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Editorial on the Research Topic

Computational Neuroimage Analysis Tools for Brain (Diseases) Biomarkers

This Research Topic focuses on recent advances in the field of neuroimaging biomarkers, including
novel imaging technologies, image processing, and artificial intelligence approaches, which are
pushing forward the achievement of precision medicine. Indeed, brain imaging often visualizes
disease effects with greater sensitivity than clinical observation, thus holding great promise to help
diagnose patients at the earliest stages of their disease, when treatment is most effective.

To unleash this potential, neuroimaging biomarkers should be proven to be useful, sensitive
and reliable. Nowadays, conventional magnetic resonance imaging is complemented by numerous
advanced acquisition and processing techniques, aiming to unravel structural and functional brain
connectivity and pathological alterations in brain tissue up to the microstructural level.

Current challenges amount not only to designing clinically feasible acquisition protocols and
reliable image processing methods, but also integrating the wealth of data that gets collected in
different centers and in different neuroimaging domains in a consistent way to permit reuse in
new domains. As large-scale and more complex neuroimaging datasets have been or are being
collected in heterogeneous ways by various organizations (with the field of Alzheimer’s disease as
a notable example), Huguet et al. propose core principles to facilitate reusability and data sharing.
They implement an ecosystem of modules and tools, including automated quality control, which is
suitable for large neuroimaging studies.

However, the benefits of merging different datasets is often counteracted by their heterogeneous
nature. Indeed, systematic differences can occur due to site-specific conditions or due to bias in
population characteristics. Moreover, some tasks are difficult to generalize from one dataset to
another, since not all datasets are consistently labeled, or are labeled at all. As such, Kushibar et al.
propose a transductive transfer learning approach for domain adaptation to reduce the domain-
shift effect in human brain MRI segmentation. The transductive property means that there are two
disjoint source and target domains, where label annotations are only available in the source domain,
but examples from the target domain are also present. The proposed network is jointly optimized
by integrating both source and target images into the transductive training process, minimizing
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the domain-shift effect with a histogram loss at feature level. The
method shows performance improvements up to 10% in terms
of Dice similarity coefficient for the segmentation of subcortical
brain structures and white matter hyperintensities, compared to
a model pre-trained in the source domain only.

Meyer et al. propose to increase the generalization capability
of state-of-the-art convolutional neural network (CNN) models
trained on homogeneous datasets by applying an intensity-
based data augmentation approach based on Gaussian mixture
modeling. This approach is shown to significantly impact the
generalization performance of brain structures segmentation
when the training set is very homogeneous, but also when it
consists of heterogeneous multi-scanner brain images.

Valverde et al. employ CNNs for the task of lesion
segmentation in rodent brains. They suggest that an architecture
resembling an autoencoder has better performance compared
with three other convolutional neural networks specifically
designed for medical image segmentation. Moreover, when
comparing versions trained on homogeneous and heterogeneous
training datasets, it is clear that increasing training data
diversity improves performance, as measured by the capability to
extrapolate to different-looking ischemic brain lesions.

Not only combining datasets, but also combining existing
modeling methods can be beneficial for obtaining more robust
biomarkers. This is illustrated by Lu et al., who focus on
quantitative diffusion measures for classifying multiple sclerosis
lesions. They use eight open-source biophysical models of
multishell diffusion data to reconstruct the isotropic and intra-
axonal compartments, and identify the microstructural diffusion
measures that are most discriminative for focal pathology.
Further, they show that some of the combinations of the selected
normalized diffusion measures better correlate with patients’
disability and neuroaxonal damage than individual measures.

While deep learning techniques play an important role in
current neuroimaging research due to their ability to increase
reliability of computed biomarkers, there are still essential gains
to be made by improving MRI acquisitions and parameter map
reconstructions. For instance, Emmenegger et al. assess the
effect of radio-frequency transmit (B1+) field inhomogeneities
correction on the accuracy of MR G-ratio weighted imaging,
which is an aggregated measure of relative myelination of axons
across the entire brain white matter. B1+ correction via a
measured B1+ field map is the method of choice to reduce
bias and test-retest error. However, if the B1+ field map cannot
be acquired, a data-driven B1+ correction approach is also
proposed, and shown to reduce the error and bias by a factor
of three.

Metin and Gökçay highlight the value of using directional
information from diffusion tensor imaging of the brain for
group statistics, rather than scalar metrics that consider only the
magnitude of the diffusion. A typical scalar metric used in group
studies is the Fractional Anisotropy map. Directional statistical
analysis is particularly important along the white matter tracts,
especially when the tract length increases.

Barakovic et al. propose a more robust estimation of the
axon diameter index of pathways by jointly estimating the
microstructure properties of the tissue and the macroscopic

organization of the white matter connectivity. The method
overcomes limitations of previous voxel-wise approaches, which
neglect the fact that axons are continuous three-dimensional
structures that are not limited to the extent of each voxel. By
computing the axon diameter index in bundles of streamlines,
where each streamline represents a group of axons that share
a similar trajectory, the method is able to estimate an average
diameter for the represented group of axons. As such, they show
that the fiber bundle composition agrees with histology and
known anatomy.

The value of brain imaging biomarkers is crucial since
early stages of development. Thus, imaging the neonatal
brain with the aim of establishing patterns of (normal or
abnormal) brain development is also an important and very
active topic of research. It is now possible to acquire high
resolution (isotropic 0.4mm) images in a short time (6min),
due to novel super-resolution reconstruction of three short
duration scans with variable directions of slice selection (Sui
et al.).

Uus et al. highlight the importance of employing a suitable
atlas of normal neonatal brain development. They build a
single multi-channel spatio-temporal atlas based on multiple
metrics extracted from both diffusion and structural MRI,
and then compare, in this novel atlas space, two groups
of neonates: born at term and preterm. Significant effects
linked to prematurity are shown to be present in multiple
brain regions, including the transient fetal compartments,
indicating that white matter maturation is altered by
preterm birth.

Grigorescu et al. predict tissue segmentation maps of
neonates on T2-weighted magnetic resonance imaging
data. Similarly to Kushibar et al., they employ domain
adaptation techniques for the challenging task of brain
segmentation in a preterm-born neonatal population,
where the training set consists of an annotated dataset
acquired from term-born neonates with a different scanner
and acquisition protocol. Importantly, adding the domain
adaptation to the model did not degrade performance in
the source domain. Moreover, in line with Meyer et al., the
authors show the importance of adding data augmentation
during training.

Finally, neuroimaging methods should not only act as
tools for new scientific discoveries, but should also provide
practical solutions for different neurological conditions in
clinical practice. As such, La Rocca et al. develop a novel
approach based on structural MRI to analyse interactions
between brain components. Based on these novel features,
they train a classifier able to predict with an accuracy of
70% whether subjects who suffered a mild traumatic brain
injury will have at least one seizure in the future. Princich
et al. revisit known MRI volumetry biomarkers that can
assist in the diagnosis of temporal lobe epilepsy. Despite
observing differences between different MRI segmentation
software in terms of hippocampal volumetry (here, FreeSurfer
and volBrain are compared), the study strongly reinforces
the value of hippocampal asymmetry in differentiating healthy
controls and epilepsy patients with hippocampal sclerosis.
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Bai et al. focus on childhood obstructive sleep apnea, a sleep-
related breathing disorder that can have an important negative
impact on neurological development. Functional MRI reveals
altered spontaneous brain activity, with dysfunctions occurring
in the default mode network, the frontal lobe, and the
lingual gyrus.

In conclusion, this Research Topic clearly illustrates
that the field of computational neuroimaging is active and
fascinating, with a wide range of novel methodologies aiming
at reliability and generalizability through domain adaptation,
data augmentation, super-resolution, and quality control.
Important applications presented here aim at understanding
brain development, connectivity and microstructure, as
well as brain diseases such as multiple sclerosis, epilepsy,
post-traumatic brain injury, and sleep dysfunction.
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Traumatic brain injury (TBI) may cause secondary debilitating problems, such as

post-traumatic epilepsy (PTE), which occurs with unprovoked recurrent seizures, months

or even years after TBI. Currently, the Epilepsy Bioinformatics Study for Antiepileptogenic

Therapy (EpiBioS4Rx) has been enrolling moderate-severe TBI patients with the goal to

identify biomarkers of epileptogenesis that may help to prevent seizure occurrence and

better understand the mechanism underlying PTE. In this work, we used a novel complex

network approach based on segmenting T1-weighted Magnetic Resonance Imaging

(MRI) scans in patches of the same dimension (network nodes) and measured pairwise

patch similarities using Pearson’s correlation (network connections). This network model

allowed us to obtain a series of single and multiplex network metrics to comprehensively

analyze the different interactions between brain components and capture structural MRI

alterations related to seizure development. We used these complex network features to

train a Random Forest (RF) classifier and predict, with an accuracy of 70 and a 95%

confidence interval of [67, 73%], which subjects from EpiBioS4Rx have had at least one

seizure after a TBI. This complex network approach also allowed the identification of the

most informative scales and brain areas for the discrimination between the two clinical

groups: seizure-free and seizure-affected subjects, demonstrating to be a promising pilot

study which, in the future, may serve to identify and validate biomarkers of PTE.

Keywords: post-traumatic epilepsy, traumatic brain injury, structural magnetic resonance imaging, multiplex

networks, random forest, machine learning, complex networks

1. INTRODUCTION

Traumatic brain injury (TBI) is the third most common cause of death and debilitating secondary
problems in adults and children worldwide. One common consequence of TBI that causes
significant disability amongst patient populations is post-traumatic epilepsy (PTE) (Humphreys
et al., 2013). This condition develops in up to 50% of patients with TBI. Post-traumatic epilepsy
(PTE) is diagnosed if two or more unprovoked seizures occur at least 1 week after a TBI (Diaz-
Arrastia et al., 2009). Recent investigations suggest that injury severity and especially epileptic
activity are high risk factors of PTE, although the mechanisms by which trauma to the brain
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tissue leads to recurrent seizures is not known. Therefore,
studying if specific structural Magnetic Resonance Imaging
(sMRI) changes can be related to seizures after a TBI is of
fundamental importance to carry out the first steps toward
the discovery of early biomarkers of PTE (Kim et al., 2018).
PTE is not a homogeneous condition and can appear weeks
or several years after a TBI. As a consequence, the precise
percentage of TBI patients who develop PTE is not known
(Verellen and Cavazos, 2010). Currently, growing attention
has been devoted to investigate PTE. In this regard, the
Epilepsy Bioinformatics Study for Antiepileptogenic Therapy
(EpiBioS4Rx) is an international, multi-center project conceived
to identify biomarkers of epileptogenesis after a TBI in order
to evaluate treatments that could prevent the development of
PTE and design clinical trials of antiepileptogenic therapies on
an extensive patient population. With this project, the scientific
community can be granted access to a large amount of high
quality, multi-modal data, including imaging, electrophysiology,
and clinical data from both humans and animals.

Changes in gray matter and white matter related to epilepsy
have been widely observed by using structural MRI (Immonen
et al., 2018; Shah et al., 2019; Lutkenhoff et al., 2020). Many
recent studies have shown that machine learning techniques
and multiplex networks applied to completely non-invasive
neuroimaging techniques, such as structural MRI, can be
useful and efficient to detect pathological alterations in several
neurological diseases, such as Alzheimer’s disease, Parkinson’s
disease, and epilepsy (Amoroso et al., 2018c; La Rocca et al.,
2018; Bharath et al., 2019). Multiplex networks overcome the
limit of the existing complex network standard approaches
not to be able to collectively study what happens to the
same nodes as their interactions change. In our previous work
(Garner et al., 2019), we used different machine learning
strategies to identify alterations in functional brain connectivity
that are related to seizure outcome following TBI. However,
the present study is the first which uses the combination of
multiplex networks of structural MRIs and machine learning
techniques to distinguish patients who have developed at least
one seizure after a TBI from those who have not experienced
any seizures. This study is of paramount importance, because
it offers an opportunity to observe alterations in TBI brain
networks that may reflect structural MRI changes related to
seizure development.

This paper provides three main results: (i) the implementation
of a pipeline which combines complex network and machine
learning models for the identification of TBI patients who
have developed epilepsy; (ii) the investigation of the most
appropriate scale or patch size to study seizure development
in TBI patients; (iii) the implementation, on a TBI cohort, of
a promising complex network model based on segmenting the
brain in patches to obtain comprehensive clinical information
on the whole brain. In the future, this pilot study may
help clinicians localize the epileptogenic focus more precisely,
relate brain lesions to seizure occurrence and understand
the relationship between neuronal activity abnormalities and
structural damage.

TABLE 1 | Imaging findings are reported for each clinical class.

Injury type Seizure-free patients Patients with seizure

Skull fracture 27/37 16/16

Epidural hematoma 8/37 4/16

Extraaxial hematoma 18/37 9/16

Acute subdural hematoma 27/37 14/16

Subarachnoid hemorrhage 30/37 14/16

Intracerebral/Intraparenchymal

hemorrhage

22/37 11/16

Midline shift (Avg shift) 21/37(4.53) 8/16(6.47)

Cisternal compression 6/37 3/16

Frontal contusion 22/37 9/16

Temporal contusion 19/37 7/16

Brain edema 14/37 7/16

Penetrating injury 1/37 0/16

Injury characteristics were reported by clinical staff based on patient Computed

Tomography (CT) scans on the day of hospital admission. No statistically significant

between-group differences were found in the imaging findings except in the skull

fracture (p = 0.02).

TABLE 2 | Sample size, gender, and Glasgow Coma Score (GCS) information are

reported for each clinical class.

Clinical status Sample size Age Female/Male GCS score

Seizure-free patients 37 36.28± 21.18 4/33 10.78± 4.05

Patients with seizure 16 40.50± 18.05 3/13 8.94± 3.59

Age and GCS were provided in terms of mean and standard deviation. No statistically

significant differences between the two classes were found with respect to age, GCS

score, and gender. Statistical evaluations were performed with a Kruskal–Wallis statistic

test except for the gender, for which a Chi-square test was used.

2. MATERIALS AND METHODS

2.1. Dataset
In this work, we used 53 structural MRI scans of TBI subjects
recruited in EpiBioS4Rx according to specific inclusion and
exclusion available online1. Sixteen of these subjects have
experienced at least one seizure within 6 months of a TBI and 37
have not experienced any seizures. As part of their clinical care,
14 subjects required a craniectomy (3 seizure and 11 non-seizure,
p > 0.05). Additional clinical and demographic information are
reported in Tables 1, 2. 3D T1-weighted volumes were acquired
within 32 days (median 8 and interquartile range of [2, 15]) after
the TBI using 3T Siemens, Philips, and GE scanners according
to a magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence with the following parameters: 256 mm
field of view (FOV); 1 mm slice thickness; 1,500–2,500 ms
repetition time (TR); minimum echo time (TE); 1,100–1,500 ms
inversion time (TI); 8–15 degree flip angle; 256 phase-encoding
steps, number of excitations (NEX) >1 and 256 Hz frequency.

1https://sites.google.com/g.ucla.edu/epibios4rxmobilewebsite/

inclusionexclusion-criteria
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2.2. MRI Processing
Protocol compliance and quality control (QC) were undertaken
using the Laboratory Of Neuro Imaging (LONI) QC System2.
Structural MRI scans were processed with the Oxford FMRIB
Software Library (FSL) (Jenkinson et al., 2012). Firstly, image
skull-stripping was obtained with the optimized brain extraction
script for patient brain (optiBET) (Lutkenhoff et al., 2014).
For those few cases where the automatic brain extraction was
particularly challenging due to the significant brain deformation
caused by the trauma, we performed the skull stripping
by manually adjusting the brain extraction threshold with
FSL Brain Extraction Tool (BET). Then MRI scan intensity
differences, yielded by bias field, were normalized. After intensity
normalization and brain extraction, a spatial normalization was
performed to co-register the different images into a common
coordinate space by using an affine transformation. The MNI152
was adopted as the reference template, and registration was
performed with the FSL Linear Registration Tool (FLIRT) with
a standard parameter configuration. Even though a deformable
registration would have given a better overlap among TBI
subjects, we purposely used an affine registration for three
main reasons: (i) proving the robustness of the method also
in case of roughly overlap between the anatomical regions of
different TBI subjects; (ii) avoiding misregistration issues due
to the particularly challenging process to apply a non linear
transformation to a cohort with huge brain deformations; (iii)
registering all the subjects to a common reference space keeping
as much as possible the individual differences of the subjects
and the relative lesions. Besides these initial steps, the analysis
pipeline includes two principal sub-pipelines: a complex network
pipeline and a machine learning pipeline that are schematized in
Figure 1 and are described in detail in the next two sections.

2.3. Multiplex Network Pipeline
After image processing, each scan was parceled in homologous
non-overlapping parallelepipeds or patches of V voxels (where
1 voxel is 1 cubic millimeter) in order to obtain a 3D grid.
These patches represent nodes of a brain network, and the
absolute values of Pearson’s correlation between patch pairs were
considered the links between the nodes. In other words, each
network link is obtained by computing the correlation voxel-
by-voxel between the T1 intensities of two patches. Therefore,
for each scan, we obtained a weighted brain network using a
patch-based segmentation. To remove links due to the noise,
we neglected all the correlations lower than 0.3. This threshold
has not been chosen arbitrarily but has been demonstrated in
our previous works (Amoroso et al., 2018b,c) as a threshold
that maximizes classification performance and is the best
trade-off between minimizing noise and maintaining effective
network information in this multiplex network methodology.
This threshold choice is also confirmed by other works in
literature, for example, Mukaka (2012) suggests that correlations
lower than 0.3 are negligible in his guide about the appropriate
use of correlation coefficients in medical research. To further
avoid false positive links in the networks, we also excluded

2https://qc.loni.usc.edu

the patches with a non-brain number of voxels exceeding 10%
of their volume. The idea behind this study is that seizure
development in TBI patients may be related to injury severity
which, as many study demonstrate, results in diffuse cerebral
edemas, hemorrhages, contusions, and distortions of brain tissue
localized in multiple brain regions both close to and distant
from the lesion area. Patch-based approach is aimed to detect
this alterations in terms of correlation variation between regions
with and without tissue damage over the TBI cohort (Kurland
et al., 2012). A patch-based approach is a beneficial trade-off
between a voxel-based approach and an ROI-based approach
and has already been found to be beneficial in the field of
other neurodegenerative diseases (Suk et al., 2014). It has three
main advantages: (i) it overcomes the problem of the “curse
of dimensionality,” (ii) it does not depend on segmentation
accuracy, and (iii) it is robust to misregistration errors (Amoroso
et al., 2018a). Therefore, the patch representation can be very
useful for TBI patients for whom ROI segmentation and spatial
registration are particularly challenging tasks due to the large and
irregular brain deformations caused by TBI lesions. To give a
sense of the injury severity and the related processing challenges
that were faced for this cohort, in Figure 2, for some of the TBI
subjects with the most severe imaging findings, axial and coronal
planes of brain scans after the processing (brain extraction and
registration) are represented alongside the template that the
subjects’ scans are registered to.

The size V of each patch was varied from 1,000 to 8,000
voxels in steps of 1,000 to investigate the most appropriate
scales to study seizure development in TBI patients. At different
scales, the patch number is not constant but is determined
by the patch size. The grid’s origin is fixed for all the scales
because we start to segment each image from the medial sagittal
plane which separates the two brain hemispheres in order to
uniformly cover each hemisphere with an equal number of
rectangular boxes. For each scale, we built a multiplex network
G = {G1,G2, ...,Gi, ...,GM} that is a collection of single subjects’
weighted networks Gi = (N,E,W) sharing the same nodes N,
while the set of links E and weights W change depending on
the subject’s brain networks connections or layer connections.
In other words, in each multiplex network, the same number
of nodes (patches that each scan is segmented into) can be
connected in different ways depending on the specific correlation
coefficient values that characterize the network connections of
a certain layer. Then, given N, the number of network nodes,
we obtained 8N features for each subject, 4N features of single
layer and 4N features of multiplex networks. The single layer
features used in this work are strength and inverse participation
ratio, given by the Equations (1) and (2), and their conditional
means over the nodes with the same degree k, thus having
the same connection number. Conditional means, given by the
Equations (4) and (5), can be useful to examine whether, on
average, the weights of central nodes and less connected nodes
are identically distributed.

sαi =

N
∑

j=1

wα
ij (1)
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FIGURE 1 | Description of the complex network pipeline and machine learning pipeline. First each subject scan is preprocessed, segmented into patches, then for

each subject a weighted undirected network was built and some complex network features were computed. Finally, the feature representation (subject × network

features), obtained after the removal of null mean and variance features and highly correlated features, was used as input for the classification pipeline. The machine

learning pipeline includes 1,000 rounds of cross-validation (CV). In each round the following steps are performed: (i) dataset was stratified; (ii) 80% of the stratified

dataset was used as training set and 20% as validation set; (iii) training set was used, through a first nested Random Forest (RF) classifier, to select the most important

features for the discrimination of seizure-free and seizure affected subjects: (iv) these selected features were used in turn to train a second RF classifier; (v) the

important features and the classification models obtained on the training test were used to classify the subjects of the validation set; (vi) Averaging the classification

performances over the 1,000 CV rounds, we obtained the final accuracy sensitivity, specificity, area under the receiver operating characteristics curve (AUC) and

confidence interval on the validation test.

FIGURE 2 | Examples of coronal plane (Top) and axial plane (Bottom) of TBI subjects with the most severe imaging findings (Left) and the MNI152 reference

template (Right) which the subjects’ images are aligned to.

yα
i =

N
∑

j=1

(

wα
ij

sαi

)2

(2)

s(k)α =
1

Nk

N
∑

i=1

sαi δ(kα
i , k) (3)

Y(k)α =
1

Nk

N
∑

i=1

Yα
i δ(kα

i , k) (4)

α = 1, ..,M indicates the network layer, wij is the correlation
between gray level intensities of the nodes i, j = 1, ..,N
with M subject number, N is the node number, Nk is the
number of nodes having degree k, and δ is the Kronecker
Delta function. Strength and inverse participation ratio indicate,
respectively, the importance of a node and how evenly distributed
the connections between nodes are. Specifically, (yα

i )
−1 ∈

(1, kα
i ) has value kα

i if the weights of the links of node i are
distributed uniformly and, it has value 1 if the weight of one
link is much larger than the other weights (Bianconi, 2018).
The multiplex network features were obtained by weighing the
previous quantities on the multiplex network degree kmulti, given
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by (5), indicating the number of connections of a node in the
multiplex network.

kmulti
i =

N
∑

j=1

amulti
ij ; (5)

where amulti
ij is 1 if there is a layer with at least one link between

nodes i and j and zero otherwise as described in Amoroso
et al. (2018b). From now on, we will refer to these multiplex
quantities as multi-strength, multi-inverse participation ratio,
conditional strength, and conditional multi-inverse participation
ratio. Overall, we obtained for each scale V, a M (subject network
number) X 8N feature representation to analyze with themachine
learning pipeline described in the next section.

2.4. Machine Learning Pipeline
For each scale V, multiplex network features were used to train a
Random Forest (RF) classifier and obtain reliable classification
models to identify, on the validation set, which TBI patients
have developed seizures and which have not. This classification
process, preceded by the removal of null mean and variance
features, and highly correlated features (> 0.95), was carried out
within a machine learning pipeline that includes 1,000 rounds
of stratified cross-validation (Vabalas et al., 2019). For each
round, we randomly picked the same percentage of seizure-
free subjects and seizure-affected subjects in order to examine
balanced datasets. After the stratification, a training set (80% of
the stratified set) and validation set (20% of the stratified set)
were defined. Subsequently, we first used a nested RF classifier,
on the training set, to select and record features exceeding the
third quartile of the importance distribution computed in terms
ofmean accuracy decrease. Then, we used those features to train a
second RF classifier and obtain the classification models. Feature
selection and training phases were nested within each cross-
validation round and were blind to the validation set to avoid
the “double dipping” problem (Kriegeskorte et al., 2009). Finally,
we used the classification models and the important features
retrieved during the training phase to classify the two clinical
classes. Classification performances for each scale were evaluated
in terms of accuracy, specificity, sensitivity, and Area Under the
receiver-operating-characteristic Curve (AUC) averaged over all
the cross-validation rounds. For the average accuracy, we also
reported the 95% confidence interval computed according to the
Wilson score interval (Wilson, 1927). We chose to use RF model
because it is a robust and easy-to-tune model, it does not overfit
thanks to internal bagging and it is particularly appropriate for
analyses with high-dimensional feature spaces and small sample
sizes (even < 100) (Biau and Scornet, 2016; Floares et al.,
2017). Each forest was grown with 500 trees, a number large
enough for the out-of-bag error to reach the typical training
plateau (Breiman, 1996). Therefore, in the internal bagging, given
the training set, 500 bootstraps are formed obtaining 500 new
subjects sets used to grow 500 trees. Each tree is grown by
randomly choosing a subset of features equal to the square root
of the feature number. The learning model built in this way can

FIGURE 3 | The bar plot shows the mean and standard deviations of

accuracy (gold) and AUC (cyan) over 1,000 rounds of cross-validation as

patch volume changes (from 1,000 to 8,000 voxels). The best classification

performances were obtained at 1,000, 3,000, and 5,000 voxels.

be then used to compute the out-of-bag error and the accuracy
on the data left out of the training set.

