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Control of the Actin Cytoskeleton
Within Apical and Subapical Regions
of Pollen Tubes
Yanan Xu and Shanjin Huang*

Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China

In flowering plants, sexual reproduction involves a double fertilization event, which is
facilitated by the delivery of two non-motile sperm cells to the ovule by the pollen tube.
Pollen tube growth occurs exclusively at the tip and is extremely rapid. It strictly depends
on an intact actin cytoskeleton, and is therefore an excellent model for uncovering
the molecular mechanisms underlying dynamic actin cytoskeleton remodeling. There
has been a long-term debate about the organization and dynamics of actin filaments
within the apical and subapical regions of pollen tube tips. By combining state-of-the-
art live-cell imaging with the usage of mutants which lack different actin-binding proteins,
our understanding of the origin, spatial organization, dynamics and regulation of actin
filaments within the pollen tube tip has greatly improved. In this review article, we will
summarize the progress made in this area.

Keywords: pollen tube growth, cytoplasmic streaming, actin dynamics, apical actin structure, actin-binding
proteins, formin, ADF, villin

INTRODUCTON

In flowering plants (angiosperms), seed formation requires two fertilization events. The male germ
unit, called the male gametophyte, is contained within pollen grains and comprises a vegetative
cell and two sperm cells that have already lost their motility (Kaul et al., 2000; Dresselhaus et al.,
2016; Higashiyama, 2018). The process of double fertilization begins when pollen grains land on
and adhere to the surface of the stigma. Following hydration of the pollen grain, the vegetative
cell generates a pollen tube (Chapman and Goring, 2010). Pollen tubes then grow through the
transmitting tissue of the style and serve as an active vehicle to transport the two immotile sperm
cells into the ovule under the attraction of various female molecules (Higashiyama and Takeuchi,
2015; Zhang et al., 2017; Johnson et al., 2019). Therefore, pollen tube growth represents a critical
stage during the extended journey that is required for double fertilization in flowering plants.

Similar to the filamentous protonemata of mosses and the root hairs of high plants, pollen
tubes are tip-growing cells, with growth strictly occurring within the apical region (Rounds and
Bezanilla, 2013). Pollen tubes grow rapidly both in vivo and in vitro. For instance, the growth rate
of lily (Lilium longiflorum and Lilium formosanum) pollen tubes can reach up to 12–18 µm min−1

(Hepler et al., 2001). Although Arabidopsis thaliana pollen tubes and Nicotiana tabacum pollen
tubes grow comparatively slowly when compared to lily pollen tubes, their growth rate can reach
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up to 2 and 1.5–6 µm min−1, respectively (Cheung and Wu,
2008). The rapidity of pollen tube growth greatly shortens the
time required for the delivery of sperm cells to the ovules,
thus favoring fertilization. Plant biologists have been fascinated
by this remarkable growth phenomenon. The rapid growth
of pollen tubes requires the availability of a huge amount of
materials for plasma membrane expansion and cell wall synthesis
within the pollen tube growth region. In line with this, pollen
tubes harbor an active intracellular transport system to enable
the efficient delivery of materials to the growth region, which
subsequently coordinate with tightly regulated endocytotic and
exocytotic events to support pollen tube tip growth (Rounds
and Bezanilla, 2013). The actin cytoskeleton plays an essential
role in driving the growth and morphogenesis of pollen tubes
by choreographing endo- and exocytotic vesicle traffic (Taylor
and Hepler, 1997; Cole and Fowler, 2006; Cheung and Wu,
2008; Yang, 2008; Qin and Yang, 2011; Guan et al., 2013). As
such, the role and mechanism of action of the actin cytoskeleton
in the regulation of polarized pollen tube growth have been
subjected to intensive scrutiny in the past few decades. Careful
examination of the organization of actin filaments in living
and fixed pollen tubes has provided significant insights into
the spatial organization of actin filaments in pollen tubes (for
reviews see Hepler et al., 2001; Vidali and Hepler, 2001; Samaj
et al., 2006; Ren and Xiang, 2007; Chen et al., 2009; Staiger
et al., 2010; Cai et al., 2015; Fu, 2015; Qu et al., 2015; Stephan,
2017). In this review, we will describe our current understanding
of the organization, dynamics and regulation of the actin
cytoskeleton in pollen tubes, with the focus on the apical and
subapical regions.

THE ACTIN CYTOSKELETON IN POLLEN
TUBES

Experimental treatments with actin-based pharmacological
agents showed that the actin cytoskeleton is absolutely required
for pollen germination and pollen tube growth (Franke et al.,
1972; Herth et al., 1972; Mascarenhas and Lafountain, 1972;
Speranza and Calzoni, 1989; Heslopharrison and Heslopharrison,
1991; Mascarenhas, 1993; Gibbon et al., 1999; Vidali et al.,
2001). As the building block of the actin cytoskeleton, actin
is a very abundant protein in pollen, accounting for about
2–20% of the total soluble protein in pollen grains (Liu
and Yen, 1992; Ren et al., 1997; Vidali and Hepler, 1997;
Gibbon et al., 1999; Snowman et al., 2002). Therefore, plant
scientists have used pollen as the starting material to isolate
polymerization-competent plant actin (Liu and Yen, 1992; Ren
et al., 1997). Different methods have been used to determine
the cellular concentration of actin monomers in pollen from
maize (Gibbon et al., 1999), poppy (Snowman et al., 2002), lily
(Vidali and Hepler, 1997), and Arabidopsis (Jiang et al., 2019).
These investigations showed that the total actin concentration
can reach up to about 200 µM in pollen. In fact, there
are five reproductive actin isovariants (ACT1, ACT3, ACT4,
ACT11, and ACT12) expressed in Arabidopsis pollen, and
simultaneous silence of ACT1, ACT3, ACT4, and ACT12 by

RNA interference (RNAi) causes obvious reproductive defects
(Pawloski et al., 2006). The direct evidence for the involvement
of actin in regulating pollen germination and pollen tube growth
came from the analysis of the mutant lacking ACT11, showing
that pollen germination was inhibited (Chang and Huang, 2015).
Surprisingly, loss of function of ACT11 upregulates pollen tube
growth (Chang and Huang, 2015), which is presumably due
to the increase in actin dynamics in pollen tubes. Given that
the local concentration of actin monomers directly impacts
their assembly and disassembly, researchers in this field have
tried to reveal the intracellular localization of actin monomers
in pollen tubes. They showed that there exists a tip-focused
gradient of monomeric G-actin in pollen tubes (Li et al., 2001;
Cardenas et al., 2005). One interesting study showed that actin
monomers actually distribute uniformly within the cytoplasm
of Arabidopsis pollen tubes and are rapidly redistributed via
cytoplasmic streaming (Chang et al., 2017), which suggests that
actin monomers are readily available to assemble within the
pollen tube. Given that most actin-based functions are carried
out by the filamentous form (F-actin), plant scientists have tried
different methods to uncover the organization of actin filaments
in pollen tubes. These approaches include labeling actin filaments
with fluorescently-tagged phalloidin or immunostaining with
an anti-actin antibody in fixed pollen tubes (Tang et al., 1989;
Gibbon et al., 1999; Geitmann et al., 2000; Lovy-Wheeler et al.,
2005; Thomas et al., 2006; Wilsen et al., 2006; Ye et al., 2009;
Wu et al., 2010; Zhang et al., 2010; Qu et al., 2020), or
using actin markers including GFP-mTalin or YFP-mTalin, GFP-
ABD2, GFP-ADF, GFP-LIM, and Lifeact-GFP or YFP-Lifeact
(Kost et al., 1998; Fu et al., 2001; Wilsen et al., 2006; Cheung
et al., 2008; Vidali et al., 2009; Zhang et al., 2009; Zhang
et al., 2010; Qu et al., 2013; Stephan et al., 2014) to decorate
actin filaments in living pollen tubes. These investigations have
resulted in a consensus view that actin filaments are arranged
into longitudinally aligned bundles in the shank region of
pollen tubes (Figure 1A). Shank actin filaments are important
for a transport mechanism in angiosperm pollen tubes called
reverse-fountain cytoplasmic streaming. The flow of cytoplasm
is generated by the movement of barbed-end directed myosin
motors along the shank-localized actin filaments. In the cortex
of the pollen tube, cytoplasm flows toward the tip, while in the
middle of the pollen tube, it flows back toward the bottom.
Based on the determination of the polarity of shank-localized
actin bundles in root hairs (Tominaga et al., 2000), which also
generate reverse-fountain cytoplasmic streaming, cortical actin
bundles and inner actin bundles likely have their barbed ends
facing toward the tip and base of pollen tubes, respectively.
Indeed, this has been verified by visualizing actin filaments
decorated with myosin II subfragment 1 in pollen tubes by
electron microscopy (Lenartowska and Michalska, 2008). Both
cortical and inner actin bundles terminate at the subapex of
pollen tubes. By comparison, determining the organization of
the actin cytoskeleton within the apical and subapical regions
has been problematic, as different configurations have been
reported in pollen tubes from different species using different
methods. In the following sections, we will focus on describing
our understanding of the organization, dynamics and regulation
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FIGURE 1 | Actin Filaments are Continuously Polymerized from the Plasma Membrane within the Apical and Subapical Regions of the Pollen Tube. (A) Schematic
diagram depicting our previous understanding of the spatial distribution of actin filaments in the pollen tube. This model refers to the models shown in previous
review articles with slight modifications (Vidali and Hepler, 2001; Lovy-Wheeler et al., 2005; Ren and Xiang, 2007; Cheung and Wu, 2008; Yang, 2008; Cai and
Cresti, 2009; Qin and Yang, 2011; Guan et al., 2013; Rounds and Bezanilla, 2013; Cai et al., 2015; Fu, 2015; Bascom et al., 2018). Specifically, actin filaments are
arrayed into longitudinally oriented actin bundles in the shank and in the actin fringe structure at the subapex. In terms of the polarity of actin filaments within the
actin fringe, the models in (a,b) were drawn with reference to Ren and Xiang (2007); Cheung and Wu (2008), and Qin and Yang (2011), respectively. By comparison,
actin filaments at the apex are short, less abundant and disorganized. (B) Actin filaments are polymerized from the plasma membrane in an Arabidopsis pollen tube
tip. The right panel shows the kymograph analysis of apical actin filaments decorated with Lifeact-eGFP in the growing wild-type (WT) Arabidopsis pollen tube shown
in the left panel. Scale bar = 5 µm. (C) Time-lapse images of apical actin filaments in the pollen tube shown in (B). Red dots indicate an actin filament that is
polymerized from the plasma membrane, then grows into the inner region of the pollen tube. The yellow scissors indicate a severing event of the same actin filament.
Scale bar = 5 µm. The lower panel shows a schematic depiction of the events in the upper panel. (D,E) Actin filaments polymerized from the plasma membrane at
the tip of a growing lily (D) and tobacco (E) pollen tube. In each figure, the left panel shows the Z-projection image of actin filaments in the pollen tube. The middle
panel shows kymograph analysis of actin filaments growing from the plasma membrane at the pollen tube tip, and the right panel shows some time-lapse images of
actin filaments in the growing pollen tube shown in the left panel. Red dots indicate an actin filament that was polymerized from the plasma membrane, then grew
into the inner region of the pollen tube. Scale bar = 5 µm. (F) Visualization of RabA4b-positive transport vesicles (left panel) and actin filaments (right panel) in WT
Arabidopsis pollen tubes. Transport vesicles accumulate within the region corresponding to the clear zone at the pollen tube tip (left panel). Actin filaments at the
base of the clear zone, which polymerize from the plasma membrane, correspond to the actin fringe at the subapex shown in (A). Scale bar = 5 µm. (G) Schematic
depiction of our current view of the organization of actin filaments in the Arabidopsis pollen tube. Similar to the model shown in (A), actin filaments are organized into
actin bundles oriented longitudinally in the shank region. Within the apical and subapical regions of the pollen tube, actin filaments are polymerized from the plasma
membrane. These filaments can be viewed as a whole and defined as the “apical actin structure.” Membrane-originated actin filaments within this “apical actin
structure” assume a distinct spatial distribution, with some cortical actin filaments forming thick actin bundles, while some inner actin filaments are comparatively fine
and extend toward the inner region of the cytoplasm.
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of the actin cytoskeleton within the apical and subapical regions
of pollen tubes.

THE ORIGIN AND SPATIAL
ORGANIZATION OF ACTIN FILAMENTS
WITHIN THE APICAL AND SUBAPICAL
REGIONS OF POLLEN TUBES

Previous studies suggested that pollen tube growth is more
sensitive to the treatment of actin destabilizing reagents than
cytoplasmic streaming (Gibbon et al., 1999; Vidali et al., 2001),
which suggests that the actin cytoskeleton within the pollen tube
growth region is highly dynamic. This is also the reason why
the actin cytoskeleton within the apical and subapical regions
cannot be fixed instantly, thus preventing us from reaching a
consensus view about the organization of the actin cytoskeleton
within the pollen tube growth region. In the past, efforts have
been made to describe the organization of the actin cytoskeleton
within the apical and subapical regions separately. Although
there is some argument about whether actin filaments exist
within the apical region of pollen tubes, researchers in the field
believe that the apical region does contain actin filaments, but
they are short, less abundant and randomly distributed (Yang,
2008; Staiger et al., 2010). Different organizational patterns of
subapical actin filaments within pollen tubes have been revealed
by different actin labeling approaches and, as such, different
names have been provided to describe the organization of
subapical actin filaments in pollen tubes from different species.
These names include actin collar (Gibbon et al., 1999; Qu
et al., 2013), actin fringe (Lovy-Wheeler et al., 2005; Dong
et al., 2012; Rounds et al., 2014), actin ring or actin mesh
(Kost et al., 1998; Chen et al., 2002). The variation in the
subapical actin structure might be due to the employment
of different actin labeling approaches or to true differences
among pollen tubes from different species. Different schematic
models had been generated to describe the organization of
actin filaments within the apical and subapical regions of pollen
tubes. One typical schematic model, presented in Figure 1A,
shows that actin filaments are arranged into an actin fringe
structure at the subapex, and are shorter, less abundant and
more disorganized at the extreme apex. However, the polarity
of actin filaments within the actin fringe remains the subject
of debate. Different models are presented in the literature in
terms of the polarity of actin filaments within the actin fringe
structure. One model showed that actin filaments at the cortex
and in the inner region within the actin fringe have their
barbed ends facing toward the tip and base of the pollen tube,
respectively (Figure 1Aa; Ren and Xiang, 2007; Cheung and
Wu, 2008). Another model showed that actin filaments within
the actin fringe have their barbed ends facing toward the tip of
the pollen tube (Figure 1Ab; Qin and Yang, 2011). Therefore,
the origin and exact organization of subapical and apical actin
filaments are unclear.

In this regard, live-cell imaging of Lifeact-GFP-decorated
actin filaments in growing wild-type pollen tubes and in

mutant Arabidopsis pollen tubes with loss of function of
specific actin-binding proteins (ABPs) has revolutionized our
view about the origin, polymerization and organization of actin
filaments within the apical and subapical regions of pollen
tubes. Specifically, this approach has shown that actin filaments
are continuously polymerized from the plasma membrane at
the growing Arabidopsis pollen tube tips (Figures 1B,C; Qu
et al., 2013). A similar phenomenon was also noticed in lily
and tobacco pollen tubes (Figures 1D,E; Vidali et al., 2009;
Rounds et al., 2014), which suggests that the polymerization of
actin filaments from the apical plasma membrane is a common
design in angiosperm pollen tubes. In support of this notion,
loss of function of class I formins, which are important actin
nucleating factors in pollen tubes, impairs the polymerization
of actin filaments from the plasma membrane at pollen tube
tips (Cheung et al., 2010; Lan et al., 2018). In line with this
finding, loss of function of profilins, the functional partners
of formins, impaired the polymerization of actin filaments
from the plasma membrane at the extreme apex of pollen
tubes (Liu et al., 2015). Simultaneous visualization of actin
filaments, the clear zone (which corresponds to the previously
defined actin fringe) and transport vesicles showed that the
actin structure at the base of the clear zone (Lovy-Wheeler
et al., 2005, 2006) is made up of actin filaments polymerized
from the plasma membrane (Figure 1F; Qu et al., 2017). These
findings allow us to propose a schematic model describing the
spatial organization of apical and subapical actin filaments in
the pollen tube (Figure 1G). In this model, actin filaments
within both the apical and subapical regions of pollen tubes are
generated from the plasma membrane, and the actin filaments
within the two regions can be viewed as a whole, which is
defined as the “apical actin structure” (Figure 1G; Qu et al.,
2017). Consequently, actin filaments can be viewed as forming
two notable structures in pollen tubes: the shank-localized
longitudinal actin bundles and the “apical actin structure”
(Qu et al., 2017).

MOLECULAR MECHANISM
UNDERLYING THE REGULATION OF
ACTIN POLYMERIZATION FROM THE
PLASMA MEMBRANE IN POLLEN
TUBES

Live-cell imaging of the dynamics of actin filaments revealed
that actin polymerization continuously occurs from the plasma
membrane at pollen tube tips, and this polymerization is required
for and concurrent with pollen tube growth (Qu et al., 2017).
How apical actin polymerization is regulated during pollen
tube growth is an interesting question. Actin polymerization is
dictated by specific actin nucleation factors, and Arp2/3 complex
and formins are two major types of actin nucleation factors that
have been characterized in plants (Blanchoin and Staiger, 2010).
Both Arp2/3 complex and formins have received widespread
attention in the context of plasma membrane-originated actin
polymerization. The role of Arp2/3 complex in regulating the
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morphogenesis of trichome and epidermal pavement cells has
been studied extensively (Le et al., 2003; Li et al., 2003; Mathur
et al., 2003a,b; El-Din El-Assal et al., 2004), but the role of
Arp2/3 complex in regulating actin polymerization in pollen is
not clear. The tips of wild-type pollen tubes do not contain
dense branched F-actin networks (Qu et al., 2015), and loss of
function of Arp2/3 complex does not affect fertility in Arabidopsis
(Szymanski, 2005), which indicates that the Arp2/3 complex is
not essential for pollen tube growth. Therefore, there is no direct
evidence that Arp2/3 complex is involved in the regulation of
actin polymerization in pollen tubes. Formin proteins contain the
characteristic formin homology (FH) domains, FH1 and FH2,
and are able to nucleate actin assembly from actin monomers
or actin-profilin complexes (Kovar, 2006; Goode and Eck, 2007).
Based on the sequence of their FH2 domains, plant formins
are divided into three classes, class I, class II, and class III
(Cvrckova et al., 2004). Only two class III formins have been
identified, and they are found in land plants that contain flagellate
sperm (Grunt et al., 2008; van Gisbergen and Bezanilla, 2013).
Class I and class II formins are common in plants. Most of
the class I formins contain a transmembrane (TM) domain at
their N-terminus, which enables them to target to the plasma
membrane or endomembrane systems. The N-terminus of class
II formins is quite variable. Some of them have a phosphatase
and tensin homolog (PTEN)-like domain at their N-terminus
(Blanchoin and Staiger, 2010). Considering that actin is buffered
by an almost equimolar amount of profilin (Vidali and Hepler,
1997; Gibbon et al., 1999; Snowman et al., 2002; Jiang et al.,
2019), and actin-profilin complexes are favored by formins rather
than the Arp2/3 complex (Rotty et al., 2015; Suarez et al.,
2015), it is easy to imagine the important role of formins in
controlling actin polymerization in pollen. Accordingly, it was
shown that treatment with the formin inhibitor SMIFH2 (Rizvi
et al., 2009), which inhibits plant formins in vitro (Cao et al.,
2016), impairs actin polymerization from the plasma membrane
at pollen tube tips (Qu et al., 2017). As actin polymerization
continuously occurs from the plasma membrane at the pollen
tube tip (Qu et al., 2013), the TM-containing class I formins
are particularly relevant. Indeed, two class I formins, Arabidopsis
formin 3 (AtFH3), and AtFH5, have been shown to nucleate
actin assembly from actin monomers or actin bound to profilin
(Ingouff et al., 2005; Ye et al., 2009), and are redundantly required
for actin polymerization from the plasma membrane in pollen
tubes (Lan et al., 2018). Accordingly, reducing the expression of
Nicotiana tabacum homolog of AtFH5, NtFH5, in tobacco pollen
impairs the actin polymerization from the plasma membrane
(Cheung et al., 2010). In line with this finding, overexpression
of Arabidopsis formin 1 induces the formation of supernumerary
actin cables from the plasma membrane and causes membrane
deformation (Cheung and Wu, 2004). The importance of class
I formins in regulating actin polymerization at pollen tube tips
is also supported by the finding that the pollen-specific Lilium
longiflorum Formin 1 (LlFH1) controls the construction of the
actin fringe in pollen tubes (Li et al., 2017). These findings
together suggest that class I formins play important roles in
controlling actin polymerization within the apical and subapical
regions of pollen tubes.

Functional characterization of Arabidopsis profilins in pollen
also provides evidence that formin is a major player in controlling
actin polymerization at the tip of pollen tubes. Profilin is a
low molecular weight protein, ranging from 12 to 15 kDa,
and it can bind to G-actin to form high affinity 1:1 profilin-
actin complexes (Carlsson et al., 1977; Vidali and Hepler, 1997).
It was shown that profilin has a dual role in regulating actin
dynamics. When the barbed ends of actin filaments are capped,
profilin acts as a simple actin monomer sequestering protein
to promote actin depolymerization (Huang et al., 2004). In
support of this notion, it was shown that microinjection of
profilin into Tradescantia blossfeldiana stamen hair cells causes
the disappearance of transvacuole strands and displacement of
nuclei (Staiger et al., 1994). However, when the barbed ends of
actin filaments are free, actin-profilin complexes can add onto
the barbed ends to elongate actin filaments and thus promote
actin polymerization (Pantaloni and Carlier, 1993). Evidence for
such a functional role of profilin was strengthened by the finding
that the presence of formin can facilitate the addition of actin-
profilin complexes onto the barbed ends of actin filaments to
accelerate their elongation (Romero et al., 2004; Kovar et al.,
2006). Within this framework, formin facilitates the addition of
actin-profilin complexes onto the barbed end of actin filaments
through its proline-rich FH1 domain. Consistent with this, it was
shown that the function of profilin depends on its interaction
with proline-rich motifs (Gibbon et al., 1998). Based on the fact
that actin binds to profilin with high affinity (Gibbon et al.,
1997; Kovar et al., 2000) and they exist in roughly equimolar
amounts in pollen (Vidali and Hepler, 1997; Gibbon et al., 1999;
Snowman et al., 2002; Jiang et al., 2019), it was predicted that actin
mainly exists in the form of actin-profilin complexes in pollen
(Staiger and Blanchoin, 2006; Chen et al., 2009). In support of the
role of profilin in promoting actin polymerization, it was shown
that loss of function of profilins impairs actin polymerization
from the plasma membrane at the tip of Arabidopsis pollen
tubes (Liu et al., 2015). Importantly, it was shown that the
mutant PRF5Y6A, which is defective in binding to PLP but
retains normal G-actin binding activity, has impaired function in
actin polymerization at pollen tube tips (Liu et al., 2015). This
strongly suggests that formin and profilin work as a module in
controlling actin polymerization from the plasma membrane at
the tip of pollen tubes.

To support continuous actin polymerization during pollen
tube growth, a pool of polymerizable actin monomers must
be available within pollen tubes. Given that actin is assumed
to be buffered by equimolar profilin in pollen, and plant
profilins lack or have weak actin nucleotide exchange activity
(Kovar et al., 2001; Chaudhry et al., 2007; Liu et al., 2015),
a mechanism is required to recharge the dissociated ADP-G-
actin before the formation of actin-profilin complexes. Adenylyl
cyclase-associated protein 1 (CAP1), also known as Srv2p in
budding yeast, is a protein shown to have actin nucleotide
exchange activity in Arabidopsis (Chaudhry et al., 2007). It
is assumed to take on the role of recharging ADP-G-actin
in plants. CAP1 is an abundant protein and its cellular
concentration falls between that of ADF and profilin in
Arabidopsis pollen (Jiang et al., 2019). It can coordinate with
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ADF and profilin to promote actin turnover and enhance
actin nucleotide exchange in vitro (Chaudhry et al., 2007;
Jiang et al., 2019). CAP1 distributes uniformly in pollen tubes
and depletion of CAP1 impairs membrane-originated actin
polymerization at pollen tube tips. Furthermore, CAP1 protein
that is defective in actin nucleotide exchange activity cannot
fully rescue the apical actin polymerization defects in cap1
mutant pollen tubes (Jiang et al., 2019), which suggests that
the actin nucleotide exchange activity of CAP1 is biologically
significant. These findings together allow us to propose a model
for the regulation of actin polymerization from the plasma
membrane at pollen tube tips (Figure 2; Jiang et al., 2019).
Specifically, the membrane-anchored class I formins initiate actin
polymerization from the pool of actin-profilin complexes within
the cytoplasm, and ADF drives the turnover of membrane-
originated actin filaments and controls their length via its actin
severing and depolymerizing activity (see the detailed description
below). CAP1 works as the shuttle molecule between ADF
and profilin to promote actin turnover and maintain the pool
of polymerizable actin monomers to drive formin-mediated
actin polymerization from the plasma membrane (Figure 2).
These findings provide significant insights into the molecular
mechanism that controls actin polymerization from the plasma
membrane at the pollen tube tip.

REGULATION OF THE TURNOVER AND
ORGANIZATION OF
MEMBRANE-ORIGINATED APICAL AND
SUBAPICAL ACTIN FILAMENTS IN
POLLEN TUBES

The mechanisms that regulate the turnover of apical and
subapical actin filaments have been the subject of intensive
studies in the past. Given that actin filaments are mainly
generated from the membrane-anchored class I formins (Cheung
et al., 2010; Lan et al., 2018), the ends of actin filaments
facing toward the cytoplasm are pointed ends that should
be favored by actin-depolymerizing factors (ADFs). ADFs are
extremely relevant players in trimming actin filaments to control
their length and drive their turnover. Indeed, ADFs have been
implicated in the regulation of actin dynamics in pollen grains
and pollen tubes (Smertenko et al., 2001; Chen et al., 2002), but
the precise mechanism underlying their action remains largely
unknown. With the employment of the Arabidopsis genetic
approach, our understanding of the role and mechanism of
action of ADFs in pollen has improved substantially. Besides
Arabidopsis ADF5, which regulates the actin cytoskeleton via
stabilizing and bundling actin filaments in pollen tubes (Zhu
et al., 2017), ADF7 and ADF10, which are expressed specifically in
Arabidopsis pollen (Bou Daher et al., 2011; Daher and Geitmann,
2012), are two major typical actin depolymerizing factors that
promote the turnover of the actin cytoskeleton in pollen via
severing and depolymerizing actin filaments (Zheng et al., 2013;
Jiang et al., 2017). The role of ADF7 in promoting the turnover
of shank-localized actin bundles was demonstrated several years

ago (Zheng et al., 2013), but its role in regulating the dynamics of
apical and subapical actin filaments remains to be characterized.
ADF10 was demonstrated to sever and depolymerize subapical
actin filaments to promote their turnover and ordering (Jiang
et al., 2017). In line with these findings, loss of function of actin-
interacting protein 1 (AIP1), the cofactor of ADF (Allwood et al.,
2002; Shi et al., 2013; Diao et al., 2020), reduces the rate of actin
turnover and induces disorganization of subapical actin filaments
in Arabidopsis pollen tubes (Diao et al., 2020). In addition, it
was shown that depletion of CAP1 decreases ADF-mediated actin
depolymerization and severing, which reduces the rate of actin
turnover in pollen tubes (Jiang et al., 2019). These data together
identify ADF as an essential player in promoting the turnover of
actin filaments in pollen tubes.

In addition, as pollen tubes harbor a tip-high Ca2+ gradient
(HoldawayClarke et al., 1997; Diao et al., 2018), several Ca2+-
responsive actin severing proteins are involved in regulating
the turnover of apical and subapical actin filaments. In this
regard, the Ca2+-responsive villin/gelsolin/fragmin members
are extremely relevant (Yamashiro et al., 2001; Huang et al.,
2004; Xiang et al., 2007; Wang et al., 2008; Khurana et al.,
2010; Zhang et al., 2010; Zhang et al., 2011; Bao et al., 2012;
Wu et al., 2015). Most of the in vivo functional data about
villin/gelsolin/fragmin family members have come from the
analysis of villins using the reverse genetic approach, as the plant
genome only encodes genes for full-length villins (Klahre et al.,
2000; Huang et al., 2015). The villin homologs were originally
identified from pollen by biochemical means and demonstrated
to be bona fide actin bundlers (Yokota et al., 1998, 2003).
Although it was subsequently confirmed that villin can bind to
G-actin and promote actin depolymerization in the presence
of Ca2+/Calmodulin (Yokota et al., 2005), the direct evidence
supporting the role of villins in severing actin filaments came
from biochemical analyses of villins from Arabidopsis and rice
(Khurana et al., 2010; Zhang et al., 2010; Zhang et al., 2011; Bao
et al., 2012; Wu et al., 2015). In support of the role of villins
in promoting actin turnover in pollen tubes, it was shown that
loss of function of Arabidopsis villin2 (VLN2) and VLN5 causes
accumulation of filamentous actin at pollen tube tips (Qu et al.,
2013). The reduction in the frequency of actin filament severing
in vln2 vln5 double mutant pollen tubes suggests that the severing
activity of villins likely contributes to their role in promoting
actin turnover (Qu et al., 2013). In line with this finding, it
was shown that the severing activity of villin is involved in the
formation of actin foci triggered by elevation of the cytosolic
Ca2+ concentration in pollen tubes (Zhao et al., 2020). Within
this framework, several other Ca2+-responsive actin severing
proteins were also shown to be involved in the regulation of actin
turnover at pollen tube tips, such as MAP18, MDP25, and ROP-
interactive CRIB motif-containing protein 1 (RIC1) (Zhu et al.,
2013; Qin et al., 2014; Zhou et al., 2015). In addition, although
there is no evidence showing the direct interaction of RIC3 with
the actin cytoskeleton, it was shown that RIC3 promotes the
release of free Ca2+, which induces actin depolymerization in
pollen tubes (Gu et al., 2005). How exactly RIC3 promotes actin
turnover in pollen tubes remains to be determined. Nonetheless,
these data suggest that the Ca2+-responsive actin severing
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FIGURE 2 | Schematic depiction of the regulation of actin polymerization and dynamics in the pollen tube. (A) Schematic depiction of the intracellular localization
pattern and function of various ABPs in pollen tube growth domain. The model is mainly based on data from Arabidopsis. (B) An enlarged picture of the boxed
region in (A) is presented in order to show more details about the regulation of actin polymerization and dynamics in the tip of pollen tube. In brief, within the pollen
tube, actin predominantly exists in the monomeric form. It is buffered by an equimolar amount of profilin to form actin-profilin complexes. Actin polymerization is
initiated by membrane-anchored formins, which utilize actin-profilin complexes within the cytoplasm. The membrane-originated actin filaments assume distinct
distributions in space as described in Figure 1G, and they are turned over by ADF and its cofactors, including AIP1 and CAP1, and several Ca2+-responsive actin
severing proteins, which promote the dynamics and control the length of actin filaments. Under the action of various actin bundling/crosslinking proteins, including
villins (Qu et al., 2013), LIMs (Wang et al., 2008; Papuga et al., 2010; Zhang et al., 2019), and fimbrins (Su et al., 2012; Zhang et al., 2016), membrane-originated
actin filaments are organized into distinct structures and assume distinct distributions in the cortical and inner regions of the pollen tube.

proteins act in concert with the Ca2+ gradient to promote actin
turnover in pollen tubes.

THE ROLE OF APICAL AND SUBAPICAL
ACTIN FILAMENTS IN REGULATING
VESICLE TRAFFIC IN POLLEN TUBES

It remains largely unknown how actin functions within the apical
and subapical regions of pollen tubes. This is partly because we
lack a unified view about the organization of actin filaments
within that region. As discussed above, one common view is that
actin filaments are arrayed into an actin fringe structure at the
subapex (Figure 1A; Lovy-Wheeler et al., 2005, 2006). Different
hypotheses were raised to explain the function of the actin fringe.
The proposed functions include: organizing endomembranes and
controlling the location of endo- and exocytotic events; acting
as a physical barrier to exclude large organelles; structurally
supporting the plasma membrane to facilitate turgor driven
extension; and generating the force to drive cell growth (Stephan,
2017). Among the different functions, the actin cytoskeleton plays
an obvious role in regulating tip-directed vesicle traffic, which
leads to the accumulation of vesicles at the pollen tube tip to

support pollen tube growth. Different hypotheses were proposed
to explain the role of apical and subapical actin filaments in
regulating vesicle traffic in pollen tubes (Geitmann and Emons,
2000). These include spatially constraining the distribution of
vesicles (Kroeger et al., 2009), acting as a filter for small vesicles
(Kost et al., 1998; Cheung et al., 2008), and acting as the tracks
for myosin motors to transport vesicles to the tip (Lovy-Wheeler
et al., 2005; Daher and Geitmann, 2011; Chebli et al., 2013). As
described above, studies in Arabidopsis pollen tubes have revealed
more details about the spatial organization and dynamics of
the actin cytoskeleton within the apical and subapical regions,
which provides an opportunity to understand how actin regulates
vesicle traffic in pollen tubes. Within the apical and subapical
regions, membrane-originated actin filaments assume distinct
spatial distributions, including thick actin bundles in the cortex
and relatively fine actin filaments in the middle (Figure 1G;
Qu et al., 2017). Further analysis revealed that the cortical
actin bundles act as tracks for myosin motors, allowing the
transportation of vesicles to the pollen tube tip, while the inner
fine actin filaments act as the physical barrier to prevent the
backward movement of vesicles from the tip (Qu et al., 2017).
This leads to the generation of a “V” shape of vesicle distribution
(Figures 3A,C). The apical actin structure as a whole also acts
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FIGURE 3 | The Role of the Actin Cytoskeleton in Regulating Vesicle Traffic in the Pollen Tube. (A) Dual visualization of RabA4b-positive transport vesicles (green)
and actin filaments (pink) in a WT Arabidopsis pollen tube. The small RabA4b-positive transport vesicles accumulate at the pollen tube tip. Scale bar = 5 µm.
(B) Dual visualization of ARA7-positive endosomes (green) and actin filaments (pink) in a WT Arabidopsis pollen tube. The large ARA7-positive endosomes are
absent at the pollen tube tip. Scale bar = 5 µm. (C) Schematic depiction of the function of the actin cytoskeleton in regulating vesicle traffic in the pollen tube. Both
ARA7-positive large endosomes and RabA4b-positive small vesicles are transported along cortical actin bundles in the shank region. Upon reaching the subapex,
ARA7-positive large endosomes reverse their direction of movement and return to the base along the inner actin bundles. This is the basis for the generation of
reverse fountain cytoplasmic streaming. However, after reaching the subapex, RabA4b-positive small vesicles run straight to the tip along cortical actin bundles
within the “apical actin structure,” which leads to the accumulation of vesicles at the pollen tube tip. After reaching the extreme tip, some RabA4b-positive small
vesicles will start to move toward the base of the pollen tube. The inner actin filaments within the “apical actin structure” function as physical barrier to prevent their
return, which leads to the formation of the “V”-shaped distribution pattern of small vesicles.

as a physical barrier to prevent the invasion of large organelles
into the pollen tube tip (Figures 3B,C). Therefore, cooperation
between the apical actin structure and the shank-localized actin
bundles leads to the generation of reverse-fountain cytoplasmic
streaming and the “V”-shaped vesicle distribution in the pollen
tube (Figure 3; Qu et al., 2017). These studies provide significant
insights into the functional role of actin in regulating vesicle
traffic in pollen tubes.

CONCLUSION AND PERSPECTIVES

Although the essential role of actin in regulating pollen tube
growth is well-recognized, the cellular mechanisms underlying
the function of actin during pollen tube growth remain to be
uncovered. Our understanding of how actin performs its function
has been hindered by the lack of a unified view about the origin,
spatial organization and dynamics of actin filaments within the
growth domain of pollen tubes. Recently, with the introduction
of appropriate actin markers and state-of-the-art live cell
imaging technologies, along with the usage of mutants lacking
different ABPs, our understanding of the origin, polymerization,
dynamics, and spatial organization of actin filaments within
the growth domain of pollen tubes has improved substantially.
Specifically, it is clear that actin filaments are continuously
polymerized from the plasma membrane at the extreme apex
of pollen tubes during their extension, which answers the long-
standing question about whether actin filaments exist at the
extreme apex. In addition, actin filaments are polymerized
from the plasma membrane at the subapex, where they
generate the actin fringe structure reported in pollen tubes

(Lovy-Wheeler et al., 2005, 2006). This work provides insights
into the origin, polarity and organization of actin filaments within
the actin fringe. Together, these findings allow us to conclude that
actin filaments within the apical and subapical regions of pollen
tubes can be viewed as a whole in terms of their origin, and can be
collectively defined as the “apical actin structure” (Qu et al., 2017).
Consequently, the pollen tube actin cytoskeleton can be viewed
as consisting of two structures: the shank-localized actin bundles
and the “apical actin structure” (Figure 1G; Qu et al., 2017). The
polymerization of actin filaments from the plasma membrane
also occurs in lily and tobacco pollen tubes (Figures 1D,E;
Rounds et al., 2014; Qu et al., 2017). This implies that the
polymerization of actin filaments from the plasma membrane and
formation of the distinct “apical actin structure” might represent
a common design for angiosperm pollen tubes.

Careful observations revealed that membrane-originated actin
filaments within the pollen tube growth domain assume distinct
spatial distributions: they form comparatively thick actin bundles
at the cortex and fine actin filaments extending toward the
inner region of the cytoplasm (Figure 1G; Qu et al., 2017).
The functional coordination of those spatially distinct apical
and subapical actin filaments leads to the formation of a
“V”-shaped vesicle distribution pattern (Figure 3C; Qu et al.,
2017). In addition, the apical actin structure acts as a physical
barrier to prevent the apical invasion of large organelles,
which facilitates the generation of reverse fountain cytoplasmic
streaming (Figure 3C; Qu et al., 2017). However, it remains to be
resolved how subapical actin filaments coordinate spatially and
functionally with shank-localized actin bundles. Furthermore,
given that actin filaments are continuously generated from the
plasma membrane at the extreme apex during pollen tube growth,
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it will definitely be worth exploring how those actin filaments
might be involved in the control of exo- and endocytotic events.

As actin polymerization is concurrent with and required for
pollen tube growth (Qu et al., 2017), a key area for future research
is how growing pollen tubes perceive the upstream signals to
control the polymerization and dynamics of actin filaments.
Within this framework, another outstanding question is how
the activity of membrane-anchored class I formins is precisely
regulated. In particular, it will be interesting to investigate how
the signaling mediated by ROPs (Li et al., 1999; Gu et al.,
2005), phospholipids (Zhang and McCormick, 2010; Zonia, 2010)
and the receptor-like kinases (RLKs) (Muschietti and Wengier,
2018) might influence the activity of formins. In particular, as
ROPs and RLKs have been implicated in pollen tube guidance
(Takeuchi and Higashiyama, 2016; Wang et al., 2016; Luo et al.,
2017), it remains to be documented how actin reorganization is
involved in the turning of pollen tubes in response to female-
derived signals. Establishment of a semi-in vivo pollen tube
growth system that enables the imaging of actin dynamics at
high spatiotemporal resolution might allow us to understand
how actin undergoes reorganization during pollen tube turning
in response to female-derived attractants. Furthermore, pollen
tubes have distinct distributions of ions, such as Ca2+ and H+
(HoldawayClarke et al., 1997; Messerli and Robinson, 1997; Feijo
et al., 1999; Diao et al., 2018), which will influence the activity
of ABPs and will in turn impact the dynamics and organization
of actin filaments. How actin structures adapt to the cytosolic

microenvironment at the pollen tube tip is another interesting
question. In summary, plant biologists have made great progress
in understanding the dynamics, organization and function of the
actin cytoskeleton in pollen tube tips, but many questions still
remain to be answered. This promises to be an exciting area of
research for many years to come.
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Low temperature is a major adverse environment that affects normal plant growth.

Previous reports showed that the actin cytoskeleton plays an important role in the

plant response to low-temperature stress, but the regulatory mechanism of the actin

cytoskeleton in this process is not clear. C-repeat binding factors (CBFs) are the key

molecular switches for plants to adapt to cold stress. However, whether CBFs are

involved in the regulation of the actin cytoskeleton has not been reported. We found that

Arabidopsis actin depolymerizing factor 5 (ADF5), an ADF that evolved F-actin bundling

function, was up-regulated at low temperatures. We also demonstrated that CBFs bound

to the ADF5 promoter directly in vivo and in vitro. The cold-induced expression of ADF5

was significantly inhibited in the cbfs triple mutant. The freezing resistance of the adf5

knockout mutant was weaker than that of wild type (WT) with or without cold acclimation.

After low-temperature treatment, the actin cytoskeleton of WT was relatively stable, but

the actin cytoskeletons of adf5, cbfs, and adf5 cbfs were disturbed to varying degrees.

Compared to WT, the endocytosis rate of the amphiphilic styryl dye FM4-64 in adf5,

cbfs, and adf5 cbfs at low temperature was significantly reduced. In conclusion, CBFs

directly combine with the CRT/DRE DNA regulatory element of the ADF5 promoter

after low-temperature stress to transcriptionally activate the expression of ADF5; ADF5

further regulates the actin cytoskeleton dynamics to participate in the regulation of plant

adaptation to a low-temperature environment.

Keywords: actin depolymerizing factor, cold stress, C-repeat binding factors genes, actin cytoskeleton, regulatory

mechanism

INTRODUCTION

Low temperature is a major plant stress factor that causes plant growth delay, stagnation, and
retrogression and reduces grain yield (Dolferus, 2014; Zhang et al., 2019). Over long evolutionary
process, plants have created a series of complex mechanisms to adapt to low-temperature stress.
Cold acclimation is one of these mechanisms. When plants are exposed to non-freezing low
temperatures for a period of time, their tolerance to lower temperatures improves (Thomashow,
1999; Shi et al., 2018). C-repeat binding factors (CBFs) are the key molecular switches in this
process (Liu J. et al., 2018). CBF1, CBF2, and CBF3, also known as DREB1B, DREB1C, and
DREB1A, belong to the AP2/ERF transcription factor family, which recognizes the C-repeat
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(CRT)/dehydration responsive element (DRE) DNA regulatory
element (CCGAC) (Stockinger et al., 1997; Gilmour et al.,
1998; Liu et al., 1998; Medina et al., 1999; Thomashow, 1999).
Low temperature rapidly induces the expression of CBFs. CBFs
further activate the expression of a set of COLD-REGULATED
(COR) genes (Chinnusamy et al., 2007; Ding et al., 2019). These
genes generally encode some cryoprotective proteins, reactive
oxygen species scavenging proteins, enzymes for osmolyte
biosynthesis and photosynthetic membrane protective proteins,
which enhance the freezing resistance of plants (Lin and
Thomashow, 1992; Jaglo-Ottosen et al., 1998; Liu et al., 1998;
Janmohammadi et al., 2015; Bremer et al., 2017).

The maintenance and establishment of specific structures
and highly dynamic changes in the plant actin cytoskeleton
are necessary for plant cellular processes, such as cell division,
cytoplasmic streaming, and vesicular transport (Staiger, 2000).
The rapid remodeling of actin cytoskeleton is directly regulated
by diverse actin-binding proteins (ABPs), such as profilin,
ADF/cofilin, capping protein, villin/gelsolin, formin, and actin-
related protein2/3 (Arp2/3) complex (Staiger and Blanchoin,
2006; Qian and Xiang, 2019). Actin depolymerizing factors
(ADFs) are conserved actin binding proteins in eukaryotes that
regulate the actin cytoskeleton by forming more pointed ends
and monomer actins via their severing/depolymerizing activity
(Staiger et al., 1997; Hussey et al., 2002; Andrianantoandro
and Pollard, 2006). The Arabidopsis genome encodes 11
ADF genes, which are divided into 4 subfamilies (Ruzicka
et al., 2007). Our laboratory reported that the third subfamily
of Arabidopsis thaliana (ADF5, ADF9) have developed new
functionalization during the process of evolution. They lost
the conservative severing/depolymerizing activity of the family
and evolved F-actin bundling function (Nan et al., 2017).
The other three subfamilies retain the conserved function of
severing/depolymerizing activities (Tholl et al., 2011; Nan et al.,
2017). The physiological functions of plant ADFs were reported
in recent years, such as pollen germination, pollen tube polar
growth (Chen et al., 2002, 2003; Bou Daher et al., 2011; Zheng
et al., 2013; Jiang et al., 2017; Zhu et al., 2017), hypocotyl
elongation (Dong et al., 2001; Henty et al., 2011), stomatal
movement (Zhao S. et al., 2016; Qian et al., 2019), innate
immunity (Tian et al., 2009; Porter et al., 2012; Fu et al.,
2014; Inada et al., 2016), and nematode and aphid infection
(Clément et al., 2009; Mondal et al., 2018). The new function of
ADF5 plays an important role in regulating the actin bundling
process during certain plant-specific physiological activities, such
as pollen germination, pollen tube polar growth and ABA-
induced stomatal closure (Zhu et al., 2017; Qian et al., 2019).
ADF9 is primarily involved in plant growth and development.
Under long-day light cycles, the adf9 mutant showed an early
flowering phenotype. Compared to the WT, adf9 had delayed
growth, a reduced number of lateral branches and a weakened
callus formation ability (Burgos-Rivera et al., 2008). Previous
studies showed that wheat ADF (TaADF) was rapidly and
strongly up-regulated under low temperature (Danyluk et al.,
1996). Bioinformatics analysis and previous reports showed that
the expression of ADFs in Arabidopsis thaliana changed under
low temperature stress (Fan et al., 2015), which suggests that
members of this family also participate in the plant response and

adaptation to low-temperature stress. However, the physiological
function and molecular mechanisms of ADF members after
low-temperature stress are not clear.

We found that CBFs directly bound to the CRT/DRE
DNA regulatory element of the ADF5 promoter to induce the
up-regulation of ADF5 expression and finely regulated actin
cytoskeleton dynamics at low temperature and affected the
endocytosis rate of the FM4-64-labeled plasma membrane. The
present study identified the molecular module of the CBF
pathway regulating the actin cytoskeleton at low temperature,
which enriched the physiological function of ADF5 and revealed
the potential mechanism of the actin cytoskeleton response to
cold stress.

RESULTS

ADF5 Promotes Basic and Acquired
Freezing Resistance in Arabidopsis

thaliana
The bioinformatics data showed that low temperature treatment
up-regulated the expression of ADF5 and inhibited ADF9
expression (Nan et al., 2017), which suggests that this subfamily
is involved in the plant response to low-temperature stress. To
reveal the physiological function of Arabidopsis ADF5 under
low-temperature stress, we used three adf5 knockout/gene
editing mutants: adf5-1, adf5-2, and adf5-3. Our laboratory
previously reported adf5-1 (Zhu et al., 2017). The adf5-2 is a T-
DNA insertion mutant (SALK_030145) from ABRC. PCR and
sequencing showed that two T-DNAs were inserted after the first
G of the second intron (Figure 1A). RT-PCR showed that the full-
length ADF5 gene in adf5-2 was not expressed (Figure 1B). The
adf5-3 was generated by CRISPR/Cas9 technology in which the
236 bp of ADF5 genome was deleted (221 to 455 bp after ATG)
and only 21 amino acids were correctly translated (Figure 1A).

To verify the phenotype of these mutants under low
temperature stress, we first used 12 to 15-day-old seedlings
grown on 1/2MS plates for freezing analyses. The results
showed that the three adf5 knockout mutants had lower freezing
resistance and lower survival rate than WT with or without
cold acclimation, and the difference was statistically significant
(Figures 1C–E). Ion leakage generally represents damage to
the cell membrane under stress, and it negatively correlates
with the survival rate of plants after freezing (Ye et al., 2019).
Second, we used seedlings that grew in soil for 21 days
to perform independent freezing treatment experiments and
obtained the ion leakage of WT and adf5 with or without cold
acclimation. The ion leakage of adf5 was higher than WT under
both treatment conditions, and the difference was statistically
significant (Figures 1F,G). In conclusion, the results of freezing
experiments and physiological data indicate that ADF5 promotes
basic and acquired freezing resistance in Arabidopsis thaliana.

Low Temperature Can Induce the
Expression of ADF5 Through a Partial
CBFs Dependent Pathway
To verify whether the bioinformatics analysis is correct, we
used qRT-PCR to detect the expression of ADF5 in the
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FIGURE 1 | Mutation of ADF5 results in increased freezing sensitivity. (A) Sketch map of adf5 mutants. The black square represents the exon, and the black line

represents the intron. The positions of adf5-1 and adf5-2 T-DNA are shown in the triangle. F and R are amplification sites of ADF5 for RT-PCR or identification of

adf5-3. T1 and T2 are specific Cas9-splicing sites. The red base is deleted in adf5-3, and the red asterisk is the edited termination site. (B) Expression of full length

ADF5 in WT and adf5-2. EF4A is used as an internal control gene. (C) Freezing phenotypes of WT and adf5s, each material contains ∼40 seedlings, which were

directly used for freezing treatments (non-cold-acclimated, NA), or treated at 4◦C for 3 days (cold-acclimated, CA) before freezing treatment. (D,E) Survival rate of WT

and adf5s. After 3–5 days of recovery under normal growth conditions, the survival rate was calculated. The data are the means of three biological replicates ± SD

(n = 40 for each replicate). Asterisks indicate statistically significant differences (P < 0.05, one-way ANOVA with a Dunnett’s multiple comparisons test). (F,G) Ion

leakage of WT and adf5s. After 3 weeks of normal growth in soil, the fully developed rosettes of seedlings were used for freezing treatment to obtain ion leakage under

NA and CA conditions. The data are the means of three biological replicates ± SD (n = 5 for each replicate). Asterisks indicate statistically significant differences (P <

0.05, one-way ANOVA with a Dunnett’s multiple comparisons test).

WT at low temperature. ADF5 was up-regulated nearly 10-
fold after 12 h at 4◦C, which indicates that ADF5 is a
cold-induced gene (Figure 2). To examine the transcriptional
regulatory factors upstream of ADF5, we analyzed its promoter
sequence and found a CCGAC element at −231 to −227
bp and −472 to −468 bp sites, which could be recognized
by CBFs (Figure 3A). To demonstrate that CBFs are the

upstream transcription activator of ADF5, we used the cbf3
single mutant, cbf1 cbf3 double mutant and cbf1 cbf2 cbf3
triple mutant (cbfs-1) to detect the induction of ADF5 at
4◦C for different durations. The induction amount of ADF5
in the single mutant was lower than that in WT, and the
double mutant was further reduced. ADF5 induction was
significantly inhibited in the triple mutant (Figure 2). Together,
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FIGURE 2 | ADF5 expression is induced by cold inWT, cbf3, cbf1/3, and cbfs.

Ten-day-old Arabidopsis seedlings were treated at 4◦C for different durations,

and the leaves were detached for RNA extraction. UBQ10 was used as an

internal standard. Data presented are the means ± SD of three independent

biological replicates (*P < 0.05; **P < 0.01; Student’s two-tailed t-test).

these results indicate that ADF5 may participate in the CBFs
signaling pathway.

ADF5 Is a Downstream Target Gene of
CBFs
To further confirm that CBFs bind to the corresponding region
of the ADF5 promoter, we performed yeast one-hybrid (Y1H)
experiment. The results show that CBF1, CBF2, and CBF3 bind
to the ADF5 promoter (Figures 3B,C). We further mutated the
CBF recognition sites on the ADF5 promoter to determine the
key binding sites (Stockinger et al., 1997) (Figure 3A). We found
the mutation of the two binding sites recognized by CBFs or
the binding sites at −231 to −227 bp, CBFs no longer bound
to the ADF5 promoter in yeast, but the sites at −472 to −468
bp remained functional (Figures 3B,C). These results indicate
that CBFs bind to the ADF5 promoter via the CRT/DRE DNA
regulatory element at−231 to−227 bp sites.

To determine the effect of CBFs on ADF5 activation,
we performed transient transcriptional activation experiments
in tobacco leaves. Because Y1H analysis found that CBF1,
CBF2, and CBF3 bound to the ADF5 promoter, and their
function had a certain redundancy (Park et al., 2015), we
selected the CBF3 with the strongest binding ability in the
Y1H experiments for follow-up experiments (Figures 3B,C).
Transcriptional activation analysis showed that CBF3 directly
transcriptionally activated the expression of ADF5 in tobacco
mesophyll cells (Figures 3D,E). Subsequent mutation analysis
showed that the recognition sites at −472 to −468 bp did not
affect the transcriptional activation efficiency of CBF3 to ADF5
and the mutation at −231 to −227 bp sites or both significantly
reduced the transcriptional activation efficiency (Figure 3E). The
results indicate that CBF3 activates the expression of ADF5 via
binding to the CBF recognition sites of the ADF5 promoter at
−231 to−227 bp.

To further confirm that CBFs bound to the ADF5 promoter
in vivo, ChIP experiments were performed. Col/pSuper::CBF3-
Myc was treated at 4◦C for different times. Chromatin was
precipitated using anti-c-myc antibody magnetic beads. P1
primers containing −472 to −468 bp sites and P2 primers
containing −231 to −227 bp sites were used to analyze the
enrichment by qRT-PCR (Figure 3A). The results showed no
significant difference between the CBF3 overexpression line and
the WT at the −472 to −468 bp sites at 0 h, but the CBF3
overexpression line was 1.3 times more enriched than the WT
at the −231 to −227 bp sites. After 6 h of low-temperature
treatment, the enrichment of WT at the two recognition sites did
not change significantly, and CBF3 overexpression line showed
a significant increase that was nearly three times the enrichment
at the −231 to −227 bp sites (Figure 3F). These results suggest
that CBF3 binds to the CBF recognition element of the ADF5
promoter in vivo, and this binding activity is regulated by low
temperature. In conclusion, CBFs primarily bind to the CBF
recognition sites at the −231 to −227 bp of the ADF5 promoter
in vivo, and ADF5 is a downstream target gene of CBFs.

The Effect of ADF5 on Freezing Resistance
in Arabidopsis thaliana Partially Depends
on the CBF Pathway
To further investigate the genetic relationship between ADF5 and
CBFs, adf5 cbfs quadruple mutant was obtained by crossing adf5-
1with the triple mutant cbfs-1. Freezing experiments showed that
adf5-1, cbfs-1, and adf5 cbfs were more sensitive than WT under
non-cold-acclimated (NA) conditions, and the survival rate was
significantly different. The freezing resistance of adf5 cbfs was
closer to adf5-1 with decreasing temperature and there was no
significant difference between the two groups (Figures 4A,B).
Under cold-acclimated (CA) conditions, adf5-1, cbfs-1, and adf5
cbfs were more sensitive to freezing than WT, and their survival
rate was significantly different. The freezing resistance of the adf5
cbfs showed the freezing resistance of cbfs-1 and there was no
significant difference between the two groups (Figures 4A,C).
Seedlings grown in soil for 21 days were used for freezing
treatment to obtain ion leakage. Under NA conditions, the ion
leakage of WT and cbfs-1 treated at −4◦C was similar, and there
was no significant difference. adf5-1 and adf5 cbfs had higher ion
leakage than WT and were significantly different. At −5◦C, the
ion leakage of cbfs-1 increased significantly relative to WT. The
adf5-1 and adf5 cbfs had significantly higher ion leakage thanWT,
and the adf5 cbfs had significantly higher ion leakage than adf5-
1 (Figure 4D). Under CA conditions, the ion leakage of adf5-1,
cbfs-1, and adf5 cbfs was significantly higher than WT. The ion
leakage of adf5 cbfs resembled cbfs-1, and there was no significant
difference (Figure 4E). In conclusion, ADF5 positively regulates
the freezing tolerance ability of Arabidopsis thaliana by partially
relying on the CBF pathway.

The Actin Cytoskeleton of the Mutant Was
Disordered During Cold Acclimation
To determine whether the phenotypes of the adf5 and cbfs
mutants are directly related to the actin cytoskeleton, we
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FIGURE 3 | CBFs activate ADF5 expression via direct binding to the ADF5 promoter. (A) Schematic diagram of the CRT/DRE DNA regulatory element of the ADF5

promoter. The black triangle represents the CRT/DRE DNA regulatory element. M1 is a mutation at the −472 to −468 bp sites. M2 is a mutation at the −231 to −227

bp sites. DM is a simultaneous mutation of M1 and M2. P1 and P2 are specific primers for ChIP assay. (B) Diagram of Y1H colony. (C) Y1H assay of the interaction

between CBFs and the ADF5 promoter showing the growth of yeast cells on SD/-Leu medium containing 850 ng/mL Aureobasidin A (AbA). The numbers above the

images indicate the dilutions. (D) Schematic diagram of the transcriptional activation experiment. (E) CBF3 activates the expression of ADF5 in tobacco leaves via

transient expression. (F) ChIP analysis of the interaction between CBFs and the ADF5 promoter under normal conditions or 4◦C for 6 h. P1 contains −472 to −468 bp

sites of the CRT/DRE DNA regulatory element. P2 contains −231 to −227 bp sites of the CRT/DRE DNA regulatory element. Data presented are the means ± SD of

three independent biological replicates (*P < 0.05; **P < 0.01; Student’s two-tailed t-test).

observed the actin cytoskeleton morphology in epidermal cells
from root transition and elongation zone of WT and mutants
under normal growth and different durations of 4◦C treatment
(Figure 5A). ABD2-GFP was expressed in all mutants after
crossing Col/pUBQ10::ABD2-GFP. The average fluorescence
intensity was measured directly. Similar to previous reports, the
fluorescence intensity of adf5-1 under normal growth conditions
was significantly lower than the WT (Zhu et al., 2017; Qian
et al., 2019). The fluorescence intensity of cbfs-1 was slightly
higher than WT, but adf5 cbfs had the highest fluorescence
intensity compared to WT, with a significant difference. After
6 h of low temperature treatment, the fluorescence intensity of
WT and cbfs-1 decreased, and adf5 cbfs obviously decreased, but
the fluorescence intensity of adf5-1 was not changed. There was
no significant difference among the materials at this time. After
12 h of low-temperature treatment, the fluorescence values of
all materials recovered, and there was no significant difference

amongWT, adf5-1, and cbfs-1. The fluorescence value of the adf5
cbfs quadruple mutant increased less, and there was a significant
difference between WT and adf5 cbfs (Figure 5B).

We analyzed the actin cytoskeleton density and skewness
after different time points of low-temperature treatment
(Figures 5C,D). Consistent with a previous report, the structure
of the actin cytoskeleton in WT was relatively stable (Shibasaki
et al., 2009), and its density and degree of filament bundling
(skewness) were not changed. Compared toWT, the mutants had
lower actin cytoskeleton density and a higher degree of bundled
actin filament at 0 h, which corresponded to the function of
ADF5 in forming a more stable actin cytoskeleton network (Zhu
et al., 2017; Qian et al., 2019). After 6 hours of low-temperature
treatment, the actin cytoskeleton density in the adf5-1, cbfs-1,
and adf5 cbfsmutants was relatively changed. However, there was
no significant difference between WT and mutants. The degree
of bundled actin filament was reduced, there was no significant

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 January 2021 | Volume 9 | Article 63553320

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Zhang et al. CBFs Regulate Actin Cytoskeleton Dynamic

FIGURE 4 | ADF5 is the genetic downstream of CBFs. (A) Freezing phenotypes of WT, adf5-1, cbfs-1, and adf5 cbfs under NA or CA conditions. (B,C) Survival rate

of WT, adf5-1, cbfs-1, and adf5 cbfs. After 3–5 days of recovery under normal growth conditions, the survival rate was calculated. The data are the means of three

biological replicates ± SD (n = 40 for each replicate). Asterisks indicate statistically significant differences and ns is not significant (P < 0.05, one-way ANOVA with a

Tukey’s multiple comparisons test). (D,E) Ion leakage of WT, adf5-1, cbfs-1, and adf5 cbfs. After 3 weeks of normal growth in soil, the fully developed rosettes of

seedlings were used for freezing treatment to obtain ion leakage under NA or CA conditions. The data are the means of three biological replicates ±SD (n = 5 for each

replicate). Asterisks indicate statistically significant differences and ns is not significant (P < 0.05, one-way ANOVA with a Tukey’s multiple comparisons test).

differences among the adf5-1, cbfs-1, and WT, but significant
differences between adf5 cbfs and WT. After 12 h of treatment,
the density of adf5-1 decreased slightly and cbfs-1 increased,
but there was no significant difference compared to WT. The
quadruple mutant also increased and was significantly different
than WT. The skewness value of adf5-1 increased, and the values
of cbfs-1 and adf5 cbfs decreased. Only the quadruple mutant was
significantly different from WT (Figures 5C,D). In conclusion,
the actin cytoskeleton structure of WT is relatively stable, but
the mutants change significantly compared to WT under low
temperature treatment, and actin cytoskeleton dynamic process
in mutants is affected.

