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Editorial on the Research Topic

Interactions Between Podocytes, Mesangial Cells, and Glomerular Endothelial Cells in

Glomerular Diseases

INTRODUCTION

The complex mechanism by which kidneys fail and progress to end stage renal disease (ESRD)
involves renal hemodynamics, glomerular function, and tubular function. A progressive decline
in glomerular filtration (GFR) to ESRD ultimately requires dialysis and kidney transplantation
(Foley and Collins, 2007). All types of glomerular cells including podocytes that maintain the
filtration barrier, mesangial cells that have contractile properties, parietal epithelial cells that serve
as podocyte progenitors and glomerular endothelial cells that respond to changes in shear stress and
plasma constituentsmaintain proper glomerular function (Daehn andDuffield, 2021). During renal
diseases these glomerular cells and cell interactions become dysfunctional (Daehn and Duffield,
2021). Glomerular diseases are common and include minimal change disease, focal segmental
glomerulosclerosis, membranous nephropathy, and lupus nephritis.

This Research Topic captures changes in glomerular cell types resulting in progressive decline in
GFR to ESRD. Research publications span cell signaling, animal studies, disease pathology studies,
renal hemodynamics, and glomerular function. The Research Topic contains ten contributions that
demonstrate the exciting investigations on interactions between podocytes, mesangial cells, and
glomerular endothelial cells in glomerular diseases.

GLOMERULAR MODELING

The complexity of the glomerulus and glomerular filtration barrier has led to modeling that
considers the functions of the different cell types. A review article provides an update on the
ever-expanding research efforts to model glomerular function (Ebefors et al.). This wave of new
modeling technologies includes glomerulus-on-a-chip, three dimensional microfluidic models, and
organoids that can enable better predictions of cell-to-cell interactions in the glomerulus. The
continuous development of better modeling of the glomerulus is sure to accelerate discoveries that
will lead to better therapeutics for glomerular diseases.
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IMMUNOGLOBULIN A (IGA) AND

MEMBRANOUS NEPHROPATHY

Four original research articles to the Research Topic tackle
IgA and membranous nephropathy. A major complexity
to glomerular diseases is that multiple diseases can occur
at the same time in patients. The combination of IgA
nephropathy and minimal change were the focus of a
retrospective patient cohort study (Li et al.). The findings
of this study revealed that low levels of plasma galactose
deficient IgA1 (GdlgA1), IgG antiglycan autoantibodies were
found in patients with combined IgA nephropathy and
minimal change disease (Li et al.). The plasma from these
IgA nephropathy and minimal change patients resulted in a
weaker inflammatory response when added to mesangial cells
than plasma from IgA nephropathy patients (Li et al.). A
second study evaluated plasma from IgA nephropathy patients
and podocyte injury (Jia et al.). Angiopoietin-like protein 4
(Angptl4) levels in IgA nephropathy patients correlated with
podocyte injury (Jia et al.). The next two studies evaluated
traditional Chinese medicines on nephropathy. The ability
for modified Huangqi decoction (MHCD) to reduce IgA
nephropathy in rats was determined (Chang et al.). MHCD
reduced proteinuria, decreased mesangial cell hyperplasia and
matrix expansion, and increased podocyte number in IgA
nephropathy rats (Chang et al.). A study in patients with
refractory idiopathic membranous nephropathy demonstrated
that Shulifenxiao treatment for up to 2 years had a favorable
safety profile, increased the remission rate, and improved
glomerular function (Cui et al.). These studies highlight
factors that contribute to damaging glomerular cells in
nephropathies and potential therapies that target glomerular cells
to combat nephropathies.

VASCULAR ENDOTHELIAL GROWTH

FACTOR INHIBITION AND GLOMERULAR

TOXICITY

Vascular endothelial growth factor (VEGF) inhibition on
glomerular function is the topic in two articles that are
published in this Research Topic. VEGF inhibitors are given
systemically to treat cancers and intravitreally for age-related
macular degeneration and diabetic retinopathy (Hanna et al.;
Jankiewicz et al.). A hypothesis and theory article puts forth
evidence that intravitreally administered VEGF inhibitors can
cause thrombotic microangiopathy and acute kidney injury
(Hanna et al.). This supports the concept that glomerular disease
needs to be monitored in patients receiving in intravitreally
administered VEGF inhibitors (Hanna et al.). Next, the ability
for a dual soluble epoxide hydrolase (sEH) and cyclooxygenase-
2 (COX-2) inhibitor, PTUPB to combat hypertension and
glomerular injury during systemic administration of the VEGF
and multikinase inhibitor sorafenib is demonstrated (Jankiewicz
et al.). PTUPB was able to decrease glomerular permeability
and improve podocyte and mesangial cell function in rats
administered sorafenib (Jankiewicz et al.). Taken together, the

glomerular damage induced by VEGF inhibitors needs to be
monitored; however, novel therapies to mitigate the glomerular
damage are on the horizon.

OTHER GLOMERULAR DISEASES

Various aspects of kidney and glomerular damage are the focus
of a review and two scientific studies published in this Research
Topic. Hyperuricaemia which occurs due to alterations in urate
production and excretion was the focus of a review article (Sun
et al.). Urate transporters in the kidney provide a mechanism
for therapies to lower urate levels in hyperuricaemia (Sun et al.).
Glomerular nephropathy can be induced by environmental
factors falling under the responsibility of occupational safety and
health. Trichloroethylene is solvent widely used for degreasing
metal, parts cleaning and exposure to this chemical exceeds
20,000 industry and warehouse workers every year in China.
Wang and colleagues report signs of renal insufficiency in
six patients with occupational medicamentosa-like dermatitis
due to TCE. To study mechanisms of renal toxicity of TCE,
the authors administer trichloroethylene in Freund’s complete
adjuvant to Balb/c mice (Wang et al.). The sensitized animals
exhibit ultrastructural damage and loss of podocytes, plus
increased plasma BUN and creatinine. The involvement of
mTOR/cathepsin-L hyperactivity in TCE-induced renal damage
is demonstrated by a series of rapamycin treatments and
histopathological analyses (Wang et al.). Nephrology patients
develop extrarenal abnormalities due to uremia, vitamin D
deficiency, electrolyte imbalance and other complications.
Hemodialysis brings additional risks—access complications and
use of anticoagulants. As a result, dialysis patients exhibit
systemic vascular damage and inflammation which erodes the
glycocalyx layer. Kusuzawa et al. present a single-center study
featuring whether syndican-1, a polysaccharide component of
glycocalyx, can be used as a marker of endothelial injury in
patients on dialysis. The authors analyze syndican-1 level in
relation to the procedure settings, fluid removal, and use of
anticoagulants and conclude that assessment of syndican-1 can
be used in the selection of treatment and limiting endothelial
injury (Kusuzawa et al.).

CONCLUSIONS

The Research Topic Interactions between podocytes, mesangial
cells, and glomerular endothelial cells in glomerular diseases
demonstrates the need for a better understanding of mechanisms
that contribute to glomerular function and damage. This
collection of ten articles demonstrates that glomerular diseases
are diverse and include different glomerular cell types and
their interactions. Therefore, there is great need for a better
understanding of these glomerular cell types in diseases to
allow for the development of effective therapies to combat
glomerular diseases.
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Vascular endothelial growth factor (VEGF) inhibition can cause worsening hypertension,

proteinuria, chronic kidney injury, and glomerular disease. Thrombotic microangiopathy

(TMA) and other nephrotic disorders have been reported with systemic VEGF blockade.

These same agents are given intravitreally for age-related macular degeneration (AMD)

and diabetic retinopathy (DR), albeit at lower doses than those given for systemic

indications. Systemic absorption of anti-VEGF agents when given intravitreally has been

shown consistently along with evidence of significant intravascular VEGF suppression.

While worsening hypertension has only been seen in some large-scale studies, case

reports show worsening proteinuria and diverse glomerular diseases. These include

TMA-associated lesions like focal and segmental glomerulosclerosis with collapsing

features (cFSGS). In this paper, we report three cases of TMA likely associated with the

use of intravitreal anti-VEGF therapy. These patients developed the signature lesion of

VEGF blockade in a 6 to 11 month time frame after starting intravitreal VEGF inhibitors.

The literature is reviewed showing similar cases. Intravitreal VEGF blockade may cause

these adverse events in a hitherto unidentified subgroup of patients. Well-controlled

prospective observational trials are needed to determine the event rate and identify which

subgroups of patients are at increased risk. A registry for patients who develop worsening
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hypertension, proteinuria exacerbation, and glomerular diseases from intravitreal VEGF

blockade is proposed.

Keywords: intravitreal injections, thrombotic microangiopathy, diabetic retinopathy, vascular endothelial growth

factor (VEGF), bevacizumab (avastin), ranibizumab (Lucentis), aflibercept (Eylea)

INTRODUCTION

Vascular endothelial growth factor (VEGF) is intimately
involved in the physiological function of the glomerulus.
Endothelial cells rely on VEGF signaling as trophic signals
and for control of diacylglycerol kinase epsilon (DAG-ε).
DAG-ε can induce thrombosis if not tightly regulated (1–4).
Podocytes rely on VEGF for cytoskeletal organization via
nephrin, and trophic signaling is also mediated in podocyte
cells via VEGF signaling (autocrine or otherwise) (1). This
signaling system interacts with Rel-A (REL-associated protein)
and prevents upregulation of renin–angiotensin–aldosterone
signaling (RAAS) via the pro-inflammatory nuclear factor
kappa B (NF-κB). Tyrosine kinase pathways interact with
C-Maf-inducing protein (C-MIP) (1, 2, 5, 6). The blockade of
this critical system has various pharmacological applications,
namely, the inhibition of angiogenesis. As such, VEGF inhibition
has served as a cornerstone of adjunct chemotherapeutic
effects for blockage of angiogenesis, limiting tumor
growth (1–3, 5, 7).

As a result of the clinical success of these agents, anti-VEGF
treatments were adapted for intravitreal usage for patients with
neovascularization. Age-related macular degeneration (AMD),
diabetic macular edema (DME), and central retinal vein
obstruction became amenable to pharmacotherapy (8, 9).
Systemic blockade of VEGF leads to several well-known side
effects (10–12). These include worsening hypertension, de novo
proteinuria, renal limited thrombotic microangiopathy (TMA),
and various other causes of nephrotic syndrome (13, 14).

The US Food and Drug Administration (FDA) never
approved bevacizumab for intravitreal use but did approve
aflibercept (Eylea R©) and ranibizumab (Lucentis R©) for
intravitreal use. The label inserts state that the serum drug
levels with intravitreal injections were 200-fold lower than the
levels achieved by systemic administration, and thus, VEGF
inhibition would be minimal (15, 16). However, data published
by Avery et al. showed that intravitreal absorption could be
significant (at or above 50% inhibitory concentration) and result
in significant inhibition of systemic VEGF for days to weeks after
intravitreal injections (8, 9, 17, 18).

Avery et al., Jampol et al., Rogers et al., and Zehetner et al.
showed that intravitreal injections of VEGF inhibitors caused
significant depletion of circulating systemic VEGF levels (8, 9,
17–21). The search for the clinical consequences of this observed
VEGF depletion has been ongoing since these results were
published. Various studies showed worsening blood pressure
and hematological changes (22, 23). Recently, various groups
found differences in mortality and post cardiovascular and
cerebrovascular event mortality and morbidity (22–26) [though
the results are not all in agreement (27–29)].

Glassman et al. and Kameda et al. did not find obvious
population-wide effects of acute kidney injury (AKI) after
intravitreal VEGF injections. There was also no evidence that
all patients had worsening of proteinuria category between
Kidney Disease Improving Global Outcomes (KDIGO) A1
to A3 (30, 31). A1 patients tended to stay in the A1
category and A3 patients tended to stay in A3. Bagheri et al.
showed a positive change in hypertension, systemic VEGF
levels, hemoglobin, and platelets, and though not statistically
significant, 45% of patients showed worsening proteinuria after
intravitreal bevacizumab (22). It is increasingly clear that a
subgroup of patients may be experiencing these changes, and
many factors are involved in modulating the response in a
given patient.

Many confounding factors exist like vitreal absorption, total
dose of drug, and genetics of response to VEGF blockade (1, 2).
We present three cases of clear TMA with rapid decline of
renal function in diabetic, hypertensive patients. These changes
are clinically observed to occur after introduction of intravitreal
VEGF inhibitors for the indication of diabetic retinopathy (DR).
These cases demonstrate clearly that glomerular pathologies can
be superimposed on a background of kidney disease due to
diabetic nephropathy. See Table 1.

METHODS

Documented (written) informed consent was obtained from the
individuals in cases 1–3 for the publication of any potentially
identifiable images or data included in this article; we endeavored
to have no identifying information to be used in this report.

Case 1
A 56 year-old Caucasian male with a history of type 2 diabetes
mellitus with an elevated hemoglobin A1c (8.1%) (reference
range: <5.7%) is reported. He has a history of moderate
hypertension and chronic kidney disease with a serum creatinine
of 0.9 mg/dl (reference range: 0.7–1 mg/dl) in 4/2018 [estimated
glomerular filtration rate (eGFR) = 96 ml/min] (reference
range: 90–120 ml/min). He was referred to nephrology care for
proteinuria. The patient was diagnosed with DR and diabetic
nephropathy with a urine microalbumin-to-creatinine ratio of
360mg of albumin per gram of creatinine noted in early 2019
(reference range: <30 µg/mg or mg/g). When he first presented
to care in late 2018/early 2019, he had not taken any non-
steroidal anti-inflammatory agents and was only on proton
pump inhibitor (pantoprazole), which was then switched to a
histamine receptor 2 antagonist (ranitidine) after a short duration
of use.

He complained of progressively blurry vision and was seen by
an ophthalmologist, after which he was started on intravitreal
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TABLE 1 | Renal Toxicity observed with Intravitreal VEGF blockade.

References N Age Gender Agent Pathology on biopsy

Hanna et al. (2) 4 53-82 F,F,F,M Bev and Ran Biopsy proven MCD, 45% increased proteinuria (NS), worsening

HTN, Increased platelets

Nobakht et al. (4) 1 96 F LucBevAflib Biopsy proven CFSGS

Bagheri et al. (22) [study] 18/40 60.3 ±9.2y 33F, 7M Bev 45% of patients with increased proteinuria

Rasier et al. (23) [study] 82 67.2 ± 5.2 44F, 38M Bev Significant increase in SBP and DBP

Chenugpasitporn et al. (32) 2 56,67 M, M Bev Biopsy proven MCD. Biopsy proven TMA

Diabetic Retinopathy Clinical

Research Network et al. (33)

3 NR NR Bev Decreased eGFR

Georgalas et al. (34) 2 51/68 F,M Ran & Bev Decreased eGFR

Jamrozy-Witkowska et al. (35) 1 NR NR NR Decreased eGFR

Kenworthy et al. (36) 1 88 F Bev Increased Proteinuria

Khneizer (37) 1 74 M Bev Biopsy proven MGN

Morales et al. (38) 1 56 M Ran Increased Proteinuria, biopsy proven DN

Pelle et al. (39) 1 77 F Ran Biopsy proven TMA

Perez-Valdivia et al. (40) 1 54 M Bev Biopsy proven MCD relapse

Sato et al. (41) 1 16 F Bev Biopsy proven MCD relapse

Tran (42) 1 51 M Bev Biopsy proven AIN

Touzani et al. (43) 1 72 M Bev Biopsy proven TMA

Yen and Zhang (44) 1 56 M Bev Biopsy proven Endotheliosis/TMA changes

Hanna et al. (45) 1 38 F BevRan Worsening HTN and proteinuria, lessened with Ran use vs. Bev

Shye et al. (46) 3 58 M Bev Decreased eGFR, Biopsy proven CFSGS and AIN, and biopsy

proven AIN

Chung et al. (47) [study] 53 59.8 average age 31F, 29M Bev Significant worsening in proteinuria after bevacizumab in already

proteinuric patients

(Phadke-Hanna) (UR) 1 74 M RanAflib Biopsy proven CFSGS with TMA

(Hanna) CC 3 56,43,77 F, F, M Bev x 2, Aflib x 1 Chronic TMA x 2, FSGS, Endotheliosis/Chronic TMA

Aflib, aflibercept; AIN, allergic interstitial nephritis; Bev, bevacizumab; CC, current case; CFSGS, collapsing focal and segmental sclerosis; DBP, diastolic blood pressure; eGFR, estimated

glomerular filtration rate; F, female; FSGS, focal and segmental sclerosis; HTN, hypertension; M, male; MCD, minimal change disease; MGN, membranous glomerulonephritis; N, number;

NS, not significant; Ran, ranibizumab; SB, systolic blood pressure; TMA, thrombotic microangiopathy, UR, under review.

VEGF inhibitor therapy in late 2018 to 1/2019. Intravitreal
injections of bevacizumab (1.25mg) were given in each eye
(2.5mg injected total) every 2 months until 7/2019 when he
had a more severe episode of recurrent macular edema. This
necessitated switching the anti-VEGF regimen to a monthly
interval. This was also deemed necessary due to the development
of possible early central retinal vein occlusion. According to
this dosing schedule, the patient received a total of 20mg
bevacizumab between both eyes throughout 2019 [1.25mg OU
1/2019 (2.5mg), 1.25mg OU 3/2019 (2.5mg), 1.25mg OU
5/2019 (2.5mg), 1.25mgOU7/2019 (2.5mg), 1.25mgOU8/2019
(2.5mg), 1.25mg OU 9/2019 (2.5mg), 1.25mg OU 10/2019
(2.5mg), 1.25mg OU 11/2019 (2.5 mg)].

Early in 2019, the patient’s serum creatinine rose to 1.44
mg/dl and then 1.86 mg/dl by 4/2019 (reference range: 0.7–
1 mg/dl). In the latter half of 2019, the patient presented to
nephrology with severely increased blood pressure, first in 9/2019
with a blood pressure of 214/107 mmHg and again in 10/2019
with a blood pressure of 236/108 mmHg; dyspnea; and severely
worsened bilateral lower-extremity edema. At this time, the
patient had an elevated serum creatinine of 3.6 mg/dl, as well as a
microalbumin/creatinine ratio of >600 µg/mg (reference range:
<30µg/mg ormg/g) (none on baseline in 2018 and 359µg/mg in

04/2019). A 24-h urine protein collection revealed that the patient
had nephrotic range proteinuria with a total of 6.5 g of protein
per day (reference range: <80 mg/24 h). Hypoalbuminemia had
greatly worsened to 2.8 g/dl from a baseline of 3.8 g/dl in 4/2018
(reference range: 3.4–5.4 g/L). The patient’s severe hypertension
prompted admission for blood pressure control. After the
patient’s hypertension was controlled, a kidney biopsy was
obtained given the rapid onset of renal dysfunction, worsening
proteinuria, and accelerated hypertension (Figure 1).

From the biopsy samples, 33 glomeruli were identified, four
of which were globally sclerotic. Three glomeruli contained
lesions of segmental sclerosis characterized by luminal
obliteration by insudates, foam cells, and lipid, with focal
adherence to Bowman’s capsule (Figure 2A). The glomeruli
were normal in size with predominantly single-contoured
capillary basement membranes with segmental double contours
(Figure 2B) and patent capillary lumina. Mesangial areas
showed diffuse and focal nodular expansion by matrix
material with segmental mesangiolysis and microaneurysm
formation. Few glomeruli displayed variable ischemic changes.
No crescents or necrotizing features were present. There
was moderate parenchymal scarring with mild interstitial
inflammation. Arteries displayed moderate intimal fibrosis, and
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FIGURE 1 | Trend of lab values over time in a patient with diabetic retinopathy treated with bevacizumab and subsequent thrombotic microangiopathy. Bev,

bevacizumab; Cr, creatinine; dl, deciliter; eGFR, estimated glomerular filtration rate; mg, milligram; ml, milliliter; min, minute.

arterioles showed prominent afferent and efferent hyalinization.
Immunofluorescence was negative for significant glomerular
immune complex deposition.

Electron microscopy revealed glomerular basement
membranes with normal trilaminar structure and global
thickening (up to 1,440 nm). Segmentally, there was mild
electron lucent, subendothelial widening with segmental
glomerular basement membrane duplication and mesangial cell
interposition. Focally within these areas, there was accumulation
of flocculent and electron lucent debris with mild layering of new
basement membrane material (Figure 2C). Mesangial areas were
expanded by matrix material, and there was∼50% podocyte foot
process effacement. The pathological findings showed a renal
TMA in a background of diabetic nephropathy.

With the diagnosis of TMA, review of peripheral blood
smears and laboratory parameters was undertaken. Peripherally,
there were no schistocytes, and vitamin B12 level was 571
pg/ml (reference range: 300–950 pg/ml). ADAMTS13 was
117% of reference range activity (reference range: 50–160%).
Severe ADAMTS13 deficiency was <5–10%. This ruled out any
ADAMTS13 deficiency/thrombotic thrombocytopenic purpura.
No diarrhea was noted, suggesting that there was no typical
hemolytic uremic syndrome or evidence for the presence of
Shiga toxin (reference range: undetectable). Platelets remained
in normal range (reference range: 150,000–450,000/uL) despite
hemoglobin level decline over the course of the year. Serum
VEGF level on intravitreal anti-VEGF therapy was 34 pg/ml,

which is near the lower limit of the reference range (reference
range: 31–310 pg/ml). The presentation did not seem to fit the
classical systemic presentation of an atypical hemolytic uremic
syndrome but rather seemed to conform to a renal limited TMA
as the biopsy suggested.

The patient’s serum creatinine worsened to a level of 3.6–3.64
mg/dl (reference range: 0.7–1 mg/dl) a year after presentation.
Intravitreal injections were discussed with the patient as a
possible cause for TMA, but as of now, they are being continued
due to the patient’s severe visual impairment. The patient is now
preparing for hemodialysis. Table 2 summarizes lab value trends
for cases 1–3.

Case 2
A 43 year-old female with a history of type 2 diabetes mellitus
had a subacute decline of her kidney function over 6 months,
which was faster than expected for typical diabetic nephropathy.
The treating physician noted that this occurred after the initiation
of intravitreal bevacizumab. Her initial serum creatinine was
reported only as normal, but her final serum creatinine was
reported as 3.6 mg/dl (reference range: 0.7–1 mg/dl) with a eGFR
< 30 ml/min (stage IV CKD, G4, A3) (reference range: 90–
120 ml/min). She had >3 g/day of proteinuria (reference range:
<80 mg/day).

Given the standard bevacizumab dose of 1.25–2.5mg
every month, the estimated total dose she was exposed
to is estimated to be up to 7.5–15mg intravitreally over
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FIGURE 2 | Biopsy findings in patient 1 with diabetic retinopathy and nephropathy treated with bevacizumab and subsequent thrombotic microangiopathy. (A) One

glomerulus showed segmental luminal obliteration by insudates and lipid, with adherence to Bowman’s capsule consistent with segmental glomerulosclerosis

(arrowhead, methylene blue stain, 400×). (B) Few glomeruli demonstrated segmental duplication of glomerular basement membranes (arrowhead, Jones

methenamine silver stain, 400×). (C) Ultrastructural analysis revealed segmental subendothelial electron lucent widening, with very early duplication of basement

membrane material (arrowheads, 20,000×). The light and ultrastructural findings were consistent with chronic thrombotic microangiopathy.

TABLE 2 | A1c, glycated hemoglobin; ADAMTS13, a disintegrin and metalloproteinase thrombospondin motif #1, member # 13; B12 cyanocobalamin; dL, BL, baseline;

deciliter; eGFR, estimated glomerular filtration rate; g, gram; L, liter; min, minute; mL, milliter; VEGF, vascular endothelial growth factor; VEGFi, VEGF inhibitor; uL, microliter.

Lab value Case 1 BL Case 1 Post-VEGFi Case 2 BL Case 2 Post-VEGFi Case 3 BL Case 3 post VEGFi

Age 56 43 77

Gender Male Female Female

Identified ethnicity Caucasian Hispanic Guyanese

Total Dose of VEGFi 20mg Bevacizumab (2018–2020) 7.5–15mg bevacizumab Ranibizumab (unknown quantity),

28mg of aflibercept given

Time frame of AKI in

relation to initiation or

changes to intravitreal

VEGFi

2 years after starting bevacizumab

1 year after increasing frequency of injections

6 months after bevacizumab

initiation

Year after changing from

ranibizumab to aflibercept

Serum Creatinine (mg/dL) 0.9 (2018) 1.8–3.6 (2019) Normal 3.6 (2019) 1 (2019) 1.4 (2020)

eGFR (ml/min) 96 (2018) 54–18 (2019) Not reported 25–30 (2019) 51 (2019) 37 (2020)

Hemoglobin (g/dL) 13 (2018) 7.7–11.1 (2019) Not reported Not reported Normal (2019) Normal (2020)

Platelets (/uL) 256,000(2018) 210–248,000 (2019) Not reported Not reported Normal (2019) Normal (2020)

Albumin (g/L) 3.8 (1/2019) 3.4 to 2.8 (11/2019) Not reported Not reported Normal (2019) Normal (2020)

Hemoglobin A1C (%) 10.4 (1/2019) 6.4–6.6 (11/2019) Not reported Not reported 5–5.7% (2019) 5–5.7% (2020)

Systolic blood pressure

(mmHg)

134–177

(every

2–month

VEGF inhibitor)

177–236 (every

1–month VEGF

inhibitor eye injections)

150–160 (2019) 150–160 (2019) Normal (2019) 150 (2020)

Diastolic blood pressure

(mmHg)

74–86 (every

2–month

VEGF inhibitor)

74–108 (every 1–month

VEGF inhibitor eye

injections)

90 (2019) 90 (2019) Normal (2019) 100 (2020)

24 hour urine total

protein (g/day)

Not reported 6.5 (10/2/2019) Not reported >3 (2019) Not reported (2019) 0.8 (2020)

Urine

microalbumin/Creatinine

ratio (mcg/mg or mg/g)

360 >600 (9–11/2019) Not reported Not reported <30 (2019) 800 (2020)

Serum VEGF level

(pg/mL)

Not reported 34 (11/2019) Not reported Not reported Not reported Not reported

ADAMTS13 (%) Not reported 117(11/2019) Not reported Not reported Not reported Not reported

6 months. She was noted to have accelerated worsening
of her hypertension and nephrotic range proteinuria,
but this was successfully controlled with blood pressure
medications without improvement in her renal function.
The worsening of blood pressure, proteinuria, and kidney
function was noted to have occurred contemporaneously
with initiating intravitreal bevacizumab for DR/DME. The

patient had moderate hypertension at 150–160 mmHg
systolic blood pressure but did not have clinically apparent
malignant hypertension.

The biopsy identified, overall, 29 glomeruli, eight of which
were globally sclerotic. Glomeruli ranged in size from normal to
enlarged with single-contoured capillary basement membranes
and predominantly patent capillary lumina. One glomerulus
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displayed segmental luminal obliteration by insudates and lipid.
Immunofluorescence staining revealed prominent staining for
fibrinogen within these arterioles (Figure 3A). Arteries displayed
mild to moderate intimal fibrosis, and arterioles had muscular
hypertrophy, insudates, and mucoid intimal thickening with
luminal narrowing and endothelial cell swelling (Figure 3B).
Mesangial areas displayed diffuse and nodular expansion by
matrix material (Figure 3C). No crescents or necrotizing features
were noted. There was severe parenchymal scarring with mild
interstitial inflammation.

Electron microscopy revealed glomerular basement
membranes with normal trilaminar structure and global
thickening (up to 1,210 nm). Segmentally, there were
subendothelial lucencies with flocculent material as well as
segmental mesangial cell interposition with double-contour
formation (Figure 3D). Podocytes displayed subtotal foot
process effacement. This suggested endothelial injury, a chronic
TMA, and concomitant secondary focal and segmental sclerosis
due to VEGF blockade. Table 2 summarizes lab value trends for
cases 1–3.

Case 3
A 77 year-old Guyanese female was referred to nephrology for
worsening hypertension and proteinuria. She had had known
type 1 diabetes mellitus for over 20 years with known DR and
retinal vein disease. She also had a history of hypertension
for the last 15 years well controlled on single-agent enalapril
10mg once a day. She had prior urinalysis done yearly that
showed trace protein. In the last few months, she was noticed to
have increasing proteinuria of 800mg over 24 h and worsening
hypertension requiring enalapril to be increased to 20mg twice
daily and addition of amlodipine 10mg daily. In addition,
her kidney function had worsened from a serum creatinine
of baseline 1.0 mg/dl (reference range: 0.7–1 mg/dl) (eGFR
= 51 ml/min; reference range: 90–120 ml/min) to 1.4 mg/dl
(eGFR = 37 ml/min). Her physical exam was consistent with
a blood pressure of 150/100 mmHg and 1+ lower-extremity
edema. Her medication list revealed no nephrotoxic agent and
no herbal medications.

Her serological testing was negative for anti-nuclear antibody
(ANA) (reference range: <1:20), lupus serologies (reference
range: not detected), paraprotein workup (reference range: not
detected), and anti-neutrophil cytoplasmic antibody (ANCA)
and phospholipase A2 receptor antibody (reference range: not
detected). Cell counts (white blood cells, hemoglobin, and
platelets) were all within normal limits. Her complements were
within normal range, lactate dehydrogenase was normal, and
there was no decrease noted in haptoglobin. Her repeat urinary
spot protein/creatinine ratio was 0.8. Her hemoglobin A1c had
been in the 5.5–7% range (reference range: <5.7%) in the last
few years. On further questioning, she mentioned she had been
receiving ranibizumab for her DME for 4 years. In the last 1
year, she was switched to aflibercept 2mg every 4 weeks for each
eye, intravitreal for the first 3 months and then every 8 weeks
following, leading to a total dose of 28mg. As a result, a kidney
biopsy was performed.

FIGURE 3 | Biopsy findings in patient 2 with diabetic retinopathy and

nephropathy treated with bevacizumab and subsequent thrombotic

microangiopathy. (A) Immunofluorescence microscopy revealed scattered

arterioles which displayed strong amorphous intraluminal and vessel wall

staining for fibrinogen (400×). (B) Examination of hematoxylin–eosin

(H&E)-stained sections from the frozen tissue demonstrated that the fibrin

staining corresponded with changes of arteriopathy, including mucoid intimal

thickening (arrowhead) and considerable luminal narrowing, consistent with

acute thrombotic microangiopathy (400×). (C) Glomeruli showed changes of

diffuse and nodular diabetic glomerulosclerosis (600×). (D) Ultrastructural

analysis revealed glomerular basement membranes which showed prominent

subendothelial electron lucent widening with accumulation of flocculent debris

(20,000×). Overall, the findings were consistent with acute

thrombotic microangiopathy.

The biopsy was dominated by chronic changes, in the
setting of severe arterial sclerosis [Figure 4A, periodic acid–
Schiff (PAS) stain, 200×]. A large subcapsular scar containing 15
globally sclerosed glomeruli was found in one of the biopsy cores.
Outside of this scar, there were up to 10 glomeruli, often revealing
irregular thickening and segmental remodeling of the capillary
loops, with occasional double-contour formation (Figure 4B,
PAS stain, 400×, yellow arrowheads). The mesangium revealed
mild expansion by matrix, without well-developed Kimmelstiel–
Wilson nodules. Overall, there was about 40–50% tubular
atrophy and interstitial fibrosis in this biopsy sample. No
active glomerular or interstitial inflammation was noted. On
immunofluorescence microscopy, no immune-type deposits
were present, but there was dull reactivity for fibrin along the
glomerular capillary walls [Figure 4C, fibrinogen fluorescein
isothiocyanate (FITC) stain, 200×]. Glomerular capillary
walls often revealed subendothelial widening by electron
lucent material on electron microscopy (Figure 4D, 10,000×,
red arrowheads).
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FIGURE 4 | Biopsy findings showing arteriopathy and chronic thrombotic

microangiopathy in patient 3. (A) There is severe arterial sclerosis, associated

with focal global glomerulosclerosis, periodic acid-Schiff (PAS) stain, 200×. (B)

Non-sclerosed glomeruli reveal irregular thickening and segmental remodeling

of the capillary loops, with occasional double contours (yellow arrowheads),

PAS stain, 400×. (C) There is dull reactivity for fibrin along the glomerular

capillary walls on immunofluorescence microscopy, fluorescein isothiocyanate

(FITC) stain, 200×. (D) On electron microscopy, glomerular capillary walls

reveal subendothelial widening by electron lucent material (red arrowhead),

10,000×.

Given signs of only early diabetic nephropathy on the kidney
biopsy and with most of the changes noted to be related to
endothelial and vascular damage, we attributed the findings to
the anti-VEGF therapy this patient was exposed to over the last
few years. The change in renal function and proteinuria timely
fit with the initiation of aflibercept, and therefore, reverting back
to the initial treatment (ranibizumab) for her DME was prudent.
After discussion with the patient’s treating retina specialists,
she was taken off aflibercept and returned back to ranibizumab
intravitreal treatment. Table 2 summarizes lab value trends for
cases 1–3.

FDA ADVERSE REPORT SYSTEM EVENTS

In addition to reviewing the published literature, we also
reviewed the US FDA adverse event reporting system (FAERS)
quarterly legacy data file (first quarter of 2010 to second
quarter of 2019) for both aflibercept (Eylea R©) and ranibizumab
(Lucentis R©) since the years they were approved specifically for
intravitreal indications. Bevacizumab was not reviewed given the
mixed results it would provide with use on oncology patients. The
adverse event terms queried were proteinuria, renal failure acute,
AKI, hypertension, thrombocytopenia nephritis, and TMA.
Table 3 summarizes the data from the FAERS. Hypertension is
the most common renal adverse event reported; other notable

side effects include proteinuria. Few cases of TMA have been
reported to the FDA from both agents. There are more cases
reported of ranibizumab over aflibercept given the approval data
of the latter being in 2016. Interestingly, most events happened in
male patients for unknown reasons.

DISCUSSION

There are 26 published cases showing worsening hypertension,
proteinuria, and glomerular disease after intravitreal VEGF
inhibition (2, 4, 32–46). Our group has published nine cases
(2, 4, 45, 46). There are three more in this case series and
one more under review. In total, there are 30 known cases
demonstrating systemic toxicity after intravitreal VEGF inhibitor
injections (2, 4, 32–46). See Table 1.

The cases presented in this manuscript show renal
limited TMA in patients with poorly controlled diabetes
and hypertension. The pattern of injury is exactly what is
expected with VEGF blockade systemically. The timeline of
initiation or increased dosing of intravitreal VEGF blockade fit
the timeline of renal injury and proteinuria exacerbation, and
this is what suggested the diagnosis clinically. The finding of
pathognomonic lesions of VEGF blockade on kidney biopsy
confirmed our clinical suspicion.

Other TMA presentations after intravitreal VEGF blockade in
the literature are reviewed in Table 1 (4, 32, 39, 42, 43, 46) along
with other published evidence (2, 4, 32–46). Other glomerular
lesions such as collapsing glomerulopathy have been associated
with intravitreal anti-VEGF agents as well (2, 4). cFSGS is a TMA-
associated lesion that has been noted in conjunction with TMA
presentations as was seen in case 2 in this series (48).

Tying the pathophysiology with mechanism, evidence of
absorption, evidence of VEGF depletion, and clear biopsy
findings has made these cases valuable. An important clinical
lesson from these cases is that diabetic nephropathy per se
cannot be invoked to account for an abrupt rise in serum
creatinine. In addition, the secondary glomerular findings such
as TMA and collapsing glomerulopathy are not features of
diabetic nephropathy. It is likely that these renal pathological
changes occur preferentially in proteinuric, hypertensive patients
with preexisting renal disease. This is similar to preeclampsia,
a naturally occurring disease model that approximates the
pharmacologic phenomenon of VEGF blockade (49). This
model of differential susceptibility to VEGF depletion has been
suggested by a recently conducted South Korean study, showing
that patients with more proteinuria at baseline were more likely
to experience worsening proteinuria after intravitreal VEGF
injections (47).

The FAERS database analysis suggests that hypertension
might be the most common renal adverse event reported
(Table 3). This is important as it might be the first sign of a
systemic endothelial injury as seen with other anti-VEGF agents
in the oncology literature.

These cases are extremely challenging to diagnose, and it
is useful to consider the role of intravitreal VEGF blockade
in every diabetic patient. The clinician needs to have a high
index of suspicion to consider this diagnosis. The meticulous
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TABLE 3 | Review of FDA FAERS for adverse events affecting Kidney by gender for Lucentis (ranibizumab) and Eylea (aflibercept).

Name of Medication Reaction Male (N = 101) n (%) Female (N = 160) n (%) Missing (N = 144) n (%) Overall (N = 405) n (%)

Aflibercept (m = 97) Hypertension 5 (4.95) 20 (12.50) 52 (36.11) 77 (19.01)

Proteinuria 5 (4.95) 0 (0.00) 6 (4.17) 11 (2.72)

Thrombocytopenia 0 (0.00) 0 (0.00) 6 (4.17) 6 (1.48)

Renal Injury 0 (0.00) 0 (0.00) 2 (1.39) 2 (0.49)

Thrombotic Microangiopathy 0 (0.00) 0 (0.00) 1 (0.69) 1 (0.25)

Ranibizumab(m = 308) Hypertension 75 (74.26) 130 (81.25) 68 (47.22) 273 (67.41)

Thrombocytopenia 7 (6.93) 8 (5.00) 3 (2.08) 18 (4.44)

Thrombotic Microangiopathy 4 (3.96) 0 (0.00) 4 (2.78) 8 (1.98)

Renal Injury 3 (2.97) 1 (0.63) 1 (0.69) 5 (1.23)

Proteinuria 2 (1.98) 1 (0.63) 1 (0.69) 4 (0.99)

-Adverse events reported as (Renal Failure, Renal Impairment, Renal Failure Acute, Renal Injury, Nephritis) presented as one group (RENAL INJURY).

-Percentage(%)= n/N*100.

TABLE 4 | When to Consider Intravitreal VEGF Toxicity, Referral to Nephrology.

• Rapid worsening of renal function (25% rise in BUN, Cr over short time)

• Unexplained changes in blood pressure (>20 mmHg over short time)

• Rapid or unexpected change in proteinuria (>25% rise over short time)

• If any of above occur: Check urinalysis, Urine protein to Creatinine ratio,

Refer to nephrology

• If suspicion of intravitreal anti VEGF renal toxicity: consider decreasing

dose, change to lower potency VEGF inhibitors (like ranibizumab)

mcg, micrograms; TMA, thrombotic microangiopathy.

measurement of urine protein and albumin in addition to
monitoring blood pressure changes is needed to document the
effect of VEGF depletion on the kidney. Specialty consultation
with a nephrologist in case of abrupt changes in renal parameters
and monitoring patients receiving these agents closely are
prudent recommendations.

Table 4 details clinical clues that raise the suspicion that
intravitreal VEGF inhibition may be leading to renal or systemic
toxicity. Recommendations for referral to specialty nephrology
care are also listed in Table 4. They are a rise in serum blood
urea nitrogen and creatinine by 25% or more acutely, an increase
in blood pressure by 20 mmHg acutely, and an increase in
urine protein-to-creatinine ratio by 25% or more after initiating
intravitreal VEGF blockade (1).

There are comprehensive reviews that highlight the lesions
and clinical manifestations seen after intravitreal VEGF
blockade (1, 2). The utility of this report is to document
three examples of the prototypical renal lesions resulting
from systemic VEGF blockade in patients receiving VEGF
inhibitors intravitreally. Currently, the only known risk factors
for worsening hypertension and proteinuria after intravitreal
VEGF injection are preexisting hypertension and proteinuria
at baseline.

There is no specific guidance regarding the treatment of
intravitreal VEGF inhibitor-associated glomerular lesions at this
time. In our experience, oral corticosteroids for treatment of
cFSGS lesions induced while patients were getting intravitreal
VEGF blockade were not uniformly successful. Given the
emerging evidence of efficacy of complement blockade in some

secondary forms of TMA/atypical hemolytic uremic syndrome,
use of complement factor 5 blockade may be a therapeutic
option (50).

Ultimately, DR and AMD can lead to irreversible visual
deterioration and blindness (1). Intravitreal VEGF blockade
in ameliorating these diseases has been important. It is
important to note that the rate of renal events occurring
with intravitreal VEGF blockade requires further study. We
acknowledge the importance of intravitreal VEGF blockade
but propose that patients receiving intravitreal VEGF blockade
require close monitoring (1). If there are concerns regarding
renal sequelae after intravitreal VEGF blockade, prompt referral
to nephrological care is crucial (1). The importance of
the ophthalmologist and retina specialists, who are closely
monitoring patients with retinal pathology, cannot be overstated.
A registry to track these events can suggest how common
the events are, and controlled observational trials following
pharmacokinetic data would be helpful. A new era of
ophthalmological and nephrological collaboration in research
and patient care is clearly needed to fully investigate the systemic
risks of intravitreal VEGF blockade.
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Background: Increasing evidence shows that Angptl4 affects proteinuria in podocytes
injured kidney disease, however, whether there is a relationship between Angptl4 and
IgA nephropathy (IgAN) has not been studied yet.

Methods: Plasma and urine samples were obtained from 71 patients with IgAN
and 61 healthy controls. Glomeruli from six renal biopsy specimens (three IgAN
patients and three healthy controls) were separated by RNA-Seq. Differentially
expressed genes (DEGs) related to podocytes and Angptl4 between IgAN patients
and healthy controls were performed using the Limma package. Gene set enrichment
analysis was used to determine whether there was a statistically significant difference
between the two groups. STRING was used to create a protein-protein interaction
network of DEGs. Association analysis between Angptl4 levels and clinical features of
IgAN was performed.

Results: Thirty-three podocyte-related and twenty-three Angpt4-related DEGs were
found between IgAN patients and healthy controls. By overlapping the genes, FOS and
G6PC were found to be upregulated in IgAN patients, while MMP9 was downregulated
in IgAN patients. Plasma and urine Angptl4 levels were closely related to the degree of
podocyte injury and urine protein, but not to the protein-creatine ratio.