2.5. Important Feature Assessment
After having found for each round the important features, we
evaluated, for the best scales, which feature occurrences had not
happened by chance over the 1,000 rounds by using the statistical
test of equal or given proportions (Newcombe, 1998). Therefore,
the most important features over all the cross-validation rounds
were found by considering, after the Bonferroni correction for
multiple comparison, a p − value < α ∗ N−1 with α = 0.05.
From the most important nodal features, it was possible to find
the most important network nodes or patches, and thus the most
important anatomical regions. We considered an anatomical
region significantly related to the seizure development only if it
occupied an important patch with a volume greater than 10%
of the patch voxels. To identify the most important anatomical
regions, we used Talairach labels projected in MNI 152 space
(Lancaster et al., 2000). Other details on the reliability of the
feature selection methods used in this work are discussed in the
Supplementary Material.

3. RESULTS

3.1. Classification Performance and
Feature Evaluation
Figure 3 shows the mean and standard deviations of accuracy
and AUC over all the cross-validation rounds as a function of
the patch size. The best classification performances were found
at three patch volumes: 1, 000, 3, 000, and 5, 000 voxels.

Accuracy, specificity, sensitivity, and AUC with the
corresponding standard deviations obtained for these three
optimal scales are reported in Table 3.
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Even though we found the best accuracy for a patch size
of 1,000 and 5,000 voxels (with a 95% confidence interval of
[67, 73%]), and the best AUC for 3,000 voxels, the classification
performances at these three scales are statistically comparable.
Another important aspect is to examine which network
properties are more important to discriminate the two clinical
groups. In this regard, we evaluated the mean percentage of
features associated with a certain network metric that are selected
as important in a cross validation-round. In Figure 4, the mean
percentage of features selected over the cross-validation rounds
and relative to each of the eight network metrics, is reported
for the three most informative scales. This experiment was

TABLE 3 | Accuracy, specificity, sensitivity, and AUC with the relative standard

deviations obtained at the scales of 1,000, 3,000, and 5,000 voxels to which the

best classification performances were reached.

Patch volume Accuracy Specificity Sensitivity AUC

1,000 voxels 0.70 ± 0.03 0.74 ± 0.04 0.66± 0.04 0.75± 0.02

3,000 voxels 0.68± 0.03 0.70± 0.04 0.67± 0.04 0.76± 0.02

5,000 voxels 0.70 ± 0.03 0.68± 0.04 0.69 ± 0.04 0.75± 0.02

The highest value for the four classification metrics are reported in bold.

performed without excluding from the classification the highly
correlated features.

Even though, for each scale, all metrics extracted contribute
to the discrimination of the two clinical groups, we can notice
that the nodal metrics have a greater relevance compared with
the conditional quantities.

3.2. ROI vs. Patch-Based Network
Approach
We also compared the patch-based network approach with
a standard ROI-based approach to evaluate the efficacy
of the proposed complex network methodology to predict
seizure development in TBI patients. We used the publicly
available brain segmentation package, FreeSurfer (FS) v.6.0
(Fischl, 2012), which automatically performs: brain extraction,
intensity normalization, spatial registration, volume labeling,
segmentation, and all steps necessary to compute morphological
features from each image. This tool allowed us to obtain 182
features, for each MRI scan, including subcortical and cortical
gray matter parcellations, white matter parcellations, total gray
and white matter volumes, and intracranial volume. These
FS features were then used to distinguish TBI subjects who
have developed epilepsy from those who have not by adopting
the same machine learning pipeline used for the complex

FIGURE 4 | Mean percentage of features, selected over the cross-validation rounds, relative to strength (S), inverse participation ratio (Y), multi-strength (multiS),

inverse-participation ratio (multiY), and their conditional means(Sc, Yc, multiSc, multiYc) are reported for the scales of 1,000 voxels (yellow barplot), 3,000 voxels (blue

barplot), and 5,000 voxels (dark green barplot).
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network features. In Figure 5, receiver operating characteristics
(ROC) curve and the related area under the curve (AUC) are
reported for the three best scales of the complex networks and
for FS.

We can notice that network approach outperform FS
approach (accuracy: 0.66±0.02, sensitivity: 0.69±0.04, specificity:
0.62± 0.04).

3.3. Anatomical Regions Related to Seizure
Development
For the three scales proved to be more appropriate to identify
brain network alterations related to seizure development, we
reported, in Figure 6, the brain areas (highlighted in green)
corresponding to the most significant complex network features
for the classification of seizure-free subjects and subjects with
one seizure.

At the scale of 1, 000 voxels, the significant patches
(p < 1.563 ∗ 10−5 after the Bonferroni correction) identify
anatomical regions mostly located in the right and left superior
temporal gyrus lobe, but there are significant patches also in the
left middle temporal gyrus, left inferior frontal and precentral
gyrus, and in the right cerebellum within posterior lobe. At the
scale of 3, 000, the most important brain area (p < 3.962 ∗ 10−5

after the Bonferroni correction) for the two group discrimination
corresponds to the cingulate gyrus in the left parietal lobe and in
the right and left limbic lobe, sub-gyral in left and right frontal
and parietal lobe, right and left precuneus, right postcentral
gyrus, left inferior parietal lobule, angular gyrus, medial frontal
gyrus, and superior occipital gyrus. Finally, the important areas
(p < 6.361 ∗ 10−5 after the Bonferroni correction) at the scale of
5, 000 voxels were the left and right cerebellum in the posterior
lobe, right parahippocampal gyrus, right subcallosal gyrus, left
inferior middle, and superior frontal gyrus, sub-gyral in the left
frontal lobe, cingulate gyrus in the left limbic lobe, right and left
extra-nuclear white matter, and left insula.

To make more understandable the relationship between
patches and complex network features, in Figure 7, the
distribution of the reciprocal of the inverse participation ratio of a
patch, located in the left frontal lobe, is reported for both clinical
groups. In the same figure, the representation of such a patch
in a seizure-affected patient who has significant abnormalities in
that area and in a seizure-free patient who does not have visible
anomalies in that area is shown. The inverse participation ratio
relative to the patch represented in Figure 7 is an example of a
network feature which is important for the discrimination of the
two clinical groups. Indeed, from the box plot, we can notice that
the median of the distribution for the seizure-affected subjects is
significantly greater than the median of the distribution for the
seizure-free subjects.

4. DISCUSSION

In this work, an innovative multiplex network approach was
used to find informative complex network features that can be
used from machine learning systems for the identification of
patients who have developed a seizure after a TBI. To the best

FIGURE 5 | Classification performances in terms of area under the receiver

operating characteristics curve (AUC). Performaces obtained with the complex

network features at the the best three scales (red, orange, and green curves)

are significantly greater than those obtained with FreeSurfer (FS)

features (blue curves).

of our knowledge, this is the first study to distinguish seizure-
free subjects and seizure-affected subjects with an accuracy of
70% and an AUC of 76% by using T1-weighted MRI data.
In Messori et al. (2005), PTE prediction using human MRI is
based only on statistical evaluations. Classification performances
obtained in this work are comparable and even higher than those
found in La Rocca et al. (2019) and Garner et al. (2019) that
examine functional and structural alterations related to seizure
onset. All the network properties are proved to be useful to the
classification, however, features relative to conditional metrics
were selected less frequently in each cross-validation round.
Classification performances were computed as a function of the
patch volume, which was varied in an intermediate range (from
1,000 to 8,000 voxels) in order to avoid that the analysis was
affected by a low sensitivity to subtle pathological changes in
case of too large patches or by the ’curse of dimensionality’
and misregistration in case of too small patches. The best
classification performances were obtained at three different
scales: 1,000, 3,000, and 5,000 voxels, proving that the study
of seizure development in TBI patients requires multivariate
analyses. Although some of the important anatomical regions,
such as cingulate gyrus, sub-gyral, inferior central gyrus, and
cerebellar tonsil in the right cerebellum are accordant for the
three scales, we can notice that some morphological changes
between the two clinical groups can be detected only at specific
scales. This suggests that seizure development in TBI patients
cannot be studied considering a unique scale, which is reasonable
given the heterogeneity of the epileptogenesis process after a
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FIGURE 6 | Patches corresponding to the most important nodal complex network features for the discrimination of the two clinical groups (seizure-free and

seizure-affected) are underlined in green along the axial planes of the MNI 152 template. (A–C) Display the most significant patches relative to the scales of 5,000,

3,000, and 1,000 voxels, respectively.

FIGURE 7 | As an example, (A,B) show the details of a patch in two different TBI subjects. As shown in the green box plots on the right, this patch has an inverse

participation ratio that is significantly different (p < 2.2 ∗ 10−16) in the two clinical groups (seizure-free and seizure-affected patients). (B) Shows the patch pinpointing

an area where voxels intensity is altered by a lesion and the surrounding edema and (A) shows the patch covering a brain area that does not have evident alterations.

TBI and the fact that TBIs affect the brain in different areas
and at different scales. As a consequence, analyzing multiple
scales can give a more exhaustive detection of the MRI changes
related to seizure development after a TBI that a unique scale
is not able to provide. Therefore, our methodology can be very
useful to perform a multivariate analysis that take into account
multi-scale features. Conventional volumetric analyses are based

on manual segmentation of the Region-Of-Interest (ROI) that
is time-consuming and affected by personal bias. The modern
automated algorithms that allow the determination of volumes,
thickness, and shape of anatomical structures often fail because
of large lesion size and extensive tissue damage in TBI patients.
In this regard, we demonstrated that our approach (AUC of 76%)
is more effectiveness than a ROI-based approach like FS (AUC
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of 67%). EpiBioS4Rx is an ongoing study that will enroll 300
patients, therefore in upcoming years, with a larger and more
representative training sample, we will be able to fully exploit
machine learning potentialities and obtain conclusive results
about the generalization power of the model in predicting seizure
development in TBI patients (Figueroa et al., 2012). Once more
subjects will be enrolled and longitudinally examined, it will be
also interesting to see if the proposed methodology is able to
distinguish among immediate, early, and late seizures in order to
take into account also the temporal aspect of the epileptogenic
process. Besides, the completely automated complex network
approach used in this work can be really beneficial because it
allows an unsupervised identification of the important brain
areas without being affected by ROI segmentation mistakes
and time-consuming procedures. This methodology offers also
other two main advantages: (i) it allows the identification of
MRI changes which differentiate seizure-free and seizure-affected
patients and which cannot be underlined using only CT MRI
findings (see Table 1); (ii) it allows the identification of the
brain scales at which the pathological changes related to seizure
development occur. Indeed, as might be expected, given TBI
variability, epileptogenesis mechanism will depend on alterations
that happen at different scales (Cloots et al., 2013). It is interesting
to notice that at the scale of 1,000 voxels, most of the patches are
located at the periphery of the brain. This may be due to brain
surface deformations or to subdural and epidural hematomas
that are reported among the risk factors to develop epilepsy
and are present in many subjects of this cohort as reported
in Table 1 (Agrawal et al., 2006). An example of subdural
hemotoma is shown in Figure 7B in the left posterior part of
the brain. Most of the clinical results are in line with recent
studies about seizure development. Norden and Blumenfeld
(2002) states the increased likelihood of cerebellar alterations in
patients with epilepsy. In Shultz et al. (2013), MRI alterations
were found in hippocampus subfields of rodents with epilepsy
after a lateral fluid percussion injury. Tubi et al. (2019) showed
that subjects with lesions in the temporal lobe are at high risk
to develop epilepsy, suggesting that morphological alterations in
the temporal lobe may play a strategic role in seizure occurrence.
Hippocampus, cingulate gyrus, precentral gyrus, postcentral
gyrus, and middle and inferior frontal gyrus were proved to
be regions related to the epileptogenesis process also in studies
that apply machine learning techniques to fMRI and sMRI to
characterize patients with epilepsy (Zhang et al., 2012; Garner
et al., 2019; La Rocca et al., 2019). It is worthwhile to notice that
the highly correlated (> 0.95) features that were excluded in the
classification correspond to complex network metrics related to
the same patch and thus, to the same brain area. This ensures
that we did not exclude any important region in the clinical
validation and suggests that for some patches more complex
network metrics are accordant with each other.

5. CONCLUSION

We have demonstrated that the combined use of complex
networks and machine learning techniques can be useful to study

seizure development in TBI patients. Multiplex networks were
able to provide network features that allow us to distinguish
TBI patients who have developed epilepsy from those who
have not with an accuracy of 70%. In addition, a patch-based
approach used to build the multiplex networks made it possible
to identify, in an unsupervised way, the brain areas important
for the discrimination of the two clinical groups, even though
a perfect solution of optimum features is a challenging and still
open matter. EpiBioS4Rx is an ongoing study that will enroll 300
patients, thus in the near future, a larger dataset will be available,
and we will be able to obtain more conclusive results.
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We present a fully convolutional neural network (ConvNet), named RatLesNetv2, for

segmenting lesions in rodent magnetic resonance (MR) brain images. RatLesNetv2

architecture resembles an autoencoder and it incorporates residual blocks that facilitate

its optimization. RatLesNetv2 is trained end to end on three-dimensional images and

it requires no preprocessing. We evaluated RatLesNetv2 on an exceptionally large

dataset composed of 916 T2-weighted rat brain MRI scans of 671 rats at nine different

lesion stages that were used to study focal cerebral ischemia for drug development.

In addition, we compared its performance with three other ConvNets specifically

designed for medical image segmentation. RatLesNetv2 obtained similar to higher Dice

coefficient values than the other ConvNets and it produced much more realistic and

compact segmentations with notably fewer holes and lower Hausdorff distance. The

Dice scores of RatLesNetv2 segmentations also exceeded inter-rater agreement of

manual segmentations. In conclusion, RatLesNetv2 could be used for automated lesion

segmentation, reducing human workload and improving reproducibility. RatLesNetv2 is

publicly available at https://github.com/jmlipman/RatLesNetv2.

Keywords: ischemic stroke, lesion segmentation, deep learning, rat brain, magnetic resonance imaging

1. INTRODUCTION

Rodents frequently serve as models for human brain diseases. They account for more than 80%
of the animals used in research in recent years (Dutta and Sengupta, 2016). In addition to basic
research, rodent models are important in, for example, drug discovery and the development of new
treatments. In vivo imaging of rodents is used for monitoring disease progression and therapeutic
response in longitudinal studies. In particular, magnetic resonance imaging (MRI) is essential in
pre-clinical studies for conducting quantitative analyses due to its non-invasiveness and versatility.
As an example, the quantification of brain lesions requires segmenting the lesions, and the lack
of reliable tools to automate rodent brain lesion segmentation forces researchers to segment these
images manually.

Manual segmentation can be prohibitively time-consuming as studies involving animals may
acquire hundreds of three-dimensional (3D) images. Furthermore, the difficulty of defining lesion
boundaries leads to moderate inter- and intra-rater agreement; previous studies have reported that
Dice coefficients (Dice, 1945) between annotations made by two humans can be as low as 0.73
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(Valverde et al., 2019) or 0.79 (Mulder et al., 2017a). Moderate
inter-rater agreement is caused by several factors that affect
the segmentation quality, including partial volume effect, image
contrast and annotator’s knowledge and experience. Despite
these liabilities, manual segmentation is the gold standard and
a common practice among researchers who use animal models
(Moraga et al., 2016; De Feo and Giove, 2019).

Semi-automatic methods are a faster alternative to manual
segmentation. However, they fail to overcome the subjectivity
of the manual segmentation, as human interaction is required.
To the best of the authors’ knowledge, there are only two
studies that introduce and evaluate semi-automatic algorithms
for rodent brain lesion segmentation. Wang et al. (2007)
evaluated a combination of thresholding operations commonly
used in the literature to segment lesions on apparent diffusion
coefficient (ADC) maps and T2-weighted images. Choi et al.
(2018) first normalized the intensity values of each image
with respect to the contralateral hemisphere of the brain, and
they performed a series of thresholding operations to segment
permanent middle cerebral artery occlusion ischemic lesions in
31 diffusion-weighted images (DWIs) of the rat brain. Both
methods require the manual segmentation of the contralateral
hemisphere. Additionally, these thresholding-based and other
voxel-wise approaches disregard the spatial and contextual
information of the images, and they are sensitive to the image
modality, contrast, and possible artifacts. Pipelines that rely on
thresholding operations may result in poor and inconsistent
segmentation results in the form of holes within and outside the
lesion mask (Figure 1).

For lesion segmentation in rodent MRI, researchers have
proposed a few fully-automated methods in recent years. Mulder
et al. (2017a) developed a level-set-based algorithm that was
tested on 121 T2-weighted mouse brain scans. However, the
accuracy of their method heavily relies on the performance of
other independent steps, such as registration, skull-stripping and
contralateral ventricle segmentation. Arnaud et al. (2018) derived
a pipeline that detects voxels that are anomalous with respect
to a reference model of healthy animals, and they evaluated the
pipeline on 53 rat brain MRI maps. Nonetheless, this pipeline

FIGURE 1 | (Left) Representative lesion with its ground truth. (Right)

Segmentation of the lesion using thresholding where the threshold was found

by maximizing the Dice coefficient with respect to the manual segmentation.

The arrows indicate the presence of holes and islands (independently

connected components) within and outside the mask, respectively. The

hippocampus and ventricles were entirely misclassified as lesion.

was specifically designed for quantitative MRI, and it expects
sham-operated animals in the data set, a requirement that is not
always feasible.

Deep learning, and more specifically convolutional neural
networks (ConvNets), has become increasingly popular due to
its competitive performance in medical image segmentation.
Literature on brain lesion segmentation in MR images with
ConvNets is dominated by approaches tested on human-
derived data (e.g., Duong et al., 2019; Gabr et al., 2019; Yang
et al., 2019). Despite using ConvNets, typical brain lesion
segmentation approaches are multi-step, i.e., they rely on
preprocessing procedures, such as noise reduction, registration,
skull-stripping and inhomogeneity correction. Therefore, the
performance of the preprocessing steps influences the quality
of the final segmentation. In contrast to human-derived
data, rodent segmentation data sets are scarce and smaller
in size (Mulder et al., 2017b); consequently, ConvNet-based
segmentation methods benchmarked on rodent MR images are
rare. An exception—not in the lesion segmentation—is Roy et al.
(2018)’s work, which introduced a framework to extract brain
tissue (i.e., skull-stripping) on human and mice MRI scans after
traumatic brain injury.

We present RatLesNetv2, the first 3DConvNet for segmenting
rodent brain lesions in pre-clinical MR images. Our fully-
automatic approach is trained end to end, requires no
preprocessing, and it was validated on a large and diverse data
set composed by 916 MRI rat brain scans at nine different lesion
stages from 671 rats utilized to study focal cerebral ischemia. We
extend our earlier conference paper (Valverde et al., 2019) by
(1) improving our previous ConvNet (Valverde et al., 2019) with
a deeper and different architecture and providing an ablation
study (Meyes et al., 2019) justifying certain architectural choices;
(2) evaluating the generalization capability of our model on a
considerably larger and more heterogeneous data set via Dice
coefficient, compactness and Hausdorff distance under different
training settings (training set size and different ground truth);
and (3) making RatLesNetv2 publicly available.

We show that RatLesNetv2 generates more realistic
segmentations than our previous RatLesNet, and than 3D
U-Net (Çiçek et al., 2016) and VoxResNet (Chen et al., 2018a),
two state-of-the-art ConvNets specifically designed for medical
image segmentation. Additionally, the Dice coefficients of the
segmentations derived with RatLesNetv2 exceeded inter-rater
agreement scores.

2. MATERIALS AND METHODS

2.1. Data
The data set consisted of 916 MR T2-weighted brain scans of
671 adult male Wistar rats weighting between 250 and 300
g. The data, provided by Discovery Services site of Charles
River Laboratories,1 were derived from 12 different studies.
Transient (120 min) focal cerebral ischemia was produced by
middle cerebral artery occlusion in the right hemisphere of
the brain (Koizumi et al., 1986). MR data acquisitions were

1https://www.criver.com/products-services/discovery-services
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TABLE 1 | Number of scans per study segregated by lesion stage, including

sham-operated animals.

Study 2 h 24 h D3 D7 D14 D21 D28 D35 Shams

A 12 12 0 0 0 0 0 0 24

B 0 46 0 0 0 0 0 0 3

C 0 59 0 0 0 0 0 0 1

D 0 162 0 0 0 0 0 0 4

E 0 0 0 0 0 0 0 20 1

F 0 33 30 0 30 0 27 0 46

G 0 0 0 53 0 0 0 0 12

H 0 45 0 0 0 0 0 0 0

I 0 0 64 0 0 0 62 0 0

J 0 32 0 0 0 0 0 0 0

K 0 17 0 0 0 0 0 0 0

L 0 0 41 0 0 40 0 0 40

Total 12 406 135 53 30 40 89 20 131

performed at different time-points after the occlusion (for details,
see Table 1). Some studies also had sham-operated animals that
underwent identical surgical procedures, but without the actual
occlusion. All animal experiments were conducted according to
the National Institute of Health (NIH) guidelines for the care and
use of laboratory animals, and approved by the National Animal
Experiment Board, Finland. Multi-slice multi-echo sequence was
used with the following parameters; TR =2.5 s, 12 echo times
(10–120 ms in 10ms steps), and 4 averages in a horizontal
7T magnet. T2-weighted images were calculated as the sum of
the all echoes. Eighteen coronal slices of 1 mm thickness were
acquired using a field-of-view of 30 × 30 mm2 producing 256
× 256 imaging matrices of resolution 117 × 117µm. No MRI
preprocessing steps, such as inhomogeneity correction, artifact
removal, registration or skull stripping, were applied to the T2-
weighted images. Images were zero-centered and their variance
was normalized to one.

The provided lesion segmentations were annotated by several
trained technicians employed by Charles River. We performed
an additional independent manual segmentation of the lesions
on the first study that was acquired (study A, Table 1) to
approximate inter-rater variability. The average Dice coefficient
(Dice, 1945) between the two manual segmentations was 0.67
with a standard deviation of 0.12 on 2 h lesions and 0.79
with a standard deviation of 0.08 on 24 h lesions. The overall
average was 0.73 ± 0.12. Unless stated otherwise, we used our
independent segmentation as the ground truth for study A.

We produced two different train/test set divisions. (1) In the
first one, the training set contained the 48 scans of the study
which was used to approximate inter-rater variability (study A,
Table 1) and the test set contained the remaining 868 images.
The training set was further divided to training (36 images) and
validation sets (12 images). This train/test division is referred
to as “homogeneous” and its train/validation split has the
same ratio 2/24 h time-points and sham/no-sham animals. (2)
The second division also contained 48 training scans and the
test set contained 868 scans, but the training set was different

from the homogeneous division. This division is referred to as
“heterogeneous” because the training set was more diverse. The
training set was divided into training (40 images) and validation
(8 images) set. The training and the validation sets were formed
by 5 and 1 images per lesion time-point, respectively, with no
images from sham-operated animals. The size of our training set
was deliberately much smaller than the test set for two reasons:
(1) to replicate the typical pre-clinical setting in which rodentMR
images are few and (2) to create a large and representative test set.

2.2. Convolutional Neural Networks
Convolutional neural networks (ConvNets) use stacks of
convolutions to transform spatially correlated data, such as
images, to extract their features. The first layers of the
network capture low-level information, such as edges and
corners, and the final layers extract more abstract features. The
number of convolutions adjusts two attributes of ConvNets:
parameter number and network depth. An excessive number of
parameters leads to overfitting—memorizing the training data;
an insufficient number of parameters constrains the learning
capability of the model. Model depth is associated with the
number of times the input data is transformed, and this depth
also adjusts the area that influences the prediction—the receptive
field (RF). Recent approaches reduce model parameters while
maintaining the RF by using more stacked convolutions of
smaller kernel size (Szegedy et al., 2016).

Model architectures based on U-Net (Ronneberger et al.,
2015) are popular in medical image segmentation tasks. In
contrast to patch-based models, the input images and the
generated masks are the same size, which makes U-Nets
computationally more efficient to train and to evaluate. The U-
Net architecture resembles an autoencoder with skip connections
between the same levels of the encoder and decoder. The encoder
transforms and reduces the dimensionality of the input images,
and the decoder recovers the spatial information with the help of
skip connections.

Skip connections also facilitate the gradient flow during back-
propagation (Drozdzal et al., 2016), but they are not sufficient
to prevent the gradient of the loss to vanish, which makes the
network harder to train. This is also referred as the vanishing
gradient problem (He et al., 2016), and it particularly affects the
final layers of the encoder part. Adding residual connections (He
et al., 2016) along the network alleviates the vanishing gradient
problem and it also yields in faster convergence rates during the
optimization (Drozdzal et al., 2016).

2.3. RatLesNetv2 Architecture
RatLesNetv2 (Figure 2) has three downsampling and three
upsampling stages connected via skip connections. Maxpooling
downsamples the data with a window size and strides of 2, and
trilinear interpolation upsamples the feature maps. Bottleneck
layers (Figure 2, green blocks) stack a ReLU activation function, a
batch normalization (BatchNorm) layer (Ioffe and Szegedy, 2015)
and a 3D convolution with kernel size of 1 that combines and
modifies the number of channels of the feature maps from in to
out. ResNetBlock layers (Figure 2, orange blocks) contain two
stacks of ReLU activations, BatchNorm, and 3D convolutions
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FIGURE 2 | RatLesNetv2 network architecture. See the text for the detailed explanation of the blocks.

with kernel size of 3. Similarly to VoxResNet (Chen et al., 2018a),
the input and output of each block is summed in a ResNet-
style (He et al., 2016). The width of the blocks in the decoder
is twice (64) with respect to the encoder part (32) due to the
concatenation of previous layers in the same stage of the network.