The Endocytosis Rate of the Mutants
Decreased During Cold Acclimation
The dynamics of the plasmamembrane are very important for the
plant response to stress, and the actin cytoskeleton is important

for plant endocytosis (Baluška et al., 2002; Wang et al., 2020).
Considering the effect of low temperature on actin cytoskeleton
dynamics, then to track the endocytosis process, we used
amphiphilic styryl dye FM4-64 to label epidermal cells from root
transition zone and quantified the cytosol/PM FM4-64 signal
intensity ratio to represent the endocytosis rate (Figures 6A,B).
The results showed that the endocytosis rate of adf5-1, cbfs-1, and
adf5 cbfs mutants was faster than WT, and there was significant
differences between adf5-1, adf5 cbfs, and WT, respectively, but
there was no significant difference in cbfs-1. The endocytosis
rate of WT, adf5-1, cbfs-1, and adf5 cbfs decreased after 6 h of
low-temperature treatment, and the difference between WT and
mutants was reduced. There was a significant difference between
adf5 cbfs and WT. After 12 h of low-temperature treatment,
the endocytosis rate of WT and adf5-1 increased slightly, and
there was no significant difference between adf5 and WT. The
endocytosis rate of cbfs-1 and adf5 cbfs was further reduced, and
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FIGURE 5 | Actin cytoskeleton array rearranges in response to cold treatment. (A) Five-day-old seedlings expressing ABD2-GFP were used for fluorescence

collection. Images of the cortical actin cytoskeleton array in epidermal cells from the root elongation transition zone of WT, adf5-1, cbfs-1, and adf5 cbfs treated at 4◦C

for different durations. Scale bar = 10µm. (B) The average intensity of fluorescence of the GFP signal in WT, adf5-1, cbfs-1, and adf5 cbfs root elongation transition

zone cells. (C) Average actin cytoskeleton density of WT, adf5-1, cbfs-1, and adf5 cbfs root elongation transition zone cells. (D) The extent of actin cytoskeleton

bundling (skewness) of WT, adf5-1, cbfs-1, and adf5 cbfs root elongation transition zone cells. The values represent the means ± SEM (n = 60 cells per genotype. *P

< 0.05; **P < 0.01; Student’s two-tailed t-test).

there was a significant difference between cbfs-1 and WT, but
not in the quadruple mutant (Figure 6B). The results indicate
that the abnormal endocytosis rate of adf5-1, cbfs-1, and adf5
cbfs under normal growth conditions may be the reason for
their freezing sensitivity. During the cold training process, the
endocytosis rate of non-synchronous change in mutants may
cause disorders of cold signals and cryoprotective substance
transport, whichmay affect the freezing resistance of themutants.

DISCUSSION

Previous reports showed that low temperature disturbed the
actin cytoskeleton of plant cells and reduced all cell processes
(Das et al., 1966; Pokorná et al., 2004; Fan et al., 2015). The
present study provided molecular genetic and physiological

evidences for ADF5, which is an ABP that evolved F-actin-
bundling function, regulation of actin cytoskeleton dynamics at
low temperature partially via a CBF-dependent pathway. The
molecular components of fine regulation of the actin cytoskeleton
at low temperature were demonstrated.

Cold acclimation reshapes the physiological and biochemical
status of cells (Janmohammadi et al., 2015; Ding et al., 2019).
CBFs are the core regulatory factor in this process and activate
many downstream COR genes during cold acclimation (Shi
et al., 2018). Published transcriptome data revealed that CBFs
regulated a number of potential actin cytoskeleton regulatory
genes including ADF5 (Jia et al., 2016). Previous evidence also
showed that TaADF accumulated more in freezing-resistant
seedlings (Ouellet et al., 2001). Our qRT-PCR data also directly
indicated that ADF5 was partially up-regulated by CBFs at low
temperature treatment (Figure 2). Genetic analyses also showed
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FIGURE 6 | Low temperature reduced the rate of endocytosis in mutants

compared to WT. (A) Five-day-old seedlings were used for amphiphilic styryl

dye FM4-64 signal intensity collection. Seedling roots of WT, adf5-1, cbfs-1,

and adf5 cbfs treated at 4◦C for different durations were labeled with FM4-64

to measure internalization. Scale bar = 10µm. (B) The rate of cytosol average

fluorescence intensity to plasma membrane average fluorescence intensity.

The values represent the means ± SEM (n = 60 cells per genotype. *P < 0.05;

**P < 0.01; Student’s two-tailed t-test).

that the freezing sensitivity of adf5 cbfs was closer to adf5-1
under NA conditions (Figure 4A). Under this condition, the ion
leakage of adf5 cbfswas higher than adf5-1, and the difference was
statistically significant (Figure 4D). These results suggested that
ADF5 promotes the freezing resistance of Arabidopsis thaliana
via a non-CBF pathway. Under CA conditions, CBFs are the
core transcription factors of the cold response pathway, and there
are many downstream induced genes. The adf5 cbfs primarily
showed the freezing sensitivity and physiological characteristics
of cbfs-1 (Figures 4A,E). In summary, ADF5 promotes freezing
resistance in Arabidopsis thaliana partially via the CBF signaling
pathway. Moreover, transcriptome data clearly showed that some
non-CBF-dependent ABPs were cold regulated (Jia et al., 2016;
Zhao C. et al., 2016). For example, AtFH16 was downregulated,
and FIM4 and CROLIN were up-regulated (Jia et al., 2013; Wang
J. et al., 2013; Ding et al., 2018). Therefore, coordination of actin

cytoskeleton dynamics is an important plant cell process under
low-temperature stress.

Membrane vesicle transport is a conserved basic cell process
in eukaryotes, and it plays an important role in the plant
response to stress. Under stress, it is responsible for the correct
sorting and positioning of specific proteins and the stress
response (Rosquete and Drakakaki, 2018; Wang et al., 2020).
For example, low temperature reduces the intracellular transport
of auxin transporters PIN2 and PIN3, which affects auxin
transport and changes the gravitropism of roots (Shibasaki et al.,
2009). Recent studies also showed that stable GNOM ARF-GEF-
mediated endosomal trafficking helped Arabidopsis adapt to low
temperature (Ashraf and Rahman, 2019). The cryoprotective
protein RCl2A also depends on clathrin-mediated endocytosis
(Wang C. et al., 2013), and the transport of its homologous
protein RCI2B at low temperature is selectively regulated to
maintain a normal transport rate (Shibasaki et al., 2009). The
actin cytoskeleton plays an important role in endocytosis and
intracellular transport (Šamaj et al., 2004; Kim et al., 2005).
Previous studies showed that BRI1 and CRPK1 were essential
for the regulation of plant freezing resistance (Liu et al., 2017;
Unterholzner et al., 2017). BRI1 is internalized by clathrin
and sorted by the SYP61/VHA-a1 endosomal compartment,
which also sorts the auxin transporters PIN2 and AUX1(Robert
et al., 2008). This process requires coordination of the actin
cytoskeleton (Lanza et al., 2012; Arieti and Staiger, 2020). The
number of actin cytoskeletons decreased in the rice vln2mutant,
and the polarity distribution and cycle of PIN2 changed (Wu
et al., 2015). FH5-regulated actin cytoskeleton polymerization
and elongation processes are necessary for the movement of
FH5-labeled vesicles in Arabidopsis pollen tubes (Liu C. et al.,
2018). Therefore, the actin cytoskeleton is very important for
the integrity of the endocytosis and sorting processes, which
ultimately affects the correct positioning and distribution of
endocytic cargos and the plant response to stress. However, the
processes of vesicle transport and sorting controlled by the actin
cytoskeleton under low temperature are rarely reported.

The present study showed that the morphology of the actin
cytoskeleton in WT was relatively stable consistent with previous
reports (Shibasaki et al., 2009; Figure 5), and its endocytosis
rate was reduced during low-temperature treatment (Figure 6),
which may be related to the slowing of molecular thermal
movement at low temperature. However, the endocytosis rate
in adf5-1 had a greater reduction than WT at 6 h, which may
be related to the disorder of the adf5-1 actin cytoskeleton
(Figures 5, 6). The endocytosis rate of cbfs-1 and adf5 cbfs
continuously decreased significantly compared to WT at low
temperature (Figure 6), which may be due to the influence
of their disturbed actin cytoskeleton and additional regulatory
pathways regulated downstream of CBFs. In summary, the
damaged actin cytoskeleton of mutants changes the endocytosis
rate during cold acclimation and the change in the endocytosis
rate is not consistent withWT, in which the distribution, recovery
and sorting of receptors and cryoprotective substances on the
plasma membrane are directly changed. Therefore, the cold
acclimation process of mutants is affected, and the freezing
resistance of mutants is reduced.
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METHODS

Plant Materials and Growth Conditions
Arabidopsis seeds were vernalized for 3 days at 4◦C with 2%
PPM-Preservative (Plant Cell Technology) and grown on half-
strength Murashige and Skoog medium (MS, PhytoTech M519)
containing 0.8% agar and 1.5% sucrose for 12–15 days at 22◦C
with an optical density of 80–100 µmol m−2 s−1 under a
16 h light/8 h dark LD photoperiod. Arabidopsis thaliana Col-
0 and Nicotiana benthamiana were used in this experiment.
Mutants adf5-1 (Salk_018325) and adf5-2 (SALK_030145) were
obtained from the Arabidopsis Biological Resource Center. adf5-
3 was obtained using two specific Cas9-cleaved targets of
ADF5 to mutate Col-0, and this method was obtained from
the report (Xing et al., 2014). The cbf3, cbf1 cbf3, cbfs-1, and
Col/pSuper::CBF3-Myc were obtained from the Prof. Shuhua
Yang Laboratory (China Agricultural University) (Jia et al.,
2016; Liu et al., 2017). The adf5 cbfs was obtained by crossing
adf5-1 with cbfs-1. The primers used to identify homozygous
lines and for CRISPR are listed in Supplementary Table 1. The
materials for ion leakage measurements were grown onMS plates
containing 1% agar for 5–7 days, transferred to soil, then grown
at 23◦C, 16 h light/8 h dark LD photoperiod to an optical density
of∼100µmol m−2 s−1 and relative humidity of 60% for 3 weeks.
Nicotiana benthamiana had similar growth conditions.

Freezing Tolerance and Ion Leakage
Assays
This experiment was performed according to the protocol
described previously (Shi et al., 2012). Briefly, 12 to 15-day-
old seedlings were used to obtain phenotypes by freezing
treatment. For cold acclimation (CA) treatment, the normally
growing seedlings were grown at 4◦C for an additional 3
days at a light density of ∼25 µmol m−2 s−1, 16 h light/
8 h dark LD photoperiod and transferred to the freezing
incubator (PERCIVAL, LT-36VLC8) for treatment according to
the following procedure. The seedlings were kept at 0◦C for
1 h, then decreased by 1◦C per hour until the temperature
shown in the figure was maintained for the corresponding times.
Non-cold-acclimation (NA) processing was directly performed
according to a program. After freezing treatment, the seedlings
were shifted to 4◦C, kept in darkness for 12 h, and transferred to
a normal growth environment for growth recovery for 3–5 days.
The survival rate was obtained by calculating the proportion of
seedlings that grew new leaves.

Ion leakage assays was performed as described (Guo et al.,
2002). Briefly, seedlings grown for 3 weeks in soil were treated
for ion leakage analyses with or without cold acclimation (4◦C
for 3 d). A fully and well-developed rosette leaf was washed with
deionized water, and placed in the bottom of a 15-mL sterile
centrifuge tube containing 100 µL deionized water, then placed
in a low-temperature circulator (SCIENTZ, DC-2030). After
holding at 0◦C for 30min, a small amount of tiny and pure ice
crystal was added to the centrifuge tube, and the temperature was
reduced by 1◦C per 30min until the temperature shown in the
figure and maintained for 1 h. The centrifuge tube was removed
and kept in darkness at 4◦C for 12 h. Then, 10mL of deionized

water was added to the sterile tube, and the tubes were shaken
at normal temperature for 2 h. The electrical conductivity S1 was
measured. After sterilization at 121◦C for 15min, S2 conductivity
was measured after shaking for 2 h. The S0 conductivity of
deionized water used in the experiment, and the conductivity S0

′

after sterilization was measured. The ratio of S1–S0 to S2–S0
′

was
used as the ion leakage.

RNA Extraction and Real-Time
Quantitative PCR Analysis
Seedlings grown in a normal environment for 10 days on MS
plates containing 1% agar were used for gene expression analyses
with or without treatment at 4◦C. Total RNA was extracted
using a MiniBEST Plant RNA Extraction kit (TaKaRa), and total
RNA was reverse transcribed into cDNA using M-MLV reverse
transcriptase (TaKaRa). qRT-PCR was performed using SYBR
Premix Ex Taq (TaKaRa), and UBQ10 was used as an internal
reference gene. The primers used for qRT-PCR are listed in
Supplementary Table 1.

Yeast One-Hybrid Assays
Yeast one-hybrid (Y1H) assays were performed as described
previously (Qian et al., 2019). Briefly, the ADF5 promoter
containing the CRT/DRE DNA regulatory element was amplified
using PCR and cloned into the pAbAi vector. The CRT/DRE
mutation sequence was obtained using specific primers and
cloned into the pAbAi vector. The vector was linearized and
transformed into the Y1H GOLD (Clontech) strain. The full-
length CBF coding sequence was amplified using PCR, cloned
into the pGADT7 vector, and transformed into the constructed
Y1H strain. Aureobasidin A (AbA, 850 ng/mL, Clontech) was
used for the reporter gene activation test. The primers used to
clone are listed in Supplementary Table 1.

Transcriptional Activation Assays
This experiment was performed as described previously (Qian
et al., 2019). PCR amplified and cloned the ADF5 promoter
sequence into pGWB235-LUC to construct the reporter vector.
The full-length CBF3 coding sequence was amplified using
PCR, and it was cloned into the pBIB-35s-GWR-flag vector
as the effect vector. The reporter and effector vectors were
co-transformed into N. benthamiana leaves for transcriptional
activation analyses. A reporting vector alone was used as a
negative control. Fluorescence of the luciferase and luciferin
(Promega) reaction was obtained using a Lumazone CA1300B
camera (Photometrics). The primers used to clone are listed in
Supplementary Table 1.

Chromatin Immunoprecipitation Assays
Under normal growth conditions, seedlings grown on 1% agar
MS plates for 12 days were used in this experiment. The
seedlings of Col/pSuper::CBF3-Myc and Col-0 (without Myc-
tag, as negative control) were treated at 4◦C or not, and a
ChIP experiment was performed according to a previously
described method (Ni et al., 2009). The relative enrichment
of the ADF5 promoter region was detected by qRT-PCR
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using specific primers. The specific primers are listed in
Supplementary Table 1.

Visualization of Actin Filaments by
Confocal Laser Scanning Microscopy and
Quantitative Analyses of Actin Filament
To visualize the actin cytoskeleton, we crossed Col-
0/pUBQ10::ABD2-GFP (Tian et al., 2015) with adf5-1, cbfs-1,
and adf5 cbfs and expressed ABD2-GFP in mutants for GFP
fluorescence collection. Under normal growth conditions,
seedlings grown on 1% agar MS plates for 5 days were treated
with or without 4◦C for the duration shown in the figure for
fluorescence acquisition. Images of epidermal cells from root
transition and elongation zone were acquired using a spinning
disk microscope (Andor) equipped with a 63×NA oil immersion
lens, and the Z-series images were captured with the step size set
at 0.5µm (Zhou et al., 2020). GFP was excited with a 488-nm
laser and observed using a 514-nm emission filter. Images were
processed and analyzed using ImageJ. To measure the extra actin
cytoskeleton structure, the percentage of occupancy (density)
and skewness were measured using ImageJ software as previously
described (Higaki et al., 2010; Henty et al., 2011).

FM4-64 Labeling and Endocytosis
Measurements
Under normal growth conditions, the seedlings growing on 1%
agar MS plates for 5 days were treated with or without 4◦C for
different times then used in this experiment. Seedlings were held
on ice for 2min with 2µM FM4-64 and stained at 22 or 4◦C for
an additional 5min. After FM4-64 washout, dye internalization
was imaged using a Zeiss LSM880 confocal microscope equipped
with 40 × 1.3 NA oil immersion lens. FM4-64 signals were
excited with a 488-nm laser and observed using a 600 to 630-
nm emission filter. The endocytosis rate was measured and

calculated in ImageJ software as previously described (Zhang
et al., 2020).
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Cell growth in budding yeast depends on rapid and on-going assembly and turnover of
polarized actin cables, which direct intracellular transport of post-Golgi vesicles to the
bud tip. Saccharomyces cerevisiae actin cables are polymerized by two formins, Bni1
and Bnr1. Bni1 assembles cables in the bud, while Bnr1 is anchored to the bud neck
and assembles cables that specifically extend filling the mother cell. Here, we report a
formin regulatory role for YGL015c, a previously uncharacterized open reading frame,
which we have named Bud6 Interacting Ligand 2 (BIL2). bil21 cells display defects in
actin cable architecture and partially-impaired secretory vesicle transport. Bil2 inhibits
Bnr1-mediated actin filament nucleation in vitro, yet has no effect on the rate of Bnr1-
mediated filament elongation. This activity profile for Bil2 resembles that of another
yeast formin regulator, the F-BAR protein Hof1, and we find that bil21 with hof11

are synthetic lethal. Unlike Hof1, which localizes exclusively to the bud neck, GFP-Bil2
localizes to the cytosol, secretory vesicles, and sites of polarized cell growth. Further,
we provide evidence that Hof1 and Bil2 inhibitory effects on Bnr1 are overcome by
distinct mechanisms. Together, our results suggest that Bil2 and Hof1 perform distinct
yet genetically complementary roles in inhibiting the actin nucleation activity of Bnr1 to
control actin cable assembly and polarized secretion.

Keywords: actin, cable, formin, secretion, Bud6, Bni1, Bnr1, Bil2

INTRODUCTION

Formins are a conserved family of actin assembly-promoting proteins that perform essential roles
in numerous actin-based cellular and physiological processes (Kovar, 2006; Chhabra and Higgs,
2007; Chesarone et al., 2010). Formins nucleate the assembly of new actin filaments and accelerate
actin filament elongation while protecting growing barbed ends from capping proteins (Goode and
Eck, 2007; Breitsprecher and Goode, 2013). Studies in yeast have led to important advances in our
understanding of formin activities, mechanism, and regulation (Breitsprecher and Goode, 2013).
Mammalian genomes encode 15 different formins (Higgs and Peterson, 2005), which are used to
assemble a wide variety of cellular actin structures, including filopodia, stress fibers, stereocilia, and
lamellipodia (Faix and Grosse, 2006). In contrast, the budding yeast Saccharomyces cerevisiae has
just two formin genes, BNI1 and BNR1, and during most stages of the cell cycle they assemble
only a single actin structure, the actin cable network. The relative simplicity of the yeast system,
combined with its genetic tractability, have made it a powerful model for elucidating formin
regulatory mechanisms.
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Bni1 and Bnr1 assemble actin cables from distinct locations
in cells, the bud cortex and bud neck, respectively (Moseley
and Goode, 2006). However, together they share one essential
function in actin cable network assembly, which is crucial for
secretory vesicle transport and polarized cell growth (Imamura
et al., 1997; Evangelista et al., 2002; Sagot et al., 2002a; Gao and
Bretscher, 2008). Bni1 is transiently recruited from the cytosol
to the bud cortex, where it assembles cables that fill the bud
compartment and extend into the mother cell. In contrast, Bnr1
is stably anchored to the bud neck, where it assembles cables
that specifically extend into the mother cell (Ozaki-Kuroda et al.,
2001; Pruyne et al., 2004; Buttery et al., 2007, 2012; Gao et al.,
2010). Actin cables extend toward the back of the mother cell
at a rate of ∼0.3–0.7 µm/sec, and are turned over at the same
rate, which means that Bni1 and Bnr1 continuously nucleating
and elongating cables (Yang and Pon, 2002; Yu et al., 2011).
Post-Golgi secretory vesicles are transported along the cables
toward the bud tip by the essential myosin V protein (Myo2)
(Govindan et al., 1995; Pruyne et al., 1998). It is believed that
the dynamic and constant assembly of the actin cable networks
enables them to be rapidly rearranged, and for cells to reorient
polarized secretion and cell growth during different stages of the
cell cycle (Bi and Park, 2012) and in response to external stimuli,
e.g., during the mating response (Ghose and Lew, 2020) and
wound healing (Kono et al., 2012). In addition, the rearward (or
‘retrograde’) treadmilling of the cables provides a quality control
mechanism to help keep damaged organelles and proteins,
accumulated during cellular aging, out of the bud and increase
the fitness of daughter cells (Higuchi et al., 2013). However,
these rapid dynamics also put a constant and high demand
on the system for controlling actin cable extension rates and
lengths. How this regulation is achieved it not fully understood,
but appears to involve actin turnover-promoting factors such as
cofilin and Aip1 (Okada et al., 2006) and formin-binding proteins
that modulate formin actin assembly activity.

Factors that promote yeast formin-mediated actin assembly
include profilin, Bud6, Bil1, and Aip5 (Evangelista et al., 1997;
Moseley et al., 2004; Graziano et al., 2013; Glomb et al., 2019;
Xie et al., 2019). Bud6 directly interacts with G-actin and the
C-terminal tail regions of Bni1 and Bnr1, positioning actin
monomers near their actin-nucleating formin homology 2 (FH2)
domains (Graziano et al., 2011). Interestingly, the Bud6-binding
site (BBS) is positioned differently in Bni1 compared to Bnr1,
leading to a key difference in their regulation. The BBS on
Bni1 is adjacent to its C-terminal diaphanous autoregulatory
domain (DAD), which is some distance from the FH2 domain
(Moseley and Goode, 2005). As a result, Bud6 alone enhances
Bni1-mediated actin nucleation. In contrast, the putative BBS
on Bnr1 is much closer to its FH2 domain, and as a result,
Bud6 alone obstructs actin nucleation by Bnr1 (Graziano
et al., 2013). However, addition of Bil1, a small Bud6-binding
protein, unmasks Bud6’s nucleation-promoting effects on Bnr1
(Graziano et al., 2013). Thus, Bil1 is required specifically for
productive interactions of Bud6 with Bnr1, but not Bni1. In
addition to factors that enhance nucleation, there are a number
of yeast formin-binding partners that inhibit its nucleation
and/or elongation activities, including Bud14, Smy1, and Hof1

(Chesarone et al., 2009; Chesarone-Cataldo et al., 2011; Graziano
et al., 2013; Eskin et al., 2016; Garabedian et al., 2018). How
these different stimulatory and inhibitory inputs work in concert
to tune actin cable extension rate and length in vivo is only
beginning to be understood.

All three known formin inhibitors in yeast (Hof1, Bud14, and
Smy1) regulate Bnr1, but not Bni1. Whereas Bud14 and Smy1
inhibit Bnr1-mediated actin filament elongation (Chesarone
et al., 2009; Chesarone-Cataldo et al., 2011; Eskin et al., 2016),
Hof1 specifically inhibits Bnr1-mediated actin nucleation and
has no effects on filament elongation (Graziano et al., 2014;
Garabedian et al., 2018). Hof1 is stably anchored to the septin
collar at the bud neck (Kamei et al., 1998; Vallen et al., 2000),
similar to Bnr1, and deletion of HOF1 results in excessive
actin assembly, leading to defects in cable orientation and
vesicle transport (Graziano et al., 2014; Garabedian et al.,
2018, 2020). Hof1 inhibition of Bnr1 is overcome by the
nucleation-promoting factor (NPF) Bud6, which is delivered on
secretory vesicles to the bud neck (Garabedian et al., 2018).
This regulatory scheme of combining a stationary inhibitor
(Hof1) with a mobile activator (Bud6) is thought to establish
a positive feedback loop for promoting Bnr1-mediated actin
cable nucleation. Biochemical experiments have elucidated
parts of the underlying mechanism. A C-terminal fragment of
Bud6 (489–788), called ‘Bud6(L),’ enhances Bnr1-mediated actin
nucleation when accompanied by its in vivo binding partner
Bud6 Interacting Ligand 1 (Bil1) (Graziano et al., 2013). These
observations, supported by additional in vivo evidence, suggest
that Bud6 and Bil1 work together to promote Bnr1-dependent
actin cable nucleation.

In the present study, we identify YGL015c, a previously
uncharacterized gene product, as a novel regulator of Bnr1
activity and cellular function. YGL015c encodes a 15 kDa protein,
and in earlier proteomic studies was shown to interact with Bud6
and actin (Ito et al., 2001; Yu et al., 2008). This prompted us to
investigate the potential role(s) of YGL015c in regulating formins
and actin cable assembly. Based on its association with Bud6,
and our own observations here of YGL015c co-localization with
Bud6 on secretory vesicles, we named this gene Bud6 Interacting
Ligand 2 (BIL2). Our biochemical and genetic results suggest that
Bil2/YGL015c functions as a novel inhibitor of Bnr1-mediated
actin nucleation, but not elongation, and that it shares an essential
in vivo function with the formin regulator Hof1.

MATERIALS AND METHODS

Plasmids and Yeast Strains
A low-copy (CEN) plasmid was used to express GFP-SEC4 in
S. cerevisiae (Calero et al., 2003). A CEN plasmid for expressing
GFPEnvy-SEC4 in S. cerevisiae was constructed by amplification
of the GFPEnvy sequence from plasmid pFA6a-link-Envy-spHis5
(Slubowski et al., 2015) using primers (forward 5- CAT GCT GTC
GAC ATG TCT AAA GGC GAG GAA TT-3; reverse 5- CAT
TAG TCT AGA TTT GTA CAA TTC GTC CAT TC-3). The
GFPEnvy sequence was then stitched in frame with SEC4 using
SalI and XbaI sites into the above-mentioned GFP-SEC4 plasmid.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 February 2021 | Volume 9 | Article 63458729

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-634587 February 2, 2021 Time: 18:55 # 3

Rands and Goode Formins in Polarized Cell Growth

A GFPEnvy-BIL2 plasmid was constructed by PCR amplification
of the YGL015c open reading frame using primers (forward 5-
CAT TAG TCT AGA ATG GAA GAC ACG ATA CGT CC-3;
reverse 5- TAC GAT CCG CGG CTA ATC ATC AGA AGT GCA
GC-3). This PCR product was cloned in frame with GFPEnvy

using XbaI and SacII sites in the GFPEnvy-SEC4 plasmid above.
Importantly, the sequence of the YGL015c open reading frame we
amplified matched the sequence at the Saccharomyces Genome
Database (SGD). A mCherry-SEC4 plasmid was constructed
by PCR amplification of the mCherry sequence using primers
(forward 5-TAG TCA GTC GAC ATG GTG AGC AAG GGC
GAG GA-3; reverse 5- TGC TAC TCT AGA TTA CTT GTA
CAG CTC GTC CA-3). This product was cloned in frame with
SEC4, as above, using SalI and XbaI sites. The plasmids used
for galactose-inducible expression in S. cerevisiae of 6His-fusions
of Bnr1 FH1-FH2-C (residues 757–1375) and Bnr1 FH2 (868–
1291) have been described (Moseley and Goode, 2005; Okada
et al., 2010; Jaiswal et al., 2013). A plasmid used for Escherichia
coli expression of full-length 6His-Bil2 was constructed by PCR
amplification of the YGL015c open reading frame using primers
(forward 5-GAC TAG GGA TCC ATG GAA GAC ACG ATA
CGT CC-3; reverse 5- TAG GAC AAG CTT CTA ATC ATC AGA
AGT GCA GC-3). This PCR product was cloned in frame into the
pET-28a vector using BamHI and HindIII sites. For expression of
C-Bud6 in E. coli, the sequence encoding amino acids 489–788 of
Bud6 was PCR amplified from genomic DNA and subcloned into
pET-GST-TEV as previously described (Graziano et al., 2013).

All yeast strains used in this study are in the W303
background, with the exception of Figure 2E, which was in
the ResGen background (see Supplementary Table 1). A bil21
strain (BGY4248) was generated by integration of a selectable
marker into the BIL2 locus as described (Longtine et al.,
1998). To track secretory vesicles in live-imaging experiments,
wildtype (BGY10) and bil21 (BGY4248) cells were transformed
with pGFPEnvy-SEC4. For analyzing Bnr1-GFP levels and neck
localization, we crossed a Bnr1-GFP strain (BGY962) to a bil21
strain (BGY4248). For genetic analyses, we crossed a bil21
strain (BGY4248) to hof11 (BGY4253), bud141 (BGY4259), and
bud61 (BGY1249). To localizing Bud6 and Bil2 in vivo, we used
a Bud6-mCherry strain (BGY3913) (Garabedian et al., 2018)
transformed with pGFPEnvy-BIL2. For biochemical isolation
of secretory vesicles, we used two different strains, one with
differential tags on Bud6 and Bil2, and one with differential tags
on Bil2 and Sec4, generated as follows. We crossed a sec6-4 strain
(a kind gift from Dr. Erfei Bi) to our BUD6-mCherry strain
(BGY3913), producing BUD6-mCherry sec6-4 (BGY4258), which
was then transformed with pGFPEnvy-BIL2. We transformed
the same sec6-4 strain with both pGFPEnvy-BIL2 and mCherry-
SEC4 plasmids.

Protein Purification
Rabbit skeletal muscle actin was purified from acetone powder
(Spudich and Watt, 1971) generated from frozen ground hind
leg muscle tissue of young rabbits (Pel-Freez, United States).
Lyophilized acetone powder stored at −80◦C was mechanically
sheared in a coffee grinder, resuspended in G-buffer [5 mM Tris-
HCl pH 7.5, 0.5 mM Dithiothreitol (DTT), 0.2 mM ATP and

0.1 mM CaCl2], and then cleared by centrifugation for 20 min at
50,000 × g. Supernatant was collected and further filtered with
Whatman paper. Actin was polymerized by addition of 2 mM
MgCl2 and 50 mM NaCl to the filtrate and overnight incubation
at 4◦C with slow stirring. The next morning, NaCl powder was
added to a final concentration of 0.6 M, and the mixture was
stirred for another 30 min at 4◦C. The F-actin was pelleted
by centrifugation for 150 min at 120,000 × g, and the pellet
was solubilized by dounce homogenization and dialyzed against
G-buffer for 48 h at 4◦C. Monomeric actin was then precleared
by centrifugation at 435,000 × g, and loaded onto a S200 (16/60)
gel-filtration column (GE Healthcare, United States) equilibrated
in G-Buffer. Peak fractions were stored at 4◦C.

To biotinylate actin on cysteine 374, an F-actin pellet as
above was dounced and dialyzed against G-buffer lacking DTT.
Monomeric actin was then polymerized by addition of an equal
volume of 2× labeling buffer (50 mM imidazole pH 7.5, 200 mM
KCl, 0.3 mM ATP, and 4 mM MgCl2). After 5 min, the actin was
mixed with a fivefold molar excess of NHS-XX-Biotin (Merck
KGaA, Germany) and incubated in the dark for 15 h at 4◦C.
The F-actin was pelleted as above, and the pellet was rinsed
with G-buffer, then homogenized with a dounce, and dialyzed
against G-buffer for 48 h at 4◦C. Biotinylated monomeric actin
was purified further on an S200 (16/60) gel-filtration column as
above. Aliquots of biotin-actin were snap frozen in liquid N2 and
stored at −80◦C.

To label actin with Oregon Green (OG) on cysteine 374,
an F-actin pellet as above was dounced and dialyzed against
G-buffer lacking DTT. Monomeric actin was then polymerized
by addition of an equal volume of 2× labeling buffer. After
5 min, the actin was mixed with a fivefold molar excess of
OG-488 iodoacetamide (Invitrogen), resuspended in anhydrous
dimethylformamide, and then incubated in the dark for 15 h at
4◦C. The labeled F-actin was pelleted as above, and the pellet was
rinsed with G-buffer, depolymerized by Dounce homogenization,
dialyzed against G-buffer for 60 h at 4◦C, and applied to an S200
(16/60) gel filtration column. Peak fractions were dialyzed for
15 h against G-buffer with 50% glycerol and stored at −20◦C.

To label actin with pyrenyl-iodoacetamide on cysteine 374
(Cooper et al., 1984; Graziano et al., 2013), an F-actin pellet
prepared as above was dialyzed against pyrene buffer (25 mM
Tris-HCl, pH 7.5, 100 mM KCl, 0.3 mM ATP, and 2 mM
MgSO4) for 4 h and then diluted with pyrene buffer to 1 mg/mL
(23.8 µM). A 10-fold molar excess of pyrenyl-iodoacetamide was
added, and the actin solution was incubated overnight at 4◦C.
The reaction was then centrifuged for 3 h at 4◦C 150,000 × g in
a Ti60 rotor (Beckman Coulter, Indianapolis, IN, United States)
to pellet the F-actin. F-actin pellets were dounced, and dialyzed
against G-buffer for 48 h to depolymerize the actin, then loaded
on a S200 (16/60) column equilibrated in G-buffer. Peak fractions
were pooled, aliquoted, snap frozen in liquid N2, and stored
at −80◦C.

C-Bnr1 (FH1-FH2-C; 758-1375) and Bnr1-FH2 polypeptides
(869–1,289) were expressed as N-terminal 6His-fusions in
S. cerevisiae strain BJ2168 from high copy plasmids under
the control of a galactose-inducible promoter (Moseley and
Goode, 2006). For each purification, 2 L of yeast cells were
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grown in synthetic medium lacking uracil with 2% raffinose to
OD600 = 0.6–0.9. Then expression was induced by addition of
dry ingredients: 10 g yeast extract, 20 g peptone, and galactose
(2% wt/vol). Cells were grown for 12–16 h at 30◦C, then pelleted,
washed in H2O, frozen dropwise in liquid N2, and stored at
−80◦C. To initiate a protein preparation, frozen yeast pellets
were lysed mechanically in a coffee grinder cooled with liquid
N2. Then, 20 g of lysed yeast powder was resuspended in 20 mL
of buffer A (20 mM NaPO4, pH 7.4, 150 mM NaCl, 30 mM
imidazole, 0.5 mM DTT, 1% NP-40) supplemented with protease
inhibitor cocktail as above, and cleared by ultracentrifugation at
200,000 × g for 20 min in a TLA100.3 rotor (Beckman Coulter).
Cleared lysates were then passed through a 0.45 µm syringe filter
(Millex, MilliporeSigma; Darmstadt, Germany) and the 6His-
tagged Bnr1 polypeptides were incubated for 1 h at 4◦C with
2 mL of Ni-NTA beads (New England Biolabs; Ipswich, MA,
United States) with gentle agitation. Beads were washed three
times with 10 mL wash buffer (20 mM Tris pH 8.0, 500 mM NaCl,
0.5 mM DTT, and 30 mM Imidazole), and Bnr1 polypeptides
were eluted with 4 mL of elution buffer (20 mM Tris pH 8.0,
500 mM NaCl, 0.5 mM DTT, and 300 mM Imidazole). Peak
fractions were pooled and loaded on a PD10 desalting column
(GE Life Sciences; Marlborough, MA, United States) equilibrated
with HEKG10D buffer (20 mM HEPES, pH 7.5, 1 mM EDTA,
50 mM KCl, 10% [vol/vol] glycerol, and 1 mM DTT), then
concentrated to ∼200 µL, aliquoted, snap frozen in liquid N2,
and stored at −80◦C.

S. cerevisiae profilin was expressed in BL21(DE3) E. coli
and purified as described (Graziano et al., 2013). Bacterial cells
were grown in terrific broth to log phase and induced with
0.4 mM IPTG for 3–4 h at 37◦C. Cells were pelleted and stored
at −80◦C. Frozen pellets were thawed, resuspended in lysis
buffer (20 mM Tris-HCl, pH 8.0) supplemented with a protease
inhibitor cocktail (1 mM PMSF, 0.5 µM each of pepstatin A,
antipain, leupeptin, aprotinin, and chymostatin), and lysed by
incubation with lysozyme and sonication. Lysates were cleared
by centrifugation at 200,000 × g at 4◦C for 20 min in a TLA-
100.3 rotor (Beckman Coulter). The supernatant was then loaded
on a 5 ml HiTrap Q fast flow column (GE Healthcare), and
profilin was eluted using a 75 mL salt gradient (0–400 mM
NaCl) in 20 mM Tris-HCl, pH 8.0. Peak fractions were pooled,
concentrated to 5 mL, and loaded on a Superdex (26/60) gel
filtration column (GE Healthcare) equilibrated in G-buffer. Peak
fractions were pooled, aliquoted, snap frozen in liquid N2, and
stored at −80◦C.

6His-Bil2 protein was expressed in Rosetta 2 BL21(DE3)
E. coli cells carrying a plasmid for expression of rare codons
(MilliporeSigma; Darmstadt, Germany). Cells were grown to
OD600 = 0.7–0.9 in terrific broth supplemented with kanamycin
and chloramphenicol to maintain selection of the expression
plasmid and the pRARE plasmid, respectively. Expression was
induced with 0.4 mM IPTG overnight at 18◦C, and then cells
were pelleted and stored at −80◦C. To initiate a preparation, a
cell pellet was thawed, resuspended in lysis buffer (20 mM Tris pH
8.0, 500 mM NaCl, 0.5 mM DTT, and 30 mM Imidazole) with the
same protease inhibitor cocktail as above, and lysed by treatment
with 1 mg/mL lysozyme, 0.1 mg/mL DNAse I, and sonication.

Lysates were cleared by centrifugation at 10,000 × g for 20 min
in an F21S-8 × 50y rotor (Thermo Fisher Scientific; Waltham,
MA, United States), and the supernatant was mixed with 1 mL
of Ni-NTA beads (New England Biolabs) and rotated at 4◦C for
1 h. The beads were then washed 3 times with 10 ml wash buffer
(20 mM Tris pH 8.0, 500 mM NaCl, 0.5 mM DTT, and 30 mM
Imidazole) in a gravity column at 4◦C. 6His-Bil2 was eluted from
the beads using elution buffer (20 mM Tris pH 8.0, 500 mM NaCl,
0.5 mM DTT, and 300 mM Imidazole), exchanged into HEKG10D
on a PD10 desalting column (GE Life Sciences), concentrated
to ∼200 µL, aliquoted, snap frozen in liquid N2 and stored
at −80

◦

C.
Bud6(L) was expressed in BL21(DE3) E. coli and purified

as previously described (Graziano et al., 2011). Bacterial cells
were grown in terrific broth to late log phase and induced
using 0.4 mM IPTG for 3–4 h at 37◦C. Cells were pelleted and
frozen at −80◦C. Frozen pellets were thawed, resuspended in
lysis buffer (50 mM Tris, pH 8.5, 150 mM NaCl, 5 mM EDTA,
1.5% sarkosyl, 5 mM DTT, and standard protease inhibitors),
treated with lysozyme, and sonicated. Cell lysates were cleared by
centrifugation at 12,000 rpm for 10 min in a Sorvall S600 rotor
(Thermo Fisher Scientific). Triton X-100 (final concentration
3.3% [vol/vol]) was added to the supernatant, and the mixture
was mixed with 1 ml of preswollen glutathione agarose in PBS
(137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, and 1.47 mM
KH2PO4, pH 7.4). After incubation at 4◦C for 3–4 h, beads
were washed four times with PBS, and then twice with HEKD
(20 mM Hepes, pH 7.5, 1 mM EDTA, 50 mM KCl, and 1 mM
DTT). Bud6(L) was cleaved from GST and released from beads
by digestion with TEV protease for 2 h at room temperature
and snap frozen.

Fixed Cell Imaging
To analyze actin cable organization in cells, yeast were grown to
OD600 = 0.4–0.6 in YEPD media, fixed in 5% formaldehyde for
45 min at room temperature, and then washed three times with
PBS buffer. Cells were stained 1–3 days with Alexa Fluor 488
phalloidin (Life Technologies; Grand Island, NY, United States),
and then washed three times with PBS buffer. For experiments in
which actin cables were analyzed using SOAX, an open source
program for biopolymer networks (Xu et al., 2015), cells were
treated with 100 µM CK666 (Sigma-Aldrich; St. Louis, MO,
United States) for 20 min before fixation to inhibit the Arp2/3
complex and remove cortical actin patches. Fixed and stained
cells then were imaged by structured illumination microscopy
(SIM) on a Nikon Ti-2 SIM-E inverted microscope with a
Hamamatsu Orca Flash 4.0 camera controlled by NIS-Elements
software (Nikon Instruments), using an exposure time of 200 ms
at 488 nm excitation and 40% laser power. From the SIM images,
individual cells were cropped and background was subtracted,
then actin cables were analyzed using SOAX. To optimize
detection of cables in the SOAX analysis, default settings were
used, with two exceptions: R-threshold value was set to 0.008, and
k-stretch factor was set to 0.5. This automated analysis quantifies
number of cable segments in cells.

For coefficient of variation (CoV) analysis of cable
distribution, samples of the cell preparations made above
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(fixed and phalloidin stained) were imaged by SIM, using the
same settings as above. CoV measurements are made by first
tracing the outline of the mother cell compartment in ImageJ,
and then measuring the mean fluorescence of actin cable
staining and the standard deviation. The CoV is a ratio of the
standard deviation over the mean. Wildtype cells typically have
brightly stained cables against a dark background, yielding a
high standard deviation, and therefore a higher CoV. Mutants
with disorganized and dispersed actin cable networks have lower
stand deviation values and consequently lower CoVs.

Live Cell Imaging
For imaging secretory vesicle traffic, wildtype and mutant
yeast strains were transformed with a CEN plasmid expressing
GFPEnvy-Sec4. Cells were grown at 25◦C to OD600 = 0.4–0.8 in
synthetic selective media, then mounted on slides and imaged
on an i-E upright confocal microscope (Nikon Instruments)
with a CSU-W1 spinning disk head (Yokogawa), 100× oil
objective (NA 1.4; Nikon Instruments), and an Ixon 897 Ultra-
CCD camera (Andor Technology) controlled by NIS-Elements
software (Nikon Instruments). Exposure times of 50 ms at 50%
intensity (excitation 488 nm) were used to image cells for 2 min.
Movies were analyzed in ImageJ as follows. Secretory vesicle
movements were monitored within the mother cells (n > 25) of
each strain by manually tracking the positions over time for 3–
8 puncta (GFPEnvy-Sec4) per cell. Tortuosity measurements were
made by dividing the length of the path (from the initial point of
movement to the bud neck) by the distance between the point of
origin and the bud neck. In addition, for each strain, we calculated
the fraction of GFPEnvy-Sec4 puncta in the mother cell that were
successfully transported to the bud during a 30 s observation
window (n > 20 cells per condition).

To compare Bnr1-GFP (endogenously tagged) levels at the
bud neck of wildtype and bil21 cells, yeast were grown at 25◦C
in synthetic media to OD600 = 0.4–0.8, then mounted on slides,
and immediately imaged on an i-E upright confocal microscope
(Nikon Instruments) with a CSU-W1 spinning disk head
(Yokogawa), 100× oil objective (NA 1.4; Nikon Instruments),
and an Ixon 897 Ultra-CCD camera (Andor Technology)
controlled by NIS-Elements software (Nikon Instruments). Each
image was acquired using an exposure time of 100 ms at 488 nm
excitation with 20% laser power. Z-stacks (15 images) were
obtained by capturing images every 0.2 µm, and were analyzed
in ImageJ as follows; Z-stacks were combined using the “sum
projection” function, then a box of fixed dimensions was drawn
to encompass the bud neck and measure the Bnr1-GFP integrated
fluorescence density.

For the Pearson’s correlation analysis of Bud6-mCherry and
GFPEnvy-Bil2 colocalization, yeast cells were grown in synthetic
selective media to mid-log phase, mounted on slides, and
immediately imaged as above. Images were acquired using
exposure times of 200 ms for Bud6-mCherry (561 nm excitation;
40% laser power) and 500 ms for GFPEnvy-Bil2 (488 nm
excitation; 80% laser power). Individual cells from the images
were cropped, background was subtracted, and colocalization was
analyzed using the Coloc2 plugin in ImageJ.

To quantify the ratio of GFP-Sec4 signal in the bud versus
the entire cell, yeast transformed with the low copy GFP-Sec4
plasmid were grown in synthetic selective media to mid-log
phase, mounted on slides, and immediately imaged as above.
Images were acquired using exposure times of 50 ms (488 nm
excitation; 40% laser power). Integrated density values were
determined by selecting the bud and the whole cell using the ROI
tool in ImageJ. The ratio of the signal in these two compartments
was calculated by dividing the amount of signal in the bud by the
amount of signal in the whole cell.

Secretory Vesicle Isolation
Secretory vesicles were isolated from yeast cells using methods
adapted from those previously described (Harsay and Bretscher,
1995). Cells were grown at 25◦C to OD600 = 0.7 in 1 L cultures
of selective media, then shifted to 37◦C for 2 h. Cells were then
harvested by centrifugation for 20 min at 3,000 × g, washed
with ice-cold 10 mM NaN3, and incubated for 15 min on ice
in softening buffer [0.1 M Tris-H2SO4 (pH 9.4), 50 mM 1,3-
mercaptoethanol, and 10 mM NaN3]. Next, cells were washed
in ice-cold spheroplast wash buffer (1.4 M sorbitol, 50 mM
KPi, pH 7.5, and 10 mM NaN3), resuspended in the same
buffer supplemented with 0.15 mg/mL Zymolyase-100T (US
Biological; Salem, MA, United States), and incubated at 37◦C
for 2 h with gentle agitation. Spheroplasted cells were harvested
by gentle centrifugation at 2,000 × g, and then gently washed
two times with ice-cold spheroplast wash buffer (no zymolase),
resting the samples on ice for 10 min between each wash to
allow pellets to loosen. Next, using a plastic transfer pipette, the
pellets were gently resuspended (to minimize lysis) in 30 mL
of lysis buffer (0.8 M sorbitol, 10 mM triethanolamine, 1 mM
EDTA, adjusted to pH 7.2 using acetic acid, 1 mM PMSF, and
0.5 µM each of pepstatin A, antipain, leupeptin, aprotinin, and
chymostatin). The spheroplasts were transferred to a tight-fitting
glass Dounce homogenizer, lysed with 20 strokes of the pestle,
and then centrifuged at 700 × g for 10 min, generating the P1
(pellet) and S1 (supernatant) fractions. Then, the S1 fraction was
centrifuged at 13,000 × g for 20 min to generate the P2 fraction
(containing large organelles) and the S2 fraction (containing
secretory vesicles and soluble proteins). The S2 fraction was
then centrifuged for 1 h at 100,000 × g to generate the P3
fraction (secretory vesicles) and S3 fraction (soluble proteins).
The P3 fraction was resuspended in lysis buffer and mounted on
slides, and imaged on an i-E upright confocal microscope (Nikon
Instruments) with a CSU-W1 spinning disk head (Yokogawa),
100× oil objective (NA 1.4; Nikon Instruments), and an Ixon
897 Ultra-CCD camera (Andor Technology) controlled by NIS-
Elements software (Nikon Instruments). Images were acquired
using exposure times of 200 ms for GFP-Bil2 (488 nm excitation;
50% laser power) and 100 ms for mCherry-Sec4 and Bud6-
mCherry (561 nm excitation; 50% laser power).

Pyrene-Actin Assembly Assays
Gel-filtered monomeric actin (5% pyrene-labeled) in G-buffer
(5 mM Tris-HCl pH 8.0, 0.2 mM ATP, 0.2 mM CaCl2, and
0.2 mM DTT) was converted to Mg-ATP-actin immediately
before each reaction (Moseley and Goode, 2005). Final reactions
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were 60 µL containing 2 µM G-actin. To initiate a reaction,
42 µL of the ATP-G-actin stock was mixed with 15 µL of proteins
and/or control HEKG5 buffer, then mixed with 3 µL of 20×

initiation mix (40 mM MgCl2, 10 mM ATP, and 1 M KCl) to
initiate polymerization. Fluorescence was monitored at excitation
365 nm and emission 407 nm at 25◦C in a fluorimeter (Photon
Technology International, Lawrenceville, NJ, United States).

Total Internal Reflection Fluorescence
(TIRF) Microscopy
Glass coverslips (60 mm × 3 mm × 24 mm; Thermo Fisher
Scientific) were cleaned by sonication for 30 min in detergent,
followed by 1 M KOH, and 1 M HCl, and then stored in 100%
ethanol. Coverslips were coated with a mixture of 4 mg/mL
polyethylene glycol (PEG)-silane and 80 mg/mL biotin-PEG
in 80% ethanol pH 1.0, then washed with water and dried
with compressed N2. PEG-coated coverslips were stored for 1–
3 days at 70◦C prior to use. Flow chambers were constructed
by sandwiching glass coverslips on top of plastic flow chambers
(Ibidi, Fitchburg, WI, United States) using double-sided tape
(2.5 cm 3 mm × 2 mm × 3 mm × 120 mm) and 5-min epoxy
resin (Devcon, Riviera Beach, FL, United States). To anchor actin
filaments in TIRF reactions, 4 mg/mL streptavidin in HEK buffer
(20 mM HEPES pH 7.4, 1 mM EDTA, and 50 mM KCl) was
flowed into the TIRF chamber for 15 s using a syringe pump
(Harvard Apparatus, Holliston, MA, United States). Then the
chamber was washed with HEK buffer + 1% BSA. The chamber
was then equilibrated with TIRF buffer [10 mM HEPES pH 7.4,
50 mM KCl, 1 mM MgCl2, 1 mM EGTA, 0.2 mM ATP, 10 mM
DTT, 15 mM glucose, 20 mg/mL catalase, 100 mg/mL glucose
oxidase, 10 mM Imidazole, and 0.5% methylcellulose (4000 cP)].
Prior to experiments, the proteins used in TIRF reactions [His6-
Bil2, Bud6(L), C-Bnr1, profilin, and Bnr1-FH2] were diluted into
TIRF buffer. A fixed volume of proteins (different combinations)
was rapidly mixed with a final concentration of 1 µM G-actin
(10% OG-labeled, 0.2% biotinylated, as indicated) and flowed
into the TIRF chamber. The TIRF chamber was then immediately
mounted on the microscope for imaging. The delay between
mixing proteins and initial imaging was 60 s. Time-lapse TIRF
imaging was performed on a Ti200 inverted microscope (Nikon
Instruments, New York, NY, United States) equipped with
100 mW solid-state lasers (Agilent Technologies, Santa Clara,
CA, United States), a CFI Apo 60× 1.49 N.A. oil-immersion
TIRF objective (Nikon Instruments), a iXon EMCCD camera
with a pixel size of 0.267 mm (Andor Technology), and an
additional 1.5× zoom module (Nikon Instruments). Focus was
maintained using the Perfect Focus System (Nikon Instruments),
and frames were captured every 10 s for a total of 600 s (10 ms at
488 nm excitation, 15% laser power) using NIS Elements software
(Nikon Instruments). Image analysis was performed in FIJI,
where background fluorescence was removed from each time
series using the background subtraction tool in Fiji (rolling ball
radius, 50 pixels). For measuring the number of actin filaments
nucleated in TIRF reactions, fields of view were analyzed 200 s
after the initiation of TIRF imaging. For each TIRF reaction,
four separate fields of view were monitored and analyzed. To

measure elongation rates, filament lengths were measured at
different time points (using the freehand line tool in ImageJ).
This analysis was limited to filaments that could be tracked for at
least 60 s without growing out of the field of view. To measure
filament elongation rates, plots of filament length versus time
were generated, and the rates of elongation were determined from
the slopes of the lines. To express rates in actin subunits s−1,
we used the conversion factor of 374 subunits per µm length of
F-actin (Huxley and Brown, 1967).

RESULTS

Bil2 Is Required for Proper Transport of
Post-Golgi Secretory Vesicles From the
Mother Cell to the Bud
There are no known defects in cell growth or morphology caused
by a deletion of YGL015c (henceforth referred to as BIL2), and
we confirmed this here. However, a genome-wide study reported
that bil21 cells abnormally accumulate a cargo protein in the
trans-Golgi, suggesting a defect late in the secretory pathway
(Proszynski et al., 2005). We considered the possibility that
this defect might arise from altered actin organization, given
that post-Golgi vesicles are transported on actin cables to the
bud. Therefore, we used live imaging to compare the spatial
distribution and movements of secretory vesicles (marked with
GFP-Sec4) in wildtype and bil21 cells (Figure 1A). Overall,
vesicles were polarized to the bud to a similar degree in wildtype
and bil21 cells (Supplementary Figures 1A,B). However, our
analysis of vesicle movements revealed differences in bil21 cells.
To analyze the vesicle movements, we traced their paths of
transport over time (example traces in Figure 1B), and then
quantified path lengths and tortuosity (ratio of path length
to distance traveled). Vesicle paths in bil21 cells were not
significantly longer compared to wildtype cells (Figure 1C),
but changed direction more often, making them circuitous
(Figure 1D). We also assessed the overall efficiency of vesicle
traffic, by quantifying the fraction of vesicles in mother cells
that successfully translocated to the bud compartment during a
30 s window, and observed a modest yet significant decrease in
transport efficiency in bil21 cells (Figure 1E). Together, these
observations show that bil21 cells are partially defective in
transporting post-Golgi vesicles to the bud, which may explain
the previously observed cargo buildup in the trans-Golgi of bil21
cells (Proszynski et al., 2005).

Loss of BIL2 Leads to Disorganized Actin
Cable Networks Assembled by Bnr1
Previously, we showed that mutants in smy1 and hof1 that
have defective actin cable organization also show altered vesicle
path lengths and tortuosity (Eskin et al., 2016; Garabedian
et al., 2018). Therefore, the circuitous nature of the vesicle
paths in bil21 cells prompted us to carefully compare cable
organization between wildtype and bil21 cells using super-
resolution structured illumination microscopy (SIM). Loss of
BIL2 led to a visible disorganization of cable networks, with
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FIGURE 1 | BIL2 is required for efficient polarized delivery of secretory vesicles. (A) Representative time-lapse images showing the transport path of a secretory
vesicle (GFPEnvy-Sec4) moving from the mother to the bud. At each time point shown, the vesicle being tracked is highlighted by a green circle. To the right is a sum
of vesicle positions over time, with a line (red) marking the transport path. The sum of the transport paths are isolated and expanded on the right. (B) Bouquets of
representative transport paths for secretory vesicles (15 each) in wildtype and bil21 cells. Vesicle traces are organized such that they start at the periphery of the
bouquets and terminate at the central dot (corresponding to the bud neck). (C) Quantification of GFPEnvy-Sec4 path lengths from traces as in (B) (n = 25 vesicles per
experiment, 2 independent experiments. Number of cells: experiment 1: 17 for each strain; experiment 2: 18 for each strain). (D) Tortuosity of transport paths (ratio
of path length to distance traveled) for the same vesicles in (C). (E) Fraction of vesicles successfully transported from the mother compartment to the bud during a
30 s observation window (n = 20 cells per condition per experiment, 2 independent experiments). Each dot represents the fraction of vesicles successfully
transported to the bud in one cell. In all panels, bars show mean and SD. Statistical significance calculated by 2-way student T-test in all panels (n.s., no
significance, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001).

minimal effect on polarized distribution of cortical actin patches
(Figure 2A). To analyze actin cable organization defects in
a more quantitative and unbiased manner, we also employed
an open source program (SOAX), which skeletalizes the cable
networks from cell images (Xu et al., 2015). Cells were pretreated
with the Arp2/3 complex inhibitor CK666 to remove actin
patches before this analysis to provide a less obstructed view

of the cable networks and increase the accuracy of the SOAX
analysis (Figure 2B). We focused our analysis on the cable
networks in the mother cells, and found that bil21 cells have an
increased number of cable segments compared to wildtype cells
(Figure 2C). Additionally, we performed coefficient of variation
(CoV) analysis on the same mother cells, measuring the mean
fluorescence of cable staining and dividing by the standard
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deviation of the fluorescence (Figure 2D). Since wildtype cells
have a well-defined and brightly stained set of actin cables against
a dark background, they have a relatively high standard deviation,
and a higher CoV. In contrast, mutants with disorganized cable
networks, e.g., hof11 cells (Garabedian et al., 2020), have a
lower standard deviation, and a lower CoV. Our data show that
bil21 cells have a lower CoV compared to wildtype cells, which
agrees with our SOAX analysis, and together these results indicate
that Bil2 is required for the formation of properly organized
actin cable networks.

We next asked whether BIL2 contributes to the organization
of actin cables assembled by Bni1 and/or Bnr1, which grow from
the bud tip and bud neck, respectively. A comparison of cable
organization in bni11 and bni11bil21 cells, and in bnr11 and
bnr11bil21 revealed that the loss of BIL2 significantly impaired
actin cable organization in the bni11 background, but no the
bnr11 background. These results suggest that BIL2 functions to
regulate BNR1-nediated actin assembly to govern proper cable
organization in the mother cell (Figures 2C,D). Further, the
loss of BIL2 showed no effect on Bnr1-GFP levels at the bud
neck (Figure 2E), indicating that Bil2 does not influence cable
architecture by changing Bnr1 protein levels or localization.

Bil2 Inhibits Bnr1-Mediated Actin
Nucleation in vitro
Our in vivo observations above inspired us to test in vitro whether
Bil2 has any effects on Bnr1-mediated actin assembly activity.
To address this, we purified 6His-Bil2 from E. coli and first
tested its effects in bulk actin assembly assays. As expected,
C-Bnr1 (FH1-FH2-C) rapidly nucleated actin polymerization
(Figure 3A), and was enhanced by its nucleation-promoting
factors Bud6(L) and Bil1 (Graziano et al., 2013). The addition
of Bil2 strongly inhibited C-Bnr1 effects, both in the presence
and absence of Bud6(L), but had no effect on the assembly of
actin alone in the absence of C-Bnr1. Interestingly, however, the
further addition of Bil1 to reactions containing Bil2, Bud6(L), and
C-Bnr1 led to rapid actin assembly. On the other hand, Bil1 failed
to release C-Bnr1 from Bil2 inhibition in the absence of Bud6(L)
(Supplementary Figure 2). Thus, Bil1 and Bud6(L) together are
required to overcome Bil2 inhibition of C-Bnr1.

To gain additional insights into Bil2 inhibitory effects on
C-Bnr1, we used TIRF microscopy assays, and directly visualized
individual actin filaments being assembled in real time, where we
could distinguish effects on nucleation from effects on filament
elongation. In these assays, C-Bnr1 alone increased the number
of new filaments formed compared to control reactions, and Bil2
inhibited the nucleation effects (Figures 3B,C). To assess whether
Bil2 also affects the rate of filament elongation, we pre-assembled
filaments in the presence or absence of C-Bnr1, and then flowed
in Bil2 or control buffer, and monitored change in filament
length over time. As expected, C-Bnr1 markedly increased the
rate of filament elongation in the presence of profilin (Chesarone-
Cataldo et al., 2011). Flowing in Bil2 did not significantly alter the
rate of filament elongation by C-Bnr1 (Figure 3D), suggesting
that Bil2 acts on C-Bnr1 primarily to inhibit actin nucleation
and not elongation.

To better understand how Bil2 blocks Bnr1-mediated actin
nucleation, we asked whether it can inhibit an FH2 domain-only
(Bnr1-FH2) construct. These nucleation assays were performed
in the absence of profilin, since FH2 domains (without FH1
domains) nucleate actin assembly only in the absence of profilin
(Sagot et al., 2002b). Bil2 strongly inhibited Bnr1-FH2 nucleation
activity (Figure 3E), suggesting that it may interact with the FH2
domain to block nucleation.

Finally, in our TIRF experiments, we noticed that all Bil2-
containing reactions had a number of small puncta (marked
by labeled actin), regardless of whether or not those reactions
contained C-Bnr1 (Figure 3B). Therefore, we asked whether the
puncta were comprised of F-actin or G-actin by pre-incubating
reactions with Latrunculin B to block actin polymerization
(Coué et al., 1987). While Latrunculin B blocked actin filament
formation, as expected, it did not block formation of the actin
puncta induced by the presence of Bil2 (Figure 3F). These
observations suggest that Bil2 may bind to actin monomers,
consistent with its reported two-hybrid interaction with actin
(Yu et al., 2008).

BIL2 and HOF1 Genetically Interact and
Share an Essential in vivo Function
The activity profile of Bil2, as an inhibitor of Bnr1-mediated actin
nucleation without affecting elongation, is similar to only one
other known yeast formin regulator, Hof1. This prompted us
test genetic interactions between BIL2 and HOF1. We therefore
crossed bil21 and hof11 haploid strains, and as controls
crossed bil21 to mutants in two other yeast formin regulators,
bud61 and bud141. The resulting diploids were sporulated,
tetrads were dissected, and haploid progeny were assessed for
growth. This analysis revealed that the majority of bil21hof11
double mutants were inviable, as compared to control crosses
where the majority of double mutants were viable (Figure 4A).
These observations demonstrate that BIL2 and HOF1 share an
essential function in vivo. To gain additional insights into this
function, we analyzed the viable bil21hof11 double mutants.
Compared to single mutants, the viable double mutants were
severely compromised for cell growth (Figure 4B) and had
enlarged cell sizes (Figure 4C) and disorganized actin cable
networks (Figures 4C,D). Together, these in vivo observations
suggest that Bil2 and Hof1 may perform related, complementary
roles in controlling Bnr1-mediated actin cable nucleation and
polarized cell growth.

