
EDITED BY : Jun Li, Zhengguang Zhang, Lulu Qiao and Andrei Herdean

PUBLISHED IN : Frontiers in Marine Science

NEURAL COMPUTING AND 
APPLICATIONS TO MARINE 
DATA ANALYTICS

https://www.frontiersin.org/research-topics/14534/neural-computing-and-applications-to-marine-data-analytics
https://www.frontiersin.org/research-topics/14534/neural-computing-and-applications-to-marine-data-analytics
https://www.frontiersin.org/research-topics/14534/neural-computing-and-applications-to-marine-data-analytics
https://www.frontiersin.org/research-topics/14534/neural-computing-and-applications-to-marine-data-analytics
https://www.frontiersin.org/journals/marine-science


Frontiers in Marine Science 1 March 2022 | Neural Computing and Applications to Marine

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-88974-780-1 

DOI 10.3389/978-2-88974-780-1

https://www.frontiersin.org/research-topics/14534/neural-computing-and-applications-to-marine-data-analytics
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/about/contact
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Frontiers in Marine Science 2 March 2022 | Neural Computing and Applications to Marine

NEURAL COMPUTING AND 
APPLICATIONS TO MARINE 
DATA ANALYTICS

Topic Editors: 
Jun Li, University of Technology Sydney, Australia
Zhengguang Zhang, Ocean University of China, China
Lulu Qiao, Ocean University of China, China
Andrei Herdean, University of Technology Sydney, Australia

Citation: Li, J., Zhang, Z., Qiao, L., Herdean, A., eds. (2022). Neural Computing and 
Applications to Marine Data Analytics. Lausanne: Frontiers Media SA. 
doi: 10.3389/978-2-88974-780-1

https://www.frontiersin.org/research-topics/14534/neural-computing-and-applications-to-marine-data-analytics
https://www.frontiersin.org/journals/marine-science
http://doi.org/10.3389/978-2-88974-780-1


Frontiers in Marine Science 3 March 2022 | Neural Computing and Applications to Marine

04 Efficacy of Feedforward and LSTM Neural Networks at Predicting and Gap 
Filling Coastal Ocean Timeseries: Oxygen, Nutrients, and Temperature

Steefan Contractor and Moninya Roughan

21 Global Oceanic Eddy Identification: A Deep Learning Method From Argo 
Profiles and Altimetry Data

Xiaoyan Chen, Ge Chen, Linyao Ge, Baoxiang Huang and Chuanchuan Cao

36 The Identification and Prediction in Abundance Variation of Atlantic Cod via 
Long Short-Term Memory With Periodicity, Time–Frequency Co-movement, 
and Lead-Lag Effect Across Sea Surface Temperature, Sea Surface Salinity, 
Catches, and Prey Biomass From 1919 to 2016

Rui Nian, Qiang Yuan, Hui He, Xue Geng, Chi-Wei Su, Bo He and 
Amaury Lendasse

55 Estimating Ocean Surface Currents With Machine Learning

Anirban Sinha and Ryan Abernathey

71 Application of Three Deep Learning Schemes Into Oceanic Eddy 
Detection

Guangjun Xu, Wenhong Xie, Changming Dong and Xiaoqian Gao

79 ConvLSTM-Based Wave Forecasts in the South and East China Seas

Shuyi Zhou, Wenhong Xie, Yuxiang Lu, Yuanlin Wang, Yulong Zhou, 
Nian Hui and Changming Dong

89 A Glider Simulation Model Based on Optimized Support Vector 
Regression for Efficient Coordinated Observation

Fangjie Yu, Zhiyuan Zhuang, Jie Yang and Ge Chen

97 Multi-Year ENSO Forecasts Using Parallel Convolutional Neural Networks 
With Heterogeneous Architecture

Min Ye, Jie Nie, Anan Liu, Zhigang Wang, Lei Huang, Hao Tian, Dehai Song 
and Zhiqiang Wei

110 Short- to Medium-Term Sea Surface Height Prediction in the Bohai Sea 
Using an Optimized Simple Recurrent Unit Deep Network

Pengfei Ning, Cuicui Zhang, Xuefeng Zhang and Xiaoyi Jiang

122 The Synthesis of Unpaired Underwater Images for Monocular Underwater 
Depth Prediction

Qi Zhao, Ziqiang Zheng, Huimin Zeng, Zhibin Yu, Haiyong Zheng and 
Bing Zheng

140 Data-Driven Mapping With Prediction Neural Network for the Future 
Wide-Swath Satellite Altimetry

Jiankai Di, Chunyong Ma and Ge Chen

155 Toward Exploring Topographic Effects on Evolution and Propagation of 
Ocean Mesoscale Eddies Through Life Cycle Across Izu-Ogasawara Ridge 
in Northwestern Pacific Ocean

Rui Nian, Xue Geng, Zhengguang Zhang, Minghan Yuan, Zhen Fu, 
Hengfu Xu, Hua Yang, Qi Lai, Hui He, Chi Wei Su, Lina Zang, Qiang Yuan 
and Bo He

Table of Contents

https://www.frontiersin.org/research-topics/14534/neural-computing-and-applications-to-marine-data-analytics
https://www.frontiersin.org/journals/marine-science


ORIGINAL RESEARCH
published: 03 May 2021

doi: 10.3389/fmars.2021.637759

Frontiers in Marine Science | www.frontiersin.org 1 May 2021 | Volume 8 | Article 637759

Edited by:

Jun Li,

University of Technology Sydney,

Australia

Reviewed by:

Oliver Zielinski,

University of Oldenburg, Germany

Laurent Coppola,

UMR7093 Laboratoire

d’Océanographie de Villefranche

(LOV), France

*Correspondence:

Moninya Roughan

mroughan@unsw.edu.au

orcid.org/0000-0003-3825-7533

Steefan Contractor

s.contractor@unswalumni.com

orcid.org/0000-0002-3987-2311

Specialty section:

This article was submitted to

Ocean Observation,

a section of the journal

Frontiers in Marine Science

Received: 04 December 2020

Accepted: 22 March 2021

Published: 03 May 2021

Citation:

Contractor S and Roughan M (2021)

Efficacy of Feedforward and LSTM

Neural Networks at Predicting and

Gap Filling Coastal Ocean Timeseries:

Oxygen, Nutrients, and Temperature.

Front. Mar. Sci. 8:637759.

doi: 10.3389/fmars.2021.637759

Efficacy of Feedforward and LSTM
Neural Networks at Predicting and
Gap Filling Coastal Ocean
Timeseries: Oxygen, Nutrients, and
Temperature
Steefan Contractor* and Moninya Roughan*

Coastal and Regional Oceanography Lab, School of Mathematics and Statistics, The University of New South Wales,

Sydney, NSW, Australia

Ocean data timeseries are vital for a diverse range of stakeholders (ranging from

government, to industry, to academia) to underpin research, support decision making,

and identify environmental change. However, continuous monitoring and observation of

ocean variables is difficult and expensive. Moreover, since oceans are vast, observations

are typically sparse in spatial and temporal resolution. In addition, the hostile ocean

environment creates challenges for collecting and maintaining data sets, such as

instrument malfunctions and servicing, often resulting in temporal gaps of varying lengths.

Neural networks (NN) have proven effective in many diverse big data applications,

but few oceanographic applications have been tested using modern frameworks and

architectures. Therefore, here we demonstrate a “proof of concept” neural network

application using a popular “off-the-shelf” framework called “TensorFlow” to predict

subsurface ocean variables including dissolved oxygen and nutrient (nitrate, phosphate,

and silicate) concentrations, and temperature timeseries and show how these models

can be used successfully for gap filling data products. We achieved a final prediction

accuracy of over 96% for oxygen and temperature, and mean squared errors (MSE)

of 2.63, 0.0099, and 0.78, for nitrates, phosphates, and silicates, respectively. The

temperature gap-filling was done with an innovative contextual Long Short-TermMemory

(LSTM) NN that uses data before and after the gap as separate feature variables. We

also demonstrate the application of a novel dropout based approach to approximate

the Bayesian uncertainty of these temperature predictions. This Bayesian uncertainty is

represented in the form of 100 monte carlo dropout estimates of the two longest gaps

in the temperature timeseries from a model with 25% dropout in the input and recurrent

LSTM connections. Throughout the study, we present the NN training process including

the tuning of the large number of NN hyperparameters which could pose as a barrier

to uptake among researchers and other oceanographic data users. Our models can be

scaled up and applied operationally to provide consistent, gap-free data to all data users,

thus encouraging data uptake for data-based decision making.

Keywords: East Australian Current, machine learning, statistical modeling, depth profile observations, nitrate,

phosphate, silicate, coastal oceanography
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1. INTRODUCTION

Oceans play a pivotal role in the global weather and climate
systems and support a multi-billion dollar blue economy,
hence continuous monitoring of ocean conditions, in coastal
marine areas in particular, is important to a wide range
of stakeholders (UNESCO, 2019). Although many different
types of observation platforms can measure the same ocean
variable (e.g., temperature), there can be fundamental differences
between them due to the instrumentation and the spatiotemporal
sampling making comparison difficult (Hemming et al., 2020).
For example, satellite observations are restricted to the surface
and represent area-averages (often over many kilometers)
while data from in situ observations represents a point-based
observation in space (Lee et al., 2018). Even within the in situ
observations, differences exist in terms of the observation depth,
spatial coverage and temporal sampling frequency (Bailey et al.,
2019). Furthermore, regardless of the type of observation, there
are inevitably gaps in ocean timeseries due to various reasons
including instrument loss, servicing and repairs, biofouling,
deployment schedules, loss of funding etc. (Morello et al., 2014).

These data gaps and inconsistencies make ocean observations
inaccessible to non-expert users, and even expert users (e.g.,
ocean modelers) typically take the path of least resistance when
accessing ocean data. It is not a straightforward exercise to
compare, for example, recent high frequency (e.g., 5 min) ocean
temperature observations from a mooring with sparse (e.g.,
monthly) bottle data collected in the 1950s (Hemming et al.,
2020). Furthermore, timeseries gaps can significantly affect trend

analysis (Wynn and Wickwar, 2007).
Savvy data users by comparison, suffer the consequences

of non-standardized methods of interpolating these gaps,
leading to unaccountable differences in analysis. Furthermore,
oceanographers often need gap-free timeseries for a particular
analysis, for example, for determining physical mechanisms
or teleconnections using empirical orthogonal function (EOF)
analysis (e.g., Ashok et al., 2007 or for researching marine
heatwaves Schaeffer and Roughan, 2017) since most common
heatwave definitions involve comparing temperature anomalies
of consecutive days with a climatology constructed from 30
years of daily data (Schlegel et al., 2019). Non-specialists may
require gap-free observations concurrent with other timeseries,
such as ecological or biological variables (Lee et al., 2019). Finally,
measurement of climate impacts (e.g., trends in ocean warming)
also necessitates continuous and consistent monitoring of
variables over a long period (Malan et al., 2020). However,
although ocean observations can date back many decades, there
are statistical discontinuities that could be related to changes in
ocean observation platforms and practices.

Some ocean observing systems, such as Australia’s Integrated
Marine Observing System (IMOS, www.imos.org.au) are
maturing so as to allow for “learning” of relationships between
ocean variables to fill inevitable gaps. Australia has a network
of “National Reference Stations” with sampling dating back to
the 1940s and 50s (Lynch et al., 2014). Initially sampling was
boat based “bottle” sampling, but at the inception of IMOS, this
was augmented with moored temperature (electronic sensor)

timeseries at 8 m intervals through the water column, since
2008 (Roughan et al., 2010, 2013, 2015), and monthly vertical
profiling with an electronic CTD (conductivity temperature
and depth meter) sampling every meter. Here we use data from
the Port Hacking National Reference Station in 100 m of water
off Sydney (34◦S) Australia as a case study to demonstrate the
use of statistical models for prediction of oxygen and nutrient
concentrations and gap filling temperature timeseries data.

Statistical models present an opportunity to fill gaps in
observational records using data based approaches that do
not involve making assumptions about the underlying physical
processes. One such statistical model that has gained popularity
in the last decade is the artificial neural network or neural
network model (NN) (Emmert-Streib et al., 2020). An NN
feeds the input features through numerous neurons arranged
in multiple layers to generate an output layer that can be used
for solving classification or regression problems (see LeCun
et al., 2015 and Emmert-Streib et al., 2020 for more details).
Although the first model of a single neuron was proposed in
the 1950s (Rosenblatt, 1957), NNs have seen a large resurgence
in the last decade partly due to breakthroughs in training
efficiency (Hinton et al., 2006). The recent rise in popularity is
also due to the development of new models capable of taking
advantage of big data to solve real world problems, e.g., involving
image recognition (Rawat and Wang, 2017), natural language
processing (Young et al., 2018), and timeseries and text analysis
(Lipton et al., 2015). See Schmidhuber (2015) and Emmert-Streib
et al. (2020) for a detailed account of the historical development
of neural networks. These recent breakthroughs in NNs have
led to the development of modern open-source programming
platforms, such as TensorFlow (developed by Google Brain)
(Abadi et al., 2016), PyTorch (developed primarily by Facebook’s
AI Research Lab), etc. These libraries allow for quick and
scalable implementations of state-of-the-art yet “off-the-shelf ”
NN models.

Due to their success in learning complex relationships, it
stands to reason that NNs could be useful for learning the
complex spatiotemporal relationships between physical, chemical
and biological ocean variables. One of the first applications of
NNs in oceanography was by Tangang et al. (1997) to forecast
sea surface temperature anomalies of the Niño3.4 climate index.
Since then they have been used to assist in forecasting wind
generated ocean waves (Makarynskyy, 2005; Tolman et al., 2005),
predict sea level fluctuations (Makarynskyy et al., 2004; Han and
Shi, 2008), calculate Pacific Ocean heat content (Tang and Hsieh,
2003), statistical downscaling of ocean model output (Bolton
and Zanna, 2019), predicting subsurface ocean temperature
timeseries (Su et al., 2018; Han et al., 2019; Lu et al., 2019),
and ocean eddy detection (Lguensat et al., 2018). Of particular
interest to this study is the prediction of water column nutrient
concentrations by Sauzède et al. (2017) and Bittig et al. (2018),
and creation of virtual marine sensors by Oehmcke et al. (2018).
For a comprehensive historical overview of NN applications in
oceanography, see Hsieh (2009) and Krasnopolsky (2013).

Despite, their widespread use in Oceanography, examples
of NNs that predict nutrients or gap-fill temperatures in the
water column (i.e., below the surface) are scarce (exceptions
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include Sauzède et al., 2017, Bittig et al., 2018, and Fourrier
et al., 2020) especially after the breakthroughs in training
efficiency in 2006 (Emmert-Streib et al., 2020), and the few
studies that do accomplish this do not take advantage of modern
frameworks, such as TensorFlow. TensorFlow is an open-end
ecosystem/framework for neural network modeling. It contains a
suite of tools, libraries/packages, and community resources that
are constantly updated with the latest advances in the field of
machine learning. It is language agnostic with implementations
in Python, R, and Julia, with the Python implementation being
the most popular. Furthermore, it allows for the development
of models with various levels of abstraction, which means that
programmers and researchers new to modeling with NNs can
spin up models quickly and easily, and add complexity as they
require. Thanks to its large community of machine learning
practitioners, researchers in adjacent fields who wish to take
advantage of statistical modeling but do not have the knowledge
of, or expertise in computer science, can take advantage of
latest breakthroughs without worrying about being aware of
and downloading latest libraries/packages, and working out
compatibility issues. Users must, however, judge the risks of
applying such black-box models for themselves and determine
themodel’s suitability to their use case individually. Furthermore,
progress has recently been made on the interpretability of neural
networks (Lundberg and Lee, 2017; Kwon et al., 2019).

In this study, we demonstrate the efficacy of using “off-the-
shelf ” NNmodels built using TensorFlow for modeling dissolved
oxygen, nutrient concentrations and temperature throughout the
water column at a valuable long-term observational site. We
use a simple feedforward neural network to model oxygen and
nutrients, however due to the larger amount of data available, we
treat temperature modeling as a timeseries prediction problem.
For this we use a type of neural network that is adept at
modeling timeseries called recurrent neural networks (RNN)
(Lipton et al., 2015). RNNs include connections between adjacent
timesteps in addition to connections between the input, hidden
and output layers. However, typical RNNs struggle to remember
long-term dependencies (Graves, 2013) and are also difficult to
train (Rosindell andWong, 2018). Hence we gap-fill temperature
using a special type of RNN called a Long Short Term Memory
(LSTM) NN (Hochreiter and Schmidhuber, 1997; Adikane
et al., 2001) that overcomes both of these shortcomings. As
this is a proof of concept study, we outline the NN model
design and training in detail. We show the high degree of
accuracy that can be obtained when predicting and gap filling
using these modern multi-layered NNs. The models developed
in this study serve as a proof of concept for applications
to other such long term ocean timeseries datasets aiming to
create a suite of easy-to-handle, continuous and filled, derived
observational products.

This study demonstrates two types of models befitting two
datasets with varying characteristics and is hence divided in two
parts. First, section 2 describes the two types of datasets, then
section 3 details the first model that uses concurrent observations
from related oceanic variables to predict dissolved oxygen and
nutrient concentrations. The second suite of models detailed in
section 4 are used to gap-fill temperature timeseries observations

at a single depth over multiple length temporal gaps from days to
months using LSTMs.

2. DATA

2.1. Prediction Based on Co-variates
Data from discrete depths (“bottle data,” see below) was used
for training a simple NN to predict other variables. The
“bottle data” consists of measurements of pressure, temperature,
salinity, dissolved oxygen and dissolved nutrient concentrations
(nitrate, phosphate, and silicate) with timestamps at a long term
observation site. The Port Hacking National Reference Station
(151.2◦E, 34.1◦S) is located in 100 m of water, ∼8.5 km off the
coast of Sydney Australia where tidal influences are weak. See
Roughan et al. (2010, 2013, 2015), and Hemming et al. (2020) for
more information on the long term sampling at Port Hacking.
The water samples are collected in bottles at a range of depths
through the water column, nominally, at 10, 20, 30, 40, 50, 75,
and 100 m in 100 m of water. The data collection began in 1953
with a frequency of weekly to monthly but due to the nature of
manual collection consists of many gaps and irregular sampling
intervals. See Hemming et al. (2020) their Figure 3 and Table 1
for a full description of the data collection.

Due to irregularity of the bottle data collection, the prediction
problem could not be treated as a timeseries prediction problem
but rather as a simple co-variate based prediction problem
where time was treated as another co-variate. The timestamps
were converted into three co-variates; year, day of the year
and hour of the day. This resulted in six predictor variables:
pressure, temperature, salinity and the three temporal co-
variates. Figures 1, 2 show the relationship between the six co-
variates and the Oxygen and Nitrate concentrations, respectively,
colored by the pressure at which the measurement was recorded.
The Oxygen concentration (Figure 1) is in the range ∼160–
275 µmol l−1 whereas the nutrients are bounded by 0 µmol l−1

and are heavily skewed to the left. In general, the nutrient
concentrations increase with depth and oxygen decreases with
depth. A seasonal cycle is evident in the Oxygen concentrations
and for the high Nitrogen concentrations. Some inter-annual
variability is also visible for both Oxygen and Nitrogen
concentrations, albeit the pattern seems less predictable. Since
the data were typically collected in the morning Australian
Eastern Time (close to midnight UTC time), little useful
information is added by the hour-of-the-day co-variate. Models
that do not use the hour-of-the-day as an additional co-variate
were also tested but the model accuracy remained unchanged.
Although most measurements were documented as having
been taken at the nominal pressure depths, there are many
examples of measurements recorded outside of these nominal
depths (Figures 1, 2). As a result, the pressure is treated as a
continuous variable.

Data was collected following standard IMOS procedures to
ensure data is of high precision and accuracy. IMOS provides
guidelines on pre-deployment planning, data collection, post-
deployment data processing, and quality control, see Sutherland
et al. (2017) for IMOS QA procedures, and Ingleton et al. (2014)
and Morello et al. (2014) regarding IMOS quality control (QC).
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FIGURE 1 | Scatter plots of dissolved oxygen concentration (µmol l−1) (y-axis) against the six co-variates; (from left to right, top to bottom) year, day of the year, hour of

the day, pressure (dbar), temperature (◦C), and salinity (psu). All points are colored by the pressure value.

FIGURE 2 | Same as Figure 1 but showing the scatter plots of nitrate concentration (µmol l−1) against the six co-variates.

QC includes but is not limited to checking for impossible date,
position, depth range (based on global and regional values)
correlation with adjacent data (above, below, before, and after).
All steps including the use of the IMOS data toolbox for QC are
described in Hemming et al. (2020). The data used here were
flagged as either “good data” or “probably good data” following
UNESCO Intergovernmental Oceanographic Commission (IOC)
protocol (flags 1 and 2, respectively) (Lynch et al., 2014; Morello

et al., 2014). In addition to the IMOS QA/QC procedures a
visual quality control was conducted to remove outliers to aid
the model learning process. For example, records corresponding
to salinity values below 35 parts per thousand (psu) and above
35.8 psu, pressure above 120 dbar, and nitrate values above
24 µmol l−1 were removed, resulting in 587 records removed for
nitrate concentration modeling and 621 records removed for
oxygen modeling.
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2.2. Gap-Filling Temperature Timeseries
A recurrent neural network model was trained on a “gappy”
temperature timeseries obtained from a sensor on a fixed
mooring located near the Port Hacking NRS (PH100). The
mooring was deployed with AQUATec Aqualogger 520T
temperature or 520TP temperature and pressure sensors at
8 m intervals in 2009 to augment the historic bottle data.
Temperature data have been acquired using automated electronic
senors at 5 min intervals since 2009. Gaps in the temperature data
occur through loss of the mooring or sensor failure. The mooring

TABLE 1 | Length of gaps in the order they are encountered in the 24.5m bin

temperature timeseries from the Port Hacking 100 mooring.

Gap number Gap length (days)

1 91

2 4

3 3

4 6

5 19

6 29

7 21

8 2

9 79

Total (days) 256 (7.4%)

Bottom row shows the total number of days with missing data and percentage of total

days that are missing. The length of the entire timeseries (with gaps) is 3,459 days.

is manually serviced every quarter and has gaps in the timeseries
ranging from a few hours, days, to up to 3 months (Table 1). The
PH100 mooring was deployed in 2009 and was still operational
as of 2020 providing over a decade of temperature observations.
Due to the greater number of data samples available, this gap-
filling problem was treated as a timeseries prediction problem
where the model was trained to predict purely based on the
timeseries of the variable of interest, instead of a prediction based
on co-variates, as was the case for oxygen and nutrients.

Since a daily timeseries is adequate for many oceanographic
applications, we resample the 5-min observations to a daily
frequency using an arithmetic mean. Due to the movement of the
sensors, observations are available continuously throughout the
water column, with the highest density ofmeasurements available
at the optimal depths (the depths at which the temperature
sensors are deployed). To find these optimal depths, the daily
observations were binned in 1m intervals and the bins with
the highest density of observations were considered as the
optimal depths. Since Hemming et al. (2020) showed that the
temperature observations at PH100 were highly correlated within
8–9m, we combined observations from 2m below and 3m above
the optimal depths and labeled them by the average depth of
the resulting range. This results in a regular daily frequency
timeseries. For this study, we chose to gap-fill the 24.5m bin
timeseries as a proof-of-concept, which as explained, contains
observations between 22 and 27m. In total, the 24.5m timeseries
contains 3,459 days, with 256 days (7.4% of total timeseries) of
missing temperature observations as depicted in Figure 3. These
256 missing days are spread across 9 gaps with the longest gap
being 91 days and the shortest being 2 days (Table 1).

FIGURE 3 | Depiction of the 24.5m bin temperature timeseries with gaps represented by pink vertical bands. Refer to Table 1 for the lengths of the gaps.
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3. PREDICTION BASED ON CO-VARIATES

3.1. Model
The simplest, most “vanilla,” neural network known as a
feedforward NN consists of many connected nodes or neurons
arranged in one or more “hidden” layers (Schmidhuber, 2015).
The output of each neuron y consists of a non-linear activation
function φ applied to a linear function with a weight matrix W
and bias vector b.

y = φ(W · x+ b) (1)

Here x is the input vector for the neuron. Training such a NN
involves minimizing the loss, which is a function representing
how close the NN output is to the true value. Common choices
for loss functions include mean squared error (MSE), root mean
squared error (RMSE), and mean absolute percentage error
(MAPE) for regression problems. There are many optimization
algorithms or “optimizers” used to minimize the loss function.
One of the most basic but still highly used optimization
algorithms is stochastic gradient descent which updates the
neuronweights and biases in the direction of the steepest gradient
of the loss function during each training step. The size of these
parameter updates is determined by a learning rate. All other
optimizers are in some sense a variation of stochastic gradient
descent. The two most popular variations are RMSprop and
Adam which both introduce concepts of adaptive learning rates.
See Ruder (2016) and Ketkar (2017) for a complete list of
optimizers and their details.

We used a feedforward neural network with four dense, fully
connected layers for predicting oxygen, nitrate, phosphate and
silicate concentrations, as seen in Table 2. The first three layers
contain 64, 64, and 8 nodes, respectively, and the output layer
contains one node, which gives the predicted concentration. A
Rectified Linear Unit (ReLU) (Nair and Hinton, 2010) activation
function was used for the first three layers. The ReLU activation
function is a piecewise linear function that returns values equal
to its input for positive inputs and zero otherwise. No activation
was used for the output layer as no activation is necessary for
regression problems. The mean absolute percentage difference
(MAPE) between the predicted and the true concentrations
was used as the loss function for oxygen prediction and the
mean squared error (MSE) was used for nutrient prediction.
The Adam optimization algorithm (Kingma and Ba, 2015)
was used to minimize this loss function by tuning the node
weight parameters. These design choices have been justified
further below.

A total of 12,970, 8,633, 12,639, and 6,303 records were
used for oxygen, nitrate, phosphate, and silicate concentration
modeling, respectively. In all cases 80% of records were chosen
at random for the training and validation datasets, and the
remaining 20% were used for evaluation of the trained model.
The training and validation datasets were also split randomly at
an 80–20 ratio.

The model architecture was tested by experimenting with
more layers (up to 6) and nodes per layer (up to 1,024), however,
more complex models provided little to no improvement to
the final model accuracy. Similarly, the hyperparameters were

TABLE 2 | Description of the four layer model architecture used to predict

dissolved oxygen and nutrient concentrations.

Layer type Activation function # Nodes

Layer 1 Dense, fully connected ReLU 64

Layer 2 Dense, fully connected ReLU 64

Layer 3 Dense, fully connected ReLU 8

Layer 4 Output layer 1

No activation function was used for the output layer.

also chosen by experimenting with different values. One of
the most important architectural design decisions when tuning
an NN is the activation function. As described earlier each
node of an NN consists of a linear estimator which is passed
through a non-linear activation function to create non-linear
estimates (Emmert-Streib et al., 2020). Hence an activation
function can influence the decision boundaries and convergence
of the NN model. See Table 1 of Emmert-Streib et al. (2020) for
a list of the most common activation functions. We tested the
ReLU, tanh and sigmoid functions as activations. Although the
final validation loss was similar for all three activation choices,
ReLU resulted in the smoothest and quickest convergence,
with minimal validation dataset loss variability. During training
with large datasets, it is often more efficient to take many
small, quick steps based on subsets of training data instead
of one large step based on the entire dataset. These data
subsets are called batches and the batch size determines the
variability of the losses during training (smaller batch sizes
mean more variable convergence and vice versa). For oxygen
we used the default Keras (TensorFlow wrapper) batch size
of 32 and settled on batch sizes of 1,024, 64, and 64 for
nitrate, phosphate, and silicate models, respectively. The size
of the training steps is determined by the learning rate of
the “optimizer” and also affects the convergence characteristics
during training. We used the Adam optimizer (Kingma and Ba,
2015) with the default learning rates of 0.001 for all models
(oxygen, phosphate, and silicate) except for nitrate modeling
for which we used a learning rate of 0.0001. Sometimes,
a model overfits to the training data resulting in a gap
between the final training and validation losses as seen in
Figures 4a,b. This can be reduced by handicapping the models
using “regularization” techniques that make it harder for models
to learn too quickly. No regularization was necessary for oxygen,
however, we used L2 regularization (Krogh and Hertz, 1992) for
the nutrients.

The models were trained using “early-stopping,”
meaning the training was stopped when the validation
dataset error flattened out for 50 epochs, where an epoch
is one pass through all training examples. All features
for all models were standardized by subtracting the
mean and dividing by the standard deviation before
training so all features carried equal emphasis for
the models.

Finally, the loss metric used to train the models also influences
the predictions. Since we are primarily interested in reducing

Frontiers in Marine Science | www.frontiersin.org 6 May 2021 | Volume 8 | Article 6377599

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Contractor and Roughan Efficacy of NN Ocean Predictions

FIGURE 4 | (a) Oxygen model training, showing the reduction of the mean absolute percentage error (loss) as a function of epochs (302 in total). Losses over both

training (blue) and validation (orange) datasets are shown. (b) Comparison of training history of two different nitrate models: first without oxygen as an additional

feature variable (blue lines), and second with oxygen as an extra feature (orange lines). Both the training (solid) and validation (dashed) losses are shown. An epoch is a

single pass through all training examples.

the mean absolute percentage error (MAPE) between the true
and predicted values, we trained the models with MAPE
loss. Although this resulted in good results, for oxygen, it
produced misleading results for the nutrient predictions. This
is because the absolute errors (true − predicted) can translate
into large percentage errors for true ≈ 0 (which is the case
for most nutrient observations), relative to percentage errors
for larger true values. As a result, we used MSE loss for
nutrient models.

The aim of the nutrient prediction models was to apply
them to mooring data to create a mooring timeseries. Since

no reliable dissolved oxygen data is available, we do not use
oxygen as a feature variable during prediction. However, to
gauge the model improvement, alternative models with oxygen
as an extra feature were also trained for predicting nitrates,
phosphates, and silicates. The training curves for the 6 feature
and 6 + 1 feature nitrate models are shown in Figure 4b.

3.2. Results
The final test dataset mean absolute percentage error of the
oxygenmodel was 3.97%which equates to an accuracy of 96.03%.
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FIGURE 5 | (A) Scatter plot of the true oxygen concentrations from the test dataset against the model predicted oxygen concentrations. (B) A histogram of the

prediction error percentage [(true− predicted)/true]. Counts are displayed as a percentage of the total test data.

FIGURE 6 | Timeseries of the true (blue points) and predicted (orange points) dissolved oxygen concentrations.

Figures 5A,B show that most predictions fall close to the true
oxygen concentration, however there are some large outliers
with errors up to 60% (Figure 5B). Furthermore, the model
seems to under-predict the oxygen concentrations on the higher
end of the distribution, and over-predict the concentrations
on the lower end (Figure 5). This is also seen in Figure 6,
which shows that the range of the predicted values is smaller

than that of the true Oxygen concentrations. Finally, Figure 7A
shows that the large errors occur randomly throughout the
temperature-salinity distribution instead of being concentrated
in a particular range.

The final mean squared error (MSE) difference between
the true and predicted values over the nitrate test dataset loss
is 2.63 (µmol/l)2 which equates to a root mean squared error
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FIGURE 7 | Temperature-Salinity diagrams colored by (A) the error in the predicted oxygen concentrations and (B) the error in the predicted nitrate concentrations.

FIGURE 8 | (A) Scatter plot of the true nitrate concentrations (µmol l−1) from the test dataset against the model predicted oxygen concentrations. (B) A histogram of

the prediction error [(true− predicted)]. Counts are displayed as a percentage of the total test data.

(RMSE) of 1.62 µmol l−1. Two models were trained with identical
model architectures and hyperparameters, however, the second
model include oxygen as an additional feature variable besides
the six feature variables used by the first model. The training
curves for these two models are shown in Figure 4b. The model
with oxygen as an extra feature had a lower loss compared to the
model with the original six variables, with the final MSE (RMSE)
of 1.83 (µmol/l)2 (1.35 µmol l−1). Temperature-Salinity diagram
(Figure 7B) indicates that the large errors are located throughout
the entire temperature-salinity range with the majority

close to the mean of the temperature-salinity distribution
(Figure 8B).

The final MSE and RMSE over the test dataset for
the six feature phosphate model were 0.0099 (µmol/l)2 and
0.0995 µmol l−1, respectively, and for the seven feature (including
oxygen) were 0.0058 (µmol/l)2 and 0.0765 µmol l−1, respectively.
For comparison, the phosphate data ranged between 0.02 and
1.80 µmol l−1. Similarly, the MSE and RMSE over the test dataset
for the six feature phosphate model were 0.78 (µmol/l)2 and
0.89 µmol l−1, respectively, and for the seven feature (including
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oxygen) were 0.42 (µmol/l)2 and 0.65 µmol l−1, respectively. The
silicate concentration ranged between 0.03 and 15.20 µmol l−1.

4. GAP-FILLING TIMESERIES

4.1. Model
Long Short-termMemory (LSTM)NNs have been used to predict
(fill) gaps in temperature timeseries. These models have proved
extremely effective in predicting sequence data, such as timeseries
and language problems (Lipton et al., 2015). The nodes in LSTMs
are enclosed within memory cells along with an input gate,
an internal state, a forget gate and an output gate (see Lipton
et al., 2015 for a detailed explanation). These elements inside the
memory cell are connected to each other in a specific way, and
also contain recurrent connections with adjacent timesteps as is
typical of an RNN. It is through the inclusion of this internal state
that LSTMs remember long-term information and also overcome
the vanishing and exploding gradients problem (Hochreiter and
Schmidhuber, 1997). LSTMs use a short past window to predict
multiple timesteps into the future and average loss over all the
predicted timesteps.

Three successive models were trained in order to infill gaps
of different lengths. Since three out of nine gaps were <6 days
long (Table 1), the first model used a history window 30 days
long to fill gaps up to 6 days long. This history window length
was chosen since it resulted in the lowest loss compared to history
lengths of 15 and 6. To increase the number of training examples,
the second model uses samples from the original timeseries and
the filled gaps based on the first model to infill gaps of up to 30
days based on 30 days of history. The three gaps that ranged 6–
30 days long are thus filled with model 2. The third model was
trained based on training examples from the timeseries with gaps
up to 30 days long filled with models 1 and 2, and was used to
fill the longest remaining gaps (30–91 days long) based on 91
days of history. We avoided using history windows longer than
the prediction windows for models 2 and 3, since this would
reduce the number of training examples extracted from the
timeseries. Furthermore, our choices of history window lengths
results in high model accuracy as discussed in the results section
(section 4.2). Thus, our approach is somewhat auto-regressive as
predictions from previous models are used to generate training
examples for the next model. Note, that such an auto-regressive
approach results in compounding errors from previous models.
As a result, the true model losses for models 2 and 3 could be
higher than as noted in section 4.2.

We used 2,217, 2,130, and 1,793 training examples to train
models 1, 2, and 3, respectively with each example consisting
of the history window and the prediction window. These made
up 90% of the total pairs of history and prediction windows
available for each model with the remaining 10% of examples
used for validation. We used a smaller percentage of examples
for validation compared to the oxygen and nutrient models since
we have more data available and hence fewer validation examples
were necessary.

Temperature timeseries were standardized before training
similar to the feature standardization for the oxygen and nutrient
models as this has been shown to improve training efficiency and

TABLE 3 | Description of the four layer model architecture used to fill temperature

gaps.

Layer type Activation function # Units

Layer 1 Bidirectional LSTM ReLU 64

Layer 2 Bidirectional LSTM ReLU 32

Layer 3 Bidirectional LSTM ReLU 8

Layer 4 Output layer, dense Variable (6, 30, or 91)

No activation function was used for the output layer.

model convergence for LSTMs (Laurent et al., 2016). This meant
that although MAPE is the metric of interest for us, it could
not be used as a loss function because of the scaled temperature
values close to zero. Thus, a modified MAPE loss that used
the training history mean and standard deviation to reverse the
standardization before calculating the MAPE was used. Similar
to the co-variate modeling, the Adam optimizer with the default
learning rate of 0.001 was used.

The architecture for the three models used for filling
temperature gaps is described Table 3. The bidirectional layer
is a wrapper that takes the layer of hidden nodes and
connects them in the opposite direction so the hidden state
of the first layer “remembers” information from the past while
the hidden state variable of the second layer “remembers”
information from the future. Thus, a bidirectional LSTM is able
to learn contextual information which is important for gap-filling
problems. However, since model 3 had to predict a much longer
window compared to models 1 and 2, the approaches used for
models 1 and 2 resulted in larger losses of around 4%. As a result,
model 3 was treated as a multivariate timeseries forecasting
problem where the 91 days after the gap were chronologically
reversed (i.e., the vector of values for day 1, 2, 3, . . . , 91 after the
gap became the vector of values corresponding to days 91, 90, 89,
. . . , 1 after the gap) and given to the model as another feature
variable. This way contextual information was more explicitly
encoded into the “multi-variate” model and the resulting losses
were lower.

To assess the uncertainty of the long window predictions, we
include dropout in each LSTM layer. Dropout is a regularization
technique where a given percentage of nodes are randomly
turned of during each training step to reduce model overfitting.
Traditionally no dropout is included during the evaluation stage.
However, it has recently been shown that predictions with
dropout act as monte carlo estimates and represent Bayesian
approximations (Gal and Ghahramani, 2016b). Such dropout
based uncertainty is much less computationally expensive
compared to fully Bayesian approaches, such as Bayesian NNs.
In LSTMs dropout is typically applied to the input and recurrent
connections as opposed to the nodes themselves (Gal and
Ghahramani, 2016a). We drop 25% of input and recurrent
connection randomly in model 3. We apply dropout only to
model 3 as a demonstration of deriving modeling uncertainty
using NNs.

Similar to the oxygen and nutrient models, the training
was automatically stopped when there was no improvement
in validation loss for 20 epochs. The performance of model 1
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FIGURE 9 | Training history of the three models used to fill temperature gaps. Model 1 (blue) fills gaps up to 6 days long, model 2 (orange) fills fill gaps 6–30 days long,

and model 3 (green) fills the remaining 2 gaps, 79 and 91 days long. Both the training (solid) and validation (dashed) losses are shown. An epoch is a single pass

through all training examples.

was compared with three other models; a single layer model
with 64 nodes, a single layer model with 128 nodes, and finally
a model with the same three layer architecture as model 1,
except without the bidirectional layers. All three alternative
models were trained with the same training data as model 1,
however, the final losses in all three cases were worse than
the original model 1. Furthermore, there was no noticeable
differences between the single layer model with 64 nodes and the
single layer model with 128 nodes. Figure 9 shows the training
history of the final three models trained for the short, medium
and long gaps.

4.2. Results
Sample predictions from model 1, 2, and 3 reveal that the
models predict the general shape of the true observations well-
based on 30, 30, and 91 days of history, respectively, but
lose progressively more day-to-day variability as the prediction
window lengthens (6, 30, and 91, respectively) (Figure 10).
Although Figure 10 only shows a single example from the test
dataset for each model, similar behavior is observed for other
examples as well. Overall, however, the models (1, 2, and 3)
perform well with the final validation dataset losses of only 1.53,
1.65, and 2.42%, respectively (resulting in accuracies of 98.47,
98.35, and 97.58%, respectively). Note that the validation loss
was calculated by averaging the differences between the true and
predicted values over all days of the prediction window of the
validation examples.

The NN predictions of the largest gaps contain much less
variability when compared to the temperature observations

before and after Figure 11. A hundred monte carlo dropout
estimates are shown in Figure 11. The prediction from model 3
without any dropout is approximately in the middle of theMonte
Carlo estimates which is reasonable since it can be thought of as
averaging a hundred different model architectures (Hinton et al.,
2012).

The entire timeseries from 2011 to 2018 (Figure 3) was filled
using predictions from the three chosen LSTM models and is
shown in Figure 12. The linear interpolation does not preserve
any of the seasonal or shorter timescale variability that the NN
prediction does, however, as mentioned earlier the NNs struggle
to reproduce even shorter timescale variability present in the
observations. At first glance the jumps between the filled gaps and
the original datamay not seem smooth in some cases (e.g., the last
gap in 2013, Figure 12B). However, in all cases the jumps at the
start or end of the gaps are similar to the day to day variability in
the vicinity of the gaps.

5. DISCUSSION

A simple artificial neural network was shown to fit oxygen
data with a high degree of accuracy. The model contained
three hidden layers with 64, 64, and 8 nodes, respectively
and was able to achieve accuracy of over 96%. Although
most predictions were comfortably close to the true values, a
small number of predictions presented large biases. Figure 6
indicates that the predicted values struggles to predict some
extreme concentrations. This is further confirmed by Figure 5A
that shows that the distribution of true to predicted oxygen
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FIGURE 10 | Three samples of the model filled gaps from the validation dataset based on (A) model 1, (B) model 2, and (C) model 3, respectively. The blue lines show

the 30, 30, and 90-day history timeseries (normalized units) which were used as input for the LSTM models 1, 2, and 3, respectively. The blue points demonstrate the

observed temperatures whereas the red points indicate the model predicted temperatures over the next (A) 6, (B) 30, and (C) 91 days after the history window.

Frontiers in Marine Science | www.frontiersin.org 12 May 2021 | Volume 8 | Article 63775915

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Contractor and Roughan Efficacy of NN Ocean Predictions

FIGURE 11 | Gap-filling of the (a) 91 day gap and (b) 79 day gap based on the final LSTM model (orange) and the five models with dropout layers (where 40% of

nodes in each of the three layers are randomly switched off in the training process) in green, representing model uncertainty. Original timeseries is shown in blue.

Units: ◦C.

concentrations is wide rather than tall, meaning the NN model
is predicting concentrations in the 170–260 µmol l−1 range even
though the true values are outside this range. Note that, some of
these true extreme concentrations may be a result of stochastic
variability or due to variance that cannot be explained based on
the chosen variables.

Sauzède et al. (2017) has also developed feedforward NN
models with three layers called CANYON to predict subsurface
nutrient concentration using the GLODAPv2 database (Olsen
et al., 2016) that contains data from 37,863 stations globally.
The CANYONmodels predict nutrients from latitude, longitude,
DOY, year, pressure, temperature, salinity, and oxygen as features
using a two hidden layer NN. Our nutrient models compare well
with the CANYON models. The nitrate model RMSE with and
without oxygen as a feature are 1.35 and 1.62 µmol l−1 compared

to 0.93 µmol l−1 for CANYON. The phosphate model RMSE with
and without oxygen as a feature are 0.077 and 0.010 µmol l−1

compared to 0.066 µmol l−1 for CANYON. Finally, the silicate
model RMSE with and without oxygen as a feature are 0.65
and 0.89 µmol l−1 compared to 3.0 µmol l−1 for CANYON. Note,
that the GLODAPv2 silicate values are much larger, in the
range of 0–200 µmol l−1, compared to the range of values used
here (0–10 µmol l−1) likely due to the depth of the samples in
the water column. We suggest that the slightly lower RMSE
obtained using CANYON to predict nitrate and phosphate can
be explained by the significantly larger dataset used by Sauzède
et al. (2017). Furthermore, our largest errors are comparable
if not smaller than the CANYON models. Finally, we note
that, unlike the CANYON models, our models have successfully
learned to not predict concentrations below zero (Figure 8A).
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FIGURE 12 | (A) The final filled temperature timeseries at the 24.5m bin of the Port Hacking mooring. Blue line represents the original timeseries with gaps, green

lines represent the predictions from the LSTM models and the orange lines represent the predictions from linear interpolation. The long 2012 and 2017 gaps were

filled using the 91-day model 3, the gaps longer than 6 days were filled using the 30 day model 2, and the remaining gaps were filled using model 1. (B) Same as (A)

but zoomed in on the series of gaps in 2013.

The CANYON models are based on stations located in varying
regions globally including regional coastal and open ocean sites
making them much more generalized than the models presented
in this study. This means that the results presented here, while
not fully comparable do provide some indication of the suitable
performance of our models.

The oxygen data distribution is unbounded and symmetric
about its mean, whereas the distributions of the nutrients are
bounded by zero and skewed with most observations close
to zero. Since MAPE is defined as (true − predicted)/true ×

100, when the true distribution is dominated by true value
close to zero (<1), the errors for these values carry much
greater importance than larger true values. This means that
models that use MAPE as a loss can artificially decrease

their final mean loss by paying more attention to training
examples which correspond to true values (labels) close to
zero. This can be seen in Supplementary Figure 1, which
shows the error distribution using a NN model with MAPE
loss is skewed toward the right compared to Figure 8. A
similar issue was encountered with the timeseries gap-filling
models where the output variables needed to be standardized
rendering them unsuitable to be trained with MAPE loss.
In this case, we ended up implementing a modified MAPE
loss that removed the standardization by multiplying by the
training dataset standard deviation and adding the training
dataset mean. Thus, the metric used to calculate loss proved
pivotal when training the nutrient and temperature gap-
filling models.
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The training variance (difference between the training and
validation error) for the temperature timeseries gap-filling
models decreases with longer observations (Figure 9). However,
for the purposes of a long, continuous, filled timeseries, such as
creating climatologies or calculating trends, i.e., calculating long-
term average statistics, short gaps are less influential on the result
compared to the long gaps. Hence, the higher overfitting inmodel
1 compared to models 2 and 3 is less concerning. An explanation
for the higher training variance of model 1 could be that models
2 and 3, which predict longer windows, learn the underlying
long-term variability better than model 1, and do not learn the
stochastic variability which is specific to the training dataset.

Although the predicted sequences based on the validation
examples look plausible, it seems impractical to gap-fill with
prediction from a single model without uncertainty estimates.
There are two sources of uncertainty here: the dataset uncertainty
or sampling uncertainty/bias and the modeling uncertainty. As
demonstrated, dropout in hidden layers can account for the
modeling uncertainty. Gal and Ghahramani (2016b) showed
that such a dropout based approach can act as a Bayesian
approximation of a Gaussian process, thus making it unnecessary
to use Bayesian NN (Blundell et al., 2015) which can be difficult
to train and computationally expensive [e.g., CANYON-B (Bittig
et al., 2018)]. Furthermore, dropout in the input layers can also
account for dataset uncertainty (especially useful when training
on small datasets) (Hinton et al., 2012).

Since the oxygen model fails to predict some extremes
(Figure 6) and the temperature gap-filling model predictions
resemble smoothed estimates (Figure 10), some smoothing is
apparent in NN predictions. Depending on the use case this
might be worth keeping in mind. For example, our predictions
are still useful for estimating long term variability.

Since ocean observing has evolved significantly over the past
century, so have the ocean observing practices. It is not possible
to train a neural network to use the long term, low frequency
bottle data alongside shorter record, higher frequency data, such
as from satellites and moorings. Hence it is not possible to train a
single model that takes advantage of all the data. Furthermore,
the size of the bottle dataset used for the nitrate and oxygen
concentration modeling is limited by its manual collection. It has
a nominal collection frequency of 2 weeks but, due to the manual
nature of the data collection, sampling frequency varies greatly,
with gaps up to a few months at times. Additionally, there are
a lot more observations at certain depths compared to others.
Automated sampling can also create consistent observations
at all depths. This emphasizes the requirement for automated
instruments that can collect data at regular intervals and at high
frequencies, and hence has implications for ocean observing
system design.

6. CONCLUSIONS

The application of neural network models was demonstrated on
typical oceanographic datasets using off-the-shelf programming
libraries. Point based observations at a single location (Port
Hacking, Australia) were used to accurately model oxygen,

nutrients, and temperatures. The oxygen model loss was below
4% resulting in an accuracy of over 96%. The nitrate, phosphate
and silicate RMSE were 1.62, 0.0995, and 0.89 µmol l−1,
respectively. Finally, the temperature gap-filling model losses
were 1.53, 1.65, and 2.42%, respectively (resulting in accuracies
of 98.47, 98.35, and 97.58%, respectively).

Such NN based approaches have the advantage of being
computationally inexpensive to both train and run. The models
can be used to generate realtime predictions suitable for web-
based data visualization and outreach. Furthermore, all modeling
in this study was done with popular, open source, off-the-shelf
frameworks, allowing easy implementation by non-experts. To
further facilitate the uptake of NN modeling in oceanography,
we provided details on the training process and the architectural
design of the NN used in the context of fit-for-purpose modeling
throughout this study.

The models developed in this study are site specific and likely
do not generalize to other ocean regions, however our results
do provide suitable proof of concept. Unfortunately, due to
the limited data the nutrient models do not yet perform well-
enough to be used as a virtual sensor or as a replacement for
in situ sampling. As such future work will include training the
oxygen and nutrient models at other locations where long-term
observations are available to see if the models generalize and/or
are able to improve their predictive skill.

The temperature gap-filling procedure can be applied at all
depths to create a suite of temperature products. However,
distinct univariate models for each depth may not preserve
the correlation between adjacent temperature sensors. This
could potentially be helped by training multivariate models that
employ correlated sensors above and below the desired depth as
additional feature variables based on our multivariate gap-filling
approach. Our approach paves the way to create a whole suite of
data products using the long term IMOS data.
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The inadequate spatial resolution of altimeter results in low identification efficiency of
oceanic eddies, especially for small-scale eddies. It is well known that eddies can
not only induce sea surface signal but more importantly have typical vertical structure
characteristics. However, although the vertical structure characteristics are usually used
for statistical analysis, they are seldom considered in the process of eddy recognition.
This study is devoted to identifying eddies from the perspective of their vertical signal
derived from the 18-year Argo data. Due to the irregular and noisy profile pattern, the
direct identification of eddy core from Argo profile is deemed to be a challenge. With the
popularity of artificial intelligence, a new hybrid method that combines the advantages
of convolutional neural network (CNN) with extreme gradient boosting (XGBoost) is
proposed to extract the representative vertical feature and identify eddy from a profile.
First, CNN is employed as a feature extractor to automatically obtain vertical features
from the input profile at the bottom of the network. Second, the obtained high-
dimensional feature vectors are inputted into the XGBoost model, combined with other
profile features for classifying profiles that are outside altimeter-identified eddies (Alt
eddy). Finally, extensive experiments are implemented to demonstrate the efficiency
of the proposed method. The results show that the classification accuracy of CNN-
XGBoost model can reach 98%, and about 36% eddies are recaptured. These eddies,
dubbed CNN-XGB eddies, are benchmarked against Alt eddies for the vertical structure
and geographical distribution, demonstrating a similar or even stronger vertical signal
and a prominent eddy belt in the tropical ocean. Within the proposed theory framework,
there are various potentials to obtain a better outlook for eddy identification and in situ
float observations.

Keywords: oceanic eddy identification, Argo profile, convolutional neural network, extreme gradient boosting,
eddy core

INTRODUCTION

Ocean eddies are omnipresent and play a significant role in transporting water mass, heat, and
nutrients since their capacity of trapping fluid parcels and generate vertical movements within
their cores, effectively impacting the ocean’s circulation, large-scale water distribution, and biology
(Bryden and Brady, 1989; Chelton et al., 2011a,b; Faghmous et al., 2012; Zhang et al., 2014;
Amores et al., 2018).
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Oceanic eddy detection is a key step in promoting the
development of eddy science, which has been widely studied
based on the variety of remote sensing data. The current
mainstream eddy recognition method based on an automatic
algorithm from gridded maps of sea level anomaly (SLA)
is proved to be an effective method (Chelton et al., 2011b;
Faghmous et al., 2015; Le Vu et al., 2018). Although the merged
dataset is enabling observational studies of mesoscale features
[with a spatial resolution of (1/4)◦ and a temporal resolution of
daily] that were not previously possible using altimetry data (e.g.,
∼315 km at the equator of the TOPEX/Poseidon), the limitation
of satellite altimeter dataset in spatial resolution is still proven to
be too large to resolve the two-dimensional of oceanic eddies (Fu
et al., 2010), especially the oceanic eddies with a diameter smaller
than 50 km. Amores et al. (2018) concluded that eddy recognition
method based on sea surface height is largely underestimating the
density of eddies; capturing only between 6 and 16% of the total
number of eddies due to the limited resolution of the altimeter
gridded products is not enough to capture the small-scale eddies
that are the most abundant. Besides, some studies have tried
to identify eddies from other sea surface characteristics. For
instance, Gonzalez-Silvera et al. (2004) effectively identified and
tracked 18 eddies in the tropical Pacific Ocean using 5 months of
SeaWiFS and AVHRR data. D’Alimonte (2009) used sea surface
temperature (SST) data to iterate the SST isotherm for automatic
eddy detection. However, eddy detection using SST is prone to
false positives because many other ocean phenomena also impact
the sea surface temperature and surface ocean color (chlorophyll
concentration) (Du et al., 2018). While the eddy detection based
on the SAR principle has a high resolution and a small coverage
area that can identify submesoscale or even small-scale eddies,
it is easily affected by the wind field on the sea surface. Besides,
many studies have shown that eddies also sometimes present as
subsurface phenomena that are not noticeable by snapshots from
satellite altimetry or other satellite sensors, leading to detecting
uncertainties (Jeronimo and Gomez-Valdes, 2007; Andrade et al.,
2014; Zhang et al., 2014; Gordon et al., 2017).

The sign of temperature/salinity anomalies inside individual
eddies occurs due to geostrophic uplift and depression of the
background pycnocline vertical profiles associated with eddies
(Dong et al., 2012). Compared with 1–30 cm amplitude of the
sea surface caused by eddies, the ∼1,000 m seawater anomaly
amplitude below the sea surface caused by them cannot be
ignored. The main part of the eddy should be considered as the
underwater position where the largest seawater density anomaly
occurs or in other words, the eddy core. It is more stable than
the eddy features mapped to the sea surface and is not limited by
the spatial resolution of satellite remote sensing. Its strength and
depth directly determine the eddy energy and is the key to the
study of eddy dynamics and thermodynamics. In this way, eddies,
especially small eddies, weak eddies, subsurface eddies, etc.,
which cannot be detected by remote sensing, can be identified
by their three-dimensional structure characteristics. With the
development of the Argo global network, studies on the vertical
structure of eddy have been enriched and developed. Recently,
it has been effectively proved that we can derive the vertical
distribution caused by eddies as criteria for anticyclonic eddies

(AE)/cyclonic eddies (CE) identification through a training–
learning process using concurrent altimeter-Argo measurements
at a given location and then scanning all Argo profiles outside
altimetrically derived eddies according to the setup criteria to
locate missing eddies (Chen et al., 2020). However, the shape of
an eddy’s vertical structure is complex, regionally susceptible, and
polarity controlled. For example, by collocating historical records
of Argo profiles and satellite altimetry data, Chaigneau et al.
(2011) reconstructed the mean 3-D eddy structure in the eastern
South Pacific Ocean and suggested that the core (maximum
temperature and salinity anomalies in the vertical direction) of
CE is centered at ∼150 m below the surface, while the core of
AE is centered at ∼400 m. Dong et al. (2012) shed light on three
types of eddies’ vertical shapes: bowl shaped (with the largest
radius at the surface), lens shaped (with the largest radius at the
middle), and cone shaped (with the largest radius at the bottom)
based on high-resolution numerical model product. Pegliasco
et al. (2015) analyzed different eddy vertical shapes by using
clustering analysis in four major Eastern Boundary Upwelling
Systems. These existing studies have a common conclusion, that
is, the vertical shapes of oceanic eddies are not spatially and
timely uniform, and the eddy cores of AE and CE are asymmetric
even if they are in the same region. Moreover, these eddy
structures were obtained through the composite superposition or
multiprofile averaged, which were relatively smooth and regular.
But in general, an original eddy profile will present a more
irregular and noisy profile pattern making it a challenge to seek
out the eddy core directly. Consequently, the application of
artificial intelligence will be the expecting method to extract the
representative feature of each profile for eddy identification.

Deep-learning algorithms, which learn the representative and
discriminative features hierarchically from the data, have been
becoming a hotspot and have been introduced into the geoscience
community for big data analysis. Considering the low-level
features as the bottom level, the output feature representation
from the top level of the network can be directly fed into a
subsequent classifier for pixel-based classification (Zhang et al.,
2016). Convolutional neural network (CNN) is an efficient deep
learning model with hierarchical structure to learn high-quality
features at each layer. Since the model can reduce the complexity
of network structure and the number of parameters through local
receptive fields, weight sharing, and pooling operation, and can
actively extract high-dimensional features from big data as well,
it is a suitable model that can be used to extract profile feature
information. Although CNN has been recognized as one of the
most powerful and effective mechanisms for feature extraction,
traditional classifiers connected to CNN cannot fully understand
the extracted features (Ren et al., 2017). Boosting is one of the
most prominent classification techniques in the state-of-the-art,
providing the best accuracy levels at many problems. However,
the most known boosting algorithm, AdaBoost, has already been
proven to be sensitive against noise. Since Chen’s proposal of the
extreme gradient boosting (XGBoost) model (Chen and Guestrin,
2016), the theory and application of the decision tree method
have developed significantly. This model is proven to be the
most robust algorithm in both binary and multiclass datasets
for its strong resolution of data noise, fast calculation speed,
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and high accuracy and has been widely employed in various
classification applications. Inspired by the above facts, we aimed
to develop a novel hybrid CNN-XGBoost model for fully learning
the profile features. This composite model can provide more
accurate classification results by regarding CNN as a trainable
feature extractor to automatically obtain features from the input
profile and XGBoost as a recognizer and combined with other
remarkable profile features in the top level of the network to
produce results.

This paper aims to propose a new perspective to identify
eddies from vertical structure characteristics with deep learning
architecture. The objective of this paper is mainly twofold: one is
the hybrid CNN-XGBoost architecture construction for vertical
characteristics extraction, and the other is the comparison and
verification of the obtained eddy dataset. This is a significant
step forward compared to previous studies that focused only
on “sea surface characteristics of eddies” for identification.
Such an unprecedented improvement in state-of-the-art spatial–
temporal sampling and coverage of the Argo project allows
us to obtain a unique and massive dataset of subsurface T/S
records. The rest of the paper is organized as follows: In
Data, we describe the two datasets (altimetry and Argo data)
used in this work, and the eddy identification algorithm based
on satellite data is briefly presented. Methods introduces the
methods, including the dataset preprocessing principles, CNN
model, and XGB model principles and architecture along with the
experimental environment. The results are presented in Results.
The global eddy vertical structure characteristics are described
in Global Eddy Vertical Structure Characteristics. Model Training
Process explains the training process and accuracy evaluation
of the model. In Eddy Identification Based on CNN-XGBoost
Model, both the vertical structure and geographical distribution
characteristics of identified eddies by our method are analyzed in
detail. Additionally, a concise result on the relationship between
eddy property and its vertical structure is presented in Vertical
Structure of CNN-XGB Eddy. Finally, Conclusions contains a brief
discussion and our conclusions.

DATA

Satellite Altimeter Data
The sea level anomaly (SLA) data used in this study is
delayed time products generated by Archiving, Validation,
and Interpretation of Satellite Oceanographic (AVISO) from
a combination of T/P, Jason-1, Jason-2, Jason-3, and Envisat
missions. The SLA dataset spanned 18 years, from January 2002
to October 2019, and had a daily temporal resolution and a
(1/4)◦ × (1/4)◦ spatial resolution. In the present analysis, a
four-step scheme has been optimized for eddy identification
based on our earlier work by Liu et al. (2016). First, a high-
pass filtering is applied to the global SLA data using a Gaussian
filter with a zonal radius of 10◦ and a meridional radius of
5◦ before seed points are effectively determined. Second, the
global SLA fields are divided into regular blocks with a zonal
spacing of 45◦ and a meridional spacing of 36◦. Third, SLA
contours are computed with a 0.25-cm interval, and eddy

boundaries corresponding to maximum geostrophic velocity are
subsequently extracted. Finally, all blocks are merged seamlessly
into a global map with duplicated eddies eliminated. Following
the identification schemes, a comprehensive eddy dataset has
been created for the global ocean, which is available at http:
//coadc.ouc.edu.cn/tfl/ and http://data.casearth.cn/ (Data ID:
XDA19090202), and relevant technical details (including models
and procedures) can be found in Liu et al. (2016), Sun et al.
(2017), and Tian et al. (2020).

Argo Floats
The Array for Real-time Geostrophic Oceanography (Argo) data
also spanned from January 2002 to October 2019. The Argo
project is the first global observation system for the subsurface
ocean and is one of the best sources for in situ temperature
measurements. Argo floats observe large temporal (seasonal
and longer) and spatial (thousand kilometers and larger) scale
subsurface ocean variability worldwide (Roemmich et al., 2009).
At present, Argo is collecting ∼12,000 data profiles each month
(∼400 a day). This greatly exceeds the amount of data that can
be collected from below the ocean surface by any other method.
By September 21, 2020, there are as many as 3910 active floats
disseminated around the global ocean spacing nominally at every
3◦ of longitude and latitude. In this analysis, the Argo floats data
are provided by the Coriolis Global Data Acquisition Center of
France through their website: www.coriolis.eu.org. The quality
control and processing of Argo data are conducted automatically
by the Argo data center, and only profiles flagged as “good” or
“probably good” are downloaded. Meanwhile, additional data
filtering is applied to profiles with first measurement shallower
than 10 m and last measurement deeper than 1,000 m and
meanwhile having at least 30 valid data points within the
0–1,000 m depth range. Finally, linear interpolation with an
interval of 1 m is carried out for all edited high-quality profiles
in the global ocean.

