in the MPE compared to tumor samples (63). After
chemotherapy, matched MPEs and tumor tissue from patients
with mesothelioma displayed similar proportions of CD3+ T
ce l l s , CD4+ he lper (CD25-) and CD4+ regula tory
(CD25+CD127lo) T cells post-chemotherapy (64), but similarly,
CD8+ T cells were greater in the MPE than matched tumor tissue
(10, 64). Increased pre- and post-chemotherapy frequencies of
CD4+ T cells in MPE and tumors were associated with complete
response and improved survival in chemotherapy treated
mesothelioma patients (56, 65, 66). Post-chemotherapy
regulatory T cell frequencies in tumors negatively associated
with survival, but this association was not observed in matched
MPE samples (64). Comparison of T cell proportions between
tumor and MPE in these studies are limited by small sample
sizes, and whether proportions of CD4+ and CD8+ T cells are
similar in matched tumor and MPE samples are unknown.

MPEs are typically enriched with CD4+ T cells, particularly
regulatory CD4+ T cells. CD4+/CD8+ T cell ratios in MPEs vary
between patients, likely because of patient heterogeneity such as
prior treatment, disease stage and amount of fluid drained. The
surface phenotype, effector function, and differentiation status of
MPE T cells offers further insight into the immune status of
the MPE.

MPE-Derived T Cells Express Inhibitory
Checkpoint Receptors
T cells upregulate inhibitory checkpoint receptors in the
presence of chronic tumor antigen exposure. Checkpoint
r e cep to r s i gna l ing inh ib i t s T ce l l func t ion , and
immunosuppressive TMEs exploit these signaling pathways to
curtail an effective anti-tumor response. Although CTLA-4 and
PD-1 are the most common targets in ICB therapy, other
inhibitory checkpoint receptors are expressed on TILs
including TIM-3, LAG-3, TIGIT and PD-L1. Increased
frequencies of CD8+PD-1+ T cells in tumors post anti-PD-1
treatment have been associated with complete and partial
responses in NSCLC (34). Hence, the expression of checkpoint
receptors on MPE T cells is of great interest because these T cells
could be potential targets for ICB, and predictors of response.

The expression of inhibitory receptors on CD4+ and CD8+ T
cells in MPE have been reported in multiple studies for
mesothelioma and lung cancer. While this varies between
patients, ~30% of CD4+ and ~40% of CD8+ T cells express
PD-1 in the MPE (56, 62, 63) and these frequencies are greater
than in matched peripheral blood T cells (62, 63, 67–70).
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Inhibitory receptors TIM-3, LAG-3, CTLA-4 and PD-L1 are
also expressed on MPE CD4+ and CD8+ T cells at greater
proportions than matched peripheral blood samples in
mesothelioma and lung cancer patients (56, 62, 63, 67, 69). In
addition, regulatory T cells constitutively express the inhibitory
receptor TIGIT (71), and display increased expression of CTLA-
4 and PD-1 in the MPE compared to peripheral blood (58, 63).

In comparison to tumor tissue, the frequencies of CD8+ T
cells expressing PD-1 and TIM-3 are greater than the MPE prior
to treatment (63). However, they are similar in frequency
between the two compartments post-chemotherapy (64). For
CD4+ helper (Foxp3-) T cells and regulatory (Foxp3+) T cells, the
expression of PD-1 and TIM-3 are similar between matched
MPE and tumor tissue both pre- and post-chemotherapy (63,
64). In addition, the proportion of CD4+LAG-3+ and CD8+LAG-
3+ T cells in MPE after chemotherapy are similar to tumor tissue
in one study (64), but not another (56). Co-expression of
inhibitory receptors on T cells, in particular PD-1 and TIM-3,
indicates further T cell dysfunction which has been reported to
be unfavorable for ICB efficacy (37). To date, there is only one
report of co-expression of these receptors, which found that the
majority of CD4+PD-1+ and CD8+PD-1+ MPE T cells prior to
treatment did not co-express LAG-3 or TIM-3. Less than 2% of
CD8+ T cells were PD-1+TIM-3+ and less than 6% of CD4+ T
cells were PD-1+LAG-3+ (68), suggesting that most of the CD8+

T cells in the MPE could be amenable to anti-PD-1 therapy.
MPE T cells are similar to TILs in that they both express

increased inhibitory checkpoint receptors compared to blood T
cells. Although the expression of inhibitory receptors TIM-3,
PD-1 or LAG-3 on MPE T cells did not associate with improved
survival post chemotherapy (64), inhibitory receptor co-
expression on MPE T cells, and their correlation to ICB
therapy outcomes are still of interest.

MPE-Derived CD8+ T Cells Exhibit a
Memory Phenotype
A hallmark of antigen-specific T cell responses is their ability to
differentiate into memory T cells after activation, and mount a
rapid response upon re-exposure to their cognate antigen.
Memory CD8+ T cells are loosely classified into effector memory
(TEM: CD45RO

+/CD62L-, CD45RA-CCR7-), central memory
(TCM: CD45RO+CD62L+, CD45RA-CCR7+) and resident
memory (TRM: CD45RO

+CD103+) subsets based on surface
expression of differentiation markers and tissue localization. TEM

and TCMs are generally found circulating in the peripheral blood
and lymphatics, whilst TRMs are non-circulatory and tissue tropic.
Understanding CD8+ memory T cell differentiation status is
crucial because inhibitory checkpoint receptors are highly
expressed on memory CD8+ T cells in tumors (72–74) and are
potential cellular targets of ICB. ICB also drives changes in CD8+

memory T cell differentiation (75). Importantly, tumor infiltration
of memory T cell subsets and their gene signatures correlated with
ICB response and overall survival in melanoma and lung cancer
patients (36, 73). MPE-derived CD4+ and CD8+ T cells in
mesothelioma and lung cancer exhibit a memory phenotype
prior to treatment. MPEs have increased frequencies of TCM and
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TEM cells for both cancer types compared to peripheral blood (53,
57). MPEs also have greater frequencies of TCM but reduced TEM

compared to non-malignant pleural fluid (54).
Memory T cell subsets found in MPE are phenotypically

similar to subsets found in mesothelioma tumors but there are
limited studies on matched samples. Both MPE and tumors have
a greater frequency of TEM cells than the circulation (76),
suggesting that the proportion of TEM cells in the MPE may
reflect the TME. Recent studies have also shone a spotlight on the
role of TRMs in tumor immunosurveillance. Increased pre-
treatment frequencies of TRMs in tumors associate with
improved survival (72, 74), and increase pre- or post-treatment
frequencies associate with response to anti-PD-1 therapy in lung
cancer patients (73). CD8+ TRMs prior to chemotherapy have
been reported in MPE of lung cancer patients, but in lesser
proportions compared to matched tumor samples (77). Similar
to their tumor counterparts, memory T cell subsets in the MPE
could offer a predictor of therapeutic response.

MPE-Derived CD8+ T Cells Have Impaired
Effector Function
CD8+ T cells proliferate and produce effector molecules such as
cytotoxic granules (granzyme B, perforin) and proinflammatory
cytokines (IFNg) to mediate tumor cell killing. The ability of T
cells to produce effector molecules ex vivo is a measure of T cell
effector function. Understanding the effector status of T cells is
important as ICB induces activation and proliferation of
circulating and intratumoral T cells which correlates with
response (78, 79). While MPE CD8+ T cells can produce IFNg,
granzyme B and perforin ex vivo, the frequency of MPE T cells
that secrete these molecules is reduced compared to T cells from
matched peripheral blood samples (67, 70). Specifically, blood
derived effector (CD45RA+CD27-) T cells have increased
perforin secretion than these T cell subsets from the MPE (53).
However, these reports have used non-specific stimuli ex vivo to
measure effector molecule production from MPE and peripheral
blood T cells. Antigen-specific assays are required to understand
if impairment is restricted to tumor antigen-specific T cells only.

There are limited comparisons of matched MPE-derived T cell
and TIL effector function. TILs and matched MPE T cells from
advanced NSCLC patients were hypofunctional, with decreased
frequency of CD8+IFNg+ T cells than tumors from patients with
early stage NSCLC (80). Impaired effector function of MPE T cells
could be due to an immunosuppressive environment
characterized by high levels of TGFb, tumor associated
macrophages andmyeloid derived suppressor cells (42, 55, 64, 67).

Different CD4+ T Helper Cell Subsets Are
Found in the MPE
Effector CD4+ T cells can differentiate into helper T cell (Th)
subtypes which have been identified in MPE from people with
lung cancer and mesothelioma. The CD4+ helper T cell subtypes
include Th1, Th2, Th17, Th9 and Th22 which are each identified
by unique transcriptional signatures, and production of different
cytokines (81, 82). ICB induces expansion of effector Th1 and
Th17 cells in the TME, therefore it is important to determine if
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Th subtypes in the MPE is associated with ICB outcomes
(83–85).

Th1 cells are pro-inflammatory, secreting IFNg to stimulate
effector CD8+ T cell differentiation. Approximately 45% of CD4+

MPET cells produce IFNg indicating a predominant Th1 phenotype
in the MPE which is greater in frequency than matched peripheral
blood samples (53). In comparison to Th1, Th2 promotes humoral
immunity by producing cytokines IL-4, IL-5 and IL-10. The balance
of these two subsets in theMPE remains controversial. Some reports
suggest the MPE favors the Th2 over the Th1 pathway in
comparison to pleural fluid from tuberculosis patients (86, 87).
However, IL-4 was detected in the MPE in some studies (86–88) but
was below 1% or undetected in others (53, 55, 89). In addition, IL-4
was detected at low levels and IFNg was undetected in both paired
MPE and mesothelioma tumor supernatant in another study (55).

The role of Th17 cells in the TME also remains controversial.
The production of IL-17 has been reported to stimulate
recruitment of dendritic cells, NK cells and CD8+ T cells into
the TME (90), but also can promote tumor growth through IL-
17R signaling (91, 92). Frequencies of Th17 cells are greater in
the MPE than peripheral blood and exhibit an TEM phenotype
(CD45RO+CD45RA) (93). The proportion of Th17 cells
negatively correlated with regulatory T cells in the MPE,
suggesting that regulatory T cells inhibited generation and
differentiation of Th17 cells in the pleural space (61). For
tumor tissue, one study found IL-17 in mesothelioma tumor
supernatant but not in matched MPE (55).

In comparison, Th9 and Th22 cells suppress anti-tumor
immunity. Both Th9 and Th22 cell proportions in the MPE
are greater than the peripheral blood and also express an TEM

phenotype (CD45RO+CD45RA) in both compartments (94, 95).
Th9 cells produce IL-9 which has been identified to promote
tumor angiogenesis (96). Th9 cell frequencies correlate to
regulatory T cell frequencies in the MPE, and higher Th9 cells
in MPEs associated with poor survival in lung cancer patients
(95). There are no reports of Th9 cells in matched MPE and
TME. One study suggests that Th9 cells may infiltrate into the
MPE from the circulation as CCR7 expression was decreased on
Th9 cells in the MPE compared to matched blood (97). Th22
cells produce IL-22 which has been identified to promote
migration and proliferation of cancer cells and resist apoptosis
and chemotherapy (98). In NSCLC patients, IL-22 was greater in
matched tumor tissue than MPE (99), and IL-22 expression in
MPE promoted cancer cell migration (94), and protected cancer
cells from apoptosis by chemotherapies (99).

Taken together, it is evident that multiple CD4+ T helper
subtypes are present in the MPE, but varying frequencies of
different subtypes have been reported. Further analysis is
required to understand if any of these cell types in the MPE
associate with ICB efficacy.

MPE-Derived CD8+ T Cells Are Clonally
Expanded, and Some Are Specific for
Tumor Antigens
Importantly, tumor antigen-specific T cells can be found in the
MPE. Co-culture of MPE-derived lymphocytes with tumor cells
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or known tumor antigens from lung cancer patients resulted in
IFNg production (41, 69) and CD137 expression (68), suggesting
tumor reactivity (100). In addition, tumor reactive MPE-derived
CD8+ T cells displayed a memory phenotype with checkpoint
expression (PD-1+TIM-3-) (68). However, most studies have
included a T cell expansion step prior to assessing tumor
reactivity, so the actual proportion of MPE T cells specific for
tumor-antigens is unclear.

In addition to screening for reactivity, T cell receptor (TCR)
analyses are used to study antigen-specific T cell responses.
Individual TCRa/b chains are highly variable across
complementarity determining regions (CDR), the regions
crucial for antigen-specificity. Antigen-specific clonal expansion
can be estimated by quantifying the distribution of TCR variable
genes, or CDR sequences. ICB induces a peripheral expansion of
TCR clonotypes which correlates to clinical benefit in lung cancer
(101, 102). In lung tumors, the TCR repertoire clonality and the
number of expanded TCR clones was greater in ICB responders
compared to non-responders post-treatment (38).

TCR analyses of matched MPE and blood from lung cancer
patients revealed over expression of particular TCRb variable
genes in the MPE compared to matched blood samples (103),
suggesting that MPE T cells had undergone clonal expansion. The
presence of shared, highly expanded TCR clonotypes in MPE and
tumors would greatly support the notion that T cells in both
compartments are similar. High throughput TCR sequencing is
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used in this area, as shared TCRbs have been found in ascites and
tumors in other studies (104). We previously reported that
CD4+PD-1+ MPE T cells consist of distinct, clonally expanded
TCRbs from CD4+PD-1+ T cells in matched peripheral blood
(62). TCR analyses of matched TILs and MPE T cells in thoracic
cancers are currently limited, and would greatly inform the
similarities in antigen-specificity between the compartments.

MPE T Cells and TILs Exhibit Phenotypic
Similarities, but the Extent of Similarity
Is Unclear
The expression of inhibitory checkpoint receptors, enrichment of
CD4+ regulatory T cells, presence of CD8+ memory T cells and
impaired cytotoxic, effector T cell function in MPEs suggest that
they exist in an immunosuppressed environment. They are more
similar to TILs than peripheral blood T cells (Figure 1).
However, there are reported differences in the CD4+/CD8+

ratios, co-expression patterns of checkpoint receptors, and
CD4+ Th subtypes between TILs and MPE T cells. The
similarities in antigen-specificity, or TCR usage of T cells
between the two compartments are also unknown.
Characterizing the phenotypes of T cell clones at both sites
would help researchers understand how the MPE or TME shapes
the development of these cells. Next, we review how therapies
could shape the phenotype of MPE T cells, because such changes
could inform biomarker development.
FIGURE 1 | Schematic diagram summarizing characteristics of MPE-derived T cells in comparison to tumor and peripheral blood in mesothelioma and lung cancer.
(A) Frequencies of CD8+, CD4+ and CD4+ regulatory (Treg) T cells expressing inhibitory receptors in the MPE are similar to tumor infiltrating T cells, however co-
expression of inhibitory receptors on T cells is greater in tumors than MPE. (B) MPE and tumor contain greater proportions of effector memory (TEM) and central
memory (TCM) T cells than the circulation with tissue resident memory T cell (TRM) frequencies the greatest at the tumor site. (C) Production of T cell effector
cytokines (IFNg, granzyme B; GrB, perforin) are similar between the MPE and tumor infiltrating T cells but lower than those in peripheral blood. (D) MPE are likely
enriched with a Th2 phenotype along with a greater proportion of Th1, Th2, Th17, Th9, Th22 than circulating T cells, while tumors display a greater frequency of
Th17 and Th22 than MPE. Th9 between tumor and MPE is undefined. (E) MPE contains tumor reactive T cells, implying a more clonal T cell receptor (TCR)
repertoire than the peripheral blood. Figure created with BioRender.com.
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CHANGES IN MPE-DERIVED T CELLS
FOLLOWING ICB THERAPY

Serial analyses of MPE-derived T cells in patients undergoing
ICB are rare, but a study of MPE that developed after ICB has
been reported. Ikematsu and colleagues characterized T cells in
MPE samples drained from lung cancer patients after ICB. There
were greater frequencies of CD4+TIM-3+, CD4+TIGIT+ and
CD8+PD-L1+ MPE T cells from ICB treated patients compared
to MPEs from chemotherapy treated patients (105). However,
there were no differences in frequencies of CD8+ and CD4+ MPE
T cells expressing PD-1, TIM-3, TIGIT, PD-L1 or IFNg between
responders and non-responders to anti-PD-1 therapy (105, 106).
Interestingly, post treatment frequencies of Th17 (CD4+IL-17+)
and CD4+LAG-3+ T cells in the MPE negatively associated with
clinical outcome to anti-PD-1 ICB (105). Two NSCLC patients
who became resistant to anti-PD-L1 therapy and developed
recurrent MPE had increased frequencies of effector memory
(CCR7-CD45RA-) CD8+ T cells and TIM-3 or CTLA-4
expressing CD8+ and CD4+ T cells cells in the MPE post-
treatment, but this was compared to untreated rather than
responding patients (107). Together this suggests inhibitory
receptor expression increases on MPE T cells in anti-PD-1 and
anti-PD-L1 treated patients. There are no studies which have
analyzed serial samples of MPE in ICB treated patients.

MPE T cells have been studied in serial samples from patients
treated with chemotherapy. Longitudinal analysis of MPE in a
mesothelioma patient identified that the percentage of CD3+ T
cells decreased in the MPE following 4 cycles of cisplatin-
pemetrexed based chemotherapy, producing a partial response
(10). When on-treatment changes were examined, the first dose
of methotrexate chemotherapy reduced total CD3+ T cells in the
MPE but these frequencies returned back to baseline levels after
the second dose of methotrexate in NSCLC patients (108).
Frequencies of MPE CD4+ T cells increased, regulatory T cells
decreased and CD8+ T cells were unchanged following
methotrexate. In terms of T cell function, it increased
frequencies of MPE-derived IFNg+ and IL-2+ T cells (108).
This suggests that the MPE environment is dynamic, and
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changes in MPE T cells can be shaped by therapies, similar to
T cells in other compartments (65, 66, 109–111).

There are very few studies of serial analyses of MPE-derived T
cell phenotype, function and antigen-specificity, and how they
associate with ICB outcomes. However, those studies inform us
of potential T cell phenotypes from TILs and MPEs that are of
interest because they could associate with ICB responses (Table 1).
Serial analysis of MPE T cells in patients undergoing ICB therapies
would be greatly informative.
BENEFITS, OPPORTUNITIES AND
CHALLENGES FOR DEVELOPING MPE-
DERIVED T CELL BIOMARKERS

The potential of MPE-derived T cells as a biomarker for therapy
responses is attractive for several reasons (Table 2). Firstly,
MPE-derived T cells may be more closely related to TILs than
circulating T cells. The presence of memory CD8+ T cells that
express inhibitory receptors and CD4+ regulatory T cells in
MPEs suggest that T cell responses are suppressed, similar to
the TME. Furthermore, the MPE environment also consists of
tumor cells, MDSCs and immunosuppressive cytokines that may
shape T cell phenotype in a similar manner to the TME.
Secondly, because pleural fluid is often serially drained, a
dynamic biomarker could be developed. We previously argued
that not all determinants of ICB response can be found prior to
treatment, and changes in TME or blood that occur early on
treatment could offer a more accurate, dynamic biomarker of
response. Indeed, changes in T cell repertoire phenotype,
diversity, and immune gene signatures early during ICB
treatment correlate with ICB responses in murine and clinical
studies (36, 75, 116–119). While most studies of tumor and blood
suggest that changes in CD8+ T cells correlate with ICB
outcomes, other T cell populations in the MPE, such as CD4+

helper T cells, could also be predictive of ICB outcomes. Regular
drainage of MPEs provides a unique opportunity to study these
dynamic changes. Although this review focuses only on T cells,
how MPE-derived T cell frequencies and phenotypes change in
TABLE 1 | Intratumoral T cell characteristics that associate with clinical benefit to ICB in lung cancer patients.

T cell characteristic Cancer Pre- or post-treatment ICB Ref. Also found in MPE?

>1% CD8+PD-1hi T cells NSCLC pre Nivolumab (34) Undefined
Low-PD-1-to-CD8 ratio NSCLC pre and post Nivolumab (112, 113) Post-treatment: not reported (105)
High PD-1 transcripts NSCLC pre Nivolumab (114) Undefined
CD8+PD-1hi,

CD4+Foxp3+PD-L1hi
NSCLC post Nivolumab (115) Undefined

High PD-L1 transcripts NSCLC pre Nivolumab (114) Undefined
High CD8:CD3 ratio NSCLC pre and post Nivolumab (112, 113) Undefined
>70% TIM-3+IL-7R- of CD8+CD103+ TRM Lung Cancer pre and post Nivolumab (73) Undefined
High IFNg mRNA NSCLC post Nivolumab (79) Undefined
High activated CD4 T cell signatures with
IFN, Th2, IL-17A, IL-26 related genes

NSCLC pre Nivolumab (114) Post-treatment CD4+IL-17+ T cells associated
with no benefit to ICB (105)

Increased TCR clonality with expanded
TCR clones

NSCLC post Nivolumab (38) Undefined
NSCLC, non-small cell lung cancer.
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relation to other components in the fluid, such as tumor cell,
MDSC numbers, and suppressive cytokine levels is informative
for biomarker development.

MPE-derived T cells exhibit memory phenotypes indicative of
chronic antigen-specific activation. The antigen-specificity of
MPE TEM and TRM cells, and how they change with therapy
Frontiers in Oncology | www.frontiersin.org 759
are of great interest. It is promising that tumor-reactive T cells
can be expanded from the MPE, but the overlap in antigen-
specificities between TILs and MPE T cells, if any, are unknown.
TCR sequencing offers a complementary method to study the
extent of clonal overlap between TILs, blood and MPE-derived
T cell populations, and to track the changes in antigen-specific
FIGURE 2 | Illustration of the proposed origin and development of MPE T cells. The impact of the MPE environment on T cell differentiation is unclear. We
hypothesize that 1) MPE acts as a sink, containing a mix of T cells originally from the blood and the tumor site. 2) MPE environment including cytokines and other
cells (e.g. tumor cells, dendritic cells; DC) drive changes in phenotype of MPE T cells. MPE T cells differentiate into effector subtypes, producing immunostimulatory
(IFNg, perforin, granzyme B; GrB, IL-4) or immunosuppressive (TGF-b, IL-10) cytokines; exhausted T cells expressing inhibitory receptors; and differentiate into
memory T cells (i.e. effector (TEM), central (TCM) and tissue resident (TRM) memory T cells). Figure created with BioRender.com.
TABLE 2 | Benefits and limitations for using the MPE to develop T cell biomarkers for ICB therapy response.

Benefits Limitations

• MPE-derived T cells are similar in phenotype to tumor infiltrating lymphocytes
(TILs)

• Ability to develop a dynamic biomarker as multiple fluid drainage due to MPE
recurrence is common for thoracic cancer patients

• Opportunity to perform high-throughput sequencing technologies i.e. RNAseq
and TCRseq on the anti-tumor immune response where tumor biopsies are
limited, particularly in malignant mesothelioma

• Fluid volume, cellularity, number and timing of drainage events varies between
patients

• External factors such as lung diseases, inflammation and infection could alter
MPE-derived T cells

• Improved MPE treatment regimens that cause pleural space destruction to
prevent fluid recurrence.
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T cells without prior knowledge of any tumor antigens. The
extent in which the MPE environment drives T cell
differentiation is unclear. We speculate that MPE consist of T
cells that have migrated from the local tumor and blood.
However, to what extent the MPE environment changes T cell
phenotype is unclear. It is possible that further activation and
differentiation of T cells in the MPE drives the distinct
phenotypes of MPE-derived T cells (Figure 2). Single cell
technology is a powerful tool to comprehensively study the
interactions of different cells in the MPE, and will greatly help
our understanding in this area. The transcriptome and TCRab
usage of individual T cells can be determined, allowing
researchers to match phenotypes to individual T cell clones.
These TCRs of interest can be subsequently screened for tumor
reactivity. Single cell technology is now used in numerous studies
of TMEs, and can be applied to MPE samples.

However, there are some limitations with studying MPEs
(Table 2). The volume of fluid drained, and cellularity of MPE
samples varies between patients (62, 120, 121). In some instances,
MPE cell numbers are too few for meaningful downstream
analysis, especially for rare T cell subsets. Even though
longitudinal analysis can be performed with MPE samples, the
number of drainage events vary between patients and the timing
of them cannot be predicted. Furthermore, differences in MPE
immunophenotype measured over time are not always attributed
to tumor or treatment. External factors such as infections and
lung inflammation could alter the T cell phenotype and are
confounding factors that have to be accounted for (122–124).
Lastly, management regimens to treat MPEs including talc
pleurodesis and VATS pleurodesis and pleurectomy, which is a
palliative therapeutic option for malignant pleural mesothelioma
patients, aim to obliterate the pleural space and prevent MPE
recurrence. This then eliminates the opportunity to serially
sample the MPE for biomarkers of response to therapy.
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CONCLUSIONS AND FUTURE
DIRECTIONS

Although the cellular components of MPE have been studied
extensively, recent developments in cancer immunotherapy and
the need for biomarkers of response have led researchers to focus
on MPE T cells. These cells share phenotypic features with TILs,
but further study is required to elucidate if MPE T cells are truly
reflective of their tumor counterparts. We think that dynamic
analyses of MPE T cells in relation to ICB outcomes will lead to a
robust and clinically useful ICB response biomarker.
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Malignant pleural mesothelioma (MPM) is a rare and aggressive malignancy with limited
therapeutic options beyond surgery and cytotoxic chemotherapy. The success of immune
checkpoint inhibition has been found to correlate with expression of immune-related
genes such as CD274 (PD-L1) in lung and other solid cancers. However, only a small
subset of MPM patients respond to checkpoint inhibition, and this response has been
varied and unpredictable across several clinical trials. Recent advances in next-generation
sequencing (NGS) technology have improved our understanding of the molecular features
of MPM, also with respect to its genetic signature and how this impacts the immune
microenvironment. This article will review current evidence surrounding the interplay
between MPM genetics, including epigenetics and transcriptomics, and the
immune response.

Keywords: mesothelioma, genomics, transcriptomics, immune, checkpoint, microenvironment
INTRODUCTION

Malignant pleural mesothelioma (MPM) is a rare and aggressive tumor of the pleural cavity. It
affects approximately 3,000 new patients per year in the United States, and median survival
following diagnosis ranges from 7 to 13 months (1, 2). First-line treatment consists of cytotoxic
chemotherapy either in the neoadjuvant or adjuvant setting (3). Given the success of immune
checkpoint inhibition in other solid tumors, the use of these agents is being investigated in MPM.
Unfortunately, few MPM patients respond to current checkpoint inhibitor regimens (4, 5) and
reliable predictive biomarkers for response are lacking (6). A deeper understanding of the immune
microenvironment in MPM is required to improve the way immunotherapy is applied in these
patients. In this review, we explore the interplay between the complex molecular features of MPM
and the immune response.
THE IMMUNE MICROENVIRONMENT IN MPM

Tumor Development
MPM is believed to arise in the context of chronic inflammation (7). It is associated with asbestos
exposure in 70-90% of cases (8). Over decades, asbestos or other mineral fibers can cause both direct
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cytotoxicity and genotoxicity, generate free radicals, and lead to
chronic inflammation through cytokine dysregulation (9, 10).
This in turn results in immune activation, propagating the
inflammatory environment and contributing to epigenetic and
genetic alterations in mesothelial cells, and eventual malignant
transformation (11). MPM may also arise in the absence of
prolonged inflammation, particularly in young female patients or
those with germline variants in genes such as BRCA1 associated
protein 1 (BAP1) and BLM RecQ Like Helicase (BLM) (12, 13).
However, MPM tumorigenesis under these circumstances is rare
and remains incompletely understood.

Despite evidence for the typical role of inflammation in MPM
oncogenesis, tumor survival requires an element of immune
evasion or immunosuppression: the tumor microenvironment
is believed to be highly immunosuppressive in MPM (11).
Consequently, the composition of the immune cell infiltrate,
including macrophage phenotypes and lymphocyte
subpopulations, has been investigated in several studies.

The Immunosuppressive Phenotype
The interactions between myeloid cells, particularly tumor-
associated monocytes/macrophages (TAMs), and lymphoid cells
regulate the local antitumor immune response. In particular,
different macrophage phenotypes can shape the immune
microenvironment in divergent ways: classically activated M1
macrophages promote T cell proliferation and antitumor activity,
while alternatively activated M2 macrophages exert
immunosuppressive effects via cytokines such as IL-6 and IL-10
(14). Prevalence, function, and prognostic implications of these cell
types have been extensively investigated in MPM (11).

To study the myeloid infiltrate in MPM tumors, Burt and
collaborators (15) performed immunohistochemistry (IHC) for
CD68, a macrophage surface marker, in 52 MPM tumors. They
found that macrophages comprise a significant (27% ± 9%)
proportion of tumor area on average. The same group found
that the numbers of preoperative circulating monocytes and total
white blood cells (WBC) were higher in non-epithelial compared
with epithelioid MPM. In addition, higher preoperative
monocyte counts were correlated with overall shorter survival
in all patients regardless of histology (HR 3.98 [2.64-5.93]
p<0.001). Successively, Ujiie and collaborators (16)
demonstrated that beyond macrophage prevalence, the
proportion of M2 macrophages specifically influences
prognosis. Within the tumor, monocytes differentiate into
immunosuppressive macrophages via the CSF1R pathway in
response to M-CSF (17, 18) and potentially IL-34 secretion by
tumor cells (19). Furthermore, IHC analysis for a panel of
immune-related markers was performed on 395 MPM tumors
across the histologic spectrum. Shorter survival was associated
with increased CD163/CD8 (N=22) and CD163/CD20 (N=48)
ratios, which are indicative of an M2 predominance. A separate
IHC-based analysis in epithelioid tumors alone showed a similar
decrease in survival with higher CD163/CD68 ratio (Pearson r
−0.72, p<0.05), demonstrating the deleterious effect of M2
polarization (14). Using bulk RNA-seq data, Bueno and
collaborators (20) found that the M2 macrophage to T cell
Frontiers in Oncology | www.frontiersin.org 266
ratio based on the expression levels of 41 genes was predictive
of reduced overall survival. In addition, the expression levels of
the 22 genes associated with M2 macrophage phenotype were
estimated to be higher in sarcomatoid tumors confirming
previous observations of higher number of macrophages in
non-epithelioid tumors.

To characterize the lymphoid infiltrate in MPM, Awad and
collaborators (21) utilized a novel method for comprehensive
immune profiling using flow cytometry in 43 MPM tumors
annotated with programmed death ligand 1 (PD-L1) IHC
status. PD-L1–positive and non-epithelioid tumors showed a
significantly greater proportion of infiltrating T cells than PD-
L1–negative and epithelioid tumors (21). In addition, PD-L1–
positive tumors exhibited considerable immunophenotypic
variability across samples, with a higher proportion of CD8+
memory T cells (p = 0.007), higher CD8+ effector memory T cells
(p = 0.03), and a lower proportion of CD8+ effector T cells (p =
0.001) than the PD-L1 negative tumors. Moreover, PD-L1
expression was shown to be associated with increased CD8 T
cell proliferation (based on Ki67+ status) and with increased
proportion of Treg infiltration compared to PD-L1 negative
tumors (21). This study suggested that the immunophenotypic
variability observed across PD-L1 samples may be responsible
for the minority of PD-L1–positive mesotheliomas likely to
respond to pembrolizumab. Another study by Combaz-Lair
and colleagues (22) examined the association between PD-L1
staining, TLR3 expression and immune infiltration by IHC in 58
MPM FFPE specimens. The authors demonstrated, using two
different antibodies, that overall PD-L1 expression was increased
in sarcomatoid tumors compared with other histologic types. A
correlation between PD-L1 expression on infiltrating
lymphocytes and PD-L1 expression on tumor cells was also
found (p ≤ 0.001 for both antibody clones). In addition, a
correlation between PD-L1 expression on lymphocytes and
CD3 and CD8 expression was found, but there was no
association between PD-L1 expression and immune infiltrate
density identified in this study. Increased PD-L1 expression was
associated with reduced unadjusted survival for one clone
(SP142, log-rank p=0.016) but not the other (E1L3L, log-rank
= 0.022) (22). A different study characterized 93 treated and 65
chemo-naïve MPM cases by tumor microenvironment (TME)
and PD-L1 status, respectively (23). Non-epithelioid tumors
showed higher cytotoxic T cell infiltration, higher macrophage
infiltration, and lower CD4+ T cell levels than epithelioid
tumors; they also showed higher levels of tumor PD-L1
expression. The authors also demonstrated an association of
these features with aggressive histopathological characteristics
including necrosis and tumor grade. In another IHC analysis of
88 MPM tumors, PD-L1 was expressed regardless of the MPM
histologic subtype, but both PD-L1 positive tumors and
sarcomatoid MPM showed an increase of stromal CD4+ and
CD19+ lymphocytes. In contrast, epithelioid tumors were
associated with a higher proportion of CD8+ cells (24).

In addition to their effect on the TIL composition, the relative
composition of the lymphoid infiltrate itself was found to be an
independent predictor of outcomes. The balance between CD4
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and CD8 T cells is key in this respect (24, 25). Fusco and
collaborators (24) analyzed 88 MPM tumors. In this study,
CD4+ cells correlated with improved prognosis (HR 0.48
[0.24-0.96] p=0.036), while CD8 infiltration correlated with
poor prognosis (for low CD8, HR 0.44 [0.27-0.72] p=0.0012).
Consequently, a high stromal CD4/CD8 ratio was found to be an
independent predictor of longer survival in a multivariate model
accounting for histology and PD-L1 status (24). Moreover,
associations between tumor infiltrating lymphocytes (TIL) and
survival were observed to change in presence of systemic therapy.
A separate analysis of 32 MPM specimens, resected post-
neoadjuvant chemotherapy, demonstrated that patients with
high levels of CD8+ tumor-infiltrating lymphocytes by IHC
had longer survival compared with those with low levels (3-
year survival: 83% vs. 28%; p = 0.06) (26).

In summary, lymphoid and myeloid cells comprise a
significant portion of the MPM microenvironment. Non-
ep i the l i o id h i s t o l og i c sub type s o f t en exh ib i t an
immunosuppressive phenotype, which correlates with shorter
survival. However, there remains significant variability even
among histologically similar tumors and further work is
needed to explore how this variability may influence
treatment response.

Genetic and Epigenetic Effects on the
Immune Response
The genetic intratumor heterogeneity is crucial for cancer
invasion, proliferation and resistance to therapy and is closely
related to the TME (27). The epigenetic and genetic landscape of
MPM is characterized by frequent chromosomal losses and a
relatively low number of somatic mutations compared to other
solid tumors (20). Potential relationships between genome-level
features and immune microenvironment in MPM have been
investigated including associations with epigenetic, structural/
chromosomal, and gene-specific alterations.

Epigenetic modifications determine changes in gene
expression without altering the DNA sequence. Epigenetic
changes have been associated with tumor progression and poor
outcomes in a diverse array of tumors (28–30), and in MPM have
been linked to alterations of the tumor-infiltrating immune cells.
Epigenome-wide association analyses of a cohort of 159 asbestos-
exposed patients with MPM identified the methylation of the
single-CpG marker, cg03546163, located in the 5’ untranslated
region of the FKBP5 gene, as associated to survival (31). This
marker showed better performance compared with the
traditional inflammation scores, lymphocyte-to-monocyte ratio
(32), generally used as a prognostic biomarker in MPM.