Bil2 Localizes to Polarity Sites and
Associates With Secretory Vesicles
To gain additional insights into Bil2 in vivo function, we
investigated the localization of Bil2 endogenously tagged at
its C-terminus with GFP or 3GFP. Unfortunately, we could
not detect the expression of endogenously tagged Bil2-GFP
or Bil2-3GFP. It is not clear whether Bil2 expression is very
low to begin with, or the C-terminal tags reduced the level
of expression. However, we were able to detect N-terminally
tagged GFP-Bil2 expressed from a low copy plasmid under the
control of the strong constitutive ACT1 promoter (Figure 5A).
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FIGURE 2 | Loss of BIL2 disrupts the spatial organization of Bnr1-polymerized actin cable networks. (A) Representative structured illumination microscopy (SIM)
images of F-actin organization in CK666 treated, phalloidin stained wildtype and bil21 cells at different stages of bud growth. (B) Automated traces of actin cables
from SIM images as in (A), created using SOAX. Left, phalloidin stained cell. Right, purple cable segments generated by SOAX. (C) Average number of actin cable
segments per cell analyzed by SOAX (n = 20 cells per condition from two independent experiments). (D) Coefficient of variation (CoV) of phalloidin staining within the
mother compartment of cells treated with CK666 (n = 20 cells per condition from two independent experiments). (E) Representative images of
endogenously-expressed Bnr1-GFP in wildtype (WT) and bil21 cells, with quantification of signals at the bud neck (mean and SD) below each image. In all panels,
statistical significance calculated by 2-way student T-test (n.s., no significance, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001).

Importantly, this plasmid complemented bil21 defects in
secretory vesicle transport (Figure 5B), suggesting that although
the protein is likely to be expressed at higher levels than
endogenous Bil2, it is nonetheless capable of performing Bil2’s
normal functions. GFP-Bil2 localized to the cytosol, to the
bud neck and bud tip (sites of polarized growth), and to
faint mobile puncta (suggestive of secretory vesicles). However,

we acknowledge that addition of the GFP tag and/or the
overexpression of Bil2 may alter its normal localization pattern.
Interestingly, Bud6-GFP localizes to similar sites, although
it shows more pronounced localization to polarity sites and
secretory vesicles compared to Bil2 (Jin and Amberg, 2000;
Segal et al., 2000). Deletion of BUD6 did not noticeably
change GFP-Bil2 localization (Supplementary Figure 3A),
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FIGURE 3 | Purified Bil2 inhibits Bnr1-mediated actin nucleation but not elongation. (A) Bulk pyrene-actin assembly assays showing that Bil2 inhibits
Bnr1-dependent actin nucleation, both in the presence and absence of Bud6. Bil2 with Bud6 and Bil1 present did not inhibit Bnr1. Reactions contain 2 µM actin
monomers (5% pyrene labeled) and 5 µM profilin, with 2 nM C-Bnr1 (FH1-FH2-C; 758–1,375), 100 nM Bud6(L) (489–788), 100 nM Bil1, and/or 100 nM Bil2, as
indicated. (B) Representative images from TIRF microscopy experiments showing the effects of Bil2 on Bnr1-mediated actin assembly. Reactions contain 1 µM actin
monomers (10% Oregon green labeled) and 3 µM profilin, with 0.1 nM C-Bnr1 and/or 100 nM Bil2, as indicated. Images shown are from 200 s after the initiation of
actin assembly. (C) Quantification of the number of actin filaments nucleated per field of view (FOV) at 200 s into TIRF reactions as in (B) (four FOVs per condition).
Shown are the mean and SEMs. (D) Quantification of filament elongation rates for TIRF reactions as in (B), except that 100 nM Bil2 was flowed into reactions 5 min
after initiation of actin assembly (n = 20 filaments per condition). (E) Bil2 inhibits Bnr1 (FH2)-mediated actin filament assembly. Quantification of number of filaments
nucleated per field of view (FOV) at 200 s into TIRF reactions as in B (four FOVs per condition). Reactions contain 1 µM actin monomers (10% Oregon green labeled)
and 0.1 nM Bnr1 (FH2), with and without 100 nM Bil2. (F) TIRF fields showing that Bil2 produces latrunculin-resistant actin puncta. Reactions contain 1 µM actin
monomers (10% Oregon green labeled), 3 µM profilin, and 100 nM Bil2, with or without 100 nM Latrunculin B. Images shown are from 200 s after the initiation of
actin assembly. Shown are the mean and SEMs. Statistical significance calculated by 2-way student T-test in all panels (n.s., no significance, *p ≤ 0.05, **p ≤ 0.01,
***p ≤ 0.001).
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FIGURE 4 | Synthetic genetic interactions between BIL2 and HOF1. (A) bil21 haploids were crossed to haploids carrying deletions in other Bnr1 regulatory genes,
including HOF1, BUD6, and BUD14. Diploids were sporulated, and tetrads dissected and genotyped (n = 144, 64, and 104 tetrads from crosses with hof11,
bud61, and bud141, respectively). Resulting wildtype, single mutant, and double mutant haploids were analyzed for viability at 25◦C. (B) The indicated haploid
strains were compared for growth in synthetic complete media at 25◦C in a shaking microplate reader for 50 h, monitoring growth (OD600) every 5 min. Lines
represent the average of three independent cultures per strain. (C) Cell size was determined from DIC images in ImageJ by outlining each cell and calculating its area
(n = 20 cells per condition). Shown are the mean and SD. (D) Representative max projection Z-stacks of phalloidin stained cells imaged by structured illumination
microscopy (SIM). Note cell size is to scale, i.e., hof11 bil21 cells are enlarged compared to wildtype, hof11, and bil21 cells, as indicated in (C).

and deletion of BIL2 did not noticeably change Bud6-GFP
localization (Supplementary Figure 3B). Thus, despite their
ability to interact, Bud6 and Bil2 appear to localize independently
to polarity sites.

Localization of GFP-Bil2 in live cells overlapped significantly
with Bud6-mCherry and with mCherry-Sec4 (Figure 5C). Bud6
has been localized to secretory vesicles (Garabedian et al., 2018),
which have a similar appearance to the faint mobile puncta we
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FIGURE 5 | GFP-Bil2 localization to polarity sites and association with secretory vesicles. (A) Representative images of live cells expressing GFP-Bil2 (from a low
copy plasmid under the control of the ACT1 promoter) and either integrated Bud6-mCherry or mCherry-Sec4 (expressed from a low copy plasmid under the control
of its own promoter). (B) GFP-Bil2 colocalization in live cells with mCherry-Sec4 (secretory vesicle marker) or Sec7-mCherry (trans-Golgi marker) quantified by
Pearson correlation. (C) Comparison of GFP-Sec4 vesicle transport paths (ratio of path length to distance traveled) in wildtype (WT) and bil21 cells with or without
the pACT1-GFP-Bil2 plasmid (n = 25 vesicles per condition). (D) Representative fields of view of secretory vesicles isolated from cells expressing GFP-Bil2 (plasmid,
as in A) along with Bud6-mCherry (integrated) or mCherry-Sec4 (plasmid, as in A). (E) Quantification of GFP-Bil2 colocalization with Bud6- and Sec4-positive
secretory vesicles. Statistical significance in all panels calculated by 2-way student T-test (n.s., no significance, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001).

observed for GFP-Bil2. To further test the association of Bil2 with
secretory vesicles, we performed a biochemical fractionation.
Differential centrifugation was used to isolate secretory vesicles

from cells co-expressing GFP-Bil2 with either Bud6-mCherry
or mCherry-Sec4, and then colocalization was assessed by
microscopy (Figure 5D). The majority of GFP-Bil2 puncta
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(∼80%) colocalized with mCherry-Sec4, and approximately
half of the GFP-Bil2 puncta colocalized with Bud6-mCherry
(Figure 5E). These results more conclusively demonstrate
that Bil2 associates with secretory vesicles, and suggest that
approximately half of the Bil2-positive vesicles also harbor Bud6.

DISCUSSION

The initial goal of this study was to explore the cellular functions
of a previously uncharacterized gene, YGL015c (BIL2), which
was reported to interact with actin and the formin nucleation-
promoting factor Bud6 (Ito et al., 2001; Yu et al., 2008).
A previous proteomic screen had also identified this gene as
being required for normal delivery of a marker protein to the cell
surface via the secretory pathway, revealing that in bil21 cells
the surface protein aberrantly accumulated in the trans-Golgi
compartment (Proszynski et al., 2005). However, the specific
role(s) of BIL2 in this pathway were unclear. Given its suggested
interactions with Bud6, which promotes formin-mediated actin
cable nucleation, we decided to explore the possibility that Bil2
regulates formin-mediated actin cable assembly. Our in vivo
observations showed that bil21 cells have defects in Bnr1-
dependent actin cable architecture, including an increase in
the total number of cable segments and a disorganization or
entanglement of cable networks in mother cells. Consistent with
these defects, the transport paths of secretory vesicles in bil21
cells were more circuitous compared to the paths of vesicles
in wildtype cells. Further, purified Bil2 inhibited Bnr1-mediated
actin nucleation but not filament elongation in vitro, both in
bulk and TIRF microscopy assays. Based on these genetic and
biochemical observations, we propose that Bil2 functions, at
least in part, as a novel inhibitor of Bnr1-mediated actin cable
nucleation required for proper secretory traffic.

Although a number of direct regulators of Bnr1 activity have
been identified to date, the only other one with an activity
profile similar to Bil2 is the F-BAR protein Hof1. Like Bil2,
Hof1 inhibits Bnr1-mediated actin nucleation but not filament
elongation (Graziano et al., 2014). In addition, both Bil2 and
Hof1 inhibit the actin-nucleating FH2 domain of Bnr1. A low-
resolution EM structure of the Hof1-FH2 complex revealed that
the F-BAR domain of Hof1 binds to the FH2 domain near its
actin-binding surfaces (Garabedian et al., 2018). It is possible that
Bil2 uses a related mechanism to inhibit Bnr1. Alternatively, a
Bil2-actin complex might directly interact with the Bnr1 FH2
domain to block nucleation. Indeed, it was recently shown
that the mammalian formin INF2 is inhibited by binding of
a cyclase-associated protein (CAP)-actin complex (Mu et al.,
2019). Consistent with their related biochemical activities in
suppressing Bnr1-mediated actin nucleation, we found that bil21
and hof11 mutations are synthetic lethal. These results suggest
that Bil2 and Hof1 have overlapping, possibly complementary
roles in controlling formin-mediated actin cable assembly in vivo.
Nearly all of the bil21hof11 double mutants were lethal, possibly
due to a lethal level of disrupted secretory traffic and impaired
polarized growth. The small percentage of bil21hof11 double

mutant cells that were viable grew very slowly and had enlarged
cell morphologies.

Our observations raise the question of why yeast cells have
so many different inhibitors for one formin (Bnr1). Bil2 and
Hof1 inhibit Bnr1-mediated actin nucleation and genetically
interact. Bud14 and Smy1 inhibit actin filament nucleation
and elongation by Bnr1 and genetically interact (Chesarone
et al., 2009; Chesarone-Cataldo et al., 2011). None of these four
inhibitors of Bnr1 have any direct effects on Bni1 activity. Thus,
cells appear to require tight spatiotemporal control over Bnr1
activity (nucleation and elongation) in order to build proper cable
networks consisting of the appropriate number of cables with the
appropriate length and architecture for optimal secretory traffic.
It is also worth noting that no inhibitors of Bni1 activity have
been identified to date. This may be related to Bnr1 having a

FIGURE 6 | Working model for the regulation of Bnr1-mediated actin cable
nucleation. Bnr1 is anchored at the bud neck and assembles cables in the
mother cell. Bud6 functions as an NPF, promoting actin nucleation by Bnr1.
Bil2 and Hof1 specifically inhibit actin nucleation by Bnr1. Bud6 is delivered on
secretory vesicles to the bud neck and overcomes Hof1 inhibition of Bnr1 as
part of a positive feedback loop promoting cable assembly (Garabedian et al.,
2018). Bud6 is not sufficient to overcome Bil2 inhibition of Bnr1. However,
bud6 together with its binding partner Bil1 overcomes Bil2 inhibition to
promote Bnr1-mediated actin nucleation. Bil2 and Bud6 are found together
on many secretory vesicles, suggesting that Bil2 may help keep Bud6 inactive
until it reaches the bud neck where Bil1 is found (Graziano et al., 2013). Bnr1
is also predicted to be autoinhibited via interactions of its N-terminal
diaphanous inhibitory domain (DID) with its C-terminal diaphanous
autoregulatory domain (DAD) (Li et al., 2003). However, it is not yet clear what
mechanisms trigger the release of Bnr1 from autoinhibition. After a filament is
nucleated, Bnr1 remains processively attached to the growing barbed end,
where the duration and rate of filament elongation are controlled by other
cellular factors, including Smy1 and Bud14 (Eskin et al., 2016). Model created
using BioRender.com.
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∼15-fold stronger nucleation activity compared to Bni1 (Moseley
and Goode, 2005). In addition, it may be significant that Bnr1
is stably tethered to the bud neck, whereas Bni1 is dynamically
recruited from the cytosol to the bud cortex, where it is transiently
activated to nucleate cable assembly and then released (Buttery
et al., 2007). These differences in the dynamics of the two
formins may result in their activities requiring distinct regulatory
mechanisms. Further, Bnr1 assembles cables that fill the mother
cell, where cable overgrowth can be detrimental to secretory
traffic. Thus, Bnr1 (but not Bni1) may require stronger inhibition
to restrict its activity.

How do cells overcome Bil2 and Hof1 inhibition of Bnr1-
mediated actin nucleation In the case of Hof1, its inhibitory
effects on Bnr1 are overcome by the formin NPF Bud6, which
depends on direct binding of Bud6 to Bnr1 (Garabedian et al.,
2018). In vivo, Hof1 is anchored at the bud neck where Bnr1 also
resides, and Bud6 is delivered on secretory vesicles to the bud
neck. Genetic and biochemical evidence suggest that upon arrival
Bud6 triggers Bnr1’s release from Hof1 inhibition to promote
actin cable assembly as part of a positive feedback loop. In
contrast, we found that Bud6 alone is not sufficient to overcome
the inhibitory effects of Bil2 on Bnr1. Instead, this requires Bud6
and its ligand Bil1. Thus, Bil1 appears to be specifically required
for overcoming Bil2 inhibition of Bnr1, but not Hof1 inhibition
of Bnr1. Similar to Bud6, we found that Bil2 associates with
secretory vesicles. Thus, Bil2 may serve to inhibit Bud6’s NPF
activity while on vesicles until it arrives to the bud neck, where
Bil1 relieves inhibition. Importantly, our results do not rule out
the possibility that Bil2 has additional functions (beyond directly
regulating Bnr1 activity) that influence cable architecture and/or
the transport of vesicles along cables. Indeed, the yeast formin
inhibitor Smy1 not only directly regulates Bnr1 activity but also
plays an important role in recruiting myosin to secretory vesicles
in vivo, and increases myosin processivity in vitro (Hodges et al.,
2009; Lwin et al., 2016). Collectively, these observations lay
a foundation for understanding the in vivo regulatory circuit
controlling Bnr1-mediated actin nucleation (Figure 6). However,
they also raise many new questions that need to be answered
in future studies, including: (i) when and where each regulatory
protein interacts with Bnr1, and with each other, in vivo, (ii)
whether their effects on Bnr1 are regulated by post-translational
modification, and (iii) what mechanism(s) trigger the release of
Bnr1 from autoinhibition.

Finally, it will be important to determine if and how Bil2
(and Bil1) influence the other known cellular functions of Bud6,
particularly its role in microtubule plus end capture and mitotic
spindle orientation (Segal et al., 2002). Bud6 binds not only to
formins but also the microtubule plus end-binding protein EB1
(Bim1), and is believed to coordinate actin and microtubule
functions in vivo (Delgehyr et al., 2008; Ten Hoopen et al., 2012).
Therefore, it will interesting to learn whether Bil1 and/or Bil2
contribute to this cytoskeletal crosstalk by Bud6. Further, what
we learn from studying Bil1, Bil2, and Bud6 in yeast may provide
valuable lessons for understanding the mechanisms coordinating

actin and microtubule functions in other systems. While there
are no clear homologs of Bil1, Bil2, or Bud6 outside of the
fungal kingdom, mounting evidence suggests that adenomatous
polyposis coli (APC) protein is a functional counterpart to Bud6
in animal cells. Similar to Bud6, APC binds to EB1 and serves as a
formin NPF in vitro and in vivo (Okada et al., 2010; Breitsprecher
et al., 2012; Juanes et al., 2017, 2019). Further, APC interacts
with a large number of other cytoskeletal regulatory proteins.
Some of these ligands may regulate APC’s NPF activities in a
manner related to how Bil1 and Bil2 regulate Bud6 NPF activity.
Indeed, it was recently shown that EB1 directly inhibits the
NPF activity of APC’s Basic domain (Juanes et al., 2020). These
findings, together with the results presented here, suggest that
evolutionarily diverse organisms may have adapted to use distinct
sets of proteins (lacking obvious sequence homology) to establish
common regulatory schemes for controlling actin assembly.
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The organization of microtubule arrays in immune cells is critically important for a
properly operating immune system. Leukocytes are white blood cells of hematopoietic
origin, which exert effector functions of innate and adaptive immune responses. During
these processes the microtubule cytoskeleton plays a crucial role for establishing cell
polarization and directed migration, targeted secretion of vesicles for T cell activation
and cellular cytotoxicity as well as the maintenance of cell integrity. Considering this large
spectrum of distinct effector functions, leukocytes require flexible microtubule arrays,
which timely and spatially reorganize allowing the cells to accommodate their specific
tasks. In contrast to other specialized cell types, which typically nucleate microtubule
filaments from non-centrosomal microtubule organizing centers (MTOCs), leukocytes
mainly utilize centrosomes for sites of microtubule nucleation. Yet, MTOC localization
as well as microtubule organization and dynamics are highly plastic in leukocytes thus
allowing the cells to adapt to different environmental constraints. Here we summarize our
current knowledge on microtubule organization and dynamics during immune processes
and how these microtubule arrays affect immune cell effector functions. We particularly
highlight emerging concepts of microtubule involvement during maintenance of cell
shape and physical coherence.

Keywords: microtubules, leukocytes, cell migration, immune synapse, cell coherence

INTRODUCTION

The cytoskeleton plays a major role for accomplishing numerous immune cell effector functions.
Microtubule filaments are crucially important for directing migratory cells to their final destination
and for mediating specific cell-cell interactions between an antigen-presenting cell and a T cell.
Microtubules are composed of α-/β-tubulin heterodimers which polymerize in a head-to-tail
fashion to form a polar protofilament with the α-tubulin subunit exposed to one end – designated
as minus-end – and β-tubulin exposed to the other end, which is commonly referred to as the plus-
end (Nogales, 2000). In most eukaryotic cells, 13 protofilaments associate laterally to form long,
hollow tubes, which are highly dynamic and stochastically oscillate between periods of growth and
shrinkage, a property known as “dynamic instability” (Mitchison and Kirschner, 1984). Within
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cells, microtubule minus-ends are mainly static and stably
anchored to a variety of microtubule-organizing structures, from
which individual filaments nucleate with their growing plus-ends
projecting to the cell periphery (Wu and Akhmanova, 2017).
The microtubule lattice as well as the microtubule plus-ends
are decorated with microtubule associated proteins (MAPs) such
as end-binding (EB) proteins, microtubule (de)-polymerases
and regulatory kinesins, all of which modify the dynamics of
microtubule filaments and their plus-ends and contribute to
highly plastic and functionally specialized microtubule arrays
(Bodakuntla et al., 2019). Besides the plethora of MAPs, distinct
tubulin isoforms and posttranslational tubulin modifications
(PTMs), which collectively make up the tubulin code, introduce
additional diversity of microtubule networks (Gadadhar et al.,
2017). Today it is well recognized that microtubule structure
and dynamics are differentially regulated in a cell-type dependent
manner thereby supporting specific morphologies and functions.
Here we summarize our current understanding and recent
advances of microtubule arrays and their functions in leukocytes.

LEUKOCYTES

Leukocytes are commonly known as white blood cells, which
constitute the major component of the body’s defensive unit
against diseases. In contrast to erythrocytes, many types of
leukocytes exist, which mainly originate from hematopoietic stem
cells in the bone marrow. They are classified either by structure
into granulocytes and agranulocytes or by cell lineage into
myeloid or lymphoid cells. In contrast to other highly specialized
cell types, which often reorganize microtubules into non-
centrosomal arrays during differentiation, leukocytes primarily
nucleate microtubules from the centrally located centrosome
with individual filaments extending radially toward the cell
periphery (Muroyama and Lechler, 2017; Meiring et al., 2020;
Figure 1). One exception to this centrosome-derived microtubule
array was described for T cells, in which microtubule nucleation
can also proceed from non-centrosomal sites such as the Golgi
apparatus (Ong et al., 2018).

One of the most characteristic features of all leukocytes is their
highly motile behavior. Lymphocytes constantly patrol the body
for foreign antigen by recirculating from blood, through tissue,
into lymph and back into the blood stream. Myeloid cells such
as neutrophils and monocytes emigrate from the blood stream
into tissues when they detect changes on the surface of blood
vessels that transmit signals of injury or infection (Springer,
1994). A critical link between innate and adaptive immunity
constitute dendritic cells, which, in their resting state, patrol
peripheral tissues in search for pathogens (Banchereau et al.,
2000). Microbial encounter triggers a maturation process that
enables these cells to ingest antigens and become responsive to
lymph node homing guidance cues to initiate T cell priming
(Steinman and Cohn, 1973). In their mature state, dendritic
cells are highly migratory and move through the interstitial
matrix to enter the draining lymph node via afferent lymphatic
vessels (Worbs et al., 2017). Prior to migration, resting leukocytes
respond to specific chemical signals by developing a defined

polarized morphology with the formation of an actin-rich
lamellipodium at the cell front and a contractile trailing edge at
the back, which is referred to as the uropod (Sánchez-Madrid
and del Pozo, 1999; Hind et al., 2016). Rearrangement of actin
and microtubule filaments are critically involved in establishing
this front-rear polarity. Newly synthesized actin polymers at the
leading edge protrude the membrane in the forward direction,
while myosin-mediated contraction of the trailing edge facilitates
de-adhesion and propels the cell body forward. In contrast to
stationary polarized cells such as neurons or epithelial cells,
leukocytes change their polarity frequently and rapidly, in some
cells on a time scale of seconds rather than minutes or hours.
Here we focus on the spatial and temporal reorganization of
the microtubule cytoskeleton during leukocyte migration in
environments of different complexity. We refer the reader to
an excellent recent review regarding actin-dependent remodeling
of cell locomotion in three dimensional (3D) environments
(Yamada and Sixt, 2019).

ADAPTIVE MIGRATION STRATEGIES
DETERMINE THE DEPENDENCE ON
MICROTUBULES

Leukocytes exhibit a remarkable repertoire of migratory
plasticity, being able to instantaneously switch between
adhesion-dependent and adhesion-independent migration. The
latter is characterized by the absence of proteolytic degradation
and requires frequent cell shape changes in combination with
a highly polarized morphology, which bear parallels to the
phenotypic behavior of migrating amoeba (Wilkinson, 1986).
Due to these morphological similarities, leukocyte motility is
commonly designated as being amoeboid, which refers to cell
movement driven by frequent shape changes (amoibe; Greek
for “change”). By contrast, adhesion-dependent migration
occurs as a consecutive sequence of leading-edge protrusion,
transmembrane force coupling by adhesion receptors and
contraction of the cell rear to promote de-adhesion, closely
resembling Abercrombie’s three-step mesenchymal migration
mode (Abercrombie et al., 1970, 1977).

Adaptive leukocyte migration strategies strongly depend on
the environmental context: when moving along sheet like
structures such as the endothelial lining of blood vessels
or basement membranes, leukocytes exhibit a mesenchymal
mode of migration. However, in most cases leukocytes reside
in structurally complex microenvironments such as collagen-
rich interstitial matrices or cell-rich compartments found
in lymph nodes or granulomas. When embedded in such
environments, leukocytes shift their mode of migration to an
adhesion-independent amoeboid mode (Lämmermann et al.,
2008; Renkawitz et al., 2009; Friedl and Wolf, 2010). This
migration mode is powered by frequent cell shape changes
that intercalate with any textured environment and thus propel
a cell forward, thereby enabling leukocytes to move in an
autonomous manner, irrespective of the chemical composition
of their microenvironment (Reversat et al., 2020). Finally,
leukocytes cross the endothelial cell barrier in a process called
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FIGURE 1 | Differential organization of microtubule arrays in distinct cell types. Terminal differentiation into effector cells such as neurons is associated with a
reorganization of centrosomal microtubule filaments into non-centrosomal arrays (Muroyama and Lechler, 2017). In highly specialized leukocytes, the centrosome
acts as single MTOC, from which a radial array of microtubule filaments project to the cell periphery. In unpolarized leukocytes, the centrosome is located centrally
close to the nucleus (left panel). During polarization the MTOC reorients toward the uropod leading to higher densities of microtubule filaments at the cell’s back (right
panel). By contrast, fibroblasts exhibit an anterior MTOC localization relative to the nucleus. MTOC positioning is highly plastic in neutrophils and differs depending on
the complexity of the environment (Yoo et al., 2013).

transendothelial migration (TEM) or diapedesis (Ley et al.,
2007; Muller, 2011). While microtubule arrays in endothelial
cells play an important role during TEM (Mamdouh et al.,
2008), in leukocytes neither preexisting nor de novo generated
microtubules seem to be essential for efficient transmigration
(Fine et al., 2016; Yadav et al., 2019).

A unifying feature of both migration strategies is that, in order
to fulfill their effector functions, migrating leukocytes need to
integrate the entire imposed mechanochemical parameters of the
microenvironment to successfully navigate to their destination
site. While actin dynamics are essential for locomotion and cell
contractility, dynamic microtubules are indispensable for cell
shape and the establishment and maintenance of cell polarity.
Much of the gained knowledge originates from studies of
cells moving on 2D surfaces, but recent evidence suggests a
differential role for microtubules during migration in complex
3D environments (Figure 2), where mesenchymal cells begin to
depend on an intact microtubule network to move within soft
matrices (Unemori and Werb, 1986; Doyle et al., 2009).

Microtubule Arrays in Simple
Environments
The role of microtubules during leukocyte migration was initially
assessed in neutrophils. In the absence of a chemotactic cue
neutrophils rest or move without any preferred direction. This

non-directed mode of locomotion is referred to as random
migration. Uniform addition of a chemotactic factor increases
random migration – a phenomenon termed stimulated random
migration or chemokinesis. If the chemotactic factor is presented
as a gradient, migration changes from a stimulated random
mode to directional migration. Under these conditions, cells
move toward the chemotactic source en masse, which is
known as chemotaxis (Allan and Wilkinson, 1978; Zigmond
et al., 1981). Various compounds have been identified to bind
to tubulin and/or microtubules thereby altering microtubule
polymerization and dynamics. Most of these agents originate
from natural sources and were isolated from marine organisms,
plants and bacteria (Amador et al., 2003). At high concentrations
these compounds are often classified into either microtubule-
stabilizing agents such as taxol and the epothilones or
destabilizing agents, which include colchicine, vinblastine or
nocodazole. Most microtubule-stabilizing agents bind to β-
tubulin on the luminal side of microtubules and stabilize
longitudinal and/or lateral tubulin contacts (Neuert et al., 2013;
Alushin et al., 2014). Microtubule-destabilizing agents bind
between the α- and β-tubulin subunit within the same dimer or
between two different longitudinally aligned dimers. They act on
microtubules by different mechanisms all of which de-stabilize
the dynamic plus-ends of microtubules (Skoufias and Wilson,
1992; Ravelli et al., 2004; Gigant et al., 2005).
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FIGURE 2 | Microtubule function during leukocyte migration in environments of different complexity. Microtubule depletion leads to uncoordinated actomyosin
activation, yet with different consequences on cell shape and coherence depending on the geometry of the cell’s surrounding. Oscillating myosin activation across
the cortex yields in uncoordinated and unstable polarization in 2D while in linear channels (1D) leukocytes maintain their polarized shape. In complex 3D
environments, microtubules mediate the coordination of multiple competing protrusions (Renkawitz et al., 2019; Kopf et al., 2020). Disruption of microtubule integrity
impairs protrusion-retraction dynamics of competing extensions resulting in loss of cell shape and induction of cell fragmentation.

Probing neutrophils with microtubule destabilizing agents
impairs direction-finding or directional movement during
chemotaxis but not the mechanism of neutrophil locomotion per
se (Bandmann et al., 1974; Gallin and Rosenthal, 1974; Keller
et al., 1984; Niggli, 2003; Xu et al., 2005). A similar phenomenon
of diminished persistent locomotion toward chemotactic cues
upon disturbing microtubule integrity was also observed in

macrophages, T cells and dendritic cells in vitro and in vivo
(Ratner et al., 1997; Redd et al., 2006; Takesono et al., 2010;
Yoo et al., 2013; Kopf et al., 2020). Stabilization of microtubules
by taxol similarly disturbed the polarized distribution of F-actin
and greatly reduced directional locomotion without affecting
migration velocities of migrating T cells and neutrophils (Niggli,
2003; Yadav et al., 2019) indicating that dynamic microtubules
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do not contribute to the force-generating mechanisms required
for amoeboid migration but rather support the path of
locomotion along the chemotactic gradient. Interestingly, in
the absence of chemoattractant, microtubule depolymerization
induces neutrophils to spontaneously polarize and migrate
randomly suggesting that in resting neutrophils, microtubules
rather suppress polarity instead of inducing it (Bandmann et al.,
1974; Gallin and Rosenthal, 1974; Dziezanowski et al., 1980;
Keller et al., 1984; Niggli, 2003; Xu et al., 2005).

How Do Microtubules Regulate
Directional Locomotion in Simple
Environments?
Leukocyte microtubules rapidly respond to chemotactic cues
with increased filament polymerization (Gallin and Rosenthal,
1974; Robinson and Vandre, 1995). During cell polarization,
the microtubule array reorients toward the uropod, which is
maintained during locomotion and does not require microtubule
disassembly or substrate attachment through integrin receptors
(Malech et al., 1977; Anderson et al., 1982; Ratner et al.,
1997; Eddy et al., 2002; Xu et al., 2005). Inhibition of myosin
phosphorylation or actin polymerization causes an expansion
of the microtubule array and penetration of microtubules into
the lamellipodium indicating that F-actin- and myosin II-
dependent forces lead to the development and maintenance of
microtubule asymmetry (Eddy et al., 2002). During chemotaxis,
the microtubule organizing center (MTOC) relocalizes behind
the nucleus and microtubules align along the axis of migration
with individual filaments orienting toward the uropod while
the F-actin rich lamellipodium becomes populated with only
few filaments extending to the leading edge cell membrane.
One exception to the posterior localization of the MTOC
is observed in neutrophils, which change MTOC orientation
rapidly depending on the environmental conditions, yet, with
individual filaments projecting to the back of the cell (Chiplonkar
et al., 1992; Yoo et al., 2013). Relocalization of the microtubule
array to the uropod increases microtubule density at the
cells’ back suggesting that microtubules promote back-directed
processes rather than stabilization of the lamellipodium as
reported for mesenchymal migration (Waterman-Storer et al.,
1999). This is further supported by the fact that the MTOC
follows the turning leading edge instead of guiding the direction
of the lamellipodium indicating that the MTOC and microtubule
filaments do not determine the cell’s leading protrusion but rather
act as a path finder by stabilizing a chosen direction of locomotion
(Ueda et al., 1997; Xu et al., 2005).

How do Microtubules Stabilize the Path
of Locomotion?
Recent studies in dendritic cells revealed that the dynamics of
individual microtubule filaments are differentially regulated
depending on their localization: while microtubules projecting to
the leading edge are stable and long lived, microtubule dynamics
at the trailing edge exhibit higher frequencies of shrinkage
events compared to front-directed filaments. The high local
microtubule depolymerization rate at the uropod is causally

connected to retraction of the cell’s back demonstrating that
microtubules are able to regulate local cellular retraction events
(Kopf et al., 2020). Two signaling modules have been identified,
which act in concert to balance morphological frontness and
backness in migrating cells: RhoA- and actomyosin dependent
contractility stimulate cellular backness, while F actin-rich
protrusions at the cell front are regulated by a trimeric G protein,
the small GTPase Rac, and 3′ phosphoinositides such as PIP3
(Niggli, 2003; Xu et al., 2003; Yoo et al., 2010). Microtubules link
RhoA and actomyosin activation by release of the RhoA-specific
guanine nucleotide exchange factor (GEF)-H1 (Ren et al.,
1998; Krendel et al., 2002; Chang et al., 2008). Microtubule
depolymerization leads to untethering of GEF-H1 from the
microtubule lattice, which in turn induces RhoA activation
and downstream Rho-associated protein kinase (ROCK)
signaling leading to myosin II phosphorylation and actomyosin
contraction (Krendel et al., 2002; Nalbant et al., 2009). In
migrating dendritic cells, microtubules projecting to the back
of the cell stabilize the uropod by delivering GEF-H1, allowing
for local activation of RhoA and myosin contraction (Kopf
et al., 2020). Such subcellular microtubule-mediated activation
processes, specifically lead to local contraction events via the
RhoA-ROCK-myosin axis as demonstrated for the uropod. This
local RhoA activation might explain the different behavior of
neutrophils after microtubule depolymerization in the absence
of chemotactic cues: while large and ramified dendritic cells
allow local microtubule-mediated cell retraction events, in
small cells such as neutrophils, microtubule depolymerization
globally activates RhoA leading to oscillating cortical myosin
activation and fluctuating cell polarization, which in turn induces
random motility.

Microtubules in Complex Environments –
Implications for Cell Coherence
The involvement of microtubules, specifically during leukocyte
migration in complex environments, still remains an
underexplored area of research. On top of that, not only
environmental constraints but also cell intrinsic factors such
as cell size and protrusion dynamics affect the level to which
microtubules are required for migrating leukocytes.

To efficiently navigate through dense 3D microenvironments,
leukocytes initially extend multiple protrusions into pores of
their immediate vicinity to explore different potential paths
for locomotion. Ultimately, they have to retract all but one
protrusion thereby selecting one direction along which the cell
further advances. The most critical part during migration in
complex environments is translocation of the cell’s nucleus,
which constitutes the largest organelle within the cell. During
path selection leukocytes position their nucleus to the cell
front to act as a mechanical ruler allowing to detect pore
size differences. Ultimately, cells bypass local hindrances within
the extracellular matrix by choosing larger pore sizes thus
favoring the path of least resistance (Renkawitz et al., 2019).
The MTOC is positioned directly behind the nucleus and seems
to push the nucleus forward (Zhao et al., 2012). Once the
MTOC passes the junction point, competing cellular protrusions
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become instable and retract in a microtubule dependent manner
(Kopf et al., 2020). Due to their stiff nature, microtubule
filaments grow in straight trajectories and fail to enter curved
or buckled protrusions. Once protrusions bend beyond a critical
point, microtubules start to depolymerize and – via release of
GEF-H1 – locally activate RhoA and actomyosin contraction
thereby inducing cellular retraction (Figure 2). This constitutes
a remarkably simple mechanism of how multiple competing
protrusions of ramified cells communicate with each other
and establishes the microtubule cytoskeleton as an important
mediator of cell integrity. Such subcellular microtubule-mediated
actomyosin activation processes, which specifically lead to local
retraction events of remote cell edges, seem to work primarily
in large and ramified cells, while small cells such as neutrophils
and T cells typically employ plasma membrane tension to
communicate between multiple competing protrusions (Diz-
Muñoz et al., 2016). In contrast to cells moving in geometrically
simple environments, global microtubule depolymerization of
cells embedded in complex 3D environments causes loss of
cell coherence by uncoordinated protrusion dynamics, which
ultimately leads to auto-fragmentation and cell death (Renkawitz
et al., 2019; Kopf et al., 2020; Figure 2).

Similarly, microtubules also control cell shape in tissue-
resident memory T (TRM) cells. Skin TRM cells exhibit highly
dynamic shape changes when migrating within the constrained
epidermal layer with extension of multiple competing protrusion
similar to dendritic cells. Treatment of TRM cells in the skin
with microtubule destabilization agents induces cell elongation
and fragmentation of extending dendrites suggesting that
an intact microtubule network is also required to maintain
cellular coherence of TRM cells within the epidermis (Zaid
et al., 2017). Besides GEF-H1, the atypical Cdc42-specific GEF
dedicator of cytokinesis 8 (DOCK8) plays an important role
for maintaining lymphocyte cell integrity. DOCK8-deficient T
cells and natural killer cells develop an abnormally elongated
shape and deformation of the nucleus in 3D collagen matrices
and human skin tissues (Zhang Q. et al., 2014). Chemotaxis
of DOCK8-deficient T cells is unaffected but cells fragmented
frequently when moving in confined spaces, causing a distinct
form of cell death and the inability to generate long-lived tissue
resident T cells. These results establish a crucial role for DOCK8
in mediating cytoskeletal rearrangements during locomotion in
3D environments. Whether DOCK8 directly affects microtubule
integrity is currently unknown.

In summary, there is mounting evidence that a dynamic
microtubule cytoskeleton is essential for maintenance of cell
shape and coherence by coordinating protrusion dynamics of
leukocytes migrating in complex 3D environments.

Microtubules and the Formation of the
Immune Synapse
The high specificity of immune responses largely depends on
direct cell-cell interactions. Leukocytes are able to form tight
contacts with other types of immune- or non-immune cells
leading to the initiation of adaptive immune responses or
activation of effector cells able to eliminate potentially dangerous

cells. In analogy to the morphologically similar neuronal synapse,
the contact area that is built between two adjacent cells is referred
to as the immunological synapse. Two major types of immune
synapses exist – helper T cell synapses forming between antigen-
presenting cells and T helper cells and cytotoxic synapses, which
are established between cytotoxic T cells or natural killer cells
and a target cell. Both types of synapses share common features
but also display cell type-specific differences. However, in both
cases, the effector cells must distinguish foreign antigens from
self-proteins, which poses a major challenge to this task in
terms of specificity.

T Helper Cell and Cytotoxic Synapses
Efficient activation of T helper cells is mediated through the
presentation of a specific antigen by an antigen-presenting
cell. The T cell receptor first recognizes a cognate antigen,
which is presented on major histocompatibility complexes on
the surface of the antigen-presenting cell (Turley et al., 2000).
Subsequently, this interaction leads to the formation of the
immune synapse at the T cell-antigen-presenting cell junction.
At the immune synapse, T cell receptors, integrins and co-
stimulatory receptors engage with each other to form a series of
supramolecular activation clusters (SMAC), which segregate into
radial symmetric zones facing the antigen-presenting cell (Shaw
and Dustin, 1997; Dustin and Choudhuri, 2016). Structurally,
the T cell receptors and associated kinases cluster in the
central area (central supramolecular activation cluster; central
SMAC), while adhesion receptors and actin, as well as actin-
interacting proteins, reorganize in surrounding external rings
referred to as the peripheral and distal SMAC (peripheral SMAC
and distal SMAC) (Monks et al., 1998; Grakoui et al., 1999;
Krummel et al., 2000).

Cytotoxic lymphocytes play a crucial role in mediating innate
and adaptive immune responses. Natural killer cells and cytotoxic
T lymphocytes provide rapid responses to virally infected cells
and tumor formation. They are able to directly eliminate cells
by the release of large amounts of secretory lysosomes – termed
lytic granules – leading to target cell lysis. Impaired functioning
of cytotoxic T lymphocytes may lead to immune evasion of
tumors and the emergence of chronic infections. Similar to T
cell activation, the first step in cell-mediated cytolysis is binding
of the cytotoxic T lymphocyte’s T cell receptor to a foreign
antigen presented on the surface of the target cell. Cytotoxic
synapses structurally display a similar organization as T helper
cell synapses with a ring of adhesion molecules surrounding
an inner signaling domain. Secretion occurs into a specialized
domain lying next to the central SMAC and within the peripheral
SMAC. A secretory cleft, which appears as an indentation in the
membrane of the target cell, lies opposite the secretory domain
(Stinchcombe et al., 2001).

In both cases, T cell receptor-antigen ligation leads to
repositioning of the centrosome from the uropod to the contact
side: upon ligation of an antigen-loaded B cell with a T
helper lymphocyte, the MTOC inside the T cell reorients
toward the cell contact region with the antigen-presenting
cell (Kupfer et al., 1986; Kupfer and Singer, 1989). α-/β-
tubulin heterodimers polymerize from the MTOC and form

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 February 2021 | Volume 9 | Article 63551149

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-635511 February 2, 2021 Time: 18:54 # 7

Kopf and Kiermaier Microtubules in Immune Effector Functions

a network of microtubules at the T cell-antigen-presenting
cell contact side. MTOC positioning toward the contact zone
strictly depends on T cell receptor engagement with the
cognate antigen and concomitantly drives the movement of
other organelles such as the Golgi apparatus toward the
immune synapse (Kupfer et al., 1986). The rapid repositioning
of the T cell’s MTOC allows microtubule plus-end directed
transport of secretory vesicles containing effector molecules and
polarized secretion of these molecules in the direction of the
bound antigen-presenting cell (Kupfer et al., 1991). Similarly,
Geiger and colleagues demonstrated relocalization of the MTOC
and perinuclear Golgi apparatus toward the synapse upon
cytotoxic T lymphocyte-target cell conjunction (Geiger et al.,
1982). Disturbing microtubule integrity with nocodazole causes
dispersion of the Golgi apparatus and reversibly inhibits target
cell lysis indicating microtubule involvement in the delivery of
lytic granules toward the immune synapse (Katz et al., 1982;
Kupfer and Dennert, 1984).

Polarization of the microtubule cytoskeleton and directional
secretion of soluble factors toward the immune synapse emerged
as key events allowing for specific activation of effector cells
and destruction of potentially dangerous cells. During the past
25 years, numerous studies shed light on the mechanisms and
stimuli triggering MTOC repositioning in T cells. By contrast,
much less is known about the antigen-presenting cell side of
the immune synapse. Here we highlight the molecular basis of
centrosome translocation and polarized vesicle secretion in T
cells and antigen-presenting cells and the role of the microtubule
cytoskeleton during these processes. We refer to excellent recent
reviews, which discuss the signaling modules that regulate
the repositioning of centrosomes toward the immune synapse
(Martín-Cófreces and Sánchez-Madrid, 2018; Garcia and Ismail,
2020; Tittarelli et al., 2020).

Microtubule Dynamics at the Immune
Synapse
In resting cytotoxic T lymphocytes, microtubules are highly
dynamic switching constantly between growth and shrinkage.
Microtubules contacting the cell cortex buckle, curl inward
and slide laterally along the cell cortex or are prone to
depolymerize (Kuhn and Poenie, 2002). Upon T cell receptor
ligation, microtubule filaments are anchored to the peripheral
SMAC, a ring-shaped structure which surrounds the central
SMAC and colocalizes with clusters of the T cell’s major integrin
LFA-1. Subsequently to the attachment of microtubules to the
cell cortex, the MTOC is recruited vectorially to the contact
zone. Some microtubules bent at the contact site suggesting the
presence of microtubule motor proteins anchored at the cell
cortex, which act on microtubules to pull the MTOC toward the
immune synapse (Kuhn and Poenie, 2002). Candidate molecules,
which have been demonstrated to connect microtubules to the
peripheral SMAC at the immune synapse are the cytoskeletal
adaptor proteins IQGAP1 and Cdc42-interacting protein 4
(CIP4). IQGAP1 and actin are cleared away from the synapse
via an expanding ring, which in turn exerts tension on the
microtubule filaments that are anchored at the peripheral SMAC

(Stinchcombe et al., 2006). CIP4 interacts with both, the actin
and microtubule cytoskeleton and was proposed as functional
link between the peripheral SMAC and MTOC polarization
(Stinchcombe et al., 2006; Banerjee et al., 2007). MTOC
translocation toward the immune synapse further requires
precise regulation of microtubule dynamics. Overexpression of
histone deacetylase 6, the enzyme that catalyzes the removal
of acetylation at lysine 40 of α-tubulin and thus reduces
microtubule stability, results in defective MTOC polarization
toward the immune synapse (Serrador et al., 2004). Similarly,
destabilization of microtubules by either depletion of formins
or the microtubule-associated protein 4 (MAP4) impairs MTOC
translocation in T cells (Andrés-Delgado et al., 2012; Bustos-
Morán et al., 2017). After MTOC polarization, microtubules
actively polymerize at the immune synapse. Altering microtubule
plus-end dynamics by depletion of the microtubule catastrophe-
inducing protein stathmin or the plus-end-binding protein 1
(EB1) as well as impairing EB1 phosphorylation delays MTOC
reorientation and movement of vesicles at the immune synapse.
Together, these findings highlight the importance of dynamic
microtubules in the establishment of a functional immune
synapse and T cell activation (Zyss et al., 2011; Filbert et al., 2012;
Martin-Cofreces et al., 2012).

A prominent player to generate force for efficient MTOC
relocalisation is the microtubule-based motor protein dynein.
Dynein acts in concert with two other central components,
dynactin and coiled coil containing activating adaptor proteins,
which together with additional regulators form a high-molecular
weight complex referred to as the cytoplasmic dynein complex
(Reck-Peterson et al., 2018). Dynein is composed of six
polypeptide chains, one single dynein heavy chain (DHC), two
intermediate- and three light chains (dynein intermediate chain
(DIC) and dynein light chain (DLC), respectively) all of which
are present as two copies. The DHC contains the motor domain
that associates with microtubules via a microtubule-binding
domain (Kon et al., 2012; Schmidt et al., 2012). Through its
direct interaction with the microtubule cytoskeleton, the dynein-
dynactin machinery is able to move a variety of different cargoes
toward the minus-end of microtubule filaments (Gill et al., 1991;
Schroer and Sheetz, 1991).

In stimulated T helper cells, dynein and dynactin colocalize
as rings with the adhesion and degranulation promoting adaptor
protein (ADAP) at the peripheral SMAC. Similarly, microtubule
filaments project to the immune synapse and associate with
ADAP into a ring-like structure (Combs et al., 2006). Loss of
ADAP diminishes recruitment of dynein and centrosome
relocalization suggesting a causal link between ADAP,
cytoplasmic dynein localization and MTOC reorientation toward
the immune synapse. Accordingly, interference with dynein-
dynactin activity by either overexpression of p50-dynamitin or
silencing the DHC prevents MTOC relocalization after T cell
receptor engagement supporting the notion that cytoplasmic
dynein is functionally involved in centrosome polarization
toward the immune synapse (Martin-Cofreces et al., 2008).

Provided that microtubule minus-ends are anchored at the
MTOC these data support a model, in which the dynein-dynactin
complex localizes to the plasma membrane at the immune
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FIGURE 3 | Mechanisms of MTOC translocation during immune synapse formation. Antigen recognition on the surface of an antigen presenting cell by the T cell
receptor leads to the formation of a tight contact zone between two adjacent cells. Microtubule filaments inside the T cell project toward the contact area and
subsequently the MTOC gets recruited to the immune synapse. Two major models have been proposed how MTOC relocalization is achieved, both of which depend
on the presence of the microtubule-associated motor protein dynein at the plasma membrane. (A) In the “cortical sliding model” dynein is held in place at the cell
cortex and simultaneously walks toward the minus-end of the microtubule filaments. This leads to cortical sliding of microtubules and pulling of the MTOC toward the
contact site (Martin-Cofreces et al., 2008). (B) The “capture-shrinkage model” suggests that the force, which is required for MTOC translocation is generated by the
dynamic instability of microtubule filaments and transmitted via dynein (Yi et al., 2013). Here dynein couples microtubule depolymerization to the cell cortex to move
the MTOC toward the synaptic membrane. Recently a revised model for MTOC translocation to the immune synapse was proposed, in which centrally localized
dynein first pulls the centrosome straight toward the immune synapse. Afterward, dynein congresses at the peripheral SMAC, which leads to opposing forces acting
laterally on the centrosome (Maskalenko et al., 2020). Such lateral pulling forces lead to oscillating movements of the centrosome at the immune synapse.

synapse and exerts the force, which is required to recruit the
MTOC close to the contact site (Figure 3A). In this model,
dynein is held in place at the cell cortex and simultaneously
walks toward the minus-end of the microtubule filaments leading
to cortical sliding of microtubules and pulling of the MTOC
toward the plasma membrane (Martin-Cofreces et al., 2008).
MTOC repositioning based on this cortical sliding mechanism
has been assessed by quantitative biomechanical modeling (Kim
and Maly, 2009). According to this model, a pulling mechanism
is capable of MTOC reorientation and compatible with the
vectorial description of MTOC translocation derived from earlier
experiments (Kuhn and Poenie, 2002).

A second model based on experimental data suggests that the
force, which is required for MTOC translocation is generated
by microtubule depolymerization and coupled via dynein to
move the MTOC toward the cortex (Figure 3B). In this
model, dynein binds to microtubule plus-ends at the plasma
membrane and drives MTOC repositioning via a capture-
shrinkage mechanism (Yi et al., 2013). Optical tweezers were

used to place the antigen-presenting cell to the opposite site
of the T cell’s MTOC allowing to image the process of
MTOC repositioning and microtubule dynamics in T cells
with high spatial and temporal resolution. MTOC repositioning
follows two distinct kinetic phases: a fast polarization phase
of ∼3.3 µm/min and a slower ∼0.9 µm/min docking phase.
Similar to previous studies, microtubule plus-ends project from
the MTOC toward the antigen-presenting cell but terminate
at the center of the immune synapse in an end-on manner.
Several microtubules center at the immune synapse and undergo
simultaneous shortening thus bringing the immune synapse
and the centrosome together. During microtubule shortening,
the membrane underneath the immune synapse invaginates,
suggesting force generation at the point of microtubule
depolymerization. Similar to the cortical sliding mechanism,
inhibition of dynein or microtubule integrity impairs MTOC
repositioning (Yi et al., 2013). In support of this, in vitro
reconstitution experiments showed that barrier-attached dynein
is indeed able to trigger microtubule shrinkage and to generate
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pulling forces, which are sufficient to center microtubule asters in
confining geometries (Laan et al., 2012).

Differences in the underlying mechanism of centrosome
repositioning most likely arise from the distinct experimental
set-ups: T cell-antigen-presenting cell contacts were initially
observed using polarization light microscopy in combination
with end-stage fixed samples of cell-cell conjugates (Kuhn and
Poenie, 2002; Martin-Cofreces et al., 2008). In order to observe
the dynamics of centrosome reorientation toward the immune
synapse, Yi and coworker established an optical trap, which
allows precise control of cell positioning by placing the antigen-
presenting cell opposite to the location of the T cell’s centrosome.
This allows real-time monitoring and quantitative analysis of
MTOC relocalization.

However, in both models dynein anchored at the cell cortex
is essential to generate or transmit the force required for MTOC
polarization. It is well established that recruitment of dynein
and subsequent MTOC translocation depends on the polarized
accumulation of the lipid second messenger diacylglycerol (DAG)
in the cell membrane (Quann et al., 2009). DAG is generated
downstream of T cell receptor ligation by the hydrolysis
of phosphatidylinositol-4,5-bisphosphate (PIP2) through
Phospholipase C-γ (PLC-γ ). Blocking DAG production or
disrupting the localization of DAG impairs MTOC polarization
in T helper cells and cytotoxic T lymphocytes. Mechanistically,
DAG recruits and activates three distinct protein kinase C (PKC)
isoforms to the synaptic membrane, which in turn control
centrosome reorientation through the localization of dynein and
non-muscle myosin II (Quann et al., 2011; Liu et al., 2013). The
involvement of non-muscle myosin II suggests that there might
be dynein-independent force-generating mechanisms operating
to reorient the MTOC. In this regard, pharmacological dynein
inhibition in Jurkat T cells, had no effect on MTOC translocation
toward the immune synapse (Hashimoto-Tane et al., 2011). Yet,
it is hard to estimate whether this might be due to incomplete
dynein inhibition or dynein-independent mechanisms of MTOC
reorientation. Dynein is further known to form a complex with
either Lissencephaly 1 (LIS1) and NudE Neurodevelopment
Protein 1 (NDE1), or with dynactin, a multisubunit complex
whose largest subunit is p150Glued (Reck-Peterson et al., 2018).
Both complexes form mutually exclusive with dynein and
mediate distinct cellular activities during T cell activation (Nath
et al., 2016). Knockdown of NDE1 or expression of a dominant
negative form diminishes dynein localization at the immune
synapse and translocation of the MTOC. By contrast, knockdown
of p150Glued results in impaired recruitment of secretory vesicles
toward the immune synapse whereas MTOC polarization is
unaffected. These results suggest that dynein might play a dual
role in activating T cells depending on the interacting partner
protein (Nath et al., 2016). More recently, a study from the
same group demonstrates that the NDE1–dynein complex first
accumulates at the center of the immune synapse and then later
becomes associated to the peripheral SMAC. The relocalization
of dynein depends on the disrupted in schizophrenia 1 (DISC1)-
girders of actin filaments (Girdin) complex (Maskalenko et al.,
2020). Depletion of either DISC1 or Girdin results in loss of actin
accumulation at the immune synapse, impaired recruitment

of members of the dynein complex and a failure in MTOC
translocation to the synapse. The authors propose a model for
MTOC translocation, in which centrally located dynein first
pulls the MTOC straight toward the immune synapse until it
reaches the center of the dynein ring (Figure 3). When dynein
relocates to the peripheral SMAC, opposing dynein forces
would act to pull the MTOC laterally in an oscillating manner
similar to what has been observed in experimental setups before
(Kuhn and Poenie, 2002).

Independently of the mechanism of force generation and
transmission, microtubules need to be anchored at the immune
synapse to efficiently allow MTOC reorientation. Based on the
“search and capture” model, which was first proposed in the
context of microtubule-chromosome interaction during mitotic
spindle assembly (Hill, 1985; Pavin and Toliæ-Nørrelykke, 2014),
a mathematical model was established to determine the time
of microtubule capture at the immune synapse (Sarkar et al.,
2019). Here, microtubules grow and shrink from the MTOC
thereby probing their vicinity for a proper anchor (“search”).
Once they encounter dynein at the center of the immune synapse
they bind to it in an end-on fashion (“capture”). This model
incorporates the requirement of dynamic microtubule filaments
for MTOC translocation and recapitulates efficient target capture
with timescales comparable to experimental data. Search times
largely depend on the relative size of the cell, the number of
searching microtubules and the distance of the MTOC from
the nuclear surface. They become minimal when the immune
synapse forms at the nearest or at the farthest sites on the cell
surface with respect to the perinuclear MTOC.

MTOC Translocation in
Antigen-Presenting Cells
Microtubule organizing center polarization toward the immune
synapse was also reported in antigen-presenting cells such
as dendritic cells and B cells (Pulecio et al., 2010; Yuseff
et al., 2011). In both cell types, reorientation depends on
the small GTPase Cdc42 and its upstream activator DOCK8
(Randall et al., 2011). In dendritic cells, vesicles containing
the pro-inflammatory cytokine IL-12 enrich around the MTOC
immediately after T cell receptor ligation and become dragged
toward the dendritic cell-T cell interface suggesting, that MTOC
polarization in dendritic cells enables local priming of T cells
(Pulecio et al., 2010). However, ultrastructural studies of T cell-
dendritic cell conjugates and time-lapse videomicroscopy of
plasmacytoid dendritic cell-T cell interactions did not reveal
MTOC positioning close to the plasma membrane indicating
that MTOC translocation in dendritic cells is dispensable for
efficient T cell activation (Mittelbrunn et al., 2009; Ueda et al.,
2011). In B cells, MTOC translocation is accompanied by
repositioning of lysosomes, which rapidly move toward the
B cell receptor-antigen interface and become locally released,
allowing acidification of the B cell synapse and secretion of
lysosomal proteases that promote the extraction of immobilized
surface antigen. Inhibition of lysosome exocytosis results in
compromised intracellular antigen processing and presentation
to T cells (Duchez et al., 2011; Yuseff et al., 2011).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 February 2021 | Volume 9 | Article 63551152

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-635511 February 2, 2021 Time: 18:54 # 10

Kopf and Kiermaier Microtubules in Immune Effector Functions

FIGURE 4 | Microtubule-actin crosstalk at the B cell synapse. Upper panel: in resting B cells, Arp2/3-mediated actin nucleation at the centrosome tethers the MTOC
to the nucleus. Upon B cell receptor activation, Arp2/3 and F-actin are recruited to the immune synapse thus facilitating centrosome-nucleus separation and
repositioning of the MTOC to the cell-cell contact side. Lower panel: proteasomal activity is required for centrosomal actin depletion and subsequent centrosome
relocalization to the immune synapse (Obino et al., 2016; Ibañez-Vega et al., 2019).

The mechanisms of MTOC translocation in B cells rely on the
interplay of actin and microtubule filaments at the centrosome:
in addition to its role as MTOC, the centrosome functions as an
organizer of a local network of actin filaments, which can impose
physical constraints on the microtubule cytoskeleton, specifically
affecting the growth and shape of microtubule filaments as well
as the dynamics of the centrosome (Piel et al., 2000; Rodriguez
et al., 2003; Huber et al., 2015; Colin et al., 2018; Dogterom
and Koenderink, 2019). Centrosomal actin therefore directly
regulates the amount and number of nucleating microtubule
filaments, by acting as a physical barrier that restricts elongation
of nascent microtubules (Farina et al., 2015; Inoue et al., 2019).
In resting B lymphocytes, actin related protein 2/3 complex
(Arp2/3)-mediated actin nucleation tethers the centrosome to
the nucleus thus preventing cell polarization (Figure 4). Upon
B cell receptor ligation, clearance of centrosomal Arp2/3 reduces
F-actin nucleation at the centrosome and facilitates centrosome-
nucleus separation allowing the repositioning of the MTOC
to the immune synapse. Arp2/3 and F-actin reduction at the
centrosome upon B cell activation results from their recruitment
to the immune synapse and depends on the Cortactin homolog

hematopoietic lineage cell-specific protein (HS1) (Obino et al.,
2016). Moreover, proteasome activity is required for centrosomal
actin depletion and subsequent centrosome relocalization to
the immune synapse. B cells contain two pools of the 26S
proteasome, which modulate actin dynamics at the centrosome
and at the immune synapse. Proteasome inhibition results
in elevated levels of ubiquitinylated proteins and actin at
the centrosome, while less F-actin is found at the synaptic
membrane. This suggests that upon B cell activation, centrosomal
proteasome activity is required to degrade ubiquitylated proteins
involved in actin polymerization thus enabling actin depletion
and centrosome polarization toward the immune synapse
(Ibañez-Vega et al., 2019).

Recently, the mechanistic link between local lysosome fusion
at the B cell immune synapse and microtubule dynamics has been
addressed (Figure 5): lysosome fusion at the synaptic membrane
is supported by stabilization of centrosomal microtubules
leading to the redistribution of the exocyst complex to the
immune synapse (Sáez et al., 2019). B cell receptor engagement
promotes the formation of a stable centrosomal microtubule
network, which in turn releases Exo70, a component of the
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FIGURE 5 | Stabilization of centrosomal microtubules support lysosome fusion at the synaptic membrane by releasing Exo70 and GEF-H1. Concomitantly to the
repositioning of the centrosome, lysosomes are recruited to the immune synapse and become locally released, allowing acidification of the B cell synapse and
secretion of lysosomal proteases that promote the extraction of immobilized surface antigen. In resting B cells, GEF-H1 is bound to microtubule filaments and kept in
its inactive state, while Exo70 is mainly associated to the centrosome. BCR engagement triggers microtubule acetylation, which results in the release of Exo70 and
GEF-H1 and subsequent recruitment to the immune synapse. There, GEF-H1 promotes the assembly of the exocyst complex to enable local lysosome fusion at the
synaptic membrane (Yuseff et al., 2011; Sáez et al., 2019).

exocyst complex, from the centrosome. Concomitantly, the GTP
exchange factor GEF-H1 dissociates from microtubules and
together with Exo70 promotes docking and fusion of lysosomes
at the immune synapse.

Together, in antigen-presenting cells the direct actin-
microtubule crosstalk determines the capacity of the
MTOC to repolarize and nucleate microtubules in response
to external stimuli and enables local lysosome delivery at
the immune synapse.