Since density is a combination of temperature and salinity,
it can comprehensively evaluate the vertical structure anomalies
caused by eddies. Therefore, in this paper, the potential density
anomaly (PDA) is chosen as the property to represent the vertical
structure of eddies for eddy identification. After preprocessing
and filtering the profile data, the potential density is calculated
based on International Thermodynamic Equation of Seawater
2010 from Argo T/S profile data using the Gibbs Seawater
Oceanographic toolbox (McDougall et al., 2009), and anomalies
of every profile are computed by removing climatological profiles.
Here, the climatological T/S profiles are obtained by interpolating
the CSIRO Atlas of Regional Seas to floats’ positions and times
(Dunn and Ridgway, 2002; Ridgway et al., 2002).

MATERIALS AND METHODS

Data Preprocessing for Different Types
of Eddies
We established our dataset starting from the Argo profiles data.
Based on the positions and times of eddies and Argo floats, Argo
profiles are classified into three categories depending on whether
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the floats are inside the effective boundaries (i.e., the outermost
enclosed contour of SLA surrounding the eddy centroid) of
the altimeter recognized eddies (Alt eddy) or outside eddies.
The numbers of profiles that fall inside anticyclonic eddies
(Alt AE) or cyclonic eddies (Alt CE) in this study are 343,802
and 328,936, respectively, and 1,271,784 profiles are outside Alt
eddies. Figure 1 shows the geographical distribution of Argo
profiles. In general, the patterns of these figures are determined
by the locations where the Argo floats are gathered such as the
Kuroshio extension, the Arabian Sea, and the North Atlantic.
However, compared with Figures 1b,c, it can be found that the
Argo profile inside Alt eddy only accounts for about one-third of
the total profile (Figure 1b). Two-thirds of profiles are outside the
Alt eddy (Figure 1c). However, whether these profiles are actually
outside the eddy or actually inside the eddy but just not captured
by the altimeter needs to be determined by their vertical structure
characteristics.

There is a part of the eddies that are identified by the altimeter
as cyclonic (anticyclonic) eddies, but there are negative (positive)
PDA; that is, their positive and negative polarities of the eddy
core are opposite to the polarity detected by the altimeter (Chen
et al., 2020). Therefore, before performing eddy recognition, we
first need to purify the profile data within the eddy and pick
out abnormal eddies to ensure the data quality. Theoretically,
the CE (AE) should have a positive (negative) anomaly, so we
calculated the sum of the CE (AE) profile from 20 to 1,000 m
(the near-surface layer depth is set to −20 m to reduce the effect
of noise near the ocean surface), and eliminated the profiles with
negative (positive) values. At present, there is no clear definition
of which profiles are determined outside eddies. But generally,
we suppose the profiles that are located outside the effective
eddy boundary identified by the existing altimeter resolution and
causes weak vertical structure signal to have a great probability
of actually being outside eddies. Therefore, based on our research
foundation and in order to keep a balance of the sample dataset,
the out eddy profiles (OEs) dataset is established for the profiles
that are outside the effective boundary of eddies and cause 15%
of the weakest vertical structure signal in every 5◦ × 5◦ grid.
After data preprocessing, the numbers of profiles inside AE or
CE as the modeling dataset are 207,798 and 188,809, respectively.
The datasets of these profiles are randomly sampled and divided
into a training dataset (60%) and a testing dataset (40%). The
statistical results of the training and testing datasets are shown
in Table 1, including the total numbers of sample profiles and the
mean± standard deviation of the PDA values in each dataset.

Models
In this paper, a new hybrid model that combines the advantages
of convolutional neural network (CNN) and extreme gradient

TABLE 1 | Sample statistics of training and testing datasets.

Sample
datasets

All
samples

Training
samples

Test
samples

Training mean
(kg/m3)

Testing mean
(kg/m3)

AE 207,798 124,679 83,119 −0.128 ± 0.178 −0.129 ± 0.180

CE 188,809 113,285 75,524 0.083 ± 0.147 0.082 ± 0.149

OE 183,841 110,305 73,536 −0.0004 ± 0.062 −0.0003 ± 0.062

boosting (XGBoost) is proposed. The proposed model is
combined with two parts: feature extraction and classification.
CNN is used to extract and select the features of the profile
data at the bottom of the network, and the obtained high-
dimensional feature vectors are inputted into the XGBoost
model for profile classification. The experimental environment
of model building is performed on a computer with an Intel
i7-9700F CPU @3.00 GHz with 32 GB memory, Windows
10 OS, and Anaconda 3. Python is the main programming
language, and CNN is implemented under the neural network
framework Pytorch 1.5.1.

Convolutional Neural Network
A supervised CNN model is proposed to extract features from
profiles. CNN model goes through a training process with
inputted training profiles, and the cross-entropy loss is computed
for back propagation to optimize the model parameters. The
detailed process of the model is described as follows.

For our dataset with m profiles and k-dimensional vertical
features, let pl

train = (d20, d21, d22, . . . , dk−1, dk, k = 1, 000) be
an input vector of the CNN, where dz represents the PDA at the
depth of z (m). The features extracted by the first hidden layer can
be described as Equation (1).

Z1 =W1 ⊗ Pl
train + b1 (1)

where
⊗

represents the convolution process. W1 and b1 are the
weight and bias of the first hidden layer, respectively, and Z1 is
the output of the first hidden layer.

Then, other hidden layers can be described as Equation (2).

Zi =Wi ⊗ Zi−1 + bi−1, i = 2, ..., n (2)

where n is the number of the hidden layer. Suppose
q
(
f1, f2, , fj,, j = 64

)
= C(pl) is the obtained feature vector

from CNN, the process of XGBoost model can be defined
as P = X(q, featuresvertical), where P represents the output
probability of XGBoost model, which is computed by softmax
function. featuresvertical represents the additional vertical
structure features (see details in CNN-XGBoost Model).
Therefore, the proposed model can be defined as Equation (3).

P = X
[

C(pl
train)

]
(3)

The cross-entropy loss is defined as Equation (4).

L = −
c∑

a=1

ya log Pa (4)

where ya is the real label, Pa is the probability of class
a, and c is the class number. The training process finished
when the loss convergence. Then, the testing dataset [pl

test =

(d20, d21, d22, . . . , dk−1, dk, k = 1, 000)] are inputted into the
model to evaluate accuracy.

Extreme Gradient Boosting
XGBoost is a highly effective scalable machine learning model
developed by Chen and Guestrin (2016), which has been widely
used in many fields to achieve state-of-the-art results on data
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FIGURE 1 | Global geographic distribution of Argo profiles during 2002–2019 under 1◦ × 1◦ grid. (a–c) Cumulative number of all profiles, profiles inside Alt eddies,
and profiles outside Alt eddies, respectively.

challenges. It is greatly improved and optimized on the traditional
Gradient Boosting Decision Tree, mainly including using the
second-order Taylor expansion and introducing the regular term
to prevent overfitting, which greatly promotes the accuracy,
efficiency, and flexibility of the model. After the training of CNN
model, a 64-dimensional feature vector is obtained and inputted
into the XGB model. The principle of the XGBoost model is
described as follows. For a dataset with n samples and m features
D =

{(
xi, yi

)} (
|D| = n, xi ∈ Rm, yi ∈ Rn), ŷk

i is the predicted
result of xi in round k. A tree boosting model output ŷk

i with K
trees is defined as follows:

ŷi =

K∑
k=1

fk (xi) , fk ∈ F (5)

where F =
{

f (x) = wq(x)

} (
q : Rm

→ T, w ∈ RT) is the space
of regression or classification trees, w is the weight of the leaf
child nodes of the regression tree, and q is the structure of the

regression tree. T is the number of leaf nodes. In order to learn the
parameters of this model, it is necessary to minimize the objective
function:

Obj =
∑

i

l(ŷi, yi)+
∑

k

�(fk) (6)

where l in Equation (6) is a training loss function that measures
the distance between the prediction ŷi and the object yi. The
second term in Equation (6) is defined as follows, which
represents the penalty term of the tree model complexity.

�
(
ft
)
= γT +

1
2
λ

T∑
j=1

ω2
j (7)

where γ is the regularization term (based on the number of leaves
of the tree and the scores of each leaf), and T is the number
of leaves. λ is the L2 regularization parameter, and the final
prediction by summing up the score in the corresponding leaves

Frontiers in Marine Science | www.frontiersin.org 5 May 2021 | Volume 8 | Article 64692625

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-646926 May 3, 2021 Time: 17:1 # 6

Chen et al. Eddy Identification With Profiling Argo

is given by ω. XGBoost is a forward step-by-step algorithm, that
is, in the round t iteration, adding a new model ft needs to
minimize the following target function:

Obj(t)
=

n∑
i=1

l
(

yi, ŷi
(t−1)
+ ft(xi)

)
+�(ft) (8)

XGBoost algorithm uses second-order Taylor expansion for
optimization. After the second-order Taylor expansion, the
following formula is obtained:

Obj(t)
=

n∑
i=1

[
l
(

yi, ŷ(t−1)
i

)
+ gift (xi)+

1
2

hif 2
t (xi)

]
+�

(
ft
)
(9)

Denote Ij =
{

i|q (xi) = j
}

as the instance set of leaf. Where
gi = ∂ŷ(t−1) l(yi, ŷ(t−1)), hi = ∂2

ŷ(t−1) l(yi, ŷ(t−1)) are first- and
second-order gradient statistics on the loss function. After
substituting gi, hi, and into Equation (9), the formula can be
rewritten as:

Obj(t)
=

T∑
j=1

[
Gjwj +

1
2
(
Hj + λ

)
w2

j

]
+ γT (10)

where Gj =
∑

i∈Ij
gi, Hj =

∑
i∈Ij

hi. For a regression tree with

a specific structure, the solution weight w∗j =
Gj

Hj+λ
is used to

evaluate the quality of the tree structure by deriving wj. A greedy
algorithm is used to determine the tree structure that starts from a
single leaf and iteratively adds branches to grow the tree structure.
Whether adding a split to the existing tree structure can be
decided by the following function:

Osplit =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

−
G2

H + λ

]
− γ (11)

where IL and IR are the instance sets of the left and right nodes
after the split and I = IL ∪ IR.

CNN-XGBoost Model
In this paper, the specific structure CNN-XGBoost model is used
for eddy identification. Figure 2 visualizes the architecture of
the model. We use six CNN building blocks with convolutional,
batch normalization, activation layers, and a pooling layer.
Because of the strong feature expression ability of CNN,
the accuracy of the model will decrease with the increase
in convolution layer, but restricting the depth of the model
may reduce the classification accuracy. Therefore, we adopt a
doubleconvpool structure. Doubleconvpool structure includes
two convolution layers, two batch normalization layers, and
one pooling layer. That is, there is no pooling layer between
two consecutive convolution layers to realize the retention and
transmission of feature information and balance between the
high-dimensional characteristics of profile and model depth.
Meanwhile, the model uses batch normalization and dropout to
avoid overfitting. Then, the ReLU activation function is set after
convolution to add nonlinear factors to increase the expression
ability of the model. Each profile is inputted into the model

as a one-dimensional feature vector (the depth range is 20–
1,000 m). After six layers of CNN learning, a 64-dimensional
feature vector is obtained and input into the XGB model. For
the XGBoost classifier, in addition to the profile feature vector
learned through the CNN model, the input features also include
the spatiotemporal features of the eddy (location: longitude and
latitude, month in which the eddy is recognized) as well as
the vertical structure characteristics of eddy (including profile
minimum, maximum and its corresponding depth, integral area
of the entire profile, integral areas of 300 m interval, extreme
values of 300 m intervals, and the corresponding depth) to
comprehensively evaluate the characteristics of the eddy profile.
After training and verifying the XGBoost model, the outputs are
the probabilities of the classes “AE,” “CE,” or “non-eddy.”

RESULTS

Global Eddy Vertical Structure
Characteristics
The vertical PDA profiles of Alt eddy are shown in Figure 3. The
thick lines in Figure 3A represent the global average profiles over
the entire time series. The thin lines are two randomly selected
profiles in Alt eddy without smoothing. They show notable eddy
vertical structures and accompanied by large noise and burr
signal. Meanwhile, there is a dual-core in the AE (thin red line
in Figure 3A). Even if the anomaly caused by the lower eddy core
is smaller, the main eddy core should be located here with a wider
eddy core. For CE (thin blue line in Figure 3A), obviously, in
addition to a small anomaly in the sea surface, this eddy presents
a single core structure with a depth ranging from about 50 m to
nearly 400 m. The seasonal mean profiles from 2002 to 2019 are
shown in Figure 3B, suggesting that the position and intensity
of the eddy core will change along with the change in seasons,
which is a reason that we add months as a feature to the model.
Figures 3C,D present the latitude average vertical structure of the
eddy PDA to show the variation in the depth and intensity of the
eddy core on the latitude zone. On the whole, the eddy intensity
in the northern hemisphere is stronger than that in the southern
hemisphere, and the intensity of AE is stronger than that of CE.
Along with the increase in latitude, the depth of the eddy core
gradually increases, and a dual-core structure may appear in mid-
latitude regions. Regarding the eddy intensity, we take about
200 m as the boundary. With the increase in latitude, the PDA
intensity above 200 m becomes weaker and below 200 m becomes
stronger. From the latitude-averaging profiles, we can see the
general change trend of the eddy core, but for different small
areas, the pattern of the eddy profiles will be greatly different (see
Figure 6 for details). Thus, it is essential to consider the location
(longitude and latitude of the eddy) when determining whether a
float is located inside the eddy.

Model Training Process
In order to reveal the effectiveness of the CNN-XGB hybrid
model, we test the accuracy of CNN model, XGB model, and the
hybrid model for profile classification. The input feature of CNN
and XGBoost model is the PDA profile vector, and softmax is
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FIGURE 2 | Convolutional neural network with extreme gradient boosting (CNN-XGBoost) architecture.

used as the classifier. The running time, accuracy, and sensitivity
assessment of these three models are summarized in Table 2.
Note that the sensitivity assessment refers to the proportion of
a kind of eddies that are mistakenly classified into the other
two types (i.e., AE is misjudged as CE or OE), so as to evaluate
the specificity of the proposed algorithm to eddies in different
polarity. It can clearly reflect that the classification accuracy of
CNN-XGBoost model is better than that of CNN or XGBoost
alone, and the accuracy can be improved by ∼4 and ∼6% on
CNN and XGBoost model, respectively. The specificity analysis
of the three models shows that the probability of AE being
misjudged is less than that of CE. The reason for this result is that
compared with the PDA induced by AE, CE is weaker (see Table 1
and Figure 3 for the mean PDA values and profiles of AE and CE,
respectively). This result is also consistent with the conclusion
that the proportion of abnormal CE is larger (see Chen et al., 2020
for details). In addition, AE (CE) is more likely to be judged as OE
than CE (AE). It is comprehensible that eddies with weak signals
are easier to be judged as OE (for its critical PDA signal close to
zero) rather than the classification of the opposite polarity.

To train CNN-XGBoost model, the first is the training of the
CNN model. We used cross-entropy as the loss function, and
the optimization algorithm of the training process adopts Adam
algorithm. A 3 × 3 convolution kernel size is used in every
convolutional layer, and the stride is 5. Furthermore, maximum
pooling using a kernel of size 2× 2 is added to prevent overfitting.
We choose different learning rates (0.0005, 0.001, 0.003, 0.005,
and 0.01) to experiment on the dataset. It shows that when
the learning rate is 0.0005, the convergence speed is the fastest,

and the loss function is the smallest when it converges, so this
experiment uses 0.0005 as the value of the learning rate. After
100 epochs of training, the test accuracy of the CNN model can
achieve ∼94%. Figure 4 presents the accuracy and loss variation
on validation sets, showing that the loss and accuracy of the
model have been well converged.

For the XGBoost classifier, the Bayesian optimization is
applied to obtain the best configuration of the hyperparameters.
This optimization method is obtained from a Gaussian process
prior and constantly updates the prior knowledge by considering
the previous parameter information, whereas a conventional
grid search or random search considers no prior parameter
information. In addition, the Bayesian optimization process uses
a small number of iterations and has a rapid running speed,
allowing it to optimize algorithms with multiple parameters
such as XGBoost. After parameters optimization, we select the
best parameters including the eta, gamma, max_depth, and
min_child_weight values of 0.4, 0.8, 10, and 1, respectively. The
other parameters are set to the default values. The objective
function is softmax for multiclassification, and the multiclass
error rate is selected for the evaluation metric. After the 100
iterations’ training of XGBoost model, the CNN-XGB model
accuracy reaches 98%.

Eddy Identification Based on
CNN-XGBoost Model
The CNN-XGBoost model is used to learn and classify almost
120 million profiles that are not in the Alt eddy. It took only
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FIGURE 3 | Vertical profiles of the potential density anomaly of Alt eddy. (A) Global average profiles from 2002 to 2019 (thick lines). The thin red (blue) line is the
original eddy profile inside Alt anticyclonic eddies (AE) [cyclonic eddies (CE)], and the buoy number is 1901621 on March 26, 2018 and 1901817 on October 9,
2018, respectively. (B) Global average profiles in different seasons. (C) Latitudinal average profiles in the Northern hemisphere and (D) latitudinal average profiles in
the Southern hemisphere.

∼17 min to classify the entire dataset, and then, we got the
profiles that are outside Alt eddy but inside the eddy identified by
the CNN-XGB method (CNN-XGB eddy). Recently, we proposed
a methodology to effectively combine the vertical structure
signals and sea surface topological structure of eddies based
on a mathematical PDA algorithm (PDA eddy, Chen et al.,
2020). Compared with this method, the CNN-XGB model has
two significant advantages. First is higher computing efficiency.
Based on the CNN-XGB method, we can scan the global profiles

in < 20 min, while the mathematical method takes several days or
even longer to complete the calculation, which reflects the unique
advantages of AI model. Second is better spatial continuity. In
order to take into account both the regional characteristics of
eddy vertical structure and the number of training samples,
we use 5◦ grid as the unit for eddy identification in the PDA
algorithm, which limits the resolution of the algorithm to 5◦.
However, The AI model is not limited by the spatial grid and thus
has stronger spatial continuity. In this section, we compare eddy
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TABLE 2 | Comparison of three different models.

Model Running time Accuracy Sensitivity and specificity

AE (ϕ CE/ϕ OE ) CE (ϕ AE/ϕ OE )

CNN 138 min 93.8% 0.43% 0.98% 1.12% 2.88%

XGBoost 43 min 92.1% 0.65% 1.56% 1.62% 3.19%

CNN-XGBoost 221 min 98.3% 0 0.06% 0 1.41%

FIGURE 4 | Accuracy and loss variation on validation sets of convolutional
neural network (CNN) model.

features identified by the CNN-XGB model with those captured
by the altimeter and obtained based on mathematical PDA
methods, so as to verify the effectiveness of our model algorithm.

Vertical Structure of CNN-XGB Eddy
We first examined the vertical signals of the obtained CNN-XGB
eddies. Figure 5 reflects the global average vertical structures of
Alt eddy (short dashed line), PDA eddy (long dashed line), and
CNN-XGB eddy (solid line). By and large, the global mean CNN-
XGB eddy profiles have very significant PDA signals, which are
much stronger than those of the Alt eddy and are almost as
strong as PDA eddy signals, implying that the eddy identification
based on CNN-XGB model is effective and robust. We can find
out in detail that for these profiles, the anomaly increases with
depth from the sea surface, reaches its maximum at ∼90 m
and decreases thereafter. Although they present a similar depth
position of eddy core, the magnitude of eddy core intensity varies
greatly. For Alt eddy, the magnitude of maximum anomaly is
∼−0.18 kg/m3 for AE and only ∼0.08 kg/m3 for CE, while a
maximum anomaly inside CNN-XGB AE (CE) is ∼−0.33 kg/m3

(∼0.20 kg/m3) for centered at ∼72 m (∼93 m). The eddy
core intensity of CNN-XGB eddy is almost equal to PDA eddy
(∼−0.32 kg/m3 for PDA AE and ∼0.21 kg/m3 for PDA CE,
respectively) and present a slightly shallower eddy core depth

FIGURE 5 | Global mean potential density anomaly profiles for different types
of eddies from 2002 to 2019. The short dashed line is the profile of Alt-eddy.
The long dashed line is the profile of potential density anomaly (PDA) eddy
and the solid line is the vertical structure that is inside eddies through the
convolutional neural network with extreme gradient boosting (CNN-XGBoost)
model but not recognized by the altimeter. Red lines represent anticyclonic
eddies (AE), and blue lines are cyclonic eddies (CE).

compared to PDA eddy, which may due to the fact that the CNN-
XGB model can find more eddies in the equatorial region where
eddy cores are shallower (see Figure 7). The anomaly intensity
of CNN-XGB eddy is almost twice as strong as Alt eddy, while
the eddy core depth is close to each other, proving that some
of the Argo profiles that are not captured by the altimeter show
typical eddy vertical structure signals, which can be successfully
extracted by the CNN-XGB algorithm.

Since the vertical structure of eddies will have obvious
inconsistencies with regional and latitudinal differences, we
randomly selected four small areas in different latitude zones
(white boxes in Figure 6) as well as the corresponding latitude
zones (banded colors in Figure 6) to compare the vertical
structures of the Alt eddy, PDA eddy, and CNN-XGB eddy to
further verify the reliability of our results. Examining each panel,
an overall impression is that CNN-XGB eddies show a stronger
vertical signal than Alt eddies and a close signal with PDA eddies,
which further proved that our eddy identification model is not
only globally fitted but also regionally sensitive. The geographical
distribution at the top of Figure 6 shows the location of the
selected grid points and the division of latitude zone. Areas A and
B are within the latitude range of 20N–20S (L1), which is covered
by the light blue area. In area A, the signal at the eddy core
(∼120 m) of CNN-XGB eddy is much stronger than that of Alt
eddy, displaying a maximum of ∼−0.76 kg/m3 (∼−0.19 kg/m3)
of CNN-XGB (Alt) AE and∼0.66 kg/m3 (∼0.08 kg/m3) of CNN-
XGB (Alt) CE. Area B locates in the Arabian Sea where the
characteristics of the eddy core are consistent with Figure 7
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FIGURE 6 | Mean potential density anomaly profiles of four areas in different latitude zones and average profiles of the different latitude zones. The white boxes
marked with capital letters in the geographic distribution map represent the location of the corresponding areas, and the bands of different colors represent the
corresponding latitude zones. (A,B) Average profiles in areas A and B in latitude 1 (L1: 0−20N and 0−20S), (C) Average profiles in area C in latitude 2 (L2: 20−40N
and 20−40S), and (D) Average profiles in area D in latitude 3 (L3: 40−60N and 40−60S). The short dashed red (blue) lines are the profiles of Alt anticyclonic eddies
(AE) [cyclonic eddies (CE)], long dashed red (blue) lines are the profiles of potential density anomaly (PDA) AE (CE), and the solid red (blue) lines are the profiles of
CNN-XGB AE (CE).

in de Marez et al. (2019), showing that eddy-induced ocean
anomalies in this area are mainly confined in the upper 300 m.
The shift increases rapidly for both AE and CE, and the AE
anomalies are slightly greater than those of CE. Looking at the
mid-latitude, ranging from 20N–40N to 20S–40S (L2), which is
covered by the green area, the eddy core goes deeper, and a double
core structure may appear. A similar conclusion can be found
in area C, which can be compared with the eddy structure in
Pegliasco et al. (2015). Results show that the maximum PDA
inside composite Alt CE is 0.08 kg/m3 at ∼170 m, while that
inside the Alt AE is −0.09 kg/m3 at ∼240 m. In the CNN-
XGB eddy profiles, a stronger PDA appears; the maximum inside

the AE is ∼−0.13 kg/m3 and the maximum inside the CE is
∼0.1 kg/m3. A similar pattern is also found in the mean PDA
profile of the latitudinal zone (L1–L3). Along with the increase
in latitude, the magnitude of maximum anomaly remarkably
decreases, but the signal of CNN-XGB eddy is always stronger
than that of Alt eddy.

The vertical structure can intuitively reflect the strength of the
eddy signal of the two identification methods. We suppose that
such a large proportion of profiles with strong vertical structure
signals are not recognized by the altimeter and may mainly
include three aspects. First, a considerable part of CNN-XGB
eddies is found distributed at the equator where the altimeter
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FIGURE 7 | Global geographic distribution of profiles inside Alt eddy and convolutional neural network with extreme gradient boosting (CNN-XGBoost) eddy during
2002 to 2019 under a 1◦ grid. (a,b) The frequencies of Argo profiles in Alt eddy and CNN-XGBoost eddy occurrence with respect to all Argo profiles within the same
grid, respectively. (c,d) Corresponding zonal distributions of Panels (a,b).

sampling interval is the largest (see Figure 7) so that even a part
of eddies having notable sea surface characteristics is missing.
Second, a part of the floats inside Alt eddy is relatively far away
from the eddy center, which makes the vertical structure signal
weaker because the vertical structure of the eddy weakens with
the increase in the distance between the float and the eddy center.
Third, even if the sea surface signal of the eddy is too small to be
distinguished by the altimeter in higher latitude, it will have an
evident vertical signal, and the existence of subsurface-intensified
eddy that lacks strong surface signals cannot be eliminated.

Geographical Distribution of CNN-XGB
Eddy
Another perspective to validate the effectiveness of eddy
recognition is its global distribution characteristics. Figure 7
shows the global geographic distribution (left column) and the
corresponding zonal distribution (right column) of Alt eddies
and CNN-XGB eddies. In order to eliminate the influence of Argo
floats location on the geographical distribution, the percentage of
floats per 1◦ grid is calculated and shown. The percentage refers
to the profiles falling into eddies divided by the total number

of profiles in the corresponding grid. Comparing Figures 7a,b,
the complementarity between the Alt eddy and CNN-XGB eddy
is remarkable, showing that almost 50% of the profiles are
inside eddies but are missed by the altimeter in the tropical
ocean. The equatorial low latitude area is also the area where
altimeter sampling is relatively sparse, and more eddies may not
be detected. With the increase in latitude, the percentage of the
profiles in Alt eddy increases gradually, while that in CNN-XGB
eddy decreases. Since the geographic distance corresponding to
the 1◦ spatial distance on the earth decreases with the increase
in latitude, the spatial resolution of an altimeter with the same
orbital spacing near the equator is much lower than that of high-
latitude regions. The space distance of 1◦ latitude on the earth
drops from about 111 km at the equator to about 55 km at the
poles; that is, the corresponding geographic scale in the equatorial
region is larger, and the spatial resolution of the altimeter is
lower than that in the middle and high latitudes, so more eddies
are missed. Through the vertical structure of the eddy, a large
number of eddies in the equatorial region have been identified
where the spatial resolution of the gridded altimetric products
is not enough to capture the small-scale eddies. In addition, the
geographical distribution of profiles inside CNN-XGB eddy has a
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FIGURE 8 | Global geographic distribution of Argo profile density per 1◦ × 1◦ grid during 2002 to 2019. (a) Distribution of numbers of Argos in Alt anticyclonic
eddies (AE) minus the numbers of Argos in Alt cyclonic eddies (CE) in the corresponding grid. (b) Same as Panel (a) but is the Argos in CNN-XGB eddies. (c,d) The
frequencies of Argo profiles in Alt AE and CNN-XGB AE occurrence with respect to all Argo profiles within the same grid, respectively. (e,f) same as Panels (c,d) but
for CEs.

consistency with that of the short-lived eddy proposed by Chen
and Han (2019). It is also proved that eddy properties such as
amplitude, vorticity, and kinetic energy are positively correlated
with the eddy’s lifetime, and this can further confirm that there
are plenty of eddies with a smaller radius and lower energy
in the tropical equatorial region that can hardly be captured
through the altimeter.

Further, both Alt eddies and CNN-XGB eddies are classified
into AEs and CEs, as shown in Figure 8. Figures 8a,b are
the difference between the Alt (CNN-XGB) AE and Alt (CNN-
XGB) CE. Both of these two figures show a strip distribution of
alternating positive and negative values, which further imply that
our model has no eddy polarity preference. A belt of maximum
in the tropical ocean also appears for both CNN-XGB AE and
CE where altimeter eddy identification is known to be ineffective
(Figures 8d,f). Figures 8c,d show the percentage of Alt (CNN-
XGB) AE. It is obvious that in addition to picking up a large
proportion of eddies in low latitudes, more missing AEs are found
in AE accumulation areas such as the Kuroshio area, eastern
Australia, and Southwest Atlantic. CE is the same, seeing in the
South Pacific and North Atlantic for example (Figures 8e,f).

Table 3 summarizes the global average profile rate picked
up by Alt eddy and CNN-XGB eddy. For the Alt eddy, the

percentage of Argo captured is about 34.60%. After the CNN-
XGB algorithm, the percentage of Argo inside eddy is increased
by 36.04%, and the remaining 29.36% of Argo is indeed outside
eddies. We further confirm the percentage inside CNN-XGB AE
and CE for 18.69 and 17.35%, respectively, increases by ∼1%
compared with Alt eddy.

Relationship Between Eddy Property and
Its Vertical Structure
At present, we have realized the recognition of the eddy missed
by the altimeter through artificial intelligence and the vertical
structure of the eddy but only the recognition of the eddy point.
It is well-known that an eddy is not only a vertical profile point
but also a body with a certain radius and can cause the amplitude

TABLE 3 | Comparison of the statistics of Argo floats identified by altimeter and
CNN-XGB.

Identify rate of Argo floats AE CE ALL

Alt eddies 17.68% 16.92% 34.60%

CNN-XGB eddies 18.69% 17.35% 36.04%

Outside eddies – – 29.36%
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FIGURE 9 | Scatter diagrams of eddy property versus potential density anomaly intensity during 2002–2019. (A) Radius, (B) amplitude, and (C) eddy kinetic energy
(EKE). The color bars denote eddy numbers. The black dashed curves depict the most likelihood of eddy properties with respect to potential density anomaly
intensity.

of the sea surface with a certain kinetic energy. Thus, the next
step is to predict the surface characteristics of the eddy based on
deep learning regression analysis, such as the radius, amplitude,
and kinetic energy. Scatter diagrams of eddy radius, amplitude,
and eddy kinetic energy (EKE) as a function of PDA intensity
are illustrated in Figure 9. Basically, the three properties all
have the most likelihood line in terms of data density, which
displays a slowly increasing trend with PDA intensity: from
∼100 to ∼130 km for radius (Figure 9A), from ∼1 to ∼15 cm
for amplitude (Figure 9B), and from ∼0 to ∼300 cm2/s2 for
EKE (Figure 9C). This result proves that there is an intrinsic
correlation between the eddy surface properties and its vertical
structure. It is feasible and reliable to invert the eddy surface
parameters through the vertical structure characteristics.

CONCLUSION

In this paper, a new hybrid model that combines the advantages of
CNN and XGBoost is proposed to achieve oceanic eddy detection
from 18-year Argo profiles. The major conclusions of the study
can be summarized as follows.

First, the proposed CNN-XGBoost model has promising
performance in extracting eddy vertical profile features. The
CNN model has a design of six convolution layers, and a
doubleconvpool structure is applied to improve the accuracy and
efficiency of feature extraction. Moreover, the method can get
the highest convergence when the learning rate is 5 × 10−4.
Furthermore, the 64-dimensional feature vectors learned from
CNN are inputted into the XGBoost model combined with the
profile position, date, and profile features. After 100 iterations,
the final model is obtained, with a classification accuracy of 98%.
Compared with CNN or XGBoost, the accuracy is improved by
4 and 6%, respectively. We further measured the sensitivity of
the proposed model by calculating the erroneous judgment of
AE and CE. Results show that compared with AE, CE is more
likely to be misjudged (1.41 versus 0.06%) since the abnormal

signal caused by CE is smaller than that of AE. Nevertheless,
the CNN-XGBoost model presents the lowest error percentage
among the three models with the highest misclassification rate of
<2% (see Table 2 for details). The results provide an insight that
the proposed deep learning method can be used as an effective
methodology for eddy identification.

Second, vertical profiles of CNN-XGB eddies show a
remarkable consistency with that of the Alt eddies. After carrying
out the global average, latitudinal average, and grid average, we
found that these eddies’ mean vertical shapes are homologous,
and the vertical anomaly signal of the CNN-XGB eddy is similar
or even stronger than that of the Alt eddy. For the global
average, the magnitude of the maximum anomaly of Alt eddy
is ∼−0.18 kg/m3 for AE and only ∼0.08 kg/m3 for CE, while
the anomaly intensity of the CNN-XGB eddy is almost twice
as strong as that of the Alt eddy, indicating ∼−0.33 kg/m3

for AE and ∼0.20 kg/m3 for CE. The reason why such a
large proportion of profiles with strong vertical structure signals
are not recognized by the altimeter may due to the larger
sampling interval of the altimeter at the equator, the farther
distance between the float and eddy center, and the existence of
subsurface eddies.

Third, among Argo profiles from 2002 to 2019, ∼34.6% of
the profiles are captured by Alt eddies, and about 36% of the
profiles (∼19% for AE and ∼17% for CE) are actually inside
eddies but missed by the altimeter and captured through our
eddy identification method; the other ∼29% profiles are indeed
outside eddies. The geographical distribution of the profiles
inside CNN-XGB eddies is complementary to that inside Alt
eddies. A prominent eddy belt with more than 50% of the profiles
inside the CNN-XGB eddies is found in the tropical ocean. There
is also the area abundant in short-lived eddy, which further
proved that weak and small eddy may be lost with a greater
probability. Consequently, the vertical profile datasets can be
extended to improve the identification ability of the altimeter.

The present research shows that there is a positive correlation
between eddy properties (e.g., radius, amplitude, kinetic energy)
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and the abnormal strength of eddy’s vertical structure. Therefore,
based on the deep learning method, the inversion of eddy
properties from its vertical structure should be further studied, so
as to establish a more complete Argo-eddy identification dataset.
In the spirit of reproducibility, the Python code will be available
at https://github.com/, and we will also share the training and
testing data used for this work to encourage competing methods
and, especially, other deep learning architectures.
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The population of Atlantic cod significantly contributes to the prosperity of fishery
production in the world. In this paper, we quantitatively investigate the global abundance
variation in Atlantic cod from 1919 to 2016, in favor of spatiotemporal interactions over
manifold impact factors at local observation sites, and propose to explore the predictive
mechanism with the help of its periodicity, time–frequency co-movement, and lead-
lag effects, via long short-term memory (LSTM). We first integrate evidences yielded
from wavelet coefficients, to suggest that the abundance variation potentially follows a
36-year major cycle and 24-year secondary cycle at the time scales of 55 years and
37 years. We further evaluate the responses of Atlantic cod abundance to the external
impact factors, including sea surface temperature (SST), catches, prey biomass, and
sea surface salinity (SSS), in aid of the wavelet coherence and phase difference, which
allows us to identify the dominantly correlative factors and capture the leading roles
along the time domain and then divide the responses around the recent 60 years into
three stages: before 1985, 1985–1995, and after 1995. At the first stage, the reason for
the decline in abundance could be mainly attributed to the rapid rise of fish catches.
At the second stage, the impact of SST and SSS also provides significant indices,
besides overfishing; meanwhile, the mortality of primary producers and forced migration
of fish species indirectly cause the decline. At the third stage, warming SST and growing
SSS directly led to the decrease of abundance. Finally, we establish one ensemble of
LSTM-SAE architecture to comprehensively reflect the predictive patterns at each stage.
It has been demonstrated from experimental results that the models behaved better
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when intentionally feeding with the dominantly correlative multivariate inputs, instead of
either all factors or only the abundance. The proposed scheme provides opportunities to
symmetrically identify the underlying predictive attributes of Atlantic cod abundance and
potentially perform as the quantitative references in reasonably making fishing decision.
With the rapid development in deep learning capabilities, it is hopeful to expect better
predictions of the responses to global changes, not only for Atlantic cod but also for
other fish species and the ecosystem as a whole.

Keywords: wavelet analysis, Atlantic cod abundance, sea surface temperature, Atlantic cod catches, prey
biomass, sea surface salinity

INTRODUCTION

Atlantic cod (Gadus morhua), one of the most consumed
edible fish species with great economic values, is fecund with
reproductive potentials, but has long been overfished and
highly associated with marine environment changes, causing
dramatic declines for decades. The symmetrical investigation
on the known abundance variability in Atlantic cod could
integrate evidences on its spatiotemporal responses to manifold
intrinsic and external indices and help provide opportunities to
explore the underlying patterns and mechanism of Atlantic cod
abundance to be predicted.

There might exist quite a few possible reasons behind the
abundance variation of Atlantic cod, in combination with the
life history characteristics (Jordaan, 2002; Drinkwater, 2005;
Kristiansen et al., 2011; Árnason et al., 2013). First of all, from
the perspective of marine ecology, the adaptability of Atlantic
cod in both the early stage of life and adulthood depends much
on the food supply and seawater temperature (Rose and Leggett,
1989; Miller et al., 1995). Sea surface temperature (SST) behaves
as one of the most essential and fundamental indices (Fullard
et al., 2000; O’Brien et al., 2000; Pörtner et al., 2001), indirectly
delivering influences to the physical and biological systems of
the deeper ocean for the benthic Atlantic cod habitat (Parmesan
and Yohe, 2003; Rao and Sivakumar, 2003; Rosenzweig et al.,
2008), altering both benthic and pelagic ecosystems from
phytoplankton to zooplankton to higher trophic levels (Meyer
et al., 1999; Richardson and Schoeman, 2004; Wanless et al.,
2005; Behrenfeld et al., 2006). SST dictates movement and habitat
connectivity of Atlantic cod (Staveley et al., 2019). Warming
sea temperature causes Atlantic cod to move out of the habitat,
either entering deeper waters or migrating to more northerly
waters. The higher sea temperature also brings huge varieties
in the number of primary producers, as well as their seasonal
growth changes, which will definitely disrupt the normal food
supply and nutrition that feed Atlantic cod (Schwalme and
Chouinard, 1999; Drinkwater et al., 2000). Atlantic cod’s diet
ranges from phytoplankton and small zooplankton as the larvae,
to crustaceans and shrimps when they gradually grow up after
the larval stage, to capelin, sand lance, herring, red fish, etc.,
and even other cod (Scott and Scott, 1988; Bogstad et al., 1994;
Sundby, 2000), where the structure or abundance modification
of the primary nutrition may propagate through higher trophic
levels at the basis (Kirby and Beaugrand, 2009).

Meanwhile, ocean acidification driven by rising global CO2
concentrations increases the sensitivity of Atlantic cod embryos
to extreme temperatures, which results in tissue damage to
cod larvae and changes in their behavior (Dahlke et al., 2017;
Sswat, 2017); the decrease of seawater salinity inhibits the
activity of sodium and potassium ions and decreases plasma
osmotic pressure, influencing the feeding conditions of Atlantic
cod, resulting in decreased recruitment (Lambert et al., 1994;
Conover et al., 1995; Beaugrand et al., 2011). In addition, ocean
currents, with their vertical or horizontal movement of both
surface and deep water throughout the ocean, are also considered
to contribute to the propagation and redistribution of marine
thermocline and marine nutrients during the growth of Atlantic
cod (Wroblewski et al., 2000; Hays, 2017). It is also argued that
the rapid development of fishing technology from the 1980s has
played a major role in the collapse of the Atlantic cod abundance
in the North Atlantic (Baird et al., 1991; Hutchings and Myers,
1994; Hutchings, 1996). Although a series of restricted fishing
and even fishing bans have been issued since 1992, the scale of
local Atlantic cod like Canada has not shown significant signs
of rebound (Myers et al., 1997). The variation of Atlantic cod
abundance is undoubtedly not determined by a single impact
factor but attributed to the outcome systemically and integrally
generated from the series of intrinsic and extrinsic relevant
indices that directly or indirectly interact with the abundance
from the perspective of environment, physiology, migration,
reproduction, and so on.

The relationship between Atlantic cod abundance and
manifold impact factors is always not a simple causal function.
It has been noted that most commonly applied approaches,
such as bootstrapping regression models (Freedman, 1981),
rolling window regression (Oehlert and Swart, 2019), and
auto-regressive distributed lag (ADL) model (Haseeb et al.,
2019), often only consider one single or several independent
predictive elements and tend to ignore the combined effects of
the complex marine climates and ecosystem structures, which
is too idealized, while the classic correlation calculation is
only suitable for studying relatively short-term time series and
severely limited to stationary series. Therefore, on the basis of
the historic spatiotemporal responses to manifold intrinsic and
external indices, how to establish a comprehensive predictive
framework that potentially explores underlying mechanism for
its variation of Atlantic cod abundance is actually a pioneering
topic. Firstly, the abundance variation in Atlantic cod may
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inherently follow its own specific patterns that probably present
elementary periodic tendencies or illustrate some time–frequency
characteristics (Berberidis et al., 2002). Secondly, no matter the
time series of Atlantic cod abundance itself or the extrinsic
correlative indices in study, most of them are non-stationary for
a quite long period, where the possible mutations may occur in
any individual stage, so that there may be time–frequency co-
movements at a specific moment or relatively short period (Vacha
and Barunik, 2012). Finally, there exist lead-lag effects diversified
between Atlantic cod abundance and manifold impact factors,
indicating a variety of modifications in the leading roles that will
dominate co-movements in every certain time period, at a certain
influencing direction of either positive or negative correlation
(Dajcman, 2013).

To address the potential periodicity, time–frequency co-
movement, and lead-lag effects of non-stationary long-term
time series, wavelet analysis is a mathematically basic tool to
discover how to approximate time series to a certain frequency
band within a certain time period simultaneously, which could
optimally describe the occurrence of transient events, and well
adapt to conditions where the amplitude of the response varies
significantly in non-stationary time series (Steel and Lange,
2007; Cloern and Jassby, 2010; Rhif et al., 2019). As the
extended usage of wavelet transform, wavelet coherence (Maraun
and Kurths, 2004; Su et al., 2018, 2019) and phase difference
(Aguiar-Conraria and Soares, 2011) can be utilized to recognize
whether two time series are quantitatively linked by a certain
correlation, even causality relationship. Kogovšek et al. (2010)
have applied continuous wavelet transform to investigate the
long-term fluctuation of time series of jellyfish abundance in the
past 200 years and further confirmed a major and minor period of
its proliferation. Carey et al. (2016) adopted continuous wavelet
transform to identify the periodic changes of phytoplankton at
multiple time scales and determined the dominant scale of its
periodic changes. Ménard et al. (2007) has quantified the non-
stationary association between the Indian Ocean climate and tuna
populations through wavelet analysis and further explored the
dependency between them. Li et al. (2015) have adopted wavelet
analysis to explore the multi-temporal scale characteristics and
interrelationships between algal biomass and selected aquatic
environmental parameters and tried to explain the complex non-
linear eutrophication dynamics. All of the above wide range of
applications reflect to varying degrees the efficacy of wavelet
analysis in non-stationary long-term multivariate time series at
multiple time scales.

In addition, in order to comprehensively investigate the
mutual influences between manifold intrinsic and external
indices, we tried to develop multivariate prediction model for
the variation tendency of Atlantic cod abundance in a longer-
term move. Traditional time series prediction methods, like
hidden Markov model (HMM) (Rabiner and Juang, 1986), Auto-
regressive integrated moving average (ARIMA) (Zhang, 2003),
moving average model (MA) (Box and Pierce, 1970), etc., often
have a complicated modeling process, and when it comes to
multi-step forward prediction problem, most of them do not have
ideally consistent performances in the long run. For decades,
machine learning (ML) has become one of the most powerful

tools in the field of multivariate multi-step time series prediction
(Joy and Death, 2004; Yáñez et al., 2010; Miller et al., 2019),
while deep learning can be regarded as one of the hottest topics
developed recently in the context, which drives predominant
forces in modeling, functioning, forecasting the structural, long-
term, dynamic properties in time series, and all kinds of most
emerging and advanced algorithms have been put forward and
made progresses (Hinton and Salakhutdinov, 2006; Krizhevsky
et al., 2012; Huang et al., 2017).

Among them, the deep architecture of the recurrent neural
network (RNN), which could model the sequences at the
arbitrary length by applying a transition function to all its hidden
layer states in a recursive manner, and capture all information
stored in sequence in the previous element (Jagannatha and
Yu, 2016; Fan et al., 2017), has been proven to be superior
in prediction. Long short-term memory (LSTM) has been
revolutionarily designed by adjusting the structure of the hidden
neurons in RNN, based on a series of memory cells recurrently
connected through layers to capture and retain the long-term
dependencies, not only suppressing the disappearing gradient
problem, but also enhancing the capability in predicting multi-
step ahead into the future (Duan et al., 2016; Zhang et al., 2017;
Park et al., 2018).

Despite the fact that LSTM models have outstanding
advantages in prediction accuracy, its performance remains
unsatisfactory, particularly when attempting to process highly
non-linear and long-interval time series. There are hereby quite
a lot of variant LSTM algorithms newly developed, including
bidirectional LSTM (Bi-LSTM) (Habernal and Gurevych, 2016),
gated recurrent unit (GRU) (Dey and Salem, 2017), LSTM-
based stacked autoencoder (LSTM-SAE) (Sagheer and Kotb,
2019), etc. Among them, LSTM-SAE improves the random
initialization strategies in an unsupervised learning fashion
and circumvents the expression limitations of the conventional
shallow LSTM model, which could hereby, to some extent,
alleviate the convergence to local minimum and perform better
in multi-step prediction.

In this article, in order to explore the potential response
mechanism of Atlantic cod abundance changes, we make an
attempt to establish a comprehensive prediction model of
Atlantic cod abundance, with the help of its periodicity, time–
frequency co-movement, and lead-lag effects, which can quantify
spatiotemporal interactions with manifold intrinsic and external
indices. We systematically retrieve the annual abundance of
Atlantic cod, the catches, the biomass of primary producers,
SST, and sea surface salinity (SSS), respectively, from BioTIME,
FAOSTAT, ERSST.v5, and EN4, and select local observation sites
with relatively complete abundance records for our study, i.e.,
ID 119 near the Gulf of Maine and ID 428 on the southeastern
coast of Norway, to accordingly attain standardized time series at
specific geographical coordinates, by spatial and time averaging.
We employ the modulus and variance of wavelet coefficients to
reveal the potential periodicity of global Atlantic cod abundance,
to generate the wavelet coherence map by the ratio between
the wavelet cross-spectrum and power spectrum, to evaluate
the responses of the abundance variability toward the external
impact factors, and to produce the wavelet phase difference by
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the ratio between the imaginary and the real part of the wavelet
cross-spectrum, to reflect leading roles that dominate time–
frequency co-movements in every certain time period. This will
provide a complete framework for the quantitative correlation
and even causality among multivariate time series at multiple
stages. Finally, in view of the historical time–frequency responses
between Atlantic cod abundance and manifold impact factors, we
attempt to determine the comprehensive prediction patterns of
Atlantic cod abundance, by establishing the ensemble of LSTM-
SAE architecture at each stage, and respectively, feed into three
types of input vectors, namely, Atlantic cod abundance itself,
all the external impact factors, and the dominantly correlative
impact factors, to help with the estimation.

The remainder of the paper is organized as follows: Section
“Materials and Methods” describes the access of multivariate
time series referred, and outlines the basics in periodicity,
wavelet coherence, phase difference, as well as the LSTM-SAE
architecture in our study. Section “Results” quantitatively and
systematically investigates the periodicity, time-frequency co-
movement, and lead-lag effects in abundance variation of Atlantic
cod, regarding the external impact factors, SST, catches, prey
biomass, SSS, and exhibits the experimental results. Section
“Discussion” suggests potentially mutual relationships along
the time domain, together with the known events and its
consequences, divides the responses of Atlantic cod abundance
into stages, and establishes the ensemble of LSTM-SAE
architecture for multivariate prediction. Finally, the conclusions
are drawn in Section “Conclusion”.

MATERIALS AND METHODS

Data
Atlantic Cod Abundance
The abundance of Atlantic cod has been retrieved via BioTIME
database, which is composed of more than 12 million records of
the raw data on species identities and abundances in ecological
assemblages of more than 20 biomes at 361 observation sites
from 1858 to 2018, where 5,640,610 records collected from
six communities have been applied here from fish to marine
invertebrates, consisting of the most comprehensive database for
marine species abundance and richness statistics. Atlantic cod
mainly inhabit most waters overlying the continental shelves of
the Northwest and the Northeast Atlantic Ocean, such as the
Gulf of St. Lawrence (Lambert and Dutil, 1997) and the Gulf
of Maine (Ames, 2004). In our study, the global abundance of
Atlantic cod records at all sites all over the world has first been
selected from 1919 to 2016, and then we screened out records
below 10 years or the singular values, such as the duplicates, zero-
abundance counting, and non-organismal records, and deleted
them prior to statistical analysis. Table 1 is the annual average
global abundance of Atlantic cod from 1919 to 2016, calculated by
merging the local abundance at the remaining sites. Furthermore,
two specific observation sites 428 (latitude: 58.958, longitude:
9.768) and 119 (latitude: 41.987425, longitude: −66.669701),
respectively, located around the colder sea area of Gulf of Maine
and North Sea, have been particularly taken for the local study.

TABLE 1 | Annual average global abundance of Atlantic cod.

Year Abundance Year Abundance Year Abundance Year Abundance

1919 17 1944 19 1969 13 1994 25

1920 16 1945 37 1970 23 1995 23

1921 27 1946 7 1971 25 1996 30

1922 40 1947 6 1972 25 1997 17

1923 28 1948 11 1973 27 1998 23

1924 37 1949 6 1974 25 1999 9

1925 11 1950 10 1975 17 2000 8

1926 7 1951 6 1976 21 2001 7

1927 18 1952 15 1977 19 2002 9

1928 33 1953 20 1978 24 2003 7

1929 22 1954 15 1979 28 2004 4

1930 6 1955 24 1980 27 2005 4

1931 9 1956 16 1981 29 2006 9

1932 8 1957 42 1982 28 2007 12

1933 6 1958 14 1983 42 2008 10

1934 6 1959 17 1984 25 2009 3

1935 15 1960 18 1985 44 2010 9

1936 5 1961 25 1986 50 2011 27

1937 5 1962 9 1987 51 2012 20

1938 77 1963 14 1988 32 2013 5

1939 9 1964 38 1989 39 2014 5

1940 19 1965 19 1990 35 2015 4

1941 44 1966 44 1991 35 2016 5

1942 14 1967 12 1992 26

1943 49 1968 9 1993 30

Considering the possible singular measurement values of Atlantic
cod abundance at each site, we first eliminate them by defining
the superior and inferior bounds via mathematical expectation
calculation and then collect the annual records of Atlantic cod
abundance at each site by time averaging. Figure 1 shows the
annual average global distribution of Atlantic cod, with sites 119
and 428 specifically marked by stars in color red and in color
blue. The midpoint of the geographic grid has been used to merge
the abundance records associated to it averagely, with yellow
dot representing the spatial coordinates and the spatial distance
less than 2◦ in latitude and longitude, and the radius refers
to the corresponding local abundance in a certain proportion.
Tables 2, 3 list the annual abundance of Atlantic cod at site 119
from 1970 to 2010 and at site 428 from 1952 to 2011.

Sea Surface Temperature
Sea surface temperature can be considered as one of the most
essential climate indicators of abundance variation in Atlantic
cod. The global monthly SST available from the SST version 5
(ERSST.v5) dataset of the NOAA Climate Center is produced
by a monthly extended reconstruction of SST observations from
the Comprehensive Ocean-Atmosphere Data Set (COADS) and
can be tracked back to the mid-19th century. Since SST adopts
smooth local and short-term changes, with many options in
quality control, deviation adjustment, and interpolation having
been substantially revised, it is suitable for long-term global
studies. In order to focus on the local annual SST at both site
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FIGURE 1 | Global distribution of Atlantic cod.

119 and site 428, we made use of the geographic midpoint and
selected the closer temperature points associated with it, with
the spatial distance less than 2◦ in latitude and longitude. The

TABLE 2 | Annual average abundance of Atlantic cod at site 119.

Year Abundance Year Abundance Year Abundance Year Abundance

1970 22 1981 38 1992 14 2003 7

1971 19 1982 31 1993 27 2004 8

1972 16 1983 55 1994 21 2005 14

1973 20 1984 25 1995 24 2006 17

1974 16 1985 32 1996 21 2007 12

1975 20 1986 33 1997 15 2008 9

1976 17 1987 18 1998 12 2009 13

1977 23 1988 27 1999 13 2010 33

1978 26 1989 27 2000 12

1979 21 1990 30 2001 14

1980 30 1991 24 2002 12

TABLE 3 | Annual average abundance of Atlantic cod at site 428.

Year Abundance Year Abundance Year Abundance Year Abundance

1952 20 1967 12 1982 28 1997 17

1953 15 1968 9 1983 42 1998 23

1954 24 1969 13 1984 25 1999 16

1955 16 1970 23 1985 44 2000 8

1956 42 1971 25 1986 50 2001 7

1957 14 1972 25 1987 51 2002 7

1958 17 1973 27 1988 32 2003 4

1959 18 1974 25 1989 39 2004 4

1960 25 1975 17 1990 35 2005 9

1961 9 1976 21 1991 35 2006 12

1962 14 1977 19 1992 26 2007 10

1963 38 1978 24 1993 30 2008 3

1964 19 1979 28 1994 25 2009 9

1965 44 1980 27 1995 23 2010 13

1966 20 1981 29 1996 30 2011 20

Atlantic cod abundance at each site is only recorded in certain
months of the year, i.e., February, March, July, and October
at site 119, and September and October at site 428. Therefore,
we finally retrieved the corresponding annual SST through the
spatial averaging of the relevant nearby points and the time
averaging of a specific month, for site 119 from 1970 to 2010 and
site 428 from 1952 to 2011.

Sea Surface Salinity
The global monthly SSS is procurable by the quality-controlled
ocean salinity profiles in the EN4 database from Met Office
Hadley Centre, covering the time period from 1900 to present.
We retrieved the annual SSS at both site 119 and site 428 in the
same process as the annual SST, namely, by spatial averaging and
time averaging after collating the relevant salinity points around
the geographical midpoint of each site.

Atlantic Cod Catches
The global annual catches of Atlantic cod have been extracted
via Food and Agriculture Organization Statistical Database
(FAOSTAT). The Atlantic cod catch records at all observation
sites since 1952 to 2011 have first been retrieved and then we
selected the observation stations relevant to geographic midpoint
of each site in study, with relatively complete records. Due to
fishing prohibition in specific months, e.g., the spawning season
of Atlantic cod, we could not collect the catches for every
month, but the total number in each year. The annual average
catches could be calculated by spatial averaging of neighboring
observation stations.

Prey Biomass
For the prey biomass of Atlantic cod at each site, we first
compiled the primary prey abundance via BioTIME database,
such as herring, hairscales, capelin, and various zooplankton
and invertebrates, and carried out the same screening process as
Atlantic cod abundance, i.e., deleting duplicates, zero abundance
counts, and abiotic records, as well as eliminating singular
values through mathematical expectations. Finally, the annual
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prey biomass of each site has been derived by accumulating the
abundance of all prey generated by time averaging.

Methods
Basic Wavelet Analysis
The basic wavelet analysis decomposes the abundance of Atlantic
cod in the form of time series into a superposition of wavelet
functions, all of which are derived from a mother wavelet
function through translation and scaling. Let A(t) be the
abundance of Atlantic cod time series, the irregularity of the
wavelet function can approximately reflect the sharp non-
stationary changes in Atlantic cod abundance A(t), and hereby
more realistically describe the original dynamics at a certain time
scale:

φa,τ(t) =
1
√

a
φ

(
t − τ

a

)
(a, τ ∈ R, a > 0) (1)

with
∫
+∞

−∞

φ(t)dt = 0 (2)

where φ(t) is a mother wavelet function, φ(t) ∈ L2(R), which
refers to a type of oscillation function that can quickly decay
to zero and could take many forms, such as Haar wavelet,
Morlet wavelet (Goupillaud et al., 1984), Daubechies wavelet
(Daubechies, 1991), Meyer wavelet (Meyers et al., 1993), Mexican
straw hat wavelet (Torrence and Compo, 1998), and so on. φa,τ(t)
is a sub-wavelet, a is a scale factor, representing the period length
of the wavelet, and τ is a shift factor, reflecting the shift in time.
In view of the abundance variation of Atlantic cod at multiple
time scales, we try to focus on the principle of continuous wavelet
transform over time:

WA(a, τ) =
1
√

a

∫
R

A(t)φ
(

t − τ

a

)
dt (3)

where WA(a, τ) is the wavelet transform coefficient.

Periodicity
In order to discover the potential periodicity embedded in
Atlantic cod abundance A(t), it is more desirable to achieve
smooth wavelet amplitude by a non-orthogonal wavelet function,
while the complex wavelet transform could provide both phase
and amplitude to help with it (Torrence and Compo, 1998).
We apply Morlet wavelet as our mother wavelet which not
only has non-orthogonality but also has exponential complex
wavelet adjusted by Gaussian. The Morlet wavelet function can
be denoted as follows:

φ0(t) = π−1/4eiw0te−t2/2 (4)

where t represents the time variable and w0 is a
dimensionless frequency.

The modulus and modulus square of wavelet coefficients can
first determine certain range of periodicity of global Atlantic
cod abundance A(t) at multiple time scales. The modulus of the
Morlet wavelet coefficient can be considered to be a reflection of
the energy density distribution in the time domain. The greater
the modulus, the stronger the periodicity of the global Atlantic

cod abundance. We could hereby take it as one historic evidence
to evaluate the future trend of global Atlantic cod abundance
A(t) at multiple time scales. The wavelet spectrum of Atlantic cod
abundance A(t) can be defined as:

|WA(a, τ)|2 =WA(a, τ)W∗A(a, τ) (5)

where |WA(a, τ)| and W∗A(a, τ) are the modulus and the complex
conjugate of the wavelet coefficient WA (a, τ).

The variance of the wavelet coefficients could help determine
the periodicity in a more exact way, so here we further integrate
all squared values of the wavelet coefficients with scale a in the
time domain as follows:

Var(a) =

∫
+∞

−∞

|WA(a, τ)|2 dτ (6)

Wavelet Coherence
Let T(t) be the corresponding SST time series. The cross-wavelet
transform between Atlantic cod abundance A(t) and SST T(t) can
be represented as:

WAT(a, τ) =WA(a, τ)W∗T(a, τ) (7)

where WA(a, τ) and WT(a, τ) are, respectively, the wavelet
transforms of A(t) and T(t), and W∗T(a, τ) indicates the complex
conjugation of WT(a, τ). The covariance between the cross-
wavelet power spectrum is then defined as follows:

|WAT(a, τ)| =
√
|WA(a, τ)|

∣∣W∗T(a, τ)
∣∣ (8)

Assuming the potential periodicity of Atlantic cod abundance, we
try to expand the total finite length of time series to deal with the
edge effect; there will exist the discontinuities at the edges with the
decrease of the amplitude in the wavelet power spectrum, which
is specified as the Cone of Influence (COI). Since the results in
COI will be affected by boundary distortion, reliable information
cannot be provided and should be removed.

The correlation between Atlantic cod abundance and SST
could be further measured via wavelet coherence (Torrence and
Webster, 1999), as follows:

CAT(a, τ) =
|S(WAT(a, τ))|√

S(|WAA(a, τ)|2) • S(|WTT(a, τ)|2)
(9)

where S(WAT(a, τ)) is the cross spectral density between
A(t) and T(t). The wavelet coherence coefficient reflects the
synchronization similarity, i.e., co-movement between two time
series, or whether the variation law takes on a linear relationship.
The higher wavelet coherence is, the stronger the correlation is.

Meanwhile, the wavelet phase differences capture negative and
positive correlation directions and depict the possible lead-lag
effects among two time series:

ψAT = tan−1
(

I {S(WAT(a, τ)) }

R {S(WAT(a, τ)) }

)
, ψAT ∈ [−π, π] (10)

where Iand R are the imaginary and real parts of the
smoothed cross-wavelet transform, respectively. If ψAT is zero,
the two series co-move together (in-phase), and if it is π (or
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−π), they co-move in opposite directions (out of phase). If
ψAT ∈ (0, π/2), they positively co-move, and A(t) leads T(t); if
ψAT ∈ (π/2, π), they negatively co-move, and T(t) leads A(t); if
ψAT ∈ (−π,−π/2), they negatively co-move, and A(t) leads T(t);
if ψAT ∈ (−π/2, 0), they positively co-move, and T(t) leads A(t).
The abovementioned wavelet coherence can also be extended to
evaluate the mutual relationship between Atlantic cod abundance
and other extrinsic indices, including Atlantic cod catches C(t),
prey biomass B(t), and SSS S(t).

LSTM-SAE
We employ LSTM as an optimized recurrent neural network
that allows to capture and retain long-term dependencies
between Atlantic cod abundance A(t) and other extrinsic indices,
and meanwhile concludes the mutual relationship between the
historic and current linkage effectively. Let the multivariate input
vector be the combination of all or parts of time series from
Atlantic cod abundance, SST, catches and prey biomass, and SSS
in the time step t , and the output vector be the label from Atlantic
cod abundance itself in the next time step t+1. The advantage
of the LSTM structure is that three types of gates, i.e., the input
gate, output gate, and forget gate, are included, which could allow
the storage of time series of Atlantic cod abundance and the
external impact factors over a long-term period and also solve the
vanishing gradient problem. Let Xt=[At,Tt,Ct,Bt,St] and yt=At+1 be
the input and output of LSTM unit at a certain time point t , then
the following calculation is performed,

it = σ(Gi × Xt
+ Ri × yt−1

L + bi)

f t
= σ(Gf × Xt

+ Rf × yt−1
L + bf )

ot
= σ(Go × Xt

+ Ro × yt−1
L + bo)

zt
= σ(Gz × Xt

+ Rz × yt−1
L + bz)

ct
= it � zt

+ ct−1
� f t

yt
= ot
� tan(ct)

(11)

where Gi, Go, Gf , Gz , Ri, Ro, Rf ,Rz , bi, bo, bf , and bz are,
respectively, the weights of the input, the shared recurrent
weights, and the bias weights for the three types of gates and
input unit; it , f t , ot , and zt are, respectively, the output of
the three types of gates and input unit; ct is the cell state of
LSTM unit; σ represents the sigmoid activation function; and
� is the Hadamard product, which refers to the element-wise
product among matrices.