A similar study focused on immune system-related genes was
conducted comparing 163 MPM patients with 137 healthy
controls. Several signatures were identified including significant
differential methylation of the CpG regions of LIME1 (involved in
lymphocyte signaling), CXCR6 (associated with T cell
localization), TOLLIP (related with IL-1 receptor trafficking),
and TNFAIP6 (involved in inflammation) (33). These data
supported the hypothesis that changes in the DNA methylation
and in the TME may be associated with asbestos exposure.
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Chromosomal instability may result in gross karyotypic
alterations. It has been related to cancer immunogenicity (27),
and is a common feature of MPM (34, 35). Genome-wide copy
number analysis performed in 113 MPM tumors with IHC data
for PD-L1, CD4, CD8, and FOXP3 was used to compute the
percent genome aberration (PGA) for each sample as total count
of base pairs involved in copy number gains or losses divided by
the total length of the genome in base pairs (36). Epithelioid
tumors showed a significantly higher PGA than non-epithelioid
tumors, but PGA did not correlate with PD-L1 status. Samples
with lower PGA had significantly higher CD4+ and CD8+ T-cell
infiltration indicating that chromosomal instability may be
associated with immune infi l trat ion. Chromosomal
rearrangements have also been shown to have immunologic
implications through expression of neoantigens in MPM (37).
Mansfield and collaborators (38) performed mate-pair
sequencing, RNA-seq, T cell receptor (TCR)-seq, and major
histocompatibility complex (MHC) peptide binding assays to
assess structural variants of chromosomes and predict
neoantigens using 28 specimens from treatment-naïve MPMs.
They identified 1535 chromosomal rearrangements, of which
637 (41.5%) resulted in novel gene fusions, leading to 179
potential novel amino acid sequences potentially drive the
expression of neoantigens. In addition, the increase in
predicted neoantigens was correlated with clonal expansion of
tumor-infiltrating T cells. Spatial heterogeneity in MPM has
shown to affect TIL clonality in the context of neoantigenicity. In
a study of 6 MPM tumors sampled at three distinct anatomic
sites each, increasing neoantigen load correlated with oligoclonal
TIL expansion, as well as increased cytotoxic T cell activity. In
addition, heterogeneous mutation patterns across sites with
associated differences in immune microenvironment signatures
were identified (39). A multi-region, longitudinal whole exome
and T-cell receptor sequencing analysis was conducted on 69
specimens from nine MPM tumors before and after dasatinib
treatment. It was found that mutation profile among sites was
relatively homogeneous (>80% concordance), but T-cell clonality
varied widely particularly after treatment (40).

Growing data suggest that mutations in specific genes
influence the immune response (41). BAP1 is one of the most
frequently mutated genes in MPM (20), and the impact of BAP1
mutations on the immune system has been investigated. An
analysis of 43 MPM tumors found no significant differences in
the immune cell infiltration between BAP1 mutant versus wild-
type MPM (21). In peritoneal mesothelioma, a multi-omic
analysis of 19 tumors identified an association between
inflammatory TME and haploinsufficiency of BAP1 .
Specifically, BAP1 deleted tumors were found to have strong
cytokine signaling and upregulation of the innate immune
response based on gene set enrichment analysis. In contrast,
tumors displaying intact BAP1 had upregulation of adaptive
immunity and MHC-I/II antigen presentation (42).
Furthermore, tumors with deleted BAP1 showed a lower
proportion of plasma cells, natural killer (NK) cells, and B cells
but higher mast cell and T cell infiltration, as well as higher
expression of genes with a known role in immune checkpoint
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modulation (PD1, PD-L1 CD80, CTLA4, LAG3, and ICOS),
compared with tumor with wild-type BAP1. This finding was
not suppor t ed by the TCGA ana ly s i s in p l eu ra l
mesothelioma (42).

Single gene mutations may also influence the antitumor
response through neoantigen formation and modulation of
immune and inflammatory signaling pathways. Bueno and
collaborators (20) analyzed somatic alterations in 98 MPMs
with paired exome and RNA-seq data and found that 59% of
1,493 mutations resulted in MHC class I-binding peptides.
Further, the more frequently mutated genes BAP1, NF2, and
TP53 each resulted in multiple predicted neoantigens (20).
CDKN2A is another frequently mutated gene in MPM (20),
and is located <1Mb from several interferon genes raising the
possibility that prognostically significant loss of IFN gene
expression may reflect a “passive hitchhiking event” associated
with CDKN2A deletion in cancer (43). Type I interferon (IFN-I)
signaling is known to play a role in antitumor immunity (44). An
integrative analysis of the association between IFN gene
alterations, CDKN2A loss, and in vitro oncolytic virus
sensitivity was performed. A deletion of IFNB1 was identified
in 17/57 (30%) MPM short-term cell lines with homozygous
deletion of CDKN2A, and CDKN2A loss in 17/18 (94%)
established cell lines with homozygous deletion IFNB1.
Utilizing the TCGA database of 87 patients with MPM,
homozygous deletions of IFNA2 and IFNB1 were found in
18.4% and 9.2% of patients respectively. Furthermore,
homozygous deletion of IFN-I genes resulted in more frequent
sensitivity of MPM cell lines to oncolytic virus therapy (45).
While a link between IFN signaling and immunotherapy
response has not been established in MPM, it has been
observed in other cancers (43).

Heterogeneity of Gene Expression
Associated With Immune Checkpoints
Checkpoint molecules such as programmed-death 1 (PD-1) and
cytotoxic T lymphocyte associated antigen 4 (CTLA4) have been
recognized as key regulators of oncologic immune evasion
through their role in immunosuppression (46). Protein
expression of checkpoint molecules by IHC such as PD-L1 are
often used as prognostic biomarkers to guide response to
checkpoint inhibition in several solid cancers (47). However,
in MPM, similar analyses have shown inconsistent results
(6, 48, 49). In contrast, characterization of the immune
microenvironment in relation to checkpoint pathways using
high-throughput methodologies has led to prognostic insights
both in MPM and other solid tumors (50, 51).

Unsupervised analysis of RNA-seq data from 284 MPMs
identified a continuum of molecular profiles which correlate
with prognosis (50). The majority of variation was found to be
related to immune checkpoint and angiogenic pathways. Two
profiles were identified to be associated with poor prognosis: one
immunologically active characterized by high lymphocyte
infiltration and high immune checkpoint expression, and one
less activated profile with low lymphocyte infiltration. Both were
characterized by high expression of pro-angiogenic genes. In
Frontiers in Oncology | www.frontiersin.org 468
contrast, a “VEGFR2+/VISTA+” profile was associated with
better prognosis, despite having also highly angiogenic features.
RNA expression of VISTA, a negative checkpoint regulator, was
found to be highly expressed in epithelioid MPM in a separate
well-annotated cohort of 74 untreated MPM specimens (52).

Blum and collaborators (51) performed an extensive multi-
omic analysis using several public MPM transcriptomic datasets.
Two signatures (E/S scores) were identified to discriminate
epithelioid-like and sarcomatoid-like tumors within a
continuum or “histo-molecular gradient” of MPM samples
with epithelioid and sarcomatoid tumors at the two extremes.
They found that expression of most immune checkpoints
correlated with increased S-score, including TNFSF4 and its
receptor TNFRSF4, CD80, and PD-L2, as well as CD274 and
CTLA4. A positive association was found between the S-score
and IDO1, an immune modulator. In contrast, the E-score was
associated with TNFSF14 and VISTA expression. Tumors with
higher S-score were associated with increased T cell and
monocyte infiltration, while E-score was associated with
increased NK cell infiltration (51).
DISCUSSION

Tumor-immune interactions are complex regardless of the
tumor type. As immune checkpoint inhibition gains
importance in the treatment of solid tumors including MPM,
greater emphasis is being placed on immune characterization
and identification of predictive biomarkers for treatment
response. Several studies have tried to characterize the immune
TME of MPM and linked it to clinical and genetic features.

In general, MPM displays an immunosuppressive
microenvironment mediated by M2 macrophages and
characterized by high lymphocyte infiltration (Table 1) (15,
25). This immunosuppressive phenotype is more common in
non-epithelioid MPM (20) and as a result the degree of overall
macrophage infiltration has been associated with shorter survival
in non-epithelioid MPM alone (14, 15). Across all histologic
subtypes, however, an increasing balance of M2 macrophages
relative to lymphocyte infiltration has been shown to be
predictive of shorter survival (16, 20). Among lymphocytes, an
increased proportion of CD8 relative to CD4 T cells has been
associated with shorter survival (16, 24, 25). However, this effect
was found to be reversed following neoadjuvant chemotherapy
in one early study (26). Post-treatment immunologic alterations
remain an area of active study.

Investigations of the effect of checkpoint molecule expression,
including PD-L1, are also ongoing. Studies have shown that
higher PD-L1 expression is associated with shorter survival (25).
Non-epithelioid tumors exhibit higher PD-L1 expression than
epithelioid tumors (23), and there is substantial transcriptomic
variability among the expression of checkpoint molecules along
the epithelial-to-mesenchymal spectrum observed in a large
series of MPM transcriptomes (51).

Genetic alterations in MPM have also been associated with
different immune subtypes. BAP1 mutations have been linked to
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upregulation of the local innate immune response in peritoneal
mesothelioma (42), but no significant association has been
shown for pleural mesothelioma in either TCGA-based or
other analyses (52). In MPM, aneuploidy is quite common and
the creation of novel gene products through chromosomal
rearrangements has significant immune implications (27, 38).
Epigenetic alterations have been identified, particularly in
peripheral DNA specimens in asbestos-exposed MPM cases,
and have been associated in limited contexts with altered
inflammatory and immune pathways (33). However, further
work is needed to assess for causal relationships between these
findings and specific changes in the tumor microenvironment.
Gene expression is a widely studied approach to predicting the
immunologic behavior of a given tumor. Association of both
transcriptomic information and IHC with clinical data has
revealed distinct patterns of immune activation or suppression
(20, 50–52).

There remain several gaps to be addressed to link genetic
signatures to the TME, and especially to predict clinical
outcomes and guide therapy. Current and future work with
high-resolution sequencing technology will identify unique
immune programs to associate the genetic characteristics of
Frontiers in Oncology | www.frontiersin.org 569
individual tumor to specific immune phenotypes. Next-
generation sequencing and machine learning are being applied
to develop polygenic scoring systems predictive of response to
checkpoint therapy. Spatial transcriptomics can reveal crosstalk
between tumor cells and adjacent leukocytes, as well as
interactions between different immune and stromal cells within
the microenvironment. Genotypic inferences can be made from
single-cell transcriptomic data, allowing correlation between cell
clonality and immune behavior in different regions of a given
tumor. As improved murine and in vitro tumor models are being
developed, immunomodulatory therapeutics can be readily
tested on patient-specific tissues leading to personalized
medicine. Ultimately, full understanding of the association
between immune TME and genetics will lead to improved
prognostication and outcomes for patients with MPM.
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Thoracic cancers pose a significant global health burden. Immune checkpoint blockade
therapies have improved treatment outcomes, but durable responses remain limited.
Understanding how the host immune system interacts with a developing tumor is essential
for the rational development of improved treatments for thoracic malignancies. Recent
technical advances have improved our understanding of the mutational burden of cancer
cells and changes in cancer-specific gene expression, providing a detailed understanding
of the complex biology underpinning tumor-host interactions. While there has been much
focus on the genetic alterations associated with cancer cells and how they may impact
treatment outcomes, how host genetics affects cancer development is also critical and will
greatly determine treatment response. Genome-wide association studies (GWAS) have
identified genetic variants associated with cancer predisposition. This approach has
successfully identified host genetic risk factors associated with common thoracic
cancers like lung cancer, but is less effective for rare cancers like malignant
mesothelioma. To assess how host genetics impacts rare thoracic cancers, we used
the Collaborative Cross (CC); a powerful murine genetic resource designed to maximize
genetic diversity and rapidly identify genes associated with any biological trait. We are
using the CC in conjunction with our asbestos-induced MexTAg mouse model, to identify
host genes associated with mesothelioma development. Once genes that moderate
tumor development and progression are known, human homologues can be identified
and human datasets interrogated to validate their association with disease outcome.
Furthermore, our CC−MexTAg animal model enables in-depth study of the tumor
microenvironment, allowing the correlation of immune cell infiltration and gene
expression signatures with disease development. This strategy provides a detailed
picture of the underlying biological pathways associated with mesothelioma
susceptibility and progression; knowledge that is crucial for the rational development of
new diagnostic and therapeutic strategies. Here we discuss the influence of host genetics
June 2021 | Volume 11 | Article 679609172

https://www.frontiersin.org/articles/10.3389/fonc.2021.679609/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.679609/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.679609/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.679609/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:scott.fisher@uwa.edu.au
https://doi.org/10.3389/fonc.2021.679609
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.679609
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.679609&domain=pdf&date_stamp=2021-06-21


Behrouzfar et al. The MexTAg Collaborative Cross

Frontiers in Oncology | www.frontiersin.org
on developing an effective immune response to thoracic cancers. We highlight current
knowledge gaps, and with a focus on mesothelioma, describe the development and
application of the CC-MexTAg to overcome limitations and illustrate how the knowledge
gained from this unique study will inform the rational design of future treatments
of mesothelioma.
Keywords: thoracic malignancies, tumor immune microenvironment, mesothelioma, Collaborative Cross, MexTAg,
host genetics
INTRODUCTION

Thoracic cancers including lung cancer (LC), malignant
mesothelioma and thymic epithelial tumors (TETs) are among
the most lethal cancers (1). In addition to conventional treatment
options for thoracic cancers such as surgery, chemotherapy and
radiotherapy, immune based treatments including immune
checkpoint therapies, have improved treatment outcome for
some patients (2, 3).

Cancer immunotherapy aims to restore or enhance the host’s
immune system to recognize and eliminate cancer cells (4).
Although immunotherapies have improved treatment
outcomes for some thoracic cancers, success is often limited to
a subset of patients, while prognosis for the majority of patients
remains dismal (5). This dichotomy in response, highlights the
need to better understand interactions between thoracic cancer
cells and the host immune system that underpin an effective
response to cancer immunotherapy.

Advances in high-throughput sequencing technologies and
associated computational analysis pipelines allow us to
investigate the interplay between tumor cells and the
immune microenvironment (6, 7). These technologies
enable us to broaden our knowledge of the immunobiology
of tumor-host interactions by identifying immune-related
genetic alterations associated with cancer development (6,
7). While genetic alterations associated with immune
response in thoracic cancers have been exploited to improve
treatment outcome (8, 9), the development of strong, durable
responses occurs in a limited subset of patients (10); further
highlighting the importance of understanding the role of host
genetics, in addition to tumor genetics, in thoracic cancer
development, for predicting response to immunotherapies (9,
11–13).

In this review, we discuss how host genetics affects the
development of an effective immune response to thoracic
cancers. We highlight knowledge gaps in our current
understanding and acknowledge the limitations related to
identifying host genetic factors associated with thoracic cancer
susceptibility and development of effective anti-tumor immunity.
Finally, we propose our unique murine model; the MexTAg
Collaborative Cross (CC−MexTAg), as a strategy to overcome
current limitations of conventional genetic studies in
mesothelioma, to improve our knowledge about the impact of
host genetics on initiating immune responses and the developing
tumor microenvironment.
273
HOST GENETIC FACTORS AND
THORACIC CANCER SUSCEPTIBILITY

To date, many rare, high penetrance genetic variants such as
BRCA1, BRCA2, TP53, APC, and PTEN have been associated
with a genetic predisposition to cancer (14–16). However, these
genetic alterations only account for a small proportion of heritable
cancer genetic risk variants (14, 15). In fact, the combination of
genetic variation in common low penetrance alleles and rare
moderate-risk alleles has been recognized as the major genetic
contributors to heritable cancer genetic predisposition (17–19).

Common low-penetrance genetic variants, including single-
nucleotide polymorphisms (SNPs), have been identified by
GWAS (20). These genetic studies determine the frequency of
SNPs in patients compared to healthy individuals (20). More
than 450 genetic variants associated with increased cancer risk
for breast, prostate, colorectal and lung cancer have been
identified; supporting the polygenic pattern of susceptibility in
these cancers (18).
Lung Cancer
Lung cancer is the most prevalent thoracic cancer, and
chromosomal positions 15q25, 5p15.33 and 6p21 have been
identified as susceptibility loci (21, 22). However, whether
15q25 is truly an independent susceptibility locus for lung
cancer remains contentious, as genetic variants of nicotinic
acetylcholine receptor (CHRNA) genes, which have been
strongly associated with nicotine dependence and smoking
behavior (23–26), are also present at this loci. Furthermore,
genetic variants in 15q25 are mainly frequent in European
populations and not Asian populations (23). Other
independent susceptibility loci, 6p21 and 5p15, show
significant levels of genetic polymorphisms associated with
lung cancer risk in Asian populations, including Japanese and
Korean. However, there are different risk variants within 6p21
locus observed between Asian and European populations (27).

A large meta-analysis of GWAS on Chinese and European
populations identified 19 susceptibility loci significantly
associated with non-small cell lung cancer (NSCLC) risk (28).
Using identified genetic factors, this study proposed the
polygenic risk score (PRS) strategy as an effective risk indicator
of lung cancer, independent from age and smoking pack-year
(28). However, the utility of the PRS strategy may be limited, as it
was only used to predict lung cancer risk among the Chinese
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population, not in other cohorts comprised of different ethnicity
and effect size for genetic variants (28). Furthermore, most
genetic variants were only associated with a small
improvement in the prediction of lung cancer risk, and were
not any greater than major risk factors such as smoking and age
(29–31).

Malignant Mesothelioma
Malignant mesothelioma is a relatively rare thoracic cancer,
inextricably linked to asbestos exposure. The relatively low
number of samples available for study means that conventional
genetic studies are often underpowered (1). Consequently,
despite using separate and well−characterized cohorts of
control and mesothelioma patients, numerous GWAS studies
have failed to identify common genetic risk factors that can be
considered broadly associated with mesothelioma (32–34).

Germline mutations in BAP1 and some DNA repair genes
have been considered as predisposing genetic factors associated
with mesothelioma development (34–36). However, these
genetic risk factors are not specific for mesothelioma alone and
can predispose people to other cancers such as uveal
melanoma (37).

Thymic Epithelial Tumors
Thymic epithelial tumors (TETs) are rare thoracic cancers
arising from epithelial cells of the thymus, and can be
categorized as either thymomas or thymic carcinomas (38).
Our current knowledge of the etiology and genomic alterations
of TETs remains limited, and like mesothelioma, the small
number of patients available for study often restricts the power
of conventional genetic analyses (39, 40). Although we could not
find any published GWAS associated with any form of TETs,
Wang et. al., identified mutated TP53 as the most frequent
genetic alteration in TET patients (40). The authors used
comparative sequence analysis to show a higher mutation
incidence in epigenetic regulatory genes in thymic carcinoma
compared to thymoma patients (40). Additionally, a study
by Cortes–Ledesma et. al., demonstrated a strong causal
relationship between the loss of the highly-specialized DNA
repair enzyme tyrosyl-DNA phosphodiesterase 2 (TDP2) and
increased thymic-derived cancer predisposition in ataxia
telangiectasia affected individuals (41).
THE IMPORTANCE OF HOST GENETICS
IN CANCER SUSCEPTIBILITY:
SHAPING OF THE TUMOR
IMMUNE MICROENVIRONMENT

The tumor microenvironment (TME) consists of a variety of
immune cells, endothelial cells, fibroblasts and associated tissue
cells, and develops in part from the dynamic interactions
between the developing tumor and the surrounding host tissue
(42). One way to describe how host-tumor interactions play a
significant role in shaping the tumor microenvironment, is
through the impact on ‘field effect’ around the tumor (43).
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In the context of cancer development, the term ‘field effect’
refers to pre-neoplastic cellular and molecular changes that arise
as a consequence of long−term exposure to environmental
carcinogens in morphologically healthy tissues, promoting a
‘field of susceptibility’ to neoplasia initiation and progression
(44). For instance, the presence of a high burden and pervasive
positive selection of somatic driver mutations has been identified
in normal human skin (45). In a cohort of patients undergoing
blepharoplasty, positively selected ‘driver’ mutations were found
in 18−32% of normal skin cells taken from 234 biopsies of sun-
exposed eyelid epidermis. These data suggest that the frequency
of driver mutations in physiologically normal skin cells is
surprisingly high, with multiple driver mutations in cancer
associated genes found in many ‘normal’ cells that had not yet
acquired malignant potential. These findings raise the question
as to what combination of intrinsic (additional mutations) or
extrinsic (host genetics/anti−tumor immunity) changes are
required for cellular transformation to proceed?

In addition to driver mutations, epigenetic alterations
including DNA methylation and histone modifications can
play a role in establishing a field effect contributing to cancer
development (46, 47). A number of studies have indicated the
influence of an epigenetic field effect around the tumor by
identifying aberrant DNA methylation profiles in both tumor
and normal adjacent tissues (48–52).
THE EFFECT OF KNOWN HOST
GENETIC FACTORS ON TUMOR
IMMUNE MICROENVIRONMENT
OF THORACIC CANCERS

The influence of host genetics on the development of thoracic
cancers remains poorly understood. Shen et. al., performed
enrichment analysis of GWAS data to identify shared genomic
regions and pathways between host genetic variants and somatic
mutations in lung cancer (53). They identified an association
between the SNP rs36600 at 22q12.2 and somatic mutations
within ARID1A (53), a member of the SWI/SNF chromatin
remodeling complexes associated with many cancers (54).
Mutations in ARID1A and ARID1B are also associated with
improved response to NSCLC patients receiving immune
checkpoint blockade (ICB) therapy (55). Elevation of the
tumor mutational burden, enhanced antigen presentation and
cellular immunity, and increased PD-L1 expression, are all
correlated with the presence of ARID1A and ARID1B
mutations; suggesting that mutated ARID1A and ARID1B
could serve as novel biomarkers to predict sensitivity and
prognosis to ICB in advanced NSCLC patients (55).
Additionally, rare missense variants in genes encoding SWI/
SNF chromatin remodeling components and genes encoding the
histone methyl transferases, SETD2 and SETDB1, were identified
in a cohort of Japanese mesothelioma patients (56).

Furthermore, TRB:rs1964986 and IDO1:rs10108662 have
been identified as the two most significant SNPs associated
with the risk of disease recurrence and death respectively in
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early stage lung cancer (57). When assessing the functionality of
T cells between low and high-risk groups relative to healthy
controls (57), high-risk subjects exhibited lower cytotoxicity and
reduced granulation of T cells, as demonstrated by increased
expression of T cell inhibitory checkpoint gene Indoleamine 2, 3-
dioxygenase (IDO1) and decreased expression of the T cell
cytotoxicity genes IL2, Perforin 1 (PRF) and Granzyme B
(GZMB). These data support the hypothesis that mutations of
host immune genes affect the TME and thus, prognosis of
NSCLC via suppression of T cell antitumor immunity (57).

Additionally, epigenetic alterations of tissues derived from
NSCLC patients revealed the upregulation of CTLA4, PDCD1 via
hypomethylation in tumors versus non-tumor tissues (58).
Effects of epigenetic alterations in shaping immune tumor
microenvironment was also demonstrated by strong
correlation between site-specific DNA methylation of CpG
markers of cancers and transcription of genes associated with
immune infiltration (59).

In contrast to NSCLC, there are limited published studies that
investigate the role of host genetic factors in shaping the tumor
immune microenvironment of mesothelioma and TETs. Costa
et. al., identified lower expression of miR-320 in mesothelioma
tumors compared to normal tissues by performing differential
miRNA expression analysis on 14 formalin-fixed paraffin-
embedded tumors and six normal controls (60). They also
identified an association between p53-induced expression of
miR-320, miR-200a and miR-34a with reduced expression of
PD-L1 in mesothelioma cell lines (60). These data indicate
defective p53-induced miRNA response as a possible
contributor to immune evasion in mesothelioma by increasing
tumor PD-L1 expression (60). Reduced expression of major
histocompatibility complex (MHC) and autoimmune regulator
(AIRE) genes has been associated with defective T cell
maturation in thymoma patients (61, 62) and as such, the
reduced expression of MHC and AIRE were proposed as
genetic alterations explaining the association between
thymomas and autoimmune disorders (61).

More recently, a number of studies have significantly
advanced our understanding of the molecular biology of
mesothelioma (63–67). Through the application of next
generation sequencing technologies and innovative
bioinformatic analyses, these studies have demonstrated the
complex heterogeneity within and between tumors; expanding
the classic epithelioid, biphasic and sarcomatoid paradigm to at
least 4 distinct molecular subtypes, with a molecular gradient
along the epithelial-to mesenchymal transition spectrum
separating the two extreme epithelioid-like and mesenchymal-
like groups (63, 65–67). Additionally, the NSG approach has
further advanced our knowledge of the key mutational events
associated with mesothelioma, linking a number of unique cancer
signaling pathways with mesothelioma (64, 65). However, despite
these advances, our understanding of how host genetics impacts
mesothelioma onset remains underdeveloped.

In summary, studies investigating the role of immune related
genetic factors in NSCLC have identified suggestive genetic variants
capable of shaping the tumor immune microenvironment and
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affecting cellular immunity. However, there are a limited number of
studies identifying immune related genetic factors in mesothelioma
and TETs, highlighting the dearth in our knowledge of, and ability
to identify how host genetic factors shape the immune tumor
microenvironment of rare thoracic cancers.
OVERCOMING LIMITATIONS FOR
IDENTIFYING HOST GENETIC FACTORS
ASSOCIATED WITH THORACIC CANCERS

GWAS have been used to identify susceptibility loci in common
cancers such as breast, prostate, colorectal and lung cancer (22,
68), but they have been less effective for rare cancers including
mesothelioma (32). In fact, the suitability of GWAS for rare
cancers is often restricted by the relatively small number of
patients available for studies; thus any identified genetic variants
are often limited to the study cohort and not likely to have a
significant influence on disease outcome (32, 34, 68–71).
Furthermore, the absence of standardized protocols for
collecting environmental exposure data in addition to the lack
of accurate, consistent and defined phenotypic data to match
with genomic information, are additional potential limitations
for human genetic studies of thoracic cancers (72–74).

To overcome these limitations, mouse models that can
faithfully mimic human cancer development, in a well-
controlled and modulated environment are needed for
identifying translatable host genetic variants (75). Moreover,
such mouse models need to be sufficiently genetically diverse
to maximize the chance of genetic polymorphisms associated
with cancer development. The ideal mouse model would enable
rapid identification of genes associated with cancer homologous
to human genetic studies (7).
ADVANCEMENTS IN RECOMBINANT
INBRED MOUSE MODELS FOR
HOST GENETIC STUDIES OF
THORACIC CANCERS

Recombinant inbred (RI) mice are generated by breeding two or
more different mouse strains to genetic stability (76).
Historically, RI mice have been used to identify genomic
regions, referred to as quantitative trait loci (QTLs), that are
associated with particular disease phenotypes (77). The main
advantage to using RI mouse strains compared to classical simple
(F2) cross breeding is their improved reproducibility due to the
ability to test a phenotype in any number of individuals with the
same defined genetic constitution (77). The use of RI mice allows
unknown genes to be integrated into the known genetic map by
comparing the inheritance pattern of an unknown gene or trait
in a panel of RI strains with that of known markers. Therefore,
these models have been widely used as a robust and rapid
method of gene mapping of polygenic traits and diseases (77).
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USE OF CLASSICAL AND TRADITIONAL
RECOMBINANT INBRED MOUSE MODELS

Classical mouse genetic studies identified Kras2 as a major lung
cancer susceptibility locus using the F2 progeny of A/J
(susceptible) and C3H/He (resistant) mouse strains in a
urethane-induced lung cancer model (78). Similarly,
experiments involving the progeny of BALB/c and SWR/J
mouse strains identified Par2 and Par4 as modifier loci that
specifically affected tumor initiation, progression and lung tumor
multiplicity (79). Additional, whole-genome linkage
disequilibrium analysis on 25 inbred mouse strains identified
63 markers including Kras and Pas1 loci, supporting the
association of Kras loci with lung cancer susceptibility (80).
Traditionally, bi-parental RI mouse strains were used for
identifying susceptibility loci of diseases with polygenic pattern
of inheritance (78, 81, 82). However, the usefulness of traditional
bi-parental RI mouse strains in genetic studies is limited by the
inherent low genetic diversity associated with using only two
parental genomes, which have large ‘identical by descent’ (IBD)
regions in which both parental strains have the same alleles (83).
Such IBD regions are ‘blind spots’, having little or no variation,
thus limiting the potential for gene mapping (84).
THE COLLABORATIVE CROSS (CC)

The Collaborative cross (CC) is a powerful mouse genetic
resource, comprising hundreds of independent RI mouse
strains developed from eight founder strains selected to
maximize genetic diversity (84–86). The CC harnesses 90%
of the common allelic diversity of the entire mouse species (84)
and has enhanced mapping ability due to the much greater
degree of polymorphisms derived from the eight diverse
founder strains, rather than the two somewhat similar strains
used in conventional RI mapping, as well as the greater number
of strains available. Conventional mapping of simple
Mendelian traits requires approximately 100 backcrossed
mice to obtain 1 cM (approximately 2 megabase pairs; Mbp)
resolution. The same resolution can be obtained by testing ~26
BXD RI strains. In contrast, with as few as 70 CC strains,
mapping resolution can be less than 40 thousand bp, i.e.
approximately to the single gene level (85) and even achieve
down-to-the-base resolution (87). Thus, the CC allows
mapping of loci with unprecedented accuracy. The CC has
been successfully used to study diseases with polygenic
inheritance such as melanoma, prostate cancer, diabetes and
osteoporosis (86, 88–91). It is also powerful in allowing
development of novel disease models (92).

The application of the CC to understanding cancer has been
best studied for melanoma and skin cancer. A series of
investigations made several important discoveries, such as that
every stage of melanoma progression was subject to control by
genetic variation (88); that UV−induced and spontaneous
cancers were mediated by different genetic mechanisms
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(93) the specific mutation causing nevus development was
identified (94); and the molecular mechanism for giant
congenital nevi was defined (95).
USING GENETICALLY ENGINEERED
MOUSE MODELS FOR STUDYING THE
IMPACT OF HOST GENETICS ON
THORACIC CANCER DEVELOPMENT

Numerous genetically engineered mice models have been
developed for modelling and studying genetic heterogeneity of
human malignancies (96). Recent technical advances in the
manipulation and sequencing of mouse genomes has promoted
the use of mouse models as an experimentally tractable system
for testing hypotheses generated from human genetic studies
(96). Such engineered models have also allowed the identification
of novel candidate mechanisms linking the impact of host
genetics and cancer development (96, 97). As the development
and use of genetically engineered mouse models is time-
consuming and expensive, the generation of models with high
tumor penetrance and short cancer latency are often favored, as
they are more viable in terms of research time and cost (75, 98).

Kras2LA2 and Trp53LSL-R172H/þ mice are the most common
used models in host genetic studies of lung cancer (96, 99, 100).
However, mice with mutations in Kras2 and Trp53 are highly
predisposed to other cancers (101, 102) and cancer development
can be triggered by spontaneous oncogene recombination events;
thus these models are not necessarily lung cancer specific and
therefore some mechanisms of carcinogenesis may not
accurately recapitulate human disease (99, 100).

There are many excellent mouse models for mesothelioma
research that mimic the genetic defects found in human disease.
Knockout (KO) mouse models with heterozygous mutations in
Bap1, CDKN2A, neurofibromin 2 (Nf2), or p53 have been used to
study the effect of genetic alterations on asbestos-induced
mesothelioma susceptibility (103–112). These studies
demonstrate significantly higher incidence of mesothelioma in
the presence, or absence of asbestos in mice with Bap(+/-) and
Nf2(+/-) mutations compared to wild-type (wt) mice (103–112).
However, all animal models have their limitations. While some
conditional KO models demonstrate increased mesothelioma
incidence, they also have moderate to high levels of unrelated
(non-mesothelioma) cancers; presumable a consequence of off-
target deletion of key tumor suppressor genes (105, 108, 110).
However, recently published CRE-mediated conditional KO
models only develop disease in CRE-expressing tissues (109,
113). Mesothelioma incidence in Bap1(+\-) mice ranged between
36-60% depending on asbestos doses (41, 106). However, while
Bap1(+\-) mice develop mesothelioma, they also develop other
cancers such as uveal and cutaneous melanoma (37).
Furthermore, Bap1(+\-) mice develop mesothelioma after
exposure to doses of asbestos fibers that are unlikely to induce
mesothelioma in wt mice (106).
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ASBESTOS INDUCED MESOTHELIOMA
MexTAg MOUSE MODEL

There is no absolute consensus over which is the best model system
for studying mesothelioma; some groups prefer to use conditional
knockout models, as they replicate the genetic deletions observed
in human disease, while others prefer alternative models that
require asbestos induction and have limited unrelated cancer
development. We developed the transgenic C57BL/6 MexTAg
mouse model expressing SV40 large T antigen directed to
mesothelial cells by use of cell-type specific mesothelin promoter
as a tool for the pre-clinical evaluation of asbestos-induced
mesothelioma (114). Importantly, MexTAg mice develop
mesothelioma with similar pathology to humans, but only after
asbestos exposure (115). Furthermore, MexTAg mice have high
disease incidence (> 85%) and are less likely to develop unrelated
tumors compared to wild type mice or some heterozygous or
conditional knockout models (103–112). Comparing gene
expression profiles of MexTAg mice and wt mesothelioma with
their counterpart normal mesothelial cells, exhibits overlapping
gene expression profiles, suggesting a similar overall mechanism of
mesothelioma development in transgenic MexTAg mice (116).
Expression of the TAg transgene does not affect the overall
mechanism of mesothelioma development, but rather
phenocopies p16 loss (117) and as a consequence onset of
disease is more rapid, significantly increasing the incidence and
rate of mesothelioma development compared to wt mice (114).
USING THE CC-MexTAg MOUSE MODEL
TO ASSESS THE IMPACT OF HOST
GENETICS ON THE DEVELOPING ANTI-
TUMOR IMMUNE RESPONSE
TO MESOTHELIOMA

To investigate how host genetics might impact asbestos related
disease development (ARD), it is important to use a model in
which only ARD (and not unrelated tumors) occur and high
incidence. We developed the MexTAg Collaborative Cross to
investigate how a hosts’ genetic background influences the
development of mesothelioma in asbestos-exposed individuals.
Combining the genetic diversity inherent in the CC with the high
incidence of asbestos−induced disease and rare onset of
unrelated spontaneous tumors of MexTAg mice, provides an
ideal model to define with unprecedented accuracy the genes and
associated pathways that affect susceptibility and resistance to
disease. In this model, the F1 progeny of CC x MexTAg mice
(CC−MexTAg mice) are exposed to asbestos and monitored for
up to 18 months, or until asbestos related disease (ARD)
developed and progressed to a clearly defined endpoint. ARD
phenotypic traits such as overall survival, disease latency and
progression for each CC−MexTAg group, can be analyzed using
the GeneMiner™ bioinformatic portal (87), where candidate
modifier genes are mapped with ARD phenotype as a
quantitative trait. Genome wide scans defined chromosomal
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locations of peak SNPs associated with each of the
characterized ARD phenotypes. To date, we have generated
and asbestos-exposed over 2500 individual CC−MexTAg mice
progeny of 72 unique CC strains. At the time of writing
55 CC−MexTAg groups that have completed the observation
period. These preliminary data indicate greater than 3-fold
variation in median overall survival. This shows the power of
the CC approach, given that the parental MexTAg mice survive
365 days. An additional 20 CC−MexTAg groups remain under
study, and we envisage accrual of complete data by late 2021.