Polarized Secretion of Effector
Molecules at the Synapse
Initially, association of lytic granules with the MTOC and its
repositioning toward the immune synapse have been identified
as the only prerequisite for targeted secretion while plus-
end directed motor transport along microtubule filaments was
dispensable for specific killing (Stinchcombe et al., 2006). Lytic
granules are delivered directly by the MTOC to an actin-depleted
zone within the central SMAC. Yet, granules can also move
from the periphery to the synapse using microtubule tracks
that are oriented tangentially to the plasma membrane (Poenie
et al., 2004). Later studies revealed that granules can take either
path depending on the kinetics of downstream T cell receptor
signaling (Beal et al., 2009). Lytic granule concentration around
the MTOC prior to centrosome reorientation was proposed
to increase the capacity of cytotoxic T lymphocytes to elicit
a more effective cytolytic response against the next target cell
(Stinchcombe and Griffiths, 2007). After leaving a target cell
the granules often remain concentrated around the MTOC
even when the MTOC repolarizes. This allows cytotoxic T
lymphocytes to more rapidly release granules toward the next
target cell. A causal link between lytic granule convergence and
improved efficiency of target cell lysis was established by Hsu

and colleagues demonstrating that concentration of lytic vesicles
around the MTOC prevents bystander killing of healthy cells
(Hsu et al., 2016; Figure 6). Granule convergence toward the
MTOC was identified to occur rapidly (Wiedemann et al., 2006).
Vesicles move toward microtubule minus-ends in a dynein-
dependent manner but independently of microtubule and F-actin
reorganization and commitment to cytotoxicity (Mentlik et al.,
2010; Ritter et al., 2015). Dynein-mediated minus-end-directed
movement of lytic granules is dependent on Src family kinase
activity as well as downstream LFA-1 signaling (James et al., 2013;
Zhang M. et al., 2014; Kabanova et al., 2018) and the adaptor
Hook-related protein 3 (HkRP3) which links lytic granules to the
dynein motor complex possibly via DOCK8 (Ham et al., 2015).
More recently, vasodialator-stimulated phosphoprotein (VASP),
an actin regulatory protein, was identified to regulate lytic
granule convergence in natural killer cells. VASP depletion does
not interfere with synapse formation and MTOC reorientation
but is essential for efficient lytic granule concentration at the
MTOC (Wilton and Billadeau, 2018). Once the MTOC and its
associated vesicles polarized toward the plasma membrane, a
complex between kinesin-1, Slp3, and Rab27 mediates plus-end
directed transport of lytic granules along microtubule filaments
and docking to the plasma membrane (Kurowska et al., 2012).
Rab27a is also known to interact with Munc13-4 and is important
for the final steps of lytic granule exocytosis (Ménager et al.,
2007). Cells deficient in removing acetylation sites of α-tubulin
due to depletion of histone deacetylase six fail to transport lytic
granules to the target cell implying that microtubule dynamics
and stability play an important role for terminal vesicle transport
(Nunez-Andrade et al., 2016).

Whether centrosome polarization is a prerequisite for efficient
cytotoxic T lymphocytes and natural killer cell-mediated killing
is still a matter of debate. While in several studies impaired
or delayed MTOC translocation as well as abrogation of
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FIGURE 6 | Microtubules and lytic granule convergence. Cytotoxic cells assemble lytic granules around the MTOC, which improves the efficiency of targeted killing
(upper panel). Impaired lytic granule convergence results in non-directed degranulation and bystander killing of healthy cells (Hsu et al., 2016). The role of
centrosome polarization for efficient cytotoxic T lymphocytes and natural killer cell-mediated killing is still unclear. Under certain experimental conditions, MTOC
relocalization toward the immune synapse is dispensable for polarized granule secretion and cytotoxicity (Bertrand et al., 2013; Tamzalit et al., 2020). Under these
conditions plus-end directed transport along microtubule filaments might deliver lytic granules to the synapse.

transient centrosome docking with the plasma membrane is
associated with reduced cytotoxicity (Quann et al., 2009; Tsun
et al., 2011; Stinchcombe et al., 2015), other studies suggest
efficient target cell killing prior to or in the absence of MTOC
reorientation (Butler and Cooper, 2009; Bertrand et al., 2013).
Recently, genetic depletion of centrioles was shown to have no
measurable effect on lytic granule polarization, directionality of
secretion and specificity of target killing, arguing for a centriole-
independent way of lytic granule convergence and target cell
specificity (Tamzalit et al., 2020). Nevertheless, centriole-deficient
cytotoxic T lymphocytes exhibit reduced cytotoxic potential due
to profound defects in lytic granule biogenesis and synaptic

F-actin dynamics, resulting in reduced F-actin clearance at the
center of the synapse and decreased synaptic force exertion.
Centriole-depleted cytotoxic T lymphocytes still assemble
components of the pericentriolar material into acentriolar
MTOCs, which retain their ability to nucleate microtubule
filaments, leading to a perturbed architecture of microtubule
arrays in centriole-depleted cells. Depletion of microtubule
filaments with nocodazole blocks centrosome reorientation and
accumulation of lytic granules at the immune synapse but does
not affect the directionality of granule release and bystander
killing indicating that the microtubule cytoskeleton is important
for facilitating transport of lytic granules to the immune synapse,
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but centrosome polarization per se is not essential for the spatial
specificity of fusion events (Tamzalit et al., 2020).

Concluding Remarks and Future
Perspectives
Here we have summarized the multiple faces of microtubule
involvement during immunological processes ranging from
leukocyte migration to immune synapse formation and vesicle
polarization. We have learned from recent studies that leukocyte
microtubules are essential for the induction of tissue immunity
by maintaining cell coherence of migrating leukocytes and
regulating polarized secretion of granules and lysosomes. As
such, microtubule arrays deserve precise attention and exact
description in future studies of immunological processes.

Migrating dendritic cells exhibit differences in the dynamics
of front- versus back-directed microtubule filaments. How this
polarization is achieved and what are the key regulators of
microtubule dynamics in migrating leukocytes still remain open
questions. Advanced light sheet microscopy in combination
with recently developed photo-switchable compounds and
optogenetic constructs that target microtubule stability and
dynamics are potent tools to investigate subcellular microtubule
dynamics with high spatiotemporal resolution allowing to
understand the functional principles of microtubule dynamics in
tissue navigating cells (Borowiak et al., 2015; Müller-Deku et al.,
2020; Van Geel et al., 2020). Similarly, the regulatory mechanisms
of microtubule dynamics during immune synapse formation and
polarized vesicle release are poorly understood. Plus-end binding
proteins are essential regulators of polarized microtubule stability
and density where EB1-dependent microtubule remodeling is
crucial for vesicle trafficking and sustained T cell activation
(Martin-Cofreces et al., 2012). Yet, how EBs are regulated
at the plus-ends of microtubules and which factors regulate
microtubule density during immune synapse formation is
currently ill defined.

Adaptive immunity is to a large extent influenced by
mechanical forces. Microtubules accumulate a great diversity
of PTMs, which can alter microtubule dynamics and thus
control the mechanical properties and function of microtubule
filaments. Acetylation of α-tubulin at the luminal surface of
microtubules affects filament stability and is associated with
long lived microtubule subpopulations (Howes et al., 2014;
Eshun-Wilson et al., 2019). Functionally, tubulin acetylation
is required to protect microtubules from mechanical breakage
indicating that acetylation increases mechanical resilience of
microtubule filaments (Portran et al., 2017; Xu et al., 2017).
Moreover, acetylation facilitates bundling of microtubules, which
in turn enhances kinesin activity along microtubule tracks
(Balabanian et al., 2017). In this regard, increased motor
activities due to tubulin acetylation could promote sliding forces,
which allow MTOC repositioning toward the immune synapse
(Serrador et al., 2004).

During dendritic cell migration acetylation occurs
predominantly on front directed microtubules (Serrador et al.,
2004; Kopf et al., 2020). In particular microtubules reaching the

base of the lamellipodium experience high forces from actin-
based retrograde flow, which in mesenchymal cells influences
microtubule dynamic instability and turnover (Waterman-
Storer and Salmon, 1997). Stabilization of microtubules by
acetylation could thus contribute to resist these forces and allow
microtubules to grow into explorative protrusions.

In the future, it will be interesting to employ life cell sensors
to analyze the role of PTMs in a detailed spatiotemporal
manner during processes such as leukocyte migration and
immune synapse formation. The tools are currently limited;
however, recent advances now enable monitoring of tyrosinated
microtubules in living cells (Kesarwani et al., 2020).

Moreover, T cell activation and effector function is a
mechanosensitive process, in which force transduction across
the T cell receptor complex generates significant traction
stresses at the cell-cell interface (reviewed by Blumenthal and
Burkhardt, 2020). These stresses are essential for enabling
antigen recognition and T cell activation. Dynamic microtubules
have recently been described as critical determinants of force
generation during T cell activation by locally modulating
actomyosin activation (Hui and Upadhyaya, 2017). However,
whether and how a dynamic microtubule cytoskeleton also
contributes to the force generating processes of antigen-
presenting cells, and whether this is important for mounting
an accurate immune response, is currently poorly understood.
Therefore it will be crucial to decipher how mechanical coupling
between the actomyosin system and the microtubule cytoskeleton
affects immune synapse formation and activation of T cells.

Another interesting feature of leukocytes that has received
limited attention during the past years is the centrosome-
nucleus connection. It is well established that stationary or slow-
moving cells such as neurons or cells of mesenchymal origin
exhibit a stable front-back polarization (Meiring et al., 2020).
However, highly motile leukocytes violate this paradigm and
exhibit dynamic polarity configurations where the centrosome
can be found in various positions with respect to the nucleus
(Chiplonkar et al., 1992). Even more extreme is the flexible
centrosomal-nuclear coupling distance of leukocytes. This is
exemplified in migrating dendritic cells that reside in bifurcating
channels, where in about 20% of the cases the MTOC uncouples
transiently from the nucleus during path selection (Renkawitz
et al., 2019). However, after path selection the centrosomal-
nuclear distance decreases again. This behavior is to some
extent similar to nucleokinesis in neurons in which the
centrosome first changes its position into a leading process
which is followed by nuclear movement toward the centrosome
(Minegishi and Inagaki, 2020). The linker of nucleoskeleton
and cytoskeleton (LINC) together with other molecular players
such as Lissencephaly 1 (LIS1), myosin II activity and substrate
topology contribute to centrosomal-nuclear axis orientation in
many cell types (Luxton and Gundersen, 2011; Chang et al.,
2015; Zhu et al., 2017) but the precise molecular mechanism
of centrosome repositioning and centrosome-nucleus coupling
remain largely unexplored in leukocytes.

The immune synapse is a well-known site of polarized
membrane transport and localized vesicle release. While this
process is fairly well understood in T cells and cytotoxic cells,
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it is less clear how polarized secretion is regulated in antigen-
presenting cells. MTOC relocalization in dendritic cells seems
to be dispensable for the specific delivery of cytokines and
T cell activation. As dendritic cells are able to interact and
activate several T cells simultaneously (Miller et al., 2004) it
seems favorable to nucleate microtubule filaments from the
centrally located centrosome instead of a polarized MTOC.
Computer simulations based on a general random velocity model
predict efficient cargo delivery along microtubule filaments
to specific target areas on the plasma membrane without
MTOC translocation (Hafner and Rieger, 2016). Based on these
simulations it is tempting to speculate that MTOC translocation
constitutes an efficient strategy in favor of single cell-cell contacts
while a centrally located MTOC promotes the formation of
several active synapses. Future experiments yet have to clarify
the role of MTOC polarization in antigen-presenting cells such
as dendritic cells.

In contrast to mesenchymal cells, many of the core
cell biological characteristics of the leukocyte microtubule
cytoskeleton are currently poorly understood. Given that
chemokines and other external factors, such as the
mechanochemical composition of the microenvironment, act
upstream of cytoskeletal regulation (Jin et al., 2019) it will

not be surprising to discover new aspects and molecular
mechanisms of microtubule regulatory functions in leukocytes.
Since a large number of essential processes converge upon the
microtubule cytoskeleton, understanding how microtubules
support leukocyte functionality is critical to understanding the
physiology and pathophysiology of immunological processes and
will open up new strategies for targeted interventions.
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Arabidopsis QWRF1 and QWRF2
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Floral organ development is fundamental to sexual reproduction in angiosperms. Many
key floral regulators (most of which are transcription factors) have been identified and
shown to modulate floral meristem determinacy and floral organ identity, but not much
is known about the regulation of floral organ growth, which is a critical process by
which organs to achieve appropriate morphologies and fulfill their functions. Spatial
and temporal control of anisotropic cell expansion following initial cell proliferation is
important for organ growth. Cortical microtubules are well known to have important roles
in plant cell polar growth/expansion and have been reported to guide the growth and
shape of sepals and petals. In this study, we identified two homolog proteins, QWRF1
and QWRF2, which are essential for floral organ growth and plant fertility. We found
severely deformed morphologies and symmetries of various floral organs as well as a
significant reduction in the seed setting rate in the qwrf1qwrf2 double mutant, although
few flower development defects were seen in qwrf1 or qwrf2 single mutants. QWRF1
and QWRF2 display similar expression patterns and are both localized to microtubules
in vitro and in vivo. Furthermore, we found altered cortical microtubule organization and
arrangements in qwrf1qwrf2 cells, consistent with abnormal cell expansion in different
floral organs, which eventually led to poor fertility. Our results suggest that QWRF1 and
QWRF2 are likely microtubule-associated proteins with functional redundancy in fertility
and floral organ development, which probably exert their effects via regulation of cortical
microtubules and anisotropic cell expansion.

Keywords: floral organ development, microtubule associated protein, QWRF1, QWRF2, fertility

INTRODUCTION

Flower development is essential for sexual reproduction in flowering plants. Over the past
three decades, complex gene regulatory networks have been shown to control the emergence of
floral primordia and the formation of different types of floral organs in a stereotypical pattern
(Denay et al., 2017). A classic “ABC” model in floral organ identity specification has been
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raised (Bowman et al., 1991, 2012; Coen and Meyerowitz, 1991).
Specification of floral organs (sepals, petals, stamens, and carpels)
requires the combined activities of floral organ identity genes
encoding MADS-domain transcription factors (Theißen et al.,
2016). Following initiation, symmetrically arranged floral organs
grow to their final shape and size; this is important for their
reproductive function and for plant fertility. However, hormone
deficiency, unfavorable environmental conditions, or genetic
mutations leading to abnormal floral organ morphologies may
eventually cause plant sterility (Reeves et al., 2012; Smith and
Zhao, 2016).

Growth of floral organs relies on coordinated cell proliferation
and expansion (Irish, 2010; Powell and Lenhard, 2012; Thomson
and Wellmer, 2019). Transcription factors AINTEGUMENTA
(ANT), JAGGED (JAG) and NUBBIN (NUB), cytochrome P450
KLUH, and E3 ubiquitin ligase BIG BROTHER (BB) have been
reported to regulate cell proliferation in floral organs (Krizek,
1999; Zondlo and Irish, 1999; Krizek et al., 2000; Dinneny et al.,
2004, 2006; Ohno et al., 2004; Disch et al., 2006; Anastasiou
et al., 2007). However, the regulatory mechanism underlying
cell expansion in the later phase of floral organ growth is
largely unknown.

Cortical microtubules guide the orientation of cellulose
microfibrils in the cell wall (Paredez et al., 2006; Gutierrez
et al., 2009). Recently, Hervieux et al. (2016) reported that
microtubules function as both stress sensors and growth
regulators in Arabidopsis thaliana, via a mechanical feedback
loop that regulates the growth and shape of the sepal. Signaling
by rho GTPases of plants was also found to influence petal
morphology in Arabidopsis by modulating cortical microtubules
in both abaxial and adaxial epidermal cells of petals (Ren et al.,
2016, 2017). Moreover, microtubule-associated proteins (MAPs)
KATANIN 1 (KTN1) and INCREASED PETAL GROWTH
ANISOTROPY 1 (IPGA1) were found to regulate microtubule
organization, with important roles in cell expansion and petal
shape (Ren et al., 2017; Yang et al., 2019a). Nevertheless,
characterization of new regulators and their functions is needed
to further understand the regulation of floral organ growth and
flower development.

Arabidopsis QWRF family proteins share a highly conserved
QWRF amino acid sequence and a DUF566 domain of unknown
function (Pignocchi et al., 2009; Albrecht et al., 2010). One
member of this family, ENDOSPERMDEFECTIVE1 (EDE1,
also named QWRF5), has been shown to be an essential
MAP for endosperm development (Pignocchi et al., 2009).
QWRF1 (also named SNOWY COTYLEDON3, SCO3) is a
peroxisome-associated protein required for plastid development.
Its localization to the periphery of peroxisomes is dependent on
microtubules (Albrecht et al., 2010). So far, there have been no
reports about the function of QWRF2 in Arabidopsis.

In this study, we identified overlapping expression patterns
of QWRF1 and QWRF2 in flowers. Severe fertility defects in
the qwrf1qwrf2 double mutant were attributed to abnormal
development of floral organs. Further experiments demonstrated
that both QWRF1 and QWRF2 are likely MAPs that are
involved in the organization of cortical microtubule arrays, with
essential roles in cell expansion, and that this regulatory

mechanism is generally adopted for growth control in
different floral organs.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Arabidopsis thaliana ecotype Col-0 was the background for
all wild-type and mutant materials in this study. Seedlings
were grown on half-strength Murashige and Skoog medium
with 1% sucrose in a growth chamber before transfer to soil.
Seedlings/plants were grown at 22◦C with a photoperiod of
16 h light/8 h dark.

T-DNA insertion lines qwrf1-1 (SALK_072931), sco3-3
(SALK_089815), and qwrf2-1 (SALK_119512) were obtained
from the Arabidopsis Biological Resource Center. The insertion
sites of qwrf1-1 mutant and sco3-3 mutants were 995 bp and
1,176 bp after the start codon, respectively, and the insertion site
of qwrf2-1 mutant was 1,325 bp after the start codon. Polymerase
chain reaction (PCR)-based genotyping was performed using the
primers listed in Supplementary Table 1.

Reverse-Transcription Quantitative PCR
(RT-qPCR) Analysis
To quantify QWRF1 and QWRF2 transcripts in qwrf1 and
qwrf2 mutants, total RNA was extracted from inflorescences and
flowers using an RNA extraction kit (DP432, Tiangen, China)
and reverse-transcribed with SuperScriptTM III (18080044,
Thermo Scientific, United States). The primer pairs are listed in
Supplementary Table 1. SYBR Premix Ex Taq (DRR081A, Takara
Bio, Japan) was used for amplification.

CRISPR/Cas9 Method
The target sequence ofQWRF2was selected by the CRISPR-P (Lei
et al., 2014) technique. Guide RNAs were cloned from pCBC-
DT1T2 and transformed into Col as previously described (Li
et al., 2020). Briefly, we designed primers with two specific sites
from target gene and pCBC-DT1T2 was used as PCR template.
The PCR product was cloned into pHEE401 and transformed into
Col-0 using the Agrobacterium-mediated flower-dipping method
(Clough and Bent, 1998). We obtained a line with a 257-bp
deletion in the first exon of QWRF2 and named it qwrf2cas9. The
CRISPR/Cas9 constructs were then removed to ensure genetic
stability. Primers are listed in Supplementary Table 1.

Generation of Constructs and
Transgenic Plants
A 2-kb region of the QWRF1 and a 3-kb region of the
QWRF2 promoter were amplified from wild-type genomic
DNA using the primers listed in Supplementary Table 1. The
products were cloned into pCAMBIA1300 vectors (Cambia,
Canberra, Australia), and QWRF1/QWRF2 and GFP fusion
sequences were inserted into the resulting pCAMBIA-QWRF1pro
and pCAMBIA-QWRF2pro vectors, respectively, using a Clone
Express II One Step cloning kit (C112-02, Vazyme, China).
Sequence-verified constructs were transformed into wild-type
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plants by the Agrobacterium-mediated flower dipping method
(Clough and Bent, 1998).

GUS Staining and in situ Hybridization
For GUS staining, native promoters of QWRF1 (QWRF1pro,
2057 bp fragment upstream of the start codon of QWRF1)
and QWRF2 (QWRF2pro, 3061 bp upstream of QWRF2) were
inserted into the pCAMBIA1391 vector to drive the GUS
reporter gene. GUS analysis was performed as previously
described (He et al., 2018). Briefly, inflorescences were stained
within solution containing 5-bromo-4-chloro-3-indolyl-b-D-
glucuionode (X-Gluc) for 10 h at 37◦C in the dark, and then
destained in 70% ethanol and 30% ethanoic acid. Images were
captured with an Olympus SZX16 microscope equipped with
a color CCD camera (Olympus DP70) and ImagePro software
(Media Cybernetics).

For in situ hybridization, primers (Supplementary Table 1)
targeting the unique regions of QWRF1 and QWRF2 were used
for PCR amplification to synthesize the sense and antisense
probes using SP6 and T7 polymerases, respectively. Each PCR
product was used as a template for in vitro transcription as
described in the manufacturer’s protocol (11175025910, Roche,
Germany). Arabidopsis flowers were fixed in 3.7% formol-acetic-
alcohol (FAA), and in situ hybridization was performed as
described previously (Zhang et al., 2013). A DIG Nucleic Acid
Detection Kit (Roche) was used to detect the hybridized probe,
and images were captured with an Olympus BX51 digital camera
equipped with a Cool SNAP HQ CCD camera (Photometrics),
and MetaMorph software (Universal Imaging) was used for
imaging analysis.

Agroinfiltration-Mediated Transient
Expression
To generate the 35S:GFP-QWRF1 and 35S:GFP-QWRF2
constructs, we first cloned the coding sequences of QWRF1
and QWRF2 into the pDONR201 vector using Gateway
BP Clonase II enzyme mix (11789020, Thermo Scientific),
and subsequently cloned them into the pGWB506 vectors
using Gateway LR Clonase enzyme mix (11791019, Thermo
Scientific). QWRF1-GFP andQWRF2-GFP driven by the pSUPER
promoter were cloned into transformed pCAMBIA1300. The
resulting constructs were introduced into BY-2 tobacco
(Nicotiana tabacum) suspension cells by a previously described
Agrobacterium cocultivation method (An, 1985). Images were
acquired with a Zeiss LSM 710 confocal microscope with a × 40
oil objective (1.3 NA).

Protein Expression and
Microtubule-Binding Assays
To obtain QWRF1 and QWRF2 proteins, QWRF1 and QWRF2
cDNA were transferred from pDONR207 into pET30a (+)
(Novagen) and used for in vitro translation with a TNT R©T7 Quick
Coupled Transcription/Translation System (L1170, Promega,
United States). The resulting proteins were incubated with
pre-polymerized microtubules, centrifuged at 100,000 × g
for 30 min at 25◦C, and then analyzed by 10% SDS-PAGE

(Wang et al., 2007). The Transcend Chemiluminescent Non-
Radioactive Translation Detection System (L5080, Promega) was
used to detect biotin-labeled QWRF1 and QWRF2 proteins.

Light Microscopy and Scanning Electron
Microscopy
To analyze fertilization rate, unfertilized ovules were counted in
mature siliques to identify seed set frequency. Opened siliques
were observed under an Olympus SZX16 microscope.

The flower stages were defined as reported by Smyth et al.
(1990). Images of petals, sepals, stamen filaments, and stigma
of stage 14 flowers from the wild type and qwrf1qwrf2 double
mutant were captured using a SZX16 microscope (Olympus). The
lengths and width of petals, sepals, filaments, and stigma were
measured using ImageJ software (National Institutes of Health1).

Clearing of stigma was performed as previously reported
(Takeda et al., 2018). Briefly, inflorescences were fixed in 3.7%
FAA, followed by dehydration through an ethanol series and
cleared overnight in clearing solution (40 g chloral hydrate, 10 ml
glycerol and 5 ml distilled water). Images were captured using an
Olympus BX51 digital camera. All experiments were performed
in triplicate, with 6–8 flowers measured in each experiment.

Cross-sections were cut to 2 µm thickness and stained with
0.1% (w/v) toluidine blue O in 0.1 M phosphate buffer, pH
7.0 (Ito et al., 2007). Images were captured using an Olympus
BX51 digital camera.

Pollen grains on stigma were stained with aniline blue and
then counted as described previously (Doucet et al., 2019).
Samples were observed using an Olympus BX51 digital camera.

For staining of petal epidermal cells, stage 14 flowers were
incubated in 50 µg/mL PI (propidium iodide, P4170, Sigma-
Aldrich, United States) in half-strength MS liquid medium for
1 h, then observed under a Zeiss LSM 710 confocal microscope
with a × 40 oil objective (1.3 NA).

The confocal analysis of ovules was performed as described
previously (Cui et al., 2015). The pistils were fixed in
4% glutaraldehyde (12.5 mM cacodylate, pH6.9) and then
dehydrated with ethanol gradient, clarified in benzyl benzoate:
benzyl alcohol [2: 1(v/v)] overnight. Images were observed using
a Zeiss LSM 710 microscope with a × 40 oil objective (1.3 NA).

Fresh material (stigma, anthers, or mature pollen grains)
was spread onto the surface of adhesive tapes and observed
using a scanning electron microscope (TM3000, Hitachi) at an
accelerating voltage of 15 kV.

Cells expressing 35S:GFP-TUA6 (TUBULIN ALPHA-6; Ueda
et al., 1999) or UBQ10:mCherry-MBD (microtubule binding
domain) were observed under a Zeiss LSM 710 confocal
microscope with × 40 and × 60 oil objective (1.3 NA).
Microtubule alignment was measured using fibriltool, an ImageJ
plug-in, to calculate the anisotropy of the fibers (Boudaoud et al.,
2014); a value close to 1 indicated strong anisotropy of the
microtubules. Microtubule bundling was quantified as previously
described (Higaki et al., 2010; Zhu et al., 2016). Samples were
imaged with a Zeiss LSM 710 confocal laser scanning microscope.
Z stacks of optical sections were taken and projected using

1http://rsb.info.nih.gov/ij
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ZEN 2012 software. Images were skeletonized and masked by
manually segmenting the cell region images with ImageJ. The
intensity distribution of the microtubule pixels was determined
using Skewness, an ImageJ plug-in, and used as an indicator of
microtubule bundling. At least 100 cells were measured.

Cells were treated with a microtubule-specific depolymerizing
drug, oryzalin (36182, Sigma-Aldrich), and an actin
polymerization inhibitor, Lat B (latrunculin B, L5288, Sigma-
Aldrich), as previously described (Kang et al., 2017). Cortical
microtubule numbers in petal abaxial epidermal cells were
quantified using ImageJ as previously reported (Liu et al.,
2013; Sun et al., 2015). Briefly, a vertical line was drawn
perpendicularly to the majority of the cortical microtubules, and
the number of cortical microtubules across the line was counted
manually as the density.

RESULTS

QWRF1 and QWRF2 Function
Redundantly in Plant Fertility
To better understand the regulation of plant fertility and the
role of modulating microtubules in this process, we searched
for lower fertility phenotypes in mutants harboring a transfer
(T)-DNA insertion in previously reported genes expressed
in flowers, which are likely to encode microtubule-associated
proteins (Pignocchi et al., 2009; Albrecht et al., 2010). We
identified a mutant line (SALK_072931) with a mild seed
setting rate phenotype (Figure 1A). This mutant harbored a
T-DNA insertion in the first exon of the AT3G19570.2 gene
(Supplementary Figure 1A), which encodes a member of the
QWRF protein family, QWRF1 (also named SCO3, Albrecht
et al., 2010). RT-PCR analysis demonstrated that it was a null
mutant (Supplementary Figure 1B), and we named it qwrf1-
1. Fourteen days after pollination (DAP), a few unoccupied
spaces containing small and white ovules that were probably
unfertilized (Chen et al., 2014) could be seen in qwrf1-1 siliques.
This phenomenon was rarely found in wild-type siliques at this
stage. In mature qwrf1-1 siliques, about 7.1% of seeds were
aborted, significantly different from the number in the wild type
(1.6%) (Figure 1B), but the mean length of siliques was similar
between the qwrf1-1 mutant (15.1 ± 1.2 mm) and the wild type
(15.3 ± 0.7 mm) (Figure 1C). Similar phenotypes were observed
in sco3-3 (Figures 1A,B), a previously reported qwrf1 knockout
line (Albrecht et al., 2010).

As the phenotypes of qwrf1-1 mutants were relatively weak, we
suspected a functional overlap among QWRF proteins. QWRF2
(AT1G49890) is the closest homolog of QWRF1 in Arabidopsis
(Pignocchi et al., 2009). Therefore, we obtained a knockout
T-DNA insertion line ofQWRF2 (named qwrf2-1, SALK_119512)
from ABRC and generated another loss-of-function allele by
CRISPR/Cas9 (named qwrf2cas9), which had a 257-nucleotide
deletion after the 352th base pair, resulting in early termination
of QWRF2 protein translation (Supplementary Figure 1C).
There was no significant difference in seed setting rate or
silique length between the wild-type and qwrf2 mutant lines
(Figures 1B,C). We then generated a qwrf1qwrf2 double

mutant by crossing qwrf1-1 with qwrf2-1 and analyzed the
phenotypes (Supplementary Figure 1B). Unfertilized ovules
were dramatically enhanced in the double mutant at 14 DAP, and
the rate of seed setting was only 40% in the qwrf1qwrf2 mutant
(Figures 1A,B). The mean length of qwrf1qwrf2 mature siliques
was significantly shorter than that in the wild type (Figure 1C).
We then introduced GFP-fused QWRF1 or QWRF2, driven
by the respective native promoter, into the qwrf1qwrf2 mutant
(Supplementary Figures 1D–G). Expression of either one could
rescue the seed setting rate and silique length phenotypes of the
double mutant (Figures 1A–C). These results confirmed that the
fertility defects in the double mutant could be attributed to the
simultaneous loss of function of QWRF1 and QWRF2, indicating
their functional redundancy. Moreover, fusion with GFP (in the
N- or the C-terminus) did not interfere with the proper function
of QWRF1 or QWRF2 (Figures 1A–C).

QWRF1 and QWRF2 Have Important
Roles in Floral Organ Growth
To understand how QWRF1 and QWRF2 influenced plant
fertility, we first conducted reciprocal crosses between double
mutant and wild-type plants. Pollination of wild-type stigma with
qwrf1qwrf2 pollens led to a mild but significant reduction in
seed setting rate compared with self-pollinated wild-type plants
(Figure 1D), indicating a defect in pollen development in the
double mutant. Indeed, in stage 14 flowers, many qwrf1qwrf2
mature anthers had far fewer pollen grains than wild-type
anthers, and nearly 20% of qwrf1qwrf2 pollen grains were aborted
(Supplementary Figure 2). Moreover, pollinating qwrf1qwrf2
plants with wild-type pollens caused a dramatic reduction in
seed setting rate compared with either wild type self-pollinated
or mutant pollen-pollinated wild-type plants (Figures 1D,E),
indicating that defects in pistils contributed primarily to the
fertility phenotypes of qwrf1qwrf2 double mutants. We further
analyzed the related developmental defects in pistils. Although we
observed normal embryo sacs in unfertilized qwrf1qwrf2 ovules
(Supplementary Figure 3), we found abnormal stigma in the
mutant: the qwrf1qwrf2 papilla cells appeared shorter and more
centralized compared with those of the wild type (Figures 1F,G).
Moreover, when we used wild-type pollens to pollinate, much
less pollen grain adhered on the mutant stigma than on wild-
type stigma (Figures 1H,I), suggesting that the defect in papilla
cells might perturb the adhesion of pollen grains on the stigma
and subsequent fertilization. Furthermore, manual pollination
of a qwrf1qwrf2 plant with its own pollen grains resulted in
significantly higher seed-setting rates compared with natural
self-pollination (Figures 1D,E), suggesting physical barriers to
self-pollination in the double mutant.

There were multiple developmental defects in qwrf1qwrf2
flowers, including (1) shorter filaments such that the anthers
hardly reached the stigma (Figures 2A,B); (2) a deformed floral
organ arrangement lacking the cross-symmetry usually seen in
the wild type, with bending petals sometimes forming an obstacle
between anthers and stigma (Figures 2C,D); and (3) generally
smaller and narrower petals and sepals compared with the wild
type (Figures 2E–J). All these phenotypes were complemented
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FIGURE 1 | QWRF1 and QWRF2 have functionally redundant roles in fertility. (A) Developing seeds on opened siliques, more unfertilized ovules were seen in qwrf1
(qwrf1-1 and sco3-3) single mutant and qwrf1qwrf2 double mutant than in wild type. The siliques were shorter in qwrf1qwrf2 compared to that in the wild type.
There was no obvious difference between wild type and qwrf2 (qwrf2-1 and qwrf2cass9) single mutant. The defects in qwrf1qwrf2 were rescued by the qwrf1qwrf2
complementation lines (QWRF1 or QWRF2 cDNA constructs fused with a C-terminal GFP or N-terminal GFP). Asterisks indicate the unfertilized ovules. The close-up
views shows the fertilized ovule (big and green, red arrowhead) and unfertilized ovule (small and white, white arrowhead) besides the panels. Scale bar, 1 mm. (B)
and (C) Quantitative analysis of seed setting rate (B) and silique length (C) shown in panel (A). The values are the mean ± SD of three independent experiments,
each with at least nine siliques from three plants. *P < 0.05, ***P < 0.001, Student’s t test. (D) Fourteen days after pollination (DAP) siliques were derived from
self-pollination or reciprocal crosses between the wild type and the qwrf1qwrf2 double mutant plants. Compared with wild-type self-pollination siliques, unfertilized
ovules were obviously existed no matter the qwrf1qwrf2 was used as a male for pollen donors or as a female pollinated by the wild-type or the qwrf1qwrf2 pollens.
Manually pollination of qwrf1qwrf2 plant can partially rescue the semi-sterile phenotype of qwrf1qwrf2 when natural self-pollination. Asterisks indicate the unfertilized
ovules. Scale bar, 1 mm. (E) Quantification of seed setting rate in panel (D). The values are the mean ± SD of three independent experiments, each with at least nine
siliques from three plants. **P < 0.01, ***P < 0.001. (F) Compared to wild type, the qwrf1qwrf2 stigmas papilla cells at stage 14 appeared shorter and more
centralized when observed by stereoscope (left) and scanning electron microscopy (SEM, right). Scale bar, 200 µm. (G) Quantification of papillae length in panel (F).
Values are mean ± SD of 120 cells from 10 stigmas, ***P < 0.001, Student’s t test. (H) Pollinated with wild-type pollens, much less pollen grains adhered on the
qwrf1qwrf2 stigma than on wild-type stigma. Pistils were collected at 2 h after-pollination (HAP) and pollen grains which adhered to the stigmatic papillae and stained
by aniline blue were shown in the bright-field and fluorescent images, respectively. Scale bar, 100 µm. (I) Quantitative analysis of the adhered pollen grains numbers
to each stigma from panel (H). Values are mean ± SD of three independent experiments, each with 10 stigmas, ***P < 0.001, Student’s t test.
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FIGURE 2 | The qwrf1qwrf2 mutant displays severe developmental defects in floral organs. (A) Representative dissected flowers and stamens of wild type and
qwrf1qwrf2 at stage 14. The filament length of qwrf1qwrf2 reduced than that of wild type. Scale bar, 1 mm. (B) Statistics of filament length in panel (A). The values
are the mean ± SD three independent assays, n = 12. ***P < 0.001, Student’s t test. (C) Representative opened flowers of wild type, qwrf1qwrf2 and various
qwrf1qwrf2 complementation lines. Compared with the wild-type cross-symmetrical floral organs, the floral organ morphology of the qwrf1qwrf2 mutant was
asymmetry clearly, which can be rescued by qwrf1qwrf2 complementation lines. Scale bar, 1 mm. (D) Resin-embedded cross-sections of wild type (1–3) and
qwrf1qwrf2 mutant (4–6) flowers at different stages, flowers of qwrf1qwrf2 show the disturbed sepals and petals organization. Red arrowheads indicate enlarged

(Continued)
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FIGURE 2 | Continued
gap between adjacent sepals. P, petal; S, sepal; A, anther. Scale bar, 200 µm. (E) Compared to the wild type at stage 14, the sepals from qwrf1qwrf2 were longer
and narrower, and the petals were shorter and narrower, and both the sepal and petal area were reduced significantly. Scale bar, 1 mm. (F) Schematic diagram
shows how the sepal and petal length and width were measured. (G) Quantification of sepal parameters in panel (E). Values are mean ± SD of 20 sepals from
different plants. *P < 0.05, ***P < 0.001, Student’s t test. (H–J) Quantification of petal parameters of wild type and qwrf1qwrf2 in panel (E). Values are mean ± SD of
three independent assays, from at least 36 petals. *P < 0.05, ***P < 0.001, Student’s t test. (K) Epidermal cell in the middle region of stage 14 stamen filament from
wild type and qwrf1qwrf2 by transforming UBQ10:mCherry-MBD construct. Scale bar, 10 µm. (L) The stamen filament cells in wild type were longer than in
qwrf1qwrf2 mutant. Values are mean ± SD. n = 120 cells, ***P < 0.001, Student’s t test. (M) Cells from the blade regions of petal abaxial epidermis of wild type and
qwrf1qwrf2 mutant at stages 14 by PI staining. The qwrf1qwrf2 petal abaxial epidermis cell shape changed obviously compared with that in wild type. Scale bar,
10 µm. (N–R) Quantification of cell parameters from petal abaxial epidermis cells in panel (M). (N) Reduced cell length in qwrf1qwrf2. (O) Reduced cell width in
qwrf1qwrf2. (P) Reduced cell area in qwrf1qwrf2. (Q) Reduced number of lobes per cell in qwrf1qwrf2. Values are mean ± SD of more than 500 cells of 6–8 petals
from different plants. ***P < 0.001, Student’s t test. (R) Conical cells shape changed between wild type and qwrf1qwrf2 mutant at stage 14 by PI staining. Scale bar,
10 µm. (S) The carton illustrating how the conical cell angles and heights were measured. (T,U) Quantitative analysis conical cell parameters from panel (R). The
angle of conical cell was increased (T) and conical cell heights decreased (U) in qwrf1qwrf2 mutant than in wild type. Values are mean ± SD of more than 400 cells
of 8 petals from different plants. ***P < 0.001, Student’s t test.

by expression of GFP-fused QWRF1 or QWRF2 in qwrf1qwrf2
mutant (Figure 2C).

Using RT-RCR we found that both QWRF1 and QWRF2
were constitutively expressed in plants, with high levels in
flowers (Supplementary Figure 4A). The expression of QWRF1
and QWRF2 in sepals, petals, stamens, stamen filaments, and
pistils was further confirmed by GUS activity assay and in situ
hybridization analysis (Supplementary Figures 4B,C). These
results were consistent with those previously reported by
Albrecht et al. (2010) as well as those in the Genevestigator
database2.

The above evidence demonstrates the important and
redundant roles of QWRF1 and QWRF2 in the development
of the floral organ. Loss of function of both genes led to
developmental defects in flowers, including shorter stamen
filaments and abnormal arrangements in floral organs, which
probably caused severe physical obstacles that hindered natural
pollination and reduced the subsequent seed setting rate.

QWRF1 and QWRF2 Are Involved in
Anisotropic Cell Expansion
In plants, growth of organs to their final size and shape depends
on cell proliferation followed by cell expansion (Powell and
Lenhard, 2012). Phenotypes such as shorter stamen filaments,
and narrower and smaller petals and sepals in qwrf1qwrf2 flowers
suggest possible defects in polar cell expansion. To confirm this
hypothesis, we analyzed cell morphology in various floral tissues.
Besides shorter papilla cells (Figures 1F,G), the epidermal cells
of the stamen filament were significantly shorter than those in
the wild type (Figures 2K,L). Moreover, we observed adaxial and
abaxial epidermal cells of petal blades from stage 14 flowers by
PI staining. As shown in Figures 2M–P, qwrf1qwrf2 abaxial petal
epidermal cells had decreased average cell length, width, area, and
reduced lobe numbers (Figure 2Q) compared with the wild type,
indicating a reduction in cell expansion.

We also observed alterations of the shapes of conical cells in
petal adaxial epidermis (using a method reported by Ren et al.,
2017; Figure 2R). Quantitative analyses revealed a larger-than-
wild-type cone angle in qwrf1qwrf2 conical cells (Figures 2S,T),
which lacked the pointed apex usually seen in the wild type,

2www.genevestigator.ethz.ch

and a decrease in the average cell height (Figure 2U). These
results suggest that QWRF1 and QWRF2 have a general
role in the regulation of anisotropic cell expansion during
floral organ growth.

QWRF1 and QWRF2 Associate With
Microtubules in vitro and in vivo
To better understand the function of QWRF1 and QWRF2,
we investigated the subcellular localization pattern of these
two proteins. As barely any fluorescence was detected in
complementary lines expressing GFP-fused QWRF1 or QWRF2
driven by their native promoter, we used the pSUPER promoter
to drive GFP-fused QWRF proteins and transiently expressed
them in tobacco BY-2 suspension cells. Regardless of which
terminus was fused with GFP, QWRF1 were localized to a
filament-like structure that could be disrupted by microtubule-
disrupting drug oryzalin but not by microfilament-disrupting
drug Lat B (Figures 3A–D). This suggested that QWRF1 co-
localized with microtubules in BY-2 cells. QWRF2 showed a
similar localization pattern (Figures 3E–H). To further verify
whether QWRF1 and QWRF2 were MAPs, we performed an
in vitro co-sedimentation assay. Owing to the difficulty of
obtaining purified recombinant QWRF1 and QWRF2 proteins
using a prokaryotic expression system, we used in vitro coupled
transcription/translation to express QWRF proteins as previously
described (Pignocchi et al., 2009). Biotinylated-lysine-labeled
QWRF1 or QWRF2 protein was, respectively, incubated with
or without paclitaxel-stabilized pre-polymerized microtubules
before high-speed centrifugation. Both QWRF1 and QWRF2
were co-sedimented with pre-polymerized microtubules in the
pellets, indicating their direct association with microtubules
in vitro (Figures 3I–J, Supplementary Figure 5). These in vivo
and in vitro results were consistent with our expectations,
as previous studies have shown that QWRF1/SCO3 links the
microtubule, and another QWRF family protein EDE1 is a MAP
(Pignocchi et al., 2009; Albrecht et al., 2010).

QWRF1 and QWRF2 Modulate Cortical
Microtubule Arrangement
In plant cells, cortical microtubule arrays influence anisotropic
cell expansion by guiding the deposition and orientation of
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FIGURE 3 | QWRF1 and QWRF2 are associating with microtubule in vitro and in vivo. (A–D) Subcellular localization of QWRF1. (E–H) Subcellular localization of
QWRF2. Confocal microscopy images of the tobacco BY-2 suspension cells transiently expressing pSUPER:QWRF1-GFP (A,C,D), 35S:GFP-QWRF1 (B),
pSUPER:QWRF2-GFP (E,G,H) and 35S:GFP-QWRF2 (F). All these construction exhibited filamentous structures in tobacco BY-2 suspension cells, when treated
with various drugs for 18 h, filamentous structures visualized in this cell remained intact in the presence of 200 nM Lat B (actin polymerization inhibitor) treatment
(C,G), but these structures were disrupted by 10 µM oryzalin (microtubule-specific depolymerized drug) treatment (D,H). Scale bar, 10 µm. (I)
In vitro-biotinylated-lysine-labeled QWRF1 or QWRF2 protein expressed in a cell-free system was co-sedimented with (+) or without (−) taxol-stabilized microtubules.
After high-speed centrifugation, QWRF1 and QWRF2 proteins could be detected in pellets with microtubules. (J) GFP was used as a negative control, which
showed no preferential co-sedermentated with microtubules. MT, microtubules; S, supernatants; P, pellets.

cellulose microfibrils (Fujikura et al., 2014; Yang et al., 2019b).
Therefore, regulation of the organization and dynamics of
cortical microtubule arrays is important for the polar expansion
of various cell types, and subsequently affects cell and organ
morphogenesis. The above evidence showed obvious cell-
expansion defects in various types of floral cells, and revealed
the abnormal morphology of sepals, petals, and stamen filaments
in the qwrf1qwrf2 double mutant (Figure 2). Given that both
QWRF1 and QWRF2 are suggested as MAPs, we proposed that
they might exert their functions in anisotropic cell expansion
and floral organ morphogenesis through modulation of cortical
microtubule arrays. To test this hypothesis, we compared

the cortical microtubule arrangements in epidermal cells of
stamen filaments and petals between the qwrf1qwrf2 double
mutant and the wild type. As mentioned above, the qwrf1qwrf2
mutant had shorter stamen filament epidermal cells than the
wild type. To visualize the cortical microtubules in these
cells, UBQ10:mCherry-MBD was introduced into the qwrf1qwrf2
double mutant by crossing. As filament elongation starts at
flower stage 12 and ends at stage 13 (Acosta and Przybyl, 2019),
we observed stamen filaments at these two stages. At stage
12, most cortical microtubules were parallel and transversely
oriented in the wild type, which is consistent with the fast cell
elongation at this stage (Figure 4A). However, in qwrf1qwrf2
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FIGURE 4 | QWRF1 and QWRF2 affect cortical microtubule organization and stability in floral organ cells. (A) UBQ10:mCherry-MBD-labelled cortical microtubules in
wild-type and qwrf1qwrf2 stamen filament epidermal cells. The cortical microtubules array in qwrf1qwrf2 stamen filament epidermal cells is greatly altered compared
with that in wild type. Scale bar, 20 µm. (B,C) Frequency of microtubule orientation patterns in wild-type and qwrf1qwrf2 upper stamen filament epidermal cell at
stage 12 and 13, measured by fibriltool, an Image J plug-in as described in the method. n ≥ 150 cells. (D) Quantification of microtubule bundling (Skewness) from
confocal optical images in panel (A). The microtubule bundling was increased in qwrf1qwrf2 stamen filament epidermal cells. Values are mean ± SD. n ≥ 100 cells,
**P < 0.01, Student’s t test. (E) Cortical microtubules of abaxial epidermal cells in petal blades of wild type and qwrf1qwrf2 with a 35S:GFP-TUA6 background. The
microtubule arrays in qwrf1qwrf2 petal at stage 10–14 abaxial epidermal cells were more orderly. The white dotted lines depict cell outlines. Scale bar, 10 µm.
(F) The microtubule alignment in panel (E) was measured by fibriltool, an Image J plug-in as described in the method. The anisotropy close to 1 represents
contained more highly ordered cortical microtubule (CMT) arrays transversely oriented relative to the axis of cell elongation. Values are mean ± SD. n ≥ 200 cells.
***P < 0.001, Student’s t test. (G) The organization of cortical microtubules in qwrf1qwrf2 cells is insensitive to treatment with 20 µM oryzalin for 10 min. Scale bar,
10 µm. (H) Fifteen-µm of white dashed lines cross the cortical microtubules (G), and the number of cortical microtubules across the line was measured as the
density. Three repeated measurements were performed and at least 100 cells were used. Values are mean ± SD of more than 100 cells. ***P < 0.001, Student’s t
test. (I) Cortical microtubules were observed in conical cells from opened flower petals of wild type and qwrf1qwrf2 mutant stably expressing 35S:GFP-TUA6,
respectively. The white dotted lines depict cell outlines. Scale bar, 10 µm.
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cells, far fewer microtubules were transversely oriented compared
with the number in wild-type cells (Figure 4B). At stage 13,
when cell elongation ends, cortical microtubules were arranged
obliquely in both the wild type and qwrf1qwrf2 double mutant
(Figure 4C). Moreover, compared with wild-type cells, the
bundling of microtubules in qwrf1qwrf2 cells was significantly
higher according to the skewness analysis (Figure 4D).

Next, we observed cortical microtubule arrays in petal
epidermal cells by stably expressing 35S promoter-driven GFP-
TUA6 in the wild type and qwrf1qwrf2 double mutant. As
shown in Figure 2, the qwrf1qwrf2 mutant had shorter and
narrower petal blades, and consistently shorter and narrower
abaxial epidermal cells. Quantitative analyses also revealed that
qwrf1qwrf2 cells had much fewer lobes than wild-type cells
(Figure 2Q), indicating a stronger restriction of lateral cell
expansion. Consistently, we found sparser but more orderly
cortical microtubules in qwrf1qwrf2 abaxial petal epidermal
cells than in wild-type cells throughout flower stages 10–14
(Figures 4E,F). After treatment with oryzalin, there were more
intact microtubule filaments in mutant cells, indicating that
microtubules were more stable when both QWRF1 and QWRF2
were absent (Figures 4G,H).

Given the change in cell shape of petal adaxial conical
cells in the qwrf1qwrf2 mutant (Figure 2R), we further
investigated whether QWRF1 and QWRF2 affected microtubule
organization in these cells. Similar to previous reports (Ren et al.,
2017), microtubule arrays in wild-type cells displayed a well-
ordered circumferential orientation. However, in qwrf1qwrf2
mutant cells, microtubule arrays were randomly oriented
(Figure 4I), consistent with the mutant conical cells having
larger cone angle but shorter cell height (Figures 2T,U;
Ren et al., 2017).

DISCUSSION

Organ growth is essential for floral organs to achieve their
proper morphology and fulfill their functions. Spatial and
temporal control of anisotropic expansion following initial
cell proliferation is important for organ growth (Irish, 2010).
However, the molecular mechanism underlying the regulation
of floral organ growth is largely unknown. Recently, cortical
microtubules have been reported to guide the growth and shape
of sepals and petals by acting as both mechanical stress sensors
and growth regulators (Hervieux et al., 2016; Yang et al., 2019b).
In this study, we characterized a qwrf1qwrf2 double mutant
with defects in many aspects of flower development, including
abnormal size and shape of sepals and petals, short stamen
filaments and papilla cells, and an altered symmetric arrangement
of floral organs (Figure 2). These defects represented physical
barriers to successful sexual reproduction. However, both
qwrf1 and qwrf2 single mutants showed few defects in flower
development and sexual reproduction (although qwrf1 showed
a weak reduction in seed setting rate), indicating the redundant
functions of QWRF1 and QWRF2 in floral organ growth and
plant fertility. Nevertheless, the floral organs of qwrf1qwrf2
double mutant are in four whorls, suggesting that QWRF1

and QWRF2 are not critical for floral meristem establishment
and organ identity.

There were significant differences in the size and shape of
epidermal cells in petals and stamen filaments between the wild
type and the double mutant, indicating a role for QWRF1 and
QWRF2 in anisotropic cell expansion. In vitro and in vivo
analyses demonstrated that QWRF1 and QWRF2 were associated
with microtubules. Moreover, epidermal cells of qwrf1qwrf2
petals and stamen filaments had cortical microtubule arrays with
sparse microtubule bundles in an altered orientation compared
with the wild type. Overall, we concluded that QWRF1 and
QWRF2 are required for proper growth and morphology of floral
organs and thus for plant fertility, and probably function via
modulating microtubule-dependent anisotropic cell expansion
during organ growth.

QWRF1/SCO3 contains a C-terminal PTS1 (peroxisomal-
targeting signal type 1) domain, tripeptide SRL, which targets
the periphery of peroxisomes in Arabidopsis cultured cells.
Interestingly, GFP:SCO31SRL, which lacking the peroxisome
location, was unable to complement the phenotype of sco3-
1 mutant as determined by chlorophyll content in cotyledons
(Albrecht et al., 2010). However, in our study, we found that
expressing QWRF11SRL was able to rescue floral organ growth
and fertility of qwrf1qwrf2 plants (Supplementary Figure 6),
suggesting that the effects of QWRF1 on floral organ growth and
fertility are unrelated to its peroxisome association. Consistently,
QWRF2 has no PTS1 domain but being associated with
microtubules, and being functionally redundant with QWRF1.

We also observed incomplete anther dehiscence, and shriveled
and shrunken pollen grains in qwrf1qwrf2 opening flowers;
how these two proteins regulate male gametophyte development
needs further study. Given that EDE1/QWRF5, another QWRF
family member, colocalizes with mitotic microtubules during
endosperm development (Pignocchi et al., 2009), whether
QWRF1 and QWRF2 participate in microsporogenesis via
binding to and regulating mitotic microtubules is also worthy of
further investigation. Notably, the qwrf1qwrf2 ovules had normal
embryo sacs (Supplementary Figure 3), indicating that they are
not involved in megasporogenesis during flower development.
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Myosin is a diverse superfamily of motor proteins responsible for actin-based motility
and contractility in eukaryotic cells. Myosin-18 family, including myosin-18A and
myosin-18B, belongs to an unconventional class of myosin, which lacks ATPase
motor activity, and the investigations on their functions and molecular mechanisms
in vertebrate development and diseases have just been initiated in recent years.
Myosin-18A is ubiquitously expressed in mammalian cells, whereas myosin-18B
shows strong enrichment in striated muscles. Myosin-18 family is important for
cell motility, sarcomere formation, and mechanosensing, mostly by interacting with
other cytoskeletal proteins and cellular apparatus. Myosin-18A participates in several
intracellular transport processes, such as Golgi trafficking, and has multiple roles in
focal adhesions, stress fibers, and lamellipodia formation. Myosin-18B, on the other
hand, participates in actomyosin alignment and sarcomere assembly, thus relating to cell
migration and muscle contractility. Mutations of either Myo18a or Myo18b cause cardiac
developmental defects in mouse, emphasizing their crucial role in muscle development
and cardiac diseases. In this review, we revisit the discovery history of myosin-18s
and summarize the evolving understanding of the molecular functions of myosin-18A
and myosin-18B, with an emphasis on their separate yet closely related functions
in cell motility and contraction. Moreover, we discuss the diseases tightly associated
with myosin-18s, especially cardiovascular defects and cancer, as well as highlight the
unanswered questions and potential future research perspectives on myosin-18s.

Keywords: myosin-18A, myosin-18B, biomechanics, muscle development, cancer

INTRODUCTION

Myosins are a large superfamily of proteins that are responsible for providing motility of various
components in the cells and motility of cells, tissues, and organs. Following the discovery of the
major motor proteins in striated muscles, namely, the class II myosins, more and more different
subfamilies of myosins have been identified in animals. All myosins contain a motor domain,
which in most cases is an ATPase, and can hydrolyze an ATP to create conformational changes,
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underlining the motor function of the myosins. However,
not all myosin motors possess the ATPase-driven motor
activity, exemplified by the recently discovered myosin-18
family consisting of myosin-18A and myosin-18B. This
unconventional family of myosin has been found to be
associated with multiple cellular processes and implicated
in a wide range of diseases, including cancer and myopathy
(Taft et al., 2014).

Gene Structure and Expression of
Myosin-18s
In 2000, the first member of myosin-18s, myosin-18A, was
identified in bone marrow stromal cells through a differential
display screen (Furusawa et al., 2000). MYO18A, the founding
member of the class XVIII myosins, was initially named
as MysPDZ (myosin-containing PDZ domain) (Furusawa
et al., 2000) and later renamed myosin-18A because of
discovery of other closely related genes. The MYO18B gene
was annotated in 2002 (Nishioka et al., 2002) and was
found to be present in vertebrates only (Salamon et al.,
2003). Myosin-18A was found in a much broader range
of animals, implying that myosin-18B could be derived
from myosin-18A via a duplication event during evolution
(Salamon et al., 2003).

In mouse, MYO18A is located on chromosome 11 and
encodes for three major splice isoforms, a long myosin-
18Aα, a short myosin-18Aβ, and myosin-18Aγ, which is
specifically expressed in striated muscle (Horsthemke et al.,
2019; Figure 1). Myosin-18Aα consists of 2,035-amino-acid
residues (∼230 kDa), myosin-18Aβ has 1,719-amino-acid
residues (∼196 kDa), and myosin-18Aγ has 2,409-amino-acid
residues (267 kDa), respectively. The human MYO18A gene
is on chromosome 17, and human myosin-18Aα comprises
2,054-amino-acid residues (∼233 kDa), and myosin-18Aβ

has 1,723-amino-acid residues (∼196 kDa). Mouse Myo18B
is located on chromosome 5 and produces myosin-18B
with 2,605-amino-acid residues (∼288 kDa), whereas human
MYO18B gene is on chromosome 22, and it encoded a 2567-
amino-acid residues (∼285 kDa) myosin-18B. The alternative
splicing of myosin-18B was poorly understood; it is possible
that various isoforms of myosin-18B similar to myosin-
18A exist.

The central region of all isoforms of myosin-18A and
myosin-18B contains a motor domain, followed by a short
light chain–binding domain and a coiled-coil tail domain.
These are the core features of most myosins and exhibit
the highest similarity with the conventional muscle myosin-
2 (Taft and Latham, 2020; Figure 1). The fundamental
function of the motor domain of classic myosins is the
ATPase activity, which causes conformational changes after
hydrolyzing an ATP, thus providing traction between myosin
and actin filaments and ultimately movement in cells and
tissues (Preller and Manstein, 2013). And the coiled-coil domain
allows dimerization of myosins (Preller and Manstein, 2013).
Importantly, a few key amino acid residues highly conserved
in the motor domain of classic myosins are mutated in

both members of myosin-18 family (Taft and Latham, 2020).
Particularly, two highly conserved serine residues known for
facilitating efficient catalysis of the ATPase are mutated to
alanine and threonine in both myosin-18A and myosin-18B
(Taft and Latham, 2020). This finding prompted researchers
to examine whether myosin-18s have motor functions. This
important biochemical activity is thoroughly examined in
myosin-18A from Drosophila (Guzik-Lendrum et al., 2011),
mouse (Guzik-Lendrum et al., 2013), and human (Taft et al.,
2013). No ATPase activity was found in any of the isoforms
of myosin-18A, while actin binding was evident in all
forms (Guzik-Lendrum et al., 2011, 2013; Taft et al., 2013),
suggesting myosin-18A lacks motor activity and thus is an
unconventional myosin. Although such detailed biochemical
characterization of myosin-18B was not available, it does have
the same mutations in the core motor domain as myosin-
18A (Figure 1), and subsequent research assumes myosin-
18B also lacks motor activity (Jiu et al., 2019). Following the
motor domain, both myosin-18s have a short light chain–
binding domain, which binds to the essential light chain
(ELC) and regulatory light chain (RLC) in conventional
class II muscle myosins (Preller and Manstein, 2013). The
light chain–binding domain of all isoforms of myosin-18A
and myosin-18B has two IQ motifs, which are known for
interacting with calmodulin (CaM) or CaM-like light chains
(Odronitz and Kollmar, 2007). Direct interaction of myosin-
18A with ELC and RLC was experimentally confirmed (Guzik-
Lendrum et al., 2013), whereas myosin-18B is expected to
be capable of similar interactions due to sequence similarity.
The coiled-coil domain is important for dimerization and
incorporation into non-muscle myosin 2 (NM2) filaments.
Both myosin-18A and myosin-18B do exhibit such activities
(Ajima et al., 2008; Billington et al., 2015; Jiu et al., 2019),
which is not different from conventional myosins. Flanking
the generic motor domain and coiled-coil domain of myosin-
18A and myosin-18B are long N-terminal and C-terminal
domains, which are distinctive features of myosin-18 family
proteins. The N-terminal domain of myosin-18Aα contains
a KE motif rich in lysine and glutamate residues, as well
as a PDZ domain, which was the reason myosin-18A was
initially named as MysPDZ for “myosin-containing PDZ
domain” (Furusawa et al., 2000). While myosin-18Aβ lacks
an N-terminal domain, myosin-18Aγ has a long N-terminal
domain with a unique sequence of unknown function except
a short polyproline II (PPII) helix (Horsthemke et al.,
2019; Figure 1). Myosin-18B also has large N-terminal and
C-terminal domains. These domains are less studied, and they
exhibit little similarity to known sequences, except a putative
nuclear localization sequence (NLS) in its C-terminal domain
(Salamon et al., 2003).

Myosin-18Aα is ubiquitously expressed in all tissues, and
the shorter myosin-18Aβ is detected in hematopoietic cells
(Mori et al., 2003), whereas the longer myosin-18Aγ has
been found to be enriched in striated muscles (Horsthemke
et al., 2019). Unlike the myosin-18Aα or myosin-18Aβ,
the expression pattern of myosin-18B resembles that of
myosin-18Aγ, which is highly enriched in cardiac and
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FIGURE 1 | Protein structures of all known isoforms of myosin-18A and myosin-18B. All known isoforms of myosin-18A and myosin-18B contain a central motor
domain and a coiled-coil tail domain linked by a short neck domain with two IQ motifs, whereas different isoforms are different in their distinct N-terminal and
C-terminal extensions. Myosin-18Aα has a KE-rich region and a PDZ domain in its N-terminal extension, and myosin-18Aγ contains a proline-rich PPII domain in the
N-terminal and a long serine-rich C-terminal. Myosin-18B has both long N- and C-terminals, and an NLS domain in the C-terminal extension is the only domain with
a predicted function.

skeletal muscles and is detected at low level in other tissues
(Salamon et al., 2003).