Conclusion: Our findings show that Angptl4 levels in plasma and urine are related to
podocyte damage and, therefore, may be a promising tool for assessing the severity of
IgAN patients to identify and reverse the progression to ESRD.
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INTRODUCTION

Immunoglobulin A nephropathy (IgAN), which is characterized by galactose-deficient IgA deposits
in the glomerular mesangium, is the most prevalent type of glomerulonephritis worldwide (Suzuki
et al., 2011; Wyatt and Julian, 2013). IgAN is one of the major causes of end-stage renal disease
(ESRD), proteinuria, and hypertension. Reduced glomerular filtration rates are often used to assess
its prognosis in clinical practice (Floege and Feehally, 2013). Nevertheless, a new indicator that
would provide meaningful information about the diagnosis of IgAN and the effects of its treatment
is still needed.
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It is generally thought that mesangial cells play a dominant
role in the pathogenesis of IgAN, but since mesangial-podocytic-
tubular crosstalk has been proposed, emerging evidence shows
that the role of podocytes in IgAN should not be underestimated
(Hishiki et al., 2001; Faul et al., 2007; Lai, 2012; Fukuda et al.,
2015; Leung et al., 2018). Podocytes possess numerous foot
processes, surround glomerular capillaries, and serve as the last
barrier to renal filtration (Greka and Mundel, 2012). Foot process
effacement is a hallmark of podocyte injury, which leads to
proteinuria and glomerulosclerosis (Lemley et al., 2002; Hara
et al., 2007).

Angiopoietin-like protein 4 (Angptl4), an inhibitor of
lipoprotein lipase (Yoshida et al., 2002), has been the focus
of many studies examining novel mechanisms of proteinuria
in recent years (Clement et al., 2011, 2014; Li et al., 2015;
Ma et al., 2015). A previous study indicated that increased
secretion of Angptl4 with a high isoelectric point (pI) by
podocytes leads to proteinuria and foot process effacement in
humans, and experimentally, minimal change disease (MCD)
(Clement et al., 2011). However, circulating Angptl4 with a
neutral pI, which is mainly secreted by adipose tissue and
liver, reduces proteinuria by binding to αvβ5 integrin on the
glomerular endothelium (Clement et al., 2014). Our previous
study also observed an important role of Angptl4 in podocyte
injury-associated nephropathy (Chen et al., 2013). However, the
changes in Angptl4 expression levels in IgAN have not yet
been investigated.

To more easily diagnose and evaluate the severity of IgAN, it
is vital to find novel and non-invasive biomarkers. In this study,
we attempted to use RNA sequencing of glomeruli separated
from biopsy tissues of IgAN patients and healthy controls to
explore the potential functions of Angptl4 in IgAN. We further
confirmed the relationship between Angptl4 expression and
IgAN in clinical samples.

MATERIALS AND METHODS

Study Population
All procedures in this study involved human participants in
accordance with the Declaration of Helsinki. The study was
approved by the Ethical Committee of the Zhejiang University
College of Medicine, First Affiliated Hospital. All subjects
(patients and healthy controls) provided written informed
consent for blood, urine, or tissue collection. Seventy-one adult
patients with biopsy-proven idiopathic IgAN were included in
the IgAN group, and 60 live renal transplant donors were
included in the healthy control group. The IgAN group was
further divided into two groups according to electron microscopy
results: one group consisted of 37 patients with foot process
fusion, and the other group consisted of 34 patients without
foot process fusion.

Tissue Samples
Plasma and urine samples were collected at the time of
kidney biopsy before treatment. Laser-captured microdissected
glomeruli were obtained from the kidney biopsy tissues of

three IgAN patients and three healthy controls for RNA
sequencing. Dissection of the glomeruli under the microscope
was performed according to a previously described protocol
(Jiang et al., 2008). In short, the glomeruli were dissected with
sharp forceps under a stereoscopic electron microscope. The
small tubules, except for the medullary thick ascending limb
of Henle’s loop, were removed. All the steps were carried out
in an albumin-rich saline solution (0.1%) at 4◦C. Dissection
was completed within 120 min of the kidney biopsy. The
studies on human samples were conducted according to the
Declaration of Helsinki.

Library Preparation for Sequencing
RNA was extracted from the glomeruli after dissection. The
RNA concentration and purity were determined using a Qubit R©

2.0 fluorometer (Qubit R© RNA Analysis Kit, Life Technologies,
California, United States) and NanoPhotometer R© (Implen,
California, United States), respectively. A 1% agarose gel was
used to assess RNA degradation and contamination. The
RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100
system (Agilent Technologies, CA, United States) was used to
assess RNA integrity.

A total of 3 µg of RNA per sample was used as
the input material for the RNA sample preparations. The
sequencing libraries were generated using the NEBNext R© UltraTM

RNA Library Prep Kit for Illumina R© (NEB, United States)
following the manufacturer’s instructions, and index codes
were added to label the sequences of each sample. Briefly,
mRNA was purified from total RNA using poly T oligo-
conjugated magnetic beads. Fragmentation was conducted
using divalent cations under an elevated temperature in
NEBNext First-Strand Synthesis Reaction Buffer (five times).
Synthesis of the first-strand and second-strand cDNA was
carried out using a random hexamer primer, M-MuLV Reverse
Transcriptase (RNaseH-), DNA Polymerase I, and RNase H.
The remaining overhangs were converted to blunt ends through
exonuclease/polymerase activities. After the 3′ terminus of the
DNA fragments was adenylated, ligation of the NEBNext adaptor
with a hairpin loop structure was performed to prepare for
hybridization. To select cDNA fragments of 150–200 bp in
length, the library fragments were purified with the AMPure
XP system (Beckman Coulter, Beverly, MA, United States).
Then, 3 µL of USER Enzyme (NEB, United States) was
incubated with size-selected and adaptor-ligated cDNA at
37◦C for 15 min, followed by 5 min at 95◦C before PCR.
Then, PCR was carried out with Phusion High-Fidelity DNA
polymerase, universal PCR primers, and Index (X) Primer.
Finally, the PCR products were purified on the AMPure XP
system, and the library quality was assessed using the Agilent
Bioanalyzer 2100 system.

Clustering and Sequencing (Novogene
Experimental Department)
The clustering of the index-coded samples was carried out on a
cBot Cluster Generation System with the TruSeq SR Cluster Kit
v3-cBot-HS (Illumina). All processes were conducted according
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to the manufacturer’s instructions. The sequencing of the library
was conducted on the basis of an Illumina HiSeq 2000/2500
platform to generate 150/100/50 bp paired/single-end reads.

Bioinformatics Analysis
FastQC and Trimmoatic were used to assess the quality of
the raw sequencing reads and to clean the sequencing adaptor
sequences at both ends of the raw reads. Clean reads were mapped
using STAR to the human genome hg19. Gene expression was
calculated, and the identification of differentially expressed genes
(DEGs) was conducted using Cuffdiff 2 with a q-value < 0.05.
Functional annotation and pathway enrichment analysis with
DAVID were conducted. Polysearch2 and another web server
that supports text mining from Medline and PubMed were
used to search for Angptl4-related or podocyte-related genes.
After the extraction of the related genes, a relevance score
was calculated and converted to a Z-score. Then, the genes
with Z-scores above 1 were selected for subsequent analysis.
IgAN-related genes were searched by literature mining from the
PubMed database.

Measurement of the Concentration of
Angptl4 in Plasma and Urine From
Patients With IgAN
Plasma and urine samples were collected from IgAN patients
and enzyme-linked immunosorbent assay (ELISA) was used
to determine and compare the concentration of Angptl4 in
the different samples. The characteristics of Angptl4 expression
were analyzed and combined with the electron microscopy
observation results and urinary protein levels.

ELISA
The Angptl4 levels in plasma and urine were analyzed using
commercial immunoassay kits (Angiopoietin-Like protein 4
Human ELISA, BioVendor, Human IgG4 Platinum ELISA,
eBioscience) according to the manufacturer’s instructions.

Measurement of Podocyte Injury by
Electron Microscopy
Renal cortical and medullary tissues from IgAN patients and
healthy controls were minced into 1 mm3 pieces and processed
for electron microscopy using standard protocols. Ultrathin
sections (80–90 nm) were prepared for examination and
imaging with an Olympus transmission electron microscope
(Tecnai, Tokyo, Japan).

Statistical Analyses
Statistical analyses were carried out using GraphPad Prism
software (version 8.3.0). All data are presented as the
mean ± SEM. Analysis of the differences in Angptl4 expression
was conducted by one-way ANOVA with Dunnett’s post hoc
test using GraphPad. The one-sample Kolmogorov–Smirnov
test was used to assess for normal distribution of the data.
Relationships between the Angptl4 levels and clinical parameters
were examined using Pearson correlation analysis when
normally distributed; otherwise, the Spearman rank test was

used. All P-values were two-tailed, and significance was
defined as P < 0.05.

RESULTS

Demographic Characteristics of the
IgAN Patients and Healthy Controls
The clinical data of the patients and controls are shown in
Table 1. Clinical parameters, such as serum albumin (g/L),
serum creatinine (µmol/L), 24-hour urine protein excretion
(g/day), and protein-creatinine ratio (g/g), were examined at
the time of renal biopsy. No significant differences in age or
sex were observed among the three groups. The patients in
the IgAN with and without podocyte injury groups presented
with a mean serum creatinine level of 187.22 ± 20.61 and
95.94 ± 5.97 µmol/L, and a mean serum albumin level of
35.20 ± 0.98 and 37.89 ± 1.25 g/L, respectively (P < 0.05)
compared with the healthy controls). The controls had no
proteinuria and presented with a mean serum albumin level of
44.26± 0.26 g/L.

Gene Expression Analysis by RNA-Seq
We used STRING to analyze protein interactions and screened
DEGs that were directly or indirectly related to Angptl4. The
red and blue colors in the heatmap depict higher and lower
gene expression, respectively. The official gene names are given,
the test values of the IgAN patients and the controls are listed.
The fold changes indicate the relative alteration in the IgAN
value compared to the control value, and the log2 value of the
fold change is shown. A positive log2 (fold change) indicated
upregulation in the disease group, and a negative log2 (fold
change) indicated downregulation in the disease group. The
glomerular expression levels of 33 transcripts related to podocytes
and 23 transcripts correlated with Angptl4 (Figures 1A,B).

TABLE 1 | Characteristics of individuals included in the study.

IgAN

IgAN with
podocyte injury

(n = 37)

IgAN without
podocyte

injury (n = 34)

Control
(n = 61)

Age (years) 42.89 ± 1.78 45.44 ± 2.15 45.49 ± 1.29

Sex (male/female) 23/14 20/14 45/16

Serum albumin (g/L) 35.20 ± 0.98* 37.89 ± 1.25* 44.26 ± 0.26

Scr (µmol/L) 187.22 ± 20.61* 95.94 ± 5.97* 72.92 ± 1.30

24 UP (g/day) 3.06 ± 0.40 1.35 ± 0.48

P/C (g/g) 1.23 ± 0.26 1.60 ± 0.35

Oxford evaluation

M1 12 7

E1 2 3

S1 32 20

T1 or T2 11 5

Scr, serum creatinine; 24 UP, 24-hour urine protein excretion; P/C, protein:
creatinine ratio. The data are shown as the mean ± SEM. *P < 0.05
versus the control.
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FIGURE 1 | Heatmaps of differentially expressed genes associated with Angiopoietin-like protein 4 and podocyte injury in IgA nephropathy (IgAN) patients compared
to healthy controls. (A) The glomerular expression levels of 33 differentially expressed genes that were previously reported to be related to podocytes. The red areas
represent genes expressed at high levels and the blue areas represent genes expressed at low levels in IgAN patients compared with healthy controls. The official
gene names and test values of the IgAN patients and the controls are provided. A positive log2 (fold change) indicated upregulation in the disease group, and a
negative log2 (fold change) indicated downregulation in the disease group. (B) The glomerular expression levels of 23 differentially expressed genes correlated with
Angptl4. Refer to panel (A) for the description of the figure.
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Gene Set Enrichment Analysis of
Angptl4
GSEA 3.0 software was used to analyze the Angptl4 gene
enrichment results. The Angptl4 gene participated in seven
enriched sets, which were statistically significantly different
between the IgAN group and the control group. The transcripts
of three genes, FOS, G6PC, and MMP9, were simultaneously
included in the Angptl4-related and podocyte-related genes
(Figure 2A). Two of these genes, namely, FOS and G6PC,
were upregulated in the disease group, whereas MMP9 was
downregulated in the disease group (Figure 2B). STRING
was used to depict the protein-protein interaction network
of Angptl4, FOS, G6PC, and MMP9 with several DEGs
selected from among the Angptl4-related or podocyte-related
genes (Figure 2C).

Angptl4 in Plasma and Urine
Plasma Angptl4 levels were significantly lower in IgAN patients
than in normal controls. The expression of Angptl4 in plasma
was decreased in the IgAN without podocyte injury patients
compared with the normal controls (1.75 ± 0.06 versus
2.12 ± 0.05, ****P < 0.0001). The plasma Angptl4 level in
the IgAN with podocyte injury patients was also significantly
lower than that in the controls (1.59 ± 0.09 versus 2.12 ± 0.05,
****P < 0.0001). There were no significant differences between
the IgAN without podocyte injury and IgAN in podocyte
injury patients (Figure 3A). The Angptl4 expression level in
urine was significantly higher in IgAN patients than in normal
controls. Urine Angptl4 expression was increased in the IgAN
without podocyte injury patients compared with the normal
controls (1.64 ± 0.14 versus 0.36 ± 0.03, ****P < 0.0001).
The urine Angptl4 level in the IgAN with podocyte injury
patients was also significantly higher than that in the controls
(1.93 ± 0.17 versus 0.36 ± 0.03, ****P < 0.0001). Similarly,
no significant difference was observed between the IgAN
without podocyte injury and IgAN in podocyte injury patients
(Figure 3B). In the IgAN patients, there was a significant
correlation between the levels of urine protein and the levels
of plasma Angptl4 or urine Angptl4 (p = 0.022, p = 0.032,
respectively) (Figures 3C,D). Plasma Angptl4 or urine Angptl4
levels were positively correlated with urine protein levels
(r = 0.310, p = 0.022; r = 0.340, p = 0.032, respectively).
There was no significant correlation between the urine protein-
creatinine ratio and plasma Angptl4 or urine Angptl4 levels
(Figures 3E,F).

Relationship of Plasma and Urine
Angptl4 Levels With Podocyte Injury
Among the 37 IgAN patients with podocyte injury, there
were 28 patients with focal fusion of the foot process
(<70%) and 9 patients with diffuse fusion of the foot
process (≥70%). Representative electron microscopy images
of IgAN patients with or without podocyte foot process
effacement are shown in Figures 4A,B. The plasma Angptl4
levels in the focally fused group and the diffusely fused
group were significantly lower than those in the controls

(1.71 ± 0.09 versus 1.99 ± 0.04, *P < 0.05; 1.22 ± 0.17
versus 1.99 ± 0.04, **P < 0.01, respectively). There were no
significant differences between the focally fused group and
the diffusely fused group (Figure 4C). The Angptl4 level
in the urine of the focally fused group was significantly
higher than that in the control group (1.84 ± 0.19 versus
0.82 ± 0.08, ***P < 0.001; 2.19 ± 0.38 versus 0.82 ± 0.08,
*P < 0.05, respectively). Similarly, there were no significant
differences between the focally fused group and the diffusely
fused group (Figure 4D).

DISCUSSION

A total of 20–40% of IgAN patients progress to ESRD by 20 years
after biopsy, which significantly contributes to the population
of patients with ESRD (Wyatt and Julian, 2013). Although
progress has been made in understanding the pathogenesis of
IgAN, predicting exactly which patients will progress to ESRD
or how quickly they will progress remains a challenge. To
identify the trend of the severe progression of patients as early
as possible, to provide individualized and accurate treatment,
and to delay the course of the disease has always been the aim
of our research.

Proteinuria is one of the most important factors for
assessing the risk of disease progression in patients with
IgAN. Podocyte injury plays an important role in proteinuria
during the severe progression of IgAN. Our previous
studies found that Angptl4 affects podocytes and is much
more sensitive and significant than circulating antibodies
against PLA2R, a possible marker of idiopathic MN disease
progression (Chen et al., 2013). Whether Angptl4 is related
to podocyte damage in the progression of IgAN is the
focus of this study.

Our previous studies found that the plasma level of LL-
37, which is one of the ageing markers we identified (Jiang
et al., 2008), is associated with the progression of human
IgAN (Lu et al., 2014). Through bioinformatics analysis, we
searched for aging-related genes that are also related to IgAN
and found that JUN and FOS play an important role in
the severe progression of IgAN, especially in the progression
of fibrosis (Jiang et al., 2016). However, understanding and
reversing the progression to the fibrotic stage early in this process
remains a challenge.

In this study, we found that FOS, MMP9, and G6PC are
hub genes that are related to both Angptl4 and podocytes
through overlapping genes. FOS is an AP-1 transcription
factor. Increased expression of AP-1 activates the RAAS
system (Cao et al., 2013), which subsequently results in
IgAN. MMP-9 is a member of the matrix metalloproteinases
(MMPs) and an important regulator of the extracellular matrix.
MMP-9 plays a role in the decomposition of the mesangial
matrix and mediates the recovery from pathogenic processes
(Sekiuchi et al., 2012). G6PC (glucose-6-phosphatase catalytic
subunit) is one of the three glucose-6-phosphatase catalytic
subunit-encoding genes in humans. Mutations in this gene
result in glycogen storage disease type I (GSD1), which is
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FIGURE 2 | Gene set enrichment analysis of Angiopoietin-like protein 4. (A) The Angptl4 gene participated in 7 enriched sets that were statistically significantly
different between the IgA nephropathy (IgAN) group and the control group. (B) The transcripts of three genes, namely, FOS, G6PC, and MMP9, were simultaneously
included in the Angptl4-related and podocyte-related genes. Two of these genes, namely, FOS and G6PC, were upregulated in the disease group, whereas MMP9
was downregulated in the disease group. (C) The depiction of the network of Angptl4, FOS, G6PC, and MMP9 with several differentially expressed genes selected
from among the Angptl4-related or podocyte-related genes by STRING.
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FIGURE 3 | Angiopoietin-like protein 4 levels in plasma and urine. (A,B) The expression of Angptl4 in plasma and urine was detected in IgA nephropathy (IgAN)
without podocyte injury patients (n = 34), IgAN with podocyte injury patients (n = 37), and normal controls (n = 61) by enzyme-linked immunosorbent assay. (C,D)
The relationship between urine protein (g/L) and Angptl4 expression in plasma and urine was analyzed in IgAN patients (n = 61). (E,F) The relationship between the
urine protein-creatinine ratio (g/g) and Angptl4 expression in plasma and urine was analyzed in IgAN patients (n = 61). The data are expressed as the mean ± SEM.
***P < 0.001 compared with the normal controls.

characterized by an ectopic accumulation of lipids in the
liver and kidneys. Laure et al. showed that in K. G6pc−/−

mice, the renin-angiotensin system was activated, which caused
increased Tgf-β1 expression, thereby activating epithelial-
mesenchymal transition and subsequent fibrosis development
(Clar et al., 2014).

To verify the potential roles of Angptl4 in IgAN, correlation
analyses between Angptl4 levels and clinical features were

performed. We found that the plasma and urine Angptl4 levels
were strongly correlated with the degree of IgAN podocyte
damage, which implies that Angptl4 may be a potential factor
for evaluating IgAN progression in the future. Clement et al.
(2011) showed that Angptl4 in urine is derived from a low-
sialylated, high-pI, pro-proteinuric form that is secreted by
podocytes, and its increase causes massive proteinuria. In this
study, we also found that Angptl4 in urine is positively correlated
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FIGURE 4 | Analysis of podocyte foot process effacement in the two patient groups and the control group. (A) Electron microscopy image of no podocyte foot
process effacement in the IgA nephropathy (IgAN) patients without podocyte group. (B) Electron microscopy image of podocyte foot process effacement in the IgAN
patients with podocyte group (scale bar = 1 or 2 µm). (C,D) The expression of plasma and urinary Angptl4 in IgAN patients with podocyte foot process focal
effacement (n = 28), diffuse effacement (n = 9), and controls (healthy and IgAN patients without podocyte injury) (n = 95). The data are expressed as the
mean ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001 compared with the controls.

with urine protein content. In contrast, in our experiment,
Angptl4 in plasma was positively correlated with urine protein
content, and (Clement et al., 2014) found that Angptl4 in plasma
reduced proteinuria by binding to αvβ5 integrin. However,
protein-creatinine ratio is not related to Angptl4 expression in
plasma or urine.

In conclusion, the present study aimed to explore the possible
functions of Angptl4 in IgAN progression. Three hub genes
were screened via multiple-microarray analysis, and these genes
may become potential targets for the diagnosis and treatment of
IgAN in the future. However, this study has some limitations,
as Angptl4 has an effect on podocyte damage in many kidney
diseases, it is not specific to IgAN, and the size of biopsies
of patients with IgAN used for expression was small. The
underlying mechanism of podocyte damage is unclear. We
further need to explore whether there is a connection between
Angptl4 and the mechanism of telomere damage in aging,
and we must conduct more thorough research regarding the
molecular mechanism.
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Herbal Medicine “Shulifenxiao”
Formula for Nephrotic Syndrome of
Refractory Idiopathic Membranous
Nephropathy
Hailan Cui1, Frank Qiang Fu2,3†, Baoli Liu4, Wei Jing Liu2,5* and Yu Ning Liu2*

1Beijing Changping Hospital of Traditional Chinese Medicine, Beijing, China, 2Renal Research Institution of Beijing University of
Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing and Dongzhimen Hospital,
Beijing University of Chinese Medicine, Beijing, China, 3School of Chinese Materia Medica, Beijing University of ChineseMedicine,
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Background: Treatment for adult patients with refractory idiopathic membranous
nephropathy (RIMN) by conventional immunosuppressive regimens is not satisfactory.
This study aims to evaluate the effectiveness of Chinese herbal medicine, Shulifenxiao
formula, as a promising regimen.

Methods: A total of 31 RIMN patients resistant to corticosteroid or immunosuppressive
agents were retrospectively analyzed. Shulifenxiao treatment lasted a minimum of
12°months in all patients and extended to 24°months in 11 patients. The primary
outcomes [the complete remission (CR) and partial remission (PR)] and secondary
outcomes (the serum creatinine and estimated glomerular filtration rate (eGFR) levels)
were measured at 6, 12, 18, and 24°months.

Results: The data provided an average follow-up of 21 ± 9.16°months from baseline.
The remission was attained in 25/31 patients (80.7%: CR 29.0% and PR 51.6%) at
12°months and in 10/11 patients (90.9%: CR 54.6% and PR 36.4%) at 24°months,
respectively. Proteinuria reduced from 6.02 g/d at baseline to 0.98 g/d at 12°months
(p < 0.001) and to 0.27 g/d at 24°months (p � 0.003); serum albumin increased from
28 g/L to 37.2 g/L at 12°months (p < 0.001) and to 41.3 g/L at 24°months (p � 0.003);
eGFR improved from 100.25 ml/min/1.73 m2 to 118.39 ml/min/1.73 m2 at 6°months
(p < 0.001) and finally to 111.62 ml/min/1.73 m2at 24°months (p � 0.008). Only two
patients developed subsequent relapse.
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Conclusion: Shulifenxiao formula as a clinical cocktail therapy serves as an alternative
therapeutic option for steroid and immunosuppressant-resistant RIMN patients, with a
favourable safety profile, though further studies are warranted.

Clinical Trial registration: http://www.chictr.org.cn, Chinese Clinical Trials Registry
[ChiCTR1800019351].

Keywords: Chinese herbal medicine, nephrotic syndrome, refractory membranous nephropathy, retrospective
analysis, shulifenxiao formula

INTRODUTION

Membranous nephropathy (MN) is one of the most common causes
of nephrotic syndrome in adults. Approximately 75% of MN cases
are idiopathic (Glassock, 2010). Over the past few years, most MN
patients have received glucocorticoid in combination with an
alkylating agent, or received calcineurin inhibitor, according to the
2012 guidelines of kidney disease improving global outcomes
(KDIGO). These regimens significantly improve the clinical
remission rate and renal survival rate of idiopathic membranous
nephropathy (IMN). Nevertheless, nearly 30% of patients fail to
respond to the conventional immunosuppressive therapies and
eventually develop end-stage renal disease (ESRD) or

complications related to nephrotic syndrome (Du Buf-Vereijken
et al., 2005; Couser, 2017). Therefore, refractory idiopathic MN
(RIMN) is proposed to refer to MN cases resistant to steroids and
general immunosuppressive agents (Iida et al., 2000; Chen et al., 2013;
Sengupta et al., 2013). Treatment of RIMN is a significant challenge
because traditional immunosuppressive agents appear to be
unsuccessful and show obvious side effects. Alternative therapeutic
agents to treat RIMN are an urgent need.

Based on the traditional theories of Traditional Chinese Medicine
(TCM), TCM treatment has been done on humans for thousands of
years with using the formula of natural herbal medicines. Up to now,
TCM has accumulated rich experience in treating various kidney
diseases and holds great potential for providing effective treatments for
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MN. Recently, existing preclinical and clinical evidence has supported
the effectiveness of TCM in treating IMN. TCM treatment reduces
proteinuria, improves serum albumin, and thereby prevents the
progress of IMN and avoids side effects caused by long-term
applications of immunosuppressive agents (Chen et al., 2013;
Zhang et al., 2014; Xiao et al., 2018). Combination of TCM and
Western medicine has proven to improve the outcome of MN.

Despite this, very few high-quality studies testing the
efficacy of TCM in adult RIMN patients are available. This
may be due to the difficulty in formulating a control group. So
many of the current studies are small single arm studies or case
reports, with the observation periods ranging from half a year
to one year (Chen, 2016; Zhang et al., 2017). Therefore, for
RIMN patients, the possible benefits of TCM remain
undetermined.

Medicinal “Shulifenxiao” is an herbal treatment for qi-
deficiency, a damp-heat syndrome of RIMN. It has been used
for nearly 30 years as an empirical treatment, first devised by
Professor Liu Yuning. We have found “Shulifenxiao” formula has
a significant clinical effect on the treatment of MN, and so in
2014, we started the clinical data collect of MN patients receiving
“Shulifenxiao” treatment to establish a database for MN analysis.
Here, we conducted a retrospective study aimed to evaluate the
efficacy, recurrence, and safety of the TCM Shulifenxiao formula
in patients with RIMN who are resistant to conventional
immunosuppressive regimens.

MATERIALS AND METHODS

Patients
This was a retrospective case-series study. The outpatient records
of adult patients with histologically proven membranous
nephropathy in Dongzhimen Hospital affiliated to Beijing
University of Chinese Medicine (Beijing, China) from January
2014 to June 2017 were screened (n � 157) (Figure 1). Only
patients with the following criteria were included: 1)
Histologically proven idiopathic membranous nephropathy; 2)
Patients who did not respond to corticosteroid and
immunosuppressive agents and remained in nephrotic
syndrome (proteinuria≥3.5 g/d, serum albumin<30 g/L) even
after 6°months of regular immunosuppressive therapy, such as
prednisone (PRED), cyclophosphamide (CTX), cyclosporine A
(CsA), tacrolimus (TAC), and mycophenolate mofetil (MMF); 3)
eGFR > 30 ml/min/1.73 m2. 4) The follow-up period >1°year with
an interval between visits of <3°months or >4°visit times per year.

31 patients were found to be eligible for the retrospective analysis.

Intervention
All eligible patients were treated with a consecutive Shulifenxiao
formula (a formula of TCM), which is made of seven Chinese herbs.
Medicines was provided by the pharmacy department of
Dongzhimen Hospital, and was orally administered 30min after
breakfast and supper (200°ml, bid). All patients were treated with
angiotensin-converting enzyme inhibitors (ACEI) or angiotensin II
receptor antagonist (ARB). If the patient’s blood pressure remained
>130/80mmhg, appropriate calcium channel blockers were added to

stabilize blood pressure. Treatment lasted for a minimum of
12°months in all patients. Clinical and laboratory data at
6°months prior to Shulifenxiao treatment, baseline, 6th, 12th, 18th,
and 24th°months after Shulifenxiao treatment were analyzed. All
adverse events recorded during follow-up were also analyzed.

Outcome Measures
The primary outcomes were attainment of complete and partial
remission and changes in proteinuria and serum albumin. Complete
remission (CR) was defined as a reduction of proteinuria to <0.3 g/d
and serum albumin >35 g/L; Partial remission (PR) was defined as
level of proteinuria decline to <3.5 g/day but minimum >0.3 g/day
and at least 50% reduction from baseline with a serum albumin
concentration of at least 30 g/L; Nonremission (NR) was defined as a
reduction of proteinuria <50% or proteinuria >3.5 g/d. Relapse was
defined as an increased proteinuria >3.5 g/d in consecutive analyses
in patients with CR or PR. Any relapse was considered as an
endpoint of the study. If no relapse was observed prior to the
latest visit, June 30, 2018, was designated as the endpoint. Secondary
outcomes included changes in serum creatinine and eGFR levels at
each time point.

Statistical Analysis
Statistical analysis was performed with SPSS 20.0 (version 20.0;
SPSS, Chicago, IL, United States). Values are given as mean ±
standard deviation for normal distribution variables, and median
with interquartile range for abnormal distribution continuous
variables. The t-test was used for comparisons of the means of
two normal distributed quantitative variables. One-way analysis of
variance (ANOVA) was used for comparisons of the means of
multiple normal distributed quantitative variables. For anomaly
distributed qualitative variables, a paired nonparametric test was
used. A p value < 0.05 was considered to be statistically significant.

FIGURE 1 | Flow chart of the patient selection process.
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RESULTS

General Information
Characteristics of the 31 patients at baseline are listed in
Table 1. All patients were treated with Shulifenxiao formula
for a minimum of 12°months. Of these, 17 patients had
complete clinical and laboratory data for 18°months of
treatment, and 11 patients had complete data of 24°months
of treatment. The average follow-up time was 21 ± 9.16°months.
Other diseases associated with MN include 11 patients with
hypertension, 1 with diabetes, 6 with hyperlipidemia, 1 with
hyperuricemia, and 2 with coronary heart disease. The
previous immunosuppressive agents used in the 31 patients
were shown in Table 2.

Primary Outcomes
The partial and complete remission rates increased gradually with
the extension of treatment time (Figure 2A). The remission rate
was 45.2% (14/31; CR 6.5% and PR 38.7%) at 6°months, 80.7% at
12°months (25/31; CR 29.0% and PR 51.6%), and 90.9% at
24°months (10/11; CR 54.6% and PR 36.4%). The average
length from treatment initiation to PR was 7.32 ±
3.61°months, while to CR was 12.38 ± 4.73°months. Notably,
two (6.45%) patients presented relapse within 24°months. One
patient who achieved CR at 6°months relapsed at 12°months (due
to a urinary tract infection). Another PR patient relapsed at
24°months (due to an upper respiratory infection), which
indicated the end of the follow-up.

The changes in proteinuria and serum albumin levels in
RIMN patients are illustrated in Figures 2B,C. The proteinuria

levels decreased drastically from 6.02 (5.13–8.80)°g/d at
baseline to 0.98 (0.27–2.41)°g/d at 12°months (p < 0.001)
and further to 0.27 (0.1–1.34)°g/d at 24°months (p � 0.003).
Meanwhile, serum albumin gradually increased from 28
(21.8–28.9)°g/L at baseline to 37.2 (35.2–43.7)°g/L at
12°months (p < 0.001) and to 41.3 (35.8–46.1)°g/L at
24°months (p � 0.003). Levels of both test indices showed a
significant difference between baseline and different post-
treatment time points.

It is well known that MN has a high spontaneous remission
rate (Saito et al., 2017), and it can be concluded that some patients
achieve spontaneous remission. In order to exclude such potential
spontaneous remission cases, we reviewed the proteinuria and

TABLE 2 | The previous immunosuppressive agents used in patients.

Previous treatment regimen Samples Percentage (%)

PRED, CTX 6 19.35
CsA 3 9.68
CsA, PRED 6 19.35
CsA, TAC 1 3.23
CsA, PRED, TAC 1 3.23
TAC 4 12.90
PRED, TAC 3 9.68
PRED, CTX, CsA 3 9.68
PRED, CTX, TAC 1 3.23
PRED, TAC, MMF 2 6.45
PRED, CsA, MMF 1 3.23

CsA, cyclosporine A; CTX, cyclophosphamide; MMF, mycophenolate mofetil; PRED,
prednisone; TAC, tacrolimus.

TABLE 1 | Characteristics of patients at baseline.

Characteristics Baseline (n = 31)

Gender [n (male/female)] 23/8
Age (years) 44 (28–53)
Duration of disease (months) 12 (8–36)
Systolic BP (mmHg) 128.77 ± 11.88
Diastolic BP (mmHg) 77.9 ± 9.1
Histology grading of membranous nephropathy (n [%]) stage I 13 (41.9)
Stage II 10 (32.3)
Stage III 2 (6.5)
Non-typical membranous nephropathy 6 (19.3)
Proteinuria (g/d) 6.02 (5.13–8.8)

Proteinuria Group [n (%)]

4–8 g/d 22 (71)
>8 g/d 9 (29)
Serum Albumin (g/L) 28 (21.8–28.9)
Serum Creatinine (umol/L) 78 (61.9–97.2)
eGFR (mL/min/1.73 m2) 100.24 (72.73–124.7)

eGFR Group [n (%)]

>90 ml/min/1.73 m2 18 (58.0)
60–90 ml/min/1.73 m2 7 (22.6)
<60 ml/min/1.73 m2 6 (19.4)
ACEI [n (%)] 20 (64.5)
ARB [n (%)] 11 (35.5)

Results are presented as mean ± standard deviation, median with inter-quartile range, or number of patients (percentage).

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 6754064

Cui et al. Herbal Medicine “Shulifenxiao” Formula for Nephrotic Syndrome

30

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


serum albumin levels 6°months prior to the TCM treatment. Data
showed that there were no significant changes in these levels in
the prior 6°months (p > 0.05).

Secondary Outcomes
Another important finding of this study was the reduction in
serum creatinine. Although the level of serum creatinine
increased from 6°months prior to TCM treatment (p < 0.001),
it decreased remarkably from 78 (61.997.2)°g/L at baseline to 58
(45.23–68)°g/L at 6°months (p < 0.001) and continued to fluctuate
smoothly until reaching 63 (47–73)°g/L at 24°months (p � 0.003)
(Figure 2D). Simulaneously, eGFR significantly increased from

100.25 (72.37–124.70) at baseline to 118.39 (104.09–133.86)°ml/
min/1.73 m2 at 6°months (p < 0.001) and finally to 111.62
(99.01–137.83)°ml/min/1.73 m2 at 24°months (p � 0.008)
(Figure 2E).

Next, we observed changes in eGFR values. To the best of our
knowledge, according to the KDOQI clinical guidelines, chronic
kidney disease (CKD) can be classified into different stages (Levey
2003): Stage 1: kidney damage with normal or increased GFR
(≥90 ml/min/1.73 m)2; Stage 2: kidney damage with mild
decreased GFR (60–89 ml/min/1.73 m)2; Stage 3: moderately
decreased GFR (30–59 ml/min/1.73 m)2; Stage 4: severely
decreased GFR (15–29 ml/min/1.73 m)2; Stage 5: kidney failure

FIGURE 2 | (A). Remission and relapse rates of RIMN paitients with follow-up time (in months after starting Shulifenxiao formula therapy). (B,C) Changes of
proteinuria and serum albumin levels (median with inter-quartile ranges) with follow-up time in RIMN patients (−6°months means 6°months before Shulifenxiao therapy).
The values of each time point were compared to the baseline (0°months), and the p values were evaluated by paired non-parametric test. *p values < 0.05, **p values <
0.01, ***p values < 0.001. (D,E) The changes of serum creatinine and eGFR levels (median with interquartile ranges) with follow-up time in RIMN patients. (F). The
changes of eGFR levels (mean ± standard deviation) in RIMN patients of three stages with follow-up time (−6°months means 6°months before Shulifenxiao therapy). The
values of each time point were compared to one’s own baseline. The p values of (D,E) were evaluated by a paired non-parametric test, and the p values of (F) were
evaluated by one-way ANOVA test.*p values < 0.05, **p values < 0.01, ***p values < 0.001.
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with GFR <15 ml/min/1.73 m2 or dialysis required. As shown in
Figure 2F, although there was no significant difference from
baseline (p > 0.05), eGFR values in stage 1 were still on the rose
after treatment. Interestingly, the eGFR values of the stage 2
group were statistically enhanced from 79.14 ± 8.63 ml/min/
1.73 m2 at baseline to 110.16 ± 11.14 ml/min/1.73 m2 at
6°months, and reached 106.02 ± 7.22 ml/min/1.73 m2 at
12°months, and a significant difference was observed
compared to baseline (p < 0.001). A similar trend was
observed in the group of CKD stage 3: the eGFR values
increased from 48.58 ± 7.34 ml/min/1.73 m2 at baseline to
67.85 ± 25.27 ml/min/1.73 m2 at 6°months (p � 0.167), and to
76.39 ± 27.92 ml/min/1.73 m2 at 12 months (p � 0.04). Since
there were fewer than 5 cases in stages 2 and 3 during the 18th and
24th°month, we did not compare them. From the above results, it
can be seen that Shulifenxiao formula treatment can improve the
glomerular filtration rate, especially in patients with low eGFR.

Safety
Over the follow-up time of 31 patients, liver function, routine
blood tests, and blood pressure in all the patients indicated no
significant changes from baseline after the intervention (Table 3).
No severe adverse events were reported. Only one patient
developed nausea, and another patient developed vomiting,
but both were transient and the symptoms resolved after 2 weeks.

DISCUSSION

The treatment for adult patients with RIMN who are resistant to
standard immunosuppressive therapies remains a therapeutic
challenge. The efficacy and safety profile of conventional
treatments like steroids, CTX, CsA, TAC is not always
satisfactory as revealed by recent studies. W. Chen et al. (Chen
et al., 2013) reported a benefit of combining TACwith prednisone
in treating 14 adults Chinese RIMN patients, that remission was
attained in 11/14 patients (78.6%: CR 35.7% and PR 42.9%) at the
end of follow-up. T. Saito et al. (Saito et al., 2017) treated 19
patients with Mizoribine (MZR) in combination with
prednisolone, and CR was attained in only 10/19 (52.6%)
patients after more than 2°years of treatment. F.B. Cortazar
et al. (Cortazar et al., 2017) reported a higher remission rate
in a study combining low-dose rituximab with oral

cyclophosphamide, and an accelerated prednisone taper in
treating 15 consecutive IMN patients (including 8 RIMN
patients), in which 100% of patients achieved PR and 93% of
patients achieved CR at a median time of 2 and 13°months
respectively. Regardless of their fair or good efficacy, these
therapies have serious adverse events, sometimes with fatal
consequences. Therefore, in China, many RIMN patients turn
to traditional Chinese medicine (TCM) for alternative therapy. In
this study, we retrospectively reviewed the efficacy and safety of
Shulifenxiao formula in 31 adult RIMN patients who did not
response to 6°months conventional immunosuppressant
therapies.

In this study, we excluded cases with spontaneous remission
potentials by confirming no changes in the proteinuria, serum
albumin levels of all patients from 6°months prior TCM
treatment to the baseline. After Shulifenxiao treatment, a
significant decrease in proteinuria from 6.02 g/d at baseline to
0.27 g/d at 24°months and an upward trend in serum albumin
level was achieved. Previous studies have suggested that patients
with proteinuria of 0.3–1.0 g/d showed a favourable prognosis
almost equal to CR (Shiiki et al., 2004; Saito et al., 2014), and
patients with PR had a similar average GFR decline as those with
CR (Troyanov et al., 2004). From this viewpoint, we can consider
that most participants of this study achieved remission within
2°years of treatment, which is cross verified with the results in the
remission rate. Obviously, Shulifenxiao formula has shown a
promising effect in inducing remission in the refractory patients
and relatively low relapse rate.

Persistence of nephrotic syndrome in MN portends a poor
prognosis, with a considerably high risk of a GFR decline rate of
10 ml/min/1.73 m2, and a 29% ESRD risk rate (Troyanov et al.,
2004), therefore long-term immunosuppressive therapies are
used. However, these therapies do not always induce remission
and may cause significant adverse effects. The calcineurin
inhibitor (CsA and TAC) directly affects renal function and
cause nephrotoxicity and hypertension. Therefore, under these
treatments, improvement of proteinuria and protection of renal
function seems to be a trade-off process. Notably, Shulifenxiao
formula appeared to show significant benefits in increasing eGFR
levels, especially in CKD stage 2: The eGFR values increased from
79.14 to 110.16 ml/min/1.73 m2 at 6°months (p < 0.001). These
findings suggest that Shulifenxiao formula can improve renal
function by significantly increasing eGFR, which is important for
long-term prognosis.

In the present study, no severe adverse events were observed.
Liver function, routine blood tests and blood pressure in all
patients indicated no significant changes between baseline and
post-treatment time points. Only two patients developed nausea
or vomiting, both of which were mild and easily controlled. This
is clearly an exciting outcome for RIMN patients who have to take
long-term immunosuppressants, most of which are associated
with serious adverse events. Compared to these conventional
drugs, Shulifenxiao formula seems to be a safe and beneficial
solution for long-term use.

The mechanism of action for herbal medicines have been
studied, and their effects are mainly related to anti-
inflammation, antioxidation, antifibrosis, immune system

TABLE 3 | Side effects of patients at baseline and the last follow-up of the study.

Characteristics Baseline Last follow-up p

ALT (U/L) 19.11 ± 8.20 18.47 ± 6.21 0.536
AST (U/L) 18.95 ± 8.75 18.04 ± 5.36 0.603
Total bilirubin (umol/L) 8.68 ± 2.92 8.87 ± 3.29 0.799
White blood cell (×109/L) 7.48 ± 2.45 7.26 ± 1.29 0.608
Hemoglobin (g/L) 132.87 ± 15.22 133.61 ± 12.83 0.574
Platelet count (×109/L) 243.39 ± 64.32 243.45 ± 55.74 0.989
SBP (mm Hg) 128.77 ± 11.88 127.13 ± 8.90 0.17
DBP (mm Hg) 77.90 ± 9.10 76.94 ± 7.66 0.22

ALT, alanine aminotransferase; AST, aspartate transaminase; DBP; diastolic blood
pressure; SBP, systolic blood pressure.
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TABLE 4 | Medicinal ingredients of Shulifenxiao formula.