Importantly, the development of the CC−MexTAg model has
not only enabled data collection on numerous ARD phenotypic
traits, but has enabled the generation of a large repository of tumor
samples and tumor-derived cell lines, collected from animals that
are either relatively resistant or highly sensitive to asbestos-induced
cancer. Given recent insights provided by the CheckMate 743 study
demonstrating for the first time first-line immune checkpoint
blockade (nivolumab plus ipilimumab) provided a significant and
clinically meaningful improvement in overall survival versus
platinum plus pemetrexed chemotherapy for mesothelioma (118),
this unique biological resource can be exploited for comprehensive
genetic and immunohistological analysis on tumors collected from
CC-MexTAg mice (Figure 1). The CCMT biobank will
complement many of the recent ‘multi-omic’ informed human
mesothelioma datasets, helping to overcome some of the limitations
associated with conventional genetic studies aimed at identifying the
role of host genetic factors associated with the development and
immunological control of rare thoracic cancers like mesothelioma.

We believe this strategy will not only allow identification of
host modifier genes associated with ARD development, but when
correlated with data on immune microenvironment will help
elucidate what is required to generate an effective immune
response to asbestos induced cancers. In addition, our strategy
provides a rational approach that could be applied to other
thoracic cancers by taking advantage of the power of CC to
define a protective host genetic background.
SUMMARY AND CONCLUDING REMARKS

Thoracic cancers are a leading cause of death worldwide. While
advances have been made in our understanding of how genetic
alternations impact cancer development and treatment outcomes
for common thoracic malignancies like lung cancer, our knowledge
remains limited for less common cancers such as mesothelioma and
TETs. Moreover, there is a paucity in our understanding of the
complex biological interplay between the tumor and the immune
microenvironment. Understanding how the host immune system
interacts with a developing tumor is essential for the rational
development of new or improved treatment regimens for thoracic
malignancies. An often overlooked characteristic of the tumor host
interaction, is the influence a hosts’ background genetics has on
tumor development and how this affects treatment response. While
previous conventional genomic studies are often limited to more
common cancers, recent technical advances in computation biology,
combined with the use of ‘system genetics’ approaches, now provide
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a framework for investigating more rare thoracic malignancies such
as mesothelioma and TETs. To address these issues, we have
developed the MexTAg Collaborative cross to identify host genes
that affect asbestos-related disease. The CC-MexTAg mouse model
embraces a systems genetics approach, linking the power of CC’s
defined host background genetics, with gene expression analysis and
unparalleled detailed spatial assessment of the immunological
milieu of asbestos-induced mesothelioma. This unique model
allows rapid identification of key host modifier genes and a
comprehensive genomic and histopathological analyses of
biological pathways associated with asbestos-induced
mesothelioma development. These data can then be validated by
interrogating the numerous data sets produced from current human
genetic studies.

In conclusion, the CC-MexTAg mouse model, particularly in
combination with contemporaneous tumor expression data, will
provide a detailed picture of the role of modifier genes and their
biological pathways associated with immune response in
mesothelioma. Such data is essential to help identify potential
druggable and translatable targets for the development of better
Frontiers in Oncology | www.frontiersin.org 778
treatment options and developing an effective anti-tumor
immune response in malignant mesothelioma patients.
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FIGURE 1 | A schematic of the CC‐MexTAg experimental design. The generation of CC‐MexTAg mice and their exposure to asbestos (Study 1): Briefly, candidate
modifier genes will be mapped with mesothelioma‐free survival, as a quantitative trait using the GeneMiner Bioinformatics pipeline. Genome wide scans will be used
to define chromosomal locations of peak single nucleotide polymorphism (SNPs) associated with each of the characterized mesothelioma phenotypes, such as
disease progression, latency, overall survival, and mesothelioma incidence. Gene expression analysis and immunofluorescence analysis of tumors collected from
CC‐MexTAg mice exposed to asbestos (Study 2): Comprehensive analyses of gene expression profiles and immune cell infiltrate of the tumor microenvironment will
be performed to identify any differences between distinct CC‐MexTAg groups. These data will be correlated back to phenotypic data from Study 1, to build a
broader understanding of the impact of host genetics on asbestos related disease development.
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Malignant pleural mesothelioma (MPM) is a rare and fatal disease of the pleural lining. Up
to 80% of the MPM cases are linked to asbestos exposure. Even though its use has been
banned in the industrialized countries, the cases continue to increase. MPM is a lethal
cancer, with very little survival improvements in the last years, mirroring very limited
therapeutic advances. Platinum-based chemotherapy in combination with pemetrexed
and surgery are the standard of care, but prognosis is still unacceptably poor with median
overall survival of approximately 12 months. The genomic landscape of MPM has been
widely characterized showing a low mutational burden and the impairment of tumor
suppressor genes. Among them, BAP1 and BLM are present as a germline inactivation in
a small subset of patients and increases predisposition to tumorigenesis. Other studies
have demonstrated a high frequency of mutations in DNA repair genes. Many therapy
approaches targeting these alterations have emerged and are under evaluation in the
clinic. High-throughput technologies have allowed the detection of more complex
molecular events, like chromotripsis and revealed different transcriptional programs for
each histological subtype. Transcriptional analysis has also paved the way to the study of
tumor-infiltrating cells, thus shedding lights on the crosstalk between tumor cells and the
microenvironment. The tumor microenvironment of MPM is indeed crucial for the
pathogenesis and outcome of this disease; it is characterized by an inflammatory
response to asbestos exposure, involving a variety of chemokines and suppressive
immune cells such as M2-like macrophages and regulatory T cells. Another important
feature of MPM is the dysregulation of microRNA expression, being frequently linked to
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cancer development and drug resistance. This review will give a detailed overview of all the
above mentioned features of MPM in order to improve the understanding of this disease
and the development of new therapeutic strategies.
Keywords: mesothelioma, tumor microenvironment, genetic alterations, immunotherapy, targeted therapy
INTRODUCTION

Malignant pleural mesothelioma (MPM) is an aggressive
malignancy of the pleural lining with limited treatment options. It
is strongly associated with exposure to fibrous material such as
asbestos. Due to the long latency period of up to 40 years and the
ongoing use of asbestos in developing countries, the cases are still
rising. Patients with MPM have a very short median overall survival
of around 12 months after diagnosis and are treated with a
combination of surgery, radiotherapy and chemotherapy.
Pharmacological treatment has not changed for years consisting
in the combination of cisplatin with pemetrexed and/or
bevacizumab in some cases. Studies performed so far deciphered
the genomic, transcriptional and epigenomic landscape of MPM,
highlighting a complex and not yet known scenario. Very recently,
the combination of two immune checkpoint inhibitors showed an
improvement in overall survival compared to standard
chemotherapy in first line. Nevertheless, current therapies have
not improved, there is no second line therapy available and
inclusion into clinical trials is currently the best option. The
tumor microenvironment (TME) of mesothelioma consists of a
wide variety of innate and adaptive immune cell subtypes, stromal
and endothelial cells and has been characterized as a highly
inflammatory TME favoring treatment with immune checkpoint
inhibitors. On the other hand, mesothelioma is considered a non-
immunogenic cancer due to a low tumor mutational burden and
paucity of activated T cells. Thus, the understanding of the crosstalk
and interactions of immune, stromal and tumor cells is of major
importance for the development of novel therapies and the
discovery of new therapeutic targets.
INFLAMMATORY TUMOR
MICROENVIRONMENT

Inhaled mineral fibers traveling to the visceral pleura and deposition
of mineral fibers in the pleural lining leads to a permanent innate
stimuli with subsequent chronic inflammation, production of
oxygen radicals and necrotic cell death of mesothelial cells.
Asbestos fibers are biopersistent and non-degradable, which plays
an important role in their carcinogenic potential (1). Mesothelial
cells exposed to asbestos fibers secrete C-C chemokine ligand 2
(CCL2), which attracts macrophages to the site (2). Reactive-oxygen
species induce DNA damage and mutations in mesothelial cells (3)
leading to necrotic cell death and to the production and release of
damage-associated molecular patterns (DAMPs) including High
Mobility Group Box 1 protein (HMGB1). HMGB1 is translocated
from the nucleus to the cytoplasm and secreted into the extracellular
space, where it can bind to its receptors TLR2, TLR4 and receptor
284
for Advanced Glycation Endproducts (RAGE). The binding of
HMGB1 to mesothelial cells enhances their proliferation and
migration capacity. The release of HMGB1 also promotes
autophagy, allowing a higher fraction of mesothelial cells to
survive asbestos exposure. HMGB1 silencing was shown to inhibit
autophagy and to increase asbestos-induced mesothelial cell death,
thereby decreasing asbestos induced transformation (4) (Figure 1).
The importance of HMGB1 in cancerous transformation was also
studied in a mouse mesothelioma model, where the investigators
demonstrated that inhibition of HMGB1 binding to its receptors led
to decreased tumor growth (5, 6) again pointing out the importance
of this mediator in MPM progression. In addition, serum
concentrations of HMGB1 are also significantly higher in
mesothelioma patients compared to healthy controls, indicating
its significance in tumor development (7).

Recruited macrophages phagocyte asbestos fibers leading to
secretion of proinflammatory mediators such as TNF-a,
supporting carcinogenesis and cancer cells survival (8). On the
other hand, asbestos itself can also activate the inflammasome, a
multiprotein complex part of the innate immune system, leading
to activation of caspase-1 and cleavage of pro-IL-1b to IL-1b (9).
IL-1b released by tumor-associated macrophages (TAMs) and its
binding to IL-1R on mesothelial cells can be part of the malignant
phenotype inducing cell survival and proliferation (10).
Furthermore, production of TNF-a and IL-1b by macrophages
can also be induced through the inflammatory environment and
the presence of extracellular HMGB1, which protects mesothelial
cells from asbestos-induced cell death (11, 12). TNF-a released by
macrophages signals through NF-kB in mesothelial cells and
supports their survival to asbestos exposure (13). Thus, TNF-a
and IL-1b are important players in the transformation of non-
tumorigenic mesothelial cells (14). Interestingly, HMGB1 was also
shown to play an important role in epithelial to mesenchymal
transition (EMT) as it led to upregulation of the EMT markers
vimentin and a-smooth muscle actin (12). HMGB1 can also
reduce expression of E-cadherins, an epithelial marker and
upregulates mesenchymal markers promoting EMT (12).
Altogether, this indicates the importance of HMGB1, TNF-a
and IL-1b in mediating mesothelioma malignant transformation
and progression (Figure 1).

The mesothelioma tumor microenvironment consists of a
complex structure of stromal cells, immune cells and vasculature.
All of these components result in a heterogeneous plethora of
possible mesothelioma phenotypes, making this disease very
difficult to treat. The immune compartment is characterized by
the presence of many regulatory and inhibitory cells such as
regulatory T cells, type 2 macrophages and myeloid-derived
suppressor cells (MDSC). Immune infiltrates also include T
and B cells, NK cells, dendritic cells (DC) and neutrophils.
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NK Cells
Innate lymphoid cells (ILC) such as natural killer (NK) cells can be
found in mesothelioma tumors, however, in a very small
proportion (15, 16). NK cells are innate immune cells and
belong to the innate lymphoid cell family (17), with high
cytotoxic capacity and without the need for antigen-specific
stimulation (18). NK cells are often characterized to have
impaired effector functions in different solid tumors due to local
immunosuppressive microenvironment leading to hampering of
effector functions (19). However, little is known about the role of
NK cells in mesothelioma or their possible engagement for
mesothelioma therapy.

MPM tumors are infiltrated with NK cells shown by mRNA
expression analysis of specific NK cell makers, which were even
higher expressed in MPM compared to other cancers. However,
the presence of the NK cell markers was not linked to better
overall survival (20).

Similar results were obtained with staining for CD56 by
immunohistochemistry (IHC) of a tissue-microarray in both
epithelioid and non-epithelioid subgroups (16). In addition,
different studies report different results about the expression of
inhibitory or activating molecules on NK cells. A study by
Nishimura et al. described that NK cells isolated from the
blood of mesothelioma patients had lower cytotoxic activity
Frontiers in Oncology | www.frontiersin.org 385
compared to NK cells from healthy individuals and showed a
reduced expression of the activating receptor NKp46 but normal
levels of another activating receptor NKG2D (21). Another study
described a higher frequency of CD56bright and a lower frequency
of CD56dim NK cells in mesothelioma patients compared to
healthy controls. Interestingly, treatment with anti-CTLA-4
immune checkpoint inhibitor changed this ratio from a higher
frequency of CD56dim to a more physiological level of healthy
controls (20).

Pleural effusion of MPM patients is often used to study the
presence and function of different immune cells. NK cells
isolated from pleural effusion show high expression of the
immune checkpoint molecules T cell immunoglobulin and
mucin-domain containing-3 (TIM-3) and lymphocyte
activation gene-3 (LAG-3), whereas both molecules are
expressed to the highest levels on NK cells and to a lesser
extent on CD4 and CD8 T cells (22). Interestingly, LAG-3 is
not expressed on MPM tumor cells (23). Here, the investigators
claim that effusions are more often present in an inflammatory
context, which could influence the expression of suppressive
immune checkpoint molecules as they have shown that the early
activation marker CD69 is significantly correlated with the
expression of TIM-3. Another explanation could be that
matching pleural effusion and tumor tissue do not reflect each
FIGURE 1 | Mechanisms of asbestos-induced carcinogenesis. Asbestos fibers reach the mesothelial cells where they can induce cell death and the release of
inflammatory mediators such as HMGB1 and CCL2. The recruited macrophages are activated through HMGB1 binding to TLR4 and RAGE to induce TNF-a or by
inflammasome activation through asbestos fibers. Activation of caspase-1 and cleavage of pro-IL-1b to the active form IL-1b can lead to further survival signals in
mesothelial cells. HMGB1 can also bind to TLR4 and RAGE expressed on mesothelial cells supporting survival of those cells.
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other’s immune cell composition (24). Nevertheless, differences
in effusion and tumor samples could also be due to different
analysis methods (22). Furthermore, NK cells in pleural effusion
from MPM patients are functional and produce high amounts of
TNF-a and INF-g upon stimulation (25) but have also an
impaired expression of perforin, which can be restored by IL-2
stimulation in vitro. However, incubation of NK cells with
pleural effusion completely abrogated the activation status of
the NK cells, indicating the presence of inhibitory cytokines in
the pleural effusion (26) (Figure 2). Similar results were obtained
in a study performed by Vacca et al., they also described NK cells
from pleural effusion from different cancer patients (including
mesothelioma patients) as functionally capable to produce
cytokines, perforin and granzyme A and B and to perform
cytotoxic functions upon in vitro stimulation with IL-2.
Furthermore, NK cells express normal levels of activating
receptor including NKp30, NKp44, NKG2D, and DNAM‐1
after stimulation. This suggests a possibility for reactivation of
NK cells and no expression of an anergic phenotype as described
in other studies (27). However, the functional capacities of NK
cells in human tumors were not investigated and it is currently
unclear if they are in a state of exhaustion or can perform effector
functions normally. A mouse syngenic mesothelioma model
using the AE17 cell line, reveals that depletion of NK cells with
an anti-asialo GM1 antibody did not influence tumor growth
(28). Current data about NK cells in MPM tumors does not
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correlate to overall survival, nevertheless, more data is needed to
understand their functional effector capacity and their
exhaustion profile intratumorally and the possibility to target
them with therapeutic approaches.

NKT Cells
Natural killer T (NKT) cells are a distinct population of T cells
recognizing glycolipids presented on the non-classical class I-like
molecule CD1d in contrast to normal T cells, which recognize
peptide fragments presented on MHC molecules (29, 30). NKT
cells have lytic activity, but their main function lies in the
production and secretion of a wide variety of cytokines. Upon
activation, they can produce high amounts of Th1 or Th2
cytokines, which can lead to bystander activation of NK cells,
CD8 T cells and dendritic cells.

Little is known about the function of NKT cells in the tumor
microenvironment of patients with MPM. Altomare et al.
investigated the presence of NKT cells in the blood of MPM
patients. Here, they showed that MPM patients have a higher
frequency of circulating NKT cells compared to healthy
volunteers, whereas there were no differences in their ability to
produce IFN-g and IL-4 (31) (Figure 2). NKT cells have been
mainly studied in the context of mesothelioma mouse models
and as a therapeutic target, since they can easily be activated by
artificial glycolipids. In the pleural effusion of a MPM mouse
model, NKT cells are present, express high levels of the activation
FIGURE 2 | Tumor microenvironment in mesothelioma. Overview on the functionality and interactions of different immune cells studied in MPM patients. NK cells
and T cells express inhibitory receptors such as TIM-3, LAG-3 and TIGIT and are influenced by a suppressive cytokines (PGE2, TGF-b) and the presence of Treg
cells in performing their cytotoxic functions. Macrophages show a M2-like phenotype with expression of CD206 and CD163 on their surface. B cells in the TME
produce specific antibodies against cancer cells, participating in the anti-tumor immune response.
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marker CD25 and produce large amounts of INF-g. In the same
model, activation of NKT cells through administration of
glycolipids led to prolonged survival in the treated groups (32,
33), indicating that these cells have an anti-tumor phenotype and
can activate other cytotoxic cells. More studies are needed in
order to understand the possibility to use them as a therapeutic
target in MPM.

Macrophages
Macrophages are innate immune cells specialized in
phagocytosis, engulfing and digestion of invading organisms
and cell debris and play an important role in tissue
homeostasis. Monocytes are recruited from the blood to the
TME through locally produced chemokines and become TAMs
and, in patients’ blood, increased amounts of circulating
monocytes and a low lymphocyte to monocyte ratio have been
reported to negatively correlate with overall survival (34, 35).
TAMs can be divided into two subset depending on their
function and marker expression. M1 macrophages are
proinflammatory macrophages and have strong capacity to kill
invading pathogens and contribute as well to tissue destruction.
M2 macrophages are important mediators in tissue remodeling,
allergic diseases and angiogenesis. Nevertheless, macrophages
are a functionally diverse and plastic group and can reverse their
polarization from M2 to M1 depending on the chemokine
environment (36–38).

Various cytokines can induce differentiation of monocytes
and macrophages into TAMs, such as CCL2, C–C chemokine
ligand 4 (CCL4), C–C chemokine ligand 5 (CCL5) and C-X-C
motif chemokine ligand 12 (CXCL12) secreted byMPM cells (39,
40). CCL2, the most studied TAM-associated chemokine,
recruits immune cells such as T cells, macrophages and
dendritic cells through binding to CCR2 on the cells to the
inflammatory site (41). CCL2 is upregulated in pleural effusion
and serum from MPM patients compared to benign pleural
effusion or pleural effusion from other malignancies and serum
from healthy volunteers, respectively (42–44). Interestingly,
CCL2 levels also correlate with the tumor stage, indicating an
important role of macrophages in disease progression (42).
Other chemokine receptors like CXCR1, CXCR4, CCR5, and
CCR7 are infrequently expressed on mesothelioma cells isolated
from pleural effusion of MPM patients (45). Therefore, those
chemokine pathways might only play a role in a subset of
MPM patients.

Activation of the colony stimulating factor-1 receptor (CSF-
1R) through M-CSF or IL-34 can induce differentiation of
monocytes to macrophages (46). Incubation of monocytes with
pleural effusion fromMPM patients or supernatant from MPM cell
cultures resulted in a CD14midCD163high M2 immunosuppressive
macrophage phenotype (47) (Figure 2). It has been shown that
pleural effusions from MPM patients contain M-CSF and that they
can induce differentiation of monocytes to M2-like macrophages in
a CSF-1R dependent manner (48). M2macrophages themselves can
induce proliferation of MPM cells and induce treatment resistance
to chemotherapies (47). Another study from Cioce et al. showed
that autocrine CSF-1R signaling through AKT and b-catenin is a
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crucial signaling pathway for chemotherapy resistance and survival
(49). Thus, the CSF1R/AKT axis represents an interesting target for
further therapeutic development.

Other important factors for the differentiation of monocytes
and macrophages like prostaglandin E2 (PGE2) and
Transforming Growth Factor b (TGF-b) are present in pleural
effusion and in the supernatant of MPM tumor cell lines (50, 51).
PGE2 is an immunosuppressive factor in the TME and can
induce a suppressive phenotype in macrophages with high
suppressive capacity on T cell proliferation (52). The human
monocytic cell line THP-1 activated with lipopolysaccharide
(LPS), developed an immunosuppressive phenotype when
co-cultured with the MPM cell line Mero84. An increased
production of immunosuppressive cytokines like PGE2 and
IL-10 was produced by macrophages with a shift towards M2
phenotype (53).

A very close interplay has been described between the
production of TGF-b and priorities of macrophages in several
settings. TGF-b is a critical cytokine in tissue homeostasis and
can have pleiotropic functions in cancer. It can inhibit
proliferation of cancer cells but also induce tumor progression
and metastasis, thereby function as a tumor promoting cytokine
(54). TGF-b concentrations in pleural effusions are significantly
higher in MPM patients compared to those from primary lung
cancer patients and they correlate with disease stage and tumor
volume (55–58). Patients with high TGF-b concentrations in
pleural effusions have significantly shorter survival, however,
circulating serum TGF-b concentrations do not have a predictive
value (58).

Upon production of the above mentioned chemokines,
monocytes then become TAMs. TAMs have been widely
described to express a pro-tumoral M2 phenotype, but recent
studies suggest that they might have M1 and M2 properties at the
same time (38, 59). M2 macrophages are considered to promote
tumor growth, proliferation and invasiveness. Increased TAM
levels correlate with poor survival, bad prognosis and increased
metastasis potential in different tumors (60–63). In the human
MPM tumor microenvironment, TAMs account for the majority
of tumor infiltrating cells with about 25-40% of total immune
infiltrates (23, 64). TAMs in MPM express an immunosuppressive
M2 phenotype with high levels of the surface molecules CD163,
CD206 and Interleukin 4 receptor a. Independent on the
histological subtype, MPM is generally heavily infiltrated with
macrophages without any correlation with tumor stage,
but interestingly with survival in the non-epithelioid group
(34) (Table 1). This could be due to presence of more
immunosuppressive cytokines supporting the pro-tumoral role
of infiltrated macrophages. A study by Marcq et al. showed a
correlation between CD68+ macrophages with the presence of
CD4+FoxP3+ regulatory T cells, accounting for a downregulation
of the adaptive immune response and support of an
immunosuppressive TME, which could explain partially the
difference between the prognostic differences in survival (23).
Nevertheless, the prognostic value of macrophages and in
particular M2 macrophages has led to divergent conclusions,
depending on the different studies and datasets, while certain
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studies report a significance others do not (16, 34, 65–67)
(Table 1). In order to further dissect the role of these cells in
MPM, an orthotopic mouse model of MPM was used, where a
tumor promoting effect of macrophages was described: mice with
a high tumor burden had higher numbers of macrophages/
monocytes in the pleural effusion as well as higher percentages
of M2 suppressive macrophages (71). In another orthotopic,
syngenic murine peritoneal mesothelioma model, the tumor
burden, measured by tumor growth rates, invasiveness and
number of metastasis was significantly reduced when
macrophages were depleted in these mice (72). Both studies
indicate TAMs as a negative prognostic factor for tumor
progression in mice.

In conclusion, MPM seems to alter the myeloid cell
differentiation program by tumor-derived factors, which
contributes to tumor suppression and a pro-tumoral immune
response. TAMs and monocytes could be a potential target to
alter this effect and induce an anti-tumoral immune response.

Myeloid-Derived Suppressor Cells
Myeloid-derived suppressor cells (MDSC) represent a
pathological status of monocytes and neutrophils and are
present in different pathological conditions. MDSC represent a
small proportion of tumor infiltrating cells in MPM, below 10%,
but with important pro-tumoral functions (65). MDSC promote
tumor development and progression through different
mechanisms, they have the ability to suppress T cells, remodel
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the TME, support EMT and angiogenesis (73, 74). MDSC are a
heterogeneous group of myeloid cells but can be roughly divided
in two groups, the granulocytic (Gr-MDSC) and the monocytic
(M-MDSC) subset (74).

In MPM, the two populations of MDSCs can be found in the
TME; the granulocytic like subtype expressing CD15high/
CD33low and the monocytic like subtype expressing CD15low/
CD33high (15, 67, 75, 76). Gr-MDSCs are recruited to the tumor
site through G-CSF and GM-CSF released byMPM tumor cells and
further differentiate into an immunosuppressive phenotype within
the tumor (75, 77, 78). In MPM, MDSCs inhibit proliferation of
CD8+ T cells through secretion of immunosuppressive molecules
like reactive oxygen species (ROS), nitric oxide (NO) and
kynurenine (75, 79, 80). High amounts of tumor infiltrating
MDSCs significantly decrease progression free survival and overall
survival in MPM patients (65).

Targeting MDSC in murine model of mesothelioma leads to
reduced numbers of intra-tumoral MDSC with reduced
capability to produce ROS and to reduce tumor growth (81).
Targeting MDSC in MPM patients might represent a way to
reduce intra-tumoral immune suppression and enhance
immunotherapy regimes in future.

T Cells
T cells play an important role in anti-cancer immunity in solid
tumors and overall survival is closely linked to the presence of
tumor infiltrating lymphocytes (TILs) across different tumor
TABLE 1 | Summary of publications of overall survival correlated with immune infiltrates.

Number
of cases

Histology Cell Subset Survival Ref

667 Epithelioid and non-epithelioid group Circulating monocytes Negative correlation with overall survival
(34)Non-epithelioid group CD68+ macrophages Negative correlation with overall survival

230 Epithelioid group CD163+ macrophages No correlation with overall survival
(39)Epithelioid group CD163+/CD8+ ratio Negative correlation with overall survival

Epithelioid group CD68+ or CD163+ in stroma Negative correlation with overall survival
49 All histology, 75% epithelioid M2 macrophages

(CD68+, CD208+, Arginase-1+)
No correlation with overall survival

(65)
67 Epithelioid 49%, non-epithelioid 51% CD68+ macrophages No correlation with overall survival

(66)
8 Epithelioid group CD163+/CD68+ ratio Negatively correlated with overall survival

(67)
32 Epithelioid and non-epithelioid group CD8+ T cells Correlation with better survival

(68)
44 Epithelioid and non-epithelioid group CD8+ T cells Correlation with longer survival

(69)
302 Epithelioid group CD4+ T cells Correlation with better survival

(16)Non-epithelioid group CD8+ T cells Correlation with better survival
Epithelioid and non-epithelioid group CD4+ FoxP3+ regulatory

T cells
High expression is correlated with poorer
survival

93 Epithelioid and non-epithelioid group CD4+ T cells Correlation with better survival
(66)Epithelioid and non-epithelioid group CD8+ T cells Negatively correlated with overall survival

302 Epithelioid group CD20+ Correlation with better survival
(16)

93 Epithelioid group CD20+ Correlation with better survival
(66)

230 Epithelioid group CD20+ Correlation with better survival
(39)

88 Epithelioid and non-epithelioid group-PD-L1+ CD20+ Negatively correlated with survival
(70)
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types (82). The approval of immune checkpoint inhibitors
targeting CTLA-4 or the PD-1/PD-L1 interaction and their
enormous clinical success in different malignancies (83, 84)
further points out the importance of T cells in controlling
cancer cells. In MPM CD3+ T cells are highly abundant in the
TME and the presence of CD8+ TILs is a favorable marker for
prognosis (68, 69). However, 60 to 80% of the cases analyzed are
usually MPM tumors with an epithelioid subtype, and only few
cases with the most aggressive sarcomatoid form are included.
Sarcomatoid tumors show fewer CD4+ and CD8+ T cells in the
tumor and are characterized by a loss of Th1 features such as
T-bet (marker for Th1 polarization) and granzyme B expression,
which are required for an efficacious anti-tumor immune
response. In addition, the sarcomatoid subtype does not
express HLA class I molecules leading to escape of T cell
mediated cytotoxicity (17). Another study compared the
epithelioid group with a non-epithelioid group (sarcomatoid
and biphasic) and linked immune markers with outcome: high
CD4+ counts in the epithelioid subset was associated with better
prognosis, in contrary, in the non-epithelioid subsets, high CD8+

counts were associated with better prognosis, in both, high
expression of FoxP3 was correlated to poorer survival (16, 66)
(Table 1). Infiltration of T cells also varies between PD-L1 high
and low expressing tumors. PD-L1 high tumors have more
CD45+ cells infiltrated compared to PD-L1 low tumors, and
significantly more CD3+ cells including CD4+ and CD8+ and
regulatory T cells and express more co-inhibitory receptors such
as TIM-3. Nevertheless, there is also a huge variability between
patients, which could account for the differences in responses to
immunotherapies (15, 85). Thus, the presence of TILs and the
expression of PD-L1 are not sufficient to predict responses to
such therapies, but rather the whole immune-context, including
the presence of suppressive cells and inhibitory receptors might
predict outcome. Other important factors for response to
immunotherapy in MPM patients are the effector functions of
TILs. On the one hand, cytotoxic T cells in MPM express more T
cell immunoglobulin and ITIM domain (TIGIT) and TIM-3
compared to T cells from health lung tissue and had a minor
ability to produce IFN-g upon stimulation (86) (Figure 2). On
the other hand, patients with MPM do have approximately
double the amount of regulatory T cells (Tregs) cells in the
periphery compared to healthy control. Tregs are important in
sustaining peripheral tolerance and preventing autoimmune
disease by suppressing other cells. The balance between effector
T and B cells and Tregs is crucial for the quality and magnitude
of the immune response. Nevertheless, the presence of Tregs can
also block required anti-tumor immune responses (87) and their
presence in tumors is associated with poorer prognosis in
different malignancies (88). In a study from Klampatsa et al.
around 12.8% of all CD4+ T cells in the MPM tissue are positive
for FoxP3 compared to 2.2% from healthy lung tissue. In
addition, there were significantly more Tregs in the tumor
compared to the blood (86, 89). In a murine MPM model
Tregs were also shown to be crucial for cancer progression,
depleting Tregs with an anti-CD25 antibody led to reduced
tumor growth (90).
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PD-L1 AND OTHER IMMUNE
CHECKPOINT INHIBITORS

Immune checkpoints have drawn attention during the last years
due to the development of antibodies blocking the interaction of
PD-1 and PD-L1 and its extraordinary success in cancer therapy.
The PD-L1/PD-1 axis leads to inactivation of T cells. In the
context of cancer, T cells are continuously exposed to tumor
antigens, which leads to a state of dysfunctionality and
unresponsiveness called exhaustion. Blocking the PD-L1/PD-1
axis with therapeutic antibodies reactivates T cells against cancer.
PD-L1 is expressed in mesothelioma tumors, however, the
positivity rate very much depends on the study, the cohort and
the assay performed for analysis (23, 91–93). A recent overview
analysis of four different antibodies used to stain for PD-L1 gave
an incoherent picture over the different assays. The use of reliable
antibodies and standardization of staining methods are
important features in order to receive comparable studies (94).
In MPM, high PD-L1 expression is associated with histology and
is higher expressed in sarcomatoid/biphasic subtypes (66, 92, 95).
In the recently published PROMISE-MESO trial, 48.9% of the
patient had less than 1% PD-L1 expression, 28.2% had 1-20%
and 18.5% more than 20% PD-L1 expression (96). Another study
described 73% to be positive (> 1%) and 27% negative (<1%)
(97). Inaguma et al. describe 33% of MPM to be positive and 67%
negative. In addition, high PD-L1 expression is negatively
correlated with overall survival (85, 95, 98). Importantly, PD-
L1 expression is not only restricted to TME but also on tumor
cells of the pleural effusions (99); therefore, further investigations
with detailed analysis of abundance and localization of
expression are warranted.

Recent studies have identified a wide range of other immune
checkpoint molecules beside PD1/PD-L1, which could be
suitable for cancer treatment, in particular TIM-3, LAG-3,
TIGIT and V-domain Ig suppressor of T cell activation
(VISTA). TIM-3 plays a major role in controlling the function
of NK and T cells. Upregulation of TIM-3 on peripheral immune
cells and its cognate ligand galectin-9 on tumor cells inhibits
immune responses. Galectin-9 is expressed on MPM tumors
where it can suppress T cell response (65). Furthermore, a higher
number of TIM-3+ cells in peripheral NK and T cell populations
correlate with a poor prognosis in many solid tumor types (20).
In MPM, T cells in pleural effusion express inhibitory molecules
such as PD-1, TIM-3, LAG-3 and have a higher diversity of TCR
clones compared to blood of the same patient (65, 100).
Interestingly, the LAG-3 gene is higher expressed on
mesothelioma tumors compared to lung adenocarcinoma,
while PD-L1 gene is higher expressed is lung adenocarcinoma
(101). Understanding differences in the TME of various solid
tumors can open up new options for more personalized
immunotherapeutic approaches. A recent study defines a
subgroup of patients co-expressing inhibitory molecules
TIM-3, PD-L1, CTLA-4 and LAG-3 where this expression is
associated with a shorter survival (102). Another immune
checkpoint molecule, VISTA, is a negative regulator of T cell
activation and it is highly expressed on myeloid cells. Similar to
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PD-L1, VISTA can support the conversion of naïve T cells to
FoxP3+ regulatory T cells (103, 104). In MPM, VISTA is highly
expressed on the epithelioid subtype but to a lesser extent on
more aggressive subtypes. Interestingly, it is also expressed on
normal and reactive mesothelium (105). In contrary to PD-L1
patients with high VISTA expression had a better overall
survival, moreover, patients with concurrent high expression of
VISTA and VEGFR2 survive almost five times longer compared
to patients with low expression (102, 106).
B CELLS

B cells are essential cells of the adaptive immune system and
function as antigen presenting cells (APC) thereby contributing
to T cell activation, differentiation and polarization. B cells also
play an important role in promoting the formation of tumor-
associated tertiary lymphoid structures (TLS), areas for B cell
maturation and isotype switching (107). The presence of B cells
in the tumor can be a prognostic factor in different malignancies
(108). In MPM, only few studies addressed the function and
importance of B cells in the tumor and in pleural effusion.
Krishnan et al. showed high levels of tumor-specific antibodies
in murine models of mesothelioma treated with immunotherapy
compared with untreated controls. In addition, disease
eradication in all treated animals and complete failure of the
treatment in B cell-deficient mice have been demonstrated (109).
These findings line up with previous preclinical data, which
showed increased levels of IgM and IgG after anti-CD40
antibody treatment and during tumor regression in mice (110).
This data suggests that antibodies generated upon treatment play
an important role in the tumor immunity and are essential for
tumor responses (Figure 2). Besides high levels of antibodies,
Jackman et al. showed an increased percent of B cells in the
tumor as well as in the secondary lymphoid organs. In contrast,
the number of T cells and of the other cells of the immune system
(e.g., macrophages, NK, granulocytes) remained low (110). In a
previous study, high antibody titers against four tumor-
associated antigens (GeneX, THBS-2, STUB-1 and IFT88) were
identified in the sera of MPM patients. In particular, high levels
of antibodies against two of those antigens, GeneX and THBS-2,
were detected in almost all MPM patients, with a decrease after
surgical resection (111). These findings represent another
example of the existence of a specific humoral immune
response in MPM patients: antibodies produced by tumor
infiltrating B cells can be used as a tumor marker for diagnosis
and follow up. The association of high B cell numbers in the
tumor with survival has been recently described. Different
studies showed that high counts of CD20+ cells in patients
with epithelioid mesothelioma positively correlated with
survival, however, this was not the case in the non-epithelioid
subgroup (16, 39, 66) (Table 1). In contrast, another study
identified elevated B cell numbers in the sarcomatoid subgroup
(70). In addition, in PD-L1neg MPMs B cells are considered a
good prognostic factor, whereas in PD-L1+ MPMs, CD20+

infiltrates are associated with a poorer outcome (70) (Table 1).
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Patil et al. classified MPM cases into three different subgroups,
based on immune profiles: one subgroup showed higher
expression of B cell markers and antigen presentation-related
genes compared with the other ones (91). This indicates that B
cell infiltration is not a constant feature in all MPM cases and
cannot be considered as a hallmark as, sometimes it is rarely
detectable (76). Nevertheless, in some patients increased levels of
B cells constitute a window of opportunity to develop novel
immunotherapies and to identify novel MPM targeting
receptors. Through bulk RNA-Seq data analysis from MPM
tissue, the BCR sequence can be identified to generate
candidate antibodies binding to MPM target cells. Another
new approach to produce high-affinity antibodies involves the
isolation of memory B cells from peripheral blood of the donors,
when immortalized, such B cells stably secrete monoclonal
antigen-specific antibodies, which could be used as further
therapeutic agents (112). More research is needed to better
understand the role of B cells in MPM but based on these
premises, this cell population can be considered an important
candidate for the development of new therapies.
GENETIC ALTERATIONS PREDISPOSING
TO MESOTHELIOMA

As previously described, the role of external agents in inducing
mesothelioma is mainly attributable to the chronic inflammation
guided byHMGB1, NF-kB and the PIK3CA pathway. Meanwhile,
clinical studies of large cohorts of individuals and the
improvement of genome wide sequencing technologies have
helped the identification of an increased number of oncological
diseases associated with germline mutations (113). These genes
mainly encode for tumor suppressor proteins involved in cell cycle
regulation, apoptosis and DNA repair pathways; being involved in
cancer development, they are called cancer susceptibility genes
(113). The identification of these genes have paved the way for the
development of targeted therapeutic approaches as well as for
cancer prevention and surveillance (114, 115). The most common
inherited cancer risk factor associated with MPM is the aberration
of BRCA1 Associated Protein 1 (BAP1), a deubiquitinating
enzyme located on chromosome 3p21.1 acting as tumor
suppressor gene (116, 117). BAP1 is involved in different
biological pathways, such as DNA replication, apoptosis,
regulation of gene transcription, deubiquitation of histones and
DNA repair (116, 117). Germline defects of BAP1 are responsible
for the BAP1-tumor predisposition syndrome (BAP1-TPDS)
including the occurrence of renal cell carcinoma, uveal
melanoma, cholangiocarcinoma and mesothelioma. High
frequency of germline mutations of BAP1 were demonstrated to
cause mesothelioma in 2001, when an epidemic spread of cases
was reported in a village in Cappadocia (113, 118). These results
were further confirmed by other groups: in 2018, Betti et al.
reported a frequency of 7.7% of pathogenic germline variants in a
cohort of 39 patients (119), while Pastorino et al. reported a
frequency of 30.7% in a cohort of 52 patients affected by malignant
mesothelioma (120).
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BAP1 alterations occur in one mutant allele and are inherited
as autosomal dominant mutations: a study of germline-mutated
mesothelioma showed 43.1% of relatives carried the same
mutation of their probands (120). The peculiarity of
mesotheliomas carrying BAP1 defects is a higher frequency in
non- or low-exposure to asbestos as reported by Pastorino et al
(120). These alterations are more frequently detected in young
adults with MPM: 4% in patients older than 75 years and 20% in
the ones of 55 years of age or younger (121). Among the three
histotypes of MPM, such as epithelioid, sarcomatoid, and
biphasic, BAP1-germline mutations are found more frequently
in the epithelioid and this correlates with a better prognosis
(113, 115).