Biochemical and Cellular Functions of
Myosin-18s
Myosin-18A
Like many other myosins, myosin-18A can bind to actin and
plays important roles in different actin structures (Taft and
Latham, 2020). In 2005, Isogawa and colleagues used GFP-tagged
fragments of human myosin-18A to test their actin-binding
activity, and it was found that the N-terminal domain has a
strong interaction with actin, which does not involve ATPase
activity (Isogawa et al., 2005). Mori and colleagues reached
similar conclusions at the same year with coimmunoprecipitation
analysis showing that myosin-18A can self-associate through its
coiled-coil domain and interact with actin under the mediation
of the KE-rich domain (Mori et al., 2005). Later studies showed
that both N-terminal and the motor domain of myosin-18A
possess actin-binding activity (Guzik-Lendrum et al., 2013; Taft
et al., 2013). However, because of its lack of motor activity,
the molecular and cellular function of the interaction between
myosin-18A and actin could not be the conventional actomyosin
contraction, thus attracting attention of researchers on its
specific roles on cytoskeleton. In a search for regulators of
actomyosin retrograde flow essential for cell motility, Tan and
colleagues found that myosin-18A interacted with Rac/Cdc42-
binding kinase MRCK, a Rho GTPase effector kinase crucial for
actomyosin retrograde flow (Tan et al., 2008). This interaction
was found to be facilitated by the adaptor protein LRAP35a, and
the tripartite complex formed by MRCK/myosin-18A/LRAP35a

was responsible for the assembly of lamellar actomyosin bundles
and of a subnuclear actomyosin network (Tan et al., 2008;
Figure 2). The association between myosin-18A and lamellipodia
and lamella was further demonstrated by the interaction between
myosin-18A and PAK2/βPIX/GIT1 (p21-activated kinase2/PAK-
interacting exchange factor-β/G protein–coupled receptor kinase
interactor-1) complex, which is localized at lamellipodia and
membrane ruffles (Hsu et al., 2010, 2014; Figure 2). Both
MRCK and PAK2 are downstream effectors of small GTPase;
however, the role of small GTPases in regulating the myosin-
18A/PAK2/βPIX/GIT1 complex formation and function is still
a puzzle. Furthermore, myosin-18A can coassemble with NM2
filaments and regulate the assembly of actomyosin bundles and
stress fibers (Billington et al., 2015). Knocking down myosin-18A
in prostate cancer cells increased circumferential NM2-associated
actin filament arrays in the lamella (Makowska et al., 2015),
different from phenotypes of knockdown of other myosins,
suggesting its role in actomyosin is different from other myosins.

As mentioned above, myosin-18A can bind to F-actin, and
it was found that this interaction can be further enhanced by
binding of GOLPH3, a phosphoprotein of the Golgi membrane
(Taft et al., 2013; Figure 2). GOLPH3 is known for its Golgi
localization through interaction with phosphatidylinositol-4-
phosphate (PI4P), a phospholipid enriched in Golgi membranes
(Dippold et al., 2009). Moreover, in search for binding partners
of GOLPH3, myosin-18A was identified to be interacting
with GOLPH3 with its N-terminal extension and motor
domains (Dippold et al., 2009). Recently, Rahajeng et al. (2019)
demonstrate that GOLPH3 can drive PI4P-dependent membrane
curvature of the Golgi. In this study, overexpression of amino-
terminally tagged GOLPH3 unable to interact with myosin-18A
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FIGURE 2 | Functions of myosin-18s in non-muscle cells. Myosin-18A binds
to actin filaments and bundled with myosin II in non-muscle cells, and it can
interact with multiple proteins in this context, including MRCK, GOLPH3, and
PAK2/βPIX/GIT1 complex. Myosin-18B assembles with myosin II filaments
and facilitates fusion of adjacent myosin stacks during actomyosin bundle
maturation.

results in both excessive tubulation of the Golgi and ineffective
trafficking (Rahajeng et al., 2019). In addition, knockdown
of myosin-18A showed similar phenotype, suggesting both
GOLPH3-induced Golgi membrane curvature and recruiting of
myosin-18A are required for forward trafficking from the Golgi
to the plasma membrane (Rahajeng et al., 2019).

Except for being a GOLPH3 binding partner, myosin-18A was
also identified as a receptor for lung surfactant protein A (SP-
A). Yang et al. demonstrated that myosin-18A physically interacts
with SP-A and proposed that a cryptic transmembrane domain in
myosin-18A is responsible for the extracellular localization of its
motor and C-terminal domains (Yang et al., 2005). Additionally,
the interaction between myosin-18A and SP-A was also found
to be important for macrophage activation (Yang et al., 2015).
Besides, CD245, a highly conserved motor enzyme reported as
a receptor for SP-A, has also been identified as myosin-18A
(De Masson et al., 2016). Certainly, these studies shed light on
the new feature of myosin-18A function. However, the obvious
question raised is that how a protein that is generally observed
to be cytosolic without transmembrane domain in most studies
(9, 10) could act as a receptor for molecules found in the
extracellular space. To understand this intriguing role of myosin-
18A, additional studies will be needed.

Myosin-18B
Although myosin-18B is highly enriched in striated muscle
cells, it is also present in non-muscle cells at low levels
(Salamon et al., 2003). In the initial characterization, myosin-18B
protein was found to have a special expression pattern during
muscle differentiation: it is totally cytoplasmic in undifferentiated

myoblast cells, but a fraction of this protein will translocate
into the nucleus in differentiated muscle cells (Salamon et al.,
2003). In addition, myosin-18B was found to be located on the
Z-lines of striated muscle myofibrils, despite that conventional
myosin is located in the A-bands and acts as a molecular
motor for muscle contraction (Salamon et al., 2003; Ajima et al.,
2008). However, recent studies have observed a different, if
not totally opposite, localization of myosin-18B in muscular
sarcomere, which appears to be localized to the A-bands,
similar to the conventional myosins (Berger et al., 2017; Latham
et al., 2020). Moreover, its localization during human embryonic
stem cells (hESCs) to cardiomyocytes was also found to be
opposite to the initial finding, which showed they localize in the
nucleus of hESCs and become sarcomeric during cardiomyocyte
differentiation (Latham et al., 2020). These obvious discrepancies
may be due to different methods of detection, as multiple
antibodies and GFP labels were used to examine the expression
of myosin-18B, and some of these methods may not accurately
reflect the endogenous expression pattern of myosin-18B. In
non-muscle cells, myosin-18B has been reported to be expressed
in punctate pattern throughout the cytoplasm, in membrane
protrusions, and within stress fibers (Inoue et al., 2006; Ajima
et al., 2008; Jiu et al., 2019).

Although the cellular localization of myosin-18B is not clear,
some of its cellular functions have recently been discovered.
In non-muscle cells, myosin-18B was found to promote the
assembly of myosin II stacks, which are important for a variety of
vital processes in cells (Jiu et al., 2019). Specifically, myosin-18B
assembles with NM2 filaments and facilitates fusion of adjacent
myosin stacks, which in turn promotes actomyosin bundle
maturation (Jiu et al., 2019; Figure 2). In addition, MYO18B gene
knockout cells display thin stress fibers, which can be rescued
by AMPK activation, whereas myosin-18B overexpression leads
to strong actin network, which can be abolished by CaMKK2
inhibition (Zhao et al., 2020), suggesting myosin-18B plays an
important role in the actin stress fibers of the mechanically
sensitive CaMKK2-AMPK-VASP signaling cascade (Zhao et al.,
2020). In striated muscle cells, recent studies found that myosin-
18B is an essential sarcomeric accessory protein, which can
bind actin thin filaments in the forming sarcomere and be
incorporated in the thick filaments, coinciding with striation
onset of cardiomyocyte differentiation (Latham et al., 2020).
Therefore, it was suggested that myosin-18B regulates higher-
order organization of the cardiac sarcomere from within the thick
filament (Latham et al., 2020).

Myosin-18s in Muscle Development and
Physiology
Because of the enriched expression of myosin-18B in cardiac
and skeletal muscle, its role in striated muscle cells has been of
particular interest to researchers. Its expression was found to be
elevated during differentiation of C2C12 myoblast to myotubes
(Salamon et al., 2003), and robust expression of myosin-18B
was also observed as early as E9.5 mouse heart and E13.5
skeletal muscle precursors (Ajima et al., 2008), suggesting it
has an important role in muscle development. Indeed, MYO18B
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gene knockout mice showed early embryonic lethality at E10.5
with severe cardiac defects (Ajima et al., 2008), suggesting
cardiomyocyte development and function require myosin-18B.
Electron microscopy analysis uncovered disrupted sarcomere
structure in MYO18B knockout cardiomyocytes with defective
alignment of thick and thin myofibril filaments (Ajima et al.,
2008), indicating that myosin-18B functions in the process of
myofibril organization. Two independent MYO18B mutants in
zebrafish revealed additional role of myosin-18B in skeletal
muscle integrity (Berger et al., 2017; Gurung et al., 2017).
Zebrafish development can proceed to some extent without
proper heart function, allowing examination of skeletal muscle
defect of zebrafish MYO18B mutants with cardiac defects similar
to the mouse mutant (Gurung et al., 2017). It was evident
that sarcomeres of skeletal muscle were disorganized, and force
could not be generated from the fast-twitch muscles of MYO18B
mutant zebrafish (Berger et al., 2017; Gurung et al., 2017).
Two independent findings of MYO18B mutations linked in
human myopathies further confirmed the conserved function
of myosin-18B in striated muscle development (Alazami et al.,
2015; Malfatti et al., 2015). A homozygous missense mutation
(c.6496G > T, p.Glu2166∗), which produced a truncated myosin-
18B missing parts of the C-terminal domain, was found
in patients with nemaline myopathy (Malfatti et al., 2015),
characterized by dysmorphism, clinodactyly, hypotonia, muscle
weakness, and cardiomyopathy. Another homozygous mutation
(c.6905C > A) was identified in two patients with Klippel–
Feil anomaly, presenting myopathy and distinct facial features
(Alazami et al., 2015). This mutation results in a premature
stop codon and induces nonsense-mediated decay of the mutant
MYO18B mRNA, leading to a null phenotype. Interestingly,
similar to the sarcomere defects in mouse and zebrafish MYO18B
mutants, a failed assembly of mature sarcomere in striated
muscles is found in all these patients, confirming myosin-18B
functions in sarcomere assembly across different species. In
addition, research associating MYO18B mutation with infant
death accompanied by muscular defect was also reported recently
(Armes et al., 2018). Possibly, the underlying mechanism is
similar to the other reports, that myosin-18B is required for
muscle development and function.

Altogether, these similar loss-of-function phenotypes of
myosin-18B in different organisms highlight the importance
of myosin-18B in sarcomere assembly and striated muscle
development. However, the phenotypic description did not
provide sufficient evidence illuminating how myosin-18B
regulates sarcomere assembly, given that it does not possess
a motor activity, which is crucial to sarcomere function. It is
possible that myosin-18B serves as a structural glue that ties
newly synthesized actomyosin bundles into well-organized
sarcomeric structures, similar to its function in facilitating stress
fiber assembly in non-muscle cells (Jiu et al., 2019). A recent
study in the differentiation from hESCs to cardiomyocytes
revealed that myosin-18B binds actin thin filaments and is
incorporated in the thick filaments during the onset of striation
(Latham et al., 2020; Figure 3). Loss-of-function studies
are warranted to further illuminate the function of human
myosin-18B in cardiomyocytes.

Myosin-18A was thought to be absent in the muscle; thus, its
involvement in striated muscle was revealed later than myosin-
18B. In 2013, Bonn and colleagues found the sole myosin-18
in Drosophila is localized to the fusion pore between fusing
myoblasts and around the Z-line of mature muscle cells (Bonn
et al., 2013). However, the deficiency of myosin-18 did not affect
muscle development because of possible compensation of other
myosins (Bonn et al., 2013). Because it is the only myosin-
18 in Drosophila, this observation did not provide a clear clue
whether myosin-18A is functioning in muscle in vertebrates.
There were two consecutive studies in zebrafish that revealed the
role of myosin-18A in striated muscle development and function
(Cao et al., 2014, 2016). Two myosin-18A genes MYO18Aα and
MYO18Aβ exist in zebrafish, and both of them were expressed
in somites during muscle development, and knockdown of
MYO18A, as well as overexpression of the PDZ domain disrupted
myofiber integrity (Cao et al., 2014). Subsequently, a few binding
partners of myosin-18A in zebrafish was identified, including
p190Rho-guanine nucleotide exchange factor (p190RhoGEF)
and Golgin45, and their interaction was suggested to be required
for extracellular matrix adhesion, Golgi apparatus formation,
F-actin bundle organization, and eventually muscle integrity
(Cao et al., 2016). A recently study in mouse confirmed that
myosin-18A is essential for cardiac development and sarcomere
organization (Horsthemke et al., 2019), as global knockout and
cardiomyocyte-specific conditional knockout of MYO18A cause
early embryonic lethality due to cardiac defect accompanied
with sarcomere disruption in cardiomyocytes (Horsthemke et al.,
2019). It also revealed that there is actually a cardiomyocyte-
specific isoform of myosin-18A, myosin-18Aγ, which plays a
key role in cardiac development (Horsthemke et al., 2019).
Characterization of myosin-18Aγ showed that it has a long
N-terminal domain containing a short PPII helix (Figure 1) and
is localized within the A-band of sarcomeres (Horsthemke et al.,
2019; Figure 3). However, the molecular function of myosin-
18Aγ is largely unknown (Figure 3).

Knockout of either MYO18A and MYO18B in mouse led to
embryonic lethality around E13.5 with similar sarcomere defects
in cardiomyocytes, suggesting that they both may have essential
role in sarcomere assembly with little overlapping functions
or compensation. Currently, plenty in vivo evidence suggested
that myosin-18s are important in cytoskeletal development
of cardiomyocytes (Ajima et al., 2008; Berger et al., 2017;
Gurung et al., 2017; Horsthemke et al., 2019), mainly through
phenotypical description of loss-of-function mutants. However,
in vitro or cellular functional studies are largely missing in
cardiac or striated muscles, with the subcellular localizations
of myosin-18s remaining unclear (Salamon et al., 2003;
Latham et al., 2020). Therefore, extensive study on the
molecular mechanisms of myosin-18s in sarcomere formation
and maintenance is guaranteed.

Myosin-18s in Cancer and Other
Diseases
Both myosin-18A and myosin-18B have been implicated in
cancers (Taft and Latham, 2020). Interestingly, apart from
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FIGURE 3 | Function of myosin-18s in striated muscle cells. Myosin-18B and myosin-18 Aγ are localized in the sarcomere in striated muscle cells. Myosin-18B
binds actin thin filaments and is incorporated in the thick myosin filaments via its coiled-coiled domain in sarcomeres of cardiomyocytes (molecular binding
highlighted in red dotted circle). Whether mψoσιν-18Aγ possesses a similar function is yet to be discovered (black dotted circle).

gene fusion and translocation events that link myosin-18s with
cancer, their expression levels seem to be positively or negatively
associated with different types of cancers, suggesting that their
roles in cancer is also context dependent.

The first line of evidence showing the involvement of myosin-
18s in cancer came from a report that MYO18B was found
to be frequently deleted, mutated, and hypermethylated in
lung cancers (Nishioka et al., 2002). And overexpression of
MYO18B suppressed proliferation and anchorage-independent
growth of lung cancer cells (Nishioka et al., 2002), suggesting
myosin-18B serves as a tumor suppressor. Mutations or
silenced expression of MYO18B was subsequently found in
ovarian cancers (Yanaihara et al., 2004), colorectal cancers
(Nakano et al., 2005), melanoma and pancreatic ductal
adenocarcinoma (Bleeker et al., 2009), and neuroendocrine
cancer (Bhatla et al., 2016). And in line with the initial
discovery that MYO18B is silenced by hypermethylation
of its promoter in lung cancers (Nishioka et al., 2002),
hypermethylation of MYO18B promoter was found to be
associated with weaker response to chemotherapies in ovarian
cancers (Tomar et al., 2017), whereas hypomethylation of its
promoter is associated with high MYO18B expression and
favorable outcomes of T-cell acute leukemia cases (Haider
et al., 2019). Although most studies on MYO18B in cancer
support its role as a tumor suppressor, one report in
hepatocellular carcinoma found that high MYO18B expression
was associated with worse survival of this type of cancer, and

knocking down MYO18B reduced proliferation and migration
(Zhang et al., 2018).

Unlike the findings in MYO18B, MYO18A was mostly
associated with cancers through gene fusion events, with
MYO18A frequently found to be fused with other oncogenes
such as FGFR1 (Walz et al., 2005), PDGFRB (Walz et al., 2009),
and MLL (Ussowicz et al., 2012). In terms of its own function
in cancer, it has been found that myosin-18A expression was
increased in prostate cancer cells (Makowska et al., 2015), and
its knockdown reorganized long NM2A-rich stress fibers and
affected the cells’ ability to migrate (Makowska et al., 2015),
suggesting a role of myosin-18A in prostate cancer metastasis
(Peckham, 2016).

Other than myopathies and cancer, myosin-18s have also
been implicated in other diseases. Myosin-18A was found
to be localized to plasma membrane in human fibroblasts
and translocate to viral assembly complex after human
cytomegalovirus (HCMV) infection and plays a role in virus
production (Jean Beltran et al., 2016). It was proposed that
myosin-18A facilitates connections between vesicles loaded with
virus and myosin filament containing NM2-binding domains
(Billington et al., 2015), thus regulating the movement of the
virus-loaded vesicles (Jean Beltran et al., 2016). In line with this
study, myosin-18A was found to be required for the hepatitis C
virus secretion (Bishe et al., 2012), possibly through regulating
Golgi budding process via interaction with GOLPH3 (Dippold
et al., 2009; Bishe et al., 2012). Myosin-18B was reported
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to be associated with schizophrenia (Takata et al., 2013) and
mathematical ability (Ludwig et al., 2013), as single-nucleotide
polymorphisms in myosin-18B were found to be linked to
depth of intraparietal sulcus in the brain, which is responsible
for mathematical abilities (Ludwig et al., 2013). However, the
latter association was not supported by subsequent studies
(Pettigrew et al., 2015).

CONCLUSION AND PERSPECTIVES

At the beginning of the 21st century, myosin-18A and myosin-
18B were identified respectively, which together form the
myosin-18 family. Unlike the conventional myosin family,
myosin-18s lacks active ATPase-driven motor activity and is
characterized by the presence of large N- and C-terminal
extensions flanking a generic myosin core structure (Figure 1).

Myosin-18A plays multiple roles in different actin structures,
including focal adhesions, actin stress fibers, lamellar actomyosin
bundles, and Golgi apparatus (Figure 2). However, which splice
isoform of myosin-18A localizes to Golgi or plays a role in Golgi
morphology remains unknown. A recent study observed neither
the colocalization nor any impact of reduced myosin-18Aα levels
on Golgi morphology by immunofluorescence assay (Bruun et al.,
2017). It was considered an unknown splice variant of myosin-
18A, which may take part in this function, and further studies are
needed to verify the speculation.

At present, three myosin-18A splice isoforms have been
identified, namely, myosin-18Aα, myosin-18Aβ, and myosin-
18Aγ (Horsthemke et al., 2019). Myosin-18Aα contains two
distinct functional regions: a KE motif and a PDZ domain in
its N-terminal extension, whereas myosin-18Aγ has a single
PPII helix in its N-terminal extension (Figure 1). Myosin-
18Aβ completely lacks these domains with a short N-terminal
extension (Figure 1). Several studies showed a strong ATP-
independent interaction of myosin-18A N-terminal extension
with actin (Isogawa et al., 2005; Mori et al., 2005; Billington
et al., 2015). But the precise structural and functional properties
of the N-terminus, for example, the role of PPII, remain to be
resolved. As for C-terminal extension, it is the least characterized
domain of myosin-18A. So far, the Rho GTPase activator βPIX
(PAK-interacting exchange factor-β) is the only one that was
identified as a direct binding partner of the C-terminal domain
(Hsu et al., 2010). Besides the common functions as a myosin
family member, myosin-18A has a unique feature of binding to
SPA at the cell surface, as SPA-receptor 210 (Yang et al., 2005).
But myosin-18A has no predicted transmembrane domains. How
is myosin18A transported to the cell membrane? Does the PDZ
domain, which mediates membrane association, participate in
this function? Further research may shed light on this unique
role of myosin-18A.

The second XVIII myosin family member, myosin-18B,
expresses highly in cardiac and skeletal striated muscles and is
also widely distributed at a low level in organs and tissues. Except
for the generic myosin configuration, myosin-18B comprises
several unique domains, such as ERM domain in the tail region
and a putative NLS in the C-term extension (Salamon et al., 2003;

Figure 1). And the functional capabilities of these proposed
domains remain to be assessed. Recently, several researches on
the cellular localization and biochemical function of myosin-
18B shed light on the understanding of this unique protein.
Jiu et al. observed that myosin-18B plays as a “glue” molecule
for assembling myosin II stacks and promotes the maturation
of contractile actomyosin bundles (Jiu et al., 2019; Figure 2).
Moreover, a follow-up study found myosin-18B also plays a
critical role in the mechanosensitive regulation via CaMKK2-
AMPK-VASP pathway (Zhao et al., 2020). Another controversial
aspect of myosin-18B is its localization in striated muscle cells.
While most conventional myosins are localized to the A-bands,
myosin-18B was reported to be localized to the Z-lines (Salamon
et al., 2003; Ajima et al., 2008), as well as A-bands (Berger
et al., 2017; Latham et al., 2020), of striated muscle myofibrils.
More precise and well-defined methods will be needed to explain
the differences and confirm the localization of myosin-18B in
sarcomere, which is critical to its function in muscle cells.

Myosin-18A and myosin-18B share ∼40% identity at the
protein level and display unique roles at specific subcellular
localities. The common localization myosin-18A and myosin-
18B, such as stress fibers in non-muscle cells and sarcomeric
structures in striated muscle, raises the question of whether they
have distinct or overlapping functions within these shared sites.
Both MYO18A and MYO18B knockout mice have sarcomere
defects in cardiomyocytes and early embryonic lethality (Ajima
et al., 2008; Horsthemke et al., 2019), suggesting that they
have essential role in cardiac sarcomere assembly, whereas only
MYO18B has been indicated in human congenital cardiac defects
(Alazami et al., 2015; Malfatti et al., 2015). The detailed molecular
function of myosin-18s in sarcomeres and whether they have
distinct functions in cardiomyocytes require further research.

In terms of disease, both myosin-18A and myosin-18B have
predominantly been investigated in cancers, including lung,
prostate, and ovarian cancers (Nishioka et al., 2002; Yanaihara
et al., 2004; Nakano et al., 2005; Walz et al., 2005, 2009; Bleeker
et al., 2009; Ussowicz et al., 2012; Bhatla et al., 2016; Tomar
et al., 2017; Zhang et al., 2018; Haider et al., 2019). Myosin-
18A also participates in HCMV infection (Jean Beltran et al.,
2016) and hepatitis C virus (HCV) secretion (Bishe et al.,
2012). However, the molecular mechanisms of myosin-18A’s
involvement in cancer and virus transport are still not known.
Moreover, MYO18B gene, identified as a tumor suppressor,
recently was reported as a tumor promoter in hepatocellular
carcinoma progression (Zhang et al., 2018).

From all above, although functions of myosin-18 family at the
molecular and cellular level have been greatly resolved during the
recent 20 years, it is not hard to see that there is still a long way to
go before completely unraveling the mysteries of members of this
new branch within the myosin family.
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In preparation for mitosis, cells undergo extensive reorganization of the cytoskeleton
and nucleus, so that chromosomes can be efficiently segregated into two daughter
cells. Coordination of these cytoskeletal and nuclear events occurs through biochemical
regulatory pathways, orchestrated by Cyclin-CDK activity. However, recent studies
provide evidence that physical forces are also involved in the early steps of spindle
assembly. Here, we will review how the crosstalk of physical forces and biochemical
signals coordinates nuclear and cytoplasmic events during the G2-M transition, to
ensure efficient spindle assembly and faithful chromosome segregation.

Keywords: mitosis, nucleus, cytoskeleton, centrosome, mechanotransduction, chromosome, nuclear lamina

INTRODUCTION

An efficient mitosis is required to maintain genomic stability and ensure correct tissue development
and homeostasis. While nuclear envelope breakdown (NEB) marks the irreversible step of mitotic
commitment, the process starts well before, as chromosomes condense (Antonin and Neumann,
2016) and centrosomes separate (Whitehead et al., 1996). This occurs simultaneously with a
global reorganization of the microtubule and actin cytoskeletons. Accordingly, the interphase
microtubule cytoskeleton disassembles (Mchedlishvili et al., 2018) and overall microtubule
dynamics change (Zhai et al., 1996), which allows the formation of a bipolar spindle (Heald and
Khodjakov, 2015) required for accurate chromosome capture (Figure 1). At the same time, the
interphase actin cytoskeleton is replaced with a mitotic actomyosin network that is connected
with the plasma membrane (Chugh and Paluch, 2018) and drives mitotic rounding (Rosa et al.,
2015). Importantly, timely progression through these steps requires the activity of mitotic kinases
such as CDK1 and PLK1 (Gavet and Pines, 2010b; Ramanathan et al., 2015; Gheghiani et al.,
2017). Simultaneously, within the nucleus, a cascade of events regulated by the same mitotic
kinases initiate chromosome condensation (Abe et al., 2011) and trigger disassembly of the nuclear
pore complex (NPC; Linder et al., 2017) and nuclear lamina (NL; Heald and McKeon, 1990;
Peter et al., 1990).

Here, we will discuss how the interactions between the cytoskeleton and nucleus set the stage
for spindle assembly and how the prophase nucleus acts as more than a passive player to ensure a
successful mitosis.

MITOTIC CELL ROUNDING

Mitotic cell rounding is a feature of a large number of eukaryotic cells that lack a cell wall
(Mitchison, 1992; Gibson et al., 2006; Thery and Bornens, 2008). However, this is not a
universal characteristic, as some metazoan cells such as Ptk1 or newt pneumocytes are still
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FIGURE 1 | Overview of the cytoskeletal and nuclear reorganization that occur during mitotic entry. (A) Representative frames from a movie of a RPE-1 cell
expressing H2B-GFP/tubulin-RFP/SiR-actin during mitotic entry. It is possible to observe the main events that occur during mitotic entry, such as cell rounding,
chromosome condensation, and centrosome separation. After NEB, mitotic rounding continues as the spindle assembles. Time is in min:sec. Scale bar, 10 µm.
Time zero corresponds to NEB. (B) Main events that occur during the G2-M transition. Cyclin B1-CDK1 complexes shuttle between the cytoplasm and the nucleus.
At this stage, the cell is attached to the extracellular matrix through membrane-bound adhesion complexes (1) and the microtubule and actin cytoskeletons are in
their interphase configuration. Inside the nucleus, chromatin is decondensed and the nuclear envelope and nuclear lamina are intact (2). As cells prepare to enter
mitosis, adhesion complexes disassemble, leading to cell membrane retraction and mitotic cortex assembly (3). Together with osmotic swelling (4), this leads to
increased intracellular pressure. At the same time, active cyclin B1-CDK1 complexes accumulate in the nucleus, triggering chromosome condensation, nuclear
lamina depolymerization (5), and nuclear envelope permeabilization. These events trigger changes global changes in the forces during the G2-M transition.

capable of progressing through mitosis without rounding
(Roos, 1973; Hayden et al., 1990; Rieder and Alexander, 1990).
The rounding process is regulated by CDK1 activity
(Jones et al., 2018) and starts in the early stages of mitosis
(Matthews et al., 2012) with the loss of Arp2/3-dependent
lamellipodia (Bovellan et al., 2014) and disassembly of focal
adhesions (FAs; Dao et al., 2009). This loss of FAs leads to the
decrease in cell traction forces observed during G2 (Uroz et al.,
2018; Vianay et al., 2018) and prophase (Nunes et al., 2020) and
allows cell margin retraction (Mitchison, 1992; Maddox and
Burridge, 2003) (Figure 1). In turn, this change in cell shape
enables the formation of a stiff actomyosin cortex (Maddox
and Burridge, 2003; Kunda et al., 2008; Fischer-Friedrich et al.,
2016), through the CDK1-mediated phosphorylation of Myosin
II (Ramanathan et al., 2015) and Ect2, a RhoGEF that activates
the RhoA GTPase (Matthews et al., 2012). In combination with
an increase in hydrostatic pressure (Stewart et al., 2011) and cell
volume (Zlotek-Zlotkiewicz et al., 2015), likely driven by water
influx (Son et al., 2015), these changes provide the necessary
space for mitotic spindle assembly and accurate chromosome

capture (Kunda et al., 2008; Lancaster et al., 2013). Consequently,
a failure in mitotic cell rounding triggered by either blocking
FA disassembly or mechanical compression leads to defects in
spindle assembly and mitotic progression (Lancaster et al., 2013;
Nunes et al., 2020) and increases chromosome missegregation
(Tse et al., 2012; Lancaster et al., 2013; Cattin et al., 2015;
Matthews et al., 2020). The need for cell rounding was further
emphasized with the proposal of an “adhesion-dependent
checkpoint,” which acts through DEPDC1B to inhibit RhoA
activation and allow FA dismantling during the G2-M transition
(Marchesi et al., 2014), required for normal proliferation and
development of zebrafish embryos.

CENTROSOME SEPARATION AND
SPINDLE ASSEMBLY

In animal cells, spindle assembly originates mainly from the
centrosomes. For this reason, many studies have focused
on centrosome behavior during the early stages of mitosis.
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Initial centrosome separation requires the combined action
of microtubule-associated molecular motors such as kinesin-
5 and dynein (for review, see Tanenbaum and Medema,
2010). The plus-end directed kinesin-5 has a homo-tetrameric
structure that can crosslink and slide anti-parallel microtubules
apart (Kashina et al., 1996). This generates pushing forces on
microtubules that lead to centrosome separation (Whitehead
et al., 1996). For this reason, kinesin-5 has been involved in
spindle assembly in nearly all model systems analyzed (Sawin
et al., 1992; Heck et al., 1993; Blangy et al., 1995), with the
exception of C. elegans (Bishop et al., 2005). Dynein, on the
other hand is a microtubule minus-end directed motor (Roberts
et al., 2013). To generate the pulling forces necessary for
centrosome separation, dynein needs to be tethered to sub-
cellular structures such as the nuclear envelope (NE; Splinter
et al., 2010; Bolhy et al., 2011; Nunes et al., 2020) or the
cell cortex (Kotak et al., 2012). The combined activity of
these motors is sufficient to drive centrosome separation, but
it does not explain the biased movement of centrosomes
to the shortest axis of the nucleus (Magidson et al., 2011;
Nunes et al., 2020). Such a bias would require additional cues
(either external or internal) or an asymmetry in the forces
exerted on the centrosomes, to direct centrosome movement.
Notwithstanding, the extent of centrosome separation, as well
as their positioning at the moment of NEB, remain major
contributors to chromosome missegregation events. Failure to
fully separate centrosomes during mitotic entry can contribute
to deviant spindle morphologies (Silkworth et al., 2012; Nam
et al., 2015), increasing the likelihood of generating erroneous
kinetochore-microtubule attachments. Most of these attachments
are sensed by the Spindle Assembly Checkpoint (SAC), which
generates a “wait-anaphase” signal until all chromosomes
are correctly attached (Lara-Gonzalez et al., 2012). However,
merotelic attachments, which occur when one kinetochore is
bound to microtubules emanating from different poles, are
usually invisible to the SAC (Gregan et al., 2011). Consequently,
cells with incompletely separated centrosomes at NEB tend to
have a higher rate of chromosome missegregation (Kaseda et al.,
2012; Silkworth et al., 2012; Nunes et al., 2020).

During metaphase, cortical force generators dictate spindle
orientation (Thery et al., 2007; Kotak et al., 2012) by sensing
external cues (Thery et al., 2005; Toyoshima and Nishida, 2007;
Fink et al., 2011). However, during the initial stages of mitosis, as
cells round up and the actomyosin cortex is yet to be assembled,
these cortical force generators are not present (Kiyomitsu and
Cheeseman, 2012; Kotak et al., 2012). Therefore, it is likely
that the cues required for centrosome positioning during early
mitosis are not provided by external signals, but rather derive
from an internal input. One such signal could be provided by
the NE-specific pool of dynein, that is dependent on association
with the RanBP2-BicD2 (Splinter et al., 2010) or Nup133/CENP-
F/NudE-NudEL (Bolhy et al., 2011) pathways, in a CDK1-
dependent manner (Baffet et al., 2015). Accordingly, preventing
dynein loading on the NE results in a failure to separate (van
Heesbeen et al., 2013; De Simone et al., 2016; Boudreau et al.,
2019) and correctly position centrosomes (Splinter et al., 2010;
Bolhy et al., 2011; Nunes et al., 2020). The manner in which

the properties of the prophase nucleus dictate dynein localization
and activity to ensure positioning of centrosomes on the shortest
nuclear axis and avert chromosome missegregation remains
an open question.

THE NUCLEUS AND
NUCLEO-CYTOSKELETAL COUPLING

The cell nucleus is encased by a NE that acts as a barrier between
cytoplasmic and nuclear components. The NE is composed of
and inner (INM) and an outer (ONM) nuclear membrane, NPCs
and a dense NL. The NL consists mainly of A-type and B-type
Lamins, which are type V intermediate filaments that provide
structural support to the nucleus (Dechat et al., 2010). Lamins can
interact with chromatin and with NE membrane proteins, such
as Emerin, LAP2, or nuclear soluble factors such as barrier-to-
autointegration factor (BAF) (Ungricht and Kutay, 2017).

The nucleus is continuously under the influence of external
forces. When physical forces are applied to the cell, they
are decoded into biochemical signals in a process known as
mechanotransduction. This process starts at the cell membrane,
where adhesion complexes sense external cues (Sun et al., 2016).
The cytoskeleton then relays these signals to the nucleus through
the linker of nucleoskeleton and cytoskeleton (LINC) complex
(Lombardi and Lammerding, 2011), which triggers a nuclear
mechanical response that depends on the NL (Stephens et al.,
2017), chromatin condensation (Schreiner et al., 2015; Stephens
et al., 2017) and nucleo-cytoskeletal coupling (Lombardi and
Lammerding, 2011). This ultimately leads to changes in nuclear
structure and organization (Lammerding, 2011; Maurer and
Lammerding, 2019) and regulates cell cycle progression (Uroz
et al., 2018; Vitiello et al., 2019).

As mentioned above, a series of well-coordinated events
ensure timely mitotic entry, starting with chromosome
condensation (Antonin and Neumann, 2016) and cytoskeletal
reorganization (Ramkumar and Baum, 2016; Champion et al.,
2017), and culminating in nuclear permeabilization (Beaudouin
et al., 2002; Salina et al., 2002). In higher eukaryotes, nuclear
permeabilization starts with the removal of nucleoporins from
NPCs (Dultz et al., 2008; Katsani et al., 2008), which triggers a
loss of the nucleo-cytoplasmic boundary. The process continues
with the contribution of dynein-driven, microtubule-dependent
pulling forces, which generate holes in the nucleus and assist
in membrane clearing from chromosomes (Beaudouin et al.,
2002; Salina et al., 2002; Muhlhausser and Kutay, 2007). Finally,
the NL depolymerizes, due to Lamin phosphorylation and
consequent nucleoplasmic release (Heald and McKeon, 1990;
Peter et al., 1990; Georgatos et al., 1997). These steps are essential
to allow the interaction of microtubules with kinetochores on
mitotic chromosomes. In interphase, the mechanical response
of the nucleus is dictated by the chromatin condensation
state (Stephens et al., 2017), the levels of Lamin A (Buxboim
et al., 2017) and the interaction of heterochromatin with the
nuclear membrane (Schreiner et al., 2015). Remarkably, as
cells transition from G2 to mitosis, all the above components
are extensively modified. Phosphorylation of Lamin A by
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CDK1 (Heald and McKeon, 1990; Peter et al., 1990), triggers
its disassembly from the NL and consequent release into
the nucleoplasm (Georgatos et al., 1997). Although direct
measurements of nuclear stiffness at this stage have not been
made, it is possible to assume that NL depolymerization
significantly changes the mechanical response of the nucleus,
facilitating NEB. Accordingly, MEFs with Lamin A/C deficiency
show impaired nuclear stiffness and mechanics (Lammerding
et al., 2004, 2006). This is in line with observations in human
cells, showing that loss of Lamin A renders nuclei softer
(Pajerowski et al., 2007) and prone to rupture (Earle et al.,
2020). Taken together, these observations implicate the NL in
the mechanical stability of the nucleus and highlight the need for
its depolymerization during prophase (Georgatos et al., 1997),
to facilitate microtubule-dependent nuclear permeabilization
(Beaudouin et al., 2002; Salina et al., 2002). At the same time,
mitotic chromosomes condense, altering their structure and
stiffness (Stephens et al., 2017; Sun et al., 2018; Biggs et al.,
2019). Evidence from metaphase chromosomes isolated from
HeLa cells showed this process to be largely dependent on
condensins (Sun et al., 2018), although histone post-translational
modifications also play an important role (Biggs et al., 2019).
Finally, the actin cytoskeleton, which is connected to the
nucleus through the LINC complex (Versaevel et al., 2014),
is remodeled to assemble a mitotic cortex (Ramkumar and
Baum, 2016). This remodeling might modify the connections
between the cytoskeleton and the nucleus, contributing to
changes in nuclear mechanics. Accordingly, disrupting the
actin cytoskeleton in NIH3T3 cells was sufficient to modify the
compressive forces exerted on the nucleus and induce changes
in chromatin organization (Li et al., 2014). Taken together,
these studies suggest that the mechanical properties of the
nucleus change during the G2-M transition and warrant further
investigation on the functional relevance of nuclear mechanics
for mitotic fidelity.

While measurements of the mechanical properties of the
nucleus during the G2-M transition are still missing, there
is already significant evidence to support a role for the
nucleus and nucleus-associated components in other steps of
mitosis, namely in determining chromosome segregation fidelity.
One key component in nuclear mechanotransduction is the
aforementioned LINC complex (Figure 2). This complex consists
of SUN (Sad1, UNC84) proteins in the INM and KASH
(Klarsicht, ANC-1, and Syne Homology)-containing proteins in
the ONM (Starr and Fridolfsson, 2010). Importantly, studies in
MEFs using a microneedle assay to apply controlled cytoskeletal
strains, in combination with dominant-negative forms of SUN
and KASH proteins, showed that an intact LINC complex is
essential for force transmission to the nucleus (Lombardi et al.,
2011). Similarly, in cultured human cells, depletion of both
SUN1 and SUN2 delayed NE disassembly (Figure 2), similarly
to what is observed after microtubule depolymerization with
nocodazole (Turgay et al., 2014). Consequently, centrosome
separation is disrupted (Stiff et al., 2020) and mitotic progression
affected (Turgay et al., 2014). Moreover, an intact LINC complex
is essential during early mitosis for decreasing chromosome
scattering (Booth et al., 2019), likely facilitating their capture and

congression (Booth et al., 2019; Stiff et al., 2020). Importantly,
the LINC complex also directly associates with dynein on the
NE to control nuclear migration (Malone et al., 2003; Zhang
et al., 2009; Fridolfsson and Starr, 2010; Yu et al., 2011) and
meiotic chromosome movement (Chikashige et al., 2006; Sato
et al., 2009). Given that an intact LINC complex is required
for force transmission to the nucleus (Lombardi et al., 2011)
and NE dynein is essential for centrosome positioning (Nunes
et al., 2020), it is possible that LINC-mediated mechanical
forces could play an important part in determining correct
centrosome positioning by ensuring timely dynein loading.
Accordingly, depletion of SUN1 and SUN2 is sufficient to
abolish NE dynein localization (Turgay et al., 2014; Nunes
et al., 2019). Whether this is directly due to a defect in nuclear
mechanotransduction triggered by loss of the LINC complex
remains unknown (Figure 2).

Other nuclear components have also been implicated in
spindle assembly and chromosome segregation. Blocking the
removal of NE membranes at mitotic onset leads to defects in
spindle assembly and chromosome segregation (Turgay et al.,
2014; Champion et al., 2019). Similar defects in membranes
removal could also be triggered by expression of a mutant
version of Lamin A that is observed in progeria patients
(Dechat et al., 2007). However, Lamin A, together with BAF
and LAP2α, is also directly involved in spindle assembly and
orientation by targeting dynein to the cell cortex (Qi et al.,
2015). Moreover, chromosome distribution is altered in LMNA
mutant fibroblasts (Meaburn et al., 2007). Such alterations
could directly affect chromosome distribution during early
mitosis, disrupting the disk-like prometaphase chromosome
organization, essential for spindle assembly (Magidson et al.,
2011). Taken together, these defects could explain why Lamin
A/C deficiency leads to aneuploidy and chromosomal instability
(Dechat et al., 2007; Capo-chichi et al., 2011; Capo-Chichi
et al., 2016; Smith et al., 2018). Interestingly, mitotic problems
are not exclusive to Lamin A. In C. elegans, it was shown
that reduced levels of MAN1 and Emerin, INM proteins
which interact with Lamins and the LINC complex (Piccus
and Brayson, 2020), trigger “anaphase-bridged chromatin” (Liu
et al., 2003), a phenotype also observed in a mouse model
of laminopathy (Pratt et al., 2011), and in human cells with
reduced Lamin A levels (Cao et al., 2007). Moreover, loss of
Lamin B2 in human cells was also shown to trigger chromosomal
instability, by interfering with the spatial organization of
chromosomes (Ranade et al., 2017) and affecting spindle
assembly (Kuga et al., 2014).

Although these reports are compelling, there are alternative
hypotheses to explain how alterations in Lamins could indirectly
trigger mitotic defects. Chromatin is thought to associate
with the NL through specific sequences known as lamina-
associated domains (LADs) (van Steensel and Belmont, 2017)
that are considered to be transcriptionally repressive regions
(Guelen et al., 2008) and help organize chromosomes within
the nuclear volume (Mewborn et al., 2010). Notably, Lamin A
phosphorylation on Ser22, essential for NL depolymerization
during mitotic entry (Heald and McKeon, 1990), was recently
shown to act as a transcriptional regulator (Ikegami et al., 2020),
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FIGURE 2 | The LINC complex in early spindle assembly and chromosome segregation. The LINC complex consists of SUN1/2 trimers on the inner nuclear
membrane (INM) and KASH proteins on the outer nuclear membrane (ONM). In somatic cells, different KASH proteins differentially bind to specific motors (e.g.,
dynein) or to distinct cytoskeletal components. These complexes are able to sense forces relayed by the cytoskeleton and transmit them to the nuclear interior.
During the G2-M transition, SUN proteins are required to remove NE membranes from chromatin and position centrosomes. In addition, an intact LINC complex is
necessary for correct centrosome separation. Whether this is due to LINC complex-dependent loading of dynein on the NE or to nuclear mechanotransduction
remains unclear.

which could explain why LMNA mutants show altered gene
expression patterns (Mewborn et al., 2010). Whether the mitotic
defects triggered by Lamin A loss could be due to changes in its
transcriptional program remains to be determined.

MECHANICAL FORCES IN CELL CYCLE
PROGRESSION

The link between mechanical forces and the cell cycle has long
been recognized (Chen et al., 1997; Huang et al., 1998). In
capillary endothelial cells, tractional forces are sufficient to trigger
the G1-S transition by increasing Cyclin D1 levels and down-
regulating the cell cycle inhibitor p27Kip (Huang et al., 1998).
This likely occurs by force-mediated nuclear deformation that
triggers the activation of transcription factors such as TEAD
and AP1, leading to the induction of genes that promote the
G1-S transition (Aureille et al., 2019). In agreement with these
observations, recent data obtained in MDCK monolayers showed
that both tension and mechanical energy are good predictors of
G1 duration (Uroz et al., 2018).

Other stages of the cell cycle are also mechanically regulated.
In fact, the organization pattern of actomyosin forces sets the
duration of the S and G2 phases, by modulating centriole
duplication and Plk4 recruitment (Vitiello et al., 2019). In

addition, there is evidence from MDCK monolayers and isolated
cells, for a decrease in cell traction forces during G2 and early
mitosis (Uroz et al., 2018; Vianay et al., 2018; Nunes et al.,
2020), which occurs in tandem with the disassembly of FAs
(Dao et al., 2009) and an increased expression of DEPDC1B
(Marchesi et al., 2014). How these events are coordinated is
still unclear. It is possible that, during the G2-M transition,
a FA-generated mechanical signal is relayed from the cell
membrane to the nucleus, triggering DEPDC1B expression,
which would then act as a RhoA inhibitor to regulate adhesion
dynamics (Marchesi et al., 2014). This, together with increased
CDK1 activity (Jones et al., 2018), would set the timing for
FA disassembly and mitotic entry (Gavet and Pines, 2010a,b;
Marchesi et al., 2014).

CONCLUSION

Efficient assembly of a mitotic spindle requires accurate
coordination between cytoplasmic and nuclear events. This is
achieved, at least partly, by the activity and localization of
the Cyclin B1-CDK1 complex (Gavet and Pines, 2010a,b). In
the cytoplasm, CDK1 enables centrosome separation (Smith
et al., 2011) and induces global changes in microtubule
dynamics by directly phosphorylating microtubule-associated
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proteins (MAPs) and modifying their microtubule binding
capacity (Lamb et al., 1990; Verde et al., 1990; Verde et al., 1992).
On the other hand, inside the nucleus, CDK1 contributes to
NPC disassembly (Linder et al., 2017) and NL depolymerization
(Heald and McKeon, 1990; Peter et al., 1990). These biochemical
events trigger a global cellular reorganization that allows the
assembly of an actomyosin cortex and a microtubule-based
mitotic spindle.

In addition to the biochemical pathways controlling mitotic
entry, it has long been proposed that mechanical forces also
regulate the cell cycle (Huang et al., 1998; Lancaster et al.,
2013; Uroz et al., 2018; Vianay et al., 2018; Aureille et al.,
2019). High cellular tension triggers a transition from G1 to
S phase (Huang et al., 1998; Uroz et al., 2018; Aureille et al.,
2019) and also regulates the length of the S-G2 phases of the
cell cycle (Vitiello et al., 2019). In part, this could be due to
tension-generated NE deformation that is sufficient to trigger
mechanically-activated transcriptional programs (Aureille et al.,
2019) and affect cell proliferation (Versaevel et al., 2012). As
cells progress toward mitosis, tension decreases (Uroz et al.,
2018; Vianay et al., 2018; Nunes et al., 2020), likely reflecting
adhesion complex disassembly (Dao et al., 2009), mediated
by increased levels of Cyclin B1 (Gavet and Pines, 2010b;
Jones et al., 2018). Overall, these observations highlight the
interactions between physical forces and the cell cycle machinery
and raise the interesting possibility that mechanical forces
could directly influence the biochemical signals that control
mitotic entry, contributing to the fidelity of chromosome
segregation. As new tools emerge that allow us to probe the
physical properties of cells, we will gain further insight on
how the spatiotemporal dynamics of nuclear mechanics and

nucleus-cytoskeleton coupling contribute to spindle assembly
efficiency and chromosome segregation fidelity.
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PLANT MICROTUBULES AND MICROTUBULE-ASSOCIATED
PROTEINS

The plant cytoskeleton is a highly dynamic filamentous system and plays important roles in
various intracellular processes including cell division, intracellular trafficking, immune responses,
and stress tolerance (Li and Staiger, 2018; Livanos and Müller, 2019). Although both actin and
microtubules are essential in the determination of cell morphology and organ shape, in this article
we will mainly focus on microtubules, which are regulated by various microtubule-associated
proteins (MAPs). Aberrant expression of MAPs affects microtubule organization and consequently
cell function and morphogenesis (Ruan et al., 2018). Microtubules are essential in cell wall
formation by guiding the directional movement of cellulose synthase complexes in the plasma
membrane (PM) (Paredez et al., 2006). Perturbation of microtubule functions often leads to
changes in cell wall composition and cell stiffness, ultimately affecting cell expansion and plant
architecture. Loss- or gain-of-function in several MAPs and MT-related proteins, e.g., IQ67-
Domain proteins (IQD) and Rho of plant GTPases (ROPs), leads to anisotropic or helical
growth phenotypes in petals, cotyledons and hypocotyls, which are attributed to the alteration of
microtubule organization (Yang et al., 2019; Zang et al., 2021). In dividing plant cells, microtubules
form unique structures such as the preprophase band, the acentrosomal mitotic spindle, and the
phragmoplast, essential for cell plate directional expansion (Figure 1A).

Although the structure and function of microtubules is similar across kingdoms, plants
have evolved specific regulatory mechanisms to coordinate cytoskeletal functions in response to
incoming signals. Within these diverse signaling pathways, calcium ions (Ca2+) serve as universal
second messengers and several studies implicate roles of Ca2+ in regulation of the cytoskeleton
(Hepler, 2016). Ca2+ signals may be integrated at microtubules via differential binding of
calmodulin (CaM)-Ca2+ sensors to severalMAPs (Kölling et al., 2019). One class of CaM targets are
IQDs, which are plant-specific microtubule binding proteins that may recruit CaM tomicrotubules
and other specific subcellular compartments in response to Ca2+ signals to coordinate plant
development and cell shape formation (Bürstenbinder et al., 2013, 2017; Zang et al., 2021).
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THE REGULATION OF CORTICAL
MICROTUBULES IN LEAF PAVEMENT
CELL SHAPE

Leaf pavement cells emerged as a popular model system to study
the formation of complex cell shapes. In several species, including
Arabidopsis, pavement cells display an interlocking jigsaw
puzzle-shape appearance, whose development relies on polarity
establishment and is influenced by the cytoskeleton, hormonal
signals, and mechanical stress (Bidhendi et al., 2019; Pan et al.,
2020). The removal of actin filaments or actin regulating proteins
(e.g., ARP2/3; SCAR/WAVE) leads to smaller lobes (Cifrová et al.,
2020) suggesting that cortical actin filaments that localize to the
growing lobe tips may regulate lobe outgrowth. In pavement
cells, cortical microtubules are persistently enriched in periclinal
walls at the convex side of lobes and mutants defective in MAPs
often display defects in lobe formation and/or growth (Armour
et al., 2015; Wong et al., 2019). Microtubules thus may generate a
patch of anisotropic strain or guide a local thickening of the cell
wall to restrict growth and promote lobe formation (Figure 1B)
(Altartouri et al., 2019; Wong et al., 2019).

A recent study proposed the role of auxin gradient in
regulating the pavement cell pattern through transmembrane
kinase 1 (TMK1)-dependent ROP6 nanoclustering at the PM
(Grones et al., 2020). The activated ROP6 nanoclusters recruit
RIC1 (ROP-interactive CRIBmotif-containing protein 1) effector
proteins, which localize at cortical microtubules and interact with
Katanin1 (KTN1) to promote microtubule ordering and lead to
the formation of indentations (Figures 1B,C) (Ren et al., 2017;
Pan et al., 2020). Interestingly, IQD13, a protein that interacts
with cortical microtubules and the PM, regulates the distribution
of active ROP domains on the PM in differentiating metaxylem
cells (Sugiyama et al., 2017). Therefore, it is likely that IQD
proteins may interact with other MAPs and regulate ROP activity
in non-xylem cells in a similar way, such as IQD5 that is also
enriched at indentation sites (Figure 1C) (Liang et al., 2018;
Mitra et al., 2019; Li et al., 2020).

In contrast, other work supports a turgor-driven mechanical
model for the regulation of interlocking patterns. The
localized mechano-stress asymmetry could trigger the local
MT rearrangement and subsequent local cellulose deposition
coupled with de-esterified pectin, collectively contributing to
local cell wall reinforcement, outgrowth restriction, and the
formation of indentation regions (Majda et al., 2017; Bidhendi
et al., 2019). Therefore, the interplay among plant hormones,
microtubule regulators and mechano-sensing are complicated
but exciting stories for future studies.

In addition, it is known that the structure of microtubules or
actin can be influenced by each other. Cells with dysfunctional
actin networks also exhibit alternations in microtubule
organization (Cifrová et al., 2020). Our recent study has revealed
a plant specific actin-microtubule bridging complex, consisting
of Networked protein 3C (NET3C), Kinesin Light Chain-
Related/Cellulose Microtubule Uncoupling1 (KLCR1/CMU1)
and IQDs. These proteins localize to membrane interfaces,
and cross link the ER network, PM, actin cytoskeleton, and
microtubules (Zang et al., 2021). Their respective mutants all

exhibit defects in pavement cell morphogenesis, implicating
a function of membrane contact sites and the cytoskeleton-
membrane interface in microtubule regulation (Figure 1B).
Therefore, as the ER, PM, and cytoskeleton are closely
associated, affecting membrane lipid or protein composition
may also affect cytoskeleton organization, producing a net effect
on cell morphologies.

MICROTUBULE REGULATING PROTEINS
ARE COMMON GENETIC TRAITS FOR
MORPHOLOGICAL DIVERSITY OF CROP
PLANTS

Likewise, the shape determination of other plant organs is
likely conserved, and fruit (or seed) shape establishment is
a good example. Fruits exhibit a great diversity, from simple
spherical and cylindrical structures to more complex shapes.
Their morphogenesis is tightly controlled by cell expansion and
cell division (Figure 1D). In agreement with this hypothesis,
recent discoveries indicate that genes encoding microtubule
related proteins are regularly identified to affect fruit shape from
independent genetic mapping studies (Wu et al., 2018; Yang et al.,
2020). A prominent example are IQD proteins, which emerged as
key regulators of organ morphogenesis during domestication. In
tomato, watermelon, cucumber, and rice, the expression level of
IQDs is positively associated with elongated fruit/seed shape (Wu
et al., 2011; Pan et al., 2017; Dou et al., 2018; Yang et al., 2020).

In rice, the expression level of OsIQD14 or OsIQD26 proteins,
which act in auxin and brassinosteroid signaling pathways
respectively, are directly related to the weight and length of
grains, possibly by regulating cell proliferation in spikelet hulls
through a microtubule dependent pathway (Figure 1C, Duan
et al., 2017; Yang et al., 2020). Similarly, the tomato sun
mutant, which exhibits higher expression of SlIQD12, has longer
fruits than the wild type, producing excessive longitudinal cell
divisions and decreased cell division in the transverse direction.
This suggests that changes in the cell division patterns and
rearranging directional cell expansion contribute significantly
to fruit elongation (Wu et al., 2011). A recent study found
that OsRac1, a member of ROP-GTPases, controls rice grain
size and yield by promoting cell division (Zhang et al., 2019).
In maize, rop mutants show asymmetric cell division in guard
cells, due to the disruption of cortical division zone positioning
(Humphries et al., 2011). Intriguingly, several IQD proteins
identified to date localize to interphase microtubules and mitotic
microtubules, including the preprophase band, mitotic spindle,
or phragmoplast (Bürstenbinder et al., 2017; Liang et al.,
2018). Therefore, ROP and IQD proteins may be involved in
determination of cell division patterns in crop fruits and other
plant organs (Figure 1E).

IQD proteins share hallmarks of scaffold proteins that
interact with multiple MAPs, likely providing a platform
for macromolecular complex assemblies that regulate the
microtubule structure (Bürstenbinder et al., 2013, 2017). A
recent study showed that the Arabidopsis MAP, Spiral2 (SPR2)
physically interacts with IQD18, and this interaction is reduced
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FIGURE 1 | Schematic summary of the organization of plant organ shape regulated by microtubules. (A) Localization of microtubules during cell division. BY-2 cells

were immuno-labeled with anti-tubulin (microtubules, green) and DAPI (magenta, DNA). Microtubules rearrange throughout prophase, metaphase, and telophase to

form the preprophase band (PPB), spindle apparatus, and phragmoplast, respectively. Bars, 10µm. (B) Leaf pavement cells display a typical jigsaw puzzle-shape

appearance. During lobe formation, cortical microtubules are enriched at convex neck regions. MT-PM contact sites may take part in reorganization of microtubule

arrays through IQDs-KLCR and ROP6-RIC1 proteins, whose mutants show more circular pavement cells and disorganized cytoskeletal networks. (C) Model of ROP

and IQD pathways and their (proposed) role in regulating cell growth and division. Auxin signals activate ROPs, and recruit RIC1, KTN1 or other MAPs to promote

microtubule ordering. On the other hand, auxin signals also activate IQDs, which regulate the distribution of ROPs on the PM and the organization of microtubules,

(Continued)
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FIGURE 1 | and direct the orientation of cell growth and division. (D) Fruit shapes are controlled by the direction of cell division and cell expansion. During anisotropic

growth, the orientation of cortical microtubules is perpendicular to the direction of cell expansion. For example, in elongated fruits, cell expansion is likely oriented

longitudinally and microtubules are aligned transversely. (E) The position of the PPB marks the site of cell division. The positional information is maintained by a

polarized membrane domain, termed CDZ. The new cell wall is inserted at the cell center by the phragmoplast, which guides the growing cell plate toward the CDZ.

The direction of cell division will greatly influence organ shape. Altered expression of ROPs may affect division plane positioning. Mutants in KTN1 display delayed

phragmoplast growth. Division plane determination may further be controlled by other shape regulators such as IQDs or other MAPs.

in the presence of Ca2+ (Wendrich et al., 2018). KTN1 severs
microtubules at crossovers and promotes microtubule bundle
formation. Free SPR2 may bind to microtubule minus ends
and promote KTN1-dependent severing, resulting in increased
microtubule dynamics (Nakamura et al., 2018; Wendrich et al.,
2018). Similarly, IQDs may control cell division orientation by
coordinating the severing activity of KTN1 during cytokinesis
(Komis et al., 2017; Li et al., 2020). Moreover, phenotypic
studies of ktn1 mutants showed defective organization of
mitotic microtubule arrays, delayed cytokinetic progression,
and unstable PPB organization, all of which lead to excessive
longitudinal cell divisions at ectopic positions (Figures 1C,D),
similar to those observed in the fruit organ of sun mutant
(Panteris et al., 2011; Komis et al., 2017; Ovečka et al., 2020).

In Arabidopsis, IQD5 stabilizes microtubules and regulates
pavement cell morphogenesis, possibly by controlling the rates
of cellulose deposition in anticlinal cell walls (Liang et al., 2018;
Mitra et al., 2019). Similarly, IQD16, also termed Abnormal
Shoot 6 (ABS6), mediates cortical microtubule organization, and
pavement cell expansion (Bürstenbinder et al., 2017), which may
involve physical interaction with the microtubule severing factor
KTN1 (Li et al., 2020). Interestingly, aberrant expression of many
IQD proteins changes pavement cell shape. IQDs may affect
anisotropic cell expansion by recruiting CaMs and CaM-Likes
(CMLs) and/or KLCR/CMUs, and rearrange the microtubule
cytoskeleton topology and cellulose deposition not only during
pavement cell development (Figure 1C) (Bürstenbinder et al.,
2013; Mitra et al., 2019). Altered abundance of IQDs thus may
override stress-derived growth patterns and manipulating IQD
expression levels may provide a promising strategy in de novo
domestication approaches to generate fruit organs with altered
shape. Additionally, fruit shape is also partially regulated by
proteins of the TRM (TONNEAU1 Recruiting Motif) family,
which are subunits of a TTP (TON1-TRM-PP2A) complex
(Spinner et al., 2013). Overexpression or loss-of-function of
TRMs in rice and tomato changes cell elongation and cell
division, producing elongated or shortened grains and fruits
(Wang et al., 2015; Wu et al., 2018).

CONCLUSION AND FUTURE
PERSPECTIVE

The regulation of microtubule organization is affected by
multiple signals, such as plant hormones (e.g., ethylene,

brassinosteroids), mechanical forces, and light (Ma et al.,
2018; Ruan et al., 2018), which we have not discussed
here in detail because of length constrains. It is noteworthy
that plant hormones are commonly applied in agriculture.
Thus, manipulating microtubule function precisely through
exogenous application of these hormones may provide an
alternative approach for crop cultivation, fruit shape and
quality establishment. On the other hand, current studies on
the function of microtubules in cell morphogenesis mainly
rely on simple experimental systems, such as root and leaf
pavement cells (a two-dimensional system). The real situation
in fruits and other complex-shaped organs might be different.
As each individual cell can sense the pressure and stereo-
hinderance generated by neighboring cells, such feed-back
mechanisms also affect cellular heterogeneity and microtubule
organization (Long et al., 2020). Therefore, further studies of
cytoskeleton structure and dynamics in more complex tissues,
although challenging, will certainly advance our knowledge
in the field.

AUTHOR CONTRIBUTIONS

ZB, ZX, and PW wrote the manuscript. ZB and JZ drew
the schematic diagram. ZX arranged the references. KB and
PW proposed some suggestions and modification opinions.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the National Key Research and
Development Program (2018YFD1000200), NSFC grant (nos.
91854102 and 31772281), Fundamental Research Funds for the
Central Universities (no. 2662018PY036) to PW and by core-
funding of the Leibniz Society and grants of the Deutsche
Forschungsgemeinschaft (DFG, BU2955/1-1 and BU2955/2-1),
and the German-Israeli Foundation for Scientific Research and
Development (GIF) to KB.