Crude
drug
name

Part
used

(g) Main
chemicals

Chemical structure Pharmacological
activity

Clinical impacts
to this kidney disease

Radix
Astragali

Root 60 Saponin To improve immunity Improve immunity,
protect vascular
endothelium, inhibit
mesangial cell
multiplication,
encourage the
metabolism of body
liquid, improve
hemorheological
targets, protect
podocytes, and reduce
renal interstitial fibrosis
and glomerular
sclerosis

Fructus
forsythiae

Fruit 15 Forsythin Antibacterial anti-
inflammatory

It can effectively block
the TLR4 signaling
pathway and further by
blocking the expression
of inflammatory factors
induced by
lipopolysaccharide
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TABLE 4 | (Continued) Medicinal ingredients of Shulifenxiao formula.

Crude
drug
name

Part
used

(g) Main
chemicals

Chemical structure Pharmacological
activity

Clinical impacts
to this kidney disease

Bitter
Apricot

Seed 12 Amygdalin Expectorant and
anti-inflammatory

To increase the activity
of type I collagenase in
renal fibroblast cells in
order to reduce the
expression of type I
collagen protein, that
would further inhibit the
proliferation of human
renal fibroblast cells or
would promote renal
fibroblast apoptosis

Heartleaf
Houttuynia

Whole 30 Houttuyfonate Antibacterial anti-
inflammatory

Effective antibacterial,
antiviral, enhance the
body’s immunity,
diuresis (Good for
peeing), and lower
blood pressure

Magnolia
Officinalis

Bark 15 Smilax
saponins

To improve immunity
and anti-
inflammatory

It has a muscle
relaxation effect; it
lowers blood pressure,
anti-pathogenic
microorganisms, anti-
tumor; also, anti-
platelet
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TABLE 4 | (Continued) Medicinal ingredients of Shulifenxiao formula.

Crude
drug
name

Part
used

(g) Main
chemicals

Chemical structure Pharmacological
activity

Clinical impacts
to this kidney disease

Rhizoma
smilacis
glabrae

Root 30 Magnolol Antibacterial Anti-inflammatory,
analgesic, antibacterial,
antioxidant

Leech Whole 9 Hirudin Anticoagulant Anticoagulation, anti-
thrombosis, to reduce
the deposition of fibrin-
related antigen in the
glomerulus in order to
reduce the proliferation
of mesangial cells and
glomerular sclerosis
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regulation, anticoagulation, and improvement of metabolic
disturbance (Zhang et al., 2014; Ren et al., 2017;
Wojcikowski et al., 2006). There are 7 Chinese herbal
medicines in the Shulifenxiao formula (Table 4). One such
component is Saponin in Astragalus which can improve
immunity, protect vascular endothelium, inhibit mesangial
cell multiplication, encourage the metabolism of body
liquid, improve hemorheological targets, protect podocytes,
and reduce renal interstitial fibrosis and glomerular sclerosis
(Wang et al., 2017). Forsythin in Forsythia can effectively
block the TLR4 signaling pathway and further by blocking
the expression of inflammatory factors induced by
lipopolysaccharide (Toba et al., 1991). Amygdalin in Bitter
Apricot can increase the activity of type I collagenase in renal
fibroblast cells in order to reduce the expression of type I
collagen protein, that would further inhibit the proliferation of
human renal fibroblast cells or would promote renal fibroblast
apoptosis (Zhao and el al., 2020). Houttuyfonate in
Houttuynia cordata has effective antibacterial, antiviral,
enhance the body’s immunity, diuresis (Good for peeing),
and lower blood pressure (Wang et al., 2010). Smilax
saponins in Magnolia Officinalis has the Anti-inflammatory,
analgesic, antibacterial, antioxidant (Wang, 2014). Hirudin in
Leech has the anticoagulation, anti-thrombosis, to reduce the
deposition of fibrin-related antigen in the glomerulus in order
to reduce the proliferation of mesangial cells and glomerular
sclerosis (Ren et al., 2019) (Table 4). Cocktail therapy contains
a combination of different medicines, taken by HIV/AIDS
patients to improve health. Chinese officials currently
administer cocktail therapy for treatment of HIV and
COVID-19 (Schimt et al., 1996). The superior
antiproteinuric and renoprotective effects of Shulifenxiao
formula on RIMN may be related to multifactorial effects.
These studies suggest that the Shulifenxiao formula as clinical
cocktail therapy has the potential to reduce proteinuria and
attenuate kidney injury through these mechanisms (Figure 3).

Our study has the advantages and innovation as this is the first
report or information about “Herbal Medicine “Shulifenxiao”

therapy for Nephrotic Syndrome of Refractory Idiopathic
Membranous Nephropathy” in the world. Most of the
previous clinical studies of TCM were the research of IMN
and they compared the differences of the efficacy and safety
between TCM and traditional immunosuppressant. There
were few studies of RIMN. Our study focusses on RIMN, and
we strictly selected the patients with nephrotic syndrome after
6 months of treatment with a standardized immunosuppressant
regimen.

The major limitation of this study is that it is a retrospective
single-centre study, with a limited number of patients, and
lacking a parallel control group. As a matter of fact, In China,
before most MN patients came to our hospital for the herbal
medicine therapy, patients suffering from MN have previously
received conventional treatment such as immunosuppressant
or hormone therapy. Some patients cannot sustain the side
effects of immunologic therapy or ineffective treatment
options, and so they prefer to accept to the herbal medicine
treatment. Based on real-world conditions and patients’
preference for herbal treatment, all patients were treated
with traditional herbal medicine, with no patients treated
with immunosuppressant or hormones therapy only. This
made it difficult to formulate a control group. Therefore,
the statistical results must be interpreted with caution in
this setting. Meanwhile, randomized controlled trials with
long-term follow-up are needed in the future to establish
Shulifenxiao formula as an evidence-based treatment option
for RIMN patients.

CONCLUSION

In this study, patients with refractory membranous nephropathy
were treated with Shulifenxiao cocktail therapy. After treatment,
it was observed that patient urine protein content decreased,
plasma albumin levels increased, clinical remission rate was
significantly increased, and patient’s renal function was
improved.

FIGURE 3 | Shulifenxiao formula as clinical cocktail therapy has the potential to reduce proteinuria and attenuate kidney injury through these mechanisms.
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Shulifenxiao formula as clinical cocktail therapy serves as an
alternative therapeutic option for steroid and general
immunosuppressant-resistant RIMN patients, with a
favourable safety profile, though studies with larger sample
sizes and longer follow-ups are warranted. When seeking new
RIMN treatment, we believe herbal medicine therapy should be
considered.
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1Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 
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The glomerulus is a compact cluster of capillaries responsible for blood filtration and 
initiating urine production in the renal nephrons. A trilaminar structure in the capillary 
wall forms the glomerular filtration barrier (GFB), composed of glycocalyx-enriched 
and fenestrated endothelial cells adhering to the glomerular basement membrane 
and specialized visceral epithelial cells, podocytes, forming the outermost layer with 
a molecular slit diaphragm between their interdigitating foot processes. The unique 
dynamic and selective nature of blood filtration to produce urine requires the 
functionality of each of the GFB components, and hence, mimicking the glomerular 
filter in vitro has been challenging, though critical for various research applications 
and drug screening. Research efforts in the past few years have transformed our 
understanding of the structure and multifaceted roles of the cells and their intricate 
crosstalk in development and disease pathogenesis. In this review, we present a 
new wave of technologies that include glomerulus-on-a-chip, three-dimensional 
microfluidic models, and organoids all promising to improve our understanding of 
glomerular biology and to enable the development of GFB-targeted therapies. Here, 
we also outline the challenges and the opportunities of these emerging biomimetic 
systems that aim to recapitulate the complex glomerular filter, and the evolving 
perspectives on the sophisticated repertoire of cellular signaling that comprise the 
glomerular milieu.

Keywords: glomerular filtration barrier, crosstalk, in vitro, podocyte, glomerular endothelial cell, 3D model

“A model is a lie that helps you see the truth” – Dr. Howard Skipper

INTRODUCTION

The glomerular filtration barrier (GFB) is a highly specialized interface responsible for 
blood filtration that is charge and size selective. While its functionality and integrity are 
maintained by a constant interaction between glomerular endothelial cells (GECs), the 
glomerular basement membrane (GBM), and podocytes (Rennke et  al., 1975; Rennke and 
Venkatachalam, 1979), they are also influenced by the milieu and dynamics of the renal 
blood flow. In glomerular diseases, this barrier loses functional integrity, allowing the passage 
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of macromolecules and cells, and results in morphological 
changes, increasing the risk of long-term kidney damage 
that ultimately leads to kidney failure (USRDS, 2020). This 
is a growing worldwide health problem that accounts for a 
substantial economic burden (Honeycutt et al., 2013). Although 
the etiologies differ among glomerular diseases, damage to 
the GFB often has the same clinical manifestations, proteinuria 
or hematuria, and impaired glomerular filtration rate (GFR).

The interconnectivity and structural complexity of the GFB 
have favored the use of experimental in vivo models, where 
these traits are preserved. Using rodent models is regarded as 
the gold standard in GFB research. Mice have been used 
extensively to study the GFB, given the advantage that the 
complexity of the GFB microenvironment can be  fully 
recapitulated, that there are several available genetically defined 
strains and the relative ease of single gene targeting (Becker 
and Hewitson, 2013). Also, transgenic lines with fluorescent 
reporters in different glomerular cell types provide visual readout 
and have been useful for determining the origins and fate of 
glomerular cells in vivo (Hackl et al., 2013). There are however 
significant challenges with mimicking human disease in animals, 
as many models do not completely recapitulate human disease 
manifestations and instead allow only for studies of certain 
disease aspects (Becker and Hewitson, 2013). However, the 
use of animal models is of particular importance for 
pharmacodynamics and pharmacokinetics testing, where the 
effects of pharmaceutical interventions can be  examined at 
the systemic level to determine drug safety and efficacy before 
entering human trials.

The use of transgenic zebrafish strains is growing as a 
vertebrate model for GFB research (Zhou and Hildebrandt, 
2012; Hansen et  al., 2020) and has proven to be  a useful 
tool to investigate glomerular disease development and the 
effects of drugs on GFB (Schiffer et  al., 2015; Müller-Deile 
et  al., 2019). Although studies in zebrafish are more time- 
and cost-efficient compared with rodent models, there are 
some inherent caveats. It can for instance be  difficult to 
detect proteinuria or the clearance of specific markers of 
interest in the urine due to the surrounding water volume. 
Also, zebrafish have numerous duplicate genes (Woods et al., 
2000), which complicates the generation of knockout strains, 
and they also have the ability to regenerate nephrons de novo 
after injury. Other limitations include the need for 
microinjections to the dorsal aorta and cardinal vein for 
certain drugs, which limits throughput. Altogether, animal 
work can be  expensive, has limited throughput, and poses 
challenges for studying intricate crosstalk between the cells 
in the glomerulus. Therefore, there is a need for 
microphysiological systems that can recapitulate the form 
and function of the GFB and offer a controlled environment 
for studies of isolated pathological events. Current model 
systems range from simple to physiologically complex and 
offer opportunities for examining specific mechanisms 
involved in the maintenance as well as damage to the GFB 
(Table  1). Here, we  review and discuss some of the current 
and future experimental in vitro model systems for studying 
the GFB.

THE FUNCTIONAL BARRIER

The glomerulus is the filtering part of the nephron (Figure  1A) 
and consists of three different cell types: podocytes (visceral epithelial 
cells), GECs, and mesangial cells. The filtrate from the glomerulus 
enters the Bowman’s capsule as pre-urine before reabsorption and 
secretion in the tubular system. Glomerular cells are highly specialized 
and interdependent, with fenestrated GECs covering the luminal 
surface of glomerular capillaries, in direct contact with the blood. 
Podocytes tightly wrap around the glomerular capillary vessels, 
with interdigitating foot processes bridged by a slit diaphragm 
(Figure  1B). GECs and podocytes share a common extracellular 
matrix (ECM), the glomerular basement membrane (GBM), and 
together, they form the GFB (Figure  1C). Between the capillaries 
are contractile mesangial cells surrounded by their ECM, providing 
structural support to the glomerular tuft (Brenner et  al., 1978).

The GFB function relies on its three layers: podocytes, GBM, 
and GECs (Figure  1C). Podocytes are terminally differentiated 
epithelial cells that form the architectural backbone of the GFB 
anchored to the GBM through transmembrane receptors, such 
as integrins (e.g., integrin α3 and laminin β2) and dystroglycan, 
and cover the outer aspect of the glomerular capillary (Pozzi 
et  al., 2008; Meyrier, 2011). They have specialized projections 
that interdigitate to form the slit diaphragm, a key element in 
the GFB (Perico et  al., 2016). The slit diaphragm proteins (e.g., 
nephrin and podocin) anchor to the cytoskeleton at the plasma 
membrane and form bridging structures between the interdigitating 
podocyte projections (foot processes; Kestila et  al., 1998; Boute 
et  al., 2000). Additional proteins that maintain slit diaphragm 
proteins, such as CD2AP, play vital roles in GFB maintenance. 
Podocytes are essential in GFB function, underscored by the 
discovery of pathogenic mutations to proteins involved in 
maintaining podocyte structure that are causal to proteinuric forms 
of kidney disease (Vivante and Hildebrandt, 2016; Li et al., 2020a). 

The GBM is formed by secreted products from both podocytes 
and endothelial cells during glomerulogenesis (St John and 
Abrahamson, 2001). Its role in the barrier function is highlighted 
by genetic studies showing that mutations in key components of 
GBM; encoding laminin-α5 and COL4A5, or recessive COL4A3/4, 
results in basement membrane nephropathy due to the absence 
or inadequate assembly of all collagen chains. These mutations 
contribute to the development of nephrotic syndrome in pediatric 
patients and Alport syndrome, respectively (Tryggvason et  al., 
1993; Kashtan, 1999; Quinlan and Rheault, 2021).

Glomerular endothelial cells are highly specialized cells with 
fenestrae and a charged luminal endothelial surface layer, or 
glycocalyx, that is composed of negatively charged networks of 
proteoglycans, glycoproteins, and glycolipids (Ballermann, 2007; 
Fogo and Kon, 2010; Haraldsson and Nystrom, 2012; Khramova 
et  al., 2021) that together with the GBM contribute to the 
maintenance of a charge-selective barrier which is important 
to restrain albumin from the glomerular filtrate (Jeansson et  al., 
2009; Singh et  al., 2011; Öberg and Rippe, 2013; Boels et  al., 
2016; Figure  1C). GEC dysfunction can initiate and contribute 
to GFB breakdown (Haraldsson et  al., 2008; Haraldsson and 
Nystrom, 2012; Sun et  al., 2013; Daehn, 2018). In addition, 
activated podocytes have been shown to influence endothelial 
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glycocalyx remodeling and loss in experimental FSGS and in vitro 
(Ebefors et al., 2019). In diabetic kidney disease, GEC dysfunction 
and glycocalyx damage represent initiating steps in diabetic 
albuminuria in humans and in experimental models (Zhao et al., 
2006; Satchell and Tooke, 2008; Yuen et  al., 2012; Dogne et  al., 
2016; Lassen and Daehn, 2020).

Importantly, bidirectional signaling enables cells in the glomeruli 
to function effectively, where podocytes control GEC growth and 
survival via crosstalk of paracrine vascular endothelial growth 
factor alpha (VEGFA and VEGF-R; Sison et  al., 2010; Jeansson 
et al., 2011). Crosstalk also exists between endothelial and mesangial 
cells (PDGF-B and PDGFR-β) and between podocytes and mesangial 
cells (CCL21 and CCR7; Vaughan and Quaggin, 2008; Schlondorff 
and Banas, 2009). Hence, all components contribute to the overall 
structure and function of this complex barrier, and model systems 
that can recapitulate in vivo biology and microenvironment would 
provide a platform for studying cell crosstalk and feedback regulation 
and open up the new therapeutic strategies specifically targeting 
the GFB.

Modeling the Glomerular Filtration Barrier
The unique environment and complex interactions between the 
specialized cells in the GFB make modeling glomerular disease 
particularly challenging. Podocytes are a key target cell for injury 
in the evolution of segmental sclerosis lesions of proteinuric 
diseases, and their morphology is critical for glomerular filtration. 
However, once isolated, podocytes rapidly dedifferentiate and lose 
their specialized morphology, making it difficult to study their 
function in vitro. Immortalized mouse and human podocyte cell 
lines have played a fundamental role in advancing podocyte 
research, but they lack defined foot processes as well as slit 
diaphragms. Efforts have been made to improve podocytes in 
culture to more closely recapitulate their in vivo phenotypic 
characteristics. By modulating the ECM, which affects most 
aspects of cellular behavior, researchers have established that 
growing primary rat podocytes in the presence of heparin and 
all-trans retinoic acid on laminin-coated plates resulted in podocytes 
with primary processes that further bifurcated and interdigitated 
with adjacent cells (Yaoita et  al., 2018). Growing podocytes in 

TABLE 1 | Comparison of in vivo and in vitro models currently used or under development for studies of the glomerular filtration barrier (GFB).

  In vitro In vivo

2D monolayer Static  
co-culture

Microfluidic  
co-culture

Spheroids 
organoids

Animal models

All GFB cell types (Nishinakamura, 2019) No No No No Yes

GBM (Slater et al., 2011; Chew and Lennon, 2018; 
Hale et al., 2018; Petrosyan et al., 2019)

No Limited Limited Limited Yes

Glycocalyx (Singh et al., 2007; Petrosyan et al., 
2019; Koning et al., 2020)

Limited Limited Yes Limited Yes

Allows cell differentiation (relevant phenotype; Musah 
et al., 2017; Bao et al., 2018; Nishinakamura, 2019; 
Veissi et al., 2020)

No No Limited Limited Yes

Permselectivity (Li et al., 2016; Petrosyan et al., 
2019; Li et al., 2020b)

No Yes Yes Limited Yes

Recapitulation of microenvironment (Huh et al., 2013; 
Bhatia and Ingber, 2014; Veissi et al., 2020)

No Limited Limited Limited Yes

Controlled microenvironment (Anandakrishnan and 
Azeloglu, 2020)

Yes Yes Yes Yes No

Shear stress (Slater et al., 2012; Musah et al., 2017; 
Yang et al., 2017; Homan et al., 2019)

No Limited Yes Limited Yes

Bidirectional crosstalk (Li et al., 2016; Casalena et al., 
2020; Veissi et al., 2020)

No Yes Yes Limited Yes

Material of human origin (Little and Takasato, 2015; 
Musah et al., 2017; Anandakrishnan and Azeloglu, 
2020)

Yes Yes Yes Yes No

High throughput (Boreström et al., 2018; 
Anandakrishnan and Azeloglu, 2020)

Yes Limited Limited Limited No

Development of personalized/precision medicine 
(Anandakrishnan and Azeloglu, 2020)

Yes Yes Yes Yes No

Timeline for experiment Short Short Long Long Long
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a gelatin microbial transglutaminase platform tuned to the stiffness 
of healthy glomeruli promoted the differentiation and maturation 
response of podocytes (Hu et al., 2017). Other approaches involve 
culturing podocytes on nanoporous surfaces with grooves. This 
method showed that podocytes were better differentiated, had 
organized actin cytoskeleton stress fibers, and developed vinculin-
positive focal adhesions (Zennaro et al., 2016). Microscale curvature 
surfaces have also been shown to promote podocyte differentiation 
in vitro (Korolj et al., 2018). By growing podocytes on topographic 
substrates, the authors showed augmented nephrin expression 
and structured F-actin arrangement within cells. The curved 
surfaces promoted process formation with interdigitation and 
improved barrier function compared to podocytes grown on flat 
substrates (Korolj et al., 2018). Bioengineered surfaces that artificially 
induce branch formation have been developed by growing podocytes 
on a 3D geometry that mechanically enforces the arborization 
of individual podocytes (Ron et  al., 2017). The formation of 
peripheral projections showed increased slit diaphragm proteins 
(nephrin, podocin, and NEPH1) and synaptopodin, as well as 
actinin-4 cross-linked actin stress fibers properly localized within 
these peripheral processes. In addition to observing slit diaphragm-
like cell-cell junctions, the authors also demonstrated that on 
these surfaces, podocytes had a significant increase in expression 
of genes related to podocyte function, hence a more mature 
physiological phenotype (Ron et  al., 2017). The next steps are 
already underway involving the derivation and generation of 
human pluripotent stem cells into podocyte-like cells (Yaoita 
et  al., 2018; Ge et  al., 2020). These will be  instrumental for 
future studies and high-content screening for podocentric therapies, 
and for integration into more complex model systems 
discussed below.

There are also challenges in obtaining, culturing, and maintaining 
GECs in vitro. GECs differ in anatomy to most other endothelial 
cells in the body and are defined by their fenestrations, which 
are important for the function of the filtration barrier (Satchell 
and Braet, 2009; Fogo and Kon, 2010). The fenestrations lack 
diaphragm but are covered with a glycocalyx. Mimicking GEC 
function in vitro has been challenging as they lose fenestrations 
in culture. This may be  due to their dependence on podocyte-
derived growth factors for their viability through intercellular 
crosstalk and interactions with the GBM. However, the very first 
human glomerular endothelial cell (GEnC) line, developed by 
Satchell et al. (2006), was shown to have fenestrations in response 
to VEGF, and over the years, it has proved to be  a useful tool 
in GFB research, including in studies of glomerular cell interactions 
(Boor et al., 2010; Byron et al., 2014). The importance of VEGF-C 
on GEC monolayer permeability has been demonstrated through 
the measurement of trans-endothelial electrical resistance (TEER) 
as an indicator of the integrity of GEC’s intercellular junctions 
(Ramnath and Satchell, 2020) and the passage of fluorescence-
labeled BSA (Foster et al., 2008). The authors found that VEGF-C 
increased TEER and limited albumin passage, in contrast to the 
effect of VEGF-A, suggesting that these podocyte-derived growth 
factors regulate the permeability of GECs in the GFB (Foster 
et al., 2008). Although quantification of the glomerular endothelial 
glycocalyx in vivo has been achieved by direct labeling or indirect 
measurements (Hjalmarsson et  al., 2004; Dane et  al., 2015), 
measuring the glycocalyx in cultured GECs has been challenging 
due to the nature of this invisible layer. Recently, atomic force 
microscope elastography was used to successfully measure 3D 
biomechanical properties of the glycocalyx on murine GECs 
through direct contact by deflection of a cantilever, without 

A B C

FIGURE 1 | Schematic drawing of a single nephron and glomerulus, a glomerular capillary vessel, and the glomerular filtration barrier (GFB). (A) A single nephron 
comprising the blood-filtering glomerulus, enveloped by Bowman’s capsule that connects to the proximal tubule at the start of the urine-modifying tubular system. 
(B) The luminal surface of the glomerular capillary vessel is covered by glomerular endothelial cells (GECs), while podocytes wrap around the outside of the vessel 
with primary and foot processes (FT), forming an interdigitated pattern. Neighboring FPs are bridged by the slit diaphragm, one of the several essential components 
for glomerular permselectivity. The blood is filtered over this capillary barrier, and the pre-urine produced is forwarded from the Bowman’s capsule into the lumen of 
the proximal tubule. (C) The schematic cross section of the GFB displays the GEC fenestrae attached to the basement membrane (BM) and covered luminally by 
glycoproteins, proteoglycans, and glycosaminoglycans of the glycocalyx, important for maintaining the charge selectivity of the GFB. On the opposite side of the 
BM, the podocyte FPs are attached. The FPs interlink by slit diaphragm proteins, such as nephrin and podocin, are important for the restriction of albumin by the 
GFB. The arrow shows the direction of plasma filtration over the barrier.
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exposing cultured cells to fixation or staining procedures that 
alter the fragile structure (Ebefors et  al., 2019). An additional 
requirement of GECs function is fluid flow, which is absent in 
monocultures, leading to loss of the influence of shear stress on 
cell shape and signal transduction that is present under physiological 
conditions (Ballermann et  al., 1998). One shear stress-inducible 
transcription factor is Krüppel-like factor 2 (KLF2; Lee et  al., 
2006), an important regulator of hemodynamic signals in endothelial 
cells that has been shown to be  dysregulated in diabetic kidney 
disease. Importantly, the endothelial cell-specific knockout of 
KLF2 results in worsened endothelial cell and podocyte injury 
in an experimental model of type 1 diabetes (Zhong et al., 2014).

In addition to the challenges of providing a favorable 
biophysical environment for glomerular cells, ideal models of 
the GFB should allow for adjustment of the GFR, given that 
hyperfiltration occurs under physiological conditions, such as 
during pregnancy, and is commonly observed in DKD, polycystic 
kidney disease, and sickle-cell anemia (Helal et al., 2012; Cheung 
and Lafayette, 2013). A physiological decline in GFR is conversely 
associated with advancing age (Musso and Oreopoulos, 2011). 
Hence, adjustable GFR is an important consideration for the 
physiological relevance of in vitro GFB models that can 
be  addressed by using microfluidic devices. Innovative tools 
are still needed to account for tubuloglomerular feedback (TGF) 
that is regulated via macula densa cells in the distal tubule 
and the myogenic response (Vallon, 2003). TGF has mostly 
been studied in vivo due to the challenges of studying the 
intricate signaling between these cells in vitro.

Despite some of the challenges mentioned, in vitro models 
are making substantial progress as an alternative or complement 
to in vivo experimental models for mechanistic studies of the 
GFB components and intercellular crosstalk. In the following 
sections, we review the recent developments in this evolving field.

STUDYING GLOMERULAR CELL 
CROSSTALK

Two-dimensional (2D) cultures are a simple culture system to 
study glomerular cell-specific effects, as they provide screening 
of large numbers of conditions and treatments that would 
otherwise not be possible in vivo (Table 1). To study glomerular 
crosstalk, conditioned medium transfer is necessary when using 
2D cultures. Despite the inherent limitations of 2D cultures, 
this system allows to chronologically separate cellular signaling 
events of pathogenic stimuli that ultimately lead to cell and/
or organ dysfunction.

There are different strategies used for the conditioned medium 
transfer, and these have been well described by Hanspal et  al. 
in the context of amyotrophic lateral sclerosis research (Hanspal 
et  al., 2017). The simplest strategy consists of whole medium 
transfer from one monoculture to another in separate culture 
vessels. There can also be  an intermediate step of extraction 
or enrichment of specific media components before medium 
transfer to the acceptor cell culture. Insights from this approach 
have provided evidence for the pathologic effects of the milieu 
in women with preeclampsia, where factors including 

endothelin-1 from GECs exposed to the serum from patients 
with preeclampsia resulted in shedding of nephrin from podocytes 
cell surface via endothelin receptor A after media transfer 
(Collino et  al., 2008). Another study utilized the transfer of 
purified exosomes from high glucose-treated GECs to podocytes 
and found that TGFβ mRNA, carried by the extracellular 
vesicles, contributed to podocyte dedifferentiation epithelial-
mesenchymal transition (Wu et  al., 2017). The authors found 
the same mechanism of exosomes containing TGFβ mRNA 
to contribute to mesangial cell proliferation and matrix production 
through a similar experimental setup, as well as through tail-
vain injections of the purified exosomes from high glucose-
treated GECs in C57BL/6 mice (Wu et al., 2016). Furthermore, 
the studies of TGFβ-containing exosomes by another group 
supported the involvement of these extracellular vesicles in 
glomerular crosstalk following high glucose stimulation (Wang 
et  al., 2018b). Exosomes have emerged as a novel vector for 
cell-cell communication in the kidney, and they are beginning 
to be  recognized more and more as a critical player in the 
pathogenesis of kidney disease and decline in renal function.

Co-culture of two or more cell types offers increased complexity 
over monocultures when studying glomerular crosstalk. Open 
microfluidics systems allow simultaneous paracrine signaling 
between two separated cell populations by sharing culture medium 
and hence allow for exchange of soluble factors and transient 
signals (Zhang et  al., 2020). In transwell systems, two distinct 
cell types are separated by a porous membrane (Hanspal et  al., 
2017), where a bidirectional exchange of signaling molecules can 
occur with or without direct cell-cell contact (Table  1). Li and 
colleagues demonstrated the applicability of their co-culture model 
of the GFB for studies of drug testing and intracellular signaling, 
using murine podocytes and GECs on opposite sides of a collagen 
IV-coated polyethylene terephthalate membrane (Li et  al., 2016). 
More recently, the same research group successfully exchanged 
the murine glomerular cells for human immortalized GECs and 
podocytes, and reported an increase in albumin leak after exposure 
to sera from patients with recurrent FSGS, compared to genetic 
or non-recurrent forms (Li et  al., 2020b). Casalena et  al. have 
demonstrated that both high glucose and serum from diabetic 
mice susceptible to developing diabetic kidney disease disrupt 
mitochondrial function and cause oxidative stress in GECs. 
Interestingly, the transfer of factors released by the stressed GECs 
mediated podocyte cell death in transwell co-cultures, as well as 
in media exchange (Casalena et al., 2020). Given that bi-directional 
communication can still occur while cells are physically separated, 
this approach allows for subsequent interrogation of cell-specific 
responses. This approach has also been used to define podocyte-
to-GEC-to-podocyte crosstalk in the pathogenesis of FSGS by 
shedding light on the role molecules, such as endothelin-1/
endothelin receptor type A-mediated glomerular endothelial cell 
dysfunction, which was shown to be required for podocyte depletion 
and progression of glomerulosclerosis (Daehn et  al., 2014).

Exposure of GECs to laminar shear forces found in vivo 
adds physiological relevance to the transwell co-culture model 
of the GFB. Studies by Slater et  al. used both conditioned 
medium transfer and co-culture of human GECs and podocytes 
to investigate how ERK5 activation and KLF2 transcription 
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(associated with endothelial cell shear stress in large vessels) 
affected the glomerular microvasculature (Slater et  al., 2012). 
Their findings demonstrated the existence of intercellular signaling 
from GECs exposed to chronic laminar shear stress that affects 
podocytes. In another study by the same research group, GECs 
and podocytes were co-cultured on opposite sides of a 
polycaprolactone/electrospun collagen membrane to closer mimic 
the GBM, which was shown to enable cell-cell contact (Slater 
et  al., 2011). Differences in between the conditioned medium 
transfer and the co-culture settings suggest that spatial separation 
between crosstalking cell types is an important consideration.

The models described so far provide robust high-throughput, 
high-content reductionist assay systems. They have provided 
a wealth of information on the fundamental biological and 
disease processes of the GFB. Nevertheless, they provide a 
limited physiological context of the filtration barrier. Since 
there is growing awareness of the interconnections between 
cells and the ECM surrounding them, there is substantial effort 
by the community to develop model systems that can better 
reflect the complex microenvironment cells encounter in a tissue.

3D Culture Models of the GFB
Organs-on-a-chip have been developed for complex organs 
such as liver (Beckwitt et  al., 2018), heart (Agarwal et  al., 
2013), gut (Kim et  al., 2012; Kim and Ingber, 2013), lungs 
(Huh et  al., 2010, 2012), and brain (Moreno et  al., 2015). The 
goal has not been to mimic the whole organs, but rather to 
study complex parts of an organ in a more physiological context. 
In the renal field, chips for modeling the proximal tubules 
(Jang et  al., 2013; Hoppensack et  al., 2014; Wilmer et  al., 
2016) as well as the filtration barrier are being developed. An 
ideal model of the GFB would include cell-to-cell and cell-
to-ECM interactions, biomimetic micromechanical properties, 
shear flow, oxygen and nutrient/waste exchange, and a functional 
permselective filtration barrier. In the last decade, the 
development of microfluidic platforms that allow co-culture 
of cells under flow (Bhatia and Ingber, 2014) and stretch (Huh 
et  al., 2013) has emerged (Table  1) and these continue to 
evolve. Here, we  describe some examples.

To study the effect of hypertension on the filtration barrier, 
Zhou et  al. developed a glomerulus-on-a-chip using murine 
immortalized GECs and podocytes. The cells were separated 
in the chip by a polycarbonate membrane coated with basement 
membrane extracts, and the authors increased the flow in the 
upper channel of the chip harboring the GECs (Zhou et  al., 
2016). Increasing the mechanical force led to cell damage, loss 
of junctions, and changes to the cell’s cytoskeleton, leading to 
increased leakage (Zhou et  al., 2016). In an in vitro model of 
diabetic kidney disease, Wang et  al. developed a glomerulus-
on-a-chip using glomeruli isolated from rats. The chip consisted 
of five channels, a capillary in the middle and collection channels 
on the outside, with the channels in between filled with gel. 
Isolated glomeruli were injected in the capillary channel and 
allowed to attach for the cells to spread and form a barrier 
under flow. GECs and podocytes were identified by CD31 and 
synaptopodin staining, respectively. High glucose treatment 

enhanced the permeability to proteins and increased reactive 
oxygen species production and podocyte detachment (Wang 
et  al., 2017). Musah et  al. developed a glomerulus-on-a-chip 
with fluidics and strain by using vacuum channels on the side 
of the channel harboring the GECs and podocytes (Musah 
et  al., 2017). The authors developed podocytes derived from 
human induced pluripotent stem cells (iPSCs) and used them 
in combination with human GECs separated by a porous 
polydimethylsiloxane membrane coated with laminin. The 
mechanical strain was shown to increase the expression of 
nephrin and secretion of VEGF-A by the podocytes. Albuminuria 
and podocyte damage were observed with adriamycin treatment, 
underscoring the resemblance to the in vivo setting (Musah 
et al., 2017). These models however lack GBM; hence, Petrosyan 
et  al. developed a glomerulus-on-a-chip without an artificial 
membrane between GECs and podocytes (Petrosyan et  al., 
2019). The authors allowed both cell types to interact and to 
generate a layer of ECM components. Human GECs and 
podocytes were obtained from the same donor; cells were 
separated by collagen I  and eventually formed a basement 
membrane between the cell layers. GECs were further shown 
to develop a glycocalyx layer. The cells could be  maintained 
in the chip for at least a month, enabling long-term experiments. 
Exposure of chips to puromycin aminonucleoside induced 
podocyte injury and loss of permselectivity for albumin. Adding 
serum from patients with membranous nephropathy (MN) 
resulted in albumin leakage, which was prevented by treatment 
with α-MSH. Using podocytes derived from a patient 
with Alport syndrome rendered improper filtration, supporting 
the chips potential for the use in personalized medicine 
(Petrosyan  et  al., 2019).

Given that the glomerulus in situ has a complex structure 
with intricate microvascular capillary networks in a unique 
geometry that could play a role in the development and function 
of podocytes (Falkenberg et al., 2017), there have been significant 
efforts to generate 3D models with complex microvascular 
networks using 3D bioprinting technology. Rayner et  al. 
demonstrated the use of a multiphoton microscopy-guided 3D 
printing technique to generate perfusable vascular networks 
with diameters as small as 10  μm (Rayner et  al., 2021). 
They  further demonstrate bioprinting of a glomerular-like 
microvascular network that supports endothelial lumen 
formation; however, they still require the incorporation of 
podocytes and mesangial cells to recapitulate the glomerular 
physiology and to study cell-cell crosstalk. Other developments 
include the glomerulus-on-a-plate, recently developed by using 
a microfluidic topographical hollow fiber (Xie et  al., 2020). 
This system uses a tubular-like perfusable channel to seed 
GECs in a glomerulus-like knot with microconvex topography, 
filled with hydrogel and covered with murine podocytes. The 
fibers were mounted in specialized 96-well plates with inlet 
and outlet wells allowing flow to be  applied by either gravity 
or syringe pump. Perfusing the lumen with albumin showed 
no leakage of over the barrier, while small molecules could 
readily pass. However, adriamycin treatment was shown to 
increase the passage of BSA over the barrier, but only mildly 
damaged podocytes (Xie et  al., 2020).
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Current GFB 3D culture model technologies have a number 
of drawbacks, such as recirculating instead of a continuous 
flow, long culture times to achieve fully confluent layers, 
lack of a basement membrane, and limited throughput. 
However, these models still hold great promise for improving 
our understanding of glomerular crosstalk and their potential 
use for personalized and precision medicine. In the future, 
chips where cells can form a basement membrane without 
separating gels or man-made membranes will emerge, and 
the inclusion of mesangial cells, pericytes, and parietal epithelial 
cells to the chips would enable all the intricate signaling 
which takes place in the glomerulus.

Scaffold-Free 3D Cultures
Scaffold-free 3D cultures are anchorage-independent models that 
rely on the self-aggregation of cells in specialized culture plates 
with ultra-low attachment coating that promotes spheroid formation. 
Multicellular spheroids have been shown to recapitulate 
physiological characteristics of tissues and tumors with regard 
to cell-cell contact, and allow for natural cell-ECM interactions 
(Sutherland, 1988). Glomeruloid spheres have been developed 
using human mesenchymal stem cells, HUVECs, and HEKs (Abe 
et al., 2019). These spheroids expressed several podocyte markers 
and were stable for at least 5  days. Adding serum from patients 
with FSGS resulted in the collapse of the spheres (Abe et  al., 
2019). In 2020, Cho et al. demonstrated a novel pressure-assisted 
network for droplet accumulation method for high-throughput 
generation of uniform microtissues. As a proof of principle, they 
generated glomerulus-like microtissues using immortalized mouse 
podocytes and mesenchymal stem cells (Cho et  al., 2020). More 
recently, Sobreiro-Almeida et  al. observed that the addition of 
retinoic acid to an organotypic model of human renal progenitor 
cells resulted in spheroids with a preferential glomerular 
differentiation. Using a hanging drop culture technique to form 
spheroids, they showed that these spheroids remain viable over 
a period of 28  days and display an elevated expression of PAX2 
and NPHS1 in the presence of retinoic acid. Further, co-culture 
with microvascular endothelial cells resulted in more compact 
organization of the spheroids (Sobreiro-Almeida et  al., 2021).

These scaffold-free 3D cultures are not barrier models, and 
many questions remain: in particular, about the composition 
of the spheres. And improvement in oxygenation through 
integration of endothelial cells has not been examined in this 
setting. Today’s glomeruloid spheres can provide insights for 
podocyte-ECM interactions and can be adapted to medium- or 
high-throughput screening assays. There is still the need for 
culture optimization to enhance reproducibility of spheroids 
in culture and to study GFB components, while maintaining 
a small enough size for sufficient nutrient exchange. However, 
this area of research is moving fast, and we  will undoubtedly 
see advances in the years to come.

Organoids
Attempts to fully culture organs in vitro have led to the development 
of organoids, self-organized 3D aggregations of cells. Over the 
last few years, these developments have provided researchers the 

opportunity to establish near-physiological models to study human 
development and diseases. Organoids can be derived from embryonic 
stem cells or iPSCs. The kidney is an anatomically complex organ 
with numerous different cell types, which makes it difficult to 
get organoids containing all renal structures including a functional 
filtration barrier. As of today, organoids are premature, and as 
such, they do not represent ideal modeling systems for studies 
of the GFB; however, they hold promise to be  so in the future.

Embryonic kidneys are divided into the metanephric mesenchyme 
and the ureteric bud. Nephron progenitor cells in the metanephric 
mesenchyme are the origin of the glomeruli, Bowman’s capsule, 
and the renal tubules, and stromal progenitor cells give rise to 
interstitial cells. The ureteric bud is the origin of the collecting 
ducts. During development, intricate signaling leads to differentiation 
of cells and the formation of a mature kidney. In order to form 
kidney organoids, this signaling needs to be applied to embryonic 
or pluripotent stem cells. With this in mind, the development 
of differentiation protocols for embryonic and iPSCs toward renal 
cells (Xia et  al., 2013; Taguchi et  al., 2014; Takasato et  al., 2014) 
was rapidly followed by the first reports of kidney organoids 
(Morizane et  al., 2015; Takasato et  al., 2015). Kidney organoids 
have been characterized via single-cell sequencing and have been 
found to contain developing podocytes, parietal epithelial cells, 
tubular cells, collecting ducts, and interstitial and stromal cells. 
Missing or underrepresented cells with current methods are GECs, 
mesangial cells, principal and intercalated cells (Czerniecki et  al., 
2018; Wu et  al., 2018; Combes et  al., 2019), and immune cells. 
Although glomerulus-like structures are formed, they mainly consist 
of early podocytes, and these have the potential to be  explored 
further to study podocytopathies (Sharmin et al., 2016; Kim et al., 
2017; Hale et al., 2018). Hale et al. describe a protocol for kidney 
organoids from iPSCs and compared the expression to human 
immortalized podocyte cell lines. Podocytes derived from organoids 
were shown to have an improved expression profile, as well as 
a GBM (Hale et al., 2018). Genetic modifications targeting podocytes 
have also been used in kidney organoids to explore congenital 
nephrotic syndrome (Kim et al., 2017; Hale et al., 2018; Tanigawa 
et  al., 2018). In addition, to better study the GFB, improvements 
in methods that promote maturation and vascularization of the 
organoids have been reported recently, such as culturing kidney 
organoids on millifluidic chips (Homan et  al., 2019), or 
transplantation of human kidney organoids into the subcapsular 
of mouse kidneys (van den Berg et  al., 2018). In the latter, the 
authors demonstrated an improvement in the formation of a GBM 
with the development of a fenestrated endothelium in glomeruli 
(van den Berg et al., 2018). By modulating biophysical cues, such 
as ECM stiffness, Garreta et  al. were able to accelerate kidney 
organoid generation from iPSCs (Garreta et al., 2019). They showed 
that implantation of kidney organoids into chick chorioallantoic 
membrane (CAM) resulted in vascularization of the organoids 
within 5  days. They further generated soft hydrogels that display 
similar mechanical properties as CAM to study if soft substrates 
drive kidney organoid generation compared to stiffer substrates. 
They observed that soft matrix environment resulted in kidney 
organoids that display similar protein expression as a fetal human 
kidney. Although the kidney organoids still are embryonic in 
development and need an in vivo environment for vascularization, 
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further characterization of the role of substrate stiffness can improve 
kidney organoid differentiation. Another limitation of the current 
organoid systems is the heterogeneity and batch-to-batch variation 
during initial formation and maturation. To address this, Dr. 
Little’s group have employed two different approaches for scaling 
up the generation of kidney organoids with less heterogeneity 
and higher reproducibility. Kumar et  al. demonstrated a method 
to scale up the generation of kidney micro-organoids in suspension 
culture (Kumar et  al., 2019). Using this method, they were able 
to generate 8,000–10,000 kidney micro-organoids in an even size 
range. These organoids are less than 200–300  μm in final size, 
much smaller compared to standard organoids, which allows 
efficient nutrient diffusion to the core of the organoids. However, 
they showed limited utility with respect to extended long-term 
cultures due to the absence of vascularization. Lawlor et  al. 
employed extrusion bioprinting method to plate cell aggregates 
that mature into kidney organoids, which partially eliminates 
organoid heterogeneity and enables scaling up of throughput 
(Lawlor et  al., 2021). Using this technique, they were able to 
generate 200 organoids in 10 min. In addition to reducing variability, 
extrusion bioprinting can also be  used to alter the conformation 
of the organoids, to generate a spheroid or a rectangular cell 
aggregate patch based on the extruding tip movement. The authors 
observe that the rectangular conformation yielded a greater number 
of nephron units compared to the spheroid conformation (Lawlor 
et  al., 2021), which with further improvements may be  useful 
for the development of transplantable kidney tissues.