LSTM-based stacked autoencoder replaces random
initialization strategies by applying stacked auto-encoder (SAE)
into deep LSTMs in an unsupervised pre-training manner. As
is shown in Figure 2, LSTM-SAE consists of three conventional
shallow LSTM-AEs (LSTM-based autoencoder), which not only
enhances the non-linear characteristics and compresses the input
dimension, but also circumvents the expression limitations in
multivariate prediction.

The LSTM-AE module comes from the basic autoencoder
(AE), which is originally sequentially connected as three layers
in an unsupervised learning paradigm. The training procedure
consists of two phases: encoding, in which the input is mapped

into the hidden layer, and decoding, in which the input is
reconstructed from the compressed representation. Given an
unlabeled input Xt , it can be formulated as follows:

h1 = f (w1Xt
+ b1) (12)

∧

Xt
= w2h1 + b2 (13)

where h1 represents the hidden encoder vector calculated from

the input vector Xt , and
∧

Xt is the decoder vector of the output
layer. Additionally, f is the activation function, w1 and w2 are the
weight matrix of the encoder and decoder, and b1 and b2 are the
bias vectors in each phase, respectively. The process of training
is to minimize the reconstruction error; i.e., the cost function of
each LSTM-AE module can be written as the difference between

the original input Xt and the reconstructed time series
∧

Xt .
LSTM-based stacked autoencoder sequentially combined and

superposed shallow LSTM-AEs into deep learning networks
through layer-by-layer greedy methods. The learning process
consists of a pre-training phase and a fine-tuning phase. In the
pre-training stage, we train the first LSTM-AE module in the
stack and save its LSTM encoder layer as the input of the second
LSTM-AE module, the second LSTM-AE module in the stack
is trained with the encoded version of inputs loaded, and its
LSTM encoder layer is saved as the input of the third LSTM-AE
module. The purpose of reconstructing the original input instead
of using the coded input of the previous layer is to strengthen
the encoder to learn the characteristics of the original input. The
original input is encoded twice by loading the encoder saved
in the first two layers to train the third LSTM-AE module. We
reconstruct the original inputs, not the encoded inputs, in order
to enforce the encoder to learn the features of the inputs. Finally,
we manage to initialize the three saved LSTM encoders and feed
the real multivariate input in the time step t, together with the
expected output of Atlantic cod abundance in the next time
step t + 1, to learn in a supervised learning fashion during the
fine-tuning stage.

RESULTS

Periodicity
The periodicity estimation has been performed from 1919 to 2016
on the global annual average abundance of Atlantic cod derived
by BioTIME via wavelet coefficients, on the basis of Morlet
wavelet base. In order to offset the boundary effect of the specified
region of COI, the extended time series at both ends has been
employed for the wavelet transform coefficient. The symmetrical
expansion around both ends for Atlantic cod abundance was first
done within the time domain. After eliminating the expansion,
the real part of the retained wavelet coefficient was made up of
the wavelet coefficient contour map, as demonstrated in Figure 3,
with the abscissa representing time and the ordinate referring
to the time scale.

It has been found from the wavelet coefficient contour map
in Figure 3 that there exist three types of period variation
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FIGURE 2 | LSTM-SAE model.

FIGURE 3 | Contour map of wavelet coefficient.

of global Atlantic cod abundance at multiple time scales, i.e.,
17–30 years, 30–45 years, and 45–64 years. Among them, at the
time scale of 17–30 years, the global Atlantic cod abundance
fluctuates abundantly, but the corresponding real value of
wavelet coefficients is smaller, indicating that the periodicity is
less obvious. At the time scale of 30–45 years, Atlantic cod
abundance has experienced four fluctuations from rich to poor
period according to the reflection of the oscillation intensity.
Considering that there is a hidden period, the real value of wavelet
coefficients is medium. At the time scale of 45–64 years, the
global Atlantic cod abundance has the most obvious periodic
variation in rich and poor periods, and the real value of wavelet
coefficients is relatively large. Three poor centers of the oscillation
intensity, 1930, 1970, and 2005, and two rich centers, 1950 and
1985, have been discovered. The periodic variation of the last two
time scales behaved relatively stably throughout the time domain
of the Atlantic cod abundance time series in study, while the first
time scale was relatively weak and only stable before the 1960s.

We also applied the wavelet energy spectrum to analyze the
evolution of oscillation energy at different periods in global
Atlantic cod abundance. The modulus and modulus square
maps of the wavelet coefficients are illustrated in Figure 4,
where the largest values correspond to the 45- to 64-year time

scale, especially since 1960, indicating that there is a major
period and the periodicity of global Atlantic cod abundance
is more stable. At the time scale of 30–45 years, there is a
minor period from 1919 to 1990 accordingly, with relatively
small values of the modulus and modulus square. Similarly,
the periodicity emerges at the time scale of 17–30 years
from 1919 to 1960.

The wavelet variance map proportionally reflects the
distribution of fluctuating energy in Atlantic cod abundance time
series at multiple time scales and can be employed to derive the
time periods in the evolution process, as shown in Figure 5A.
There exist four obvious peaks in the wavelet variance map,
which in turn correspond to the time scales of 55, 37, 24, and
11 years, i.e., the highest of the first major period in Atlantic
cod abundance variation, as well as the second to third, fourth
highest peak. The fluctuations of the above four periods influence
the variation characteristics of Atlantic cod abundance in the
entire time domain, where the first and the second periods
play dominant roles, and the third and fourth periods only
have minor effects for reference because of their small value in
variance curves.

We further characterized and developed the trend graph of
the first and second periods for global Atlantic cod abundance
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FIGURE 4 | Wavelet contour map with Morlet wavelet. (A) Modulus of wavelet coefficient. (B) Modulus square of wavelet coefficient.

FIGURE 5 | Variance and periodic map of wavelet coefficients. (A) Wavelet variance. (B) The first cycle. (C) The second cycle.

at two time scales. From the test results of the wavelet variance
in Figures 5B,C, it has been illustrated that there appear the
characteristics of global Atlantic cod abundance lasting about
36 years within an average period at the 55-year time scale, with
roughly 2.7 periods in rich and poor, respectively. At the 37-
year time scale, the average period of global Atlantic cod lasts
around 24 years with four periods; the stability of this time
period is relatively poor, but the overall periodicity is still very
obvious. We could hereby make use of the inherent periodicity
tendency of global Atlantic cod abundance to explore its potential
alternating fluctuation patterns along time, providing a basis for
the abundance prediction itself.

Wavelet Coherence
We utilized the wavelet coherence to search for how the co-
movement between Atlantic cod abundance and the extrinsic
indices performs over time and described the lead-lag effects
through the wavelet phase difference. The wavelet coherence
and phase difference map of Atlantic cod abundance with
SST, catches, prey biomass, and SSS at sites 119 and 428 are,
respectively, shown in Figures 6, 7, where wavelet correlation
is affected by discontinuity, and the color bar corresponds to
the relative intensity of each frequency (the stronger correlation
tends to be in red, while the weaker correlation tends to be in
blue), the edge COI is denoted in thick black curve, and 5% and
10% significance levels are, respectively, represented by a black
thin line and a black dashed line.

For Atlantic cod abundance vs. SST, in Figure 6A.1, from the
perspective of long-term frequency, the correlation coefficient at
site 119 in the 7- to 13-year band is greater than 0.95 after 1987,
indicating that there exists a significant long-term correlation

and then the degree of correlation coefficients begins to decline
after 2003. In Figure 7A.1, there is a significant correlation
at site 428 in the 10- to 15-year band from 1985 to 2000,
and the correlation coefficient reached more than 0.95. In the
short-term frequency band, the correlation at both sites is not
obvious. Meanwhile, in the long-term frequency band, the phase
difference at both sites is in the range of π/2 to π throughout the
period when the correlation is strong, which implies that there is
a significant negative correlation between the two time series at
both sites 119 and 428.

For Atlantic cod abundance vs. catches, in Figure 6B.1,
with reference to the wavelet coherence map, we found that
it exceeded 0.95 at site 119 in the 1- to 5-year band in the
1990s, indicating significant correlation in the short term. In
the long-term frequency band of 7–14 years, this significant
correlation lasted from 1977 to 1995, with the coefficient
greater than 0.95, and there was no obvious correlation
thereafter. In Figure 7B.1, the two time series is significantly
correlated at site 428 in the 9- to 15-year frequency band
almost throughout the sampling period, especially in the period
from 1966 to 2000 when the significance ratio reached its
peak, with the correlation coefficient exceeding 0.95. The
coherence map displays a common significant correlation at both
sites from the 1970s to the mid-1990s, while the correlation
at site 428 lasted longer, until 2000. The phase difference
described that, in the long-term frequency band, the two
time series at site 428 are significantly negatively correlated
throughout the time period, while the phase difference at
site 119 in the frequency band of 7–14 years is close to
zero during the entire period, indicating that the two time
series are approximately moving in synchronization, and at
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FIGURE 6 | The wavelet coherence and phase difference between Atlantic cod abundance and SST, catches, prey biomass, and SSS at site 119. (A–D.1) Wavelet
coherence and (A–D.2) phase difference. The y-axis refers to frequency (in years), and the x-axis refers to the time period.

both sites, Atlantic cod caches tend to dominantly lead its
changes in abundance.

For Atlantic cod abundance vs. prey biomass, in Figure 6C.1,
the correlation coefficient at site 119 in the long-term frequency
band of 7–13 years was about 0.9 from 1982 to 1998, but
in the short term, there is no obvious connection being
displayed. In Figure 7C.1, the coherence map shows significant
correlation at site 428 in the long-term frequency band from
7 to 13 years during almost the entire time period. The
correlation coefficient is greater than 0.9 around the 1990s,
and began to decline after 2005, indicating that the correlation
was most significant from the mid-1980s to the end of the
last century. The phase difference demonstrates that there is
a significantly positive correlation between two time series
at both sites during the entire co-movement period, and

the Atlantic cod prey biomass tends to dominantly lead its
changes in abundance.

For Atlantic cod abundance vs. SSS, in Figure 6D.1, from
the coherence map, we could find that there is a significant
correlation in the 3- to 5-year band at site 119 from 1983
to 1989, but after that, it turned to a weak correlation.
In the long run, this correlation becomes more significant
in the frequency band of 13–17 years, with the coefficient
close to 1, and lasts from 1980 to 1988, but after that, this
correlation was not obvious. In Figure 7D.1, the correlation
coefficient at site 428 in the long-term frequency band of
10–17 years exceeded 0.9 from 1990 to 2000, while before
1990, the correlation coefficient was generally less than 0.6.
In the short term, this correlation is not obvious. The phase
difference shows that the two time series at site 119 are
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FIGURE 7 | The wavelet coherence and phase difference between Atlantic cod abundance and SST, catches, prey biomass, and SSS at site 428. (A–D.1) Wavelet
coherence and (A–D.2) phase difference. The y-axis refers to frequency (in years), and the x-axis refers to the time period.

positively correlated throughout the period of co-movement,
while at site 428, they are more probably negatively correlated.
However, at both sites, SSS tends to dominantly lead its
changes in abundance.

DISCUSSION

First, it has been basically revealed from our experimental results
that at both sites 119 and 428, SST began to have dominantly
negative effects on the abundance variation of Atlantic cod
since the 1980s. The increase of sea temperature actually exerted
dramatic influences to the Atlantic cod abundance. For example,
it has been investigated that from the 1980s to the beginning of
the 21st century, the average SST and bottom temperature of the
North Sea around site 428 have increased by 0.7◦C and 0.15◦C

per decade (Walther et al., 2002; Sheppard, 2004). It has also been
reported by NOAA that the North Atlantic Oscillation (NAO)
index, i.e., the oscillation of atmospheric mass between the Arctic
and the subtropical Atlantic, remains a positive phase since then,
indicating the indirect consistency in its variation pattern on
Atlantic cod (Brander and Mohn, 2004), e.g., the changes in
the recruitment and spawning of Atlantic cod with the local
environmental variables (Stige et al., 2006). At site 428, the annual
SST from 1980 to 2000 was 10.5◦C on average, an annual increase
of 0.6◦C from the 1970s, corresponding to the average decrease
of Atlantic cod abundance by roughly 40%. In particular, due
to the El Niño events in 1982–1983 and 1997–1998, the annual
SST at site 428 both exceeded 12◦C in the year 1983 and 1997,
which exactly corresponds to the sharp drop in the abundance of
Atlantic cod by 45% and 49%, respectively, compared to the entire
1970s. Similarly, the annual SST at site 119 in 1997 have reached
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FIGURE 8 | LSTM-SAE predictive ensemble.

13.1◦C, far exceeding the average values 10.3◦C in the 1970s, and
the corresponding abundance of Atlantic cod dropped by 56%.
In total, 13 El Niño events have occurred globally from 1950 to
2000, 69% of them after 1980, demonstrating that the abundance
variation of Atlantic cod is closely related to the changes of SST
due to frequent activities of El Niño since the 1980s, which could
be one of the significant reasons for the decline of Atlantic cod
abundance after 1980.

Second, a strong positive correlation between the Atlantic
cod abundance and its prey richness has been demonstrated
from our experimental results at site 119 around 1980–2000
and at site 428 around 1985–2008. While the richness of
marine primary producers decreased by 26% and 34% during
the above time period, compared to the average values in the
whole 1970s, the Atlantic cod abundance dropped by 40% and
47% correspondingly. We believe that there are two major
reasons for the descent in the richness of primary producers.
(1) The influence of the marine environment changes, such
as the rising SST and the ocean acidification. Whether it

is smaller zooplankton, invertebrates, or herring and capelin,
most of them are more sensitive to changes in the marine
environment. The abundance of small pelagic species, such as
shrimp and capelin, decreases with increasing temperature, and
even some zooplankton may have disappeared. For example, it
has been investigated that the abundance of capelin in 1998 at
Newfoundland around site 119 has particularly made a reduction
of 55.3% compared to that in 1978 (Rose and O’Driscoll, 2002),
and the corresponding abundance of Atlantic cod dropped
by roughly 42% during the same period. (2) The increase in
abundance of Atlantic cod competitors, such as those migrant
predators in deep open waters, like moray, perch, tuna, etc. It has
been reported that the abundance of these large fish species in
the North Atlantic was not significantly affected by the increase
in temperature, and even showed an increasing trend because
of migration. For example, the SST of Celtic Sea to the south of
Ireland had exceeded 12◦C in 1992, causing some tuna to migrate
northward to North Sea near site 428 (Hiddink and Ter Hofstede,
2008). The increase in the number and types of advanced species
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FIGURE 9 | Prediction of Atlantic cod abundance.

could be attributed to accelerate the rate of decrease of primary
species richness. As the abundance variation of Atlantic cod
basically produced responses to both the prey biomass and SST
since the 1980s and continued to the present, the effect of prey
biomass also indirectly proves the influence of SST, indicating
that SST could not only cause a direct response, but may be an
indirect response to the changes of Atlantic cod abundance.

Third, it is obviously shown from our experimental results that
overfishing imposed tremendous influences on the abundance
variation of Atlantic cod. The occurrence of highly correlative
responses to Atlantic cod catches has been manifested from the
1960s to the end of the last century, at both sites 119 and 428;
the strongest happened in the 1970s to the 1990s. For example,
at site 119, the abundance of Atlantic cod has strongly followed
the catches synchronously during 1975–1995, indicating that the
catches played an actively guiding role in the abundance variation
during this time period. In 1976, the catches of Atlantic cod at
sites 119 and 428, respectively, increased by 32.2% and 19.1%,
compared to that in 1960s, and the abundance of Atlantic cod
decreased by 28.6% and 12.1% correspondingly. The dramatic
increase in Atlantic cod catches since the early 1970s was mainly
due to the rapid development of fishery technology. High-
efficiency equipment such as ocean trawl and seine nets have
been widely adopted (Valdemarsen, 2001). As a result, the world’s
annual fish catches were more than quadrupled in the late
1970s. It has been investigated that the average annual catches
of Atlantic cod in the Gulf of Maine near site 119 in the 1980s
increased to 40,000 tons, more than four times that of the 1960s.
However, there was a cliff-like decline of Atlantic cod catches
after 1992, and the abundance of Atlantic cod increased by 18%,
and then the average annual catches had returned to 10,000 tons
after 2000 (Fogarty et al., 2008). There have been a series of ban
policies issued from the 1990s in many countries, looking forward
to seeing the abundance of Atlantic cod recover. Although, after

years of limited fishing or even a ban on fishing, the scale of
the local Atlantic cod showed no significant signs of rebound as
expected in the end, it coincided with strong negative correlation
at the beginning of its implementation.

Fourth, it has been demonstrated from our experimental
results that SSS made great differences regarding the responses
of the abundance variation in Atlantic cod at sites 119 and 428,
respectively. On the one hand, at site 428, there mainly occurred
a strong negative lead to Atlantic cod abundance after 1990.
Since the increase in SSS is assumed to affect the activity of
sodium and potassium ions in Atlantic cod, it might hereby cause
the slow growth of Atlantic cod. In 2003, the SSS value at site
428 reached 36%, an increase of 7% compared to 1970, and at
an average annual increase rate of 0.24% since then, while the
abundance of Atlantic cod fell 47% during the corresponding
time period. It has been reported that ocean evaporation (EVP)
increased from the trough in 1977 to the peak in 2003 (Yu,
2007), which exactly coincides with the increase in SSS at site
428. In addition, the time–frequency co-movement of both SSS
and SST at site 428 had the same tendency with the abundance
variation of Atlantic cod after the 1990s. We believe that this is
mainly because the rising SST causes the sea surface to evaporate
more easily, so their correlation with Atlantic cod abundance
was similar. On the other hand, at site 119, we have noticed
that there was a strong positive correlation between SSS and
Atlantic cod abundance mainly in the 1980s. For example, the
SSS value at site 119 dropped from 32% in 1980 to 29% in 1983,
and the abundance of Atlantic cod decreased by 27% during the
corresponding time. We suppose that the decline in SSS in the
corresponding period may be highly correlative to the influences
of North American hurricanes in 1982. Humid climate, especially
frequent rainfall during that time period, made it possible to lead
to further SSS changes. It has been reported that Hurricane Alicia
moved northward along the West Coast of the United States and
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Canada near site 119 in 1982 at an average wind speed of 95 mph,
causing a 13-foot storm surge in the Gulf of Maine, with 6–12
inches of heavy rain.

The above external responses of the abundance variability
run through the whole life history of Atlantic cod, and could
be further attributed to the consistency with the simulation
model or hypothesis that have been put forward. The warming
and SSS reached deeper ocean due to strong mixing and
convection associated to thermohaline circulation (Rahmstorf,
1995), which implied that the change in sea surface would
also be transmitted to deeper habitat of Atlantic cod. The
individual-based mechanistic model (Kristiansen et al., 2011)
once incorporates the physical characteristics and the biological
properties of the Atlantic cod larva and its surroundings, to
assess the seasonal pattern of size variation of Atlantic cod
eggs through adjusting environmental conditions of the mode.
It has been shown from our experimental result that when
SST at site 428 increased greatly in the 1990s, there was a
significant negative correlation with Atlantic cod abundance. We
could hereby presumably infer from the model that the size
of Atlantic cod eggs might be reduced during that period and
thus prolonged their hatching time and increased the possibility
to be preyed. Combining with the Regional Ocean Modeling
System (ROMS) (Shchepetkin and McWilliams, 2005), Vikebø
et al. (2007) simulated the drift and distribution of Atlantic cod
eggs and larvae. It has been shown from our experimental result
that there was a dramatic decline in Atlantic cod abundance at site
428 during 2007–2008, and we could hereby infer that this might
be related to the strong Norway current with large resolution
motion in 2008 (Skagseth et al., 2008, 2011); the survival rate of
Atlantic cod larvae was relatively reduced due to the long-term
drift time. Árnason et al. (2013) have evaluated the growth rate
of Atlantic cod under different salinity in a radioimmunoassay
procedure and a protein assay kit, respectively. It has been shown
from our experimental result that when SSS at site 428 increased
obviously in 1997, there was a negative correlation with Atlantic
cod abundance during this period. We could hereby assume
that the continuous increase of SSS might have reduced the
plasma cortisol level and the total plasma protein of Atlantic
cod, resulting in the decrease of growth rate and even death
of Atlantic cod. The probit regression model of Atlantic cod
(Hutchings and Myers, 1994) classified maturing and spawning
females and spent females, defined the time of spawning on
which 50% of mature females were in a spent state, and described
how the probability that a female will be spent was related
to age at different seawater temperatures. It has been shown
from our experimental result that at both site 119 and site 428,
SST increased significantly around 1988–1992, and there was
a negative correlation with the abundance. We could hereby
estimate from the model that the higher seawater temperature
might result in earlier Atlantic cod spawning through faster
gonad development, which would indirectly lead to the drop
in abundance. Wroblewski et al. (2000) monitored the activity
of the tagged Atlantic cod in 1992 through an acoustic model
and showed that the movement of Atlantic cod was related
to the acoustically determined position of its prey and event
structure in the local ocean currents. It has been shown from

our experimental result that both the biomass of prey and the
abundance of Atlantic cod exhibited a dramatically downward
trend at site 119 in 1992. We could hereby suppose that in
response to the Gulf Stream that moved northward through
the Gulf of Maine, the prey shoal moved with the current
(Johns et al., 1995), indirectly leading to the similar migration
of Atlantic cod.

In general, in view of spatiotemporal interactions with SST,
prey biomass, catches, and SSS around the recent 60 years, we
conclude that the external responses of the abundance variability
in Atlantic cod can be roughly divided into three distinguished
stages: namely, the time period before 1985, 1985–1995, and
after 1995. At the first stage, the reason for the decline in
the abundance of Atlantic cod can be mainly attributed to the
rapid rise of fish catches, due to the breakthrough of emerging
advanced fishing technologies and its expansion in the fishery
industry. In addition, in some observation sites, such as site
119, there were also strongly positive correlation effects from
the relatively low SSS, while the impact of SST has not been
highlighted, and even hardly observed. At the second stage,
the abundance and catches of Atlantic cod still showed strong
simultaneous moves, indicating that overfishing remained as one
of the main factors. At the same time, warming SST began to
be a significant index for the abundance variability in Atlantic
cod, imposing both direct and indirect forces to the abundance,
together with the significant impact of prey biomass changes
and SSS. At the third stage, due to the beginning of fishing
restrictions, protective measures, and policies, the impact of
overfishing became relatively insignificant. The warming SST at
sites 119 and 428 and the growing SSS in some areas such as
site 428 directly lead to the decrease of Atlantic cod abundance,
implying the increased sensitivity to changes in such marine
environment factors.

The long-term dependency in the time series analysis above
could quantitatively and systematically reveal the fundamental
roles that those external elements responses to the abundance
variability in Atlantic cod, and allow the identification of
dominantly correlative factors for each stage. Concerning the
self-correlated feedback that is always inherently underlined
in the abundance itself, together with its periodicity, time–
frequency co-movement, and lead-lag effects, we further capture
the potentially predictive patterns and mechanism for abundance
variation in Atlantic cod at each stage by constructing LSTM
architecture. One group of LSTM-SAE units of diverse model
selection have been employed to establish the predictive ensemble
across stages, as shown in Figure 8. For each stage, we,
respectively, pick only one input variable, i.e., Atlantic cod
abundance itself, all the five input variables of correlative time
series in our study, i.e., the Atlantic cod abundance, SST, SSS, prey
biomass, and catches, as well as the particularly dominant indices
at each stage, for training.

Due to the scarcity of the records in all time series, one type of
data augmentation is used, i.e., the Time-Conditional Generative
Adversarial Network (T-CGAN), in which both the generator and
the discriminator are conditioned on the sampling timestamps,
to learn the hidden relationship between data and timestamps
and consequently to generate new time series (Ramponi et al.,
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TABLE 4 | Prediction performance comparison.

Model LSTM-SAE DLSTM

All Abundance Abundance + SST + SSS All Abundance Abundance + SST + SSS

RMSE 1.439 1.544 0.958 1.736 1.936 1.544

MAE 1.254 1.424 0.796 1.536 1.794 1.284

SMAPE 15.933 19.160 10.547 20.658 23.607 18.293

The bold values in table 4 indicate the best performance of RMSE, MAE and SMAPE evaluation parameters under three ensembles.

2018). At the same time, in order to eliminate the differences
among dimensions, the common Min-Max normalization has
also been taken to project the five input variables and speed up
the convergence in the LSTM-SAE unit. In addition, the length
of all the five types of time series, no matter the original and
the augmented ones, remains identical, corresponding to the
period 1952–2011. The total number of records is 2950 after the
standardization and amplification process, including all of the
five input variables, and then we divided the original time series
dataset into three types, 60% for training, 15% for verification,
and 25% for testing, to facilitate learning in the LSTM-SAE unit
for a higher prediction accuracy.

Taking the prediction of Atlantic cod abundance at the
observation site 428 as an example, we, respectively, select the
dominantly correlative factors at three stages, i.e., Atlantic cod
catches itself, all the four external impact factors, SST, and SSS,
as the auxiliary input variables to help with the estimation, in
a time domain of totally 59 observation years, with 43 years
for training and verification, and 16 years for test. For each
stage, we select three types of input vectors for training and
testing, namely, Atlantic cod abundance, the additive dominantly
correlative factors, and all the external impact factors. We applied
both the classic LSTM and LSTM-SAE strategies in the ensemble
into the time series of Atlantic cod abundance at site 428, and
the corresponding prediction results at the third stage of 10-year
duration from 1995 to 2011 are listed in Figure 9, where the
ground truth is represented in blue solid line, and the solid and
dashed lines in other colors stand for the prediction results of two
models with respect to three types of input variables concerned,
respectively. The prediction performances of the two competitive
models have also been evaluated by means of RMSE, MAE, and
symmetric mean absolute percentage error (SMAPE) measure, as
listed in Table 4.

As it is mentioned above, we have made an initial attempt to
explore the abundance prediction in Atlantic cod at site 428 for
1995–2011, and it could be seen from the experimental results
that both LSTM-SAE and DLSTM models behaved better when
applying multivariate prediction instead of only taking Atlantic
cod abundance as the univariate input, with RMSE, MAE, and
SMAPE of 0.958, 0.796, and 10.547 in LSTM-SAE and 1.544,
1.284, and 18.293 in the DLSTM model, respectively. It has
also proved that the prediction process might perform slightly
better when we intentionally select and feed with the dominantly
correlative time series as the additional inputs, rather than all
the referred external indices, indicating that there might exist
relatively higher priority among all the other concerning variables

at site 428 in the last decade; i.e., SST and SSS play relatively
leading roles in determining the trend in Atlantic cod abundance
to be predicted. Meanwhile, LSTM-SAE obviously exhibit better
prediction performances compared to the classic DLSTM model
for whatever type of training inputs, indicating that the impact
of stacking LSTM in an auto-encoder fashion as one kind of pre-
trained DLSTM has more advantages in Atlantic cod abundance
prediction than the original DLSTM, which depends on most
randomized initialization for LSTM.

The recent advances of deep neural network-powered,
machine intelligence techniques provide a hopeful solution
with the promise of end-to-end prediction modeling for the
Atlantic cod abundance variation. First, we quantitatively and
systematically reveal the fundamental roles of these external
element responses to the abundance variability in Atlantic cod
by analyzing the long-term dependencies in time series and
allow them to identify dominantly correlative factors for each
stage. Then, concerning the self-correlated feedback that is always
inherently underlined in the abundance itself, together with its
periodicity, time–frequency co-movement, and lead-lag effects,
we further capture the potentially predictive hypothesis and
mechanism for abundance variation in Atlantic cod at each
stage. In the future, we could transfer such a comprehensive
prediction mechanism to other sea areas, with the increase of
the other influencing factors, and make an effective assessment
of Atlantic cod abundance, which could hopefully provide a
reference baseline for future fishery management and reasonable
fishing decision-making.

CONCLUSION

As one of the economic fish species, Atlantic cod contributes
significantly to the world’s total fishery production. Atlantic
cod distributes in a wide range of habitats, and its survival
mode has been influenced by multivariate factors, while most
of the existing literature often concentrates on the discussion
about the major univariate effects in the abundance variation
of Atlantic cod. In this paper, we have quantitatively identified
the spatiotemporal responses of Atlantic cod abundance across
manifold intrinsic and extrinsic indices, on the basis of
its periodicity, co-movement, and lead-lag effects, and then
proposed to explore the potentially predictive mechanism about
how Atlantic cod abundance would probably evolve over time
in favor of LSTM. We have systemically retrieved the annual
global abundance variation of Atlantic cod from 1919 to 2016
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via BioTIME, and then selected the local observation sites, ID
119 and 428, with relatively complete abundance records for
our study, and accordingly accessed and attained the other four
external impact factors, i.e., the catches, the prey biomass, SST,
and SSS, respectively, at specific geographical coordinates, by
spatial and time averaging. We have provided evidences by
integrating the modulus and variance of wavelet coefficients
that the abundance variation of Atlantic cod will be influenced
by its potential 36-year major cycle and 24-year secondary
cycle at the time scales of 55 years and 37 years, respectively.
We have generated the wavelet coherence map by the ratio
between the wavelet cross-spectrum and power spectrum, and
the phase difference by the ratio between the imaginary and the
real part of the wavelet cross-spectrum, to evaluate the time–
frequency co-movement and lead-lag effects over the external
impact elements, and allow the identification of the dominantly
correlative factors and capture the leading roles at each stage
in the time domain. In view of spatiotemporal interactions, we
further divided the responses of the abundance variation in
Atlantic cod in the recent 60 years into three stages, namely,
before 1985, 1985–1995, and after 1995. At the first stage, the
reason for the decline in abundance can be mainly attributed to
the rapid rise of fish catches. At the second stage, overfishing
remained as one of the main factors, and the impact of SST
and SSS also provides significant indices for the abundance
variability; meanwhile, the mortality of primary producers and
forced migration of fish species indirectly led to the decline.
At the third stage, the impact of overfishing became relatively
insignificant, and warming SST and growing SSS directly led
to the decrease of abundance. It should be noted that we
primarily consider the above critical external impact factors
on the abundance variation of Atlantic cod from a long-term
perspective, but we do not rule out the influences of the other
factors, such as ocean acidification and marine microorganisms,
which have not been involved in our study but could be
taken into account in the future. Finally, with the help of
historical spatiotemporal responses to manifold intrinsic and
extrinsic indices, we have established the ensemble of LSTM-SAE
architecture to comprehensively capture the predictive patterns
possibly underlined in the variation of Atlantic cod abundance
at each stage, by three types of input vectors, namely, Atlantic
cod abundance, the additive dominantly correlative factors, and
all the external impact factors. It has been demonstrated from
the experimental results that the models behaved better when
we intentionally select and feed with the dominantly correlative
multivariate input, instead of all factors or only taking Atlantic
cod abundance as the univariate input, with RMSE, MAE, and
SMPE of 0.958, 0.796, and 10.547, respectively, when taking
the prediction of Atlantic cod abundance during 1995–2011
at site 428 as an example. Meanwhile, LSTM-SAE obviously
exhibits better prediction performances compared to the classic
LSTM for whatever type of training inputs, indicating that
the impact of stacking LSTM in an auto-encoder fashion has
more advantages in Atlantic cod abundance prediction than the
original LSTM. The proposed prediction strategies could not
only symmetrically investigate the predictive attributes of the
Atlantic cod abundance, potentially providing the quantitative

references in reasonably making fishing decision, but also
integrate evidences on its spatiotemporal responses of abundance
variability and help explore the changes of biomass statistics,
distribution, and biodiversity. Although the developed prediction
scheme in our study still tends to be an initial attempt to
understand the potential variation tendency of Atlantic cod
abundance, we believe that it is quite reasonable to approximate
the changes based on the past observations, in accordance with
the direct and indirect external responses. Due to the rapid
development of deep learning capabilities, it is to be hoped
that understanding the abundance variability toward marine
environment and anthropic forces could be further improved in
the near future, and the public, the politicians, and the fishing
industry could expect better and more quantitative predictions of
the responses to global changes of not only Atlantic cod but other
fish species and the ecosystem as a whole.
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Global surface currents are usually inferred from directly observed quantities like

sea-surface height, wind stress by applying diagnostic balance relations (like geostrophy

and Ekman flow), which provide a good approximation of the dynamics of slow,

large-scale currents at large scales and low Rossby numbers. However, newer

generation satellite altimeters (like the upcoming SWOT mission) will capture more of

the high wavenumber variability associated with the unbalanced components, but the

low temporal sampling can potentially lead to aliasing. Applying these balances directly

may lead to an incorrect un-physical estimate of the surface flow. In this study we

explore Machine Learning (ML) algorithms as an alternate route to infer surface currents

from satellite observable quantities. We train our ML models with SSH, SST, and wind

stress from available primitive equation ocean GCM simulation outputs as the inputs and

make predictions of surface currents (u,v), which are then compared against the true

GCM output. As a baseline example, we demonstrate that a linear regression model is

ineffective at predicting velocities accurately beyond localized regions. In comparison, a

relatively simple neural network (NN) can predict surface currents accurately over most

of the global ocean, with lower mean squared errors than geostrophy + Ekman. Using

a local stencil of neighboring grid points as additional input features, we can train the

deep learning models to effectively “learn” spatial gradients and the physics of surface

currents. By passing the stenciled variables through convolutional filters we can help the

model learn spatial gradients much faster. Various training strategies are explored using

systematic feature hold out and multiple combinations of point and stenciled input data

fed through convolutional filters (2D/3D), to understand the effect of each input feature on

the NN’s ability to accurately represent surface flow. A model sensitivity analysis reveals

that besides SSH, geographic information in some form is an essential ingredient required

for making accurate predictions of surface currents with deep learning models.

Keywords: deep learning-artificial neural network, surface current balance, geostrophic balance, Ekman flow,

regression, predictive modeling

1. INTRODUCTION

The most reliable spatially continuous estimates of global surface currents in the ocean come
from geostrophic balance applied to the sea surface height (SSH) field observed by satellite
altimeters. For the most part, the dynamics of slow, large-scale currents (up to the mesoscale)
are well-approximated by geostrophic balance, leading to a direct relationship between gradients
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of SSH and near-surface currents. However, current meter
observations for the past few decades and some of the newer
generation ultra-high-resolution numerical model simulations
indicate the presence of an energized submesoscale as well
as high-frequency waves/tides at smaller spatial and temporal
scales (Rocha et al., 2016). In addition, the next generation
of satellite altimeters like the upcoming Surface Water and
Ocean Topography (SWOT) mission (Morrow et al., 2018) is
going to capture the ocean surface at a much higher spatial
resolution, but with a low frequency repeat cycle (21 days). This
presents unique challenges for the estimation of surface currents
from SSH using traditional balances like geostrophy or Ekman.
The high-wavenumber SSH variability is likely to be strongly
aliased in the temporally sub-sampled data and may represent
an entirely different, ageostrophic regime, where geostrophy
might not be the best route to infer velocities. Motivated by
this problem, we explore statistical models based on machine
learning (ML) algorithms for inferring surface currents from
satellite observable quantities like SSH, wind and temperature in
this study. These algorithms can offer a potential alternative to
the traditional physics-based models. We should point out that
resolving the issues pertaining to spatio-temporal sampling and
interpolation in satellite altimetry or the separation of balanced
and unbalanced flows, while being important problems, are
beyond the scope of our present study. Our goal is to examine
whether we can extract more information about the surface flow
from the spatial maps of these quantities andmakemore accurate
predictions of surface currents with ML than we can with
traditional balances.

The traditional method of calculating surface currents
from sea surface height relies on the following physical
principles. Assuming 2D flow and shallow water pressure,
the momentum equation at the ocean surface can be
written as:

∂u

∂t
+ u · ∇u+ f × u = −g∇η + F (1)

where F is the frictional term due to wind stress. For a sufficiently
low Rossby number (acceleration terms small), the leading-order
balances are geostrophy and Ekman flow. The surface flow can be
split into a geostrophic and an ageostrophic, Ekman component
(u = ug + ue), and this leading-order force balance can be
written as

f × ug = −g∇η (2)

f × ue = F (3)

Satellite altimetery products typically provide the sea surface
height relative to the geoid (SSH, η), with tidally driven SSH
signals removed (Traon and Morrow, 2001). Since geostrophic
balance does not hold at the equator (f ≈ 0), typically (Ducet
et al., 2000), a higher order “equatorial geostrophic” treatment
is used to compute velocities near the equator (Lagerloef et al.,
1999), which is matched to the geostrophic regime away from
the equator. Usually, the data-assimilative processing algorithms
used to map along-track SSH observations to gridded maps

(e.g., AVISO Ducet et al., 2000) also involve some form of
temporal smoothing. The process of combining measurements
from multiple satellites and filtering can also lead to spurious
physical signals (Arbic et al., 2012) leading to exaggerated
forward-cascades of energy.

In addition to the geostrophic velocities, some products like
OSCAR (Ocean Surface Current Analysis Real Time, Bonjean
and Lagerloef, 2002), or GEKCO (Geostrophic and Ekman
Current Observatory, Sudre and Morrow, 2008; Sudre et al.,
2013) provide an additional ageostrophic component due to
Ekman flow. The Ekman velocity is related to friction, which
in the upper layer of the ocean is provided by wind stress
(τ =

(

τx, τy
)

) and since the Coriolis parameter f changes
sign at the equator, the functional relationship between velocity
and wind stress is different between the two hemispheres.
In the Northern Hemisphere the Ekman velocities can be
derived as:

ue =
1

ρ
√

2Az|f |
(τx + τy) (4)

ve =
1

ρ
√

2Az|f |
(−τx + τy) (5)

And in the Southern Hemisphere as:

ue =
1

ρ
√

2Az|f |
(τx − τy) (6)

ve =
1

ρ
√

2Az|f |
(τx + τy) (7)

where Az is the linear drag coefficient representing vertical
eddy viscosity (τ = ρAz

∂u
∂z ). Alternatively we can write these

equations in terms of the Ekman layer depth hEk which is related
to the eddy viscosity Az as:

hEk =

√

2Az

f
(8)

Both of these quantities (Az ,hEk) are largely unknown for the
global ocean and are estimated based on empirical multiple linear
regression fromLagrangian surface drifters (Lagerloef et al., 1999;
Sudre et al., 2013). Typical values of Ekman depth hEk in the
ocean range from 10 to 40m.

So geostrophy + Ekman is the essential underlying
physical/dynamical “model” currently used for calculating
surface currents from satellite observations. This procedure,
combining observations with physical principles, represents a
top-down approach A more bottom-up approach would be a
data driven regression model that extracts information about
empirical relationships from data. Recently, machine learning
(ML) methods have grown in popularity and have been proposed
for a wide range of problems in fluid dynamics: Reynolds-
averaged turbulence models (Ling et al., 2016), detecting eddies
from altimetric SSH fields (Lguensat et al., 2017), reconstructing
subsurface flow-fields in the ocean from surface fields (Chapman
and Charantonis, 2017; Bolton and Zanna, 2019), sub-gridscale
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modeling of PDEs (Bar-Sinai et al., 2018), predicting the
evolution of large spatio-temporally chaotic dynamical systems
(Pathak et al., 2018), data-driven equation discovery (Zanna
and Bolton, 2020), parameterizing unresolved processes, like
convective systems in climate models (Gentine et al., 2018), or
eddy momentum fluxes in ocean models (Bolton and Zanna,
2019), to name just a few examples.

In this study we aim to tackle a simpler problem than those
cited above: training a ML model to “learn” the empirical
relationships between the different observable quantities (sea
surface height, wind stress, etc.) and surface currents (u, v). The
hypothesis to be tested is the following: Can we use machine
learning to provide surface current estimates more accurately
than geostrophy + Ekman balance? The motivation for doing this
exercise is 2-fold:

1. It will help us understand how machine learning can
be applied in the context of traditional physics-based
theories. ML is often criticised as a “black box.” But can
we use ML to complement our physical understanding?
This present problem serves as a good test-bed since
the corresponding physical model is straightforward and
well-understood.

2. It may be of practical value when SWOT mission launches.

While statistical models can often be difficult to explain due to
lack of simple intuitive physical interpretations, several recent
publications (Ling et al., 2016; Gentine et al., 2018; Bolton
and Zanna, 2019; Zanna and Bolton, 2020) have demonstrated
that data-driven approaches, used concurrently with physics-
based models can offer various computational advantages over
traditional methods, while still respecting physical principles.
For our problem, which is much simpler in terms of its scope,
we aim to mitigate the so called “black-box” ness of statistical
models in general with physically motivated choices about inputs
and training strategies, to ensure results that are physically
meaningful. In this study, we mainly explore two types of
regression models (multiple linear regression and artificial neural
networks) as potential alternative approaches for predicting
surface currents, using data from a primitive equation global
general circulation model, and discuss their relative strengths
and weaknesses. We see this work as a stepping stone to more
complex applications of ML to ocean remote sensing of ocean
surface currents.

This paper is organized as follows. In section 2, we introduce
the dataset that was used, the framework of the problem
and identify the key variables that are required for training a
statistical model to predict surface currents. In section 3 we
describe numerical evaluation procedure for baseline physics-
based model that we are hoping to match/beat. In sections 4 and
5 we discuss the statistical models that we used. We start with the
simplest statistical model—linear regression in section 4 before
moving on to more advanced methods like neural networks
in section 5. In section 6 we compare the results from the
different models. In section 7 we summarize the findings, discuss
some of the shortcomings of the present approach, propose
some solutions as well as outline some of the future goals for
this project.

2. DATASET AND INPUT FEATURES

To focus on the physical problem of relating currents to surface
quantities, rather than the observational problems of spatio-
temporal sampling and instrument noise, we choose to analyze a
high-resolution global general circulation model (GCM), which
provides a fully sampled, noise-free realization of the ocean state.
The dataset used for this present study is the surface fields from
the ocean component of the Community Earth System Model
(CESM), called the Parallel Ocean Program (POP) simulation
(Smith et al., 2010) which has a ≈ 0.1◦ horizontal resolution,
with daily-averaged outputs available for the surface fields. The
model employs a B-grid (scalars at cell centers, vectors at cell
corners) for the horizontal discretization and a three-time-level
second-order-accurate modified leap-frog scheme for stepping
forward in time. The model solves the primitive equations of
motion, which, for the surface flow, are essentially (1). Further
details about the model physics and simulations can be found
in Small et al. (2014) and Uchida et al. (2017). We selected this
particular model simulation because of the long time record of
available data (∼40 years), although, in retrospect, we found that
all our ML models can be trained completely with just a few days
of output!

A key choice in any ML application is the choice of features,
or inputs, to the model. In this paper, we experiment with a
range of different feature combinations; seeing which features are
most useful for estimating currents is indeed one of our aims.
The features we choose are all quantities that are observable
from satellites: SSH, surface wind stress (τx and τy), sea-surface
temperature (SST, θ) and sea-surface Salinity (SSS). Our choice of
features is also motivated by the traditional physics-based model:
the same information that goes into the physics-based model
should also prove useful to the ML model. Just like the physics-
based model, all the ML models we consider are pointwise, local
models: the goal is to predict the 2D velocity vector u, v at each
point, using data from at or around that point.

Beyond these observable physical quantities, we also need
to provide the models with geographic information about the
location and spacing between the neighboring points. In the
physics-based model, geography enters in two places: (1) in the
Coriolis parameter f , and (2) in the grid spacing dx and dx,
which varies over the model domain. Geographic information
can be provided to the statistical models in a few different ways.
The first method involves providing the same kind of spatial
information that is provided to the physical models, i.e., f and
local grid spacings—dx and dy. We can also encode geographic
information (lat, lon) in our input features, using a coordinate
transformation of the form:





X
Y
Z



 =





sin(lat)
sin(lon) · cos(lat)
−cos(lon) · cos(lat)



 (9)

to transform the spherical polar lat-lon coordinate into a
homogeneous three dimensional coordinate (Gregor et al., 2017).
This transformation gives the 3D position of each point in
Euclidean space, rather than the geometrically warped lat/lon
space (which has a singularity at the poles and a discontinuity at
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the dateline). Note that one of the coordinates—X, that comes
out of this kind of coordinate transformation, is functionally
the same as the Coriolis parameter (f ) normalized by 2�
(� = Earth’s rotation). Therefore, we will use X as proxy
for f for all the statistical models throughout this study. We
also explored another approach where the only geographic

information provided to the models is X (=
f
2� ).

Since geostrophic balance involves spatial derivatives, it is
not sufficient to simply provide SSH and the local coordinates
pointwise. In order to compute derivatives, we also need the
SSH of the surrounding grid points as a local stencil around
each grid point. The approach we used for providing this local
stencil is motivated by the horizontal discretization of the POP
model. Horizontal derivatives of scalars (like SSH) on the B grid
requires four cell centers. At every timestep, each variable of
the The 1◦ POP model ouput has 3, 600 × 2, 400 data points
(minus the land mask). We can simply rearrange each variable
as a 1, 800 × 1, 200 × 2 × 2 dataset or split it into four variables
each with 1, 800 × 1, 200 data points, corresponding to the four
grid cells required for taking spatial derivatives. The variables that
require a spatial stencil for physical models, we will refer to as
the stencil inputs. For the variables for which we do not need
spatial derivatives for (like wind stress), we can simply use every
alternate grid point resulting in a dataset of size 1, 800 × 1, 200.
We will refer to these variables as point inputs. For the purpose
of the statistical models the inputs need to be flattened and have
all the land points removed. This means that each input variable
has a shape of either N × 2 × 2 or N depending on whether
or not a spatial stencil is used (where N = 1, 800 × 1, 200−
the points that fall over land). Alternatively we can think of
the stencilled variable as four features of length N. This kind
of stencil essentially coarsens the resolution of the targets, and
point variables. Similarly we can also construct a three point time
stencil, by providing the values at preceding and succeeding time
steps as additional inputs so that each variable that is stencilled in
space and time has a shape ofN×2×2×3 (or 12 features of length
N). This data preparation leads to 10 potential features (for some
of which we will use a stencil, which further expands the feature
vector space) for predicting u, v at each point : τx, τy, SSH (η),
SST (θ), SSS (S), the three transformed coordinates (X,Y ,Z) and
the local grid spacings (dx and dy).

For building any statistical/ML model, we need to split the
dataset into two main parts, i.e., training and testing. For the
purpose of training our machine learning models, the first step
involves extracting the above mentioned variables from the
GCM output as the input features and the GCM output surface
velocities u, v as targets for the ML model. The data extracted
from the GCM output for a certain date (or range of dates) is
then used to fit the model parameters. This part of the dataset is
called the training dataset. During training, the model minimizes
a chosen cost function (we used mean absolute error for our
experiments, but usingmean squared error produced very similar
results) and typically involves a few passes through this section of
dataset. The trained models are then used to make predictions of
u, v for a different date (or range of dates) where the model only
receives the input variables. The model predictions are evaluated
by comparing with the true (GCM output) velocity fields for that

particular date (date range). This part of the dataset, which the
model has not seen during training, that is used to evaluate model
predictions is called the test dataset.

3. BASELINE PHYSICS-BASED MODEL:
GEOSTROPHY + EKMAN

The two components of the physics-based model used as the
baseline for our ML models are geostrophy and Ekman flow.
In this section we describe how these two components are
numerically evaluated for our dataset. For the sake of fair
comparison, we evaluate the geostrophic and Ekman velocities
from the same features that are provided to the regression
models. With the POP model’s horizontal discretization, finite-
difference horizontal derivatives and averages are defined as
(Smith et al., 2010):

ψx =
[

ψ(x+1x/2)− ψ(x+1x/2)
]

/1x (10)

ψx =
[

ψ(x+1x/2)+ ψ(x+1x/2)
]

/2 (11)

With the data preparation and stencil approach described in
the previous section, η now has a shape of N × 2 × 2 and
the f , u, v, dx, dy are all variables of length N. Following (2) the

geostrophic velocities (u
j
g , v

j
g) are calculated on the stencil as:

v
j
g = g/f j

[

ηi(1, 1)+ ηi(0, 1)− η
j(1, 0)− ηj(0, 0)

]

/4dxj (12)

u
j
g=−g/f j

[

ηj(1, 1)+ηj(1, 0)−ηj(0, 1)−ηj(0, 0)
]

/4dyj (13)

where j ∈ [1,N]. Similarly the Ekman velocity is calculated

numerically from the τ
j
x, τ

j
y, and f j as

u
j
e =







1

ρ
√

2Az |f j|
(τ

j
x + τ

j
y), if f j > 0

1

ρ
√

2Az |f j|
(τ

j
x − τ

j
y), if f j < 0

v
j
e =







1

ρ
√

2Az |f j|
(−τ

j
x + τ

j
y, if f j > 0

1

ρ
√

2Az |f j|
(τ

j
x + τ

j
y), if f j < 0

(14)

For calculating the Ekman velocity, we used constant values
for vertical diffusivity (Az = 8 × 10−3m2/s) and density of
water at the surface (ρ = 1, 027kg/m3). It should be noted
that both these quantities vary both spatially and temporally in
the real ocean. For the vertical diffusivity we came up with this
estimate by solving for Az that provides the best fit between
zonal mean ((u, v)true − (u, v)g) and (u, v)e. In the CESM high
res POP simulations, the parameterized vertical diffusivity was
capped around 100 cm2/s (Smith et al., 2010). For plotting spatial
maps for both the physics based model predictions as well as
the statistical model predictions, the velocity fields are then
reshaped into 1, 800×1, 200 arrays, after inserting the appropriate
land masks.
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4. MULTIPLE LINEAR REGRESSION
MODEL

The simplest of all statistical prediction models is essentially
multiple linear regression, where an output or target is
represented as some linear combination of the inputs. The input

is characterized by a feature vector x
j
i where i ∈ [1, nf ]; j ∈ [1,N],

N being the number of samples, and nf being the number of

features. We can now write the linear regression problem asUj
=

x
j
i

T
· βi+δ

j. where βi are the coefficients or weight vector. For our
regression problem, the input features are wind stress, sea surface
height and the three dimensional transformed coordinates. Of
those features, η,X,Y ,Z are stencil inputs (meaning four input
columns per feature) and τx, τy are the point inputs, resulting
in a total of 18 input features. The aim therefore is to find
the coefficients βi that minimize the loss (error) represented by

δj for a training set of x
j
i and Uj (x

j
itrain,Utrain) and use these

coefficients for a test set of x
j
i (x

j
itest) to make predictions for Uj

(Uj
pred). For implementing linear regression model as well as the

deep learning models discussed subsequently in this study, we
use the Python library Keras (https://keras.io) (Chollet, 2015), a
high-level wrapper around TensorFlow (http://www.tensorflow.
org).

Linear regression can be performed in one of two
different ways

• The matrix method or Normal equation method (where we
solve for the coefficients β that minimize the squared error
‖δ‖2 = ‖U− XT

· β‖2 and involves computing the pseudo-
inverse of XT

· X).
• A stochastic gradient descent (SGD) method (which

represents a more general procedure that can be used for
different regression algorithms with different choices for
optimizers and is more scalable for larger datasets).

The normal-equation method is less computationally tractable
for large datasets (large number of samples) since it requires
loading the full dataset into memory for calculating the

pseudoinverse of x
j
i

T
· x

j
i, whereas the SGD method works well

even for large datasets, but requires tuning of the learning rate.
Due to the versatility offered by the gradient descent method
we used that for performing the linear regression although the
normal equation method also produced similar results. The
essential goal for any regression problem is to minimize a
predetermined cost/loss function (which for our experiments we
chose as the mean absolute error):

J = MAE =
(

|upred − utrue| + |vpred − vtrue|
)

(15)

where the overbar denotes the average over all samples.
Figure 1A shows a schematic of the linear regression model. The
number of trainable parameters for our example with 18 inputs
and two outputs is 38 (18× 2 weights + 2 biases). For the sake of
consistency, we use the same optimizer (Adam; Kingma and Ba,
2017) and loss function (Mean absolute error, MAE) for this as
well as all the subsequent models discussed here. All models are

trained on 1 day of GCM output data and we use the same date
of model output as the training data for all models.

5. DEEP LEARNING: ARTIFICIAL NEURAL
NETWORKS

Artificial neural networks (or neural networks for short) are
machine learning algorithms that are loosely modeled after the
neuronal structure of a biological brain but on a much smaller
scale. A neural network is composed of layers of connected
units or nodes called artificial neurons (LeCun et al., 2015;
Nielsen, 2015; Goodfellow et al., 2016) that combine input from
the data with a set of weights and passes the sum through
the node’s activation function along with a bias term, to the
subsequent set of nodes, to determine to what extent that signal
progresses through the network and how it affects the ultimate
outcome. Neural nets are typically “feed-forward,” meaning that
data moves through them in only one direction. A layer is called
densely connected when each node in that layer is connected to
every node in the layers immediately above and below it. Deep
learning, or deep neural networks is the name used for “stacked
neural networks”—i.e., networks composed of several layers.

Our neural network code was written using the Python
library Keras (https://keras.io) (Chollet, 2015), a high-level
wrapper around TensorFlow (http://www.tensorflow.org). The
feed-forward NNs consist of interconnected layers, each of which
have a certain number of nodes. The first layer is the input
layer, which in our case is a stacked vector containing the input
variables just like in the linear regression example above. The
last layer is the output layer, which is a stacked vector of the two
outputs (U,V). All layers in between are called hidden layers. The
activation function, i.e., the function acting on each node – is a
weighted sum of the activations in all nodes of the previous layer
plus a bias term, passed through a non-linear activation function.
For our study, we used the Rectified Linear Unit (ReLU) as an
activation function. The output layer is purely linear without an
activation function. Training a NN means optimizing the weight
matrices and bias vectors to minimize a loss function—in our
case the MAE—between the NN predictions and the true values
of (u, v).

The model reduces the loss, by computing the gradient
of the loss function with respect to all weights and biases
using a backpropagation algorithm, followed by stepping down
the gradient—using stochastic gradient descent (SGD). In
particular we use a version of SGD called Adam (Kingma
and Ba, 2014, 2017). Although most neural network strategies
involve normalizing the input variables, we did not use any
normalization, since the normalization factors would be largely
dependent on the choice of domain/ocean basin, given that the
dynamical parameters (like SSH and wind stress) vary widely
across the different ocean basins. Instead we wanted the NN to
be generalizable across the whole ocean.

We construct a three-hidden-layer neural network to replace
the linear regression model described in the previous section. A
schematic model architecture for the neural network is presented
in Figure 1B. Using the same basic model architecture, we
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FIGURE 1 | (A–D) Schematic of the four different types of statistical models used in the study. All models shown were implemented using keras tensorflow (Chollet,

2015) and we use Mean absolute error (MAE) as the loss function and the Adam optimizer (Kingma and Ba, 2017) with default parameters and learning rates.

train three NNs on the same three subdomains (Gulf Stream,
Kuroshio, ACC) along with one which is trained on the global
ocean. Everything including batch size, the training data, the
targets, the input features and the number of epochs the model
is trained for in each region is kept exactly the same as what
we used for the linear regression examples. The only thing that
we changed is the model, where instead of one layer with no
activation we now have three hidden layers with a total of 1,812
trainable parameters.

5.1. Neural Networks With Convolutional
Filters
In section 2 we explained how we can use the local 2 × 2
stencil to expand the feature vector space by a factor of 4. We
can further expand the feature vector space by passing all the
stenciled input features through k convolutional filters of shape
2 × 2. If k > 4ns

f
where ns

f
is the number of input features with

a stencil, we end up with more input features that goes into the
NN than before. There is very little functional difference between
this kind of training approach and the one discussed previously,
except that we end up with more trainable parameters, which
we can potentially use to extract even more information from
the data. We should point out that this is technically not
the same as convolutional neural networks (CNN), where the
convolutional layers serve to reduce the feature vector space
without losing information. This is particularly important for
problems like image classification where it is needed to scale
down large image datasets without losing feature information.
Typically in a CNN, the inputs would be in the form of an
image or a set of stacked images on which multiple convolutional
filters of varying sizes could be applied (followed by max-pooling
layers) that effectively shrink the input size, before passing it
on to the hidden layers, and the size of the convolutional filters

determine the size of the stencil1. Whereas in this approach,
we use convolutional filters (without max-pooling) to achieve
the opposite effect, i.e., to expand the feature vector space from
N × 2 × 2 × ns

f
to N × k (where k is always chosen to

be > 4ns
f
). The reshaping of the input variables in the pre-

processing stage fixes the stencil size, before the data is fed into
the model.

A schematic of this subcategory of neural network is shown
in Figure 1C. After applying the convolutional filter and passing
it through a reshape layer in keras the point inputs and filtered
stencil inputs are passed through a Leaky ReLU before being fed
into a similar three-hidden layer NN framework as described
before. Using a similar procedure, we can also apply k 3D
convolutional filters of shape 2 × 2 × 3 on the time and space
stenciled inputs to effectively end up with k input features of
length N for the stencil variables (Figure 1D). The goal with the
time stenciled input being to potentially learn time derivatives
and explore how the tendencies can affect the NN projections. In
hindsight, this data set is probably not be the most suited for this
kind of approach since the variables we used as input features
are daily averaged and any fast-time scale/tendency effects that
we hoped to capture from multiple snapshots of the same
variable are probably filtered out by the time averaging. These
two approaches are virtually identical with slightly different
preprocessing of the input data.

1For an input of size 500 × 500 for example, one can apply convolutional filters

as small as 2 × 2 or as big as the entire image. However, since CNNs and other

computer vision approaches rely on the property that nearby pixels are more

strongly correlated than more distant pixels (Bishop, 2006), larger filters can be

useful for reduction of data volume, but they often result in degradation of data

quality and prediction accuracy, due to inclusion of non-local effects.
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FIGURE 2 | Snapshot of the surface speed in the CESM POP model with the three boxes in different colors indicating the training regions chosen for the different

regression models. The green box is chosen as the Gulf stream region, the red box is Kuroshio and the yellow box represents the Southern Ocean/Antarctic

circumpolar current (ACC). The Kuroshio region extends slightly south of the equator to include the equatorial jets in the domain and to test the models’ ability to

generalize to large variations in f.

6. RESULTS

We start by splitting the global ocean into three boxes to
zoom into three distinct regions of dynamical importance in
oceanography, namely the Gulf stream, Kuroshio, and Southern
ocean/Antarctic circumpolar current (ACC). The Kuroshio
region is chosen to extend south of the equator to include
the equatorial jets as well as to test whether the models can
generalize to large variations in f. The daily averaged GCM
output surface speed on a particular reference date, with the three
regions (marked by three different colored boxes) is shown in
Figure 2. We then train three different linear regression models
with training data from these three sub-domains. We also trained
a linear regression model for the whole globe using the same
model architecture. During training, the models are fed a shuffled
batch of the training data with 32 samples in each batch and the
loss (MAE) is computed for the batch. For the linear regression
model as well as for all the neural networks discussed in this
study we present here we kept the batch size constant. Changing
the batch size does not significantly alter the loss at the end of
training, but smaller batch sizes generally help the model learn
faster. The different models, the number of epochs (an epoch

is defined as one pass through the training dataset) used for

each, and losses at the end of training and during evaluation

against a test dataset are summarized in Table 1. The evolution
of model loss function during training for the 3 different models

are presented in Figure 3. Linear regression is shown in the
darker colors. The big jumps in the loss function correspond
to the end of an epoch. We plot the models’ training progress
in the Gulf Stream region for 8 epochs, and for 5 epochs on
the Kuroshio and ACC regions. The trained models are then
evaluated for a test dataset (which the model has not seen, GCM
output from a different point in time) and the evaluation loss
is plotted as the horizontal dashed lines. The linear regression
model trained on the whole globe is also evaluated for each
subdomain (gulf stream, Kuroshio, ACC) and the global model
evaluation loss is plotted as the dotted line. Comparing the model
losses in the three different sections, we find that the linear
regression model performs the most poorly for the Kuroshio
region (i.e., the subdomain with the most variation in f ). The
model does progressively better for the gulf stream and the ACC
in terms ofMAE, where the variations in f are relatively smaller in
comparison. However, the root mean squared error of predicted
velocities is still quite large in all these regions (second panels of
Figures 4–6). The linear regression model trained on the global
ocean does even worse during evaluation. Since geostrophy relies
on non-linear combination of the Coriolis parameter (f ) with
the spatial gradients, linear regression is ineffective at predicting
velocities beyond localized regions with small variation of f or
little mesoscale activity. This shows that a linear model fails to
accurately represent surface currents in any region that includes
significant variation in the Coriolis parameter f . Even in regions
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far enough from the equator such that the variation in f is not
significant (like the gulf stream or ACC), the performance of such
a linear model does not improve with more training examples
and/or starts overfitting. We also show that a lower MAE during
training does not necessarily guarantee that the model is picking
up on the small scale fluctuations in velocity, as can be seen
from the relatively large squared errors especially in and around
high surface current regions (Figures 4–6). We suspect that this
failure is largely due to the fact that the linear model is trying to
fit the velocities as a linear combination of the different features,
whereas realistic surface current predictions should be based on
non-linear combinations of features.