At the end of the network, the probabilities z = [z1, z2]
(corresponding to non-lesion and lesion labels) for each voxel are
normalized by the Softmax function

qi = Softmax(z)i =
ezi

∑2
j = 1 e

zj
, (1)

and the segmentation label is argmaxi(qi), i = 1, 2.
RatLesNetv2 architecture differs from our previous RatLesNet

(Valverde et al., 2019) in two aspects. First, RatLesNetv2 has
one additional downsampling and upsampling level, increasing
the receptive field to 76 × 76 × 76 voxels. These extra levels
allows RatLesNetv2 to consider more information from a larger
volume. Second, RatLesNetv2 replaces unpooling (Noh et al.,
2015) and DenseNetBlocks (Huang et al., 2017) with trilinear
upsampling and ResNetBlocks, respectively, reducing memory
usage and execution time. In contrast to VoxResNet (Chen et al.,
2018a), RatLesNetv2 architecture resembles an autoencoder, and
RatLesNetv2 employs no transposed convolutions, reducing the
number of parameters. Additionally, unlike 3D U-Net (Çiçek
et al., 2016), RatLesNetv2 uses residual blocks that reutilize
previous computed feature maps and facilitate the optimization.

2.4. Loss Function
ConvNets’ parameters are optimized by minimizing a loss
function that describes the difference between the predictions
and the ground truth. RatLesNetv2 was optimized with Adam
(Kingma and Ba, 2014) by minimizing cross entropy and Dice
loss functions Ltotal = LBCE + LDice. Cross entropy measures

the error as the difference between distributions. Since our
annotations consist of only two classes (lesion and non-lesion)
we used binary cross entropy

LBCE = −
1

N

N
∑

i = 1

pi · log(qi)+ (1− pi) · log(1− qi), (2)

where pi ∈ {0, 1} represents whether voxel i is lesion in the
ground truth and qi ∈ [0, 1] is the predicted Softmax probability
of lesion class. Dice loss (Milletari et al., 2016) is defined as:

LDice = 1−
2
∑N

i piqi
∑N

i p2i +
∑N

i q2i
. (3)

The rationale behind using Dice loss is to directly maximize the
Dice coefficient, one of the metrics to assess image segmentation
performance. Although the derivative of Dice loss can be unstable
when its denominator is very small, the use of BatchNorm and
skip connections helps during the optimization by smoothing the
loss landscape (Li et al., 2018; Santurkar et al., 2018).

2.5. Post-processing
Since our model optimizes a per-voxel loss function, small
undesirable clusters of voxels may appear disconnected from the
main predicted mask. These spurious clusters may be referred
as “islands” when they are separated from the largest connected
component and “holes” when they are inside the lesion mask.
Figure 1 illustrates these terms.

Small islands and holes can be removed in a final post-
processing operation, yielding more realistic segmentations.
Determining the maximum size of these holes and islands is,
however, challenging in practice: A very small threshold will not
eliminate enough small islands and a too large threshold may
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remove small lesions. In our experiments, we chose a threshold
such that 90% of the holes and islands in the training data were
removed. More specifically, we removed holes and islands of 20
voxels or less, inside and outside the lesion masks.

2.6. Evaluation Metrics
We assessed the performance of each ConvNet by measuring
the Dice coefficient, Hausdorff distance and compactness. In
agreement with the literature (Fenster and Chiu, 2005), we argue
that Dice coefficient alone is not an effective measure in rodent
lesion segmentation, which is why we complemented it with the
two other metrics.

2.6.1. Dice Coefficient
Dice coefficient (Dice, 1945) is one of the most popular metrics in
the field of image segmentation. It measures the overlap volume
between two binary masks, typically the prediction of the model
and the manually-annotated ground truth. Dice coefficient is
formally described as:

Dice(A,B) =
2|A ∩ B|

|A| + |B|
, (4)

where A and B are the segmentation masks.

2.6.2. Compactness
Compact lesion masks are realistic and resemble human-made
annotations. Compactness can be defined as the ratio between
surface area (area) and volume of the mask (volume) (Bribiesca,
2008). More specifically, we define compactness as:

Compactness = area1.5/volume, (5)

which has a constant minimum value of 6
√

π for any sphere.
Compactness measure penalizes holes, islands and non-smooth
borders because these increase the surface area with respect to
the volume. Therefore, low compactness values that describe
compact segmentations are desirable.

2.6.3. Hausdorff Distance
Hausdorff distance (HD) (Rote, 1991) is defined as:

d(A,B) = max

{

max
a∈∂A

min
b∈∂B

|b− a|, max
b∈∂B

min
a∈∂A

|a− b|

}

, (6)

where A and B are the segmentation masks, and ∂A and ∂B
are their respective boundary voxels. It measures the maximum
distance of the ground truth surface to the closest voxel of
the prediction, i.e, the largest segmentation error. Measuring
Hausdorff distance in brain lesion segmentation studies is crucial
since misclassifications far from the lesion boundaries are more
severe. The reported Hausdorff distances were in millimeters.

Hausdorff distance and compactness values were calculated
exclusively in animals with lesions. Hausdorff distance values on
slightly imperfect segmentations of sham-operated animals are
excessively large and distort the overall statistics. Additionally,
compactness can not be calculated on empty volumes derived
from scans without lesions. Voxel anisotropy was accounted

for when computing HD and compactness. Finally, we
assessed significance of performance difference through a paired
permutation test with 10,000 random iterations on the post-
processed segmentations with 0.05 as the significance threshold.

2.7. Experimental Setup
2.7.1. Training
RatLesNetv2, 3D U-Net (Çiçek et al., 2016), VoxResNet (Chen
et al., 2018a) and RatLesNet (Valverde et al., 2019) were
optimized with Adam (Kingma and Ba, 2014) (β1 = 0.9,β2 =

0.999, ǫ = 10−8), starting with a learning rate of 10−5 for
700 epochs. A small set of learning rates were tested on
each architecture to ensure that we used the best performing
learning rate in each model. Models were randomly initialized
and trained three times separately, and their performance was
evaluated from the lesion masks derived with majority voting
across these three independent runs. In other words, for each
architecture we ensembled three independently trained models.
We confirmed that this strategy, typical to remove uncorrelated
errors (Dietterich, 2000), improves performance.

2.7.2. Experiments

2.7.2.1. Performance Comparison
We optimized RatLesNetv2, 3D U-Net (Çiçek et al., 2016),
VoxResNet (Chen et al., 2018a) and RatLesNet (Valverde et al.,
2019) on both the homogeneous and heterogeneous data set
divisions (section 2.1) and compared their performance.

2.7.2.2. Ablation Study
We conducted an ablation study (Meyes et al., 2019) in
which we changed or removed certain parts of the model to
comprehend the effects of the characteristics of RatLesNetv2
architecture. More specifically, we modified the interconnections
between layers within each block, changed the number of
downsampling/upsampling blocks, and increased and decreased
the number of filters.

2.7.2.3. Ground Truth Disparity Effect
We trained two separate RatLesNetv2 models on segmentations
annotated by two different operators. This can be seen as an
inter-rater variability study of the same ConvNet with disparate
knowledge. We run RatLesNetv2 three times for each ground
truth on the homogeneous training data, which come exclusively
from the study with the two annotations (Study A, Table 1).
RatLesNetv2 produced six sets of 868 masks ŷg,r where g ∈ {1, 2}
refers to the annotator segmenting the training data and r ∈

{1, 2, 3} refers to the run. First, we approximated the intra-rater
variability of RatLesNetv2 by calculating the Dice coefficients
among the three runs for each ground truth separately, i.e.,
{dice(ŷg,1, ŷg,2), dice(ŷg,2, ŷg,3), dice(ŷg,1, ŷg,3)} for g = 1, 2. This
led to two sets of three Dice coefficients per mask. Second, we
calculated the Dice coefficient of the masks across the different
ground truths {dice(ŷ1,i, ŷ2,j)} for i, j = 1, 2, 3 to approximate
inter-rater similarity, leading to nine Dice coefficients per mask.

2.7.2.4. Training Set Size
We optimized RatLesNetv2 with training sets of different
sizes to understand the relation between training set size and
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generalization capability. The training sets had the same ratio
of time-points, i.e., we enlarged the training sets by 1 sample
per time-point. Since the lowest number of samples across time-
points corresponds to 12 (2 h lesions) and we want to keep at least
1 image per time-point in the test set, we produced 11 training
sets Ti of size |Ti| = 8i for i = 1, . . . , 11, where 8 is the number
of lesion stages.

2.7.3. Implementation
RatLesNetv2 was implemented in Pytorch (Paszke et al., 2019)
and it was run on Ubuntu 16.04 with an Intel XeonW-2125 CPU
@ 4.00 GHz processor, 64 GB of memory and an NVidia GeForce
GTX 1080 Ti with 11 GB of memory. RatLesNetv2 is publicly
available at https://github.com/jmlipman/RatLesNetv2.

3. RESULTS

3.1. Performance of RatLesNetv2
Table 2 lists the quantitative validation results on the test
set excluding sham-operated animals that typically yield Dice
coefficients of 1.0. As can be seen in Table 2, RatLesNetv2
produced similar or better Dice coefficients and Hausdorff
distances, and more compact segmentations than the other
ConvNets. The average Dice coefficients varied from 0.784
(homogeneous division) to 0.813 (heterogeneous division). Dice
coefficients had a large standard deviation regardless of the
architecture (from 0.15 to 0.20). However, note that the sample-
wise difference between the Dice coefficients of RatLesNetv2 and
VoxResNet had a smaller standard deviation of 0.05, i.e., the Dice
values between different networks were correlated. Table 2 shows
that RatLesNetv2 achieved significantly better compactness
values (all p-values < 0.011) than 3D U-Net, VoxResNet and
RatLesNet. Remarkably, 3D U-Net and VoxResNet produced
masks with non-smooth borders and several more holes and
islands, leading to less compact segmentations (see Figure 3

and Figures in the Supplementary Material). The average
compactness values of RatLesNetv2 were higher than the ground
truth (20.98 ± 3.28, p = 0.003); this was expected as human
annotators are likely to produce segmentations with excessively
rounded boundaries.

Post-processing had little to no effect on the average Dice
coefficients, but it enhanced the final segmentation quality
as it removed spurious clusters of voxels. This improvement
was reflected in the reduction of compactness values and the
considerable decrease of Hausdorff distances. Remarkably, the
difference in the Hausdorff distances before and after post-
processing was more pronounced in 3D U-Net, VoxResNet
and RatLesNet.

Table 3 lists the quantitative results by lesion stage to
understand the performance of RatLesNetv2 in detail. Training
RatLesNetv2 on the homogeneous data division, whose training
set included almost twice as many 24 h lesion scans as the
heterogeneous division (9 scans vs. 5 scans), led to a slight
increase in the average Dice coefficient and Hausdorff distance
in 24 h lesion scans. However, there was no significant difference
between either the Dice coefficients (p = 0.057) nor Hausdorff
distances (p = 0.08) of the segmentations derived in the

TABLE 2 | Performance evaluation on the test set before and after

post-processing.

Model Dice (no shams) Compactness HD

RatLesNetv2-post 0.784 ± 0.18*a 29.332 ± 7.86*b 3.522 ± 3.64

RatLesNetv2 0.784 ± 0.18 29.609 ± 8.12 3.687 ± 3.30

3D U-Net-post 0.769 ± 0.20 36.741 ± 11.41 3.665 ± 3.81

3D U-Net 0.768 ± 0.20 37.599 ± 11.77 4.097 ± 3.69

VoxResNet-post 0.757 ± 0.19 37.096 ± 13.00 3.692 ± 3.46

VoxResNet 0.757 ± 0.19 38.161 ± 13.62 4.943 ± 3.38

RatLesNet-post 0.742 ± 0.18 35.045 ± 10.71 3.892 ± 2.54

RatLesNet 0.741 ± 0.18 35.888 ± 10.76 4.679 ± 2.55

RatLesNetv2-post 0.813 ± 0.16 23.105 ± 4.58*c 3.334 ± 3.34

RatLesNetv2 0.813 ± 0.16 23.177 ± 4.64 3.512 ± 3.31

3D U-Net-post 0.813 ± 0.15 28.247 ± 5.92 3.099 ± 2.47

3D U-Net 0.812 ± 0.15 28.639 ± 5.99 3.221 ± 2.47

VoxResNet-post 0.806 ± 0.14 32.937 ± 10.05 3.585 ± 3.27

VoxResNet 0.805 ± 0.14 33.634 ± 10.53 4.535 ± 3.46

RatLesNet-post 0.764 ± 0.15 31.348 ± 9.66 3.218 ± 2.79

RatLesNet 0.764 ± 0.15 31.669 ± 9.86 3.384 ± 2.56

Average Dice coefficients were reported in images of animals with lesions. Top:

Homogeneous division. Bottom: Heterogeneous division. Bold: Values significantly better

than the other architectures (*ap = 0.007,*bp = 0.011,*cp = 0.005).

two cases. Dice coefficients, compactness values and Hausdorff
distances of the segmentations produced after training on the
homogeneous division deteriorated as the time-point was farther
from 2 and 24 h.

Training on the heterogeneous training set notably improved
the average Dice coefficients and compactness values of every
model (Table 2) and every time-point (Table 3) with respect to
homogeneous division, except on 24 h lesions. Furthermore, it
decreased the standard deviation of the Dice coefficients and
compactness values. RatLesNetv2 recognized animals without
lesions notably well even if they were not part of the training
set, providing average Dice coefficients of 1.0 on sham-
operated animals even without post-processing. Additionally,
Dice coefficients on 2 h lesions, 24 h lesions, and overall were
higher than inter-rater agreement.

Ensembling three ConvNets of the same architecture
optimized on the same training set led to significantly better
performance scores in all cases (all p-values < 0.007) as it
discarded small segmentation inconsistencies. This strategy
increased Dice coefficients by an average of 2% and decreased
compactness and Hausdorff distances by an average of 5 and 23%
with respect to the first run. The Dice coefficients, compactness
values and Hausdorff distances from the individual images used
for calculating the reported statistics are also included in the
Supplementary Materials as CSV files.

3.2. Ablation Studies
The performance scores of RatLesNetv2 after modifying its
architecture during the ablation studies are reported in Table 4.
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FIGURE 3 | Comparison of the segmentation masks of four consecutive slices. The depicted T2-weighted image corresponds to a typical scan, i.e., the volume

whose segmentation achieved the median Dice coefficient in the test set (heterogeneous division). Segmentations were not post-processed.

3.2.1. DenseNetBlock
Similarly to RatLesNet (Valverde et al., 2019), DenseNet-
style (Huang et al., 2017) blocks were implemented in
RatLesNetv2 while keeping the same number of parameters
of the baseline RatLesNetv2 model. Dice coefficients and
compactness values were significantly deteriorated with respect
to RatLesNetv2 baseline (all p-values < 0.037), and Hausdorff
distances increased slightly in homogeneous data division,
whereas they decreased in heterogeneous division. Additionally,
DenseNetBlocks demanded notably more memory due to the
concatenation operation.

3.2.2. Halving the Receptive Field (RF)
The third downsampling stage of RatLesNetv2 was eliminated
in order to reduce the receptive field from 72 voxels down to
36. An additional test (marked in Table 4 with an ∗) matched
the number of parameters to the baseline. The reduction of the
receptive field yielded in significant improvements of the Dice
coefficient and a significant deterioration of the compactness
and Hausdorff distance in the heterogeneous division (all p-
values < 0.028). On the other hand, in the homogeneous
division Dice coefficients and compactness values were worse
than RatLesNetv2 baseline.

3.2.3. Network Width
We increased and decreased the number of filters of RatLesNetv2
by 4 (Table 4, Width-28 and Width-36). This modification
decreased the Dice coefficients with respect to RatLesNetv2 and

led to no significant difference in the Hausdorff distances.
Compactness values showed contradictory results; they
deteriorated in homogeneous division whereas they remained
similar or slightly worse in heterogeneous division.

3.3. On the Influence of Disparate Ground
Truths
As expected, optimizing separate RatLesNetv2 models with
segmentations from different annotators produced more
different segmentation masks than when optimizing with
segmentations from the same annotator. In other words, the
three sets of predictions ŷ1,1, ŷ1,2, ŷ1,3 were similar among
themselves in the same manner as ŷ2,1, ŷ2,2, ŷ2,3 (Figure 4B,
Annotation 1 and 2), and their differences arise from the
stochasticity of ConvNets optimization. In contrast, the shape
of the distribution of the Dice coefficients that compare masks
derived from RatLesNetv2 models optimized with different
annotations (Figure 4B, Mixed) was notably different. Also,
Annotation 1 andMixed Dice coefficients as well as Annotation 2
and Mixed Dice coefficients were significantly different (p-values
< 0.002).

In a visual inspection, we observed that Annotation 2 was
more approximate, with simpler contours, than Annotation 1.
Figure 4A (top row) shows the manual segmentations of the scan
with the most disparate annotations and Figure 4A (bottom row)
shows the predictions on a scan with the highest Dice coefficient
on our baseline study when RatLesNetv2 was trained on the
different annotations.
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TABLE 3 | Performance evaluation on the test set after post-processing

segregated by lesion stage.

Time-point (scans) Dice Compactness HD

24 h (394) 0.831 ± 0.15 26.539 ± 4.86 3.691 ± 3.53

D3 (135) 0.782 ± 0.12 29.705 ± 8.01 3.067 ± 2.31

D7 (53) 0.790 ± 0.11 40.742 ± 10.65 2.580 ± 2.63

D14 (30) 0.735 ± 0.21 36.018 ± 11.07 3.329 ± 5.06

D21 (40) 0.800 ± 0.11 33.797 ± 6.50 2.546 ± 0.92

D28 (89) 0.593 ± 0.28 29.598 ± 7.46 4.238 ± 5.22

D35 (20) 0.751 ± 0.23 31.203 ± 4.72 4.831 ± 5.76

Shams (107) 1.000 ± 0.00 — —

2 h (6) 0.719 ± 0.11 23.111 ± 2.27 1.920 ± 0.16

24 h (400) 0.826 ± 0.15 23.218 ± 4.67 3.919 ± 3.79

D3 (129) 0.809 ± 0.10 23.376 ± 5.15 2.796 ± 2.24

D7 (47) 0.860 ± 0.09 23.555 ± 3.99 2.439 ± 2.83

D14 (24) 0.827 ± 0.19 21.705 ± 3.36 3.015 ± 5.69

D21 (34) 0.877 ± 0.10 23.874 ± 2.38 2.002 ± 0.70

D28 (83) 0.692 ± 0.25 22.147 ± 4.65 2.875 ± 1.93

D35 (14) 0.886 ± 0.07 22.037 ± 2.55 1.700 ± 0.67

Shams (131) 1.000 ± 0.00 — —

Top: Homogeneous division. Bottom: Heterogeneous division.

TABLE 4 | Ablation study.

Study Dice (no shams) Compactness HD

Baseline 0.784 ± 0.18 29.332 ± 7.86 3.522 ± 3.64

DenseNetBlock* 0.771 ± 0.20 30.094 ± 8.86 3.692 ± 3.96

Halving RF 0.754 ± 0.20 30.766 ± 10.57 3.340 ± 3.91

Halving RF* 0.765 ± 0.19 31.867 ± 10.41 3.464 ± 3.53

Width-28 0.781 ± 0.18 30.095 ± 8.42 3.423 ± 2.84

Width-36 0.765 ± 0.19 31.620 ± 10.09 3.557 ± 3.73

Baseline 0.813 ± 0.16 23.105 ± 4.58 3.334 ± 3.34

DenseNetBlock* 0.801 ± 0.16 23.313 ± 5.13 3.093 ± 2.70

Halving RF 0.819 ± 0.15 25.226 ± 5.34 3.679 ± 3.12

Halving RF* 0.820 ± 0.15 25.394 ± 5.51 3.719 ± 3.40

Width-28 0.803 ± 0.17 22.861 ± 4.63 2.892 ± 2.94

Width-36 0.801 ± 0.16 24.036 ± 5.04 2.900 ± 2.84

Top: Homogeneous task. Bottom: Heterogeneous task. Bold: baseline significantly better.

Italic: baseline significantly worse (p-values < 0.05). *Equal number of parameters as

Baseline.

3.4. The Impact of the Training Set Size on
the Performance
Figure 5 illustrates the evolution of the Dice coefficients,
compactness values and Hausdorff distances as the training
set increases in size. Dice coefficients (Figure 5, left) were
remarkably different across time-points and almost every time-
point reached a performance plateau with large data sets. Time-
points 24 h and D3—which composed the majority of the test set
scans by 56.7 and 17.8% of the total, respectively—reached their
plateaus later. This effect can be a consequence of the variability
within samples. On the contrary, the time-points with the lowest

number of samples (2 h and D35 lesions with 1 and 9 image,
respectively) exhibited fluctuations.

Compactness values (Figure 5, center) and Hausdorff
distances (Figure 5, right) oscillated considerably regardless
of the time-point. Hausdorff distances were higher in the
time-points with the largest number of samples (24 h and D3),
likely due to the existence of outliers. Compactness values,
including the average (dashed line), increased analogously
to the training set size, i.e., enlarging the training set yielded
less compact segmentations. Yet, these compactness values
were markedly lower than the compactness values derived
from segmentations produced by 3D U-Net, VoxResNet, and
RatLesNet (section 3.1).

4. DISCUSSION

We showed that RatLesNetv2 yielded similar or better Dice
coefficients and Hausdorff distances, and notably more compact
segmentations than other convolutional neural networks (Çiçek
et al., 2016; Chen et al., 2018a; Valverde et al., 2019). These
measurements indicate that the segmentations derived from
RatLesNetv2 were more similar to the ground truth, had less
large segmentation errors and were more realistic. Additionally,
the smaller differences between Hausdorff distances before and
after post-processing derived fromRatLesNetv2 also indicate that
RatLesNetv2 produced fewer segmentation errors far from the
lesion surface.

RatLesNetv2 produced more compact segmentations than
the other ConvNets without directly minimizing compactness
(see Table 2), indicating that RatLesNetv2 architecture favors
segmentations with smooth borders without holes. Although
optimizing compactness (and Hausdorff distance) directly might
further improve the results, incorporating these terms to
the loss function leads to additional hyper-parameters that
require costly tuning. Dice coefficients had large standard
deviations and were lower than in existing human brain
tumor segmentation studies (Jiang et al., 2019; Myronenko
and Hatamizadeh, 2019). These results may arise due to the
subjectivity of the segmentation task caused by low image
contrast in certain lesions and its consequent high inter- and
intra-rater disagreement. However, this is not unexpected as
relatively low Dice coefficients and large standard deviations
are typical in rodent (Mulder et al., 2017a; Valverde et al.,
2019) and human brain lesion segmentation studies (Chen
et al., 2017; Valverde et al., 2017; Subbanna et al., 2019), even
when studying inter-rater disagreement of manual annotations
relying on a semi-automatic segmentation pipeline (Mulder
et al., 2017a). We also argued that Dice coefficient alone is
not sufficient to measure the segmentation performance. To
illustrate the importance of providing additional measurements,
consider a brain with a very large and a very small lesion. If the
segmentation accurately predicts the large lesion and ignores the
small one, Dice coefficients will have a high value not reflecting
the segmentation error, but Hausdorff distance is high capturing
the segmentation error. Likewise, a lesion segmentation mask
with non-smooth surface and several small holes and islands
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FIGURE 4 | (A) (Top row): Scan with the most disparate annotations between operators 1 and 2. (A) (Bottom row): A randomly selected scan of the test set (left),

segmentations of the scan with RatLesNetv2 trained on Annotator 1 ground truth (middle), and Annotator 2 ground truth (right). (B) Kernel density estimation of three

sets of Dice coefficients. Red (dashed line) and blue (solid line) estimations were calculated between the predictions of the model optimized for the same ground truth.

Green (thick solid line) estimation was computed between the predictions whose model was optimized for different ground truths. The predictions generated when the

same model is optimized for different ground truths are notably different.

FIGURE 5 | RatLesNetv2 performance when optimizing for training sets of multiple sizes. Metrics (from left to right: Dice coefficient, compactness and Hausdorff

distance) were processed from the masks derived with the majority voting across three runs on a fixed test set (828 images). Averages (dashed lines) were segregated

by time-point. Compactness graph includes the average compactness of the ground truth (dotted line).

(i.e., a high compactness value) may have a high Dice coefficient
despite being unrealistic.

The difference in the performance between homogeneous and
heterogeneous data set divisions indicates that although few 24 h
lesion volumes were needed to generalize well, adding more 24 h
lesion volumes to the training data (homogeneous division)made
RatLesNetv2 specialize on that time-point (Table 3). On the
other hand, increasing data diversity (heterogeneous division)
improved performance, demonstrating that RatLesNetv2 is
capable of learning from a heterogeneous data set. Thus, training
on this heterogeneous division increased RatLesNetv2 capability
to extrapolate to different-looking ischemic brain lesions.
However, without optimizing on additional data, RatLesNetv2
performance on images with other types of lesions, such as tumor
lesions, is limited by the lesions’ appearance.

The ablation experiments showed that modifications of
RatLesNetv2 architecture yielded similar or worse performance,

justifying RatLesNetv2’s architectural choices. Despite both
residual connections (He et al., 2016) and DenseNetBlocks
(Huang et al., 2017) facilitate gradient propagation (Drozdzal
et al., 2016), residual connections were preferred over
DenseNetBlocks due to their notably higher performance
and lower memory requirements. Additionally, a large receptive
field empirically demonstrated to increase compactness and
reduce large segmentation errors possibly because RatLesNetv2
considers a larger context. The choice of a large receptive field is
in agreement with other state-of-the-art ConvNets that achieve
large receptive fields by stacking several convolutional layers
and/or utilizing dilated convolutions (Chen et al., 2018b).