Despite the many challenges that still remain for organoids 
to fully resemble mature human kidneys, including less off 
targets cells as described in detail in the review by Geuens 
et al. (2020), organoid biobanks as repository for drug screening 
and development are emerging (Calandrini et  al., 2020) and 
have the potential for applications in precision medicine.

FUTURE PERSPECTIVE

The lack of specific treatments for diseases of the GFB is a 
worldwide health issue. The need for new explorative in vitro 
models is paramount to elucidate the intricate signaling of cells 
in the GFB. Today, there is greater recognition that components 
of the GFB work as an integrated functional unit. As more and 
more new tools become available, such as iPSCs in culture and 
3D model systems, we shall look to integrate these human-relevant 
in vitro models with data-driven and mechanistic modeling as 
well as artificial intelligence-driven methods that can assist with 
in silico drug discovery and modeling (Azeloglu  et  al., 2014), 

which will inevitably streamline time-consuming and costly 
experiments. As we gain our understanding on other aspects that 
influence GFB function, such as tubuloglomerular crosstalk (Tasnim 
and Zink, 2012; Wang et  al., 2018a), opportunities to “plug-in” 
modules will provide insights from the whole nephron’s perspective 
and even distant organ crosstalk. Together with the increasingly 
quantitative precision medicine approaches that can collate and 
combine clinical data with genomic information, these joint efforts 
can help guide the design of novel drug candidates and move 
the field toward the common goal of treating patients with better 
therapies for diseases of the GFB.

CONCLUSION

As these experimental model systems continue to evolve and 
improve in terms of their physiological context and throughput, 
model systems have a huge potential to help unravel the 
molecular mechanisms of GFB breakdown and the pathogenic 
crosstalk signaling that may drive disease. These developments 
should minimize the use of animal models and accelerate 
discoveries by enabling the platforms for personalized and 
precision medicine to lower drug-induced adverse events, 
and identify new targets for treatments of kidney diseases 
that affect the filtration barrier.
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Function of Uric Acid Transporters and
Their Inhibitors in Hyperuricaemia
Hao-lu Sun1†, Yi-wan Wu1†, He-ge Bian1, Hui Yang1, Heng Wang2, Xiao-ming Meng2* and
Juan Jin1*

1Department of Pharmacology, Anhui Medical University, Hefei, China, 2Inflammation and ImmuneMediated Diseases Laboratory
of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China

Disorders of uric acid metabolism may be associated with pathological processes in many
diseases, including diabetes mellitus, cardiovascular disease, and kidney disease. These
diseases can further promote uric acid accumulation in the body, leading to a vicious cycle.
Preliminary studies have proven many mechanisms such as oxidative stress, lipid
metabolism disorders, and rennin angiotensin axis involving in the progression of
hyperuricaemia-related diseases. However, there is still lack of effective clinical
treatment for hyperuricaemia. According to previous research results, NPT1, NPT4,
OAT1, OAT2, OAT3, OAT4, URAT1, GLUT9, ABCG2, PDZK1, these urate transports
are closely related to serum uric acid level. Targeting at urate transporters and urate-
lowering drugs can enhance our understanding of hyperuricaemia and hyperuricaemia-
related diseases. This review may put forward essential references or cross references to
be contributed to further elucidate traditional and novel urate-lowering drugs benefits as
well as provides theoretical support for the scientific research on hyperuricemia and related
diseases.

Keywords: uric acid, transporters, gene, hyperuricaemia, inhibitor

INTRODUCTION

With lifestyle changes, hyperuricaemia has become common around the world. 85–90% of
hyperuricaemia patients have no clinical features. This stage is asymptomatic hyperuricaemia.
Over time, long-term high serum uric acid (SUA) may cause many complications. Current studies
have shown that 1) anomalous high SUA level is likely to induce a series of cardiovascular diseases,
and acts as an independent risk factor for cardiovascular diseases, including atherosclerosis,
hypertension, and coronary heart disease (Edwards, 2009); 2) obesity can cause hyperuricaemia,
further leading to lipid metabolism disorder and chronic diseases (Fernandes Silva et al., 2019;
Jingzhe Han et al., 2019); 3) in patients with diabetes, high uric acid (UA) further damages pancreatic
cells and worsens diabetic condition (Changgui Li and Chang, 2013; Yun-Hong Lu et al., 2020). In
summary, hyperuricaemia has become a key risk factor for development of many serious diseases.

Hyperuricaemia occurs due to alterations in urate production or excretion. UA is the final
metabolite of purines and mainly excreted in the body by the kidney and intestine. The kidney
excretes about two-thirds while the gastrointestinal tract excretes one-third of the UA load (Jessica
Maiuolo et al., 2016). Most UA is filtered from glomerular, while renal tubules reabsorption and
secretion regulate the amount of urate excretion (Jessica Maiuolo et al., 2016). The proximal tubule is
the site of UA reabsorption and excretion. About 90% UA is reabsorbed into blood (Jessica Maiuolo
et al., 2016). Urate transporters are mostly located in the proximal tubules of the kidney and play key
roles in reabsorption and excretion of UA. In this review, we discuss the molecular mechanisms of
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urate transports and their inhibitors on hyperuricaemia-
associated diseases. This study not only shows that urate
transports play considerable roles in the progression of
hyperuricaemia-associated diseases but also indicates that they
may be used as therapeutic targets.

URIC ACID

At present, two sources of UA are recognized: 1) uptake of foods
containing a high level of purines; 2) catabolism of proteins and
other compounds in the human body. In long-term evolution,
human UA kinase factors and a series of promoter gene
mutations have caused humans to have higher UA levels than
other mammals (Figure 1) (Edwards, 2009). Physiologically, it
involves in many enzymes and hormones, such as xanthine
oxidase, reproductive hormone, growth hormone, thyroid
hormone, etc (Chengfu Xu et al., 2015; Liangshan Mu et al.,
2018; Linqiang Ma et al., 2018; Shuang Liang et al., 2018). UA, as
scavenger of oxygen radical, contributes to approximate 60% of
plasma antioxidant activity and maintains the stability of blood
pressure and antioxidant stress (Nieto et al., 2000; Wang et al.,
2020). In addition, it prevents the oxidation of low-density
lipoproteins and the inactivation of superoxide dismutase
(Rudan et al., 2010). This antioxidant activity displays the
protective roles of UA action under physiological
environment. However, the abnormal UA level may be is
correlative with many diseases.

HYPERURICAEMIA

Hyperuricaemia is due to the broken balance between production
and complex processes of secretion and reabsorption of UA (So
and Thorens, 2010). A growing number of publications
demonstrate that hyperuricaemia has been proved to be a risk
for multiple diseases including gout, chronic kidney disease
(CKD), cardiovascular diseases. Despite the importance of
hyperuricaemia, the definition of hyperuricaemia remains
inconclusive. Generally, abnormal SUA is higher in men than
in women (Bardin and Richette, 2014). Hyperuricaemia is defined
increased SUA as above 7 mg/dl in men and above 6 mg/dl in
women in many studies (Zhu et al., 2011; Bardin and Richette,
2014)). High intake of purine-rich foods (such as alcohol) or
those that can lead to increased purine levels (such as fructose)
can also contribute to hyperuricaemia (Xiao et al., 2018; Go et al.,
2019; Hoogerland et al., 2020). Genetic variations induced by
multiple factors are also the key cause of hyperuricaemia (Guo
et al., 2005; Mount and Mandal, 2019). Moreover, SUA
concentration is negatively correlated with maximal oxygen
uptake and positive correlation with carbon dioxide in patients
with chronic heart failure (Leyva et al., 1997). Hypoxia leads to
the accumulation of UA precursors and the activation of xanthine
oxidase/dehydrogenase further increase the level of UA in the
body (Hassoun et al., 1992). During hypoxia, glycolysis
accelerates the production of UA in patients with heart failure
(Swan et al., 1994). NO, an endothelial cell-derived relaxing factor
produced by endothelial cells is another important factor

FIGURE 1 | Mainly physiological progression of uric acid in the body. Serum uric acid is original from uptake of foods containing a high level of purines as well as
catabolism of proteins and other compounds in the human body. About 60% uric acid involves inmetabolism process and the rest of uric acid is excreted through the gut
and urethra. Urethral excretion is the main way. A series of urate transporters including SLC and ABC transporters expressed in urethra, especially the proximal
convoluted tubules, maintain urate homeostasis.
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affecting uric acid. Decreased levels of NO are leading to
increased UA and insulin resistance occurence (Cook et al.,
2004; Gehr, 2004; So and Thorens, 2010). Chronic elevation of
SUA level leads to the formation and deposition of monosodium
urate (MSU) crystals leads to inflammatory reaction and tissue
injury in many organs such as joint, kidney, and heart (Bardin
and Richette, 2014). Together, the available information indicates
that the regulation of UA level is complex and may explain the
association with hyperuricaemia, gout, the metabolic syndrome,
cardiovascular disease, and renal disease.

HYPERURICAEMIA-RELATED DISEASES

Gout
Strong epidemiological evidence demonstrates that the
prevalence of gout is growing worldwide. Gout is a chronic
disease caused by MSU crystal deposition, while
hyperuricaemia is the major risk factor (Dalbeth et al.,
2019). Over time, prolonged hyperuricaemia may result in
more frequent and severe symptoms of gout (Dalbeth et al.,
2019). In patients with established gout, elevated SUA is
associated with increased risk of recurrent gout (Shiozawa
et al., 2017). Despite advances in understanding the
pathophysiology of gout, it remains common and
challenging which may be associated with untimely
treatment and lack of understanding about the role of
urate-lowering therapy (Stamp and Dalbeth, 2019). For the
treatment of gout, allopurinol remains the first-line urate-
lowering therapy, with febuxostat regarded as an proper
alternative in clinical practice (Stamp and Dalbeth, 2019).
Lifestyle modification including reduced intake of purine-rich
foods, weight loss, avoidance of fructose and alcohol has also
been considered an vital aspect of gout management
(Jeyaruban et al., 2016). Using available data, keeping the
balance between excretion and overproduction of SUA is
reasonable for prevention and management of gout.

Chronic Kidney Disease (CKD)
Increasing evidence indicates that SUA is enhanced in patients
with CKD (Liu et al., 2015). Epidemiological studies have
reported the association between hyperuriceamia and CKD
(Alobaidi et al., 2021). About 20–60% of patients with
established gout have renal dysfunction (Kang et al., 2002). It
is a risk marker and contributes to the development of
glomerulosclerosis and interstitial fibrosis (Kang et al., 2002;
Liu et al., 2015). Hyperuriceamia may aggravate kidney
damage through RAS activation which is an important
mediator of kidney disease progression or through developing
hypertension by increasing salt sensitivity (Kang et al., 2002;
Watanabe et al., 2002). Furthermore, it induces macrophage
infiltration, renal tubular epithelial to mesenchymal transition,
as well as an increased expression of inflammatory mediators
(Balakumar et al., 2020). For the management of CKD, many
investigations indicate that urate-lowering therapy slows and
delays the development of CKD (Sonoda et al., 2011; Shi et al.,
2012; Liu et al., 2015). In addition, these findings are contributed

to screen and manage individuals with an elevated risk of CKD
development.

Cardiovascular Diseases
Hyperuricaemia has been considered as not only a risk factor for
human cardiovascular diseases such as myocardial infarction,
hypertension, but also a co-variable of other known risk factors
for cardiac deaths and coronary heart disease (Culleton et al.,
1999; So and Thorens, 2010; Tian et al., 2021). In addition,
hyperuriceamia is also demonstrated as an independent risk
factor for cardiovascular mortality (Krishnan et al., 2008). It is
reported that the risk of myocardial infarction enhances with
higher cumulative UA. Early cumulative UA contributed more to
myocardial infarction risk than later cumulative UA with the
same overall cumulative exposure (Tian et al., 2021). UA further
contributes to the development of hypertension in obesity
(DeMarco et al., 2014). In a cross-sectional study of the
association between hyperuricaemia, hypertension and
ischemic stroke, higher risk is found even after full adjustment
in participants with hyperuricaemia and hypertension (Sun et al.,
2021). These findings highlight the importance of optimal SUA
control in preventing cardiovascular diseases.

Metabolic Syndrome
High UA level is found in patients with metabolic syndrome
(Keskin et al., 2021). Insulin resistance can elevate UA by
reducing renal urate clearance (Facchini et al., 1991).
Increasing studies verify that insulin resistance is usually
accompanied by an increased UA and high UA could induce
insulin resistance (Bassanese et al., 2021; Jiao et al., 2021). While
insulin resistance leads to a significant increase in the expression
of urate transport-related proteins, an increase in urate
reabsorption and an increase in SUA levels (Zhang et al.,
2021). Therefore, hyperuricaemia and insulin resistance may
promote each other. Reducing the expression of UA
transporter proteins in the setting of insulin resistance down
regulates blood UA levels (Zhang et al., 2021).

When cells are induced to differentiate into adipocytes, the
physiological concentration of uric acid is further increased (So
and Thorens, 2010). Hyperuricaemia in obese people is mainly
caused by impaired renal uric acid clearance, not overproduction
(Enomoto et al., 2002). This may be related to the mechanism of
reactive oxygen species (ROS) production involving in NADPH
oxidase activation (So and Thorens, 2010). Excretion of UA is
inversely associated with leptin as a predictive marker for
metabolic syndrome secreted by adipose tissue (Boden et al.,
1997; Saad et al., 1998; D’Elia et al., 2020; Ghadge and Khaire,
2019). UA may also regulate leptin levels by changing leptin gene
expression or decreasing leptin clearance (Fruehwald-Schultes
et al., 1999). In conclusion, these findings suggest that some
substances like leptin may involve in the crosstalk between
metabolic syndrome and hyperuricaemia.

Neurodegenerative Diseases
Hyperuriceamia displays an important causative effect in
multiple diseases including gout, CKD, cardiovascular diseases.
In contrast, it shows a protective role in neurodegenerative
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disorders such as Alzheimer’s disease (Tana et al., 2018; Mandal
and Mount, 2019). Previous studies indicate that reduced SUA
levels in the body can lead to an increased risk of Alzheimer’s
disease, Parkinson’s disease, multiple sclerosis, schizophrenia,
and dementia (Ascherio et al., 2009; Du et al., 2016; Ye et al.,
2016). These findings may be associated with the antioxidant
effects that UA may display in neurodegenerative diseases (Tana
et al., 2018). Controversially, there is conflicting evidence about
SUA in cognitive decline in patients with vascular or mixed
dementia (Tana et al., 2018). Hong et al. find a lower risk of
developing vascular dementia in patients with established gout
(Hong et al., 2015). However, Khan et al. did not find a significant
association between them (Khan et al., 2016). One recent study
indicates a significant risk of vascular or mixed dementia in
patients with higher SUA (Latourte et al., 2018). Thus, UA may
represent to be a complex mediator of influencing cognitive
function in different dementia types. The specific contribution
of UA on neurodegenerative disorders needs to be further
clarified.

The strong association between SUA and cognition could be
indicated also by the relationship between certain genetic
abnormalities of the urate transporters and nerve injury.
SLC22A12 gene encoding for the urate transporter hURAT1
defects leads to primary renal hypouricemia characterized by
increased UA excretion from a reduced reabsorption (Tana et al.,
2018). Variations in SLC2A9 gene, encoding the urate transporter
GLUT9, are closely related to human cognition and
neurodegenerative diseases (Houlihan et al., 2010; Mandal and
Mount, 2019). ITM2B, a GLUT9-interacting protein, inhibited
urate influx and stimulated urate efflux (Mandal and Mount,
2019). These data demonstrate that there may be some regulators

as potential molecular links between UA homeostasis and
neurodegenerative disorders.

URATE TRANSPORTERS AND GENETICS
OF URATE TRANSPORTER PATHOLOGIES

A series of urate transporters including SLC and ABC
transporters as well as several multispecific drug transporters
(e.g., OAT1, OAT2, and ABCG2) maintain UA homeostasis
(Figure 2) (Tomita et al., 2000; Edwards, 2009; Nigam and
Bhatnagar, 2018). Over time, it has become apparent that
altered urate transport, both in the gut and the kidneys, has a
vital role in the pathogenesis of hyperuricaemia-associated
diseases. Thus, the optimization of UA level can be regarded
as a systemic issue. Recent studies have suggested that urate
transporters mutations in genes and related sites directly affect
urate reabsorption and excretion (Guo et al., 2005; Puig and
Martínez, 2008). Compared with the modern environment,
genetic factors on urate transporters have a larger effect on
variation in serum urate concentrations (Major et al., 2018).
Exploration of these transporters and related genes sites are
important to regulate and achieve target serum urate (Table 1).

SLC Transporters
GLUT9 (SLC2A9)
GLUT9 encoded by SLC2A9 gene is widely present in the
proximal tubule in human kidney (Kimura et al., 2014). It has
two splice variant isoforms, GLUT9a (540 amino acids encoded
by 12 exons) and GLUT9b (512 amino acids encoded by 13
exons). In human, GLUT9a is expressed in the basolateral

FIGURE 2 | Urat-lowering drugs in hyperuricaemia-related diseases. Hyperuricaemia has been proven to be associated with multiple diseases including gout,
chronic kidney disease, cardiovascular diseases, metabolic syndrome. The discovery of urate transporters provides new ideas for the development of drugs for the
research of hyperuricaemia. In addition to urate transport inhibitors, xanthine oxidase inhibitors, SGLT2 inhibitors, as well as novel urat-lowering drugs like EEAK,
Favipiravir, PF-06743649 have been summarized.
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membrane of proximal tubules of human kidney, whereas,
GLUT9b is expressed at the apical membrane of the collecting
duct (So and Thorens, 2010). GLUT9 initially identified as the
glucose transporter serves acritical role in urate reabsorption
(Ebert et al., 2017). Genetic inactivation in mice induces
moderate hyperuricaemia and massive renal excretion of urate.
Accumulating studies report that hypouriceamia has been
associated with mutations in the SLC2A9 gene. For example,
L75R mutation and 36-kb deletion present in two different
families of hypouriceamic patients; R198W, R380C, as well as
P412R mutation are found in hypouriceamic patients,
respectively (Anzai et al., 2008; Dinour et al., 2010; Kawamura
et al., 2011).

MCT9 (SLC16A9)
The human SLC16 protein, also known as human
monocarpboxylic acid transporters (hMCTs), contains 14
members and mediates the transport of monocarboxylates
through the plasma membrane (Futagi et al., 2020). MCTs are
generally divided into two categories, the H+-sensitive and H+-
non-sensitive transporters. MCT9 belongs to the latter and is
ubiquitous with the highest expression level in the kidney and
adrenal gland (Harst et al., 2010; Roshanbin et al., 2016; Console
et al., 2020). rs1171614 and rs2242206 variants has been reported
to be associated with SUA levels and the risk of kidney overload
gout (Nakayama et al., 2013; Butler et al., 2021). At present, many
members of the SLC16 family have never been studied. Although
MCT9 has been shown to be related to UA levels, its mechanism
of action and location are still unclear. Further genetic and
functional study of MCT9 is necessary.

NPT1 (SLC17A1)
The SLC17A1, a membrane protein, is the first member of the
SLC17 phosphate transporter family (Zhang et al., 2018).
SCL17A1 gene encoding NPT1 transports various substrates
including UA (Chiba et al., 2015). A previous analysis shows
that NPT1mainly expressed in the kidney is localised to the apical
membrane of the renal proximal tubule (JadeHollis-Moffatt et al.,
2012; Chiba et al., 2015).

Function of NPT1 (SLC17A1)
NPT1, weakly to moderately correlate with altered UA levels,
mediates the absorption of UA when the plasma membrane is
depolarised by high concentration of exogenous potassium
(Bhatnagar et al., 2016). At the same time, NPT1 is conducive
to the efflux of UA. When the cell membrane presents a negative
potential phase, NPT1 mediates UA efflux (Chiba et al., 2015).
NPT1 as a Cl−-dependent urate transport, has two transportation
activities, namely the of Na+/phosphate co-transport; moreover,
anion conductance is important to discriminate the mechanistic
differences between the two activities and Δψ-driven anion
transport activity (Wright and Dantzler, 2004; Iharada et al.,
2010).

Mutation Loci of the NPT1 (SLC17A1) Gene
The study selects 545 Japanese men with gout as a model group
and 1,115 healthy men as a normal control group to investigate

mutations in the NPT1 rs1165196 and I269T genes (Chiba et al.,
2015). Functional analysis shows that NPT1 rs1165196 variants
significantly reduce the risk of renal under excretion gout and
enhance the renal urate secretion (Chiba et al., 2015; Sakiyama
et al., 2016). Interestingly, rs1165196 variants have little effect
onpatients with normal renal excretion (JadeHollis-Moffatt et al.,
2012; Chiba et al., 2015; Sakiyama et al., 2016). I269T (a common
missense variant of NPT1) mutations increase the maximum
volume by increasing the turnover rate of the urate transport and
output tomitigate gouty risk, but do not change NPT1 membrane
expressions (Sakiyama et al., 2016). Compared with NPT1 wild
type, I269T might have faster conformation changes leading to
enhance renal urate export (Sakiyama et al., 2016).

NPT4 (SLC17A3)
Human sodium phosphate co-transporter type 4 (NPT4/
SLC17A3) is a multi-specific organic anion efflux transporter
expressed in the kidneys and liver. NPT4 is located at the apical
side of renal tubules, and functions as an apical voltage-driven
urate efflux transporter, also known as NPT4-Na+/phosphate co-
transporter (Jutabha et al., 2010).

Function of NPT4 (SLC17A3)
NPT4 plays an important role in the urate excretion and operates
functionally with basolateral organic anion transporters 1/3
(OAT1/OAT3) (Jutabha et al., 2010; Riches et al., 2009;
Polasek et al., 2010; Jutabha et al., 2011). SUA is taken up by
OAT1/OAT3 into tubular cell, then intracellular UA is excreted
by NPT4 into the urinary lumen (Møller and Sheikh, 1982;
Pritchard and Miller, 1993; Jutabha et al., 2010).

Mutation Loci of the NPT4 (SLC17A3) Gene
NPT4 variations have a greater effect on SUA concentration in
women, have no close relationship with SUA in men (Jutabha
et al., 2010). NPT4L and NPT4S are two splice variants of NPT4
(Polasek et al., 2010). NPT4L acts through the outlet channel of
the proximal membrane of the renal proximal tubule. According
to the voltage-driven promotion mechanism of NPT4L and its
location on the proximal membrane of the proximal tubule,
deeming NPT4 is the main channel for excretion of drugs and
UA (Jutabha et al., 2010). Some reports have shown there were
significant correlations between rs9393672 and rs942379 in NPT4
gene polymorphisms as well as changes in female SUA
concentration (Jutabha et al., 2010; Riches et al., 2009).

OAT1 (SLC22A6) and OAT3 (SLC22A8)
Both OAT1 (SLC22A6) and OAT3 (SLC22A8), as urate/
dicarboxylate exchangers, are located on the basolateral side of
the proximal tubule (So and Thorens, 2010). Previous studies find
that knockout of OAT1 or OAT3 slightly reduces uricosuria,
indicating that their essential function is urate excretion (Eraly
et al., 2008).

OAT2 (SLC22A7)
Members of the solute carrier 22A (SLC22A) family known as
OATs, including OAT2, are expressed in various organs (Kimoto
et al., 2018; Mathialagan et al., 2018). Among OATs, only OAT2
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has a general expression pattern and is expressed in many tissues,
such as the choroid plexus, liver, placenta, skeletal muscle, and
kidney (Sager et al., 2018). In the kidney, OAT2 is located in the
basolateral side of the proximal tubule for urate uptake
transporter (Sakurai, 2013).

Function of OAT2 (SLC22A7)
OAT2 is a transporter of several known exogenous drugs and
endogenous compounds (Kimoto et al., 2018; Mathialagan et al.,
2018). Urate and cGMP may be substrates of OAT1, OAT2, and
OAT3 (Henjakovic et al., 2015). And OAT2 could take up urate from
blood to the proximal tubular cell. However, different from the other
two transporters, OAT2 is relatively independent and not associated
with the pH of the body. A recent study has shown that OATs,
especially OAT2, contribute to creatinine transport (Sager et al., 2018).
Although existing evidence shows that OAT2 is mainly expressed in
the kidney, but it also plays a role in the liver (Vildhede et al., 2018).

Mutation Loci of the OAT2 (SLC22A7) Gene
Three quarters of OAT2 SNPs are found in men, and among the
populations with these SNPs, the major allele frequencies of
C329T, G571A, and G1520A were 0.94, 0.94, and 0.95,
respectively (Xu et al., 2005). Three individuals (each with a
non-synonymous SNP) are heterozygous at these loci, and
originated from Sub-Saharan Africa (C329T), India-Pakistan
(G571A), and Japan (G1520A) (Xu et al., 2005). OAT2
encodes a key renal solute transport protein, and genetic
variations of TBX2 are a determinant of CKD (Kato et al., 2015).

OAT4 (SLC22A11)
Organic anion determines the transport of most renal tubules and
the secretion or reabsorption of substances (Hagos et al., 2007).
Members of OAT family have a main task of handling drug
complexes or exogenous secretions (Wright and Dantzler, 2004;
Anzai et al., 2006). OATs are expressed along the proximal
tubules of the kidney and other marginal epithelia, such as the
blood-brain barrier, choroid plexus, and placenta (Ugele et al.,
2003). OAT4 is identified as an apical transporter in proximal
tubule cells and only expressed in advanced primates, including
humans (Hagos et al., 2007).

Function of OAT4 (SLC22A11)
In addition to uric acid, OAT4 also promotes the absorption of
high-affinity binding steroids such as estronesulfate (ES) or
dehydroepian drosterone sulfate (Hagos et al., 2007). OAT4
can use chloride ion as the exchange anion of ES and uric
acid (Roch-Ramel et al., 1994; Hagos et al., 2007).
Physiologically, OAT4 guides the ion exchange of the
proximal tubule through PAH/Cl−, PAH/ES, and possibly
PAH/UA to excrete UA (Hagos et al., 2007). In previous
studies, after the removal of sodium or addition of the NHE3-
specific inhibitor amiloride, the ES uptake of HEK293-OAT4 cells
is significantly reduced, indicating that OAT4 transport may be
coupled with the effect of NHE3 (Lang et al., 2003; TomNijenhuis
et al., 2005). OAT4 interacts with NHE3 and sodium
dicarboxylate transporter 1 to participate in the maintenance
of intracellular α-ketoglutarate (Hagos et al., 2007).

Mutation Loci of the OAT4 (SLC22A11) Gene
SLC22A11 rs2078267 is associated with gout in some Europeans
(van der Harst et al., 2010; Flynn et al., 2013; Köttgen et al., 2013).
Previous studies show that rs2186571 is associated with SUA
levels in the Pacific Micronesian population of Kosrae (Kenny
et al., 2011; Flynn et al., 2013). rs17299124 gene mutation is
related to gout in Southeast Asians patients. Another study
indicates that rs17300741, a common variant of OAT4/
SLC22A11, is associated with the renal under excretion type
gout (Sakiyama et al., 2014).

URAT1 (SLC22A12)
The SLC22A12 gene encodes a transporter protein known as
URAT1, which is a 553 amino acid protein that is 30% identical to
rat organic cation transporter 1 at the amino acid level
(Hosoyamada et al., 2004). URAT1 has been identified as a
uric acid anion exchanger that affects UA homeostasis via
urate reabsorption in human kidney (Enomoto et al., 2002;
Zhou et al., 2010; Skwara et al., 2017; Misawa et al., 2020). It
is expressed in the apical membrane of the proximal tubule of the
human kidney (Hosoyamada et al., 2004).

Function of URAT1 (SLC22A12)
URAT1 plays an important role in urate reabsorption in the
kidney. Sodium hydrogen exchange regulator (NHERF) protein,
which is abundantly expressed in the apical membrane
transported by epithelial cells, such as renal proximal tubules
and small intestine, interacts with mURAT1 and plays an
important role in the regulation of uric acid transport in renal
proximal tubule cells (Cunningham et al., 2007). NHERF-1
deficiency directly affects uric acid absorption (Cunningham
et al., 2007). Human URAT1 has the C-terminal sequence of
T-Q-F, and cell analysis revealed that hURAT1 can specifically
bind with NHERF-3 (Hosoyamada et al., 2004; Cunningham
et al., 2007). NHERF-1 has been shown to play an important role
in determining the cellular distribution of mURAT1
(Cunningham et al., 2007). A possible mechanism is that
NHERF-1 may act as a partner in a manner similar to the
adaptor proteins CAL and CFTR, as a membrane retention
signal for stabilising mURAT1 in the plasma membrane,
assuming the interaction between NHERF-1 and CFTRNpt2a,
or as the determinant of mURAT1 circulation to the plasma
membrane (Shenolikar et al., 2002).

Mutation Loci of the URAT1 (SLC22A12) Gene
Dysfunctional variants in URAT1 are considered as the major
cause of hyperuricaemia (Zhu et al., 2021). SLC22A12 produces a
genetic variation that contributes to urate absorption and is a key
factor in hyperuricaemia and gout (Toyoda et al., 2015; Tu et al.,
2016). SLC22A12 rs475688(C/C) and p. N82N are reported to be
significantly associated with gouty risk (Pavelcova et al., 2021).
Interestingly, inactivating mutations in URAT1 have been shown
to cause renal hypouricemia. Mutations in the SLC22A12 gene
can reduce SUA levels (Misawa et al., 2020). The results of this
study shows that: 1) based on the serum levels of urate salt gene,
the lack of SLC22A12 was 10% more prominent in men than in
women, and can be genetic (Misawa et al., 2020); 2) based on
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urate absorption, some of the variants truncate a protein that may
have a termination codon that leads to the loss of URAT1
function (Cha et al., 2019).

ABCG2
The ATP binding cassette subfamily member 2 (ABCG2), a
multi-specific transporter, is located on the apical membrane
in tissues including kidney and intestine. It exerts a critical
physiological effect in the excretion of UA in the kidney and
intestine (Maliepaard et al., 2001; Yun-Hong Lu et al., 2020).

Function of ABCG2
The export process of ABCG2 is ATP-dependent and unsaturated at
the physiological concentration of UA, indicating that ABCG2 has
high-capacity urate transport activity (Matsuo et al., 2009). ABCG2
dysfunction caused by common variants will significantly increase the
risk of hyperuricaemia, and the reduction of extra renal urate
excretion through dysfunctional ABCG2 is a common mechanism
of hyperuricaemia (Ichida et al., 2012). One of the main causes of
hyperuricaemia is not true overproduction of UA, but insufficient
excretion of extra renal UA due to common ABCG2 dysfunction
(Ichida et al., 2012). It exerts active roles in patients with CKD (Yano
et al., 2014; Nigam, 2015; Bhatnagar et al., 2016). ABCG2 dysfunction
enhances UA level and promotes renal dysfunction in CKD patients
as well as systemic inflammatory responses (Bhatnagar et al., 2016;
Cleophas et al., 2017).

In CKD, renal urate excretory mechanisms are compromised
due to loss of renal function. In addition to transporting
nucleotide analogues, ABCG2 is a vital transporter in
intestinal UA excretion (Matsuo et al., 2009). Interestingly,
renal urate excretion decrease but intestinal expression of
ABCG2 increases, suggesting some sort of remote regulation
of intestinal urate transport when renal transport is
compromised. In CKD, intestinal ABCG2 becomes much
more important, suggesting remote organ communication
between the injured kidney and the intestine (Nigam and
Bhatnagar, 2018).

Mutation Loci of the ABCG2 Gene
To investigate ABCG2 gene mutations in hyperuricaemia
patients, researching performed mutation analysis on all
coding regions and intronexon boundaries of the ABCG2 gene
in 90 Japanese patients with hyperuricaemia (Matsuo et al., 2009).
The following six asynchronous mutations were found: V12M,
Q126X, Q141K, G268R, S441N, and F506SfsX4 (Matsuo et al.,
2009). Among them, the allele frequency of Q141K, V12M, and
Q126X is 31.9, 19.2, and 2.8% (Matsuo et al., 2009). ABCG2 gene
mutation has a significant effect on UA, especially the amino acid
substitution in Q141K, which leads to risk of hyperuricaemia and
gout (Wen et al., 2015; Cleophas et al., 2017). At the same time,
decrease in the amount of ABCG2 protein will inhibit Q141K
activity (Kondo et al., 2004). In addition, ABCG2 rs2231142
considered a risk allele for gout (Butler et al., 2021).

PDZK1
Polyvalent PDZ domain 1 (PDZK1) is a multi-domain protein
containing four PDZ domain tubular cells observed in the apical

membrane of the kidney proximal tubule. It is highly expressed at
the apical membrane of tubular epithelial cells, and that most of
the above-mentioned apical transporters have been reported to
directly interact with PDZK1 (Prestin et al., 2017).

Function of PDZK1
PDZK1 acts as a scaffold protein to regulate the activity of various
transport proteins including URAT1 and NPT1 in the proximal
tubules (Miyazaki et al., 2005; Lu et al., 2019). Using a yeast two-
hybrid screen system, found that PDZK1 regulates the functional
activity of URAT1 and enhances its UA reabsorption capacity
(Anzai et al., 2004). Furthermore, PDZK1 might be an important
upstream molecule of ABCG2, which changes its function in the
small intestine (Lu et al., 2019). Soluble UA induced upregulation
of ABCG2 expression and function in intestinal cell lines is
dependent on PDZK1 at the transcriptional level (Lu et al.,
2019). However, the correlation between PDZK1 and ABCG2
needs to be further investigated. SMCT1 (SLC5A8), a high-
affinity lactate transport system that interacts with PDZK1,
plays an important role in the reabsorption of urate in human
kidney (Gopal et al., 2004; Miyauchi et al., 2004; Otsuka et al.,
2019). rs12129861 in PDZK1 is considered a risk allele for gout
(Butler et al., 2021). According to previous studies, PDZK1 affects
urate transporters and thus may have a certain effect on various
transporters, but it is not yet possible to determine its specific
mode of action.

URATE-LOWERING DRUGS IN
HYPERURICAEMIA-RELATED DISEASES

At present, there have been many studies on the traditional
treatment of hyperuricaemia (Yang et al., 2018). The discovery
of urates transporters provides new ideas for the development of
drugs for the research of hyperuricaemia. In addition to urate
transport inhibitors, xanthine oxidase inhibitors, as the most
popular drug candidates, have attracted a lot of attention
(Figure 2). Xanthine oxidoreductase is a rate-limiting enzyme
catalyzing formation of UA by oxidative hydroxylation of
hypoxanthine and xanthine in purine metabolism (Battelli
et al., 2014). It plays a vital role in the production of
hyperuricaemia and gout (Nakatani et al., 2021). We
summarize advances in research on urate -lowering drugs
including urate transporter inhibitors, xanthine oxidase
inhibitors as well as novel urate -lowering drugs, and evaluate
the effect of urate-lowering therapy on the rate of
hyperuricaemia-related diseases.

Urate Transporter Inhibitors
URAT1 Inhibitors
Arhalofenate
Arhalofenate, an emerging URAT1 inhibitor, is a dual-acting
agent (Shahid and Singh, 2015). In addition to increasing uric
acid excretion, it inhibits the production of IL-1β, thereby
reducing the occurrence of flare gout (Dalbeth et al., 2014).
Arhalofenate increases urate excretion by inhibiting the action
of URAT1, which is one of its main effects (Shahid and Singh,
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2015). The other main roles of arhalofenate are to activate AMPK,
inhibit NF-κB and NLRP3 inflammasomes to promote the
polarisation of anti-inflammatory macrophages, as well as
significantly reduce UA-induced inflammation (Salminen
et al., 2011; Wang et al., 2016). There are similar studies
showing that arhalofenate acid activates AMPK in
macrophages in vitro, inhibits the activation of NLRP3
inflammasomes, and reduces MSU-induced IL-1β production
(Kim et al., 2016; McWherter et al., 2018). Moreover,
arhalofenate acid activates AMPK downstream targets to
participate in the regulation of mitochondrial function and
maintain the function of mitochondrial crest (McWherter
et al., 2018).

Colchicine can inhibit the release of IL-1β-induced MSU
crystal deposition joints. Therefore, researchers believe that in
the next few years, arhalofenate may become a substitute for
colchicine (Shahid and Singh, 2015). In addition, arhalofenate
lowers blood lipid and blood sugar levels in patients with
hypertriglyceridaemia and diabetes. Owing to its effect on
OAT4, it can reduce uric acid level in hypertensive patients
treated with diuretics, and diuretics, especially thiazide drugs,
and prevent hyperuricaemia (Shahid and Singh, 2015).

Lesinurad
Lesinurad (RDEA594) is a selective inhibitor of URAT1 in the
proximal tubules of the kidney (Shahid and Singh, 2015).
RDEA594 through affects OAT4 relieve hyperuricaemia which
caused by diuretics; however, lesinurad has no effect on other
transport molecules, such as OAT1 andOAT3 (Shahid and Singh,
2015). RDEA594 in combination with XOI is a new treatment
option considered for gout (Engel et al., 2017). Verinurad
(RDEA3170), a new URAT1 inhibitor, demonstrates high
potency in inhibiting URAT1 (Martin et al., 2018; Yue et al.,
2019). In vitro studies have shown that three times the potency of
benzbromarone and 100 times of probenecid effectiveness (Yue
et al., 2019). RDEA3170 is currently in phase II clinical trials for
the treatment of gout and asymptomatic hyperuricaemia (Yue
et al., 2019).

Losartan
Losartan, an angiotensin II receptor blocker (ARB), is confirmed
to reduce SUA level (Matsumura et al., 2015; Bryant et al., 2021).
It is due to its inhibition of urate/anion exchanger on the brush
border membrane of renal proximal tubular epithelial cells
(Enomoto et al., 2002; Iwanaga et al., 2007). The urate
transporter URAT1 participates in the reabsorption of UA
from lumen to cytoplasm along proximal tubules. Losartan
lows the urate reabsorption by inhibitory activity of URAT1 in
the range of clinically relevant concentrations (0.1–10 nm)
(Iwanaga et al., 2007). These results suggest that losartan is
effective inhibitors of URAT1, which may explain why
patients taking losartan generally have low UA levels (Iwanaga
et al., 2007). Intriguingly, UA level will restore at higher
concentrations of losartan mainly due to trans-stimulation of
these ARBs at higher concentrations (Iwanaga et al., 2007).
Nevertheless, one recent study finds that the urate reduction is
not a class effect of ARBs. Compared with multiple ARBs in

cluding candesartan, valsartan, azilsartan, eprosartan
andirbesartan, only losartan has clear evidence of its ability to
lower SUA level. This result suggests that for patients with
hypertension and hyperuricaemia, losartan could be regarded
as a first-line agent with irbesartan as an alternative when
appropriate (Sutton Burke et al., 2020).

Anti-inflammatory Drug
Nonsteroidal Anti-inflammatory Drug (NSAIDs)
NSAIDs including aspirin and steroids are widely used for pain relief
and inflammatory suppression during acute gout attacks (Enomoto
et al., 2002; Ragab et al., 2017). Accumulating studies indicate that
affect renal urate excretion in an inverse dose dependent manner.
High dose aspirin is uricosuric, while low dose causes urate retention
(Roch-Ramel et al., 1997; Enomoto et al., 2002). According to
previous reports, the mechanism underlying dual effects of aspirin
involve the renal urate transporter URAT1 (Choi et al., 2005; Zhang
et al., 2014). High dose aspirin decreases SUA level by inhibiting
URAT1, whereas low dose exerts urate retentive role through
stimulating URAT1 (Zhang et al., 2014). Low dose of salicylate
(75, 150, and 325mg per day) reduces urinary urate excretion
and contributes to gouty risk (Caspi et al., 2000). However, there
was no significant change in SUA levels and urinary urate excretion
in patients with gout who received 325mg of aspirin daily combined
with probenecid. Therefore, urate-lowering drugs (e.g., uricosuric
agents orxanthine oxidase inhibitors) may reduce the effect of low-
dose aspirin on hyperuricaemia (Harris et al., 2000; Zhang et al.,
2014).

Glucocorticoids
Glucocorticoids, such as dexamethasone (DEX), have been
shown to increase xanthine oxidase activity in rats (Patel et al.,
2014). Besides, DEX significantly increases the renal excretion of
urate (Li et al., 2019). Many membrane transporters are involved
in the urate reabsorption and secretion (Hyndman et al., 2016).
During secretion by the renal tubules, SUA is absorbed by OAT1
and OAT3 to enter the renal tubule cells, and then enters urine
through NPT1, NPT4, MRP4, BCRP, as well as other efflux
transporters. Although DEX increases NPT1 and NPT4, it
significantly reduces OAT3 expression in mouse kidney, which
also shows the complex roles of DEX on urate absorption (Li
et al., 2019). Nonetheless, compared to urate reabsorption, the
tubular secretion is only a minor component of urine UA
excretion. OAT10, GLUT9, and URAT1 are apically absorbed
transporters of urate and play a crucial role in the urate
reabsorption (Li et al., 2019). DEX had no effect on OAT10
and GLUT9, but significantly reduced the mRNA level of
URAT1. Therefore, DEX-mediated increase in uric acid
excretion is mainly due to the downregulation effect of
URAT1 (Li et al., 2019).