Neural networks on the other hand, due to the presence of
multiple dense interconnected layers can be effectively used to
extract these non-linear relationships in the data. Just like we did
with the linear regression model, we tracked the evolution of the
loss function as the model scans through batches of input data
overmultiple epochs (Figure 3, lighter colored lines in all panels).
As we can see, in comparison to the linear regression model, the
NNs perform significantly better at reducing the loss in all the
ocean regions. What is even more striking is that the NN trained
on the globe (dashed line) consistently outperforms the local
models, predicting surface currents with lower MAE/MSE than
the models trained on the local subdomains. This is especially
noticeable for the Kuroshio region (Figure 3, second panel),
where the NN trained on the globe manages to get the signature
of the equatorial currents better than the NN trained specifically
in that region (compare panels 3 and 4 of Figure 5) and gets the
absolute error down to ≈5 cm/s. This shows, that in comparison
to the linear model the neural network actually manages to learn
the physics better when it receives a more spatially diverse input
data, and is therefore more generalizable. Even though the linear
regression models all manage to get the loss down to comparable
magnitude, looking at the spatial plot of the predicted squared
error. Figures 4–6 gives us an idea how poorly it does at actually
learning the physics of surface currents. In comparison, even a
relatively shallow three-hidden-layer neural network performs
significantly better with very few localized hotspots of large
errors. This is to be expected since the largest order balance,
i.e., geostrophy relies on non-linear combination of the Coriolis
parameter (f ) with the spatial gradients.

In Figure 7 we plot the joint histogram of the zonal and
meridional velocity predictions against the true (GCM output)
values for the physical model, linear regression model (trained
on the local subdomain) and the locally and globally trained
neural networks in the ACC sector. From these joint histograms,
it is obvious that the physical model, the local and global neural
networks all predict velocities that are extremely well-correlated
with the true velocities in this region. In addition the root
mean squared (rms) errors normalized by the rms velocities
are also very well-correlated between the physical model and
neural network predictions. This provides us with reasonable
confidence that the model is indeed learning the physics of
surface geostrophy and Ekman flow.

We also plotted the squared errors in predicted velocity form
the physical model (geostrophy + Ekman) and the local Rossby
number (expressed as the ratio of the relative vorticity ζ =

vx − uy, to the planetary vorticity f ) in the three domains
(Gulf Stream—Figure 4; Kuroshio—Figure 5; and the ACC—
Figure 6). It is interesting to note that the localized regions in
large root squared errors in both the neural network and physical
models coincide with regions where the local Rossby number is
high. High Rossby numbers indicate unbalanced flow and the
specific regions where we see high Rossby numbers are typically
associated with heightened submesoscale activity. We speculate
that the prediction errors in these locations are due to the NN’s
inability to capture higher order balances (e.g., gradient wind,
cyclostrophic balance) that are necessary to fully capture the
small scale variability associated with these motions and close the
momentum budget.

The NN also generally predicts weaker velocities near the
equator where the true values of the surface currents are quite
large (due to strong equatorial jets). This can lead to large errors
for the global mean, which get magnified when the differences
are squared. However, we know that geostrophic and Ekman
balance also doesn’t hold near the equator. A fairer comparison
would therefore involve masking out the near equatorial region
(5◦N − 5◦S) for both the statistical model (i.e., NN predictions)
as well as for the physical model (geo+ ekman).

6.1. Model Dependence on Choice of Input
Features
We then trained these NNs with varying combinations of input
features to explore how the choice of input features can influence
the model training rate and loss. Feeding the NN models varying
combination of input features, either as stencilled or as point
variables and by selectively holding out specific features for each
training case allowed us to assess the relative importance of
each physical input variable for the neural network’s predictive
capability. The different models with their corresponding input
features and the number of trainable parameters for each case
are summarized in Table 2. As with all previous examples, we
chose mean absolute error as the loss function for all these
experiments. We performed a few training exercises using the
mean squared error instead and did not notice any significant
difference. For models numbered 1–13, we used a two point
space-stencil and for models 1t–10t, in addition to a stencil in
space, we provide a three point time stencil with the intention of
helping the neural network “learn” time derivatives. The different
experiments listed in Table 2, can broadly be categorized into
six groups based on their input features. In group 1, is model 1,
where the model only sees η (stencil) and wind stress, τ (point) as
input features. No spatial information is provided. In the second
category, we have models that receive η (stencil) and spatial
information X in some form, but no wind stress. This includes
models 2, 5t, and 7t. The third category describes models that
receive η, θ (stencil) and spatial information X and no wind
stress and includes models 3, 6t, and 8t. The fourth category
describes models that receive SSH (η), spatial information (X)
and wind stress (τ ) but no SST and includes models 4, 6, 7, 10,
1t, and 3t. The fifth category of models receive SSH (η), SST
(θ), spacial information (X), and wind stress and the only input
feature these models don’t receive in any form is sea surface
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TABLE 1 | Table summarizing model errors from the physics based model (geostrophy + Ekman flow) and the two types of regression models—linear regression and

neural network (Figures 1A,B).

Model (training

region)

Number of trainable

parameters

Epochs MAE (train)

(cm/s)

MAE (eval) GS

(cm/s)

MAE (eval)

Kuroshio (cm/s)

MAE (eval)

ACC (cm/s)

LR (Gulf Stream) 38 8 10.7 11.4 – –

NN (GS) 1,812 8 2.3 3.7 – –

LR (Kuroshio) 38 5 12.9 – 13.4 –

NN (Kuroshio) 1,812 5 5.8 – 7.0 –

LR (ACC) 38 5 7.5 – – 7.5

NN (ACC) 1,812 5 1.9 – – 4.5

NN (global) 1,812 4 3.0 2.4 5.1 1.8

geo+ Ek (global) – – – 6.1 29.2 3.9

FIGURE 3 | Evolution of the loss function (mean absolute error; MAE) for Neural Networks and Linear regression models during training. Horizontal lines of the

corresponding color denote the MAE for the model when evaluated at a different time snapshot. Dashed lines denote the evaluated (test data) MAE for the local model

and dotted lines denote that for the model trained on the globe.

FIGURE 4 | Snapshot of model predicted root square errors for the physics based model (left) and the three different regression models—Linear regression (second

from left), neural network, trained on this local domain (third panel) and neural network, trained on the globe (4th panel) compared side by side with the local Rossby

Number (Ro, right panel) in the Gulf Stream region indicated by the green box in Figure 2.

salinity (S). This includes models 5, 8, 9, 11, 2t, 4t. The sixth and
final category represents models tat receive all the input features
(η, θ , S,X, τ ) in some form or another and includes models 13,
9t, and 10t.

As mentioned previously, spatial information is provided
in one of three ways, (a) in the form of three dimensional
transformed coordinates (X, Y, Z), (b) just the Coriolis parameter
(X here serves as a proxy for the Coriolis parameter) and (c) with
both the Coriolis parameter and local dx and dy values. Barring a
few examples (models 10, 11) windstress is always provided as
a point variable and apart from models 6, 7, 8, 9, none of the

models receive a stencil in the spatial coordinates.We also trained
a few models without SSH as an input feature, but the loss in all
these cases was much larger than those shown here (>50 cm/s)
and the NNs fail to pick up any functional dependence on the
input features. Those cases are therefore not presented. Each of
these models are trained for 4 Epochs on the same day of data
(or 3 consecutive days centered around that date for the time
stencilled cases).

In Figure 8 we summarize the findings from these
experiments by plotting the rms error for all the model
predictions along with the rms error for the physical model
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FIGURE 5 | Snapshot of model predicted root square errors for the physics based model (left) and the three different regression models—Linear regression (second

from left), neural network, trained on this local domain (third panel) and neural network, trained on the globe (4th panel) compared side by side with the local Rossby

Number (Ro, right panel) in the Kuroshio region indicated by the red box in Figure 2. Note the large errors in all the model predictions near the equator.

FIGURE 6 | Snapshot of model predicted root square errors for the physics based model (top) and the three different regression models—Linear regression (second

panel), neural network, trained on this local domain (third panel) and neural network, trained on the globe (4th panel) compared side by side with the local Rossby

Number (Ro, bottom panel) in the Southern Ocean/Antarctic circumpolar current region indicated by the yellow box in Figure 2.
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FIGURE 7 | Scatterplot of true v predicted zonal and meridional velocities for the different physical and regression models (eight panels on the left) in the ACC region.

The right panel shows the scatterplot of the root mean squared errors (normalized by the root mean square velocities) for the physical and neural network model

predictions.

TABLE 2 | Table summarizing the different CNNs and the training strategies explored.

Model No. Stencil in space (2s) Stencil in time (3t) Stencil variables Point variables Number of trainable parameters

1 X × η τx , τy 4,772

2 X × η X (= f
2� ) 4,732

3 X × η, θ X 5,052

4 X × η X, τx , τy 4,812

5 X × η, θ X, τx , τy 5,132

6 X × η,X,Y ,Z τx , τy 5,732

7 X × η,X τx , τy 5,092

8 X × η, θ ,X,Y ,Z τx , τy 6,052

9 X × η, θ ,X τx , τy 5,412

10 X × η, τx , τy X 5,372

11 X × η, θ , τx , τy X 5,692

12 X × η, θ X,dx,dy, τx , τy 5,212

13 X × η, θ ,S X,dx,dy, τx , τy 5,532

1t X X η τx , τy ,X,dx,dy 5,532

2t X X η, θ τx , τy ,X,dx,dy 6,492

3t X X η τx , τy ,X 5,452

4t X X η, θ τx , τy ,X 6,412

5t X X η X,dx,dy 5,452

6t X X η, θ X,dx,dy 6,412

7t X X η X 5,372

8t X X η, θ X 6,332

9t X X η, θ ,S τx , τy ,X 7,372

10t X X η, θ ,S τx , τy ,X,dx,dy 7,452

predictions side by side. With the exception of five models
(model 1, 5t, 7t, 6t, and 8t) all our NN model predictions have
lower domain mean squared errors than the physics-based
models. In terms of features, model without spatial information
has the largest error, followed by models without wind stress
(The absolute largest error is for the model without SSH,
which is too big to be considered here). This signifies that to
accurately represent surface currents, apart from SSH, the most
important pieces of information required by the neural networks

to successfully learn the physics of surface currents are spatial
information and wind stress. It is striking to see how much the
model struggles without spatial information. This implies that
latitude dependence is a critical component for a NN to be able
to predict surface currents accurately. It is only expected since
the dynamics of surface currents do depend very strongly on
latitude and therefore it is impossible to construct a meaningful
predictionmodel based on just snapshots without any knowledge
of latitude.
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FIGURE 8 | Figure comparing the rms error of the different model predictions along with the rms error for the physical models as a function of features.

FIGURE 9 | Comparison of the zonal mean rms errors for the various NN

predictions shown alongside the physical model (with and without

Ekman flow).

The zonal mean rms error for the predictions from some
of the representative models from the six categories described
above are shown in Figure 9. The NNs all generally predict

weaker velocities near the equator where the true values of the
surface currents are quite large (due to strong equatorial jets).
This can lead to large errors for the global mean, which get
magnified when the differences are squared. However, we know
that geostrophic and Ekman balance also doesn’t hold near the

equator. Therefore, to allow for a fair comparison between all
the models, we mask out the rms errors in a 10◦ latitude band

surrounding the equator (5◦N − 5◦S) for both the physical and

statistical models. Out of all the models, model 1 which does not
receive any spatial information (X), has the highest mean squared

errors throughout the globe. For the models that don’t see wind

stress (τ ) as an input feature, the rms errors are comparable if
not smaller at most latitudes when compared to the physics-
based model where you only consider geostrophy (dashed black
line). Additionally, all models that receive η, τ and X in some
form perform consistently better than geostrophy + Ekman at
all latitudes (except for near the equator where the physics-based
models and the NN are all equally inadequate). We noticed that
during training, the NN’s minimize the loss function slightly
faster when a stencil is provided for the spatial coordinates, but
after a few epochs the differences in training loss between models
that receive a spatial stencil and models that dont, diminish
very rapidly. During prediction also, the models that receive
stencils in spatial coordinates perform slightly better especially
at the high latitudes than the ones where spatial information is
provided pointwise.

Therefore among the various strategies tested, for this
particular dataset, the models that perform the best in terms of
prediction rms error are the models that receive SSH, wind stress
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FIGURE 10 | Sensitivity of the neural networks to perturbations in the different input features. Each input feature is perturbed by three different Gaussian noise

perturbations with standard deviations of 0.5σ , σ , and 2σ , where σ is the standard deviation of each variable, while keeping the remaining input variables fixed. The

left panel shows the model loss (mean absolute error, MAE) evaluated for each of these perturbations. The horizontal dashed line represents the loss for the

unperturbed/control case. The right panel shows the deviation in MAE for each of these perturbation experiments normalized by the amplitude of the perturbation.

and spatial information with a space stencil. The three point time
stencil does not add anything meaningful and appears to hurt,
rather than help the model overall, which was surprising, even
though in hindsight we speculate that this might be due to the
daily averaged nature of the POP model output. Variables like
sea surface temperature and sea surface salinity have very little
impact on the model as well.

In terms of choice of features, model 13 stands out as the
most practical and physically meaningful training strategy for a
few reasons.

• It is the most complete in terms of features
• It is the most straightforward to implement, since it does

not involve calculating any transformed three dimensional
coordinates. (All the input variables would be readily available
for any gridded oceanographic dataset.)

• It is one of the models with the lowest prediction rms errors.

For these specific reasons we choose model 13 as the reference
for performing a sensitivity analysis. The purpose of this analysis
is to characterize the sensitivity of the model to perturbations
in the different input features during testing/prediction. For
the sensitivity tests we simply add a gaussian noise of varying
amplitude to each of the input variables, while keeping the rest
of the input variables fixed. For each of the input variables
(xi ∈ {η, θ ,X, dx, dy, τx, tauy}), we chose three different zero-
mean gaussian noise perturbations with the standard deviations
of 0.5σ (xi), σ (xi), and 2σ (xi), where σ (xi) is the standard
deviation of the corresponding input variable xi. The model loss
is then evaluated for each of these perturbations and normalized
by the amplitude of perturbations (right panel Figure 10). This
normalization is done to level the playing field for all the
input variables and allow for a one-to-one comparison since
the different input variables vary in orders of magnitude [e.g.,

the amplitude of perturbations in SSH is O(100), while the
amplitude of perturbations in wind stress is O(1) and therefore
a perturbation of amplitude σ (η) in η would lead to a much
larger model error than a perturbation of σ (τx) in τx would, as
can be seen from the log scaling of the y-axis in the left panel of
Figure 10].

Given what we learned about the importance of spatial
coordinates for NN training, it is not surprising to see that for
prediction also, the NN is most sensitive to perturbations in the
Coriolis parameter (or X). The input variables that the model
is most sensitive to, arranged in descending order of model
sensitivity are Coriolis parameter, SSH, and wind stress, followed
by SST. The model is not particularly sensitive to perturbations
in local grid spacing or salinity. The relative effect of the input
variables, observed in the model sensitivity test closely matches
what we saw in the different model training examples where
we selectively held out these features. This again confirms that
in order to train a deep learning model to make physically
meaningful and generalizable predictions of surface currents it
is not sufficient to simply provide it snapshots of dynamical
variables like SSH as images. We also need to provide spatial
information like latitude for the NN’s to effectively “learn” the
physics of surface currents.

7. SUMMARY AND FUTURE DIRECTIONS

The goal of this study was to use machine learning to make
predictions of ocean surface currents from satellite observable
quantities like SSHwind stress, SST etc. Our central question was:
Can we train deep learning basedmodels to learn physical models
of estimating surface currents like geostrophy, Ekman flow and
perhaps do better than the physical models themselves?
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We used the output from the CESM POP model surface fields
as our “truth” data for this study. As a first order example, we
tested a linear regression model for a few of local subdomains
extracted from the global GCM output. Linear regression works
well only when the domains are small and far removed from
the equator and gets progressively worse as the domain gets
bigger and the variation in local Coriolis parameter gets large
especially when f changes sign in the domain. This showed that
unsurprisingly it is not possible to train a simple linear model to
accurately predict surface currents. In addition, providing more
data does not necessarily improve the predictive ability of a linear
model and only made it worse as it starts overfitting.Whereas, for
the same kind of domain, a neural network we can minimize the
loss (MAE) with fewer data-points and still remain generalizable,
since neural networks can learn functional relationships between
regressors (input features) with only a small amount of data. The
model’s ability to make predictions is also shown to improve
with more data. Furthermore, compared to a linear regression
model, a NN even with a relatively small network of densely
connected nodes, with a suitable non-linear activation function
(like ReLU), allows us to have a large number of trainable
parameters (weights, biases) that can be optimized to minimize
the loss. The activation function is what allows the different
non-linear combinations between the different regressors (input
features). Somewhat surprisingly, a neural network trained on the
entire globe is shown to predict surface currents more accurately
in the sub-domains than neural networks trained in those specific
sub domains. We suspect that is due to the fact that when trained
locally with fewer data points, the neural network only sees part
of the distribution of the input variables, as a result of which
the stochastic gradient descent settles on a local minima and
the model starts overfitting. Whereas, when trained globally, the
neural network sees the full distribution of the input variables
(not just a section) and SGD settles on a more realistic global
minima. This can be observed in Figure 3, in all the local training
examples, where model loss at the end of training is consistently
lower than the model evaluation loss, when evaluated at a
different date. In comparison, a similar approach with a linear
regression model produces the opposite result, i.e., a globally
trained linear regressionmodel produces higher prediction errors
than the one that’s trained on each specific sub-domain. However,
for linear regression, the evaluation losses are always consistently
higher than the training losses, regardless of whether we consider
a locally or a globally trained model. The fact that spatially
diverse data actually makes the neural network perform better
indicates that a neural network can actually “learn” the functional
relationships needed for calculating surface currents, i.e., be more
generalizable, instead of simply memorizing some target values
for different combination of input features. By examining the
dependence of the NNs on the choice of input features and
by looking at the sensitivity of a NN model to perturbations
in the input features, we established that apart from SSH, the
physical location of the input features is one of the most crucial
elements for the NN to “learn” the physics of surface currents. It
is further demonstrated that with a careful and deliberate choice
of input features the neural network can even beat the physics-
based models at predicting surface currents accurately in most

regions of the global ocean. A key ingredient for calculating the
Ekman part of the flow using current physics based models is
the vertical diffusivity, which is largely unknown for most of the
global ocean. Most observational ocean current estimates that
include the Ekman part of the flow relies on inferring the vertical
diffusivity based on empirical multiple linear regressions with
Lagrangian surface drifter data, The neural network approach,
by comparison does not suffer from the same kind of limitation,
since in this framework, we do not need to provide Az as an input
feature, which is one more added advantage for this method.

In this study, we wanted to see whether we can train a
statistical model like a NN with data to essentially match or
perhaps beat the baseline physics based models we currently use
to estimate surface currents. By examining the errors in surface
current predictions from our NN predictions and comparing
them with predictions from physically motivated models (like
geostrophy and Ekman dynamics), we showed that a relatively
simple NN captures most of the large scale flow features equally
well if not better than the physical models, with only 1 day of
training data for the globe.

However, some key aspects of the flow, associated with
mesoscale and sub-mesoscale turbulence are not reproduced. We
speculate that this is possibly caused by the fact that the neural
network framework can not capture the higher order balances
(gradient wind) that are likely at play in these regions since these
hotspots of high errors are collocated with regions of High Ro
where balance breaks down (see Figures 4–6).

One of the biggest hurdles associated with these studies
is figuring out efficient strategies to stream large volumes of
earth system model data into a NN framework. So before
diving headfirst into the highest resolution global ocean model
(currently available), we wanted to test the feasibility of using
a regression model based on deep learning as a framework
for estimating surface currents with a lower resolution model
data (smaller/more manageable dataset), while still being eddy
resolving. Hence we chose the CESM POP model data for this
present study. In the future, we propose to train a NN with data
from a higher spatio-temporal resolution global ocean model like
theMITgcm llc4320 model (Menemenlis et al., 2008; Rocha et al.,
2016). As a further step, we could coarse-grain such a model to
SWOT-like resolutions, or use the SWOT simulator, train NNs
on that, and make predictions for global surface currents.

As for the weak surface currents predicted by our NN at
the equator, we need to keep in mind that geostrophic balance
(defined by the first order derivatives of SSH) only holds away
from the equator and satellite altimetry datasets (e.g., AVISO,
Ducet et al., 2000) typically employ a higher order balance
(Lagerloef et al., 1999) at the equator, to match the flow regime
with the geostrophic regime away from the equator. One possible
way to train the NN to learn these higher order balances
would be by increasing the stencil size around each point. Since
our primary goal was for the model to learn geostrophy, we
started with a spatial stencil in SSH. We also explored training
approaches where we provided stencils in SST, wind and SSS,
with the intention of helping the model learn about wind-stress
curl and thermal wind balance. In practice, however these didn’t
payoff as much and these additional stencils did not significantly
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improve model performance. In future approaches we can try
to provide separate stencils of varying size to each of these
input variables, to test whether we can further improve the
model accuracy.

As another future step, we also aim to incorporate recursive
neural networks (RNNs) in conjunction with convolutional filters
of varying kernel sizes, to train the models on cyclostrophic or
gradient wind balance. This recursive neural network approach
would be analogous to iteratively solving the gradient wind
equation (Knox and Ohmann, 2006), a technique which was
originally developed for numerical weather prediction before
advances in computing allowed for integrating the full non-
linear equations.

The present work demonstrates that to a large extent, a simple
neural network can be trained to extract functional relationships
between SSH, wind stress, etc. and surface currents with quite
limited data. The field of deep learning as of now is rapidly
evolving. It remains to be seen, if with some clever choices
of training strategies and by using some of the other more
recently developed deep learning techniques, we can improve
upon this. In this study, we propose a few approaches that can be
implemented to improve upon our current results and would like
to investigate this in further detail in future studies. In addition,
we believe that data driven approaches, like the one shown in
this present study, have strong potential applications for various
practical problems in physical oceanography, and require further
exploration. Insights gained from this type of analysis could be of

great potential significance, especially for future satellite altimetry
missions like SWOT.
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Recent years have witnessed the increase in applications of artificial intelligence (AI)
into the detection of oceanic features. Oceanic eddies, ubiquitous in the global ocean,
are important in the transport of materials and energy. A series of eddy detection
schemes based on oceanic dynamics have been developed while the AI-based eddy
identification scheme starts to be reported in literature. In the present study, to find
out applicable AI-based schemes in eddy detection, three AI-based algorithms are
employed in eddy detection, including the pyramid scene parsing network (PSPNet)
algorithm, the DeepLabV3+ algorithm and the bilateral segmentation network (BiSeNet)
algorithm. To justify the AI-based eddy detection schemes, the results are compared
with one dynamic-based eddy detection method. It is found that more eddies are
identified using the three AI-based methods. The three methods’ results are compared
in terms of the numbers, sizes and lifetimes of detected eddies. In terms of eddy
numbers, the PSPNet algorithm identifies the largest number of ocean eddies among
the three AI-based methods. In terms of eddy sizes, the BiSeNet can find more large-
scale eddies than the two other methods, because the Spatial Path is introduced into
the algorithm to avoid destroying the eddy edge information. Regarding eddy lifetimes,
the DeepLabV3+ cannot track longer lifetimes of ocean eddies.

Keywords: oceanic eddy detection, deep learning, PSPNet, BiSeNet, DeepLabV3+

INTRODUCTION

Oceanic eddies are ubiquitous in the global ocean. They play an important role in material
and energy transport, and global climate changes. On a global scale, oceanic mesoscale eddies
contribute significantly to horizontal heat and salt transports (Dong et al., 2014; Moreau et al.,
2017; Patel et al., 2019, 2020). Many eddies identification methods based on different kinds
of remote sensing data have been developed (Chelton et al., 2007; Chaigneau et al., 2008;
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Nencioli et al., 2010; Dong et al., 2011a,b; Faghmous et al., 2012;
Chen et al., 2016).

Deep learning schemes have been used in oceanic eddies
detection during the past few years. Lguensat et al. (2017) firstly
applied a deep learning algorithm based on the encoder-decoder
network to oceanic eddies detection in the classic framework of
the semantic segmentation. The encoder-decoder network with
the simple convolution module and the upsampling module
was also used to detect and track oceanic eddies (Franz et al.,
2018). Based on synthetic aperture radar images, deep learning
was applied to automatically detect oceanic eddies according to
the extracted higher-level features and fused multi-scale features
(Du et al., 2019). Xu et al. (2019) applied the pyramid scene
parsing network (PSPNet) to identify oceanic eddies and find that
the PSPNet has great advantage in the detection of small-scale
eddies. Duo et al. (2019) proposed an Ocean Eddy Detection Net
(OEDNet) based on an object detection network to recognize the
eddy field by enhancing the accurate small sample data to obtain
the training dataset.

Systematic comparison of the performances of these AI-based
methods discussed above is required to justify which one is the
most applicable in eddy detection. Such comparison can also
shed light on the application of AI algorithms into oceanography.
The present study employs three different AI-based algorithms
into eddy detection, including Pyramid Scene Parsing Network
(PSPNet), DeepLabV3+ and Bilateral Segmentation Network
(BiSeNet), and makes the comparisons of their results based on
a few eddy parameters, such as eddy number, size and lifetime.

MATERIALS AND METHODS

Pyramid Scene Parsing Network
(PSPNet)
The PSPNet (Zhao et al., 2017) incorporates the pyramid pooling
module (He et al., 2014) and the reduced convolution (Yu and
Koltun, 2016), which fully uses the global scene to capture more
details of the context information between the different category

FIGURE 1 | Schematic diagram of PSPNet.

FIGURE 2 | Schematic diagram of DeepLab V3+.
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FIGURE 3 | Schematic diagram of BiSeNet.

labels. Sea surface height anomaly (SSHA) data labeled with eddy
information are used as the training data. Figure 1 shows the
configuration of the PSPNet. A 101-level ResNet (ResNet101)

model with a dilated network strategy (Yu and Koltun, 2016;
Chen et al., 2017) is implemented to an input SSHA image to
extract the feature map at different levels. The final feature map is
reduced to 1/8 of the input image. The pyramid pooling module
is then employed to obtain context information. A four-level
pyramid fuses the images at the different sizes as the global prior.
The prior is connected to the original feature and a convolution
layer to generate the final prediction. The PSPNet program,
proposed by Zhao et al. (2017), is publicly available at https:
//github.com/hszhao/PSPNet.

DeepLabV3+
The DeepLabv3+ (Chen et al., 2017) employs the Spatial Pyramid
Pooling module (SPP) and the encoder-decoder structure for
the semantic segmentation based on the deep-learning network
(Figure 2). SPP applies atrous convolution with different rates
to obtain convolutional features at multiple scales to mine the
multi-scale context information. The low-level features of the
encoder are able to capture larger spatial information. The
spatial information is used to recover the details and spatial
dimensions of the target during the decoder stage, and to
refine the segmentation results along object boundaries. The
DeepLabV3+ program, proposed by Chen et al. (2017), can
be obtained from https://github.com/tensorflow/models/tree/
master/research/deeplab.

FIGURE 4 | Oceanic eddies identified by VG (A), PSPNet (B), DeepLabV3+ (C), and BiSeNet (D) algorithms in the STCC region on 19 August 2015.
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Bilateral Segmentation Network
(BiSeNet)
The BiSeNet (Yu et al., 2018) is divided into three parts: Spatial
Path, Context Path, and Feature Fusion Module, as shown in
Figure 3. The Spatial Path encodes the detailed information
captured from the image into spatial information. The Context
Path is applied to encode the context information and the
Feature Fusion Module is used to fuse the spatial information
and the context information. According to the characteristics of
the different levels, the spatial and the context information are
connected in series, and a batch normalization is adopted to
balance the feature information scale. The connected features are

FIGURE 5 | Time series of the daily number of eddies identified by the VG and
three AI algorithms in the STCC region during 2015. Black, red, blue, and
purple curves represent the results from VG, PSPNet, DeepLabV3+, and
BiSeNer algorithm, respectively. “Error” is the difference between the three
AI-based results and the VG results, “re-error” is the relative error which is
defined as the error divided by the VG results, and “corr” is the correlation
coefficient between the results from the three AI-based algorithms and the VG
algorithm.

FIGURE 6 | Size distribution of the identified eddies from the four different
algorithms in the STCC region during 2015. Black, red, blue, and purple bars
represent the results from VG, PSPNet, DeepLabV3+, and BiSeNet algorithm,
respectively.

applied to obtain a weight vector employed to select and combine
the feature information, and to get the final result. The BiSeNet
program, proposed by Yu et al. (2018), can be download from
https://github.com/CoinCheung/BiSeNet.

Vector Geometry—Based Eddy
Detection Algorithm (VG)
We apply the method based on the geometry of velocity vectors
of the flow field (Dong et al., 2009; Nencioli et al., 2010) for
mesoscale eddy identification and tracking from geostrophic
current, which is obtained from SSHA data. Eddy centers are
determined by four criterions as follows (Nencioli et al., 2010):
(a) along an east-west section, meridional velocity v has to reverse
in sign across the eddy center and its magnitude has to increase
away from it; (b) along a north—south section, zonal velocity u
has to reverse in sign across the eddy center and its magnitude
has to increase away from it: the sense of rotation has to be the
same as for v; (c) velocity magnitude has a local minimum at the
eddy center; and (d) around the eddy center, the directions of the
velocity vectors have to change with a constant sense of rotation
and the directions of two neighboring velocity vectors have to
lay within the same or two adjacent quadrants. Eddy boundary
is determined by the closed contour of the stream function
field. Eddy tracks are retrieved by comparing the distribution
of eddy centers at successive time steps. The tracking methods
for the AI-based algorithms are the same as that for VG. The
tracking method is one part of the VG, which can be found in
Nencioli et al. (2010).

Data
Eddies were identified from daily SSHA data with a spatial
resolution of 1/4◦ × 1/4◦. The data, obtained from Copernicus
Marine Environment Monitoring Service (CMEMS)1, was a

1http://marine.copernicus.eu

FIGURE 7 | Same as Figure 5 except for the comparison of the daily number
of eddies with radii greater than 25 km.
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global product from multiple satellite altimeter along-track data.
The SSHA data in the period from 2011 to 2015 were used
in this study. The SSHA data were linearly interpolated onto a
1/8× 1/8◦ grid to extend the eddy field for a larger number of grid
points in order to improve further the performance of the eddy
detection scheme (Liu et al., 2012). The SSHA data from 2011 to
2014 was used as the training data containing the labels of eddy
information, while the 2015 were used as the validation set. This
study focused on the North Pacific Subtropical Countercurrent
(STCC, 15◦ N ∼ 30◦ N, 115◦ E ∼ 150◦ W), extending from east
of Luzon Strait to the Hawaii Islands.

RESULTS

The training SSHA data from 2011 to 2014 in the STCC
region, which is labeled with cyclonic and anticyclonic eddies,
is produced based on the traditional VG algorithm. In order to
ensure validity and consistency of the training dataset, the eddy
information are cleaned, dealing with invalid and missing data.
Finally, the three different AI schemes are employed for deep
learning with the training dataset from 2011 to 2014 and for eddy
identification with the validation dataset during 2015.

The eddies identified based on the three different algorithms
in the STCC region are compared on 19 August (Figure 4). Using
the traditional VG algorithm, 172 ocean eddies are detected,
including 84 cyclonic and 88 anticyclonic eddies. However, the
other three deep learning algorithms all identify more eddies: 185
eddies (87 cyclonic and 98 anticyclonic eddies) from the PSPNet
algorithm, 184 eddies (87 cyclonic and 97 anticyclonic eddies)
from the DeepLabV3+ algorithm and 188 eddies (89 cyclonic
and 99 anticyclonic eddies) from the BiSeNet algorithm.

The comparisons of oceanic eddies detected from the AI-
based algorithms are made based on a few eddy parameters, such
as eddy number, size and lifetime.

Figure 5 compares the daily number of eddies detected by
the VG, PSPNet, DeepLabV3+ and BiSeNet algorithms in the
STCC region during 2015. A total of 68,010 oceanic eddies are
identified by the VG algorithm, including 32,783 cyclonic and
35,227 anticyclonic eddies, which are less than those identified
by the three AI algorithms. Among the three AI methods, the
PSPNet algorithm detects the largest number of oceanic eddies
(a total of 77,462 eddies). The DeepLabV3+ and the BiSeNet
algorithm identify 72,264 and 75,579 eddies, respectively.

Compared with the traditional VG method results, the
PSPNet,DeepLabV3+ and BiSeNet algorithm on average identify
25.90, 11.65, and 20.74 more eddies per day, respectively. There is
a good correlation between the daily eddy numbers from the VG
algorithm and the PSPNet (0.93), and the DeepLabV3+ (0.94)
algorithm. The correlation of the daily eddy numbers between
the BiSeNet and the VG method is less than the other two
AI methods, with a correlation coefficient of 0.86. In Figure 6,
the time series of the daily number of eddies detected by the
DeepLabV3+ algorithm is the most consistent with that by the
VG algorithm. In addition, based on the VG algorithm results,
the differences in the results from the PSPNet and BiSeNet
algorithms have seasonal variation characteristics. The PSPNet
algorithm detected more eddies in spring and summer, while the
BiSeNet algorithm detected a larger number of eddies in winter.

The radii of the oceanic eddies detected by the four different
methods are compared in Figure 6. All the identified eddies peak
at the 25–50 km bin, except for the DeepLabV3+, which has the
highest number at the 50–75 km bin. The PSPNet algorithm has
an obvious advantage in detecting small-scale eddies with radii

FIGURE 8 | Lifetime distribution of eddies identified by the VG (black), PSPNet (red), DeepLabV3+ (blue), and BiSeNet (purple) algorithms in the STCC region during
2015. (A) Cyclones; (B) anticyclones.
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of less than 25 km. The DeepLabV3+ algorithm identified the
highest number of eddies with radius between 50 and 100 km.
Furthermore, the BiSeNet algorithm detects more bigger eddies
(greater than 100 km) than the other three methods.

The resolution of the altimetry data limits the presentation of
small eddies. The facticity of the small-scale eddy needs further
confirmation, so the results of detected eddies with radii less than
25 km are removed and the comparison among the algorithms
is plotted in Figure 7. 64586 eddies are afterward detected by
the VG method, while 65,034, 66,023, and 69,153 eddies are,
respectively, detected by the PSPNet, DeepLabV3+ and BiSeNet

algorithms. The differences between the traditional and AI-based
results decrease with a similar pattern during 2015. The BiSeNet
algorithm identifies the largest number of oceanic eddies among
the three AI-based methods. 12.51 eddies more, on average, are
identified per day with a relative error of 7.74%. It is suggested
that the BiSeNet algorithm takes an advantage in identifying
large-scale eddies, which can be verified in Figure 6. However,
the majority of the additional eddies detected by the PSPNet
algorithm are small-scale ones.

Lifetime is another important eddy characteristic. The lifetime
distribution of the eddies identified by the four algorithms are

FIGURE 9 | Comparison of the oceanic eddies longer than 4 weeks from the five versions in the STCC region on June 07, 2015. (A) The VG version; (B) the PSPNet
version; (C) the DeepLabV3+ version; (D) the BiSeNet version; (E) the AVISO+ version. Triangles and squares represent the center of the cyclonic and anticyclonic
eddies, respectively.

Frontiers in Marine Science | www.frontiersin.org 6 June 2021 | Volume 8 | Article 67233476

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-672334 June 14, 2021 Time: 12:15 # 7

Xu et al. AI-Based Oceanic Eddy Detection

TABLE 1 | Comparisons of eddy properties base on the five results.

Lifetime (days) Amplitude (cm) Radius (km) Displacement (km) Translational speed
(km day−1)

VG Mean 50.1 7.2 80.9 332.2 6.7

Maximum 223 40.5 298.7 1453.7 25.0

PSPNet Mean 63.4 8.2 89.4 343.7 6.8

Maximum 347 45.4 296.5 3174.0 25.0

DeepLabV3+ Mean 57.3 8.4 92.8 299.2 6.3

Maximum 365 40.6 284.5 1498.6 25.0

BiSeNet Mean 57.6 9.3 104.6 408.9 7.8

Maximum 233 39.3 296.7 1769.4 25.0

AVISO+ Mean 72.2 8.0 99.8 544.5 6.9

Maximum 365 34.3 267 3355.3 25.0

presented in Figure 8. A total of 844 eddies with lifetimes greater
than 4 weeks (387 anticyclones and 457 cyclones) are identified by
the traditional VG algorithm. Considering eddies which survive
more than 4 weeks, the PSPNet, DeepLabV3 + and BiSeNet
algorithms detect 875 eddies (400 anticyclonic and 475 cyclonic
eddies), 805 eddies (370 anticyclonic and 435 cyclonic eddies),
and 819 eddies (383 anticyclonic and 436 cyclonic eddies),
respectively. The eddies identified by the three AI algorithms
survive longer than that identified by the VG algorithm because
the AI algorithms can detect small-sized eddies during the
growing and decaying periods. Among the three AI-based
methods, eddies detected by the DeepLabV3+ algorithm have the
shortest lifetimes.

DISCUSSION

In order to further discuss the AI-based results, the eddies
identified by the AI-based algorithms and by the VG algorithm
in the STCC region during 2015 are compared with mesoscale
eddy trajectory atlas product (Ver 2.0), which is obtained from
AVISO+2. Since the AVISO+ product provides the eddies with
the lifetimes longer than 4 weeks but without the boundary
information (only radius), only the center locations of the eddies
with the lifetimes longer than 4 weeks and with the radii greater
than 25 km in the STCC region on June 07, 2015 are plotted
in Figure 9 for the comparison of the results from the five
versions. The PSPNet algorithm detects the most oceanic eddies
(176 eddies) of the three versions, followed by 142 ones for the
AVISO+ version, 137 ones for the VG version, 128 ones for
the BiSeNet version and 125 ones for the DeepLabV3+. During
the 1 year period, 637 eddy tracks are totally obtained from the
AVISO product, all of which survive longer than 4 weeks. The
PSPNet algorithm detects 875 eddy tracks with lifetimes longer
than 4 weeks, while 844 tracks by the VG algorithm, 819 tracks
by the BiSeNet and 805 tracks by the DeepLabV3+. The number
of eddy tracks from the AVISO+ version is the smallest among
those from the five versions.

2https://www.aviso.altimetry.fr/en/data/products/value-added-products/global-
mesoscale-eddy-trajectory-product.html

Several eddy parameters are compared among these five
results in Table 1. The mean lifetimes of eddies identified by
the AI-based algorithms are all shorter than that from the
AVISO+ version but longer than that detected by the VG
algorithm. The eddies from the AVISO+ version, the PSPNet
version and the BiSeNet version survive for up to a year. The
mean amplitude (9.3 cm) and the mean radius (104.6 km) of
the eddies from the BiSeNet version are greater than those
from the other four versions, which suggests that the BiSeNet
has an advantage in large-scale eddy. And the maximum eddy
radii are all larger than 260 km, even close to 300 km, for
the five versions. The mean displacements of the eddies from
the AI-based versions and the VG version are both shorter
than that from the AVISO+ version. But the eddies from
the PSPNet version and the AVISO+ version moves up to
more than 3,000 km. Furthermore, the eddies from the three
versions propagate with the similar mean speed at 6.3 ∼7.8 km
day−1.

CONCLUSION

Compared to the traditional eddy detection method, deep
learning-based algorithms are novel. Three different AI-based
algorithms were applied to identify ocean eddies, including the
PSPNet, DeepLabV3+ and BiSeNet algorithms. SSHA data from
2011 to 2014 in the STCC region, labeled with eddy information
detected by the VG algorithm, are employed for training, and
SSHA data in 2015 used for validation. Eddies detected by the
three AI-based methods are compared with each other and
with the results from the traditional method. All three AI-
based algorithms extract more eddies than the traditional VG
algorithm. The PSPNet algorithm detects the highest number
of eddies. The BiSeNet algorithm performs better in large-scale
eddy identification than the other two AI-based algorithms,
because the Spatial Path is introduced into the algorithm to
avoid destroying the eddy edge information. The eddies identified
by the AI-based algorithms tend to survive longer than those
identified by the VG method. The lifetimes of the eddies extracted
by the DeepLabV3+ algorithm are the shortest among the results
from the AI-based methods.
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Numerical wave models have been developed for the wave forecast in last two decades;
however, it faces challenges in terms of the requirement of large computing resources
and improvement of accuracy. Based on a convolutional long short-term memory
(ConvLSTM) algorithm, this paper establishes a two-dimensional (2D) significant wave
height (SWH) prediction model for the South and East China Seas trained by WaveWatch
III (WW3) reanalysis data. We conduct 24-h predictions under normal and extreme
conditions, respectively. Under the normal wave condition, for 6-, 12-, and 24-h
forecasting, their correlation coefficients are 0.98, 0.93, and 0.83, and the mean
absolute percentage errors are 15, 29, and 61%. Under the extreme condition (typhoon),
for 6 and 12 h, their correlation coefficients are 0.98 and 0.94, and the mean absolute
percentage errors are 19 and 40%, which is better than the model trained by all the
data. It is concluded that the ConvLSTM can be applied to the 2D wave forecast with
high accuracy and efficiency.

Keywords: ConvLSTM, wave forecasting, significant wave height, typhoon, deep learning

INTRODUCTION

Ocean surface gravity waves (hereinafter, waves) are strongly non-linear and significantly affect
ocean engineering activities, maritime operations, and transportation. Traditional wave forecasting
models have been continuously developed and improved. Currently, the most widely used models
are the WaveWatch III (WW3) by the US National Centers for Environmental Prediction, the
Simulating Waves Nearshore (SWAN) by the Netherlands Delft University, and so on. The
traditional numerical wave models are based on the wave action balance equation and adopt
gridded discretization instead of differential equations. This inevitably introduces numerical
errors and faces problems such as non-convergence and instability in numerical computations.
Additionally, numerical models are highly sensitive to the simulated area terrain (especially
in shallow nearshore waters) and computational domain boundaries. They also require input
information of many other variables, such as wind data (Niu and Feng, 2021). Uncertainties of
these external variables lead to additional model errors, which further affect the model’s accuracy.
Numerical models also consume large amounts of computational resources and need to run for
long periods of time, which is often impractical in emergency situations and thus is a significant
bottleneck that restricts the development of fast and accurate wave forecasts.

With the rapid development of artificial intelligence (AI), due to its applicability across diverse
fields and the ability to consider non-linearities in complex physical mechanisms, AI techniques
have been widely applied in the field of marine sciences. These range from the automatic detection
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and prediction of mesoscale eddies (Zeng et al., 2015; Xu
et al., 2019), El Niño–Southern Oscillation, Arctic sea ice
density, and sea surface temperature prediction (Aparna et al.,
2018; Kim et al., 2018, 2020; Ham et al., 2019; Zheng et al.,
2020). Wave forecasting has also been attempted through AI
techniques though this is mostly a single-point wave forecasting.
For example, Kaloop et al. (2020) combined wavelets, particle
swarm optimization (PSO), and extreme learning machine
(ELM) to create a joint wavelet-PSO-ELM (WPSO-ELM) model
and found that in the case of lower complexity and fewer
input variables, 36-h wave height forecasts for coastal and in
the offshore areas have higher prediction accuracies. Londhe
and Panchang (2006) used an artificial neural network (ANN)
based on existing wave datasets to predict wave heights at six
geographically separated buoy locations. This article uses ANN
technology to reproduce ocean surface wave observed by buoys
for 24 h. It is found that the method has a good forecast for
the next 6 h, and the correlation between the observation and
forecast for the next 12 h can reach 67%. Emmanouila et al.
(2020) improved the numerical prediction of SWH by using a
Bayesian network (BN).

Recently, the long short-term memory (LSTM) network has
been applied to wave forecasting applications. The LSTM was
proposed by Hochreiter and Schmidhuber (1997), which has
many advantages over other networks. For example, it can
selectively choose to remember or forget long-term information
through a series of gates, which is very useful in the study of
waves that evolve rapidly in space and time. Its usage has seen
application where Lu et al. (2019) combined the LSTM network
and multiple linear regression to establish an M-LSTM hybrid
forecast model that limits a single predictor, thereby optimizing
wave height forecasts. Fan et al. (2020), by contrast, coupled
LSTM and SWAN for single-point forecasting and found that this
model has better forecasting performances than models such as
ELM and SVM. Additionally, in their combined SWAN-LSTM
model, forecast accuracy was increased by 65% compared to
using SWAN alone.

From the above literature review, we can see that the
application of AI in ocean wave forecasting is still largely
limited to single-point forecasting. However, a wave field is
two-dimensional (2D), and few AI predictions of 2D wave
fields have been reported. This paper intends to use the
convolutional LSTM (ConvLSTM) algorithm recently proposed
by Shi et al. (2015) to perform AI forecasting of the 2D wave
field, thus adding to the available literature on its efficacy.
ConvLSTM has been successfully applied to 2D precipitation
nowcasting (Shi et al., 2015). It shows good spatiotemporal
correlation and is always better than the fully connected LSTM
(FC-LSTM) network and thus solves the problem of spatial
information loss and improves the accuracy of 2D predictions.
Presently, ConvLSTM has also been applied to human behavior
recognition (Majd and Safabakhsh, 2019), dynamic gesture
recognition (Peng et al., 2020), and stock prediction (Lee and
Kim, 2020). Its application to the short-term prediction of waves
is limited to a study conducted by Choi et al. (2020) that
estimated wave height from raw images provided by buoys.
This paper adds to the literature by conducting the short-term

prediction of the 2D wave field by applying the ConvLSTM
network in the South and East China Seas. The remainder
of this paper is structured as follows: Section “Materials and
Methods” describes the materials and methodology, including the
ConvLSTM network and model evaluation methods, and model
training and verification materials used in this study. Section
“Results” presents the results, mainly discussing the forecast
results under different sea conditions using ConvLSTM, and
Section “Discussion” concludes with the discussion.

MATERIALS AND METHODS

Materials
Significant Wave Height Reanalysis Product
In this study, significant wave height (SWH) data are
obtained from the WW3 third-generation numerical wave
model reanalysis dataset produced by the National Oceanic
Atmospheric Administration (NOAA)1. This reanalysis product
is used to train and validate the ConvLSTM network. Usage
of this product is justified as researchers have extensively
validated the dataset and found that it is in good agreement with
observations (Mondon and Warner, 2009; Zheng and Li, 2015;
Triasdian et al., 2019). The study area is defined as the coastal
waters in the northwestern Pacific Ocean enclosed by 105◦ E to
126◦ E and 4◦ N to 43◦ N. The study period is selected from 2011
to 2019. The temporal resolution of the data is hourly, and the
spatial resolution is 1/2◦ 1/2◦.

Selected Typhoons
Typhoons (those systems that reached a maximum Beaufort wind
force of 12–13, and a central wind speed of 32.7–41.4 m/s) that
entered the study area enclosed by 105◦E to 126◦E and 4◦N
to 43◦N over the period 2011–2019 were selected to generate
a typhoon-induced SWH dataset. Typhoon data were acquired
from the Central Meteorological Observatory2. The dataset
contains a total of 64 typhoons, of which 51 are used in a training
set and the remainder used as test sets (Table 1).

Methodology
Convolutional Long Short-Term Memory Network
The LSTM is a special type of recurrent neural network (RNN).
The basic idea of the LSTM is to control the input and output
of information in the cell by introducing three gates: input,
output, and forget gates. These are used to control the flow
of information between the cells. Respectively, the input gate
determines the value to be updated, the output gate mainly
controls the information transmission to the next cell, and the
forget gate selectively forgets the information in the information
transfer. The LSTM has two states, cell state (ct) and hidden
state (ht), which are related to ct−1 and ht−1 of the previous cell
(Hochreiter and Schmidhuber, 1997). These structural features
enable the LSTM to learn long-term temporal information
and avoid long-term dependence problems. Since there are

1https://coastwatch.pfeg.noaa.gov/erddap/griddap/NWW3_Global_Best.html
2http://typhoon.nmc.cn/web.html
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TABLE 1 | Partitioning of typhoons into training and validation sets.

Partitioning Number Typhoons

Training 51 Songda (2011), Muifa (2011), Nanmadol (2011),
Nesat (2011), Nalgae (2011), Vicente (2012),
Saola (2012), Damrey (2012), Haikui (2012),
Kai-tak (2012), Tembin (2012), Bolaven (2012),
Jelawat (2012), Son-tinh (2012), Bopha (2012),
Soulik (2013), Utor (2013), Trami (2013), Usagi
(2013), Wutip (2013), Fitow (2013), Nari (2013),
Krosa (2013), Haiyan (2013), Neoguri (2014),
Rammasun (2014), Matmo (2014), Kalmaegi
(2014), Noul (2015), Chan-hom (2015), Linfa
(2015), Soudelor (2015), Goni (2015), Dujuan
(2015), Mujigae (2015), Nepartak (2016), Nida
(2016), Meranti (2016), Malakas (2016), Megi
(2016), Chaba (2016), Sarika (2016), Haima
(2016), Nock-ten (2016), Nesat (2017), Hato
(2017), Pakhar (2017), Talim (2017), Doksuri
(2017), Khanun (2017), Damrey (2017)

Test 13 Tembin (2017), Prapiroon (2018), Soulik (2018),
Mangkhut (2018), Trami (2018), Kong-rey
(2018), Lekima (2019), Lingling (2019), Tapah
(2019), Mitag (2019), Nakri (2019), Kammuri
(2019), Phanfone (2019)

many ways to propagate gradients in the LSTM, vanishing
and exploding gradient problems can be better avoided. The
following are the information state transfer formulae in one cell
of the LSTM:

it = σ(Wxixt +Whiht−1 +Wci ◦ ct−1 + bi) (1)

ft = σ(Wxf xt +Whf ht−1 +Wcf ◦ ct−1 + bf ) (2)

ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt +Whcht−1 + bc) (3)

ot = σ(Wxoxt +Whoht−1 +Wco ◦ ct + bo) (4)

ht = ot ◦ tanh(ct) (5)

where it represents the input gate, ft represents the forget gate, ot
represents the output gate, ct represents the state of the current
moment, ct−1 represents the state of the previous moment, ht
represents the final output, W represents the weight coefficient
for a given gate, b represents the corresponding bias coefficient
for a given gate, ◦ is the Hadamard product, and σ is the
sigmoid function.

Presently, the LSTM is widely used in time series forecasting.
However, when the LSTM is applied to 2D data, if it is expanded
into full connected layer processing, it not only consumes
substantial computing resources but also it is difficult to capture
the spatial correlation and spatial characteristics of the 2D space
field (Shi et al., 2015). To overcome these deficiencies, Shi
et al. (2015) replaced the FC-LSTM layers with a convolutional
structure, leading to the development of the ConvLSTM network.
The primary difference between the LSTM and the ConvLSTM

is the replacement of matrix multiplication by a convolutional
operation:

it = σ(Wxi ∗ Xt +Whi ∗ ht−1 +Wci ◦ ct−1 + bi) (6)

ft = σ(Wxf ∗ Xt +Whj ∗ ht−1 +Wcf ◦ ct−1 + bf ) (7)

ct = ft ◦ ct−1 + it ◦ tanh(Wxc ∗ Xt +Whc ∗ ht−1 + bc) (8)

ot = σ(Wxo ∗ Xt +Who ∗ ht−1 +Wco ◦ ct + bo) (9)

ht = ot ◦ tanh(ct) (10)

where ∗ is convolution operator.
Convolution operation can extract the spatial characteristics

of the data, while the LSTM can extract the temporal variability
of the data. Therefore, the ConvLSTM has the ability to well
depict both a variable’s spatiotemporal characteristics and is
hence highly suitable for regional ocean wave predictions.

Architecture of the ConvLSTM Model for Wave
Forecasts
In this paper, a regional wave prediction model is established
based on the ConvLSTM network (Figure 1). The SWH data
of three continuous time steps are taken as the input data. The
SWH data at a certain time in the future are output through
three ConvLSTM layers and finally through a convolution layer
for a total of four layers. For example, SWH at times 13:00, 14:00,
and 15:00 on January 1, 2018 is given (input) to the model and
SWH at time 16:00 is predicted (output). To improve the model’s
ability to capture non-linearities, the recursive linear unit (ReLU)
is employed as the activation function in each layer, with the
hard sigmoid used as the activation function in the loop step. The
convolutional kernels of each of four layers are set to 5 ∗ 5, 3 ∗ 3,
3 ∗ 3, and 5 ∗ 5, respectively, to capture different characteristics
at different spatial scales. The root-mean-square error (RMSE) is
used as the loss function during model training, the number of
epochs is set to 100, and all other remaining parameters remain
constant throughout all training exercises.

Data Pre-processing
To improve the training dataset quality, the WW3 SWH
reanalysis product is linearly interpolated from a resolution
of 1/2◦ ∗ 1/2◦ to 1/4◦ ∗ 1/4◦. The input data are wave field
data of three consecutive time steps. According to the different
prediction time steps (e.g., 1, 2, and 3 h), the corresponding
training dataset and verification set are generated using the data
from 2011 to 2018, in which the data volume ratio of training
set and verification set is 4:1. For predictions of SWH, the data
for the year of 2019 are the test set, which are excluded from
the model training to ensure relative independence between the
training and test datasets.

Frontiers in Marine Science | www.frontiersin.org 3 June 2021 | Volume 8 | Article 68007981

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-680079 June 16, 2021 Time: 12:22 # 4

Zhou et al. ConvLSTM-Based Wave Forecasts

FIGURE 1 | Schematic of the SWH prediction model based on the ConvLSTM.

Evaluation Functions
In order to better evaluate the accuracy of model forecasts,
this article defines the following evaluation functions. Difference
error (DR), mean absolute error (MAE), RMSE, spatially
averaged RMSE (SARMSE), and spatially averaged mean absolute
percentage error (SAMAPE) are used to evaluate the deviation
between predicted values and WW3 reanalysis data. In addition,
the spatially averaged correlation coefficient (SACC) is used to
measure the linear correlation between the predicted values and
WW3 values. The expressions of the above variables are as
follows:

DR(i, j) = hp(i, j)− hm(i, j) (11)

MAE =
1
I · J

I∑
i=1

J∑
j=1

∣∣hp(i, j)− hm(i, j)
∣∣ (12)

RMSE =

√√√√√ 1
I · J

I∑
i=1

J∑
j=1

(hp(i, j)− hm(i, j))2 (13)

SARMSE =
1
K

K∑
k=1

√√√√√ 1
I · J

I∑
i=1

J∑
j=1

(hp(i, j, k)− hm(i, j, k))2

(14)

SAMAPE =
1
n

n∑
k=1

1
I · J

I∑
i=1

J∑
j=1

∣∣hp(i, j, k)− hm(i, j, k)
∣∣

hm(i, j, k)
× 100%

(15)

SACC =
1
n
∑n

k=1(hp(i, j, k)− hp(i, j, k))(hm(i, j, k)− hm(i, j, k))√
1
n
∑n

k=1(hp(i, j, k)− hp(i, j, k))2√
1
n
∑n

k=1(hm(i, j, k)− hm(i, j, k))2

(16)

where i and j denote the coordinates of space lattice points, k
denotes cases, n represents the total number of cases, I denotes
the total number of latitudinal lattice points, and J denotes the
total number of meridional lattice points. DR(i, j) is the error
value of a certain point in space, hp(i, j) is the SWH value
predicted based on the ConvLSTM model, and hm(i, j) is the
WW3 SWH value corresponding to a certain point in space.
hp(i, j, k) represents the ConvLSTM model-predicted SWH at
a certain point in the case space, hp(i,j,k) represents the mean
SWH predicted by the ConvLSTM model at a certain point in
the case space, and hm(i, j, k) represents the SWH of WW3
at a certain point in the case space. hm(i,j,k) represents the
mean SWH of WW3.

RESULTS

In this study, the ConvLSTM is applied to wave forecasting in
the northwestern Pacific Ocean under both normal and extreme
conditions. This section is divided into two subsections. In
Section “Wave Forecast Under Normal Conditions,” the test set
results are presented and discussed for the normal condition. In
Section “Wave Forecast Under Extreme Conditions,” the wave
forecast is presented for extreme condition (i.e., typhoon cases).

Wave Forecast Under Normal Conditions
First, we discuss the performance of the ConvLSTM algorithm
in predicting SWH under normal conditions. Figures 2, 3 show
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examples of the ConvLSTM wave forecasts, which all use SWH
data at 5:00, 6:00, and 7:00 (UTC) on October 3, 2019, as
inputs. Figures 2A,D,G correspond to the spatial distribution of
the forecasted SWH after 1, 3, and 6 h. Figures 2B,E,H show
the spatial distribution of the WW3 data that corresponds to
the forecast moments. The errors between the forecast and the
WW3 data are displayed in Figures 2C,F,I. In the 1-h forecast
(Figures 2A,B), the model results show good consistency with
the baseline in terms of both the magnitude of the wave height
and the spatial distribution. In general, the 1-h forecast error
fluctuates within −0.1 to 0.1 m (Figure 2C). Relatively high
values are observed in the open sea and Bohai Sea. Low SWH
covers the rest of the domain. A slightly larger error can be
seen only in the Yellow Sea. We can identify that when forecast
time span is increased to 3 h, a high degree of accuracy is
obtainable in the Yellow and East China Seas (Figures 2D,E).
The large deviations of the forecasts from the WW3 correspond
to the high SWH area in the Bohai Sea (Figures 2G,H), with
a large forecast error also noted in Figure 2I. The 6-h wave
forecasts underestimate the SWH noticeably in the Bohai and
South China Seas, while the forecasts overestimate the SWH
in the Yellow and the East China Seas. Figure 3 shows the
predicted and the WW3 SWH at each sample point in space at
the three moments from Figure 2 from low to high latitudes.
It can be found that the predicted spatial distribution of SWH
at these three moments is basically consistent with that from
the WW3. From Figure 3A, the 1-h forecast has the best
performance, a good consistency is observed between forecast
and the WW3 data with MAE, RMSE, and the correlation at
0.03 m, 0.04 m, and 0.997, respectively. The forecast values
are smaller than the WW3 baseline. A similar pattern can also
be seen in Figure 3B. This deviation causes the larger MAE
and RMSE of the 3-h forecast compared with the 1-h forecast,
and the correlation decreases to 0.991. At the 6-h window,
the least accurate forecast was observed that had a correlation
coefficient of 0.962.

To further illustrate this model’s performance, it is necessary
to discuss the impact of the forecast time span on forecast errors.
The forecast time span is the time scale of wave forecasting.
Figure 4 shows the error variations with the forecast time span
in 2019, which is based on the training and validation sets
for the period from 2011 to 2014. It can be seen that the
SARMSE increases as the forecast time span increases, while
this trend is reversed for SACC. The SARMSE for the forecast
time span of less than 6 h is less than 0.2 m, with the SACC
close to 1.0, the forecast accuracy is still high, so in this case
the spatial characteristics of the wave field from the training
set at the three moments can better respond to the changing
wave field trends of the next 6 h that ensure a relatively high
forecast accuracy. When the forecast time span increases to
12 h, the SARMSE gradually increases to 0.29 m. However,
when the forecast time span exceeds 12 h and increases to 24 h,
the model still keeps the SACC around 0.8, but the SARMSE
is close to 0.6 m. The adaptability of the training samples to
forecast larger time spans decreases, which may be due to a
great number of unknown factors encumbering the training
set from accurately and adequately responding to a rapidly

evolving wave field. The above results indicate that the model still
requires further experiments, testing and evaluation to improve
forecast beyond 12 h. The selection of training samples can
be adjusted to improve the model performance, which will be
discussed in Section “Discussion.” Therefore, it can be concluded
that the larger the forecast time span, the larger SARMSE and
the smaller SACC.

In the preceding paragraph, the SARMSE is presented for the
discussion of the model performance. To better represent the
model errors, the changes of SAMAPE with the forecast time span
are listed in Table 2, which shows that the changes of SAMAPE
are similar to those of the SARMSE. The SAMAPE increases and
the forecast accuracy decreases as the forecast time span increases
(Table 2). When the forecast time span is 3 h, the SAMAPE is
only 11.1%, and when the forecast time span increases to 24 h,
the SAMAPE is 62.8%.

Wave Forecast Under Extreme
Conditions
Typhoons, generated over tropical and subtropical oceans,
produce intense surface wind speed that can force wind waves to
grow to approximately 10 m in height. Along the coast of China,
typhoons mainly affect the South China Sea in May, June, and
October to December, and usually affect southeastern coastlines
and even the coastal areas in the East China Sea from July to
September (Lu and Qian, 2012). Due to the large discrepancy
between normal and extreme (typhoon-induced) wave states, in
conjunction with the low frequency of typhoons in proportion
to the full dataset, the ConvLSTM trained by the data under the
normal conditions may fail to learn all typhoon characteristics
and so typhoon-induced SWH forecasts may be flawed. In this
section, we propose that the ConvLSTM can be trained by the
typhoon-induced wave data for the wave forecast under the
extreme conditions.