ACKNOWLEDGMENTS

We greatly acknowledge the work conducted in the field of
cytoskeleton research and apologize to all authors whose primary
research could not be cited due to space limitations.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 March 2021 | Volume 9 | Article 64962695

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Bao et al. Microtubules Function in Shaping Organs

REFERENCES

Altartouri, B., Bidhendi, A. J., Tani, T., Suzuki, J., Conrad, C., Chebli, Y.,
et al. (2019). Pectin chemistry and cellulose crystallinity govern pavement
cell morphogenesis in a multi-step mechanism. Plant Physiol. 181, 127–141.
doi: 10.1104/pp.19.00303

Armour, W. J., Barton, D. A., Law, A. M., and Overall, R. L. (2015).
Differential growth in periclinal and anticlinal walls during lobe formation
in Arabidopsis cotyledon pavement cells. Plant Cell 27, 2484–2500.
doi: 10.1105/tpc.114.126664

Bidhendi, A. J., Altartouri, B., Gosselin, F. P., and Geitmann, A. (2019). Mechanical
stress initiates and sustains the morphogenesis of wavy leaf epidermal cells. Cell
Rep. 28, 1237–1250. doi: 10.1016/j.celrep.2019.07.006

Bürstenbinder, K., Möller, B., Plötner, R., Stamm, G., Hause, G., Mitra, D., et al.
(2017). The IQD family of calmodulin-binding proteins links calcium signaling
to microtubules, membrane subdomains, and the nucleus. Plant Physiol. 173,
1692–1708. doi: 10.1104/pp.16.01743

Bürstenbinder, K., Savchenko, T., Müller, J., Adamson, A. W., Stamm, G., Kwong,
R., et al. (2013). Arabidopsis calmodulin-binding protein IQ67-domain 1
localizes to microtubules and interacts with kinesin light chain-related protein-
1. J. Biol. Chem. 288, 1871–1882. doi: 10.1074/jbc.M112.396200

Cifrová, P., Oulehlová, D., Kollárová, E., Martinek, J., Rosero, A., Žárský, V., et al.
(2020). Division of labor between two actin nucleators-the Formin FH1 and the
ARP2/3 complex-inArabidopsis epidermal cell morphogenesis. Front. Plant Sci.
11:148. doi: 10.3389/fpls.2020.00148

Dou, J., Zhao, S., Lu, X., He, N., Zhang, L., Ali, A., et al. (2018). Genetic mapping
reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus
lanatus L.). Theor. Appl. Genet. 131, 947–958. doi: 10.1007/s00122-018-3050-5

Duan, P., Xu, J., Zeng, D., Zhang, B., Geng, M., Zhang, G., et al. (2017). Natural
variation in the promoter of GSE5 contributes to grain size diversity in rice.
Mol. Plant. 10, 685–694. doi: 10.1016/j.molp.2017.03.009

Grones, P., Majda, M., Doyle, S. M., Van Damme, D., and Robert, S.
(2020). Fluctuating auxin response gradients determine pavement
cell-shape acquisition. Proc. Natl. Acad. Sci. U.S.A. 117, 16027–16034.
doi: 10.1073/pnas.2007400117

Hepler, P. K. (2016). The cytoskeleton and its regulation by calcium and protons.
Plant Physiol. 170, 3–22. doi: 10.1104/pp.15.01506

Humphries, J. A., Vejlupkova, Z., Luo, A., Meeley, R. B., Sylvester, A. W.,
Fowler, J. E., et al. (2011). ROP GTPases act with the receptor-like protein
PAN1 to polarize asymmetric cell division in maize. Plant Cell 23, 2273–2284.
doi: 10.1105/tpc.111.085597

Kölling, M., Kumari, P., and Bürstenbinder, K. (2019). Calcium- and calmodulin-
regulated microtubule-associated proteins as signal-integration hubs at
the plasma membrane-cytoskeleton nexus. J. Exp. Bot. 70, 387–396.
doi: 10.1093/jxb/ery397
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The Nuclear Mitotic Apparatus
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Nuclear Formation, Spindle
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Tomomi Kiyomitsu* and Susan Boerner

Cell Division Dynamics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan

The nuclear mitotic apparatus (NuMA) protein is well conserved in vertebrates, and
dynamically changes its subcellular localization from the interphase nucleus to the
mitotic/meiotic spindle poles and the mitotic cell cortex. At these locations, NuMA
acts as a key structural hub in nuclear formation, spindle assembly, and mitotic
spindle positioning, respectively. To achieve its variable functions, NuMA interacts with
multiple factors, including DNA, microtubules, the plasma membrane, importins, and
cytoplasmic dynein. The binding of NuMA to dynein via its N-terminal domain drives
spindle pole focusing and spindle positioning, while multiple interactions through its
C-terminal region define its subcellular localizations and functions. In addition, NuMA can
self-assemble into high-ordered structures which likely contribute to spindle positioning
and nuclear formation. In this review, we summarize recent advances in NuMA’s
domains, functions and regulations, with a focus on human NuMA, to understand
how and why vertebrate NuMA participates in these functions in comparison with
invertebrate NuMA-related proteins.

Keywords: NuMA, spindle, nuclear formation, dynein, Ran-GTP

INTRODUCTION

The nuclear mitotic apparatus (NuMA) protein was initially identified as a non-histone chromatin
protein in human cell lines (Lydersen et al., 1980) and named after its localization pattern to
both the interphase nucleus and mitotic spindle poles (Lydersen and Pettijohn, 1980; Figure 1A).
Since NuMA’s dynamic translocation from the nucleus to the spindle poles was different from
previously characterized nuclear components, NuMA was regarded as a novel class of nuclear
protein, involved in both mitosis and nuclear reformation (Compton and Cleveland, 1994). Over
the last 40 years, NuMA has been extensively studied in mammalian cultured cells, Xenopus egg
extracts, and other vertebrate models (Cleveland, 1995; Sun and Schatten, 2006; Radulescu and
Cleveland, 2010). One of the key findings early on was that NuMA interacts with cytoplasmic
dynein to tether microtubules to spindle poles (Merdes et al., 1996). Later studies confirmed and
expanded upon this result, positioning NuMA as a mitotic dynein adaptor, as described below.

Another important finding was that NuMA interacts with leucine/glycine/asparagine-repeat-
containing protein (LGN) to form the evolutionarily conserved NuMA/LGN/Gαi complex at
the mitotic cell cortex (Du and Macara, 2004). This study led to the discovery that NuMA
plays a conserved role at the mitotic cell cortex for spindle positioning like C. elegans LIN-5
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FIGURE 1 | Nuclear mitotic apparatus (NuMA’s) functions during the cell cycle. (A) Images of endogenous NuMA fused with mClover in human HCT116 cells
(Okumura et al., 2018). NuMA accumulates in the nucleus in interphase, but mainly localizes at the spindle poles in metaphase. NuMA is also targeted to the cell
cortex near the spindle poles during metaphase, and the level increases during anaphase (Collins et al., 2012; Kiyomitsu and Cheeseman, 2013; Kotak et al., 2013;
Seldin et al., 2013; Zheng et al., 2014). Scale bars = 10 µm. (B) Schematic showing how NuMA (blue) dynamically changes its subcellular localization during the cell
cycle. Chromosomes and microtubules are shown in pink and green, respectively. Key functions of NuMA at these locations are summarized.

(Lorson et al., 2000; Srinivasan et al., 2003) and Drosophila
Mud [Bowman et al., 2006; Izumi et al., 2006; Siller et al.,
2006; The first publication is Lorson et al. (2000)]. Building
on this, and other pioneering work on asymmetric cell division
in C. elegans and Drosophila (Galli and van den Heuvel,
2008; Gonczy, 2008; Siller and Doe, 2009), further studies
have established the conceptual framework that cortical cues
converge on a conserved ternary complex, NuMA/LGN/Gαi in
vertebrates, Lin-5/GPR-1/2/Gα in C. elegans, and Mud/Pins/Gα

in Drosophila, that recruits and activates dynein to position
the spindle in asymmetric division (Lechler and Fuchs, 2005;
Poulson and Lechler, 2010; Morin and Bellaiche, 2011; Williams
et al., 2011). In symmetrically-dividing vertebrate cells, the
NuMA/LGN/Gαi complex is also involved in recruiting dynein
and controlling spindle position and orientation (Figure 1A;
Woodard et al., 2010; Peyre et al., 2011; Collins et al.,
2012; Kiyomitsu and Cheeseman, 2012; Kotak et al., 2012;
Kiyomitsu, 2019).

Interestingly, the cortical function seems to be most conserved
in NuMA-related proteins. For example, LIN-5 and Mud localize

at both spindle poles and the cell cortex, but only serve an
essential function at the cell cortex for spindle positioning and
are non-essential for bipolar spindle assembly (Lorson et al.,
2000; Bowman et al., 2006; Izumi et al., 2006; Siller et al., 2006).
In addition, yeast Num1 was recently proposed as a functional
homolog of NuMA based on its functional similarities at the
cell cortex (Greenberg et al., 2018). Intriguingly, plants lack
a homolog of NuMA, as well as cytoplasmic dynein (Yamada
and Goshima, 2017), suggesting that plants have developed
alternative mechanisms to control nuclear formation, spindle
assembly and positioning.

In the last 10 years, many functional domains of human
NuMA were identified, providing useful information to
understand NuMA’s functions and regulations at the molecular
level. In this review, we focus on vertebrate NuMA because
several features, such as nuclear localization, appear to be specific
to this group. We begin with an overview of the localization and
the structural domains of the human NuMA protein, and then
discuss how vertebrate NuMA participates in spindle assembly,
spindle positioning and nuclear formation.
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LOCALIZATION AND AN OVERALL
STRUCTURE OF NuMA

In cultured human cells, NuMA accumulates in the nucleus in
interphase and at the spindle poles and cell cortex during mitosis
(Figure 1A). NuMA’s spindle-pole localization is most likely
conserved in all cell types, including meiotic cells (Taimen et al.,
2004; Alvarez Sedo et al., 2011; Kolano et al., 2012), but its nuclear
and cortical localization may vary in different developmental
contexts: nuclear NuMA is degraded in some specialized cells,
such as smooth and skeletal muscle fibers (Merdes and Cleveland,
1998; Figure 1B left). Furthermore, cortical NuMA targeting
is differentially regulated between symmetric and asymmetric
division in mouse epidermal cells (Poulson and Lechler, 2010).

Human NuMA is a large (∼238 kDa) protein that consists
of N-terminal and C-terminal globular domains and a central
long coiled-coil domain (Compton et al., 1992; Yang et al., 1992;
Figure 2A). Full length NuMA expressed in E. coli forms a
homo-dimer using the coiled-coil region (Harborth et al., 1995;
Forth et al., 2014). Purified NuMA shows a long rod-shaped
structure that has globular ends and a central long (∼210 nm)
α-helical domain that appears more or less flexible (Harborth
et al., 1995, 1999; Figure 2A). The globular domains interact with
many factors, whereas the central region has structural and likely
intramolecular regulatory roles as described below.

DYNEIN-BINDING DOMAINS IN THE
N-TERMINAL REGION OF NuMA

The N-terminal region is required to interact with cytoplasmic
dynein and dynactin complexes during mitosis (Kotak et al.,
2012). A recent structural study revealed that NuMA1−153

contains a Hook domain that directly interacts with dynein
light intermediate chain (LIC) 1 and 2 (Renna et al., 2020;
Figure 2B; all domains are listed in Table 1). The authors
also identified a CC1-box like motif, NuMA360−385, adjacent to
the Hook domain which forms part of the binding interface
between NuMA and LIC (Renna et al., 2020; Figure 2B). In
addition, NuMA417−422 contains a Spindly-like motif which is
well conserved in vertebrates (Okumura et al., 2018; Tsuchiya
et al., 2021), and may interact with the dynactin point-end
complex (Gama et al., 2017; Lee et al., 2020). As NuMA1−505,
but not NuMA1−413 and NuMA214−705, is sufficient for dynein
recruitment to the cell cortex (Okumura et al., 2018), multiple
interaction sites in the N-terminal region appear to be important
to stably interact with the dynein-dynactin complex during
mitosis. These studies indicate that NuMA acts as a dynein
activating adaptor (Lee et al., 2020), but in contrast to other
established dynein adaptors such as BICD2 (McKenney et al.,
2014; Schlager et al., 2014), its ability to form a ternary complex
with purified dynein and dynactin and activate dynein motility
in vitro has not been shown; post translational modifications may
be required to form dynein–dynactin–NuMA complexes during
mitosis.

On the other hand, the interphase role of the N-terminal
region of NuMA is not clear. Although both N-terminal and

C-terminal globular domains contain several S/TPXX motifs
which are supposed to contribute to DNA binding (Suzuki,
1989), the N-terminal NuMA fragments do not show clear DNA
or chromatin binding compared to NuMA’s C-terminal (Serra-
Marques et al., 2020). However, the N-terminal domain may
contribute to the lattice formation of NuMA oligomers in the
nucleus (Gueth-Hallonet et al., 1998; Harborth et al., 1999), as
described below.

THE CENTRAL LONG COILED-COIL
DOMAIN OF NuMA

Electron micrographs of recombinant human NuMA indicate
that the central region forms a long flexible rod-shaped structure
(Harborth et al., 1995; Figure 2A). One of most important
functions of the central region is homo-dimerization. In vitro
studies suggest that either the N-terminal (199–432 or 1–400
a.a) or C-terminal part (670–1700 a.a.) of the central coiled-
coil is sufficient to form a homo-dimer (Harborth et al., 1995;
Forth et al., 2014). Dimerization is most likely critical for most
NuMA functions, including dynein binding via its N-terminal
Hook domain (Renna et al., 2020) and microtubule cross-linking
activities via the C-terminal domain (Forth et al., 2014).

The predicted long coiled-coil region of vertebrate NuMA
proteins, which exceeds 1,000 a.a. in length, is likely to perform
other important functions. Transient overexpression of wild type
NuMA in HeLa cells induced a regular nuclear lattice structure
which has quasi-hexagonal organization (Gueth-Hallonet et al.,
1998). Interestingly, an addition or deletion in the coiled-coil
domain changed the spacing of the hexagons, suggesting that
the central coiled-coil defines the length of the nuclear lattice
structure (Gueth-Hallonet et al., 1998; Harborth et al., 1999).

Recently, Serra-Marques et al. (2020) found that the long
coiled-coil is also required for the formation of a single, round
nucleus, and that this role is independent from NuMA’s role
in spindle formation. In addition, the authors revealed that a
small portion of the coiled-coil213−705 is sufficient to prevent
NuMA’s C-terminal region from binding chromosomes during
late metaphase and anaphase (Serra-Marques et al., 2020).

At the mitotic cell cortex, the coiled-coil region of
NuMA706−1699 is required to generate proper spindle pulling
forces when NuMA constructs are targeted to the membrane
during mitosis (Okumura et al., 2018). However, the coiled-coil
region is dispensable for bipolar spindle formation (Hueschen
et al., 2017). At the cell cortex, the long coiled-coil may be used
to separate dynein from the actin-rich cell cortex and/or to
increase the efficiency of astral microtubule capture by cortical
NuMA-dynein complexes during mitosis (Kiyomitsu, 2019).

MICROTUBULE-BINDING DOMAINS IN
NuMA’S C-TERMINAL REGION

The C-terminal globular region of NuMA1700−2115 contains
several important domains that determine its localization
and function (Figure 2C). First, this region contains two
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FIGURE 2 | NuMA’s domain structure. (A) Diagrams of full length NuMA. Human NuMA isoform 1 (NP_006176) consists of 2,115 amino acids (a.a.) (Yang et al.,
1992), whereas NuMA isoform 2 (NP_001273490) is lacking 14 a.a. at the 1,539–1,552 region (Compton et al., 1992). In this review, we refer to isoform 1. NuMA
forms a homodimer through its central coiled-coil region. The central rod-shaped structure has an average length of ∼207 nm and a thickness of ∼2–3 nm, while
N-terminal and C-terminal globular structures show a diameter of ∼14 and ∼15 nm, respectively (Harborth et al., 1995). (B) Domains in the N-terminal region.
(C) Domains, motifs, phosphorylation sites, and functional regions in the C-terminal region of NuMA. See the text and Table 1 for details. NuMA1944−2003,
corresponding to either exon 22 for mice or exon 24 for human, was deleted in Silk et al. (2009); Kolano et al. (2012), and Tsuchiya et al. (2021), instead of depleting
the complete MTBD1.

microtubule binding domains (MTBDs); here we refer to them
as MTBD11914−1985 (Du et al., 2002) and MTBD22002−2115

(Gallini et al., 2016; Chang et al., 2017; Figure 2C). Although
MTBD1 has weaker microtubule-binding affinity than MTBD2

in vitro (Chang et al., 2017), MTBD1 contains the conserved
NuMA–LIN-5–Mud (NLM) motif1922−1957 (Siller et al., 2006)
and acts to establish and maintain spindle-pole focusing
(Figure 3A) in mouse fibroblasts (Silk et al., 2009), mouse
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TABLE 1 | A summary of NuMA’s domain and modifications.

Region (a.a.) Domain and modification References

1–153 Hook domain that interacts
with LIC 1 and 2

Renna et al., 2020

1–213 Globular domain Radulescu and
Cleveland, 2010

1–505 Sufficient for cortical dynein
recruitment

Okumura et al., 2018

360–385 CC1-box like motif Renna et al., 2020

417–422 Spindly-like motif Okumura et al., 2018;
Tsuchiya et al., 2021

199–432 Dimerization Harborth et al., 1995

670–1700 Dimerization Harborth et al., 1995

1–400 Dimerization Forth et al., 2014

Coiled-coil
region
(706–1699)

Required for spindle pulling
force generation. Inhibits
chromatin binding during
anaphase and promotes
the formation of a single
round nucleus

Okumura et al., 2018;
Serra-Marques et al.,
2020

1699–1876 Membrane binding region
(Mem-BD) 1

Kotak et al., 2014

1701–1725 Cleavage site during
apoptosis

Gueth-Hallonet et al.,
1997

1701–1981 C-tail1 + 2A: sufficient for
minus-end targeting

Hueschen et al., 2017

1768–1777 Clustering domain Okumura et al., 2018

1788–1925 Sufficient for metaphase
cortical localization

Seldin et al., 2013

1802–1824 4.1 protein binding region Mattagajasingh et al.,
2009

1811–1985 NuMA-TIP Seldin et al., 2016

1861–1928 Longer binding region of
LGN7−367

Pirovano et al., 2019

1900–1926 Minimal binding region of
LGN

Zhu et al., 2011b

1914–1985 Microtubule binding domain
(MTBD) 1

Du et al., 2002

1922–1957 NLM motif Siller et al., 2006

1944–2003 Human exon 24 (=mouse
exon 22)

Silk et al., 2009; Gallini
et al., 2016

1996–2074 Membrane binding region
(Mem-BD) 2

Zheng et al., 2014

1988–2005 NLS sequence Tang et al., 1994;
Chang et al., 2017

2002–2115 Microtubule binding domain
(MTBD) 2

Gallini et al., 2016;
Chang et al., 2017

2058–2115 DNA binding domain Rajeevan et al., 2020

Y1774 Phosphorylation residue by
ABL1

Matsumura et al., 2012

SS1833/34 Phosphorylation residues
by Plk1

Kettenbach et al., 2011

S1969 Phosphorylation residue by
Aurora-A kinase (at spindle
pole)

Gallini et al., 2016;
Kotak et al., 2016

T2055 Phosphorylation residue by
CDK (during metaphase)

Compton and Luo,
1995; Kotak et al.,
2013

Full length
NuMA

MARs (DNA sequence)
binding

Luderus et al., 1994

meiosis I spindle (Kolano et al., 2012), and human HCT116 cells
(Tsuchiya et al., 2021).

In some cells, such as mouse keratinocytes, MTBD1 is
not required for spindle pole focusing, but is required for
spindle orientation (Seldin et al., 2016). Full length NuMA
accumulates at the minus-end of microtubules, and the
NuMA1701−1981 fragment, called C-Tail1 + 2A, is sufficient for
minus-end recognition (Hueschen et al., 2017). In addition,
NuMA’s dimerized C-terminal fragment that crosslinks two
parallel microtubules tends to move in the minus-end direction
under forces (Forth et al., 2014). However, intriguingly,
the NuMA1811−1985 fragment, called NuMA-TIP, appears to
preferentially accumulate at the curling microtubule ends, and
can remain attached to the depolymerizing microtubule plus-
end (Seldin et al., 2016). The authors propose that this unique
property of MTBD1 may be important to facilitate the interaction
of astral microtubule plus-ends with NuMA at the cell cortex
during spindle orientation (Seldin et al., 2016). However, in
human cells, MTBD2, but not MTBD1, is required for spindle
pulling activity when NuMA constructs are targeted to the
cell cortex (Okumura et al., 2018). Interestingly, MTBD2 can
bind both the microtubule lattice and tubulin dimers (Pirovano
et al., 2019), indicating that MTBD2 may act not only for
astral microtubule binding, but also for regulating plus-end
dynamics of astral microtubules during the cortical pulling-force
generation. How and when the MTBDs come into play during
spindle pole focusing and orientation likely depends on the
cellular context (Borgal and Wakefield, 2018).

CORTICAL TARGETING DOMAINS IN
NuMA’S C-TERMINAL REGION

NuMA’s C-terminal domain also defines its cortical localization
during mitosis by binding to LGN, band 4.1 proteins and
the plasma membrane. Whereas LGN is targeted to the cell
cortex by binding to GDP-bound Gαi through its C-terminal
GoLoco motif, LGN binds and links NuMA to the cell cortex
using its N-terminal TPR motif (Figure 3B). LGN and Gαi are
indispensable for cortical localization of NuMA in metaphase
(Du and Macara, 2004; Woodard et al., 2010; Kiyomitsu and
Cheeseman, 2012; Kotak et al., 2012). Zhu et al. (2011b) identified
the NuMA1900−1926 peptide as the minimal region required
to bind to the inner groove of LGNTPR. This LGN-binding
domain partially overlaps with MTBD1 (Figure 2C), and LGN
binding thus inhibits the microtubule binding activity of NuMA
in vitro (Du et al., 2002; Figure 3, green asterisk). Recently,
Pirovano et al. (2019) revealed that a longer NuMA1861−1928

region forms a hetero-hexamer with LGN7−367, in which
an extended NuMA1861−1880 region hooks onto an adjacent
LGN to form oligomers. Consistently, expression of a longer
NuMA1788−1925 fragment is targeted to the LGN-localizing
metaphase cell cortex, whereas a shorter one, NuMA1892−1925, is
not (Seldin et al., 2013).

However, given the complicated cortical protein network,
additional mechanisms might contribute to cortical NuMA–
LGN targeting and stability. In fact, it has been shown that
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FIGURE 3 | Physical interaction map of NuMA at the spindle pole and the mitotic cell cortex. (A) Models of the spindle pole focusing function of NuMA. Using two
microtubule-binding C-terminal globular domains, the NuMA homodimer bundles and crosslinks microtubules around the spindle pole region (Radulescu and
Cleveland, 2010; Forth et al., 2014). In addition, NuMA recognizes the minus-ends of spindle microtubules and recruits the dynein-dynactin complex, which
transports NuMA-bound spindle microtubules toward poles, resulting in microtubule focusing at the poles (Hueschen et al., 2017). See text for details. (B) NuMA
interacts with the cortical proteins and plasma membrane through its C-terminal region, whereas it binds to dynein and dynactin via its N-terminal region. Arrows
indicate physical interactions. As indicated by red asterisks, NuMA competes with Afadin for LGN binding. In addition, NuMA competes with mInsc for LGN binding
during asymmetric cell division (black asterisks). The MTBD1 overlaps LGN–BD, and thus LGN binding to NuMA inhibits the microtubule binding activity of MTBD1
(green asterisks). LGN consists of TPR, Linker and GoLoco motifs, and each motif interacts with Afadin (Carminati et al., 2016), Dlg1 (Saadaoui et al., 2014), and the
GDP-bound form of Gαi (Jia et al., 2012), respectively. NuMA/LGN/Gαi constitutes a conserved core pathway for cortical dynein recruitment. The C-terminal domain
(CTD) of band 4.1 proteins interacts with the NuMA C-terminal domain, and is sufficient to rescue cortical NuMA enrichment in anaphase in LGN and 4.1
co-depleted cells (Kiyomitsu and Cheeseman, 2013). See text for details.

cortical NuMA–LGN is affected by disrupting cortical actin
networks (Kaji et al., 2008; Carminati et al., 2016) or their
regulators (Machicoane et al., 2014; Kschonsak and Hoffmann,
2018). Recently, Carminati et al. (2016) demonstrated that F-actin
binding protein Afadin, which also binds LGN competitively with
NuMA, is required to facilitate NuMA–LGN complex formation
at the metaphase cell cortex (Figure 3B). On the other hand, Dlg1,
that directly interacts with the phosphorylated LGN linker region
(Zhu et al., 2011a) is also required for cortical LGN and NuMA
localization (Saadaoui et al., 2014).

In asymmetrically dividing epithelial or mammary stem cells,
the situation is more complex. Par3-binding mInsc (mammalian

homolog of Inscuteable) and NuMA compete for binding to
LGNTPR, with mInsc showing a more than fivefold higher
affinity (Culurgioni et al., 2011; Yuzawa et al., 2011; Zhu et al.,
2011b). Previously, mInsc-bound LGN-Gαi was supposed to be
transferred to NuMA, but Cukurgioni et al. recently reported
that the Inscuteable-LGN tetramer is so stable that LGN cannot
be dissociated from Inscuteable by NuMA (Culurgioni et al.,
2018). The authors proposed that the Inscuteable-LGN tetramer
generates a localized pool of Gαi-GTP molecules, which upon
GTP-hydrolysis recruits a distinct population of LGN that
subsequently recruits NuMA and dynein to orient the spindle
(Culurgioni et al., 2018).
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Although the LGN pathways are critical for cortical
NuMA localization during metaphase in both symmetric and
asymmetric divisions (Morin and Bellaiche, 2011), recent studies
revealed that NuMA can be targeted to the anaphase cell cortex
independently of LGN in symmetrically dividing mammalian
cells (Collins et al., 2012; Kiyomitsu and Cheeseman, 2013; Kotak
et al., 2013; Seldin et al., 2013; Zheng et al., 2014). Band 4.1
proteins link the plasma membrane to the actin cytoskeleton
(Baines et al., 2014), and interact with NuMA via their C-terminal
domain (CTD) and NuMA’s 4.1-binding domain (1802–1824)
(Mattagajasingh et al., 2009; Figure 3B). This NuMA-4.1
interaction appears to be important for the cortical stability of
NuMA in metaphase keratinocytes (Seldin et al., 2013), but also
has an important role for anaphase NuMA localization: double
depletion of LGN and 4.1 proteins eliminates cortical NuMA
in anaphase human cells (Kiyomitsu and Cheeseman, 2013).
Importantly, this phenotype was rescued by the expression of
the membrane-targeted C-terminal domain (CTD) of band
4.1 (Kiyomitsu and Cheeseman, 2013), which does not bind
to actin, suggesting that 4.1 proteins contribute to anaphase
NuMA localization independently of LGN and cortical actin
structures. How 4.1 proteins regulate NuMA remains unclear;
one possibility is that they increase cortical NuMA retention
by linking it with the cell cortex and/or transferring NuMA
to the plasma membrane (as described below). In addition
to these cortical proteins, other proteins may be involved in
cortical NuMA recruitment in developmental contexts. For
example, NuMA’s C-terminal region interacts with Disheveled,
which controls spindle orientation during Zebrafish gastrulation
(Segalen et al., 2010).

Importantly, NuMA can directly interact with the plasma
membrane. The C-terminal region contains two membrane-
binding domains, NuMA1699−1876 (Kotak et al., 2014) and
NuMA1996−2074 (Zheng et al., 2014), which overlap with 4.1-
BD and MTBD2, respectively, (Figure 2C) and are referred to as
Mem-BD1 and 2 in this review (Figure 2C). Both membrane-
binding domains preferentially bind to phosphorylated forms
of phosphatidylinositol (PIPs) and are required for efficient
cortical accumulation of NuMA (Kotak et al., 2014; Zheng
et al., 2014). Mem-BD2, which partially overlaps with the DNA-
binding domain (Figure 2C), is required for proper chromosome
separation during anaphase (Zheng et al., 2014).

DNA-BINDING DOMAIN IN NuMA’S
C-TERMINAL REGION

In contrast to invertebrate NuMA-related proteins, vertebrate
NuMA proteins analyzed so far localize in the nucleus (Lydersen
and Pettijohn, 1980; Compton et al., 1992; Yang et al., 1992;
Merdes et al., 1996). Previously, human NuMA was reported
to interact with defined DNA sequences called matrix attached
regions (MARs) in vitro (Luderus et al., 1994). Recently, two
studies demonstrated that the C-terminal region of human
NuMA interacts with DNA in vitro and chromatin in cells
(Rajeevan et al., 2020; Serra-Marques et al., 2020). Rajeevan et al.
(2020) showed that the C-terminus NuMA2058−2115 fragment

is sufficient to bind DNA in vitro, and the basic amino acids
within the region are critical for its interaction with chromatin in
cells (Figure 2C). When endogenous NuMA was replaced with
mutated versions lacking its DNA-binding ability, cells showed
improper chromosome decondensation during mitotic exit and
an abnormal nuclear shape (Rajeevan et al., 2020), suggesting
that NuMA–DNA interactions are critical for proper regulation
of chromosome decondensation during nuclear reformation.

NUCLEAR LOCALIZATION
SEQUENCE/SIGNAL IN NuMA’S
C-TERMINAL REGION

NuMA has a nuclear localization signal/sequence (NLS) between
the MTBDs in its C-terminal region (Tang et al., 1994;
Figure 2C). When Chang et al. (2017) solved the crystal structure
of the importin-α-NuMA-C-terminus complex, they found that
NuMA–NLS exhibits a novel, non-classic interaction mode
with importin-α, and that importin-β sterically inhibits NuMA’s
MTBD2 in vitro. The NLS sequence is well conserved from
H. sapiens to X. laevis (Chang et al., 2017), but not in C. elegans
LIN-5, or drosphila Mud (Lorson et al., 2000; Siller et al., 2006).
In fish, the highly conserved KR, H and KK residues of the
NLS, which interact with the minor-, linker and the major-NLS-
binding site on importin-α, respectively (Chang et al., 2017), are
not identical and several amino acids are inserted between the H
and KK residues (Tsuchiya et al., 2021); yet the Zebrafish NuMA
C-terminal region can be targeted to the nucleus (Segalen et al.,
2010). It would be interesting to understand whether NuMA
localizes to the nucleus in other fish species, and why the NLS
was acquired in vertebrates.

THE CLUSTERING DOMAIN IN NuMA’S
C-TERMINAL REGION

The C-terminal globular domain has another key feature that
facilitates NuMA’s self-assembly into oligomers (Harborth et al.,
1999). In vitro, 10–12 NuMA homo-dimers assemble through its
C-terminal region to form multi-arm oligomers. Each oligomer
has a central clustered core with projected arms, and may be
connected to create 3D nuclear architecture during interphase
(Harborth et al., 1999). NuMA’s punctate signals at the cell
cortex are most likely a result of its oligomerization/clustering.
This clustering activity is attributed to a well-conserved 10 a.a
sequence of NuMA1768−1777 (Okumura et al., 2018). Mutant
analyses indicated that NuMA’s clustering is required for spindle
pulling and spindle orientation at metaphase (Okumura et al.,
2018), and for spindle bipolarization during prometaphase in
acentrosomal human cells (Chinen et al., 2020), but is dispensable
for spindle pole focusing (Okumura et al., 2018). It will be exciting
to see what kind of structures are actually generated in cells
by NuMA’s clustering activity both in mitosis and interphase.
Especially, it is important to understand how this clustering
activity synergetically functions with NuMA–LGN oligomer
formation to organize high-ordered functional structures that
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capture and pull on astral microtubules at the mitotic cell cortex
(Pirovano et al., 2019; Figure 3).

MITOTIC AND MEIOTIC REGULATION
OF NuMA

Since NuMA’s C-terminal domain binds to microtubules,
the plasma membrane, and chromatin (Figure 2C), these
interactions must be regulated throughout the cell cycle. In fact,
the well conserved threonine at 2055 (T2055) is phosphorylated
by CDK during metaphase (Compton and Luo, 1995; Kotak
et al., 2013; Seldin et al., 2013), which inhibits NuMA’s cortical
association and thus promotes microtubule-binding. CDK-based
phosphorylation of NuMA is also critical for releasing NuMA
from the chromosomes at mitotic entry (Rajeevan et al., 2020).
During anaphase, NuMA is dephosphorylated by the PPP2CA–
B55gamma–PPP2R1B complex (Keshri et al., 2020), which
dissociates NuMA from the spindle poles (Gehmlich et al., 2004)
and promotes its cortical association.

The microtubule binding activity of NuMA is vital for its
mitotic and meiotic functions (Silk et al., 2009; Kolano et al.,
2012; Tsuchiya et al., 2021). Thus, importins that sterically
inhibit C-terminal microtubule-binding (Chang et al., 2017)
must be released during mitosis. Previously, it was demonstrated
that the NuMA-importin interaction is disrupted by Ran-GTP
binding to importin-β in Xenopus egg extracts (Nachury et al.,
2001; Wiese et al., 2001), and that Ran-GTP is essential for
acentrosomal spindle assembly in female meiosis (Dumont et al.,
2007; Holubcova et al., 2015; Drutovic et al., 2020). However,
recent evidence suggests that Ran-GTP is not essential for mitotic
spindle assembly and mitotic progression in chicken DT40
(Furuta et al., 2016) and human HCT116 cells (Tsuchiya et al.,
2021). In addition, Ran-GTP is not required to activate NuMA
and TPX2 in HCT116 cells (Tsuchiya et al., 2021), suggesting that
additional parallel pathways exist to activate these proteins at a
distance from chromosomes (Wei et al., 2015; Eibes et al., 2018;
Brownlee and Heald, 2019). As cellular concentrations of Ran-
GTP are variable across cell types and organisms (Kalab et al.,
2006; Hasegawa et al., 2013), and the size of spindles and cells
change dramatically during early embryonic divisions (Courtois
et al., 2012; Levy and Heald, 2012), it would be important to
determine how NuMA is spatiotemporally activated by Ran and
other factors during mitosis and meiosis.

MITOTIC REGULATION OF NuMA AT
THE SPINDLE POLES AND THE CELL
CORTEX

Once activated, the NuMA homo-dimer binds to microtubules
independently of dynein (Heald et al., 1997; Hueschen et al.,
2017) and cross-links two microtubules using its two C-terminal
globular domains (Figure 3A; Forth et al., 2014). This
microtubule crosslinking function may be facilitated at the
spindle poles by binding to other microtubule associated proteins
such as Rae1 (Wong et al., 2006), Eg5 (Iwakiri et al., 2013), and

dynein/dynactin complexes (Merdes et al., 1996, 2000). On the
other hand, when new microtubules are created in the spindle,
NuMA is targeted to their minus-ends and subsequently forms
a complex with dynein and dynactin; when this complex binds
adjacent microtubules and moves toward their minus end, it pulls
the NuMA-bound microtubules along, resulting in a focused
spindle pole (Hueschen et al., 2017; Figure 3A).

At the poles, NuMA is phosphorylated by Aurora-A kinase
at S1969, which leads to its dynamic mobility from the spindle
poles to the cell cortex during metaphase (Gallini et al., 2016;
Kotak et al., 2016; Figure 2C). NuMA is also phosphorylated
by Polo-like kinase 1 (Plk1) at SS1833/34 (Kettenbach et al.,
2011), which promotes NuMA’s turnover rate at both spindle
poles and the cell cortex, and when inhibited results in NuMA’s
accumulation at both locations (Sana et al., 2018). Plk1 localizes
at the spindle poles, but also accumulates at kinetochores of
misaligned chromosomes which locally diminish cortical LGN
when they are located near the cell cortex (Tame et al., 2016).
Since NuMA and LGN are inter-dependent (Du and Macara,
2004), the kinetochore-localized Plk1 may also target NuMA,
which in turn reduces LGN. However, artificial membrane
tethering of Plk1 dissociated dynein, but not LGN, from the cell
cortex (Kiyomitsu and Cheeseman, 2012). In addition, when the
immunoprecipitated GFP–LGN complexes were incubated with
Plk1, Plk1 dissociated dynein and dynactin, but not NuMA, from
LGN (Kiyomitsu and Cheeseman, 2012). Therefore, kinetochore-
or centrosome-localized Plk1 may down-regulate the NuMA–
LGN interaction synergetically in cooperation with other factors
derived from chromosomes or centrosomes. Another kinase,
ABL1, phosphorylates the well-conserved Y1774 residue of
NuMA to control spindle orientation (Matsumura et al., 2012).
Y1774 is located in the clustering motif (Okumura et al.,
2018), but it remains unknown whether ABL1 regulates NuMA’s
clustering activity.

In addition to these kinases, Ran-GTP gradients negatively
regulate cortical NuMA–LGN localization near chromosomes in
a distance dependent manner (Kiyomitsu and Cheeseman, 2012).
Although molecular mechanisms by which Ran-GTP eliminates
the NuMA–LGN complex from the cell cortex remain unclear,
the cortical patterning created by chromosome-derived Ran-GTP
is sufficient to explain why the mitotic spindle orients along
its interphase cell axis (Dimitracopoulos et al., 2020). NuMA’s
continuous exclusion from the equatorial region of the cell cortex
during anaphase is dependent on the signals downstream of the
centralspindlin complexes (Kotak et al., 2014).

INTERPHASE FUNCTION OF NuMA

Several lines of evidence indicate that NuMA acts as a non-
essential nucleoskeletal element in interphase (Zeng et al., 1994;
Merdes and Cleveland, 1998; Harborth et al., 1999), which is
nicely reviewed by Radulescu and Cleveland (2010). However,
it is difficult to understand this role separately from the several
roles it plays during mitosis since mitotic errors cause abnormal
nuclei. Recently, Serra-Marques et al. (2020) nicely demonstrated
that NuMA’s contribution to building a single, round nucleus
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is independent from its mitotic functions by inducing mitotic
exit in NuMA KO Rpe1 cells without spindles (Figure 1B).
Furthermore, they showed that NuMA keeps the decondensing
chromosome mass compact during mitotic exit (Serra-Marques
et al., 2020). Although the precise mechanisms are still unclear,
evidence suggests that NuMA, like barrier-to-auto integration
factor (BAF) at the chromosome ensemble surface (Samwer et al.,
2017), may offer structural support throughout the nucleus by
cross-linking chromosomes and preventing the nuclear envelop
from penetrating into the chromosome mass, which results in a
decrease of multinucleation and abnormally shaped nuclei during
mitotic exit (Serra-Marques et al., 2020). Alternatively, NuMA
may coordinate chromosome compaction and nuclear envelop
assembly using its binding abilities to both chromosomes and
membrane (Serra-Marques et al., 2020), as well as its binding to
importins which can recruit membrane vesicles and nucleoporins
(Lu et al., 2012).

In addition to its roles during mitotic exit, NuMA promotes
the nucleus’ mechanical robustness (Serra-Marques et al., 2020)
and could contribute to several interphase events, including
chromatin organization (Abad et al., 2007), gene expression
(Harborth et al., 2000; Ohata et al., 2013), DNA repair (Vidi
et al., 2014; Moreno et al., 2019), and apoptosis (Gueth-Hallonet
et al., 1997; Kivinen et al., 2005; Lin et al., 2007). Since chromatin
architecture is highly dynamic during different phases of the cell
cycle (Shoaib et al., 2020), acute protein depletion technologies,
such as auxin-inducible degron (AID) (Natsume et al., 2016;
Yesbolatova et al., 2020; Tsuchiya et al., 2021), would be useful
to precisely understand the interphase functions of NuMA
in future studies.

DISCUSSION

Vertebrate NuMA, and its related proteins in invertebrates,
have been extensively studied using many techniques and
model organisms. Over the past 10 years, much light has been
shed on this multi-functional protein, revealing key domains,
modifications and binding partners. However, we still do not
know how NuMA contributes to spindle pole focusing, spindle
positioning or nuclear formation at the molecular and structural
level. In the next 10 years, it would be especially important to
visualize the functional structures of NuMA and its complexes
using biochemical reconstitution, high-resolution imaging and
in situ structural analyses. In addition, most reported interactions
and functions are not sufficiently validated in a physiological
condition. Since many functions discussed in this review appear
to be specific in vertebrates, vertebrate developmental models

would be useful to obtain a comprehensive understanding
of the diverse functions of NuMA. Furthermore, optogenetic
manipulation of NuMA, or its related proteins, would serve
as a powerful tool to control spindle position and orientation
(Fielmich et al., 2018; Okumura et al., 2018), and could reveal
physiological roles of division orientation and daughter cell size
during development (Jankele et al., 2021).

Many key questions about NuMA remain to be answered.
(1) How does NuMA recognize microtubule minus-ends and
depolymerizing microtubule plus-ends? (2) How are dynein–
dynactin–NuMA complexes formed during mitosis and meiosis
and regulated at the spindle poles? (3) How are different cortical
NuMA complexes assembled at the mitotic cell cortex and
spatiotemporally regulated by intrinsic and extrinsic signals?
(4) When does NuMA start to localize at the mitotic cell
cortex to control spindle positioning during early vertebrate
development? (5) What kinds of high-ordered structures are
created by NuMA at the cell cortex and interphase nucleus
to generate cortical spindle pulling forces and a mechanically
robust nucleus, respectively? (6) How is NuMA dissociated from
importins in a Ran-independent manner? (7) Why did NuMA
acquire an NLS in vertebrates? (8) How has the NuMA gene
evolved to achieve different functions in different organisms?
Addressing these questions must provide new, exciting insights
not only to advance our knowledge about nucleus formation,
spindle assembly and spindle positioning, but also to understand
how complex human cell architecture evolved.
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The actin cytoskeleton and membrane-associated caveolae contribute to active
processes, such as cell morphogenesis and motility. How these two systems
interact and control directional cell migration is an outstanding question but remains
understudied. Here we identified a negative feedback between contractile actin
assemblies and phosphorylated caveolin-1 (CAV-1) in migrating cells. Cytoplasmic CAV-
1 vesicles display actin-associated motilities by sliding along actin filaments or/and
coupling to do retrograde flow with actomyosin bundles. Inhibition of contractile
stress fibers, but not Arp2/3-dependent branched actin filaments, diminished the
phosphorylation of CAV-1 on site Tyr14, and resulted in substantially increased size
and decreased motility of cytoplasmic CAV-1 vesicles. Reciprocally, both the CAV-1
phospho-deficient mutation on site Tyr14 and CAV-1 knockout resulted in dramatic
AMPK phosphorylation, further causing reduced active level of RhoA-myosin II and
increased active level of Rac1-PAK1-Cofilin, consequently led to disordered contractile
stress fibers and prominent lamellipodia. As a result, cells displayed depolarized
morphology and compromised directional migration. Collectively, we propose a model
in which feedback-driven regulation between actin and CAV-1 instructs persistent
cell migration.

Keywords: actin filaments, actomyosin bundles, Arp2/3 complex-dependent lamellipodia, directional cell
migration, caveolin-1

INTRODUCTION

The actin cytoskeleton and caveolae are important players in regulating cell morphology and
directional migration. Early electron microscopy studies revealed the association of caveolae with
filamentous actin (Rohlich and Allison, 1976; Rothberg et al., 1992; Valentich et al., 1997), and
later the actin-binding protein filamin A was found to be important for caveolae co-alignment
with actin stress fibers (Muriel et al., 2011). However, aside from membrane-located caveolae
which has been extensively studied as tension sensor and intimately interact with cortical actin
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(Sinha et al., 2011), the interactive mechanisms between actin and
cytoplasmic caveolin-1 (CAV-1), principal structural component
of caveolae (Navarro et al., 2004), have remained elusive. For
example, how specific actin assemblies control the cytoplasmic
CAV-1, and reciprocally, how CAV-1 protein per se regulate
signaling cascades to control dynamic actin assemblies and
subsequent cell behavior.

Cytoplasmic CAV-1 could either form pivotal structural
component for caveolae, or form non-caveolae CAV-1
vesicles/foci (Razani et al., 2002b; Pol et al., 2020). It is
speculated, but no direct evidence yet, that the organization
and trafficking of both CAV-1 forms are tightly associated
with distinct intracellular actin assemblies and critical actin-
binding proteins. Global disruption of the actin network by
cytochalasin D treatment was found to form strong clustering
of CAV-1 (Fujimoto et al., 1995; Mundy et al., 2002). Patches
of non-polymerized actin are concentrated around rapidly
moving CAV-1 spots (Echarri et al., 2012; Stoeber et al., 2012).
Depletion of myosin-1c, one actin associated motor protein,
induces a perinuclear accumulation of CAV-1 and a decrease
in caveolar density (Hernandez et al., 2013). Knockdown
of actin nucleator mDia1 and Abl kinase induces caveolae
clustering, whereas active mDia1 increases stress fiber formation,
and reduces the numbers of clustered “caveolar rosettes”
superstructures (Echarri et al., 2012). Nevertheless, silencing
the Arp2/3 complex or its activators N-WASP and cortactin
does not affect the endocytic process of CAV-1 vesicles from
the plasma membrane (Echarri et al., 2012), but how their
roles during the dynamic regulation of intracellular CAV-1
remain less examined.

Actin assemblies require the spatial and temporal integration
of different signaling components (Ridley et al., 2003; Vicente-
Manzanares et al., 2005). By coordinating the active levels
of Rho family of small GTPases and ultimately, actin
polymerization, Rac1 regulates lamellipodia protrusion and
membrane ruffles and Cdc42 triggers filopodia, whereas RhoA
regulates the formation of actomyosin-formed stress fibers and
cell contractility (Ridley et al., 2003; Raftopoulou and Hall, 2004;
Vicente-Manzanares et al., 2005).

Previous reports suggest that CAV-1 promotes cell migration
(Zhang et al., 2000; Gonzalez et al., 2004; Grande-Garcia et al.,
2007; Joshi et al., 2008; Hill et al., 2012). For example, CAV-
1 depletion in mouse embryonic fibroblasts has been shown to
elevate the active level of Rac1 and Cdc42 while decrease the
RhoA activity, thus lead to defects in actin remolding associated
cell motility (Grande-Garcia et al., 2007). However, other studies
indicate that CAV-1 could be a negative regulator in the context
of cell migration. For instance, restoration of CAV-1 expression
in MTLn3 cells reduces the chemotactic directed cell migration
(Zhang et al., 2000). Likewise, CAV-1 knockdown increased
the persistent migration toward sphingosine-1 phosphate in
bovine aortic endothelial cells (Gonzalez et al., 2004). Although
some of these discrepancies could be ascribed to technical or
cell type specificity issues, it appears important to ascertain
what kind of role, if any, CAV-1 plays in the coordinated
processes of directional migration through controlling of actin
assembly and remodeling.

In this study we identified that the cytoplasmic CAV-
1 vesicles move concurrently with the retrograde flow of
actin filaments toward the deep cytoplasmic perinuclei region,
and meanwhile are also able to laterally slide along the
actin filaments. Moreover, contractile actomyosin bundles
determine the organization and dynamics of intracellular CAV-
1 by disturbing its phosphorylation level, whereas branched
actin structures are dispensable. Importantly, CAV-1 depletion
leads to compromised intrinsic persistent migration through
remolding the active level of AMPK, which in turn regulates
the activity of Rac1 and downstream PAK1 and Cofilin
for protrusive lamellipodia, and correspondingly the activity
of RhoA and subsequent changes in stress fibers formation
and contraction. Furthermore, the phosphorylation of CAV-
1 on site Tyr14 plays an essential role in regulating these
kinase-GTPase signaling axis governed actin remodeling. Taken
together, our study comprehensively investigates and hence
provides new insights into the interactive feedback mechanisms
between actin assemblies and cytoplasmic CAV-1 in the context
of cell migration.

RESULTS

Cytoplasmic CAV-1 Interacts With Actin
Filaments in Human Osteosarcoma Cells
To identify novel actin filament interactions, we performed
a proximity-dependent biotin identification (BioID) analysis
(Roux et al., 2012) on human osteosarcoma cells (U2OS) using
a biotin ligase fused to Tropomyosin-3.1 (Tpm3.1), a central
actin filaments component (Supplementary Figure 1A; Parreno
et al., 2020). Among the high-confidence interactors, CAV-1,
which has been used as a measure of cytoplasmic trafficking
of both individual and clustered forms of caveolae (Mundy
et al., 2002; Echarri et al., 2012), was chosen for further
investigation (Figure 1A).

Previous studies have demonstrated co-alignment of CAV-
1 with filamentous actin in a number of cell types, such as
NIH3T3 cells, epithelial cells, fibroblasts, myofibroblasts and
muscle cells (Rohlich and Allison, 1976; Rothberg et al., 1992;
Valentich et al., 1997). Immunofluorescence imaging on U2OS
cells, which are much adherent and show clear endogenous
staining of cytoskeleton (Jiu et al., 2015, 2019), revealed an
extensive actin network and readily recognizable CAV-1 vesicles,
and the cytoplasmic CAV-1 vesicles were found aligned with actin
filaments occasionally (Figure 1B), indicating the enability to
determine the association between these structures in U2OS cells.

We next assess the actin associated intracellular movement
of CAV-1, using expression of fluorescent protein fusion
constructs. This revealed a punctate pattern that colocalized with
endogenous CAV-1 but showed no co-distribution with Rab8-
labeled endosomes, indicating a proper distribution with respect
to the endogenous protein (Supplementary Figure 1B). By
using wheat germ agglutinin (WGA), a small-molecule marked
the plasma membrane, we showed that the actin filaments-
associated CAV-1 signals were mainly localized in the cytoplasm
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FIGURE 1 | The association of actin filaments with cytoplasmic CAV-1 in human osteosarcoma cells. (A) Top protein hits from the BioID screen for identification of
Tpm3.1-associated proteins in U2OS cells. (B) Localization of endogenous CAV-1 and actin filaments in U2OS cells detected by CAV-1 antibody and fiuorescent
phalloidin, respectively. Magnified regions from the area indicated by white boxes demonstrate that cytoplasmic CAV-1 aligns with actin filaments (white arrowheads).
The bottom panels show the orthographic view of the enlarged region, where “XY” and “XZ” indicated different cross-sections. Bars, 10 µm (in cell images), 2 µm (in
magnified images and orthographic views). (C) Time-lapse imaging of U2OS cells co-expressing CAV-1-mEGFP and mCherry-actin revealing that actin-associated
cytoplasmic CAV-1 vesicles move along actin filaments (Box 1) and do retrograde flow with contractile arcs (Box 2). The magnified regions of Box 1 and 2 in different
time point are shown on the right panels, respectively. White and yellow circles and dotted lines in the magnified regions indicate the starting and ending position of
discrete CAV-1 tagged vesicles and contractile arcs, respectively. The recording was set as every 1 s for 200 s. Bars, 10 µm (in cell image) and 5 µm (in Box 1 and
Box 2).

(Supplementary Figure 1C). To record the cytoplasmic CAV-
1 vesicles, we optimized the imaging focal plane based on
the clear and sharp appearance of DAPI-labeled nucleus in
the following experiments, which demarcated the cytoplasmic
(middle layer) rather than the plasma membrane (bottom layer)
field (Supplementary Figure 1D).

Live cell imaging enabled us to identify that while the
CAV-1 vesicles at the perinuclear area did not exhibit regular
movements, others which close to cell periphery associated with
contractile actin transverse arcs and displayed retrograde flow
toward the cell center, accompanying with cases of sliding along
actin filaments (Figure 1C and Supplementary Videos 1, 2).
Together, these data provide direct evidences that CAV-1 vesicles
interact with actin network in human osteosarcoma cells.

Contractile Actin Assemblies Are Critical
for the Organization and Dynamics of
CAV-1 Vesicles by Disturbing Its
Phosphorylation Level
Global pharmacological disruption of actin cytoskeleton in U2OS
cells leads to an increase of cytoplasmic CAV-1 clustering

(Supplementary Figures 2A,B). In migrating cells actin filaments
are able to assemble into distinct three-dimensional structures.
To further elucidate the underlying regulation by these specific
actin arrangements to cytoplasmic CAV-1 vesicles, we employed
different actin-directed drugs with specific targets (Figure 2A).
Blebbistatin and CK666 inhibiting myosin II ATPase activity
and Arp2/3 complex were applied, and thereby interfering
with the formation of contractile and branched filament
assemblies, respectively (Kovacs et al., 2004; Chanez-Paredes
et al., 2019). Neither of the drugs affected the transcription
and expression level of CAV-1 (Supplementary Figures 2C,D),
while fluorescence imaging witnessed their expected effects on
actin organization with extensive loss of prominent contractile
bundles after exposure to blebbistatin and of lamellipodia after
CK666 treatment, respectively (Figure 2A). Enlarged CAV-1
vesicles appeared upon blebbistatin addition, but remain similar
size as in wild-type under CK666 circumstance (Figure 2B).
Moreover, the motility of cytoplasmic CAV-1 vesicles was
significantly compromised when myosin II activity, but not
Arp2/3, was inhibited (Figure 2C). Having identified that
actomyosin dependent contractility is important for cytoplasmic
CAV-1, prompted us to confirm this influence by using
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alternative approach. Myosin-18B depletion cells are reluctant
to form large myosin II stack and subsequent result in less
contractile actin stress fibers (Jiu et al., 2019), while elimination
of ARPC2, component of Arp2/3 complex (Goley and Welch,
2006), leads to less branched actin formed lamellipodia.
Consistent with the results by pharmacological inhibitors,
increased size and decreased motility of CAV-1 vesicles were
observed in myosin-18B knockout cells, but not ARPC2
knockdown cells (Supplementary Figures 2E–H). Fluorescence
recovery after photobleaching (FRAP) measurement was also
applied to validate the relatively slow kinetics of cytoplasmic
CAV-1 molecules lacking of contractile actomyosin bundles
(Figures 2D,E).

Tyr14 is an important phosphorylation site to modulate CAV-
1 activity and subsequent focal adhesion dynamics, cell migration
and mechanical stimuli (Navarro et al., 2004; Zimnicka et al.,
2016; Wong et al., 2020). The phospho-deficient (Y14F) and
phospho-mimic (Y14D) mutants were exogenously expressed in
CAV-1 knockout (CAV-1 KO) cells, respectively, to eliminate
the interference of endogenous CAV-1. With tracking of real-
time imaging, we revealed that the CAV-1 (Y14D) vesicles
represented faster motility while the CAV-1 (Y14F) vesicles
are overall slower than wild-type (Figures 2F,G), suggesting
that CAV-1 phosphorylation is intimately correlates with its
cytoplasmic dynamics.

Notably in this context, we examined the effects of above
drugs on the phosphorylation state of CAV-1. Western blot
indicated that the phosphorylated CAV-1 level on site Tyr14
was apparently decreased in actomyosin inhibition vs. wild-
type, but was not significantly altered upon Arp2/3 inhibition
(Figures 2H,I). Taken together, these data demonstrate that
contractile actin assemblies are critical for the organization and
dynamics of cytoplasmic CAV-1, most likely by regulating its
phospho-related active level.

Phospho-Deficient and Depletion of
CAV-1 Compromises the Assembly of
Contractile Stress Fibers by Deactivating
RhoA-Dependent Myosin
Phosphorylation
To explore the cellular function of CAV-1, we generated CAV-1
knockout (KO) U2OS cells by CRISPR/Cas9 approach with two
different target sites, and one of the CAV-1 KO cell lines was
chosen for further analysis (Supplementary Figure 3A), and the
rest cells were used for verification in some of the experiments
(data not shown). Phalloidin staining was shown that wild-type
cells contained prominent stress fibers, whereas both CAV-1
KO and RNA silencing induced CAV-1 knockdown (CAV-1
KD) cells contained a disorganized meshwork of actin filaments,
characterized by thinner contractile stress fibers (Figure 3A
and Supplementary Figures 3B,C). The quantification by using
Ridge Detection plugin in ImageJ (Kumari et al., 2020; Zhao
et al., 2020) confirmed that there was significant decrease in
levels of thick actin filament bundles in CAV-1 KO/KD cells,
whereas the total amount of filaments remained comparable
(Figure 3B and Supplementary Figure 3C). To allow more

precise analysis, cells were plated on crossbow shaped fibronectin
micropatterns, where they obtain nearly identical shapes and
display characteristic organization of stress-fiber network (Jiu
et al., 2015). The contractile actomyosin bundles were typically
thinner in CAV-1 KO cells compared to wild-type cells on
micropatterns (Figure 3C). Moreover, CAV-1 KO cells displayed
wider lamella which is a phenotype associated with defects in the
assembly and contractility of stress fibers (Burnette et al., 2014; Jiu
et al., 2015). Corresponding with the reduced amounts of thick
stress fibers, the average sizes of vinculin-positive focal adhesions
and phosphorylation level of focal adhesion kinase (FAK) were
decreased in CAV-1 KO cells (Figure 3C and Supplementary
Figure 2D). Importantly, exogenously expression of the full-
length CAV-1-mEGFP completely restore the stress fiber and
focal adhesion phenotypes, but not the phospho-deficient CAV-
1(Y14F)-mEGFP (Figures 3A–C), indicating that Tyr14 is
a critical site for CAV-1 and expression this single point
mutation of CAV-1 recapitulates the CAV-1 KO phenotype
of compromised stress fiber assemblies. Furthermore, CAV-
1 deficient cells exhibited weaker contractile forces and an
unbalanced tension distribution to the substrate (Figure 3D),
which is the consequences from actomyosin defects.

Small GTPase RhoA regulates the phosphorylation of myosin
light chain (MLC) to promote stress fiber contractility and
assembly (Guilluy et al., 2011a,b; Lessey et al., 2012). By using
pull-down assay and RhoA-GTP biosensor GFP-AHPH (Piekny
and Glotzer, 2008; Rong et al., 2021), we revealed that the active
level of GTP bound RhoA significantly decreased in CAV-1
KO cells, exogenously expression of CAV-1-mEGFP restore the
active level of RhoA (Figure 3E and Supplementary Figure 3E).
To confirm these observations, we tested the consequences
downstream of RhoA. Phosphorylation of MLC and the level
of tropomyosin (isoform Tpm4.2) which required for myosin
II filament formation and integrity (Umemoto et al., 1989;
Burgess et al., 2007; Geeves et al., 2015), also displayed significant
reduction in CAV-1 KO cells (Figure 3F and Supplementary
Figures 3F,G). p190RhoGAP is a major upstream negative
regulator of Rho GTPases (Jaffe and Hall, 2005), knockdown
of which restores the decreased RhoA-GTP level and the
weaker stress fibers in CAV-1 depletion cells (Figures 3G,H).
Collectively, these results reveal that CAV-1 is critical for the
contractile stress fibers formation.