SGLT2 Inhibitors
The urine UA and SUA lowering effects of SGLT2 inhibitors are
similar (Vallon and Thomson, 2017; Nespoux and Vallon, 2020).
Researchers use SGLT2-, SGLT1-, URAT1-, and GLUT9-
knockout mouse models to investigate the UA-lowering effect
of the SGLT2 inhibitor canagliflozin, and show that the
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mechanism of this effect involved intraluminal glucose
transmission and inhibition of the proximal tubule urate
transporter URAT1 (Novikov et al., 2019; Novikov et al.,
2019). Insulin enhances the activity of URAT1. Therefore, the
inhibition of SGLT2 may reduce the activity of URAT1 by
enhancing luminal glucose transmission or lowering insulin
levels, or SGLT2 and URAT1 may functionally interact in the
proximal tubule, thereby inhibiting SGLT2 to partially suppress
URAT1 (Novikov et al., 2019; Nespoux and Vallon, 2020). These
SGLT2 inhibitors may also help protect mitochondrial function
and tubular cell metabolism (Nespoux and Vallon, 2020).
Preliminary studies in patients with T1DM and T2DM have
shown that diabetes increases the urine ratio of lactobionate, and
this may reflect the metabolic process of mitochondrial oxidation
to glycolysis, which is reversed by SGLT2 inhibitors (Nespoux
and Vallon, 2020).

ABCG2 Inhibitors
Febuxostat is a common drug for the treatment of gout. Its main
function is to inhibit xanthine oxidase. One study indicates that
febuxostat exerts strong inhibitory effect on ABCG2 (Miyata
et al., 2016). The researchers find that use of febuxostat
reduces the efflux of many drugs mediated by ABCG2 and
prolongs the action time of the drug in the body without
increasing the level of UA. Further analysis show that the
inhibitory effect of febuxostat on ABCG2 occurs both at
clinical concentration in vitro and in mouse intestinal tract. It
was also demonstrated that febuxostat can enhance the intestinal
absorption of a substrate of ABCG2 (Yamasaki et al., 2008;
Miyata et al., 2016). It is worth noting that febuxostat inhibits

ABCG2 more strongly than the two known ABCG2 inhibitors
(Ko143 and elacrida), which means that febuxostat has not only
advantages over these two inhibitors but also stronger in safety
and ability than other ABCG2 inhibitor (Allen et al., 2002).
However, decreased ABCG2 function may enhance the risk of
hyperuricaemia, genetically. Thus, these findings suggest novel
potential applications and risks in clinical use of febuxostat.

Xanthine Oxidase Inhibitors
Allopurinol
Allopurinol, a xanthine oxidase inhibitor, is one of first-line drugs
for the management of gout (Stamp et al., 2016; Day et al., 2017;
Coombs et al., 2021). Allopurinol has been used widely for many
years, however, the reduction and maintenance of blood urate
concentrations is often not achieved (Day et al., 2017). The main
cause may be linked to intersubject variation in allopurinol
pharmacokinetics and pharmacodynamics (Wright et al., 2013;
Wright et al., 2016). In addition, recent studies report that high-
dose allopurinol may induce severe cutaneous adverse drug
reactions and liver injury. High drug-dosage also lead to high
mortality in patients with CKD (Huang et al., 2021). Available
findings suggest that the initial dosage of allopurinol should be
low, particularly in patients with renal impairment. The dose
should then be increased slowly until sufficient to dissolve MUS
(Day et al., 2017).

EEAK
The xanthine oxidase inhibitor tetrapeptide EEAK is identified
from the skeletal myosin of tuna (Yu et al., 2021). Inhibitory
peptides from tuna protein simulations indicate that traditional

TABLE 1 | Characteristics of Urate transporters.

Transporter Location in kidney Mutation Function of transporters

SLC2A9
(GLUT9)

Apical and basolateral membranes of
the renal proximal tubule

R198W, R380C, P412R Anzai et al. (2008);
Dinour et al. (2010); Kawamura et al. (2011)

Urate reabsorption

SLC16A9
(MCT9)

In the kidney and adrenal gland rs1171614 Butler et al. (2021) Related to UA levels
rs2242206 Nakayama et al. (2013)

SLC17A1
(NPT1)

Apical membrane of the renal proximal
tubule

rs1165196 Chiba et al. (2015); Sakiyama et al. (2016) Urate absorption and efflux
I269T Sakiyama et al. (2016)

SLC17A3
(NPT4)

Apical side of renal tubules rs9393672 Sakiyama et al. (2016); Jutabha et al.
(2010); Riches et al. (2009)

Urate excretion

rs942379 Sakiyama et al. (2016); Jutabha et al.
(2010); Riches et al. (2009)

SLC22A6
(OAT1)

Basolateral side of the proximal tubule —— Urate excretion

SLC22A7
(OAT2)

Mainly distributed in the kidney C329T, G571A, G1520A Xu et al. (2005); Kato et al.
(2015)

Urate secretion

SLC22A8
(OAT3)

In the basolateral side of the proximal
tubule

—— Urate excretion

SLC22A11
(OAT4)

Proximal tubules of the kidney and other
marginal epithelia

rs2078267 Kenny et al. (2011); Flynn et al. (2013) Urate reabsorption
rs2186571 Kenny et al. (2011); Flynn et al. (2013)
rs17299124 Sakiyama et al. (2014)
rs17300741 Sakiyama et al. (2014)

SLC22A12
(URAT1)

Apical membrane of the proximal tubule rs475688 Pavelcova et al. (2021) Urate reabsorption

ABCG2 Renal tubules and mesentery V12M, Q126X, Q141K, G268R, S441N, and
F506SfsX4 Matsuo et al. (2009)

Urate excretion

PDZK1 Apical membrane of the kidney
proximal tubule

rs12129861 Butler et al. (2021) Regulate the transport and activity of various
transport proteins in the proximal tubules
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hydrogen bond interactions, attractive charge interactions, and
salt bridges play an important role in the interaction of EEAK
with key residues of xanthine oxidase (eg, Glu802, Arg880, and
Glu1261) (Yu et al., 2021). Overall, the current work strongly
suggests that the tetrapeptide EEAK may be a promising
compound as a natural inhibitor of xanthine oxidase for the
control of gout and hyperuricaemia (Yu et al., 2021).

Rhodiola Crenulata Extracts and Their
Phytochemicals
Rhodiola crenulata is an important member of the genus Rhodiola,
mainly distributed in northwest China. Previous studies have proved
that the root of Rhodiola crenulata has beneficial properties, including
scavenging active oxygen substances and anti-Alheimer’s disease
(Chen et al., 2012; Zhang et al., 2013). Researchers use fractional
distillation techniques to separate four phytochemicals from
Rhodiolarosea extract. These compounds are identified as 4′-
hydroxyacetophenone (4-HAP), epicatechin-(4β,8)-
epicatechingallate (B2-3′-O-gallate), red Sedum and p-tyrosol used
mass spectrometry and nuclear magnetic resonance spectroscopy
(Chu et al., 2014). These purified compounds are then evaluated for
their inhibitory effects on xanthine oxidase activity and compared
with known XO inhibitors (allopurinol). The results show that 4-
HAP and B2-3′-O-gallate are effective xanthine oxidase inhibitors
(Chu et al., 2014).

2-[4-Alkoxy-3-(1H-tetrazol-1-yl)
phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic
Acid Derivatives
The researchers in this study designed and synthesized a series
of 2-[4-alkoxy-3-(1H-tetrazol-1-yl)phenyl]-6-oxo-1,6-
dihydropyrimidine-5-carboxylic acid derivatives (8a-8z) and
further evaluated their inhibitory effect on xanthine oxidase
in vitro (Zhang et al., 2019). The results show that all test
compounds (8a-8z) showed significant xanthine oxidase inhibitory
efficacy (Zhang et al., 2019). Among them, compound 8u becomes
the most effective xanthine oxidase inhibitor, with an IC50 value of
0.0288 mM, which is equivalent to febuxostat (IC50 ¼ 0.0236mM)
(Zhang et al., 2019). In addition, acute oral toxicity experiments in
mice showed that compound 8u is non-toxic and can tolerate doses
up to 2000mg/kg (Zhang et al., 2019). Therefore, compound 8u may
be a potentially effective xanthine oxidase inhibitor for the treatment
of hyperuricaemia with low toxicity (Zhang et al., 2019).

OTHER DRUGS THAT AFFECT UA LEVELS

Favipiravir
Favipiravir is an antiviral agent that inhibits the RNA-dependent
RNA polymerase of many RNA viruses (Furuta et al., 2017).
Favipiravir is metabolized by aldehyde oxidase and xanthine
oxidase to the inactive metabolite M1, which is excreted into
urine. In the kidney, the processing of uric acid is regulated by the
balance between proximal tubule reabsorption and renal tubule
secretion. Favipiravir and M1 are moderate inhibitors of OAT1
and OAT3, which are involved in the excretion of uric acid in the
kidney (Mishima et al., 2020). In addition, M1 enhances uric acid

reabsorption through URAT1 in the proximal tubule of the
kidney (Mishima et al., 2020). Therefore, it is believed that
favipiravir reduces the excretion of urate in the urine, leading
to increase the level of SUA (Mishima et al., 2020).

PF-06743649
Some drugs under development have shown dual inhibitory
effects on XOD and URAT1. But little information is available
(Yue et al., 2019). Among of them, PF-06743649 is the first
drug to enter clinical trials with dual effects on XOD and
URAT1. PF-06743649 phase I clinical trials have been
completed (Yue et al., 2019). Clinical studies have shown
that PF-06743649 causes a large and rapid decrease in serum
uric acid in healthy subjects and gout patients (Yue et al.,
2019).

CONCLUSION

NPT1, NPT4, ABCG2 expressed on the apical membrane and
OAT1, OAT3 expressed on the basolateral membrane have
been confirmed to contribute to the secretory transport of urate
from proximal tubular epithelial cells into the tubule lumen
(Cleophas et al., 2017). URAT1, GLUT9, OAT4 localized on the
apical membrane are responsible for UA reabsorption from the
tubule lumen to proximal tubule epithelial cells (Auberson
et al., 2018; Wen et al., 2020). NPT1, URAT1, and OAT4
are known to bind to PDZK1 through their C-terminal PDZ
domain. The metabolic disorder of UA mainly linked with
abnormal urate transporters is an important cause of many
diseases. In recent years, an increasing number of studies have
shown that elucidating the urate transporters is essential to
address the balance of urate homeostasis and hyperuricaemia-
related diseases. In this review, eleven transporters and urate
lowering drugs are summarized and evaluated.

Generally, asymptomatic hyperuricaemia is not an
indication for treatment to lower the SUA level in persons
with normal renal function. The recommended first line of
urate-lowering therapy includes the xanthine oxidase
inhibitors allopurinol and febuxostat by reducing urate.
The novel uricosurics agent including lesinurad,
arhalofenate, canagliflozin, xanthine oxidase inhibitor
tetrapeptide EEAK, rhodiola crenulata, favipiravir, PF-
06743649 increase renal urate excretion by inhibiting
reabsorption. In sum, the exploration of the urate
transports and inhibitors can enhance our understanding of
hyperuricaemia and hyperuricaemia-related diseases. It may
provide essential references or cross references to be
contributed to further elucidate urate-lowering drugs
benefits as well as provide theoretical support for the
scientific research on hyperuricemia and related diseases.
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Modified Huangqi Chifeng Decoction
Attenuates Proteinuria by Reducing
Podocyte Injury in a Rat Model of
Immunoglobulin a Nephropathy
Meiying Chang1†, Bin Yang2†, Liusheng Li1, Yuan Si1, Mingming Zhao1, Wei Hao3,
Jinning Zhao3 and Yu Zhang1*

1Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China, 2Department of
Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China, 3Medical Animal Experimental Center,
Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China

Modified Huangqi Chifeng decoction (MHCD) has been used to reduce proteinuria in
immunoglobulin A nephropathy (IgAN) for many years. Previously, we have demonstrated
its protective role in glomerular mesangial cells. Podocyte injury, another key factor
associated with proteinuria in IgAN, has also attracted increasing attention. However,
whether MHCD can reduce proteinuria by protecting podocytes remains unclear. The
present study aimed to investigate the protective effects of MHCD against podocyte injury
in a rat model of IgAN. To establish the IgAN model, rats were administered bovine serum
albumin, carbon tetrachloride, and lipopolysaccharide. MHCD in three doses or
telmisartan was administered once daily for 8 weeks (n � 10 rats/group). Rats with
IgAN developed proteinuria at week 6, which worsened over time until drug intervention.
After drug intervention, MHCD reduced proteinuria and had no effect on liver and kidney
function. Furthermore, MHCD alleviated renal pathological lesions, hyperplasia of
mesangial cells, mesangial matrix expansion, and podocyte foot process fusion.
Western blot analysis revealed that MHCD increased the expression of the podocyte-
associated proteins nephrin and podocalyxin. Additionally, we stained podocyte nuclei
with an antibody for Wilms’ tumor protein one and found that MHCD increased the
podocyte number in rats with IgAN. In conclusion, these results demonstrate that MHCD
attenuates proteinuria by reducing podocyte injury.

Keywords: modified huangqi chifeng decoction, IgA nephropathy, podocyte injury, nephrin, podocalyxin

INTRODUCTION

Immunoglobulin A (IgA) nephropathy (IgAN) is a glomerular disease characterized by IgA
deposition in the mesangial region. Its clinical manifestations include proteinuria, hematuria,
acute kidney injury, hypertriglyceridemia, and hypertension. IgAN is the main cause of end-
stage renal disease in patients with primary glomerular disease in China (Yang et al., 2020). Although
clinical manifestations vary, the majority of patients with IgAN exhibit progressive symptoms, with
progression to end-stage renal disease within 10 years after diagnosis in 10–30% of cases (Liu et al.,
2018). While progression is driven by podocyte injury and depletion (Hishiki et al., 2001; Lemley
et al., 2002; Tomino, 2007; Xu et al., 2010), podocyte injury alone is the dominant cause (Menon et al.,
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2013; Liu et al., 2018). Therefore, the mechanism by which
podocyte injury contributes to IgAN warrants investigation
and might provide a basis for therapeutic strategies to delay
progression.

Glomerular podocytes, highly specialized epithelial cells,
together with the glomerular basement membrane, play an
important role in glomerular filtration (Asao et al., 2012).
Podocytes stabilize the glomerular architecture against the
distention of the glomerular basement membrane by providing
a large filtration surface through the slit diaphragm structure. In
addition to the crucial interaction between podocyte foot
extensions controlling glomerular filtration, certain proteins
(i.e., nephrin, podocin, and podocalyxin) involved in the
maintenance of the structural and functional integrity of the
filtration barrier in the kidney have been identified (Mundel and
Shankland, 2002; Asao et al., 2012; Akankwasa et al., 2018).
Podocalyxin is present on the apical aspects of podocytes and
offers structural support to the capillary loop, and nephrin is
expressed on the lateral aspect extending into the slit diaphragm
and impedes the filtration of large molecules into the urinary
space (Akankwasa et al., 2018). Changes in the expression and
distribution of nephrin precede and can cause foot process fusion
and proteinuria (Lu et al., 2013). The role of podocytes in IgAN
requires further investigation.

Several traditional Chinese medicines have been used for the
treatment of IgAN, and their effects have been ascertained by
clinical and animal experiments (Yang et al., 2018; Bai et al.,
2019a; Deng et al., 2019; Li et al., 2020a; Li et al., 2020b). Modified
Huangqi Chifeng decoction (MHCD), a compound formula in
traditional Chinese medicine, comprises seven herbs: Astragalus
membranaceus Bge, Euryale ferox Salish, Rosae Laevigatae
Fructus, Radix Paeoniae Rubra, Saposhnikoviae Radix,
Rhizoma Dioscoreae Nipponicae, Hedyotis Diffusae Herba.
MHCD has been shown to alleviate proteinuria in patients
with IgAN in single-case-control and real-world studies (Jiao
and Zhang, 2018; Yu and Zhang, 2018). Furthermore, MHCD
protects against renal fibrosis and podocyte injury in a rat model
induced by doxorubicin or in mesangial cells induced by
lipopolysaccharide (LPS) (Gao et al., 2016; Jiao and Li, 2016;
Liu and Li, 2016; Yu et al., 2018). However, only a few studies
have focused on podocyte protection using traditional Chinese
medicine in rats with IgAN. In this study, we investigated the
protective effects of MHCD on podocytes in rats with IgAN, and
analyzed the molecular and cellular mechanisms underlying these
effects.

MATERIALS AND METHODS

Chemicals and Reagents
MHCD comprises seven herbs: 30 g Sheng Huangqi (Astragalus
membranaceus Bge), 20 g Qian Shi (Euryale ferox Salish), 10 g Jin
Ying-zi (Rosae Laevigatae Fructus), 10 g Chi Shao (Radix
Paeoniae Rubra), 10 g Fang Feng (Saposhnikoviae Radix), 20 g
Chuan Shan-long (Rhizoma Dioscoreae Nipponicae), and 20 g
Bai Hua-she-she-cao (Hedyotis Diffusae Herba). The herbs were
purchased from the Xiyuan Hospital of the China Academy of

Chinese Medical Sciences. The herbs were initially soaked in
water for 1 h and then boiled twice for 30 min each time. The
liquid was sealed, vacuum dried, and stored in a glass bottle in a
refrigerator at 4°C until use. Telmisartan (Micardis; 80 mg/pill)
was purchased from Boehringer Ingelheim International GmbH
(Ingelheim am Rhein, Germany). Bovine serum albumin (BSA),
LPS, and carbon tetrachloride (CCl4) were purchased from
Sigma-Aldrich (St. Louis, MO, United States).

The primary antibodies and Alexa Fluor 488-labeled goat anti-
rabbit IgG secondary antibodies (No. ZA-0446 and ZF-0511,
respectively) for immunofluorescence assays were purchased
from ZSGB Biotechnology Co., Ltd. (Beijing, China). The
periodic acid Schiff (PAS) Stain Kit was purchased from X-Y
Biotechnology (No. XY7640; Shanghai, China). The Masson’s
Trichrome Stain Kit was purchased from Solarbio (Beijing,
China). The primary antibody for Wilms’ tumor protein 1
(WT1) was purchased from Novus (No. NBP2-44606; St.
Charles, MO, United States). The anti-mouse/rabbit IgG
secondary antibodies were purchased from ZSGB-BIO (No.
PV-6000; Beijing, China). The primary antibodies for nephrin
and podocalyxin (No. A3048 and A10200, respectively) for
western blot analysis were obtained from Abclonal Technology
(Wuhan, China). Goat anti-rabbit IgG-HRP was obtained from
Jackson ImmunoResearch (No. 111-035-003; West Grove, PA,
United States). RIPA lysis buffer and the BCA Assay Kit (No.
R0010 and PC0020, respectively) were purchased from Solarbio.

Animal Groups and Treatments
Sixty-six 3–5-week-old male Sprague–Dawley rats, weighing
150 ± 10 g, were purchased from Beijing Vital River
Laboratory Animal Technology Co., Ltd. (Beijing, China).
Animal welfare and experimental procedures were performed
in strict accordance with the guidelines of the Animal Ethics
Committee of Xiyuan Hospital of China Academy of Chinese
Medical Sciences. Animals were housed in humidity-controlled
rooms (60 ± 10%) at 24 ± 1°C with a 12 h light/dark cycle and free
access to standard food and tap water. All rats were housed in
metabolic cages and acclimated to laboratory conditions for
7 days, after which they were randomly divided into either the
blank (n � 13) or model (n � 53) group.

The rat IgAN model was established by administering BSA,
LPS, and CCl4 according to previously described methods (Peng
et al., 2013; Zhang et al., 2014; Liu et al., 2018), with slight
modifications (Figure 1). In brief, the immunogen BSA was
intragastrically administered at 400 mg/kg once every 2 days
for eight consecutive weeks, and 0.1 ml CCl4 dissolved in
0.3 ml castor oil was subcutaneously administered weekly for
9 weeks. During weeks 6 and 8, LPS (0.05 mg) was injected
through the tail vein. Rats in the blank group were
intragastrically administered an equal volume of distilled water
and were administered equal amounts of physiological saline
through tail vein injection (to match the LPS injection) and via
the subcutaneous route (CCl4). The methods for administration
were the same as those used in the model group. At week 10, three
rats from both the blank and model groups were used for model
validation. After verifying successful model establishment, the
blank group was maintained (n � 10), and rats in the model group
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(n � 50) were randomly divided into the following five groups:
model group, telmisartan group, MHCD-H group, MHCD-M
group, and MHCD-L group (n � 10 rats/group). The
corresponding drug intervention for each group was initiated
at week 11. Rats in the telmisartan group were intragastrically
administered telmisartan at a dose of 8.33 mg/kg/d. Rats in the
MHCD-H, MHCD-M, and MHCD-L groups were
intragastrically administered MHCD at 25, 12.5, and 6.25 g/kg/
d, respectively, for 8 weeks until the end of week 18. The blank
and model groups received equal volumes of normal saline. All
drugs were diluted with distilled water, and the dosages were
evaluated by body surface coefficient conversion between humans
and rats.

Sample Collection and Preparation
Urine was collected from rats in metabolic cages to determine
24 h proteinuria levels. Urine was collected once every 2 weeks.
After the last intragastric administration at week 18, the rats were
anesthetized with 3% chloral hydrate and the blood was obtained
from the abdominal aorta to determine the levels of albumin,
serum creatinine, blood urea nitrogen, alanine transaminase, and
aspartate transaminase, using an automatic biochemical analyzer.
After blood was drawn from the abdominal aorta, the kidney was
rapidly harvested. A part of the renal cortex was placed in 10%
formalin fixative solution for optical microscopy and
immunohistochemical detection, a portion was fixed in 20%
glutaraldehyde solution for electron microscopy and

subsequent immunofluorescence detection, and a portion was
stored at −70°C for western blot analysis.

Immunofluorescence Intensity of
Immunoglobulin A
As demonstrated in Table 1, immunofluorescence intensity was
determined using the standard five-point semi-quantitative
method. At least ten glomeruli (magnification, ×400) were
observed in each section. They were scored according to the
intensity of microscopic expression in each glomerulus.

Histopathological Analysis
Sections of cortical tissues were fixed in 10% buffered formalin at
room temperature for 48 h, embedded in paraffin, and sliced to
4 µm-thick sections. The sections were stained at room
temperature with hematoxylin-eosin (HE) for 3 min, followed
by hydrochloric acid and alcohol for differentiation, and a graded
series of alcohol and xylene dehydration. Sections were sealed,
and PAS and Masson’s trichrome staining were performed
according to the kit instructions. Photomicrographs of HE-,
PAS-, and Masson’s trichrome-stained sections were obtained
under a light microscope (magnification, ×200).

Immunohistochemistry Assay
Podocyte counts can be obtained based on the expression ofWT1
in glomeruli. The paraffin sections were first dewaxed with xylene

FIGURE 1 | Protocol of IgAN rat modeling and treatment. After oral administration of BSA for 8 weeks, hypodermic injection of CCl4 for 9 weeks and two times of
LPS with tail intravenous injection, the IgAN rats were orally administered different drugs for 8 weeks.

TABLE 1 | Semiquantitative standard for IgA deposition.

Immunofluorescence deposition under
light microscope

Immunofluorescence intensity of
IgA

No fluorescence under low-power lens but seemingly visible under high-power lens —

Fluorescence appears to be visible under low-power lens and can be seen with high-power lens ＋
Fluorescence can be seen under low-power lens and can be clearly seen under high-power lens ＋＋
Fluorescence can be clearly seen under low-power lens and is strong under high-power lens ＋＋＋
Fluorescence is strong under low-power lens and very strong under high-power lens ＋＋＋＋
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and a graded series of alcohol. After using sodium citrate for
antigen retrieval, endogenous peroxidase was quenched with 3%
hydrogen peroxide, and the sections were incubated with the
WT1 antibody (1:100) overnight at 4°C. The sections were
incubated with PV-6000 for 30 min at room temperature,
followed by hematoxylin redyeing, gradient alcohol
dehydration, and neutral gum sealing. Finally, under a light
microscope, brown-yellow particles in the nucleus indicated
positive expression. Five non-overlapping fields were randomly
observed under a microscope (magnification, ×400); positive cells
in each field were counted with Image-Pro Plus 6.0 analysis
software, and the average value was obtained.

Electron Microscopy
Renal cortical tissue was fixed in 2.5% glutaraldehyde at 4°C for
24 h, washed with phosphate-buffered saline, and sliced to a
thickness of 70–90 nm. After staining with osmium tetroxide
and lead citrate at room temperature for 5–10 min, changes in the
podocyte foot process and its fine structure were observed under a
Hitachi H-600 transmission electron microscope (magnification,
×8,200 and ×16,500; Hitachi, Ltd., Tokyo, Japan).

Western Blot Analysis
Total protein was extracted from approximately 30 g of kidney
tissue with RIPA buffer containing PMSF. The protein
concentration was measured using a BCA kit. Proteins were
separated using 8–10% gradient SDS-PAGE and then
transferred to a PVDF membrane. The membrane was then
incubated with primary antibodies against nephrin (1:2000)
and podocalyxin (1:2000) overnight at 4°C after blocking with
TBST containing 5% skim milk. After incubation with secondary
antibodies for 1 h, membranes were treated with ECL
chemiluminescence reagents. ImageJ 4.0 was used to analyze
the grayscale values for each group, and β-actin was used as
the internal reference protein.

Statistical Analysis
All values are expressed as means ± standard deviation (SD). One-
way ANOVA for multiple comparisons was used to analyze

differences among groups. The Kruskal–Wallis test was used for
comparisons of fluorescence intensity data. Statistical analyses were
performed using GraphPad Prism (version 8.0) and SPSS (version
20.0). The threshold for statistical significance was set at p < 0.05.

RESULTS

General Condition of Rats in Each Group
After each subcutaneous injection of CCl4, rats in the model
group exhibited reduced activity and listlessness, with gradual
recovery beginning the next day. After the injection of LPS during
week 6, rats in the model group exhibited a reduction in food
intake, messy hair, and listlessness, which typically returned to
normal in approximately 6 days. Rats in the blank group
exhibited free movement, a normal diet, and smooth body hair.

Modified Huangqi Chifeng Decoction
Ameliorates Proteinuria
As demonstrated in Figure 2 and Figure 3, proteinuria in the
model group began to increase at week six and worsened over
time until drug intervention. After drug intervention, 24 h
proteinuria was lower in rats in the telmisartan and MHCD
groups than in those in the model group (both p < 0.01).
Compared to the telmisartan group, all MHCD groups showed
reduced 24 h proteinuria (all p < 0.01). Rats in the MHCD-H
group showed significantly lower 24 h proteinuria than those in
the MHCD-L group (p < 0.05), indicating that MHCD
ameliorates proteinuria in rats with IgAN.

Modified Huangqi Chifeng Decoction Does
Not Alter Certain Biochemical
Measurements of Liver and Kidney Function
Besides efficacy, we evaluated the safety indexes in rats. The
results showed no significant differences in five biochemical

FIGURE 2 | The 24 h proteinuria of the model group rats increases
significantly from the week 6 of the experiment. Data are expressed as
means ± standard deviation (SD). *p < 0.01 vs. blank group.

FIGURE 3 | MHCD ameliorates proteinuria over time. Data are
expressed as means ± SD (n � 10). **p < 0.01 vs. blank group;＃＃p < 0.01
vs. model group; && p < 0.01 vs. Telmisartan group;△ p < 0.05 vs. MHCD-L
group. MHCD, modified Huangqi Chifeng decoction.
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parameters between rats in the blank group and those in the
other groups (all p > 0.05; Figure 4). These results further
support the application of MHCD.

Modified Huangqi Chifeng Decoction
Reduces Immunoglobulin A Deposition
IgA immunofluorescence was nearly undetectable in the
glomeruli of rats in the blank group. In the model rats,
IgA was strongly expressed in the glomerular mesangium.
Rats in the telmisartan group showed lower IgA
immunofluorescence than those in the model group
(Figure 5A). After drug intervention, IgA deposition was
significantly lower in rats in the telmisartan and MHCD-H
groups than in those in the model group (both p < 0.05;
Figure 5B). These results suggest that MHCD alleviates
immune injury in rats with IgAN.

Modified Huangqi Chifeng Decoction
Ameliorates Renal Histopathology Injury
Renal pathological changes were examined by HE, PAS, andMasson’s
trichrome staining (Figure 6). Compared to the blank group, the
model group had a greater number of proliferative mesangial cells,
increased extracellular matrix deposition, a thickened glomerular
basement membrane, and disordered tubular cells. Telmisartan and
MHCD treatments ameliorated the renal pathological lesions in rats
with IgAN. These results demonstrate the protective effect of MHCD
on the kidneys of rats with IgAN.

As determined by electron microscopy (Figure 7A, ×8,200),
the foot process and basement membrane of rats in the blank
group exhibited a normal morphology; the podocyte foot
processes were arranged in an orderly manner and were
uniform in size. Podocytes in model group rats were
flattened or fused, along with a thickened basement
membrane and an increased number of proliferating

FIGURE 4 |MHCD does not alter certain biochemical measurements of liver and kidney function while ameliorating proteinuria. Data are expressed as means ± SD
(n � 10). Scr, serum creatinine; BUN, blood urea nitrogen; ALB, albumin; ALT, alanine transaminase; AST, aspartate transaminase.
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mesangial cells. The degree of fusion of podocyte foot
processes in rats in all MHCD groups was lower than that
in those in the model group, to various extents.

Modified Huangqi Chifeng Decoction
Protects Against Podocyte Injury
Changes in the fine structure of the foot process were observed via
electron microscopy (Figure 7B; ×16,500). The podocyte cell
body in rats in the blank group was typical, with a high number of
organelles, clear nucleoli, smooth and complete nuclear
membrane edges, fine chromatin, and a uniform distribution
in the nuclei. In model group rats, podocytes shrank substantially,
intracytoplasmic organelles decreased, and chromatin
agglomeration and nuclear fragmentation were detected.
Atrophy of podocytes was reduced, and the number of

intracytoplasmic organelles was higher in rats in the MHCD
groups than in those in the model group.

WT1 immunohistochemistry was used to evaluate the
morphological state of podocytes and to stain nuclei (Figure 7C).
After drug intervention, the number ofWT1-positive podocytes was
significantly higher in rats in MHCD-H than in those in the model
group (p < 0.05; Figure 7D). These results further support the
protective effect of MHCD on the podocytes of rats with IgAN.

Modified Huangqi Chifeng Decoction
Increases the Expression of
Podocyte-Associated Proteins
To further investigate the molecular mechanism by which MHCD
affects podocytes in rats with IgAN, the levels of the podocyte-
associated proteins nephrin and podocalyxin were evaluated.

FIGURE 5 |MHCD reduces IgA deposition. (A) The IgA immunofluorescence deposition in glomeruli of the six groups (magnification × 400). (B)MHCD ameliorates
the immune injury. Data are expressed as means ± SD (n � 10). **p < 0.01 vs. blank group;＃p < 0.05 vs. model group.

FIGURE 6 | MHCD ameliorates renal histopathology injury (A) Pathologic changes with HE-stained in renal tissue of the six groups (magnification × 200). (B)
Pathologic changes with PAS-stained in renal tissue of the six groups (magnification × 200). (C) Pathologic changes with Masson-stained in renal tissue of the six groups
(magnification × 200).
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Nephrin levels were significantly lower in rats in the model group
than in those in the blank group (p < 0.01), but were higher in rats in
the MHCD-H group than in those in the model group (p < 0.01;
Figures 7E, F). Furthermore, nephrin levels were significantly higher
in rats in the MHCD-H group than in those in all other groups (all
p < 0.05). Podocalyxin levels were also significantly lower in rats in
themodel group than in those in the blank group (p< 0.01), but were
higher in rats in the MHCD-H group than in those in the model
group (p< 0.01; Figures 7E,G). Podocalyxin levels were significantly
higher in rats in the MHCD-H group than in those in all other
groups (all p < 0.05).

DISCUSSION

IgA nephropathy is the most common glomerulonephritis
worldwide. According to the 2012 KDIGO clinical practice

guideline, we recommend long-term angiotensin-converting
enzyme inhibitor (ACE-I) or angiotensin receptor blocker
(ARB) treatment when proteinuria is > 1 g/d, with up-
titration of the drug depending on blood pressure (Beck et al.,
2013). It has been reported that angiotensin II (AngII) plays an
important role in the injury of podocytes. AngII can lead to the
reorganization of actin cytoskeleton and induction of podocyte
apoptosis (Ren et al., 2012; Wang et al., 2016). In addition, some
studies have confirmed the protective effect of telmisartan on
podocytes (Villa et al., 2011; Fukami et al., 2013). Therefore,
telmisartan, as a commonly used drug ARB, was selected as the
positive control in this study. For patients with persistent
proteinuria of ≥1 g/d, despite 3–6 months of optimized
supportive care (including ACE-I or ARBs and blood pressure
control), and GFR of >50 ml/min per 1.73 m2, according to the
2012 KDIGO clinical practice guideline, we recommend a 6-
months course of corticosteroid therapy (Beck et al., 2013).

FIGURE 7 | MHCD protects against podocyte injury. (A) The foot process and basement membrane were observed under electron microscopy (magnification ×
8,200). (B) Changes in the fine structure of the foot process were observed under electron microscopy (magnification × 16,500). (C)WT1 immunohistochemistry of the
six groups (magnification × 400). (D) Average percent staining area and WT1-positive podocytes per glomerulum in the IgAN rat model obtained using Image-Pro Plus
6.0 analysis software. Data are expressed as means ± SD (n � 3). *p < 0.05 vs. blank group;＃p < 0.05 vs. model group. (E–G) Protein levels of nephrin and
podocalyxin in the six groups. For relative quantification of proteins, β-actin was used as an internal control. The relative expression of proteins was calculated using
Image J. Data are expressed as means ± SD (n � 3). ***p < 0.01 vs. blank group;＃＃p < 0.01 vs. model group; &&p < 0.01 vs. Telmisartan group; ▲▲p < 0.01 vs.
MHCD-L group; ※p < 0.05 vs. MHCD-M group; *p < 0.05 vs. telmisartan group.
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However, the role of immunosuppression in the management of
IgA nephropathy remains highly controversial. The STOP-IgAN
and TESTING trials were terminated due to adverse events (Lv
et al., 2017; O’Shaughnessy and Lafayette, 2017). Therefore, it is
of social significance and scientific value to seek new treatment
methods.

In China, traditional Chinese medicines (TCMs) have an
extensive history of application, and there is substantial
literature on the treatment of IgAN with TCM. Furthermore,
various TCM extracts or formulae have been demonstrated to
have renal-protective effect (Li et al., 2017; Yang et al., 2018; Bai
et al., 2019a; Bai et al., 2019b; Li et al., 2020a; Li et al., 2020b; Li
et al., 2020c; Li and Li, 2020). Modified Huangqi Chifeng
decoction, a compound formula in TCM, has been used to
treat IgAN for several years. The results of this study clearly
demonstrate the protective effect of MHCD on glomerular
podocytes.

Proteinuria is one of the main clinical symptoms of IgAN. As
expected, rats in the model group exhibited a marked increase in
proteinuria at the start of week 6, which gradually increased
thereafter. Proteinuria in rats in the MHCD and telmisartan
groups started to decline from week 14. Modified Huangqi
Chifeng decoction, especially at a high dose, attenuated
proteinuria and did not alter biochemical parameters of liver
and kidney functions in rats.

Histological changes, including mesangial cell proliferation,
increased mesangial matrix, tubulointerstitial inflammation,
fibrosis, and podocyte fusion, were also observed in the
present study, which is consistent with previous findings
(Coppo, 2017; Coppo, 2019). After MHCD intervention,
pathological damage to kidney tissues was relieved to various
degrees, as evidenced by light microscopy, and the IgA deposition
inMHCD-H-treated rats in the mesangial region of the glomeruli
was also reduced, as evidenced by immunofluorescence
microscopy. Under electron microscopy, compared to that in
rats in themodel group, the extent of podocyte foot process fusion
in rats in all MHCD groups was reduced to various degrees,
podocyte atrophy was alleviated, and the number of
intracytoplasmic organelles was increased. In addition, MHCD
increased the expression of the podocyte-associated proteins
nephrin and podocalyxin and increased the number of
podocytes in rats with IgAN.

Proteinuria is an early consequence of podocyte injury and
a typical sign of kidney disease (Nagata, 2016). Endothelial
cells of glomerular capillaries, the surrounding podocytes,
and the fused extracellular matrix form the glomerular
filtration barrier (Scott and Quaggin, 2015). Structurally,
podocytes serve as the last gatekeepers in the glomerular
filtration barrier. The foot processes of podocytes contain an
actin-based cytoskeleton linked to the glomerular basement

FIGURE 7 | (Continued).
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membrane (Reiser et al., 2000). The foot processes of
podocytes form a highly-branched interdigitating network
with the foot processes of neighboring podocytes. Slit
diaphragm bridges the filtration slits between opposing
podocyte foot processes, thereby forming the final barrier
to urinary protein loss (Leung et al., 2018). Haraldsson et al.
also pointed out that highly differentiated and specialized
podocytes are of utmost importance for an intact barrier
(Haraldsson et al., 2008). Podocyte foot processes are
maintained by the actin cytoskeletal system, and nephrin
and podocalyxin lead to loss of the foot process, which is
closely associated with proteinuria (Nagata, 2016;
Akankwasa et al., 2018).

Podocyte stress and adaptation observed in
podocytopathies manifest as alterations in the podocyte
charge or shape, an active process resulting from the
rearrangement of the actin cytoskeleton preceding
podocyturia (i.e., the shedding of viable podocytes in urine)
(Carney, 2013; Kriz et al., 2013; Nagata, 2016). Podocyte
injury is used as a clinical prognostic index for glomerular
diseases (Asanuma and Mundel, 2003; Xu et al., 2010; Jiang
et al., 2012; Chen et al., 2017). Lu et al. found that the
expression of nephrin in rats with IgAN increases at an
early timepoint and decreases thereafter, suggesting this
increase to be a compensatory change and that the decrease
in nephrin levels could be related to podocyte injury (Lu et al.,
2013). Jiang et al. reported that the number of urinary
podocytes reflects the loss of podocytes in renal tissues,
which might be a marker of IgAN progression (Jiang et al.,
2012). Indeed, podocyte injury precedes the increase in
proteinuria; therefore, podocytes are primary therapeutic
targets for IgAN (Xu et al., 2010).

In the present study, the levels of the podocyte-associated
proteins podocalyxin and nephrin were reduced in rats with
IgAN. MHCD augmented the levels of these proteins as well
as the number of podocytes, as determined by WT1 staining.
After drug intervention, the numbers of WT1-positive
podocytes in rats in MHCD-H group increased
significantly (p < 0.05). MHCD reduced podocyte foot
process fusion, suggesting that it has an obvious protective
effect on podocytes.

In conclusion, the results of the present study suggest that
MHCD ameliorates proteinuria in rats with IgAN.
Additionally, light microscopy, electron microscopy, and
western blot analysis demonstrated that MHCD exerts a
therapeutic effect on IgAN in vivo by maintaining
podocyte function. Thus, MHCD could serve as an
effective drug for the treatment of IgAN. Although the

general mechanism underlying the effects of MHCD was
revealed, detailed analyses of the precise mechanism will
be an important focus of our future research. Specifically,
our future work will focus on studying the signaling pathways
related to podocyte-associated proteins and the target
molecules of MHCD.
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Glomerular Damage in
Trichloroethylene-Sensitized Mice:
Targeting Cathepsin L-Induced
Hyperactive mTOR Signaling
Feng Wang1,2†, Yuying Dai3†, Meng Huang3†, Chenchen Zhang1†, Liping Huang3,
Hui Wang2,4, Liangping Ye2,4, Qifeng Wu5, Xuejun Zhang2,4* and Qixing Zhu2,4*

1Department of Dermatology, The Second Hospital of Anhui Medical University, Hefei, China, 2Key Laboratory of Dermatology,
Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, China, 3Department of Occupational Health
and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China, 4Department of Dermatology, The First
Affiliated Hospital of Anhui Medical University, Hefei, China, 5Poison Control Center, Guangdong Province Hospital for
Occupational Disease Prevention and Treatment, Guangzhou, China

Trichloroethylene (TCE) is a serious health hazard for workers with daily exposure, causing
occupational medicamentosa-like dermatitis due to TCE (OMDT) and glomerular damage.
Recent studies suggest that mTORC1 signaling is activated in various glomerular
disorders; however, the role of mTORC1 signaling in TCE-induced glomerular damage
remains to be explored. In the present study, 6 OMDT patients were enrolled and a TCE-
sensitized mouse model was established to investigate molecular mechanisms underlying
the glomerular damage associated with OMDT. Glomerular damage was assessed by
levels of urine nephrin, H&E staining, and renal function test. Ultrastructural change of
podocyte was investigated by transmission electron microscopy. The podocyte-related
molecules including nephrin, α-actinin-4, and integrin β1 were visualized by
immunofluorescence. The activation of mTORC1 signaling was confirmed by Western
blot. Glomerular apoptosis was examined by the TUNEL test and Western blotting.
Expression and location of cathepsin L (CTSL) were assessed by RT-PCR and
immunofluorescence. Our results showed that TCE sensitization caused damage to
glomerular structural integrity and also increased the activation of mTORC1 signaling,
which was accompanied by podocyte loss, hypertrophy, and glomerular apoptosis.
Importantly, we also found that over-expressed CTSL was mainly located in podocyte
and CTSL inhibition could partially block the activation of mTORC1 signaling. Thus, our
findings suggested a novel mechanism whereby hyperactive mTOR signaling contributes
to TCE sensitization–induced and immune-mediated glomerular damage via CTSL
activation.

Keywords: trichloroethylene, podocyte, apoptosis, mTOR, cathepsin L
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INTRODUCTION

Trichloroethylene (TCE) is a volatile and chlorinated organic
solvent widely used in industrial settings such as metal
degreasing, parts cleaning, and refrigerants manufacturing
(Byrum et al., 2019; Pan et al., 2019). Over the past decades,
the extensive use of TCE has caused more than 50 million pounds
annually released into the environment in the United States and
even heavier in China (Huang et al., 2014). There are more than
20,000 workers that are exposed to TCE every year and TCE has
become an intractable environment concern, and a serious health
hazard to the public in China (Huang et al., 2014). The
International Agency for Research on Cancer (IARC) has
determined TCE as Group 1 carcinogen to humans (IARC,
2014). Recent epidemiological studies show that TCE exposure
was closely linked to cancers such as renal cancer and non-
Hodgkin lymphoma (Guha et al., 2012; Lee et al., 2019), and
trichloroethylene hypersensitivity syndrome (THS) (Li et al.,
2019).