To verify this hypothesis, we have defined Model 1 and
Model 2, where Model 1 is trained by the normal-condition
wave data and Model 2 is trained by typhoon-induced waves.
For the experiments, their forecast time spans are held at a 3-
h constant. Figure 5 shows the forecast effect of using Model 1
and Model 2 using snapshots of Typhoons Lekima that occurred
in the East China Sea at 18:00 on August 8, 2019 and Tembin
that occurred in the South China Sea at 21:00 on December
24, 2017. Comparing Figures 5A,D, with Figures 5B,E, we
can find that although Model 1 is able to capture the primary
features of the wave field near the typhoon center, the forecast
results at the center are generally smaller than the WW3, large
SWH generated near the center is not adequately reproduced.
Far from the typhoon center where the system has a reduced
impact on the waves, Model 1 can more adequately capture
SWH patterns than at the typhoon center. By contrast, Model
2 is better able to capture the spatial patterns of SWH during
typhoons as observed from Figures 5B,E. This, however, comes
at a minor cost of slightly overestimating SWH at the typhoon
center. That is, the area around the highest values in Figures 5B,E
are slightly larger than that in Figures 5C,F. There are insufficient
examples of typhoon-induced SWH in the Model 1 dataset due
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FIGURE 2 | Comparison of SWH from the WW3 and the ConvLSTM algorithm prediction. (A,D,G) are 1-, 3-, and 6-h predictions, respectively, based on the SWH
data at 5:00, 6:00, and 7:00 on October 3, 2019. (B,E,H) The WW3 wave fields at the corresponding forecast moments. (C,F,I) are the difference error between the
WW3 data and the predictions.
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FIGURE 3 | Predicted (red line) vs. the WW3 (black line) SWH throughout the study area for (A) 1-, (B) 3-, and (C) 6-h forecast moments.

FIGURE 4 | Variations in the SARMSE (blue) and SACC (red) of each training
result with forecast time span.

to the low frequency and short duration of typhoons and thus
in all training datasets, there were insufficient examples of
typhoon-induced SWH for Model 1 to learn from. Consequently,
typhoon characteristics are difficult to be extracted from Model
1. Generally, both in the center of the typhoon and surrounding
areas, wave forecasts were greatly improved in Model 2 as
compared to Model 1.

To further illustrate the difference in the wave forecasts with
Model 1 and Model 2 under extreme state, changes of the forecast
time span of Model 1 and Model 2 are examined. The error
statistic results (SACC, SARMSE, and SAMAPE) are shown in
Figures 6A–C, respectively. In Figure 6A, SACC of both Model
1 and Model 2 decreases almost linearly with the increase of the
forecast time span, but the SACC of Model 2 is always higher than
that of Model 1. In Figures 6B,C, both SARMSE and SAMAPE
of Model 1 and Model 2 show an almost linear increasing trend.
The SARMSE of Model 2 within 6 h is less than 0.5 m and the
SAMAPE is less than 20%, while the SARMSE from Model 1 is at
about 1 m and the SAMAPE at approximately 40%. When the
forecast time span is 24 h, the SAMAPE of Model 2 becomes
slightly higher than that of Model 1.

In summary, for within the 24-h forecast under typhoon
conditions, Model 2 shows better forecast capability than that
of Model 1. Compared with Model 1, the prediction error

TABLE 2 | Changes of SAMAPE with forecast time span.

Lead time 3 h 6 h 9 h 12 h 15 h 18 h 21 h 24 h

SAMAPE 12.8% 15.0% 16.9% 29.0% 27.4% 29.0% 46.5% 61.4%
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FIGURE 5 | The SWH prediction results of Model 1 and Model 2 under typhoon conditions in the East China Sea and South China Sea. (A–C) SWH of Typhoon
“Lekima” over the East China Sea at 18:00 on August 8, 2019. (D–F) SWH of Typhoon “Tembin” over the South China Sea at 21:00 on December 24, 2017.

FIGURE 6 | Error statistics of Models 1 and 2 relative to the WW3 baseline.
(A) SACC, (B) SARMSE, and (C) SAMAPE.

of Model 2 is smaller and the prediction in the typhoon-
affected area is more accurate. This is because the training
set of Model 1 is mainly from the wave data under normal
conditions including few typhoon-induced wave data. As a result,
Model 1 cannot accurately capture wave characteristics under
typhoon conditions.

DISCUSSION

In this paper, an intelligent forecast model for waves in
the South China Sea and East China Sea based on the
ConvLSTM algorithm is established. The model relies on
wave hindcasts as input to forecast wave spatial distributions.
It can be seen from the results in Section “Results” that
the prediction of the SWH based on the ConvLSTM is
feasible under normal and extreme conditions. The 1–
12-h results are acceptable, with relatively larger errors
in 24-h forecasts.

Figure 7 discusses the model’s performance from the input
data time span and the training sets time span, respectively.
We first discuss the input data time span that represents the
input data quantity. For example, “2 h” (Figure 7A) means
the continuous input of 2-h wave field data for forecasting.
Figure 7A shows the forecast error results against the input
data time span. When the input data time span is 2 h,
the SACC is low (about 0.97), and the SARMSE is large
(about 0.22). Since the data volume of 2-h wave field data
is small, the model reproduces few wave features during the
training process, which leads to low forecast accuracy. As the
input data time span increases, the SACC improves, and the
SARMSE gradually decreases, stabilizes, but increases at 5-h
mark. The reason is that if the amount of input data is too
much, it causes data redundancy, which cannot further improve
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FIGURE 7 | (A) Changes in SARMSE and SACC with the time span of the input data. (B) Changes in SARMSE and SACC with the time span of the training set data.

forecast accuracy. Therefore, it can be seen that 3 h is the
optimal selection for the input data time span in terms of
the forecast accuracy and computing time cost. This selection
of the input data time span guarantees the forecast accuracy,
in addition to saving computational resources and minimizing
the amount of time required for computations to ensure the
forecast timeliness.

Because of the difference in the characteristics of the different
training set time span, it is necessary to find the optimal training
set time span. We set the forecast time span to 6 h and
then select the same number of data samples under different
time spans as training sets. Figure 7B shows the error results
under different training set time spans. Generally, with the
increase in the training set time span, the SARMSE has a
downward trend, and the SACC has an upward trend. When
the training set time span is 1y, the SARMSE is 0.21 m,
and the SACC is about 0.97. As the training set time span
increases, the SARMSE gradually decreases and stabilizes at
about 0.15 m. When the training set time span exceeds 4
years, the model performance has not greatly been improved.
So, this study chooses 4 years as the training set time span.
Therefore, combining the input data and the training set time
span, the SWH prediction based on the ConvLSTM does not
require a very large training set, nor does it require long-term
data as input. So, this method not only improves the forecast
efficiency but also greatly saves computational resources. This
model is trained on the GeForce RTX 2080 Ti, the training
of a single model takes about 2 h, and it only takes less
than 20 s to complete the prediction of the test set in 2019.
Therefore, the SWH prediction based on the ConvLSTM is
feasible and efficient.

The present study only uses SWH data to predict the
SWH; however, the generation of waves is closely related to
the overlying wind field, and SWH can also be predicted
by wind and other variables (Wang et al., 2021), but this
relationship is specific to wind waves as may be caused
by typhoons. Swell contamination of the wave field can
weaken the wind–wave relationship (Niu and Feng, 2021)

and thus it is necessary to introduce other input variables.
Consequently, in future research, additional physical phenomena
such as ocean currents can be added to improve wave
forecasts. Additionally, due to the coarse nature of the
input data, no wave information on any coastline was
available and thus restricts its operational usage for coastal
communities. The usage of a high-resolution wave model
can be used in place of the reanalysis dataset that can
provide coastal wave information and should be pursued in
future research.
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Multi-gliders have been widely deployed as an array in nowadays ocean observation
for fine and long-term ocean research, especially in deep-sea exploration. However,
the strong, variable ocean currents and the delayed information feedback of gliders are
remaining huge challenges for the deployment of glider arrays which may cause that the
observed data cannot meet the study needs and bring a prohibitive cost. In this paper,
we develop a Glider Simulation Model (GSM) based on the support vector regression
with the particle swarm optimization (PSO)-SVR algorithm to integrate the information
feedback from gliders and ocean current data for rapid modeling to effectively predict
the gliders’ trajectories. Based on the real-time predictive information of the trajectories,
each glider can select future movement strategies. We utilize the in-suit datasets
obtained by sea-wing gliders in ocean observation to train and test the simulation model.
The results show that GSM has an effective and stable performance. The information
obtained from the modeling approaches can be utilized for the optimization of the
deployment of the glider arrays.

Keywords: glider, simulation model, PSO-SVR, rapid modeling, trajectory prediction

INTRODUCTION

Underwater gliders are characterized as a type of persistent (can operate continuously for weeks
to months even to years), long operation range (up to thousand kilometers), small power
consumption, and unmanned marine vehicle which are propelled by buoyancy (Rudnick et al.,
2004). These characteristics make them conduct long-term ocean studies and understand the inner
working mechanisms of the ocean in a controllable way which are better than existing traditional
instruments for ocean observation (Testor et al., 2019). In recent years, with the widespread
attention aroused by researchers on ocean observation, especially on deep ocean, gliders are widely
deployed in ocean studies (Liblik et al., 2016).

Furthermore, in the major ocean observation, multiple gliders are deployed as a glider array to
develop surveys to optimize and refine the ocean sampling. Shu et al. (2019) deploy 12 gliders as
an observation network in the northern South China Sea (NSCS) for the research on anticyclonic
eddies. The observations reveal not only the fine subsurface structure of temperature and salinity
but also the time evolution of the three-dimensional structure of the eddies. Li et al. (2019) not
only equip the glider observation array with CTDs to reveal the three-dimensional structure of
the anticyclonic eddies in NSCS but also mount the biogeochemical sensors on the gliders which
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can show the influence of anticyclonic eddies on the
biogeochemical structure. On this basis, a compound
three-dimensional structure of the eddy is constructed.

Although glider arrays present a compelling advantage
in ocean observation, there are challenging difficulties on
deployment. The movements of gliders are closely related to
dynamic ocean currents (Thompson et al., 2010); the high
nonlinearity of disturbances may make the actual observation
trajectories of gliders not consistent with the planned running
trajectories, which can cause the redundant measurement or
the incomplete measurement during the experiments (Zhang
et al., 2007). Meanwhile, the position information of gliders will
only be transmitted when the gliders come out of the water;
the asynchrony of information synchronization prevents the
accuracy of the simulation on the trajectory control of glider
arrays. Furthermore, conducting a coordinated observation with
multiple gliders in large-scale ocean experiments is expensive.

Several prior studies have focused on these problems. Rao and
Williams (2009) considered the influence of ocean currents and
proposed a path planning method based on rapidly exploring
random trees (RRT). However, this path planning method is
based on the assumption that we have accurate knowledge of
future currents, which is nondeterministic in practice. Thompson
et al. (2010) presented a method with historical ocean current
predictions to address the glider path planning and control in
the uncertain, time-varying ocean currents. Besides, to solve
the problem that currents may drive glider arrays into clumps
without feedback information (Leonard et al., 2007). Paley et al.
(2008) designed a control system named Glider Coordinated
Control System (GCCS) which, through the real-time feedback
control law, coordinates the gliders and optimizes the glider
measurement formations. The study of Leonard et al. (2010)
confirmed the capacity of the GCCS applied to ocean sampling.
Considering avoiding the collisions between gliders, a navigation
system based on Networked Decentralized Model Predictive
Control was developed to coordinate the gliders into the desirable
formation (Fonti et al., 2011). This method has high autonomy
and reliability but only considers the horizontal plane motion.
Xiong et al. (2020) discussed a rapidly exploring random tree
star (RRT∗) method which is a variant algorithm of standard
RRT to meet the need of collision avoidance and achieve
continuous sampling effectively. Xue et al. (2018) also proposed
a strategy of the control of hybrid gliders that merge the
coordinate control model based on artificial potential fields with
a motion optimization method. In a recent study, Clark et al.
(2020) decoupled a vehicle motion model with a predictive
ocean current model forming an adaptive planner that glider
observation arrays can maintain stability.

However, most of the studies are pointing at the nonlinear
mechanical model of the underwater glider and the uncertain
ocean current predictive model, as the actual conditions of
gliders and ocean currents can quickly diverge in practice
and the existing studies are not feasible to reconfigure the
glider arrays according to actual conditions in different sea
states. Thus, in this paper, we design a glider simulation model
(GSM), considering multiple factors, which can rapidly feedback
information from gliders and provide real-time predictive

information of coordination of gliders. Based on the predictive
information, each glider can determine future motion strategies.
In this model, we introduce support vector regression based on
PSO-SVR as the supporting algorithm. Although the information
feedback from gliders contains non-inear fluctuations, noise, and
outliers, the PSO-SVR algorithm can well grasp the movement
trend. As far as we know, few studies have employed PSO-SVR
to optimize glider control and formation deployment. We also
introduce three observation datasets obtained by sea-wing gliders
into the simulation experiments; the results demonstrate that the
GSM has great stability and effectiveness on sea-wing gliders.

The rest of the paper is made up as follows: the summary
of the dataset is shown in section “Data.” In section “Methods,”
we give a comprehensive introduction to the methods involved
in the model. Section “Experiments” presents the results of the
experiments using different algorithms, and a full comparison of
the performance is evaluated. In the last section, we draw the
conclusion and increase the future works needed to be done to
improve our simulation model.

DATA

Glider Data
Sea-wing gliders are selected to verify the validity of the
model (Figure 1C). Three sets of in-suit observation data
collected by sea-wing gliders are employed to train and test
the simulation model. These datasets come from two ocean
observation experiments where the investigation areas are located
in the northern South China Sea.

G-001 dataset: The experiment started from April 28, 2015, to
June 1, 2015, employing one glider (g-001) for the cross-sectional
observation of eddies, and the trajectory of the glider is shown in
Figure 1A.

G-002 dataset: The experiment started from July 3, 2016, to
July 16, 2016, and lasted for 17 days. During the experiment,
a sea-wing glider (g-002) with multiple sensors is deployed for
the inner observation of eddies, and the trajectory is shown in
Figure 1B; the black line represents the trajectory of g-002.

G-003 dataset: The experiment started from July 3, 2016,
to July 16, 2016, with a sea-wing glider (g-003) carrying one
sensor for cross-eddy observation. We can see the trajectory in
Figure 1B; the green line is the trajectory of g-003.

The triangles indicate the starting points of observations. The
backgrounds are the sea-level anomaly in the observation areas
where the higher the anomaly, the greater the possibility of
the existence of eddies. The arrows indicate the ocean current
field, and the size of arrows represents the strength of the
geostrophic currents.

AVISO Ocean Current Dataset
The ocean current dataset used in this study was distributed
by AVISO and derived from the absolute dynamic topography
(ADT), which can be downloaded from the website1.

1https://www.aviso.altimetry.fr/

Frontiers in Marine Science | www.frontiersin.org 2 July 2021 | Volume 8 | Article 67179190

https://www.aviso.altimetry.fr/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-671791 July 15, 2021 Time: 17:16 # 3

Yu et al. A Glider Simulation Model

FIGURE 1 | The trajectories of gliders in the ocean observation. (A) The
observation started from April 28, 2015 to June 1, 2016. (B) The observation
started from July 3, 2016 to July 16, 2016. The triangles indicate the starting
points of observations. The backgrounds are the sea-level anomaly in the
observation areas, and the arrows indicate the ocean current field. (C) Picture
of the sea-wing glider.

METHODS

In this section, we present an overview of the method that we
adopt to train and test the simulation model.

SVR for Data Regression
SVR is an extended algorithm of the support vector machine
(SVM) which is a classic and powerful machine-learning
algorithm to solve the nonlinear regression problem (Brereton
and Lloyd, 2010). SVR calculates the loss function based on
the structural risk minimization, allowing a deviation of ε

between the output of the model and the real value, which
differs from the traditional regression model based on the error
between the output of the model and the real output. It can
avoid the disadvantages caused by pursuing experience risk
minimization.

In this subsection, we concisely describe the basic theory of
the SVR algorithm. We can learn more detailed theories from
Smola and Scholkopf (2004). In our study, the whole diving
and climbing process of the glider is described as the dataset
S =

{
(xi, yi)

}
. xi = {Pi,Di,Vi} denotes the parameters of the

ith diving process. Pi denotes the position in which the glider
dives into the water which is observed by the GPS equipped on
the glider. Di is the target diving depth, and Vi represents the
velocity at the diving point from the AVISO. yi represents the
real GPS coordinate of the point that the glider comes out of
the water during the ith climbing process. The objective of the
algorithm is to build a regression model to predict the location
that the glider comes out of the water in the following form:

f (xi) = wTxi + b,
yi − wTxi − b ≤ ε,

wTxi + b− yi ≤ ε,

ε ≥ 0

(1)

where w and b are, respectively, the slope and offset
coefficient generated in the process of mapping xi to
f (xi), which is optimized during the training of the
model. f (xi) is the predicted location that the glider
comes out of the water, whileε denotes the deviation
between f (xi) and yi. The loss is calculated when the
error between the predicted value and the real value
is greater than ε. So, the regression problem can be
formalized as minimizing the convex optimization problem as
follows:

min
1
2
∣∣∣∣w∣∣∣∣2 + C

m∑
i = 1

i
(
f (xi)− yi

)
(2)

In this equation, C is the regularization parameter, and i is the
ε –insensitivate loss function to assess the accuracy of the model.
Generally speaking, it is difficult to define the appropriate ε to
ensure that f (x), all pairs (xi, yi), and the slack variables ξi and ξ∗i
are introduced. The regression problem can be reformulated as
the following constraints:

min 1
2

∣∣∣∣w∣∣∣∣2 + C
m∑

i = 1

(
ξi + ξ∗i

)
,

s.t. yi − wTxi − b ≤ ε + ξi,

wTxi + b− yi ≤ ε + ξ∗i ,

ξ i, ξ
∗
i ≥ 0, i = 1, 2, ...,N

(3)
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By applying the Lagrange multiplier method and KKT
condition, the problem can be expressed as the following
equations:

f (x) =
m∑

i = 1
(̂αi − αi)K

(
xTi , xi

)
+ b,

s.t.
m∑

i = 1
(̂αi − αi) = 0,

0 ≤ αi, α̂i ≤ C

(4)

where αi and α̂i are the Lagrange coefficients, and K
(
xTi , xi

)
is the kernel function. The Lagrange multiplier method can
transform constrained inequalities into unconstrained equations,
and the KKT condition can transform the nonlinear regression
problem into an approximate linear regression problem. In our
study, the kernel function named radial basis function (RBF) was
mentioned which can project vectors into any dimensional space.
The equation is described by:

K
(
xi, xj

)
= exp

(
−

∣∣∣∣xi−xj∣∣∣∣2
2σ2

)
,

σ ≥ 0
(5)

where xi and xj are the input vector space, and σ is the
bandwidth of RBF.

From the above equations, we can see that two
hyperparameters heavily affect the performance of the SVR,
namely, the regularization parameter C which represents
the tolerance for error and the bandwidth of RBF σ which
determines the influence scope of each vector. The appropriate
selection of these hyperparameters can significantly improve
the performance of SVR. However, a trial-and-error approach
to optimize hyperparameters needs much time and is not
practical. In our study, we employ the PSO algorithm to
optimize parameters.

PSO for Optimizing Parameters
Although SVR is a powerful algorithm for regression
problems, its effectiveness is easily affected by the selection
of hyperparameters (Kim et al., 2020). Inappropriate parameter
selection can easily lead to over-fitting or under-fitting of the
prediction results which can affect the coordination of glider
arrays. In early studies of the SVR, the grid search method is
widely adopted to tune hyperparameters (Jiang et al., 2013).
In recent years, many heuristic algorithms have been used to
optimize the hyperparameters.

PSO is a technology of evolutionary computing proposed
by Kennedy and Eberhart (1995), which has advantages at
accelerating the process of tuning the SVR parameters and
getting the optimum. The main idea of the algorithm is to
analogize the process of optimizing parameters as birds looking
for food. Under the constraints of the fitness function, particles
keep adjusting speed and position through collaboration and
information sharing between each particle to find the final
optimum solution.

The particle speed update equation is:

vi = w × vi + c1 × rand() ×
(
pbesti − xi

)
+ c2

× rand() × (gbest − xi) (6)

where i = 1, ..., n ∈ Rn denotes the number of particles,
vi represents the speed of the particle, pbesti is the optimal
parameter under current training steps, gbest indicates the global
optimal parameter under current training steps, xi is the particle
position, rand() represents the random number between (0,1),
w is the inertia factor which affects the capability of global
optimization and local optimization of the algorithm, c1 indicates
the level that the particle updating is affected by the local optimal
particle, and c2 is the level that the particle updating is affected by
the global optimal particle.

The particle position update equation is:

xi = xi + vi (7)

In our study, to find the best hyperparameters (C,σ), the process
is shown as follows:

First, we set PSO parameters, the number of particles is 30, the
dimension is 2, the iteration steps are 50, and the space ranges
of the solutions are from 0.1 to 5. Second, randomly generating
the initial value of hyperparameters includes the prime velocities
and the initial positions of the swarm of particles in search space.
Third, we utilize the parameters in each particle to construct
the SVR model and calculate the values of the fitness function,
through the values of fitness function to update pbesti and gbest.
Last, if the experiment meets the iteration steps or the value of
fitness function reaches the extent predefined, we stop updating
and choose gbest as the best hyperparameters (C,σ); otherwise, we
return to Third.

EXPERIMENTS

In this section, we conduct experiments to evaluate the accuracy
and efficiency of the simulation model. We use the glider
datasets to train and test the simulation model where 75%
of each dataset are employed as the training samples for the
training and parameter optimization. The rest are applied as
the testing samples. We also select several other algorithms as
the baseline to compare them with our algorithm. The key
idea of our experiment is to utilize the information feedback
from gliders for rapid modeling to generate the trajectories
of gliders and minimize the error between real trajectory and
predicted trajectory.

Data Standardization
In this subsection, to eliminate adverse effects caused by
singular sample data, we standardized the data before conducting
experiments. The training data S =

{
(xi, yi)

}
are standardized

in the normalization function of min–max normalization:

Strain =
S−min(S)

max (S)−min(S)
(8)

where Strain represents the standardized value.
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The Experiment Results and Discussion
The Results of Parameter Optimization
In this subsection, we demonstrate the hyperparameters
optimized by the PSO algorithm. The optimization of parameters
uses an iterative approach, and the iterative results can be learned
from Figure 2 where the x-axis represents the number of iteration
steps, the y-axis represents the fitness values, the yellow lines
indicate the fitness values in the longitudinal direction, and the
blue lines represent the fitness values in the latitudinal direction.
The process of optimization is the coordinated adjustment of
particles to find the optimal fitness value. We can see that with
the increase of iteration steps, the fitness values keep decreasing
until achieving stability. The stability of fitness values means that
all particles achieve an individual best fitness and the PSO-SVR
model achieves the optimal hyperparameters (C, σ); we can learn
the optimization results in Figure 2.

The Comparative Experiment Results
To verify the effectiveness and stability of our model, we conduct
comparison experiments with four baselines, random forest
(RF), K-nearest neighbor (KNN), AdaBoost (Ada), and the basic
SVR, respectively.

Figure 3 shows the test regression results of three glider
datasets by using RF, KNN, Ada, SVR, and PSO-SVR,
respectively. Figures 3A–C demonstrate the real trajectories and
predicted trajectories of g-001, g-002, and g-003, respectively.
Since the difference between the results regressed by several
methods is not obvious enough and the trajectories of gliders
are not regular, we have to add the comparison experiments of
the errors between predicted values and real values to validate
the results. Figures 3D–F introduce the error comparison results.
The errors are computed by the function as follows:

error =
√(

predlon − reallon
)2
+
(
predlat − reallat

)2 (9)

Cooperating the figures of trajectory comparison in conjunction
with the figures of error comparison, we can learn that the
trajectory predicted by the simulation model proposed by
us has the best fit with the real trajectory, and what is
completely different from other methods is that the proposed
model keeps a stable and slight error which confirms the
robustness of our model.

Based on the simulation information of PSO-SVR and
other comparative experiments, we can further evaluate the
effectiveness and stability of the proposed simulation model by
the mean square error (MSE), the relative error (RE), and the
coefficient of determination (R2).

MSE =
1
N

N∑
i = 1

(
yi − f (xi)

)2 (10)

RE =

∣∣∣∣yi − f (xi)
∣∣∣∣

yi
(11)

R2 =
∑N

i
(
f (xi)− yi

)2∑N
i
(
yi − yi

)2 (12)

FIGURE 2 | The relationship lines between the iterative steps and the fitness
values of parameter optimization of g-001, g-002, and g-003. (A) The optimal
results of parameters of g-001. (B) Represents the parameter optimization of
g-002. (C) The optimal results of parameters of g-003. The yellow line
represents the fitness values in the longitudinal direction, and the blue line
demonstrates the fitness values in the latitudinal direction; the legends
demonstrate the best hyperparameters.

Here, yi denotes the real position that the glider comes out of
the water, f (xi) is the location of the glider predicted by the
simulation model. The quantity yi is the mean value of yi over
the whole moving process. N is the number of test samples.

The MSE, RE, and R2 over the testing samples of three
glider datasets are shown in Figure 4. Figure 4A represents the
performance of the simulation model applied in g-001 where
MSE = 0.00039, RE = 0.0005, and R2 = 0.9998; Figure 4B
shows the assessment factors of g-002 where MSE = 0.00095,
RE = 0.0013, and R2 = 0.993; the results of g-003 can be found
in Figure 4C, the value of MSE is 0.0007, RE is 0.0012, and R2
is 0.994. Obviously, in contrast to other methods, the PSO-SVR
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FIGURE 3 | The comparisons of the trajectories of three gliders reconstructed by several algorithms with the original trajectories and the error comparisons between
the proposed model with the comparison models. (A) The comparison of the regression results of g-001. (D) The comparison of the error of g-001. (B) The
comparison of the regression results of g-002. (E) The comparison of the error of g-002. (C) The comparison of the regression results of g-003. (F) The comparison
of the error of g-003.

yields better regression results with the lowest MSE and RE and
the highest R2, and these assessment indicators demonstrate that
the simulation model can accurately predict the trajectories of
gliders and meet the key idea of our experiments.

We can find out that the simulation model tested on the same
type of gliders has a different level of performance. The mode
tested with g-001 has the best performance, the performance
on g-003 is second, and g-002 has the worst performance.
From the information obtained from Figure 1, the strength
of the geostrophic currents of the g-001 trajectory coverage is
much lighter than that of g-002 and g-003. Besides, we can
learn that the movement direction of g-003 is consistent with
the direction of the flow field, while the direction of g-002 is
opposite to the flow field which makes the simulation model
with g-003 have better performance. Further speaking, both g-
001 and g-003 conduct the experiment for crossing the eddy,
but g-001 only conducts cross-sectional observation, and the
level at which g-001 is affected by the ocean dynamic process
is much weaker than that of g-003, which makes the model

test with g-001 have better performance than that with g-
003.

Besides, the error curves of the PSO-SVR algorithm in
Figures 3D–F have many bumps. Analyzed in conjunction
with Figure 1, the bump in the g-001 simulation experiment
appears when g-001 crossed through the eddy. The bumps
in the g-002 simulation experiment mostly appear at
the intersection of trajectories and the period of reverse
movement. In the simulation experiment of g-003, the larger
error values are distributed when the glider sails to the
boundary of the eddy.

From the above discussion, we suppose that the strength
and direction of the flow field play an indispensable role in
the accuracy of the simulation model. The strong currents, to a
certain extent, reduce the performance of the simulation model.
The eddies also have a great influence on the effectiveness of
the simulation model. When the gliders cross over the eddies
or move to the boundary of the eddies, the performance of the
model will decrease. Meanwhile, comparing g-002 with g-003, the
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FIGURE 4 | The performances of the model constructed by RF, KNN, Ada,
SVR, and PSO-SVR, respectively. (A) The performances of the model
constructed with the dataset of g-001. (B) The performances of the model
constructed with the dataset of g-002. (C) The performance of the model
constructed with the dataset of g-003. The orange histogram represents the
relative errors (RE), and the blue histogram shows the mean square error
(MSE). The coefficient of determination (R2) of the models is represented by
the red line.

difference between them is small which may be caused by their
different weights.

CONCLUSION

The tremendous potential value of the ocean observation with
the glider arrays is well known. However, the strong, variable
ocean currents, the lack of real-time feedback information of

gliders, and the high cost of cooperative observation with glider
arrays make it necessary to design a simulation model to provide
strategies for the deployment and adjustment of glider arrays.
The main target of our simulation model is to assimilate the data
collected by gliders into numerical models and model rapidly to
predict the future trajectories of glider arrays in advance which
can direct the gliders more efficiently to adjust measurement
formation. In this model, we collected three main influence
factors, including the strength and direction of ocean currents,
the current coordinate of the glider, and the diving depth of the
glider, to predict the trajectory of the glider after working for a
certain period of time. In addition, in the case that the accuracy
of the datasets is high enough, other more valuable factors can
be introduced. Moreover, to improve the performance of our
model, we use the PSO algorithm to dynamically optimize the
hyperparameters of the SVR algorithm and then cooperate PSO
with SVR as the supporting algorithm of the simulation model.

We conducted the experiments to demonstrate the
effectiveness of the model by applying the model to sea-
wing gliders. The results show that the simulation model has
good performance on sea-wing underwater gliders. However, we
need more datasets to evaluate the performance of the model
applied on different makes of gliders.
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The El Niño-Southern Oscillation (ENSO) is one of the main drivers of the interannual

climate variability of Earth and can cause a wide range of climate anomalies, so multi

year ENSO forecasts are a paramount scientific issue. However, most existing works

rely on the conventional iterative mechanism and, thus, fail to provide reliable long-term

predictions due to error accumulation. Although methods based on deep learning (DL)

apply the parallel modeling scheme for different lead times instead of a single iteration

model, they leverage the same DL model for prediction, which can not fully mine the

variability of different lead times, resulting in a decrease of prediction accuracy. To solve

this problem, we propose a novel parallel deep convolutional neural network (CNN) with

a heterogeneous architecture. In this study, by adaptively selecting network architectures

for different lead times, we realize variability modeling of different tasks (lead times)

and thereby improve the reliability of long-term predictions. Furthermore, we propose a

relationship between different prediction lead times and neural network architecture from

a unique perspective, namely, the receptive field originally proposed in computer vision.

According to the spatio-temporal correlated area and sampling scale of lead times, the

size of the convolution kernel and the mesh size of sampling are adjusted as the lead time

increases. The Coupled Model Intercomparison Project phase 5 (CMIP5) from 1861 to

2004 and the Simple Ocean Data Assimilation (SODA) from 1871 to 1973 were used for

model training, and the GODAS from 1982 to 2017 were used for testing the forecast skill

of the model. Experimental results demonstrate that the proposed method outperforms

the other well-known methods, especially for long-term predictions.

Keywords: ENSO, long-term prediction, deep learning, convolutional neural networks, heterogeneous architecture

1. INTRODUCTION

El Niño-Southern Oscillation (ENSO) is a short-term interannual climate change consisting of
three phases: neutral, El Niño, and La Niña (Yang et al., 2018). It is a significant feature of
ocean-atmosphere interaction over the equatorial Pacific Ocean and, thus, directly or indirectly
leads to global climate abnormalities and regional meteorological disasters such as flooding in the
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summer and low temperatures in the winter (Forootan et al.,
2016). Generally, an El Niño event occurs when the average sea
surface temperature (SST) anomaly in the Nino3.4 region (5◦N–
5◦S, 170◦W–120◦W) is above the threshold of 0.5◦C for at least
five consecutive overlapping 3-month periods (Cane et al., 1986).
Based on this occurrence regularity, ENSO forecasts expected
to be an essential method for minimizing the negative effects
of climate change has been researched in the last few years.
However, due to the spring prediction barrier, the complexity
of the internal oscillation mechanism, and the chaos of climate
variability, developing an efficient multi year ENSO forecasts
method with high accuracy and low complexity is incredibly
challenging (Santoso et al., 2017).

In essence, ENSO forecasts are an example of a spatio-
temporal sequence prediction problem, whereby past ENSO data
(e.g., SST grid maps) are applied to predict future information.
Generally, people use related indexes to predict the development
tends of ENSO. The commonly used ENSO indexes include
the Nino 3,4 index, SST index, and Oceanic Nino index (Yan
et al., 2020). By studying the change law of the index, people try
to reveal the underlying complex ENSO change characteristics.
The existing approaches for making ENSO forecasts can roughly
be classified into two categories such as numerical weather
prediction methods and statistical prediction methods. With
the aid of physics and human experience, numerical models
can predict ENSO events by establishing various equations
(Goddard et al., 2001). For instance, Zebiak and Cane (1987)
proposed the first dynamic model for making seasonal ENSO
forecasts, which was followed by various improved models,
such as the intermediate coupled model, the hybrid coupled
model, and the coupled general circulation model (Wang et al.,
2017). However, these models can only well predict ENSO
no more than 6 months in advance (Duan and Wei, 2013).
To date, the conventional numerical prediction models have
been comprehensively developed and are moving toward high
resolution and multi-physical processes. Nevertheless, due to the
cognitive limitation of empirical models and uncertainties in the
optimization of key parameters, the increasingly accumulating
prediction errors hinder the application of numerical models to
long-term prediction (Duan andWei, 2013). Moreover, when the
horizontal resolution increases by one order of magnitude, the
calculation complexity increases by three orders of magnitude
(Masumoto et al., 2004).

Speaking of statistical methods, they can be further divided
into two subclasses, namely, the conventional statistics method
and the deep learning (DL)method. The former subclass includes
the Holt-Winters method and the autoregressive integrated
moving average (ARIMA) method. More specifically, So and
Chung (2014) used the Holt-Winters method to predict the
Niño region 3 SST index, and the final root mean square
errors from January 1933 to December 2012 were 0.303 by 1-
month-ahead and 1.309 by 12-month-ahead. Given that the long-
term prediction was poor, they introduced an improved Holt-
Winters model to deal with periodically stationary time series.
Rosmiati et al. (2021) used the ARIMA method to predict ENSO
regional SST Niño 3.4 and found that the ARIMA model stage
is well suited for predicting short-term ENSO events. However,

the occurrence and evolution of ENSO are nonlinear and the
methods mentioned above are incapable of extracting inherent
characteristics from nonlinear problems with a huge quantity
of raw data. Therefore, conventional statistical methods are not
ideal for complex pattern recognition and knowledge discovery.

In contrast, the DL method, which does a good job
constructing an end-to-end mapping model for high-
dimensional data with complex associations, is considered
to have significant potential to make ENSO forecasts. To be
more specific, Shukla et al. (2011) used an adaptive neural
network (ANN) model to predict the rainfall index by selecting
the Niño 1 + 2, 3, 3.4, and 4 indexes as predictors. The results
show that the ANN model outperforms all the linear regression
models. Unfortunately, the ANN model is unable to capture
and process the sequence information in the input data, so
researchers must resort to a recurrent neural network model
to improve prediction accuracy. Mcdermott and Wikle (2017)
used the Bayesian spatial-temporal recurrent neural network
model to predict the Oceanic Nino Index with a lead time of 6
months. In an other study, Zhang et al. (2017) leveraged long
short-term memory (LSTM) to predict the variation of SSTs in
the Bohai Sea, and Broni-Bedaiko et al. (2019) applied seven
input predictors to obtain stable predictions with a lead time of
11 months. Noticeably, LSTM, as an improved recurrent neural
network model, offers long-term memory with several control
gates and is, thus, suitable for dealing with sequence modeling
problems. However, the single-point prediction method based
on LSTM ignores the spatial correlation of SST and breaks the
continuity of the temperature distribution.

To mitigate the drawbacks of the LSTM model, Xingjian et al.
(2015) proposed a convolution LSTM (ConvLSTM) architecture
to implement the precipitation prediction, where convolution
layers are added based on LSTM to capture spatial features. He
et al. (2019) proposed a DLENSO model based on ConvLSTM
to forecast ENSO events, and the simulation results indicate
that it outperforms the conventional LSTM model. Gupta et al.
(2020) proved that using a ConvLSTM network to predict the
Niño3.4 index overcomes the spring predictability barrier. For
ENSO forecasts, ConvLSTM not only obtains the sequential
correlation of a single point over time series but also exploits
the spatial correlation of the region at a certain time through the
convolution operation (Mu et al., 2019).

Thus, it can be easily found that the above-mentioned
DL methods are capable of mining the correlation of
high-dimensional data to carry out complex modeling and
significantly improve the prediction accuracy of ENSO events.
However, the drawback of these DL-based methods is that they
only build a single depth model for predicting the next lead time
and try to predict longer lead times by iteration mechanism,
which still exposes them to the error-accumulation problem.
Thus, none of these models can provide reliable long-term
forecasts (i.e., over 1 year in advance).

In contrast with the above-mentioned DL methods, which
make long-term predictions by iterating a single prediction
model, Ham et al. (2019) proposed a parallel modeling scheme
for long-term prediction. For each lead time, an independent
deep neural network is built, and the parallel predictions of
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these models are constructed into a prediction sequence, which
improves the reliability of long-term predictions. The reasons for
this are as follows: First, long-term prediction is decomposed
into multiple parallel independent prediction tasks, so the
iterative process is replaced by parallel predictions to avoid
error accumulation. Next, different models establish different
scale patterns, which leads to multiscale modeling. Therefore,
this method extends the ENSO prediction time horizon from 1
to 1.5 years.

There is no doubt that the parallel model can provide reliable
long-term predictions. Nevertheless, this work only leveraged
the same DL model for making predictions with longer lead
times, which does not fully mine the variability of different tasks,
resulting in a shortage of reliable predictions. To overcome this
drawback, we propose herein an adaptive DL model selection
method that, depending on the prediction lead times, adaptively
chooses between two key structures of the DL model such as
the size of the convolution kernels and the mesh size of the
input. The idea of an adaptive selection scheme is inspired
by the receptive field in computer vision (Gál et al., 2004).
The receptive field is defined as the area of a pixel on the
feature map of a convolutional neural network (CNN) that is
mapped onto the original image (Figure 1). In this study, we
regard the spatio-temporal correlated area, which varies with
the prediction lead time as the receptive field, and then map
it to the size of convolution kernels and mesh size in the
input layer of the deep network model. By constructing the
relationship between prediction time, the size of convolution
kernels, and themesh size of the input layer we obtain an adaptive
selection of network structure with different lead times and
thereby improve the modeling ability with different lead times.
By enhancing the reliability of a single model, we thus improve
the reliability of parallel model predictions and the accuracy of
the results.

Themain contributions of this study can, thus, be summarized
as follows:

1. We propose a novel framework that uses parallel deep
CNNs with a heterogeneous architecture to forecast ENSO.
In this study, by replacing the traditional iteration process
with parallel predictions, the proposed scheme avoids error
accumulation. Meanwhile, with the help of the adaptive
selection of heterogeneous neural network architecture,
the modeling can be adjusted to accommodate different
tasks (lead times) and, thus, improve the reliability of
long-term predictions.

2. We investigate and formulate the relationship between
different prediction tasks (lead times) and neural network
architectures from a unique perspective, namely, the receptive
field from computer vision. We discover that with lead time
lengthened, the correlated spatial area should be appropriately
increased. From the view of computer vision, the prediction
spatial-temporal correlated area is corresponding to the
receptive field range, which is determined by the convolution
kernels size and sampling mesh size of the input in a
deep neural network. According to this, we design an
adaptive network structure selection method with respect

to lead time lengthened and applied it in the long-term
ENSO prediction.

3. We validate the effectiveness of the proposed method by
comparing its results with those of current efficient methods.
The experimental results demonstrate the advantages of the
proposed approach.

2. DATA AND METHOD

2.1. Data
Since ENSO is related to sea temperature, the monthly SST and
heat content (HC) (vertically averaged oceanic temperature in the
upper 300 m) anomaly maps are used as two input predictors.
The heat exchange in the ocean is carried out by vertical vortex
motion, convective mixing, and vertical ocean current convey, so
SST and HC are correlated to each other at different moments.
The anomaly maps extend over 0◦–360◦E, 55◦S–60◦N, and the
spatial resolution is 5◦ latitudes by 5◦ longitudes.

The dataset used in this study was originally published by
Ham et al. (2019). Since the observation data of global oceanic
temperature distribution is only available as of 1,871 (Giese and
Ray, 2011), only 146 are available for each calendar month.
To overcome the limitation, Ham et al. (2019) introduced
the Coupled Model Intercomparison Project phase 5 (CMIP5)
output to increase the number of samples. The CMIP5 output
is the simulation data from the numerical climate model that
contains the variables SST and heat content. Therefore, the
dataset consists of three-part data (as shown in Table 1): the
historical numerical simulations produced by the 21 CMIP5
models (Taylor et al., 2012), the reanalysis data from the Simple
Ocean Data Assimilation (SODA) (Giese and Ray, 2011), and the
Global Ocean Data Assimilation System (GODAS) (Behringer
and Xue, 2004).

2.2. Receptive Field of CNN
2.2.1. The Size of Receptive Field

Convolutional neural networks have the powerful ability to
hierarchically capture spatial structural information (LeCun
et al., 1998). They can map the effect of neighborhood points
on the center point through a convolution filter and, multilevel
convolution processing, they can map the evolution of dynamic
complexity between points. The convolution process of CNNs
extracts local characteristics from the global maps and calculates
dot products between values in the convolution filter and those in
the input layer. The jth feature map in the ith convolution layer
at grid point (x, y) is calculated by using

v
x,y
i,j = tanh





Mi−1
∑

m=1

Pi
∑

p=1

Qi
∑

q=1

w
p,q
i,j v

(

x+p−
Pi
2 ,y+q−

Qi
2

)

(i−1),m
+ bi,j



 , (1)

where the hyperbolic tangent serves as the activation function, Pi
andQi are horizontal and vertical size of the convolution filter for
convolution layer i, Mi−1 is the number of feature maps in layer

i − 1, w
p,q
i,j is the weight at grid point (p, q), v

(x+p−Pi/2, y+q−Qi/2)

(i−1),m

is the value of feature map m for convolution layer i − 1 at grid
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FIGURE 1 | Receptive field: same input and different convolutional kernel. The gray squares represent the padding. (A,B) illustrate how the input map converts the

output (feature map) through a convolution operation with 2×2 and 3×3 kernels, respectively.

TABLE 1 | The dataset for training and testing the model.

Data Type Period

CMIP5 Historical run 1861–2004

SODA Reanalysis 1871–1973

GODAS Reanalysis 1982–2017

point (x + p − Pi/2, y + q − Qi/2), and bi,j is the bias of feature
map j in convolution layer i.

In computer vision, the receptive field represents the spatial
mapping of each point after multilevel convolution operations;
that is, the size of the receptive field represents the ability to
acquire the spatial correlation range, as shown in Figure 1.
Figures 1A,B illustrate how the input map converts the output
(feature map) through a convolution operation with 2 × 2 and 3
× 3 kernels, respectively, so the receptive field of 1 unit in output
is a region containing 4 units in the input map in Figure 1A,
whereas it contains 9 units in Figure 1B. Given a deep CNN,
the receptive field term usually considers the final output unit in
relation to the network input. For example, as shown in Figure 2,
the receptive field of the unit in the final output map denotes
the area in the input map, which consists of every unit that
has propagated its value through the whole chain to the given
end unit.

It is easy to calculate the size of the receptive field of an
output unit in a basic CNN with a fixed structure, since only
the convolution and pooling layers can affect its size. The
convolution layer uses the kernel to execute the convolution

FIGURE 2 | Receptive field a deep CNN. (A) The first convolving: a 3 × 3

kernel over a 5 × 5 input padded with a 1 × 1 border of zeros using unit

strides. The second convolving: a 2 × 2 kernel using unit strides. (B) The first

convolving: a 4 × 4 kernel over a 5 × 5 input padded with a 1 × 1 border of

zeros using unit strides. The second convolving: a 2 × 2 kernel using 2×2

strides.

operation to multiply the receptive distance by the kernel size.
The pooling layer downsamples following a certain stride to
multiply the receptive distance by stride size. Thus, the receptive
field size can be formulated as

RFi+1 = RFi + (Ksize i+1 − 1)Si, (2)
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where RFi+1 and RFi are the receptive field of layers (i + 1) and
(i), respectively, with RF0 = 1, Si is the product of all layer strides
before layer (i + 1) (i.e., Si =

∏i
i=1 Stride i), and Ksize i+1 is the

size of convolution kernels at layer (i + 1). Thus, the receptive
field area of the last feature map on the input image is (RFn, RFn),
where n is the last convolution layer in the network.

Note that Equation (2) is calculated based on the assumption
that the shape of input images and convolution kernels are
square, whereas the input anomaly maps and convolution in the
model are rectangular, so Equation (2) must be rewritten as

RFi =
(

RFxi ,RF
y
i

)

RFi+1 = RFi + (Pi+1 − 1)× Si

RFi+1 = RFi + (Qi+1 − 1)× Si (3)

where the receptive field area of the last feature map on the input
image is (RFxn,RF

y
n).

2.2.2. Relationship Between Receptive Field and

Lead Time

In the simulated prediction, each grid point in the input is spatio-
temporally correlated. Specifically, owing to the complicated
interactions of the global climate system, the one grid point is
highly correlated to the near points and distant points, and hence
the slight changes of grid point will lead to the variation of other
points. Therefore, in this study, the spatio-temporal correlated
area can be regarded as the receptive field in CNN.

All related works applied only a single DL model for multi
year ENSO forecasts, which use the same size of convolution
kernels and the same step size for different lead times. Therefore,
according to Equation (2), the receptive field is the same for
different lead times. However, with the increase of prediction
lead times, the spatio-temporal correlated area of each point
differs. Sønderby et al. (2020) used 64 km as the basic unit to
predict the probability of precipitation in the next 8 h. With
an input patch covering 1, 024 × 1, 024 km and an average
precipitation displacement of 1 km per min, they set the target
patch to cover 64 × 64 km centered on the input patch. They
mentioned that accurate predictions of the target tensor for
a longer lead time require a larger spatio-temporal context
around the target. Therefore, in the prediction problem, the
spatio-temporal correlated area (receptive field) of the target
should expand with the increase of lead time. As mentioned,
the receptive field size is determined by the stride size and the
size of the convolution kernels. To this end, we now design a
scheme by adjusting the two parameters to appropriately expand
the receptive field size.

First, the input mesh size can be selected by changing the
stride size through multiple pooling processes. The mesh size
of the input means the receptive field resolution; that is, each
input grid point represents the number of original grid points.
The increase in receptive field resolution allows not only the
small range simulations and noises to be smoothed but also the
receptive field to be expanded. We assume that the receptive field

resolution should increase by a multiple of four as the prediction
lead time increases. In prediction modeling, the predicted lead
times are divided into three stages for ENSO forecasts: short,
medium, and long term, which can be stated as

Tterm =











Short term (ST), |lt|−1
5 ≤ 1

Medium term (MT), 1 <
|lt|−1
5 ≤ 3

Long term (LT), 3 <
|lt|−1
5 ,

(4)

where lt is the lead time of ENSO forecasts, which ranges from 1
to 20 months. Thus, the receptive field resolution for these three
terms is 1 : 4 : 16.

The mesh size of the original image is changed and, with
the increased lead time, the receptive field is enlarged at the
first assumption. However, in computer vision, a larger receptive
field does not mean better performance. Luo et al. (2016) also
refer to the concept of an effective receptive field. Increasing the
mesh size causes the receptive field to expand fourfold, so it is
slightly larger.

Second, in the process of convolution feature extraction, we
change the kernel size to adjust the size of the expanding receptive
field. We assume that the receptive field enlarges at the rate
of 2αN−1 (0 < α 6 1) with the increase of lead term; N
represents Tterm and its value is 1, 2, 3 for each of these three
terms. In conclusion, we formulate the relationship between
the prediction lead time, input mesh size, and kernel size to
increase the receptive field and realize multi-task modeling of
spatio-temporal differences.

2.3. Architecture Details
Given that the same single model for multi year ENSO forecast is
often unreliable and more difficult to train (Chevillon, 2007; Shi
and Yeung, 2018), a more promising strategy must be proposed
for long-term prediction. Thus, considering the differences in
the spatio-temporal dependencies of different tasks, we propose
a framework that uses parallel deep CNNs with heterogeneous
architectures to forecast ENSO. Figure 3 illustrates the schematic
structure of the framework, which is called the MS-CNN model
and consists of four parts: the input mesh size selection (IMSS)
module, the multiterm swappable convolution (MSC) module,
the fully connected (FC) module, and the parallel prediction
result splicing (PPRS) module.

The IMSS module automatically selects different sampling
mechanisms according to the three prediction terms. The
sampling mechanism changes the mesh size of the input by
selecting the pooling strategy to increase the receptive field.
The hypothesis that the resolution of the receptive field should
increase with prediction time is realized by the subsampling
mechanism. SST and HC anomaly maps for three consecutive
months serve as original input predictors.

In the MSC module, we set up a heterogeneous network
architecture to select one model of these three-term periods
adaptively based on the CNN network model (Ham et al., 2019).
This module serves mainly to adjust the expanding receptive field
of the first module by setting the size of the convolution kernels to
appropriately expand the receptive field. In the proposed model,
before the feature map enters the fully connected layer of the
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FIGURE 3 | The architecture of the MS_CNN model. (1) Input mesh size selection (IMSS) module aims to increase the input mesh size as the prediction lead time

lengthened. (2) Multi-term swappable convolution (MSC) module is mainly to adjust the appropriate receptive field expansion. (3) Fully connected (FC) module

transforms the feature map of CNN to vector, and then output the prediction of Nino 3.4 index. (4) Parallel prediction result splicing (PPRS) module splices the Nino

3.4 index of each lead time at the parallel network.

FC module, the process after downsampling is convolution →

pool→ convolution→ pool→ convolution. We assume that the
three convolutions have sizes (P1,Q1), (P2,Q2), (P3,Q3), so the
receptive field of these three terms is

RF = 4s((4P3 + 2P2 + P1 − 3), (4Q3 + 2Q2 + Q1 − 3)), (5)

where s represents the different downsampling scales of the three
terms, with s = 0 for ST, s = 1 for MT, and s = 2 for LT.

To satisfy the above assumption that the receptive field grows
at the rate of 2αN−1 (0 < α 6 1) with respect to the increase
in the prediction lead time, the receptive field should grow
appropriately for different lead terms. Therefore, we formulate
the relationships between input mesh size (downsampling
strategy), convolution kernel size, and the time period in the
network to control the size of the receptive field under these three
terms and improve the accuracy of prediction. The formula is

(C1,C2) = (P3P2P1, Q3Q2Q1)

s
∏

m=1

2(m−1), (6)

where s is the same as in Equation (5), C1 and C2 are the
same constants for the three terms in the model. We control
the receptive field by adjusting C1 and C2 and use the large
convolution kernels for the short term and the small convolution
kernels for the long term to make the product (6) a constant.

The FC module transforms the CNN feature map to a vector
and then outputs the prediction of the Niño 3.4 index. The PPRS
module is used to splice Niño 3.4 index of each lead time at
the parallel network, and the final result is the prediction of the
whole lead time series. In this study, by replacing a traditional
iteration with the same model with parallel prediction, the
proposed scheme avoids error accumulation. Thus, by designing
the heterogeneous architecture model, the evolution of different
lead times can be fully explored.

TABLE 2 | Correlation skill (Corr) of lead times with different layers.

Layers 2 3 4 5

6-month 0.693 0.742 0.697 0.692

12-month 0.522 0.540 0.514 0.512

18-month 0.307 0.328 0.327 0.305

Bold values is the best value of the four layer parameters.

TABLE 3 | Root Mean Square Error (RMSE) of lead times with different layers.

Layers 2 3 4 5

6-month 0.631 0.582 0.606 0.625

12-month 0.754 0.742 0.753 0.757

18-month 0.852 0.848 0.853 0.859

Bold values is the best value of the four layer parameters.

3. EXPERIMENTS

We ran the numerical experiments on a single NVIDIA
RTX2080ti-11G, and the proposed model was implemented by
using Python 3.6 with Pytorch.

3.1. Experiment Settings
a) Input and output data: Sea surface temperature and HC
anomaly maps are used as inputs. The output of the model is the
Nino 3.4 index, which is the area-averaged SST anomaly over the
Nino3.4 region, as a predictand to be predicted up to 20-months-
ahead. That is, only SST is used to calculate the actual result of
the Nino3.4 index. HC is just an additional input predictor. More
specifically, the model uses SST and HC for three consecutive
months as input, so the input size is 6 × 72 × 24 (an anomaly
map size is 72 × 24). A single network output is the predicted
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FIGURE 4 | The correlation skill (Corr) between predicted values and actual values with different input sizes. The different input size represents the different regional

ranges: area1 (yellow) represents the Nino3.4 region (5◦S–5◦N, 170◦W–120◦W), area2 (gray) represents the region of (15◦S–15◦N, 170◦E–100◦W), area3 (orange)

represents the region of (30◦S–30◦N, 125◦E–55◦W), and area4 (blue) represents the region of (55◦S–60◦N, 0◦E–360◦E).

FIGURE 5 | Root Mean Square Error between predicted values and actual values with different input sizes. Refer to Figure 4 for the information of the area1, 2, 3, 4.

value of the Nino3.4 index for the corresponding lead month,
so the size is 1 × 1. The final output of the parallel networks
is a 20 × 1 vector of Nino3.4 index from 1- to 20-month-lead.
The transfer learning technique is used to optimally train the
model. The SODA of 1871–1973 is used for the training period
to minimize the systematic errors caused by the CMIP5 samples
(from 1861 to 2004). Then, we use the GODAS of 1982–2017 for
testing the forecast skill of the model.

b) Evaluation metrics: To evaluate the performance of the
MS-CNN model, we adopt two commonly used metrics such as
Temporal Anomaly Correlation Coefficient Skill (Corr) and Root

Mean Square Error (RMSE) of the prediction lead months. Corr
measures the linear correlation between the predicted value and
the actual value, whereas the RMSE measures the difference. The
formulas for calculating the Corr and RMSE are

Corrl =

12
∑

m=1

∑e
t=s

(

Yt,m − Ȳm

) (

Pt.m.l − P̄m,l

)

√

∑e
t=s

(

Yt,m − Ȳm

)2 ∑e
t=s

(

Pt.m.l − P̄m,l

)2
(7)
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RMSEl =

12
∑

m=1

√

∑e
t=s

(

Yt,m − Py·m.l

)2

|e− s|
(8)

where P and Y are the predicted value and observed value,
respectively, P̄m,l and Ȳm are the mean values of P and Y , m =

1–12 is the calendar month, the label t is the forecast target
year, and s = 1982 and e = 2017 are the starting and ending
years, respectively.

3.2. Comparison of Different MS-CNN
Structures
To further analyze the relationships between the different
network structures and simulation results and to prove that the
proposed model is reasonable, we compare it with three aspects
of the MS-CNN model: (1) the number of layers, which is a
fundamental setting for deep neural-network structure; (2) the
size of the region on original maps, which is the geographic scope
of the original area; and (3) the relationship between the three
terms, the size of the input mesh, and the size of the convolution
kernel, which represent the change in receptive field size as the
lead time lengthens. Experiments (1) and (2) were implemented
on the same parallel model based on CNNs to select the optimal
basic parameters for the subsequent Experiment (3).

Tables 2, 3 show the comparison of Corr and RMSE between
different layers. The results show that, (1) at each layer, both
metrics deteriorate as the lead time increases, and (2) more layers
do not always guarantee better performance. It is observed that
the RMSE of the results decreases at the outset and then increases
over the next few lead months. Previous experiments (Mu et al.,
2019) show that implementing more layers does not improve
performance, because of insufficient training data for a large
number of parameters. In this experiment, three layers can be
considered as an appropriate choice under the two metrics.

Next, Figures 4, 5 show the performance of different original
anomaly maps with a three-layer network. In these figures, areas
1, 2, 3, and 4 represent the Nino3.4 region(5◦S–5◦N, 170◦W–
100◦W), (15◦S–15◦N, 170◦E–100◦W), (30◦S–30◦N, 125◦E–
55◦W), (55◦S–60◦N, and 0◦E–360◦E), respectively. The existing
DL models for ENSO forecasting use mostly the Nino3.4 area as
original input, but Park mentioned that SST anomalies outside
the equatorial Pacific Ocean can lead to an ENSO event with
a time-lag longer than 1 year (Park et al., 2018). Therefore, we
explore how the region size of original anomaly maps affects
multi year forecasts. The results show that (1) at each region,
both metrics deteriorate as the lead time increases, and (2) larger
original anomaly maps result in more accurate forecasting. These
results show that the SST patterns are related to each other over
a vast area of the ocean, which is consistent with the opinion
of Park. We, thus, choose the entire anomaly maps (55◦S–60◦N,
0◦E–360◦E) as the original maps.

With the fixed layer and original map area, we next explore
the relationship between lead time, input mesh size, and the size
of the convolution kernels to determine how the receptive field
changes to improve the reliability of ENSO predictions as the
lead time increases. Figures 6, 7 show that single-scale means

FIGURE 6 | The Corr between predicted values and actual values with

different relationships among lead months, input mesh size, and convolution

kernel size. Their relationship determines the ratio of the receptive field size in

the three prediction lead terms. Single-scale means that input mesh size and

convolution kernel size are the same with the increase of lead months. The

Conv3d are A/C/E (8,4), B/D/F (4,2) at MSC module. Thus, the receptive field

size about these three terms has a ratio of 1:1:1. Multi scale(1) means their

relationship is consistent with Equation (6). Noticeably, these three terms

correspond to the different input mesh size by downsampling the original map

and the ratio of input mesh size is 1:4:16. The Conv3d are different at MSC

module, is A(8,4)/B(4,2),C/D (4,2), E/F (2,1). So the receptive field size about

these three terms has an approximate ratio of 1:2.5:4. Multi scale(2) have the

same input mesh size as multi scale(1) in these three lead terms. But multi

scale(2) uses the same Conv3d (A/C/E (8,4), B/D/F (4,2)) at MSC module, so

the relationship is not consistent with Equation (6). The size of the receptive

field about these three terms has a ratio of 1:4:16.

FIGURE 7 | Root Mean Square Error between predicted values and actual

values with different relationships among lead months, input mesh size, and

convolution kernel size. Their relationship determines the ratio of the receptive

field size in the three prediction stages. Refer to Figure 6 for the information

on the single-scale, multi scale (1), and multi scale (2).

that the original map does not downsample for any of these
three lead terms. In the same way as with the MSC module,
the sizes of the convolution kernels for the three lead terms are
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FIGURE 8 | Multi year El Nino-Southern Oscillation (ENSO) forecasts Corr in the MS-CNN model. (A) The all-season correlation skill of the 3-month-moving-averaged

Nino3.4 index as a function of the forecast lead month in the model (red), HAM-CNN model (blue), ZG-PSDL(black), and U-net model(brown). (B,C) The correlation

skill of the Nino3.4 index targeted to each calendar month in the MS-CNN model (B) and the HAM-CNN model (C). Hatching highlights the forecasts with correlation

skills exceeding 0.5.

all the same [A/C/E (8,4) and B/D/F (4,2)]. Thus, the receptive
field size about these three terms has a ratio of 1:1:1. Multis
cale (1) means that lead times are divided into three terms,
and these three terms correspond to the different mesh size
of the input map by downsampling. The relationship between
the three terms, the mesh size, and the size of the convolution
kernel is consistent with Equation (6): C1 = 64 and C2 =

16, the Conv3d is A(8,4), B/C/D (4,2), E/F (2,1), so the size of
the receptive field about these three terms has the approximate
ratio of 1:2.5:4. Multiscale (2) is similar to multiscale (1), but
the relationship is not consistent with Equation (6). Instead, it
uses the same Conv3d [A/C/E (8,4), B/D/F (4,2)] in the MSC
module, so the size of the receptive field about these three terms
has a ratio of 1:4:16. We can observe from Figures 6, 7, both
Corr and RMSE, the multi scale (1) scheme corresponding to
Equations (5) and (6) perform best. The receptive field nearly
expands at the rate of 2αN−1 (α = 1) for three terms. Moreover,
with increasing lead time, the performance gap between the
three terms increases. The single-scale scheme does not build
different receptive field models to differentiate spatio-temporal
dependencies. Multi scale (2) scheme expands the receptive
field indefinitely. This scheme only expands the receptive field

resolution but does not change the kernel size to adjust the
receptive field. Neither of these two schemes fits the hypothesis,
and the ratio does not expand at the rate of 2N−1 for these three
terms. These results prove that the hypothesis is correct and
that the method to appropriately expand the receptive field size
is reasonable.

3.3. Performance Comparison of Different
Models
We now compare the MS-CNN model with the following SST
prediction models and multiscale models of computer vision:

a. The method of Ham et al. (2019). A multi year ENSO forecast
model based on CNNs and denoted HAM-CNN. The parallel
model is formulated separately for each forecast lead month
and target season.

b. The method of Zheng et al. (2020). A model with four stacked
composite layers for forecasting the evolution of the SST. It is
denoted ZG-PSDL.

c. UNET (Ronneberger et al., 2015).Amultiscalemodel for image
segmentation. The features of different scales are extracted by
using downsampling, and then the output of upsampling is
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combined with feature maps of the corresponding scale to the
decoder.

d. LSTM-FC (Zhao et al., 2019). An LSTM model with a FC
neural network.

The deep neural networks are trained with the same number of
epochs for a meaningful comparison: 80 epochs are used for the
first training using the CMIP5 output, and 30 epochs are used for
the second training using the reanalysis data. The total number
of convolution filters is 30. An Adam optimizer is applied during
the training process. The size of the mini-batch for each epoch is
set to 64, and the learning rate is fixed to 0.005.