Today, the assessment of BAP1 status has become part of the
diagnostic routine of mesothelioma allowing to distinguish
between benign and malignant mesothelial cells and to identify
biphasic mesothelioma (116). However, the implementation of
sequencing technologies with more extensive studies will
uncover molecular features associated with mesothelioma
onset. Interestingly, a recent study has revealed that BAP1 is
not the only cancer-susceptibility-gene predisposing to
mesothelioma. Bononi et al. have shown that heterozygous
mutations in the Bloom syndrome gene (BLM), a gene
involved in the DNA repair, promote the development of
mesothelioma and the risk is further increased by exposure to
asbestos (122).

These results suggest the importance of early detection of
cancer risk factors in the population via tailored screening
programs in order to prevent cancer development.
THE ROLE OF THE DNA REPAIR

The DNA damage response (DDR) consists of a complex
network of genes that respond to different types of DNA
damages, such as Double Strand Breaks (DSBs) and Single
Strand Breaks (SSBs), being organized in pathways as
homologous recombination (HR), non-homologous end-
joining (NHEJ), mismatch repair (MMR) and nucleotide
excision repair (NER). Defects in one or more pathways lead
to genomic instability and promote tumorigenesis and cancer
progression (123, 124).

DDR has been an attractive therapeutic target upon the
discovery of synthetic lethality, which occurs when the
inefficiency of a DNA repair system causes the recruitment of
other DNA damage pathways. This concept has first been
applied to HR genes like BRCA1/2 due to their interaction
with the poly(ADP-ribose) polymerase (PARP), a family of
proteins that are activated in the presence of DNA damage and
stabilize the replication machinery during repair (123). Thus, a
new category of drugs called PARP-inhibitors (PARPi) have
been developed to target the rescue of DNA repair pathway and
lead to genomic instability and cell death (123). Among the most
studied PARPi there are talazoparib, rucaparib, niraparib,
olaparib and veliparib; although being first intended to target
tumor lacking functional BRCA1/2, their action has been expanded
Frontiers in Oncology | www.frontiersin.org 991
to a larger category of Homologous Recombination Deficiency
(HRD) tumors, that comprise other HR genes like ATM, ATR,
RAD51, BARD1 (124).

Evidence reported in several works has shown a high
percentage of germline mutations in MPM occurring in DNA
repairing genes. Betti et al. tested a panel of 94 cancer
predisposing genes and found mutations in PALB2, BRCA1/2,
FANC1, ATM, SLX4, FANCC, FANCF, PMS1 and XPC covering
almost the 10% of all tested patients (118). Most of these genes
were involved in specific DNA repair mechanisms like HR,
MMR and NER. A similar result was further confirmed by
Panou et al. that reported an improved survival in patients
with MPM bearing DNA repairing defects (121). A study by
Guo et al. addressed the role of DNA repair genes in the
pathogenesis of MPM and identified mutations in novel target
genes like MSH3, BARD1 and RECQL4 that have not been
previously described (125). A recent review by Fuso Nerini
et al. confirmed that considering different studies performed
on MPM, the DNA repair pathways are among the most
frequently affected (124).

In this context, the use of PARPi in mesothelioma has been
encouraged, however preliminary data do not allow a clear
conclusion of PARPi effectiveness (124) (Table 2). In fact,
while some studies have shown combinatorial treatment with
cisplatin and olaparib is effective in mesothelioma cells with a
defective HR (137), another study has demonstrated that
olaparib has limited anti-tumor activity also in BAP1 mutated
patients (NCT03531840). Other clinical trials are still ongoing
(NCT03207347, NCT03654833) and will help clarify the effects
of PARPi in mesothelioma.

One of the main concern about DNA damage and
mesothelioma has been the assessment of the role of BAP1 in
sensing cells to PARPi. The role of BAP1 in the DDR is due to its
interaction with BRCA1 and BARD1, however this association is
far to be completely understood and need further investigation
(116). A recent study exploited the sensitivity to PARPi in
TABLE 2 | Druggable targets in mesothelioma.

Molecular
Feature

Drug References

BAP1 PARPi (olaparib, niraparib, rucaparib) NCT03531840,
NCT03207347,
NCT03654833

MGMT low,
SFLN11 high

PARPi (talazoparib) + temozolomide (126)

ALK fusion ALK inhibitors (127)
BAP1 wt and
KDM6A

tazemetostat (128)

NF2 FAK inhibitors, everolimus (129, 130)
PTCH1 vismogedib (131)
TERT telomerase inhibitors (MST-312) (132)
DNA repair and
TME

lurbinectedin (133)

BCL2, BCL-XL BH3-mimetics, survivin inhibitor(YM155),
bortezomib, trabectedin

(134)

HDAC vorinostat (135)
STAT1 fludarabine (F-araA), risedronic acid (RIS) (136)
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patient-derived mesothelioma cells (126). They showed that
response to PARPi is independent on BAP1 mutational status.
Conversely, they demonstrated that PARPi sensitivity, especially
to talazoparib in combination with temozolomide, is mainly
related to the combination of low expression levels of O-6-
Methylguanine-DNA methyltransferase (MGMT) and high
expression levels of Schlafen 11 (SLFN11) (126) (Table 2).
Overall, this evidence suggests that targeting the DDR in MPM
is still an attractive strategy, most of all in a context of combined
therapy; however, more preclinical studies are needed to exploit
other combinations and unravel molecular mechanisms and drug-
interactions that could lead to improved patients outcome.
THERAPEUTIC IMPLICATIONS OF
GENOMICS AND TRANSCRIPTOMICS
EVIDENCES

The -omics field in the study of cancer pathology has evolved
rapidly in the last decades. The improvement of high-throughput
technologies and computational approaches have made a big step
forward in cancer characterization and drug-response investigation
becoming crucial in the context of translational research.

Genomic and transcriptomic studies have improved the
molecular characterization of MPM and set new hypothesis for
therapeutic approaches. The first genomic studies from Bueno
et al. in 2016 analyzed 211 transcriptomes and 216 whole exomes
of mesotheliomas, while Hmeljak et al. in 2018 analyzed 74
samples from The Cancer Genome Atlas (TCGA) by the
integration of the exome and the transcriptome (105, 138).
Both studies confirmed frequent mutations in the CDKN2A,
NF2, TP53, LATS2, and SETD2 genes and a low mutational
burden with less than two non-synonymous mutations per
megabase (Mb). Bueno et al. identified other genomic
aberrations such as gene fusions and splice alterations in the
most relevant genes like NF2, BAP1 and SETD2 (138). Both
studies assessed a somatic copy-number alteration (SCNA)
landscape with more copy losses than amplifications that
included BAP1 , NF2 , CDKN2B , LATS2 , as a further
confirmation that MPM development is driven primarily by
loss of tumor suppressor genes than by activation of classic
oncogenic drivers (105, 138).

The pivotal role of BAP1 in mesothelioma is confirmed also at
the somatic level, since 60% of cases present a second hit (120),
even if the percentage could be even higher since studies
performed so far have used next generation sequencing (NGS)
approaches that lacked the identification of large deletions, while
assessment from different platforms, like IHC and multiplex
ligation–dependent probe amplification (MLPA) have increased
detection perfomances (116). Somatic BAP1 mutations
preferentially affect the epithelioid subtype and correlate to
better prognosis (116).

Recently, a work by Zhang et al. has depicted a detailed
picture of MPM genomic features. Indeed, the study of
intratumor heterogeneity of MPM through an exome
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sequencing approach has shown that most MPMs follow a
linear evolution with BAP1 being the most frequent ancestral
mutation and NF2 arising mainly as a late event. Moreover, a
minority of patients presented a branched evolution that was
associated with a higher tumor lymphocyte infiltration and antigen
burden, suggesting a possible sensitivity to immunotherapy (139).

Aberrant copy number alterations in CDKN2A and p16 arm
identified with sequencing approaches were confirmed in other
studies through fluorescent in-situ hybridization (FISH) and
IHC and they were associated with higher asbestos fiber
exposure (140).

Somatic mutations in CDKN2A, NF2, BAP1 were also
reported in cases of malignant peritoneal mesothelioma, with
CDKN2A less frequent as compared to pleural mesothelioma
(141). Interestingly, the same work reported gene fusions such as
EWSR1-ATF1 and FUS-ATF1 and ALK rearrangements that are
hardly found in pleural mesothelioma and seem to be specific for
young women as compared to ALK-wild type patients but might
respond to targeted treatment (127, 141, 142) (Table 2). Two
recent studies have reported novel somatic mutations in RDX
and MXRA5 genes, independently (143, 144). In Torricelli et al.
RDX and MXRA5 are present in 42% and 40.6% of the cohort,
respectively and authors stated that MXRA5 is specific for the
biphasic histotype together with NOD2 (143). The same genes
were also described in the RAMES study where RDX and
MXRA5 represented the 42% and 23% of MPMs, respectively,
however in this case MXRA5 was identified in both epithelioid
and non-epithelioid histotypes (144). Moreover, the same gene is
reported to be significantly correlated to longer survival rate in a
cohort of epithelioid only MPMs (145). Therefore, although the
correlation of MXRA5 to histopathologic or clinical features
needs further interpretation, more studies on this gene and
RDX are warranted.

The extensive work of the genomic studies presented so far
have defined various genetic features of mesothelioma, but, to
date, they have no role in patient stratification and treatment.
Interestingly, more insights in MPM molecular characterization
have emerged from transcriptomic studies. The first molecular
classification in epithelioid, sarcomatoid, and biphasic, was
proposed in 2016 with the identification of 400 most variable
genes within the groups, 189 upregulated and 241
downregulated, which also correlated with survival (138).
Specifically, the epithelioid subtype presented up-regulation of
UPK3B, ELMO3, CLDN15 while LOXL2 and VIM were up-
regulated in the sarcomatoid subtype, thus showing a key
difference in EMT regulation in the two groups. Using a data-
integration approach Hmeljak et al. came to the same histotype
classification, however, they stressed a relevant issue: since MPM
transcriptomic can be used for histotype stratification, it is
possible to use it even further for prognosis within a single
histotype. For example, although the epithelioid histotype has a
better survival rate than sarcomatoid, even within this subgroup
it is possible to identify different clinical courses. Guided from
this hypothesis, a cluster of patients with epithelioid subtype with
poor prognosis was identified and associated with higher
AURKA mRNA expression (105). Previously, the association of
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AURKA expression to a worse prognosis was detected by
Borchert et al (137). This evidence suggests that for a further
improvement in MPM therapeutic approaches it is essential to
consider integrated data analysis, such as the combination of
genomic and transcriptomic features.
EXTENSIVE CHROMOSOMAL BREAKAGE:
A NEW IDENTIFIED FEATURE IN
MESOTHELIOMA

As previously stated, mesothelioma presents as a tumor with low
mutational burden with a median of 23 mutations per biopsy
specimen (146) with ~1.2 mutations per Mb (105, 138). This
finding identifies mesothelioma as an atypical tumor, since it is
known that exposure to carcinogens and environmental
pollution characterize tumors with a highly compromised
genomic landscape and high mutational burden. However,
latest development of sequencing technologies have revealed
hidden aspects in cancer malignancies that have not been
previously investigated, such as chromotripsis. The word
chromotripsis derives from “chromo” which stands for
chromosome and “tripsi” which means breaking into small
pieces (147) and refers to a mutational phenomenon of DNA
breakage from a single event that spreads into hundreds of
catastrophic chromosomal damages (148). Accumulated DNA
damages lead to the formation of micronuclei, usually containing
single chromosome, that are disrupted during cell cycle and
spread genetic material in the cells (146). Pieces of chromosomes
can be included in the nuclei during mitosis, and this generates
chromosome rearrangements and fusions (149) (Figure 3).
Recent studies have addressed this topic in malignant
mesothelioma. With the intent to provide reliable cell line
models of mesothelioma, Oey et al. have characterized the
genome of tumors and tumor-derived cell lines through whole
genome sequencing (151). Here, the authors have identified
recurrent events of high chromosomal instability like
chromoanagenesis and chromotripsis. Interestingly, inter- and
intra-chromosomal rearrangements affected genes like CDKN2A,
one of the most frequently mutated in mesothelioma and
KDM6A, a gene that has been associated with sensitivity to
enhancer of zeste homolog 2 (EZH2) inhibitors, like tazemetostat
(151, 153). This finding might have important implications, as
BAP1-lacking mesotheliomas have demonstrated sensitivity to
EZH2 inhibitors (128) (Table 2).

A more recent study addressed chromotripsis in mesothelioma
through a new approach (150) called Mate-pair sequencing
(Mpseq). Mpseq generates larger sequencing fragments and can
detect chromosomal rearrangements and large insertion/deletion
(150). Mansfield et al. found rearrangements that lead to CDKN2A,
BAP1 and NF2 chromosomal instabilities. In particular, they have
evaluated the MESO cohort of TCGA and identified chromotripsis
events in 69% of patients, mostly occurring in tumor suppressor
genes and non-coding DNA (150).

Results obtained in other cancers have shown that
chromotripsis contributes to oncogene amplification, thus
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promoting cancer progression (152, 154). Among them, those
harboring telomerase reverse transcriptase (TERT) gains have
shown higher prevalence for chromothripsis (149) and this can
be linked to mesothelioma with TERT-impairment that present
poorer prognosis. This evidence suggests that chromotripsis is a
specific genomic feature of mesothelioma and that future studies
should include investigations of this complex event, especially for
therapeutic developments. To this, chromotripsis has been
recently associated with the development of drug-resistance in
cancer through a mechanism that involves the repairing systems
of the DNA via PARP and the NHEJ pathway (152). In addition,
the notion of mesothelioma as a low mutated tumor should be
reconsidered since most studies have defined the mutational
burden in relation to only nucleotide changes, however the
previously discussed findings suggest to consider genomic and
structural rearrangements as well. Indeed, an increased
expression of neoantigens resulting from these catastrophic
events in mesothelioma correlate with clonal expansion of
tumor-infiltrating T cells (150) suggesting a possible role in
response to immunotherapy (Figure 3). All together, these
discoveries indicate that the group of MPM presenting
chromotripsis could benefit from combinatorial drug
treatment, including PARPi or immunotherapy, that are worth
being further exploited.
NOVEL MOLECULAR TARGETS FOR
THERAPEUTIC STRATEGIES

Following BAP1, the second most frequent mutated gene in
mesothelioma is the neurofibromatosis type 2 (NF2) which
encodes the protein merlin (138). This protein plays a role in
the Hippo and the mTOR pathways, other than being involved in
EMT (155). In mesothelioma, NF2 is found mostly as a biallelic
inactivation. As reported by Sato et al. preclinical in vivo studies
have shown the central role of NF2 in sensitizing tissue to
asbestos and developing mesothelioma (129). In other studies,
conducted on patients cohort, it has emerged that impairment of
the NF2 gene is more frequent in the sarcomatoid subtype rather
than the epithelioid and this correlates with worst prognosis
(129, 138). To date, NF2 alterations represent a possible target
for treatment such as drugs aiming at interfering with its
function in extracellular matrix signal transduction. Up to
date, studies are mainly based on preclinical models, cell lines
or xenograft; however, promising results suggest further
developments. To this, the initial studies investigating FAK
inhibitors as VS-4718, or YAP and mTOR inhibitors in MPM
lead to positive results in preclinical studies but not in clinical
trials (129) (Table 2). Others showed the antagonistic
relationship between FAK and Wnt pathways in malignant
mesothelioma: dysregulated Wnt signaling is associated with
invasion and resistance to apoptosis, while FAK signaling
promotes invasion and EMT (130). The most interesting
outcome has been reached with the development of K-975, a
small molecule that inhibits the transcriptional enhanced
associate domain (TEAD) protein that belongs to the Hippo
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pathway. K-975 showed a potent inhibitory effect on the
proliferation of MPM cell lines, with a greater activity on NF2-
non-expressing cells (156). Overall, these studies suggest that
NF2 could be considered as a potential target for MPM
warranting further investigations.

Recently, the involvement of the Hedgehog pathway in MPM
has been investigated. Here, in a patient diagnosed with
epithelioid MPM, a mutation in PTCH1 was identified (131).
This gene is involved in the Hedgehog pathway and is druggable
by vismodegib, already approved for the treatment of basal cell
carcinoma (BCC) (Table 2). Despite the patient underwent
several lines of treatment, vismodegib led to a very good
partial response which lasted for over two years. The lack of
genomic testing throughout the course of chemotherapy does
not allow understanding whether the PTCH1 mutation was
acquired under pharmacological pressure; still, this result
suggests an interesting novel target in MPM.

Pirker et al. investigated the role of TERT promoter in
mesothelioma (132). They found that mutations in TERT are
prevalently associated with non-epithelioid subtype and to poor
survival. In accordance with this evidence, TERT mutations are
mutually exclusive with BAP1, which is more frequent in the
epithelioid subtype and correlates with better prognosis, as
previously discussed. An interesting aspect is that cell lines
derived from tumors with mutated TERT present a more stable
genome, e.g., in the number of gains or losses, in comparison to
wild type ones, with a specific imbalance in chromosomes 1, 5q,
9p, 7, 14, and 20. These evidences brought to test telomerase
inhibitors like MST-312 MPM, however with moderate effects
(132) (Table 2).

BCL-2 is a family protein involved in tumorigenesis of
different cancer types. It consists of BCL-2, BCL-XL, BCL-W,
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MCL-1 and BFL-1 proteins. In mesothelioma, overexpression of
BCL-2 was found in 20% of cell lines and in 24% of a tumor
samples, while the expression of BCL-XL and MCL-1 was
identified as a general feature of mesothelioma, suggesting
their critical role as pro-survival factors (134). As BCL-2
proteins act directly on the apoptosis pathway downstream
from TP53, this makes its targeting an interesting therapeutic
approach (134). Preclinical studies have been performed in
mesothelioma cell lines using direct or indirect targeting of
BCL2 and BCL-XL: both in cell lines and in vivo models this
treatment was able to induce an apoptotic effect. This has paved
the way to the development of BH3-mimetics a novel class of
compound that mimic the interaction of BCL-2 protein through
their BH3 domain. In mesothelioma, BH3-mimetics have been
used in combination with YM155, a survivin inhibitor, or
bortezomib, with an increased apoptotic effect in comparison
to controls (Table 2). These drugs have also been used in
combination with trabectedin, a marine compound, showing
that BCL-2 mRNA expression inversely correlated with response
to the treatment (134).

The marine-derived drug trabectedin has been already tested
in MPM, although without any efficacy. In fact, the ATREUS
trial, where this drug was administered as second line therapy in
epithelioid MPM and as a first or second line in non-epithelioid
subtype, showed poor efficacy of trabectedin and high liver
toxicity that did not justify further use of this drug (157).
However, lurbinectedin, an analogue of trabectedin, has shown
promising results in a phase II clinical trial, where it was
administered as a second or third line therapy in MPM
patients (133) (Table 2). Lurbinectedin was efficacious
independently on the MPM histotype and previous treatment.
Further investigations to understand which patients might
FIGURE 3 | Chromotripsis in mesothelioma. A defective mitosis process leads to the formation of micronuclei. Further replication leads to chromosome shattering
and the addition of genetic material through the NHEJ. This process forms chromosome rearrangements that in MPM interest genes like RBFOX1, PARK2, PTPRD,
CTNNA3 and ANK51B, and are linked to amplification of key MPM genes like NF2 and CDKN2A, or the loss of genetic material of BAP1 and KDM6A (113, 150,
151). Amplification of oncogenes due to chromotripsis has been recently associated with drug resistance (152). The extensive chromosomal breakage upon
chromotripsis events leads to neoantigen presentation that can make cells more sensitive to immunotherapy (150).
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benefit from this drug are needed; however, the possible dual effect
of lurbinectedin on both tumor cells and microenvironment might
open new therapeutic venues for this disease (158).

In a recent work Dell’Anno et al. have used a drug
repositioning approach to screen five MPM cell lines with 1170
FDA-approved drugs (136). They identified fludarabine (F-araA)
and risedronic acid (RIS) as effective in MPM through a
mechanism of inhibition of STAT1 expression and nucleic
acids synthesis. Although promising, these results are yet
limited by the use of only five cell lines without molecular
characterization of these cells. Further studies including diverse
and deeply characterized models are needed to successfully
develop treatments for MPM.
THE ROLE OF MICRORNA
DYSREGULATION

In the past 20 years it has become increasingly clear that
microRNAs are important players in the regulation of
physiological processes within the cells, and that their
dysregulation can be a major driver of malignant transformation
and tumor progression (159, 160). Following the first description
of a direct link between the loss of expression of a specific
microRNA and cancer in 2002 (161), many studies followed
investigating both the oncogenic and tumor suppressive
potential of microRNAs. Hence, to date we know of many
microRNAs that are involved in several processes linked to
cancer development and progression, from regulation of cell
proliferation and cell cycle processes to EMT and involvement
in cancer immune escape (160, 162–164).

While still somewhat understudied in MPM, the studies
available thus far, have shown that microRNAs play an
important role in the biology of MPM, and represent valuable
biomarker candidates (165, 166).

Considering that MPM is a diseases characterized by the loss
of tumor suppressors, it is not surprising that this is also reflected
on microRNA level with the majority of dysregulated
microRNAs being lost, while only a limited number has been
shown to be upregulated in MPM (165–167). The first study
investigating dysregulation of microRNAs in MPM was
performed by Guled et al. in 2009, who could show differential
expression of microRNAs in MPM tissue compared to normal
pericardial mesothelium, but also differential expression between
the different histological subtypes of MPM (168). This study was
shortly after followed by a study from Busacca et al. on MPM cell
lines compared to immortalized mesothelial cells, which showed
that the microRNAs with the greatest differential expression
between MPM and normal cells, also discriminated between
histopathological subtypes when investigated in tumor
samples (169).

While the dysregulated microRNAs identified in these early
studies were not functionally investigated, the obtained data
strongly hinted towards a relevant role for microRNAs in
MPM biology. The first studies providing functional data on
dysregulated microRNAs, investigated the effect of re-expression
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of miR-29c-5p (miR-29c*) (170) and miR-31 (171), and in both
cases, re-expression using microRNAmimics resulted in reduced
proliferation and invasion of MPM cell lines, supporting a tumor
suppressive role of these microRNAs. Following these initial
studies, further tumor suppressor microRNAs were investigated
in MPM such as miR-145 (172) and miR-205 (173), both of
which are likely to alter EMT via targeting OCT4 and ZEB1/2
respectively. One of most comprehensively investigated tumor
suppressive microRNAs in MPM is probably the miR-15~107
super family, and here in particular the family member miR-16.
Reid et al. have shown that the members of this microRNA
superfamily are quite consistently lost in MPM tissue compared
to normal pleura, as well as in MPM cell lines (174). In vitro
analyses then revealed that re-expression of miR-16-5p resulted
in reduced cell proliferation and colony forming ability, as well as
induction of apoptosis and a G0/G1 cell cycle arrest in MPM cell
lines, but not in the non-malignant mesothelial cell line MeT-5A.
These observed effects were most likely brought about by the
downregulation of miR-16-5p target genes BCL2 and CCND1. In
addition, re-expression of miR-16 resulted in sensitization of
cells to pemetrexed and gemcitabine, suggesting an additional
role of the miR-15~107 family in response to antimetabolite
chemotherapy. Most importantly, mouse experiments, in which
miR-16 was systemically delivered to the tumor cells using
(EnGenic) minicells resulted in significant tumor growth
inhibition in vivo. Based on these data, a phase I clinical trial
was performed in MPM and non-small cell lung cancer (NSCLC)
patients, which apart from reaching its goal of proving safety of
the miR-16 replacement therapy approach also showed in one
patient a remarkable metabolic and radiological response to the
treatment (175, 176). In a more recent study, the same group has
now shown that miR-16-5p is a regulator of PD-L1 expression,
hence also linking this tumor suppressor to response to immune
checkpoint inhibition (177). While miR-16-5p is the most
comprehensively investigated tumor, suppressive microRNA
linked to MPM biology, other microRNAs such as miR-193a-
3p (178), miR-137-5p (179), miR-126 (180, 181), miR-34b/c
(182, 183), and miR-215-5p (184) have also promising anti-
proliferative and anti-tumor activity, when re-expressed in vitro
or in vivo.

Compared to the tumor suppressive microRNAs, which have
been investigated relatively frequently in MPM, studies of
oncogenic microRNAs are much rarer, also due to the fact that
not many microRNAs have been found to be consistently
overexpressed in MPM tumor tissue. One example however
are miR-182-5p and miR-183-5p, which inhibition using
microRNA inhibitors results in reduced proliferation and
invasion (185).

Taken together, the available expression and functional
studies highlight that microRNA dysregulation, in particular
the loss of tumor suppressive microRNAs, is likely to represent
an important contributor to MPM biology, and therefore to the
development and progression of this devastating disease.
Considering the encouraging data obtained from in vivo
microRNAs replacement studies and early clinical trials,
additional research efforts in this area are certainly warranted.
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Especially also in light of the recent development of mRNA-
based vaccines against COVID-19, the field of RNA-based
vaccines has significantly advanced, possibly also opening
additional avenues for delivery of microRNAs to cancer cells in
order to replace lost tumor suppressors.

In addition to their important role in contributing to MPM
biology, microRNAs have in recent years also been investigated for
their biomarker potential both in tumor tissue and in blood (165,
166). Regarding the diagnostic value of tumor microRNA
expression, the first published study by Gee et al. performed
microRNA profiling in MPM tissue and pleural metastases from
lung adenocarcinomas (186). This study identified in particular low
expression of members of the miR-220 family as potential
diagnostic factors for differentiating MPM and pleural metastases.
A subsequent study by Benjamin et al., then investigated microRNA
expression in a larger set of MPM and adenocarcinomas of the lung
or pleura, and identified in addition to members of the miR-200
family, also members of the miR-192 family as potential diagnostic
markers (187). Based on this data, a microRNAs expression
signature was generated and independently validated in a small
set of patients. The signature consisting of miR-192, -193-5p and
-200c showed high accuracy (95%) in discriminating MPM from
adenocarcinomas, and was subsequently marketed by Rosetta
Genomics. While additional candidates such as miR-126, -143,
-145 and -652 have been proposed (188, 189), none of the
microRNAs or diagnostic signatures described here has been
followed up extensively, hence none of them is in routine
clinical use.

Similarly, several studies have been undertaken investigating the
prognostic value of microRNAs in MPM. Among the most
promising candidates is the tumor suppressive microRNA miR-
29c-5p, which expression is not only associated with the histological
subtype (higher in epithelioid), but also significantly associated with
survival (170). Similarly, the tumor suppressor miR-31 has recently
also been proposed to hold prognostic potential, with lower
expression being associated with longer survival (190).
Furthermore, in a study investigating specimens from patients
undergoing extrapleural pneumonectomy, a signature consisting of
6 microRNAs, the so-called miR-Score, was identified, which was
able to separate patients with good and poor prognosis with an
accuracy of 87% (191). However, similar to the diagnostic
candidates, independent validation studies are lacking.

An attractive alternative to microRNA expression in tissue
samples is the presence of microRNAs in the circulation. Other
than longer RNA species, microRNAs show remarkable stability
in the blood of patients due to the fact that they are mainly
bound to lipoproteins or encapsulated into extracellular vesicles.
With this in mind, a small number of studies has been published
proposing for example low levels of miR-103 in whole blood
(192, 193), low levels of miR-126 (181, 188, 194) in serum, low
level of miR-132 in plasma (195) or high levels of miR-625-3p
(196) in plasma or serum to be associated with the presence of
MPM, and allowed to discriminate those patients from healthy
controls and asbestos-exposed individuals. While these studies
again provide first evidence of the biomarker potential of
microRNAs in the circulation, large independent validation
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studies undertaken by independent research groups are usually
missing, and none of the candidates is yet ready for routine
clinical application.
EPIGENETIC ALTERATIONS AS
PROMISING PROGNOSTIC BIOMARKERS

In addition to the above mentioned specific alterations of DNA
or RNA in MPM, great interest is now being paid to the
epigenome, that includes post-translational modifications that
ultimately impact on gene expression not encoded by the DNA
(197). Epigenetics modifications play an important role in the
regulation of gene expression and include DNA methylation,
histone modifications and chromatin remodeling. Dysfunction
of these mechanism have been linked to tumorigenesis, cancer
progression and metastasis (198, 199).

Due to the lack of druggable molecular targets, the level of
investigation in MPM disease has moved so far. DNA methylation
associated with tumor-suppressor genes and mechanisms involving
histone modifications have been described and linked to MPM
phenotypes and histological subtypes (198). DNA methylation
provokes gene silencing by adding a methyl group to the fifth
carbon of the cytosine base, with a process that mainly occurs in
promoter regions, thus modifying the expression of the associated
genes, or on repetitive DNA elements, such as LINE1, causing
chromatin modifications (200). Although DNA methylation
patterns are fairly stable markers of differentiated tissues that
regulate specific gene expression, changes in the methylation
profile can occur due to aging, exposure to environmental stimuli
and chronic inflammation (200, 201). In particular, accumulation
levels of DNA methylation has been associated with higher cancer
risk and cancer onset (202). The investigation of the DNA
methylation profiles can be carried on at the tumor
level, otherwise it is possible to search specific markers in
the circulating peripheral blood. Studies conducted in
malignant mesothelioma tumors have identified hypermethylated
regions in TMEM30B, KAZALD1 and MAPK13 (203). DNA
methyltransferases (DNMT1, DNMT3a and DNMT3b) were
hypermethylated in mesothelioma cells in comparison to normal
pleura, a result that was further confirmed in the TCGA cohort
(203). More recently, through genome-wide methylation array
technology Guarrera et al. analyzed the methylome of 163 MPM
cases whose exposure to asbestos was previously assessed in
comparison to control samples (202). Here, the authors identified
differential profiles of DNA methylation, 98% of which comprised
hypomethylated single-CpG. These genomic regions were mainly
associated with genes involved in immune systems processes. These
profiles were not histotype-specific, a part from the couple CXCR6
and FYCO1 which had lower methylation level in biphasic
mesotheliomas than epithelioid. However, the striking result was
the most significant hypomethylated CpG in 7p22.2 associated with
the Forkhead Box K1 (FOXK1), a transcription factor involved in
pathways like development and metabolism, and, most of all,
directly interacting with BAP1. It has been suggested that the
dephosporylation of FOXK1 transactivated CCL-2 gene and
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promotes the activation of TAMs (204). These recent evidences
push to go further in the investigation of these markers, especially
considering their involvement in the immune system processes that
make them a likely target for immunotherapy.

The identification of DNAmethylation as a marker in blood has
also been explored so far. The most studied gene is mesothelin
encoding the mesothelin-related peptide (SMRP) which is generally
methylated in the normal pleura, while it is modified in MPM.
However, it has a low sensitivity to be considered as a good marker
forMPM (204). This led Santarelli et al. to identify a newmarker for
asbestos-exposed mesotheliomas (194). Thrombomodulin (TM)
expression is silenced in malignant mesothelioma through a
mechanism that involved the methylation of TM promoter by the
recruitment of PARP1. Since the methylation of TM promoter has
been associated with survival and given the role of PARP1 in the
methylation mechanism, this marker may be of interest for further
investigation for therapeutic development. In 2019, Cugliari et al.
analyzed the peripheral blood of 159 MPMs and identified the CpG
dinucleotide cg03546163 region associated with the gene FKBP5 as
a significant marker for prognosis (205). This is very interesting as
FKBP5 increases chemosensitivity to the AKT pathway, which is
druggable in mesothelioma as previously described.