Our ground-truth disparity experiment confirmed that
predictions generated when the same model is optimized for
different ground truths are different. Consequently, the quality
of the manually-annotated ground truth has a direct impact on
the quality of the lesion masks generated automatically. As there

Frontiers in Neuroscience | www.frontiersin.org 9 December 2020 | Volume 14 | Article 61023927

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Valverde et al. RatLesNetv2: Rodent Brain Lesion Segmentation

is no unique definition of “lesion,” it may be advantageous for an
algorithm to perform differently depending on the labels of the
training set. On the other hand, it may also be desirable to design
a robust algorithm that performs consistently regardless of some
changes in the annotations.

The experiment of training RatLesNetv2 on several training
sets of different sizes showed that even with few available training
data RatLesNetv2 can generalize well and, despite increasing
its performance when optimizing on larger training sets, such
improvement is small and compactness values and Hausdorff
distances fluctuate considerably.

5. CONCLUSION

We presented and made publicly available RatLesNetv2, a
3D ConvNet to segment rodent brain lesions. RatLesNetv2
has been evaluated on an exceptionally large and diverse
data set of 916 rat brain MR images, validating RatLesNetv2
reliability on a wide variety of lesion stages with lesions
of different appearance. Additionally, RatLesNetv2 produced
segmentations that exceeded overall inter-rater agreement Dice
coefficients (inter-rater: 0.73 ± 0.12, RatLesNetv2: 0.81 ±

0.16). This enhancement indicates that RatLesNetv2 produces
segmentations that are remarkably more consistent with the
ground truth than the similarity between different human-
made annotations. This consistency is of special importance for
research reproducibility, crucial in preclinical studies.

Based on our experiments and, more specifically, the accuracy
greater than inter-rater agreement and than of other ConvNets,
RatLesNetv2 can be used to automate lesion segmentation in
preclinical MRI studies on rats.
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Introduction: Several methods offer free volumetry services for MR data that adequately

quantify volume differences in the hippocampus and its subregions. These methods

are frequently used to assist in clinical diagnosis of suspected hippocampal sclerosis

in temporal lobe epilepsy. A strong association between severity of histopathological

anomalies and hippocampal volumes was reported using MR volumetry with a higher

diagnostic yield than visual examination alone. Interpretation of volumetry results is

challenging due to inherent methodological differences and to the reported variability

of hippocampal volume. Furthermore, normal morphometric differences are recognized

in diverse populations that may need consideration. To address this concern, we

highlighted procedural discrepancies including atlas definition and computation of total

intracranial volume that may impact volumetry results. We aimed to quantify diagnostic

performance and to propose reference values for hippocampal volume from two

well-established techniques: FreeSurfer v.06 and volBrain-HIPS.

Methods: Volumetry measures were calculated using clinical T1 MRI from a

local population of 61 healthy controls and 57 epilepsy patients with confirmed

unilateral hippocampal sclerosis. We further validated the results by a state-of-the-art

machine learning classification algorithm (Random Forest) computing accuracy and

feature relevance to distinguish between patients and controls. This validation

process was performed using the FreeSurfer dataset alone, considering morphometric

values not only from the hippocampus but also from additional non-hippocampal

brain regions that could be potentially relevant for group classification. Mean
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reference values and 95% confidence intervals were calculated for left and right

hippocampi along with hippocampal asymmetry degree to test diagnostic accuracy.

Results: Both methods showed excellent classification performance (AUC:> 0.914)

with noticeable differences in absolute (cm3) and normalized volumes. Hippocampal

asymmetry was the most accurate discriminator from all estimates (AUC:1∼0.97). Similar

results were achieved in the validation test with an automatic classifier (AUC:>0.960),

disclosing hippocampal structures as the most relevant features for group differentiation

among other brain regions.

Conclusion: We calculated reference volumetry values from two commonly used

methods to accurately identify patients with temporal epilepsy and hippocampal

sclerosis. Validation with an automatic classifier confirmed the principal role of the

hippocampus and its subregions for diagnosis.

Keywords: epilepsy, volumetry, hippocampal sclerosis, random forest classifier, MRI

INTRODUCTION

Quantification of brain anatomical structures from magnetic
resonance images (MR) is being increasingly used to recognize
pathologic conditions such as temporal lobe epilepsy. Volumetric
estimates of hippocampal size are postulated to be more sensitive
than visual assessment alone, and also to improve clinical
diagnosis in dementia and epilepsy (1–4).

Temporal lobe epilepsy with hippocampal sclerosis (HS) is
one of the most frequent focal epilepsies in adults often refractory
to pharmacological treatment; surgical resection is an effective
therapeutic option for these patients achieving a seizure-free rate
close to 80%.

Patients with temporal epilepsy and HS usually share clinical
key features associated with the majority of seizure discharges
including characteristic aura, arrest, alteration of consciousness
(and amnesia), and automatisms. Relatively typical scalp EEG
findings can be seen in the interictal state, at the seizure onset,
during the course of the seizure, and postictally.

Hippocampal sclerosis is suspected in epilepsy patients when
compatible ictal semiology and scalp EEG findings are found,
but definitive diagnosis is established based on characteristic
brain MR anomalies. Neuroimaging abnormalities are typically
recognized in the hippocampus proper, including atrophy,
loss of internal structure, and decreased T1- and increased
T2-FLAIR signal intensity in clinical practice (5). Inspection
of hippocampal coronal sections allows for a side-by-side
comparison of asymmetry in volume, shape, and signal important
for clinical diagnosis. Atrophy seems to be the most specific and
signal changes the most sensitive biomarker in HS (6). Magnets
with high field strengths above 3 T are able to depict subtle
blurring of the internal architecture of the hippocampus on T2-
weighted images (5). Originally, manual segmentation of the
hippocampus based on anatomical knowledge and specific MRI

landmarks was used to estimate structural volumes. Previous

studies using these methods adequately identified lateralization
of seizure origin in the temporal lobe of patients with HS. Earlier
reports also documented a strong association between severity of

histopathological anomalies and hippocampal volumes with an
increased diagnostic yield of MR studies (7, 8)

The recent development of automatic volumetry methods
such as FreeSurfer (FS) suite (9) and VolBrain (vB) HIPS (10),
among others, makes it possible to account for hippocampal
volume differences that may escape visual detection. Several
studies validated the utility of hippocampal volumetry for HS
detection in temporal epilepsy, mostly based on postoperative
correlation or using ex vivo neuroimaging analysis (7–10).
The potential of volumetry measures for postsurgical outcome
prediction is still modest, with some improvement in reports
considering subfields patterns of atrophy (11).

Since numerous publications demonstrate considerable
differences in normative brain structural volumes across
populations with different genetic backgrounds (12–14),
volumetric estimates of the hippocampus in different populations
are of particular concern. Previous reports consistently show
hippocampal volume differences even when using analogous
procedures (15–32). In this regard, normal anatomic variations
and differences associated with the implemented methodology
need to be considered for the interpretations of clinical
conditions. An additional concern is that normative structural
data from Latin America populations remains underrepresented.

The main objective of this work is to estimate reference
values of sensitivity, specificity, and confidence intervals
for classification of a local population of epilepsy patients
with unilateral hippocampal sclerosis using two different
volumetry approaches.

We analyzed T1 brain MRI volumetry of the hippocampus
and hippocampal subfields in a cohort of 61 healthy subjects and
in 57 epilepsy patients with confirmed unilateral mesial temporal
sclerosis. Anatomical volumes were computed using two well-
established automatic methods FS and vB. Recorded values for
the hippocampus and subregions are expressed as absolute values
(in cm3) and further normalized to brain size, quantified as a
percent of total intracranial volume (TIV).

Furthermore, we provide hippocampal and subfield volume
distribution for a community-based sample of healthy controls
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(HC) and evaluate subregion asymmetry differences in HC and
between patients. We also compared the degree of asymmetry in
left and right HS to investigate its relevance for diagnosis and the
presence of distinctive patterns of atrophy at the subregion level.

Finally, a validation process was implemented to explore
the contribution of non-hippocampal structures for group
classification. This was performed using machine learning
techniques, considering only FreeSurfer’s morphometric
information of whole-brain regions, including anatomical
volumes and cortical thickness. Specifically, we used a feature
selection technique to obtain the optimal number of features to
discriminate between patients and HC, and then we performed
three binary classifications for each group using a Monte
Carlo cross-validation (MCCV) scheme (33) with a random
forest classifier.

MATERIALS AND METHODS

Participants
Patients were retrospectively enrolled based on medical records
from the epilepsy unit between 2014 and 2019 at Nestor
Kirchner—El Cruce Hospital at Florencio Varela, Buenos Aires,
with a final diagnosis of temporal lobe epilepsy associated with
unilateral right (n = 22, 15 females) and left (n = 35, 17
females) hippocampal sclerosis. Diagnosis was established using
standardized practices as described in Oddo et al. (34) through
clinical examination, assessment of disease history, semiology of
seizures along with neuropsychological tests including prolonged
video EEG, and compatible findings on 3-T MRI as suggested
by ILAE (5). Thirty-one patients (54%) underwent surgical
treatment with histopathology confirmation of HS after standard
amygdalohippocampectomy with partial temporal lobectomy.
The remaining patients are not yet operated but scheduled for
surgery. Age- and sex-paired HC (n = 61, 44 females) were
recruited mostly from local universities including students and
academic personnel.

All participants gave written consent to participate and to
make use of medical information for this study. The work
described in this paper was carried out in accordance with the
code of ethics of the world medical association (Declaration
of Helsinki). Research ethics approval was obtained from the
Hospital Research Ethics Board at El Cruce Hospital.

Imaging Characteristics and Analysis
Methods
Only volumetric T1-weighted images were used in this study.
These images were obtained as part of the clinical protocol for
epilepsy workout in our institution and were acquired using
the same MR unit (Philips Achieva 3T, 8-channel head coil),
as recommended on recent specialized guidelines (5). Structural
images consist of a 3D T1WI (FFE) sequence, with 180 slices of
1-mm isotropic resolution, TE= 3.3 msec, TR= 2300 msec, TI=
900 msec, flip angle= 9◦, and field of view (FOV)= 240× 240×
180. Images were exported from the scanner and transformed to
Nifti format for further analysis. For the statistical analysis, the
same T1 volumetric images were processed using two established
and freely available methods used to calculate brain region

segmentation and quantification, namely, FreeSurfer Suite v6.0
(FS) working in an offline workstation and VolBrain-Hips 2016
(vB) that provides online services running on remote servers
through a website interface.

Both methods offer validated hippocampal and hippocampal
subfield segmentation through different approaches, distinct
reference atlases, dissimilar processing times, and specific
subfield region delineations. Output files and results from both
methods were independently reviewed by two experienced
neuroradiologists (JPP and GDS) looking for labeling
inconsistencies and to assure quality control (no manual
correction was performed). (See segmentation details for
each method in Figure 1). Full documentation is available
for processing details on each software platform, but here we
describe a resumed version of each method.

FREESURFER V6.0

All T1 brain volumes were processed to obtain a complete
morphometric description. Cortical reconstruction and
volumetric segmentation were performed in each participant’s
native space on FreeSurfer’s1 (v 6.0) image analysis suite.

Briefly, image processing included removal of non-brain
tissue using a hybrid watershed/surface deformation procedure,
an automatic Talairach transformation, segmentation of the
subcortical WM and deep GM volumetric structures (including
hippocampus, amygdala, caudate, putamen, and ventricles),
intensity normalization, tessellation of the GM–WM boundary,
an automatic topology correction, and surface deformation
following intensity gradients to optimally place the GM/WM
and GM/CSF borders at the location where the greatest shift in
intensity defines the transition to the other tissue class (9).

Once the cortical models were complete, a number of
deformable procedures were performed for further data
processing and analysis, including surface inflation and
registration to a spherical atlas—based on individual cortical
folding patterns to match cortical geometry across subjects,
parcellation of the cerebral cortex into units relative to gyral
and sulcal structure, and creation of a variety of surface-based
data—including maps of curvature and sulcal depth. These
methods use both intensity and continuity information of the
entire 3D MR volume from segmentation and deformation
procedures to produce representations of cortical thickness,
which is calculated as the closest distance from the GM/WM
boundary to the GM/CSF boundary at each vertex on the
tessellated surface (9). The maps were created using spatial
intensity gradients across tissue classes; therefore, they were
not simply reliant on absolute signal intensity. Since the
ensuing maps were not restricted to the voxel resolution of the
original data, they can detect submillimeter differences between
groups. Procedures for the measurement of cortical thickness
have been validated against histological analysis and manual
measurements. FreeSurfer morphometric procedures including
principal hippocampal subfields have been demonstrated to

1https://surfer.nmr.mgh.harvard.edu/
2https://www.slicer.org
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FIGURE 1 | (A) Examples of common subfield’s atlas definition using vB and FS. Boxplots represent mean volumes as percent of TIV and whiskers the 95%

confidence interval for the HC group. (B) Right hippocampal 3D models for the same subject, constructed using all subfields from both methods in 3D Slicer2;

boxplots represent mean hippocampal volumes for left and right hippocampi in HC expressed in mm3 and in percent of TIV. Upper models show anterior–superior

view, and lower images represent inferior projections for comparison. Shaded gray-wireframe area embodies whole hippocampus representation created from

standard FS segmentation; note reduced size of the vB model. Most noticeable subregion differences are related to the definition of the anterior and posterior extent

of CA1 and posterior subiculum; more medially and dorsally extended in vB. Coincidentally, the hippocampal tail, pre-subiculum, and para-subiculum regions defined

in FS represents at least partially overlapping areas between methods. Other deep internal hippocampal structures such as the molecular layer, GCMLDG, fissure, and

fimbria are individually ascribed only in FS (C). CA4-DG and CA2-CA3 subfields are jointly segmented in vB; CA4 and GCMLDF are grouped together in FS for

comparison purposes. Volume differences are probably not only related to atlas definition; both approaches also show methodological discrepancies for intracranial

volume computation. *Significant after Bonferroni correction. **Significant uncorrected p < 0.05. Paired-sample T-test for inter-hemispheric comparison of volumes as

percent of TIV in HC.

show good test–retest reliability across scanner manufacturers
and across field strengths (35, 36).

The FreeSurfer v6.0 algorithm follows a generative, parametric
approach which focuses on modeling the spatial distribution of
the hippocampal subregions and surrounding brain structures,
which is learned from labeled training data. FreeSurfer v6.0 is
built with a novel atlasing algorithm and ex vivo MRI data
from autopsy brains. The segmentation provides 15 different
subregions (12 used in for this work), based on the histology
and morphometry from Rosene and Van Hoesen (37) and partly
also on (38–41). See Figure 1 for details on implemented atlas
and segmentation.

The ex vivo imaging protocol yields images with high
resolution and signal-to-noise ratio. The segmentation algorithm
is similar to Van Leemput (42) which is appropriate for analyzing
in vivo MRI scans of different manufacturers using different
T1 contrasts.

Compared to other new methods available, FreeSurfer
involves a prolonged processing time 8∼24 h running on
standard single-core systems but also yielding extended
quantification of additional brain structures including
whole-brain regions beyond hippocampal formations.

We transformed the fixed-width-column plain-text files in
which were written down the FreeSurfer outputs to comma
separate values (csv) plain-text files which are more suitable to
be opened as a Pandas’ Dataframe (Python package). To ensure
that classifiers did not consider features lacking specific regional
information, we eliminated general features like cortical volume,
mean cortical thickness, brain volume, and ventricle volume.
Finally, to avoid potential biases due to differences among the
participants’ head size (43), volume measures of each area were
normalized as a percentage of the estimated total intracranial
volume (eTIV), provided also in FreeSurfer’s results.

VolBrain—HIPS
VolBrain is a patch-based segmentation method for high-
resolution hippocampus subfields. It has been validated and
uses two publicly available segmentation protocols different from
FreeSurfer on manually ex vivo segmented datasets (44, 45).

Both hippocampal segmentation protocols are available in
volBrain-HIPS; Winterburn atlas disclosing 5 subregions was
used for this work because it is more similar to the FreeSurfer
v6.0 definition than Kulaga-Yoskovitz. VolBrain-HIPS is based
on the combination of MOPAL (46), a multi-contrast extension

Frontiers in Neurology | www.frontiersin.org 4 February 2021 | Volume 12 | Article 61396733

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Princich et al. MR Volumetry in Hippocampal Sclerosis

of the OPAL (47) patch-based label fusion segmentation method
and a novel neural network-based error corrector. The method
uses an adaptation of MOPAL, a patch matching segmentation
method to produce fast and accurate T1 brain segmentations.
The method also works on standard MRI acquisition with image
resolution of clinical practice as well as on single T1w or single
T2w images. The VolBrain approach performs well also on
mono-contrast T1w and T2w images as well as under standard
resolution images that are upsampled using the LASR (48,
49) super-resolution method. The HIPS method also includes
an error corrector post-processing step based on the use of
a boosted ensemble of a neural network algorithm that is
proposed to minimize systematic segmentation errors at post-
processing. It works in a fully automated manner providing
accurate results outperforming state-of-the-art methods such as
MAGeT (50), ASHS (51), and SurfPatch (52) which usually
require extended periods of computing time. VolBrain-HIPS
takes <20min and performs fast segmentation as well as subject-
specific library registration that only requires estimating one
non-linear registration over small regions to translate the whole
library to the case to be segmented.

Finally, an online report is generated and results are plotted
as absolute or percent values adjusted for intracranial volume
against a normal reference standard for each anatomical
region. Segmentation images can also be downloaded for
evaluation purposes.

The same T1 volumetric images used for FreeSurfer v6.0
were uploaded to VolBrain-HIPS3 for this analysis, using
Winterburn atlas definition for controls and patients (45).
The produced final report including absolute values (mm3)
and normalized to percent of brain volume were recorded
for analysis.

SUPERVISED CLASSIFICATION WITH A
RANDOM FOREST ALGORITHM

As suggested by several previous publications (53–59), the
quantification of non-hippocampal volumes in HS patients
usually shows widespread modifications, involving the thalamus,
amygdala, subcortical temporal white matter, temporal pole, and
entorhinal cortex among others.

To study structural changes in the brain without any
bias, we used FreeSurfer v6.0 metrics, specifically parcels of
cortical thickness and volumes of all the cerebral structures
in combination with machine learning methods based on
Random Forest Classifiers (RFC) (60). This process was
based on the implementation of an automatic classification
algorithm to evaluate group discrimination performance
considering morphometric contribution of whole-brain
structures as independent features, without any a priori
consideration. The selection of RFC was based by several
premises: (i) We were interested in considering linear and
more importantly non-linear relationships between all the
features. (ii) As the number of samples was relatively low

3https://volbrain.upv.es/

(although it is high for this type of studies), the parameter
tuning should be an optional step. (iii) The interpretability
of the relevant features in the classification should be clear.
Given these conditions and the experience of the research
team, we selected RFC as the best suitable algorithm for the
analysis (61–63).

Preprocessed features of cortical–subcortical volumes and
cortical thickness normalized to estimated total intracranial
volume (eTIV) were analyzed via a progressive feature
elimination (PFE) procedure (64) with a Monte Carlo cross-
validation scheme (33). Briefly, we performed 30 shuffle-splits in
which we randomly selected 80% of the samples (with balanced
classes) to train the RFC and the remaining 20% for testing
to optimize the accuracy of RFC by varying the number of
features from all to a single one according to its classificatory
relevance. RFC quantifies a feature’s importance depending on
how much the average Gini impurity index decreases in the
forest due to its use as a node in a tree (65). We used this score
to progressively eliminate features by removing the feature with
the lowest importance at each iteration. Finally, we kept the N
first features in the ranking, where N is the optimal number of
features such that using more than N features fails to improve
the classifier’s performance.

The optimal number of features was selected visually by
indicating the minimal quantity at which accuracy became
constant. We used this fixed number of features to compute the
accuracy, the confusionmatrix, and the ROC curve, and to obtain
each subject’s probability of being in each group (HC, left HS, and
right HS).

We implemented this processing framework to perform
three classifications: (i) a binary classification to discriminate
HC and HS; (ii) a binary classification to discriminate left
HS and right HS; and (iii) a multiclass classification to
discriminate HC, left HS, and right HS. For each classification,
we obtained the optimal number of features, the list of defined
features, and the classification performance metrics (accuracy,
confusion matrix, and ROC curves). Asymmetry metrics were
not included in these analyses given the conceptual basis that
RFCs consider the relationship between features, and therefore
the asymmetry between hemispheres regions was indirectly taken
into account.

These analyses were performed with the RFC implemented in
the Python’s scikit-learn package, with a fixed number of trees
(2000) and the recommended number of features (P) in each
split, where P is the square root of the full set of features. The
maximum depth in each tree was not restricted a priori, i.e.,
nodes were expanded until all leaves were pure or until all leaves
contained less than two samples.

Statistical Analysis
Results were analyzed independently for each method using
the Statistical Package for Social Sciences SPSS (Version 23;
IBM, Armonk, New York). Volume mean average and 95%
confidence intervals (CI) were calculated for each hemisphere.
Receiver operating characteristic analyses were used to obtain
optimal sensitivity, specificity, and 95% CI computed for left and
right hippocampal sclerosis patients. A normalization of absolute
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values related to the total TIV was implemented and used for
group comparison and correlation tests, since it was previously
described as the most significant covariate to be considered (25).
Normalization was performed by the following expression:

normalized%TIVSubject = AbsoluteValue(cm3)PatientsX100/TIVSubject.

Both methods implement different atlas definitions and
strategies to quantify TIV, thus precluding a direct comparison
between absolute values.

Asymmetry degree was analyzed as an independent measure
representing the difference between right and left regions divided
by their mean (in percent) as implemented in vB and used in
previous reports (25). Thus, positive values represent greater
volumes on the right side.

Nominal variables were compared using the Chi square test.
Paired-sample t-test (right vs. left) and ANCOVA (between
groups) were used for normally distributed scalar variables
adjusted for age and sex. Correlations were tested using the two-
tailed Pearson coefficient controlling for age and sex. Significance
level was adjusted for the effect of multiple comparisons using
Bonferroni correction when appropriate. To test the difference
between HS sides in the group of patients, an ANCOVA test
was calculated on z-scores computed for each region using the
following formula:

z− score =
(normalized%TIVPatients − normalizedmean%TIVHC)

standarddeviationmean %TIVHC
.

Age, sex, and clinical characteristics of epilepsy were included in
the analysis as covariates.

RESULTS

After correction for TIV, no significant correlation was found
between age and sex with hippocampal or subfield volumes (p
> 0.05) in controls or patients.

Controls and patients were paired according to age and sex,
with female prevalence (controls 44f/17m, right HS 15f/7m, and
left HS 17f/18m) not reaching significant differences (p.062).
Groups were not different in relation to participants’ age (p. 495),
control subjects with a mean of 32 (18–62y), right HS patients
group with 33 (21–64y), and left HS with 34 (19–52y).

Clinical characteristics of epilepsy including seizure
frequency, age at onset, and epilepsy evolution time were
similar (p > 0.05) in both groups of patients. Right HS patients
had 7 (1–30) seizures per month, disease onset at 10 (1–40y),
with a duration of 23 (6–40y), and left HS epilepsy patients
presented 12 (1–90), 11 (1–32y), and 22 (2–49y), respectively.

No correlation was found between clinical features of epilepsy
and hippocampus or subregion volumes.

Hippocampal Results
Estimated hippocampal volume and 95% confidence interval
(CI) for controls on the right side were 3,454 cm3 (3.355–
3.554)/0.2239% (0.2196–0.2283) for FS, and 2,480 cm3 (2.326–
2.490)/0.1750% (0.1713–0.1787) for vB. Results for the left
hippocampus were 3,398 cm3 (3.300–3.496)/0.2230% (0.2158–
0.2248) for FS, and 2,320 cm3 (2.246–2.394)/0.1686% (0.1653–
0.1720) for vB. Volume asymmetry was 1.6% (0.5–2.7) for FS

and 3.6% (2.2–5) for vB with significant rightward lateralization
(p< 0.003).

Mean ipsilateral hippocampal volume and 95%CI for right HS
patients were 2,578 cm3 (2.401–2.755)/0.1743% (0.1603–0.1882)
for FS and 1,429 cm3 (1.295–1.563)/0.1073% (0.0979–0.1167)
for vB. Left hippocampus volume and 95% CI for the left HS
patients were 2,560 cm3 (2.425–2.696)/0.1693% (0.1604–0.1783)
for FS and 1,437 cm3 (1.324–1.549)/0.1055% (0.0981–0.1129)
for vB.

Hippocampal asymmetry in the right HS group was −27.4%
(−31.4/−23.5) for FS and −47% (−53.2/−41.6) for vB.
Asymmetry in left HS patients was 33% (28.2/37.7) on FS and
53.2% (48–58.3) for vB. Hippocampal volumes ipsilateral to
the HS side were significantly reduced compared with controls
and also with the non-lesional side of right and left HS
groups (p.000). Additionally, the right hippocampus was greater
in left HS patients than in HC (FS, p.022) (see details in
Tables 1 and 2).

Hippocampal asymmetry was the most reliable indicator for
accurate classification between HC and right and left HS with
an AUC:1 for Vb (measured in cm3 and in brain percent), an
AUC:0.998 (using cm3), and an AUC:0.977 (in brain percent)
based on FS. Optimal sensitivity–specificity was also calculated
using hippocampal volumes with elevated accuracy (AUC:0.914
∼ 0.993) for patient classification. Detailed results are specified
in Figure 2 and Table 3.

To specifically account for atrophy differences among HS
sides, z-score volumes for each hippocampus were compared,
and no significant differences were found (p.692, FS and
p.768, vB).

Results for Hippocampal Subfields
Themean volume and 95%CI estimates of hippocampal subfields
for HC and patients are detailed in Tables 1 and 2. In the
HC group, a significant rightward asymmetry of hippocampal
subfields was recognized for CA1, CA2–CA3, and CA4-DG (in
vB) and for CA1, CA3, CA4, molecular layer, hippocampal
fissure, and GC-ML of DG (in FS). Leftward lateralization was
recognized for the subiculum (vB) and pre-subiculum (FS)
subregions (see details in Tables 1 and 2).