Phospho-Deficient and Depletion of
CAV-1 Leads to AMPK Activation
Followed by Rac1-Dependent PAK1 and
Cofilin Phosphorylation, and Subsequent
Lamellipodia Formation
It is important to note that in addition to disorganized stress fiber
network, both CAV-1 KO and phospho-deficient CAV-1(Y14F)
cells appear more pronounced lamellipodia in the cell edge
visualized by actin and ARPC2 staining (Figures 3A, 4A). The
actin distribution was further checked by interference reflection
microscopy (IRM), which is applied to visualize molecules near
the cell-substrate interactions (Verschueren, 1985). Consistent
with aforementioned phalloidin staining, strong stress fibers were
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FIGURE 2 | The organization, dynamics and phosphorylation of CAV-1 are regulated by contractile actin assemblies. (A) Immunofluorescence staining of
endogenous F-actin and CAV-1 vesicles in wild type (WT), myosin II inhibition (NMII inh.) and Arp2/3 complex inhibition (Arp2/3 inh.) cells, respectively. The
representative analysis of CAV-1 positive dots detected by Imaris of magnified yellow boxes 1, 2, and 3 on the top panels are marked as balls which are randomly
colored on the lower panels. The size of the color balls indicates the calculated sizes of CAV-1 vesicles. Bars, 10 µm (in cell images) and 5 µm (in the magnified box).
(B) The length distribution of CAV-1 vesicles. The number of vesicles in each group of size is divided by the total CAV-1 number of the same cell. n = 25,602 vesicles
from 32 WT cells, 13,456 vesicles from 31 myosin II inhibition cells, and 26,103 vesicles from 29 Arp2/3 complex inhibition cells. (C) Quantification of the movement
rate of CAV-1 vesicles in wild-type (n = 26), myosin II inhibition (n = 22), and Arp2/3 complex inhibition (n = 23) cells. (D) FRAP analysis of CAV-1-mGFP dynamics in
WT, NM II inh. and Arp2/3 inh. cells. Magnified regions represent time-lapse images of the bleached regions. Bars, 10 µm (in cell images) and 5 µm (in the magnified
time-lapse image). (E) Normalized average FRAP recovery curves of CAV-1-mEGFP in WT (n = 23), NM II inh. (n = 22), and Arp2/3 inh. (n = 22) cells. (F) The
representative 200 s duration dot tracking analysis of mEGFP tagged CAV-1, CAV-1(Y14F) and CAV-1(Y14D) vesicles in CAV-1 KO cells by Imaris. Color-coded bar
from blue to red indicates the tracked mean speeds ranging from 0 to 0.4 µm/s. Bars, 10 µm. (G) Quantification of the movement rate of CAV-1 positive vesicles.
n = 419/496/432 vesicles from 10 CAV-1/CAV-1(Y14F)/CAV-1(Y14D)-mEGFP expressing cells. (H,I) Western blot analysis (H) and quantifications (I) of
phosphorylated CAV-1 (Tyr14) (compared to total CAV-1) in WT, NM II inh. and Arp2/3 inh. cell lysates. The obtained intensity value from wild-type cells was set to 1.
n = 3. Data in panel (C,G,I) are presented as mean ± SD. ***P ≤ 0.001; N.A., not significant (one-way ANOVA). All the data are from three independent experiments.
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FIGURE 3 | RhoA-Myosin II regulated assembly of contractile stress fibers is inhibited in CAV-1 KO cells. (A) Representative images of actin filaments visualized by
phalloidin in WT, CAV-1 knockout (CAV-1 KO), full-length CAV-1(FL), and phospho-deficient CAV-1(Y14F) expressing cells. Magnified regions represent the contractile
stress fiber. Bars, 10 µm (in cell images) and 5 µm (in the magnified box). (B) The average numbers of total and thick filaments were calculated for cells depicted in
panel A. n = 20 cells from each group. (C) Representative images of actin filaments and focal adhesions visualized by phalloidin and vinculin antibody staining,
respectively, in WT, CAV-1 KO cells, and CAV-1(FL)-mEGFP expressing cells cultured on crossbow shaped fibronectin coated micropatterns. Bars, 10 µm.
Quantifications of focal adhesion lengths of each group are shown on the left. n = 15/17/18 from WT/CAV-1 KO/CAV-1(FL)-rescue cells. (D) Representative force
maps of WT and CAV-1 KO U2OS cells grown on 25 kPa polyacrylamide dishes with fluorescent nanobeads. Bars, 10 µm. Quantification of contractile strain energy
in WT (n = 15) and CAV-1 KO (n = 17) cells are shown on the right. (E) Pull-down assays were performed for WT, CAV-1 KO, and CAV-1(FL)-rescue cells. Proteins
bound to GST-Rhotekin binding domain were analyzed by western blots and further quantified (compared to total RhoA) based on the band’s intensity. n = 3.
(F) Western blot analysis and quantifications of phosphorylated MLC (Thr18/Ser19) (compared to total MLC) and Tpm4.2 in WT and CAV-1 KO cell lysates. n = 3.
(G) WT and CAV-1 KO cells were transfected with Control shRNA and p190RhoGAP shRNA for 72 h, respectively. Cell lysis from each group were analyzed by
western blots and further quantified based on the band’s intensity. n = 3. In panel (E–G), the obtained intensity value from WT cells was set to 1. (H) CAV-1 knockout
cells transfected with p190RhoGAP shRNA were stained by Alexa 568 phalloidin. The p190RhoGAP knockdown cells are marked by dotted lines. The average
numbers of thick filaments were calculated on the right. n = 18 cells from each group. Data in panel (B–H) are presented as mean ± SD. In (B,C,G), ***P < 0.001;
**P < 0.01; N.A., not significant (one-way ANOVA). In (D–F,H), ***P < 0.001; **P < 0.01; N.A., not significant (unpaired t-test). All the data are from three
independent experiments.
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hardly observed in CAV-1 KO cells, while more prominent
lamellipodia were localized around the leading edge in response
to CAV-1 depletion (Supplementary Figure 4A). To test whether
strong lamellipodia has consequences in membrane ruffling,
we performed time-lapse analysis focusing on the cell edges
and revealed that ruffling is much faster and broader, yet
concomitantly not able to push membrane forward in CAV-1
KO cells, whereas the protrusive ruffling activity in wild-type
cells display less frequency and occurs only in the direction of
movement (Figure 4B and Supplementary Video 3).

AMP-activated protein kinase (AMPK) is a phylogenetically
conserved intracellular energy sensor that has been shown to
regulate small GTPases (Salani et al., 2012; Luo et al., 2018).
By western blots, we noticed that the phosphorylation level of
AMPK was significantly increased in CAV-1 KO cells, which
could be rescued by full-length but not Y14F phospho-deficient
CAV-1, furthering indicating the essential role of site Tyr14 of
CAV-1 and confirming the actin associated phenocopy of CAV-
1 KO with CAV-1 (Y14F) mutation (Figure 4C). In addition to
RhoA, we also measured the GTP bound active levels of Rac1 and
Cdc42, and found that CAV-1 depletion led to more active Rac1
and Cdc42 while their total protein levels remained unaffected
(Figure 4D and Supplementary Figure 4B). It has been already
known that Rac1 induce the formation of lamellipodia and
surface protrusions generated by actin-remodeling reactions
(Ridley et al., 1992, 2003). In this regard, the thicker lamellipodia
and active membrane ruffling observed in CAV-1 KO cells fit well
as a consequence of the active AMPK and Rac1.

Furthermore, we evaluated and found an increase in the basal
activation of lamellipodia related PAK1 and Cofilin (Figure 4E).
Importantly, the phosphorylated AMPK, PAK1 and Cofilin in
CAV-1 KO cells prefer to localize more to the cell edges where
lamellipodia form (Figure 4F and Supplementary Figures 4C–
F). By treating with AMPK inhibitor compound C (Dasgupta
and Seibel, 2018), both the distribution of phosphorylated Cofilin
and lamellipodia width were restored to wild-type level in CAV-1
KO cells (Figure 4G), supporting the hypothesis that changes of
actin protrusive network in the absence of CAV-1 is regulated by
AMPK-Rac1-PAK1-Cofilin signaling cascade.

To test whether AMPK is the original cause for the actin
network rearrangement in CAV-1 depletion cells, we blocked
AMPK activation and revealed the clear recovery of increased
Rac1-GTP and decreased RhoA-GTP, as well as elevated levels
of phosphorylated PAK1 and Cofilin in CAV-1 KO background
(Figure 4H). Taken together, we identified that sensitize AMPK
mediated activities of GTPases in CAV-1 depletion cells play
essential roles for actin cytoskeleton remolding.

Cell Morphology and Directional
Migration Are Impaired by Depletion of
CAV-1
In order to explore whether the dysbiosis of actin assemblies
in CAV-1 depletion cells affects cell shape and behavior,
we recorded and measured cell morphology and directional
cell migration. Most of wild-type U2OS cells exhibited a
polarized morphology, with an elongated, polygonal shape.

However, CAV-1 depletion cells adopted a rounded, non-
polarized shape with lamellipodia encircling the entire cell
(Figures 5A,B). Moreover, both the migration velocity and
persistence were significantly reduced in CAV-1 KO cells
quantified from cells on the custom-designed micro-channels
and wound healing settings (Figures 5C–E, Supplementary
Figures 5A,B, and Supplementary Video 4). Hepatocarcinoma
Huh7 cells have no endogenous CAV-1 (Moreno-Caceres et al.,
2017) (Supplementary Figures 5C,D) and stable exogenously
expression of CAV-1-mEGFP led to increased would healing
ability (Supplementary Figures 5E,F), further validating the role
of CAV-1 in cell migration. Collectively, our results demonstrate
that CAV-1 is required for the integrity and hemostasis of
actin assemblies, and subsequent cell polarized morphology
establishment and directional cell migration.

DISCUSSION

Despite accumulated information regarding the association
between cortical actin filaments and membrane-located
mechanosensitive caveolae with tension reservoir function
(Sinha et al., 2011), here we propose a feedback-driven model
which demonstrate that the interplay between cytoplasmic actin
assemblies and phosphorylated CAV-1 coordinates cell migration
(Figure 5F). Aside from plasma membrane bounded CAV-1, we
observed that the cellular CAV-1 display actin associated motility
by sliding along or/and undergoing retrograde flow with actin
filaments. Adequate contractility of actin filaments is essential
for the phosphorylation of CAV-1 on its critical site Tyr14, and
the subsequent distribution and motility of the intracellular
CAV-1 vesicles. Importantly, both CAV-1 depletion and CAV-1
phosphorylation on Tyr14 are able to affect the active levels of
AMPK, RhoA/Rac1 GTPase, and further disrupt the homostasis
of contractile and protrusive structures of cytoplasmic actin,
which lead to significant changes in cell morphology and
directional migration.

In view of live cell imaging findings that cytoplasmic CAV-1
vesicles not only move along actin filaments but also accompany
with actomyosin transverse arcs for centripetal flow, it is tempting
to speculate that these “tracking” and “anchoring” function of
elongated actin filament bundles to CAV-1 vesicles perhaps
requires molecular motor related contraction and consumes
adenosine triphosphate (ATP) to implement these dynamic
association. This speculation is coincided with our results that
inhibiting the motor activity of myosin II significantly weakens
the movement of the cytoplasmic CAV-1 vesicles (Figures 2C–E).
Previous work by us reveals that vimentin intermediate filaments
(IFs) function as physical barriers to restrain the intracellular
trafficking of CAV-1 vesicles (Jiu, 2018; Shi et al., 2020). It is
thus possible that the overall integrity and motility pattern of
the cytoplasmic CAV-1 are comprehensively regulated by both
actin and IFs cytoskeletal networks. Moreover, trafficking of
CAV-1 from plasma membrane to perinuclear area has been
reported by far dependent on microtubules (Conrad et al., 1995;
Mundy et al., 2002; Echarri et al., 2012; Echarri and Del Pozo,
2015). Therefore, our finding which associates contractile actin
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FIGURE 4 | Actin protrusive network is upregulated by AMPK-Rac1-PAK1-Cofilin signaling cascade in cells lacking CAV-1. (A) Immunofluorescence microscopy
analysis demonstrating that more pronounced endogenous ARPC2 colocalizes with F-actin (visualized by Alexa 568 phalloidin) on the lamellipodia protrusions in
CAV-1 deficient cells. Magnified regions of cell edges on the right show the distribution of ARPC2 in WT and CAV-1 KO cells. Bars, 10 µm (in cell images) and 5 µm
(in the magnified box). Quantification of width of lamellipodial protrusions are shown on the right. n = 16 regions from 16 cells for each group. (B) Representative
images of membrane ruffling by time-lapse microscope. 1-pixel-wide areas were cut out to generate a 300 frame 2 s interval kymograph. Yellow dashed lines

(Continued)

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 April 2021 | Volume 9 | Article 665919117

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-665919 April 5, 2021 Time: 10:32 # 9

Shi et al. Crosstalk Between Actin and Caveolin-1

FIGURE 4 | Continued
indicate the track of cell movement. An enlarged region is displayed on the right, vertical dashed lines show the membrane protrusion distance, while horizontal
dashed lines mark the duration of protrusion. Bars, 10 µm (in cell images) and 2 µm (in the magnified box). Quantification of protrusion rate are shown on the right.
n = 16 regions from 16 cells for each group. (C) P-AMPK (Thr172) and total AMPK were detected from the lysates of each group by western blotting. Please note
that CAV-1(Y14F)-mEGFP can’t be detected by using phospho-CAV-1(Tyr14) antibody. Asterisk denotes the non-specific band. Quantification of P-AMPK (Thr172)
levels (compared to total AMPK) from each group was shown on the right panel. n = 3. (D) Pull-down assays were performed for WT, CAV-1 KO, and CAV-1 KO;
CAV-1-mEGFP re-expressed cells. Proteins bound to GST-PAK binding domain were analyzed by western blots and further quantified (compared to total Rac1)
based on the band’s intensity. n = 3. (E) Western blot analysis and quantification (compared to total PAK1 and Cofilin) of the levels of phosphorylated PAK1 (Thr423)
and Cofilin (Ser3) in WT and CAV-1 KO cell lysates. n = 3. (F) Immunostaining and quantification of endogenous P-Cofilin (Ser3) and F-actin distribution in WT and
CAV-1 KO cells. A 16 µm length line was used to generate a line profile to illustrate the co-localization of P-Cofilin (Ser3) and F-actin. The lamellipodia region was
enlarged on the right, and 2 µm width region was chosen to analyze the mean intensity of P-Cofilin (Ser3) on the leading edge. Bars, 10 µm (in cell images) and 5
µm (in the magnified box). n = 18 regions from 18 cells for each group. (G) Immunostaining and quantification of endogenous P-cofilin (Ser3) distribution upon
compound C treatment in WT and CAV-1 KO cells. Magnified regions represent the lamellipodia region. Bars, 10 µm (in cell images) and 5 µm (in the magnified box).
n = 18 regions from 18 cells for each group. (H) Western blot analysis and quantification of the phosphorylated levels of AMPK (Thr172), PAK1 (Thr423), Cofilin
(Ser3) and activity of Rac1 and RhoA upon compound C treatment. n = 3. In panel (C–E,H), the obtained intensity value from wild-type cells was set to 1. All the
data are presented as mean ± SD. In (C,G,H), ***P < 0.001; *P < 0.05; N.A., not significant (one-way ANOVA). In (D–F), ***P < 0.001; **P < 0.01 (unpaired t-test).
All the data are from three independent experiments.

filaments with dynamics of cellular CAV-1 vesicles appears as
a novel and complementary observation and will contribute to
characterize the integrated cycling of caveolae. In addition, early
studies have shown that the motility of CAV-1 is bound to
depolymerized actin fibers by cytochalasin D application (Mundy
et al., 2002; Thomsen et al., 2002; Stoeber et al., 2012). Combined
with our results, we argue that the cytoplasmic distribution and
dynamics of caveolae are mostly dependent on the contractile and
filamentous status of actin, which representing the abundant and
stiff of actin structures.

We assume that CAV-1 depleted U2OS cells which used in
this study are considered to be deprivation of all three caveolin
genes, because (1) CAV-2 has been shown to be degraded in
the absence of CAV-1 through the proteasomal pathway (Razani
et al., 2002a), and (2) CAV-3 is a muscle specific caveolin which
showed no endogenous expression in U2OS cells (Galbiati et al.,
2001; Razani et al., 2002b). In line with our finding, activation
of AMPK by CAV-1 depletion has been also detected in other
human colon tumor cells (Ha et al., 2012), indicating the activity
control of CAV-1 to AMPK is a broad regulation in cancer cells.
Moreover, depletion of CAV1 led to AMPK activation followed by
a p53-dependent G1 cell-cycle arrest and autophagy, suggesting
that elevated CAV1 may contribute to the ATP generation
(Ha et al., 2012).

This is already a common view that there is mutual
inhibition between the lamellipodia formation in cell frontness
and the contractile stress fiber formation in cell backness
(Li et al., 2003; Meili and Firtel, 2003; Xu et al., 2003)
during persistent migration. Thus, we propose that CAV-1
depletion disequilibrates the balance between RhoA-mediated
actomyosin bundles and Rac1-mediated lamellipodia formation,
which potentiates the interpretation of the cell migration
defects. Furthermore, here we identify a previously unexpected
role for CAV-1 phosphorylation on site Tyr14 in inhibition
of AMPK, and also disrupt the GTPase homeostasis and
eventually cell migration.

Other plasma membrane domains, such as clathrin-coated pits
are functionally linked to actin-regulatory factors (Girao et al.,
2008; Grassart et al., 2014; Tweten et al., 2017), but an alignment
with actin filaments is not apparent in those invaginations,

suggesting that the association of caveolae with actin filaments
fulfills a particular function, and that differentiates them from
clathrin-coated pits. It will be interesting to explore in the future
why caveolae associate with certain actin filament structures but
not with others, when and how this association is stimulated and
regulate various cell behavior.

MATERIALS AND METHODS

Cell Culture and Transfections
Human osteosarcoma (U2OS) cells and human hepatocarcinoma
(Huh7) cells were maintained in high glucose (4.5 g/L) Dulbecco’s
modified Eagle’s medium (DMEM) (#06-1055-57-1A, Biological
Industries, Kibbutz Beit-Haemek, Israel) supplemented with 10%
fetal bovine serum (FBS, #10270-106, Gibco, Waltham, MA,
United States), 100 U/ml Penicillin, 100 µg/ml Streptomycin, and
4 mM L-Glutamine (later referred as complete DMEM) at 37◦C
in humidified atmosphere with 5% CO2. Transient transfections
were performed with Fugene HD (Promega, Madison, WI,
United States) according to manufacturer’s instructions using
a Fugene HD: DNA ratio of 3.5:1 and 24 h incubation prior
assay. siRNA experiments were performed with Lipofectamine
RNAiMAX (Invitrogen, Carlsbad, CA, United States) using 40
nM On-target plus human siRNA of CAV-1 (target sequence 5′
CCCUAAACACCUCAACGAU 3′), and ARPC2 (target sequence
5′ CCAUGUAUGUUGAGUCUAA 3′) (Dharmacon, Lafayette,
CO, United States) for 72 h, respectively. AllStars Neg. Control
siRNA (Qiagen, Hilden, Germany) was used as a control siRNA.

CAV-1 CRISPR Knockout Cell Line
Generation
CAV-1 knockout U2OS cell line was generated based
on pSpCas9 (BB)-2A-GFP vector (a gift from Feng
Zhang, #48138, Addgene, Cambridge, MA, United States).
Briefly, two guide sequence targeting of human CAV-1
were selected based on CRISPR Design Tool1 with the
primer: 5′ AGTGTACGACGCGCACACCA 3′ and 5′
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FIGURE 5 | CAV-1 is required for the cell polarized morphology establishment and directional cell migration. (A) Phase contrast imaging reveals the morphology of
WT and CAV-1 KO cells. Bars, 50 µm. (B) The elliptical factor (length/breadth) were calculated for WT (n = 63) and CAV-1 KO (n = 63) cells. (C) Representative
images form time-lapse videos of WT and CAV-1 KO cells migrating in 50 µm width and 50 µm height channels with fibronectin-coated surface. Color lines indicate
the trajectory of each single cell nucleus stained by Hoechst and the kymograph are shown in the lower panel. Bars, 50 µm. (D,E) Migration velocities (D) and
directionalities (E) of WT and CAV-1 KO cells. Quantification is based on tracking of the displacement of nuclei. The data are presented as average velocity obtained
from a 10 h cell tracking. n = 21 cells for each group in panel (D) and 20 cells in panel E. In (B,D), ***P < 0.001 (Mann-Whitney test); In (E), ***P < 0.001 (unpaired
t-test). All the data are from three independent experiments. (F) A working model illustrates the negative feedback loop between actin assemblies and cytoplasmic
CAV-1.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 April 2021 | Volume 9 | Article 665919119

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-665919 April 5, 2021 Time: 10:32 # 11

Shi et al. Crosstalk Between Actin and Caveolin-1

TGGGGGCAAATACGTAGACT 3′ for CAV-1-knockout.
Transfected cells were detached at 24 h post-transfection and
sorted with FACS Aria II (BD Biosciences, Bedford, MA,
United States), using low intensity GFP-expression pass gating,
as single cell onto 96-well plate supplemented DMEM containing
20% FBS and 10 mM HEPES. CRISPR clones were cultivated for
2 weeks prior selecting clones with no discernible CAV-1 protein
expression using western blotting.

Immunofluorescence Microscopy
Immunofluorescence (IF) experiments were performed as
previously described (Jiu et al., 2019). Briefly, cells were fixed
with 4% PFA in PBS for 15 min at room temperature (RT),
washed three times with PBS, and permeabilized with 0.1%
Triton X-100 in PBS for 5 min. Cells were then blocked in
PBS supplemented with 5% BSA. Both primary and secondary
antibodies were applied onto cells and incubated at RT for 2 h.
Alexa-conjugated phalloidin was added together with secondary
antibody solutions onto cells. Alexa 647-wheat germ agglutinin
(WGA) (#W32466, Thermo Fisher Scientific) was used to
visualize the plasma membrane. All IF data were obtained with
Olympus SpinSR10 Ixplore spinning disk confocal microscope
with UplanApo 100×/1.5 Oil objective (Olympus Corporation,
Tokyo, Japan). The pixel size was optimized properly to achieve
the maximum resolution which was calculated to be 65 nm.
For detection and measure of the cytoplasmic CAV-1 tagged
vesicles, the “Spots” tool of Imaris 9.2 (Bitplane, Zurich,
Switzerland) was used with the configuration defined as 2 µm
for estimated XY diameter. The numbers and sizes of spots
were calculated subsequently. For detection and measure of the
lamellipodia width, a plot profile perpendicular to the plasma
membrane was made by using imageJ, and the peak zone was
defined as the width.

Live Cell Imaging
For live cell imaging, 35 mm glass-bottomed dishes (MatTek
Corporation, Ashland, MA, United States) were coated with
10 µg/ml fibronectin (#F2006, Sigma Corp., St. Louis, MO,
United States) in PBS for at least 3 h at 37◦C, washed with PBS
twice and immersed in complete DMEM medium without phenol
red (#01-053-1A, Biological Industries, Kibbutz Beit-Haemek,
Israel) before seeding of cells. The time-lapse images of cells with
transient transfection of CAV-1-mEGFP and mCherry-actin were
acquired with Olympus cellSens Dimension system, consisting
of an Olympus SpinSR10 Ixplore spinning disk confocal and
a Yokogawa CSU-W1 confocal scanner. Appropriate filters,
heated sample environment (+37◦C), controlled 5% CO2
and UplanApo 100×/1.5 Oil objective (Olympus Corporation,
Tokyo, Japan) was used. The recording was set as every
1 s for 200 s and one focal plane was recorded for all
live cell videos. For tracking and speed measurement of
CAV-1 vesicles, the Imaris 9.2 (Bitplane, Zurich, Switzerland)
“Track” module with globular-objects over time was used as
in previous study (Jiu, 2018). Two micrometers estimated
XY diameter, 5 µm max distance and 3 max gap size were
set for analyzing.

Interference Reflection Microscopy (IRM)
In order to image cells using IRM, we added a 50/50 beam splitter
(which reflects 50% and transmits 50% of the chosen wavelength)
in an empty filter cube of the Olympus IX73 inverted widefield
fluorescence microscopy (Olympus Corporation, Tokyo, Japan).
The 50/50 beam splitter partially reflects the 488 nm light to the
sample, and then the light reflected from the sample is collected
by the camera. The light reflected from the glass/medium
interface (I1) and the light reflected from the medium/cell
plasma membrane interface (I2) can interference, the optical
path difference between I1 and I2 will result in a constructive
bright signal or a destructive dark signal (Verschueren, 1985;
Mahamdeh and Howard, 2019).

Western Blotting (WB)
All cell lysates were prepared by washing the cells once with
PBS and scraping them into RIPA lysis buffer (50 mM Tris pH
7.4, 150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate
and 0.1% SDS) supplemented with 1 mM PMSF, 10 mM DTT,
40 µg/ml DNase I and 1 µg/ml of leupeptin, pepstatin, and
aprotinin. All preparations were conducted at 4◦C. Protein
concentrations were determined with BCA Protein Assay kit
(#23227, Thermo Fisher Scientific, Waltham, MA, United States)
and equal amounts of the total cell lysates were mixed with
Laemmli Sample Buffer (LSB), boiled, and ran on 12.5% SDS-
PAGE gels. Proteins were transferred to nitrocellulose membrane
with Trans-Blot Turbo transfer system (Bio-Rad, Hercules,
CA, United States) using Mini TGX gel transfer protocol.
Membrane was blocked in 5% BSA for 1 h at RT. Primary
and secondary antibodies were diluted into fresh blocking buffer
for overnight at 4◦C and 1 h at RT, respectively. Proteins
were detected from the membranes with SuperSigna West
Femto Maximum Sensitivity Substrate (Thermo Fisher Scientific,
Waltham, MA, United States).

Plasmids
mCherry-actin was a kind gift from Pekka Lappalainen
(University of Helsinki, Finland). CAV-1-mCherry (#27705),
CAV-1-mEGFP (#27704) and GFP-AHPH (#Cat68026)
were from Addgene (Watertown, MA, United States). All
plasmids were sequenced for verification. CAV-1(Y14D)-
mEGFP and CAV-1 (Y14F)-mEGFP was constructed by
the overlap extension method, respectively (Horton et al.,
1989). To knockdown p190RhoGAP in U2OS cells, human
p190RhoGAP (GenBank NM_004491.4) targeting sequence (5′
CCGGCGGTTGGTTCATGGGTACATTCTCGAGAATGTAC
CCATGAACCAACCGTTTTTT 3′) and control, non-targeting
sequence (5′ CCGGGGTTCTCCGAACGTGTCACGTCTCGA
GACGTGACACGTTCGGAGAACCTTTTTG 3′) were cloned
into pLKO.1-TRC-copGFP-T2A-Puro vector, respectively.

Drug Treatment
The following drugs were used at a defined dose and time:
blebbistatin (#b0560; Sigma, St. Louis, MO, United States) with
10 µM for 30 min, CK666 (#sml0006, Sigma, St. Louis, MO,
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United States) with 40 µM for 1 h, Latrunculin B (LatB, #sc-
203318, Santa Cruz, Dallas, TX, United States) with 0.5 µM for
0.5 h and Compound C (#S7306, Selleck Chemicals, Houston,
TX, United States) with 5 µM for 24 h.

Antibodies
The following antibodies were used in this study: CAV-1
(D46G3) rabbit antibody (1:1,000 dilution for WB, 1:200
for IF; #3267, Cell Signaling, Beverly, MO, United States);
Phospho-CAV-1 (Tyr14) rabbit antibody (dilution 1:1,000
for WB; #3251, Cell signaling); AMPK rabbit antibody
(dilution 1:500 for WB; #SAB4502329, Sigma, St. Louis,
MO, United States); P-AMPK (Thr172) rabbit antibody (dilution
1:500 for WB, 1:100 for IF; #2531S, Cell Signaling); Cofilin
(E-8) mouse antibody (dilution 1:1,000 for WB; #sc-376476,
Santa Cruz, Dallas, TX, United States); Phospho-Cofilin
(Ser3) rabbit antibody (dilution 1:1,000 for WB, 1:200 for
IF; #3313, Cell signaling); p190RhoGAP rabbit antibody
(dilution 1:2,000 for WB; #26789, Proteintech, Rosemont,
IL, United States); FAK rabbit antibody (dilution 1:1,000
for WB; #3285, Cell Signaling); Phospho-FAK (Tyr397)
rabbit antibody (dilution 1:1,000 for WB; #3283, Cell
Signaling); PAK1 rabbit antibody (dilution 1:1,000; #2602,
Cell Signaling); Phospho-PAK1 (Thr423)/PAK2 (Thr402)
rabbit antibody (dilution 1:1,000 for WB, 1:200 for IF;
#2601, Cell Signaling); Tpm4.2 (LC24) mouse antibody
(dilution 1:500 for WB and IF; a kind gift from Peter W.
Gunning, UNSW Australia); Phospho-myosin light chain 2
(Thr18/Ser19) rabbit antibody (dilution 1:500 for WB, 1:200 for
IF; #3674, Cell Signaling); Myosin light chain mouse antibody
(dilution 1:1,000 for WB; #M4401, Sigma); Vinculin mouse
antibody (dilution 1:100 for IF; #V9131, Sigma); ARPC2
rabbit antibody (dilution 1:1,000 for WB and IF; #15058,
Proteintech, Rosemont, IL, United States); Myosin-18B rabbit
antibody (dilution 1:500 for WB; #HPA000953, Sigma); Rab8
rabbit antibody (dilution 1:100 for IF; #R5530, Sigma); and
GAPDH mouse polyclonal antibody (dilution 1:1,000 for WB;
#G8795, Sigma).

FRAP
Cells were transfected with CAV-1-mEGFP and incubated for
24 h. Confocal images were acquired with a 3I Marianas
imaging system (3I Intelligent Imaging Innovations, Denver,
CO, United States), consisting of an inverted spinning disk
confocal microscope Zeiss Axio Observer Z1 (Zeiss, Oberkochen,
Germany), a Yokogawa CSU-X1 M1 confocal scanner and
63 × /1.2 WC-Apochromat Corr WD = 0.28 M27 objective
(Zeiss). Heated sample environment (+37◦C) and 5% CO2
control were used. SlideBook 6.0 software (3I Intelligent
Imaging Innovations) was used for the image acquirement.
Five pre-bleach images were acquired followed by bleaching
scans with 100% intensity laser lines over the region of
interest. Recovery of fluorescence was monitored 50 times
every 200 ms and 300 times every 1 s. The intensity of
the bleached area was normalized to a neighboring non-
bleached area. Mean scatter plots were calculated from different

FRAP experiments and the means and standard deviations
were calculated.

Filament Analysis
The total number of stress fibers and the number of thick
actin filament bundles in U2OS cells were quantified with
ridge detection plugin (v1.4.0) from Fiji ImageJ (1.53c, Wayne
Rasband, National Institutes of Health NIH). The parameters
used for detecting the total number of stress fibers are: line
width 20.0, high contrast 230, low contrast 100, sigma 6.57,
low threshold 0.0, and upper threshold 0.34. The parameters
used for quantifying the thick bundles are: line width 29.0, high
contrast 230, low contrast 87, sigma 8.87, low threshold 0.0, and
upper threshold 0.17. The dorsal stress fibers in cells on petri
dishes and the ventral stress fibers in cells on micropattern chips
are manually outlined, and subsequently measured the lengths
for quantification.

BioID Screen
BirA-Tpm3.1 was transfected into U2OS cells, which induced
biotinylation of transverse arcs and ventral stress fibers
(Supplementary Figure 1A). Backbone vector pmycBioID-C1
was transfected as control. Cells were grown for 24 h in complete
DMEM and another 24 h in the presence of 50 µM biotin.
Single-step affinity purifications of the biotinylated proteins,
liquid chromatography mass spectrometry sample preparation,
and mass spectrometry were performed as in Jiu et al. (2015).
To obtain a list of high-confidence protein interactions for
Tpm3.1 the data was filtered against our in-house BioID
contaminant database.

Real-Time Quantitative PCR
Total mRNA was extracted with GeneJET RNA purification
kit (#K0731, Thermo Fisher Scientific, Madison, WI,
United States) and single stranded cDNA was synthetized
(#K1671, Thermo Fisher Scientific) from 500 ng of extracted
mRNA. The following primers were used: forward CAV-1
5′ AACCTCCTCACAGTTTTCATCC 3′, reverse CAV-1 5′
CTTGTTGTTGGGCTTGTAGATG 3′, forward GAPDH
5′ GAAGGTGAAGGTCGGAGTC 3′, reverse GAPDH
5′ GAAGATGGTGATGGGATTTC 3′. Quantitative PCR
reactions were carried out with Maxima SYBR Green/ROX
(#K0221, Thermo Fisher Scientific) in Bio-Rad CFX96 (Bio-
Rad). Changes in expression were calculated with 2−11Ct

method, and normalized to GAPDH and WT expression
levels, respectively.

Cell Migration Assay
The microfluidic device is made of PDMS (RTV615, NY,
United States) by soft lithography from a patterned SU-8 silicon
wafer. Glass coverslips were plasma bounded to PDMS layer.
Each device consists of 10 channels of 50 µm in wide and
height, 3 mm in length. In migration assay, all channels were
coated with 10 µg/ml fibronectin for 1 h at 37◦C. Cells were
incubated with Hoechst 33342 for 10 min and subsequently
washed twice with PBS and replaced with complete DMEM.
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Cells were collected from culture dishes using trypsin-EDTA,
and resuspended in complete DMEM to a concentration of
2 × 107 cells/ml. Twenty microliters of cell suspension was
added to the device inlet. Cells were allowed to adhere and
spread overnight. All wells of the device were then filled
with 120 ml of complete DMEM. Devices were incubated at
37◦C and 5% CO2 before imaging by Olympus IX73 inverted
microscopy with the UplanFL 10 × /0.3 objective (Olympus,
Tokyo, Japan). Average migration velocity and directional
migration duration were quantified by tracking the nucleus
movement in between 5 min imaging cycles for 10 h. Only
cells that did not collide with one another were selected
for measurements.

Wound Healing Assay
Cells were seeded in a 6-well cell culture plate with a
cell density of 25,000/cm2 and cultivated at 37◦C in 5%
CO2 overnight. Subsequently, the cell monolayers were
scratched with a sterile 0.2 mL pipette tip to create linear
wounds and washed with PBS to remove detached cells.
Cells were incubated in a serum-free DMEM medium to
eliminate cell proliferation and then observed by Olympus
IX73 inverted microscopy with the UplanFL 10×/0.3
objective (Olympus, Tokyo, Japan). The migration rates
were measured using ImageJ.

Small GTPase Activity Assay
Active RhoA, Rac1 and Cdc42 Detection Kit (#8820, #8815 and
#8819, Cell Signaling, Beverly, MO, United States) were used
to measure the activity of these small GTPases. Briefly, cell
lysates were prepared by washing cells once with ice-cold PBS
and scraping them into lysis buffer plus 1 mM PMSF. Next,
transfer the cell lysate to the spin cup which contains 100 µl
agarose beads and 400 µg GST-Rhotekin-RBD (for binding to
RhoA-GTP) or GST-PAK1-PBD (for binding to Rac1/Cdc42-
GTP). Incubate the reaction mixture at 4◦C for 1 h with
gentle rocking. Then wash the beads three times with washing
buffer and incubated with reducing sample buffer for 2 min
at RT. Centrifuge the tube at 6,000 g for 2 min and heat the
eluted samples for 5 min at 100◦C. Anti-Rho, anti-Rac1 and
anti Cdc42 antibodies (#8789, #8631 and #8747, Cell Signaling)
were used to test active RhoA, Rac1, and Cdc42 by western
blot, respectively.

Traction Force Microscopy
Traction force microscopy was used to measure the contractile
forces that cells exerted upon their substrate as previously
described (Jiu et al., 2017). Briefly, cells were cultured for 3–8 h
on custom-made 35-mm dishes (Matrigen Life Technologies,
CA, United States) with fibronectin-coated PAA gel with either
25 or 0.5 kPa stiffness. The diameter of 200 nm yellow-
green fluorescent (505/515) microspheres was immobilized
to the surface of the gel. Images of the cells and the
fluorescent microspheres directly underneath the cells were
acquired during the experiments and after cell detachment
with trypsin. By comparing the reference image with the
experimental image, we computed the cell-exerted displacement

field. From the displacement fields, and manual traces of the
cell contours, together with knowledge of substrate stiffness,
we computed the traction force fields using the approach of
constrained Fourier-transform traction cytometry. From the
traction fields, we calculated the strain energy by equation

U =
1
2

∫
T (r) .u(r)dA

It was the total deformation energy produced by the
cells through applying the traction on the surface of
the substrate, which suggested an integrated measure
of cell traction.

Statistical Analysis
Statistical data analyses were performed with Excel (Microsoft,
Redmond, WA, United States) and Graphpad Prism 8 (GraphPad
Software, La Jolla, CA). Normality of the data was examined
with the Shapiro-Wilk test and a quantile-quantile plot.
For the data following normal distribution, Student’s two-
sample unpaired t-test was used. If data did not follow
normal distribution, Mann-Whitney u-test for two independent
samples was conducted. One-way ANOVA followed by a
Tukey’s post-hoc test was used to evaluate differences between
three or more groups. For analyzing the CAV-1 movement
rate, the mean speed of each vesicle within 200 s live
cell video was measured by Imaris “Track” module and
pooled together to calculate the average rate with color bars
indicating the tracked mean speed ranging from 0 to 0.4
µm/s (Figure 2F).
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Supplementary Figure 1 | The expression and motility of CAV-1 vesicles in
U2OS cells. (A) A schematic cartoon demonstrates that tropomyosin is a tightly
actin associated components. Immunofluorescence staining of Biotin fused
Tpm3.1 and streptavidin localized to actin filaments to verify the screen are shown
in the lower panel. Bars, 10 µm. (B) Representative immunofluorescence images
of overexpressing CAV-1-mCherry paired with endogenous CAV-1 and Rab8
antibodies, respectively. The yellow box in the merged images show magnified
images. Bars, 10 µm (in cell images) and 5 µm (in the magnified box). (C)
Localization of endogenous CAV-1 and actin filaments in U2OS cells detected by
CAV-1 antibody and fluorescent phalloidin, respectively. WGA was used to label
the plasma membrane. Magnified regions from the area indicated by white boxes
demonstrate that cytoplasmic CAV-1 aligns with actin filaments. The orthogonal
view shows the view of the enlarged region, where “XY” and “XZ” indicated
different cross-sections. (D) Representative images of actin filaments and
endogenous CAV-1. DAPI was used to mark the nucleus. “Middle” refers to the
cytoplasmic field of the cell, and “Bottom” indicates the ventral plasma membrane
area. Bars, 10 µm (in cell images), 5 µm (in magnified images and
orthographic views).

Supplementary Figure 2 | Actin assemblies regulate the size and dynamics of
CAV-1 vesicles. (A) Immunofluorescence staining of endogenous F-actin and
CAV-1 positive vesicles in U2OS cells treated with 0.2 µM LatB for 30 min.
Magnified regions represent the cytoplasmic CAV-1. Bars, 10 µm (in cell images)
and 5 µm (in the magnified box). (B) The length distribution of CAV-1 vesicles. The
number of vesicles in each group of size is divided by the total CAV-1 number of
the same cell. n = 6,432 vesicles from 12 WT cells, and 9,543 vesicles from 18
LatB treatment cells. (C,D) The transcriptional and translational level of CAV-1 is
examined by RT-PCR (C) and western blot (D) in total cell lysates of WT, NMII inh.
and Arp2/3 inh. cells. (E) Western blot analysis of endogenous Myosin-18B
(Myo18B) level in total cell lysates of WT and Myo18B KO cells by CRISPR/Cas9
methods. (F) Western blot analysis of endogenous ARPC2 level in total cell lysates
of WT and ARPC2 knockdown (ARPC2 siRNA) cells. (G) The length distribution of
CAV-1 vesicles. The number of vesicles in each size group is divided by the total
CAV-1 number of the same cell. n = 17,902 vesicles from 27 cells (WT), 15,434
vesicles from 33 cells (Myo18B KO), and 14,434 vesicles from 23 cells (ARPC2
siRNA). (H) Quantification of the movement rate of CAV-1 vesicles in the whole WT
(n = 31), Myo18B KO (n = 28) cells, and ARPC2 siRNA (n = 28) cells. All the data
are presented as mean ± SD. In (E,G), ***P < 0.001; N.A., not significant
(one-way ANOVA). All the data are from three independent
experiments.

Supplementary Figure 3 | CAV-1 is critical for the contractile stress fiber
formation by regulating RhoA-Myosin II. (A) Western blot analysis of endogenous
CAV-1 levels in total cell lysates of WT and CAV-1 CRISPR/Cas9 knockout cells.
(B) Western blot analysis of endogenous CAV-1 levels in total cell lysates upon
RNA silencing. (C) Representative images of actin filaments visualized by
phalloidin in WT and CAV-1 knockdown cells. Magnified regions represent the
contractile stress fibers and protrusive lamellipodia. Bars, 10 µm (in cell images)
and 5 µm (in the magnified box). Quantification of the average numbers of total

and thick filaments, and lamellipodia width in 20 WT and 20 CAV-1 knockdown
cells. (D) P-FAK (Tyr397) and total FAK were detected from the lysates of each
group by western blotting. Quantification of P-FAK (Tyr397) levels (compared to
total FAK) from each group was shown on the right panel. n = 3. (E) WT and
CAV-1 KO cells transfected with active RhoA sensor GFP-AHGP were stained by
Alexa 568 phalloidin. Bars, 10 µm. The average intensity of GFP-AHPH were
calculated on the right. n = 20 for WT and CAV-1 KO cells. (F) WT and CAV-1 KO
cells stained with phalloidin and P-MLC (Thr18/Ser19) antibody demonstrate
decreased phosphorylation of P-MLC in cells lacking CAV-1. Bars, 10 µm (in cell
images) and 5 µm (in the magnified box). The average intensity of P-MLC was
calculated on the right. n = 19 for groups depicted on the left. (G) Representative
images and quantification of Tm4 in WT and CAV-1 KO cells. n = 21 for each
group. All the data are presented as mean ± SD. In (C–E,G), ***P < 0.001;
**P < 0.01; N.A., not significant (unpaired t-test). In (F), ***P < 0.001
(Mann-Whitney test); All the data are from three independent experiments.

Supplementary Figure 4 | Changes of actin protrusive network in the absence of
CAV-1 is regulated by AMPK-Rac1-PAK1-Cofilin signaling cascade. (A)
Representative images of actin filaments visualized by Interference Reflection
Microscopy (IRM). Magnified regions represent the contractile stress fibers and
protrusive lamellipodia. Bars, 10 µm (in cell images) and 5 µm (in the magnified
box). (B) Pull-down assays were performed for WT and CAV-1 KO cells. Proteins
bound to GST-PAK binding domain were analyzed by western blots and further
quantified (compared to total Cdc42) based on the band’s intensity. n = 3. (C,D)
Immunostaining (C) and quantification (D) of endogenous P-AMPK (Thr172) and
F-actin distribution in WT and CAV-1 KO cells. A 16 µm length line was used to
generate a line profile to illustrate the co-localization of P-AMPK (Thr172) and
F-actin. The lamellipodia region was enlarged on the right, and 2 µm width region
was chosen to analyze the mean intensity of P-AMPK (Thr172) on the leading
edge. Bars, 10 µm (in cell images) and 5 µm (in the magnified box). n = 20
regions from each group. (E,F) Immunostaining (E) and quantification (F) of
endogenous P-PAK1 (Thr423) and F-actin distribution in WT and CAV-1 KO cells.
A 16 µm length line was used to generate a line profile to illustrate the
co-localization of P-PAK1 (Thr423) and F-actin. The lamellipodia region was
enlarged on the right, and 2 µm width region was chosen to analyze the mean
intensity of P-PAK1 (Thr423) on the leading edge. Bars, 10 µm (in cell images) and
5 µm (in the magnified box). n = 20 regions from each group. All the data are
presented as mean ± SD. In (B,D,F), ***P < 0.001 (unpaired t-test). All the data
are from three independent experiments.

Supplementary Figure 5 | Cell morphology and directional migration are
impaired in response to CAV-1 deficiency. (A) Wound healing assay was
performed in WT and CAV-1 KO cells. The representative images in different time
point during wound healing were shown. Bars, 100 µm. (B) Quantitation of the
averaged wound healing rate. (C) Western blot analysis of endogenous CAV-1
and stable expressed CAV-mEGFP in Huh7 cells. (D) Representative images of
CAV-1-mEGFP in non-transfected WT and CAV-1-mEGFP stable expressed Huh7
cells. Bars, 10 µm. (E,F) Representative images (E) and measurement of the
wound healing rate (F) of WT and CAV-1-mEGFP stable expressed Huh7 cells.
Bars, 100 µm. All the data are presented as mean ± SD. **P < 0.01 (unpaired
t-test). All the data are from three independent experiments.

Supplementary Video 1 | Related to Figure 1C (Box 1). Time-lapse video of
CAV-1-mEGFP sliding along actin filaments in U2OS Cells. White and yellow
arrows indicate the starting and ending position of discrete CAV-1 tagged vesicles,
respectively. The display rate is 3 frames per second. Bar, 5 µm.

Supplementary Video 2 | Related to Figure 1C (Box 2). Time-lapse video of
CAV-1-mEGFP associated with contractile actin transverse arcs and displayed
retrograde flow toward the cell center in U2OS Cells. White and yellow arrows
indicate the starting and ending position of discrete CAV-1 tagged vesicles,
respectively. The display rate is 15 frames per second. Bar, 5 µm.

Supplementary Video 3 | Related to Figure 4B. Live cell phase contrast imaging
of WT (left) and CAV-1 KO (right) cells membrane ruffling for 10 min with the time
interval of 2 s. The display rate is 15 frames per second. Bar, 10 µm.

Supplementary Video 4 | Related to Figure 5C. Live cell phase contrast imaging
of WT (upper) and CAV-1 KO (lower) cells migrating in 50 µm height and width
channel for 10 h with the time interval of 5 min. Nucleus were stained by Hoechst.
The display rate is 15 frames per second. Bar, 50 µm.
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The Ehlers-Danlos syndromes (EDS) are a group of 13 disorders, clinically defined
through features of joint hypermobility, skin hyperextensibility, and tissue fragility. Most
subtypes are caused by mutations in genes affecting the structure or processing of
the extracellular matrix (ECM) protein collagen. The Hypermobility Spectrum Disorders
(HSDs) are clinically indistinguishable disorders, but are considered to lack a genetic
basis. The pathogenesis of all these disorders, however, remains poorly understood.
Genotype-phenotype correlations are limited, and findings of aberrant collagen fibrils
are inconsistent and associate poorly with the subtype and severity of the disorder.
The defective ECM, however, also has consequences for cellular processes. EDS/HSD
fibroblasts exhibit a dysfunctional phenotype including impairments in cell adhesion and
cytoskeleton organization, though the pathological significance of this has remained
unclear. Recent advances in our understanding of fibroblast mechanobiology suggest
these changes may actually reflect features of a pathomechanism we herein define. This
review departs from the traditional view of EDS/HSD, where pathogenesis is mediated
by the structurally defective ECM. Instead, we propose EDS/HSD may be a disorder
of membrane-bound collagen, and consider how aberrations in cell adhesion and
cytoskeleton dynamics could drive the abnormal properties of the connective tissue,
and be responsible for the pathogenesis of EDS/HSD.

Keywords: Ehlers-Danlos syndrome, hypermobility spectrum disorder, fibroblasts, integrins, cytoskeleton,
mechanobiology

INTRODUCTION

The Ehlers-Danlos syndromes (EDS) are a group of heritable connective tissue disorders defined
by the presence of three clinical features: joint hypermobility, skin hyperextensibility, and tissue
fragility (Malfait et al., 2017). The condition is named after two dermatologists, Edvard Lauritz
Ehlers and Henri-Alexandre Danlos both of whom independently characterized some of the
first clinical descriptions of EDS in the early 20th Century (Parapia and Jackson, 2008). The
formal categorization of the EDS subtypes began in the 1960s, and there have since been several
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reclassifications following advances in our understanding of the
molecular and genetic basis of these disorders (Table 1). Most
subtypes have now been shown to be caused by mutations in
genes affecting the structure or processing of collagen (Malfait
et al., 2017). Most recently, the International Consortium on the
ehlers-danlos syndromes proposed updated diagnostic criteria
in 2017, which recognizes 13 different EDS subtypes (Malfait
et al., 2017). Since its publication, a 14th subtype of EDS
has been identified (Blackburn et al., 2018). While provisional
diagnoses can be made based on clinical major and minor
criteria, a definitive diagnosis now relies on the molecular
identification of the causative variant(s) in the respective gene.
The exception lies with the hypermobile form of EDS (hEDS;
formerly EDS type III) which, despite being the most common
form, remains as the only subtype without an identified
distinct genetic variation, and whose diagnosis remains clinical
alone. In addition, it is important to recognize the related
Hypermobility Spectrum Disorders (HSD) which are clinically
indistinguishable from hEDS, and both diagnoses are often
termed together as hEDS/HSD. HSD is a diagnosis the EDS
consortium had intended to reflect patients who demonstrate
the characteristic feature of hEDS, i.e., joint hypermobility, but
lack sufficient clinical evidence to demonstrate a genetic aetiology
to their presentation. The segregation of these diagnoses was
intended to produce a more homogenous cohort to further
aid research efforts to identify the genetic markers of hEDS,
but does not differentiate patients in terms of severity of
symptoms or disability (Tinkle et al., 2009; Copetti et al., 2019).
Collectively, EDS/HSD has a diagnosed prevalence of 1 in 500
(Demmler et al., 2019).

Our current understanding of EDS/HSD pathogenesis is
informed by the two best characterized subtypes, the classical
(cEDS) and vascular (vEDS) forms, which are consequent to
mutations in genes encoding the minor collagen proteins, type
V (Symoens et al., 2012), and type III (Pepin et al., 2000),
respectively. Mutations either cause haploinsufficiency, which is
a 50% reduction in protein expression caused by a nonsense-
mediated decay of the non-viable RNA transcript (Leistritz
et al., 2011; Symoens et al., 2012), or the production of a
structurally defective procollagen molecule which is retained
within the endoplasmic reticulum (Smith et al., 1997; Symoens
et al., 2012). Consequently, in both scenarios, the absence of
sufficient functional minor collagen proteins in the extracellular
matrix (ECM) then impedes with their role in regulating the
formation and organization of the major type I collagen into
fibrils (Figure 1; Liu et al., 1997; Wenstrup et al., 2004a,b; D’hondt
et al., 2018; Wang et al., 2020). This disrupts the integrity of the
ECM and is assumed to be the underlying cause of connective
tissue weakness.

However, this notion is not truly reflected in transmission
electron microscopy (TEM) analyses of collagen fibril structure
and organization in EDS/HSD skin biopsies, though general
abnormalities can be found. These abnormalities include reduced
and disorganized collagen bundles with abnormal orientations,
or non-circular cross-sections of collagen fibrils that are
described as “flower-like,” or with variable diameters both larger

and smaller than would be typically expected (Holbrook and
Byers, 1982; Hausser and Anton-Lamprecht, 1994; Hermanns-
Lê and Piérard, 2006). vEDS patients have been characterized as
having collagen fibrils that are smaller and more variable, and
with an overall reduced density (Smith et al., 1997), while cEDS is
associated with the presence of flower-like collagen fibrils (Vogel
et al., 1979; de Moraes et al., 2000; Bowen et al., 2017; Angwin
et al., 2020).

Yet, these findings are not consistent and this should be
considered significant. It has long been noted that the degree of
ultrastructural changes observed do not correlate with clinical
severity (Proske et al., 2006), or presentation (Kobayasi, 2004;
Hermanns-Lê et al., 2012). Further studies have shown that
patients can present with no significant collagen abnormalities,
despite a clinical presentation and/or confirmation of genetic
disorder. In 2019, one study reported two individuals with a
likely pathogenic variant of the COL5A1 gene that did not
present with the typical collagen flowers expected (Angwin
et al., 2019), contradicting a consensus previously reached by
the EDS committee in 2017 (Bowen et al., 2017). Another study
in vEDS patients found that the size of collagen fibers and
bundle characteristics did not discriminate between vEDS and
control participants, nor did all vEDS participants present with
abnormal fibril diameters (Ong et al., 2012). More recently, a
larger study of 177 EDS patients found that no specific TEM
finding could be associated with any specific EDS subtype
(Angwin et al., 2020). Remarkably, from the 177 patients with
a clinical diagnosis, 147 (83%) had a normal TEM report, and
from the 24 patients with a genetic confirmation of their subtype,
7 (29%) also had a normal biopsy report (Angwin et al., 2020).
Conversely, it has been demonstrated that clinically unaffected
family members and control participants can also present with
the same EDS-associated ultrastructural abnormalities without
displaying features of a connective tissue disorder (Kobayasi,
2004; Hermanns-Lê et al., 2012). As such, the only conclusion
that can be derived from these collective TEM studies is that an
abnormal biopsy finding is more frequently found in EDS/HSD
patients (Angwin et al., 2020).

These findings demonstrate that despite the categorization of
EDS/HSD as a disorder of collagen, the reported ultrastructural
collagen abnormalities do not appear to be the principal
mediators of abnormal connective tissue properties in these
disorders. It is therefore plausible to assume that other related
factors heavily influence connective tissue properties and mediate
the EDS/HSD phenotype. One such factor may be the cellular
mechanics of fibroblasts, the predominant cell type that populates
the connective tissue.

THE ROLE OF FIBROBLASTS IN
MEDIATING THE PROPERTIES OF THE
CONNECTIVE TISSUE

The ability of fibroblasts to directly exert force and influence
the tension in the surrounding environment is significant, as
it directly affects the viscoelastic properties of the connective
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TABLE 1 | Past and present classifications of EDS subtypes and their molecular basis.

2017 International
Classification of EDS
(2017-present) (Malfait
et al., 2017)

Villefranche criteria
(1998–2016) (Beighton
et al., 1998)

Berlin Nosology
(1988–1998) (Beighton
et al., 1988)

Genetic basis Protein OMIM condition

Classical EDS (cEDS) EDS Classical Type Gravis (EDS type I) COL5A1 Type V collagen 130000

Mitis (EDS type II) COL5A2 130010

** ** COL1A1 Type I collagen –

Classical-like EDS (clEDS)
type 1

** ** TNXB Tenascin XB 606408

**Classical-like EDS type 2 ** ** AEBP1 Aortic
Aarboxypeptidase-
Like
Protein

618000

Cardiac-valvular (cvEDS) ** ** COL1A2 Type I collagen 225320

Vascular EDS (vEDS) EDS Vascular Type Arterial-ecchymotic (EDS
type IV)

COL3A1 Type III collagen 130050

** ** COL1A1 Type I collagen –

Hypermobile EDS (hEDS) EDS Hypermobility Type Hypermobile (EDS type III) Unknown Unknown 130020

Arthrochalasia (aEDS) EDS Arthrochalasia Type Arthrochalasis multiplex
congenita (EDS type VIIA)

COL1A1 Type I collagen 130060

** Arthrochalasis multiplex
congenita (EDS type VIIB)

COL1A2 Type I collagen 617821

Dermatosparaxis EDS
(dEDS)

EDS Dermatosparaxis Type Human Dermatosparaxis
(EDS type VIIC)

ADAMTS2 Procollagen I
N-proteinase

225410

Kyphoscoliotic EDS (kEDS) EDS Kyphoscoliosis Type Ocular-Scoliotic (EDS type
VIA)

PLOD1 Lysyl hydroxylase 1 225400

** ** FKBP14 FK506 Binding
Protein 22kDa

614557

Brittle Cornea syndrome
(BCS)

** Ocular-Scoliotic (EDS type
VIB)

ZNF469 Zinc finger protein
469

229200

** ** PRDM5 PR
domain-containing
protein 5

614170

Spondylodysplastic EDS
(spEDS)

Other forms (Progeroid EDS) ** B4GALT7 β-1,4-
galactosyltransferase
7

130070

** ** B3GALT6 β3GalT6 615349

** ** SLC39A13 ZIP13 612350

Musculocontractural EDS
(mcEDS)

** ** CHST14 Dermatan-4
sulfotransferase-1

601776

** ** DSE Dermatan sulfate
epimerase-1

615539

Myopathic EDS (mEDS) ** ** COL12A1 Type XII collagen 616471

Periodontal EDS (pEDS) Other forms (Periodontal
type)

Periodontitis type (EDS type
VIII)

C1R C1r 130080

C1S C1s 617174

(X-linked cardiac valvular
dysplasia)*

Other forms (X-linked EDS) X-linked type (EDS type V) FLNA Filamin-A 314400

Occipital horn syndrome
(OHS)*

Occipital horn syndrome
(OHS)*

X-linked cutis laxa (EDS type
IX)

ATP7A ATPase, Cu
(2++)-transporting,
alpha polypeptide

304150

* Other forms
(Fibronectin-deficient EDS)

Fibronectin-deficient (EDS
type X)

– – 225310

Familial hypermobility
syndrome (FHS)*

Other forms (Familial
hypermobility syndrome)

Familial articular
hypermobility syndrome
(EDS type XI)

– – 147900

*Removed as an EDS subtype from the criteria.
**Unidentified or unrecognized EDS subtype at time of criteria formation.
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FIGURE 1 | The formation and function of collagen fibrils in connective tissue. Fibroblasts secrete collagen molecules into the ECM which associate in a staggered
pattern to form collagen fibrils. These collagen fibrils consist mostly of the major collagen protein, type I, while the minor collagen proteins, such as type III and type V
constitute only a fraction of fibril mass (Theocharidis and Connelly, 2019). The importance of these minor collagens, however, lies in their role in regulating the
diameter and organization of collagen fibrils. In the example of type V collagen molecules, the presence of a non-collagenous domain which projects outwards
introduces steric hindrances when incorporated within collagen fibrils (Wenstrup et al., 2004a). This limits the lateral growth of the fibrils and may also play a role in
regulating their diameter (Wenstrup et al., 2004a). Multiple collagen fibrils together form collagen fibers which provide tensile strength to the connective tissue. The
absence of sufficient amounts of minor collagen proteins, like in EDS, can result in poorly formed collagen fibrils, and in turn, collagen fibers (Theocharidis and
Connelly, 2019). The tissue specific expression and roles of the minor collagen proteins presumably accounts for the characteristic presentation of each specific EDS
subtype, all of which differ in the varying presence, manifestation, and degrees of joint hypermobility, skin hyperextensibility, and tissue fragility. Image created with
BioRender.com.

tissue. This has been demonstrated through gel contraction
assays (Figure 2) (Dallon and Ehrlich, 2008). Fibroblasts seeded
into isolated and recombinant collagen gels generate tractional
forces by cytoskeleton contractility which propagate throughout
the gel matrix. This compacts the collagen fibrils, eliminating
water from between the fibrils which decreases the gel volume.
The contraction of this gel is proposed to reflect the ability of
fibroblasts to contract an open wound, hence this is used as the
typical model assay for the study of cell-ECM interactions in the
context of wound healing.

Such gel contraction assays have provided several relevant
findings of note. Firstly, the ability of fibroblasts to contract
the gel significantly, demonstrates how the cellular mechanics
of fibroblasts can directly influence the material properties
of their environment, e.g. the connective tissue (Delvoye
et al., 1991; Eastwood et al., 1994, 1996). These assays have
also demonstrated the key cellular features enabling gel
contraction. One is cell adhesion to collagen via integrins,
as blocking integrin-mediated adhesion with antibodies
prevented gel contraction (Klein et al., 1991; Schiro et al.,

1991; Kelynack et al., 2000). Equally important is an active
cytoskeleton, as using molecular inhibitors that interfere with
actin filament and microtubule polymerization abrogates
tractional force generation and reduces tension within the gel
(Kolodney and Wysolmerski, 1992; Swierczewski et al., 2016;
Giannopoulos et al., 2018). The involvement of intermediate
filaments has also been indicated in this process, as vimentin-
null fibroblasts show a reduced ability to contract the gel
(Ridge et al., 2016).

However, the significance of these findings is not just/limited
to the context of wound healing, but reflect important processes
involved in the ongoing maintenance of connective tissue
function. It has been shown that fibroblasts do not simply
contract the gel when seeded, but they alter their cytoskeletal
contractility to adapt to any external loads applied in order
to maintain an overall resting tension in the environment
(Delvoye et al., 1991; Brown et al., 1998; Mizutani et al., 2004;
Giannopoulos et al., 2018; Zollinger et al., 2018). Indeed, the
specific level of resting tension established by fibroblasts has
been described as a “tensile setpoint”, and their tendency to
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FIGURE 2 | Principles underlying collagen gel contraction assays. Standard gel contraction assays involve seeding fibroblasts into a collagen gel solution and
allowing the suspension to polymerize. The freshly polymerized gel is placed in media for a set time period and allowed to contract. Changes in the diameter of the
gel are measured before and after and can be used as a parameter to quantify cell contractility. Image created with BioRender.com.

actively maintain this equilibrium as “tensional homeostasis”
(Brown et al., 1998). Furthermore, it has been shown that
the ability to maintain tensional homeostasis is not dependent
on the stiffness of the environment, and is only limited by
the load force not the displacement (Freyman et al., 2002).
This suggests that healthy fibroblasts are also capable of
compensating for a materially weak ECM by adjusting the
level of contractile force needed to maintain overall normal
levels of resting tension (Tomasek et al., 2002). Experiments on
mouse subcutaneous connective tissue have also reproduce these
findings in a more physiological setting. Stretching connective
tissue samples caused a disproportionate change in fibroblast
morphology, which could not be explained by simple passive
spreading of cells, but indicated an active response (Langevin
et al., 2005, 2011). The importance of active processes in
mediating tensional homeostasis was shown when inducing
cell death or inhibiting cytoskeleton dynamics increased the
tension within the connective tissue by 60-80% upon stretch
(Langevin et al., 2011).

These findings indicate that fibroblast mechanics play a
significant role in mediating the properties of the connective
tissue beyond the context of wound healing. Fibroblasts actively
alter their contractile forces in response to everyday mechanical
strains and loads for the purposes of maintaining appropriate
tension, hence, also determining the viscoelastic properties of the
connective tissue. Furthermore, these processes are dependent on
the key processes of cell adhesion and cytoskeleton dynamics.
Impairments in any of these processes, therefore, may affect
connective tissue integrity and viscoelasticity, and contribute to
the pathogenesis of EDS/HSD.