Other epigenetic modifications involve the acetylation and
methylation of histones. A study by Goto et al. has identified a
high expression of state of histone H3 lysine methylation
(H3K27me3) mark (206). Interestingly, high expression marks of
H3K27me3 have been associated with overexpression of EZH2
(207). This last has been found as a marker of poor prognosis in
mesothelioma (207). Moreover, preclinical studies have shown that
loss of function in BAP1 make cells sensitive to the inhibitors of
EZH2. Among them, tazemetostat, a first-in-class small-molecule
inhibitor of EZH2 received approval from the FDA in January 2020
for the treatment of locally advanced or metastatic sarcoma (207),
while an ongoing clinical trial named NCT02860286 has shown
antitumor activity of tazemetostat in a cohort of 74 patients lacking
BAP1 (128). However, the use of drugs targeting the epigenome has
already been attempted in mesothelioma with negative results. In
fact, in the phase III VANTAGE-014 trial the efficacy of vorinostat,
a histone deacetylase inhibitor, was tested against placebo with no
improvement in overall survival (135) (Table 2). As claimed by
Garassino et al., the main biases of this study were the random
selection of patients irrespective of clinicopathological features and
the rapid development into a phase III trial (208). These results do
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not undermine the use of drugs targeting the epigenome, instead
they underline the necessity to improve patients’ stratification
previous to enrollment into clinical trials. In summary, the
investigation of potentially reversible modifications like the
epigenetics markers seem to be relevant in MPM, and, when
identified through liquid biopsy, they could represent a novel and
promising approach for diagnosis and monitoring of
cancer progression.
CONCLUSION

In this review, we have covered multiple aspects of mesothelioma
microenvironment that have played and will play an important
role for immunotherapeutic approaches. To this, targeting the
TME with anti-PD1 (nivolumab) and anti-CTLA-4 (ipilimumab)
has revealed as the most effective strategy in this disease with few
therapeutic options (209). In addition, genomic and transcriptomic
have allowed the identification of druggable features, currently
under evaluation alone or in combination with immunotherapies.
Moreover, microRNAs expression has shown a role in a better
understanding of the biology of MPM, and promising preliminary
data suggests a possible application in the clinic for diagnosis and
monitoring as epigenetic studies.

In conclusion, a comprehensive knowledge of MPM
biological aspects is crucial for a deeper understanding of such
complex disease and for the improvement of patients’ outcome.
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GLOSSARY

ADCC antibody-dependent cellular cytotoxicity
APC antigen presenting cells
BAP1-TPDS BAP1-tumor predisposition syndromes
BLM Bloom syndrome gene
CCL2 C-C chemokine ligand 2
CCL4 C–C chemokine ligand 4
CCL5 C–C chemokine ligand 5
CSF-1R colony stimulating factor-1 receptor
CXCL12 C-X-C Motif Chemokine Ligand 12
DAMPs damage-associated molecular patterns
DC dendritic cells
DDR DNA damage response
DSBs Double Strand Breaks
EMT epithelial to mesenchymal transition
EZH2 enhancer of zeste homolog 2
FISH fluorescent in-situ hybridization
FOXK1 Forkhead Box K1
Gr-MDSC granulocytic myeloid-derived suppressor cells
H3K27me3 histone H3 lysine methylation
HMGB1 high mobility group protein B1
HR Homologous recombination
HRD Homologous Recombination Deficiency
IHC immunohistochemistry
ILC Innate lymphoid cells
LAG-3 lymphocyte activation gene-3
M-MDSC monocytic myeloid-derived suppressor cells
MDSC myeloid-derived suppressor cells
MGMT O6-methylguanine-DNA methyltransferase
MLPA multiplex ligation–dependent probe amplification
MMR Mismatch Repair
MPM malignant pleural mesothelioma
Mpseq Mate-pair sequencing
NER Nucleotide Excision Repair
NF2 neurofibromatosis type 2
NFKB Nuclear Factor Kappa B
NGS next generation sequencing
NHEJ non-homologous end-joining
NK natural killer
NKT Natural killer T
NO nitric oxide
NSCLC non-small cell lung cancer
PARP poly(ADP-ribose) polymerase
PARPi PARP-inhibitors
PGE2 prostaglandin E2
RAGE receptor for Advanced Glycation Endproducts
ROS reactive oxygen species
SCNA somatic copy-number alteration
SLFN11 Schlafen 11
SMRP mesothelin-related peptide
SSBs Single Strand Breaks
TAMs tumor-associated macrophages
TCGA The Cancer Genome Atlas
TEAD transcriptional enhanced associate domain
TERT telomerase reverse transcriptase
TGF-b Transforming Growth Factor b
TIGIT T cell immunoglobulin and ITIM domain
TILs tumor infiltrating lymphocytes
TIM-3 T cell immunoglobulin and mucin-domain containing-3
TLS tertiary lymphoid structures
TM Thrombomodulin
TME tumor microenvironment
Treg Regulatory T cells
VISTA V-domain Ig suppressor of T cell activation
aGC glycolipid a-galactosylceramide
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Homozygous Co-Deletion of Type I
Interferons and CDKN2A Genes in
Thoracic Cancers: Potential
Consequences for Therapy
Marion Grard1,2†, Camille Chatelain1,2†, Tiphaine Delaunay1,2, Elvire Pons-Tostivint 1,2,3,
Jaafar Bennouna1,2,3 and Jean-François Fonteneau1,2*

1 Université de Nantes, Inserm, CRCINA, Nantes, France, 2 Labex IGO, Immunology Graft Oncology, Nantes, France,
3 CHU de Nantes, oncologie thoracique et digestive, Université de Nantes, Nantes, France

Homozygous deletion (HD) of the tumor suppressor gene CDKN2A is the most frequent
genetic alteration in malignant pleural mesothelioma and is also frequent in non-small cell
lung cancers. This HD is often accompanied by the HD of the type I interferons (IFN I)
genes that are located closed to the CDKN2A gene on the p21.3 region of chromosome
9. IFN I genes encode sixteen cytokines (IFN-a, IFN-b…) that are implicated in cellular
antiviral and antitumor defense and in the induction of the immune response. In this
review, we discuss the potential influence of IFN I genes HD on thoracic cancers therapy
and speak in favor of better taking these HD into account in patients monitoring.

Keywords: lung cancer, mesothelioma, type I interferon, CDKN2A (p16), homozygous deletion,
immunotherapy, STING
FREQUENT HOMOZYGOUS CO-DELETION OF THE CDKN2A
TUMOR SUPPRESSOR GENE AND THE IFN I GENES IN
THORACIC CANCERS

Non-small cell lung cancer (NSCLC) is the most common cause of cancer death worldwide often
due to long-term tobacco smoking. Malignant pleural mesothelioma (MPM) is a rare cancer that is
mainly due to asbestos exposure. As other cancers, some genomic alterations are found in NSCLC
and MPM tumor cells, especially in locus containing tumor suppressor genes. These alterations are
in part responsible for the disease.

In MPM cells, the most frequent genomic alteration is the homologous deletion (HD) in the
p21.3 region of chromosome 9 (1–6). These HDs are variable in length but they mainly overlap at
the level of the cyclin-dependent kinase inhibitor 2A (CDKN2A) tumor suppressor gene located in
this region (Figures 1A, B). Fluorescence in situ hybridization (FISH) studies reported that
CDKN2A gene HDs are found in 60 to 80% of patients (3–6). Copy number alteration study
from The Cancer Genome Atlas (TCGA) reported a lower frequency of 44% of patients with
CDKN2A gene HD inMPM (Figure 1B) (7). However, TCGA study is performed on tumor biopsies
that often contain non-malignant cells. These non-malignant cells may mask CDKN2A gene HD
that are only present in tumor cells. Thus, some patients with CDKN2A gene HD were probably not
detected in the TCGA study.
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In NSCLC, CDKN2A gene HDs were also identified in the
1990s (8–10). They were then found more frequently in a subset
of patient with intact retinoblastoma (rb) pathway (11). FISH
studies on 85 and 19 NSCLC patients reported CDKN2A gene
HD in 21 and 29% of patients respectively (12, 13), and FISH
study on 31 squamous cell carcinoma (SqCC) patients reported
them in 16% (14). TCGA study on 1144 NSCLC patients (660
lung adenocarcinoma and 484 lung SqCC) reported CDKN2A
gene HD in 21% of patients (Figure 1C) (15).

The CDKN2A gene encodes several proteins, notably
p16INK4a and p14arf that are implicated in the regulation of the
cell cycle. p16INK4a binds to cyclin-dependent kinase 4 and 6
(CDK4/6) and inhibits its capacity with cyclin D1 to
phosphorylate rb protein and the translocation of the
transcription factor E2F from the cytoplasm to the nucleus
(16). In absence of p16INK4a, E2F translocates to the nucleus
and allows the transition from G1 phase to S phase of the cell
cycle. p14arf also acts as a tumor suppressor via the p53 pathway
and its absence favors the entry in the cell cycle.

Close to CDKN2A gene, CDKN2B and MTAP are two other
genes that are often co-deleted with CDKN2A in MPM
Frontiers in Oncology | www.frontiersin.org 2106
(Figure 1B) and NSCLC (Figure 1C). CDKN2B encode the
p15Ink4b protein that interacts with CDK4/6 and inhibits its
activation by cyclin D and thus acts as a tumor suppressor (17).
MTAP encodes the S-methyl-5’-thioadenosine phosphorylase
(MTAP) implicated in the polyamine metabolism (18).

Further downstream from CDKN2A and MTAP in the p21.3
region of human chromosome 9, a cluster of 16 genes encodes
the type I interferons (IFN I): IFN-b, IFN-e, IFN-w and 13 IFN-a
(Figure 1A) (19). IFNB1 is the furthest gene from CDKN2A. In
the 1990s, IFN I genes HDs were identified in a fraction of
NSCLC and MPM patients with CDKN2A gene HD (1, 2, 8, 20).
We recently reported that in 78 short-term–cultured MPM cell
lines, 57 (73%) and 18 (23%) cell lines harbors CDKN2A and
IFNBI genes HD respectively, whereas in TCGA study
performed on 82 patients, these percentage where smaller,
probably due to non-malignant cells contamination (44 and
9%) (Figure 1B) (21). Thus, about 10 to 20% of mesothelioma
patients present HD of all the IFN I genes. In NSCLC, the TCGA
study on 1,144 patients reported 21 and 7% of patients with
CDKN2A and IFNBI gene HDs respectively (Figure 1C).
Interestingly, NSCLC patients with IFN I and CDKN2A gene
A

B

C

FIGURE 1 | Homozygous Deletions in the p21.3 region of chromosome 9 in MPM and NSCLC. (A) Schematic representation of genes present in the p21.3 region
of chromosome 9 between positions 21,000,000 and 22,200,000 drawn from UCSC Genome Browser (https://genome.ucsc.edu/). (B) Oncoprint representation of
CDKN2A, CDKN2B, MTAP, IFNA2 and IFNB1 genomic alterations found in tumor samples of 82 MPM patients. Oncoprint was performed with cbioportals website
(http://www.cbioportal.org/) using TCGA Pancancer atlas data. (C) Oncoprint representation of CDKN2A, CDKN2B, MTAP, IFNA2 and IFNB1 genomic alterations
found in tumor samples of 1144 NSCLC patients. Oncoprint was performed with cbioportals website (http://www.cbioportal.org/) using TCGA Pan lung cancer data.
Only the patients with at least one genomic alteration in the five genes are shown. ADC, adenocarcinoma; SqCC, squamous cell carcinoma.
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HDs have a significantly worst disease free survival than patients
with only CDKN2A gene HD (22), suggesting a tumor
suppressor role for IFN I genes in this cancer.
THE TYPE I INTERFERON RESPONSE IN
THORACIC CANCERS

Type I interferon (IFN I) response is key in antiviral immune
response (Figure 2). The IFN I response allows infected and
immune cells to report via IFN-a and -b secretion the presence
of the virus to neighboring cells and to the immune system via
the IFN-a/-b receptor (IFNAR) which is expressed by virtually
all somatic cells (23). The presence of viral genome or
intermediaries of its replication is detected by cytoplasmic
pattern recognition receptors (PRR) and lead to the production
of IFN I via two main pathways: the stimulator of interferon
genes protein (STING) pathway for DNA viruses and the
mitochondrial antiviral-signaling protein (MAVS) pathway for
RNA viruses (23, 24). IFN I are also produced by immune cells
notably via Toll like receptor (TLR) activation, especially
plasmacytoid dendritic cells (pDC) (25). IFN-b is expressed by
all nucleated cells in response to infection, whereas the IFN-a are
mainly produced by immune cells. Among IFN-a, IFN-a2 was
Frontiers in Oncology | www.frontiersin.org 3107
the first cytokines to be approved in clinics for cancer treatment
in 1986 and is the most studied (26).

Cells exposed to IFN I express hundreds of IFN-stimulated
genes (ISGs). Many ISGs encode proteins that induce a state of
anti-viral resistance. These antiviral proteins act by blocking the
different stages of the viral cycle, from the entry of the virus,
through the inhibition of its replication, to the release of its
progeny by the infected cell (23, 27). The IFN I also play a crucial
role in the induction and the regulation of the antiviral adaptive
immune response, notably by favoring antigen cross-priming by
dendritic cells (28, 29). However, during chronic infection,
prolonged IFN I response can have deleterious effects by
inducing immune dysfunctions (30).

IFN I response is often induced during cancer development
and treatments. Several pathways are involved in this induction.
Presence of mitochondrial or nuclear DNA in the cytoplasm of
tumor cells can induce the secretion of IFN I via the STING
pathway (31–39). Expression of endogenous retrovirus (ERV)
under the form of dsRNA due to epigenetic deregulation in
tumor cells can also trigger the expression of IFN I via the MAVS
pathway (35, 40–44). Non-malignant cells from the tumor
microenvironment, such as phagocytic cells notably dendritic
cells (DC), can also produce IFN I via activation of the STING
pathway after engulfment of dead tumor cells. This occurs due to
FIGURE 2 | The IFN I response. (1) The IFN I response is triggered by different stimuli such as ssDNA, dsDNA, ssRNA and dsRNA via the toll like receptors, the
MAVS and the STING pathway. (2) Activation of these pathways induces the nuclear translocation of transcription factors such as IRF3, IRF7 and NF-kB that trigger
IFN I production and expression of some interferon stimulated genes (ISGs). (3) Secreted IFN I trigger IFNAR signaling on neighboring cells, notably immune cells. (4)
IFN I and other soluble factors of the IFN I response activate the immune response. (5) Activation of IFNAR signaling by IFN I leads to the formation of the interferon
stimulated gene factor 3 complex. (6) This complex translocates to the nucleus and activates numerous ISGs with antiviral, immunomodulatory and regulatory
functions. PRR, pattern recognition receptors.
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accumulation of DNA from engulfed dead tumor cells in DC
cytoplasm (39, 45–47). A recent analysis of 31 cancer types in
TCGA database by Liu et al. shows that, lung adenocarcinoma,
MPM and SqCC are the 3rd, 6th and 8th respectively in the
intensity of an IFN I signature based on the expression of 38 ISGs
(35). Globally, IFN I signature correlates with the degree of
immune cells infiltration, but some tumors with an interferon
signature and with no immune cells infiltration were also found.

IFN I signaling is able to modulate the expressions of hundreds
of genes (27). This signaling pathway also induces expression of
noncoding RNAs including long noncoding RNAs, miRNA and
ERV RNA (27, 41, 48). Due to its potential toxicity and
inflammatory effects, IFN I production and signaling are tightly
regulated by numerous positive and negative regulators, many of
which are ISGs (49). Thus, induction of IFN I response in tumors
has multiple complex effects that are rather unfavorable to tumor
development. The IFN I can restrict tumor growth by reducing
proliferation of tumor cells, inducing their apoptosis, limiting their
migratory capacity and inhibiting angiogenesis (50, 51).
Furthermore, they increase antigen presentation by HLA
molecules, stimulate the innate and adaptive antitumor immune
response and inhibit CD4+ regulatory T cells (30, 50, 52–56). IFN
I were shown to play an important role in tumor immuno-editing
in mouse models of chemically-induced and transposable tumors
(57). They signal tumor cells to the immune system. They are
necessary for the priming of anti-tumor T cell response as the
abrogation of IFN I signaling in CD8+ dendritic cells blocks their
capacity to cross-present antigens in mouse (54, 55). They also
participate in the activation of anti-tumor NK cell response (56).
Induction of anti-tumor NK and T cell responses lead to the
secretions of the type II interferon-gamma (IFN-g) that will
further shapes the immunogenicity and the immunosuppressive
microenvironment of the tumor with the IFN I (58). Indeed, IFN I
are also involved in setting up the immunosuppressive tumor
environment by inducing the expression of numerous inhibitory
molecules such as PD1 and PDL1 that block CD8+ T cell
cytotoxicity (30, 50, 58). IFN I can also induce Indoleamine 2,3-
dioxygenase (IDO) expression that reduces locally the amount of
tryptophan needed for T cell functions and favors their
differentiation in Treg (59). Thus, the IFN I in tumors play a
dual role by stimulating the innate and adaptive immune response
and inducing feedback mechanisms to control its magnitude.

IFN I in NSCLC modulates numerous pathways implicated in
proliferation, survival and apoptosis of tumor cells including
JAK/STAT, Src kinases, Vav proto-oncogene, PTEN/PI3-K/
AKT, Crk proteins and MAP kinase signaling pathways (51).
Several recent studies reported that a constitutive activation of
the IFN I response in lung tumors correlates with tumor
inflammation and immune checkpoint inhibitors efficacy (60–
62). Furthermore, DNA damages and dysfunctions of the DNA
damage response are inducers of the IFN I response and have
been linked to immune checkpoint efficiency (37, 63). The
renewed interest in IFN I response also comes from the
observation that they are necessary for the radiotherapy
abscopal response (64–67), and that they participate in the
induction of the antitumor immune response by chemotherapy
Frontiers in Oncology | www.frontiersin.org 4108
(68). This is also due to the identification of new potential
immune checkpoint such as ADAR and Trex1 which are ISG
that functions as negative regulators of the IFN I response by
inactivating the nucleic acids that stimulate this response (35, 40,
65, 66). By blocking ADAR or Trex function, IFN I response is
amplified which promotes the antitumor immune response.
Thus, there is still a great interest to adapt treatments or find
new therapeutic strategies to activate the IFN I response locally
especially in cold tumors with no or low immune cells infiltrate.
POTENTIAL CONSEQUENCES OF IFN I
GENES HD FOR THORACIC CANCERS
THERAPY

Given the central role of IFN I response in tumor immune
surveillance, the frequent loss of all copies of IFN I genes that
accompanied CDKN2A gene HD in tumor cells likely plays a role
in tumor immune escape. In NSCLC, like in other cancers,
patients with only CDKN2A gene HD have a longer survival
compared to patients with IFN I and CDKN2A genes HD (22).
Thus, IFN I genes act as tumor suppressors genes in malignant
cells. Beside this study of Ye et al., nothing is known on the
prognostic value and immunotherapy biomarker potential of
IFN I genes HD in NSCLC, MPM and other cancers. These
deletions were described as early as the mid-1990s and yet they
have not been well documented. It may be because they were
discovered in studies focusing on the CDKN2A tumor suppressor
gene HD. Furthermore, reports that IFN I treatment in NSCLC
and MPM has limited clinical benefit at that time, may have
decrease the interest of studying IFN I gene HD. Finally, most
studies on the role of IFN I on antitumor immune response were
performed with IFNARko mouse models that are easier to obtain
than mouse models ko for all IFN I genes. These IFNARko
models are instrumental to understand the role of IFN I signaling
on tumor cells and the different subtypes of immune cells but are
less suitable to study the source of the IFN I production.

Questions arise regarding presence of IFN I genes HD in
tumor cells. There are several potential cellular sources of IFN I
secretion in tumors, that are basically tumor and immune cells.
Thus, the first question is the role of IFN I production by tumor
cells and if absence of this production is compensated by other
cellular sources. Several recent studies suggest that triggering of
the tumor cells IFN I production play a role in the induction of
the anti-tumor immune response.

Kitajima et al. reported that the lack of response to immune
checkpoint blockade (ICB) of patients with KRAS-LKB1–mutant
lung cancers is due to the inhibition of STING expression via the
loss of LKB1 (62). They show that KRAS-LKB1–mutant tumor
cells are not able to sense cytoplasmic dsDNA via the STING
pathway, and to produce IFN I in response. In consequence, T
cells infiltration and PD-L1 expression in KRAS-LKB1-mutant
tumors is reduced and ICB therapy is ineffective.

Demaria’s team showed that triggering of tumor cell IFN I
response is necessary for induction of anti-tumor immune
June 2021 | Volume 11 | Article 695770
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response by radiotherapy (64, 65). They first reported that
abscopal response in mouse is abrogated when cancer cells in
the irradiated tumor do not express cGAS/STING or overexpress
the exonuclease Trex1 (65). Irradiation induces the presence of
cytoplasmic DNA that triggers the IFN-b production via the
STING pathway and lead to the expression of the ISG Trex1.
This ISG is an exonuclease that degrades DNA in the cytoplasm
and thus decreases IFN I response by tumor cells and triggering
of the antitumor immune response. By inactivating Trex1 in
tumor cells, the IFN I response induced by irradiation is
increased, as well as the antitumor immune response. Thus,
tumor cell IFN I response is essential for abscopal effect of
radiation in that mouse model. Demaria’s team then showed that
combination of radiotherapy and anti-CTLA4 blockade in
NSCLC patients that have failed anti-CTLA4 alone or in
combination with chemotherapy, induced IFN-b in the blood
and an antitumor T cell response in responding patients (64).

These studies highlight the important role on the antitumor
immune response of triggering the IFN I response via the STING
pathway in tumor cells. However, IFN I response in tumor cells
can also be induced by the sensing of endogenous dsRNA via the
MAVS pathway and that also plays a role in the stimulation of
the antitumor immune response (35, 40–44). Best evidences
come from the study of an ISG, the adenosine deaminase
acting on RNA (ADAR) that acts on the MAVS pathway like
Trex1 does on the STING pathway (35, 40). The ADAR protein,
by converting A to I, disrupts the normal A:U pairing which
destabilizes the dsRNA into ssRNA. dsRNA edited by ADAR are
no longer able to trigger the IFN I response by the dsRNA
cytoplasmic sensor Mda5. Thus like Trex1, ADAR inactivates the
stimuli at the origin of the IFN I production by tumor cells. In a
mouse model, Ishizuka et al. reported that loss of ADAR1 in
tumor cells overcomes the resistance to immune checkpoint
inhibitors by increasing the IFN I response via the MAVS
pathway and, thus, the inflammation of the tumor
microenvironment (40). This results was confirmed by Liu
et al., that show that both, the MAVS and the STING pathway
are needed to maintain the IFN I response in tumor cells that
have lost ADAR (35).

Altogether these studies on the STING and the MAVS pathway
show that triggering of the IFN I response in tumor cells is central to
inflame the microenvironment. However, it does not establish
clearly that IFN I production by tumor cells is required. Indeed,
in these studies, the MAVS or the STING pathway is inactivated.
This inactivation impairs IFN I production and also the expression
of lots of other genes. Indeed, when the MAVS or the STING
pathway are triggered, activated transcription factors such as IRF3
and NF-kB not only induce IFN I production, but also the
expression of many other genes with many being ISG (Figure 2).
In MPM cell lines that have lost IFN I genes, exposition to
attenuated measles virus still resulted in the induction of
expression of a small subset of genes (21). Among these genes,
somemay play a role in the inflammation of the microenvironment,
such as the chemokines CCL5, CXCL10 and CXCL11, or the type
III interferons. Thus, triggering of the IFN I response in tumor cells
Frontiers in Oncology | www.frontiersin.org 5109
that have lost IFN I genes may still conserve a certain capacity to
inflame the microenvironment. By studying patients with IFN I
genes HD tumors, we would better understand the IFN I
contribution of tumor cells versus non-malignant cells in cancer
development and therapies. We would also better define the
contribution of IFN I versus other cytokines/chemokines induced
by the triggering of the MAVS or the STING pathway.

IFN I genes HDmay also be interesting for new cancer therapies
such as antitumor virotherapy using oncolytic replicative viruses.
We studied the replication and oncolytic activity of the attenuated
Schwarz strain of measles virus (MV) on 22 human MPM cell lines
and four types of healthy cell (fibroblasts, mesothelial, endothelial
and lung epithelial cells) (69). We found that the healthy cells and
seven MPM cell lines were resistant to MV replication due to a
protective functional IFN I response. The 15 others MPM cell lines
were permissive to MV replication and lysis due to a defective IFN I
response. Among these 15 cell lines, 11 were unable to produce IFN
I when exposed to MV. We showed later that eight of these 11 cell
lines have lost both copies of the IFN I genes (21). The three others
cells line have at least one copy of IFN I genes but are not able to
produce IFN I in response to the virus suggesting another type of
defects of the IFN I response in theseMPM cells lines (69). These 11
MV-sensitive MPM cell lines that are unable to produce IFN I in
response to MV become MV-resistant if exposed to exogenous IFN
I, suggesting that IFNAR signaling is functional in these cell lines.
The four other MV-sensitive MPM cell lines were able to produce
IFN I in response to MV, but unable to control viral replication
suggesting a defect of the IFN I response in IFNAR signaling. This
defective IFNAR signaling has been previously reported in tumor
cells of some patients with MPM (70). It has been associated to
mark decrease of IFNAR, IRF9 and PKR expression and to tumor
sensitivity to an oncolytic vesicular stomatitis virus. These studies
illustrate the diversity of defects found in the IFN I response from
one patients to another in MPM. Such converging selection of
tumor cells with a deficient IFN I response highlights the tumor
suppressive role of this response.

Other questions are still pending regarding IFN I genes HD.
These HD are diverse in length (Figure 2). For some patients,
only a part of IFN I genes are lost and IFNB1 gene that encodes
IFN-b is preserved (Figure 1). Consequences of these partial
losses are also to define. During tumor development, do these
HD appear concomitantly to CDKN2A HD or do they appear
later conferring an additional advantage to the tumor variant
that carries them? The best techniques for detecting IFN I genes
HD is probably FISH assay that can be performed cost effectively
on paraffin-embedded tissue and allow to identify homozygous
and hemizygous deletions at the single cell level (71). It can also
be performed by polymerase chain reaction-based techniques or
whole exome sequencing on tumor biopsies, but large amount of
non-malignant cells in the biopsy may hide the deletions.

With the success of cancer immunotherapy and recent
advances in understanding the IFN I tumor suppressor role,
IFN I genes HD should be studied and taken into account in the
monitoring of MPM and NSCLC patients. This would likely lead
to new strategies and improvements of immunotherapy.
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Purpose: Thymic epithelial tumors (TETs) are relatively rare neoplasms, including
thymomas (types A, AB, B1, B2, and B3) and thymic carcinomas (TCs). The current
knowledge about the biological properties of TETs is limited due to their low incidence.
This study aimed to detect genetic alterations in TETs using next-generation sequencing
(NGS) and explore their clinical significance in survival.

Methods: Tumor tissues and clinical data were collected from 34 patients with resected
TETs in the Tianjin Medical University General Hospital between January 2011 and
January 2019, and 56 cancer-associated genes were analyzed. The data of 123 TETs
were retrieved from TCGA, and the information on their clinical and somatic mutations
was explored.

Results: The cohort comprised 34 TETs including 17 thymomas and 17 TCs. The NGS
results indicated that 73.08% of TCs+type B3 TETs and 37.50% of non-TCs+type B3
TETs each exhibited gene mutations. For patients with type B3/C, TP53 was the most
frequent mutation (19.23%), followed by CDKN2A (11.54%). Similarly, in 123 TETs from
the TCGA cohort, TP53 mutations were more frequent in patients with type B3/C than in
patients with non-type B3/C (11.53% vs 3.09%). Further, patients with TET with TP53
mutations in the present cohort and the TCGA cohort had a worse prognosis compared
with those without TP53 mutations.

Conclusions: Gene mutation profiles between TCs+type B3 TETs and non-TCs+type
B3 TETs were significantly different. The presence of TP53 mutations was more frequent
in TCs+type B3 TETs than in non-TCs+type B3 TETs, which was associated with a
worse prognosis.
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INTRODUCTION

Thymic epithelial tumors (TETs) are relatively rare neoplasms
originating from the epithelial cells of the thymus, but they are
the most common type among tumors of the anterior
mediastinum (1, 2). TETs include a heterogeneous group of
rare tumors. The World Health Organization (WHO) and the
Masaoka–Koga stage classification are used for the histological
classification and clinical staging of these tumors (3, 4).
According to the WHO 2015 criteria, TETs are classified into
thymomas (types A, AB, B1, B2, and B3) and thymic carcinomas
(TCs) depending on the morphology of epithelial cells and the
relative amount of thymocytes (3, 4). The overall incidence of
TETs is 0.13 per 100,000 person-years in the US; however, it is
higher among Asians (2). Previous studies have shown that
patients with TETs have an elevated risk of developing a
subsequent secondary tumor, indicating that certain genetic
risk factors might be involved in the etiology of TET (2–4).
The current knowledge about the biological properties of TETs is
limited due to the low incidence. In particular, significant
variability exists in the prognosis of TETs, indicating a
complex heterogeneity among them. Previous studies
investigated the etiology of TETs at the molecular level and
mutations in EGFR, HER2, KIT, KRAS, and TP53 (5–13).
However, discrepancies are found in the category and
frequency of mutations in different studies.

The present study aimed to explore the genetic alterations and
the possible therapeutic targets of TETs using next-generation
sequencing (NGS) technology with 56 cancer-related hotspot
genes. The correlation between gene mutations was analyzed
Frontiers in Oncology | www.frontiersin.org 2114
using pathological classification, Masaoka–Koga stage
classification, TNM stage, and overall survival (OS). In
addition, the data on somatic mutations of TETs were
retrieved from The Cancer Genome Atlas (TCGA) database
and used to validate the findings. Finally, the literature was
reviewed, and the genetic phenotypes of TETs were summarized.
Thus, a better understanding of the molecular consequences of
gene mutations might have therapeutic implications and support
the personalized approach for the management of TETs.
MATERIALS AND METHODS

Ethical Approval
The study was conducted following the ethical principles stated
in the Declaration of Helsinki for medical research involving
human participants. All participants provided written informed
consent, and the ethical review board approved the study
protocol for clinical research at the Tianjin Medical University
General Hospital.

Study Design
All patients who underwent surgical treatment or suffered from
previous pathologically confirmed TETs at the Tianjin Medical
University General Hospital between January 2011 and January
2019 were included in the study. Their clinicopathological
characteristics are shown in Table 1. The pathological types
and clinical staging were based on the 2015 WHO criteria and
the Masaoka–Koga system (3, 4). Patients with TETs from the
TCGA cohort (n = 123) were also employed in the present study
TABLE 1 | Clinicopathological characteristics of study population from TCGA and our data.

Our data TCGA data

Type A, AB, B1, B2 (n=8)
*

Type B3
(n=9)

Type C
(n=17)

Type A, AB, B1, B2 (n=97)
*

Type B3
(n=15)

Type C
(n=11)

Gender Male 6 8 13 53 6 4
Female 2 1 4 44 9 7

Age Median 58.5 54 55 57.5 62 65
Range 33-73 39-60 16-66 17-84 40-71 44-78

Smoking status Smoker 3 3 8 NP NP NP
Non-
smoker

5 6 9 NP NP NP

Masaoka stage I 3 0 0 NP NP NP
II 3 5 1 NP NP NP
III 2 4 10 NP NP NP
IV 0 0 6 NP NP NP

TNM stage I 8 6 2 NP NP NP
II 0 0 4 NP NP NP
III 0 3 7 NP NP NP
IV 0 0 4 NP NP NP

Neoadjuavant
therapy

CT 0 0 0 2 0 0
RT 0 1 0
CT+RT 0 0 0

Adjuavant therapy CT 0 1 6 26 8 5
RT 1 6 1 1 0 2
CT+RT 0 0 5 0 2 1
July 20
21 | Volume 11 |
CT, hemotherapy; RT, radiotherapy; NP, Not provided.
*including mixed type, A/B1, B1/B2.
Article 667148

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. Gene Mutations in TETs
to verify the findings. For the TCGA cohort, multidimensional
data of gene expression and clinical information were obtained
from cBioPortal (http://www.cbioportal.org/public-portal/). The
gene mutation profile in both the cohorts was analyzed, and the
prognostic values of TP53 and cyclin-dependent kinase inhibitor
2A (CDKN2A) were explored.

Next-Generation Sequencing
DNA from the TETs was extracted using a QiAamp DNA FFPE
tissue kit (Qiagen), and the DNA quality was evaluated according
to the extent of DNA degradation. DNA extracted from the TET
tissues was used for targeted capture sequencing of 56 cancer-
associated genes (Lung core TM 56 genes; Burning Rock Biotech;
Supplementary Table 1).

The concentration of the DNA samples was measured using the
Qubit dsDNA assay to ensure that the genomic DNA was larger
than 100 ng. The DNA was fragmented (average DNA fragment
size of 180–220 bp), followed by hybridization with capture probe
baits, hybrid selection with magnetic beads, and PCR amplification.
A high-sensitivity DNA assay using a bioanalyzer was then used to
assess the quality and size range. The available indexed samples
were then sequenced using a NextSeq 500 bioanalyzer (Illumina,
CA, USA) with paired-end reads. Flexbar software (version 2.7.0)
was used for analyzing the raw data obtained from the NextSeq 500
runs to generate FASTQ data, trim the adapter sequences, and filter
and remove the poor-quality reads (14). The sequencing depth was
~1000 units, and Varscan (v. 2.3) was used to call single-nucleotide
variations and insertions/deletions with MAPQ >60, base quality
>30, and allele frequency (AF) >1% (15).

True mutations were defined as variants that comprised >3
nonduplicated or >5 nonduplicated paired reads. The FASTQ
data were mapped to the human genome (hg19) using
BWAaligner 0.7.10 (http://bio-bwa.sourceforge.net/). Local
alignment optimization, variant calling, and annotation were
performed using GATK version 3.2 (https://www.broadinstitute.
org/gatk/). DNA translocation analysis was performed using
both Tophat2 (http://ccb.jhu.edu/software/tophat/index.shtml)
and Factera version 1.4.3 (http://factera.stanford.edu). In the
final step, to eliminate erroneous base calling and generate
final mutation, variation frequency (>0.5%) was used and
manual verification was performed using integrative Genomics
Viewer version 2.3.72 (16–18).

Mutation Prediction
PolyPhen-2 is an online prediction tool which could predict
possible impact of amino acid changes of human proteins. We
used PolyPhen-2 to predict the mutational consequence of
missense mutations (16, 19). Three outcomes were used to
show the prediction results: benign, possibly damaging, and
probably damaging.

Literature Review
Two individual researchers conducted platform searches on
PubMed. Literature retrieval was performed through a
combined search of the subject terms (“MeSH” on PubMed).

All available studies on patients with TETs who underwent NGS,
which were published in English until May 01, 2021, were included,
Frontiers in Oncology | www.frontiersin.org 3115
and the inclusion and exclusion criteria were listed. The inclusion
criteria were as follows: (1) pathologically confirmed TETs,
including thymomas and thymic carcinomas and (2) NGS
performed for thymic epithelial tumors. The exclusion criteria
were as follows: (1) studies with a design of literature review,
systematic review, basic research, letter to editors, diagnostic
study, and so on, (2) studies using the PCR sequencing method,
and (3) studies using repeated patient cohorts with another study.
No limitations were imposed on the nationalities of the participants.

Statistical Analysis
The gene mutation status was compared with the patient’s
clinicopathological characteristics using the Fisher’s exact test
and the Wilcoxon–Mann–Whitney test. Survival analysis was
calculated using the Kaplan–Meier method to perform the log-
rank test and two stage hazard rate comparison when the curves
crossed using softwares GraphPad Prism 7.0 (GraphPad
Software, CA, USA) and R version 3.6.1 (cran.r-project.org)
(20). A two-sided statistically significant cutoff was set at P <0.05.
RESULTS

Population Study
A total of 17 thymoma (type A, n = 3; type AB, n = 2; typeB1, n = 2;
type B1/B2, n = 1; type B3, n = 9) and 17TCs were collected in this
study. The distributions of sex and age were similar between the two
groups. The patients with TCs+type B3 TETs presented with an
advanced Masaoka–Koga stage compared with the other types
(Table 1). For patients with TETs from the TCGA cohort, 123
patients underwent whole-genome sequencing, including 97 patients
with types A, AB, B1, and B2, 15 patients with type B3, and 11
patients with TCs. However, some information such as smoking
status and Masaoka–Koga stage was not provided (Table 1).