All subregions on the ipsilateral side of HS patients showed
significant volume reduction compared with HC using vB, and
most subfields were also reduced considering FS except for the
right (p.446) and left (p.140) HATA, right and left fissure (p.1),
and right ipsilateral fimbria (p.849).

Most hippocampal subfields contralateral to the sclerotic side
in left HS patients revealed greater volumes compared with
HC, specifically right CA1(p.048 in vB), CA1(p.002 in FS) and
CA3(p.016), CA4 (p.025), HATA (p.009), molecular layer, and
GC-ML-DC (p.018) on FS. Only the left subiculum (p.035 vB)
of right HS patients was reduced compared with HC.

The only subregion with a significant volume difference
between sides of the affected hemisphere in patients was CA2–
CA3 (p.024) for the group of right HS patients (observed in vB).
Accordingly, ipsilateral to the sclerotic side, CA2–CA3 (vB) and
CA3 (FS) subfields in left HS patients were less atrophic than any
other cornus ammonia division.
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TABLE 1 | volBrain-HIPS results.

Region HC n:61 Right HS n:22 Left HS n:35

Mean & 95%

CI volume (cm3)/

TIV-adjusted volume

(%)

Volume

asymmetry

percent (%)

Mean & 95%

CI volume (cm3)/

TIV-adjusted volume

(%)

Volume

asymmetry

percent (%)

Mean & 95%

CI volume (cm3)/

TIV-adjusted volume

(%)

Volume

asymmetry

percent (%)

Right

hippocampus

Left

hippocampus

2,408 (2.326–2.490)

/0.1750 (0.1713–0.1787)

2,320 (2.246–2.394)

/0.1686 (0.1653–0.1720)

3.6 (2.2/5)** 1,429 (1.295–1.563)

/0.1073 (0.0979–0.1167)

§

2,293 (2.138–2.461)

/0.1727 (0.1614–0.1840)

-47.4

(−53.2/−41.6)

2,460 (2.331–2.590)

/0.1810 (0.1723–0.1896)

1,437 (1.324–1.549)

/0.1055 (0.0981–0.1129)

9

53.2 (48/58.3)

Right CA1

Left CA1

0.8084 (0.7772–0.8396)

/0.0587 (0.0571–0.0603)

0.7834 (0.7541–0.8127)

/0.0569 (0.0554–0.0584)

3 (0.8/5.3)* 0.4776 (0.4262–0.5290)

/0.0359 (0.0320–0.0398)

§

0.8016 (0.7400–0.8631)

/0.0603 (0.0555–0.0651)

–51.6

(−58.5/−44.8)

0.8524 (0.8009–0.9040)

/0.0626 (0.0592–0.06602)

9

0.4872 (0.4454–0.5290)

/0.0357 (0.0330–0.0384)

9

55.1

(49.3/60.9)

Right CA2–CA3

Left CA2–CA3

0.1864 (0.1775–0.1953)

/0.0135 (0.0129–0.0141)

0.1504 (0.1498–0.1589)

/0.0109 (0.0103–0.0114)

21.7

(16.8/26.7)*

0.0924 (0.0786–0.1063)

/0.0069 (0.0059−0.0079)

§

0.1490 (0.1318–0.1663)

/0.0112 (0.0099–0.0124)

–47.8

(−62.5/−33)

0.1960 (0.1803–0.2117)

/0.0143 (0.0133–0.0154)

0.0821 (0.0727–0.0916)

/0.0060 (0.0053–0.0066)

9

82.2

(73.9/90.4)

Right CA4-DG

Left CA4-DG

0.6518 (0.6241–0.6796)

/0.0472 (0.0459–0.0486)

0.5996 (0.5764–0.6228)

/0.0435 (0.0424–0.0469)

8.1 (5.7/10)* 0.3792 (0.3334–0.4250)

/0.0284 (0.0252–0.0317)

§

0.5999 (0.5511–0.6488)

/0.0450 (0.0418–0.0481)

–46.3

(−55.2/−37.4)

0.6438 (0.6066–0.6810)

/0.0473 (0.0448–0.0499)

0.3566 (0.3193–0.3940)

/0.0261 (0.0236–0.0286)

9

59.1

(51.7/66.6)

Right SR-SL-SM

Left SR-SL-SM

0.4828 (0.4649–0.5006)

/0.0350 (0.0342–0.0358)

0.4780 (0.4623–0.4937)

/0.0347 (0.0339–0.0355)

0.7 (–.9/2.5) 0.2761 (0.2409–0.3113)

/0.0206 (0.0182–0.0230)

§

0.4754 (0.4405–0.5104)

/0.0357 (0.0332–0.0382)

–55

(-64.6/−45.4)

0.5023 (0.4742–0.5303)

/0.0370 (0.0349–0.0390)

0.2819 (0.2544–0.3095)

/0.0207 (0.0188–0.0227)

9

57.8 (51/54.5)

Right subiculum

Left subiculum

0.2792 (0.2686–0.2899)

/0.0203 (0.0196–0.0211)

0.3085 (0.2961–0.3201)

/0.0225 (0.0216–0.0233)

–9.9

(−12.4/-7.4)*

0.2042 (0.1848–0.2237)

/0.0153 (0.0140–0.0165)

§

0.2711 (0.2515–0.2907)

/0.0204 (0.0189–0.0218)

§

–28.6

(−35.8/−21.3)

0.2662 (0.2506–0.2819)

/0.0196 (0.0184–0.0207)

0.2290 (0.2143–0.2438)

/0.0168 (0.0158–0.0179)

9

15.3 (9.9/20.6)

Paired-sample T-test; inter-hemispheric comparison in HC. *Significant after Bonferroni correction (p < 0.001). **Uncorrected (p < 0.05). Age- and sex-adjusted ANCOVA test between

3 groups; Bonferroni corrected (p < 0.05). Significant after pairwise comparisons: § Between controls and left HS. 9 Between controls and right HS.

Bold numbers are the mean values.

The most atrophic subfield ipsilateral to the sclerotic side
for FS were CA4, GCMLDG, and molecular layer, and SLSRSM
measured in vB in both right and left HS patients. See details in
Figure 3.

Validation With the Automatic (Random Forest)

Classifier

Our supervised machine learning validation process disclosed
anatomical regions that were restricted to hippocampal
subregions as the most relevant features to discriminate between
patients and HC. In other terms, non-hippocampal regions were
not identified as relevant for the classification.

The classifier was able to discriminate between controls and
patients with a high accuracy in the three main classifications
we performed: the classification between HC and patients
(validation set mean accuracy: 0.907, AUC:0.960), between left
and right HS patients (validation set mean accuracy: 0.91, AUC:
0.963), and between the three groups (validation set mean

accuracy: 0.857, AUC: 0.960). The most important features and
their relevance in each of three classifications are listed in
Figure 4.

DISCUSSION

In this work, we define reference volumetric values and
confidence intervals for hippocampus and hippocampal subfields
using two commonly available approaches in a small community-
based sample of healthy adults from Buenos Aires, Argentina.
This is a limited sample but an important contribution to the
field due to the scarce research literature on brain morphometric
variations available in Latin America (66–68).

Since population variability on brain morphometric estimates
are being increasingly reported (14, 69, 70, 70–72), it is important
to consider the possibility of innate differences for adequate
interpretation of MRI volumetry.
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TABLE 2 | FreeSurfer v6.0 results.

Region HC n:61 Right HS n:22 Left HS n:35

Mean & 95% CI volume

(cm3)/TIV-adjusted

volume (%)

Volume

asymmetry

percent (%)

Mean & 95% CI volume

(cm3)/TIV-adjusted

volume (%)

Volume

asymmetry

percent (%)

Mean & 95% CI volume

(cm3)/TIV-adjusted

volume (%)

Volume

asymmetry

percent (%)

Right

hippocampus

Left

hippocampus

3,454 (3.355–3.554)

/0.2239 (0.2196–0.2283)

3,398 (3.300–3.496)

/0.2203 (0.2158–0.2248)

1.6 (0.5/2.7)** 2,578 (2.401–2.755)

/0.1743 (0.1603–0.1882)

§

3,386 (3204–3568)

/0.2289 (0.2134–0.2444)

–27.4

(−31.4/−23.5)

3,570 (3.404–3.737)

/0.2358 (0.2257–0.2459)

9

2,560 (2425–2696)

/0.1693 (0.1604–0.1783)

9

33 (28.2/37.7)

Right CA1

Left CA1

0.634 (0.611–0.657)

/0.0411 (0.0400–0.0421)

0.615 (0.594–0.636)

/0.0398 (0.0388–0.0408)

3 (1.2/4.8)* 0.483 (0.442–0.524)

/0.0326 (0.0296–0.0357)

§

0.636 (0.587–0.685)

/0.0428 (0.0397–0.0460)

–27.6

(−33.2/−22)

0.680 (0.645–0.715)

/0.0449 (0.0428–0.0471)

9

0.465 (0.435–0.494)

/0.0307 (0.0288–0.0326)

9

37.8

(33.1/42.6)

Right CA3

Left CA3

0.217 (0.208–0.225)

/0.0140 (0.0136–0.0145)

0.190 (0.183–0.197)

/0.0123 (0.0119–0.0127)

13.1 (10.3/16)* 0.157 (0.144–0.171)

/0.0106 (0.0097–0.0115)

§

0.194 (0.182–0.207)

/0.0132 (0.0121–0.0143)

–21.6

(−28.2/−15)

0.232 (0.218–0.246)

/0.0152 (0.0144–0.0161)

9

0.149 (0.139–0.159)

/0.0098 (0.0092–0.0104)

9

43.4

(37.7/49.1)

Right CA4

Left CA4

0.260 (0.252–0.268)

/0.0168 (0.0164–0.0172)

0.245 (0.237–0.252)

/0.0159 (0.0154–0.0163)

5.9 (4/7.8)* 0.182 (0.166–0.198)

/0.0123 (0.0111–0.0134)

§

0.248 (0.235–0.261)

/0.0168 (0.0155–0.0181)

–31.5

(−37.4/−25.6)

0.272 (0.258–0.287)

/0.0180 (0.0171–0.0188)

9

0.174 (0.162–0.186)

/0.0115 (0.0107–0.0123)

9

43.9

(37.1/50.7)

Right

presubiculum

Left

presubiculum

0.298 (0.288–0.307)

/0.0193 (0.0188–0.0198)

0.324 (0.313–0.335)

/0.0210 (0.0204–0.0215)

–8.3

(−10.1/−6.5)*

0.223 (0.207–0.239)

/0.0150 (0.0138–0.0163)

§

0.303 (0.285–0.320)

/0.0204 (0.0191–0.0218)

–30.6

(−36.6/−24.7)

0.293 (0.280–0.305)

/0.0194 (0.0185–0.0203)

0.243 (0.229–0.258)

/0.0161 (0.0151–0.0171)

9

19 (13.8/24.1)

Right subiculum

Left subiculum

0.429 (0.416–0.443)

/0.0278 (0.0272–0.0285)

0.432 (0.417–0.446)

/0.0280 (0.0273–0.0286)

–0.4

(−2.1/1.2)

0.325 (0.298–0.351)

/0.0219 (0.0200–0.0237)

§

0.436 (0.408–0.464)

/0.0294 (0.0273–0.0316)

–29.7

(−34.2/−25.3)

0.434 (0.414–0.453)

/0.0286 (0.0274–0.0299)

0.333 (0.316–0.350)

/0.0220 (0.0209–0.0232)

9

26.1

(21.4/30.8)

Right

parasubiculum

Left

parasubiculum

0.58 (0.56–0.61) /0.0038

(0.0036–0.0039)

0.61 (0.58–0.63) /0.0039

(0.0038–0.0041)

–3.9

(−7.6/−0.1)

0.47 (0.43–0.51) /0.0032

(0.0029–0.0035)

§

0.56 (0.52–0.61) /0.0038

(0.0035–0.0041)

–17.9

(−24.4/−11.4)

0.58 (0.55–0.62) /0.0039

(0.0036–0.0041)

0.52 (0.47–0.57) /0.0034

(0.0031–0.0037) §9

12.4 (5.1/19.8)

Right tail

Left tail

0.539 (0.519–0.558)

/0.0349 (0.0338–0.0360)

0.543 (0.525–0.562)

/0.0353 (0.0342–0.0363)

–0.9

(−3.4/1.4)

0.396 (0.366–0.426)

/0.0268 (0.0244–0.0292)

§

0.524 (0.483–0.565)

/0.0355 (0.0320–0.0390)

–27.6

(−31.3/23.8)

0.544 (0.513–0.575)

/0.0359 (0.0340–0.0378)

0.399 (0.376–0.423)

/0.0265 (0.0248–0.0282)

9

30 (25.4/35.5)

Right fissure

Left fissure

0.148 (0.142–0.154)

/0.0096 (0.0092–0.0100)

0.140 (0.133–0.146)

/0.0090 (0.0087–0.0094)

6 (2.6/9.3)* 0.140 (0.126–0.154)

/0.0094 (0.0085–0.0103)

0.142 (0.128–0.155)

/0.0096 (0.0086–0.0105)

–1.1

(−7.4/5.1)

0.152 (0.142–0.161)

/0.0100 (0.0095–0.0105)

0.139 (0.129–0.148)

/0.0091 (0.0086–0.0097)

8.9 (2/15.9)

Right molecular

layer

Left molecular

layer

0.573 (0.555–0.591)

/0.0371 (0.0363–0.0380)

0.560 (0.543–0.577)

/0.0363 (0.0355–0.0372)

2.2 (0.9/3.5)* 0.424 (0.392–0.456)

/0.0286 (0.0263–0.0310)

§

0.562 (0.531–0.593)

/0.0380 (0.0354–0.0406)

–28.4

(−33.1/−23.7)

0.596 (0.567–0.625)

/0.0393 (0.0375–0.0411)

9

0.419 (0.395–0.444)

/0.0277 (0.0261–0.0293)

9

34.8

(29.9/39.7)

Right

GC-ML-DG

Left GC-ML-DG

0.302 (0.293–0.312)

/0.0196 (0.0191–0.0201)

0.287 (0.277–0.296)

/0.0186 (0.0181–0.0191)

5.4 (3.7/7.1)* 0.213 (0.195–0.231)

/0.0144 (0.0130–0.0158)

§

0.288 (0.272–0.303)

/0.0195 (0.0180–0.0210)

–30.6

(−35.9/−25.2)

0.318 (0.301–0.335)

/0.0210 (0.0199–0.0220)

9

0.205 (0.192–0.219)

/0.0135 (0.0127–0.0144)

9

43 (36.6/49.5)

(Continued)
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TABLE 2 | Continued

Region HC n:61 Right HS n:22 Left HS n:35

Mean & 95% CI volume

(cm3)/TIV-adjusted

volume (%)

Volume

asymmetry

percent (%)

Mean & 95% CI volume

(cm3)/TIV-adjusted

volume (%)

Volume

asymmetry

percent (%)

Mean & 95% CI volume

(cm3)/TIV-adjusted

volume (%)

Volume

asymmetry

percent (%)

Right fimbria

Left fimbria

0.81 (0.75–0.86) /0.0052

(0.0049–0.0054)

0.81 (0.76–0.86) /0.0052

(0.0049–0.0055)

–0.2

(−5.2/4.6)

0.71 (0.63–0.79) /0.0048

(0.0041–0.0056)

0.77 (0.67–0.86) /0.0052

(0.0045–0.0059)

–7.2 (−15/.5) 0.75 (0.69–0.81) /0.0049

(0.0046–0.0053)

0.65 (0.60–0.71) /0.0043

(0.0039–0.0047)

9

14.2 (7.4/21)

Right HATA

Left HATA

0.59 (0.56–0.61) /0.0038

(0.0036–0.0039)

0.57 (0.54–0.59) /0.0036

(0.0035–0.0038)

3.4 (0.3/6.5) 0.52 (0.47–0.57) /0.0035

(0.0031–0.0039)

§§

0.57 (0.52–0.62) /0.0038

(0.0035–0.0042)

–8.4

(−17.2/.4)

0.63 (0.60–0.66) /0.0042

(0.0039–0.0044)

9

0.50 (0.47–0.53) /0.0033

(0.0031–0.0035)

99

23.8

(16.6/31.1)

Paired sample T-test; inter-hemispheric comparison in HC. *Significant after Bonferroni correction, **Uncorrected p < 0.05. Age- and sex-adjusted ANCOVA test between 3 groups;

Bonferroni corrected (p < 0.05). Significant after pairwise comparisons: § Between controls and left HS; 9 between controls and right HS. §§ With left HS. 99 With right HS. §9 Only

with HC.

Bold numbers are the mean values.

FIGURE 2 | ROC curves: sensitivity and specificity for classification between HC; right (A) and left (B) HS patients. Prediction is calculated for hippocampal volumes in

percent of TIV; expressed in cm3 and also using asymmetry differences for both methods. Best accuracy was obtained using asymmetry values; hippocampal volume

estimates from vB showed slightly better accuracy than FS.

Several methods provide quantification of brain structures
by using MRI data, including freely available softwares and
online processing services that usually report adjusted values
considering intracranial total volume, age, and sex as covariates.
Unfortunately, wide variability exists related to the employed
methodology that impairs appropriate comparisons of results
between different techniques. Results are usually matched against
a mixture of publicly available database of normal subjects
that may not entirely account for variation among populations.
Thus, absence of local references for normal and pathologic

hippocampus volumes may also be a challenge for non-
neuroimaging experts.

In this work, we report volumes of hippocampal structures
and subregions that are specific for two different methods,
evaluating patients from Latin America. The proposed reference
values are intended to clarify the results obtained using
two different methodologies, which are based on unequal
anatomical definitions, and therefore the resulting scores
cannot be directly used for cross-comparisons (see details
in Figure 1).
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TABLE 3 | ROC curve: reference values for highest sensitivity and specificity detection for right (A) and left (B) HS; using hippocampal volumes and asymmetry values

from both methods.

Right HS Ref. value Sens Spec-1 AUC Sig.

A

R_Hippo (vB) % 0.1399 1.000 0.010 0.993 0.000

R_Hippo (vB) Cm3 1,910 0.909 0.031 0.989 0.000

R_Hippo (FS) % 0.1977 0.818 0.063 0.914 0.000

R_Hippo (FS) Cm3 3,044 0.864 0.104 0.952 0.000

Hippocampal (vB) Asym −11.9 1.000 0.000 1.0 0.000

Hippocampal (FS) Asym −8.45 1.000 0.21 0.998 0.000

B

Left HS

L_Hippo (vB) % 0.1442 0.943 0.048 0.992 0.000

L_Hippo (vB) Cm3 1,855 0.943 0.036 0.966 0.000

L_Hippo (FS) % 0.1920 0.857 0.036 0.937 0.000

L_Hippo (FS) Cm3 2,950 0.800 0.084 0.934 0.000

Hippocampal (vB) Asym 23.4 1.000 0.000 1.0 0.000

Hippocampal (FS) Asym 9.25 0.971 0.012 0.977 0.000

We calculated mean volumes, confidence intervals, and cutoff
estimations to recognize a regional sample of patients with
confirmed unilateral mesial sclerosis and temporal lobe epilepsy
with high sensitivity and specificity. Hippocampal asymmetry
degree was themost accuratemeasure for classification regardless
of the volumetry method used, as previously reported by others
(3, 23, 31).

Our results are coincident with previous reports supporting
rightward asymmetry for whole hippocampal volume not only in
HC but also present in other animal species (73).

Interestingly, as recently reported (74), some hippocampal
subregion volumes in our study were leftward lateralized in HC
including the subiculum and pre-subiculum, the former based on
volBrain and the latter on FreeSurfer. This discrepancy probably
represents similar findings observed in overlapping areas related
to known differences in atlas definitions (75) (see Figure 1).

Contrary to previous findings (31), our results did not show
any significant correlation between hippocampus volume and its
subfields with clinical features of epilepsy.

Few studies had focused on assessing subregion atrophy
differences between HS sides based on imaging data. We found
specific volume reduction of CA2–CA3(vB) in right HS patients
with partial preservation in left HS patients. Future investigation
using adequate methodology and involving a greater number
of participants may confirm our findings. A distinctive pattern
of modifications can be expected from left and right HS which
are not usually considered on histopathology research, probably
supporting differences in functional abilities (76–80).

To our knowledge, only one published study directly
addressed asymmetry differences between hippocampal
subregions among left and right HS patients using FS v6.0 (81).
The authors found reduced contralateral volumes to the side of
HS for presubiculum, HATA, and TAIL subfields. Unfortunately,
information about known constitutional asymmetries present in

HC (74) that could influence the results as in our analysis is not
usually considered.

Another recent study used an approach similar to ours (but
based on manual segmentation) and found greater (rather than
reduced) volume of left subiculum (contrary to our findings) in
right HS participants (32). Additionally, the authors also showed
significant reduction of ipsilateral CA1 subfield compared against
any other subregion on the sclerotic side.

An interesting observation from our analysis is a trend to
find larger volumes on mesial–temporal structures contralateral
to the side of HS in patients compared with HC. Diverse
hippocampal subfields and also the hippocampus (FS) in the
right (non-lesional) hemisphere of left HS patients support
this assumption showing significant greater volumes compared
to the same regions in healthy controls (Table 2). We should
stress that in clinical practice the interpretation of hippocampal
volumetry alone may not adequately identify some confirmed
cases (∼10%) with compatible clinical and paraclinical findings
of HS which may only show subtle signal intensity changes on
T2/FLAIR images (5, 82). Furthermore, it is important to note
that a small group (∼20%) of confirmed temporal lobe epilepsy
patients without abnormal MRI finding will be postoperatively
classified as “Gliosis only” without hippocampal sclerosis based
on histopathology (83), showing no evidence of neuronal loss nor
hippocampal volume reduction.

Supplementary functional imaging examinations are
useful for diagnosis in temporal lobe epilepsy with HS
and unremarkable MRI findings that may preserve normal
hippocampal volumes. Interictal FDG-PET (2-[18F]-fluoro-2-
D-deoxyglucose positron emission tomography) is a relatively
widely available neuroimaging modality with high sensitivity
(∼80%) to disclose abnormal cortex hypo-metabolism in
temporal lobe epilepsy (84, 85). Importantly, about 20% of
patients with confirmed hippocampal sclerosis and normal MRI
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FIGURE 3 | Differences in hippocampal subregion atrophy; comparison of Z-scores between HS sides. Mean Z-score volume comparison between left and right HS;

obtained from vB (A) and from FS (B). *Significant for ANCOVA test between groups; Bonferroni corrected (p < 0.05) adjusted for age, sex, and epilepsy

characteristics. Whiskers represent 95% confidence interval.

will show temporal cortex anomalies with reduced 18-FDG
uptake (86, 87).

Although great progress has been made in recent years for
preoperative diagnosis of HS using non-invasive methods, a
considerable group of patients (20∼40%) will fail to achieve
complete seizure free after surgery (88, 89) following appropriate
medical practices in experienced epilepsy centers. A recognized
limitation of our study is the absence of histopathology

information about recent standardized ILAE classification for
HS subtype (ILAE HS I-III) (90) that could allow us to
correlate volumetry findings with specific subfield anomalies.
Nevertheless, some controversies remain concerning the role
of histopathologic classification for predicting clinical evolution
in HS patients and also regarding the feasibility of MRI-
histopathology correlations, limited by the amount of brain
sample available for examination. Additional benefits of MRI
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FIGURE 4 | Validation process; results from the RFC algorithm. (A) Random forest performance. The confusion matrices show the percentage of correct (colored) and

incorrect predictions for each class. The value was accumulated over the Monte Carlo cross validation (200-folds). (B) Progressive feature elimination. Random forest

(Continued)
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FIGURE 4 | mean accuracy over the Monte Carlo cross-validation (30-folds) as a function of the number of features used to train the model. The features are sorted

from most to the least important. The dashed lines show the optimal number of features for each classifier. (C) Feature importance for the 20 most important FS

metrics. The boxplots show the normalized random forest feature importance distribution over the Monte Carlo cross-validation (200-folds). The colored boxes are the

features which were selected by the progressive feature elimination procedure. The feature importance value was normalized with respect to the trivial importance

level 1/N, where N is the number of features—that means, at the trivial level all the features have the same importance. Whiskers represent 95% confidence interval;

small rhombuses indicate outliers.

volumetry include the ability to examine the entire length of the
sclerotic hippocampus and its contralateral homologous and also
to consider inherited asymmetries for comparison.

Another caveat of this study is its relatively small sample size
and also the uncertainty of segmentation accuracy of automated
methods, to quantify structures on atrophic hippocampus. Some
studies suggest that manual tracing methods may provide more
accurate volumetric measurement than automated segmentation,
especially in cases of HS (91, 92). However, validation results
from FreeSurfer v6.0 developers indicate that subfield volumes
still carry useful information, even when T1 images usually
display limited contrast on the internal subregion boundaries
(75). Equivalent methodology was also successfully implemented
in previous studies on cognitive function and epilepsy (3, 4, 22,
23, 91, 93) with satisfactory results.

Contrary to previous observations supporting a fundamental
role for cortical mesial–temporal regions, our machine learning-
based validation process using an automatic algorithm failed
to identify non-hippocampal structures such as the thalamus,
temporal pole, fornix, or mammillary bodies as relevant for
group classification. It shall be stressed that the abovementioned
structures and others known to be involved in HS patients
could falsely not been recognized as important due to a superior
performance of hippocampal and subregion metrics in a trade-
off between accuracy and number of analyzed features. Moreover,
non-hippocampal anomalies preferentially involve white matter
tracts (94, 95) and are usually related to prolonged epilepsy
duration or high seizure frequency not considered in our
validation process.