THS, also called occupational medicamentosa-like dermatitis
due to trichloroethylene (OMDT) in China, is a severe
hypersensitivity reaction, after TCE skin contact or
inhalation in occupational environment (Ministry of Health,
2006). OMDT is a T-cell–mediated type IV hypersensitivity
reaction, presented with erythema, rash, blisters, and systems
damage (Lin et al., 2019). However, the allergy theory alone
could not fully explain the complicated pathogenesis of OMDT,
including the severe hepatitis and renal complications. Studies
in humans and experimental animals confirmed that a mixed-
type allergic response involving cellular and humoral immunity
(Huang et al., 2015) contributes to the multiple organ injuries in
OMDT. Glomerulus is responsible for filtering blood under
physiological conditions and is a primary target of various
physical and chemical factors in kidney disorders. Our
previous studies reported pathological changes of glomerulus
with impaired filtration function in TCE-induced immune
kidney disorder with unknown mechanisms (Wang et al.,
2019b).

Podocytes are terminally differentiated epithelial cells,
covering the surface of glomerular basement membrane
(GBM) via foot process extensions (Sakhi et al., 2019). The
special foot processes form the slit diaphragm (SD), which is
the ultimate filtration barrier of glomerulus (Maeda et al., 2018).
In addition, to accomplish the normal filtering task, various
molecules such as nephrin and podocin, integrin β1, and
α-actinin-4 work together as an interacting network and
ensure the normal podocyte’s cytoskeleton and glomerular
integrity (Sawada et al., 2016; Rinschen et al., 2017). However,
this dynamic balance of the molecular network is easily broken
and the imbalance leads to renal dysfunction and even
proteinuria (Kriz and Lemley, 2015).

In general, mammalian target of rapamycin (mTOR) is a
highly conserved serine/threonine kinase that plays an
important role for cell proliferation, autophagy, and
apoptosis (Fantus et al., 2016; Cui et al., 2020). mTOR
contains two catalytic subunits such as mTOR complex 1
(mTORC1) and mTOR complex 2, and mTORC1 signaling is

capable to regulate the podocyte size, implicated in a variety
of kidney disorders (Zschiedrich et al., 2017; Puelles et al.,
2019). However, whether the activation of mTORC1
signaling is involved in the podocyte damage in TCE
sensitization or not is still unknown. Here, we employed a
mouse model of TCE skin sensitization to uncover the
detailed role of mTORC1 signaling in TCE-induced
glomerular damage.

MATERIALS AND METHODS

Reagents
TCE (99.9% purity), Freund’s complete adjuvant (FCA,
composition: 85% Drakeol 6 VR (mineral oil); 15% mannide
monooleate (Arlacel A); 20 mg Mycobacterium), and In Situ Cell
Death Detection Kit were purchased from Sigma-Aldrich (St.
Louis, Missouri, United States). Acetone and olive oil were
purchased from Shanghai Chemical Reagent Company
(Shanghai, China). The human nephrin DuoSet ELISA kit was
obtained from R&D System (Minneapolis, United States). TRIzol
and RevertAid First Strand cDNA Synthesis Kit were obtained
from ThermoFisher Scientific (MA, United States). The
antibodies against nephrin, α-actinin-4, cathepsin L, IgG H&L
AlexaFluor® 488, and AlexaFluor® 594 were purchased from
Abcam (Cambridge, United Kingdom). The antibody against
podocin was purchased from Santa Cruz Biotechnology
(Dallas, TX, United States). The antibody against integrin β1
was purchased from Affinity Biosciences (OH, United States).
Antibodies against mTOR, p-mTOR, 4EBP1, p-4EBP1, p70S6K,
p-p70S6K, Bax, Bcl-2, caspase-3, and GAPDH were purchased
from Cell Signaling Technology (Beverly, MA, United States). 4′,
6-diamidino-phenylindole dihydrochloride (DAPI) was
purchased from Solarbio Life Sciences (Beijing, China).
Rapamycin and Z-Phe-Tyr-CHO were supplied by Selleck and
Santa Cruz Biotechnology, respectively.

Ethics
The experimental design and all protocols were approved by the
Biomedical Ethics Committee of Anhui Medical University (No.
20160216) and Experimental Animal Ethics Committee of Anhui
Medical University (No. LLSC20160312) and followed the
Declaration of Helsinki principles. All participants were
informed about the objective and methods of this study before
signing the informed consent. The mouse experiments were
performed in accordance with NIH guidelines for care and use
of laboratory animals.

Study Participants
Newly diagnosed OMDT patients and healthy controls were
recruited from January 2017 to December 2019 at Poison
Control Center of Guangdong Province Hospital for
Occupational Disease Prevention and Treatment. The OMDT
was diagnosed based on the history of TCE exposure, fever, skin
lesions, and multisystem damage according to the Chinese
National Diagnostic Criteria (GBZ 185-2006). Urine was
collected before and after clinical treatment for nephrin
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examination. The baseline data of OMDT patients in the present
study is summarized in Table 2.

Mice and TCE Exposure
A total of 140 female BALB/c mice (6–8 weeks-old and 18–20 g of
weight) were obtained from the Experimental Animal Center of
Anhui Medical University. Mice were housed in specific pathogen
free environment with food and water ad libitum. The feeding
conditions were manually set as follows: 22.5 ± 0.5°C
temperature, 50 ± 5% humidity, and 12 h light/dark cycle.
Mice were acclimated for 7 days before experimental initiation.
The mouse model of TCE skin sensitization was established
according to previous studies (Wang et al., 2015; Wang et al.,
2019a; Wang et al., 2019b). Briefly, sensitization phase and
challenge phase were conducted sequentially after the initial
administration of 100 μL 50% TCE mixture and equal FCA on
the 1st day. The sensitization phase was carried out by spread of
100 μL 50% TCE mixture (TCE: olive oil: acetone � 5: 2: 3, v/v/v)

on the back skin every 3 days for three times until the 10th day.
Then, the challenge phase was performed 2 times by topical
application of 100 μL 30% TCEmixture (TCE: olive oil: acetone �
3: 2: 5, v/v/v) on the same area on the 17th day and 19th day
(Figure 1A). Mice with physiological saline or vehicle (the same
proportions of olive oil and acetone without TCE) treatment were
considered as controls. Additionally, to explore the mTOR
signaling, rapamycin and Z-Phe-Tyr-CHO were applied by
intraperitoneal injection at a dose of 4 mg/kg and 10 mg/kg,
respectively. The details of the group design are listed in Table 1.

Twenty four hours after the last challenge, the cutaneous
allergic reactions were scored by the severity of erythema and
edema: 0, absolutely normal; 1, scattered or mild erythema; 2,
moderate and diffuse erythema; 3, intensive erythema and
swelling. Score ≥ 1 is identified as positive sensitization and
score � 0 means negative sensitization. Mice were euthanized
by CO2 and sacrificed, 72 h after the last challenge. Blood was
taken from ophthalmic venous plexus and centrifuged to separate

FIGURE 1 | TCE sensitization caused the glomerular damage with filtering dysfunction. (A) Flow diagram of BALB/c mouse model of TCE skin sensitization. (B-E)
Representative pictures of H&E staining (n � 5 per group in blank control group (B), vehicle control group (C), TCEpos group (D), and TCEneg group (E). Black arrows
show glomerular cell edema (magnification, × 400). (F, G) Relative expression of BUN and Cre in TCE-treated mice (n � 5). Data are presented as mean ± SD and
determined by one-way ANOVA. aP < 0.05, vs. blank control group; bP<0.05, vs. vehicle control group; cP<0.05, vs. TCEneg group. Scale bars: 50 µm.

TABLE 1 | Sensitization rate and kidney impairment incidence in mice.

Groups Mice (n) Score Rate (%)

0 1 2 3 Sensitization Kidney impairment

Blank control 10 0 0 0 0 0.0 0
Vehicle control 10 0 0 0 0 0.0 0
TCE treatment 40 25 9 4 2 37.5 (15/40) 35.0 (14/40)
TCEpos 15 9 4 2
TCEneg 25 25
RAPA + TCE treatment 40 26 11 3 0 35.0 (14/40) 15.0 (6/40)
RAPA + TCEpos 14 11 3 0
RAPA + TCEneg 26 26
CTSLinh + TCE treatment 40 27 9 4 0 32.5 (13/40) 12.5 (5/40)
CTSLinh + TCEpos 13 9 4 0
CTSLinh + TCEneg 27 27

CTSL, cathepsin L; inh, inhibitor; TCE, trichloroethylene; pos, positive; neg, negative; RAPA, rapamycin.
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serum from blood cells at 4°C, 1000 × g for 30 min. The collected
kidneys were embedded in paraffin for histological examination,
or embedded in the optimal freezing medium (OCT) for
immunofluorescence and glomeruli were isolated from fresh
kidney tissues.

ELISA
Levels of nephrin in the urine of OMDT patients were analyzed
by ELISA following the manufacturer’s instructions. In brief, the
plate was coated with the capture antibody and was blocked by
reagent diluent. The urine samples and prepared standards were
added into well plates for two hours incubation. Then, diluted
detection antibody, streptavidin-HRP working dilution, substrate
solution, and stop solution were added to each well sequentially.
Finally, the optical density was determined by a microplate reader
(Bio-Tek, μQuant) and the concentration of urine nephrin was
calculated by the standard curve.

Histological Examination
Fresh kidneys were removed and fixed with 10% formaldehyde
for about 48 h. Then, the kidneys were embedded in paraffin and
sectioned at 5 μm thickness. After standard dewaxing and
hydration, sections were stained by hematoxylin/eosin staining
(H&E staining) to analyze the morphological changes in
glomerulus.

Transmission Electron Microscope
Detection
To assess the ultrastructural changes of podocyte, the fresh kidney
cortex was cut into 1 mm3 and fixed in 2.5% glutaraldehyde for
6–12 h. After postfixation in 2% osmic acid solution for 2 h, the
samples were dehydrated by graded ethanol (50% ethanol, 70%
ethanol, and 90% ethanol) and propylene oxide, and embedded in
Epon 812. Then, the samples were sectioned at 60 nm thickness
and scanned in a transmission electron microscope (JEM-1230,
Japan).

Renal Function Assessment
Blood urea nitrogen (BUN) and serum creatinine (Cre) are
classical and conventional indicators to reflect the renal
function in clinical practice. In this study, BUN and Cre were
measured by commercial assay kits (Nanjing Jiancheng
Bioengineering Institute, China). The optical density of BUN
and Cre was recorded at 640 and 546 nm respectively in a
microplate reader (Bio-Tek, μQuant). Then, the levels of BUN
and Cre were calculated according to the standard curve handled
simultaneously with the samples.

TUNEL Assays
TUNEL assays were performed by In Situ Cell Death Detection
Kit, POD (Roche). Briefly, the sections were covered with
proteinase K working fluid for 30 min after routine dewaxing
and hydration. Then, the prepared TUNEL reaction mixture was
added to the sections in a dark humid chamber for 60 min. After
PBS rinse for 3 times, a drop of PBS was added onto the sections
to count the apoptotic cells under fluorescence microscope. Next,

50 μL converter-POD was covered on the sections in a dark humid
chamber at 37°C for 30 min.DABworking fluidwas used to stain the
apoptotic cells counterstained with hematoxylin. The counting and
analysis were performed under an optical microscope and the
representative fields were collected simultaneously.

Immunohistochemistry and
Immunofluorescence Examination
Fresh kidney tissues were embedded in OCT compound. The
tissues were cut into of 5 μm thickness frozen sections in a Leica
CM1850 cryostat (Wetzlar, Germany) and the sections were fixed
with precooled acetone for 5 min. Next, 0.3% Triton X-100 was
covered on the sections for 30 min, followed by blocking with
goat serum working fluid for 2 h at room temperature. The
primary antibodies including anti-CTSL, anti-podocin (Diluted
at 1:1000), anti-nephrin, anti-integrin β1 (Diluted at 1:200), and
anti–α-actinin-4 were then incubated with the sections overnight
at 4°C. Then, the sections were taken out and rewarmed to 37°C
for 30 min, before linking to fluorescein labeled secondary
antibodies: goat anti-rabbit IgG H&L (Diluted at 1:200) or
goat anti-mouse IgG H&L (Diluted at 1:400). Two hours later,
the sections were washed with PBS and the nuclei were
counterstained with DAPI for 15 min. The localization and
expression of marker proteins were observed under an
inverted fluorescence microscope (Olympus, IX73, Japan) with
appropriate excitation and emission filters.

Glomeruli Isolation
After skin sterilization via 75% alcohol and ligation of superior
mesenteric artery, thoracic aorta, the distal abdominal aorta, and
distal inferior vena cava were dissected. A capillary was inserted
into the middle of the abdominal aorta and precooled sterile PBS
was pumped into kidney. After the residual blood in kidney was
removed, 4 × 107 magnetic beads in 20 ml normal saline were
slowly pumped into kidney via the inserted capillary. Kidney was
removed and cut into 1 mm3 small pieces for digestion using
1 mg/ml collagenase A. Then, the fluid was filtrated by a 100-μm
cell strainer for 2 times. The collected suspension was centrifuged
at 200 × g for 5 min and the sedimentation was resuspended with
PBS. Finally, glomeruli were collected by a magnetic particle
concentrator to extract total proteins.

RT-PCR
The total RNA was extracted from glomerulus by TRIzol and
cDNA was synthesized by RevertAid First Strand cDNA
Synthesis Kit. The process of PCR was accomplished with
SYBR Green I Master under LightCycler 480 system. The
primer sequences of cathepsin L and GAPDH mRNA used
here are listed as follows: cathepsin L, forward, 5’-CCC TAT
GAA GCG AAG GAC GG-3’, reverse, 5’-CTG GAG AGA CGG
ATGGCT TG-3’; GAPDH, forward, 5’-CCC TTA AGAGGGATG
CTG CC-3’, reverse, 5’-TAC GGC CAA ATC CGT TCA CA-3’.

Western Blot Analysis
Total proteins were extracted from glomerulus by lysis buffer and
the protein concentration was detected by using the BCA assay.
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The final concentration of protein samples was diluted to 10 mg/
ml mixed with loading buffer. A total of 10 μL protein sample was
added to the prepared gels and separated by SDS-PAGE. The
proteins were then transferred to a PVDF membrane (0.45 μm,
Millipore, United States), followed by blocking in 5% skim milk
powder for 2 h at room temperature. The membranes were
incubated at 4°C overnight with the primary antibodies against
mTOR, phospho-mTOR, Akt, phospho-Akt, Bax, Bcl-2, caspase-
3, β-actin, and GAPDH (diluted at 1:1000). Next, the membrane
was washed by PBST and incubated with goat anti-rabbit IgG
antibody (Diluted at 1:100000) or goat anti-mouse IgG antibody
(Diluted at 1:10000) for 2 h at room temperature. Proteins were
assessed by WesternBright ECL HRP substrate kit (Advansta,
171005-80, United States) in a chemiluminescence system
(CLiNX ChemiScope 6000 Touch, Shanghai, China).

Statistical Analysis
Statistical analysis was performed using GraphPad Prism
software (version 6, San Diego, CA). Data were presented as
mean ± SD. The paired t-test was carried out to compare the
difference of nephrin in urine before and after clinical treatment.
The χ2 test was used to compare the difference of mice
sensitization rate and the incidence of kidney impairment.
One-way ANOVA followed by Tukey’s or Bonferroni’s test
was applied to compare statistical differences between multiple
groups. P-value < 0.05 was considered statistically significant and
P-value < 0.01 was also displayed in the results.

RESULTS

Sensitization Rate and Occurrence of
Kidney Impairment in Mice
As shown in Table 1, a total of 42 mice with mild or severe skin
erythema and/or edema displayed a positive sensitization and the
overall sensitization rate (excluding blank control and vehicle
control group) was 35.0%. No visible skin lesions were found in
mice from blank control group and vehicle control group.
According to the cutaneous reaction and pharmacologic
pretreatment, mice were grouped as follows: blank control
group (n � 10), vehicle control group (n � 10), TCE
sensitization positive subgroup (TCEpos, n � 15) and TCE
sensitization negative subgroup (TCEneg, n � 25), TCE
sensitization positive subgroup with rapamycin (mTOR
inhibitor) pretreatment (RAPA + TCEpos, n � 14), TCE
sensitization negative subgroup with rapamycin pretreatment
(RAPA + TCEneg, n � 26), TCE sensitization positive
subgroup with Z-Phe-Tyr-CHO (cathepsin L inhibitor)
pretreatment (CTSLinh + TCEpos, n � 13), and TCE
sensitization negative subgroup with Z-Phe-Tyr-CHO
pretreatment (CTSLinh + TCEneg, n � 27).

H&E staining showed that 14 sensitization positive mice with
renal structural changes were found in TCE treatment group
whereas the number were dropped to 6 and 5 in RAPA + TCE
treatment group and CTSLinh + TCE treatment group,
respectively. The incidence of kidney damage in TCE
treatment group was significantly higher than RAPA + TCE

treatment group (15.0%) and CTSLinh + TCE treatment
group (12.5%). These results showed that inhibition of mTOR
and CTSL reduced TCE-induced sensitization, and suggest that
mTOR and CTSL are involved in TCE-induced skin sensitization.

TCE Sensitization Caused the Glomerular
Damage With Filtration Dysfunction
OMDT is a rare but severe disorder with a prevalence of less than
1% among TCE-exposed workers (Lin et al., 2019). Six OMDT
patients, including 2 females and 4 males, and 10 health controls
were recruited in our study. Increased levels of serum BUN, urine
albumin, and urine erythrocyte were found in several
participants. The baseline data and kidney damage–related
index was listed in Table 2.

In mice, H&E staining showed glomerular cell edema with or
without inflammatory cell infiltration in TCEpos group. In
contrast, no detectable structural changes were found in blank
control group, vehicle control group, and TCEneg group (Figures
1B–E). Compared to vehicle control group, the levels of both
BUN and Cre were increased in TCEpos group (p < 0.05),
whereas no significant differences were found among blank
control group, vehicle control group, and TCEneg group (p >
0.05) (Figures 1F,G). These data demonstrated TCE
sensitization-specific glomerular structural and functional
damage in both human and mouse model.

Podocyte Morphological Changes Involved
in TCE-Induced Glomerular Damage
To estimate the ultrastructural changes in podocytes,
transmission electron microscopy for mice was performed.
The observations showed a well-distributed glomerular
basement membrane and an orderly arranged foot process in
blank control group, vehicle control group, and TCEneg group.
However, podocyte hypertrophy with thickened glomerular
basement membrane and fusion of foot processes were found
in TCEpos group (Figure 2). In summary, these findings suggest
that podocyte damage occurred in TCE-induced glomerular
disorders.

Loss of Podocytes Occurred in OMDT
Patients and TCE-Sensitized Mice
To assess the loss of podocyte in OMDT, nephrin, a specific
marker of podocyte, was determined in urine before and after
clinical treatment. The levels of nephrin in urine were
significantly decreased after clinical treatment. Compared to
the healthy control, the level of nephrin in OMDT patients
before clinical treatment was increased and back to normal
range after clinical treatment (p < 0.05, Figure 3A). In mice,
podocytes were also lost in TCEpos group, presented as decreased
levels of nephrin (Figures 3B,E). These data suggest that loss of
podocytes contributes to the glomerular structure damage
in OMDT.

Of importance, integrin β1 and α-actinin-4 are the key
constitutive proteins of podocyte. Integrin β1 is a molecule for
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adhesion of podocytes to glomerular basement membrane and
α-actinin-4 is crucial to sustain the normal cytoskeleton of
podocyte. Therefore, we also measured the levels of integrin
β1 and α-actinin-4 in mice glomerulus by immunofluorescence
test with recorded fluorescence intensity in ImageJ software. Our
results revealed that the expression of both α-actinin-4 and
integrin β1 was decreased in glomerulus from TCEpos group
than vehicle control group (p < 0.05). No statistical differences
were found among blank control group, vehicle control group,
and TCEneg group (p > 0.05) (Figures 3C,D,F,G).

Glomerular Apoptosis Participated in
TCE-Induced Kidney Disorder
Considering that cell apoptosis was one of the common reasons of
podocyte hypertrophy and glomerular integrity damage (Priante

et al., 2019), we assessed the glomerular apoptosis by TUNEL
staining. The proportion of glomerular dead cells in TCEpos
group was significantly elevated compared with TCEneg group,
vehicle control group, and blank control group (both p < 0.05)
(Figure 4), suggesting increased cell death via apoptosis by TCE
sensitization.

To further evaluate the participation of glomerular
apoptosis, we tested the expression of Bax/Bcl-2/caspase-3,
which is widely recognized as an apoptosis pathway (Ma et al.,
2020). We showed that the pro-apoptotic molecules Bax and
caspase-3 were elevated whereas the anti-apoptotic molecule
Bcl-2 was decreased in TCEpos group compared with TCEneg
group (p < 0.05). No significant differences were found among
blank control, vehicle group, and TCEneg group (p > 0.05)
(Figure 5).

TABLE 2 | The baseline data of OMLDT patients in the present study.

Gender Ethnicities Age BMI Pre-
existing
renal

conditions

Comorbidities Latent
period
(days)

Renal
dysfunction

Case 1 Female Han 29 17.9 No No 38 NO
Case 2 Male Han 18 22.3 No No 32 NO
Case 3 Male Han 21 24.4 No No 37 NO
Case 4 Female Han 19 24.5 No No 30 YES (BUN 10.91)
Case 5 Male Han 22 28.4 No No 18 YES (BUN 9.7)
Case 6 Male Han 18 17.1 No No 27 YES (PRO +, BLD +)

BLD, urinary blood; BMI, body mass index; BUN, blood urea nitrogen (mmol/L); PRO, urinary protein.

FIGURE 2 | Podocyte morphological changes involved in TCE-induced glomerular damage. Representative observations in transmission electron microscopy
(n � 5 per group, magnification, × 15000) of mice glomerulus from blank control group (A), vehicle control group (B), TCEpos group (C), TCEneg group (D). White arrows
show podocyte hypertrophy with thickened glomerular basement membrane, fusion of foot processes in TCEpos group. Scale bars: 1 µm.
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Hyperactive mTORC1 Pathway Was
Involved in TCE-Induced Glomerular
Damage
The mouse glomeruli were isolated to evaluate the levels of
key phosphorylated (p-) proteins involved in the mTORC1
signaling activation. Compared to TCEneg group, the
relative expression of mTORC1 signaling molecules
including p-mTORC1 and downstream molecules p-
4EBP1 and p-p70S6K were increased in TCEpos group
(p < 0.05). No significant differences were observed
among the blank control group, vehicle control group,
and TCEneg group (p > 0.05) (Figure 6). These data
suggest that mTORC1 pathway was involved in TCE-
induced glomerular damage.

mTORC1 Pathway Inhibition Alleviated the
Glomerular Damage in TCE Sensitization
To explore the role of hyperactive mTOR signaling in mice,
rapamycin was applied by intraperitoneal injection (Figure 7A). As
shown in Figure 7, the process of mTORC1 phosphorylation was
completely blocked after rapamycin injection. The relative
expressions of downstream p-4EBP1 and p-p70S6K were also
decreased, confirmed by Western blot (Figure 7B). After
pharmacological inhibition of mTOR signaling, we found that
glomerular damage was improved dramatically in mice
(Figure 7C). The proportion of apoptotic glomerular cells and
the pro-apoptotic Bax and caspase-3 were decreased in RAPA +
TCEpos group compared with TCEpos group (p < 0.05) (Figures
7B,D). Collectively, these results suggest that hyperactive mTOR

FIGURE 3 | Loss of podocytes occurred in OMDT patients and TCE-sensitized mice. (A) Expression of urine nephrin before and after clinical treatment in OMDT
patients (n � 6). (B–D) Representative results of immunofluorescence test in mice (n � 5 per group). (B1–B4) Expression of nephrin in blank control group (B1), vehicle
control group (B2), TCEpos group (B3), and TCEneg group (B4). (C1–C4) Expression of integrin β1 in blank control group (C1), vehicle control group (C2), TCEpos
group (C3), and TCEneg group (C4). (D1–D4) Expression of α-actinin-4 in blank control group (D1), vehicle control group (D2), TCEpos group (D3), and TCEneg
group (D4). (E-G) The fluorescence intensity of nephrin, integrin β1, and α-actinin-4 calculated in Image J software. Data are presented asmean ± SD and determined by
paired t-test or one-way ANOVA, *p < 0.05, nsP>0.05; aP < 0.05, vs. blank control group; bP<0.05, vs. vehicle control group; cP<0.05, vs. TCEneg group.
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signaling contributes to glomerular cell death due to apoptosis
caused by TCE sensitization.

Cathepsin L–Mediated Hyperactive
mTORC1 Signaling in TCE-Induced
Glomerular Injury
To further investigate the possible regulator of mTOR signaling, we
focused on the lysosomal cysteine protease cathepsin L (CTSL),
which is a powerful proteolytic enzyme to regulate cell fate, including
apoptosis, autophagy, proliferation, and plays a key role inmetastasis
(Cocchiaro et al., 2017). In line with our previous studies, we found
an increase of CTSL expression in TCEpos group compared to
vehicle control group (p < 0.05), and the expression of CTSL was
mainly blocked in CTSLinh + TCEpos group (Figures 8A–D).

We located the CTSL expression in glomeruli via
immunofluorescence analysis with colocalization experiment.
Using podocin as a hallmark of podocyte, we identified that
CTSL was mainly expressed in podocyte (Figure 8C). Moreover,
we additionally applied CTSL inhibitor to mice and examined the
effect on mTOR activation (Figure 8A). We showed that p-mTOR
was downregulated in CTSLinh + TCEpos group compared with
TCEpos group (Figures 8E,F). These consistent results suggest that
CTSL acts as a key driver for hyperactive mTOR signaling in TCE-
induced glomerular damage.

DISCUSSION

TCE-induced immune kidney disorder is one of the most
common complications of OMDT. Although the fatality rate

of which is not more than hepatitis, it is closely related to the
severity of disease and associated with a poor prognosis (Wei
et al., 2008; Liu, 2009). Diffuse inflammation, renal dysfunction,
and positive urinary proteins are often manifested in the process
of TCE-induced renal damage (Liu, 2009; Xu et al., 2009). Liu
(2009) reported a case after exposure to TCE for about one month
with quick deterioration of renal function, displaying with a high
level of BUN 23.2 mmol/L, Cre 426.4 μmol/L, and uric acid
660.2 mmol/L. Furthermore, limb edema and oliguria are also
involved in some patients (Zhang et al., 2011). Consistently, our
previous studies also found an increase of various
proinflammatory cytokines, including TNF-α, IL-1β, IL-17,
and IL-6, in TCE-hypersensitivity induced kidney damage
(Wang et al., 2020; Yang et al., 2020). In this study, we
focused on mTOR signaling pathway in TCE-induced
inflammatory renal diseases. We measured the levels of urine
nephrin to assess the damage of glomerular structure integrity. As
expected, the levels of urine nephrin before clinical treatment
were higher than that of after clinical treatment, which suggests a
loss of nephrin from glomerulus and hence a damage of
glomerular structure integrity. Consistent with findings in
human cases, we also found glomerular proliferation and
swelling in morphology with increased serum levels of BUN
and Cre in TCE sensitization positive mice. Therefore, the above
observations both in patients and mice pointed out that the
normal structure and function of glomerulus are damaged to a
certain degree in the process of TCE sensitization.

Acting as the special type of glomerular components, podocyte
is a highly polarized epithelial cell with limited capacity to
proliferate (Nagata, 2016). The structural integrity of podocyte

FIGURE 4 | An increase proportion of dead cells in TCE-induced kidney glomerular damage (A) Representative photographs of TUNEL staining in blank control
group (A1), vehicle control group (A2), TCEpos group (A3), and TCEneg (A4). (B) The proportion of TUNEL staining positive cells in TCE-treated mice. Note: the brown
of nuclei indicates the positive staining. Data are presented as mean ± SD and determined by one-way ANOVA, aP < 0.05, vs. blank control group; bP<0.05, vs. vehicle
control group; cP<0.05, vs. TCEneg group.
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is essential in the formation of glomerular filtration barrier and
the healthy podocytes are required for the normal filtration
function (Torban et al., 2019). Loss of podocytes from
glomerular basement membrane presented as filtration
dysfunction and even proteinuria in various kidney disorders,
including diabetic nephropathy, lupus nephropathy,
membranous glomerulonephritis, glomerulosclerosis, and so
on (Sakhi et al., 2019). In TCE-induced glomerular disorders,
podocyte hypertrophy with thickened GBM, fusion of foot
processes was found under a transmission electron
microscope. Furthermore, we also found that a decline of

integrin β1 which is the transmembrane anchoring molecule
for podocyte adhesion to GBM (Perico et al., 2016; Sawada
et al., 2016) can likely be a reason for the loss of podocyte. A
decrease of α-actinin-4 which is a key molecule for maintain the
healthy cytoskeleton may explain the foot process fusion and
effacement. Collectively, decline of nephrin, α-actinin-4, and
integrin β1 may indicate that podocyte damage participates in
the renal dysfunction caused by TCE sensitization.

Furthermore, we also assessed apoptosis of glomerular cells in
TCE-induced glomerular damage. Bax and caspase-3 are known
to promote the apoptotic progression, whereas Bcl-2 works

FIGURE 5 | Activation of Bax/Bcl-2/caspase-3 pathway in TCE-induced glomerular damage. (A1–A4) Expression of proapoptotic molecule Bax; (B1–B4)
expression of anti-apoptotic molecule Bcl-2; (C1–C4) expression of proapoptotic molecule caspase-3 in blank control group, vehicle control group, TCEpos group, and
TCEneg group (n � 5 per group). (D)Western blot bands of Bax, Bcl-2, and caspase-3 in blank control group, vehicle control group, TCEpos group, and TCEneg group
(n � 3 per group). (E–G) Relative expression of Bax, Bcl-2, and caspase-3 calculated by gray values in image J software in above groups. Data are presented as
mean ± SD and determined by one-way ANOVA, aP < 0.05, vs. blank control group; bP<0.05, vs. vehicle control group; cP<0.05, vs. TCEneg group.
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FIGURE 6 |Hyperactive mTORC1 pathway was involved in TCE-induced glomerular damage. (A)Western blot bands of mTORC1 signaling molecules, mTORC1,
p-mTORC1, 4EBP1, p-4EBP1, p70S6K, and p-p70S6K, in blank control group, vehicle control group, TCEpos group, and TCEneg group (n � 3 per group) (B–D) The
relative expression of p-mTOR (B), p-4EBP1 (C), and p-p70S6K (D) calculated by gray values in ImageJ software in above groups. Data are presented as mean ± SD
and determined by one-way ANOVA, aP < 0.05, vs. blank control group; bP<0.05, vs. vehicle control group; cP<0.05, vs. TCEneg group.

FIGURE 7 |mTORC1 pathway inhibition alleviated the glomerular damage in TCE sensitization. (A)mTORC1 inhibitor (rapamycin, RAPA) was applied to mice by
intraperitoneal injection at 40 mg/kg 2 h before each challenge. (B) Phosphorylation process of mTOR signaling molecules were almost blocked and the proapoptotic
molecules Bax and caspase-3 were also declined in RAPA + TCEpos group according to western blot bands (n � 3 per group). (C) The pathological changes of glomeruli
were improved dramatically in mice from RAPA + TCEpos group. (D) The representative photograph of TUNEL staining showed less dead glomerular cells in RAPA
+ TCEpos group.
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conversely (Ma et al., 2020). The balance between the pro-
apoptotic Bax, caspase-3 and anti-apoptotic Bcl-2 determines
cell survival or death (Pal et al., 2016). We showed that the
proportion of both apoptotic glomerular cells and the pro-
apoptotic Bax and caspase-3 were increased in TCE positive
sensitized mice. Thus, these coherent data suggest that
glomerular apoptosis also contribute to the TCE-induced
kidney damage.

To uncover the molecular mechanism of podocyte damage and
glomerular apoptosis, we focused on mTORC1 signaling which
has proven to be critical in glomerular diseases via promoting
cellular growth and metabolism (Zschiedrich et al., 2017; Lei et al.,
2018). However, hyperactivated mTORC1 signaling was
considered to be the main causes of podocyte hypertrophy,
foot process fusion, and ultimately cell death (Puelles et al.,

2019). During activation of mTORC1 signaling, two
downstream molecules, p70S6K and 4EBP1, are phosphorylated
(Hall et al., 2018). In this study, the over-activation of mTORC1
signaling was evidenced by increased expression of p-mTOR,
p-p70S6K, and p-4EBP1. To further elucidate the role of
mTORC1 signaling in TCE-induced glomerular damage, we
applied rapamycin by intraperitoneal injection to TCE positive
sensitized mice. After rapamycin pretreatment, the hyperactive
mTORC1 signaling was effectively minimized in mice glomerulus.
Furthermore, we found that glomerular apoptosis and structural
destruction were also ameliorated after pharmacological
inhibition of hyperactive mTORC1 signaling. Collectively, we
identified that hyperactive mTORC1 signaling caused
glomerular damage and rapamycin reversed cell injuries in
TCE-induced glomerular damage.

FIGURE 8 | Cathepsin L (CTSL) mediated hyperactive mTORC1 signaling in TCE-induced glomerular injury. (A) CTSL inhibitor (CTSLinh) was applied to mice by
intraperitoneal injection at 10 mg/kg 2 h before each challenge. (B) The relative expression of CTSL mRNA in vehicle group, TCEpos group, and CTSLinh + TCEpos
group according to RT-PCR analysis (n � 4 per group). (C) The co-location of CTSL and podocin (a podocyte marker) in glomerulus of TCEpos group. (D) The expression
of CTSL confirmed by immunofluorescence test (n � 5 per group). (E) Western blot bands of mTORC1 and p-mTORC1 in vehicle control group, TCEpos group,
and CTSLinh + TCEpos group (n � 3 per group). (F) The relative expression of p-mTOR calculated by gray values in ImageJ software. Data are presented as mean ± SD
and determined by one-way ANOVA, *p < 0.05.

Frontiers in Pharmacology | www.frontiersin.org July 2021 | Volume 12 | Article 63987811

Wang et al. mTOR Signaling in TCE-Induced Glomerular Damage

87

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Furthermore, we explored the possible upstream driver of
mTORC1 signaling in TCE-induced glomerular damage. Studies
have shown that CTSL could cleave the key elements of normal
podocyte architecture and cause podocyte reorganization, foot
process effacement, and even proteinuria (Reiser et al., 2010). In
addition, a role of CTSL in regulation of mTORC1 signaling
activation via cleaving intracellular complement 3 has been
reported (Satyam et al., 2017). Our previous studies have also
found that over-expressed CTSL could aggravate kidney damage
via activating intracellular complement system and inducing
endothelin-1 signaling to promote the release of inflammatory
cytokines (Wang et al., 2020; Yang et al., 2020). In this study, we
further located CTSL to podocyte and investigated whether over-
expressed CTSL played a role in mTORC1-mediated glomerular
damage. We found that a downregulation of mTOR
phosphorylation after CTSL inhibitor pretreatment. Therefore,
these results suggest that CTSL could be a driver for hyperactive
mTORC1 signaling in TCE-induced glomerular damage.

However, there are some limitations in the present study. First,
only 6 OMDT cases were enrolled in the present study due to the
fact that OMDT is a rare but life-threatening disorder with a
prevalence of less than 1% among TCE-exposed workers and the
overall incidence was less than 1 case/million adults/year (Lin
et al., 2019). Second, only female mice were used to establish the
mouse model of TCE skin sensitization. Two main reasons were
considered. On the one hand, there is no evidence of sex-based
differences in TCE-sensitized workers, and both male and female
exposure workers are susceptible to TCE sensitization. On the
other hand, female mice have been shown to exhibit more
consistent pronounced inflammatory response than male mice
with elevated levels of CD4+ T-cells and relevant
proinflammatory cytokine, and thereby are more widely used
in animal models of allergic diseases, like asthma, atopic
dermatitis, and allergic rhinitis (Melgert et al., 2005). Third,
no in vitro sensitization experiment was performed, as how to
maintain the in situ environment of TCE sensitization in vitro is
unresolved. Finally, the mouse model of TCE sensitization is an
appropriate substitute of guinea pig maximization test (GPMT),
which is a classical method for evaluating skin sensitization by
various chemicals including TCE, but it’s not widely used due to
lack of relevant antibodies and reagents for guinea pigs.

In conclusion, our results highlight that glomerular damage
involved in TCE-induced immune kidney disorder in which

hyperactive mTORC1 signaling contributed to podocyte loss,
hypertrophy, and glomerular apoptosis in TCE-induced
glomerular injuries. Furthermore, our data identify a role of
CTSL in the regulation of over-activated mTORC1 signaling
in TCE sensitization positive mice and the associate
glomerular damage.
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Dual sEH/COX-2 Inhibition Using
PTUPB—A Promising Approach to
Antiangiogenesis-Induced
Nephrotoxicity
Wojciech K. Jankiewicz1*†, Scott D. Barnett 1†, Anna Stavniichuk1†, Sung Hee Hwang2†,
Bruce D. Hammock2†, Jawad B. Belayet3†, A. H. Khan1 and John D. Imig1†*

1Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States, 2Department of
Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States,
3Department of Chemistry and Biochemistry, University of Wisconsin Milwaukee, Milwaukee, WI, United States

Kidney injury from antiangiogenic chemotherapy is a significant clinical challenge, and we
currently lack the ability to effectively treat it with pharmacological agents. Thus, we set out to
investigate whether simultaneous soluble epoxide hydrolase (sEH) and cyclooxygenase-2
(COX-2) inhibition using a dual sEH/COX-2 inhibitor PTUPB could be an effective strategy
for treating antiangiogenic therapy-induced kidney damage. We used a multikinase inhibitor,
sorafenib, which is known to cause serious renal side effects. The drug was administered to
male Sprague–Dawley rats that were on a high-salt diet. Sorafenib was administered over the
course of 56 days. The study included three experimental groups; 1) control group (naïve rats), 2)
sorafenib group [rats treatedwith sorafenib only (20mg/kg/day p.o.)], and 3) sorafenib + PTUPB
group (rats treated with sorafenib only for the initial 28 days and subsequently coadministered
PTUPB (10mg/kg/day i.p.) from days 28 through 56). Blood pressure was measured every
2weeks. After 28 days, sorafenib-treated rats developed hypertension (161± 4mmHg). Over
the remainder of the study, sorafenib treatment resulted in a further elevation in blood pressure
through day 56 (200± 7mmHg). PTUPB treatment attenuated the sorafenib-induced blood
pressure elevation and by day 56, blood pressure was 159± 4mmHg. Urine was collected
every 2weeks for biochemical analysis. After 28 days, sorafenib rats developed pronounced
proteinuria (9.7± 0.2 P/C), which intensified significantly (35.8 ± 3.5 P/C) by the end of day 56
compared with control (2.6± 0.4 P/C). PTUPB mitigated sorafenib-induced proteinuria, and by
day 56, it reduced proteinuria by 73%. Plasma and kidney tissues were collected on day 56.
Kidney histopathology revealed intratubular cast formation, interstitial fibrosis, glomerular injury,
and glomerular nephrin loss at day 56 in sorafenib-treated rats. PTUPB treatment reduced
histological features by 30%–70% compared with the sorafenib-treated group and restored
glomerular nephrin levels. Furthermore, PTUPBalso acted on the glomerular permeability barrier
by decreasing angiotensin-II-induced glomerular permeability to albumin. Finally, PTUPB
improved in vitro the viability of human mesangial cells. Collectively, our data demonstrate
the potential of using PTUPB or dual sEH/COX-2 inhibition as a therapeutic strategy against
sorafenib-induced glomerular nephrotoxicity.

Keywords: cyclooxygenase (COX), soluble epoxide hydrolase (sEH), vascular endothelial growth factor,
nephrotoxicity, kidney injury, glomerular injury, eicosanoids, multitarget drugs
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INTRODUCTION

Antiangiogenic drugs are widely used in cancer treatment. They
block neovascularization of tumors and, thus, prevent tumor
growth. Vascular endothelial growth factor (VEGF) tyrosine
kinase inhibitors (TKIs) are a major class of these drugs. They
are used to treat malignant neoplasms and, more recently, age-
related neovascular macular degeneration, which is an irreversible
eye disease leading to blindness (Apte et al., 2019). VEGF TKIs
comprise a wide class of compounds: sorafenib, regorafenib,
axitinib, cabozantinib, lenvatinib, nintedanib, pazopanib,
sunitinib, and vandetanib. To date, the FDA has approved
sorafenib for three indications: treatment of advanced renal cell
carcinoma (approved in 2005), treatment of inoperable
hepatocellular carcinoma (approved in 2007), and treatment of
metastatic differentiated thyroid cancer (approved in 2013) (White
and Cohen, 2015). Sorafenib inhibits angiogenesis by targeting
c-Kit, FLT-3, VEGFR-2, VEGFR-3, and PDGFR-β, and inhibits
proliferation through targeting Raf-1, B-Raf, and Ras/Raf/MEK/
ERK (Zhu et al., 2017). VEGF TKIs are used alone or in
combination therapy with immune checkpoint inhibitors (Rassy
et al., 2020). With around 400,000 cases of renal cell carcinoma,
500,000 cases of hepatocellular carcinoma, and 500,000 cases of
thyroid cancer diagnosed each year, to date, sorafenib has
potentially saved thousands of lives (Bray et al., 2018).

Unfortunately, VEGF TKIs come with severe limitations in the
form of hypertension, proteinuria, and renal injury (Humphreys
and Atkins, 2009; Jhaveri et al., 2011; Estrada et al., 2019;
Versmissen et al., 2019; Neves et al., 2020). Current guidelines
involve monitoring and management of the side effects including
blood pressure medications to lower hypertension (Versmissen
et al., 2019). Renal injury from VEGF TKIs includes glomerular
barrier breakdown, mesangiolysis, and thrombotic
microangiography (Kelly et al., 2009; Overkleeft et al., 2009;
Estrada et al., 2019). These are serious problems because
kidney damage can force discontinuation of an otherwise
effective anticancer therapy as glomerular injury can progress
to chronic kidney disease or life-threatening end-stage renal
disease (Venkatachalam et al., 2010). Importantly, there are no
pharmacological means that could help protect the kidneys from
the injury. A strong need exists for a pharmacological agent that
could diminish kidney injury that is caused by VEGF TKIs. We
propose that dual soluble epoxide hydrolase (sEH)/
cyclooxygenase-2 (COX-2) inhibition can protect the kidneys
from VEGF-TKI-induced damage by decreasing glomerular
damage.