Genetic Mutations in TETs
All 34 TETs underwent genetic mutation analysis with a panel of 56
cancer-related genes. Among the 34 TETs, 22 tumors were detected
with at least one genemutation (non-TCs+type B3 TETs, n = 3; type
B3, n = 6; TCs, n = 13), and the most frequent gene mutations were
TP53 (n = 5), MTOR (n = 3), BRCA1 (n = 3), NF1 (n = 3),
CDKN2A (n = 3), and PTCH1 (n = 3) (Figure 1). Seven out of 26
patients with TCs+type B3 TETs and 5 out of 8 patients with type
A/B1/B2 thymoma had no detected gene mutations. The mutation
percentages were 73.08% for patients with types TCs+type B3 TETs
and 37.50% for patients with types A/B1/B2 (Figure 2A). In
addition, the number of mutated genes was significantly higher in
patients with type TCs+type B3 TETs than in patients with type A/
B1/B2 thymoma (typeTCs+type B3 TETs = 33 vs type A + B1/B2 =
7) (Figure 2B). For patients with types A and B1/B2 thymoma
(n = 9), seven gene mutations, including MTOR, BRCA1, APC,
NF1, HRAS, NTRK3, and PTCH1, were detected, and each gene
appeared only once in patients with non-TCs+type B3 TETs
(Figure 2C). For patients with type B3/C (n = 26), 33 gene
mutations were found and the most frequent mutations were
TP53 (n = 5), followed by CDKN2A (n = 3), MTOR (n = 2),
NF1 (n = 2), BRCA1 (n = 2), PTCH1 (n = 2), CDK4 (n = 2),
July 2021 | Volume 11 | Article 667148
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A B

DC

FIGURE 2 | The analysis of mutational results of TETs in our cohort; (A): the mutation percentage in type B3 and C and non-type B3 and C TET patients; (B): the
number of mutated genes in type B3 and C and non-type B3 and C TET patients; (C): the numbers of tumors with mutation of seven genes in type A and B1/B2
thymomas; (D): ten most frequently mutational genes in type B3/C TETs patients.
FIGURE 1 | The mutational results of all 34 TETs in our cohort.
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PDGFRA (n = 2), PIK3CA (n = 2), and EGFR (n = 2) (Figure 2D).
Importantly, all TP53 or CDKN2Amutations were seen in type TCs
+type B3 TETs only (Figure 1). There are 18 patients with missense
mutations. The prediction results of PolyPhen-2 were showed in the
Supplementary Figure 2 which indicated that all of TP53 missense
mutations in our cohort were probably damaging.

The mutations in the 6 most frequently mutated genes in the
cohort were further validated using a cohort of 123 patients with
TETs from the TCGA database. The mutation types are shown in
Supplementary Figure 1. TP53 was also the most frequent
mutation in the TCGA cohort similar to that in the cohort.
CDKN2A (n = 6) was a highly frequent mutation, followed by
NF1 (n = 3), MTOR (n = 1), BRCA1 (n = 1), and PTCH1 (n = 1).
The mutation characteristics of the six genes are listed in Table 2.

Among the 123 patients with TETs from the TCGA cohort, the
most frequent gene mutations were GTF2I (n = 49), HRAS (n = 10),
TTN (n = 8), MUC16 (n = 6), UNC93B1 (n = 5), MUC4 (n = 5),
NPIPA2 (n = 4), TP53 (n = 4), ZNF208 (n = 3), and BCOR (n = 3)
(Supplementary Table 2). Also, the top 10 highly frequent somatic
gene mutations in patients with non-TCs+type B3 TETs and type
TCs+type B3 TETs were also listed and compared (Figure 2 and
Supplementary Tables 3 and 4). In the TCGA cohort, TP53 had
the highest gene mutation in patients with TCs+type B3 TETs
compared with non-TCs+type B3 TETs, which was concordant
with that in the cohort.
Frontiers in Oncology | www.frontiersin.org 5117
Furthermore, the basic characteristics of TP53 somatic mutations
in patients from the present cohort and the TCGA cohort were
summarized. Most TP53 somatic mutations were missense
mutations, while nonsense and deletion mutations were detected
once in the present cohort and TCGA cohort, respectively (Table 3).

Survival Analysis
The gene with the highest frequency of mutations among patients
with TETs from the TCGA cohort, including TP53, CDKN2A, and
NF1, were selected, and their roles in the prognosis of patients with
TETs were investigated. In the cohort of patients with thymoma
from the hospital, the most frequent mutation was TP53. All
patients with TP53 mutations were classified as Masaoka–Koga
stage III or IV and received postoperative radiotherapy or
chemotherapy. Using log-rank tests or two stage hazard rate
comparison, the study found that the patients with TP53
mutations in the cohort of the hospital showed a significantly
shorter disease-free survival (DFS) and overall survival (OS)
compared with those without TP53 mutation (Figure 3). In
addition, patients with CDKN2A (a tumor suppressor gene)
mutations in the present cohort exhibited a trend of poor survival
compared with those without CDKN2A mutations. However, the
difference was not significant, probably due to limited patient
numbers (Supplementary Figure 3A). The survival analysis
between NF1(+) and NF1(–) TETs was also performed, and the
TABLE 2 | Thymic epithelial tumor patients with high frequent gene alterations (somatic mutation and copy number alterations) in our cohort and TCGA data.

Percentage (No.) Type Mutation classification

TP53 Our data 14.3% (5) Type B3, n=1 Missense variant, n=4
Type C, n=4 Nonsense variant, n=1

TCGA data 5% (6) Type A, n=1 Missense variant, n=3
Type AB, n=1 Deletion variant, n=1
Type B2, n=1 CN-del, n=2
Type B3, n=1
Type C, n=2

MTOR Our data 8.6% (3) Type A, n=1 Missense variant, n=3
Type C, n=2

TCGA data 0.8% (1) Type C, n=1 Missense variant, n=1
BRCA1 Our data 8.6% (3) Type A, n=1 Missense variant, n=1

Type B3, n=2 Splice-site, n=1
Synonymous variant,n=1

TCGA data 0.8% (1) Type C, n=1 CN-amp, n=1
NF1 Our data 8.6% (3) Type A, n=1 Missense variant, n=3

Type C, n=1
TCGA data 2.4% (3) Type A, n=2 Missense variant, n=2

Type C, n=1 Nonsense variant, n=1
CDKN2A Our data 8.6% (3) Type B3, n=1 Missense variant, n=1

Type C, n=2 Nonsense variant, n=2
TCGA data 5% (6) Type A, n=1 Deletion variant, n=1

Type AB, n=1 CN-del, n=5
Type B3, n=2
Type C, n=2

PTCH1 Our data 8.6% (3) Type A, n=1 Missense variant, n=1
Type B3, n=1 Nonsense variant, n=2
Type C, n=1

TCGA data 0.8% (1) Type AB, n=1 Missense variant, n=1
July 2021 | Vo
CN-amp, Copy number variation-amplification.
CN-del, Copy number variation-deletion.
Total patient number: Our data, n=35; TCGA data, n=123.
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results indicated that the NF1(–) TETs had a better survival rate
(Supplementary Figure 4).

In addition, this study also investigated TP53, CDKN2A, and
NF1 mutations and explored the relationship between individual
gene mutations and DFS and OS in patients in the TCGA cohort.
Further, 50% of TP53 mutations and 66.7% of CDKN2A
mutations were of TCs+type B3 TETs (Table 2). The study
confirmed, using the TCGA dataset, significantly shorter DFS
and OS for TETs with TP53 mutations (Figure 3) and a trend of
shorter DFS and OS for TETs with CDKN2A mutations
(Supplementary Figure 3B). NF1 mutation indicated significantly
poor survival in patients with TETs from the present cohort;
however, NF1 mutation had no correlation with the prognosis of
patients with thymoma in the TCGA cohort (Supplementary
Figure 4). Moreover, the study also investigated the relationship
between nine other most frequent gene mutations from the TCGA
dataset and the prognosis of thymoma. However, none of the other
Frontiers in Oncology | www.frontiersin.org 6118
gene mutations in the TCGA cohort exhibited a significant
correlation with the prognosis of patients with thymoma
(Supplementary Figure 5).
DISCUSSION

The underlying molecular and genetic mechanisms of TETs are
yet to be fully elucidated due to their low incidence and
histological heterogeneity compared with other thoracic
malignancies (8–12). The findings of previous studies on the
molecular characteristics of TETs have been inconsistent, and
very few studies focused on the genetic alterations in Asian
patients (6–10, 12, 17, 21).

The present study, based on an NGS 56–cancer gene
panel, found that TETs with types AB1 and B2 exhibited a
remarkable difference in somatic gene mutations compared with
A B

DC

FIGURE 3 | The Kaplan-Meier survival curve of TP53(+) vs. TP53(-) TET patients. (A): TP53(+) vs. TP53 (-) TET patients of DFS in our cohort; (B): TP53(+) vs. TP53 (-)
TET patients of OS in our cohort; (C): TP53 (+) vs. TP53 (-) TET patients of DFS in TCGA cohort; (D): TP53 (+) vs. TP53 (-) TET patients of OS in TCGA cohort.
TABLE 3 | Frequency of different TP53 somatic mutations in Thymoma patients from our and TCGA cohort.

Our cohort TCGA

AA change Type #Mut AA change Type #Mut

G244D Missense 1 D281Afs*64 Deletion 1
E349* Nonsense 1 R273C Missense 1
R282P Missense 1 L194R Missense 1
F113C Missense 1 R248L Missense 1
R248L Missense 1
Ju
ly 2021 | Volume 11 | Article 6
*stop codon.
#Frequency of mutations.
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types B3 and C, in terms of mutation percentage and frequency.
TP53 was the most frequent gene mutation in all 34 patients with
TETs from the present cohort, and more importantly, TP53 and
CDKN2A mutations were detected only in patients with types B3
and C. Although the sequencing methods and profiling in the
TCGA cohort and the present cohort were not exactly the same,
TP53 and CDKN2A mutations were found to be more common in
patients with TCs+type B3 TETs (TP53, 50%; CDKN2A, 66.7%, in
TCs+type B3 TETs) in the TCGA cohort. Survival analysis from
Frontiers in Oncology | www.frontiersin.org 7119
both the TCGA cohort and the present cohort demonstrated that
TP53mutations indicated a significantly worse prognosis in patients
with TETs, and previous studies also proved this (22–24). The
patients with CDKN2A mutations also exhibited a trend of poor
survival compared with those without CDKN2A mutations;
however, this difference was not significant. Previous studies
reported the mutation frequency of CDKN2A in thymic
carcinomas were 11%-35% and most of them were truncating
mutation (22, 23, 25). Further studies with larger sample sizes are
TABLE 4 | Gene mutation analysis of TETs from previously published literature.

Case Author Year Type N0 Mutation Sequencing Method Country

1 Chen et al.
(26)

2020 Thymoma 50 MAP3K1 (98%), TGFBR2 (96%), KMT2C (94%), ARID1A (92%), PRKDC (90%) Next-generation
sequencing for 315 genes

China

Thymic
carcinoma

5 ARID1A (100%), KMT2C (100%), MAP3K1 (100%)

2 Thompson
et al. (27)

2020 Thymoma 3 HRAS (33.3%) Next-generation
sequencing for 1385
genes

USA

3 Sakane et
al. (28)

2019 Thymoma 33 HRAS (3.0%); PIK3CA (6.1%); AKT1 (3.0%) Single-base extension
multiplex assay

Japan

Thymic
carcinoma

54 KRAS (11.1%); HRAS (5.6%); TP53 (9.3%); EGFR (3.7%);
PIK3CA (1.9%); NRAS (1.9%); AKT1 (1.9%)

4 Enkner et
al. (29)

2017 Type A
thymoma

18 HRAS (16.7%) Next-generation
sequencing for 50 genes

Austria

Type B3
thymoma

19 SMARCB (5.3%); STK11 (5.3%)

Thymic
carcinoma

35 TP53 (25.7%); CDKN2A (11.4%); FGFR3 (5.7%); KIT (5.7%);
ALK (2.9%); ATM (2.9%); ERBB4 (2.9%); NRAS (2.9%);

5 Saito et al.
(30)

2017 Thymic
carcinoma

10 TET2 (30%); CACNA1A (30%); HTT (20%); MYNN (20%);
OR5T2 (20%); ARID1B (20%); CYLD (20%); SETD2 (20%);

Whole exome sequencing Japan

6 Asao et al.
(31)

2016 Thymic
carcinoma

52 TP53 (7.7%), KRAS (3.8%), FBXW7 (3.8%), NRAS (1.9%), Next-generation
sequencing for 50 genes

Japan

7 Song et al.
(32)

2016 Thymoma 37 EGFR (2.7%), PIK3CA (2.7%); Next-generation
sequencing for 22 genes

China

Thymic
carcinoma

15 PIK3CA (6.7%)

8 Moreira et
al. (25)

2015 Type B3
thymoma

6 BCOR (50%); MLL3 (16.7%) Next generation
sequencing

USA

Thymic
carcinoma

15 TP53 (26.7%), SMAD4 (13.3%), and CYLD (13.3%), KDM6A (20%), SETD2
(13.3%), MLL3 (13.3%), MLL2 (13.3%).

9 Petrini et
al. (33)

2014 Thymoma 38 GTF2I (42.1%); TP53 (5.3%); ALK (5.3%); PPP2RIA (5.3%) Exome sequencing or
197-gene assay

USA

Thymic
carcinoma

16 TP53 (25%); CYLD (18.8%); BAP (12.5%); PBRM (12.5%);
CDKN2A (12.5%)

10 Shitara et
al. (34)

2014 Thymic
carcinoma

12 NF1 (16.7%); 8.3% for HRAS, PBRM1, DDR2, ASXL1, CDK8, CDKN2A, DCC,
IGF1R, IKBKE, KAT6B, KDM6A, KIT, KMT2A, KMT2D, NKX2-1, PAX5, PDGFRA,
PKHD1, ROS1, RUNX1T1, SMARCA4, TET1, TP53;

Ion Torrent next-
generation sequencing for
409 cancer-related genes

Japan

11 Wang et al.
(30)

2014 Thymoma 31 3.2% for ASXL1, DCC, EGFR, ERG, HRAS, MAGI1, PDGFRA, PRCC, PTGS2,
RUNX1, SDHA, SETD2, SRC, TET2, TP53

Massively parallel
sequencing of 197
cancer-related genes.

USA

Thymic
carcinoma

47 TP53 (25.5%); BAP1 (10.6%); CYLD (8.5%); KIT (8.5%); DNMT3A (8.5%); SETD2
(8.5%); TET3 (6.4%); 4.3% for ASXL1, BRCA2, CDKN2A, DCC, SMARCA4 and
WT1.

12 Girard et
al. (35)

2009 Thymoma 38 KRAS (2.6%); HRAS (2.6%) Array-based comparative
genomic hybridization.

USA

Thymic
carcinoma

7 KIT (28.6%); KRAS (14.3%)

13 Asselta et
al. (36)

2021 Thymic
carcinoma

15 FGFR3(33.3%);CDKN2A(20%);SMARCB1(13.3%); 6.6% for ATM, NRAS, SRC,
APC, KIT, MET

Next-generation
sequencing for 50 genes

Italy

14 Massoth
et al. (37)

2020 Thymoma 242 KMT2A-MAML2 Fusion (4%) Next-generation
sequencing

USA

15 Sakane et
al. (38)

2021 Thymic
carcinoma

54 TP53 (18.5%), KIT (7.4%), and PDGFRA (5.6%) Next-generation
sequencing for 50 genes

Japan
Ju
ly 2021 | Volume 11 | Articl
e 667148

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. Gene Mutations in TETs
necessary to validate the role of CDKN2A mutations in the
prognosis of TETs.

A comprehensive literature review was performed, and the
genetic sequencing data were summarized to further explore the
molecular and biological mechanisms of TETs. The clinical
characteristics and high-frequency gene mutations are listed in
Table 4, comprising 15 studies that included 797 TETs (465
thymomas and 332 thymic carcinomas) (25–39). All 15 studies
were published between 2009 and 2020, and DNA-based NGS
with different gene panel sizes was used. As shown in Table 4, as
the number of genes for sequencing increased, more gene
mutations were detected. In 6 out of 15 studies, TP53 was the
most frequent mutation in thymic carcinomas, and the mutation
frequency ranged from 7.7% to 26.7%. However, the mutation of
TP53 in thymomas was rare. This was consistent with the
findings of the present study that TP53 was the gene mutation
with the highest mutation frequency (23.5%) in TCs.

The malignant potential of type B3 TETs, especially in an
advanced stage, shows a poor prognosis, even similar to that of
TCs. Hence, TCs+type B3 TETs were classified together in the
present study. The sequencing analysis indicated that the gene
mutations and frequency differed between TCs+type B3 TETs
and non-TCs+type B3 TETs. Previous studies also focused on the
difference between thymomas and TCs. However, most of these
studies classified type B3 and types A/B1/B2 together, not with
TCs Only a study by Enkner et al. separated type B3 from other
thymomas (types A/B1/B2) and reported that the mutations
between type TCs+type B3 TETs and non-TCs+type B3 TETs
were very different (29). Other studies that compared the
molecular mechanisms between type B3 TETs and TCs found
comparable gene mutations with similar frequencies. The
present genetic analysis found that types B3 and TCs exhibited
similar gene mutations, including TP53. Hence, placing type B3
and TCs together was suggested to be more appropriate. Previous
studies reported that TP53 mutations in TETs were associated
with more aggressive behavior (5, 12, 13, 17, 40).

In the present cohort and the TCGA cohort, patients with
TETs having TP53 mutations had significantly poorer survival
compared with those without TP53 mutations. HRAS mutations,
which were detected in TETs in the present study, were detected
in previous studies as well. According to the literature review, five
studies reported that the mutations of HRAS in TETs and their
frequencies were very inconsistent, ranging from the lowest of
2.6% to the highest of 33.3% (27–30, 34, 35). Furthermore, four
studies reported that the frequency of CDKN2A mutations
ranged from 4.3% to 12.5%. This study confirmed that
CDKN2A was a common mutation in the present cohort, with
a frequency of 11.8% in thymic carcinomas, which was similar to
that in previous studies. The study also found that TETs with
CDKN2Amutations exhibited a trend of poor survival compared
with those without CDKN2A mutations; however, this was not
statistically significant, probably due to the small sample size.

The effect of CDKN2A on the prognosis of TETs needs further
investigation. Another gene with a relatively frequent mutation in
TETs was NF1, with mutation frequencies of 8.6% and 5% in the
present cohort and the TCGA cohort, respectively. However,
Frontiers in Oncology | www.frontiersin.org 8120
Shitara reported that 16.7% of the TETs exhibited NF1 mutations
in their cohort study (34). The difference in sample size and
histological distribution might have resulted in this discrepancy.

In TCGA cohort we found that GTF2I is the gene mutation with
the highest mutation frequency in TETs. Previous studies also
reported that GTF2I is the most frequently mutated gene in
thymomas especially in type A and type AB TETs, however its
frequency is lower than other types thymomas and thymic
carcinomas (41–43). It was reported that thymomas had a unique
GTF2I mutation Leu404His which was not found in other tumors
(42). TETs with GTF2I mutation had better prognosis and our
analysis also demonstrated the similar trend (41).

Moreover, this study had some limitations. First, the gene
panel of NGS was relatively too small to thoroughly explore the
genetic mechanism of TETs. In addition, previous studies also
reported some gene mutations with a high frequency, which were
not seen in the present cohort, such as GTF2I, CYLD, SMAD4,
and a few others. However, the function and value of these genes
in the prognosis of TETs are unknown and need to be further
investigated. Finally, the sample sizes in the present cohort and
the TCGA cohort were small, especially given the heterogeneous
histology of TETs.
CONCLUSION

Our study found that the gene mutations between TCs+type B3
TETs and non-TCs+type B3 TETs were drastically different. The
mutations in TP53 were more frequent in type B3/C TETs,
indicating a worse prognosis. Targeted therapy against TP53
might be an effective strategy for treating thymic carcinomas.
However, further validation is needed through prospective
clinical studies with a larger sample size.
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Background: CD8+ T cells are one of the central effector cells in the immune
microenvironment. CD8+ T cells play a vital role in the development and progression of
lung adenocarcinoma (LUAD). This study aimed to explore the key genes related to CD8+
T-cell infiltration in LUAD and to develop a novel prognosis model based on these genes.

Methods:With the use of the LUAD dataset from The Cancer Genome Atlas (TCGA), the
differentially expressed genes (DEGs) were analyzed, and a co-expression network was
constructed by weighted gene co-expression network analysis (WGCNA). Combined with
the CIBERSORT algorithm, the gene module in WGCNA, which was the most significantly
correlated with CD8+ T cells, was selected for the subsequent analyses. Key genes were
then identified by co-expression network analysis, protein–protein interactions network
analysis, and least absolute shrinkage and selection operator (Lasso)-penalized Cox
regression analysis. A risk assessment model was built based on these key genes and
then validated by the dataset from the Gene Expression Omnibus (GEO) database and
multiple fluorescence in situ hybridization experiments of a tissue microarray.

Results: Five key genes (MZT2A, ALG3, ATIC, GPI, and GAPDH) related to prognosis and
CD8+ T-cell infiltration were identified, and a risk assessment model was established based
on them.We found that the risk score could well predict the prognosis of LUAD, and the risk
score was negatively related to CD8+ T-cell infiltration and correlated with the advanced
tumor stage. The results of the GEO database and tissue microarray were consistent with
those of TCGA. Furthermore, the risk score was higher significantly in tumor tissues than in
adjacent lung tissues and was correlated with the advanced tumor stage.

Conclusions: This study may provide a novel risk assessment model for prognosis
prediction and a new perspective to explore the mechanism of tumor immune
microenvironment related to CD8+ T-cell infiltration in LUAD.

Keywords: lung adenocarcinoma, immune microenvironment, CD8+ T cell, bioinformatics analysis, multiplex
immunohistochemistry
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INTRODUCTION

Lung adenocarcinoma (LUAD) is the most common type of lung
cancer, accounting for 40% of all lung cancers (1–3). In recent
years, the development of immunotherapy has changed the
landscape of non-small cell lung cancer (NSCLC) therapy (4–
6). Notably, the immunotherapy effects mainly rely on the
immune responses, which are significantly influenced by the
tumor microenvironment (7, 8). CD8+ T cells are central
effector cells in the tumor microenvironment, and previous
studies have reported that highly infiltrating CD8+ T cells are
beneficial to prognosis in most tumors, including LUAD (9–14).
However, the mechanism of CD8+ T-cell infiltration in the tumor
microenvironment in LUAD is still unclear. Therefore, identifying
novel biomarkers related to CD8+ T-cell infiltration may help
explore the immune infiltration mechanism in LUAD.

With the rapid development of bioinformatics, new tools have
arisen to identify novel biomarkers (15–21). For example,
weighted gene co-expression network analysis (WGCNA) is an
effective tool that mines related patterns between genes to
identify relevant modules and hub genes in cancer (16), and it
has been widely used to find biomarkers at the transcriptional
level (17, 18). Another bioinformatics tool, namely, Cell Type
Identification by Estimating Relative Subsets of RNA Transcripts
(CIBERSORT), is used to quantify the cellular composition of
immune cells using a deconvolution algorithm based on gene
expression data (19). This algorithm has been successfully used
to approximate the level of immune cell infiltration in various
cancers, such as prostate cancer and renal cancer (20, 21).

Previously, many studies have focused on exploring the immune-
genomic biomarkers, which may direct immunotherapy. For
example, tumor mutational burden (TMB) may be a preferable
choice for directing the first-line immuno-oncology agent
management of advanced non-oncogene-addicted NSCLC patients
(22, 23). However, fewer studies are focusing on exploring prognostic
biomarkers from the aspect of immune cell infiltration, which could
be used not only to estimate prognosis but also to direct
immunotherapy. In this study, to identify the hub genes related to
CD8+ T immune cell infiltration and potential biomarkers of LUAD,
we first used WGCNA to obtain differentiated gene expression
modules based on gene expression data in The Cancer Genome
Atlas (TCGA) database. The CIBERSORT algorithm was used to
calculate the T-cell compositions of the samples. Those important
modules and hub genes related to CD8+ T-cell infiltration were
identified by correlation analysis of the WGCNA and CIBERSORT
algorithm results. Furthermore, the immune and clinical
characteristics of the hub genes were verified, and a risk score
model based on the hub genes was built, which were significantly
related to the prognosis of LUAD after least absolute shrinkage and
selection operator (Lasso) regression analysis and multivariable Cox
analysis. The model’s performance was evaluated using receiver
operating characteristic (ROC) curves, calibration curve, and
stratification analysis. Gene Expression Omnibus (GEO) datasets
were then conducted for external validation. Furthermore, we
performed multiple fluorescence in situ hybridization of 98 LUAD
tissues and 82 adjacent tissues to further verify the results of
bioinformatics analysis. This is the first time that the WGCNA
Frontiers in Oncology | www.frontiersin.org 2124
and CIBERSORT algorithm were used to identify the relevant
biomarkers of infiltration of CD8+ T cells in LUAD and to further
build a LUAD prognosis prediction model.
MATERIALS AND METHODS

Data Collection
Expression and clinical data (478 cases of LUAD and 51 normal
lung tissues) were downloaded from UCSC TCGA (https://gdc.
xenahubs.net/download/TCGA-LUAD.htseq_counts.tsv.gz;
https://gdc.xenahubs.net/download/TCGA-LUAD.GDC_
phenotype.tsv.gz; https://gdc-hub.s3.us-east-1.amazonaws.com/
download/TCGA-LUAD.survival.tsv). The Ensembl database
(http://www.ensembl.org/info/data/ftp/index.html) was used for
downloading human gtf files (Homo_sapiens.GRCh38.99.gtf.gz)
and acquiring symbol data. The validation dataset (GSE72094)
containing 393 cases of LUAD was downloaded from the GEO
database through the R package “GEOquery.”

Analysis of the Differential
Gene Expression
Differentially expressed gene (DEG) analysis was performed using
the R package “edgeR” and visualized by volcano plot and heatmap.
The heatmap and the volcano plot were done with the R packages
“pheatmap” and “EnhancedVolcano,” respectively. The threshold
of DEGs was set at |logFC| >1 and false discovery rate <0.05.

Co-Expression Network Construction by
Weighted Gene Co-Expression
Network Analysis
With the use of the R package “WGCNA,” a weight co-expression
network was constructed based on the expression value of 8,807
DEGs (16). According to Pearson’s correlation value between paired
genes, a similarity matrix containing the expression levels of
individual transcripts was built. Then, based on the equation,
adjacency between the paired genes = |Pearson’s correlation
between the paired genes|b, the similarity matrix was converted
into an adjacencymatrix. The parameter b could amplify differences
of correlation between genes. When b = 4, the adjacency matrix was
converted into a topological overlap matrix. Finally, we used a
bottom-up algorithm to classify genes with similar expression
patterns into different modules.

Construction of Module
Feature Relationships
With the use of the R package “CIBERSORT,” the proportions of
22 types of immune cells in the samples were deduced according to
the expressions of genes. The expression of signature genes was
extracted to form a signature gene expression matrix. Combined
with the known immune cell signature, the immune cell
proportions of samples were calculated using “CIBERSORT,”
and finally, the proportions of relevant subtypes of T cells were
extracted. Furthermore, the correlations between genes of modules
in WGCNA and the subtypes of T cells were calculated by
September 2021 | Volume 11 | Article 693353
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Pearson’s test. The modules most significantly correlated with
CD8+ T cells were selected for the subsequent analyses.

Enrichment Analysis of Functions and
Signaling Pathways
The enrichment of functions and signaling pathways of genes in
the identified hub module was conducted using the R package
“clusterProfiler,” and the threshold was p-value <0.05 and q-value
<0.2. After the enrichment pathways were determined, a bubble
map was plotted.

Identification of Hub Genes Associated
With Infiltration of CD8+ T Cells
and Prognosis
To further determine the central nodes in the modules related to
immune cell infiltration, we imported the co-expression network
of relevant modules of WGCNA into Cytoscape (https://
cytoscape.org/) and then screened the genes with high nodes
according to a different degree. Furthermore, approximately one-
third of the total genes in the modules were selected as hub genes
according to the threshold of degree = 260. Meanwhile, all genes
in the hub module were imported into the STRING database
(https://string-db.org/), and then a protein–protein interaction
(PPI) network was constructed. The network was imported into
Cytoscape to search central nodes, and approximately one-third
of the total genes were selected as hub genes when the degree = 5.
Finally, a Venn plot integrated theWGCNA and STRING database
results to identify the hub genes. After acquiring the hub genes, we
used univariate Cox regression analyses to preliminarily screen the
hub genes associated with the prognosis, and the genes with
statistical significance (p < 0.05) underwent Lasso-penalized Cox
regression analysis for further dimension reduction. Genes with
statistical significance (p < 0.05) in Lasso-penalized Cox regression
analysis were considered key hub genes associated with CD8+ T-
cell infiltration and selected for the subsequent analyses.

Construction and Validation of a
Prognostic Risk Model
Based on key hub genes associated with CD8+ T-cell infiltration,
a prognostic risk model was constructed. The risk score was
calculated as follows: risk score = (bA × gene A expression) +
(bB ×gene B expression) ··· + (bN × gene N expression). To
evaluate the model’s performance, the “survival” package was
used to draw a calibration curve, and the “survivalROC” package
was used to draw ROC curves. An area under the ROC curve
(AUC) >0.6 was considered as a good performance of the model.
Patients were divided into high-risk or low-risk groups according to
the median value of the risk score, and the Kaplan–Meier method
with log-rank test was used to test the prognostic significance of the
risk score. p < 0.05 was considered statistically significant.

The prognostic model was then validated by the GSE72094
dataset from the GEO database. The risk scores of samples were
calculated as the formula shown above. The ROC curve and the
calibration curve were drawn to evaluate the performance, as well
as the Kaplan–Meier method and the log-rank test were used to
compare the prognostic significance between the high-risk group
Frontiers in Oncology | www.frontiersin.org 3125
and the low-risk group. Because EGFR mutation status is critical
in LUAD, we estimated the prognostic model in wild-type and
mutation-type EGFR samples in the construction and
validation cohorts.

Correlation Between Key Hub Genes and
Subtypes of Immune Cells
The correlations of key hub genes and immune cell subtypes
were calculated online using the TIMER database (http://timer.
cistrome.org/). Then, together with the correlation data, a
heatmap was plotted to show the correlations, and scatter
diagrams were shown for different key hub genes.

External Validations of Protein Expression
by Multicolor Immunofluorescence
The lung cancer tissue array with 82 pairs of matched cancerous
and adjacent tissues, as well as an additional 16 cases of cancer
tissues (HLugA180Su07), was obtained from Shanghai Outdo
Biotech. To assess the expressions of key hub genes, multicolor
immunofluorescence (mIHC) was performed using an Opal 7-
color fluorescent IHC kit (PerkinElmer) combined with
automated quantitative analysis (AQUA; Genoptix). First, the
concentrations and order of the five antibodies were optimized,
and a spectral library was built based on single-stained slides.
The slides were first deparaffinized with xylene and ethanol, and
antigen retrieval was done using a microwave. After incubation
with freshly made 3% H2O2 for 10 min, the tissues were blocked
in a blocking buffer for another 10 min at room temperature.
Then the tissues were incubated with the primary antibodies,
followed by secondary horseradish peroxidase (HRP) antibodies
(Cell Signaling Technology) and an opal working solution (Akoya
Biosciences). Primary antibodies recognizing the following antigens
were used: MZT2A (1:20; Abcam), ALG3 (1:25; Abcam), GAPDH
(1:1,500; Abcam), GPI (1:3,000; Abcam), and ATIC (1:200;
Abcam). The slides were then mounted with ProLong Gold
Antifade Reagent with DAPI and scanned using a confocal
microscope (LEICA, Japan). Fluorescence images were acquired
using a Vectra 2 intelligent slide analysis system using Vectra 2.0.8
(PerkinElmer). The mean fluorescence intensities (MFIs) of
MZT2A, ALG3, GAPDH, GPI, and ATIC were measured.

Immunohistochemistry of CD8+ T Cell
The distribution of CD8+ T cells in the lung cancer tissue array
(HLugA180Su07) was evaluated by immunohistochemistry
staining. The tissue array was incubated in a dry oven at 63°C for
approximately 1 h, deparaffinized in xylene, and then rehydrated
with graded ethanol solutions. After antigen retrieval, the array was
incubated with a primary antibody against CD8 (DAKO, IR623)
overnight at 4°C in a humidified chamber, followed by incubation
at room temperature for 30 min with the secondary antibody
(Envision+/HRP, Rabbit, DAKO). Subsequently, the tissue array
was incubated with a 3,3′-diaminobenzidine (DAB) solution for 5
min. Finally, the tissue array was counterstained with hematoxylin.
The immunostained slide was evaluated by two experienced
pathologists blinded to clinicopathological characteristics, and the
percentage of CD8 positive cells was annotated.
September 2021 | Volume 11 | Article 693353
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Subgroup Analysis to Evaluate the
Performance of the Model
To test the performance of the model, the risk score in different
subgroups of age, sex, T stage, N stage, etc., was evaluated in
TCGA dataset, GEO dataset, and the external validation dataset.
Moreover, the Kaplan–Meier method and log-rank test were
used to evaluate the performance of prognosis prediction in
different subgroups. Differences in risk scores between different
clinical characteristics were analyzed by GraphPad Prism 7.0. A
Student’s t-test was used for comparison between two groups.
ANOVA was used for comparison between three or more
groups. p <0.05 was considered statistically significant.

RESULTS

The Clinical Characteristics of The Cancer
Genome Atlas Cohort
After exclusion of those cases with deficient clinical information,
529 cases were included in this study. Of these, 478 were cancer
Frontiers in Oncology | www.frontiersin.org 4126
tissues and 51 were normal tissues. The clinical characteristics
are shown in Supplementary Table 1. The flowchart of this
study is shown in Figure 1.