Inspired by Ham et al. (2019), Figure 8 facilitates the
comparison. Figure 8A shows the all-season Corr of the 3-
month moving-averaged Niño3.4 index from 1982 to 2017. We
experiment with forecasting 1–20 months in advance, and the
forecast accuracy of the Niño3.4 index in the MS-CNN model
is systematically superior to that of the other models, especially
for lead times longer than 6 months. The all-season Corr of the
Niño3.4 index in the MS-CNN model is greater than 0.50 for up
to a lead time of 16 months, whereas it is 0.41 for a lead time
of 16 months in the HAM-CNN model. The HAM-CNN model
provides accurate predictions, but when we introduce multiscale
network architecture and the method of adaptively controlling
the size of convolution kernels to enlarge the receptive field (that
is, the MS-CNN model), the prediction accuracy significantly
improves for medium to long lead times.

Zhenggang’s model and UNET use a multiscale model, but
both models have the same convolution kernels for different
lead times, which prevents them from controlling the size of
receptive fields. Moreover, both models are fused multiscale
feature maps, which introduce noise so that the results fluctuate
badly. Therefore, we conclude that the MS-CNN model provides
a skillful and stable forecast of ENSO phenomena for up to a lead
time of 18 months.

The MS-CNN model also provides a greater Corr than the
HAM-CNN model for the Niño3.4 index for almost each target
season (as shown in Figures 8B,C). The improvement in Corr
is clear at longer lead times and is robust for target seasons
between the late boreal spring and autumn. For example, the
forecasts for the May-June-July season have a correlation skill
exceeding 0.50 up to lead time of 10 months for the MS-CNN
model, but only up to a lead time of 6 months for the HAM-CNN
model. In addition, for theHAM-CNNmodel, the Corr fluctuates
significantly for medium lead time (11–16months), but the result
of the model is relatively stable and decreases for longer lead
times. This narrows the gap in the ability of the proposed model
to forecast different target seasons. The conclusion imposed is
that the MS-CNN model is robust and essentially independent
of the spring predictability barriers.

3.4. Results of the MS-CNN Model
Considering the heat exchange in the ocean, we analyze the
influence of SST and HC on the prediction results. Figure 9
shows the performance of different input predictors with CNN
and the MS-CNN model. The results show that: (1) the Corr
of only SST is higher than only HC, which confirms that SST

FIGURE 9 | The Corr between predicted values and actual values with

different input predictors based on (A) CNN model, (B) MS-CNN model. The

red line shows SST and heat content (HC) were all used as input predictors.

The blue line shows only SST was used as input predictors. The black line

shows only HC was used as input predictors.

is the most important factor. The reason is that the Nino3.4
index is obtained by calculating the area-averaged SST anomaly
over the Nino3.4 region, so the input of SST is the key factor
that decides the fluctuation of results; (2) SST+HC scheme
both perform best on CNN and MS-CNN model. These results
indicate although the predicted Nino3.4 index is only related
to SST, the HC as an input predictor can significantly improve
the accuracy of long-term prediction. The reason is that internal
ocean motion, such as vertical vortex motion and convective
mixing, produces heat exchange. To be more specific, the ocean
under the surface can transfer heat to the ocean surface for a
while, and vice versa. Therefore, using SST and HC for several
previous months as two input predictors, the model can extract
some laws and features of ocean internal motion for better
long-term prediction.

We regarded the spatio-temporal correlated area as the
receptive field in the study. Given the complicated interactions
of the global climate, each grid point is highly correlated to
near points and distant points, so slight changes of a grid point
will cause other points to vary. For short-term forecasting, a
small correlated area is enough to predict the change of the
grid point. But for long-term forecasting, a larger correlated
area should be used. First, we smooth out the fluctuations and
noise by changing the mesh size and then adjust the receptive
field by changing the convolution kernel size. The correlation
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FIGURE 10 | Predicted and actual values of the January-February-March season Nino3.4 indexes for four different lead months.

can be extracted from the convolution kernel of CNN. We
make the physical assumption that as the prediction lead time
increases, the space temporal correlated area of each grid point
should increase appropriately, that is, the receptive field of a
pixel in CNN last layer should increase appropriately. More
specifically, we assume that the receptive field enlarges at the
rate of 2αN−1 (0 < α 6 1) with respect to the increase
in the leading term. Figure 6 shows that the assumption is
reasonable and its performance is best in these three schemes.
The traditional method did not consider the dynamic variation
that the spatio-temporal correlated area of grid point will change
as the prediction lead time increases. The single-scale scheme,
which is the traditional method of using only a single model
for all lead times, does not build different receptive field models
to differentiate spatio-temporal dependencies. The multi scale
(2) scheme, which only expands the receptive field resolution
by downsampling, does not change the kernel size to adjust the
receptive field and lead to the receptive field expand indefinitely.
Therefore, the physical assumption that as the prediction lead
time increases, the spatio-temporal correlated area of each grid
point should increase appropriately is correct.

The Nino3.4 index from 1982 to 2017 was predicted 1–20
months in advance in this experiment. The result from Figure 8A

shows that the 1-month-lead prediction is the most accurate, and
the 20-month-lead prediction is the least accurate. Specifically,
the curve produced by the 1-month-lead prediction of Corr is
0.96, and the corresponding RMSE is 0.31; the Corr predictions
with a 16-month lead are all greater than 0.50; even for the 20-
month-lead prediction, the worst Corr approaches 0.40, and the
corresponding RMSE is 0.83. As shown in Figure 8B, the MS-
CNN model generally provides accurate predictions for autumn

and winter (e.g., for December, January, and February, Corr
is greater than 0.50 for 19 consecutive months). Although the
results for spring and summer are improved compared with other
models, the prediction results remain poor in the medium and
long term.

The Niño3.4 index for the January-February-March season
for 1-, 6-, 12-, and 18-month-lead predictions demonstrates
that the proposed MS-CNN model predicts the evolution and
the ENSO amplitude by the 12-month-lead time (Figure 10).
The Corr values are 0.96, 0.87, 0.68, and 0.60, respectively.
However, at times with strong EI Niño or La Niña phenomena,
the prediction errors become relatively large with increasing
lead time. Thus, the proposed method is better than previous
methods but does not work well for longer lead times in a more
demanding environment.

4. CONCLUSION

Improving the predictability of ENSO is the key to better seasonal
predictions across the globe. At present, the DL-based methods
for multi year ENSO forecasts only focus on the application
of deep neural networks, but none consider the distribution
characteristics of oceanic spatio-temporal data. Using SST and
HC for several previous months as two input predictors, the
model can extract some laws and features of ocean internal
motion for better long-term prediction. It can be concluded that
it is feasible to improve the reliability of the long-term prediction
by adding more related predictors as input.

The spatio-temporal correlated area was regarded as the
receptive field in this study. We make the physical assumption
that the space-temporal correlated area of each grid point should
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increase appropriately with the lead time increases, that is, the
receptive field of a pixel in CNN last layer should increase
appropriately. Given the differences in the spatio-temporal
dependencies of different lead times for forecasting ENSO, we
build a framework that we call the ”MS-CNN model” by using
parallel deep CNN with a heterogeneous architecture for multi
year ENSO forecasts. First, by replacing the traditional iteration
process with parallel predictions, the proposed scheme avoids
error accumulation. Second, by using an adaptive selection
of heterogeneous neural network architectures, we adaptively
expand the receptive field with increasing prediction lead time.
The results of using the model on a real-world dataset show that
the hypothesis (i.e., the receptive field expands appropriately as
the prediction lead time increases) is reasonable. The reanalysis
data for 1982–2017 were predicted 1–20 months in advance.
Furthermore, the proposed method provides more accurate
predictions than other models, especially for a longer lead
times: the Corr is nearly 0.60 for 13-month-ahead and 0.40
for 18-month-ahead.

Although the method proposed for multi year ENSO forecasts
significantly improves upon the performance of the conventional
methods, some shortcomings remain. For instance, when strong

ENSO events happen, the prediction of the Niño3.4 index is

relatively inaccurate, and the errors increase with increasing

prediction lead time. In addition, the predictions are more
accurate than those of other models only for spring, as
opposed to all seasons. Thus, in future research, we will
focus on the following three themes: (1) introducing more
related measurements, such as westerly wind bursts and warm
water volume, to model the spatio-temporal process more

comprehensively and improve ENSO forecasting for the spring
season; (2) integrating the CONVLSTM with the proposed
method to determine whether it is generalizable and whether it
can further improve the accuracy of multi year ENSO forecasts;
(3) learning more knowledge in the marine field and improving
the reliability of forecasting by combining the DL methods with
numerical simulation models.
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Global warming has intensified the rise in sea levels and has caused severe ecological

disasters in shallow coastal waters such as the Northeastern China’s Bohai Sea. The

prediction of the sea surface height anomaly (SSHA) has great significance in the context

of monitoring changes in sea levels. However, the non-linearity of SSHA due to the

occurrence of dynamic physical phenomena poses a challenge to current methods(e.g.,

ROMS, MITgcm) that aim to provide accurate predictions of SSHA. In this study, we have

developed an optimized Simple Recurrent Unit (SRU) deep network for the short- to

medium-term prediction of the SSHA using Archiving Validation and International of

Satellites Oceanographic (AVISO) data. Thanks to the parallel structure of the SRU,

the computational complexity of the deep network can be reduced to a considerable

extent and this makes the short- to medium-term prediction more efficient. To avoid

over-fitting and a vanishing gradient, a skip-connection strategy has been utilized for

model optimization, and this improves significantly the accuracy of prediction. Detailed

experiments were carried out in the Bohai Sea to evaluate the proposed model and it

was demonstrated that the proposed framework (i) outperformed significantly the current

deep learning methods such as the BP (Backpropagation), the RNN (Recurrent Neural

Network), the LSTM (Long Short-term Memory), and the GRU (Gated Recurrent Unit)

algorithms for 1, 5, 20, and 300-day prediction; (ii) can predict the short-term trend in the

SSHA (for the next day or 2 days) in real time; and (iii) achieves medium-term prediction

in seconds for the next 5–20 days and shows great potential for applications requiring

medium- to long-term predictions. To the best of our knowledge, this is the first paper that

investigates the effectiveness of the SRU deep learning model for short- to medium-term

SSHA predictions.

Keywords: short-to medium-term, sea surface height, recurrent neural network, simple recurrent unit,

deeplearning model
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1. INTRODUCTION

1.1. Research Background
As a result of global warming, the sea-level has rose considerably
in the last few decades (Fasullo et al., 2020). Studies have shown
that in recent decades the global sea-level has changed from a
relatively low average rate (0.4 mm/a) of increase in the past
two thousand years to a much higher rate (3.6 mm/a) (Kittel
et al., 2021). However, the magnitude of the rise in the global
sea-level is not consistent in space, and the changes in sea-level
have significant regional characteristics from the decadal to the
multigenerational scale. The global average rate of rise in sea-
level for the period 1993–2019 was 3.24± 0.3 mm/a; in the same
period, the rate of rise of sea-level along China’s coast was 3.9
mm/a (Kappelle, 2020). Sea level rise along China’s coast is more
serious (Jeon et al., 2021). In the last 10 years, the average sea-
level of China’s coastal areas has been at a high level in the past 40
years, being about 100 mm higher than the average sea-level in
1980–1989. Due to the shallow water of the Bohai Sea (average
18 m), the rate of rise of the sea-level in this area for 1980–
2019 was 3.7 mm/a. It is estimated that, in the next 30 years, the
sea-level of the Bohai Sea will rise by 55–180 mm (Tang et al.,
2021).

Rises in sea-level have a serious impact on the economic
and social development of the coastal areas of China. A recent
analysis of the Global Navigation Satellite System (GNSS)
data over a 10 year period showed that although, in the
main, the sea-level in the north coast of the Yangtze River
estuary has risen, the sea-level in the west coast of Bohai
Bay has decreased significantly. The west bank of Bohai Bay
has numerous rivers due to the low lying and flat terrain
and strong land subsidence, hence this area has become one
of the most sensitive areas to experience regional sea-level
changes (Wang et al., 2017; Cui et al., 2018; Feng et al.,
2019).

The factors affecting sea-level change include melting glacial
ice, precipitation, evaporation, runoff, and other seawater
exchange processes, as well as changes in seawater density due
to changes in temperature or salinity (Jeon et al., 2021). These
factors are classified as spatial effects (Tang et al., 2021). It was
reported (Guo et al., 2015) that the seasonal variation and spatial
distribution of SSHA were related to the changes in the volume
of seawater and the effect of differences in temperature, which
are due to changes in the onset of the monsoon and the seawater
temperature, respectively. Also, based on satellite altimetry data,
the spatial and seasonal variations of the SSHA in the coastal
waters to the east of China have been analyzed (Yan et al.,
2020).

Given the increase in sea-level, how best to accurately predict
the changes in sea-level and then make risk management
decisions and adopt effective prevention strategies based on the
science has become an important issue of widespread concern
to the scientific community and society. However, the stochastic
dynamics and instabilities of changes in sea-level brings many
challenges with respect to the prediction of the SSHA and may
limit our ability to respond in a timely manner to the effects of
global change (Yu et al., 2019a; Wang et al., 2020).

1.2. Related Works
The traditional research methods for prediction of the SSHA
mainly comprise physics-based and statistical-based methods.
Based on the sea-level, temperature, salinity, wind field, and
other relevant environmental parameters, the physical processes
that control ocean movement and circulation may be described;
then a method of converting the physics-based model to obtain
a model that describes the changes in sea-level is called a
physics-based method. In general, for long-term prediction,
physics-based methods tend to have excellent characteristics,
while statistical-based methods are more suitable for short-
term prediction in specific practical applications. Physics-based
models have very strict requirements for high-performance
computing systems: first, the solution of the model requires
very large computing power, and the real-time requirements
for prediction are very high, thus the model must complete
the calculation within the specified time. Second, with the
continuous improvement of forecasting accuracy, the required
computing power will show a geometric growth. Therefore, the
effective predictable period of the current prediction system
based on physical model is about one week and the accuracy
of ∼0.9 (Qiao et al., 2016, 2019). Statistical-based methods
and deep learning networks using a data-driven approach to
SSHA forecasting, and have the ability to do so with less
computational and time costs. The current method achieves
average predicting accuracy of coming 24, 48, 72, 96, and 120
h by 0.9, 0.85, 0.79, 0.74, 0.68, respectively (Shao et al., 2015;
Song et al., 2020). Statistical-based methods focus on building
a prediction model using the relationships between historical
data. The interaction of factors that affect the changes in sea-
level make the time-series data exhibit variation and non-
linear characteristics, which lead to large deviations between
the prediction results, based on the traditional time-series, the
statistical model, and other conventional methods, and the actual
results; moreover it is difficult to obtain satisfactory results. With
the development of artificial intelligence (AI)-based algorithms,
deep learning methods have shown great power in being able
to undertake prediction tasks. The deep learning method has
obvious advantages in being able to process a large number
of samples and non-linear data, and can describe the highly
complex relationships existing between the input data and the
output data. Well-known deep learning networks for spatio-
temporal learning and predictions include the Recurrent Neural
Network (RNN) (Mahata et al., 2019), the Long Short-Term
Memory (LSTM) (Graves, 2012), and the Gated Recurrent Unit
(GRU) (Li et al., 2021), etc. Recently, the prediction systems based
on these neural networks have been applied for the prediction of
the SSHA (Shao et al., 2015; Song et al., 2020).

1.2.1. Recurrent Neural Networks (RNN)

Traditional neural networks usually assume that all inputs (or
outputs) are independent of each other. However, in the process
of practical operation, there is a dependency between the current
state of each node and the previous steps, and this is the basic
assumption of expanded RNN. The signal feedback structure
of the recurrent neural networks (RNN) (Mahata et al., 2019)
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adopts the output state of the network at the time of K associated
with the historical signal before the time of K, in order for it to
have dynamic characteristics and a memory capability. However,
RNNs are challenged by the vanishing gradient problem, where
the gradient decreases over time (Mahata et al., 2019). Moreover,
the RNN may also suffer from the gradient explosion problem.
Although many techniques have been developed to address these
issue, it remains difficult to obtain long-term memory.

1.2.2. Long Short-Term Memory (LSTM)

The phenomena of the vanishing gradient and the exploding
gradient of the RNN may not mean that learning cannot be
implemented, but even if it can, the process will be very slow. One
solution is to establish the weight of linear self-connections with
a value close to 1 in the self-connection part, which is called the
leaky unit. At present, the most effective way to adjust the weight
of the linear self-linking is through gates, thus allowing the weight
of linear self-linking to change and make adjustments at each
step. LSTM (Graves, 2012) is an implementation of gated RNNs.
The LSTM is a new cyclic network architecture training method
featuring a gradient based learning algorithm. The approach can
learn how to span a time interval of more than 1,000 steps to
overcome the problem of error return. The LSTMhas successfully
solved the defects of the original cyclic neural network and has
become the most popular RNN (Yu et al., 2019b).

1.2.3. Gated Recurrent Unit (GRU)

Due to its complex internal structure, the training of the LSTM
network is the very time-consuming and the LSTM exhibits a
poor real-time capability. With the rapid growth in demand for
speech-to-text applications, computing resources are currently
not even keeping up with its needs. To solve this problem,
Gated Recurrent Unit (GRU) network model (Li et al., 2021) was
proposed on the basis of the original LSTM model. The forget
gate and the input gate are combined into a single update gate,
and the cell state, the hidden state and other changes are also
mixed. The GRU neural network has been successfully applied
to sequential or temporal data. The GRU has a simpler structure
than the LSTM; nevertheless, its performance is comparable with
the LSTM. The GRU even outperforms LSTM but has a lower
complexity and faster convergence (Zhou et al., 2021). However,
the GRU has a serial structure, whichmakes parallel computation
hard to implement.

1.2.4. Simple Recurrent Unit (SRU)

The common feature of LSTM and GRU is that the calculation
of the gate of each time step depends on the output of the
previous time step, which leads to a high serial dependence of
the network. Also, it is difficult to speed up the calculation by
parallel calculation. To solve this problem, the Simple Recurrent
Unit (SRU) network was proposed (Lei et al., 2018). The main
design feature of the SRU is that the gate calculation depends
only on the current input cycle. In this way, only the point-by-
point matrixmultiplication of themodel depends on the previous
time step. Thus, the network can be configured in parallel. In
addition, the SRU also reduces the number of gates, and the
design only features the forget gate and the reset gate. In this way,

the calculation efficiency of SRU neural network is higher than
that of LSTM and GRU (Jiang et al., 2018).

1.3. The Contribution of This Paper
This paper has developed an SRU model for the short- to
medium-term prediction of the SSHA. The parallel computing
afforded by the SRU makes it more efficient than the traditional
RNN, LSTM, and GRU methods. To solve the problems of
over-fitting and vanishing gradient, a skip-connection strategy,
which can significantly improve the prediction accuracy, was
utilized for model optimization. An outline of the workflow is
as follows: We analyzed and normalized the historical SSHA
data from the Archiving Validation and International of Satellites
Oceanographic (AVISO) center, and then, using the statistical
relationships for the historical data, the SRU model for training
of the historical data was established. In the training process, we
introduced the SRU optimization strategy to solve the gradient
explosion phenomenon and the disappearance. Finally, the well-
trained model was applied for the short- to medium-term
prediction of the SSHA in the Bohai Sea. The model is compared
with traditional models (e.g., BP, RNN, LSTM, GRU, and SRU)
with regards to prediction accuracy and efficiency.

The organization of this paper is as follows: section 2
introduces the methodology, which includes the principle of the
SRU model and its construction. Section 3 analyses the results
for 1, 5, 20, and 300-day prediction by comparing the results for
the proposed model with the existing BP, RNN, LSTM, and GRU
models. We summarize the results of this paper in section 4 and
provide future research directions.

2. METHODOLOGY

2.1. The Principle of SRU
The basic structure of SRU is shown in Figure 1, where the SRU
infrastructure consists of a single forget gate. Assumed input Xt

and time t, we need to calculate linear transformation x̂t and
forget gate ft . This calculation only depends on Xt , therefore
parallel processing can be carried out.The forget gate contains
internal state Ct , and we need to calculate output state ht , where
G represents the activation function, f represents the forget gate,
r denotes the reset gate, h is the output state, C represents the
internal state, and x represents the input. The SRU is defined
in Equation (1) where it can be shown that computations are
dependent only on Xt , allowing computations to be parallelized.

x̂t = WXt

ft = σ
(

WfXt + bf
)

rt = σ
(

WrXt + br
)

Ct = ft ⊙ Ct−1 +
(

1− ft
)

⊙ x̂t

ht = rt ⊙ g (Ct) + (1− rt) ⊙ Xt

(1)

SRU algorithm is mainly developed to remove the time
dependence of the most computing operations, and carry out
parallel processing. Figure 2 compares the structure of SRU
with that of the traditional RNN. On the left is the traditional
RNN/LSTM/GRU structure. The gray calculation part of each
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FIGURE 1 | The basic structure of SRU. From the above diagram, we can see that the SRU infrastructure consists of the input Xt and time t, a single forget gate ft,

and reset gate rt. The forget gate contains internal state Ct, and we need to calculate output state ht, where G represents the activation function. In SRU, we just need

to calculate linear transformation x̂t and forget gate ft, which only depends on Xt. Therefore, parallel processing can be carried out.

FIGURE 2 | The structure of RNN (left) vs. that of SRU cells (right). Compared with the structure of the traditional RNN, SRU eliminates the time dependence of

most computing operations and carries out parallel processing.

time has to wait until the last time. It is mainly reflected in
the matrix multiplication of the hidden layer and the weight of
each door in the last time, which is very time-consuming. While
SRU can be parallel in calculating gate, that is to say, matrix
operation with large amount of calculation at each time can be
parallel. The rest of the dependence is the calculation of Ct and
Ht . These calculations are all element-wise multiplication and
addition, which is very fast.

SRU is much faster than the current loop implementation,
and the loop unit simplifies the state calculation. For SRU,
CUDA level optimization method can be used to integrate
all elements into a single core function call, which shows
the same parallelism similar to CNN, attention model and
feedforward network. In particular, although the internal state
Ct still using the previous state Ct−1, but in the loop step, it is
no longer dependent on ht−1. Finally, all matrix multiplication
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FIGURE 3 | The Research area and the Absolute dynamic topography of the Bohai Sea. As can be seen from the contour lines (dashed lines) in the graph, there is

little diversity across the region.

FIGURE 4 | The climatology of SSHA distribution in the Bohai Sea. The graph shows that the SSHA in the Bohai Sea is slightly higher in summer (A) than in winter

(B), but the overall difference in the Bohai Sea is smaller at the same time of the year.
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FIGURE 5 | The structure of our model. From the above diagram, we can see that the Xt is the input, Yt is the output. The SRU network ensures most of the

operations are all element-wise multiplication and addition, these calculations can be put into parallel processing. With A, B, and C three-layer SRU modules that can

be accelerated in parallel across the time dimension.

FIGURE 6 | The experimental results of prediction,1-day prediction in (A) and 5-day prediction in (B). LSTM and its variants GRU and SRU methods have the

advantage of gating mechanism, which leads to the very high goodness of fit values.

operations in SRU can be easily parallelized. That is, SRU
network ensures most of the operations are put into parallel
processing. Only the steps with small amount of operations
are serialized.

2.2. The Data Source and Model
Construction
In this paper, the sources of data were the altimetry data
of TOPEX/Poseidon, Jason 1, ERS-1, and ERS-2 downloaded
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from the Archiving Validation and International of Satellites
Oceanographic (AVISO) website (http://marine.copernicus.eu/).
This data consist of daily product on a 1/4◦ × 1/4◦ Mercator grid
ranging from 1993 to 2018. The study area is the Bohai Sea (37–
41◦ N, 117–122◦ E). The SSHA data ranges from January 1 1993
to December 31 2018 and is divided into training and testing
sets on a 4:1 ratio. Figure 3 shows the Research area and the
Absolute dynamic topography of the Bohai Sea. Figure 4 shows
the climatology of SSHA distribution in the Bohai Sea. The graph
shows that the overall difference in the Bohai Sea is smaller at the
same time of the year. For the Bohai Sea, this study first calculate
the daily mean SSHA value over the whole Bohai Sea region, and
then used this one-dimensional time series data for training and
testing. The length of the data sequence was 10,000, and 80% of
the data were selected as the training dataset and the remaining
20% were used as the test set.

TABLE 1 | The experimental results of 1 and 5-day prediction.

Model
1-day 5-day

R2 RMSE (cm) Time (s) R2 RMSE (cm) Time (s)

BP 0.903 2.60 12 0.874 4.6 18

LSTM 0.989 1.05 9 0.971 1.13 10

GRU 0.987 1.09 6 0.977 1.03 8

SRU 0.99 1.03 1 0.987 1.01 2

Before implementation of the training model, it was necessary
to perform data normalization in the pre-processing step. This
plays an important role in establishing a robust training model,
which can (i) ensure a positive impact during updating of the
parameters; (ii) reduce the training time; and (iii) help avoid
the side effects caused by the variable distributions and ranges
of input data, and make the calculation of the measurement
parameters accurate as a result of training.

In this paper, we construct a SRU framework for SSHA
prediction with a three-layer SRUmodules. Its structure is shown
in Figure 5, where x, y denote the input and output data and
A,B,C denote the first, second, and third level of SRU module,
respectively. This framework eliminates the dependence on T −

1 time step, so it can be accelerated in parallel across time
dimension (or input position). During themodel training, several

TABLE 2 | The experimental results of 20-day prediction.

Model R2 RMSE (cm) Time (s)

BP 0.743 6.86 24

LSTM 0.968 1.17 18

GRU 0.972 1.12 12

SRU 0.974 1.09 9

SRU* 0.994 0.89 4

*GPU-based parallel SRU algorithm

FIGURE 7 | The experimental results of 20-day prediction. Our medium-term predict method is still fast enough for most applications of sea-level rise.
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FIGURE 8 | The experimental results of 300-day prediction. The results proves the possibility and power of our method to be applied to long-term prediction.

TABLE 3 | The experimental results of 300-day prediction.

Model R2 RMSE (cm) Time (s)

BP 0 55.48 500

LSTM 0.984 1.37 380

GRU 0.971 1.67 290

SRU 0.982 1.35 268

SRU* 0.991 1.05 210

*GPU-based parallel SRU algorithm

parameters need to be initialized. The learning rate (Lr) was
initialized to 0.001, batch size was initialized to 100, epoch was
initialized to 50, and dropout was initialized to 0.5; each epoch
ran 1,000 steps, and each step ran all the input data in the network
for one round completely. The parameters of our method were
optimized by the Adam algorithm to minimize the loss on the
training dataset.

Well-known data normalization method include the
maximum-minimum normalization and the average standard
deviation normalization. Here, we use the first one, which has
been widely used in deep learning systems. It can scale the
original data into 0–1 range through dividing the original data
by the difference of the maximum and minimum value. The
formula is shown in Equation (2), where xscaleri denotes the value

after normalization:

xscaleri =
xi −min{xi}

max{xi} −min{xi}
. (2)

To evaluate the performance of our method, we define two error
indicators to evaluate the performance of our method: R-Squared
(R2) and Root Mean Square Error (RMSE). R-Squared (R2) is an
important statistical measure of fit which indicates how much
variation of a dependent variable is explained by the independent
variable(s) in a regression model. It ranges from 0 to 1, where the
best fit closes to 1. (R2) can be calculated by Equation (4), where
themean square error (MSE) is defined in Equation (3) as follows:

MSE =
1

N
6N

i=1(ŷi − yi)
2 (3)

R2 = 1−
6N

i=1
(ŷ(i)−y(i))2

N

6N
i=1

(y(i)−ȳ)2

N

= 1−
MSE(ŷ, y)

Var(y)
(4)

RMSE is the standard deviation of the residuals (prediction
errors), which is a measure of how spread out these residuals are.
It identifies how concentrated the data is near the best fit. RMSE
is commonly used in prediction analysis to verify experimental
results. In the AVISO dataset used in this paper, the SSHA data
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are in centimeters and the unit of RMSE is the same as SSHA. It
is defined in Equation (5) as follows:

RMSE =

√

1

N
6N

i=1[ŷ(i)− y(i)] (5)

3. PREDICTION RESULTS

To evaluate the effectiveness and efficiency of the proposed
method, the performance of the proposed method based on
the SRU deep network was compared with that of several
existing models, including BP (He et al., 2018), LSTM (Graves,
2012), GRU (Li et al., 2021), and the original SRU (Lei et al.,
2018) models without optimization and parallel computing.
The performance of the original SRU network without parallel
computing was considered mainly because in most scenarios
parallel computing is supported in marine survey platforms and
equipment. For certain applications, however, and especially
for small survey vessels or on small islands, high performance
equipment is not readily available and hence parallel computing
is not supported. Thus, for these situations, it is necessary to
ensure that the SRU framework can be applied for prediction
of the SSHA. The short- to medium-term prediction was
first performed for the 1, 5, and 20-day prediction. Also,
to demonstrate the capability of the method for long-term
prediction, a 300-day experiment was performed. The training
and testing environment was equipped with 2 × 10 Intel
Platinum9200 Xeon scalable processors (128 GB memory) and
16 Tesla V100 SXM2 GPU (total 512 GB).

3.1. Short-Term Prediction Results
The results for the 1 and 5-day predictions are presented
in Figure 6 and Table 1 as follows, where SRU denotes the
original SRU without optimization and parallel computing.
This experiment was performed to show the effectiveness and
efficiency of the SRU compared to the existing BP and LSTM
family algorithms (LSTM,GRU) for short-term prediction. Given
that the 1 and 5-day predications can be performed with the SRU
very quickly, it was desirable to include parallel computing in the
SRU implementation.

From the experimental results, it can be seen that the
LSTM and the GRU and SRU variants outperform the BP
method significantly in terms of both accuracy and efficiency.
The respective R2 values are all >0.9, and the RMSE values
are around 1, which is much lower than 2.6, the value
for the BP method. Compared with the commonly used
BP neural network, the LSTM family of methods have the
advantage of the gating mechanism, which leads to very high
goodness-of-fit values. The forget gate in the network can
filter the unimportant information automatically and leave
the important information for prediction assessment. This
mechanism enables the LSTM method to avoid the problem
of the vanishing gradient during learning, and to select
and memorize important information to make the prediction
more accurate.

By comparing the LSTM, GRU, and SRU methods, it can
be seen that the SRU gave much better performance than the

LSTM and GRU due to its simpler structure. The accuracy of the
algorithm is comparable with and even outperforms that of the
LSTM and GRU, while it is much faster than the LSTM and GRU
methods. Further, the time consumption factor has been reduced
to 1 s for 1-day prediction and 2 s for 5-day prediction, which
makes the short-term SSHA prediction essentially equivalent
to real-time prediction. Overall, this experiment demonstrates
good performance for the SRU method in terms of short-term
prediction of the SSHA.

3.2. Medium-Term Prediction Results
The medium-term prediction, which plays a significant role
in monitoring sea-level changes for decision making, is the
most appropriate task for demonstrating the performance of the
proposed method. Here, the revised SRU model (SRU∗), which
features skip-connection optimization and parallel computation,
was compared with the BP, LSTM, GRU, and the original SRU
method (without optimization and parallel computation). The
experimental results, presented in Figure 7 and Table 2, show
that the proposed method achieves much more satisfactory
results than the current published state-of-the-art methods.
The R2 value is much lower. This means that the skip-
connection optimization can help alleviate the over-fitting and
vanishing gradient problem in the SRU to reduce fitting errors
to a large extent. Above all, the time consumption for the
SRU∗ is much lower than that for the existing methods (BP,
LSTM, GRU, and original SRU), hence demonstrating the
effectiveness of parallel computing in SRU. Moreover, in this
experiment, we also tried to build higher-layer SRU models.
When the SRU deep network was increased from three to six
layers, it was found that the accuracy increased (R2 increased
by 9.2% and RMSE decreased by 30%), while the training
time changed little. In comparison with the results for short-
term prediction, medium-term prediction cannot be performed
in real time; however, the method is still fast enough for
most applications that require medium-term prediction of
sea-level rise.

3.3. Long-Term Prediction Results
To demonstrate the full extent of the prediction and fitting
capabilities of the neural network model, the long-term 300-
day prediction was examined. The training time for the three-
layer SRU was about 210 s, and the prediction accuracy of
the six-layer SRU was found to be better than that of the
three-layer SRU; however, the increase in the prediction time
was not significant because the jump connection structure
greatly increases the calculation speed. In addition, comparing
the R2 and RMSE values for the SRU with those of the
other neural network models, indicated that the run time
for the whole SRU program was shorter than that of the
LSTM and the GRU, and the actual prediction outcome was
better. The main reason for the improvements is that the
SRU’s high network and light cycle structure make the SRU
outperform the other neural networks in terms of the accuracy
and speed of calculation, confirming that the SRU prediction
time-series model is superior to that of the other RNN
neural networks.
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FIGURE 9 | The investigation of model generalization using the new National Marine Data and Information Service test set.

To demonstrate the capability for long-term SSHA prediction,
the 300-day prediction experiment was performed. The results
are shown in Figure 8 and Table 3, it was observed that the
method needed about 210 s to train a three-layer SRU model.
Although the computational complexity of long-term prediction

is somewhat higher than that of short- and medium-term
predictions, the experiment demonstrates the possibilities and

power of the method when it is applied to long-term prediction.

In addition, compared to the BP and other LSTM models,
the run time of the present method is much lower while

the prediction accuracy is comparable or even better than the
aforementioned methods.

The above-mentioned improvements arise mainly from
the benefits from the skip connection optimization strategy,
which effectively reduces the fitting error. The short- to long-
term prediction results all demonstrate the effectiveness and
efficiency of the SRU based framework to model the changes
in the nonlinear chaotic structure of sea levels. The skip-
connection strategy helps the SRU avoid the problem of the
vanishing gradient in the empirical prediction, and, in so doing,
simultaneously improves the prediction accuracy and reduces the
computational complexity.

3.4. The Generalization of the Deep
Learning Model
The model generalization of a deep learning model is also a
key factor for considering to be used for practical applications.
In this section, we investigate the generalization ability of the
deep learning model by introducing a new test set: the datasets
of National Marine Data and Information Service (NMDIS)
reanalysis data (http://mds.nmdis.org.cn/). This dataset belongs
to the reanalysis dataset. It is different from the observational
AVISO dataset, which is used for training in this paper. The new
dataset comprises of daily SSHA data from January 1, 1958 to
December 31, 2018. The spatial resolution is 0.5◦ × 0.5◦.

Experimental results of the deep learning model (SRU* with
parallel computing and skip-connection) on the 1, 5, 20, and 300-
day predictions are shown in Figure 9 and Table 4, respectively.
It can be seen from the results that for short and medium
prediction, the performance of the deep learning model is almost
the same with that on the original dataset. Although for the long
term prediction, the R2 of the deep learning model is a little bit
lower and its RMSE is relatively higher than that on the original
dataset. The performance of the deep learning method for long-
term prediction on the new test set is still comparable with that
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TABLE 4 | The investigation of model generalization using an additional test set.

Experiments Model R2 RMSE (cm) Time (s)

1-day SRU* 0.984 0.99 2

5-day SRU* 0.968 1.09 6

20-day SRU* 0.912 1.33 15

300-day SRU* 0.842 3.66 36

*GPU-based parallel SRU algorithm

on the original dataset. That is, the deep learning model has very
good generalization ability and it can be widely applied to SSHA
prediction problems with variant kinds of dataset.

4. SUMMARY AND DISCUSSION

An SRU deep learning network for the short- to medium-
term prediction of the sea surface height anomaly (SSHA)
has been developed. The parallel structure of the SRU ensures
good efficiency of the prediction. To avoid the over-fitting and
vanishing gradient problems, the skip-connection strategy was
utilized to speed up the convergence in the loss function in the
SRU. To evaluate the effectiveness and efficiency of the method,
detailed experiments were performed for 1, 5, 20, and 300-day
SSHA predictions in the Bohai Sea using AVISO data. The main
findings were as follows:

(1) For short-term (1 and 5-day) prediction, the original SRU
model achieved the best performance with the lowest
time consumption among the LSTM family of methods
(LSTM and GRU) and also significantly outperformed the
traditional BP method. The SRU method can effectively
undertake short-term SSHA prediction in real time.

(2) For medium-term (20-day) prediction, the revised
SRU and SRU* frameworks gave the most satisfactory
results compared with the existing methods (BP, LSTM,
GRU, original SRU) by introducing the skip-connection
optimization strategy and parallel computing. When the
SRU deep network was increased from three to six layers, the
accuracy clearly increased (R2 increased by 9.2% and RMSE
decreased by 30%), while the training time changed little.
Although the revised SRU cannot perform medium-term
SSHA prediction, it is fast enough for most applications.

(3) For long-term (300-day) prediction, the revised SRU and
SRU* framework also had great capabilities and possibilities
for use in long-term prediction. Compared to the BP and
other LSTMmodels, the running time of the method is much
shorter while the prediction accuracy is comparable or even
superior. These improvements arise mainly from the skip-
connection optimization strategy, which effectively reduces
the fitting error.

This study shows that the prediction of the changes in sea-level
from the perspective of non-linearity can not only explain the
physical laws underpinning the data pertaining to changes in
sea-level, but can also play an essential role in establishing the
prediction theory based on non-linear deep learning methods.

The sensitivity of the non-linear chaotic system to the initial
value shows that for the traditional linear model it is difficult to
track and predict such non-linear data. In the critical period of
global climate change, the changes in sea-level not only follow
the basic laws of physics, but also are affected by the unique
and non-repetitive events of the climate, such as the impact of
global warming and the ENSO (El Nino southern oscillation)
events. There are many factors that affect the sea-level, hence
proper understanding of the changes which affect the sea-level is
a complex task. Given such circumstances, there is an immediate
need to improve the accuracy of the prediction algorithms such
as the non-linear deep learning methods; these methods are of
great significance in the context of prediction capability and
forward-looking decision-making.

For the future work, we will put our efforts in improving
the performance of SRU framework by introducing more
effective optimization and speeding-up techniques to make our
method more powerful to be applied for medium and long-term
prediction. Moreover, the current work treats the Bohai Sea as a
whole region, and uses its mean value as one-dimensional data
for SSHA prediction. In the future, we also want to build two-
dimensional prediction model, which can be applied for SSHA
prediction over each grid point in the Bohai Sea.
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Underwater depth prediction plays an important role in underwater vision research.

Because of the complex underwater environment, it is extremely difficult and expensive to

obtain underwater datasets with reliable depth annotation. Thus, underwater depth map

estimation with a data-driven manner is still a challenging task. To tackle this problem,

we propose an end-to-end system including two different modules for underwater image

synthesis and underwater depth map estimation, respectively. The former module aims

to translate the hazy in-air RGB-D images to multi-style realistic synthetic underwater

images while retaining the objects and the structural information of the input images.

Then we construct a semi-real RGB-D underwater dataset using the synthesized

underwater images and the original corresponding depth maps. We conduct supervised

learning to perform depth estimation through the pseudo paired underwater RGB-D

images. Comprehensive experiments have demonstrated that the proposed method

can generate multiple realistic underwater images with high fidelity, which can be

applied to enhance the performance of monocular underwater image depth estimation.

Furthermore, the trained depth estimationmodel can be applied to real underwater image

depth map estimation. We will release our codes and experimental setting in https://

github.com/ZHAOQIII/UW_depth.

Keywords: underwater vision, underwater depth map estimation, underwater image translation, generative

adversarial network, image-to-image translation

1. INTRODUCTION

As an important part of underwater robotics and 3D reconstruction, underwater depth prediction
is crucial for underwater vision research. However, the quality of collected images is restricted by
light refraction and absorption, suspended particles in the water, and color distortion, making it
difficult and challenging to obtain reliable underwater depth maps. Due to the influence of strong
absorption and scattering, some widely used devices designed to obtain in-air depth maps, such as
Kinect units (Dancu et al., 2014), lidar (Churnside et al., 2017), and binocular stereo cameras (Deris
et al., 2017), exhibit limited performance in underwater environments (Massot-Campos and
Oliver-Codina, 2015; Pérez et al., 2020). As quite a few underwater RGB-D datasets (Akkaynak
and Treibitz, 2019; Gomez Chavez et al., 2019; Berman et al., 2020) are currently available, many
researchers have sought to adopt image processing methods to estimate the depth from a single
monocular underwater image or a consecutive underwater image sequence. To perform single
monocular underwater depth prediction, several restoration-based methods have been developed
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(e.g., UDCP; Drews et al., 2016; Ueda et al., 2019). The
transmission map is regarded as an intermediate step for
obtaining depth maps and restoring underwater images. In
theory, the physical process is highly dependent on the
calibrated intrinsic parameters and the well-described structural
information of the scene. However, it is extremely laborious to
select and measure these parameters relevant to the physical
process (Abas et al., 2019), and limited to some special task.

Recently, deep learning methods have shown great potential
in image processing (Li et al., 2018) applications, such as image-
to-image translation (Isola et al., 2017; Zhu et al., 2017a; Choi
et al., 2018; Wang et al., 2018b; Zheng et al., 2020), image
restoration (Peng et al., 2015), and depth estimation (Gupta and
Mitra, 2019). Due to the lack of the underwater depth ground
truth to formulate full supervision, supervised learning models
cannot be directly adopted for underwater depth estimation.
Due to the introduction of cycle-consistency loss designed for
unpaired image-to-image translation, many researchers aim to
translate the in-air images to the desired underwater images and
preserve the original depth annotation (Li et al., 2017, 2018;
Gupta and Mitra, 2019). With the synthetic underwater images
from the original in-air images paired with the corresponding
depth annotation, we can obtain the pseudo underwater and
depth image pairs. Previous methods such as WaterGAN (Li
et al., 2017) and UMGAN (Li et al., 2018) adopted a two-
stage optimization framework for underwater depth estimation.
The former underwater image synthesis and the downstream
vision task (such as depth prediction or underwater image
restoration) are optimized separately. The two models have no
direct connection at the training stage. UW-Net (Gupta and
Mitra, 2019) has addressed this problem and aims to perform
underwater image synthesis and underwater depth estimation
parallel. However, two competitive tasks with cycle-consistent
learning lead to low training efficiency and inaccurate depth
estimation outputs. The leakage of texture is another challenge.
The depth value of a fish should be about equal. However, the
bright color and textures of a fish may lead to an incorrect depth
estimation result (Figures 1B–E).

To address these problems, we propose a novel joint-
training generative adversarial network for both multi-style
underwater image synthesis and depth estimation performed in
an end-to-end manner. For the former image synthetic task,
we aim to transfer the hazy in-air RGB-D images to multi-
style underwater images while retaining the objects and the
structural information of the in-air images and controlling
the underwater style through one conditional input message.
To take advantage of multi-task learning (Zhang and Yang,
2017) between underwater image synthetic and depth estimation
tasks, we design a joint-training generator to estimate the
depth from the synthesized underwater images through full
supervision. Overall, our system includes two consecutive
generators (responsible for the underwater image synthesis and
underwater depth estimation, separately), which are trained
simultaneously. To ensure that the generated underwater images
retain the objects and the structural information of the in-
air images, we consider perceptual loss (Johnson et al., 2016)
computed at the selected layers as a structural loss along with the

adversarial loss to optimize the whole network. Furthermore, we
develop a depth loss to alleviate the texture leakage phenomenon
as shown in Figure 1. Finally, we evaluate the effectiveness of
our proposed method to synthesize underwater images and
estimate the depth map of real underwater images, and the
comprehensive experimental results demonstrate the superiority
of the proposed method. Overall, our main contributions of this
paper are summarized as follows:

• We propose a novel joint-training generative adversarial
network, which can simultaneously handle the controllable
translation from the hazy RGB-D images to the multi-style
realistic underwater images by combining one additional label,
and the depth prediction from both the synthetic and real
underwater images.

• To construct a semi-real underwater RGB-D dataset, we take
the hazy in-air RGB-D image pairs and conditional labels as
inputs to synthesize multi-style underwater images. During
the training process, we introduce perceptual loss to preserve
the objects and structural information of the in-air images
during the image-to-image translation process.

• To improve the results of underwater depth estimation, we
design the depth loss to make better use of high-level and low-
level information. We verify the effectiveness of our proposed
method on a real underwater dataset.

2. RELATED WORK

2.1. Image-to-Image Translation
In the past several years, a series of image-to-image
translation methods based on generative adversarial networks
(GANs) (Mirza and Osindero, 2014; Odena et al., 2017) have
been proposed. These approaches can mainly be divided into
two categories of paired training and unpaired training methods.
Pix2pix (Isola et al., 2017) is a typical powerful paired model
and first proposes cGAN (Mirza and Osindero, 2014) learns
the one-side mapping function from the input images to
target images. To achieve the image-to-image translation of
unpaired datasets, CycleGAN (Zhu et al., 2017a) translates
images into two domains using two generators and two
discriminators and proposes the cycle-consistent loss to tackle
the mode collapse of unpaired image translation. To address
the multimodal problem, methods including BicycleGAN (Zhu
et al., 2017b), MUNIT (Huang et al., 2018), DRIT (Lee et al.,
2018), StarGAN (Choi et al., 2018), etc. have been proposed.
The BicycleGAN (Zhu et al., 2017b) learns to transfer the given
input with a low-dimensional latent code to more diverse results.
It takes advantage of the bijective consistency between the
latent and target spaces to avoid the mode collapse problem.
MUNIT (Huang et al., 2018) achieves multidomain translation
by assuming two latent representations that present style and
content, respectively and combining different representations of
content and style. StarGAN (Choi et al., 2018) learns multiple
mapping functions between multiple domains. It only uses a
single generator and a discriminator to transfers the source
images to the target domain. Then to avoid mode collapse,
the generator takes the generated images and the original

Frontiers in Marine Science | www.frontiersin.org 2 September 2021 | Volume 8 | Article 690962123

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Zhao et al. Synthesis of Unpaired Underwater Images

FIGURE 1 | Examples of texture leakage during the underwater depth map estimation process using different methods. (A) Real underwater images. (B) DCP (He

et al., 2010), (C) UDCP (Drews et al., 2016), (D) Berman et al. (2017), (E) UW-Net (Gupta and Mitra, 2019), (F) ours.

FIGURE 2 | The network framework of our proposed model is designed to synthesize multi-style underwater images and estimate underwater depth maps. The

generator Gs and the discriminator Ds are used to synthesize multi-style underwater images, and the generator Gd and discriminator Dd learn to estimate underwater

depth map based on the synthesized underwater RGB-D dataset.

labels as input and transfers them to the original domain. The
subsequently developed image-to-image translation methods,
such as pix2pixHD (Wang et al., 2018b), GauGAN (Park et al.,
2019), vid2vid (Wang et al., 2018a), FUNIT (Liu et al., 2019),
NICE-GAN (Chen et al., 2020), and StarGAN v2 (Choi et al.,
2020) pay more attention to generate higher visual quality,
multiple outputs and have been applied in video and small
sample studies.

To synthesize underwater images, due to the lack of a large
paired underwater image dataset, studies have mainly focused on
unsupervised learning. In a pioneering approach of underwater
image synthesis, WaterGAN (Li et al., 2017) synthesized the
underwater images from the in-air image and the paired depth
map for real-time color correction of monocular underwater
images. To achieve multidomain translation, UMGAN (Li
et al., 2018) proposes an unsupervised method that combines
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CycleGAN (Zhu et al., 2017a) and cGAN (Mirza and Osindero,
2014) with an additional style classifier to synthesize multi-style
underwater images. UW-Net developed by Gupta and Mitra
(2019) learns the mapping functions between unpaired hazy
RGB-D images and arbitrary underwater images to synthesize
underwater images and estimate the underwater depth map.
This method translates the hazy RGB-D image to underwater
images while it learns to convert underwater images to the
hazy RGB-D images. However, WaterGAN (Li et al., 2017)
and UW-Net (Gupta and Mitra, 2019) only provide a solution
for single domain underwater image generation. UMGAN (Li
et al., 2018) does not consider the transmission map as an
extra clue to generate underwater images. Moreover, all of
the synthesized underwater images using these methods still
lack the characteristics of real underwater images and clear
structural information.

2.2. Underwater Depth Map Estimation
Underwater depth map estimation has mainly been studied in
the field of traditional image processing. Since, He et al. (2010)
first proposed a dark channel prior (DCP) for dehazing, many
methods based on DCP (He et al., 2010) have been proposed
for underwater depth map estimation in recent years. Drews
et al. (2016) proposed a method based on a physical model
of light propagation and the statistical priors of the scene to
obtain the medium transmission and scene depth in typical
underwater scenarios. Peng et al. (2015) proposed a three-step
approach consisting of pixel blurriness estimation, rough depth
map generation, and depth map refinement for depth map
estimation. Berman et al. (2017) took different optical underwater
types into account and proposed a more comprehensive physical
image formation model to recover the distance maps and object
colors. They mainly considered transmission map estimation as
an intermediate step to obtain a depth map. Due to the unknown
scattering parameters and multiple possible solutions, the results
of these methods are most likely to be incorrect (Gupta and
Mitra, 2019).

Recently, many deep learning-based methods have been
proposed for depth estimation. However, most of these
approaches focus on depth estimation from in-air RGB images
with full supervision, which are not suitable for underwater
depth map estimation due to the lack of the paired RGB-D data.
The above mentioned UW-Net developed by Gupta and Mitra
(2019) proposed an unsupervised method to learn depth map
estimation. It considers an in-air transmission map as a cue to
synthesize underwater images and obtains the required depth
map from the synthesized underwater images. However, this
method cannot estimate the depth map from underwater images
of multiple water types. Because two competitive tasks (hazy
in-air image reconstruction and depth estimation) are assigned
to one generator, the depth prediction results of UW-Net lack
sharp outlines. Ye et al. (2019) proposed another unsupervised
adaptation networks. They developed a joint learning framework
which can handle underwater depth estimation and color
correction tasks simultaneously. Unlike their work, in which
the two networks (style adaptation network and task network)
should be trained separately, our model is more simple and can

be trained simultaneously. The depth loss and a fine-tune strategy
make our model more efficient in practice for underwater depth
map prediction.

3. MATERIALS AND METHODS

3.1. Overall Framework
In this paper, we aim to estimate the depth map from real
underwater images. Because there are no paired underwater
RGB-D images, we cannot perform supervised learning directly.
Therefore, we choose to translate the original in-air images with
corresponding depth to underwater images and obtain pseudo-
paired images. To perform this task, we design an end-to-end
system with two joint-training modules: multi-style underwater
image synthesis and underwater depth estimation based on the
synthetic paired samples. The former module is trained through
unpaired training, while the latter adopts supervised training
to achieve precise underwater depth estimation. The overall
framework is shown in Figure 2 and consists of two generators,

namely, Gs: x → ỹ and Gd: ỹ → d̃, where x and ỹ are
the original in-air image and the synthesized underwater image

with specific underwater style. d̃ is the estimated depth output.
For discrimination, we also design two discriminators Ds and
Dd to perform adversarial training to boost the underwater
image synthesis and depth estimation, respectively. Ds aims
to distinguish between real and fake images and identify the
domains from which both the real images and the generated
images originate. The discriminatorDd only learns to distinguish
between the real and fake depth maps.

3.1.1. Multi-Style Underwater Image Synthesis
As shown in Figure 2, we refer to the training of StarGAN (Choi
et al., 2018) to generate multi-style underwater images. To
synthesize specified underwater style images, we adopt an
additional one-hot vector c to represent domain attributes. To
make the generator Gs depth-aware and preserve the original
depth representation after translation, we concatenate the three
inputs, namely, the in-air image (x), the target underwater style
(cy), and the corresponding in-air depth (d) to synthesize an
underwater image ỹ = Gs[C(x, d, cy)] with the required style
(cy), where C denotes depthwise concatenation. To guarantee that
the synthetic image ỹ has the target underwater style, we include
an adversarial domain classifier Ds with two branches (one for
domain classification and another for real/fake discrimination).
The classification branch with the domain classification loss
Lcls aims to recognize the underwater style (cy) of both the
synthesized image ỹ and the real underwater image y. Noted
that y does not have the corresponding depth annotation due
to the lack of underwater ground truth. The adversarial loss
L
s
adv

is computed to promote the naturalness of the synthetic
images. The generatorGs from CycleGAN (Zhu et al., 2017a) and
StarGAN (Choi et al., 2018) is one symmetric encoder-decoder
architecture with 6 residual blocks.

3.1.2. Underwater Depth Estimation
In the training stage, we perform underwater estimation on the
above-mentioned synthetic underwater images ỹ by adopting
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a generator Gd with dense-block architectures. The output of
generator Gs (ỹ) is the input of generator Gd used to estimate its
depth mapGd(ỹ). Considering that we have the depth annotation
d of the in-air images, we can obtain pseudo pairs to compute the

Ldepth between d and d̃. The discriminatorDd is also designed and
has only one discrimination output. Furthermore, the adversarial
loss Ld

adv
in the depth space is conducted. For underwater depth

map estimation, we use DenseNet (Jégou et al., 2017) as the
generator. In UW-Net (Gupta and Mitra, 2019), the authors
proved the importance of using hazy above-water images and
compared the results of underwater depth maps estimation with
different generator networks, including ResNet (He et al., 2016),
Unet (Ronneberger et al., 2015), DenseNet (Jégou et al., 2017),
and so on. In their work, DenseNet is proved to be the best choice.

3.2. Loss Functions
3.2.1. Multi-Style Underwater Image Synthesis

3.2.1.1. Adversarial Loss
Regular GANs use sigmoid activation output and the cross-
entropy loss function (Goodfellow et al., 2014), which may cause
a vanishing gradient during the learning process. To stabilize
the training process and generate underwater images with higher
quality, we adapt the least-squares loss (Mao et al., 2017) in our
method. Ls

adv
can be expressed as follows:

L
s
adv = min

G
max
D

{Ex, y ∼ Pdta(x, y)[(Ds(y)− 1)2]

+ Ex∼Pdata(x)[(Ds(ỹ)
2]},

where ỹ = Gs(C(x, d, cy))),

(1)

where Gs targets the transfer of a hazy in-air RGB-D image
x by concatenating an underwater condition label cy to
synthesize image Gs[C(x, d, cy)]. The discriminator Ds attempts
to distinguish the real underwater image y and the synthesized
underwater image ỹ.

3.2.1.2. Domain Classification Loss
For the given hazy in-air image x and an underwater domain
style cy, Gs translates x into an underwater image ỹ, which
can be properly classified to the desired target domain by Ds.
To achieve this goal, the classification branch of Ds imposes
the domain classification. For the real underwater image y, the
domain classification loss Lr

cls
is computed as:

L
r
cls = Ey,cy [− logDs(cy|y)]. (2)

where the term Ds(cy|y) denotes a probability distribution
over the underwater domain labels (cy) computed by Ds. By
minimizing this objective, Ds learns to classify an underwater
image y to its original domain cy. We assume that the underwater
image and domain label pair (y, cy) is given by the training data.
For generator Gs, the loss function for the domain classification
of synthetic underwater images is defined as:

L
f

cls
= Eỹ,cy [− logDs(cy|ỹ)]. (3)

During the training, Gs tries to synthesize underwater image ỹ
that can fool the classification branch of Ds.

3.2.1.3. Feature-Level Loss
Beyond the pixel-level loss, we design feature-level loss functions
between the feature representations extracted from a pre-trained
VGG19 network. The hybrid feature-level loss can effectively
preserve the similarity of the object between the hazy in-air
images and the synthesized underwater images. For the multi-
style underwater image synthesis, we introduce a perceptual loss,
namely, Lsyn. Lsyn is designed to preserve the object content
and loosen the restrictions on the color and textile changes after
translation. Lsyn is expressed as follows:

Lsyn = [||8(i)(x)− 8(i)(Gs(x|cy))||1]. (4)

where 8(i) denotes the parameters at the i-th layer of a pre-
trained VGG19 network. Following the work by Kupyn et al.
(2019), we compute the 1-norm distance at the same selected
i = 14 layer of the VGG19 network between the hazy in-air
images and the synthesized underwater images.

3.2.1.4. Reconstruction Loss
To perform unpaired training between in-air and underwater
images, we include the cycle consistency loss (Zhu et al., 2017a)
in our framework. The reconstruction loss Lrec between x̂ and x
is defined as follows:

Lrec = Ex,cy ,cx [||x− x̂||1],

x̂ = Gs(C(Gs(C(x, d, cy)), d, cx)),
(5)

where cx and cy indicate the original hazy in-air domain label
and the target underwater domain style, respectively. Gs takes the
counterpart Gs(x|cy), its corresponding depth, and the original
domain label cx as input and tries to reconstruct the original hazy
in-air image. We adapt the L1 loss as our reconstruction loss.
Note that we use the generator Gs twice, first to translate the
hazy in-air RGB-D images into an underwater image in the target
domain and then to reconstruct the hazy in-air RGB images from
the translated images.

3.2.2. Underwater Depth Estimation

3.2.2.1. Adversarial Loss
For the second underwater depth estimation procedure, the
adversarial loss Ld

adv
is described as:

L
d
adv = min

G
max
D

{EGs(ỹ),d∼Pdata(ỹ,d)[(Dd(d)− 1)2]

+ Eỹ∼Pdata(ỹ)[(Dd(d̃))
2]},

where d̃ = Gd(Gs(C(x, d, cy))),

(6)

where Gd learns the mapping function from the synthesized
underwater images ỹ to the in-air depth d as Gd(ỹ) → d. Dd is
responsible to recognize the fake ingredient from the synthesized

depth output d̃.

3.2.2.2. Depth Loss
For underwater depth estimation, the pixel-level distance
between the estimated value and the ground truth, such as 1-
norm and 2-norm, is generally adopted to favor less blurring.
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FIGURE 3 | Comparison of the visual quality of synthesized underwater images obtained by different methods. From left to right, (A) are original in-air images, (B–G)

are the results of the WaterGAN (Li et al., 2017), CycleGAN (Zhu et al., 2017a), StarGAN (Choi et al., 2018), UW-Net (Gupta and Mitra, 2019), StarGAN v2 (Choi et al.,

2020), and our method.

FIGURE 4 | Comparison of our method with other underwater depth estimation methods. From left to right, (A) are real underwater images from the dataset of

Berman et al. (2017), (B–F) are the results of DCP (He et al., 2010), UDCP (Drews et al., 2016), Berman et al. (2017), Gupta and Mitra (2019), and our method, and

(G) are the ground truths.
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FIGURE 5 | The results of our model for depth map estimation. Every two rows from top to bottom are real underwater images with different illumination and

scattering conditions and the results of our model for depth map estimation.

However, we find that only the pixel-level loss between the
predicted depth map and the ground truth often leads to poor
performance due to the influences of noise, water with various
turbidity, etc (Please refer to section 4.3 for more details).
To force the model to pay more attention to the objects, we
make use of the feature representations extracted from a pre-
trained VGG19 network for multi-level information. We also
introduce pixel-level distance for low-level details. Finally, to
obtain improved results, we combine 1-norm loss and the multi-

layer feature constraint between d̃ and d and define the depth loss,
namely Ldepth:

Ldepth = [||d − Gd(Gs(x|cy))||1]

+

N
∑

i=0

[||8(i)(d)− 8(i)(Gd(Gs(x|cy)))||1]. (7)

Similarly, 8(i) represents the pre-trained parameter of the i-th
layer. Here, following the work of Wang et al. (2018b) and Wang
C. et al. (2018), we compute the L1 distance at the same selected
six layers: i = 1, 6, 11, 20, 29.

3.3. Full Objective
Finally, the objective functions can be written, respectively, as:

LDs = L
s
adv + αLr

cls (8)

LGs = L
s
adv + γLrec + αL

f

cls
+ λLsyn (9)

LDd
= L

d
adv (10)

LGd
= L

d
adv + ηLdepth (11)

where α, γ , λ, and η are the hyperparameters that control
the effect of each loss in the final objective function. We set
α = 5, γ = 10, λ = 0.1, η = 50 in all of our
experiments, and we optimize the objective function with the
Adam optimizer (Kingma and Ba, 2015). To choose appropriate
weights, we design ablation studies for each hyperparameter
except for γ . We follow StarGAN (Choi et al., 2018) to set γ =
10. For the choice of the rest of hyperparameters, please refer to
section 4.3 for more details.
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TABLE 1 | Quantitative comparison of our method and other methods for underwater image synthesis.

WaterGAN (FT) CycleGAN (FT) StarGAN (FT) UW-Net (FT) StarGAN v2 (FT) Our (FT)

SI-MSE 0.5994 0.3514 0.4597 0.3594 0.5454 0.2709

ρ 0.5031 0.6024 0.5339 0.5795 0.4561 0.6917

We evaluate all models for underwater depth map estimation using the generated RGB-D datasets. FT represents a fine-tuned (FT) underwater model on the dataset of Berman et al.

(2017). Higher ρ-values and lower SI-MSE (Eigen et al., 2014) values represent a better result. The bold values indicate the best result among different methods.

TABLE 2 | Quantitative comparison of our method and other methods on the

dataset of Berman et al. (2017).

DCP UDCP Berman et al. UW-Net(FT) Ours(FT)

SI-MSE 1.3618 0.6966 0.6755 0.3708 0.1771

ρ 0.2968 0.4894 0.6448 0.6451 0.7796

FT represents a fine-tuned (FT) underwater model. Higher ρ-values and lower SI-

MSE (Eigen et al., 2014) values represent a better result. The bold values indicate the

best result among different methods.