PTUPB is a dual sEH/COX-2 inhibitor, which acts to increase
epoxyeicosatrienoic acids and decrease COX-2 inflammatory
prostanoids (Cheng et al., 2002; Hye Khan et al., 2016; Sun
et al., 2020). sEH inhibition lowers blood pressure, decreases
inflammation, and can combat glomerular and kidney injury (Yu
et al., 2000; Imig, 2012; Kim et al., 2014; Liu, 2019; Jiang et al.,
2020). COX-2 is involved in the production of inflammatory
prostanoids, and its inhibition is known to decrease kidney injury
(Cheng et al., 2002; Fujihara et al., 2003; Harris, 2013). Earlier
studies have shown PTUPB to highly selectively inhibit COX-2
over COX-1 (Hwang et al., 2011).

Our lab has previously shown that PTUPB can mitigate kidney
injury in a rat model of diabetic nephropathy (Hye Khan et al.,
2016). Other studies have shown that PTUPB can reduce
inflammation, oxidative stress, and cell senescence (Dileepan
et al., 2019; Sun et al., 2020; Zhang et al., 2020). PTUPB has
also been reported to improve nonalcoholic fatty liver disease, at
least in part, through inhibiting inflammation (Sun et al., 2020).
Previous work also indicates that PTUPB can prevent cisplatin-,
carboplatin-, and paclitaxel-induced cytokine and eicosanoid storm
and suppress debris-stimulated ovarian tumor growth (Zhang et al.,
2020). Emerging evidence also suggests that PTUPB has antitumor
activity and can potentiate tumor cytotoxicity of other drugs (Li
et al., 2017;Wang et al., 2018). In the current study, we demonstrate
that interventional PTUPB treatment can protect the kidney from
sorafenib-induced nephrotoxicity.

MATERIALS AND METHODS

Chemicals
The chemistry and synthesis process of dual COX-2/sEH
inhibitor, 4-(5-phenyl-3-{3-[3-(4-trifluoromethylphenyl)-
ureido]-propyl}-pyrazol-1-yl)-benzenesulfonamide (PTUPB)
was described earlier (Hwang et al., 2011). Sorafenib was
obtained from LC Laboratories (Woburn, MA, USA). Unless
otherwise stated, all chemicals used in this study were obtained
from Sigma Aldrich (St. Louis, MO, USA).

Animal study
This study was approved and carried out according to the
guidelines of the Medical College of Wisconsin Institutional
Animal Care and Use Committee. The Biomedical Resource
Center at the Medical College of Wisconsin housed animals
with free access to water and food under a 12/12 h light–dark
cycle. Male Sprague–Dawley rats (8–10 weeks old) were
purchased from Charles River Laboratories, Spokane, IL, USA.
The study comprised three treatment groups: control group,
sorafenib group, and sorafenib + PTUPB group (Figure 1A,
n � 8 rats/group). Rats were acclimated to blood pressure
measurements over the course of 7 days prior to the
commencement of the study. The animals were placed on a
high-salt diet (8% NaCl) (TD.92012, Envigo, Madison, WI,
USA). Systolic blood pressure was measured on days 0, 14, 28,
42, and 56 using a tail cuff system (IITC Life Science, Woodland
Hills, CA, USA). Sorafenib was orally administered to the
sorafenib and sorafenib + PTUPB groups at a dose of
20 mg/kg/day. PTUPB was coadministered in the
sorafenib + PTUPB group at a dose of 10 mg/kg/day from day
28 through 56 through an intraperitoneal osmotic pump
(ALZET® osmotic pump, DURECT Corporation, Cupertino,
CA, USA). Urine samples were collected using metabolic cages
on days 0, 28, and 56. On day 56, animals were euthanized; blood
and kidney samples were obtained. Kidney samples for
histological and immunohistochemical studies were fixed in
10% buffered formalin and stored at room temperature.
Kidney tissue samples for gene expression analysis were snap
frozen in liquid nitrogen and stored at −80°C.
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Real-time polymerase chain reaction
MRNA expression of Ephx2, Cox-2, ZEB1, TWIST, and α-SMA
was determined by real-time polymerase chain reaction (RT-
PCR). Samples were homogenized using TissueLyser II (Qiagen,
Redwood City, CA, USA). RNA was extracted from sample
homogenates using the RNeasy Mini Kit (Qiagen, Redwood
City, CA, USA) according to the protocol of the manufacturer.
The RNA samples were quantified spectrophotometrically with a
NanoDrop, and 1 μg of total RNA was reverse transcribed to
cDNA using iScript™ Select cDNA Synthesis Kit (Bio-Rad,
Hercules, CA, USA). Gene expression was quantified by
iScript One-Step RT-PCR Kit with SYBR green using the
MyiQ™ Single Color RT-PCR Detection System (Bio-Rad
Laboratories, Hercules, CA, USA). Dissociation curve analysis
was performed with iQ5 Optical System Software, Version 2.1
(Bio-Rad Laboratories, Hercules, CA, USA). Each amplified
sample was analyzed for homogeneity. Samples were
denatured at 95°C for 2 min. Next, the PCR was performed
using a protocol of 40 cycles at 95°C for 10 s and at 60°C for
30 s. Samples were run in triplicate. Gene expression fold changes
were compared with controls determined by the comparative
threshold cycle (Ct) method. Target gene expression levels were
determined by normalizing Ct values to housekeeping genes.
Statistical analyses were carried out using six samples from each
experimental group and comparing with the control group.

Histology
Renal tissues were fixed in 10% formalin, sectioned at 5-μm
thickness, mounted on slides, and stained with periodic acid-
Schiff (PAS) (Acros Organics, Fairlawn, NJ, USA) or picrosirius
red (PSR) (Alfa Aesar, Tewksbury, MA, USA). PAS-stained renal
sections were evaluated for the presence of tubular casts. PSR-
stained renal sections were evaluated for collagen-positive renal
interstitial fibrotic changes and expressed as percent area relative
to the total area analyzed. Glomerular injury was blindly scored
on kidney sections stained with PAS staining using the following
numeric scale: 0 � no damage; +1 � very mild; +2 � mild; +3 �
moderate and +4 � severe. All analyses were conducted by two

observers in a blinded fashion for histological examination at
×200 magnification using NIS Elements AR version 3.0 imaging
software (Nikon Instruments Inc., Melville, NY, USA).

Immunofluorescence
Kidney slides were deparaffinized and rehydrated followed by
overnight incubation with an anti-nephrin antibody (1:100; Santa
Cruz Biotechnology, Inc., Dallas, TX, USA) to determine renal
expression of nephrin. Donkey anti-rabbit IgG H&L (Alexa
Fluor® 488) secondary antibody (1:200; Abcam, Cambridge,
MA, USA) was used for development with fluorescence
quenching liquid (Vector Laboratories, Burlingame, CA, USA).
Stained histological sections were examined with a Nikon 55i
microscope at ×200 magnification with fluorescent excitation,
and images were analyzed using Nikon NIS Elements Software
(Nikon Instruments Inc., Melville, NY, USA). Positively stained
areas specific for the target protein used were expressed as percent
area relative to total area analyzed. Analyses were carried out by
two observers blinded to sample identity.

Glomerular permeability
Glomeruli were isolated from adult male Sprague–Dawley rats,
and the experiment was performed following a previously
described protocol (Ilatovskaya et al., 2017). First, to label the
inside of the glomeruli, kidneys were perfused through the
femoral vein with an FTIC–dextran solution (150-kDa
FTIC–dextran in 0.9% NaCl) (TdB Consultancy AB, Uppsala,
Sweden) and isolated. The following steps were performed on ice:
The kidney cortex was separated from the medulla and cut into 1-
mm3 cubes. Next, the glomeruli were separated by differential
sieving (sieve nos. 100, 150, and 200). Sieve no. 200 was used to
capture the glomeruli. The isolated glomeruli were stored in a 5%
BSA–TRITC–dextran solution (150-kDa TRITC–dextran and 5%
BSA in RMPI) (TdB Consultancy AB, Uppsala, Sweden) and
stored on ice for immediate use in experiments. The isolated
glomeruli were incubated with angiotensin II (002-12, Phoenix
Pharmaceuticals) for 30 min, and co-incubated with angiotensin
II and PTUPB for 30 min. Under experimental conditions, the 5%

FIGURE 1 | Overview. Timeline showing the experimental design (A). Expression of soluble epoxide hydrolase enzyme (Ephx2) and cycolooxygenase-2 (COX-2)
sorafenib treatment (B). (n � 4–6 rats/group, Dots represent the average of duplicate measures for each individual rat. ns p > 0.05, ***p ≤ 0.001 determined by Student’s
t-test. Data are reported as box and whisker plots with median, minimum to maximum, and 10 to 90 percentiles.
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BSA bath solution was exchanged for a 1% BSA solution, and a
change in glomerular volume occurred due to the oncotic
gradient. Glomerular volume changes were monitored using the
Nikon A1R+ (Nikon Instruments Inc., Melville, NY, USA) and
calculated from z-stack reconstructions using the Fiji image
analysis software (ImageJ 1.52s, National Institute of Health, MD,
USA) (Schindelin et al., 2012). The relative change in volume, {ΔV �
[(Vfinal − Vinitial)/Vinitial] * 100}, can be compared with control values
to obtain the ratio of the oncotic force exerted by that solute to its
theoretical oncotic force, which is called the reflection coefficient
(σalb � ΔVexperimental/ΔVcontrol). From here a conventional
permeability value is obtained (Palb � 1 − σalb) for which a value
of “1” denotes complete permeability of albumin, and a value of “0”
signifies no permeability of albumin relative to the control.

Cell culture
Human renal mesangial cells (4200, ScienCell, Carlsbad, CA,
USA) were cultured at 37°C (in 5% CO2) in RPMI 1640 medium
(Gibco™, LS11875093) containing 10% FBS, 100 U/ml of
penicillin, and 0.1 mg/ml of streptomycin. The cells were
subcultured following the protocol of the manufacturer.
Human prostate cancer cells (DU145) (HTB-81, ATCC,
Manassas, VA, USA) were cultured at 37°C (in 5% CO2) in
Eagle’s minimum essential medium (EMEM) (0-2003, ATCC,
Manassas, VA, USA) containing 100 U/ml of penicillin and
0.1 mg/ml of streptomycin. The cells were subcultured per the
protocol of the manufacturer.

Cell viability
Human renal mesangial cells or human prostate cancer cells were
plated in a 96-well TPP plate and allowed to adhere. Mesangial
cells were serum starved for 24 h prior to treatment. The cells
were pretreated with PTUPB and incubated for 1 h. Next,
sorafenib was added, and the cells were incubated for 48 h. At
the end, cell viability was determined using an MTT assay
(ab211091, Abcam, Cambridge, MA, USA). The experimental
media were aspirated, and the cells were incubated in an MTT
reagent solution for 3 h (50 μl of the MTT reagent in 50 μl of FBS-
free culture media per well). Next, the MTT reagent solution was
aspirated, and the cells were solubilized. The plate was placed on
an orbital shaker and mixed at a high setting for 30 min.
Absorbance was read using the FLUOstar Omega spectrometer
(BMG Labtech Inc., Cary, NC, USA) at 590 nm.

Proliferation
Mesangial cell proliferation was determined by live cell imaging.
Mesangial cells were seeded at 7,500 cells per well in a 96-well
TPP plate, allowed to adhere, treated with sorafenib, and imaged
over 48 h using an Incucyte system (Sartorius, Göttingen,
Germany) configured with a ×4 objective. Cell confluency was
calculated as percent area and expressed as fold change relative to
the initial confluency at hour 0 using the Fiji image analysis
software (ImageJ 1.52s, National Institute of Health, MD, USA).

Apoptosis
Mesangial cells were seeded on glass coverslips in a 24-well plate
and grown to 80%–90% confluency and subsequently treated

with sorafenib and/or PTUPB and incubated over 24 h. Apoptosis
was measured using the TUNEL assay (C10245, Thermofisher,
Waltham, MA, USA) per the instructions of the manufacturer.
Cell nuclei were stained using the Hoechst 33342 nuclear dye (1:
5,000) provided with the kit. Stained coverslips were visualized at
a ×200 magnification with a fluorescence microscope. The
analysis was carried out using the Fiji image analysis software
(ImageJ 1.52s, National Institute of Health, MD, USA). Total
fluorescent signal was measured relative to the number of cells in
a field of vision. Analysis was carried out by two observers blinded
to the sample identity.

Statistical analysis
All data are expressed as mean values. GraphPad Prism® Version
4.0 software was utilized to conduct a one-way ANOVA followed
by Tukey’s post-hoc test to establish statistical significance
between the groups (GraphPad Software Inc., La Jolla, CA,
USA). Two-tailed unpaired Student’s t-test was applied to
determine statistical significance between groups. Value of
p ≤ 0.05 were considered significant.

RESULTS

Sorafenib treatment upregulated soluble
epoxide hydrolase and cyclooxygenase-2
expression in the kidneys
After 56 days of treatment, sorafenib resulted in an upregulation
of mRNA expression of two enzymes metabolizing arachidonic
acid metabolites in the kidneys: the soluble epoxide hydrolase
enzyme (Ephx2) was upregulated 1.9-fold, and the
cycolooxygenase-2 enzyme (COX-2) was upregulated 3.2-fold.
(Figure 1B).

PTUPB mitigated the blood pressure
elevation and progression of proteinuria
To monitor the overall disease progression and impact on
kidney and cardiovascular health, we collected urine samples
and measured the blood pressure at designated time points
throughout the study. At the outset, the average blood pressure
in all three groups was 114 ± 4 mmHg. After the sorafenib
treatment started, the blood pressure in the sorafenib-treated
and control animals begun to diverge. Halfway into the study
(day 28), the blood pressures in the animals that received
sorafenib increased by 48 mmHg compared with those of the
control group (Figure 2A). PTUPB treatment began on day 28
(Figure 1A). Throughout the remainder of the study, the blood
pressure of the animals that were being treated with sorafenib
alone continued to increase and ultimately rose by an additional
39 mmHg (day 56). In contrast, blood pressure in the animals of
the sorafenib + PTUPB group was decreased by 7 mmHg
(Figure 2A).

Urinary protein excretion followed a similar trend. At the
beginning protein excretion was low in all animals. Over the
course of the study, protein excretion in the control group

Frontiers in Pharmacology | www.frontiersin.org December 2021 | Volume 12 | Article 7447764

Jankiewicz et al. PTUPB Mitigates Antiangiogenesis-Induced Nephrotoxicity

93

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


remained relatively steady. However, the sorafenib-treated
animals showed a different trend. On day 28, their urinary
protein levels were 4.9-fold higher than the control group. On
day 56, animals that received sorafenib alone showed
pronounced proteinuria, with urinary protein levels that are
13.9-fold higher than the control group. In contrast, the urinary
protein levels in animals that had been cotreated with PTUPB
were 73% lower. The data show that the intervention with
PTUPB could reverse the progression of sorafenib-induced
proteinuria (Figure 2B).

PTUPB mitigated the progression of renal
fibrosis and tubular injury
Tubulopathies appear with kidney injury and indicate disease
progression. We assessed the extent of tubular cast formation in
the renal cortex and medulla. In general, we found significant
amounts of tubular casts after 56 days of sorafenib
administration. However, tubular casts covered a significantly
lower percent area in the sections of PTUPB-treated animals. We
have assessed these changes separately in the cortex and medulla
portions of the sections. Although cortical casts were not yet fully
evident by day 28 of sorafenib treatment, the beginnings of their
formation were visible. After 56 days of sorafenib administration,
cortical casts were increased by 21.7-fold compared with the
control group. This increase was successfully mitigated by
cotreatment with PTUPB, which reduced the cortical casts by
62% compared with the sorafenib group (Figure 3A). Similarly,
medullary casts were increased by 6.2-fold after 28 days of
sorafenib administration, and by 10.5-fold after 56 days.
PTUPB cotreatment lowered the cortical and medullary cast
areas by 39% and 64%, respectively (Figure 3B).

We next studied the impact of sorafenib and PTUPB on
renal fibrosis. Kidney sections were stained with picrosirius
ped (PSR) to visualize collagen-positive areas. Kidney fibrotic
changes were increased by 9.7-fold after 28 days, and 25.5-fold
after 56 days of sorafenib administration. Cotreatment with
PTUPB decreased fibrosis by 69% with respect to day 28, and
by 88% with respect to day 56; this suggests that PTUPB
stopped, or may have even reversed, fibrosis progression
(Figure 4B). These fibrotic changes were reflected in
epithelial-to-mesenchymal transition (EMT) marker mRNA
expression levels. Sorafenib increased ZEB1 expression by
44.1-fold, TWIST expression by 4.6-fold, and α-SMA by
2.1-fold over the control. In contrast, PTUPB treatment
reduced ZEB1 expression by 63%, TWIST expression by
93%, and α-SMA expression by 48% compared with the
sorafenib group (on day 56). (Figure 4A).

PTUPB mitigated glomerular injury
The extent of glomerular injury was histologically assessed and
scored on a 1–4 scale, where a higher number denotes a greater
extent of renal injury. After 56 days, the glomerular injury in the
sorafenib group was increased by 5.7-fold, which was decreased
by cotreatment with PTUPB by 33% (Figures 5A, B). We next
determined whether our treatments affected nephrin level
changes, as nephrin is a key protein necessary for glomerular
health. On day 56, nephrin levels were decreased in the sorafenib
group by 73%, and PTUPB cotreatment resulted in a 2.8-fold
improvement (Figures 5C, D).

To see if PTUPB can protect the glomerular filtration barrier
itself, we tested its impact on the permeability of isolated
glomeruli to albumin in vitro. Glomeruli were preincubated
with PTUPB, and glomerular permeability was increased with

FIGURE 2 | Blood pressure and proteinuria. Hypertension developed in the sorafenib-treated animals (blue trace); the rise in blood pressure was mitigated by 4-(5-
phenyl-3-{3-[3-(4-trifluoromethylphenyl)-ureido]-propyl}-pyrazol-1-yl)-benzenesulfonamide (PTUPB) coadministration (orange trace) (A). Proteinuria developed in the
sorafenib group (blue trace), which wasmitigated by PTUPB (orange trace) (B). The horizontal line marks when PTUPB started being coadministered alongside sorafenib
in the PTUPB group (n � 4–8 rats/group, average at each time point represents duplicate measures for each individual rat, ns p > 0.05, *p ≤ 0.05, **p ≤ 0.01
determined by ANOVA followed by the Tukey post-hoc test). Data are reported as connected scatterplots with SEM.
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angiotensin II. PTUPB reduced the angiotensin-II-induced
glomerular permeability by 51%, which shows that PTUPB
can protect the glomerular filtration barrier (Figure 5E). Next,
we studied whether PTUPB can impact mesangial cell viability
since mesangial cell death, mesangiolysis, is a common feature
seen with sorafenib nephrotoxicity. We wanted to test if PTUPB
could protect against sorafenib-induced mesangial cytotoxicity.
We found that after 48 h, sorafenib decreased mesangial viability
by 24% compared with the control, and coincubation with

PTUPB increased their viability by 1.4-fold, restoring it back
to control levels (Figure 5F). Finally, we evaluated the
contribution of apoptosis to sorafenib-induced mesangial
cytotoxicity. We confirmed that sorafenib is cytotoxic to
cultured mesangial cells (Figure 6A) and determined that
sorafenib induced apoptosis in mesangial cells, with the
highest dose, 10 μM, increasing apoptotic signal by 3.9-fold
(Figure 6B). PTUPB lowered sorafenib-induced mesangial cell
apoptosis by 69% (Figures 7A, B). These findings demonstrate

FIGURE 3 | Tubular injury. Sorafenib induced and PTUPB mitigated intratubular cast formation in the cortex (A). Representative images of cortical casts [periodic
acid-Schiff (PAS) staining]. Arrowheads point to cast areas. (B) Sorafenib induced and PTUPB mitigated intratubular cast formation in the medulla (C). Representative
images of cortical casts (PAS staining). Arrowheads point to cast areas. (D) (n � 6 rats/group. Dots represent the average of duplicate measures for each individual rat.,
ns p > 0.05, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001 determined by ANOVA followed by the Tukey post-hoc test. Data are reported as box and whisker
plots with median, minimum to maximum, and 10 to 90 percentiles.
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direct PTUPB actions at the level of the glomerulus and the
mesangial cell to combat sorafenib-induced nephrotoxicity.

PTUPB does not impair the antitumor
activity of sorafenib
Finally, we tested whether in combination, PTUPB would
interfere with the antitumor activity of sorafenib. To answer
this question, human prostate cancer cells were cotreated with
sorafenib and PTUPB together. We found that in the 1- to 10-μM
range, PTUPB did not adversely affect the antitumor activity of
sorafenib (Figure 8B).

DISCUSSION

Antiangiogenic chemotherapeutics have become a major class of
drugs deployed for the treatment of solid tumors (neoplasms).
They inhibit the VEGF signaling pathway and neovascularization
of tumors, which prevents the blood supply to a tumor, thus,
limiting tumor growth (Grothey and Galanis, 2009). Despite their
effectiveness as tumor-combating agents, VEGF TKIs can exert a
range of adverse effects on cardiovascular and kidney health
(Kappers et al., 2009; Perazella, 2012; Estrada et al., 2019; Neves
et al., 2020; Dobbin et al., 2021). In the present study, sorafenib
caused elevation of kidney sEH and COX-2 enzymes. Previous

findings have demonstrated that sEH and COX-2 induction has
been linked to inflammation and kidney injury (Imig, 2006).
Thus, dual inhibition of sEH and COX-2 enzymes with PTUPB
could offer a successful treatment approach. Our findings
affirmed it. We found that PTUPB mitigates hypertension in
sorafenib-treated animals. The present finding fits the current
understanding that sEH inhibition can lower blood pressure
(Zhang et al., 2020). This is important as the overall
hypertension incidence in patients who receive sorafenib
ranges from 6% to 43%, which is a significant clinical
limitation for this class of drugs (Wu et al., 2008; Chang et al.,
2017; Caletti et al., 2018; Plummer et al., 2019).

Kidney injury is a further complication of VEGF TKI
chemotherpy (Izzedine et al., 2010). We found that sorafenib
caused extensive proteinuria, and PTUPB successfully mitigated
its development, keeping urinary protein levels comparable with
those of the control group. Patients who receive sorafenib are at
risk for developing proteinuria; a meta-analysis showed that the
overall incidence of proteinuria in patients on anti-VEGF therapy
is 63% including 6.3% for those treated for renal small cell
carcinoma (Izzedine et al., 2010). A meta-analysis showed 12%
overall incidence in all grades of proteinuria with sorafenib
(Zhang et al., 2014a). Evidence suggests that sEH and COX-2
induction is intimated in inflammation and kidney injury (Imig,
2006; Liu, 2019). Consequently, a genome-wide associate study of
406 subjects found that an sEH polymorphism lowering sEH

FIGURE 4 | Fibrosis. Fibrotic changes developed in the medulla of sorafenib-treated animals. PTUPB reversed fibrosis progression (A). Representative images of
fibrotic changes [picrosirius red (PSR) staining]. Arrowheads point to fibrotic areas. (B) Sorafenib treatment elevated ZEB-1 and TWIST-1 (EMT markers) as well as
α-SMA (myofibroblast marker). PTUPB mitigated the increase in those markers (C). n � 4–6 rats/group. Dots represent the average of duplicate measures for each
individual rat. ns p > 0.05, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001 determined by ANOVA followed by the Tukey post-hoc test. Data are reported as box
and whisker plots with median, minimum to maximum, and 10 to 90 percentiles.
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activity was associated with better outcomes in diabetic
nephropathy (Ma et al., 2018). A similar study reported that
sEH deletion has been found to mitigate kidney injury caused by
streptozotocin in diabetic mice and lessen kidney injury in
DOCA-salt hypertension (Manhiani et al., 2009; Elmarakby
et al., 2011). At the same time, COX-2 overexpression
predisposes podocytes, a major cell type of the glomerular
filtration barrier, to mechanical stress injury (Cheng et al.,
2007). In addition to targeting VEGF signaling, sorafenib also
inhibits sEH (Hwang et al., 2013). However, sorafenib
nephrotoxicity persists and is likely due to VEGF signaling
actions prevailing at the level of the glomerulus in addition to
the increase in kidney COX-2 expression. This suggests that
further inhibition of sEH combined with COX-2 inhibition
could be beneficial. Indeed, combined sEH and COX-2
inhibition with PTUPB decreased sorafenib-induced
nephrotoxicity. Our present finding is consistent with the
previous studies using Zucker diabetic rats, where PTUPB was
also found to decrease kidney injury and proteinuria (Hye Khan
et al., 2016; Khan et al., 2021).

Kidney injury can further manifest in tubular damage
(tubulopathies). We found that PTUPB effectively decreased
tubular injury both in the renal cortex and medulla. A
common manifestation of various kinds of kidney injury is
fibrosis, and VEGF inhibition has been found to exacerbate
fibrosis in other organ systems such as the lungs (Partovian
et al., 2000; Tuleta and Frangogiannis, 2021). We found that
PTUPB halted the progression of renal fibrosis caused by
sorafenib. Furthermore, the extent of fibrotic damage was less
than at the outset of the treatment (day 28), which suggests that
PTUPB may have reversed some of the fibrotic damage. This is
also consistent with our previous work in the diabetic
nephropathy model where we found that an 8-week treatment
with PTUPB decreased fibrosis in Zucker diabetic rats and
lowered it to control levels (Hye Khan et al., 2016). The effects
of PTUPB on tissue fibrosis have been studied in the context of
pulmonary fibrosis and non-alcoholic fatty liver disease. Zhang
et al. (2020) found that PTUPB pretreatment decreased fibrosis in
the lungs of bleomycin-treated mice. Remarkably, PTUPB was
effective for treating fibrosis even when introduced at a stage

FIGURE 5 |Glomerular injury. Glomerular injury resulted from sorafenib-treatment (blue bar). PTUPB cotreatment improved glomerular histological features (orange
bar) (A). Representative images of fibrotic changes (PAS staining) (B). Nephrin loss was evident in sorafenib-treated glomeruli (blue bar). PTUPB mitigated nephrin loss
(orange bar) (C). Representative images of nephrin changes in glomeruli (IF, nephrin stain). White arrows point to nephrin-positive areas (D). PTUPB mitigated Ang-II-
induced glomerular permeability (orange bar) (E). PTUPB rescued mesangial cells from sorafenib cytotoxicity (F). (A–D) n � 4–6 rats/group. Dots represent the
average of duplicate measures for each individual rat. (E) n � 7–10 glomeruli from four rats. (F) n � 7–8. Dots represent the average of duplicate measures for each well. ns
p > 0.05, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001 determined by ANOVA followed by the Tukey post-hoc test. Data are reported as box and whisker plots with
median, minimum to maximum, and 10 to 90 percentiles.
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when fibrotic changes were mature; much like in the present
study, the fibrotic changes were reversed. Zhang et al. (2020)
presented evidence that these effects of PTUPB on fibrosis likely
were mediated by inhibition of senescence. Sun et al. (2020)
found that liver fibrosis induced by a high-fat diet was
significantly diminished when mice received PTUPB over the
course of 12 weeks. In the kidneys, renal tubular epithelial cells
can transform into activated fibroblasts, called myofibroblasts,
which highly express α-SMA. Myofibroblasts then secrete
extracellular proteins such as collagens and fibronectin
(Fragiadaki and Mason, 2011). This transformation process is
referred to as EMT. TWIST and ZEB1 are transcription factors
that promote EMT (Vandewalle et al., 2009; Fragiadaki and
Mason, 2011; Wang et al., 2016; Sheng and Zhuang, 2020).
Notably, we found that PTUPB lowered EMT—it
downregulated 1) the transcriptional activators of EMT,
TWIST and ZEB1, and 2) a myofibroblast marker, α-SMA. In
the lung, Zhang et al. observed a similar decrease in α-SMA levels
with PTUPB treatment (Zhang et al., 2020). The same effect of
lowering α-SMA protein expression in the liver was reported by
Sun et al. (2020). Furthermore, PTUPB was found to inhibit
glioblastoma growth through amechanism that involved a drastic
downregulation of ZEB1 and which the authors believed was
linked to PTUPB inhibiting HMMR/SOX-2 signaling (Li et al.,
2017). In summary, it appears that a plausible mechanism by
which PTUPB mitigates renal damage (tubular damage and
fibrosis) involves blocking the transformation of renal
epithelial tubular cells into myofibroblasts through EMT.

Glomerular health is vital to renal function. We found that
PTUPB mitigated the otherwise extensive glomerular damage
features caused by sorafenib. The glomerulus is the part of a
nephron where plasma filtration takes place. This is made
possible by the glomerular filtration barrier that allows for
retaining elements in the plasma (and keeping them out of
the filtrate). At least one likely mechanism through which
PTUPB fortifies glomeruli against injury is by preventing
podocyte nephrin loss. Nephrin is essential to glomerular
health. Expressed by podocytes, it participates in forming the
slit diaphragm, a structure that supports the glomerular
filtration barrier functional integrity (Yu et al., 2018).
Nephrin loss ultimately leads to podocyte effacement and
proteinuria (Faul, 2014; Garg, 2018). We found that
sorafenib caused significant loss of nephrin in the glomeruli.
This is consistent with other reports indicating that VEGF
signaling inhibition results in nephrin loss (Izzedine et al.,
2010; Lankhorst et al., 2015; Terrasse, 2015). Remarkably,
PTUPB treatment prevented sorafenib-induced nephrin loss
and restored it to levels similar to those of the control. We
further confirmed that PTUPB protected the glomerular

FIGURE 6 | Mesangial cytotoxicity. Sorafenib was cytotoxic to cultured
mesangial cells. Sample time–course graph showing decrease in mesangial
cell confluency with sorafenib treatment (A). Sorafenib resulted in a dose-
dependent increase in mesangial cell apoptosis (B). n � 5–10. Dots
represent the average of duplicate measures for each well. ***p ≤ 0.001,
****p ≤ 0.0001 determined by ANOVA followed by the Tukey post-hoc test.
Data are reported as a connected scatterplot and a box and whisker plot with
median, minimum to maximum, and 10 to 90 percentiles.

FIGURE 7 | Apoptosis. PTUPB decreased sorafenib-induced
apoptosis. Sorafenib treatment elevated apoptotic signal in mesangial cells
(orange bar). PTUPB mitigated apoptotic signal in mesangial cells (blue bar)
(A). Representative images of TUNEL staining at ×200 (TUNEL signal in
green) (n � 5–10, dots represent the average of duplicate measures for each
well). ns p > 0.05, ***p ≤ 0.001 determined by ANOVA followed by the Tukey
post-hoc test. Data are reported as a box and whisker plot with median,
minimum to maximum, and 10 to 90 percentiles.
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filtration barrier from injury in isolated glomeruli. This is an
important finding for its clinical corollaries. Damage to the
glomerular filtration barrier manifests in proteinuria (Yu et al.,
2018), which is commonly reported in patients receiving VEGF
TKI chemotherapy and has even been reported following
intravitreal VEGF TKI delivery (Patel et al., 2008; Estrada
et al., 2019; Hanna et al., 2019). To our knowledge, this is
the first study reporting the effects of PTUPB on the glomerular
filtration barrier.

While the exact mechanism through which inhibition of
VEGF signaling leads to glomerular damage remains
unknown, it likely involves an interplay between various
effects on the cross-talk among glomerular cells (Estrada et al.,
2019). Mesangial cells are an important glomerular constituent,
and their death (mesangiolysis) has been a reported feature of
sorafenib nephrotoxicity (Overkleeft et al., 2009; Schlöndorff and
Banas, 2009). Here, we show that sorafenib treatment caused
mesangial cell death. This effect has not been extensively studied
elsewhere, but it is of importance since mesangial cells support
the structural and functional integrity of the glomerulus
(Schlöndorff and Banas, 2009). The survival of mesangial cells
is dependent on VEGF singling. For example, the diminished
VEGF-A secretion by podocytes can lead to mesangiolysis. In
addition, mesangial cells also produce their own VEGF, which
further regulates their growth through an autocrine mechanism
(Tahara et al., 2011). Sorafenib targets VEGFR-2 and VEGFR-3.
Human renal mesangial cells express VEGFR-1 and VEGFR-2
(Thomas et al., 2000). Thus, sorafenib likely causes mesangiolysis

by blocking singling through VEGFR-2. Importantly, PTUPB
showed potency in protecting mesangial cells from this sorafenib-
induced cytotoxicity. This hints at the possibility that affecting
eicosanoid signaling through dual sEH/COX-2 inhibition restores
some of the downstream effects of VEGFR-2 signaling or
activates cellular pathways that offset the negative effects of
VEGFR-2 blockage. Together, the effects on nephrin,
glomerular filtration barrier, and mesangial cells suggest that
the ability of PTUPB to restore glomerular health is independent
of blood pressure lowering. If so, dual sEH/COX-2 inhibition by
PTUPB could be a viable treatment strategy for VEGF-TKI-
induced renal damage.

Intriguingly, PTUPB has been found to inhibit tumor growth
and combat cancer (Li et al., 2017; Wang et al., 2018). These
studies have evaluated ovarian tumor growth, glioblastoma
growth, and Lewis lung carcinoma growth and metastasis
(Zhang et al., 2014b; Li et al., 2017; Gartung et al., 2019). In
addition, PTUPB has been found to potentiate the cisplatin
anticancer activity in a mouse xenograft model of bladder
cancer (Wang et al., 2018). We tested PTUPB alone and in
combination with sorafenib on prostate tumor cells. Our data
demonstrate that PTUPB did not lead to prostate tumor cell death
or significantly enhance the ability of sorafenib to cause tumor
cell death. Importantly, PTUPB did not interfere with the ability
of sorafenib to cause prostate tumor cell death. These findings
provide evidence that PTUPB can prevent sorafenib-induced
nephrotoxicity without interfering with sorafenib-mediated
anticancer actions.

FIGURE 8 | Chemotherapeutic effectiveness. PTUPB did not interfere with the antitumor activity of sorafenib against the DU-145 prostate cancer cells. Sorafenib
decreased viability of prostate cancer cells in a dose-dependent fashion, while PTUPB alone lacked cytotoxic effects in these cells (A). In combination with sorafenib,
PTUPB did not interfere with the antitumor activity in the DU-145 prostate cancer cells (B) (n � 4). Dots represent the average of duplicate measures for each well. ns p >
0.05, *p ≤ 0.05, **p ≤ 0.01 determined by ANOVA followed by the Tukey post-hoc test. Data are reported as box and whisker plots with median, minimum to
maximum, and 10 to 90 percentiles.
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CONCLUSION

Since their inception in 1990, VEGF TKIs have been proven
effective against several cancers. Our ability to harness their
potential in killing neoplasm cells, however, is limited by their
serious adverse effects on cardiovascular and kidney health,
which sometimes may force discontinuation of an otherwise
effective therapy (Venkatachalam et al., 2010; Grenon, 2013;
Porta et al., 2015; Neves et al., 2020). Kidney damage is
especially problematic because it can progress to end-stage
renal disease if not treated. This provides a strong rationale
for developing a combination approach that can protect from
the progressive VEGF-TKI-induced kidney damage. Data
presented in this study suggest that dual sEH/COX-2
inhibition with PTUPB could be effective as such strategy
because it successfully mitigated the nephrotoxic effects of a
VEGF TKI, sorafenib. We show that PUTPB reduced
hypertension and proteinuria, mitigated tubular and fibrotic
injury, and improved glomerular health. Our in vitro
glomerular and cultured mesangial cell data further support
our understanding of VEGF signaling and glomerular biology,
and the interplay between VEGF and eicosanoid signaling
pathways. Additionally, PTUPB does not interfere with the
anticancer actions of sorafenib. Together, the results show that
PTUPB could be an effective therapeutic agent against VEGF TKI
nephrotoxicity and perhaps also other conditions resulting in
glomerular injury. Further investigation is warranted.
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Background: IgA nephropathy (IgAN) has a high degree of heterogeneity in clinical and
pathological features. Among all subsets of IgAN, the pathogenesis of IgAN with minimal
change disease (MCD-IgAN) remained controversial.

Methods:We analyzed the clinical and pathological characteristics of MCD-IgAN patients
in a retrospective cohort. Patients diagnosed with IgAN, excluding MCD-IgAN, were
randomly selected as controls. Levels of plasma galactose-deficient IgA1 (GdIgA1), IgG
autoantibodies against GdIgA1, GdIgA1 deposition in the glomerulus, and inflammatory
reactivity of circulating poly-IgA1 complexes to cultured mesangial cells were evaluated.

Results: Patients with MCD-IgAN had significantly higher levels of proteinuria and
estimated glomerular filtration rate (eGFR), lower levels of albumin and urine blood
cells, and milder histological lesions by a light microscope compared to IgAN patients,
which bears a resemblance to MCD. Lower levels of GdIgA1 (3.41 ± 1.68 vs. 4.92 ±
2.30 μg/ml, p � 0.009) and IgG antiglycan autoantibodies (23.25 ± 22.59 vs. 76.58 ±
71.22 IU/ml, p < 0.001) were found in MCD-IgAN patients than those in IgAN controls.
Meanwhile, weaker fluorescence intensities of both IgA and GdIgA1 were observed in the
glomerulus of MCD-IgAN patients compared to those in IgAN patients. Furthermore, poly-
IgA1 complexes from MCD-IgAN patients induced weaker inflammatory effects on
cultured mesangial cells than those from IgAN patients in vitro.

Conclusion: The results demonstrated that MCD-IgAN cases represent a dual
glomerulopathy, namely, mild IgAN with superimposed MCD, which furthermore
provides substantial evidence for the corticosteroids therapy in MCD-IgAN patients as
the guidelines recommended.

Keywords: MCD-IgAN, galactose deficient IgA1, anti-glycan autoantibodies, inflammation, IgA nephropathy,
minimal change disease
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INTRODUCTION

IgA nephropathy (IgAN) is one of the most common
glomerulonephritis worldwide, especially in Asia (Wyatt and
Julian, 2013). Approximately 30%–40% of patients suffered a
slow but relentless clinical course that could progress to end-
stage kidney disease (ESKD) for 20–30 years (Lai et al., 2016;
D’Amico 2004). In clinical practice, IgAN is diagnosed as
dominant IgA deposition in the mesangial area by kidney
biopsy. However, the clinical and pathological manifestations
of IgAN are diverse (Zhang and Barratt, 2021). The clinical
course of the disease ranges from isolated hematuria,
subnephrotic proteinuria, nephrotic proteinuria to rapidly
progressive renal failure, and kidney biopsy findings vary
from mild mesangial proliferation to diffuse crescent
formation, suggesting those might not be the same disease
(Lai et al., 2016). Among all subsets of IgAN, cases
presenting nephrotic syndrome (NS) and mild mesangial
proliferation are rare, accounting for approximately 5%–10%
of all IgAN patients (Barratt and Feehally, 2006; Kim et al.,
2012). Therefore, this variant form of IgAN with clinical NS
presentation and electron microscope (EM) features of diffuse
foot process effacement resembling minimal change disease
(MCD) is defined as MCD-IgAN (Floege et al., 2019).

In general, there is a reasonable correlation between clinical
and pathological findings in IgAN; mounting studies indicate
that heavy proteinuria at baseline is associated with more
aggressive disease accompanied by severe glomerular damage
or renal insufficiency (Thompson et al., 2019). While previous
studies revealed the clinical features, podocytopathic variant and
the good response to glucocorticoids in these MCD-IgAN
patients are more consistent with MCD patients (Westhoff
et al., 2006; Kim et al., 2009; Qin et al., 2013; Wang et al.,
2013; Herlitz et al., 2014; Li et al., 2016). Therefore, it remained
controversial whether these patients suffered from a specific
podocytopathic variant type of IgAN, or the existence of MCD
in mild IgAN, or even MCD with non-pathogenic IgA
deposition.

Recent studies have indicated four crucial processes
contributing to IgAN development (Suzuki et al., 2011). The
first two established processes are the existence of higher levels
of galactose-deficient IgA1 (GdIgA1) and autoantibodies
against GdIgA1 in circulation (Tomana et al., 1999;
Moldoveanu et al., 2007; Suzuki et al., 2009; Zhao et al.,
2012). Then, poly-IgA1 complexes composed of
GdIgA1(Allen et al., 2001) and its autoantibodies (Rizk
et al., 2019) accumulate in the renal mesangium. The
deposits finally induce mesangial proliferation, expansion of
extracellular matrix, and secretion of cytokines and
chemokines, resulting in renal injury (Novak et al., 2005).
Until now, as a specific subset of IgAN, whether the poly-
IgA1 complexes in MCD-IgAN are coincidental or playing the
same pathophysiological role as in IgAN remains unclear. In
this study, we examined the immune features, including levels
of circulating GdIgA1, antiglycan IgG autoantibodies, renal
deposits of GdIgA1, and the inflammatory effects of poly-IgA1
complexes in IgAN-MCD to elucidate it.

MATERIALS AND METHODS

Patients and Healthy Controls
IgAN was diagnosed by immunofluorescence showing IgA as
the dominant or co-dominant immunoglobulin in the
mesangial deposits and the deposition of electron-dense
materials in mesangium on ultrastructural examination in
the absence of secondary causes. A total of 656 patients
were diagnosed as IgAN patients from January 2018 to
November 2020 at the First Affiliated Hospital of Xi’an
Jiaotong University, of whom 27 patients with 1) diffuse
podocyte foot process effacement at electron microscopy
(>50% of the capillary surface area involved); 2) mild
mesangial hypercellularity; 3) without endocapillary
proliferation, segmental glomerulosclerosis, interstitial
fibrosis and tubular atrophy, or cellular crescents were
diagnosed with MCD-IgAN (Supplementary Figure S1).
Sixty-eight IgAN patients without nephrotic proteinuria
during the same periods were randomly selected as controls
at the ratio of 1:2 approximately. In the same period, age- and
gender-matched healthy physical examinees were
chosen randomly. Oxford Classification scores were
performed for all biopsy specimens by an experienced renal
pathologist. The extent of podocyte foot process effacement
was evaluated under transmission electron microscopy
(TEM). Clinical and pathological characteristics of all
patients were collected at the time of renal biopsy. MCD-
IgAN patients were followed until the remission of proteinuria.
Complete remission (CR) was defined as 24-h urine protein
<500 mg/day. This study was conducted in adherence to the
Declaration of Helsinki and was approved by the medical
ethics committee at the First Affiliated Hospital of Xi’an
Jiaotong University. Plasma and urine samples from patients
at the time of renal biopsy and from thirty-two age- and
gender-matched healthy individuals were stored at −80°C
before use.

