About this Research Topic
The last few decades have witnessed successful models to simulate and predict various processes in the climate system, including oceanic mesoscale eddies, ENSO or other climatological oscillators, as well as fluid hydrodynamic models for haze and marine pollutants. While the models are hypothesized based on known laws of physics, to tune/identify model parameters to fit practical observations is often difficult. At the same time, large volumes of observations accumulate rapidly and often from new measurement techniques. The amount of effort required to perform classical modeling and hypothesis tests in the era of big data becomes colossal.
The recent advances of deep neural networks-powered, machine intelligence techniques provide a hopeful solution with the promise of end-to-end data modeling, which allows researchers to avoid hypothesizing the possible low-level relationships and concentrate on higher-level trends. On the other hand, the most effective neural network models deal with complex signals, such as images or natural languages, by exploiting the underlying structures in the signals and assuming the structures are static and Euclidean. E.g. image pixels are organized as a regular 2D-grid. To effectively deal with data generated in real-world physical processes, the next-generation data models need to account for the dynamics in the underlying structures.
The aim of this Research Topic is three-fold. First, we encourage the development of deep neural networks (DNN) tailored for geology, ocean and atmosphere (GOA) data analytics. Second, we invite innovative interdisciplinary studies of effective DNN techniques in GOA data. Third, we want to motivate new tasks and problems related to GOA data analytics, which are of social significance and academic value. The three goals are specified in the scope of contribution below.
Novel neural network-based GOA data models
1. New neural network architectures and learning algorithms to deal with GOA signals of physical/chemical/biological processes.
Novel methods to address special aspects of GOA data applications
2. Reliable methods of learning large-scale models from limited observations.
3. Modelling and learning techniques specialized for interpretability to (1) identify meaningful structures in GOA processes (2) reveal causality and hidden mechanisms governing the processes (3) forecast the evolution of the processes.
4. Models of data with variable temporal scales and spatial resolutions.
5. Semi-supervised/self-learning methods that enable to encode domain knowledge.
New challenges
6. Proposal or review of challenges in GOA data analytics for which the new generation of neural network models provide potential solutions.
Keywords: Deep Neural Networks, ENSO Forecast, Ocean Chlorophyll Concentration Modelling, Terrigenous Materials Transport, Probabilistic Modelling
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.