4. RESULTS

4.1. Datasets and Implementation Details
In our experiments, we translate the hazy in-air images to
two underwater domains (green and blue). We also choose the
hazy in-air D-Hazy dataset (Ancuti et al., 2016) as the input
images; this dataset contains the indoor scenes. For the two
underwater domains, we adapt the real underwater images from
the SUN (Xiao et al., 2010), URPC,1 EUVP (Islam et al., 2020),
UIEB (Li et al., 2019), and Fish datasets.2 We collect 1,031 blue
and 1,004 green underwater images from these datasets and
the Google website, respectively. The D-Hazy dataset (Ancuti
et al., 2016) includes 1,449 images. We randomly choose 1,300
images as the in-air images x to train the model. The remaining
149 images of the dataset are selected for evaluation. We use
random-crop to obtain 128 × 128 patches for training. For the
evaluation stage, we take complete images of 256 × 256. The
entire network is trained on one Nvidia GeForce GTX 1070 using
the Pytorch framework. To avoid the mode collapse problem, we
apply spectral normalization (Miyato et al., 2018) in both the
discriminators and the generators. Because of the introduction
of spectral normalization (Miyato et al., 2018), we use a two-
timescale update rule (TTUR) based on BigGAN (Brock et al.,
2019) and SAGAN (Zhang et al., 2018). The Adam algorithm is
applied with a learning rate of 0.0002 for the discriminators while
0.00005 for the generators. Because of the limited computing
resources, we set the batch size to 10 and perform 100,000
training iterations in our experiments.

4.2. Comparison Methods
Our method achieves underwater depth map estimation using
multi-style synthesized underwater images. In this section, we
first evaluate the performance of WaterGAN (Li et al., 2017),

1http://www.cnurpc.org/
2http://www.fishdb.co.uk/

TABLE 3 | Comparison of Floating Point Operations (FLOPs) and total number of

parameters among different generators with a size of 256× 256.

Methods FLOPs Params

StarGAN (Choi et al., 2018) 52.32 8.417

CycleGAN (Zhu et al., 2017a) 56.83 11.38

StarGANv2 (Choi et al., 2020) 198.0 33.89

WaterGAN (Li et al., 2017) 132.7 24.18

Ours (Gs) 52.93 8.426

Ours (Gd ) 12.98 1.348

CycleGAN (Zhu et al., 2017a), StarGAN (Choi et al., 2018),
UW-Net (Gupta and Mitra, 2019), StarGAN v2 (Choi et al.,
2020), and our method on multiple synthetic underwater images.
Additionally, to evaluate the effectiveness of underwater depth
map estimation, we compare the results obtained using DCP (He
et al., 2010), UDCP (Drews et al., 2016), Berman et al. (2017),
Gupta and Mitra (2019), and our method.

4.2.1. Qualitative Evaluation
To evaluate the effectiveness of the proposedmethod, we perform
underwater image synthesis on the NYUv2 (Silberman et al.,
2012) and D-Hazy (Ancuti et al., 2016) datasets. Figure 3

shows a visual comparison of the synthesized underwater
images generated by different methods. WaterGAN (Li et al.,
2017) takes advantage of in-air RGB-D images to synthesize
underwater images. As shown in Figure 3B, the results are
somewhat single-hued and lack water characteristics. Although
WaterGAN supports multi-style image generation, the two
styles (blue and green) obtained by WaterGAN in Figure 3B

are difficult to distinguish. The results of CycleGAN (Zhu
et al., 2017a) retain most of the contents and structures of the
original images. Compared to WaterGAN, they are similar to
the natural underwater scenes shown in Figure 3C. By contrast,
the outputs of CycleGAN (Zhu et al., 2017a) include serious
distortions of the details of the image with incorrect depth
information. StarGAN (Choi et al., 2018) can simultaneously
translate in-air images into multiple underwater styles. However,
the results lack the characteristics of real underwater images,
such as depth information, and clear structural information of
the objects. Besides, many artifacts are observed in Figure 3D.
UW-Net (Gupta and Mitra, 2019) also takes hazy in-air RGB-
D images as input, the results are presented in Figure 3E and
show fuzzy structures for the objects. The results of StarGAN
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FIGURE 6 | Sample results of our method for synthesizing underwater images using different losses. Lssim, Lmsssim and Lsyn, respectively represent SSIM loss,

MS-SSIM loss, and perceptual loss. (A) Are in-air images, (B) are the results without any structural loss (Baseline), (C–E) are the results with Lssim, Lmsssim, and Lsyn,

respectively.

TABLE 4 | Comparison of our method for the synthesis of underwater images

with different combinations.

Baseline w/ Lssim w/ Lmsssim w/ LDd
w/ Lsyn

SI-MSE 0.3538 0.2308 0.3331 0.2864 0.1771

ρ 0.6986 0.7547 0.7111 0.7355 0.7796

ResNet (He et al., 2016) represents a basic network for the synthesis of underwater

images (Baseline). Our synthesized underwater images are mainly used to estimate depth

maps. We show the results of depth maps estimation using ResNet (He et al., 2016) and

ResNet (He et al., 2016) with extra losses. The bold values indicate the best result among

different methods.

v2 (Choi et al., 2020) are shown in Figure 3F. There is no denying
that StarGAN v2 (Choi et al., 2020) possesses a powerful style
network to extract style codes from reference images. However,
the underwater images provided by StarGAN v2 fail to help
the depth estimation tasks. As shown in Figure 3F, StarGAN
v2 removed some objects and structural information during the
image synthetic process, which makes the synthetic underwater
images and their corresponding in-air depth maps unmatched.
The quantitative results in section 4.2.2 further confirm
this point.

Our model is optimized to synthesize underwater images with
multiple styles based on the unpaired datasets. The results of our
method (Figure 3G), in which the structural information is well
preserved, are better than those obtained from other methods in
terms of visual quality.

TABLE 5 | Comparison of weights used in the objective function of our model,

including α and λ.

SI-MSE/ρ α = 1 α = 3 α = 5 α = 7

λ = 0.05 0.2586/0.7438 0.2676/0.7502 0.2325/0.7593 0.2957/0.7402

λ = 0.1 0.2291/0.7513 0.2020/0.7844 0.1771/0.7796 0.2321/0.7717

λ = 0.2 0.2955/0.7331 0.2164/0.7688 0.2548/0.7524 0.2535/0.7331

λ = 0.4 0.2966/0.7236 0.2882/0.7306 0.2929/0.7499 0.2577/0.7577

We separately set α = 1, 3, 5, 7, and λ = 0.05, 0.1, 0.2, 0.4. We discover that α = 5 and

λ = 0.1 perform better. The bold values indicate the best result among different methods.

For underwater depth map estimation, Figure 4 shows the
results of our method and other methods developed by He
et al. (2010) (DCP), (Drews et al., 2016) (UDCP), Berman et al.
(2017), and Gupta and Mitra (2019) based on the underwater
images obtained by Berman et al. (2017). In Figures 4B–D, these
methods fail to capture relative depth of the scene with respect
to the camera. Moreover, these methods mainly obtain the
transmissionmaps of the scene and have excessive texture leakage
in the results. Gupta and Mitra (2019) used an unsupervised
method to estimate the depth map, obtaining the results shown
in Figure 4E, and this method appears to be better than the other
methods, whose results are presented in Figures 4B–D. However,
this method still suffers from excessive texture leakage and only
estimates the depth map for single-domain underwater images.
Our results have a much more reasonable appearance with a
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FIGURE 7 | Effectiveness evaluation of the L1, L2, Lssim, Lmsssim, and Ldepth. From left to right, respectively, (A) are real underwater images, (B–H) are the results of

depth map estimation with L1 loss, L2 loss, Lssim, Lmsssim, Lpan, Ldepth, and their corresponding ground truths.

linear depth variation. On the other hand, we observe that our
network successfully captures the depth information frommulti-
style underwater images. More results for real underwater images
with different underwater characteristics are seen in Figure 5.
Furthermore, the UW-Net (Gupta and Mitra, 2019) and our
method synthesize underwater images using the underwater
dataset provided by Berman et al. (2017) to fine-tune the models
of the depth map estimation. We fine-tune our model for
10,000 iterations on Berman et al.’s dataset for better depth
map estimation.

4.2.2. Quantitative Evaluation
The dataset of Berman et al. (2017) consists of 114 paired
underwater RGB-D images from Katzaa, Michmoret,

TABLE 6 | Results with different η values.

η = 40 η = 50 η = 60 η = 70

SI-MSE 0.2657 0.1771 0.2620 0.2405

ρ 0.7266 0.7796 0.7315 0.7635

Higher ρ and lower SI-MSE (Eigen et al., 2014) values are better. The bold values indicate

the best result among different methods.

Nachsholim, and Satil. We use 71 images belonging to
the three regions Katzaa, Nachsholim, and Satil. Because
the Michmoret region has very few natural objects and
is of the same scene. Following UW-Net (Gupta and
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TABLE 7 | Quantitative comparison of our method with different losses on the

dataset of Berman et al. (2017).

L1 L2 Lssim Lmsssim Lpan Ldepth

SI-MSE 0.3103 0.2896 0.3983 0.2598 0.2856 0.1771

ine ρ 0.7279 0.7419 0.6515 0.7655 0.7397 0.7796

Higher ρ values and lower SI-MSE (Eigen et al., 2014) values indicate better results. The

bold values indicate the best result among different methods.

Mitra, 2019), we use two metrics for comparison, namely,
log scale-invariant mean squared error (SI-MSE) (Eigen
et al., 2014) and the Pearson correlation coefficient (ρ).
Considering the fact that the depth map provided by the
stereo camera is not complete (e.g., the ground truth of
the white regions in Figure 7H are not provided), we only
calculate the pixels with a defined depth-value in the ground
truth (GT).

The underwater image synthesis assists to estimate depth
maps from real underwater images. Thus, how much the
synthetic underwater images can be used to boost the
performance of underwater image-based depth prediction is
the key evaluation index. We evaluate performance on depth
prediction tasks with a series of the state-of-the-art methods,
which consist of WaterGAN (Li et al., 2017), CycleGAN (Zhu
et al., 2017a), StarGAN (Choi et al., 2018), UW-Net (Gupta
and Mitra, 2019), and StarGAN v2 (Choi et al., 2020). We
aim to calculate the depth map estimation results on a semi-
real underwater RGB-D dataset. UW-Net suggests that fine-
tuning the models with a few unlabeled images from the
target underwater environment could further boost the depth
prediction performance. During the fine-tuning process, we
only use the RGB underwater images without considering
the depth ground truth of the data from Berman et al.
to show the ability that our model can adapt itself to a
new environment well. To make it fair, we fine-tune all
models to generate a similar underwater style of the dataset
of Berman et al..

Although our model already provides a solution for a depth
estimation task, we choose a typical independent supervised
image-to-image model, pix2pix (Isola et al., 2017), to fairly
evaluate the potential of synthetic underwater images on the
application of depth prediction. We use identical pix2pix models
to learn the mapping function between the generate underwater
images of different underwater image synthetic methods and
their corresponding in-air depth maps. Finally, we test and
evaluate all models on the dataset of Berman et al.. Table 1
shows the results, and our model obtains higher ρ values and
lower SI-MSE.

For the underwater depth estimation task, Table 2 shows the
quantitative results. Our method obtains the least scale-invariant
error (SI-MSE) (Eigen et al., 2014) and the highest Pearson
correlation coefficient (ρ).

We also investigate the parameters and Floating Point
Operations (Tan and Le, 2019) (FLOPs) among different
generators in Table 3. In the case of CycleGAN, we only count

the FLOPs and parameters of a single generator. We can find that
the proposed method can achieve better performance with fewer
network parameters and computational cost. Benefiting from the
dense blocks, the Gd of our model has fewer parameters and
FLOPs than Gs. Please note that Gs is only used in training stage.
In testing phase, we only need Gd to estimate the depth map.

4.3. Ablation Study
4.3.1. Loss Selection of Underwater Image Synthesis
To preserve clear structural information, we consider the
perceptual loss Lsyn, structural similarity index (SSIM) Lssim,
and multiscale structural similarity index (MS-SSIM) Lmsssim

as the structural loss. We evaluate the efficiency of each loss,
including Lsyn, Lssim, and Lmsssim, and based on the visual effect
of the synthesized underwater images and the results of depth
map estimation, we choose the perceptual loss. To verify the
effectiveness of the extra losses in our network, we design ablation
experiments and perform a comparison on D-Hazy (Ancuti et al.,
2016) which consists of 1,449 images. Figure 6 shows that each
loss affects the quality of the generated underwater images. It is
observed from Figure 6B, that the generated underwater images
using ResNet without any extra loss have more color blocks
and artifacts. Additionally, during the training, it is extremely
unstable and tends to produce color inversions and serious
distortions situations. In Figures 6C,D, many artifacts are still
retained for ResNet with Lssim or Lmsssim. Table 4 shows the
results of depth map estimation based on different synthetic
underwater image datasets, which are generated by ResNet and
ResNet with extra losses, separately. Using Lsyn, we obtain the
best results of underwater depth map estimation. Based on the
experiments mentioned above, we introduce a perceptual loss
Lsyn to preserve the details and restrain the artifacts in Figure 6E.
To minimize the negative effects of the synthesized images, we
design experiments to determine the proper weight of α and λ.
In Table 5, we show the results of different weights, including α

and λ. We note that both UW-Net and our model can be fine-
tuned on the dataset of Berman et al. to obtain better results
of underwater depth map estimation. Fine-tuning processing
provides a flexible approach for adjusting our model and the
estimation of depth maps from unexplored underwater regions
within a relatively short period.

4.3.2. The Design of Underwater Depth Map

Estimation
With the support of synthetic paired RGB-D data, we consider
L1 loss, L2 loss, Lssim loss, or Lmsssim loss to learn the mapping
functions for supervised depth map prediction. During the
training, we observe the all above-mentioned losses are not
enough to generate more correct depth maps. The results in
Figures 7B–E show that depth prediction based on the above-
mentioned losses are easily affected by the shape, noise, etc.
As mentioned in section 3.2.2, we design depth loss Ldepth to
make better use of low-level and high-level feature information
and avoid the risk of texture leakage. We take advantage of a
pre-trained VGG19 network to extract feature maps between
the generated depth maps and the ground truths. We assume
the feature maps between the generated depth map and its
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FIGURE 8 | Sample results for the synthesis of underwater images. (A) Show in-air images. (B–E) Represent blue style, green style, white style and yellow style,

respectively.
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FIGURE 9 | Multi-style underwater depth map estimation. The rows from top to bottom are real underwater images with four different water types and the results of

our model for depth map estimation. Every two rows are real underwater images and their predicted depth maps of our method.

corresponding ground truth in each layer from a pre-trained
VGG19 network should be equal. The loss Ldepth makes our
model pay more attention to the objects and the relative distance
in the underwater images. Inspired by Wang et al.’s work (Wang

C. et al., 2018), we also attempt to extract feature maps from
the discriminator Dd, namely Lpan, rather than a pre-trained
VGG19 network. In Figure 7F, we can see that our model with
Lpan are often overwhelmed with incorrect boundary prediction
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due to the insufficient layers of our discriminator Dd to extract
high-level feature maps comparing with Ldepth. Furthermore, we
investigate the optimal parameter setting of η with a greedily
searching strategy (Table 6), and we discover that η = 50 is the
best choice among all the parameters.

Based on Figure 7 and Table 7, we can easily conclude
that the results of depth map estimation using Ldepth loss
are more accurate and continuous. The results show sharper
outlines. We can clearly distinguish the relative distance and
the objects.

5. DISCUSSIONS AND CONCLUSION

To further explore the potential of our model on depth
prediction, we considered the work by Li et al. (2018) and
prepared a more complex underwater image dataset including
four different styles. In this experiment, we still consider the
depth map as a conditional input to synthesize a corresponding
underwater image. But we did not utilize the physical parameters
(e.g., the water turbidity or any optical parameters) for
the unpaired image-to-image translation. Instead, we roughly
divide the images with different water turbidity into four
groups and follow the manner of StarGAN (Choi et al.,
2018) to perform conditional image translation. Some synthetic
examples of four different styles are shown in Figure 8. Due
to the lack of ground truth of the depth map, we cannot
quantitatively evaluate the effectiveness of our model for multi-
style underwater depth map estimation. Instead, we prepared
several qualitative evaluation results, as shown in Figure 9.
Intuitively, we find that the depth estimation of a side-view
underwater image is better than that from a vertical view.
This result is caused by the lack of vertical view in-air
images from the in-air D-Hazy dataset required to produce
sufficient synthetic underwater vertical view images. We plan to
improve the performance on this point by data augmentation in
the future.

In this paper, we proposed an end-to-end system that
can synthesize multi-style underwater images using one-hot
encoding and estimate underwater depth maps. The system
can convert the in-air RGB-D images into more realistic
underwater images with multiple watercolor styles. Then we use
the synthesized underwater RGB images to construct a semi-real
underwater RGB-D dataset. With the synthetic underwater RGB-
D dataset, our model can learn to estimate underwater depth
maps using supervised learning. Finally, we compare our method
with existing state-of-the-art methods to synthesize underwater
images and estimate underwater depth maps, and we verify that
our method outperforms these methods both qualitatively and
quantitatively. Furthermore, our model can be fine-tuned on
the untrained datasets to synthesize a similar underwater style.
It effectively makes our model to be applied for depth map
estimation on new underwater datasets.
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APPENDIX

Generator Architectures
In our experiments, the generator Gs from CycleGAN (Zhu

et al., 2017a) and StarGAN (Choi et al., 2018) can be

described as Figure A1. Here, Convolution denotes a 7 × 7

Convolution-InstanceNorm-ReLU layer with 64 filters and
stride 1. Convolution/down denotes a 4 × 4 Convolution-

InstanceNorm-ReLU layer and stride 2. Residual block denotes
a residual block that contains two 3 × 3 Convolution-
InstanceNorm-ReLU layers with the same number of filters
on both layers. Deconvolution denotes a 4 × 4 fractional-
strided-Convolution-InstanceNorm-ReLU layer and stride 2.

FIGURE A1 | The network architecture of the generator Gs. It is a general ResNet (He et al., 2016) network for image-to-image translation.

The generator Gd from Jégou et al. (2017) is based on
dense-block (DB), as Figure A2. Convolution denotes a 3 × 3
Convolution-BatchNorm-ReLU layer with 32 filters and stride
1. Transition down is a maxpool2d operation with the same

number of filters and a 1 × 1 Convolution-BatchNorm-ReLU
layer with the same number of filters and stride 1. Transition up
denotes a 4 × 4 deconvolution layer with the same number of
filters and stride 2. Dense block denotes four 3 × 3 BatchNorm-
ReLU-Convolution layers with 12 filters and stride 1. The output
channel number of the dense block is the concatenation from the
output of four layers and the input. The encoder and the decoder
concatenate with skip connection.

Discriminator Architectures
For discriminator networks, we use 70 × 70 PatchGANs (Isola
et al., 2017; Zhu et al., 2017a). Similarly, we do not use
InstanceNorm or BatchNorm in any layer and use leaky
ReLUs with a slope of 0.2. The discriminator Ds has two
outputs from the discrimination branch and the classification
branch. Differently, the discriminator Dd only has one
discrimination output.
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FIGURE A2 | The network architecture of the generator Gd. Following the work of UW-Net (Gupta and Mitra, 2019), we choose DenseNet (Jégou et al., 2017) as the

generator Gd.
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Two-dimensional mapping of sea surface height (SSH) for future wide-swath satellite

altimetry (WSA) is a challenge at present. So far, considering the utilization of data-driven

methods is a new researching direction for SSH mapping. In general, the data-driven

mapping methods rely on the spatial-temporal relationship of the observations. These

methods require training in large volumes, and the time cost is high, especially for the

WSA observations. This paper proposed the prediction neural networks for mapping

(Mapping-PNN) method to improve the training efficiency and maintain stable data and

mapping capabilities. By 10-year wide-swath satellite along track observing system

simulation experiments (OSSEs) on the HYCOM data, the experiment results indicate

that the method introduced in this paper can improve the training efficiency and meet

the grid mapping expectations. Compared with other methods, the root mean squared

error (RMSE) of the mapping-PNN method can be limited within the range of ∼1.8 cm,

and the new method can promote the observation of the ocean phenomena scale with

< ∼40 km, which reaches state of the art.

Keywords: two-dimensional mapping, wide-swath satellite altimetry, interpolation method, neural networks,

data-driven

INTRODUCTION

The 2D SSH mapping is a big challenge for future WSA, which is a major topic of discussion
nowadays. The wide-swath satellite missions, such as the surface water and ocean topography
(SWOT) mission of the US-France (Gaultier et al., 2016) and the Guanlan satellite mission of
China (Chen et al., 2019) will provide 2D altimetric information with a high resolution [15–
30 km, depending on sea state (Morrow et al., 2019)]. At present, the optimal interpolation
(OI) method (Le Traon et al., 2003) and the dynamic interpolation (DI) method (Ubelmann
et al., 2015) are the main classical model-driven two-dimensional data mapping methods
(Lguensat et al., 2017) for the altimetric satellite observations [such as the products of
the AVISO (Archiving, Verification and Interpretation of data of Satellites Oceanography,
CollecteLocalisation Satellites (CLS), AVISO, CNES, 2019)]. The OI method, a static, statistical
data mapping approach based on the objective analysis method (Bretherton et al., 1976), with
the combined observations of multiple satellites (Morrow and Traon, 2012; Amores et al., 2018;
Ballarotta et al., 2019), the SSH grid data products could acquire mesoscale ocean phenomena
larger than ∼150 km scales or longer than ∼10 days (Dussurget et al., 2011; Morrow et al.,
2019) but cannot observe short-period and small-scale ocean dynamic phenomena (Morrow
et al., 2019; Guillou et al., 2020). However, through the OI method with the WSA OSSEs,
more details of ocean dynamic phenomena and sub-mesoscale ocean phenomena could be
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observed, such as the scale ranges from ∼25 to ∼150 km
(Ma et al., 2020). The DI method, which is based on the
potential vorticity (PV) conservation theory (Hua andHaidvogel,
1986; Wunsch and Carl, 1996), can be adopted to observe
instantaneous nonlinear ocean dynamic phenomena and express
them through data reconstruction (Ubelmann et al., 2016), but it
may fail to achieve acceptable results when trying to reconstruct
the coastal regions or the tropic regions (Roge et al., 2017;
Ballarotta et al., 2020). Those classical model-driven methods
could be utilized to obtain SSH grid data products for the
future WSA.

However, there are some detailed problems in the process of
mapping byOImethods, such as eddies missing or the generation
of “artifact” eddies (Ma et al., 2020). The DI method has
limitations on mapping the sea areas where the PV conservation
fails (Roge et al., 2017; Ballarotta et al., 2020). Then, consequently,
the “data-driven”mappingmethods (Lguensat et al., 2017, 2019b;
Zhen et al., 2020) are proposed. Unlike the classical model-driven
methods (Lguensat et al., 2017), the data-driven methods rely on
the spatial-temporal relationship of the observations (Lguensat
et al., 2019b).

Lguensat et al. (2017), who used machine learning (ML)
methods in the Mediterranean, South China sea area (Lguensat
et al., 2019b), and the Gulf of Mexico (Zhen et al., 2020) through
principal component analysis (PCA), K nearest neighbor (KNN),
and k-dimensional tree (KD-Tree) technologies, introduced
a data-driven mapping method named AnDA (Lguensat
et al., 2017). Furthermore, Lopez-Radcenco et al. (2019)
extended the AnDA method to the mapping for multi-satellite-
combined observations, SWOT observing system simulation
experiments (OSSEs)-simulated data, as well as the combination
of observations of nadir altimeter satellites and SWOT, and then
obtained higher-accuracy SSH grid data products than the result
of the OImethod (Lopez-Radcenco et al., 2019). By utilizing deep
learning (DL) for the DI theory verification in North Atlantic
regions, Lguensat et al. (2019a) proved that the combination of
the DI method and DL is feasible for data mapping. Compared
with the result of the DI method on instantaneous nonlinear
data, the accuracy and the error are similar for the data products
obtained by “data-driven” methods, machine learning, and deep
learning. According to the validation by DL, the DI method is
reliable for the instantaneous nonlinear ocean dynamic signals
inversion in the active ocean phenomenon regions (Lguensat
et al., 2019a).

Shi et al. (2015) proposed the convolutional long short-term
memory (ConvLSTM) deep learning method. This approach
uses the convolution neural network (CNN) activation method,
instead of the rectified linear unit (RELU) or Sigmoid activation
functions, to improve the prediction performance in each gate
of the classical LSTM network (Hochreiter and Schmidhuber,
1997). The advantage of CNN is that the feature extraction ability
of LSTM can be enhanced. Inspired by the ConvLSTM neural
network, Lotter et al. (2017) proposed the PredNet method,
which grafts the ConvLSTM network to the C gate (the Gates
of Controller), further improves the feature extraction ability
of the predictive neural network, and makes it more accurate
and reliable (Lotter et al., 2017). At the same time, the PredNet

method is effective in predicting rapidly changing images and
video transport streams (Lotter et al., 2017). Deep learning
algorithms have been used for oceanographic applications, such
as classification, identification, and prediction. Besides, Lima
et al. (2017) used a CNN to identify ocean fronts, which yielded
a higher recognition accuracy than the traditional algorithms.
Yang et al. (2018) established a sea surface temperature (SST)
prediction model based on LSTM networks that have been well
tested using coastal SST data of China. By training 20-year AVISO
grid data, Ma et al. (2019) used PredNet to conduct DL and
implement daily ocean eddy forecast. It was proved that DL could
be available on ocean observation prediction.

The purpose of this paper is to find a new 2D mapping
method for future WSA observations and to map high-precision,
low-error SSH grid data products for future altimetric satellites.

Based on the high-resolution model, this paper puts forward a
new “data-driven” mapping method, prediction neural networks
for mapping (Mapping-PNN) method by training the OSSEs
along-track sampled data of WSA year by year. Additionally, the
least recently used access (LRUA) module proposed by Santoro
et al. (2016) is adopted, and it is a pure content-based memory
write unit that writes memories to either the least used memory
location or the most recently used one (Santoro et al., 2016). As
for the Mapping-PNN test, it could obtain RMSE result similar as
the PredNet method and better than the AnDAmethod, meeting
the expectations. According to the results of experiments, by
using the same sampled data volumes of theWSA in the region of
Kuroshio and the Kuroshio Extension onOSSEs and testing three
datamappingmethods, the RMSE result of 2Dmapping products
can be limited within the range of∼1.8 cm.

The experiment verification indicates that the Mapping-PNN
method is applicable to the 2D mapping for WSA. Compared
with the results of the ML method (Lguensat et al., 2017) and the
DL method (Lotter et al., 2017), the Mapping-PNN method has
the same data-mapping capabilities. It can obtain not only high-
precision, high-resolution SSH grid data product with a high rate
and low error but also promote the ability of the observation for
the scales with <∼40 km.

The remaining sections of this paper are arranged as follows:
Material section describes the test materials and data. Methods
section introduces the method of this paper. Experiment
section illustrates the experiments and results. Conclusion
and Discussion section is the conclusion, discussion, and the
introduction of the future work.

MATERIALS

Model Data of HYCOM
The data set of hybrid coordinate ocean model (HYCOM)
has a resolution of 1/12.5◦ × 1/12.5◦. The Kuroshio and the
Kuroshio Extension regions (the sea area researched in this
paper at 15◦E−39◦E, 120◦N−144◦N region) belong to the
middle latitude range. There are seasonal variations of the
ocean phenomena in the Kuroshio and the Kuroshio extension
regions. Specifically, the seasonal variation of the Kuroshio and
the Kuroshio extension is affected by both dynamic factors
(SST advection and vertical temperature transport) and thermal
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factors (net heat flux at the air-sea interface) (Itoh, 2010;
Nagano et al., 2013). The ocean phenomena of the Kuroshio
and the Kuroshio extension increase significantly at the end
of February in winter and strengthen continuingly in spring
(Ji et al., 2018). The absolute geostrophic velocity extreme
value of the Kuroshio extension appears slightly later than the
Kuroshio (Nagano et al., 2013). The HYCOM data cover the
global region, which is conducive to implementing the mapping
simulation works in different target sea regions. The HYCOM
data, as the representative model data in the application of
OSSEs, are updated annually and made available to the public
and facilitate scientific research and mutual verification of peer
work. Meanwhile, HYCOM is a part of the Global Ocean Data
Assimilation Experiment (GODAE) of the United States (Hybrid
Coordinate Ocean Model (HYCOM) Data., 2021). The temporal
resolution of HYCOM data for training is daily. In general,
the HYCOM real-time high-resolution model includes three-
dimensional ocean state description, the local coastal model, and
the global coupled ocean-atmosphere prediction model with a
prescribed ocean boundary.

The Parameters of Guanlan Mission
The 791-Orbit of Guanlan (Chen et al., 2019) was utilized in
the experiment. The altitude of 791-Orbit is 791.254 km, which
ensures a high observation swath of the WSA and provides the
parameters for the OSSEs of the HYCOM. The parameter for
generating the input sources of the OSSEs, including the exact
repeat cycle, the sub-cycle, the orbit altitude, and the swath width,
is required to participate in the calculation process of the along-
track sampling simulations. The exact repeat cycle of 791-Orbit
is approximately 14 days (4-day sub-cycle) over a swath width
of 166.4 km (with a gap width of 27.6 km). A sub-cycle is an
integer number of days; after which, the ground track of a satellite
repeats itself within a small offset. In other words, a sub-cycle
can be viewed as a near-repeat cycle with duration equaling to
an integer number of nodal days (Pie and Schutz, 2008). And 4-
day-long sub-cycle is chosen for OSSEs in the paper according to
the 791-Orbit.

Data of the Simulation Experiment
According to the orbit of the Guanlan satellite and its parameters,
the swath width, the nadir gap width, the coordinates of the
swath trajectory, and the gap trajectory of the satellite had been
calculated. Then, combined with the OSSEs, the sampled data in
one cycle were merged to generate global observations, which
would be used as the input source data for the subsequent
mapping process. In the OSSEs, the data of each orbit on each
cycle were calculated by the satellite track analysis algorithms by
using reasonably matched satellite parameters.

As shown from Figure 1A represents the data sampling
simulation in the OSSEs, using the parameter of the 791-Orbit,
and the figure shows four ascending-descending tracks in one
cycle. Figure 1B is an example of a one-cycle data sampling
simulation according to the 14-day in one cycle of the 791-
Orbit. And Figure 1C illustrates one-cycle Global OSSEs results
in grids. Figure 1 is an example of the sampled observations
region in the West Pacific Ocean (WPO) to show the results of

OSSEs [As shown in Figures 1B,C; see details in Figures 4, 5 of
Experiments section]. In the OSSEs, when the grid points are at
the same longitude–latitude, only the data of the last pass through
are retained. And the data of the region blocked in blue are the
researching sea area in this paper, at 15–39◦E, 120–144◦N, which
is the training, evaluation, and testing volumes for comparison of
mapping methods.

METHODS

The Analog Data Assimilation (AnDA)
The observation data volumes can be organized and calculated as
follows, according to the AnDA method proposed by Lima et al.
(2017).

The following discrete state space (Lguensat et al., 2017):

x(t) = M[x(t−1), η(t)], (1)

y(t) = H[x(t)]+E(t), (2)

where time t ǫ{0, . . . , T} refers to the times in which observations
are available, assuming the observations are at regular time
steps. In Eq. (1), M characterizes the dynamical model of the
true state x(t), while η(t) is a random perturbation added to
represent model uncertainty. The observation Eq. (2) describes
the relationship between the observation y(t) and x(t). And
the observation error is considered by the white noise ε(t).
Considering an additive Gaussian noise ε with covariance T in
Eq. (2) and the observation operator, the H = H is quasi-linear
(Lguensat et al., 2017).

The Eq. (1) represents the dynamical model governing the
evolution of state x through time, whileH is a Gaussian-centered
noise of covariance Q that models the process error. And Eq. (2)
explains the relationship between the observation y(t) and the
state to be estimated x(t) through the operatorH. The uncertainty
of the observation model is represented by the e error, which is
considered here to be Gaussian centered and of covariance R. The
ε and H are independent, and the Q and R are known.

AnDA relies on the following state-space model, to evaluating
filtering, respectively smoothing, posterior likelihood, and the
distribution of the state could be estimated x(t) at time t, given
past and current observations y(1, . . . , t), respectively given all
the available observation y(1, . . . , T) (Lguensat et al., 2019b).

x (t) = F (x (t − 1))+η (t) (3)

y (t) = H (x (t))+ E (t) (4)

The counterpart of a model-driven operator M of Eq. (1) is
the operator F in Eq. (3), which refers to the analog-forecasting
operator. The predicting matrix could be calculated by Kalman
smoother to obtain the final result (Lguensat et al., 2019b).
The Kalman smoother (KS) algorithm can directly provide the
optimal estimation of the state, given the observations and their
corresponding errors. The AnDA method relies on the spatial-
temporal relationship of the observations and introduces the
analog operator through a KNN-search to make the state-space
model being applied in practice.
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FIGURE 1 | (A) The example of along-track SSH data; (B) An example of one-cycle sampling simulation; (C) Obtained from the data projection of (B) onto a 2D plane.

The proceedings of the AnDA method are as follows: firstly,
principal component analysis (PCA) algorithm is performed on
satellite along-track sampled data obtained through OSSEs and
extract data features to prepare for the later ML. Then, secondly,
a KNN search in a catalog of numerical model outputs using a
KD-Tree is implemented, and the finalmapping result is obtained
through Kalman smoothing. Readers can find the AnDA’s
algorithm sketch block diagram in the reference (Lguensat et al.,
2017, 2019b) to learn more details about the AnDAmethod. This
paper compares and discusses the 2D mapping capabilities of the
AnDA and the Mapping-PNN methods in the experimental part

(The code of python type for AnDA method can be found on the
website: https://github.com/ptandeo/AnDA).

The PredNet Method
Shi et al. (2015) proposed the ConvLSTM method. In 2017,
Lotter and Kreiman et al. established the PredNet neural network
architecture based on ConvLSTM (Lotter et al., 2017). The theory
details of ConvLSTM and PredNet are as follows:

ConvLSTM replaced each gate of the LSTM neural network
(proposed by Hochreiter and Schmidhuber, 1997) with
CNN architecture, which improved the ability of feature
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extraction for targets in the original LSTM network. The
theory brief introduction and the implementation method are
as follows:

ConvLSTM is an extension of full-connection LSTM (FC-
LSTM), which has convolutional structures in the input-to-state
and state-to-state transitions. The ConvLSTM determines the
future state of a certain cell in the grid by the inputs and past
states of its local neighbors. The key equations of ConvLSTM (Shi
et al., 2015) are shown in Eqs. (5)–(9) below, where ‘∗’ denotes the
convolution operator and ‘◦’ denotes the Hadamard product:

it = σ (Wxi∗Xt+Whi∗Ht−1+Wci◦Ct−1+bi) (5)

ft = σ (Wxf ∗Xt+Whf ∗Ht−1+Wcf ◦Ct− 1+bf ) (6)

Ct = ft◦Ct−1+it◦tanh
(

Wxc∗Xt+Whc∗Ht−1+bc
)

(7)

ot = σ (Wxo∗Xt+Who∗Ht−1+Wco◦Ct+bo) (8)

Ht = ot◦tanh(Ct) (9)

For a spatiotemporal sequence forecasting problem, the structure
consists of an encoding network and a forecasting network (Shi
et al., 2015). Compared to classical LSTM, ConvLSTM can model
space-time structures by encoding geographic information as
tensors, thereby to overcome the limitation of losing spatial
information in classic LSTM networks. Readers can find the
algorithm sketch block diagram of ConvLSTM in the reference
(Shi et al., 2015) to learn more details about the ConvLSTM
method (The code of python type for ConvLSTM method can
be found on the website: https://github.com/XingguangZhang/
ConvLSTM.).

Tominimize the weighted sum of the activity of the error units
(Ma et al., 2019), based on the ConvLSTM concept, the network
structure is enhanced to construct an improved ConvLSTM,
which is named the PredNet model, for predicting sequences of
images (Lotter et al., 2017). A structure in which the error is fed
forward has been added to the network, as shown in Figure 2.
The network consists of a series of repeatedly stacked blocks, and
each of them can be viewed as one layer (Lotter et al., 2017).

The PredNet architecture is illustrated in Figure 2. Each
module of the network consists of four basic parts: an input
convolutional layer (Al), a recurrent representation layer (Rl),
a prediction layer (Âl), and an error representation (El). The
architecture is rooted in convolutional and recurrent neural
networks (RNN) trained with back propagation (BP) (Ma et al.,
2019).

At
l =

{

xt if l = 0
MAXPOOL(RELU(CONV(Et

l−1
))) l > 0

(10)

Ât
l = RELU(CONV

(

Rtl
)

) (11)

Etl =
[

RELU
(

At
l−Â

t
l

)

;RELU
(

Ât
l−A

t
l

)]

(12)

Rtl = CONVLSTM(Et−1
l

, Rt−1
l

, UPSAMPLE(Rtl+1)) (13)

The full set of update rules is listed in Eqs. (10–13).

As follows, Algorithm 1 is the original PredNet algorithm.

Algorithm 1: Calculation of PredNet States

Require:xt
1 At

0 ← xt
2 E0

l
, R0

l
← 0

3 for t← 1 to T do

4 for l = L to 0 do ◮ Update Rt
l
states

5 if l = L then:

6 RtL = ConvLSTM(Et−1L ,Rt−1L )
7 else:
8 Rt

l
=

ConvLSTM(Et−1
l

,Rt−1
l

, Up_Sample(Rt
l+1

))

9 for l = 0 to L do ◮ Update Ât
l
,At

l
, Et

l
states

10 if l = 0 then:

11 Ât
0 = SatLU( RELU

(

Conv
(

Rt0
))

)
12 else:

13 Ât
l
= RELU

(

Conv
(

Rt
l

))

14 Et
l
=

[

RELU
(

At
l
− Â

t

l

)

;RELU
(

Ât
l
− A

l

t

)]

15 if l < L then:

16 Ât
l+1
= MaxPool( Conv

(

Elt

)

)

17 End

Algorithm 1 was proposed by Lotter et al. (2017). The Rt
l
states

are computed, and a forward pass is initialized to calculate the
predictions, errors, and higher-level targets. The initial prediction
is spatially uniform (Lotter et al., 2017).

Readers can learn more details about the PredNet method in
the reference (Lotter et al., 2017). This paper also compares the
2D mapping capabilities of the PredNet and the Mapping-PNN
methods in the experimental part, and discusses them (The code
of python type for the PredNet method can be found on the
website: https://coxlab.github.io/prednet).

The Mapping-PNN Method
In the prediction of the target data, the PredNet needs a lot of
learning database for the existing data set, which will increase the
learning period. To improve the training efficiency of the original
version of PredNet, the Mapping-PNN is proposed in this paper,
and the external storage gate is added in ConvLSTM to enhance
the memory and storage capacity of the learning performance
of the ConvLSTM layer, accelerate the learning efficiency of the
original PredNet, and save the waiting period of the observations
on OSSEs. The external storage gate is utilized in the minimum
training period. And the using of the least recently used access
(LRUA) module helps to accelerate the read-write process of
the memories. The AdamOptimizer (Kingma and Ba, 2015) is
adopted to minimize the loss. The specific method is as follows.

The typical external storage gate includes duality of read
and write units, as well as the external memory. The controller,
neuron Cconvlstm, is a ConvLSTM network, which receives the
current input and controls the read units and write units
to interact with the external memories, respectively. Memory
encoding and retrieval in external memories are rapid, with
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FIGURE 2 | The sketch block diagram of PredNet.
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FIGURE 3 | The sketch block diagram of Mapping-PNN.

feature representations being placed into or taken out of memory
potentially every time step. Additionally, it can be used for long-
term storage by slowly updating the weights and for short-term
storage by external memories. Thus, when the model learns the
type of representations, it will be placed into memories, and the
representations will be used to implement mapping.

As shown in Figure 3, the initialized state of the Mapping-
PNN network is represented by init_state. The cell state of
the initialized controller, neuron Cconvlstm, is represented by
ck (k = 1, 2, . . . , n, nǫR, and n equals to the number of
the memory). Given the input SSH observations, the controller
receives the memory rt−1 and cell state ct−1 provided by the
previous state prev_state, and then produces kconvlstm used to
retrieve a particular memory. Besides, the light-green arrow line
represents the writing data streams, while the red arrow line
illustrates the reading data streams.

In terms of a new sequence, it is written to a rarely used
location with the recently encoded information preserved or to
the last used location, which can be used for updating with
newer or possibly more relevant information. Then, the whole
procedure of the algorithm can be described as follows [including
each component of the controller gates Ct, which is transformed
from Eq. (7)]:

wu
t← γ ∗wu

t−1+w
r
t+w

w
t (14)

wlu
t

(

i, j
)

=

{

1 if wu
t ≤ m(wu

t , n)
0 if wu

t >m(wu
t , n)

(15)

ww
t ← RELU(Conv(σ (α) •wr

t−1+(1− σ (α) )•wlu
t−1))) (16)

Mt

(

i, j
)

←Mt−1

(

i, j
)

+ww
t

(

i, j
)

•kt (17)

where wu denotes the usage weight updated at each time step to
keep track of locations most recently read or written; γ denotes

the decay parameter;wlu denotes the least-used weight computed
using wu for a given time step; the notationm(v, n) is introduced
to denote the nth smallest element of the vector v; n is set to
equal the number of the writer to memory; ww refers to the
written weight computed by the function RELU(σ (.)), which
combines the previous read weights wr and previous least-used
weights wlu; α represents a dynamic scalar gate parameter to
interpolate between weights. Before writing to memory, the least
used memory location is computed from wu and set to zero,
and then the memory Mt is written by the computed matrix of
written weights ww. The parameters will be updated dynamically
during back propagation. In addition, Mt (i, j) can be written
into the zeroedmemory locations or the previously usedmemory
locations; if it is the previously used memory location, the w will
simply be erased.

The memory rt is used by the controller as both an input to a
classifier and an additional input for the next input sequence. It
is calculated by the Eq. (18) for prediction.

rt←
∑

i

∑

j

wr
t

(

i, j
)

•Mt

(

i, j
)

(18)

To achieve the learning, the LRUA module proposed by Santoro
et al. (2016) is adopted, which is a pure content-based memory
write unit that writes memories to either the least used memory
location or the most recently used one (Santoro et al., 2016).

Furthermore, wr is ConvLSTM with RELU, following the
Eq. (19):

wr
t

(

i, j
)

← RELU(Conv(K(k_t,M_t (i, j)))) (19)

where Mt refers to the memory matrix at time-step t, and Mt (i,
j) refers to a sub-block in this matrix. The block ofMt (i, j) serves
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as the memory “slots,” with constituting individual memories
(Santoro et al., 2016).

K(k_t,M_t (i, j))← LRUA(k_t,M_t (i, j)) (20)

where the read units can amplify or attenuate the precision of the
focus by the read weights.

Those read weights wr and corresponding memory Mt (i, j)
are used to retrieve the memory rt.

The ConvLSTM Layer in Algorithm 1 (Lotter et al., 2017)
was optimized by the introduction of the LRUA method, and
Algorithm 2 was proposed, as shown:

Algorithm 2, the improvement details of the Mapping-PNN,
adopted the LRUA method.

Algorithm 2:Mapping-PNN

Input: Given N SSH samples {X1,X2, . . . ,XN}

belonging to C with Sampled SSH;
yt ∈ Y = {1, . . . ,C}, for t = 1, . . . ,N;
Output: A Converlutional layer for ssh
prediction;

1 prev_state← init_state (N)

2 c0 ← Clstm (N)

3 r0 ← 0N×(unit_num∗memory_size)

4 wr
0 ←

observation_weight
(

N, unit_num,memory_slots
)

5 wu
0 ← observation_weight

(

N,memory_slots
)

6 M0 ← εN×memory_slots×memory_size

7 return {c0, r0,w
r
0,w

u
0 ,M0}

8 _output_ = [ :] [ :]
9 for t← 1 to N do:

10 ht , ct ← CConvlstm

((

Xt , yt
)

, prev_observation
)

11 for i← 0 toXt .length do :

for j← 0 to (Xt .size)/(Xt .length) do :

12 output, curr_state←
MappingPNN

(

i, j, prev_observation
)

13 Memory Retrieval:◮ LRUAMethod

14 K
(

kt ,Mt

(

i, j
))

←

LRUA
(

kt ,Mt

(

i, j
))

(Santoro et al., 2016)

15 wr
t

(

i, j
)

←

RELU
(

Conv
(

K
(

kt ,Mt

(

i, j
))))

16 rt+ = wr
t

(

i, j
)

•Mt

(

i, j
)

17 Memory Encoding (LRUA):

18 wu
t ← γ ∗wu

t−1 + wr
t + ww

t

19 if wu
t ≤ m

(

wu
t , n

)

then wlu
t

(

i, j
)

= 1 else wlu
t

(

i, j
)

= 0
20 ww

t ←

RELU(Conv(σ (α) • wr
t−1 + (1− σ (α)) • wlu

t−1)))

21 Mt

(

i, j
)

← Mt−1

(

i, j
)

+ww
t

(

i, j
)

• kt
22 return {ht , rt}, {ct , rt ,w

r
t ,w

u
t ,Mt}

23 prev_state = curr_state;
24 if i == 0 then:
25 o2o_w←

(

output.length,Ms

)

, rand_unif _init (minv,maxv)

26 o2o_b←

(Ms) , rand_unif _init (minv,maxv)
27 end if:

28 output = RELU
(

output • o2o_w

+o2o_b
)

29 train_op =
AdamOptimizer.minimize(−CrossEntropyCost

(yt , _output_))
30 End

In the algorithm, the observation_weight (N, unit_num,
memory_slots

)

function generates a tensor with the zeros set
to the ones; {(N, unit_num), rand_unif _init (minv, maxv)}
generates a tensor with a uniform distribution, and the value of
all elements is set betweenminv andmaxv.

For the current time-step t, the sampled data
{X1, X2, . . . , XN} and the corresponding sample-class yt
will be received by the controller CConvlstm. The current state of
the network curr_state is used by the controller as an additional
input for the next time step. According to each sequence of the
sample, the algorithm randomly generates the prediction label.
If the sampled data Xt comes from a new observation, it will
be bound to the appropriate yt and stored by the write units
in the external memory, which is presented in the subsequent
time step. Once a sample from an observed-already data is
presented, the controller will retrieve the bound information by
the read units from the external memory for SSH prediction.
The cross_entropy_cost(·) is to measure the loss between the
predicted value and the correct prediction label. Then, the
adaptive moment estimation, Adam,optimizer(·) (Kingma and
Ba, 2015), is adopted to minimize the loss. Furthermore, the
back-propagated (BP) error signal from the current prediction
updates those previous weights and bias, such as the o2o_

w,o2o_ b,wr
t ,w

w
t and wu

t , followed by the updating of the external
memory. Those processes would be repeated until the model
converges. Meanwhile, there are some observation gaps or
missing data after generation of grid SSH; therefore, an optimal
interpolation is needed. The parameters, such as the coefficient
matrix, the spatial distances, and searching range, will be
designed based on the target region (the coefficient matrix of the
observations and the errors, the range of the latitude-longitude,
etc.) (Lguensat et al., 2017; Amores et al., 2018; Ma et al., 2020).

EXPERIMENTS

Experimental Setups
The Regions and the Target Date
TheAnDA, PredNet, andMapping-PNNmethods all need a large
number of training sets during the neural network training. By
utilizing 10-year HYCOM data, three data-driven methods were
trained, and a target day (at the 15◦E ∼ 39◦E, 120◦N ∼ 144◦N
region—take a date on March 1, 2017 of HYCOM for example)
was considered as the target field of the experimental dataset
of the three data-driven methods. The temporal resolution of
test datasets is daily. The cycle of the Guanlan 791-Orbit is
14 days, and the target day is the March 1, 2017 on HYCOM.
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Furthermore, take the selection of the test data, for example, for
AnDA, PredNet, and Mapping-PNN methods. The test data are
obtained from January 1, 2017 to March 1, 2017 on HYCOM,
which could be divided into “30-day data” (from January 1, 2017
to January 30, 2017) and “60-day data” (from January 1, 2017 to
March 1, 2017).

The studied region in this paper is the Kuroshio region
(Kuroshio extension as well). With the variation of the seasons
in the northern hemisphere, the ocean phenomenon varies
significantly in this region. Considering that the early stage
of March is in the transition period from winter to spring,
“March 1, 2017” is selected as the research target date. At this
time, several new unique ocean phenomena of spring are in the
generation stage, and unique ocean phenomena of winter are
in the transformation stage. The illustration of the comparative
analysis and research among the data mapping algorithms in the
Kuroshio region and the Kuroshio extension region would be
valuable for the ocean science research.

TABLE 1 | Computer hardware resource in this paper.

Hardware

resource

Computer configurations

CPU Intel(R), Core (TM), i7-8700K@3.70 GHz, 16 Cores

Memory 64.0 GB

Operating System 64-bit Windows 10

Hard Disk SSD 860 EVO250GB(Samsung); Seagate Hub BK SCSI

8TB Disk; and WD20EZRZ-00Z5HB0(WDC) 4TB Disk

The AnDA, PredNet, and Mapping-PNN methods used
2005–2015 OSSEs observations for model training, 2015 ∼2016
original data for evaluation, and 2017 original data for tests. The
research on ocean phenomena represented by the Kuroshio and
the Kuroshio extension is based on detailed statistics, analysis,
and summary from over decades’ observations.With consistency,
both use the observation data as the research basis.

The evaluation and test methods of AnDA refer to the
method introduced by Lguensat et al. (2017). In addition, the
methods introduced by Beauchamp et al. (2020) are used as
the evaluation methods of PredNet and Mapping-PNN. The
validation and evaluation methods are listed in detail to evaluate
the mapping performance of comprehensive indicators. For
experiment results, please see The Comparison of the Experiment
Results of the AnDA, the PredNet, and the 426 Mapping-
PNN section.

The Hyper Parameters’ Configuration
Some hyper parameters, such as optimizer and learning rate,
are as follows: For the AnDA method, the error probability is
0.01. For the PredNet method and the Mapping-PNN method,
to minimize the loss, an Adam,optimizer (·) is utilized, and the
learning rate is 0.01 until the model converges after training
80 times in test No.1 (See Table 3 in The Comparison of the
Experiment Results of the AnDA, the PredNet, and the 426
Mapping-PNN section for details). To avoid the overfitting, the
early stopping strategy is utilized during the training. And if the
loss of the evaluation data is no longer reduced, the training will
be stopped, and the overfitting can be avoided. Meanwhile, 80
training times are the epochs when the early stopping happens.

FIGURE 4 | (A) The original SSH field of the regions on HYCOM; (B) the along-track sampled data of OSSEs on HYCOM by the parameters of Guanlan; (C) mapping

result of the AnDA method; (D) mapping result of the PredNet; (E) mapping result of the Mapping-PNN method.
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FIGURE 5 | (A) The absolute geostrophic velocity derived from Figure 4A, the original SSH; (B) the absolute geostrophic velocity from Figure 4C (the AnDA method);

(C) the absolute geostrophic velocity from Figure 4D (the PredNet method); (D) the absolute geostrophic velocity from Figure 4E (the Mapping-PNN method).

Computer Configuration Used in This Paper (Table 1)

Validation Methods
In the analysis of the experimental results, several validation

methods have been used to validate the test results of three data-

driven methods, such as the method of illustrating the mapping

results by the figures, the absolute geostrophic velocities, the

RMSE of the mapping results, the Taylor Diagram (Taylor and
Karl, 2001; Beauchamp et al., 2020), the power spectral density
(PSD) diagram, and the efficiency of the methods.

The Taylor Diagram (Taylor and Karl, 2001), as an effective
method, has been widely used to evaluate and verify mapping
work. The correlation coefficient (COR), centered root mean
square error (Centered RMSE), and standard deviation (STD)
can all be expressed on Taylor Diagram and in the form of
one point. The Taylor Diagram can centrally express not only
the related information of multiple mapping methods but also
comprehensively and clearly reflect the data reconstruction
capabilities of the methods. The COR indicates the similarity
between the reconstruction results and the observations. The
centered RMSE represents the error difference between the
mapping results and the trues. The ratio of the STD reflects the
degree of dispersion between the ability to reconstruct the entire

spatial data and the observations. The theoretical expressions
of COR, RMSE, and STD are detailed in Eqs. (21), (22), and
(23) (Taylor and Karl, 2001; Beauchamp et al., 2020; Zhen et al.,
2020), respectively.

STD : σ 2
x_x̂ (tk) =

1

N

∑N

k=1
[(xk−x̂k)−(xk−x̂k)]

2

(21)

COR : COR (tk) =
COV(xk, x̂k)

σ (xk)σ (x̂k)
(22)

Centered RMSE : RMSE =

√

√

√

√

1

N

N
∑

k=1

[(xk−xk)− (xr−xr)]
2

(23)

The Comparison of the Experiment Results
Figure 4 illustrates the 2D SSH mapping results from the
AnDA, the PredNet, and the Mapping-PNN in Figures 4C–E,
respectively. Beyond that, Figure 4A denotes the original SSH
field of HYCOM, and Figure 4B illustrates the along-track

Frontiers in Marine Science | www.frontiersin.org 10 September 2021 | Volume 8 | Article 670683149

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Di et al. Mapping-PNN for Wide-Swath Satellite Altimetry

sampled data simulated from OSSEs on the date of March 1,
2017 on HYCOM, which utilized the parameter of 791-Orbit
of Guanlan.

After the OSSEs process (Figure 4A), as the description
mentioned, we used the OI as a first guess of the PredNet and
Mapping-PNN methods for the gaps and missing data of the
target region. By using the methods of AnDA, PredNet and
Mapping-PNN, respectively, the 2D SSH grid of the 15◦E−39◦E,
120◦N−144◦N region could be obtained. The grid data are shown
in Figures 4C–E, respectively.

TABLE 2 | The RMSE of the AnDA method, the PredNet method, and the

Mapping-PNN method.

AnDA PredNet Mapping-PNN

RMSE (cm) 2.0 1.8 1.8

The absolute geostrophic velocity diagram is shown in
Figure 5. Figure 5A represents the absolute geostrophic velocity
inversed from the original SSH field of the region (the Kuroshio
and the Kuroshio extension, 15–39◦E, 120–144◦N region);
Figure 5B represents the absolute geostrophic velocity of the
AnDA method; Figure 5C represents the absolute geostrophic
velocity of the PredNet method; and Figure 5D represents the
absolute geostrophic velocity of the Mapping-PNN method.

As indicated in Figure 5, the absolute geostrophic velocity
inversed from the Mapping-PNN method (Figure 5D) is more
similar to the true value of HYCOM than the geostrophic velocity
inversed from the other two methods. Compared with the AnDA
method and the PredNet method, the Mapping-PNN method
could obtain more small-scale ocean phenomena.

Table 2 displays the RMSE of the above test. As revealed in
Table 2, the RMSE level of the 2D SSH grid data by using the
methods of the three data-driven methods is basically within the
range of <2 cm. The RMSE of the AnDA method, the PredNet
method, and the Mapping-PNN method is 2.0, 1.8 and 1.8 cm,

FIGURE 6 | The Taylor Diagram computed for the AnDA, the PredNet, and the Mapping-PNN methods, respectively.
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FIGURE 7 | The PSD of the AnDA, the PredNet, and the Mapping-PNN (M-PNN for short).

TABLE 3 | The comparison of efficiency, error probability, accuracy, and learning rate of the three data-driven methods.

No. Test datasets Efficiency Error probability Learning rate Accuracy

AnDA PredNet M-PNN AnDA PredNet M-PNN AnDA PredNet M-PNN

1 30-day 9 days 7 days 4 days 0.01 0.02 0.02 89% 91% 92%

2 60-day 9 days 9 days 6 days 0.01 0.01 0.01 91% 91% 93%

respectively. Therefore, the RMSE of the WSA SSH grid data
products can all be limited within the range of∼1.8 cm.

Figure 6 is the Taylor Diagram corresponding to AnDA,
PredNet, and Mapping-PNN methods. Specifically, the red star
signifies the location of HYCOM Original value on the diagram.
The green dot represents the COR, RMSE, and STD location of
the AnDA mapping result on the diagram. The gray dot refers
to the error location of the PredNet, and the orange dot refers
to the error location of the Mapping-PNN. The RMSE results
of the three data-driven methods are in the range of <2 cm,
which are the same as the descriptions in Table 2. The RMSE
value of PredNet and Mapping-PNN is slightly better, which is
in the range of 1.8 cm. In addition, the Mapping-PNN method
has the same data mapping capabilities and can obtain high-
precision, high-resolution SSH grid data product with a high rate
and low error. As shown in Figure 6, the relative error of the
Mapping-PNN method is better than that of the other methods.

Figure 7 is the PSD diagram corresponding to AnDA,
PredNet, and Mapping-PNN (M-PNN for short.) methods,
respectively. The red line denotes the PSD of the HYCOM
true value of the 15–39◦E, 120–144◦N region. The black line
represents the PSD of the observations of the OSSEs, the deep-
red line refers to the PSD of the mapping result from the AnDA
method, the orange line is that of PredNet, and the blue line in
the PSD diagram signifies the Mapping-PNN method. It shows
that the Mapping-PNN method is better than the other methods
for recognizing scales < ∼40 km (including the sub-mesoscale,
the ocean fronts, the internal waves, etc.), but the reconstruction
ability of them are almost the same for the scales larger than
∼40 km.

InTable 3, the efficiency, accuracy, and learning rate (the error
probability for AnDA) of the three data-driven methods [AnDA,
PredNet, and Mapping-PNN methods (M-PNN for short)] are
described to evaluate their DL ability. The continuous time of the
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Mapping-PNN training is better than that of the AnDA method
and the PredNet method, which reaches 4 days long in test No. 1
and 6 days long in test No. 2 in the Kuroshio and the Kuroshio
extension regions (from January 1, 2017 to March 1, 2017 on
HYCOM). The efficiency of Mapping-PNN is higher, and the
Mapping-PNN method has similar accuracy and learning rate
with the PredNet method and the AnDA method.

CONCLUSION AND DISCUSSION

Focusing on the future scientific research targets of WSA
2D mapping, this paper proposes a new data-driven mapping
method called Mapping-PNN. The experiment result, which
has been obtained through 10-year WSA satellite along-track
OSSEs on the HYCOM data, illustrates that the method of this
paper can decrease the mapping RMSE, improve the training
efficiency, and meet the grid mapping expectations. Three data-
driven methods (the AnDA, the PredNet, and the Mapping-
PNN) were used to implement data mapping practice tests in
the same region. The future satellite will provide 2D wide-swath
altimetric information with an unprecedented high resolution.
By comparing the three data mapping methods, this research
shows that the data reconstruction ability of the Mapping-PNN
method meets the WSA scientific targets.

The Mapping-PNN method proposed in this paper is
evaluated with several ways, which are SSH differences, as well as
the absolute geostrophic velocities differences, are illustrated with
visibility analysis, and the comparisons of errors are presented
with the Taylor Diagram and the PSD diagram. More specifically,
the OSSEs are implemented in the same region, and the AnDA,
the PredNet and the Mapping-PNN methods are used for 2D
SSH Mapping. The RMSE of the three data-driven methods is
at the range of <2.0 cm. Notably, the RMSE value of PredNet
and Mapping-PNN is slightly better, which is in the range of
∼1.8 cm.With the same data mapping capabilities, the Mapping-
PNN method could obtain high-precision, high-resolution SSH
grid data product. The observational dataset is based on a 14-
day aggregation; considering to test other aggregation strategies,
the experiments with months or seasons will be one of the future
works. And, in addition, to improve the efficiency, we will use
GPU(s) to implement mapping experiments in the future.

Being different from the classical model-driven method, the
data-driven methods rely on the spatial-temporal relationship
of the observations so that a data-driven method can capture
the ocean phenomena that may not be accounted for in purely
numerical models (Lopez-Radcenco et al., 2019). Moreover,
the DI method (one of the model-driven methods) is based
on the PV conservation theory. When sub-mesoscale ocean
phenomena are <∼10 km scale, the kinetic energy is dominated
by internal waves, in which the geostrophic balance fails, and

the PV conservation theory is no longer applicable. And the PV
conservation theory in coastal regions or the tropic regions may
also fail, in which the DI method is invalid.

The data-driven method is more suitable for global 2D
mapping of ocean phenomena with small scales. The data-driven
and model-driven methods can be combined appropriately to

obtain a new method, which not only has better mapping error
accuracy than the current data-driven method but also has the
common advantages of both methods. This will be a challenge
for future mapping work and a research direction in the future.

One development direction of the 2D mapping method
will be continuing more in-depth research along the direction
of the data-driven roadmap, considering the utilization
of new methods, such as generative adversarial networks
(GANs) (Goodfellow et al., 2014) and enhanced networks for
reinforcement learning (Huang et al., 2017), etc.