Identification of Differentially Expressed
Genes and Construction of Gene
Co-Expression Network
After comparing the expressions of LUAD tissues with those of
normal tissues in TCGA-LUAD cohort, we identified 8,807
DEGs, including 2,172 upregulated genes and 6,635
downregulated genes (Figures 2A, B). The gene co-expression
network was then constructed using the 8,807 DEGs. b = 4
(scale-free R2 > 0.85) was set as the soft-threshold power to build
a scale-free network (Figure 2D). Furthermore, we used the
dynamic hybrid cutting method to construct a hierarchical
clustering tree. Each leaf on the tree represented an individual
gene, and genes with similar expression data were gathered to
form a tree branch representing a gene module. Eleven modules
were generated (Figures 2C, E).
FIGURE 1 | Flowchart of the study.
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Identification of Key Module Related to
CD8+ T-Cell Infiltration
The proportion of immune cells in each sample was calculated
based on gene expression by CIBERSORT. Seven T-cell subtypes
were included: CD8+ T cells, CD4 naive T cells, CD4 memory
resting T cells, CD4 memory activated T cells, follicular helper T
cells, regulatory T cells (Tregs), and gamma delta T cells.
Significantly, no CD4 naive T cells and gamma delta T cells were
found. The proportion of each T cell subtype was extracted as the
phenotype data, and its associations with the WGCNA modules
were analyzed. The highest correlations were found between genes
in the pink modules (275 genes) and CD8+ T cells (R2 = 0.22, p <
0.01). Hence, the genes in the pink modules were used in the
subsequent analyses (Figure 3).
Function Enrichment Analysis
In the pink module, 275 genes were analyzed by Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
function enrichment analyses. GO analysis showed that the main
enriched pathways were RNA metabolic processes, glucose
metabolic processes, mitochondrial matrix, mitochondrial
inner membrane, heterogeneous enzymatic activity, and tRNA
catalytic activity (Figures 4A–C). The main pathways found
enriched by KEGG were sugar metabolism and arginine/proline
metabolism, and the enriched functions were mainly related to
cell respiration (Figure 4D).
Identification and Validation of Hub Genes
Related to CD8+ T-Cell Infiltration
The genes in the pink module were imported into Cytoscape to
build a co-expression network (Figure 5A), and a total of 93 hub
genes were obtained at degree >260 (Figure 5B). One hundred
forty-eight interactions with the proteins encoded by the genes of
the pink module were identified by the PPI network, and then 46
hub proteins were selected at the degree >5 (Figure 5C). By
overlapping the genes in Cytoscape and the PPI network, we
acquired 117 hub genes related to CD8+ T-cell infiltration
(Figure 5D). Of them, VARS (originating from the PPI
network) does not belong to the pink module or DEGs and
thus was excluded from the subsequent analysis. Finally, 116 hub
genes associated with CD8+ T-cell infiltration were obtained.
Identification of Prognosis-Related Key
Genes and Construction of a Risk
Assessment Model
To identify prognosis-related genes from the hub genes, 116 genes
were subjected to univariable Cox regression analysis. In total, 34
genes were found significantly associated with the prognosis
(Figure 6A). We then used Lasso-penalized Cox regression
analysis and identified five genes independently correlated with
prognosis (Figure 6B). Based on the expressions and correlation
coefficients of these five genes, a risk assessment model was
Frontiers in Oncology | www.frontiersin.org 5127
established, where Risk Score = MZT2A * 0.035 + ALG3 * 0.084 +
ATIC * 0.104 + GPI * 0.125 + GAPDH * 0.134 (Figure 6C).
Validation of Risk Assessment Model
Patients were divided into high-risk and low-risk groups, with the
median score at 6.53. The patients with the high-risk group
showed a poorer 5-year overall survival (OS) compared with the
patients in the low-risk group (low-risk vs. high-risk = 44.6% vs.
31.0%, p < 0.01) (Figure 7A). The ROC curves showed that the
AUC of OS at 5-year was 0.643, which suggests that the prediction
of the risk model has a good performance (Figure 7B). The
calibration curve of the model suggested that the predicted 5-year
OS closely correlated with the actual 5-year OS (Figure 7C). The
subgroup analysis of the risk model suggested that the model had a
good prediction performance in patients with wild-type EGFR
status or mutation-type EGFR status (Figures 7D–I).

The GSE72094 dataset was used to validate the risk model
(Supplementary Table 2). After scoring, the cases were divided
into high-risk and low-risk groups, with the median score at 5.34.
The result of the Kaplan–Meier curve was similar to that of
TCGA cohort (Figure 8A). Furthermore, the calibration curve,
ROC curve, and the AUC (0.62) implied that this risk model had
good prediction performance in the external dataset (Figures 8B, C).
We also assessed the model in the patients with wild-type or
mutation-type EGFR status. The results showed that the prognosis
of the low-risk group did not have a significant difference from that of
the high-risk group in the mutation-type cohort, which may be
caused by the small sample size. However, the performance of the
model in the wild-type cohort was good (Figures 8D–I).

Since our bioinformatics analysis was based on RNA
sequences, we performed a multicolor immunofluorescence
(mIHC) experiment on 98 LUAD tissues and 82 adjacent tissues
from the protein perspective to validate the model. The follow-up
time of the cohort was 1–94 months, and the median follow-up
time was 39 months (interquartile range: 15–57). The median
survival time was 50 months. The baseline characteristics of the
cohort are shown in Supplementary Table 3. The expressions of
five proteins were primarily located in the cytoplasm (Figure 9).
We calculated the risk score based on fluorescence intensities and
then divided the cohort into the low-risk group and high-risk
group according to the median risk score. The results showed that
the prognosis of the high-risk group was significantly poorer than
that of the low-risk group (Figure 10A). The ROC curve, the
calibration curve, and the AUC = 0.655 showed good performance
(Figures 10B, C). In the subgroup analysis of EGFR status, the
wild-type EGFR cohort showed similar results with the overall
cohort. However, the mutation-type EGFR cohort results did not
show significant differences between the prognosis of the high-risk
group and the low-risk group. In addition, the performance of the
risk model was poor, which may be caused by the small sample
size (Figures 10D–I). We found that the risk score was
significantly higher in the advanced T stage, N stage, and TNM
stage. Furthermore, we found that the risk score was significantly
negatively correlated to the infiltration of CD8+ T cells, which
validated our bioinformatics analysis (Figure 11A). The
distribution of CD8+ T cells is shown in Figures 11B–E.
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A B

C

D E

FIGURE 2 | Analysis of DRGs and WGCNA. (A) Volcano plot of differential genes. (B) Heatmap of DEGs. (C) Sample clustering of WGCNA. (D) Screening with soft
threshold. (E) Clustering of DEGs. DRG, differentially regulated gene; WGCNA, weighted gene co-expression network analysis; DEG, differentially expressed gene.
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FIGURE 4 | Function enrichment analysis of genes in pink module, including three types of GO enrichment analysis (A–C) and KEGG enric
Genes and Genomes.
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FIGURE 5 | Acquisition of hub genes related to immune cell infiltration. (A) Correlation scatter diagram between pink genes and phenotypes of immune
screened hub genes). (C) PPI network (red: the screened hub proteins). (D) Venn map from the two types of screening. PPI, protein–protein interaction.
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Correlation Analysis Between Genes in the
TIMER Database and Subtypes of
Immune Cells
The relationship between the key genes and CD8+ T cells was
calculated online based on the TIMER database. Except for the
Frontiers in Oncology | www.frontiersin.org 10132
lack of information on MZT2A, the remaining four genes were
negatively correlated with CD8+ T cells significantly, according
to both the XCELL algorithm and EPIC algorithm. Especially,
the correlation coefficient of GAPDH with CD8+ T cells is −0.23
according to the XCELL algorithm (p < 0.01) and is −0.33
A B C

FIGURE 6 | Lasso regression with the Cox single-factor regression results. (A) Top 20 genes of HR obtained from batched Cox single-factor regression. (B) Results
of lambda screening. (C) Statistics of regression coefficients with the significantly related genes obtained from Lasso regression. Lasso, least absolute shrinkage and
selection operator.
A B C
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G H I

FIGURE 7 | Validation of model by TCGA cohort. (A) Kaplan–Meier curve of overall cohort. (B) ROC curve of overall cohort. (C) Calibration curve of overall cohort. (D)
Kaplan–Meier curve of mutation-type cohort. (E) ROC curve of mutation-type cohort. (F) Calibration curve of mutation-type cohort. (G) Kaplan–Meier curve of wild-type
cohort. (H) ROC curve of wild-type cohort. (I) Calibration curve of wild-type cohort. TCGA, The Cancer Genome Atlas; ROC, receiver operating characteristic.
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according to the EPIC algorithm (p < 0.01). These results implied
that the expression of those genes might be negatively correlated
with the infiltration of CD8+ T cells. The heatmap of key genes is
shown in Figure 12.

Subgroup Analysis
The Kaplan–Meier curves were plotted in subgroups of data
from TCGA database, including age, gender, T stage, N stage, M
stage, and TNM stage. Although the prognosis of the high-risk
group and the low-risk group was not significantly different in
the age <60 group or the N0 group, the high-risk group had a
poor prognosis in other subgroups (Figure 13). Similarly, the
model underwent subgroup analysis with the GEO and mIHC
cohorts, and the same results were found (Figures 14, 15).

The differences of risk scores among age, gender, M stage, N
stage, T stage, and TNM stage were tested in TCGA cohort. The
results showed that the risk scores were higher in men, M1 stage,
N2 or N3 stage, T3 or T4 stage, and TNM stage III or IV
(Supplementary Figure 1). Similarly, differences in risk scores
Frontiers in Oncology | www.frontiersin.org 11133
were detected in the GEO cohort and the mIHC cohort. The
results showed that the advanced TNM stage had a higher score.
Furthermore, the distribution of the risk scores between different
EGFR statuses was tested in the GEO cohort, and the results
showed that the risk scores were significantly higher in the wild
type. However, in the mIHC cohort, we found that the risk score
distribution in EGFR status was not significantly different.
Hence, whether these five genes are related to EGFR status
needs further exploration (Supplementary Figures 2, 3).
DISCUSSION

LUAD is the most common type of lung cancer (24). Nowadays,
surgery combined with chemotherapy, targeted therapy, or
immunotherapy is the primary treatment strategy for most LUAD
patients (25–29). For non-oncogene advanced LUAD, chemo-
immunotherapy is an essential treatment strategy. In recent years,
several reports found that the immune microenvironment plays a
A B C

D E F

G H I

FIGURE 8 | Validation of model by GEO cohort. (A) Kaplan–Meier curve of overall cohort. (B) ROC curve of overall cohort. (C) Calibration curve of overall cohort. (D)
Kaplan–Meier curve of mutation-type cohort. (E) ROC curve of mutation-type cohort. (F) Calibration curve of mutation-type cohort. (G) Kaplan–Meier curve of wild-type
cohort. (H) ROC curve of wild-type cohort. (I) Calibration curve of wild-type cohort. GEO, Gene Expression Omnibus; ROC, receiver operating characteristic.
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critical role in it. CD8+ T cells are the central effector cells of anti-
tumor immunity (30–33). Identification of the key genes related to
the infiltration of CD8+ T cells may offer new insights for research
on the mechanism of tumor immunotherapy.

This work analyzed the expressions of 529 LUAD-related
samples (478 cancer tissues and 51 paracancerous tissues) from
TCGA database. As a result, 8,807 DEGs were identified,
including 2,172 upregulated genes and 6,635 downregulated
genes. We constructed a co-expression network by WGCNA
and then identified the gene module most significantly correlated
with CD8+ T cells combining with the CIBERSORT
algorithm based on the DEGs. Subsequently, we identified
five key genes (MZT2A, ALG3, ATIC, GPI, and GAPDH)
related to prognosis and CD8+ T-cell infiltration through a co-
expression network PPI network analysis and Lasso-penalized
Cox regression analysis.

MZT2A (Mitotic Spindle Organizing Protein 2A) is a
protein–encoding gene, but very little research is available on
this gene. Recently, Wang et al. reported that MZT2A mRNA
and protein levels were overexpressed in NSCLC and associated
with poor NSCLC prognosis. Upregulation of MZT2A could
promote NSCLC cell viability and invasion by overexpressing
LGALS3BP via the MTZ2A MOZART2 domain and Akt
phosphorylation (34). However, mechanisms on how MZT2A
Frontiers in Oncology | www.frontiersin.org 12134
influences tumor prognosis and CD8+ T-cell infiltration should
be further explored.

ALG3 (a-1,3-mannose glycosyl transferase) belongs to the
ALG family and is located on the chromosomal region 3q27.1.
ALG3 upregulation is related to lymph node metastasis of
esophageal squamous cell carcinoma (35) and the proliferation
of cervical cancer cells (36). ALG3 expression is higher in NSCLC
tissues than in normal tissues and is associated with a higher T
stage, lymph node metastasis, tissue differentiation, and
prognosis (37). Similar to MZT2A, there are no reports on the
relationship between ALG3 and CD8+ T-cell infiltration, which
we will further explore.

ATIC (5-aminoimidazole-4-carboxamide ribonucleotide
formyltransferase/IMP cyclohydrolase) encodes a bifunctional
protein and catalyzes the last two steps in de novo synthesis of
purines. ATIC is overexpressed in hepatic cell carcinoma
and is associated with a poor prognosis in patients (38). The
fused protein between ATIC and anaplasia lymphoma kinase
(ALK, a common oncogene) was discovered in lymphoma
patients (39, 40). Interestingly, frame-shift mutations and
missense mutations of ATIC were found in a case of radiation
sensitivity, and biochemical research showed that purine
biosynthesis involving ATIC might help with DNA damage
repair (41). Hence, these results imply that ATIC may be
A B

FIGURE 9 | The expression of ATIC, GPI, GAPDH, ALG3, and MZT2A. (A) The expression of five proteins in tumor tissues. (B) The expression of five proteins in
adjacent tissues.
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FIGURE 10 | Validation of model by mIHC cohort. (A) Kaplan–Meier curve of overall cohort. (B) ROC curve of overall cohort. (C) Calibration curve of overall cohort.
(D) Kaplan–Meier curve of mutation-type cohort. (E) ROC curve of mutation-type cohort. (F) Calibration curve of mutation-type cohort. (G) Kaplan–Meier curve of
wild-type cohort. (H) ROC curve of wild-type cohort. (I) Calibration curve of wild-type cohort. ROC, receiver operating characteristic.
A B C

D E

FIGURE 11 | (A) The correlation between risk score and CD8+ T cell in mIHC cohort. (B–E) The distribution of CD8+ T cell in tumor tissues and adjacent tissues.
High positive rate in tumor tissues (A) and adjacent tissues (B). Low positive rate in tumor tissues (C) and adjacent tissues (D).
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FIGURE 12 | Correlation analysis between genes in the TIMER database and subtypes of immune cells.
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involved in tumorigenesis and may influence the survival of
cancer cells. Additional research would be needed to explore the
mechanism of ATIC and its relationship with CD8+ T-
cell infiltration.

GPI (glucose-6-phosphate isomerase) is an enzyme that
participates in the glycolysis pathway. GPI is a cytoplast dimer
that can catalyze the conversion from glucose-6-phosphate to
fructose-6-phosphate. GPI is a protein similar to the autocrine
movement factors involved in the migration and invasion
of tumor cells and angiogenesis (42). In various cancers,
Frontiers in Oncology | www.frontiersin.org 15137
the expression of GPI is induced by c-Myc, and HIF-1 is
overexpressed at the same time (43, 44). HIF-1 can induce
GBE1 upregulation, which would decrease CCL5 and CXCL10
secretion, hindering the recruitment of CD8+ T lymphocytes
(45, 46). GPI can also induce the protein expression of matrix
metalloproteinase-3 and thereby promote the invasiveness of
tumors (47). GPI, which is overexpressed in renal cancer, plays a
role in tumor progression and is negatively correlated with the
clinical prognosis of patients (48). However, the role of GPI in
lung cancer has not been investigated to date.
A B C

D E F

G H I

J K L

FIGURE 13 | Subgroup survival analysis of TCGA cohort. (A) Age ≥ 60. (B) Age < 60. (C) Female. (D) Male. (E) Stages T1 and T2. (F) Stages T3 and T4. (G) Stage
N0. (H) Stages N1, N2, and N3. (I) Stage M0. (J) Stage M1. (K) TNM stages I and II. (L) TNM stages III and IV. TCGA, The Cancer Genome Atlas.
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GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is one
of the housekeeping proteins, and the mechanism of its
anaerobic conversion to glucose critically regulates tissue
regeneration and tumor growth (49, 50). Cancer cells can
persistently survive under metabolic stress, anoxia, or
starvation; and their glycolysis capacity must be improved by
the Warburg effect, such as to improve the activity of enzymes
involved in this function. Herein, the total glycolysis flux rate is
precisely decided by the conversion stage from GALP
(glyceraldehyde-3-phosphate) to biphosphoglyceride and is
regulated by the activity of GAPDH (51). As an essential factor
in the speed-limiting step of glycolysis, it plays a pivotal role in
the energy metabolism of cancer cells. Hence, increased GAPDH
activity will increase glycolysis rate and promote tumor growth,
leading to poor prognosis (52). Anoxia is one of the major
phenomena during tumor growth and activates the HIF-1a
transcription factor to upregulate GAPDH expression (53, 54).
In addition, upregulation of GAPDH may enhance HIF-1a
transcription and activity, restricting the recruitment of CD8+
T lymphocytes (45, 46, 55). Moreover, the high activity of
GAPDH increased the mobility of cancer cells, and epithelial–
mesenchymal transition (EMT) markers are significantly
associated. Colon cancer cell chromatin immune precipitation
experiments proved the direct interaction between GAPDH and
SPI transcripts, leading to the upregulation of the main
regulatory factor in EMT, the zinc finger protein SNAI1 (Snail)
(56–58). The initiation of GAPDH synthesis may be a protection
mechanism for tumor cells to regulate metabolism and improve
survival under anoxic conditions. Therefore, our results indicate
that the expression of GAPDH may influence prognosis.
Frontiers in Oncology | www.frontiersin.org 16138
Based on these five genes, we established a risk score model.
We found that the risk score could reasonably predict the
prognosis of LUAD, and it was negatively related to the CD8+
T-cell infiltration and correlated with the advanced tumor stage.
These results implied that these five genes might play a role in the
infiltration of CD8+ T cells into the immune microenvironment.
Among these genes, GAPDH and GPI may influence the
infiltration of CD8+ T cells through the HIF-1/GBE1 pathway
(45, 46, 55). Furthermore, the risk score was significantly
upregulated in tumor tissues and correlated with advanced
tumor stage. The validation of the overall cohort results by
GEO dataset and the cohort of tissue microarray was
consistent with the results of TCGA. Because the EGFR status
is critical in LUAD, we also performed the subgroup analysis of
the EGFR status. The performance of the risk model in both wild
type and mutation type was good in TCGA cohort, as well as in
the GEO cohort. However, the prediction accuracy is deficient in
patients with mutation-type EGFR status in the mIHC cohort
due to the small sample size. In a future study, we will increase
the sample size of patients with mutation-type EGFR status to
verify the risk model.

Nevertheless, this study also has some limitations. First, the
mechanisms about how the genes affect the infiltration of CD8+
T cells were not explored in this report, but they will be
investigated in a future study. Secondly, we constructed a risk
score model that depended on gene expression but did not
consider gene mutation, methylation, or other genetic events
that can affect the occurrence and progression of cancers. In a
subsequent study, we may consider more genetic modification to
make our risk model more accurate. Finally, a large-sample
A B C

D E F

FIGURE 14 | Subgroup survival analysis of GEO cohort. (A) Age ≥ 60. (B) Age < 60. (C) Female. (D) Male. (E) TNM stages I and II. (F) TNM stages III and IV. GEO,
Gene Expression Omnibus.
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prospective study is needed to further validate the clinical
applicability of the risk score.
CONCLUSIONS

In conclusion, this study may provide a novel risk assessment
model for prognosis prediction and a new prospect for exploring
the mechanism of tumor immune microenvironment related to
CD8+ T-cell infiltration in LUAD.
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Metabolic reprogramming is recognized as one of the hallmarks of cancer. Alterations in
the micro-environmental metabolic characteristics are recognized as important tools for
cancer cells to interact with the resident and infiltrating T-cells within this tumor
microenvironment. Cancer-induced metabolic changes in the micro-environment also
affect treatment outcomes. In particular, immune therapy efficacy might be blunted
because of somatic mutation-driven metabolic determinants of lung cancer such as
acidity and oxygenation status. Based on these observations, new onco-immunological
treatment strategies increasingly include drugs that interfere with metabolic pathways that
consequently affect the composition of the lung cancer tumor microenvironment (TME).
Positron emission tomography (PET) imaging has developed a wide array of tracers
targeting metabolic pathways, originally intended to improve cancer detection and
staging. Paralleling the developments in understanding metabolic reprogramming in
cancer cells, as well as its effects on stromal, immune, and endothelial cells, a wave of
studies with additional imaging tracers has been published. These tracers are yet
underexploited in the perspective of immune therapy. In this review, we provide an
overview of currently available PET tracers for clinical studies and discuss their potential
roles in the development of effective immune therapeutic strategies, with a focus on lung
cancer. We report on ongoing efforts that include PET/CT to understand the outcomes of
interactions between cancer cells and T-cells in the lung cancer microenvironment, and
we identify areas of research which are yet unchartered. Thereby, we aim to provide a
starting point for molecular imaging driven studies to understand and exploit metabolic
features of lung cancer to optimize immune therapy.

Keywords: tumor microenvironment, lung cancer, T-cells (or lymphocytes), immunotherapy, metabolism,
molecular imaging
January 2022 | Volume 11 | Article 7860891142

https://www.frontiersin.org/articles/10.3389/fonc.2021.786089/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.786089/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.786089/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:erik.aarntzen@radboudumc.nl
https://orcid.org/0000-0002-5751-4796
https://doi.org/10.3389/fonc.2021.786089
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.786089
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.786089&domain=pdf&date_stamp=2022-01-07


van Genugten et al. Imaging Metabolism in Lung Cancer
1 INTRODUCTION

Metabolic reprogramming is one of the hallmarks of cancer (1,
2), and the many ways by which cancer cells manipulate their
metabolic micro-environment are increasingly being
understood. Excellent and comprehensive reviews approaching
this topic from the angle of specific cancer types such as non-
small cell lung cancer (NSCLC) (3, 4) and head and neck cancer
(HNSCC) (5) or from the most common metabolic substrates –
oxygen (6), essential nutrients/amino acids (7), lipids/free fatty
acids (8), acetate (9) or genetic drivers (10–13) - are available
from recent literature.

Alterations in the tumor microenvironmental (TME)
metabolites are recognized as important tools for cancer cells
to interact with supportive cells in their direct vicinity (14).
These supportive cells include endothelial cells, inducing
angiogenesis when activated by increased demands for oxygen
(15, 16) or cancer-associated fibroblasts driving glycolysis (5, 17).
Also, tumor-associated macrophages can modulate glucose
metabolism in the TME in favor of cancer progression (18).
Interactions between cancer cells and supportive cells are
reciprocal in nature (18) and the derivative metabolic
phenotypes result from underlying oncogenic mutations (11,
19), pathology (20, 21) as well as from tissue of origin (22). Lung
cancer frequently harbors mutations which directly affect cellular
glucose metabolism and associated metabolic pathways, as
reviewed previously (4). In addition to STK11/LKB1 mutations
(23, 24), mutations in the PI3K (phosphoinositide-3-kinase)-
AKT-mTOR (mammalian target of rapamycin) pathway (23),
the oncogenes RAS, c-MYC, and master regulator HIF-1a
(hypoxia inducible factor-1a), or the tumor suppressor gene
TP53 are known to reprogram lung cancer metabolism.

By modulating metabolic pathways and depriving the TME
from essential nutrients, cancer cells create unfavorable
conditions for invading adaptive immune cells (20, 25–27). To
execute their effector functions, T-cells should undergo rapid
Frontiers in Oncology | www.frontiersin.org 2143
metabolic reprogramming (28, 29), which mainly involves
upregulation of aerobic glycolysis by CD28 co-stimulation,
acting through PI3K and Akt pathways (30, 31), very much
alike the Warburg effect in cancer cells (32). Yet on the longer
term, a sustainable memory T-cell response requires a distinct
metabolic profile that relies on oxidative phosphorylation and
intact mitochondrial function to prevent T-cell exhaustion (33–
35). Figure 1 introduces the main potential sources of energy
available in the TME, which will be discussed in this review, and
the preference of cancer cells and T-cells to perform glycolysis or
oxidative phosphorylation, respectively. Glucose metabolism
therefore illustrates that nutrient availability represents a
highly conserved fundamental framework to guide decisions
on cell survival or apoptosis (36), a process which is
continuously taking place in the TME. Next to glucose
metabolism, other basal metabolic pathways involving amino
acids (7) like glutamine (37) and lipids (8, 38, 39) are reported to
affect T-cell immunity.

Cancer-induced metabolic changes in the TME not only favor
cancer progression and immune suppression but can also be a
limiting factor concerning treatment efficacy. The most studied
example in lung cancer is the adverse role of lack of oxygen
availability blunting radiotherapy efficacy (40–42). Similarly,
blocking adaptive metabolic pathways renders standard
chemotherapy more effective in lung cancer (43, 44). Also,
development of resistance to targeted therapies is related to
plasticity in metabolic pathways associated with Kirsten rat
sarcoma viral oncogene homolog (KRAS) mutations in NSCLC
(45, 46), a vulnerability which can be exploited in combination
treatments (47). More recently, the metabolic determinants of
immune checkpoint inhibition are being understood (48). For
example, glucose consumption by cancer cells might be a
metabolic adaptation to restrict T-cell effector function (26,
49). Furthermore, blocking programmed death ligand-1 (PD-
L1) on cancer cells reduces their glycolysis rate by inhibition of
mTOR-related pathways, which would permit T-cells to exploit
FIGURE 1 | Preferential metabolic pathways and potential energy sources available in the tumor microenvironment for cancer cells and T-cells.
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their glycolytic capacity and restore IFN-g production (26).
Acknowledging the intertwined roles of immune checkpoint
molecules, both on cancer cells and T-cells, in immune
signaling and regulation of cellular metabolism, this is now an
active area of research (50, 51). Ongoing onco-immunology
studies on checkpoint inhibitors search to utilize the effect of
checkpoint molecule inhibition on cancer cell metabolism, as
adjunct to enhancing immune cell function (52, 53).

In addition, onco-immunological treatment strategies emerge
that employ the metabolic vulnerabilities of cancer cells,
especially at the level of mitochondria (54–58). These strategies
include enzymatic drugs that interfere with dominant metabolic
pathways in the TME (59), such as metformin, atovaquone,
glucose (60), indoleamine 2,3-dioxygenase (IDO inhibitors),
glutamine inhibitors (37) and AKT-mTOR inhibitors (27). The
efficacy of mitochondrial targeting drugs indicates that oxidative
phosphorylation remains important for adenosine-triphosphate
(ATP) production in a multitude of tumors, including NSCLC
(61, 62).

Tumor senescence represents another important tumor
suppressor mechanism (63), apart from apoptosis, embanking
cancer cell proliferation as well as malignant progression. Tumor
senescence implies stable cell-cycle arrest induced by cellular
stress associated with alterations in gene expression patterns, a
metabolic shift towards a more glycolytic state and a
proinflammatory secretory phenotype (64, 65). Multiple
anticancer therapies such as chemotherapy, radiotherapy and
cancer immunotherapies are applicable to induce irreversible
tumor senescence. Thus, tumor senescence has to be taken into
account as an essential component in the treatment of cancer.

PET imaging has developed a wide array of tracers targeting
metabolic pathways, originally intended to improve cancer
detection and staging (66, 67). Paralleling the developments in
understanding metabolic reprogramming in cancer cells, as well
as its effects on T-cells, a wave of additional imaging tracers has
been published (68, 69) (Figure 2).

Definitively, imaging can contribute to more effective anti-
cancer therapies (70–72), as it assesses functional processes with
high sensitivity and, if applied longitudinally, can monitor
treatment effects on an individual patient basis. This adds
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important insights to immunohistochemistry that can provide
a detailed but static insight in the expression of transporters,
enzymes and other molecular markers involved in metabolic
pathways. Although the methodology allows quantitative
assessment of these functional processes this is limited to
accessible lesions and hampered by sampling errors. In
addition, molecular imaging facilitates evaluation of intra-
tumoral regional differences, a critical aspect for the net
treatment efficacy (73) which cannot be assessed with invasive
sampling procedures such as biopsies. As metabolic adaptation
of T-cells can have tissue-specific determinants (74) which might
differ from in vitro experiments (75), the wide field of view of
PET imaging is a critical asset in this domain of research.

However, molecular imaging tools that probe metabolic
processes are yet under-utilized in the perspective of immune
therapy development. In this review, we provide an overview of
currently available PET imaging tools for clinical studies and
discuss their potential roles in the development of effective
immune therapeutic strategies in lung cancer. We report on
ongoing efforts that include PET/CT to understand the outcomes
of interactions between lung cancer and T-cells in the tumor
microenvironment, and we identify areas of research which are
yet unchartered. Thereby, we aim to provide a starting point for
molecular imaging driven studies to understand and exploit
metabolic features of tumor environment to optimize
immune therapy.
2 GLUCOSE METABOLISM

2.1 Glucose Metabolism in Cancer Cells
The most studied metabolic phenomenon in cancer is its
tendency to increase its’ rate of glycolysis in adjunct to
oxidative phosphorylation, despite the presence of sufficient
levels of oxygen in the TME. This feature of cancer
metabolism is called the Warburg effect, named after the
German scientist who first described this (76). Although
glycolysis is less efficient in producing ATP, it does generate
increased levels of additional metabolites for the biosynthesis of
ribose, glycosylation precursors, amino acids, and lipids (77, 78).
FIGURE 2 | Molecular imaging tracers to visualize key receptors and pathways involved in cell metabolism.
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Inefficient ATP production would only be problematic in
scarcity of nutrients, which is in general not the case in cancer.
Therefore ‘aerobic glycolysis’ means a survival advantage for
cancer cells in terms of increased anabolism and avoidance of
oxidizing precious carbon-carbon bonds (79).

To meet their greatly enhanced demand for glucose under
conditions of ‘aerobic glycolysis’, cancer cells have upregulated
levels of the key glucose transporter 1 (Glut-1) on cell
membranes (10) and associated hexokinases. Hexokinases are
enzymes that phosphorylate six-carbon sugars, primarily
glucose, by transferring a phosphate group from ATP to its’
substrate. As phosphorylation charges the hexoses, it is trapped
intracellularly and available for further metabolic processes,
resulting in a stable down-slope gradient that drives glucose
transport into the cell. For this reason, hexokinase activity is the
rate limiting step for most metabolic pathways involving glucose.
The isoform hexokinase II (or hexokinase B) is the dominant
isoform in many cell types (80), including most cancers, and
located at the outer mitochondrial membrane to have direct
access to ATP (81). Upregulation of aerobic glycolysis results in
an increase of pyruvate, which is further metabolized into lactate
(77). Intracellular lactate is transported out of the cell, along with
protons, via monocarboxylate transporters (e.g., MCT-1 and
MCT-4) into the TME. In addition to lactate shuttles,
intracellular acidification is prevented by carbonic anhydrase 9
(CAIX), a transmembrane metalloenzyme that facilitates
secretion of acids produced under oxidative stress. Indeed, it
has long been noticed that tumors often have an acidic
environment (82).

2.2 Regulation of Metabolic
Reprogramming in Lung Cancer
Metabolic reprogramming in cancer is partly due to oncogenic
activation of signal transduction pathways and transcription
factors, HIF-1a is a master regulator of glycolysis and the
pentose phosphate pathway (20, 83, 84). In lung cancer,
oncogenes and pathways divert intracellular glucose flux
towards increased usage of glucose into the hexosamine
biosynthesis, required for protein glycosylation and pentose
phosphate pathway [reviewed in (4)]. Well-studied signaling
pathways, including PI3K/Akt/mTOR and RAS/RAF/MEK/
MAPK, with high prevalence in lung cancer, associate with
increased glycolysis as well as metabolic plasticity, by initiating
compensatory mechanisms and facilitating alternative metabolic
sources, e.g., amino acids, nucleotides or fatty acid biosynthesis
and macropinocytosis. At a transcriptional level, the
transcription factor nuclear factor erythoid-2-related factor
(NFE2L2/Nrf2) is identified as one of the main regulators of
metabolic reprogramming in lung cancer, and its activity is
associated with poor survival (85).

Epigenetic mechanisms also contribute to the regulation of
gene expression involved in cancer metabolism (86). Disruption
of the epigenome is present in cancer cells, including DNA
methylation, histone proteins and histone modification enzymes,
as well as proteins that regulate the function of metabolic
enzymes (87). Reciprocally, activity of histone and DNA
Frontiers in Oncology | www.frontiersin.org 4145
modifying enzymes regulates the expression of metabolism-
associated genes, leading to a complex interplay between
metabolism and epigenetic during cancer progression (88).
Understanding the relation between metabolism, signaling
pathways and epigenetics may open new avenues for anti-
cancer immune therapy (89), which will be discussed later.

2.3 How Glucose Consumption by Cancer
Cells Affects T-Cells
Upon activation, naïve T-cells also undergo metabolic adaptation
to meet the increased bioenergetic demands associated with
proliferation and effector function (29, 90–93). In contrast to
static cancer cells, which can thus invest in creating a favorable
metabolic niche, effector T-cells migrate through the body and
are merely passengers who need to adapt to changing
environmental conditions, from well-supplied lymph nodes
and spleen to rather oxygen and nutrient deprived cancer
lesions (94). In general, nutrient competition between cells
strongly influences cell fate (36, 95) and function (90). More
recently, this interplay between cancer cells and immune cells has
been reviewed (51, 96, 97). Aerobic glycolysis is not required for
activation or proliferation during early stages of T-cell activation
(98), however, it is essential for optimal T-cell effector function in
the TME (99, 100). In vitromodels previously demonstrated that
cancer cells outcompete T-cells for glucose, directly restricting
cytokine mediated anti-cancer immunity (101). Also in vivo,
tumor infiltrating CD8+ T-cells face restricted glucose
availability, which consequently hampers increased rate of
glycolysis by restricted mTOR activity and thus reduced IFN-g
production (98, 102).

In addition to direct competition for glucose, limiting the
magnitude of aerobic glycolysis in T-cells, high lactate excretion
by cancer cells further suppresses T-cell effector functions (103–
105), directly correlated it to reduced survival rates in e.g., head
and neck cancer (106). The acidic TME inhibits both T-cell
trafficking and cytotoxicity (102, 103, 107) and sheds new light
on the role of lactate as immune metabolic mediator (14). The
enzyme lactate dehydrogenase A (LDHA) which converts
pyruvate into lactate, not only plays a central role in cancer
cell aerobic glycolytic capacity but exerts similar function in T-
cell function through PI3K signaling (31, 108).

The costimulatory molecule CD28 on T-cells, ligating to
CD80 during antigen-specific activation, induces this PI3K
signaling (30), resulting in increased expression of Glut-1. By
facilitating glycolysis increase, CD28 signaling prepares T-cells to
anticipate on changing metabolic demands associated with
sustained effector functions. This necessary metabolic switch is
furthermore under the control of inhibitory members of the
CD28 superfamily (mainly PD-1 expression), with the intend to
delicately control T-cell activation (97, 109–111). PD-1 on T-
cells is mostly studied as an exhaustion marker, induced by
chronic antigen exposure and endurable stages of activation. Its
increased expression on T-cells indicates a critical stage of T-cell
development, at the verge of going in retraction and clearance
(109, 112). The expression of PD-L1, by cancer cells and myeloid
derived suppressor cells in the TME not only suppresses
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cytotoxic effector function of T-cells, but it also entangles the
metabolic reprogramming of T-cells via ligation of PD-1. PD-1
ligation suppresses the ability of T-cells to perform glycolysis and
glutaminolysis, thus pushing T-cells further towards retraction.
Therefore, one of the effects of therapeutic monoclonal
antibodies targeting CTLA-4 (interacting with CD28) and PD-
L1 (interacting with PD-1), is allowing T-cells to maintain their
increased glycolytic and glutaminolytic capacity to execute anti-
cancer effector functions in the TME (113, 114).