In conclusion, hippocampal anatomical structures are the
most relevant features to recognize HS patients as confirmed by
an automatic classification based on RFC. The local reference
values proposed for hippocampal volumes and subfields may
prove a useful guide for diagnosis in adult patients with
temporal lobe epilepsy and suspected HS particularly for non-
specialized radiologists.

Providing normal hippocampal reference values are a
significant contribution to future studies focusing on regional
morphometric variations in Latin America.

Finally, our results are also important for the interpretation
of studies reporting hippocampal subfield volumes based on

different atlas, which may show noticeable differences even when
the same anatomical labels are used (96–98).
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Group analysis in diffusion tensor imaging is challenging. Comparisons of tensor
morphology across groups have typically been performed on scalar measures of
diffusivity, such as fractional anisotropy (FA), disregarding the complex three-dimensional
morphologies of diffusion tensors. Scalar measures consider only the magnitude of the
diffusion but not directions. In the present study, we have introduced a new approach
based on directional statistics to use directional information of diffusion tensors in
statistical group analysis based on Bingham distribution. We have investigated different
directional statistical models to find the best fit. During the experiments, we confirmed
that carrying out directional statistical analysis along the tract is much more effective
than voxel- or skeleton-guided directional statistics. Hence, we propose a new method
called tract profiling and directional statistics (TPDS) applicable to fiber bundles. As a
case study, the method has been applied to identify connectivity differences of patients
with major depressive disorder. The results obtained with the directional statistic-based
analysis are consistent with those of NBS, but additionally, we found significant changes
in the right hemisphere striatum, ACC, and prefrontal, parietal, temporal, and occipital
connections as well as left hemispheric differences in the limbic areas such as the
thalamus, amygdala, and hippocampus. The results are also evaluated with respect
to fiber lengths. Comparison with the output of the network-based statistical toolbox
indicated that the benefit of the proposed method becomes much more distinctive as
the tract length increases. The likelihood of finding clusters of voxels that differ in long
tracts is higher in TPDS, while that relationship is not clearly established in NBS.

Keywords: diffusion tensor imaging, directional statistic, group analysis, tract profile, major depression

INTRODUCTION

Diffusion tensor imaging (DTI) can reveal complicated structural differences in patient groups by
using the orientation and integrity of white matter tracts to identify white matter abnormalities. The
diffusion tensor is the covariance matrix of diffusion coefficients calculated from gradient directions
for each voxel. Although DTI is by nature a nonscalar image which provides directional information
for the neural tracts, group-based DTI analyses are mainly conducted using scalar descriptors such
as fractional anisotropy (FA) (Basser, 1995), relative anisotropy (RA) (Basser and Pierpaoli, 2011),
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axial diffusivity (AD), and radial diffusivity (RD) (Song et al.,
2002). Such scalar metrics do not describe the full tensor shape
or distribution and do not capture all of the information available
in the data. By developing advanced metrics for connectivity
analysis between groups of subjects in a nonscalar fashion,
findings regarding abnormalities can be improved.

The principal diffusion direction (PDD), which is the
eigenvector that corresponds to the largest eigenvalue of the
tensor, captures the estimation of the fiber direction within the
voxel. PDD has been used mainly in directionally encoded color
(DEC) maps (Pajevic and Pierpaoli, 1999) which facilitate visual
comparison but not quantitative group analysis. In order to
evaluate PDD, which is a vector, statistical methods that analyze
vector and tensor data are needed.

Directional statistics is conducted on vectors and directions
based on observations on compact Riemannian manifolds
(Pennec, 2006). Hence, it can encapsulate much more
information than scalar metrics about the diffusion. Without the
limitation of scalar statistics, one can evaluate dispersion and
coherence values among the populations, fit directional model to
the data, and perform hypothesis testing for group-based studies.

In the literature, directional statistics have been used to
characterize fiber orientation distribution functions, to estimate
fiber dispersion quantitatively via fanning and bending fiber
geometries throughout the brain (Sotiropoulos et al., 2012; Tariq
et al., 2016). In addition, directional statistics have also been
utilized to extract bundle-specific metrics from crossing fiber
models (Riffert et al., 2014) and fiber tractography (Parker et al.,
2003). However, Watson distribution, which has been used in
previous directional statistics in group analysis, contains limited
parameters (Schwartzman et al., 2005; Hutchinson et al., 2012).
Watson distribution is a bimodal probability distribution on
a two-dimensional unit sphere S2 in R3 which is symmetrical
around mean direction, where each direction and its negative
have the same probability. In our previous study (Metin and
Gökçay, 2014), it has been shown that Bingham distribution
better fits into PDD distributions for white matter tracts
and improves the depiction of variability among subjects in
anisotropic tensors areas, such as fiber crossings. This is because
Bingham distribution is a generalization of Watson distribution:
it is bimodal and elliptic around mean direction.

Group analysis methods on DTI or DWI data can be classified
into three: (1) region of interest (ROI)-based methods, (2) voxel-
based analysis, and (3) fiber tract-based analysis. ROI-based
methods are very labor intensive plus error-prone. On the other
hand, voxel-wise comparison is open to misalignment of voxels
because during registration of individual subject’s data to a
common space, topological variabilities may not be thoroughly
resolved (Jones and Cercignani, 2010) for each fine structure.
The amount of smoothing can greatly affect the final results, but
there is no principled way of deciding how much smoothing is
“correct” (Jones et al., 2005). For instance, tract-based spatial
statistics (TBSS) tackles the alignment and smoothing problem
for voxel-wise statistics by combining strengths of VBM-style
analyses and tractography-based approaches (Smith et al., 2006).
In short, analyses that involve fiber tracts are contingent upon
computation of quantitative parameters of interest along the

tracts (Goodlett et al., 2009) within diffusion tensor images.
The properties of the fiber tract can be scalar values derived
from tensors such as MD, FA, or trace, as well as shape
information such as curvature and torsion of the specific tract
(Mandl et al., 2010).

In this study, we propose a new tract-based framework using
directional information in diffusion tensors to improve statistical
group analysis, named as track profiling and directional statistics
(TPDS). For this purpose, we have (1) generated a new data
structure called tract profile by clustering fibers across subjects
and (2) developed a method based on directional statistics to
compare white matter (WM) differences of different groups
across each tract profile. Overall, this new DTI group analysis
method is called TPDS.

In order to demonstrate the superiority of the proposed
framework, we compared the tract profiling method with two
widely used techniques: TBSS (Smith et al., 2006) and voxel-
based analysis (VBA) (Hecke et al., 2009). Furthermore, we
ran a third comparison with the network-based statistic (NBS)
toolbox (Zalesky et al., 2010) which utilizes nonparametric
statistical testing to identify the components of an N × N
undirected connectivity matrix that differ significantly between
two distinct populations.

As a proof of concept, we demonstrated the strength of TPDS
in the identification of differences of structural connectivity
in major depressive disorder in a small data set (n = 30).
Although depression has traditionally been viewed as an affective
disorder, the last few decades of research have shown that MDD
is also associated with considerable disturbances in cognitive
functioning, including executive functions, attention, memory,
and psychomotor speed (Castaneda et al., 2008; McClintock et al.,
2010). In MDD, multidimensional, systems-level differences
are reported in discrete, but functionally integrated pathways
(Mayberg, 2003). Therefore, differences in MDD can be expected
to cover a wide range of WM tracts. So far, especially white matter
disturbances and connectivity differences have been analyzed
using DTI-based analysis in MDD (Seminowicz et al., 2004; Zou
et al., 2008; Cullen et al., 2010; Kieseppä et al., 2010; McClintock
et al., 2010; Helm et al., 2018). Most of these studies state that loss
of integrity occurs in the WM fiber tracts of the frontal, temporal,
and cingulate cortex of MDD patients. White matter integrity
can be described as biophysical white matter changes as a result
of microstructural characteristic in both intra- and extra-axonal
environments of WM such as axonal water fraction (AWF), intra-
axonal diffusivity, and extra-axonal axial and radial diffusivities.
More specifically, reported abnormalities in the connectivity
of the DLPFC and ACC circuits (Helm et al., 2018), as well
as subcortical regions, complement other findings specified in
affective disorders (Sexton et al., 2009).

MATERIALS AND METHODS

Data Acquisition
In order to demonstrate the benefits of TPDS, we used T1-
weighted, T2-weighted, and DTI MR data obtained from healthy
subjects and patients with MDD.
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Subjects
The control group consisted of 14 healthy subjects (8 female and 6
male) with age 31.71 ± 7.62, who had no history of neurological
disease and also are not taking any medication. The depression
group consisted of medication-naïve 16 subjects (8 female and 8
male, age: 31.12± 8.95)1. The data was collected as part of a local
institutional project funded by METU (BAP-07-04-2012). Project
management and subject recruitment were handled by a larger
project2 for which the results will be published elsewhere.

MRI Parameters
Whole-brain MRI scans were collected using the Siemens
MAGNETOM 3 T scanner situated at the Bilkent University
UMRAM center. T1-weighted [repetition (TR): 2,500 ms, echo
time (TE): 3 ms, inversion time (TI): 1,000 ms, flip angle (FA):
8◦, sagittal plane 1 mm isotropic resolution], T2-weighted (TR:
5,900 ms, TE: 108 ms, FA: 120◦, spacing: 2.2, slice thickness
2 mm), and DWII scans (TR: 8,270 ms, TE: 83 ms, FA: 90◦,
spacing: 2.2, seven images with b-factor = 0 s/mm2, 45 directions
b-factor = 700 s/mm2) are collected from the participants in
a single session.

Data Processing
Pre Processing
We have implemented a fully automated pipeline to perform
preprocessing as illustrated in Figure 1. The overall pipeline
has been designed using the Connectome Mapper (Daducci
et al., 2012). At the individual subject level, preprocessing steps
are performed using several software toolkits. The first step
is intrasubject registration of T1, T2, and DWI images using
FSL’s FLIRT as described in Jenkinson and Smith (2001) and
Jenkinson et al. (2012). The registration is first done between
the T2-weighted image and DWI B0 images, and then the high-
resolution T1-weighted image is registered to the T2-weighted
image. To eliminate the problem of transforming diffusion
tensors, all of the images are registered to the DWI B0 image. This
way, all image operations are performed on the diffusion image.

1TUBITAK 1001, no: 109E081, Ethical board approval: Ankara University Medical
College.
2A black point is called a border point if it is six-adjacent to at least one white point.
A black point is called an end point if it has exactly one black 26-neighbor. Black
point p is simple in (Z3, 26, 6, B) if and only if all the following conditions hold
(Palágyi et al., 2001):

(1) The set N26
(
p
)
∩ (B\

{
p
}
) is not empty (p is not an isolated point).

(2) The set N26
(
p
)
∩ (B\

{
p
}
). is 26-ected

(3) The set
(
Z3
\B
)
∩ N6

(
p
)

is not empty (p is a border point).
(4) The set

(
Z3
\B
)
∩ N6

(
p
)

is six-connected in the set
(
Z3
\B
)
∩N18

(
p
)
.

For segmentation and parcellation of ROIs, FreeSurfer (Fischl
et al., 2002) has been used. These steps transform the subject’s
MRI to uniform space and segment white and gray matter as
well as cortical and subcortical structures based on the underlying
atlas. The parcellation algorithm (Fischl et al., 2004) reveals 83
distinct cortical and subcortical structures of the brain using the
Desikan–Killiany atlas (Desikan et al., 2006). All of these steps
constitute the top row of Figure 1.

DTI processing begins with motion and eddy current artifact
correction in FSL. Tensor estimation is done by Diffusion Toolkit
(DTK) (Wang et al., 2007). For tractography (Parker et al., 2003;
Cook et al., 2005), streamline fiber-tracking algorithm in Camino
has been used. Each voxel in the parcellated image is selected
as seeds. Eighty-three distinct cortical and subcortical areas are
masked, and the generated binary image is used as the seed file
of the algorithm for particular ROIs. For tracking, the fourth-
order Runge–Kutta method has been chosen to propagate the
tracks using a constant step size. Nearest-neighbor interpolation
is applied around local voxel data. A minimum length criterion,
10 mm, is enforced to eliminate premature tract termination due
to low SNR and low pathway anisotropy (Behrman-Lay et al.,
2015). Each fiber bundle is pruned so that it only contains fibers
connecting relevant regions. The number of streamlines depends
on the size of the ROI. No additional elimination technique
has been applied other than minimum length. These steps are
illustrated in the second row of Figure 1.

Using the Connectome Mapper (Daducci et al., 2012), a
connection matrix is generated to calculate the connectivity of
the areas via the fiber tracts obtained in the first and second
rows of Figure 1. After this step, the fiber tracts that connect
corresponding brain areas will be bundled to construct relevant
fiber bundles. In order to perform group analysis, one last step
is necessary: the corresponding bundles of all subjects must
be aligned. Therefore, both control and patient images are
registered to the ICBM DTI-81 atlas using affine registration. The
transformation obtained during this registration is applied to the
fiber bundles as seen in the last row of Figure 1.

Tract Profiling
Tract profiles are cross sections of the fiber tracts that connect
the ROIs specified by the connection matrix generated in
preprocessing. For the connections in each ROI pair, a fiber
bundle is formed based on the intersections of cross-sectional
areas of all subjects’ DWI. Then, the medial line of the fiber
bundle is computed. Finally, a cross-sectional profile is generated
along the medial line so that the distribution of PDDs along each
cross section is aggregated separately for each subject group.

FIGURE 1 | Components of the pre-processing pipeline before TPDS is performed.
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Overlapping Fiber Calculation
Overlapping fibers/voxels are calculated across all of the subjects.
This is done for each fiber bundle by calculating its maximum
overlap. During this process, some specific bundles might be left
out as outliers. In Figure 2, the overlapping fiber bundle is shown
between the two ROIs: thalamus (green) and rostral anterior
cingulate (purple). The bundles shown with the yellow, cyan,
green, and red colors are marked as outliers and left out of the
overlapping area.

The voxel image can be represented as image P where P =
(Z3, m, n, B) (Kong and Rosenfeld, 1989). Each element in Z3

is called a point of P and each point in B ⊆ Z3 is called a black
point and assigned 1. Each point in Z3

\B is called a white point
and assigned 0. m holds black points and n holds white points.

In order to be used in multisubject analysis, adaptation of this
definition can be made as follows. For given ROI pairs (i,j), letP0,
P1, . . . , PK be a set where K is the number of subjects, and Pk is
the fiber bundle image from subject k. A point in P is assigned as
black point if and only if it is also black point for all sets in P0,
P1, . . . , PK for a given ROI(i,j).

Medial Line Generation
The skeleton of the overlapping bundles is calculated. The curve
skeleton is a one-dimensional set which runs through the center
of the overlapping bundles in such a way that it preserves
the topological properties of the overlapping area. Connectivity
conditions are defined as follows. The sequence of points (x0, x1,
. . . , xn) is a j-path of length n ≥ 0 from the point x0 to point xn
in a nonempty set of points X if each point of the sequence is in
X and xi is j-adjacent to xi − 1 for each 1 ≤ i ≤ n. The adjacency
can be defined as Nj(p) the set of points j-adjacent, to the point p,
where j = 6, 18, 26. Connectivity can be defined as j-connected if
there is a j-path between them in X.

In order to construct the aforementioned skeleton, first of
all, curve thinning (Blum, 1967; Kong and Rosenfeld, 1989) is
used on P. The medial line of the fiber bundles was generated
as depicted in Palágyi et al. (2001). As such, in each iteration,
border points of P were deleted until no more deletion was
possible. The algorithm is implemented as sequential iterations
where each step checks for six subroutines for each of the six-
directions that are immediate neighbors of a black point in P.
In each iteration, border points are deleted upon satisfying a
condition called simple point condition2. In this way, the object

FIGURE 2 | Tract profiling: Generation of an overlapping tract bundle between
two ROIs (shown by green and blue) for all of the subjects regardless of the
groups.

is shrunk uniformly in each direction. The operation is continued
until no more shrinking is possible for each direction. By adding
connectivity conditions, the skeleton ends up with the medial line
in the near center of the object. In Figure 2, the example medial
line for the fiber bundle is shown with dark blue.

Finally, the resulting medial line is smoothed by generating
a b-spline representation as follows. In order to generate
b-spline representation of the medial line, the voxel coordinates
on the medial line are represented as data points {Pk} , k ∈
MedialLine . A b-spline curve that fits the data is parameterized

by t ∈ [0, 1], where X (t) =
n∑

i=0
Ui,d(t)Qi, the control points Qi

are unknown quantities that have been evaluated using the least-
squares fitting method described below:

For n control points Q̂ =


Q0
Q1
...

Qn

, and m sample points P̂ =


P0
P1
...

Pm

, the least-square error function between the b-spline

curve and the sample points is the scalar valued function:

E(Q̂) =
1
2

m∑
k=0

∣∣∣∣∣∣
n∑

j=0

Uj,d (tk) Qj − P

∣∣∣∣∣∣
2

To minimize the error function, E, where it is quadratic in the
components of Q̂, it is a graph of a paraboloid, so it has global
minimum that can be found when all its first-order derivatives
are 0. The first-order partial derivatives can be written as control
points, Qi

∂E
∂Qi
=

m∑
k=0

 n∑
j=0

Uj,d (tk) Qj − Pk

Uj,d (tk)

∂E
∂Qi
=

m∑
k=0

n∑
j=0

Ui,d (tk) Uj,d (tk) Qj −

m∑
k=0

Ui,d (tk) Pk

FIGURE 3 | Tract profiling: Representation of the medial line of the
overlapping bundle with b-splines and generation tract profiles.
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It can be written as
m∑

k=0

n∑
j=0

ak,iak,jQj −
m∑

k=0
ak,iPk, where ak,i =

Uk,d(tk) for 0 ≤ i ≤ n, by setting the partial derivatives to zero
vector, and it leads to the system of equations:

0 =
m∑

k=0

n∑
j=0

ak,iak,jQj −

m∑
k=0

ak,iPk = ATAQ̂− AT P̂

Where A = [arc] is a matrix with m + 1 rows and n + 1 columns.

Q̂ = (ATA)−1AT P̂ =
[
(ATA)−1AT

]
P̂ = XP̂

Since A is tridiagonal where it has a contiguous set of upper bands
and lower bands, the equation can be solved with the Cholesky
decomposition and the vector of control points Q̂ can be found.

Since derivative of spline is 1 less order of yet another
b-spline where new control points are defined as Qi =

p
ui+1+1−ui+1

(Pi+1 − Pi) from the surface tangent, a normal vector has been
computed and cross-sectional areas have been extracted.

Calculation of Tract Cross Sections
The skeleton is sliced with 2-mm regular intervals so that cross-
sectional areas that are perpendicular to the b-spline are obtained
using normal vectors computed from the surface tangents in
Figure 3. For each voxel in P that intersects with these cross-
sectional areas, PDDs that represent individual subjects are added
as tract profiles representing that slice. Hence, for a tract with
J slices, there are J tract profiles that contain PDDs which are
representative of the subject group. An example tract profile (i.e.,
a slice with PDDs) from a single subject is shown in Figure 4.
The PDDs from the subjects for a specific group are aggregated
as follows. At each slice, there are fixed number of voxels, and
at each voxel, there can be multiple PDDs, each coming from a
different subject, depending on whether the subject’s tract goes
through that voxel or not.

Directional Statistics
Statistical analysis is executed exclusively on areas that are defined
by tract profiles eliminates voxel-wise comparison. Hence,
misalignment problems no longer exist. Hypothesis testing is
conducted only at cross-sectional tract profiles that are separated
by 2-mm regular intervals. For the set of PDDs embodied in
each tract profile j, a parametric directional statistic distribution
is fitted. Through such parametrization, the PDDs of all subjects
that fit into the tract profile j are projected onto a sphere.

Watson distribution in Figure 5 is bimodal and symmetrical
around mean direction. Watson distribution assumes that
diametrically opposite points have the same probability. Also,
the probability density function of axial distributions process
antipodal symmetry [i.e., f (−l,−m,−n) = g(l,m,n)]. The
probability distribution of random vectors that belong to the
Watson’s family is spherical on a sphere. Directional statistics
have been used in the analysis of DTI previously (Schwartzman
et al., 2005; Hutchinson et al., 2012), and it has been shown that
DTI principal direction analysis using directional statistics can
better identify the differences in anatomic structure between
populations compared with statistical tests of scalar values such

as FA. Both of these studies used Watson distribution to analyze
principal directions. On the other hand, Bingham distribution
(Figure 6) is bimodal and elliptical (Fisher et al., 1993; Cheng
et al., 2014). Bingham distribution is free from symmetrical
constrains; hence, it provides more advanced distribution fitting
options in comparison with Watson distribution.

Watson distribution is defined as follows (Mardia and Jupp,
1999):

Watson Distribution Wp (x;µ, κ) = cp (κ) eκ
(
µT x

)2
;

cp (κ) =
0
( p

2
)

2πp/2M
( 1

2 ,
p
2 , κ

)
where x is the unit random vector, µ is the mean vector, is the
concentration value, M is Kummer’s confluent hypergeometric
function, 0 is a gamma function, and p is the dimension of the
distribution. To estimate maximum likelihood of this function,
we take logarithm. Hence, the log-likelihood function is

l (µ, κ± x1, . . . ,±xn) = κ

n∑
i=1

(
xT

i µ
)2
− nlog M

(
1
2
,

p
2
, κ

)

= n
{
κµT T̄µ− logM

(
1
2
,

p
2
, κ

)}
where T̄ is the scatter matrix of the given data. Differentiation
with respect to κ gives

Dp (κ) = µ̂T T̄µ̂; for p = 3;=
M(1.5, 3.5, κ)

3∗M(0.5, 1.5, κ)
.

And to find its maximum likelihood estimate, we need a
derivative of Dp (κ) for p = 3

D
′

3 =
M (2.5, 3.5, κ)

5M (0.5, 1.5, κ)
−

1
9
∗

(
M(1.5, 2.5, κ)

M(0.5, 1.5, κ)

)2
.

The Newton–Raphson method can be used tfind maximum
values for Dp (κ) and the biggest eigenvalue of scatter matrix, t1,
for a bipolar distribution or t3 for a girdle distribution.

Bingham distribution is defined as a trivariatnormal
distribution on a unit sphere. Different from Watson
distribution, it has three orthogonal directions as µ1, µ2,
µ3 and concentration values (κn) for each orientation vector
(Watson and Williams, 1956).

Concentration values define the dispersion of the distribution,
where

(1) κ1 = κ2 = 0 results in a spherical distribution of axes.
(2) κ1 = κ2 � 0 results in a symmetric bipolar distribution.
(3) κ1 < κ2 � 0 results in an asymmetric

bipolar distribution.
(4) κ1 � κ2 < 0 results in an asymmetric girdle distribution.
(5) If κ1 � 0 and κ2 = 0, then Watson distribution is

obtained.
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The probability distribution function of Bingham distribution
is defined as follows (Bingham, 1974):

Bingham Distribution Bp (x;K) = cp (K) exT Kx
;

cp (K) =
0
( p

2
)

2πp/2F
( 1

2 ,
p
2 , K

)
where x is the unit random vector, K is the 3 × 3 orthogonal
orientation matrix with concentration values, F denotes the
confluent hypergeometric function of matrix argument, 0 is the
gamma function, and p is the dimension of the distribution. For a
given random sample ±x1, . . . ,±xn, the log-likelihood function
can be written as:

l (K;±x1, . . . ,±xn) = n
{

log tr
(
AT̄
)
− logF(

1
2
,

p
2
, K)

}

FIGURE 4 | Tract profiling: Illustration of the PDDs from a single subject in a
sample tract profile.

We can write K and T̄ in polar form as = UKUT ,
T̄ = VtVT with U and V being orthogonal. K =
diag(κ1, . . . , κp) and t = (t̄1, . . . , t̄p), where κ1 ≥ . . . ≥ κp and
t̄1 ≥ . . . ≥ t̄p. As suggested by Bingham himself, the following
approximations can be used.

For the bipolar case:

d = t̄2 − t̄3, s = t̄1 + t̄2, κ0 = −D−1
3 (t̄1)

κ1 ≈ 0, κ2 ≈ κ0 + δ, κ3 = κ0 − δ

For the girdle case:

d = t̄1 − t̄2, s = t̄1 + t̄2, κ0 = −D−1
3 (t̄3)

κ1 ≈ 0, κ2 = −2δ, κ3 = κ0 − δ

where δ = 2dκ0
s(κ0−1.5)+1

After parametric representation through either Watson or
Bingham distribution, two group of subjects can be compared
by using an eclipse of confidence defined by the p value. For
fitting a single group’s data, the mean direction vector of the
group is computed. If it lies inside the eclipse of confidence of the
targeted distribution, then the null hypothesis is likely, justifying
a reasonable fit to the associated directional distribution. On
the other hand, if the confidence ellipse around the mean
direction does not overlap for a given confidence level, then
the null hypothesis is unlikely, rejecting the fit. For two groups,
the case with different means is indicated by separated cones
of confidence, which in turn indicates significant differences.
On the other hand, overlapping cones of confidence indicate
insignificant differences, hence acceptance of the null hypothesis.

FIGURE 5 | Watson Distribution.
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An example distribution is provided in Figure 7, for two groups
of subjects, for representation with the Bingham distribution.