Indeed, fibroblast dysfunction has been implicated in the
pathogenesis of several other connective tissue disorders.
Fibroblasts from patients with floppy eyelid syndrome, a
hyperelasticity disorder affecting the upper eyelid, demonstrate
a significantly higher tensile setpoint compared to control
(Ezra et al., 2010). In Dupuytren’s contracture, a condition
affecting the facia of the hand, fibroblasts are unable to respond
appropriately to mechanical loading, and exert an opposite
response and of a greater magnitude compared to control
fibroblasts, something which also disturbed the attainment of
tensional homeostasis (Bisson et al., 2004, 2009). Of particular
significance are findings from Pelvic Organ Prolapse (POP)
patients, a condition of weakened connective tissue highly
associated with EDS/HSD (Carley and Schaffer, 2000; Lammers
et al., 2012). Under static conditions, POP fibroblasts in cell
culture demonstrate a significantly higher expression of the
cytoskeleton proteins actin, α-tubulin, and vimentin compared
to control cells, indicating an increased mechano-response
to the stiff substrate of a culture dish (Wang et al., 2015).
In response to mechanical strain, however, POP fibroblasts
exhibit a significant decrease in the expression of actin, in
contrast to control cells that increased actin expression under
the same conditions (Wang et al., 2015). Another study also
found that POP fibroblasts delayed the alignment of their
actin cytoskeleton in the direction of the force in response
to mechanical strain compared to control cells (Ruiz-Zapata
et al., 2013). These findings indicate that POP fibroblasts
are unable to efficiently respond to mechanical forces, which
may even overload and impair the integrity of cytoskeletal
system. In the context of a whole tissue environment, such a
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failure would contribute to the weakening of the connective
tissue, and similar mechanisms may exist and contribute to the
pathogenesis of EDS/HSD.

EDS/HSD FIBROBLASTS EXHIBIT
RELEVANT INTEGRIN-MEDIATED
CHANGES IN CELL ADHESION AND
CYTOSKELETON ORGANIZATION

The culturing of fibroblasts derived from the dermal biopsies
of EDS/HSD patients have revealed several relevant molecular
changes (Zoppi et al., 2018b; Chiarelli et al., 2019), including
an altered integrin expression profile that is shared amongst the
main EDS/HSD subtypes (Zoppi et al., 2018b). Integrins are
cell surface receptors composed of one α and one β subunit,
giving rise to 24 unique integrins which play a central role in
cell adhesion, cell signaling, and cell survival (Barczyk et al.,
2010). Integrins mediate the attachment between the cell and
specific ECM proteins like collagen or fibronectin (Figure 3).
Binding of the ECM ligand exposes the cytoplasmic tail of the
integrin, which provides a scaffold to allow recruitment of paxilin,
vinculin, talin, and other proteins during the formation of multi-
protein complexes called focal adhesions constituting signaling
complexes (Kanchanawong et al., 2010; Parsons et al., 2010).
These in turn, regulate the activity of the Rho family of GTPases,
which act as molecular switches to regulate downstream signaling
processes and cytoskeleton organization (Kanchanawong et al.,
2010; Parsons et al., 2010). These adhesion sites act as a strong
anchoring point for the actin cytoskeleton, important for the
mechanical feedback between cell and ECM.

The integrin profile demonstrated in EDS/HSD involves the
downregulation of the collagen receptor, α2β1 integrin, as well
as the fibronectin receptor, α5β1 integrin, while the vitronectin
receptor, αvβ3 integrin, is upregulated instead. In EDS/HSD,
this αvβ3 integrin functions as an alternative receptor for
fibronectin (Zoppi et al., 2018b). The expression of this specific
integrin profile is termed the “integrin switch” (Zoppi et al.,
2004, 2018b), which can be recreated in control cells with a
functional blocking of the α2β1 receptor (Zoppi et al., 2004).
This demonstrates that the absence of a structurally organized
collagen in the ECM failing to engage with its receptor α2β1
leads to the altered integrin expression profile. This, in turn,
will influence other cellular processes that may be critical in the
pathogenesis EDS/HSD.

The first of these is mechano-sensitivity, which is an ability
of fibroblasts to sense the compliance of their environment and
the strain present within it (Schwartz, 2010). This process would
be essential to produce the appropriate cytoskeletal response to
mechanical strain and requires the cooperative actions of various
integrins. A study demonstrating such cooperation of integrins
with different mechanosensitive roles showed the α5β1 integrins
to be implicated in force generation, whereas αv-class integrins
mediated the structural adaptations to forces (Schiller et al.,
2013). Fibroblasts in which the interaction between the αvβ3
integrin and fibronectin is blocked, also failed to sense the rigidity

of a fibronectin matrix (Jiang et al., 2006). This would suggest
that the integrin switch would alter the mechano-sensing ability
of EDS/HSD fibroblasts. Indeed, there is already some indication
that this process is perturbed in hEDS/HSD. When hEDS/HSD
fibroblasts were cultured on a stiff culture substrate, excessive
actin stress fibers could be observed compared to control
(Zoppi et al., 2018a), however, these were absent in hEDS/HSD
fibroblasts that were directly observed within tissue samples
(Celli et al., 2020). This demonstrates that excessive stress fiber
formation is not a persistent feature of hEDS/HSD fibroblasts, but
instead, could be reflective of mechano-sensitivity aberrations. It
is possible that this abnormal cytoskeletal response only occurred
when fibroblasts adhered to stiff substrates in vitro, but not when
they remained within their native soft tissue environment. Such
mechano-sensitivity aberrations are physiologically relevant, as
conditions of mechanical strain can temporarily stiffen the
environment of fibroblasts in vivo, and, similarly, produce an
abnormal cytoskeletal response which contributes to abnormal
connective tissue properties.

The integrin switch may also impair cell-ECM adhesion,
which may be crucial for tissue integrity. Indeed, aberrant
adhesion has already been demonstrated in EDS/HSD. In
cEDS and vEDS fibroblasts, cell-ECM adhesion has been
shown to be mediated specifically between the αvβ3 integrin
and fibronectin, whereas control cells show no such critical
dependency (Zoppi et al., 2008). The fibronectin organization
itself is impaired in EDS/HSD, present only as rare fibrils in the
ECM (Zoppi et al., 2018b), further indicating a compromised
cell-ECM interaction. The strength of the cell-ECM adhesions
themselves, may also be limited. A single bond between the
α2β1 integrin and collagen can withstand a mechanical force
of 160 pN (Niland et al., 2011), whereas bonds between
α5β1 and fibronectin begin to break at 30 pN (Kong et al.,
2009). Bonds between αvβ3 and fibronectin break at even lower
forces (Roca-Cusachs et al., 2009). This was demonstrated in a
study where adhesion between cells and fibronectin-coated beads
was mediated either by the αvβ3 integrin or α5β1. Following
application of a 1 nN force for 100 s, cells adhering via αvβ3
completely detached from the beads, whereas cells adhering via
the α5β1 integrin maintained adhesion (Roca-Cusachs et al.,
2009). The same differences in adhesion strength were also
observed when clustering of the integrins was promoted (Roca-
Cusachs et al., 2009). It is suggested that these weaker αvβ3
bonds facilitate force detection by breaking more easily, and
hence, their role is to enable mechano-transduction rather
than adhesion. Consequently, these collective findings suggest
that the integrin switch, alongside the defective fibronectin
organization observed in EDS/HSD, may produce far weaker
connections between the cell and ECM. These may break more
easily under conditions of mechanical strain, and contribute
to the weakening of the integrity of the connective tissue
(Roca-Cusachs et al., 2009).

Some impairments in the cytoskeleton of EDS/HSD fibroblasts
have also been observed in vitro. cEDS and vEDS fibroblasts
demonstrate a disorganized actin cytoskeleton (Zoppi et al.,
2008), whereas in hEDS and HSD, the actin cytoskeleton is
organized into stress fibers (Zoppi et al., 2018a). Furthermore,
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FIGURE 3 | Integrins serve as a vital connection between the cells’ internal cytoskeleton and the ECM. Integrins span the membrane of fibroblasts, with vital
intracellular and extracellular domains. Binding of the ECM ligand (collagen, fibronectin etc.) to the extracellular domain leads to the activation of the integrin, and a
conformational change in its cytoplasmic tail. This triggers a rapid recruitment of adaptor proteins such as talin and paxillin to the cytoplasmic tail, which in turn,
triggers a signaling cascade involving the Rho GTPases. These act as molecular switches to regulate the polymerization of actin, and hence, play an important role in
determining the cytoskeletons contractility. The lateral assembly or “clustering” of integrins also occurs upon ligand binding, to form multi-protein complexes termed
“focal adhesions” at the cell surface. These act as strong anchoring points and mediate the specific attachment between the cell cytoskeleton and the ECM. Image
created with BioRender.com.

cEDS and vEDS fibroblasts show a decreased migratory
capacity (Viglio et al., 2008; Zoppi et al., 2018a), whereas
cell migration is significantly increased in hEDS and HSD
fibroblasts (Zoppi et al., 2018a). This migratory capacity is
relevant, as it involves the same mechanical machinery that
generates the tractional forces implicated in mediating tensional
homeostasis (Pollard and Borisy, 2003; Webster et al., 2014).
These findings indicate that this aspect of EDS/HSD fibroblast
function may also be aberrant and contribute to abnormal
connective tissue properties.

The integrin switch itself may also have further implications
for cytoskeleton dynamics. Integrins are also known to
influence the activities of the Rho-GTPases, RhoA, Rac1,
and Cdc42, which are crucial to cell protrusion formation
(Lawson and Burridge, 2014), which in turn, is involved
in the tensional homeostasis mechanism (Webster et al.,
2014). During this process, the initial extension of the
plasma membrane is driven predominantly through Rac-
mediated actin polymerization, while RhoA and Cdc42 activity
contributes to extension of cell protrusions at later stages
of cell spreading (Ridley, 2015). It has been demonstrated
that β1 integrin subunit in particular, is required to support
RhoA activation at later stages of cell spreading (Danen
et al., 2002). Overexpression of the β3 subunit has also been

shown to enhance the activity of RhoA and promote stress
fiber formation, whereas overexpression of the β1 subunit
enhanced Rac activity and cell protrusion formation (Miao
et al., 2002). In another study examining cell migration in
epithelial cells, adhesion via αvβ3 was shown to support
extensive actin cytoskeletal reorganization and the formation
of a single broad protrusion at the leading edge, whereas cell
adhesion via α5β1 caused the extension of thinner protrusions
(Danen et al., 2005). These findings indicate that the integrin
profile demonstrated in EDS/HSD cells, may also have direct
consequences on the ability of fibroblasts to form and/or
maintain cell protrusions under conditions of mechanical strain
and maintain connective tissue tension.

ASSESSING DERMATOSPARAXIS AND
EDS FIBROBLAST DYSFUNCTION
THROUGH GEL CONTRACTION ASSAYS

It is clear from the molecular changes described that fibroblast
dysfunction is to be expected in EDS/HSD, involving aberrations
in both cell adhesion and cytoskeleton dynamics. This has
been directly examined in gel contraction studies performed
with fibroblasts from animals with dermatosparaxis, which
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is equivalent to the human form of dermatosparaxis EDS
(dEDS; formerly EDS type VIIC) (Colige et al., 1999).
This disorder is caused by mutations in the ADAMTS2
gene, which encodes the procollagen N-proteinase enzyme,
and consequently results in poorly structured and loosely
arranged collagen fibrils in the ECM (Bavinton et al., 1985).
However, similarly, to the ongoing discrepancies in human
EDS/HSD studies, the TEM findings of aberrant collagen
fibrils in dermatosparaxis animals do not appear to reflect
severity of presentation, and therefore, fail to fully account
for and explain the abnormal properties of the connective
tissue (Bavinton et al., 1985). The gel contraction abilities,
however, do more accurately reflect clinical presentation.
Dermal fibroblasts from mildly affected sheep demonstrate a
gel contraction profile approaching that of control dermal
fibroblasts (Ramshaw et al., 1991), while those from severely
affected calf and sheep failed to contract the gel (Delvoye
et al., 1983, 1986, 1991; Ramshaw et al., 1991). Furthermore,
fibroblasts obtained from the less affected tissues in the severely
presenting calf, like the tendons, vena cava, and aorta, also
reflect this tissue specific presentation, and contracted the
gel, similarly, to control fibroblasts (Delvoye et al., 1983).
These finding are highly significant, as the correlation of
fibroblast dysfunction with severity of manifestation, both
between differently presenting animals, and between tissues
within the same animal, likely demonstrates one of the main
pathomechanisms mediating the observed connective tissue
abnormalities. This provides confirmation that dysfunction of
the fibroblast does indeed, constitute a relevant pathomechanism
for EDS/HSD, and one that has now been demonstrated in a
relevant animal model.

The nature of the fibroblasts inability to contract the gel
was later shown to be due to the cell surface absence of
a 34 kDa collagen binding protein related to anchorin CII
(Mauch et al., 1988), which prevented effective cell adhesion of
dermatosparatic fibroblasts to collagens type I and IV (Mauch
et al., 1986). Consequently, it appears these fibroblasts were
unable to attach to the type I collagen in the gel and effectively
mediate the cytoskeletal forces needed to contract the collagen
gel, as well as maintain homeostatic levels of tension within a
restrained gel (Delvoye et al., 1991). These findings, therefore,
confirm that impaired cell adhesion is a significant feature
of fibroblast dysfunction, reducing integrity of the connective
tissue integrity.

These findings highlight the complexity that underlies
monogenic disorders. Pathogenesis of dermatosparaxis in this
case, may not have been principally mediated by the aberrant
collagen molecule itself, but mediated by a reduced cell
surface expression of a cell adhesion molecule, that initially
appears unrelated to the underlying ADAMTS2 mutation. This
demonstrates that far more complex cellular and molecular
processes underlie the pathway from initial mutated gene
to final pathogenic phenotype and is likely to involve the
interplay of various independent environmental and related
factors. These independent factors could influence critical
pathogenic features, and either promote a less or more severe
phenotype in the affected individuals, which may help to

explain the vast heterogeneity seen in the presentation of
these disorders.

The same gel contraction studies were also performed
with human EDS samples at the time, however, they
demonstrated unexpected results. Fibroblasts from patients
of several EDS subtypes showed no gel contraction
abnormalities and behaved similar to control fibroblasts
(Delvoye et al., 1986, 1991). Remarkably, this also
included dEDS, which has an identical genetic basis to
dermatosparaxis. It was concluded from these studies that
fibroblast dysfunction did not contribute to the pathogenesis
of human EDS/HSD, and research into this pathomechanism
discontinued as focus turned toward identifying further
EDS-related genes.

However, this conclusion now appears contradictory to our
molecular understanding of EDS/HSD. The α2β1 integrin is
the main collagen receptor in humans and plays the equivalent
role to the anchorin CII-related protein in mediating the
attachment between the cell and collagen. The α2β1 integrin is
also downregulated in EDS/HSD fibroblasts as part of the integrin
switch (Zoppi et al., 2018b). Furthermore, several gel contraction
studies performed in control cells while blocking the collagen-
α2β1 interaction, prevented contraction of the gel (Klein et al.,
1991; Schiro et al., 1991; Kelynack et al., 2000). These findings
all highly indicate that the integrin switch seen in EDS/HSD
fibroblasts should result in similar impairments in cell-ECM
adhesion and prevent gel contraction, while also reflecting their
pathological behavior in vivo.

Our understanding of the mechanisms regulating these
molecular processes has also progressed. It is now apparent
that these gel contraction assays do not truly reflect the
EDS/HSD scenario in humans specifically, and hence, the drawn
conclusions may not be valid. It has since been demonstrated
that adding relevant collagen to the media of cultured human
EDS fibroblasts promotes phenotypic correction, which reverses
the integrin switch and restores the expression of α2β1 to
the cell surface (Zoppi et al., 2004). As such, the collagen
supplied in these gel contraction assays may have corrected
the phenotype of human EDS fibroblasts, and restored the
cell surface expression of α2β1. This would have promoted
normal gel contraction, yet not reflect the true in vivo behavior
of EDS/HSD fibroblasts. Hence, the human equivalent of this
pathomechanism cannot be demonstrated through standard
gel contraction assays. The existence of this pathomechanism
therefore, has not been excluded in human patients, nor has it
yet been truly examined.

DISCUSSION

This review had the aim to highlight a potential
pathomechanism in EDS/HSD involving fibroblast dysfunction.
Three principal stages of this pathomechanism can be
described (Figure 4).

The first is a failed interaction between collagen and
its receptor, the α2β1 integrin (Zoppi et al., 2018b). The
underlying cause of this failed interaction is specific for
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FIGURE 4 | The three principal stages of the proposed pathomechanism for EDS/HSD. (1) A failed interaction between collagen and α2β1: A disorganized or
defective collagen-ECM prevents engagement of the collagen ligand with its receptor, the α2β1 integrin, and triggers the integrin switch. (2) The integrin switch:
Fibroblasts respond to the defective collagen-ECM by switching their cell adhesion profile to promote adhesion to other ECM ligands. The α2β1 and α5β1 integrins
are downregulated, and αvβ3 is upregulated, which then mediates the attachment between cell and ECM via fibronectin. (3) Fibroblast dysfunction: The altered
integrin profile also has various consequences for the fibroblasts phenotype, which affects its ability to implement the tensional homeostasis mechanism and
maintain integrity of the connective tissue. Impaired cell-ECM adhesion may promote fragility of the connective tissue. Impairments in mechanosensitivity may cause
an incorrect interpretation of tension within the connective tissue and facilitate an abnormal cytoskeleton response. Aberrations in the dynamic cytoskeleton
response itself, may also facilitate abnormalities in the viscoelastic properties of the connective tissue. All such aspects may contribute to the EDS/HSD phenotype.
Image created with BioRender.com.

each EDS subtype, and can easily be accounted for in
the genetically characterized subtypes of EDS. In cEDS and
vEDS for example, mutations in the minor collagen genes
prevent the organization of type I collagen into fibrils, which
prevents its engagement with α2β1 (Zoppi et al., 2018b). In
hEDS and HSD, though the principle underlying molecular
defect is unknown, an enhanced expression of the matrix
metalloproteinase (MMP), MMP-9, has been observed (Zoppi
et al., 2018a). The proteolytic activity of MMP-9 could
promote a general disassembly of the ECM, and in turn,
prevent the engagement of collagen with α2β1. This stage
of the pathomechanism, however, also allows the possibility
of an acquired EDS phenotype, consequent to any other
disease processes that interferes with collagen-α2β1 binding.
Speculatively, any autoimmune or inflammatory condition
that promotes a general disassembly of collagen in the
ECM could initiate the same pathomechanism and promote
connective tissue abnormalities, which then manifest through
features of joint hypermobility, skin hyperextensibility, and
tissue fragility.

The second stage of the pathomechanism involves the
integrin switch itself, which is a shared feature of the

main EDS/HSD subtypes (Zoppi et al., 2018b). Following
the failed collagen-α2β1 interaction, a downregulation of
the α2β1 integrin itself occurs, which is accompanied by
a downregulation of the fibronectin receptor α5β1, and an
upregulation of the alternative fibronectin receptor αvβ3. It is
possible that fibroblasts are able to sense the compromised
collagen-ECM via the α2β1 integrin, and recognize a potential
risk of anoikis, a specific form of cell death that occurs
upon cell detachment from the ECM. To avoid such a
fate, it is possible that fibroblasts respond by switching
their integrin profile to promote cell adhesion to other
ECM ligands, such as fibronectin, in order to maintain
some form of attachment to the ECM and survive. Indeed,
this notion is supported by apoptosis assays performed in
cEDS and vEDS fibroblasts, where the αvβ3 integrin was
specifically shown to rescue EDS cells from anoikis (Zoppi
et al., 2008), indicating that this integrin switch is indeed,
a critical cell survival response. The importance of cell-ECM
adhesion, however, extends beyond the transmission of cell
survival signals, and we have described in this review its
importance in maintaining connective tissue integrity. The
integrin switch, therefore, may form a key stage of this
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pathomechanism, due to the consistent nature of this finding
across all of the main EDS/HSD subtypes, as well as the
critical consequences in weakening cell-ECM adhesion and its
contribution to overall fibroblast dysfunction.

The final stage of this pathomechanism is fibroblast
dysfunction itself, which ultimately mediates the abnormal
properties of the connective tissue. The critical features of this
dysfunction are impairments in cell adhesion and cytoskeleton
dynamics. As already described, impaired cell-ECM adhesion
weakens the integrity of the connective tissue, however, it
also prevents fibroblasts from mediating their cytoskeletal
forces to the surrounding environment and implement the
tensional homeostasis mechanism. The integrin switch itself,
has also been shown to directly affect cytoskeleton dynamics,
impairing the cytoskeletal forces that are transferred through
the weakened cell-ECM adhesions. The integrin switch may
also cause abnormalities in the mechanosensitivity of fibroblasts,
which may prevent accurate interpretations of the surrounding
ECM properties, and hence, may produce an inappropriate
response by fibroblasts. As such, key connective tissue properties
such as viscoelasticity and integrity are all affected consequent
the integrin switch and may contribute to the pathogenesis
of EDS/HSD.

The contribution of this specific pathomechanism to the
overall EDS/HSD phenotype could potentially be significant.
It has to be highlighted that the current TEM analyses of
collagen fibril structure and organization in EDS/HSD are highly
inconsistent, and fail to associate with any EDS subtype, specific
connective tissue abnormality, or severity of the manifestation
(Angwin et al., 2020). Indeed, even the most significant
abnormality associated with EDS/HSD, in the form of collagen
flowers in cEDS, is one that cannot explain the disproportionate
changes in skin viscoelasticity seen in this subtype, and is also
one that is found in unaffected individuals (Hermanns-Lê et al.,
2012). To our knowledge, the studies into fibroblast mechanics
in dermatosparaxis animals, are the only non-genetic findings to
have correlated with severity of connective tissue manifestation
(Delvoye et al., 1983; Ramshaw et al., 1991), yet the possible
significance of this appears to have been overlooked.

These findings suggest that what unites and defines the
EDS/HSD subtypes may not be defects in the structure and/or
organization of collagen itself, but in cell adhesion to collagen. If
such a notion is correct, this may provide an ideal basis for
the development of a universal or non-specific diagnostic test
that truly captures all EDS/HSD subtypes, irrespective of the
principal underlying defect. An assessment for membrane-bound
collagen for example, would highly indicate that cell-ECM
adhesion has switched in vivo from collagen to other ECM
ligands, reflecting the occurrence of the initial stages of this
pathomechanism in patients presenting with connective tissue

ailments. This is of importance, since the most common forms of
hEDS and HSD, are currently without any diagnostic biomarker,
and it is likely that further unidentified subtypes remain.
This may also have implications for other related disorders
such as fibromyalgia, and Myalgic Encephalomyelitis/Chronic
Fatigue Syndrome (ME/CFS), which demonstrate significant
overlaps with hypermobility and connective tissue abnormalities,
though the association is poorly understood (Bragée et al.,
2020; Eccles et al., 2020). It is plausible therefore, that similar
pathomechanisms involving fibroblast dysfunction may be
contributing to the pathogenesis of these related disorders, which
could be explored through their associations with membrane-
bound collagen.

Of additional importance is to determine if this
pathomechanism contributes to arterial fragility in vEDS, a
lethal subtype of EDS with a median life expectancy of 40 years
(Eagleton, 2016). Death commonly occurs due to complications
associated with spontaneous vascular or hollow organ ruptures,
however, the development of these are also poorly understood
(Eagleton, 2016). If such a pathomechanism demonstrates itself
to be significant, the development of a therapeutic agent that
promotes arterial integrity via these processes could provide hope
for a number of patients.
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Wnt Signaling Induces Asymmetric
Dynamics in the Actomyosin Cortex
of the C. elegans Endomesodermal
Precursor Cell
Francesca Caroti, Wim Thiels, Michiel Vanslambrouck and Rob Jelier*

Predictive Genetics and Multicellular Systems, CMPG, University of Leuven, Leuven, Belgium

During asymmetrical division of the endomesodermal precursor cell EMS, a cortical

flow arises, and the daughter cells, endodermal precursor E and mesodermal precursor

MS, have an enduring difference in the levels of F-actin and non-muscular myosin.

Ablation of the cell cortex suggests that these observed differences lead to differences

in cortical tension. The higher F-actin and myosin levels in the MS daughter coincide

with cell shape changes and relatively lower tension, indicating a soft, actively moving

cell, whereas the lower signal in the E daughter cell is associated with higher tension

and a more rigid, spherical shape. The cortical flow is under control of the Wnt signaling

pathway. Perturbing the pathway removes the asymmetry arising during EMS division

and induces subtle defects in the cellular movements at the eight-cell stage. The

perturbed cellular movement appears to be associated with an asymmetric distribution

of E-cadherin across the EMS cytokinesis groove. ABpl forms a lamellipodium which

preferentially adheres to MS by the E-cadherin HMR-1. The HMR-1 asymmetry across

the groove is complete just at the moment cytokinesis completes. Perturbing Wnt

signaling equalizes the HMR-1 distribution across the lamellipodium. We conclude that

Wnt signaling induces a cortical flow during EMS division, which results in a transition

in the cortical contractile network for the daughter cells, as well as an asymmetric

distribution of E-cadherin.

Keywords: cell shape, asymmetric division, E-cadherin, Wnt signaling, Caenorhabditis elegans, nonmuscle

myosin, F-actin (filamentous actin), cellular cortex

INTRODUCTION

Understanding how cells self-organize during development into multicellular systems is a
fundamental challenge in biology. One formative process during self-organization is the breaking
of symmetry, particularly by polarization of cells and asymmetric divisions. A central role is played
by the cellular cortex, a thin, highly dynamic actomyosin mesh just underneath the membrane of
eukaryotic cells. Non-muscular myosin acts on the actin fibers, generates forces, and creates tension
in the cortical network. Uneven tension in the cortex drives cell shape changes, for example during
morphogenesis (Lecuit and Lenne, 2007). The cortex further contributes to shape changes during
mitosis, and plays an important role in cell polarization and asymmetrical divisions.
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The first asymmetric stem cell–like division of the
Caenorhabditis elegans embryo has been extensively used as
a model for polarized divisions. Directed contractility of the
actomyosin cortex and the PAR system work together to establish
the polarity of the zygote (Lang and Munro, 2017). Following
a polarizing signal, in the form of the microtubule organizing
center introduced by the sperm cell, an actomyosin cortical flow
is initialized. This flow segregates a subset of PAR proteins into
the nascent anterior, which facilitates the establishment of a
posterior domain with a different set of PAR proteins (Dickinson
et al., 2017; Lang and Munro, 2017; Wang et al., 2017). In other
cells cortical flows were shown to have a surprising role in
cellular positioning. Chiral counter rotating flows participate in
the orientation of the mitotic spindle in several cells during early
embryogenesis, which is important for left-right asymmetry
breaking during early embryogenesis (Pimpale et al., 2020).

Here we aimed to identify further asymmetrical cortical
processes by observing non-muscular myosin (NMY-2) and
filamentous actin (F-actin) during the divisions of the early C.
elegans embryo. We found a striking asymmetrical pattern in
the EMS division at the four-cell stage. The EMS division is
asymmetric, with the daughter E giving rise to endoderm and
MS to muscle cells, among other cell types (Rose and Gönczy,
2014). The EMS cell is polarized along the A/P axis, not by the
PAR system, but by a partially redundant Wnt and MES-1 signal
from the neighboring P2 cell (Bei et al., 2002). In this paper, we
characterize the cortical behavior of EMS and its descendants and
study how it is affected by perturbation of the Wnt pathway.

MATERIALS AND METHODS

C. elegans Strains and Maintenance
Caenorhabditis elegans strains were grown on NGM plates at
20˚C as previously described (Brenner, 1974). The strains used
in this study are listed in Table 1.

RNAi Experiments
RNAi was performed by feeding as described (Kamath et al.,
2000). Briefly, L4 hermaphrodites were placed on NGM plates
containing 25 µg/ml carbenicilline, 1 mM IPTG and seeded
with bacteria expressing dsRNA. The induction was performed at
37◦C for 4 h. The clones formom-2, dsh-2, andmig-5 RNAi were
from the Vidal library. For all experiments a negative control
(empty vector pL4440) was included to avoid scoring phenotypes
not linked to the gene-specific RNAi. Phenotypes were scored
after 48 h incubation at 20◦C by in vivo imaging.

Microscopy
Long term imaging of the embryos was performed with a Zeiss
LSM880 microscope using the fast-super resolution AiryScan
mode and a Plan-Apochromat 63x/1.4 DIC M27 oil immersion
objective. Z-stacks were acquired every 0.5 µm. The embryos
were mounted on slides with M9 and Polybead Microspheres
20 µm (Polysciences) were used as spacer. The embryos were
imaged every 2 min, except for the cell shape analysis (1.5 min)
and cortical flows (5 s).

Ablation of the Cell Cortex
Ablations were performed with a 355 nm pulsed laser UGA-
42 Caliburn from Rapp OptoElectronic mounted on a Zeiss
LSM880. The cell cortex of a single cell was ablated in the
anterior-posterior direction for 300 ms along a line of 4
µm at 11.3% laser strength. Ablations were performed after
divisions were fully completed, several minutes after completion
of cytokinesis. For E and MS this implied P2 division was at least
underway, but more often P2 cytokinesis had already completed.
Experiments were only included if the cell showed rapid healing
of the cut, and proceeded to divide at least once. To detect the
cytoskeleton dynamics, the time lapses were recorded as a single
plane imaged at a rate of±1 fps. The RJ012 strain was used for the
ablation experiments, using the Airyscan detector in R/S mode
for imaging the cortex and exciting NMY-2::GFP and the Lifeact
peptide by 488 and 561 nm laser light, respectively. The two
fluorophores were either excited together, or in separate frames.

Analysis of Cortical Mechanical
Characteristics
The physical properties typically measured through a cortical
ablation experiment are cortical tension and cortical stiffness. As
laid out in Mayer et al. (2010), cortical tension is proportional
to the velocity away from the ablation line immediately after
the ablation (v⊥,0), and the stiffness is inversely proportional
to the relaxation time of the velocity (τ ). The relaxation time
is given by τ = ζ/k, where k is the elastic stiffness of the
cortex and ζ characterizes frictional interactions between the
cortex and the surrounding fluid. Because the fluid in which the
cortex is embedded is likely to be relatively uniform throughout
the embryo, differences in this parameter are expected to reflect
differences in stiffness.

To quantify cortical velocities after ablation we used a custom-
made Particle Image Velocimetry (PIV) analysis pipeline, based
on manually annotated markers. These markers were placed
on either the NMY-2 or F-actin channel using an in-house
lineaging tool over a 7 s time frame (Supplementary Figures,
Table 1). All markers were placed within 2.5 microns distance
orthogonal to the cut and at every time interval within the
time frame. Three ABpl cells displayed noticeable cortical flow,
which was separately annotated using markers in close vicinity,
but sufficiently distant from the cut as to not be affected by
the ablation retraction. We subsequently corrected for flow by
averaging the flow velocities per time step and subtracting the
resulting mean flow velocity vector from the velocity field.

As in Mayer et al. (2010), the dynamics of the velocity
component orthogonal to the cut line were modeled as a simple
viscoelastic response, with the characteristic exponential decay
over time: v⊥(t) = v⊥,0e

−t/τ . Given markers were only tracked
for 6 s post-cut, cortical resealing dynamics were not taken up
in the model. A non-linear least squares method from the SciPy
package was used to fit the model.

To obtain overall fits and confidence intervals fits for v⊥,0

and τ a bootstrap was performed (n = 1,000) on the total data
set of outward velocities, weighted to ensure sampling from
each experiment with equal probability. The significance for
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TABLE 1 | C. elegans strains used in this work.

Strain Genotype Resources

SWG001 gesls001[Pmex-5::Lifeact::mKate2::nmy-2UTR, unc-119+] Reymann et al., 2016

LP306 cpIs53 [mex-5p::GFP-C1::PLC(delta)-PH::tbb-2 3’UTR + unc-119 (+)] II Heppert et al., 2016

LP172 hmr-1(cp21[hmr-1::GFP + LoxP]) I Marston et al., 2016

RW10029 zuIs178 [his-72(5’ UTR)::his-72::SRPVAT::GFP::his-72 (3’ UTR) + unc-119(+)]. Bao et al., 2006

stIs10024 [pie-1::H2B::GFP::pie-1 3’ UTR + unc-119(+)]

LP162 nmy-2(cp13[nmy-2::GFP + LoxP]) I. Dickinson et al., 2013

RJ001 Cross between LP172 and SWG001 This work

RJ006 Cross between RW10029 and SWG001 This work

RJ012 Cross between LP162 and SWG001 This work

RJ013 Cross between LP306 and SWG001 This work

contrasts between cells was also derived via a weighted bootstrap
approach (n = 1,000) for every cell pair that was compared. A
null distribution was simulated based on a sampling from the
total set of outward velocities for that cell pair. Cell labels were
randomly shuffled within this bootstrap dataset. The absolute
value of the difference between the parameter inference for
the compared cells was subsequently compared to the actual
observed parameter difference for that cell pair. The p-value is
then defined as the proportion of bootstraps that resulted in an
equal or higher difference.

Image Analysis and Quantification
The confocal images were processed using the free software Fiji
(https://imagej.net/Fiji). To quantify the Lifeact::MKATE-2 and
NMY-2::GFP intensity at the cell cortex a maximum intensity
projection was made for the z-planes containing the cell cortex
specific signal. For every cell at each time point, a cell outline was
drawn manually before measuring the cortical signal intensity.

Statistical Analyses and Visualization
Analyses and plots were made using R (version 3.6.3) and via
the packages gam, nlme, lme4, and emmeans, unless indicated
otherwise. For Figures 1B,C, the intensity signal was corrected
in several steps. First, background signal (areas surrounding
the cortices) was measured and subtracted from the cortical
signal for every embryo, timepoint, and plane. Second, the
signal I is corrected for systematic intensity differences between
embryos were corrected by measuring the average intensity
across the cells of the signal per embryo, and calculating a

scaling factor se for every embryo e: se =

1
mn

∑n
i

∑m
j Ii,j

1
m

∑m
j Ii,j

, with

n the number of embryos, m the measurements per embryo.
Measurements for an embryo are then multiplied by this value
to yield corrected values I∗c,e. Third, effects on signal due to
time of imaging (bleaching) and depth of the imaging plane
(signal degradation), were corrected by fitting a GAM regression
model f (t, z) on the data for all embryos with a linear effect
for bleaching (t time of imaging) and a smoothing spline to
the log of the plane (z). The correction for an observation was

calculated and scaled as I+c,e =
I∗c,e−f (t,z)+Ī∗

Ī∗
. Finally, a model

is fit on the corrected I+c,e to estimate relative intensity values

for individual cells using the gls function, taking into account
time correlation between intensity measures using a first order
autocorrelation structure (corAR1 in gls). For Figure 1B, least
square means and their standard errors are estimated on the
model by emmeans with the Satterthwaite method and sampling
to estimate variance components (mode appx-satterthwaite). For
Figure 1C, a quadratic function is plotted which was fitted
over time per cell using the gls function, again with a corAR1
correlation model. The plotted standard error over the fit is
estimated based on the model’s covariance matrix calculated by
the vcov function.

When comparing volume and sphericity over time (Figure 3,
Supplementary Figures 1, 2), mixed effect models were fitted
with lmer, with random effects capturing embryo specific
effects and evaluating temporal correlations. Volume ratios were
modeled as described in the paper describing the segmentation
methodology (Thiels et al., 2021). The model for sphericity of the
E-cell using the lmer-package syntax is expressed as:

sphericity ∽ 1+ time+ category+ (1|embryo)

The fixed effects are given by a time component and a categorical
variable “category” (wild-type or dsh-2/mig-5 mutant), while the
random effect accommodates the variation between embryos.
This model was arrived at after model simplifications. A random
effect per embryo on the time coefficient was considered, but was
removed as it was not significant (χ2-test, p= 0.2).

The Figures 1D,E and the graphs in Figure 4 where made
with Python (version 3.7). Figure 1D was made by fitting a
2D tensor spline (package pygam, function LinearGAM) on the
intensity data. Data was standardized per embryo (subtracting
mean, division by standard deviation). The fitted spline was
plotted using contourf from the packagematplotlib.

Figure 1E was made based on manually tracking cortical
features using the same custom tool as described for the
PIV analysis above. The velocities of the features were next
averaged and plotted using Python and the quiver function from
packagematplotlib.

Figure 4B is made by fitting a natural spline to normalized
intensity data using Python and the package statsmodels.
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For Figure 4C, the signal intensity was corrected by
subtracting background (cytosolic) signal and scaled to the
observed range of values across the contact area. The figure was
made with the visualization package seaborn and the used test
is the mixed two way anova test using Python and the pingouin
package, with correction for repeated measures within embryos.

Analysis of Cellular Positioning
To follow cellular positioning over time, we imaged, tracked
and analyzed histone labeled nuclei in embryos of the RW10029
as described before (Dzyubachyk et al., 2009; Krüger et al.,
2015; Jelier et al., 2016), for both wildtype and RNAi treated
embryos. To precisely establish differences in cellular positioning,
a stringent alignment protocol was used. Time alignment was
done by taking the last timepoint of the eight cell stage, which
was the timepoint before division of either ABpl, ABpr, ABar, or
ABal. Next, embryos were aligned in space by Procrustes analysis,
which scales, centers and rotates the embryos to minimize
the overall distance between nuclei. A Generalized Procrustes
Analysis was performed to make a reference embryo for the
wild-type embryos. Next all embryos were aligned by Procrustes
Analysis to this reference. Finally, the distances across the
different axes of the embryo (anterior-posterior, dorsal-ventral,
left-right), were measured for every cell between all embryos and
the reference embryo. The non-parametric two-sided Wilcoxon
test was used to compare wild-type to the RNAi treated embryos.

Figure 3D was made with a custom tool (Java FX) to visualize
and explore lineages, and shows a single RNAi embryo compared
to the reference. Figure 3E is a scatter plot made in R and shows
the positioning of ABpl in the aligned embryos relative to the
reference along the anterior-posterior and dorsal-ventral axes.

RESULTS

To observe dynamical cortical behavior in the early embryo we
used a strain (RJ012) expressing the F-actin binding peptide
Lifeact tagged by the fluorophore mKate2 and non-muscular
myosin (NMY-2) tagged with GFP, through modification of the
endogenous nmy-2 locus. As previously described (Reymann
et al., 2016), we observed asymmetric levels of F-actin and NMY-
2 in the cellular cortex during the zygotic division (Figure 1A),
with P1 having lower levels for both markers. The lower level
for both markers is maintained for both P1 descendants at the
4-cell stage, the endomesodermal precursor cell EMS and P2
(Figure 1A, Supplementary Movie 1), though the effect is more
pronounced for the F-actin marker. The pattern propagates into
the eight-cell stage, where three of the four P1 descendants
have lower signal. However, the MS cell breaks with the pattern
and has a relatively high level for both markers (Figure 1B).
By monitoring the F-actin signal in the cortex of EMS and
its daughters over time (Figure 1C), it becomes clear that the
differences between E and MS arise during the division. To
better characterize the phenomenon, we proceeded to follow the
intensity of cortical F-actin during the EMS division with high
temporal and spatial resolution (Figure 1D). Starting about 5
min prior to completion of cytokinesis, a gradient of F-actin
signal arises across the EMS cell, with a rapid signal decrease

on the posterior side and signal peaking just anterior to the
cytokinesis cleft. After cytokinesis completes, the cortex of MS
maintains a higher signal compared to E.We also observed highly
dynamic cortical flow changes during cell division. In Figure 1E

we represent the cortical flow based on manually tracked features
of F-actin visualized by Lifeact. Nine hundred and sixty cortical
features were traced, totaling 2,596 datapoints across three
embryos. Until 4.5 min before completion of cytokinesis, EMS
has a homogeneous flow to the dorsal side. Then the flow
redirects to a posterior to anterior flow and a slight asymmetry
in speed arises between the anterior and posterior halves of the
cell (270–180 s before cytokinesis). Finally, a marked asymmetry
arises between the anterior and posterior of the cell (from −180
s till completion of cytokinesis). The flow speeds up in the
posterior, whereas it comes to a near standstill in the anterior.
Further, we observed differences in duration at which distinct
features (F-actin fragments) are visible in the cortex, with a much
shorter feature life time for the posterior side of the EMS cell
(E side). During the last 3 min before cytokinesis completes,
features are visible during ∼25 s for the anterior side, vs. ∼13
s for the posterior side (H0 of no difference rejected at p <<

0.001, oneway ANOVA), which indicates a more dynamic F-actin
network in the posterior cortex.

Cortical flows are associated with anisotropies in cortical
tension across the cell (Mayer et al., 2010). However, the observed
differences in F-actin and NMY-2 in the daughter cells also point
to a durable restructuring of the cellular cortex after division.
We should interpret Lifeact intensity results with caution as we
can not exclude that the Lifeact peptide is an imperfect indicator
of actual quantities of F-actin in the descending cells (Hirani
et al., 2019). Perhaps the asymmetric inheritance of bound
peptide during the division severely reduces the concentration
in the E cell, or maybe the Lifeact peptide has relatively slow F-
actin binding dynamics in the apparently highly dynamic cortex
of the E cell. Nonetheless, the NMY-2 marker is a fusion to
the endogenous gene, which can be expected to be accurate,
and it shows the same trend although with smaller changes.
To test whether the observed changes in marker abundance
after division of EMS translate into differences in mechanical
properties of the cortex of E and MS. We performed ablation
experiments of the cortex of these cells at the eight-cell stage,
and followed the opening and closing of the ablation cut over
time (Figure 2A). Typically, the cortex’s response to ablation is
modeled by assuming that it behaves as a 2D active viscoelastic
gel (Saha et al., 2016). A typical cortical ablation analysis aims
to quantify the evolving opening speed of the cut, with an
expected exponential decay (Figure 2B). The initial recoil speed
orthogonal to the cortical cut upon ablation is proportional to the
stress across the cut (Mayer et al., 2010; Saha et al., 2016). Further,
the speed decay over time is related to the stiffness of the cortex,
with a lower relaxation time indicating a stiffer cortex (Mayer
et al., 2010). As shown in Figures 2C–E has a higher initial
outwards velocity than MS, indicating a considerably higher
cortical tension, approximately twice that of MS. The ABpl cell,
which is F-actin rich and is a relatively spread out cell at this
stage, has an even lower velocity and cortical tension. The E
cell also appears to have a stiffer cortex than MS and ABpl as
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FIGURE 1 | Asymmetric distribution of F-actin and NMY-2 in the early C. elegans embryo. (A) Asymmetrical distribution in the amount of F-actin (Lifeact, red) and

non-muscular myosin (NMY-2::eGFP, green) can be observed after the first, second, and third round of divisions. At the two-cell stage, AB (left) has higher signal than

P1 (dotted circle), and the P1 descendants EMS and P2 (dotted circle) have lower signal than the AB descendants (left and top). The top row of figures indicates the

positions and names of the cells. At the eight-cell stage, the P2 descendants P3 (right, very dim, dotted circle) and C (not visible), as well as EMS descendant E

(arrowhead) have lower signal than the AB descendants (ABal bottom-left, ABar top-left, and ABpr top-right). Bar indicates 5 µm (first image at the bottom). (B)

Quantification of the cortical signal of NMY-2 and F-actin in the cells at the eight-cell stage. Data represent four embryos measured over time and are normalized for

differences in intensity between dyes, embryos, background signal, imaging depth, the effect of bleaching due to imaging, and corrected for repeated measures (see

section 2). F-actin and NMY-2 behave roughly similar, though NMY-2 differences are smaller. Both signals are asymmetrically distributed in the EMS daughters E and

MS, with markedly lower signal in E (p < 0.005). Error bars represent standard error around the mean. (C) The relative F-actin signal changes abruptly during the EMS

division. EMS, E, and MS cortex for four embryos are measured over time; signal is corrected for several confounders and repeated measures. (D) Heatmap

representing the intensity of F-actin signal in the cortex during the EMS division to MS (anterior) and E (posterior). The heatmap represents a 2D spline fit to intensity

data taken from image stacks with 5 s intervals from three embryos, corrected for systematic signal intensity differences between embryos. The furrow center (at the

origin) is defined by the location of the membrane at the center of the cell at the moment of membrane closure. During cytokinesis the strong curvature of the

membrane induces a temporary loss of signal from the focal planes (around t = 0). The contour lines indicated lines with identical intensity values. The top arrow

highlights rapid signal loss on the posterior side of the cell. The lower left arrow points to the signal in MS, lower right the much lower signal in the E cell. (E) The cortex

of EMS shows large differences in cortical flow between the anterior and posterior sides relative to the cytokinetic furrow. The data is based on manual tracking of

cortical features of three embryos. Image stacks are 5 s apart.

manifested through the lower relaxation time, though the effect
only has a marginal significance level (p < 0.1, Figure 2D).
To obtain more information on the nature of these differences
we also considered the shape of the cells. The motivation is
that high overall cortical tension makes cells more rigid and
spherical, similar to when cells round up prior to mitosis by

increasing cortical stiffness and tension (Stewart et al., 2011),
whereas lower cortical tension allows more flexible and irregular
shapes. We employed a novel cellular segmentation pipeline
to retrieve the shapes of the cells from confocal microscopy
images of embryos with fluorescently membranes (strain RJ013)
(Thiels et al., 2021). Over time, E retains a mostly spherical
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shape, whereas MS develops a more irregular shape, and in
some embryos forms a lamellipodium structure 4.5 min after
EMS division (Figure 2E, MS lamellipodium in embryos 1 and
2, see Supplementary Figure 1 for sphericity measures). Both
observations, combined with the assumption that the friction
experienced by the cortex is relatively stable in the short time
frame, point to a higher cortical tension in E.

As the EMS cell is polarized by the Wnt and MES-1 signaling
pathways, which induces the E fate in the posterior daughter born
next to P2 (Goldstein, 1992; Bei et al., 2002), we asked if the
Wnt signaling induces the cortical flows and reorganization of the
cortex. Figure 3A shows the results of Wnt pathway knockdown
by RNAi for the Wnt ligandmom-2 and RNAi for dsh-2 andmig-
5, two genes coding for the disheveled proteins active during early
embryogenesis. The disheveled proteins relay the signal coming
from the Frizzled receptors upon binding the Wnt ligand (e.g.,
MOM-2) to distinct cellular responses. Both RNAi experiments
resulted in the near equalization of F-actin signal during, and
after the EMS division (Figure 3B) with high penetrance (mom-
2 RNAi: 7/8; dsh-2/mig-5 RNAi: 24/34). Though both RNAi
experiments perturbWnt signaling and equalize the division with
respect to F-actin, we found they varied in the extent that they
affect the fate induction of the E cell. RNAi ofmom-2 invariantly
inhibited E fate induction, perturbing the ingression of the cells
during gastrulation. RNAi of the dsh-2/mig-5 did not have the
same effect, with gastrulation of Ea and Ep proceeding normally,
including the fate-specific delayed division of these cells (Sulston
et al., 1983). This indicates therefore that the F-actin distribution
in EMS is not essential for the fate induction of the E cell.

To evaluate whether Wnt signaling has an effect on the
cell shape, we segmented cells following EMS division in
five dsh-2/mig-5 RNAi embryos, and compared to seven
wildtype embryos. The perturbation does not remove the volume
asymmetry in the EMS division (Supplementary Figure 2A),
but instead increases it slightly. However the perturbation
does make the E-cell shape more irregular, and decreases
sphericity (p< 0.05, mixed effects model with χ2-test, Figure 3C,
Supplementary Figures 2B, 3), which points to a drop in
cortical tension.

We next asked if there is a direct contribution of the
asymmetry in EMS to the cellular movements occurring around,
and after EMS division. We therefore precisely tracked cellular
movements, division timings and division angles during the four
and eight-cell stage by lineaging wildtype and RNAi treated
embryos (Bao et al., 2006; Krüger et al., 2015; Jelier et al., 2016).
By comparing eight RNAi to ten wildtype embryos, we found very
limited phenotypes in these early stages, but we did observe a
modestmispositioning of the ABpl andABar cell, with the former
ending up positioned posterior to their normal location at the end
of the eight-cell stage (Figure 3C). The ABpl cell moves a long
way across the embryo during the seven to eight-cell stage as part
of the formation of a cellular arrangement that is important for
left-right asymmetry in the embryo (Pohl and Bao, 2010). ABpl
forms a lamellipodium into the cytokinesis groove of the dividing
EMS cell preceding this movement, and specifically associates
withMS. In our hands, the formation of the lamellipodium or the
size of the movement of the ABpl cell is not reduced due to the

RNAi perturbation of Wnt signaling. However, ABpl is modestly
and consistently misdirected to the posterior side for both mom-
2 and dsh-2/mig-5 RNAi treatments (Figures 3D,E, p < 0.001,
Wilcoxon rank sum test).

As the ABpl cell moves over MS and E, it most likely exerts a
force on either or both of these cells. To exert such a force, cell
adhesions are required. As the E-cadherin HMR-1 is known to
play a role in cell adhesion in early embryogenesis, we decided
to image the localization of HMR-1 during EMS division. For
this purpose we used a strain expressing the endogenous HMR-1
fused to GFP as well as the tagged F-actin marker Lifeact::mKate-
2 (strain RJ001). We observed that HMR-1 distribution across
the EMS-ABp(l) contact is highly dynamic (Figure 4A). Initially
the distribution is homogeneous across the cell contact. As
the EMS division approaches, the HMR-1 distribution becomes
polarized and accumulates more on the anterior side of the
interface. Just before cytokinesis of EMS completes, the HMR-
1 signal abruptly disappears along the future E-ABpl interface.
In Figure 4B, the distribution of HMR-1 across the ABpl/EMS
interface is characterized over three embryos. We next asked if
this distribution also depends on Wnt signaling. Figures 4C,D
show the effect of dsh-2/mig-5 RNAi on the distribution of
HMR-1. The asymmetry in the distribution across the ABpl-
EMS interface is completely removed and thus depends on the
polarization driven by Wnt signaling. The phenotype was seen
in six out of seven observed dsh-2/mig-5 RNAi treated embryos.
Concluding, Wnt signaling drives asymmetric distribution of E-
cadherin across E and MS, which plays a role in ABpl specifically
interacting with MS.

DISCUSSION

During EMS division, the cellular cortex undergoes active
reorganization prior to cytokinesis, with cortical flows and a
shift in apparent F-actin and NMY-2 distribution. This behavior
appears similar in nature to the cortical flow during the pseudo-
cleavage furrow phase of first zygotic division where the cell
polarity of the cell is established (Reymann et al., 2016). Like
the zygotic division, the EMS division is asymmetric in the fate
and volume of the daughter cells, and the spindle orientation
and spindle location are tightly regulated. The way polarization is
induced differs, with the zygote being polarized by the centrioles
donated by the sperm, whereas the EMS cell is polarized by
signaling from the posterior P2 cell (reviewed in Rose and
Gönczy, 2014). Also, during the zygotic division, the cortical
flow is associated with the displacement of PAR proteins, the
subsequent establishment of asymmetric AP cortical domains
and the unequal segregation of cell fate determinants (Rose
and Gönczy, 2014). This system plays no similar role in the
EMS cell given that the PAR proteins are not distributed along
the EMS polarization axis (Nance and Priess, 2002). Instead
the polarization and fate change are induced by Wnt and
Src signaling from P2. The signaling induces an asymmetrical
distribution of several Wnt pathway proteins in the so-called
Wnt/β-Catenin asymmetry pathway, specifically APC (APR-
1) and the β-Catenin WRM-1 to the anterior (MS) side, and
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FIGURE 2 | The differences in the NMY-2 and F-actin markers across E and MS coincide with cortical tension differences and cell shape changes. (A) Illustration of

cortical ablation experiments on an E cell. A 4 µm cut is made by a pulsed 355 nm laser (UGA-42 Caliburn). In the sequence the opening of the cut, highlighted with

the rectangle can be observed, followed by repair of the cortical disruption. The second row shows the manual PIV measurement for this experiment. The image is

processed (blurring and background subtraction), and a color LUT is used to better see intensity contrasts. Cortical features are marked with green circles. A modest

recoil is noted, and after ±25 s the cut is repaired. Scale bar is 4 νm. (B) Output of the PIV analysis. An example of outward velocities for an E cell are shown with an

exponential trend fit. The movement is quickly reduced to low levels and the maximal gap opening is achieved after 3–5 s. (C) Exponential fit for the ablations of E,

MS, and ABpl cells, with confidence interval. The analysis is based on 4, 7, and 7 experiments respectively. The E and MS cells show different initial velocities, which

indicates E has larger initial tension than MS. For reference, also the ABpl cell was ablated, which has still higher F-actin/NMY-2 than MS (cf. Figure 1B), and this cells

shows very little cortical tension. (D) Statistical analysis of the cortical ablation experiment, showing both the initial outward velocity estimate and the relaxation time.

Bars represent 95% confidence level and test results are based on a permutation test (weighted bootstrap, see section 2). · p < 0.1, **p < 0.01, ***p < 0.001. (E) E

and MS take different cellular shapes after division. Cells were reconstructed from images of embryos with membranes tagged by a membrane binding domain fused

to GFP.

Frizzled and Disheveled homologs remain to the posterior
(E) side (reviewed in Sawa and Korswagen, 2013; Lam and
Phillips, 2017). Interestingly, the anterior polarizing movement
of APR-1 coincides with the cortical flow (Heppert et al.,
2018), and transport of this protein may be one particular
role of the flow. We show here that perturbation of the Wnt
ligand (mom-2 RNAi) or the disheveled proteins (dsh-2/mig-5
RNAi) nearly abolishes the cortical flow and NMY-2 and F-
actin distribution asymmetries. A similar observation on the

cortical asymmetry has been reported following RNAi for Wnt
signaling genes for the zygotic division (Naganathan et al.,
2014). The disheveled proteins can modulate the F-actin network
indirectly, for example by activating the small GTPases RHO
and RAC in the context of the planar-cell-polarity cascade,
which then activate downstream targets to modulate the actin
cytoskeleton, or through interactions with formins that can
induce actin nucleation and elongation of actin fibers (reviewed
in Wallingford and Habas, 2005). The cortical asymmetry is not
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FIGURE 3 | Wnt signaling drives asymmetric cortical behavior during and after EMS division. (A) Cortical images showing effect on F-actin distribution when Wnt

signaling is disrupted. F-actin shows nearly symmetric distribution between the E and MS daughters when either the Wnt ligand (mom-2) or the disheveled proteins

(dsh-2, mig-5) are knocked down. Images are taken 3–5 min after completion of cytokinesis. Scale bars indicate 5 µm. (B) Quantification of the effect of disruption of

Wnt signaling on F-actin asymmetry between E and MS. Cortical intensity is measured and corrected as before, the shown values are the difference in intensity

between E and MS (E-MS). Error bars represent the standard error and are centered around the mean. (C) Shape reconstruction of the E cell in both wildtype and

dsh-2/mig-5 RNAi embryos 3’ after EMS division, with overlaid intersections shown in the right panel. At the shown moment, the perturbed embryos have more

irregularly shaped E cells, with in some embryos a marked indentation at the posterior side by P2 as it is going through division. (D) Disrupting Wnt signaling induces a

minor positional phenotype at the eight-cell stage. Systematic analysis of cellular positioning by lineaging 8 embryos treated with dsh-2/mig-5 RNAi showed a slightly

more posterior positioning of the ABpl cell. The large spheres represent the cells in a perturbed embryo. The positioning in the reference embryos is shown by

connecting the cells to small black spheres that represent the cells’ average position in reference embryos. The movements of the cells are shown by traces in the

same color. (E) Position of ABpl in wild type and RNAi embryos. ABpl is consistently positioned more to the posterior when the Wnt signal is disrupted by RNAi for

either the Wnt ligand (mom-2) or the Dsh proteins (dsh-2/mig-5) (cross indicates the average WT position). The cross marks the average position of ABpl in the

reference embryos. *indicates significance at the 0.05 level

essential for the fate induction in EMS as the knockdown of
the disheveled proteins left E-fate associated properties, such as
delayed division of Ea/p and gastrulation time, in place. This
matches earlier reports of low penetrance (∼3%) for dsh-2/mig-5
RNAi causing defects in the endoderm fate induction (Liu et al.,
2010). This limited effect has been attributed to simultaneous
MES-1 signaling from P2, which provides a redundant pathway
to induce the E-fate (Bei et al., 2002).

We verified by ablation that the properties of the cortex
in the daughter cells remain different after the division,

with higher cortical tension in the E cell. These changes
are supported by observations of the cell shape of E and
MS, where the former remains spherical after division and
the latter rapidly changes shape and repositions. The higher
cortical tension in the E cell is reduced upon dsh-2/mig-
5 RNAi, with the E cell showing more deformation upon
pressures from neighboring cells. It is interesting to consider
that the differences in the cortical behavior and physical
properties between E and MS play a role in the robust cellular
positioning in the early embryo, with the lower effective tension
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FIGURE 4 | Asymmetric E-cadherin distribution coincides with the asymmetric cortical dynamics in EMS. (A) Distribution of the E-cadherin HMR-1 across the

interface between EMS and ABp/ABpl. Note that ABpl forms a lamellipodium that precedes the ABpl movement following EMS division. Life act marking F-actin in

red, the E-cadherin HMR-1 in green. Arrow heads indicate HMR-1 foci as mentioned in the text. Scale bar indicates 10 µm. (B) Quantification of the HMR-1

distribution over the ABpl/EMS interface. A natural spline is fit on the normalized data from three wildtype embryos. (C) The HMR-1 asymmetry is controlled by the

Wnt signal. The RNAi effect on the distribution across the two cells is significant (p < 0.005) in a mixed 2-way ANOVA test. Data from seven wildtype embryos and

three dsh-2/mig-5 RNAi treated embryos. The signal is corrected for background, normalized for differences in signal range, and the model includes a random effect

to capture embryo specific effects. Bars indicate 95% confidence interval. (D) Illustration of the HMR-1 signal in E and MS after completion of cytokinesis upon RNAi

treatment for the disheveled genes dsh-2/mig-5. Colors are as for (A).

of MS facilitating the changes in shape and movement of
the cell.

We found that perturbing the Wnt signaling with RNAi
induces only a modest positional phenotype at the eight-cell
stage, with a small displacement of ABpl to the posterior, while
maintaining the overall movement of the cell. This led us to
postulate that the way ABpl exerts forces on the E and MS
cells has changed, for instance by having a stronger adhesion to
the E-cell. By following E-cadherin on the cortex of EMS and
descendants we indeed observed that cytokinesis is associated
with a marked displacement of E-cadherin toward the anterior
descendant MS. In the wildtype embryo, ABpl moves over and
associates with MS, with foci of the E-cadherin HMR-1 at
the interface. Whereas upon perturbation of the Wnt signaling
by dsh-2/mig-5 RNAi, the HMR-1 distribution shifted to the
posterior E cell. The cortical dynamics and flow are likely directly
associated with the distribution of E-cadherin between E andMS,
as cortical flows can transport E-cadherin. An example is the
basal-to-apical flow of cadherin at cell junctions (Kametani and
Takeichi, 2007), where E-cadherin latches on to F-actin through
α-catenin, which itself binds to E-cadherin by mediation of β-
catenin. Further, local contractility can lead to accumulation of
cortical F-actin and aggregation of cortical proteins (Munjal et al.,
2015). During the EMS division the cortical flow could transport
HMR-1 to the anterior side of the cytokinetic furrow, and the
transient F-actin accumulation on the anterior may play a role in
aggregating HMR-1 at this location. HMR-1 can also modify the
cortical contractility and flow, as in the C. elegans zygote, where
HMR-1 has been reported to slow down cortical flows by drag
and negatively regulate RHO-1 activity, a GTPase associated with

recruitment and activation of myosin II (Padmanabhan et al.,
2017). The accumulation of HMR-1 to the anterior side of the
cytokinesis cleft may therefore also play a role in slowing down
the cortical flow.

It is interesting that a lower apparent amount of F-actin and
NMY-2 in E vs. MS appears to be associated with a higher
cortical tension in the former. This is in contrast to the zygotic
division, a higher tension is generated by the anterior part of
the cell, which has higher F-actin and NMY-2 signal than the
posterior side (Mayer et al., 2010). However, there aremany facets
that modulate the activity of the cortex, and the mechanisms of
the observed difference remain to be elucidated. It is possible
that the active ATP-driven force generation is upregulated in
E, e.g., by local NMY-2 phosphorylation (Wei et al., 2020),
which could drive up the tension, irrespective of the lower
density. The difference may also be caused by differences in
crosslinking in the cortex, as crosslinking is a key regulator of
actomyosin contractility (Inoue et al., 2011; Krueger et al., 2019).
Further, cortical tension is hypothesized to be maximal for an
intermediate level of connectivity in the actomyosin network
(Chugh et al., 2017; Ding et al., 2017). When connectivity is too
high or too low, the generated tension in the network will be
low (Ennomani et al., 2016), and a high level of connectivity has
been suggested to make the network incapable of transmitting
tensions over larger distances (Ennomani et al., 2016). This line
of reasoning aligns with the dense F-actin networks we observe
in MS and the AB descendants.

We conclude that during EMS division a cortical flow
arises, as well as a dynamic transition in the cortical
contractile network and E-cadherin distribution. The abrupt
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change in cortical dynamics, during and after EMS division,
is driven by Wnt signaling, and the observed cell state
transition is associated with changes in cortical tensions, cell
shape and actomyosin organization of the descendant cells.
The mechanisms underlying such transitions are an active
research area, and further study of this asymmetric division
could unveil new insight into the determinants of actin
network architecture.
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