Furthermore, considering the data-driven mapping method,
making error analysis of each layer (especially the hidden layer),
replacing the previous BP method of individual neurons with the
idea of Capsule (Sabour et al., 2017), to improve the learning
rate of the entire network, and avoid the hidden dangers of
invariance of CNN (Sabour et al., 2017), then obtaining data
reconstruction closer to the real fields will be another research
direction for future.
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Ocean mesoscale eddies contribute significantly to water transport on a global
scale, constituting the ubiquitous, irregular, discrete, nonlinear components. In this
manuscript, we propose to explore whether and how the topographic effect of one
meridional ridge, could exert considerable influences on the evolution and propagation
of mesoscale eddies through their life cycle, directly from the perspectives of real
observation statistics. We systematically investigate the known variability of mesoscale
eddy trajectories, derived by multimission satellite altimetry from 1993 to 2018, of a life
cycle more than 6 months, over the Izu-Ogasawara Ridge, and quantitatively examined
the eddy-ridge interaction by observation statistics and wavelet coherence map, with
respect to the intrinsic attributes, namely, the amplitude, the rotation speed, the radius.
Due to the spatial-temporal diversity, a series of correlative steps have been particularly
designed along time-frequency domain to trace back mesoscale eddy trajectories in a
variety of origins, location, lifespan, polarity, either completely or partially passing over
the ridge, and to facilitate the standardization in statistics across three phases of their
life cycle, i.e., before, during and after the interaction with the ridge. It has been revealed
in our experiment that three intrinsic attributes of mesoscale eddies within 25 years,
all demonstrated noticeable correlation with the variation of topographic relief over the
ridge. We observed that most of the cyclonic eddies obviously tended to begin to decay
or even demise, while on the contrary, some of the anticyclonic eddies preferred to
intensify slightly, or making no significant difference when encountering the upslope until
climbing across the top, basically consistent with the expectation of potential vorticity
(PV) conservation. The drifting velocity agreed with the tendency that the direction would
be more probably modified toward equatorward or poleward by forcing to meridional
component, with zonal component reduced at the beginning. The mesoscale eddies
with the passage over the ridge exhibited the relatively high average horizontal scales,
amplitude, rotation speed on the whole, compared to those with only partially passage.
The developed scheme could integrate more evidences on how mesoscale eddies
response to the topographic effects during their time-varying evolution and propagation
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process, and help provide opportunities to potentially identify and predict the underlying
dynamic patterns and mechanisms that mesoscale eddies engage in ocean dynamics
when proceeding toward meridional ridges on a global scale, with the promise of
the end-to-end data-driven solution, such as deep learning architecture involved in
the future.

Keywords: ocean mesoscale eddies, topographic effects, wavelet analysis, life cycle, satellite altimetry, eddy-
ridge interaction, Izu-Ogasawara Ridge

INTRODUCTION

Ocean mesoscale eddies, with typical horizontal scales of less
than 100 km and timescales on the order of months, constitute
one of the most essential and fundamental components of water
transport on a global scale (Sarangi, 2012; Frenger et al., 2013;
Zhang et al., 2014, 2018, 2019, 2020; Shu et al., 2018). It is
of great scientific importance to quantitatively investigate the
known variability of ocean mesoscale eddies through life cycle.
On this basis, we could integrate evidences on the spatio-
temporal responses to manifold intrinsic and external origins
during their evolution and propagation. It could also help provide
opportunities to potentially identify and predict the underlying
patterns and mechanism that mesoscale eddies involve, in ocean
dynamics, or the related biological and chemical processes.

For decades, evidences have been shown that the life cycle
evolution and trajectories of mesoscale eddies would be to some
extent affected by the topographic effects when encountering with
mid-ocean ridges, seamounts, bottom slopes, or over a variety
of topography (Sekine, 1989; Jacob et al., 2002; Sutyrin et al.,
2011; Torres and Gomez-Valdes, 2017). The eddy-seamount
interaction has been examined in a variety of quasi-geostrophic
and multi-layer primitive equation settings, as well as in
laboratory experiments (Adduce and Cenedese, 2004; Nycander
and Lacasce, 2004; Sutyrin et al., 2008, 2011). The evolution of
eddies near a topographic obstacle depends on the bathymetric
gradients, which can be treated as background potential vorticity
(PV) gradient, and on the vorticity of these eddies. This provides
several general predictive rules (Kamenkovich et al., 1996;
Beismann et al., 1999; Thierry and Morel, 1999; Morrow et al.,
2004; Hu et al., 2012; Falcini and Salusti, 2015): (1) When the
column PV and the topographic PV are conserved (f -plane), and
if the topography is smooth, vortex column squeezing leads to the
decay of relative vorticity for cyclonic eddies, while the column
stretching leads to the intensification, with strong barotropic
component of the eddy, conversely, for anticyclonic eddies. (2)
If the topographic gradient is strong but regular, topographic
Rossby wave may scatter the lower PV and lead to the vortex
compensation at the surface. (3) When the column PV and the
planetary PV are conserved (β-plane), cyclones and anticyclones
will have different meridional propagation. (4) When PV is not
conserved because of the bottom friction, irregular topography
will lead to the erosion of the vortex. Apart from the theoretical
understanding, the survey from available real observation still
remains incomplete.

The northwestern subtropical Pacific Ocean (NWSTP) could
be considered to be one of the most convoluted bottom

topography area in the ocean (Qiu and Lukas, 1996; Qiu and
Miao, 2000; Ohara et al., 2007; Jing et al., 2011; Rudnick
et al., 2011; Yuan and Wang, 2011; Li and Wang, 2012; Yang
et al., 2013). Trodahl and Isachsen (2018) suggested from the
calculation of a nonlinear eddy-permitting ocean model hindcast
that the time-mean currents could be strongly guided by bottom
topography in the northern North Atlantic and Nordic seas,
where baroclinic instability constitutes a consistent source of the
mesoscale eddy field but topographic potential vorticity gradients
impact unstable growth significantly, and the topographic effects
has been systematically observed on finite-amplitude eddy
characteristics, including a general suppression of length scales
over the continental slopes. Ihara et al. (2002) developed a two-
layer primitive ocean model with a submerged ridge that mimics
the Izu-Ogasawara Ridge and divides Philippine Basin in the west
and the Pacific Basin in the east, suggested that the baroclinic
eddies may be generated owing to nonlinearity through the
interaction between the basin-wide response to seasonal winds
and the localized bottom topography, and believed that the
possible link between the eddy generation and the seasonal
variation will shed new light on the predictability on the Kuroshio
meandering. Ebuchi and Hanawa (2001) investigated trajectories
of mesoscale eddies in the kuroshio recirculation region with
sea surface height anomaly, and it seemed to be crucially
affected by the bottom topography around Izu-Ogasawara Ridge
region, where most of eddies pass through the gap between the
Hachijojima Island and Ogasawara (Bonin) Islands, and in the
region south of Shikoku and east of Kyushu, some of the eddies
coalesce with the Kuroshio, which may trigger the path variation
of the Kuroshio.

We hope to look into the interaction between the variation
of mesoscale eddies in history through real observation
and the topographic effects, when proceeding toward the
meridional ridge Northwestern Pacific Ocean, Izu-Ogasawara
Ridge. Kamenkovich et al. (1996) have examined the influences
of one meridional ridge, Walvis Ridge, on the dynamics of
Agulhas eddies, in a series of numerical experiments with a two-
layer primitive equation model, differing vertical structures of a
specified intensity in the upper layer and a prescribed horizontal
scale, and found significantly baroclinic eddies could go cross the
ridge, but barotropic or near-barotropic ones could not. Eddies
with the characteristics and dimensions of Agulhas rings did react
to crossing a ridge, exhibiting an intensification in the form of
a deeper thermocline and a heightened sea surface amplitude
just before reaching the ridge. Beismann et al. (1999) applied the
quasi-geostrophic model to investigate the topographic influence
of a meridional ridge on the translatory movement of Agulhas
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rings, with the vertical ring structure, the initial ring position,
and the height of the ridge varied, and found that the general
northwestward movement of the model eddies has been modified
toward a more equatorward direction by encountering the
upslope of the ridge, even forced toward a pure meridional
movement for the sufficient topographic heights and strong
slopes. The vertical coherence lost during the translation of the
eddies, due to the possible rectification of radiated Rossby waves
at the topographic slope. Strong, shallow eddies over deep lower
layers can cross the ridge without strong modification of their
translatory movement. Thierry and Morel (1999) investigated
the influence of steep topography on the propagation of a
surface intensified vortex in a two-layer quasigeostrophic model,
with the planetary beta effect taken into account, and found
the steep topography could scatter disturbances created by the
upper-layer vortex displacement and maintain the lower-layer
motion weak. The numerical experiments showed that both
the steep topography and reduced-gravity trajectories remained
close up to a large radius, after which a vortex above a strong
slope became unstable and was dispersed by a signature of
topographic Rossby waves.

We try to further extend the research scope of the topographic
effect on the meridional ridge, into the real observation statistics
of mesoscale eddy trajectories, directly retrieved from the satellite
altimeter and bathymetric digital elevation, with the promise of
the end-to-end data-driven solution. It has been noted that most
commonly applied time series approaches, such as bootstrapping
regression models (Freedman, 1981), rolling window regression
(Su et al., 2019b), and auto-regressive distributed lag (ADL)
model (Shahbaz et al., 2015), often only consider one single or
several independent predictive elements, and tend to ignore the
combined effects of the complex structures, while the classic
correlation calculation, is only suitable for studying relatively
short-term time series and severely limited to stationary series.
Wavelet analysis is a mathematically basic tool for analyzing
localized intermittent periodicities within non-stationary time
series (Daubechies, 1991; Torrence and Compo, 1998; Labat,
2005), which could optimally describe the occurrence of transient
events, and well adapt to conditions where the amplitude of
the response varies significantly in non-stationary time series
(Meyers et al., 1993; Steel and Lange, 2007; Pineda-Sanchez
et al., 2013; Li et al., 2015; Rhif et al., 2019; Su et al., 2021a).
As the extended usage of wavelet transform, wavelet coherence
(Maraun and Kurths, 2004; Reboredo et al., 2017; Su et al.,
2019a, 2020, 2021b; Tao et al., 2021) and phase difference
(Aguiar-Conraria and Soares, 2011; Nian et al., 2021a,b; Su
et al., 2021c,d) can be utilized to recognize whether two time
series are quantitatively linked by a certain correlation even
causality relationship.

Recently, machine learning (ML), has become one of the
most powerful tools in the field of multivariate multi-step time
series prediction (Hochreiter and Schmidhuber, 1997; Geurts
et al., 2006; Sapankevych and Sankar, 2009; Box et al., 2015;
Hu and Zheng, 2020; Nian et al., 2021c). Deep learning could
be regarded as one of the hottest topics in the context, and all
kinds of most emerging and advanced algorithms have been put
forward and made progresses (Hinton and Salakhutdinov, 2006;

Krizhevsky et al., 2012; Goodfellow et al., 2014; He et al.,
2016; Huang et al., 2017; Wan et al., 2019), such as Recurrent
Neural Network (RNN) (Elman, 1990; Lipton et al., 2015;
Braakmann-Folgmann et al., 2017; Qin et al., 2017) and
Long Short Term Memory (LSTM) (Kalchbrenner et al., 2015;
Shi et al., 2015; Greff et al., 2016; Zhang et al., 2017;
Shi and Yeung, 2018; Wang et al., 2021; Gangopadhyay
et al., 2021; Nian et al., 2021b). We expect to establish a
comprehensive predictive model of mesoscale eddy trajectories
toward meridional ridges on a global scale in the future,
coupling with the topographic effects, via deep learning. So
in this manuscript we try to evaluate the possible responses
of mesoscale eddies to manifold attributes, particularly the
topography effects onto one meridional ridge, from both the
real observation statistics and wavelet coherence map, which
might help collect evidences to identify the fundamental roles
of mesoscale eddy attributes, so as to adaptively select from
the relevant indices that dominantly correlative with the time-
varying process through life cycle, to further feed into deep
learning architecture.

In this manuscript, taking the Izu-Ogasawara Ridge in
Northwest Pacific Ocean as an example, we retrieve daily
mesoscale eddy attributes and the integrated bathymetric digital
elevation in the study area, from AVISO satellite altimeter
and ETOPO1, respectively, and systematically investigate the
variation of mesoscale eddy trajectories, of a life cycle more
than 6 months, to discover the possible expression of the
topographic effects with and without passage over the ridge.
We employ temporal regularity, spatial normalization, range
expansion, to identically align into a standardized representation.
We observe the evolution and propagation process of mesoscale
eddies in history through life cycle, and quantitatively examine
the eddy-ridge interaction by both observation statistics and
wavelet coherence map, from multiple perspectives, namely
the amplitude, the rotation speed, and the radius. This will
also help establish a complete machine learning framework
for multivariate time series, including the amplitude, rotation
speed, radius, the latitude and longitude at the geographical
location, the zonal displacement and meridional displacement,
and the variation of the bathymetric topography, which would
possibly behave as the potential input vectors when we attempt
to determine the comprehensive predictive patterns of mesoscale
eddy variation toward meridional ridges.

The remainder of the manuscript is organized as follows:
Section “Data and Methods” describes the access of the time
series about both topography and mesoscale eddy trajectories
referred, the steps of mathematical statistics in our study, the
basics in wavelet coherence. Section “Results” quantitatively
and systematically investigates the interaction between the
variation of mesoscale eddy trajectories in history and the
topographic effects, and exhibits the experimental results. Section
“Discussion” suggests the potentially mutual relationships among
manifold intrinsic and external attributes including topography
effects, which would help develop deep learning architecture
for the potential prediction of mesoscale eddy trajectories.
Finally, the conclusions are drawn in Section “Summary
and Conclusion”.

Frontiers in Marine Science | www.frontiersin.org 3 February 2022 | Volume 8 | Article 672272157

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-672272 February 2, 2022 Time: 15:47 # 4

Nian et al. Topographic Effects on Mesoscale Eddies

DATA AND METHODS

Mesoscale Eddies in the Izu-Ogasawara
Ridge
The mesoscale eddy trajectory atlas, retrieved from AVISO
satellite altimeter by Chelton et al. (2011), is of 1 day time-
resolution, provides the amplitude, the radius, the rotation speed,
the life cycle, and the longitude and latitude generated for the
mesoscale eddies within the spatial range of the global ocean
(excluding 2◦S–2◦N), and retains only mesoscale eddies with
lifetime of more than 4 weeks, which contains 179, 127 cyclones
and 173, 245 anticyclones from 1993 to 2018. Our study area
refers to 130◦E–170◦E, 20◦N–35◦N, as is shown in Figure 1,
with location the marked in the red rectangle. 74 mesoscale eddy
trajectories across the Izu-Ogasawara Ridge from east to west,
of a life cycle more than 6 months, have been systematically
and statistically investigated, to explore the potential spatio-
temporal correlation with the topographic effects, where five
mesoscale eddies that are odd and eccentric in trajectories have
been discarded. Among the rest 69 mesoscale eddy trajectories,
32 of them completely pass through the ridge from east to west,
and 37 of them only partially leap over one side of the ridge
and then demise inside it. The records of the amplitude offer the
difference between the extreme value of the sea surface height
(SSH) and the average value of the SSH within the mesoscale
eddy. The radius refers to the circle with area equal to that within
the closed contour of SSH in each eddy that has the maximum
average geostrophic speed. The rotation speed is defined as the
maximum of the average geostrophic speeds around all of the
closed contours of SSH inside the eddy, while the life cycle is the
number of days from the first to the last detection date. Table 1
is the statistics of mesoscale eddies in the STCC from 1993 to
2018. Table 2 displays the statistics of 69 mesoscale eddies in
study from 1993 to 2018. Table 3 lists the seasonal and polarized
statistics of all the mesoscale eddies over the principal ridge
region (139◦E–143◦E, 25◦N–32◦N) from 1993 to 2018.

The topography of Izu-Ogasawara Ridge has been retrieved
from ETOPO1, the global integrated bathymetric-topographic
digital elevation model (DEM), to discover the potential
topographic effects on mesoscale eddies, with the terrestrial
topography and ocean water depth provided, at the highest
resolution, as a grid-registered, 1 arc-minute grid that spans from
pole to pole and from −180◦ to 180◦ in longitude. The Izu-
Ogasawara Ridge is located in the northwest of the Philippine
Sea, which occupies a large part of the Northwest Pacific,
and the Philippine Sea Plate forms its seafloor topography,
long from north to south, narrow from north to south, at
a large water depth, with a variety of islands, ridges, ocean
basins, deep trenches, and other topography. The range of Izu-
Ogasawara Ridge starts from Nagoya, Honshu, Japan to the
southern area of Tokyo, and the open ocean constitutes the
Ogasawara-Iwo Jima arc. Along the eastern side of the ridge
runs the Izu-Ogasawara Trench, with the maximum depth deeper
than 9,000 m, and to the western of the ridge, there is flat
Shikoku Basin, the depth of which ranges approximately from
4,000 to 5,000 m. According to the former studies based on

the observational data, the vertical scale of the mesoscale eddies
could reach about 1,000 m in the region around the ridge (Zhang
et al., 2013). On the other hand, the water depth along the
trajectories that 69 mesoscale eddies travel within the ridge has
been started from 110 m to more by statistics, and this means
that the topography of the ridge could indeed directly influence
the attributes of mesoscale eddies during the evolution and
propagation process.

Mathematical Statistics and Wavelet
Analysis
Initialization
As the origin of mesoscale eddies in our study can be traced back
in a variety of starting time, formation location, and successive
lifespan intervals, we first uniformly reset the arrival time to
the east ridge edge as the reference origin time 0, so that the
standard timeline could be consistently imposed on all mesoscale
eddies. Let the total number of mesoscale eddies be I, with
the i− th mesoscale eddy denoted as Mi(ti), i = {1, 2, . . . , I},
where ti refers to the survival time that the given mesoscale
eddy activity moves forward, and the amplitude, rotation speed,
radius of the given mesoscale eddy could then be, respectively,
defined as Ai(ti), Si(ti), and Ri(ti). For each mesoscale eddy, we
first transform the time domain in the above three indices to
identically align the arrival time as follows:

t
′

i = ti − ti0 (1)

where ti0 is the time point that the mesoscale eddy originally pass
through the ridge, and the transformed t

′

i reset the arrival time
with t

′

i = 0 when the mesoscale eddy the east ridge edge.

Temporal Regularity
After the initialization stage, we make a temporal regularity for
all the mesoscale eddies thoroughly proceeding within the ridge
region. Let

(
xi(t

′

i), yi(t
′

i)
)

be the longitude and the latitude of the
geographical location that each mesoscale eddy moves toward,
with r indicating the ridge region. Among all those mesoscale
eddies completely passing over the ridge, i.e., for any time t

′

i ≥

0in a given mesoscale eddy, if
(

xi(t
′

i), yi(t
′

i)
)

/∈ r exists, we first
examine every timespan across the whole ridge region by defining
t
′

i max = t
′

ir, with t
′

ir representing the time duration when the
mesoscale eddy moves to the west edge of the ridge region,
and then find out the maximum timespan duration t

′

∗max =

argmax
i=1:I

(t
′

ir), from all the mesoscale eddies that completely move

out of the ridge edge. Furthermore, we define a temporal scaling
index between the real and the maximum timespan duration
t
′

∗max across the ridge, with the interval from the arrival to
departure time toward the ridge, and then align and extend each
mesoscale eddy trajectory to be considered to an equal timespan
length via interpolation.

For example, for the amplitude time series of each given
mesoscale eddy that completely goes across the ridge, Ai(t

′

i),
t
′

i ∈ [0, t
′

ir], the cubic spline interpolation has been applied for
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FIGURE 1 | The location and topographic mapping of our study area. (A) Location. (B) Topographic mapping.

TABLE 1 | Statistics of mesoscale eddies in the STCC from 1993 to 2018.

Region Character Number Average lifespan
(week)

Average
amplitude (cm)

Average
radius (km)

Average
speed (cm/s)

The North Pacific
Subtropical
Countercurrent
(STCC)

Cyclonic 3,601 16 ± 18 (4,211) 8.1 ± 5.6 (1.7,
39.0)

91 ± 23
(48,176)

24.98 ± 9.51
(9.08, 92.91)

Anticyclonic 3,373 17 ± 20 (4,236) 7.3 ± 5.4 (1.9,
23.0)

94 ± 25
(45,179)

22.89 ± 6.11
(8.01, 57.74)

the newly updated one A
′

i(t
′

i) with the assumed form of the cubic
polynomial curves to fit for each segment,

Oi = αij

(
Ai(t

′

i)− Ai(t
′

i)j)
3
+ βij(Ai(t

′

i)− Ai(t
′

i)j)
2

+γij(Ai(t
′

i)− Ai(t
′

i)j

)
+ λij (2)

where J refers to the number of the segments in total, j stands for
the j− th segment, and α , β , γ are respectively the coefficients
of the polynomial curves, λ is a constant term, O represents the

result of fitting, and the spacing of the amplitudes between the
successive time points is:

hij = Ai(t
′

i)j+1 − Ai(t
′

i)j (3)

The interpolation of cubic spline constrains the function
itself, as well as the first derivative and the second derivative,
so the routine must ensure that Oi

(
Ai(t

′

i)
)

, O
′

i

(
Ai(t

′

i)
)

,

andO
′ ′

i

(
Ai(t

′

i)
)

are equal at the interior node points for adjacent
segments. We substitute the coefficients by the new variable s
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TABLE 2 | Statistics of 69 mesoscale eddies in study from 1993 to 2018.

Region Character Number Average lifespan
(week)

Average
amplitude (cm)

Average
radius (km)

Average
speed (cm/s)

Izu-Ogasawara Ridge
(130◦E–170◦E,
20◦N–35◦N)

Cyclonic 31 35 ± 7 (26, 51) 11 ± 6 (1, 39) 99 ± 28
(25,176)

25.8 ± 7.56
(7.47, 60.09)

Anticyclonic 38 38 ± 8 (26, 52) 16 ± 11 (1, 23) 93 ± 30
(14,179)

32.54 ± 15.62
(5.83, 57.74)

TABLE 3 | Seasonal and polarized statistics of all mesoscale eddies in the ridge region (130◦E–170◦E, 20◦N–35◦N) from 1993 to 2018.

Region Character Attribute Spring Summer Autumn Winter

Izu-Ogasawara
Ridge
(139◦E–143◦E,
25◦N–32◦N)

Cyclonic Amplitude (cm) 8.3 8.7 8.1 7.5

Speed (cm/s) 23.17 23.98 23.23 22.11

Radius (km) 84 83 84 84

Anticyclonic Amplitude (cm) 8.8 8.9 7.3 7.1

Speed (cm/s) 25.25 24.92 21.08 20.54

Radius (km) 82 86 85 81

for the polynomial’s second derivative in each segment for
simplification. For the j− th segment, the governing equation is,

hi(j−1)si(j−1) +
(
2hi(j−1) + 2hij

)
sij + hijsi(j+1)

= 6
(

Oi(j+1) − Oij

hij
−

Oij − Oi(j−1)

hi(j−1)

)
(4)

In matrix form, the governing equation could be reduced to a tri-
diagonal form.

2(h1 + h2) h2

h2 2(h1 + h2)
. . .

. . .
. . . hJ−2

hJ−2 2(hJ−2 + hJ−1)


i


s2
sj
...

sJ−1


i

= 6


O3−O2

h2
−

O2−O1
h1

...
OJ−OJ−1

hJ−1
−

OJ−1−OJ−2
hJ−2


i

(5)

where s1 and sJ are zero for the natural spline boundary
condition. In this way, the polynomial definition for each
segment could be deduced as follows:

αij =
(
si(j+1) − sij

) /
6hij

βij = sij
/

2
λij =

Oi(j+1)−Oij
hij

−
2hijsij+hijsi(j+1)

6

λij = Oij

(6)

Spatial Normalization
We further make a spatial normalization for those mesoscale
eddies that partially travel the ridge, i.e., for any time t

′

i ≥

0, if all the geographical locations range within the ridge,(
xi(t

′

i), yi(t
′

i)
)
∈ r, which means the mesoscale eddy does not

completely go across the edge of the ridge region. Given the
standard spatial distance dmax that the mesoscale eddy moves
across the ridge with the maximum timespan t

′

∗max, we denote
one spatial scaling index between the real distance d and the
standard distance dmax, and further modify their time intervals
t
′

i max starting from the reference time 0 accordingly, to align the
spatial distance for each given mesoscale eddy as follows,

t
′

i max=
di

dmax
×

(
t
′

∗max + 1
)

(7)

where t
′

i max could be regulated with the help of the above spatial
scaling index, considering the maximum timespan duration over
the ridge t

′

∗max, and the corresponding standard distance dmax,
i.e., the measurement from the arrival position to the departure
position toward the entire region of the ridge. For the real
distance di and the standard distance dmax, the referred time
domain are t

′

i ∈
[

0, t
′

iend

]
and t

′

∗ ∈

(
0, t
′

∗max

)
. The cubic spline

interpolation would hereby be applied again to normalize the
initial amplitude time series Ai(t

′

i), t
′

i ∈
[

0, t
′

iend

]
, into the newly

updated one A
′

i(t
′

i), for each given mesoscale eddy that partially
goes across the ridge.

Range Expansion
At last, we expand the domain of survival time in study to
ranges out of the ridge region for all the mesoscale eddies,
and follow the scaling principle derived from the ratio between
the real and the corrected time duration in the ridge for all
the mesoscale eddies completely or partially passing over it,
by interpolation. For example, when we try to make the range
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extension to the time domain [-30, 150] days after resetting the
time series at the initialization stage, for the regulated amplitude
A
′

i(t
′

i) of each given mesoscale eddy that completely goes across
the ridge, we could similarly employ temporal regularity strategy
by t

′

i × 30
/

t
′

∗max and t
′

i ×
(

150− t
′

∗max

)/
t
′

∗max for the time
domain before and after travailing into the ridge. For the
mesoscale eddies that partially travel the ridge, we only need to
extend the temporal regularity by t

′

i × 30
/

t
′

i max .

Topographic Extraction
We collect the corresponding longitude and latitude along
the way that mesoscale eddy trajectories pass, then apply the
integrated bathymetric digital elevation of Izu-Ogasawara Ridge
from ETOPO1, to discover the potential topographic effects on
mesoscale eddies. Let the altitude at the geographical location(

xi(t
′

i), yi(t
′

i)
)

along the trajectory of each given mesoscale
eddy be Bi(ti). We follow the same principle mentioned
above to extract the standardized time series of the amplitude,
rotation speed, radius, altitude for the given mesoscale eddy,
i.e., A

′

i(t
′

i), S
′

i(t
′

i), R
′

i(t
′

i), and B
′

i(t
′

i). We intuitively apply the
mathematical statistics to all the mesoscale eddies in study
by the aligned time averaging, for the above types of the
potentially correlative time series, forming the mean curve of
the altitude, the amplitude, rotation speed, radius of all the
mesoscale eddy trajectories, EA(t

′

), ES(t
′

), ER(t
′

), and EB(t
′

),
which sums up into the averaged variation curves to investigate
how much of the possible impacts they might response to the
topographic effects during the movement of the mesoscale eddies
across the ridge.

Standardization
The zero-mean normalization will be further applied to all the
above standardized mesoscale eddy trajectories in study with
an extension over time, those completely spanning the ridge or
those that demise within the ridge in comparison, in terms of
the mesoscale eddy amplitude, rotation speed, radius and the
altitude.

ZA =
EA(t

′

)− µA

σA
, ZS =

ES(t
′

)− µS

σS
, ZR =

ER(t
′

)− µR

σR
,

ZB =
EB(t

′

)− µB

σB
(8)

where µA, µS, µR, and µB are respectively the mathematical
expectation of EA(t

′

), ES(t
′

), ER(t
′

), EB(t
′

), σA, σS, σR, and σB
are respectively the standard deviation of EA(t

′

), ES(t
′

), ER(t
′

),
and EB(t

′

). Meanwhile, it is appropriate to identify those samples
with the deviation that is highly probable to have an impact on
assessment, and hereby to categorize as requiring quality control
and eliminating singular values from time series of mesoscale
eddy trajectories with and without passage.

Wavelet Coherence
Let Y(t) be the mean curve of topography around the Izu-
Ogasawara ridge. The cross-wavelet transform between the

intrinsic attributes of the mesoscale eddies X(t) and the
topography can be represented as:

WXY (a, τ) =WX (a, τ) W̄Y (a, τ) (9)

where WX(a, τ) and WY(a, τ) are respectively the wavelet
transforms of X(t) and Y(t), and W̄Y(a, τ) indicates the complex
conjugation of WY(a, τ), a is a scale factor, representing the
period length of the wavelet, and τ is a shift factor, reflecting the
shift in time. The covariance between the cross-wavelet power
spectrum is then defined as follows:

|WXY (a, τ)| = |WX (a, τ)|
∣∣W̄Y (a, τ)

∣∣ (10)

The correlation between the intrinsic attributes of the mesoscale
eddies and the topography could be further measured via wavelet
coherence (Rhif et al., 2019), as follows:

CXY (a, τ) =
|s (WXY (a, τ))|√

s
(
|WX (a, τ)|2

)
· s
(
|WY (a, τ)|2

) (11)

where s (WXY(a, τ)) is the cross spectral density between X(t)
and Y(t), with a smoothing operator s. The wavelet coherence
coefficient reflects the synchronization similarity.

RESULTS

In our simulation experiment, mesoscale eddy trajectories of
a life cycle more than 6 months, across the Izu-Ogasawara
Ridge from east to west from 1993 to 2018, within the
study area (130◦E–170◦E, 20◦N–35◦N), have been quantitatively
investigated, to explore the potential spatio-temporal correlation
with the topographic effects, with the average lifespan 37 weeks,
the average amplitude 14 cm, the average radius 96 km, the
average rotation speed 29.5 cm/s. Figure 2 displays all the 69
mesoscale eddy trajectories, where 32 of them completely pass
through the ridge from east to west, and 37 of them only partially
leap over one side of the ridge and then demise inside it, with
cyclonic eddies in black and anticyclonic eddies in white.

We screened out the solely mesoscale eddy which exhibited
the maximum timespan duration within the ridge, 116 days,
from all of the 32 mesoscale eddy trajectories that completely
go through the ridge, and accordingly retrieved the distance
513.2 km that particular mesoscale eddy moves from the east
to the west across the ridge. We standardized time series of the
amplitude, rotation speed, radius for all the 32 mesoscale eddies
in temporal regularity process.

We conducted the spatial normalization to all the 69 mesoscale
eddy trajectories, to ensure all the trajectories of the same
statistical significance across the aligned maximum timespan
duration within the ridge, for not only those completely pass
through the ridge but also those partially go across the ridge.

We further extended the time domain in study from [0, 116] to
[-30, 150] days, i.e., to consider more the mesoscale eddy activities
before and after reaching the edge of the ridge. We carried out the
mathematical statistics to explore the potential spatio-temporal
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FIGURE 2 | Mesoscale eddy trajectories. (A) Mesoscale eddy trajectories that completely pass through the ridge, with cyclonic in black and anticyclonic in white.
(B) Mesoscale eddy trajectories that partially travel across the ridge, with cyclonic in black and anticyclonic in white.

correspondence between the topography and the three attributes
of mesoscale eddies, i.e., the amplitude, rotation speed, radius,
by respectively synthesizing all the individual time series into a
timely aligned averaged curve. The time series of the amplitude,
rotation speed, radius for all the 69 mesoscale eddies after range
extension have been individually illustrated in Figure 3, with the
mean curve in red thick lines indicating the tendency as a whole.

The corresponding mean topography curve are averagely
accumulated from the altitude at each geographical location over
the ridge along all the mesoscale eddy trajectories referred. We
collectively made a comparison between the mean curves of both
the topography and three impact factors about the mesoscale
eddies, i.e., the amplitude, rotation speed, radius, under the
condition whether the mesoscale eddies go across the ridge, as
is shown in Figure 4, with all the 69 mesoscale eddy trajectories
in black, 32 completely passing in red, 37 partially passing
in blue, in the top three rows, respectively, the gray shading
indicating the transition before, during, and after the eddy-
ridge interaction, and in the last row, the mean altitude has
been listed, corresponding the eastward (143◦E–146◦E, 20◦N–
35◦N), the interior (139◦E–143◦E, 20◦N–35◦N), the westward

(136◦E–139◦E, 20◦N–35◦N) to the ridge. We also particularly
plot the mean curves of the topography in black, mesoscale
eddy amplitude in blue, radius in cyan, and rotation speed in
red together after standardization with quality control, for all
the 69 mesoscale eddy trajectories, as well as mesoscale eddy
trajectories that completely pass through the ridge and partially
travel across the ridge, regarding to the vortex polarity, with the
vertical dashed lines indicating the beginning and end time points
within the ridge region, as is shown in Figure 5. The zonal and
meridional drifting speed have also been statistically observed
along the extended range of the time domain daily on average in
Figure 6, regarding to the vortex polarity and the passage of the
ridge, with the statistics of all the 69 mesoscale eddy trajectories
in black, the cyclonic eddies with passage in red, the anticyclonic
eddies with passage in blue, the cyclonic eddies without passage
in green, the anticyclonic eddies without passage in yellow.

We utilized the wavelet coherence to search for how frequently
and how much extent the topography effects could exert possible
impact to the variation in mesoscale eddy trajectories over time,
in terms of the three relevant indices, i.e., the amplitude, rotation
speed, radius, and described the lead-lag effects through the
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FIGURE 3 | The intrinsic attribute curves of 69 mesoscale eddies. (A) Amplitude curves of 69 mesoscale eddies after spatial normalization. (B) Rotation speed
curves of 69 mesoscale eddies after spatial normalization. (C) Radius curves of 69 mesoscale eddies after spatial normalization.

wavelet phase difference. The wavelet coherence map between
the mean altitude and the average amplitude, rotation speed,
radius of mesoscale eddy trajectories over time are respectively
shown in Figure 6, where wavelet correlation is affected by
discontinuity, and the color bar corresponds to the relative
intensity of each frequency. The stronger correlation tends
to be in red, while weaker correlation in blue, from red to

blue, the coherence spectrum values decrease in order. The
cone of influence (COI), the region of the wavelet spectrum
with edge effect, is denoted in thick black curve. Since the
region in COI will be influenced by boundary distortion,
reliable information could not be provided and should be
removed. And 5 and 10% significance levels are respectively
indicated in black thin line and black dashed line, with
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FIGURE 4 | Comparison of mesoscale eddy amplitude, rotation speed, radius with topography under conditions. (A) The mean curve of the amplitude for 69/32/37
mesoscale eddy trajectories. (B) The mean curve of the rotation speed for 69/32/37 mesoscale eddy trajectories. (C) The mean curve of the radius for 69/32/37
mesoscale eddy trajectories. (D) The mean curve of the topography for 69 mesoscale eddy trajectories (136◦E–146◦E, 20◦N–35◦N).

the significance value generated by Monte Carlo simulation
(Aguiar-Conraria and Soares, 2011).

DISCUSSION

In this manuscript, we address to systematically and
quantitatively investigate the topographic effects on evolution
and propagation of mesoscale eddies across Izu-Ogasawara
Ridge in Northwestern Pacific Ocean, in term of three relevant
attributes, i.e., the amplitude, rotation speed, radius. We explore
the potential topography effects through three phases of life
cycle, i.e., before, during, and after the interaction with the
ridge, by both the direct observation and the wavelet coherence
map, from the perspective of the time-frequency domain. When
the mesoscale eddies approach the ridge, and the steepness
of the mean topography curve becomes higher, we observed
from Figures 5B,D that most of the cyclonic eddies obviously
tended to begin to decay or even demise, and the amplitude,
rotation speed, radius of the mesoscale eddies decreased until
some of the mesoscale eddies could move across the top of
the ridge. The mean topography curve dropped, the three
relevant attributes gradually increased, consistently coherent
with the variation of the topography. On the contrary, it has
been illustrated from Figures 5C,E that some of the anticyclonic
eddies tended to intensify slightly and some didn’t make a
significant difference, regarding to the amplitude, rotation
speed, radius, when encountering the upslope of the ridge.
The general southwestward or northwestward mesoscale eddy
trajectories tended to modify toward a more equatorward
direction or oppositely by forcing the meridional components, as
is shown in Figure 6, which is coherent to the previous studies
(Beismann et al., 1999).

For topography vs. mesoscale eddy amplitude, it has been
implied from the experimental results in Figures 4A,D, 5A–E
that there has been generally significant correlation between the
two time series within the ridge region on the whole (139◦E–
143◦E, 20◦N–35◦N). The mean amplitude value through life
cycle of all 69 mesoscale eddies is 14.1 cm with the standard
deviation of 9.5 cm, while the mean amplitude values of all the
cyclonic eddies and all the anticyclonic eddies are respectively
11.6, 18.6 cm with passage and 10.4, 10.3 cm without passage over
the ridge, implying that the mesoscale eddies that partially travel
across the ridge often exhibit a tendency on the verge of demise,
with relatively small amplitude values on a whole. The sudden
changes with a range over 10% of the mean amplitude value in a
7-day period after standardization and quality control happen on
the 92nd–97th days for 69 mesoscale eddies, the 13th–24th days
and the 6th–13th, 28th–31st, 38th–46th, 59th–75th, 80th–89th
days for cyclonic eddies with and without passage, the −30th to
−22nd, 51st–55th, 104th–109th days and the 19th–26th, 52nd–
58th, 75th–83rd, 88th–94th days for anticyclonic eddies with and
without passage, along the time domain. In the 0–36th days,
the mean topography curve gradually rises, with the depth rise
from −7,409 to −3,134 m roughly, the mean amplitude curve
gradually decreases from 14.3 to 9.5 cm for cyclonic eddies, with
a relative decline of 33.6%, while the mean amplitude curve for
anticyclonic eddies first rises from 12.7 to 13.6 cm, and then
drops till 12.3 cm. To be exactly, the mean amplitude curve of
cyclonic eddies falls from 15.6 ± 8.2 to 11.2 ± 5.4 cm with
complete passage and from 13.0 ± 5.6 to 7.8 ± 4.9 cm with
partial passage, on the contrary, the mean amplitude curve of
anticyclonic eddies increases from 11.0 ± 2.5 to 13.4 ± 3.0 cm
with complete passage, remains around 14.4± 9.8 cm for 21 days
and then descends to 11.2 ± 11.1 cm with partial passage. When
the mean topographic curve starts the downward trend, and

Frontiers in Marine Science | www.frontiersin.org 10 February 2022 | Volume 8 | Article 672272164

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-672272 February 2, 2022 Time: 15:47 # 11

Nian et al. Topographic Effects on Mesoscale Eddies

FIGURE 5 | Mean curve mapping of amplitude, rotation speed, radius, and
topography after standardization. (A) The statistics in all of 69 mesoscale
eddy trajectories. (B) The statistics in cyclonic eddy trajectories that
completely pass through the ridge. (C) The statistics in anticyclonic eddy
trajectories that completely pass through the ridge. (D) The statistics in
cyclonic eddy trajectories that partially pass the ridge. (E) The statistics in
anticyclonic eddy trajectories that partially pass the ridge.

accordingly the mean amplitude curve demonstrated the upward
growth. Starting from the 88th day, the mean altitude value drops
from roughly −2,410 to −3,792 m, and the corresponding mean
amplitude has been recovered from 9.0 to 12.1 cm for cyclonic
eddies, and from 7.9 to 9.0 cm for anticyclonic eddies. To be
exactly, the mean amplitude curve of cyclonic eddies rises from
10.6 ± 4.9 to 12.1 ± 4.3 cm with complete passage over ridge,
drops from 7.4 ± 3.7 to 1.4 ± 0 cm till the demise with no
passage, in contrast, the mean amplitude curve of anticyclonic
eddies decreases from 12.9 ± 3.0 to 9.0 ± 1.8 cm with complete
passage, increases from 3.0 ± 0.9 to 7.0 ± 0 cm till dying
with partial passage. After the range extension, it is found that
around the region eastward to the ridge edge (143◦E–146◦E,
20◦N–35◦N), there tended to be a more stable variation of the
mesoscale eddies, compared to that across the ridge region, with
the average amplitude 14.8 cm for cyclonic eddies, and 14.0 cm
for anticyclonic eddies. It seemed that no obvious evidence could
be shown for the topography effects outside the east edge of
the ridge. While the region westward to the ridge edge (136◦E–
139◦E, 20◦N–35◦N) still involves the topography variation from
roughly −3,954 to −4,583 m, the mean amplitude grew from
10.8 to 11.7 cm for cyclonic eddies, with an relative increase of
8.7%, and the mean amplitude decreased from 9.1 to 9.0 cm for
anticyclonic eddies, with an relative drop of 1.1%. It has also
been shown from the wavelet coherence map in Figure 7A that
in the short-term frequency band of 2–5 days, the significantly
strong correlation occurred on the 15–25th days and the 93–
110th days, when the mesoscale eddies just reached the east
edge of the ridge or approached to leave away from the ridge
region. In the medium-term frequency band of 7–10 days, there
has been significant correlation reflected on the 30–50th days.
From the long-term frequency band of 16–25 days, the strong
correlation lasted during the 80–110th days when the mesoscale
eddies almost arrived at the west edge of the ridge.

For topography vs. rotation speed of mesoscale eddies,
it has been demonstrated from the experimental results in
Figures 4B,D, 5A–E that around the region eastward to the ridge
edge (143◦E–146◦E, 20◦N–35◦N), both the mean topography
curve and the mean rotation speed behaved relatively stable for
all of 69 mesoscale eddies, with the altitude value−5,279 and the
rotation speed 31.0 cm/s. There have been no obvious evidences
of the topography effects on the variation of the rotation speed
before reaching the ridge. Within the region westward to the
ridge edge (136◦E–139◦E, 20◦N–35◦N), the rotation speed for all
of 69 mesoscale eddies increased from 29.3 to 32.4 cm/s on the
whole, with a relative increase of 10.6%. However, it has been
seen within the ridge region (139◦E–143◦E, 20◦N–35◦N) after
standardization and quality control, in the 0–40th days, the mean
rotation speed gradually decreases from 28.9 to 24.9 cm/s for
cyclonic eddies with a relative reduction of 13.8%, and the mean
rotation speed increases from 27.8 to 28.1 cm/s for anticyclonic
eddies with a relative rise of 1.1%, when the mean topography
curve gradually rises. To be exactly, the mean rotation speed
curve of cyclonic eddies drops from 30.3± 10.7 to 26.3± 8.6 cm/s
with complete passage and from 27.5 ± 6.9 to 23.5 ± 9.3 cm/s
with partial passage, conversely, the mean rotation speed curve of
anticyclonic eddies first grows from 25.9± 1.5 to 30.6± 0.7 cm/s
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FIGURE 6 | Distribution of zonal and meridional drifting speed.

and then decreases to 28.9 ± 3.6 cm/s with complete passage,
and first descends from 29.8 ± 14.2 to 28.5 ± 12.8 cm/s, rises
to 30.7 ± 14.9 cm/s, and finally drops to 27.2 ± 12.3 cm/s
with partial passage. Around the 90th day, when the altitude
value is −2,427 m, the rotation speed decreases and reaches
to the minimum 23.3 cm/s for cyclonic eddies, and gets to
22.0 cm/s for anticyclonic eddies, where the rotation speed values
are respectively 25.4 ± 7.8, 28.1 ± 4.8 cm/s with passage and
21.2 ± 8.7, 16.0 ± 2.5 cm/s without passage over the ridge. In
the 90–116th days, when the mean topographic curve drops from
roughly −2,427 to −3,793 m, and the rotation speed gradually
returned to 24.9 cm/s for cyclonic eddies, to 22.8 cm/s for
anticyclonic eddies. To be exactly, the mean rotation speed curve
of cyclonic eddies increases from 25.4 ± 7.8 to 26.7 ± 7.8 cm/s
and then drops to 24.9 ± 7.9 cm/s with complete passage over
ridge, falls from 21.2 ± 8.7 to 9.7 ± 0 cm/s till the demise with
no passage, on the other hand, the mean rotation speed curve of
anticyclonic eddies decreases from 28.1 ± 4.8 to 22.8 ± 0.5 cm/s
with complete passage, increases from 16.0± 2.5 to 24.7± 0 cm/s
till dying with partial passage. The mean rotation speed value
through life cycle of all 69 mesoscale eddies is 29.8 cm/s with
the standard deviation of 12.2 cm/s, while the mean rotation
speed values of all the cyclonic eddies and all the anticyclonic
eddies are respectively 27.1, 35.4 cm/s with passage and 25.6,
25.7 cm/s without passage over the ridge, implying that the
mesoscale eddies that tend to approach dying over ridge mostly
have smaller rotation speed values. Although we did not find out
the dramatic conversions with a range over 10% of the mean
rotation speed value in a 7-day period on the mean rotation
speed curve for all 69 mesoscale eddies and cyclonic eddies
with passage, they did appear on the 38th–43rd day for cyclonic
eddies without passage, the 8th–13th day and the 52nd–57th,
84th–94th day for anticyclonic eddies with and without passage,
along the time domain. The coherence between the topography
and the rotation speed could be derived. It could also be seen
from the wavelet coherence map in Figure 7B that in the short-
term frequency band of 2–4 days, there have been significant
correlation implied on the 0–10th days and the 95–105th days,
when the mesoscale eddies first moved toward the east edge

of the ridge and almost exceeded the west edge of the ridge.
In the medium-term frequency band of 6–10 days, the strong
correlation ranged between the 45–55th and 90–105th days.

For topography vs. mesoscale eddy radius, it has been shown
from the experimental results in Figure 4C,D, 5A–E that to
the eastern side of the ridge (143◦E–146◦E, 20◦N–35◦N), the
mean radius curve exhibited a downward tendency for all of 69
mesoscale eddies on the whole, from 100.0 to 93.4 km, with a
relative reduction of 6.6%, when the mean topography remains
stable to about −5,279 m. Out of the western side of the ridge
(136◦E–139◦E, 20◦N–35◦N), the mean radius curve was relatively
stable on the whole for all of 69 mesoscale eddies, between
100.0 and 105.1 km, when the mean topography curve actually
drops from −3,646 to −4,582 m. Therefore, there was no direct
evidence of the mutual coherence between the topography and
the radius of mesoscale eddies outside the ridge. It has been
seen within the ridge region (139◦E–143◦E, 20◦N–35◦N) after
standardization and quality control, in the 0–30th days, the mean
radius for cyclonic eddies first rises from 93.7 to 96.5 km, and
then drops till 93.1 km, and the mean radius for anticyclonic
eddies first decreases from 107.1 to 81.4 km, and then increases
to 93.9 km, when the mean topography curve rises from −7,109
to −3,140 m. To be exactly, the mean radius curve of cyclonic
eddies declines from 97.2± 17.6 to 88.1± 27.1 km and goes up to
95.3 ± 25.9 km with complete passage, and from 90.1 ± 19.9 km
down to 82.6 ± 18.6 km and up to 91.0 ± 14.0 km with
partial passage, whereas the mean radius curve of anticyclonic
eddies grows from 120.0 ± 39.0 to 135.4 ± 19.4 km, drops to
80.9 ± 10.4 km, and recovers to 105.8 ± 35.0 km with complete
passage, and descends from 94.2± 27.8 to 81.9± 20.8 km during
a vibration process with partial passage over the ridge. In the 80–
100th days, when the mean topography curve is about to decline,
the mean radius curve begins to demonstrate an upward tendency
for cyclonic eddies, from 98.4 km to nearly 113.5 km, with a
relative increase of 15.3%, and from 88.6 km to nearly 94.7 km
for anticyclonic eddies. To be exactly, the mean radius curve of
cyclonic eddies climbs from 99.9 ± 23.0 to 113.5 ± 14.1 km
with complete passage over ridge, dives from 96.8 ± 8.9 to
46 ± 0 km till the demise with no passage, meantime, the mean
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FIGURE 7 | Wavelet coherence mapping. (A) Wavelet coherence map between mesoscale eddy amplitude and topography. (B) Wavelet coherence map between
rotation speed of mesoscale eddy and topography. (C) Wavelet coherence map between mesoscale eddy radius and topography.

radius curve of anticyclonic eddies also surges from 102.4± 27.0
to 134.9 ± 16.1 km and then decays to 124.4 ± 18.4 km with
complete passage, sinks from 74.8 ± 16.0 to 45.7 ± 23.5 km

till dying at 65.0 ± 0 km with partial passage. In the 100–120th
days, when the topography curve drops from about −2,751 m
to about −4,147 m, the mean radius curve of cyclonic eddies
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declines from 113.5 ± 14.1 to 85.2 ± 25.5 km and then goes
up to 95.3 ± 18.2 km with complete passage, while the mean
radius curve of anticyclonic eddies descends from 124.4 ± 18.4
to 122.1 ± 17.6 km, rises to 128.4 ± 23.8 km, and drops to
106.3 ± 33.2 km in a repeatedly vibration process with complete
passage over the ridge. Unlike the other two relevant attributes,
there has been no obviously significant correlation directly from
the eddy-ridge interaction on mesoscale eddy radius, but more
implications on whether the mesoscale eddies could long survive
tend to be revealed from its variation. The mean radius value
through life cycle of all 69 mesoscale eddies is 96.4 km with the
standard deviation of 27.4 km, while the mean radius values of all
the cyclonic eddies and all the anticyclonic eddies are respectively
100.3, 98.2 km with passage and 84.7, 78.7 km without passage
over the ridge, demonstrating that the mesoscale eddies that are
only able to partially go over the ridge behave a blink of decay
with the relatively small radius values. Although we did not find
out the sharp alteration with a range over 10% of the mean radius
value in a 7-day period on the mean radius curve for 69 mesoscale
eddies, they did emerge on the 32nd–38th, 107th–111th days
and the −21st to −17th, 84th–91st days for cyclonic eddies with
and without passage, the −27th to −18th, −10th to −6th, 6th–
11th, 18th–27th, 47th–59th days, and the 38th–43rd, 48th–52nd,
and 77th–92nd days for anticyclonic eddies with and without
passage, along the time domain. It has also been illustrated from
the wavelet coherence map in Figure 7C that in the short-term
frequency band of 4–7 days, there existed a correlation on the
28–35th days. In the medium-term frequency band of 7–10 days,
the correlation was reflected on the 42–50th days. From the long-
term frequency band of 16–25 days, the correlation lasted during
the 100–115th days when the mesoscale eddies almost departed
the west edge of the ridge.

For topography vs. daily drifting speed of mesoscale eddies,
it has been indicated from the experimental results in Figure 6
that there exists a generally significant correlation within the
ridge region on the whole (139◦E–143◦E, 20◦N–35◦N) as well.
The mean daily drifting speeds in both the meridional and
zonal direction through life cycle of all 69 mesoscale eddies
across the ridge are 0.2 km southward and 3.5 km westward,
with the meridional drifting speed and the zonal drifting speed,
respectively, 0.1, 0.1, 0.5 and 3.7, 3.4, 3.6 km before, during,
and after the interaction with the ridge in the three phases of
life cycle. To be exactly, the daily meridional drifting speed of
the cyclonic eddies averagely rises from 0.2 km southward to
0.5 km southward, then drops to 0.4 km southward with passage,
and increases from 0.1 km northward to 0.4 km northward till
demise without passage, meanwhile, the daily meridional drifting
speed of the anticyclonic eddies averagely switches from 0.4 km
northward to 0.4 km southward, then surges to 0.6 km southward
with passage, and shifts from 0.2 km southward to 0.5 km
northward till demise without passage. Most of the mesoscale
eddies proceeding toward northward disappear on the top of the
ridge while those marching to southward mostly tend to survive
over the ridge. Almost all of the mesoscale eddy trajectories has
a tendency with the increased meridional drifting speeds when
reaching the upslope of the ridge. The daily zonal drifting speed of
the cyclonic eddies oriented to westward averagely declines from

3.6 to 3.4 km, then down to 3.3 km with passage, and decreases
from 3.8 to 3.1 km till decease without passage, on the other hand,
the daily zonal drifting speed of the anticyclonic eddies toward
westward averagely descends from 4.4 to 3.7 km, then comes up
to 4.3 km with passage, and reduces from 3.6 to 3.0 km till the
end without passage. Almost all of the mesoscale eddy trajectories
exhibits the decayed zonal drifting speeds when emerging the
east edge of the ridge. The westward daily zonal drifting speed
of anticyclonic eddies looks slightly higher than that of cyclonic
eddies on average, owing to the higher drifting performances in
anticyclonic eddies that completely pass across the ridge.

It has been concluded that, as is shown in Figures 4–6,
regardless of the amplitude and rotation speed, 37 mesoscale
eddies were more prone to be significantly influenced by the
topography effects, most of which followed the decline tendency,
starting from the arrival location until demise over the ridge. 32
mesoscale eddies that completely pass through the ridge exhibited
significant negative correlation with the mean topography curve
for cyclonic eddies during the evolution process that began at
the east boundary of the ridge and lasted until passing over
the ridge, while there occurred a little intensified for some of
anticyclonic eddies. In total, it could be demonstrated in Figure 5
that for all the 69 mesoscale eddies, except the radius, there exist
a highly degree of agreement among the other three attributes
after standardization, which further proves the existence of the
topographical effects along the life cycle. The highly significant
correlation between the topography and the amplitude of the
mesoscale eddies could be particularly identified here. When the
mesoscale eddies approach the ridge and the water depth gets
shallower, the amplitude of the mesoscale eddies decrease for
cyclonic eddies and increase a bit for some of anticyclonic eddies
accordingly. Then, when the mesoscale eddies leave the ridge and
the water depth increase, the amplitude of the mesoscale eddies
recover almost to the level before the encounter. This is consistent
with the expectation by PV conservation: The vorticity of the
eddy and the area of the water column evolve in a compensational
way. The vortex column squeezing will lead to the decreasing of
the eddy vorticity for cyclonic eddies, and the stretching leads to
intensification, conversely, for anticyclonic eddies. The coherence
between the mesoscale eddies and the topography impairs the
initial stability of the mesoscale eddy structure. This is due to the
westward shift of the eddy by the planetary β effect which causes
rising up to the shallower region over the eastern slope of the
ridge. Namely, as the mesoscale eddies shift to a shallower region,
the large frictional spin-down, which is inversely proportional
to the lower layer thickness, and the generation of negative
vorticity by the conservation of the potential vorticity are carried
out. These two phenomena would weaken the eddy structure.
Conversely, the westward shift of the cyclonic eddies has a
small influence from the topographic effect of the bottom slope.
Almost all of the mesoscale eddy trajectories manifests the rise
in the daily meridional drifting speed and the decline in the
daily zonal drifting speed, at the moment originally outstretching
the ridge, no matter with the passage or not. In addition, out
of 69 mesoscale eddies, only 32 of them could manage to go
across the ridge. It has been revealed from our experimental
results that the average horizontal scale of 32 mesoscale eddies
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that completely pass over the ridge tended to exhibit a relatively
large radius on the whole, compared to 37 mesoscale eddies that
only partially pass the ridge, whereas 32 mesoscale eddies that
completely move across the ridge provided visually dominant
clues on both the amplitude and the rotation speed as well,
showing the attribute divergence between the mesoscale eddies
with passage and without passage over the ridge. We did see
from the evaluation of the daily meridional drifting speed that
the mesoscale eddies oriented to southward were more likely to
survive over the ridge when proceeding toward the upslope of
the ridge. It has been reported that the baroclinic or barotropic
structure of mesoscale eddies could provide some explanation in
the passage or not over the meridian ridge (Kamenkovich et al.,
1996). We expect to extend our current work to involve more
evidences on the vertical structure of mesoscale eddies over the
meridional ridge in the future.

The above potential spatio-temporal dependency could
quantitatively reveal how the relevant attributes of mesoscale
eddies response to the topography variability over the Izu-
Ogasawara Ridge, and inspire to identify the fundamental
roles that possible dominantly correlative with the time-varying
evolution process. Concerning the self-correlated properties
inherently underlined in the propagation of mesoscale eddies,
together with the time-frequency interaction imposed from the
topography variability, we wish to make an initial attempt to
capture the potentially patterns that mesoscale eddy trajectories
might dynamically vary during the evolution process over the
meridional ridge in the future, via deep learning, such as Long
Short Term Memory (LSTM) architecture. Inspired by the real
observation statistics in our research, the intrinsic and extrinsic
attributes, such as the amplitude, rotation speed, radius, as well as
the latitude and longitude at the geographical location, the zonal
displacement and meridional displacement, the drifting velocity,
and the variation of the bathymetric topography, could engage
in deep learning selectively as the multivariate input for the
predictive model, which allows to capture and retain long-term
dependencies for the variation of mesoscale eddy trajectories, and
meanwhile concludes the dominantly mutual linkage between the
historic and current mesoscale eddy trajectories. The evaluation
on whether and when the topographic attribute involves as input
could substantially benefit for the prediction accuracy, will be
further comprehensively estimated, when we try to intentionally
feed with the topography variation as the additional inputs,
rather than only the relevant indices of the amplitude, rotation
speed, radius, drifting velocity, supposing the topography effects
play relatively leading roles in determining the evolution and
propagation of mesoscale eddy trajectories to be predicted.

The life cycle of ocean mesoscale eddies, including generation,
decay, dissipation processes, is of great scientific value in
understanding the propagation and evolution characteristics.
Previous numerical experiments, carried out on the f -plane
(Herbette et al., 2003), and on the β-plane (Herbette et al., 2005),
with a seamount located in the bottom layers, below the isopycnes
in which the surface eddy core resides, showed that surface
eddies could get strongly eroded by deformation effects induced
by bottom eddies, generated near the topography. Large intense
eddies, known to have a long life time on the f -plane, no longer

stayed coherent. At the same time, the presence of other poles
made the exact path and structure of the eddy, as it impinged on
the seamount, hypersensitive to details of the configuration, such
as initial eddy position and numerical viscosity. Splitting, and
subsequent erosion, of surface eddies became extremely sensitive
to the initial conditions.

In contrast to previous studies, the present scheme provides
more experimental evidences and hopeful solution with the
promise of the end-to-end data-driven modeling of the
topographic effects from the real observation data. The survival
lifespan, generation date, dissipation date, geographical location,
of the mesoscale eddy trajectories are all diverse. The differences
of individual mesoscale eddies could easily affect the eddy-ridge
interaction evaluation as a whole. So we propose to systematically
examine the spatio-temporal dependency from mathematical
statistics and wavelet coherence analysis, with the help of
temporal regularity, spatial normalization and range expansion,
to ensure the understanding of mesoscale eddy trajectories could
be identically aligned to the geographical meaning from the
standardization perspectives, and to synthesize all the time series
statistically, regarding to the polarity. On the premise that all
the time series are projected into the same domain, it will be
more convenient to carry out the subsequent prediction with
sufficient mesoscale eddy samples to be considered for training
in deep learning, which could further prove the underlined
correlation that the relevant attributes of mesoscale eddies might
hold through their life cycle, including the amplitude, rotation
speed, radius, and drifting velocity, in combination with the
topography effects.

SUMMARY AND CONCLUSION

Ocean mesoscale eddies, involve significant amounts of water
movements with irregular, discrete occurrences. Evidences have
shown that the variation of mesoscale eddy trajectories would
be to some extent attributed to the topographic effects when
encountering with mid-ocean ridges, seamounts, bottom slopes,
or over a variety of topography, while both the theoretical
understanding and the survey from available observational data
still remains incomplete. In this manuscript, we propose to make
an attempt to explore whether and how the topographic effects of
one meridional ridge, could exert considerable influences on the
evolution and propagation process of mesoscale eddies through
life cycle, directly from the perspectives of real observation
statistics. We quantitatively investigate the known variability of
ocean mesoscale eddies in the study area (130◦E–170◦E, 20◦N–
35◦N) from 1993 to 2018, of a life cycle more than 6 months,
on the basis of the trajectory atlas retrieved from AVISO satellite
altimeter and the integrated bathymetric digital elevation sourced
from ETOPO1, including 69 mesoscale eddy trajectories in total,
with 32 completely traveling across the ridge, and 37 partially leap
over the ridge, to discover the possible eddy-ridge interaction, by
both observation statistics and wavelet coherence, with respect
to the intrinsic attributes, namely, the amplitude, the rotation
speed, the radius. A series of correlative steps, including the
initialization, temporal regularity, spatial normalization, range
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expansion, topographic extraction, wavelet coherence map, have
been particularly designed along time-frequency domain to
trace back mesoscale eddy trajectories in a variety of origins,
location, lifespan, polarity, either completely or partially passing
over the ridge, and to facilitate the standardization in statistics
across three phases of their life cycle, i.e., before, during and
after the interaction with the ridge. It has been revealed in
our experiment that three intrinsic attributes of mesoscale
eddies within 25 years, all demonstrated significant correlation
with the variation of topographic relief over the ridge. The
bathymetric topography reflects its relationships with mesoscale
eddies through an integrated mode of a short-term, a mid-
term, a long-term, respectively in the frequency band with a
period of 2–7, 6–10, 16–25 days. We observed that most of
the cyclonic eddies obviously tended to begin to decay or even
demise, while on the contrary, some of the anticyclonic eddies
preferred to intensify slightly, or making no significant difference
when encountering the upslope of the ridge until climbing across
the top, basically consistent with the expectation of potential
vorticity (PV) conservation. The drifting velocity agreed with the
tendency that the direction would be more probably modified
toward equatorward or poloidally by forcing to the meridional
component, with the zonal component reduced at the beginning.
The mesoscale eddies with the passage over the ridge exhibited
the relatively high average horizontal scales, as well as the
relatively high average amplitude and rotation speed on the
whole, compared to those with only partially passage. We expect
to identify the relevant attributes dominantly correlative with
the time-varying evolution process of mesoscale eddies during
the eddy-ridge interaction, employ a deep learning architecture,
to capture the predictability of mesoscale eddy trajectories on
a global scale, when selectively feed the amplitude, rotation
speed, radius, the latitude and longitude at the geographical
location, the zonal displacement and meridional displacement,
the drifting velocity, the variation of the bathymetric topography
as the input variables for training. The developed scheme could
integrate more evidences on how mesoscale eddies response to
the topographic effects during their evolution and propagation
process, and help provide opportunities to potentially identify
the underlying dynamic patterns and mechanism that mesoscale
eddies engage in ocean dynamics with the promise of the end-to-
end data-driven solution.
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