Details of the eclipse of confidence can be given as follows.
The maximum likelihood estimates of concentration parameters
κ1, κ2 can be obtained from maximizing the log-likelihood
function, where wn are the eigenvalues of the principal
eigenvector of the orientation matrix:

F = −Nlog (4π)− N logd ( κ1, κ2)+ κ1w1κ2w2

Maximum likelihood estimators of κ1, κ2 in the Bingham
distribution for given eigenvalues w1,w2 can be estimated as
calculated by Mardia and Zemroch (1977).

The confidence ellipse around the mean direction within the
specified percentage (%) of the estimated concentration values of
distribution as

emn
% =

√√√√[ X2
%

2N(1mn)

]
for1mn = (κm − κn)(wm − wn)andX2

%

is the chi-squared value for two degrees of freedom and % is p
value for confidence interval.

For p = 0.01 and having κ3 = 0 (Fisher et al., 1993) ends up with
the semi-axes of the confidence eclipse about the mean direction
associated with w3 as below:

e32 = −1.517
1

k2N(w3 − w2)
ande31 = −1.517

1
k1N(w3 − w1)

Performance Analysis
We have conducted two performance tests to analyze the
effectiveness of the proposed method. First, we have analyzed the
models generated by TPDS in comparison with VBA and TBSS.
Hereby, we have adapted directional statistics to TPDS, TBSS, and
VBA to compare their overall efficiency in representing vector-
based statistical models. This test aimed to show the efficiency
of tract profiling over voxel-based and skeleton-based analysis.
Second, we have applied the full TPDS algorithm to the two
subject populations (i.e., MDD versus healthy controls) and
compared the results with NBS. This test aimed to show the
efficiency of combining tract profiles with directional statistics
over conventional methods. In this test, the effects of fiber length
in estimating group differences were also evaluated.

Analysis of the Strengths of VBA, TBSS, and TPDS in
Tract Modeling
In this test, we used a single group (i.e., healthy subjects). The
statistics were derived using three different methods, VBA, TBSS,
and TPDS, only on white matter areas—not using GM ROIs.
As seen in Figure 8, the white matter areas that have been
segmented using FreeSurfer are mapped to ICBM DTI-81 atlas
(Mori et al., 2008) to allow for intersubject data aggregation. For
VBA analysis, the atlas-based white matter areas are overlayed
for all subjects for further processing. For TPDS analysis, tract
profiles are generated from the atlas mappings of all subjects. In
TBSS, before performing atlas mapping, skelotonized areas are

generated from individual subject tracts. The rest of the data
processing pipeline is the same for all three methods. At the
first step, for each WM ROI, based on which method is used
for defining the tract, PDDs are generated. Then these PDDs are
parametrically modeled by two separate directional distributions,
namely Bingham and Watson. Finally, in the last step, several
PDDs are generated to represent the entire group using the newly
developed parametrical models, and goodness of fit is computed
to evaluate how good the chosen model is.

PDD Generation
For each subject, primary diffusion directions are extracted
for each voxel inside the given WM area using the primary
eigenvector of the diffusion tensor. The WM area differs based
on the chosen representation. In VBA, the WM area is extracted
based on segmentation of the specific WM ROI. In TBSS, it is
based on the skeleton of the tract in the WM ROI. In TPDS, it is
embodied within each tract profile that composes the entire tract
in the WM ROI. Aggregated data from all subjects compose the
data to be fitted for each WM area.

Distribution Fitting
Watson and Bingham distributions were fitted to model each
tract using the maximum likelihood method. For each tract, the
parameters of the theoretical model were estimated from the pdf
at hand. Then this theoretical probability density function was
evaluated iteratively using synthetic random vector data for a
total of 700 vectors that were almost uniformly distributed along
a sphere. Finally, the difference between the estimated pdf and the
random pdf is tested for null hypothesis.

Goodness of Fit Testing
Pearson’s chi-square tests have been used for goodness of fit tests
to evaluate whether the observed frequency distribution differs
from the theoretical distribution. Comparison of distributions is
done using ANOVA and the chi-square test statistics was also
used for each ROI.

In order to apply Pearson’s chi-square tests to check whether
the observed frequency distribution differs from a theoretical
distribution, the following steps are applied on the original data
and synthetic random vector data and the respective models.

(1) For Watson distribution, the sample mean direction, R̄, has
been evaluated as a regular vector sum of the vectors under
a population of vectors. The mean direction is a unit vector
that is in the same direction with R: x̄ =

∑
i xi
R , ȳ =

∑
i yi

R ,

z̄ =
∑

i zi R .
(2) For Bingham distribution, the axis of moment of inertia

of sample, t̄, has been evaluated using the scatter
matrix of distribution S. For the bipolar case, it is
the biggest eigenvector, and for girdle case, it is the
smallest eigenvector.

(3) The transformations θ̄, φ̄ have been evaluated in order to
shift either R̄ or t̄. to positive z-axis.

(4) The transformation has been applied to original
and synthetic data.
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(5) The angle θ has been calculated as the angle between the
positive x-axis and the projected vector on the x–y plane:
0 < θ < 2π .

(6) The observed frequencies and the excted frequencies were
θ1 < θ < θ2, where the number frequency bins is 50 and
θ2 – θ1 ≈ 7.2o.

Analysis of the Group Difference Maps Generated by
NBS and TPDS
In this part, the proposed framework will be applied to test for
differences of fiber tract profiles between MDD patients and
control subjects. Based on the same fiber tracts and connectivity
matrix for healthy volunteers, comparisons will be made with
the results of the network-based statistics. For this purpose, we
used the 83× 83 connectivity matrix generated at the end of data
preprocessing by the Connectome Mapper (Figure 1).

In NBS, for each group, each pairwise association (i,j) between
ROI i and ROI j is treated separately. First, Fisher’s r-to-z
transform has been applied to ensure normality. Then, the test
statistic of interest—which is the normalized number of fiber
bundles—is compared between the groups using t-statistic. In
order to correct for multiple comparisons, permutation testing
was used to select the p value controlled for the FWE for each
connected component. For each permutation, the same threshold
is applied to define a set of suprathreshold links of connected
components. Suprathreshold and the number of permutations
were set according to the default parameter settings of NBS with
corrected p < 0.005.

In TPDS, the following procedure is repeated for each possible
connection between distinct ROI pairs (i.e., 83 × 83 times
divided by 2). Tract profiles between each ROI i and ROI j
are extracted for the healthy and MDD groups. Then for each
slice in the tract profiles, significance is tested with a threshold
value of p < 0.005. If there are n contiguous slices that satisfy
this, it is indicated that the connection between ROIs i and j is
significantly different between the control and patient groups. It
is possible that there are multiple clusters of n contiguous slices
that satisfy this condition. In order to reflect this information, we
prepared a new 83 × 83 connectivity matrix, which contained
the number of significantly different clusters between the two
groups that are compared. Therefore, the difference map that is
achieved through TPDS reflects a weighted graph, weight being
the number of significantly different clusters between the two
groups for that particular i to j connection. The more the number
of significantly different n contiguous slices, the more the weight
of the difference map.

Selection of n must be done according to a criterion related
to the plausible tract lengths. In order to eliminate premature
tract termination that result from low SNR and low pathway
anisotropy (Behrman-Lay et al., 2015), 10 mm is the shortest
tract length to be considered. Since DTI image has 2.2 mm
spacing, choosing n as 4 satisfies this constraint. In other words,
at least four consecutive cross-sectional areas must be found
within a fiber bundle where the PDD of each cross-sectional area
belongs to significantly different Bingham distributions for the
control and MDD groups.

RESULTS

The results of the performance tests that we performed to
investigate the effectiveness of TPDS are as follows.

Comparison of VBA and TBSS With
TPDS Using Directional Statistics
As can be seen in Table 1, among VBA, TBSS, and TPDS, the
best fitted distribution is more representative in TPDS because
the goodness of fit scores are better according to p values. In
addition, based on the results of TPDS, the Bingham distribution
is reported to be more favorable than the Watson distribution
because only 2 out of 48 white matter tracts are represented
better with Watson. Obviously, it is evident that TPDS is a
better alternative to represent tracts in comparison with VBA and
TBSS, because it favors a more parametrical fit to the entire set
of fiber tracts.

A close inspection of Table 1 reveals that in terms of
representing a given WM tract parametrically, TBSS is superior
to VBA, and TPDS is superior to TBSS. It is evident that VBA
contains more noise than TBSS and TPDS, because it contains
the entire WM area from all subjects. Due to high noise, VBA fails
to represent some of the tracts parametrically. On the other hand,
TBSS is better than VBA, because it removes the areas—hence the
noise associated in these parts—that lie outside the fiber bundles
which constitute the skeleton. However, TBSS is not better than
TPDS, because it smooths out the tracts while forming the
skeleton and loses specificity. Overall, the tract profiles computed
in TPDS are selective in choosing representative samples of the
DWIs that are more informative, because outliers are removed
while computing the medial line. Since the data points all belong
to the same tract and on the same cross section over the medial
line, very similar diffusion properties are expected for each
analysis point. This tends to eliminate all negative effects of
misalignment of images and partial volume effect. Due to this
property, the computational effectiveness of TPDS is higher than
other methods, because the model can be decided with much less
number of data points.

The advantage of the Bingham distribution might be explained
through the ease of fitting a girdle distribution in comparison
with fitting a homogeneous mean direction distribution. The
girdle distribution allows for more parameters; hence, it
makes the development of a more general model possible.
Furthermore, the computational accuracy of the Bingham
distribution is better because the tracts represented with this
distribution fit to the PDD of the actual tracts with a smaller
p value.

Comparison of the Group Differences in
Connectivity Maps Using
Network-Based Statistics and TPDS
In NBS, with corrected p < 0.005, seven regions and eight
connections have been observed to contain lower FA in
MDD. Particularly, the connections in the right hemisphere
and between the superior frontal cortex and rostral/caudal
components of the anterior cingulate cortex, caudate, and inferior
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TABLE 1 | Comparison of voxel-based analysis (VBA) and tract-based spatial statistics (TBSS) with tract profiling and directional statistics (TPDS) (VBA and TBSS have
been adapted to run directional statistics).

WM tract VBA model (p value) TBSS model (p value) TPDS model (p value)

Middle cerebellar peduncle No fit (0.803) No fit (0.425) Bingham (0.021)

Pontine crossing tract No fit (0.092) Bingham (0.043) Bingham (0.004)

Genu of corpus callosum Bingham (0.030) Bingham (0.032) Bingham (0.007)

Body of corpus callosum Bingham (0.001) Bingham (0.001) Bingham (0.031)

Splenium of corpus callosum Bingham (0.046) Bingham (0.036) Bingham (0.045)

Fornix (column and body of fornix) No fit (0.707) No fit (0.135) Bingham (0.017)

Corticospinal tract R No fit (0.067) No fit (0.087) Bingham (0.048)

Corticospinal tract L No fit (0.541) Bingham (0.041) Bingham (0.025)

Medial lemniscus R No fit (0.706) Watson (0.046) Bingham (0.036)

Medial lemniscus L No fit (0.278) No fit (0.078) No fit (0.090)

Inferior cerebellar peduncle R Watson (0.019) Watson (0.037) Bingham (0.016)

Inferior cerebellar peduncle L No fit (0.970) No fit (0.570) Bingham (0.019)

Superior cerebellar peduncle R Watson (0.032) Bingham (0.042) Bingham (0.045)

Superior cerebellar peduncle L Watson (0.026) Bingham (0.044) Bingham (0.012)

Cerebral peduncle R No fit (0.064) Bingham (0.044) Bingham (0.023)

Cerebral peduncle L No fit (0.078) Bingham (0.032) Bingham (0.022)

Anterior limb of internal capsule R Watson (0.030) No fit (0.079) Watson (0.023)

Anterior limb of internal capsule L Bingham (0.002) Bingham (0.038) Watson (0.025)

Posterior limb of internal capsule R Watson (0.014) No fit (0.067) Bingham (0.008)

Posterior limb of internal capsule L Bingham (0.017) Bingham (0.033) Bingham (0.033)

Retrolenticular part of internal capsule R Watson (0.034) No fit (0.074) No fit (0.083)

Retrolenticular part of internal capsule L Watson (0.015) No fit (0.065) No fit (0.106)

Anterior corona radiata R No fit (0.278) Bingham (0.012) Bingham (0.045)

Anterior corona radiata L Bingham (0.0012) Bingham (0.002) Bingham (0.001)

Superior corona radiata R Watson (0.043) Bingham (0.009) Bingham (0.001)

Superior corona radiata L No fit (0.165) Bingham (0.035) Bingham (0.019)

Posterior corona radiata R Watson (0.002) Bingham (0.017) Bingham (0.002)

Posterior corona radiata L Watson (0.001) Bingham (0.019) Bingham (0.006)

Posterior thalamic radiation R Bingham (0.003) Bingham (0.002) Bingham (0.024)

Posterior thalamic radiation L Bingham (0.006) Bingham (0.002) Bingham (0.009)

Sagittal stratum R No fit (0.188) No fit (0.488) Bingham (0.032)

Sagittal stratum L No fit (0.065) No fit (0.265) Bingham (0.047)

External capsule R Bingham (0.006) Bingham (0.006) Bingham (0.001)

External capsule L Bingham (0.001) Bingham (0.001) Bingham (0.001)

Cingulum (cingulate gyrus) R Bingham (0.015) Bingham (0.033) Bingham (0.003)

Cingulum (cingulate gyrus) L Bingham (0.002) Bingham (0.001) Bingham (0.001)

Cingulum (hippocampus) R Watson (0.004) Bingham (0.004) Bingham (0.001)

Cingulum (hippocampus) L No fit (0.118) Bingham (0.019) Bingham (0.041)

Fornix (cres)/stria terminalis Bingham (0.04) No fit (0.050) Bingham (0.009)

Fornix (cres)/stria terminalis Bingham (0.012) No fit (0.128) Bingham (0.005)

Superior longitudinal fasciculus R Watson (0.002) Bingham (0.043) Bingham (0.021)

Superior longitudinal fasciculus L Watson (0.025) Bingham (0.040) Bingham (0.011)

Inferior fronto-occipital fasciculus R Bingham (0.025) Bingham (0.008) Bingham (0.003)

Inferior fronto-occipital fasciculus L Bingham (0.004) Bingham (0.062) Bingham (0.002)

Superior fronto-occipital fasciculus R Bingham (0.003) Bingham (0.018) Bingham (0.001)

Superior fronto-occipital fasciculus L Bingham (0.044) Bingham (0.026) Bingham (0.006)

Uncinate fasciculus R No fit (0.483) No fit (0.091) Bingham (0.003)

Uncinate fasciculus L No fit (0.896) Bingham (0.039) Bingham (0.002)

Tapetum R No fit (0.595) No fit (0.092) Bingham (0.092)

Tapetum L No fit (0.535) No fit (0.103) Bingham (0.004)

parietal cortices had lower FA in MDD. These connections are
shown in Figure 9 as green lines.

In TPDS, significantly different connections between the
healthy and MDD groups are seen in Figure 9 as red lines.

The thickness of the lines reflects the weights or in other
words the number of cross-sectional areas above the threshold
n (e.g., A weight value of 1 indicates that there exists only
one slice cluster with significantly different n contiguous tract
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profiles, whereas a weight value of 6 indicates that there
exist 6 disjoint clusters of n contiguous tract profiles that are
significantly different). The right hemisphere differences reported
by NBS, namely the frontal (superior frontal and rostral middle
frontal) and medial (caudal and rostral anterior cingulate), are
also detected by our method. But, additionally, TPDS revealed

differences between the healthy and MDD populations in limbic,
temporal cortex, occipital cortex, and hippocampal connections,
as well as a few left hemisphere areas such as the amygdala,
hippocampus, and thalamus.

The strength of the tract profile structure lies in the reduction
of the misalignment problem. Furthermore, observations of the

FIGURE 6 | Bingham Distribution.

FIGURE 7 | PDD projections modeled by the Bingham Distribution. (A) Separated (Left) versus overlapping (Right) vector projections of PDDs on unit sphere for two
different subject groups shown with blue and red. (B) Statistically significant (Left) versus insignificant (Right) differencs between populations.
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directional changes become more specific because contributions
of the local changes can be reported along the tract not by the
contribution of isolated voxels but by several slices across the two
ROIs. Therefore, the proposed directional statistics comparison is
expected to be a superior differentiator for especially long tracts.

In order to verify this, the following analysis has been done.
Using TPDS, for each tract connecting 83 different regions, the
z-score of each length is plotted against the z-score of the number

of significantly different profile slices. For this purpose, the
maximum overlapping shape (skeleton) is used. When regression
lines are fitted to investigate the relationship with tract length and
the number of different clusters, it is seen that the likelihood of
finding clusters of voxels that differ in long tracts increase with
respect to path length. This has been also tested using a linear
regression model, where it has been found that the z-score of tract
length significantly correlated with the z-score of the number

FIGURE 8 | Comparison of VBA/TBSS with TPDS data processing pipeline.

FIGURE 9 | Map of ROIS with statistically different connectivity between control and patient groups. Green lines represent the common connections that are found
different between the groups using NBS. Red lines represent the significantly different connections detected by the directional statistics using tract profiling.
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of significantly different profile slices (p < 0.05, adjusted R2:
0.00162) as seen in Figure 10. Although the effect size is small, we
can indicate that TPDS is a powerful method to find differences
in two populations, especially as the tract lengths get longer.

DISCUSSION

In this study, we proposed a novel framework for WM fiber
connectivity analysis using TPDS. In contrast with other group
studies (Goodlett et al., 2009) that are based on FA values,
directional statistics deals with compact Riemannian manifolds,
which allow observations regarding local diversities of principal
diffusion directions of voxels in different groups of subjects.

Comparison of TPDS With Other
Techniques Used in Analysis of Groups
of DWI
Our pipeline implementation can be regarded as quantitative
tractography. We analyze diffusion properties on the exact tracts
and derive the statistics over sample points taking neighborhood
cells into consideration. A similar method has been offered by
Corouge et al. (2006) where diffusion properties along the fiber
tracts, called fiber property profiles, are extracted. In that study,
fiber tract parameterization was based on arc length parameter,
starting from each fiber’s intersection with an “origin” plane.
Goodlett et al. also proposed a similar tract profiling approach,
where diffusion properties are calculated along the tract for each
fiber bundle (Goodlett et al., 2009). Our method introduces
three main improvements to these quantitative tractography

methods. First, we are not just limiting the method with known
anatomical fiber bundles but can derive statistics from any pair
of connected gray matter areas. Second, we have introduced
skeletonization and pruning to allow for applying statistics only
within common areas across the groups. Third, we introduced
vector analysis using directional statistics over scalar analyses
such as FA, MD, etc.

There exist other methods which use directional statistics
in DTI (Schwartzman et al., 2005; Hutchinson et al., 2012).
However, these methods analyze group differences based on
ROIs, not fiber tracts, ignoring the underlying connectivity.
We have devised the tract profiling algorithm to operate on
relevant voxels among the fibers that connect each ROI obtained
from fully automatic brain segmentation and parcellation. Local
registration errors are reduced after calculating cross-sectional
area of the fibers and finding medial lines (i.e., profiles)
to continue tract analysis. Afterwards, Bingham distribution,
which is the most general form of directional distribution, is
used for tract-based directional analysis, ensuring minimum
parametric assumptions about the dataset. To the best of our
knowledge, this approach has not been implemented in group
analysis of DTI before.

Neurite orientation dispersion and density imaging (NODDI)
is a novel neurite imaging and analysis framework and provides
sensible neurite density and orientation dispersion estimates.
Unlike FA, NODDI analyzes density and orientation dispersion
separately. NODDI uses orientation distribution function (ODF),
defined as Watson distribution which constrains the dispersion
about the dominant orientation (Zhang et al., 2012). However,
Bingham distribution fits better to diffusion properties, in
comparison with Watson. Bingham-NODDI extends the NODDI

FIGURE 10 | Scatter diagram of z-score of tract lengths versus significantly different clusters.
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method by generalizing it with Bingham distribution to cover
anisotropic orientation dispersions of neurites (Tariq et al.,
2016). Similarly, in our study, we found that modeling ODF
using Bingham distribution explains the data better regardless
of the tract identification, be it through VBA, TBSS, or our
method, TPDS. A major difference between our approach and
NODDI is in the estimation of the dispersion. The modeling
we used to implement the Bingham distribution estimates
dispersion in the vicinity of the dominant orientation, separately
for the primary and secondary dispersion orientations. This
eliminates the key limitation of NODDI, failing to model
complex neurite configurations such as those arising from
fanning and bending axons. On another front, just like ours,
orientation dispersion (ODI) generated by the NODDI method
can be also used with the TBSS method instead of FA metric
(Timmers et al., 2016; Taoka et al., 2020). In this aspect,
the main difference between our method and NODDI is
in extending fiber dispersion along the tracts that connect
two ROIs. By allowing such extension, our method enables
using fiber dispersions as track characteristics and analyzing
disease-related effects on connectivity of the tracks rather than
the voxel.

We have demonstrated that in addition to scalar diffusibility
changes, analyzing principal diffusion directions along a tract
detects local changes better than scalar values. The strength
of the directional statistics-based analysis we proposed lies in
its applicability to TBSS and VBA as well; it is not limited
to tract profiles.

Voxel-based analysis needs to register the subject’s images to
a common coordinate frame. However, the fiber tracts do not
accurately align during this process due to variation in tract
size and shape. Especially, long-range fiber tracts contain more
shape variation across subjects (Wassermann et al., 2011), so
they are more prone to such misalignment. This problem is
still valid for TBSS because even the voxel skeletons do not
ensure that all relevant voxels correspond to the same tract
(de Groot et al., 2013).

In directional statistics, the misalignment problem though
the tract becomes more critical compared with scalar statistics
like FA. As seen from the results of the first set of performance
tests, tract profiles are superior structures for resolving the shape
differences in comparison with VBA and TBSS, because tract
profiles are better in terms of fitting a model to PDD vectors.
We investigated the goodness of fit characteristics of VBA and
TBSS, respectively, on all WM areas and on skeletonized WM
areas using directional statistics. We found that several tracts in
VBA and TBSS are rejected to fit to the most general Bingham
distribution which contains minimum assumptions about the
data. In comparison when tract profiling is used, most tracts
could be fit parametrically, except a few. A parametrical model
is advantageous in data processing, since it facilitates population-
based comparisons.

The aforementioned tests also show how directional statistics
can be adapted to the widely used analysis methods such as TBSS
or VBA. Instead of FA values, PDD vectors can be used over

each voxel within the skeleton. FA metric uses eigenvalues of
the underlying diffusion characteristics of the voxel and defines
only the amount of diffusion asymmetry where PDD uses the
first eigenvector of the diffusion characteristic. The FA metric
is sensitive to the underlying fiber architecture and correlates
with PDD changes in disease conditions. However, FA does not
have direction property. Different orientations might result in
the same FA value simply because orientational changes of the
diffusion property of the voxel might not end with FA changes,
when there is a difference in eigenvector orientation but not its
value. So, the FA metric is not as sensitive as PDD in detecting
diffusion characteristic differences along the fiber track. As can
be seen in Table 1, Bingham distribution fits better to describe the
differences in the majority of white matter tracks. Further studies
should be conducted to ease adaptation of directional statistics to
TBSS skeletons and also to resolve issues related to the multiple
comparison problem.

PDD analysis using directional statistics is not a summary
statistics of each track but a measurement of diffusional
properties of the fiber bundle connecting a pair of ROIs. The
statistics of each voxel along the fiber track are summarized
by many points using directional statistics along the fiber
bundle. Fiber bundle skeletonization and normalization of PDD
over tract cross sections allows for error correction and noise
cancelation that might arise from tractography artifacts or
misalignment. This should also be valid for trajectory changes of
tracts under disease-related conditions, as long as a prominent
disfiguration or an abnormal morphological change caused by
a tumor deviation does not severely divert the alignment of the
fiber bundles. In such a case, a lot of false positives may affect the
model along the fiber bundles, hindering the correct estimation
of PDDs along the actual but diverted tract.

During the second set of performance tests, the results of
TPDS and NBS are compared to see whether these methods
report the differences between the healthy and MDD populations
consistently. We found that most of the right hemisphere-specific
connectivity differences reported earlier in MDD have been
detected by both of these approaches. The results are much more
consistent among the shorter tracts such as frontal connections
of the anterior cingulate. However, TPDS reveals additional
connectivity differences mainly among longer tracts such as
those between temporal and occipital cortex as well as those
that contain areas with low FA values and higher crossing fibers
such as the amygdala, hippocampus, and thalamus. Another
strength of TPDS is due to its revelation about weights, which
indicate the amount of difference between the subject populations
along the tracts.

These findings are also consistent with MDD models proposed
by Drevets et al. (2008) and Mayberg (2003) where MDD can
be defined through a limbic–cortical dysregulation model. In
this model, the limbic–thalamo–cortical (LTC) circuits, involving
the amygdala, thalamus, and orbital and medial PFC, and the
limbic–cortical–striatal–pallidal–thalamic (LCSPT) circuits are
mainly the affected areas. These connections are found be
affected both using NBS and TPDS. Additionally, TPDS revealed
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temporal, parietal, and occipital cortex connections that are
different in MDD. Mainly the differences on inferior fronto-
occipital tracts can be also supported by other DTI studies that
report significantly decreased FA values among MDD patients
(Cheng et al., 2014).