2.4 Imaging Targets Related to Glucose
Metabolism
The most widely applied tracer to image the upregulation of
glycolysis is 2’-deoxy-2’-[18F]fluoro-D-glucose ([18F]FDG). [18F]
FDG is extensively used for the detection of primary tumors,
metastases and recurrences, and monitoring responses to anti-
cancer treatments (115–117). [18F]FDG uptake by glycolytic
cancer cells is directly related to upregulated levels Glut-1
transporters (118) and hexokinases act iv i ty (119).
Consequently, levels of [18F]FDG uptake also correlate with
increased levels of derivates of the glycolytic pathway; pyruvate
and lactate (120).

2.4.1[18F]FDG to Characterize the Tumor Immune
Microenvironment
Given the reciprocal relation of glucose metabolism between cancer
cells and T-cells, several studies investigated the relation between
[18F]FDG-uptake, as parameter for glycolysis in the TME, and
expression levels of immune checkpoint molecules and presence of
CD8+ T-cells. Independent of the well-known higher [18F]FDG-
uptake in squamous cell histological subtypes as compared to
adenocarcinoma in NSCLC (20), some studies found a trend
towards higher SUVmax and SUVmean in lung cancers with
increasing numbers of CD8+ T-cell numbers and increased
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expression of PD-1 (121). Not surprisingly, CD8+ T-cells and
PD-1 expression were highly intercorrelated and overlapping their
positive correlation with [18F]FDG-uptake. However, there was no
such relation between [18F]FDG-uptake and presence of tumor-
associated macrophages, measured by CD68 staining, or PD-L1
expression (Figure 3). Others did find a positive relation between
[18F]FDG uptake and PD-L1 expression on immunohistochemistry
in patients with NSCLC (122–124). High maximum [18F]FDG
uptake in NSCLC seemed prognostic for poor disease free
survival (121), but it might be predictive for a favorable response
to immune checkpoint inhibition (125).

In contrast, high levels of [18F]FDG uptake by cancers cells,
corresponding with upregulated expression of glycolysis-related
genes, was correlated with reduced numbers of CD8+ T-cells,
increased T-cell exhaustion gene signatures and higher levels of
PD-L1 in NSCLC by others (126), which potentially can stratify
patients for subsequent immune checkpoint inhibition. This
negative trend has also been observed in HNSCC using a
systems biology approach, correlating omics data with
histopathological data; CD8+ T-cell numbers were inversely
correlated with HIF-1a and EGFR regulated aerobic glycolysis
(127). This was confirmed by a similar approach in HNSCC
demonstrating reduced numbers and activation status of CD8+
T-cells as well as myeloid cells with increasing [18F]FDG uptake
(128), and renal cell carcinoma (129, 130).

2.4.2 [18F]FDG to Monitor Response to Immune
Checkpoint Inhibition
Decrease in [18F]FDG uptake in melanoma, renal cell or lymphoma
lesions within 3 months after start of immune checkpoint inhibition
was correlated with a favorable clinical outcome at 1 year (131).
Several additional studies confirmed the role of [18F]FDG
to monitor response to immune checkpoint inhibition in
patients with advanced melanoma treated with CTLA-4 inhibitors
A B

FIGURE 3 | (A) patient with pT2bN0 well-differentiated primary adenocarcinoma of the right upper lobe, with markedly increased [18F]FDG uptake (A). This tumor
was PD-L1 negative. Molecular analyses: mutations found in KRAS (p.G13C), BRAF (p.G464V) and STK11, no amplifications, no micro-satelite instability. An
additional example of a patient with pT1bN0 well-differentiated primary adenocarcinoma of the left lower lobe, with faint [18F]FDG uptake (B). This tumor was PD-L1
negative and molecular analyses detected mutations in KRAS (p.G12A), no amplifications and no micro-satellite instability.
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(132–134) and advanced NSCLC patients under PD-1 inhibition
(124) These studies suggest that [18F]FDG may serve as a predictor
of response of immune checkpoint inhibition (132, 133), as long as
immune therapy related response patterns are taken into account,
e.g. appearance of new lesions or initial limited increase in tumor
burden not per se define progression (135, 136). At this moment
several clinical trials are ongoing with [18F]FDG as a biomarker of
therapeutic responses to immunotherapy in various cancer types,
including thoracic cancer (NCT02608528), NSCLC (NCT02753569
and NCT04082988), and melanoma (NCT04272658). These
current studies, generally hinting at a conventional role for [18F]
FDG PET/CT to assess cancer responses to immune therapy,
presumably demonstrates that in the TME cancer cell glycolysis
largely outcompetes glycolysis by tumor-infiltrating immune cells.

However, early signs of increased T-cell activity, by
upregulated [18F]FDG-uptake as a surrogate for increased
glycolysis, at sites distant from the TME are readily visualized
using [18F]FDG PET imaging (137). Immune related adverse
events like thyroiditis are associated with favorable clinical
outcome (131). In addition, systemic immune activation,
linked to increased glycolysis in hematopoietic bone marrow
and secondary lymphoid organs such as the spleen, show a
positive correlation with favorable response to immune
checkpoint inhibition (138–141).
3 OXYGEN AVAILABILITY

3.1 How Oxygen Availability Affects
Cancer Cells
Glycolysis, even when increased, contributes relatively little to
cellular ATP content; its majority is provided by oxidative
phosphorylation in mitochondria, which requires oxygen in
the electron transport chain (142). Although oxygen
availability is only limiting mitochondrial electron transport
chain at very low levels (<0.07% oxygen) (143, 144), its
lowering levels are sensed carefully. Through HIF1a activation,
hypoxia promotes glycolysis in addition to increasing oxidative
phosphorylation (145, 146). Imbalances in oxygen levels occur in
a range of physiological conditions, e.g., wound healing (147),
and disease conditions, e.g. chronic obstructive pulmonary
disorders (148). In cancer however, the chaotic tissue
vascularization results in chronic diffusion-limited hypoxia as
well as acute perfusion limited hypoxia (15). Enduring long-term
hypoxia results in additional oxidative stress caused by increased
levels of reactive oxygen species (ROS) produced from
mitochondrial complex III in cancer cells (149, 150) Excessive
levels of intracellular ROS can cause oxidative damage to
intracellular lipids, protein and DNA, which might reciprocally
drive diversification of cancer phenotypes (151) but at a given
point culminates in cell cycle arrest and apoptosis (152).

3.2 Lung Cancers’ Response to Hypoxia
Intracellular oxygen homeostasis is regulated by the hypoxia-
inducible factor (HIF), a heterodimer that is composed of two
subunits HIF-1a and HIF-1b (153). HIF-1a transcriptional
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activation is triggered by short-term hypoxia of 2–24 h with
oxygen tensions <0.1% oxygen, while the isoform HIF-2a
activation occurs under milder hypoxic conditions (<5%
oxygen). Under normoxic conditions, HIF-1a is degraded
under control of the von Hippel-Lindau (VHL) protein. Under
hypoxic conditions, HIF-1a is stabilized and binds to HIF-1b
before translocating to the nucleus to bind the hypoxia response
elements (HRE) that targets genes involved in intracellular acid-
base balances, such as carbonic anhydrase IX (CAIX) (154).
Furthermore, it induces transcription of genes involved in
glycolysis (including Glut-1, hexokinases (155, 156)),
angiogenesis and proliferation (157). While HIF initiates
increase in glycolysis, the glycolytic products pyruvate and
lactate in their turn induce HIF-1a accumulation, indicative of
a sustained feed-forward mechanism driving tumor metabolism
towards glycolysis (158, 159).

Another result of HIF-1a upregulation is increased
expression of CAIX as is described above (160) and MCT-4
(161). The interaction of CAIX with MCT-1 and MCT-4 is
linked to acidification of the TME (162) and associated with
poorer prognosis (163) and immune suppression (164).
However, whether CAIX expression can serve as a surrogate
for tumor hypoxia is debatable (165) and clinical studies on
CAIX expression in lung cancer are scarce.

As VEGF is the main mediator of angiogenesis in many types
of cancer to cater to chronic hypoxic conditions and as VEGF is
under control of HIF signaling, it is also aberrantly expressed in
lung cancer (166), in particular in adenocarcinoma (167). The
level of VEGF expression is correlated with micro-vessel density
and development of hypoxia and is involved in the so-called
secondary vascular growth phase (168–170). It is suggested that,
although VEGF expression stimulates angiogenesis, the
disorganized and immature features of newly formed blood
vessels in fact sustain the presence of intra-tumoral regions of
hypoxia (171). Consequently, VEGF expression is in most
studies correlated to a worse survival in NSCLC (172).

In parallel to oxidative stress, oncogenic mutations in lung
cancer can also induce HIF activation, e.g., phosphatase and
tensin homolog (PTEN), PI3K/Akt/mTOR pathway (152, 173),
or epigenetic alterations (174, 175). As a consequence of
increased HIF-1a signaling, PD-L1 expression on lung cancer
cells increases (176–179).

3.3 How Oxygen Availability Affects T-Cells
On a general note, cancer cells show a greater metabolic plasticity
than effector T-cells and have evolved to manipulate the host
TME to their benefit, which enables them to utilize a variety of
alternative metabolic pathways and substrates also under
hypoxic conditions. Consequently, these alternative metabolic
pathways often come with side-products, such as ROS, which
require an additional set of processes to compensate for collateral
damage. Although T-cells have differential metabolic preferences
throughout their lifespan, they display limited plasticity or
compensating pathways to deal with the ‘metabolic waste’ from
cancer cells, resulting in ‘exhausted’ states in the TME (93, 101).
For example, high levels of ROS in the TME are toxic for T-cells
(180–182). Central to these effector function insufficiencies is
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mitochondrial function, which shows hyperpolarization,
fragmentation, and increased ROS production in the TME (35,
59, 114, 130, 183). Furthermore, intratumoral hypoxia also limits
T-cell migration away from the blood vessels into the tumor
micro-environment, creating hypoxic immune privileged niches
within the tumor (184). Thus, in addition to the limited
availability of glucose itself, hypoxia further restricts T-cells’
capacity to perform aerobic glycolysis (paragraph 2.3),
hampers T-cell infiltration and hypoxia-related waste products
directly affects T-cell viability.

3.4 How T-Cells Respond to Hypoxic
Conditions
As mentioned above, induction of glycolysis is essential for T-cell
effector functions and this induction is under control of
mitochondrial ROS signaling and HIF-1a under normoxic
conditions (6, 94) In particular Th17, Th1 CD4+ T-cells and CD8
+ T-cells rely on increased glycolysis, whereas regulatory T-cells
show less glycolysis dependency (93). For example, upon activation
of CD3/CD28 on CD8+ T-cells, the expression of HIF-1a increases
via PI3K/AKT/mTOR pathways to allow for increased glycolysis
and effector functions such as IFN-g and TNF-a secretion (185,
186). Under hypoxic conditions, HIF-1a induces downregulation of
IFN-g production by Th1 cells (187). These observations suggest a
complex dual role for HIF-1a signaling in T-cells, which is
environment and stimulus dependent. While glycolysis is required
for T-cell effector functions, glutaminolysis and the pentose
phosphatase pathway are necessary for biosynthesis. T-cell
receptor triggering increases amino-acid transporters, along with
upregulation of glucose metabolism, and therefore contributes to T-
cell activation. However, given its different role glutaminolysis does
not compensate for the dependency on glycolysis under hypoxic
conditions. In fact, depletion of amino acids in the TME such as L-
arginine by myeloid derived suppressor cells, inhibits T-cell
proliferation (101). Perhaps the most important alternative
metabolic pathways for T-cells in the TME to meet their
metabolic demands is fatty acid oxidation (188). T-cell effector
function is partially preserved by upregulating PPAR-a signaling to
metabolize fatty acids under hypoxic and hypoglycemic conditions
(39). Promotion of fatty acid metabolism could synergize with PD-1
blockade to control tumor growth, as shown in a preclinical
melanoma model.

3.5 Hypoxia Blunts Efficacy of Anti-Cancer
Treatment
Several preclinical and human studies have identified roles of
hypoxia in blunting treatment efficacy, as a longstanding notion
across cancer types (106, 189, 190), and in particular in
radiotherapy (191). Radiosensitivity starts to decrease at
oxygen tensions below 2% oxygen, most directly by decreased
availability of molecules for radiolysis to produce ROS by
ionizing radiation. The hypoxia found in cancer also leads to
downregulation of the type I IFN pathway, while this pathway is
necessary for an adequate immune response.

In addition to directly reducing the therapeutic potential of
ionizing radiation, the downregulated type I IFN pathway due to
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hypoxia impairs immune activation upon immunogenic cell
death, a phenomenon that is observed for radio- as wells as
chemotherapy (192). Furthermore, regulatory T-cells and
memory CD8+ T-cells largely depend on oxidative
phosphorylation, which is also restricted under hypoxia (101),
and at least partly explains the arduous task of immune
activation in hypoxic tumor regions. Lastly, the disturbed
vascularization in tumors is known to hamper the intra-
tumoral delivery of therapeutic agents, resulting in sub-
therapeutic intra-tumoral concentrations (193, 194). To this
end, anti-angiogenic treatments have been introduced in
adjunct to radiotherapy (191, 195) targeted- or chemotherapy
(196, 197). The overall results over combination treatments
targeting VEGF in NSCLC so far have been disappointing (198).

More recently, other processes involving tumor vasculature
associated endothelial cells have been identified, which act in
addition to the typical vessel sprouting induced by hypoxia-
driven or mutation-driven PI3K/Akt signaling. These processes
include vessel co-option and vascular mimicry and may partly
explain previous ambiguous results of combination treatments in
NSCLC. These alternative angiogenic process also illustrate the
complex network between NSCLC, supporting stromal cells,
such as endothelial cells and pericytes, and mobile immune cell
populations. It is generally accepted that angiogenesis factors
drive an immune suppressive microenvironment (16, 184). In
preclinical models VEGF inhibition resulted in enhanced T-cell
infiltration and improved anti-cancer immune responses (199)
and help the induction of tertiary lymphoid structures. These
studies sparked the interest in combining anti-angiogenic
treatment with immune checkpoint inhibitors (200).

3.6 Imaging Targets Related to Oxygen
Availability
Most of the current clinical hypoxia PET tracers are 18F-
fluorinated nitroimidazole compounds, which target the altered
redox status in cancer cells and its uptake is increased in hypoxic
cells. The mechanism of fluorinated nitroimidazoles is based on
an oxygen-reversible single-electron reduction of the nitro
group, resulting in the formation of oxygen radicals which
covalently bind to macromolecules in hypoxic cells (201),
resulting in intracellular trapping of the tracer. In clinical
setting, 18F-fluoromisonidazole ([18F]FMISO) is the most
widely used tracer for hypoxia (202, 203). However, [18F]
FMISO has slow clearance and low tumor uptake (204), which
led to the development of second generation 2-nitroimidazole
tracers, [18F]fluoroazomycinarabinofuranoside ([18F]FAZA),
[18F]FETNIM, [18F]EF3, [18F]EF5 (205). Even a third
generation 2-nitroimidazole hypoxia tracer ([18F]HX4,
Figure 4) has been developed and clinically tested, showing
more favourable pharmacokinetic and clearance properties than
other 18F-fluorinated nitroimidazole compounds (206, 207).
[18F]HX4 is for these reasons favored over previous hypoxia
tracers for response monitoring to (chemo-)radiation therapy
(208–210).

Besides nitroimidazole analogues, other compounds that
target the redox status in cancer cells are diacetyl-bis(N (4)-
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methylthiosemicarbazone (ATSM), radiolabeled with different
copper radioisotopes, or ionic copper (II) (211). [64Cu]ATSM
has several advantages over other nitroimidazole derivative
hypoxia markers, including rapid tumor uptake and faster
clearance from normoxic tissues (212). Several studies in lung
cancer have shown that radiolabeled ATSM targets different
regions within a tumor as compared to [18F]FDG (213, 214),
and enable prediction of response to radiotherapy (215). Similar
findings have been observed in patients with locally advanced
HNSCC, in which [62Cu]ATSM was evaluated as a predictor of
response (216), with results paralleling [18F]HX4.

As hypoxia upregulates expression of CAIX on cancer cells,
multiple radiotracers have been identified and tested pre-
clinically for the imaging of CAIX, such as the anti-CAIX
monoclonal antibody (mAb) G250, girentuximab (cG250),
girentuximab antibody fragment Fab’ and F(ab’)2, and more
recently affibody molecules. In a recent comparative preclinical
study, the affibody ZCAIX:2, antibody fragment girentuximab-F
(ab’)2, and a complete antibody-based tracer were evaluated for
imaging upregulation of CAIX in head and neck cancer
xenograft models (217). Radiolabeled girentuximab,
girentuximab Fab’ and F(ab’)2 fragments are also evaluated in
human colorectal cancer xenografts (218). According to these
studies the complete girentuximab IgG tracer showed the most
promising results in both human tumor xenografts. In the
clinical setting, the chimeric mAb girentuximab is mostly
tested for targeting of CAIX in clear cell renal cell carcinoma
(ccRCC) (219), but no clinical studies have been performed on
primary lung cancer.

Alternatively to molecular imaging tracers with a particular
target in a hypoxia related pathway, multi-modal imaging that
combines tissue characteristics, using dynamic contrast
enhanced CT, and glucose metabolism, using routine [18F]FDG
PET, was shown to accurately predict the presence of intra-
tumoral regions with hypoxia (as defined by [18F]HX4
accumulation (208)).

3.7 Hypoxia Imaging to Monitor Response
to Immune Checkpoint Inhibition
As the agreement among different hypoxia-related tracers for
PET imaging, or agreement with regional [18F]FDG uptake in
NSCLC is modest (220–224), it remains critical to obtain tissue
validation or solid clinical endpoints (225) when incorporating
hypoxia tracers in NSCLC studies. However, the most
extensively tested hypoxia-related imaging tracer for response
prediction in the clinical setting is [18F]FMISO. In early stage
NSCLC, the combined pattern of high [18F]FDG and high [18F]
FMISO uptake was associated with an increased risk of
recurrence after stereotactic radiotherapy (226). Such metabolic
profile based in molecular imaging could help in guiding
intensity-modulated treatment, as demonstrated in locally
advanced NSCLC to avoid deleterious effects on organs-at-risk
(227–229).

No studies have yet been performed regarding hypoxia
imaging and immunotherapy in NSCLC, but in HNSCC [18F]
FMISO imaging was used pre-clinically in combined anti-PD-1
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and anti-CTLA-4 treatment to monitor changes in the TME
during treatment. Preliminary data shows the potential to predict
response to checkpoint blockade with anti-PD-1 and anti-CTLA-
4 therapy [Reeves et al. J Nucl Med 2020, volume 61, supplement
1; 407, meeting report]. In HNSCC patients, increased
lymphocyte infiltration is seemingly determined by a hypoxia-
dependent response to chemoradiation (230), and persistent
hypoxia during definitive chemoradiation treatment correlated
with persistent PD-L1 expression and reduced outcomes (230),
illustrating the potential of hypoxia related imaging to probe the
tumor microenvironment. Several clinical trials are ongoing with
[18F]FMISO as read-out in radiotherapy trials. One phase IB/II
trial is ongoing to examine the feasibility and safety of the
combination of two immune checkpoint inhibitor therapies
(nivolumab and ipilimumab) in the neoadjuvant setting in
resectable HNSCC. In this study, hypoxia measured by [18F]
FMISO PET imaging is investigated as determinant for the effect
of immune checkpoint inhibitors on the intratumoral T cell
capacity (NCT03003637).
4 GLUTAMINE METABOLISM

4.1 Glutaminolysis in Cancer Cells
In addition to glucose, most tumor types also display increased
uptake of amino acids, such as glutamine, to meet their high
demands in biosynthesis and macromolecular synthesis (79,
231). Glutaminolysis is the intracellular conversion of
glutamine to glutamate by glutaminase (GLS). This process is
facilitated by the upregulation of the alanine-serine-cysteine
transporter 2 (ASCT2, also known as SLC1A5) receptors in
different cancer types (231), including lung cancer (232). In
particular under low-oxygen conditions, glutamine becomes a
carbon source for proliferating cancer cells to perform
lipogenesis via reductive carboxylation (142), taking over up to
80% of de novo lipogenesis in A549 lung carcinoma cells (233).
Via several other routes, glutaminolysis provides a back-up for
metabolic pathways that are usually sustained by glucose
metabolism; by providing a source of NADPH (234) and the
glycolytic intermediate PEP when gluconeogenesis can no longer
be performed (235). Thus, increased glutaminolysis in most
cancer types illustrates their metabolic plasticity and provides
an alternative source to glycolysis for intracellular bioenergetics.
This dual reliance of lung cancer is further illustrated by the
upregula t ion of g lutaminolys i s once g lyco lys i s i s
suppressed (236).

Another important role for glutamate in cancer cells is its
conversion into glutathione, a critical intracellular redox buffer,
which is necessary to counteract the oxidative stress inflicted by
aerobic glycolysis (237).

Similar to glycolysis, increased glutaminolysis is driven by
increased signaling in the PI3K and/or Akt, which results in
increased signaling of mTOR. Lung cancer frequently harbors
mutations in the receptor tyrosine kinases or further
downstream (238), and some of the metabolic heterogeneity
observed in lung cancer cell lines can be attributed to mutations
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in KRAS or Trp53, apart from their histological subtype being
adenocarcinoma (239) or squamous cell carcinoma (240).

4.2 How Glutaminolysis in Cancer Cells
Affect T-Cells
Engagement of the T-cell receptor and the co-stimulatory molecule
CD28 triggers pathways under the control of transcription factors
HIF-1a and mTOR, which not only increase glycolysis, but also
upregulate the expression of amino acid transporters (7). Thus
activated and proliferating T-cells also display increased glycolysis
and glutaminolysis (94, 100, 241), which associates with the
increased expression of SCL1A5 for glutamine (242), similar to
cancer cells. In vitro experiments demonstrated that glutamine
deprivation indeed reduces T-cell proliferation, suppresses
differentiation towards Th1 phenotypes but stimulates regulatory
FoxP3+ phenotypes (243). In addition to its role as intracellular
antioxidant similar to cancer cells, glutathione in T-cells also
supports mTOR and NFAT activation, thus driving glycolysis and
glutaminolysis (92) and promoting inflammatory responses.

Blocking glutaminolysis in lung cancer cell lines results in
upregulation of PD-L1 expression via NF-kB activity and
dampened T-cell activation, but when glutaminolysis is
inhibited together with PD-L1 blockade, the balance tips
towards T-cell mediated cancer cell death (37).

Besides glucose, and glutamine, T cells also consume
tryptophan. Deprivation of tryptophan can impair the function
of these T cells (244). Pathologic conditions as hypoxia induce
the presence of IDO on tumors, resulting in a significantly
increased tryptophan metabolism by the kynurenine pathway
(245). This increase of the metabolic product kynurenine is toxic
for T-cells and leads to immunosuppression (246). Tryptophan
2,3-dioxygenase (TDO) is like IDO as it also catalyzes
tryptophan into kynurenine (247, 248). Since IDO and TDO
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both convert tryptophan into kynurenine, they are both
important targets to image this tryptophan metabolism.

4.3 Imaging Targets Related to Glutamine
Metabolism
4.3.1 Glutamine Metabolism
Glutamine metabolism in the TME can be visualized using
glutamine radiolabelled with 18F or 11C (249–251). In
preclinical experiments that studied the interplay between
glutaminolysis and glycolysis, by using specific inhibitors in
squamous cell lung cancer mouse models, PET imaging using
[18F]FDG or [11C]Gln was used to quantify tumor metabolic
profiles (240). In a lung cancer xenograft model, as well as in
genetically engineered EGFR-mutant lung cancer model,
increased [18F]Gln correlated with expression levels of SLC1A5
(252). Besides the fluorinated glutamine analogue, another PET
tracer has been developed and tested in vitro and in animal
models, namely L-[5-11C]-glutamine ([11C]Gln) (250). In
contrast to [18F]Gln, this tracer is subjected to glutamase
activity, converted to glutamic acid and further metabolized.

A clinical study in different cancer types, including lung
cancer, supports the preclinical data that [18F]Gln (Figure 5)
can be used as a biomarker of glutamine flux and metabolism in
the TME (253–255). However, these studies focus on tumor
detection and at present no clinical studies have incorporated
glutamine-tracers to classify TME or monitor responses to
immunotherapy. One clinical study showed a decrease in [18F]
Gln uptake in the bone marrow upon chemotherapy with
doxorubicin/rituximab, associated with a decrease in number
of leukocytes (256). No clinical imaging studies are performed so
far with [11C]Gln.

Another tracer that can be a potential marker of glutamine
metabolism is [18F]Fluciclovine, which is predominantly
FIGURE 4 | A patient with a cT3N2M0 non-small cell lung cancer not otherwise specified. PD-L1 status or molecular analyses was not performed. The tumor showed
increased [18F]FDG uptake (left panels) as well as increased [18F]HX4 uptake (right panels), indicative of increased hypoxic stress. Note the regional differences of metabolic
profiles in the tumor, for example the cranial part ([18F]HX4 more than [18F]FDG) versus the caudal part (both [18F]HX4 and [18F]FDG increased).
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transported by the glutamine transporter SLC1A5. It is approved
by the FDA as radiotracer for prostate malignancies (257), but its
uptake is also increased e.g. breast cancer (258, 259) and it has
preliminary been investigated to discriminate inflammatory lung
lesions from lung cancer (260), with limited success. However,
increased [18F]Fluciclovine uptake is anecdotally reported in
squamous cell carcinoma and adenocarcinoma lung cancer
(261), and complementary to [18F]FDG PET (Figure 6). Also,
for this tracer, no studies in the context of immune therapy have
yet been performed.

4.3.2 Tryptophan Metabolism
Imaging of tryptophan metabolism and presence of IDO in the
tumor metabolism is performed by using the clinical available a-
[11C]methyl-L-tryptophan (AMT) PET tracer (262), in the
context of breast, lung cancer and gliomas (263). One phase II
study is enlisted on clinicaltrials.gov to investigate [11C]AMT as
a predictive imaging biomarker of response to immunotherapy
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with the PD-1 inhibitor Pembrolizumab in melanoma patients
(NCT03089606), but this study is not yet recruiting. As its short
half-life of this tracer limits clinical application, other tryptophan
analogues were developed and tested pre-clinically, such as 1-L-
[18F]FETrp (264, 265), which will likely be translated to
clinical setting.
5 DISCUSSION

The incremental use of advanced technologies, such as
metabolomics (51) or optical imaging (68), that yield in-depth
information on a cellular level, has deepened our understanding of
the complexity of tumor metabolism and its impact on other
components of the tumor microenvironment. Metabolic
adaptation is now an established hallmark of cancer (1) and
NSCLC is no exception to this. Prevailing metabolic pathways in
lung cancer, its’ counterpart in tumor infiltrating T-cells and its’
FIGURE 5 | A patient with a squamous cell lung cancer lesion (arrow) scanned with [18F]Gln, showing increased uptake (A–C). Corresponding [18F]FDG images
show increased uptake as well (D, E).
A B

FIGURE 6 | A patient with a T2bN0 primary adenocarcinoma of the left upper lobe, accidently detected on a [18F]Fluciclovine PET/CT scan for prostate cancer
staging (A). This tumor was PD-L1 negative and molecular analyses detected mutations in KEAP1, amplification in HER2 and CDK12 and no micro-satellite
instability. The corresponding [18F]FDG PET images show increased uptake as well (B).
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underlying regulatory mechanisms, including the role of immune
checkpoint molecules, have been described in this review. Apart
from advancing our insights in metabolic pathways in lung cancer
cells and T-cells, these high-throughput cell-based technologies
applied in in vitro studies implicitly pointed towards a role for
in vivo molecular imaging in translating mechanistic insights into
clinical applications. These in vitro studies illustrate that the
complex interplay between cancer cells and immune cells cannot
be fully recapitulated by cell cultures alone, as different metabolic
processes might occur in the multi-cellular TME (266), as opposed
to mono-cellular cultures. Studies in lung cancer have for example
demonstrated that the source of carbon used to fuel mitochondrial
metabolism is context dependent. In vitro, glutamine is the
predominant carbon source for mitochondrial metabolism,
whereas in vivo, glucose carbon contributes to a greater degree
(22, 103, 239, 267). Furthermore, immune cells can to a certain
extent adapt their metabolic pathways to tissue specific preferences
(74), which is highly relevant when designing novel metabolic
interventions to manipulate the TME to enhance anti-cancer
immunity. Lastly, intra-tumoral co-existence of clones with
differential metabolic dependencies is frequently observed in
preclinical models, and mostly relates to impaired treatment
outcomes (73). Both these assets, tissue specific immune
metabolism and intra-tumoral heterogeneity, can best be
investigated with the use of in vivo imaging.

As molecular imaging using PET has the potential to
complement the current body of knowledge with information
on in vivo processes in live subjects, tissue specific characteristics
and the impact of regional differences in tumor metabolism,
radiolabeled metabolic substrates are attractive tracers in the
setting of a clinical study. These small molecules have the
capacity to rapidly diffuse into tissues, accumulate intracellularly
Frontiers in Oncology | www.frontiersin.org 11152
in target cells, often in direct relation to transporter expression and
enzyme activity allowing easy kinetic modelling, and rapid
clearance. These features translate to simple radiochemistry with
short-lived tracers, such as 18F, with favorable target-to-
background ratios obtained within short time frames of minutes
to an hour and thus low effective dose for subjects. However, the
complicating disadvantage of in vivo PET imaging of metabolic
pathways in lung cancer is that in fact it quantifies the net result of
the targeted metabolic pathway at rather low spatial resolution
(268). It does not allow thorough assessment of relative
contributions of cancer cells, supportive or immune cells.

Despite this limitation, we envision a clear role for in vivo
molecular imaging to advance the development of effective
treatment for lung cancer in two domains. First, an imaging-
based metabolic profile of a lung cancer lesion with conserved
spatial information can optimize the efficacy of current standard
of care treatments. The rapid clearance and short half-lives of
tracers currently in use allow to perform consecutive PET scans
with different tracers and thus providing a spatial profile of its
dominant metabolic pathways (Figure 7). Such multi-modal
imaging approach requires solid image registration techniques
(269) as well as methods to quantify the correlative data.
Although these required imaging processing techniques are yet
under development, in principle such technology can be
standardized and broadly implemented within current image
processing platforms.

Instead of providing merely a summation of glucose
metabolism in a lung cancer lesion, measured by its’ maximum
uptake value (SUVmax), [

18F]FDG should be complemented with
e.g.[18F]Gln or [18F]FMISO. When overlaying these quantitative
PET-derived datasets, these measures of the downstream net
results of regional metabolic interactions in lung cancer provide
FIGURE 7 | Towards metabolic profiling of lung cancer using PET/CT imaging. As cancer lesions progress, the metabolic stress increases which enforces metabolic
competition between cancer cells and T-cells and drives further diversification of intra-tumoral regional differences. Whereas in smaller lesions single PET parameters
might be sufficient to differentiate benign from malignant lesions. As the tumor lesions grow, radiomics are currently applied to quantitate the increasing intra-tumoral
heterogeneity. Using complementary tracers, serial PET imaging would allow to address regional differences in dominant metabolic pathways, with conserved spatial
information.
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an impression whether the metabolic balance is tipped towards
glucose dominant metabolism (tracer 1, e.g. [18F]FDG) or
alternative/compensating metabolic pathways are active (tracer
2, e.g. [18F]Gln).

Current approach to assess intra-tumoral (metabolic)
heterogeneity is via radiomics, which provides quantitative
features that describe the distribution of signal intensities in a
particular volume-of-interest. Indeed, increased intra-tumoral
heterogeneity is inevitably linked to reduced overall survival
(73, 270, 271) and this heterogeneity can be traced back to
single cell level (272), providing a solid conceptual base for
radiomics in lung cancer. Radiomics studies on intra-tumoral
(contrast-enhanced) differences in tissue density on CT or
differences in glucose metabolism on [18F]FDG PET, often
identify a correlation between radiomics features and mutation
status in lung cancer. Most studies have been insufficient to
provide solid prediction upfront of responses to treatment
(273–275). This can be explained by the complex interactions
of regionally located sub-clones of lung cancer with other
cellular components in the TME, as described in this review,
which lack a direct link with radiomics-based measures of
heterogeneity. Moreover, radiomics analyses lose spatial
information, which is necessary to guide local treatments.
Thus, imaging-based metabolic profiling of lung cancer
based, with conserved spatial information of regional
differences within a lesion, will therefore be complementary
to radiomics and allow tailoring treatment on a regional level
in the tumor (276).

For example, in individualized radiotherapy planning, such
information would enable radiotherapy planning based on
intra-tumoral regional differences and adapt the radiation
portal prior to treatment (277) or during treatment (278).
Since ‘dose-painting’ is increasingly applied in lung cancer,
especially in early-stage lung cancer (62, 279) local ablative
(stereo-tactic) radiotherapy is considered a reasonable
alternative to surgery. The imaging-based metabolic profile
of an individual lung tumor may allow personalized dose
prescription resulting in minimal toxicity with maximal
chance of control in lung cancer. For the locally advanced
stage, comprehensive metabolic profiling of lung cancer using
a dual-tracer approach might allow selection of patients who
will benefit from metabolic interventions accompanying
chemoradiotherapy. Previous studies failed to demonstrate
benefit in a randomized, unselected approach (280), and the
existence of metabolic heterogeneity in a lung cancer lesion is
deemed one of the underlying reasons underscoring the
necessity to select patients based on the intervention that
is addressed.

Second, the metabolic TME is one of the major
determinants of an immune suppressive microenvironment
for tumor-infiltrating T-cells, and T-cell metabolism is
regulated by druggable immune checkpoint molecules such
as PD-1. Therefore, complementary to immune imaging,
imaging-based metabolic profiling also holds potential in
metastatic setting. During PD-1/PD-L1 targeting therapy,
tumor-infiltrating T-cells find themselves entangled between
Frontiers in Oncology | www.frontiersin.org 12153
the metabolic constraints of the TME and the unleashed
potential to accelerate cellular metabolism and execute their
cytotoxic function. The incomplete understanding of which
metabolic pathways are actual in a particular patient with lung
cancer and its’ intra-tumoral regional differences, is likely one
of the reasons why current response rates are usually below
50%, and for most patients, long-term survival is not the
reality (281). For example, if hypoxia is dominating the
metabolic TME, adding CD28 blockade by anti-CTLA4
monoclonal antibody to anti- PD-1 therapy might yield
higher clinical benefit than in patients where hypoxia is
relatively less , and PD-1 inhibit ion is sufficient to
reinvigorate T-cells. In the first line setting, monotherapy
immunotherapy, chemo-immunotherapy with and without
angiogenesis inhibition (282), chemo-immunotherapy (283)
as well as immunotherapy doublets have become available
(284). Except for PD-L1 status, current selection for a certain
treatment regimen is usually based on national/local
standards and preferences. We postulate that imaging-based
metabolic profiling can provide an additional role to rationally
choose first-line treatment, increase its’ efficacy and avoid
unnecessary exposure to potential adverse effects.

In addition, the trial-and-error approach in developing
novel (combination) immunotherapies is failing (285) and
new tools for smarter drug-development pipelines are
mandatory. Upon progression on first-line therapy, multiple
studies with new immunomodulatory compounds are
ongoing, including metabolic interventions (56), usually in a
“one-size-fits-all” approach. Complementary to platform
trials (e.g. HUDSON (NCT03334617)), attrition rates can
probably be improved the metabolic TME is taken into
consideration, and results from the few studies that
incorporated molecular imaging of metabolic pathways are
eagerly awaited.

In conclusion, to advance the treatment landscape of
lung cancer, molecular imaging of the metabolic TME
should be integrated, as a biomarker tool to support the
rational select current treatments and design of next
generation of clinical trials.
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