Plasma IgA1, Gd-IgA1, and IgG
Autoantibodies Targeting the Gd-IgA1
The levels of plasma IgA1 were detected by enzyme-linked
immunosorbent assay (ELISA) with a previously established
protocol (Zhang et al., 2019). Plasma Gd-IgA1 levels were
quantified by using the Gd-IgA1-specific monoclonal
antibody KM55 ELISA Kit (IBL, Naka, Japan) according to
the suggested procedure. See the detailed methods in
supplementary materials.

Circulating autoantibodies of IgG against GdIgA1 were
detected according to our previous protocol (Wang et al.,
2021). Briefly, IgA1 F(ab)2 with hinge region of its heavy
chain, namely, F(ab)2-HR, was used as antigen. After blocking
all wells with 1% bovine serum albumin (BSA)/phosphate-
buffered saline (PBS), diluted plasma (1:100) and standards
were added to each well; alkaline phosphatase-conjugated goat
antihuman IgG monoclonal antibody (Sigma, United States) was
used for detection. Detailed methods were described in
supplementary materials.
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Immunofluorescent Staining of Gd-IgA1 and
IgA in Kidney
Formalin-fixed paraffin-embedded (FFPE) tissues were sectioned
at 3 μm for IgA and GdIgA1 staining. Renal slides from MCD,
membranous nephropathy, and healthy renal allograft were used
as negative controls. Antigen retrieval was performed with 0.05%
protease from Bacillus licheniformis (Sigma-Aldrich, St. Louis,
MO, United States) at room temperature for 2 h. Then, 3% bovine
serum albumin in phosphate-buffered saline was used to block
the non-specific binding. Next, the slides were incubated with rat
antihuman GdIgA1 antibody (Immuno-Biological Laboratories,
Japan) for 1 h at 37°C followed by Alexa Fluor 555-conjugated
goat antirat IgG antibody (Abcam, United States) and fluorescein
isothiocyanate (FITC)-conjugated polyclonal rabbit antihuman
IgA antibody (Dako, Japan) incubation at 37°C for 30 min.
Immunofluorescence images were captured using a Nikon
microscope 90i (Nikon Instruments Inc., Japan). Glomerular
staining of IgA and Gd-IgA1 was evaluated by the Image Pro
Plus analysis software version 6.0. Semiquantitative analysis of
fluorescence intensity for IgA or GdIgA1 staining was described
as the glomerular mean optical density (integrated option
density/glomerular area). At least eight fields of glomerular
vision per kidney section were randomly captured at 400× for
semiquantitative assessment of immunofluorescent staining.

Poly-IgA1 Complex Purification and
Mesangial Stimulation
Tenmilliliters of peripheral venous blood (EDTA anticoagulated)
was collected at the renal biopsy from recruited eight patients
with MCD-IgAN, seven patients with IgAN, and five patients
with MCD. Poly-IgA1 complexes were separately isolated from
the plasma sample of each patient by jacalin affinity
chromatography and then Sephacryl S-300 gel filtration
chromatography, as previously reported (Zhu et al., 2013).
Primary human mesangial cells (HMCs) (ScienCellTM,
Carlsbad, CA, United States) were cultured to the sixth
passage with mesangial cell medium (MCM) containing
mesangial cell growth supplement (MsCGS), 2.5% FBS. After
overnight starvation with mesangial cell medium containing
0.05% FBS and 0% mesangial cell growth supplement, HMCs
were stimulated and cultured with 100 μg/ml poly-IgA1 in MCM
medium for 48 h. The supernatants were collected after being
centrifuged and stored at −80°C for cytokine detection. IL-6 and
MCP-1 levels in cell culture supernatants after poly-IgA1
treatment, as well as urinary MCP-1 in patients and healthy
controls were detected by using ELISA kit (4A Biotech Co., Ltd.,
Beijing).

Statistical Analyses
Non-normally distributed and normally distributed quantitative
parameters were expressed as medians (IQRs) and means ±
standard deviations, respectively. Kolmogorov–Smirnov test
was performed to determine normal distributions of
quantitative parameters. Categorical data were represented by
frequencies or ratios. Differences in continuous variables were

assessed using the non-parametric test (Mann–Whitney U test)
and t-test when the data were not normally distributed or
normally distributed, respectively. Kaplan–Meier analysis were
conducted to assess the relationship between higher and lower
levels of GdIgA1, anti-GdIgA1 antibodies, and the proteinuria
remission for MCD-IgAN patients. A two-sided p-value <0.05
was considered statistically significant. All analyses and graphs
were conducted using GraphPad Prism version 8.0 for Windows
(GraphPad Software, San Diego, CA, United States) and IBM-
SPSS22.0 (IBM-SPSS Inc., Armonk, NY).

RESULTS

Baseline Demographic, Clinical, and
Pathological Characteristics
A total of 27 MCD-IgAN patients with a mean age of 30.6 ±
12.1 years old were enrolled in this study. The mean age of
MCD-IgAN patients was comparable to that in another
Chinese study (Li et al., 2016) whereas lower than the median
age of 46 in one study from United States (Herlitz et al., 2014).
The cohort included 17men and 10 women. The male proportion
of MCD-IgAN patients was 63%, which was comparable to those
in previous studies. Twenty-five patients fulfilled criteria for NS,
and the remaining two patients had nephrotic range proteinuria
without hypoalbuminemia (Alb 32.2 and 31.8 g/L). Compared to
IgAN group, patients with MCD-IgAN had significantly higher
levels of proteinuria (4.26 ± 1.81 vs. 2.12 ± 1.73 g/24 h, p < 0.001)
and estimated glomerular filtration rate (eGFR) (120.8 ± 24.3 vs.
81.1 ± 31.5 ml/min, p < 0.001) while lower levels of albumin
(20.0 ± 6.2 vs. 36.9 ± 6.6 g/L, p < 0.001), urine blood cells [10.9
(4.4, 32.4) vs. 64.2 (22.5, 194.1)/µl, p < 0.001], SBP (116.7 ± 16.5
vs. 131.2 ± 19.9 mmHg, p � 0.001) and lower percentages of C3
deposition (66.7 vs. 94.1%, p � 0.001), Oxford M1 (37 vs. 89.7%,
p < 0.001), E1 (0 vs. 17.6%, p � 0.017), S1 (0 vs. 75%, p < 0.001),
and T1/T2 (0 vs. 39.7%, p < 0.001) scores. All MCD-IgAN
patients have initially received corticosteroids, of which 12
cases were treated in combination with other
immunosuppressants (see Table 1).

Plasma IgA1, Gd-IgA1, and IgG Antiglycan
Autoantibodies
Levels of plasma IgA1, Gd-IgA1, and IgG autoantibodies against
GdIgA1 were detected in 19 MCD-IgAN patients and 68 IgAN
patients with blood samples available. As shown in Figure 1A, the
levels of total IgA1 in IgAN group was significantly higher
compared to those in healthy controls (3.82 ± 1.73 vs. 2.65 ±
1.87 mg/ml, p � 0.003), but with a comparable level in patients
with MCD-IgAN patients (3.82 ± 1.73 vs. 3.41 ± 1.93 mg/ml, p �
0.374). However, MCD-IgAN patients had lower levels of
GdIgA1 than those in IgAN patients (3.41 ± 1.68 vs. 4.92 ±
2.30 µg/ml, p � 0.009) and higher GdIgA1 levels than those in
healthy controls (3.41 ± 1.68 vs. 2.10 ± 1.58 µg/ml, p � 0.007)
(Figure 1B). After adjusting the total IgA1 concentration, there
was a similar trend for Gd-IgA1/IgA1 levels with unadjusted
GdIgA1 levels among the three groups (Figure 1C).
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The plasma levels of IgG antiglycan autoantibodies
targeting the GdIgA1 in patients with IgAN were
significantly higher than those in patients with MCD-IgAN

(76.58 ± 71.22 vs. 23.25 ± 22.59 IU/ml, p < 0.001) (Figure 1D).
In contrast, no significant difference in IgG autoantibodies
levels between IgAN patients and healthy controls were found.

TABLE 1 | The baseline clinical and pathological characteristics of MCD-IgAN and typical IgAN patients.

Characteristics MCD-IgAN (n = 27) IgAN (n = 68) p-value

Age (yr; mean ± SD) 30.6 ± 12.1 35.7 ± 12.1 0.063
Male sex, n (%) 17 (63.0) 39 (57.4) 0.651
Baseline SBP (mmHg; mean ± SD) 116.7 ± 16.5 131.2 ± 19.9 0.001
Baseline DBP (mmHg; mean ± SD) 81.4 ± 10.7 88.1 ± 14.5 0.033
Baseline proteinuria (g/day; mean ± SD) 4.26 ± 1.81 2.12 ± 1.73 <0.001
Urine red blood cell counts (/µl) 10.9 (4.4, 32.4) 64.2 (22.5, 194.1) <0.001
Serum creatinine (μmol/L; mean ± SD, median, IQR) 64.3 ± 19.0 95(68, 128.8) <0.001
eGFR (ml/min/1.73 m2; mean ± SD) 120.8 ± 24.3 81.1 ± 31.5 <0.001
CKD stage 1, n (%) 25 (92.6) 31 (45.6) 0.001
CKD stage 2, n (%) 2 (7.4) 15 (22.1)
CKD stage 3, n (%) 0 (0) 16 (23.5)
CKD stage 4, n (%) 0 (0) 4 (5.9)
CKD stage 5, n (%) 0 (0) 2 (2.9)
Serum albumin (g/L; mean ± SD) 20.0 ± 6.2 36.9 ± 6.6 <0.001
Hemoglobin (g/L; mean ± SD) 151.0 ± 18.9 133.7 ± 26.0 0.002
Oxford classification of IgAN, n (%)
M1 10 (37) 61 (89.7) <0.001
E1 0 (0) 12 (17.6) 0.017
S1 0 (0) 51 (75.0) <0.001
T1/T2 0 (0) 27 (39.7) <0.001
C1/2 0 (0) 21 (31.3) 0.004
IgG deposition n (%) 1 (3.7) 6 (8.8) 0.389
IgM deposition n (%) 17 (63) 29 (42.6) 0.096
C3 deposition n (%) 18 (66.7) 64 (94.1) 0.001
Follow-up (mo; mean ± SD) 11.1 ± 8.5 14.3 ± 7.3 0.080
RAS blocker treatment, n (%) 8 (29.6) 46 (67.6) 0.001
Combined with corticoids and/or other immunosuppressants, n (%) 27 (100) 23 (33.8) <0.001

FIGURE 1 | Levels of plasma Gd-IgA1 and its autoantibodies in MCD-IgAN, IgAN, and healthy controls. Patients of MCD-IgAN had comparable levels of IgA1 with
those in IgAN patients (A). Compared to IgAN patients, MCD-IgAN patients had both lower levels of plasma GdIgA1 (B) and its autoantibodies (anti-GdIgA1 IgG) (D). In
addition, significant higher levels of GdIgA1 and its autoantibodies were found in MCD-IgAN patients than healthy controls (B,D). After adjusted by the total IgA1 levels,
total IgG levels, the same trend of GdIgA1 and its autoantibodies were seen between MCD-IgAN and IgAN groups (C,E).
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After the adjusting serum IgG level, a consistent trend for IgG
autoantibodies/IgG between MCD-IgAN and IgAN group was
found (Figure 1E).

Glomerular Deposition of IgA and Gd-IgA1
Because of the significant difference in plasma GdIgA1 levels
between MCD-IgAN and IgAN patients, available paraffin-
embedded kidney tissues from 24 MCD-IgAN patients were

prepared for double IF staining of IgA and Gd-IgA1. Renal
tissues from 24 age- and gender-matched IgAN patients were
selected as controls (Supplementary Table S1). Gd-IgA1 was
distributed mainly in the mesangial area with co-deposits of IgA
in the kidney tissue of MCD-IgAN patients, similar to those in
IgAN patients (Figure 2A). Nevertheless, weaker fluorescence
intensities of both IgA and GdIgA1 were observed in the kidney
of MCD-IgAN patients compared to those in IgAN patients, as

FIGURE 2 | Immunofluorescence (IF) staining of IgA and Gd-IgA1 in the glomerulus of MCD-IgAN and non-MCD-IgAN patients. (A) IgA (green, left panel) and
GdIgA1 (red, middle panel) deposition were shown in IgAN-MCD patients (top panel) and IgAN patients (bottom panel). IF signals of both IgA and GdIgA1were mainly
concentrated in the mesangial regions of glomerulus and were co-deposited (yellow, right panel). In contrast to IgAN, weaker signals of both IgA and GdIgA1 were found
in glomerulus of patients with MCD-IgAN. Significantly lower mean fluorescent optical density of IgA (B) and GdIgA1 (C) in the glomerulus were found in MCD-IgAN
patients (n � 24) compared to IgAN patients (n � 24). Scale bar � 50 µm. (D) Typical pathological change in glomeruli under electron microscopy observation in MCD-
IgAN and non-MCD-IgAN patients were shown. Examples of dense deposits in the mesangial region (black arrow) and diffuse podocyte foot process effacement were
observed in the glomeruli of one MCD-IgAN patient (i). Example of dense deposits was found in the mesangial region of one IgAN patient (ii).
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shown by the analysis of mean optical density per glomerular
compartment in Figures 2B,C (mean optical density of IgA,
18.9 ± 7.6 vs. 6.6 ± 3.4 × 10−3, p < 0.001, and GdIgA1, 11.5 ± 8.0
vs. 3.3 ± 2.2 × 10−3, p < 0.001, IgAN and MCD-IgAN,
respectively). Under electron microscopy observation, dense
deposits in the mesangial region (black arrow) were shown in
the kidney tissue of both MCD-IgAN and IgAN patients, while
diffuse podocyte foot process effacement (white arrow) was only
observed in the glomeruli of MCD-IgAN patients (Figure 2D).

GdIgA1 and its Autoantibodies on
Proteinuria Remission
High risk of progression in IgAN is currently defined as
proteinuria >1 g/24 h after therapy in the KDIGO guideline.
Furthermore, higher levels of GdIgA1 and its autoantibodies
are associated with poor renal outcomes in IgAN patients
(Berthoux et al., 2012; Zhao et al., 2012). Here, we tried to
analyze the relationship of proteinuria remission with different
levels of GdIgA1 or antiglycan antibodies. Among all included
patients, sixty-one cases of IgAN patients and twenty-six cases of
MCD-IgAN patients were retrospectively followed for 14.3 ± 7.3
and 11.1 ± 8.5 months, respectively. Five patients (5/61, 8.2%) of
the IgAN patients reached to end-stage of kidney disease or more
than 30% decrease in eGFR, while none of the MCD-IgAN
patients reached above kidney endpoint, and all had stable
renal function at the last follow-up. Twenty-five MCD-IgAN
patients achieved complete remission (CR) of proteinuria during
the follow-up periods; among them, four patients experienced
relapsing proteinuria. Kaplan–Meier survive analysis was
conducted to estimate different levels of GdIgA1 or its
autoantibodies on the effect of CR in MCD-IgAN patients.
The results showed neither higher levels of GdIgA1 (log rank
p � 0.34, Figure 3A) nor its antiantibodies (log rank p � 0.32,
Figure 3B) were associated with the time to first CR withinMCD-
IgAN patients.

Poly-IgA1 Complexes Purified From
MCD-IgAN Patients Had Lower
Inflammatory Effect
Plasma poly-IgA1 from eight MCD-IgAN patients, seven non-
MCD-IgAN patients, and five MCD patients were purified to
stimulate cultured human mesangial cells. Clinical characteristics
of these patients were described in Supplementary Table S2.
Supernatants of treated mesangial cells were collected for IL-6
and MCP-1 detection. We found that poly-IgA1 complex derived
from MCD-IgAN patients, IgAN patients, and MCD patients
upregulated the excretion of the mesangial cell inflammatory
cytokines MCP-1 and IL-6 compared to PBS control. Poly-IgA1
complexes from MCD-IgAN patients induced lower expression
of mesangial MCP-1 and IL-6 compared to those from IgAN
(MCP-1: 2,574.4 ± 607.5 vs. 3,671.8 ± 835.5 pg/ml, p � 0.012; IL-
6: 377.3 ± 49.5 vs. 534.3 ± 83.6 pg/ml, p � 0.001, Figures 4A,B)
and higher levels of MCP-1 and IL-6 than those in MCD group
(MCP-1: 2,574.4 ± 607.5 vs. 1,981.8 ± 474.1 pg/ml, p � 0.092; IL-
6: 377.3 ± 49.5 vs. 266.3 ± 99.5 pg/ml, p � 0.065; Figures 4A,B).
Moreover, levels of MCP-1 in supernatants were positively
correlated with IL-6 (correlation coefficient � 0.656, p < 0.001;
Figure 4C). The results indicated that poly-IgA1 from MCD-
IgAN patients had weaker inflammatory stimulation tomesangial
cells than those from IgAN patients, which was consistent with
lower urinary MCP-1/creatinine levels in MCD-IgAN than IgAN
patients (Supplementary Figure S2).

DISCUSSION

Whether MCD-IgAN is a variant form of IgAN or simply MCD
superimposed on mild underlying IgAN or even with quiescent
IgA deposition coincidence of MCD has not been established yet.
Although several published studies have described the clinical
and pathological features of MCD-IgAN and suggested it as a

FIGURE 3 | First remission inMCD-IgAN patients with different stratification of plasma galactose-deficient IgA1 (Gd-IgA1) levels (A) and IgG antibodies against anti-
GdIgA1 (B). There were no significant differences in protein remission in groups of MCD-IgAN patients with higher versus lower GdIgA1 concentrations, and groups of
higher versus lower anti-GdIgA1 antibodies.
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dual glomerulopathy (Qin et al., 2013; Wang et al., 2013; Woo
et al., 2013; Herlitz et al., 2014; Li et al., 2016; Cho et al., 2020),
advanced studies on the pathogenesis of MCD-IgAN are rare. In
the present study, we explored the comprehensive immune
characteristics of MCD-IgAN patients. Compared to IgAN
patients, MCD-IgAN patients had lower levels of plasma
GdIgA1, IgG antiglycan autoantibodies, and weaker
fluorescence intensities of GdIgA1 in the glomerulus than
those in IgAN patients. In vitro, the inflammatory response of
the mesangial cells (IL-6 and MCP-1 production) to poly-IgA1
complex derived from MCD-IgAN patients was significantly
lower than that from IgAN participants. Our findings support
MCD-IgAN as a dual glomerulopathy, namely, mild IgAN with
superimposed MCD from the pathogenesis point of view.

Current studies suggested the development of IgAN as four-hit
processes with aberrant glycosylation of IgA1, production of
antibodies directed against galactose-deficient IgA1, formation
of immune complexes, and accumulation of these complexes in
the glomerular mesangium to initiate renal injury (Suzuki et al.,
2011). However, with respect to MCD-IgAN, whether it shares
the same immunopathogenesis of the four-hit processes as IgAN
still needs to be investigated. Until now, only one published study
from Cho et al. confirmed positive Gd-IgA1 deposition in the
glomeruli of IgAN-MCD patients and inferred that Gd-IgA1
played a role in the pathogenesis of MCD-IgAN and IgAN (Cho
et al., 2020). However, this information should be interpreted
carefully. First, the frequency of mesangial Gd-IgA1 deposition in
healthy donors was as high as 13%–26% (Suzuki et al., 2003;
Nakazawa et al., 2019), suggesting quiescent IgA1 deposition was
not uncommon (Suzuki et al., 2003; Nakazawa et al., 2019).
Secondly and importantly, the glycosylation aberrancy of IgA1
alone is not sufficient to induce renal injury, the autoantibodies
levels and biological effects of poly-IgA1 from MCD-IgAN are
unknown in Cho’s study. Therefore, in this study, we conducted
the first comprehensive study and explored the multiple proposed
factors that might explain the pathogenesis of MCD-IgAN,
including levels of Gd-IgA1, antiglycan antibodies, deposition
of Gd-IgA1, and corresponding proinflammatory effects of the

poly-IgA1complexes. We found that MCD-IgAN patients had
lower circulating Gd-IgA1 and IgG glycan-specific antibodies,
weaker GdIgA1 deposits than age- and gender-matched IgAN
patients but higher plasma GdIgA1 than healthy controls.
Moreover, purified poly-IgA1 complexes from MCD-IgAN
induced weaker effects on mesangial inflammatory cytokines
production than those from IgAN while higher cytokine levels
than those from MCD. These findings may be related to the
relatively indolent nature of IgA deposits, not as
pathophysiological as IgAN patients, and mild histological
lesions with lower Oxford scores in MCD-IgAN, supporting
the lack of typical manifestations of IgAN. Taken together,
this study provides immunological evidence supporting that
MCD-IgAN represents a dual glomerulopathy, namely, mild
IgAN with superimposed MCD, and should be treated in
accordance with the guidelines for MCD.

In this study, we found higher Gd-IgA1 but lower anti-GdIgA1
IgG levels in plasma of MCD-IgAN patients compared to that in
healthy controls (Figures 1B,D). These were because of the
higher sensitivity and specificity of GdIgA1 than anti-GdIgA1
antibodies in IgAN. Previous studies indicated that higher levels
of IgG autoantibodies were only found in IgAN patients with the
highest risk for dialysis or death (Tomana et al., 1999;
Moldoveanu et al., 2007; Berthoux et al., 2012), and the MCD-
IgAN patients we included were at lower risk for dialysis.
Furthermore, in MCD-IgAN patients, due to the loss of IgG
from kidney filtration, serum total IgG (5.6 ± 3.5 g/L) was lower
than that in healthy controls (7–16 g/L), as well as the IgG
autoantibody levels.

Previous studies had demonstrated that the deposited IgA in
the glomerulus of IgAN was galactose deficient (Allen et al., 2001;
Berthelot et al., 2015; Yasutake et al., 2015), and GdIgA1 but not
normal glycosylated IgA1 had high propensity to form complexes
with antiglycan IgG antibodies (Suzuki et al., 2009). The contents
of serum GdIgA1 play an important role in renal deposition other
than total IgA. In our study, we found higher GdIgA1 levels in
IgAN patients than MCD-IgAN, which was prone to deposit in
kidney. Furthermore, the antibody (antihuman Ig alpha heavy

FIGURE 4 | Secreted IL-6 and MCP-1 by cultured human mesangial cells treated with same dosage of ploly-IgA1 from MCD-IgAN, IgAN and MCD patients. (A)
Higher levels of IL-6 were detected in supernatants of cultured mesangial cells treated with poly-IgA1 from IgAN patients (n � 7) than those from MCD-IgAN (n � 8) and
MCD patients (n � 5), while non-significant difference in IL-6 levels in supernatants of cultured mesangial cells treated with poly-IgA1 from MCD-IgAN or MCD patients
were found. (B) Consistent results of MCP-1 levels among three groups were shown. (C) Positive relationships of secreted MCP-1 and IL-6 levels in mesangial
supernatants with stimulation of poly-IgA1 were observed.
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chain) we used to detect IgA deposition in the kidney can also
recognize GdIgA1, so our results showed an increase in IgA
deposition in IgAN patients than that in MCD-IgAN patients
(Figure 1B) despite no difference in plasma IgA1 levels between
these groups.

Although in this study we investigated the pathogenesis of
MCD-IgAN, there were still several limitations. First, due to the
low incidence of MCD-IgAN, this was a small single-center study
with limited sample size. Second, because of the lack of
appropriate animal models of IgAN and MCD-IgAN, merely
in vitro experiments were conducted to evaluate the
proinflammatory effects of IgA1 complexes from MCD-IgAN.

In conclusion, this is the first study to present a comprehensive
and precise profile of immune characteristics in MCD-IgAN
participants. The results strongly supported that MCD-IgAN
cases represent a dual glomerulopathy, namely, mild IgAN
with superimposed MCD, and provided robust evidence for
the corticosteroids therapy in MCD-IgAN patients as the
guidelines recommended.
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Glycocalyx is present on the surface of healthy endothelium, and the concentration of

serum syndecan-1 can serve as an injury marker. This study aimed to assess endothelial

injury using serum syndecan-1 as a marker of endothelial glycocalyx injury in patients

who underwent hemodialysis. In this single-center, retrospective, observational study,

145 patients who underwent hemodialysis at the Gifu University Hospital between March

2017 and December 2019 were enrolled. The median dialysis period and time were

63 months and 3.7 h, respectively. The serum syndecan-1 concentration significantly

increased from 124.6 ± 107.8 ng/ml before hemodialysis to 229.0 ± 138.1 ng/ml after

hemodialysis (P < 0.001). Treatment with anticoagulant nafamostat mesylate inhibited

hemodialysis-induced increase in the levels of serum syndecan-1 in comparison to

unfractionated heparin. Dialysis time and the change in the syndecan-1 concentration

were positively correlated. Conversely, the amount of body fluid removed and the

changes in the syndecan-1 concentration were not significantly correlated. The reduction

in the amount of body fluid removed and dialysis time inhibited the change in the

syndecan-1 levels before and after hemodialysis. In conclusion, quantitative assessment

of the endothelial glycocalyx injury during hemodialysis can be performed by measuring

the serum syndecan-1 concentration, which may aid in the selection of appropriate

anticoagulants, reduction of hemodialysis time, and the amount of body fluid removed.

Keywords: hemodialysis, glycocalyx, syndecan-1, body fluid removal, nafamostat mesylate
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INTRODUCTION

Malnutrition, inflammation, and atherosclerosis are strongly
associated with each other in chronic kidney disease (1),
and both a malnourished state and atherosclerosis can be
caused by inflammation. Moreover, chronic microinflammation
is observed in patients who undergo hemodialysis (2). Several
factors, such as uremia, activation of free radicals and
adhesion molecules, and hemodialysis membrane, can lead to
microinflammation in patients who undergo hemodialysis (3–5).
Uremic substances and the hemodialysis membrane promote
the production of free radicals and cytokines by stimulating
neutrophils, and the resulting inflammation further causes
endothelial injury. However, there is no method to quantitatively
assess endothelial cell injury.

The vascular endothelium is composed of a thin monolayer
of endothelial cells, and this lines the entire circulatory system,
particularly the parts that are exposed to the circulating
blood. The healthy endothelium is covered by a glycoprotein
called glycocalyx (6–10), which plays pivotal roles in vascular
homeostasis (11, 12). The endothelial glycocalyx is degraded
by several factors, such as sepsis, major surgery, trauma,
ischemia/reperfusion, and prolonged hyperglycemia. Persistent
and diffuse alterations in the glycocalyx are associated with
widespread endothelial dysfunction, changed permeability, and
impaired oxygen and nutrient delivery to the cells (11, 13,
14). Several studies have revealed the relationship between
endothelial glycocalyx injury and serious diseases, such as
cardiovascular disease, acute kidney injury, and chronic kidney
disease (15, 16). Moreover, the structure of the endothelial
glycocalyx is degraded in chronic diseases, such as aging (17),
diabetes (18), and hypertriglyceridemia (19).

The glycocalyx comprises cell-bound proteoglycans,
glycosaminoglycan side chains, and sialoproteins (13, 20).

FIGURE 1 | Flow diagram for the selection of study participants for data analysis.

The proteoglycans consist of a core protein, such as a member
of the syndecan protein family, to which glycosaminoglycan
molecules are linked (21). Syndecan-1 is the core protein in
heparan sulfate proteoglycan that is observed in the glycocalyx.
It is released from the endothelium when the glycocalyx is
injured, causing an increase in its concentration in circulation
(22). Moreover, serum syndecan-1 has been used as an
endothelial injury marker in recent clinical studies in critically ill
patients (23–26).

Therefore, the present study aimed to assess endothelial injury
using the serum syndecan-1 level as a marker of endothelial
glycocalyx injury in patients who underwent hemodialysis.
Additionally, we examined the medication type and factors that
influence the concentration of syndecan-1.

METHODS

Patients
This was a single-center, retrospective, observational study
conducted at the Gifu University Hospital, affiliated to
Gifu University, Gifu, Japan. Patients, who underwent
hemodialysis at the Gifu University Hospital between March
2017 and December 2019 and whose dry weight remained
unchanged in the last three examinations, were enrolled.
Patients aged <20 years, who underwent plasma apheresis,
plasma exchange, and double filtration plasma therapy,
and had not maintained their dry weight were excluded.
Finally, data from 145 patients were obtained and analyzed
(Figure 1).

Ethics Approval and Consent to Participate
The study conformed to the principles outlined in the
Declaration of Helsinki (43). Ethics approval was obtained from
the Medical Ethics Committee of the Gifu University Graduate
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School of Medicine, Gifu, Japan (approval no.: 2021-A005).
The need for informed consent from participants was waived
by the medical ethics committee because of the retrospective
nature of the study. Before initiation, the study was registered in
the UMIN Clinical Trials Registry (registry number: UMIN000
051415).

Data Collection and Study Design
Blood was routinely sampled before and after hemodialysis
from eligible patients at the time of the last hemodialysis
before being discharged from Gifu University Hospital, and
data from these blood samples were used in the present study.
All laboratory data (except serum syndecan-1), dry weight,
and other patient demographics were extracted from the
hospital’s electronic medical records. The concentration of
serum syndecan-1 was measured using an enzyme-linked
immunosorbent assay (950.640.192; Diaclone, Besancon, Cedex,
France). The data were retrospectively analyzed. As an index
of the efficiency of dialysis, Kt/V was calculated as described
previously (44).

Statistical Analysis
The sample size in this study was calculated to obtain
sufficient amount of data and conditions to avoid overfitting
in multivariable regression analysis. It was necessary to collect
at least 90 patients to estimate the parameters of the six
covariates, including the interaction term in the multivariable
regression model (45). Patients’ baseline characteristics are
presented as medians and interquartile ranges for continuous
variables, and as frequencies and proportions for categorical
variables. For the primary analysis, a mixed effect model
was used to assess the change in the syndecan-1 levels with
hemodialysis. The difference in the syndecan-1 levels before and
after hemodialysis in the anticoagulant subgroup was confirmed
using paired t-test. A multivariable linear regression analysis
was performed to compare the change in the syndecan-1 levels
before/after hemodialysis and treatment with anticoagulants.
The covariates in the regression model were age, sex, dry
weight, and dialysis period (46). These variables were selected
a priori based on previous studies. In another model, dry
weight and dialysis period were simultaneously incorporated
into the linear regression model to evaluate the effect of factors
during dialysis on the levels of syndecan-1. An interaction
term was included in the model to confirm the effect of
modification of dry weight and dialysis period on changes
in the levels of syndecan-1. If the interaction term was
statistically significant, the effect of the dialysis period (or
dry weight) on syndecan-1 was determined to be modified by
dry weight (or the dialysis period). There were no missing
values in the data used in the analyses. A two-sided P-
value < 0.05 was considered to be statistically significant. The
study was exploratory and there were concerns concerning the
low statistical power; therefore, the interaction was evaluated
with a two-sided P < 0.1. R version 4.1.0 was used for
statistical analyses (R Foundation for Statistical Computing,
Vienna, Austria).

TABLE 1 | Patient demographics.

Characteristics Median (range) or number

Number of cases, n 145

Age (years), mean (IQR) 68 (60–77)

Sex (female/male), n (%) 44 (30.3)/101 (69.7)

Dialysis period (months), median (IQR) 20.0 (1.0–87.0)

Dialysis time (h), median (IQR) 4.0 (3.0–4.0)

Systolic blood pressure before dialysis (mmHg),

median (IQR)

136.0 (121.0–157.0)

Diastolic blood pressure before dialysis

(mmHg), median (IQR)

69.0 (59.0–79.0)

Primary illness, n (%)

Chronic glomerulonephritis 29 (20.0)

Rapidly progressive glomerulonephritis 4 (2.8)

Polycystic kidney disease 8 (5.5)

Nephrosclerosis 8 (5.5)

Diabetic nephropathy 37 (25.5)

Nephritis with autoimmune disease 6 (4.1)

Renal/urological tumor 5 (3.4)

Obstructive urinary tract/urination disorders 1 (0.7)

Paraproteinemia (myeloma) 1 (0.7)

Acute kidney injury 10 (6.9)

Congenital anomalies of the kidney and urinary

tract

1 (0.7)

Unknown 33 (22.8)

Others 2 (1.4)

Hemodialysis type, n (%)

HD 133 (91.7)

HDF 12 (8.3)

Vascular access type, n (%)

Arteriovenous fistula 107 (73.8)

Arteriovenous graft 8 (5.5)

Temporary vascular catheter 23 (15.9)

Permanent vascular catheter 7 (4.8)

Dialysis efficiency

Kt/V 1.20 (0.06–1.86)

Medication, n (%)

Unfractionated heparin 101 (69.7)

Low-molecular-weight heparin 24 (16.6)

Nafamostat mesylate 20 (13.8)

Dialysis membrane, n (%)

Polyethersulfone 110 (75.9)

Polysulfone 34 (23.4)

Asymmetric triacetate 1 (0.7)

HD, hemodialysis; HDF, hemodiafiltration; IQR, interquartile range.

RESULTS

Characteristics of Patients
We finally enrolled 145 patients with a median age of 66 years
(Figure 1; Table 1). The median dialysis period and time were
63 months and 3 h and 45min, respectively. The most common
primary illness was diabetic nephropathy, which was observed in
37 patients (25.5%).
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TABLE 2 | Serum SDC-1 concentration before and after hemodialysis.

Status SDC-1 concentration (ng/ml) P-value

Before HD 124.6 ± 107.8 <0.001

After HD 229.0 ± 138.1

SDC-1, syndecan-1; HD, hemodialysis. P-values were obtained from a mixed-

effects model.

TABLE 3 | Serum SDC-1 concentration and anticoagulants.

Anticoagulants Before HD (ng/ml) After HD (ng/ml) P-value

Unfractionated heparin 112.0 ± 79.8 235.4 ± 126.8* <0.001

Low-molecular-weight heparin 144.1 ± 135.8 248.5 ± 174.1* <0.001

Nafamostat mesylate 164.2 ± 171.1 173.3 ± 141.3 0.459

SDC-1, syndecan-1; HD, hemodialysis.
*Statistically significant (P < 0.05).

The number of patients who underwent hemodialysis and
hemodiafiltration was 133 (91.7%) and 12 (8.3%), respectively.
Anticoagulation agents, such as unfractionated heparin, low-
molecular-weight heparin, and nafamostat mesylate, were
administered to 101, 24, and 20 patients, respectively. The
median Kt/V-value, an index of dialysis efficiency, was 1.20.

Concentration of Serum Syndecan-1 and
Hemodialysis
The concentrations of serum syndecan-1 before and after
hemodialysis were 124.6 ± 107.8 and 229.0 ± 138.1 ng/ml,
respectively; this indicated that the serum syndecan-
1 concentration significantly increased (P < 0.001) after
hemodialysis (Table 2).

The concentration of serum syndecan-1 significantly
increased after hemodialysis in patients who received
unfractionated heparin and low-molecular-weight heparin;
however, the concentration of syndecan-1 was not significantly
different before and after hemodialysis in those who received
nafamostat mesylate (Table 3).

Additionally, according to the multivariable regression
analysis after adjusting for age, sex, dry weight, and dialysis
period, the treatment with nafamostat mesylate inhibited the
increase in the concentration of serum syndecan-1 during
hemodialysis compared to treatment with unfractionated heparin
and low-molecular-weight heparin (Table 4).

Interestingly, there was no strong relationship between the
syndecan-1 levels and blood pressure (Supplementary Table 1),
vascular access (Supplementary Table 2), cardiovascular
disease (Supplementary Table 3), and primary disease
(Supplementary Table 4) before and after dialysis.

Association of Concentration of Serum
Syndecan-1 With Dialysis Time and Body
Fluid Removal
The relationship between the concentration variability of
syndecan-1 and the dialysis condition, including the dialysis time

and the amount of body fluid removed, was confirmed. The
amount of body fluid removal was corrected by the dry weight.
The dialysis time and change in concentration of syndecan-
1 showed a positive correlation (P = 0.033), but there was
no significant association (P = 0.111) between the amount of
body fluid removed and the syndecan-1 concentration changes
(Table 5).

Next, we examined the modifying effect of the amount of
body fluid removed on the association between the change in
the concentration of syndecan-1 and dialysis time. The change
in the syndecan-1 concentration before and after hemodialysis
increased with respect to enhanced removal of body fluids and
prolonged dialysis time (P for interaction = 0.063, Figure 2).
However, the change in the syndecan-1 concentration before and
after hemodialysis decreased with respect to a decrease in the
amount of body fluid removed and shortened dialysis time.

DISCUSSION

The present study revealed the following: (a) the endothelial
glycocalyx may be injured during hemodialysis; (b) endothelial
glycocalyx injury may be attenuated by administering nafamostat
mesylate as an anticoagulant; and (c) endothelial glycocalyx
injury may be aggravated by an increase in the amount of body
fluid removed and prolonged dialysis time.

A previous study reported that the serum syndecan-1
concentration was approximately 20 ng/ml in healthy individuals
(19); in contrast, in this study, it was found to be 124.6
± 107.8 ng/ml in patients who underwent hemodialysis. This
result confirmed that the endothelial glycocalyx sustained
injuries in patients who underwent hemodialysis, consistent
with the findings of a previous report (27). This indicates that
endothelial glycocalyx injury may be aggravated by an increasing
fluid volume.

Moreover, the serum syndecan-1 concentration increased
after hemodialysis compared to the corresponding value before
hemodialysis. This finding suggested that the endothelial
glycocalyx was injured during hemodialysis, probably because
of the production of free radicals and cytokines during
this procedure.

During hemodialysis, unfractionated heparin, low-molecular-
weight heparin, and nafamostat mesylate were used as
anticoagulating agents. Low-molecular-weight heparin and
nafamostat were administered to patients that had any disease
that was associated with bleeding tendencies. Our results
suggested that an increase in the syndecan-1 concentration was
attenuated in patients who received nafamostat mesylate.

Nafamostat mesylate, a synthetic serine protease inhibitor,
is a short-acting anticoagulant (28), and is also used during
hemodialysis to prevent proteolysis of fibrinogen into fibrin (29).
It is a slow, tight-binding substrate that traps the target protein in
the acyl-enzyme intermediate form and inhibits enzyme activity
(30, 31). It was previously reported that nafamostat mesylate
can inhibit the kallikrein-kinin system, which promoted vascular
permeability via the produced bradykinin (32–34). In addition,
nafamostat has been recently identified as a potential therapy
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TABLE 4 | Results of multivariable regression analysis between anticoagulants.

Anticoagulants Coefficient* 95% LCL 95% UCL P-value

Low-molecular-weight heparin vs. unfractionated heparin −18.07 −56.776 20.637 0.358

Nafamostat mesylate vs. unfractionated heparin −116.473 −158.442 −74.504 <0.001

Nafamostat mesylate vs. low-molecular-weight heparin −98.403 −150.482 −45.324 <0.001

LCL, lower confidence limit; UCL, upper confidence limit.
*Coefficients from the multivariable linear regression model adjusted for age, sex, dry weight, and dialysis period, shown as differences in the serum syndecan-1 concentration for

low-molecular-weight heparin vs. unfractionated heparin, nafamostat mesylate vs. unfractionated heparin, and nafamostat mesylate vs. low-molecular-weight heparin, respectively.

TABLE 5 | Relationship between syndecan-1 concentration variability and dialysis conditions.

Factors Coefficient* 95% LCL 95% UCL P-value

Body fluid removed/dry weight (per 0.01 L/kg increase) 9.107 0.144 18.07 0.111

Dialysis time (per 1min increase) 23.349 −8.836 55.533 0.033

LCL, lower confidence limit; UCL, upper confidence limit.
*Coefficients from the multivariable linear regression model adjusted for age, sex, and dialysis period, shown as increment in the serum syndecan-1 concentration for a unit change

in factors.

FIGURE 2 | Effect of dialysis time and the amount of body fluid removed on

the change in the serum syndecan-1 concentration. The change in the

concentration of syndecan-1 before and after hemodialysis increased with

respect to the enhanced body fluid removal and prolonged dialysis time.

However, the change in the concentration of syndecan-1 before and after

hemodialysis decreased with respect to the decreased amount of body fluid

removal and the shortened dialysis time.

against the coronavirus disease (35). Infection with severe acute
respiratory syndrome coronavirus 2 induces endotheliitis due to
viral involvement and inflammatory response of the host and,
thus, it is associated with endothelial glycocalyx injury (21).
Therefore, nafamostat mesylate may have a beneficial effect on
the endothelial glycocalyx, although this is supported only by
circumstantial evidence.

Extension of dialysis time is a strategy to improve prognosis
(36); however, it remains controversial (36, 37). The present
study identified that changes in the serum syndecan-1 levels
are small in patients who have prolonged dialysis time and

slow removal of body fluid. Therefore, these two strategies
could prevent endothelial glycocalyx injury. Several reports
have also revealed that prolonged hemodialysis was associated
with improved blood pressure and fluid management (38–40).
Additionally, rapid removal of body fluid is associated with
a greater risk of mortality and cardiovascular events (41).
Moreover, hypotension during hemodialysis is also associated
with higher mortality (42).

These mechanisms may explain how lower ultrafiltration rates
with prolonged hemodialysis and slow removal of body fluids
may ameliorate endothelial vascular permeability via attenuation
of endothelial glycocalyx injury. Therefore, we propose that slow
removal of body fluids with prolonged hemodialysis can reduce
hypotension during hemodialysis.

This study had some limitations. First, the hemodialysis
time in most patients was <4 h. Therefore, an accurate
examination of prolonged hemodialysis could not be performed.
Second, less types of dialyzer were used in the present
study. Third, in this study, other biomarkers of glycocalyx
injury, such as the serum hyaluronan and hyaluronidase levels,
were not measured. Although further studies are required,
measuring the concentration of serum syndecan-1 may help
assessing endothelial injury under low blood flow (e.g., chronic
hemodiafiltration) and membrane compatibility by using a
different type of dialyzer.Moreover, the serum syndecan-1 level is
proposed to be a useful biomarker for daily monitoring of organ
dysfunction, and may be an important risk factor for mortality in
critically ill patients (25).

In conclusion, the study presented a method for the
quantitative assessment of endothelial glycocalyx injury by
measuring the concentration of serum syndecan-1 during
hemodialysis. Although hemodialysis causes endothelial
glycocalyx injury, it may be mitigated by maintenance of
hemodialysis duration and by modulation of the amount of
body fluid removed via the quantitative assessment of the serum
syndecan-1 level.
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