The ROIs reported to have statistically significant connectivity
differences in MDD versus healthy participants are consistent
with the two well-known lateralization models of emotion.
According to the right hemisphere hypothesis, the right
hemisphere is dominant in processing emotions (Alves et al.,
2008). On the other hand, the valence hypothesis posits that
the left hemisphere processes positive (or approach-related)
information, but the right hemisphere processes negative (or
avoidance-related) information (Alves et al., 2008). Within
the context of MDD, hypoactivity in the left hemisphere
fronto-striatal loops indicates the lack of downregulation of
the subcortical areas. In Figure 9, TPDS—but not NBS—
reported differences in the connectivity of the left hemisphere,
amygdala, thalamus, and hippocampus, consistent with the
valence hypothesis. However, the abundant presentation of right
hemisphere ROIs in Figure 9 supports the right hemisphere
hypothesis indicating that the connectivity within the right
hemisphere may be a biomarker for MDD. TPDS revealed a
larger right hemisphere network which was sidestepped by NBS.
This network is predominantly composed of the basal temporal
lobe structures as well as occipital ROIs such as precuneus
and pericalcarine. The difference in the temporal and parietal
functionality in MDD is reported less in comparison with those
in front striatal structures; however, there is a growing body of
literature that focuses on the hypoactivity of the right hemisphere
temporal areas in MDD (Bruder et al., 2017). The detection of
such ROIs by TPDS is supportive of these studies reported in
Bruder et al. (2017). Finally, several rsfMRI biomarkers of MDD
are reported in Drysdale et al. (2017). After clustering these
biomarkers through machine learning techniques, four different
subtypes of MDD can be derived, based on four different clusters
of ROIs. Unfortunately, the temporal areas of the brain are
excluded in this study, due to a lack of data collection from several
participating research sites. However, the ROI network reported
by both NBS and TPDS in Figure 9 is also reported in Drysdale
et al. (2017), verifying our results in a much larger sample size.

In their meta-analysis of over 231 patients with MDD
and 261 comparison participants, Yi Liao et al. found four
consistent locations of decreased FA: white matter in the
right frontal lobe, right fusiform gyrus, left frontal lobe, and
right occipital lobe. Mainly, the right inferior longitudinal
fasciculus, right inferior fronto-occipital fasciculus, and right
posterior thalamic radiation were involved in such changes
(Liao et al., 2013). This covers most of the connection pairs
we have found in Figure 9, especially the right fusiform gyrus
connections with R. Inferior temporal, parahipppocampal, and
temporal gray matter are important because the NBS method
failed to reveal all of these areas consistent with the meta-
analysis.

In another meta-analysis (Wen et al., 2014), reduced FA
is reported in the DLPFC and UF of patients with late-
life depression (Wen et al., 2014). Those regions are part of

frontostriatal and limbic networks consistent with our findings
in Figure 9. This is also consistent with NBS analysis, especially
the connections colored in green.

Another recent meta-analysis study has analyzed WM
anisotropy and diffusivity in 1,305 MDD patients and 1,602
healthy controls (age range 12–88 years) from 20 samples
worldwide (van Velzen et al., 2020). On adults, lower FA was
observed in 16 of the 25 ROIs. The largest changes have
been found mainly in the anterior corona radiata (ACR),
corona radiata (CR), corpus callosum (CC), genu of the corpus
callosum (GCC), body of the corpus callosum (BCC), and
anterior limb of the internal capsule (ALIC). Significantly
lower FA was also observed in the superior fronto-occipital
fasciculus (SFO), sagittal stratum (SS), internal capsule (IC),
posterior corona radiata (PCR), superior corona radiata (SCR),
inferior fronto-occipital fasciculus (IFO), fornix/stria terminalis
(FXST), external capsule (EC), and cingulate gyrus of the
cingulum bundle (CGC). It is quite important to note that
most of these regions are better fitted by TPDS in comparison
with TBSS and VBA as revealed by our first test on these
methods. The superior fronto-occipital fasciculus (left–right),
sagittal stratum (left–right), superior corona radiata (left–right),
posterior corona radiata (left–right), superior fronto-occipital
fasciculus (left–right), inferior fronto-occipital fasciculus (left–
right), external capsule (left–right), fornix (cres)/stria terminalis
(left–right), and cingulum (left–right) are all better modeled
using TPDS. This is also true for the anterior and superior
corona radiata where only the right anterior corona radiata is
modeled better with TBSS skeleton. The parts of the corpus
callosum are on the other hand fitted better as the genu
of the corpus callosum for TPDS, the body of the corpus
callosum for VBA, and the splenium of the corpus callosum
for TBSS. Overall, the benefit of TPDS is demonstrated in
two different ways: 1. By fitting the underlying structural
connections to an analytical model in a better way 2. By capturing
wider network connectivity differences especially along longer
tracts.

CONCLUSION

To conclude, we have shown that by analyzing PDDs using
directional statistics, more insight is gained about fiber
tracts regarding differences between populations. While
other connectivity-based analysis methods may disregard the
differences between longer fibers, TPDS becomes more robust
as fiber tract length increases. In areas with low FA values, the
distribution of PDDs among the fiber tracts can differentiate
connectivity-based dysfunctions better, due to the power of
directional statistics. The directional statistics analysis suggested
here can also be applied by augmenting the existing methods,
namely TBSS and VBA. Such an addition to the existing methods
is valuable because it opens up the possibility to use parametric
fitting along with directional statistics. The proposed method
could be extended considering second and third directions of
the diffusion tensor. In a future study, this can be modeled
separately, fitting different distribution models for each direction
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and analyzing the statistical changes of each direction in
disease conditions.

When we implemented TPDS in two subject populations,
one healthy and the other with MDD, we found several WM
tract differences that are not reported in other methods such
as NBS and TBSS. It is imperative to use TPDS on other
subject populations and with more subjects to justify its strength
in comparison with other methods that perform WM tract-
based group analysis.
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Conventional magnetic resonance imaging (cMRI) in multiple sclerosis (MS) patients
provides measures of focal brain damage and activity, which are fundamental for
disease diagnosis, prognosis, and the evaluation of response to therapy. However,
cMRI is insensitive to the damage to the microenvironment of the brain tissue and
the heterogeneity of MS lesions. In contrast, the damaged tissue can be characterized
by mathematical models on multishell diffusion imaging data, which measure different
compartmental water diffusion. In this work, we obtained 12 diffusion measures from
eight diffusion models, and we applied a deep-learning attention-based convolutional
neural network (CNN) (GAMER-MRI) to select the most discriminating measures in the
classification of MS lesions and the perilesional tissue by attention weights. Furthermore,
we provided clinical and biological validation of the chosen metrics—and of their
most discriminative combinations—by correlating their respective mean values in MS
patients with the corresponding Expanded Disability Status Scale (EDSS) and the
serum level of neurofilament light chain (sNfL), which are measures of disability and
neuroaxonal damage. Our results show that the neurite density index from neurite
orientation and dispersion density imaging (NODDI), the measures of the intra-axonal
and isotropic compartments from microstructural Bayesian approach, and the measure
of the intra-axonal compartment from the spherical mean technique NODDI were the
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most discriminating (respective attention weights were 0.12, 0.12, 0.15, and 0.13). In
addition, the combination of the neurite density index from NODDI and the measures
for the intra-axonal and isotropic compartments from the microstructural Bayesian
approach exhibited a stronger correlation with EDSS and sNfL than the individual
measures. This work demonstrates that the proposed method might be useful to select
the microstructural measures that are most discriminative of focal tissue damage and
that may also be combined to a unique contrast to achieve stronger correlations to
clinical disability and neuroaxonal damage.

Keywords: multiple sclerosis, deep learning, advanced quantitative diffusion MRI, relative importance order,
clinically correlated measure selection

INTRODUCTION

Conventional magnetic resonance imaging (cMRI) in multiple
sclerosis (MS) plays a major role in MS diagnosis, prognosis,
and in the evaluation of patients’ therapeutic response (Rovira
et al., 2015; Wattjes et al., 2015). However, the heterogeneity of
focal MS lesions, the pathology in normal-appearing white and
gray matter (NAWM and NAGM), and the specific damage to
myelin and axons are largely overlooked by cMRI. Multishell
diffusion-weighted imaging (mDWI) provides a way to further
probe tissue damage and repair in MS patients (Schneider
et al., 2017; Lakhani et al., 2020). mDWI measures signal
changes that are related to the diffusion of water molecules
within central nervous system (CNS) tissue (Novikov et al.,
2019; Lakhani et al., 2020), which is constrained by the local
microenvironment (Novikov et al., 2019). This enables diffusion
measures of biophysical microstructure models derived from
mDWI to decode the information specific to different water
compartments (e.g., intra-axonal and isotropic compartments)
within the CNS tissue (Novikov et al., 2019). The intra-axonal
compartment reflects the integrity of the neurites, and the
isotropic compartment indicates the movement of the free water
(Novikov et al., 2019). These two compartments can describe the
two pathological presentations of MS lesions, demyelination, and
axonal injury and are commonly modeled by various biophysical
microstructure models (Lakhani et al., 2020).

A microenvironment characteristic is measured differently by
the measures from different mathematical models due to the
different assumptions on the diffusion within the tissue. Yet, to
our knowledge, the direct comparison of all considered diffusion
measures on MS lesions and the possibility to combine them
does not exist. Therefore, how to select the most discriminating
diffusion measures for a given neurological disorder and how
to combine the complementary information they might provide
remain to be open questions and motivate this study.

Convolutional neural network (CNN) in deep learning has
proven to be promising in various applications of MR images
and is able to encode spatial patterns on the images into
representative hidden features (Andermatt et al., 2018; Yoo et al.,
2018; Akçakaya et al., 2019; La Rosa et al., 2020; Saha et al., 2020).
In our previous work (Lu et al., 2020), we used an attention-
based CNN—GAMER-MRI—to rank the importance of the input
quantitative MRIs in the classification of stroke and MS lesions.

Here, we further developed the method to select discriminating
intercorrelated diffusion measures in the classification of MS
lesions and the perilesional tissue. Compared to the conventional
feature selection methods, this CNN-based method enables
utilizing maximally available spatial information of the images
and does not need to decide on how to find representative
values for the samples of each contrasts, such as the mean
value only within a lesion neglecting the perilesion tissue. In
addition, the method jointly considers all the contrasts, which is a
limitation for most of the conventional feature selection methods.
Furthermore, in this study, we have explored the relationship
between the chosen measures, or their combinations, with the
Expanded Disability Status Scale (EDSS) and the neurofilament
light chain in the serum (sNfL), which are respectively (i)
a clinical measure of disability in MS patients and (ii) a
biological measure of neuroaxonal damage (Barro et al., 2018;
Siller et al., 2019).

MATERIALS AND METHODS

MRI Data
One hundred twenty-three MS patients (84 relapsing–
remitting and 39 progressive, 71 female and 52 male, age
range = 44.7 ± 14.0, median EDSS = 2.5, EDSS range of 0.0–8.0)
were enrolled in the study, which was approved by the local
Ethics Committee of Basel University Hospital. All subjects
gave written consent prior to the enrollment. MS patients
underwent a multiparametric protocol on 3T whole-body
MR system (Siemens MAGNETOM Prisma). The protocol
included 3D SPACE-based FLAIR, 3D magnetization-prepared 2
rapid gradient echoes (MP2RAGE) (Marques et al., 2010), and
mDWI (Table 1).

Measured diffusion-weighted imaging was denoised by
MRtrix (Cordero-Grande et al., 2019; Tournier et al., 2019).
The correction of susceptibility-induced distortion with the
reversed phase-encoding images, eddy currents, and movement
was performed by FMRIB Software Library (FSL) (Andersson
et al., 2003; Smith et al., 2004; Jenkinson et al., 2012;
Andersson and Sotiropoulos, 2016). The quantitative diffusion
measures for the isotropic and intra-axonal compartments
were reconstructed from the eight open-source biophysical
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TABLE 1 | Acquisition parameters of each contrast in the MS dataset.

TE (ms) TR (ms) FOV (mm3) SR (mm3) TI (ms) Additional parameters

FLAIR 386 5000 256 × 256 × 256 l × l × l 1800 –

MP2RAGE 3 5000 256 × 256 × 256 l × l × l 700, 2500 –

b values (s/mm2)

mDWI 75 4500 256 × 256 × 144 1.8 × 1.8 × 1.8 –
0/12 acquisitions and 12 reverse encoding acquisitions;

700; 1000; 2000; 3000/137 directions in total

TE, echo time; TR, repetition time; TI, inversion time; FOV, field of view; SR, spatial resolution.

models, including Ball and Stick1 (Behrens et al., 2003), neurite
orientation and dispersion density imaging (NODDI)2 (Zhang
et al., 2012), NODDI with the spherical mean technique (SMT-
NODDI)1 (Cabeen et al., 2019), microstructure Bayesian (MB)
approach3 (Reisert et al., 2017), multicompartment microscopic
diffusion imaging (MCMDI)1 (Kaden et al., 2016), neurite
orientation dispersion and density imaging with diffusivities
assessment (NODDIDA)4 (Jelescu et al., 2015), distribution
of 3D anisotropic microstructural environments in diffusion-
compartment imaging (DIAMOND)5 (Scherrer et al., 2016),
and microstructure fingerprinting6 (Rensonnet et al., 2019). The
exemplary diffusion measures and FLAIR are in Figure 1.

The quantitative diffusion measures of each patient were
masked by the brain mask to remove non-brain tissue including
the ventricle. The brain mask was the binarized subcortical
segmentation obtained from FreeSurfer (Fischl et al., 2001) on
MP2RAGE (Fujimoto et al., 2014) and transformed by FSL to
align with mDWI. The diffusion measures were then subject-
wise normalized. Eighty-four patients were randomly selected
to be used in a 5-fold cross-validation. The other 39/123
patients formed a pure test dataset. White matter lesions were
automatically segmented using FLAIR and MP2RAGE7 (La Rosa
et al., 2020) and manually corrected by two expert raters. The
lesion segmentations were transformed by FSL to be aligned with
mDWI. Lesions of size less than three voxels were excluded. The
perilesional tissue was defined as white matter tissue locating
within a three-voxel region around the lesions. Patches of
5 × 5 × 5 voxels were sampled on lesions and perilesional tissue
considering the lesion sizes. To reduce the overlapping between
the lesion and perilesional patches due to their proximity, a
constraint of at most 20% of a sampled patch being overlapped
with another patch was applied. The numbers of patches being
sampled on each lesion and perilesional tissue were proportional
to the size of the lesion and the perilesional tissue, respectively. In
the end, 3007 lesion patches and 3624 perilesional patches were
sampled in the dataset for 5-fold cross-validation, and 1402 lesion
patches and 1665 perilesional patches were sampled in the pure
test dataset. The 5-fold cross-validation was based on the number

1https://github.com/AthenaEPI/dmipy
2https://github.com/daducci/AMICO
3https://bitbucket.org/reisert/baydiff/wiki/Home
4https://github.com/robbert-harms/MDT
5https://bitbucket.org/benoitscherrer/crldciestimate
6The author needs to be contacted.
7https://hub.docker.com/r/francescolr/ms_seg

of patients. Therefore, patches from a patient would not present
both in the training and in the validation datasets.

GAMER-MRI
GAMER-MRI was previously developed and validated as a
method to obtain attention weights and the relative importance
in a classification task of given input contrasts (Lu et al., 2020).
As we previously reported, the neural network consisted of three
parts for feature extraction, gated attention mechanism (Ilse
et al., 2018), and classification (Lu et al., 2020). The feature
extraction part included three convolutional blocks for each
contrast. Each convolutional block was composed of a layer of
16 convolutional filters and exponential leaky units followed by
batch normalization. The kernel size of the convolutional filter
was 3 × 3 × 3, and padding was applied correspondingly to
maintain the patch size. After the last convolutional block, a 16-
neuron fully connected layer (FCL) received the flattened vector
of 125 elements and encoded the hidden feature of 16 elements.
The gated attention mechanism was formed by an attention layer
containing an eight-neuron FCL followed by the tanh function
and a gate layer having an eight-neuron FCL followed by the
sigmoid function. The outputs of tanh and sigmoid were element-
wise multiplied. From the element-wise product, in the original
implementation for not-highly-correlated input contrasts, the
attention weights were obtained by following one-neuron FCL
and the softmax function (Lu et al., 2020). However, this design
was not effective for highly correlated inputs, i.e., diffusion
measures in this work. The information content of measures is
similar, and thus, the difference in the obtained attention weights
was small.

For the purpose of this study, we multiplied the outputs
from the element-wise multiplication by 2. This enhanced
the difference between the encoded features of the correlated
diffusion measures during training because the exponential
transformation in the softmax function could not properly reflect
the difference in the small and negative values. For example, 0.01
is 10 times larger than 0.001, but they become 1.01 and 1.001 after
the exponential transformation. This leads to 0.502 and 0.498
as attention weights after the softmax function. The enhanced
output was then connected to a one-neuron FCL followed by the
softmax function to generate the normalized attention weights.
The weighted sum of the hidden features and the corresponding
attention weights formed a combined hidden feature for the
classifier. The classifier was one sigmoid neuron. The network
structure is in Figure 2.
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FIGURE 1 | MS lesions on FLAIR and diffusion measures. (A) FLAIR: MS lesions are hyperintense and indicated by red dashed boxes. (B) Red: lesions; Green:
perilesional white matter tissue. (C) The isotropic compartment from MB. (D) The intra-axonal compartment from MB. (E) The neurite density index from NODDI.
(F) The intra-axonal compartment from SMT-NODDI. (G) The intra-axonal compartment from MCMDI. (H) The intra-axonal compartment from NODDIDA. (I) The
isotropic compartment from Ball and Stick. (J) The intra-axonal compartment from Ball and Stick. Other measures in the analysis are in Supplementary Figure 1.

FIGURE 2 | GAMER-MRI. (A) The neural network. Conv stands for the convolutional block. FC is a fully connected layer. (B) Attention block. � represents an
element-wise multiplication.

The weighted sampler was used to account for the class
imbalance, and the batch size was 256. The loss function was
cross-entropy loss. The evaluation metric was the area under
the receiver operating characteristic curve (AUC). The optimizer
was AdamW (Loshchilov and Hutter, 2019) with the learning
rate = 5e-5 and the weight decay = 1e-2. To avoid overfitting, data
augmentation and a learning-rate scheduler were performed.
On-the-fly data augmentation included random flipping in the
left–right directions and Gaussian noise with zero mean and unit

standard deviation. The scheduler was the learning-rate-reduce-
plateau scheduler with a patience of 15 epochs.

Selection of Contrasts
Intrinsic strong correlation between the quantitative diffusion
measures can lead to instability of the obtained attention
weights and the ranked order, compared to the result in
Lu et al. (2020). Therefore, to avoid determination solely based
on the attention weights, the selection of discriminating measures
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FIGURE 3 | Flowchart for using GAMER-MRI to select the most discriminating subject-wise normalized diffusion measures and correlating the combinations of
selected diffusion measures with the Expanded Disability Status Scale and the serum level of neurofilament light chain.

was an iteration process. It started from the measure whose
attention weight was dominant in the validation datasets in
all the cross-validation folds. If no measure was selected, the
measures whose attention weights were ranked first or second
in all the folds were considered. If no measures were selected,
the attention weights that ranked first or second and third
in all the folds were considered. The selection stopped when
the sum of their attention weights was over 0.5, which meant
that the selected measures were more important than 50% of
the input diffusion measures in differentiating the lesion and
perilesional tissue.

To assess which selected subject-wise normalized quantitative
diffusion measures, or combination of those measures, was
best correlated with patients’ EDSS as well as NfL in the pure
test dataset, we first averaged the diffusion measures within
each lesion and then over lesions within each patient. In
31/39 patients of the test dataset, we quantified sNfL. Then,
we performed Spearman’s correlation coefficient with two-sided
20,000 permutation tests. The Benjamin–Hochberg procedure
(Benjamini and Hochberg, 1995) was performed to control the
false discovery rate (FDR) with the threshold 0.05. The flowchart
is shown in Figure 3.

RESULTS

Lesion Classification
In Table 2, we report the average performance of GAMER-MRI
using all the diffusion measures on the (i) validation dataset over
fivefold cross-validation and (ii) on the pure test dataset.

The diffusion measures selected by using the validation
datasets were the neurite density index (NDI) from NODDI, the
intra-axonal and isotropic compartment from MB (Intra-MB and
Iso-MB), and the intra-axonal compartment from SMT-NODDI
(Intra-SMT) in Figure 1. Their average attention weights of the
corrected predicted samples are also reported in Table 2.

Spearman’s Correlation
Correlation With EDSS
The Spearman’s correlation coefficients (ρ) and the
corresponding original p-values of the selected normalized
diffusion measures, or their statistically significant combinations
and EDSS, are reported in Table 3. The Spearman’s correlation
coefficients (ρ) of the conventional lesion load metrics are
also reported. The number of potential combinations of four
selected diffusion measures is 15, and there are two tests in the
lesion load analysis. This led to in total 17 statistical tests. The
significance controlled by FDR is indicated by an asterisk. The
scatter plot of the combination having the strongest correlation
is in Figure 4A, and an exemplary image of the combination is
in Figure 4B.

Correlation With sNfL
The Spearman’s correlation coefficients (ρ) and the
corresponding original p-values are reported in Table 4.
One patient had a relatively high sNfL level of 160 µg/ml,
compared to the mean sNfL level of 8.9 µg/ml of the rest of 30
patients. After this patient’s data were excluded, the significance
in Table 4 did not change, but the correlation was stronger.
For illustration purpose, the scatter plot of the combination

TABLE 2 | Performance of the patch-based network on MS lesions and the selected diffusion measures on fivefold cross-validation (first row, average mean, and
standard deviation are reported) and pure testing set (second row). Balanced accuracy is defined as the average of sensitivity and specificity in each fold. Fl score is
defined as the harmonic mean of precision and recall.

Mean metrics (%) AUC Balanced accuracy Sensitivity Specificity F1 score

Validation dataset 90.67 ± 0.009 83.26 ± 1.35 81.09 ± 2.44 85.44 ± 2.03 81.62 ± 1.67

Test dataset 91.01 ± 0.003 83.42 ± 0.12 83.39 ± 0.67 83.45 ± 0.82 82.14 ± 0.11

Selected measures NDI Intra-MB Iso-MB Intra-SMT

Attention weights 0.121 ± 0.014 0.117 ± 0.014 0.145 ± 0.007 0.131 ± 0.015

Frontiers in Neuroscience | www.frontiersin.org 5 April 2021 | Volume 15 | Article 64753567

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-647535 March 29, 2021 Time: 15:59 # 6

Lu et al. GAMER-MRI and MS Diffusion Measures

TABLE 3 | Spearman’s correlation of selected normalized diffusion measures, or
their combinations and EDSS.

Lesion load ρ P-value Significance

Number of lesions 0.13 0.41 –

Lesion volume 0.25 0.12 –

Normalized diffusion measures

NDI −0.38 0.017 *

Intra-SMT −0.31 0.057

Intra-MB −0.40 0.013 *

Iso-MB 0.09 0.58 –

Intra-MB + Iso-MB −0.39 0.014 *

Intra-MB + NDI −0.43 0.007 *

Intra-SMT + NDI −0.37 0.023 *

Intra-SMT + Intra-MB −0.40 0.012 *

Intra-MB + Iso-MB + NDI −0.45 0.004 *

Intra-MB + Iso-MB + Intra-SMT −0.42 0.007 *

Intra-MB + Intra-SMT + NDI −0.42 0.009 *

Intra-MB + Iso-MB + NDI + Intra-SMT −0.41 0.009 *

The significance is controlled by FDR with a threshold of 0.05. Only the
combinations of significance are reported.

having the strongest correlation (Figure 5A) does not contain
this outlier patient. An exemplary image of the combination is
in Figure 5B.

DISCUSSION

Our work provided evidence that a modified version of GAMER-
MRI, including a specific selection procedure for correlated
measures, permits to identify the microstructural diffusion
measures that are most discriminative of focal MS pathology
among the ones obtained with eight open-source mathematical

models of multishell diffusion data. Moreover, our data showed
that some of the combinations of the selected normalized
diffusion measures better correlated with patients’ disability and
neuroaxonal damage than the individual measures.

Diffusion-based microstructural measures quantify
different compartments based on various assumptions.
Nevertheless, the relative sensitivity of the different
diffusion-based microstructural metrics to specific CNS
pathologies is unclear. In this work, we have provided a
methodological frame to discriminate the most sensitive
diffusion microstructural measures to focal MS pathology in a
large population of MS patients.

We first aimed at identifying which measure best
discriminated MS lesions from the perilesional tissue because

TABLE 4 | Spearman’s correlation of selected normalized diffusion measures, or
their combinations and sNfL.

Lesion load ρ P-value Significance

Number of lesions 0.48 0.006 *

Lesion volume 0.45 0.01 *

Normalized diffusion measures

NDI −0.37 0.04 –

Intra-SMT −0.27 0.14 –

Intra-MB −0.42 0.02 *

Iso-MB 0.1 0.59 –

Intra-MB + Iso-MB −0.51 0.004 *

Intra-MB + NDI −0.43 0.02 *

Intra-MB + Iso-MB + NDI −0.48 0.007 *

Intra-MB + Iso-MB + Intra-SMT −0.45 0.01 *

Intra-MB + Iso-MB + NDI + Intra-SMT −0.44 0.02 *

The significance controlled by FDR with a threshold of 0.05. Only the combinations
of significance are reported.

FIGURE 4 | (A) Scatter plot and a regression line of EDSS and the combinations of normalized Intra-MB, Iso-MB, and NDI, which has strongest correlation. (B) An
exemplary image of the combined contrast.
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FIGURE 5 | (A) Scatter plot and a regression line of the combinations of normalized Intra-MB and Iso-MB, which showed the strongest correlation with sNFL. (B) An
exemplary image of the combined contrast.

we judged that if the neural network was able to differentiate
between lesions and the immediate surrounding tissue, the
learned pattern would have been most sensitive to focal MS
pathology than the one we would have derived by comparing
lesions to the distant normal-appearing tissue. The evaluation
metrics in Table 2 indicated that the neural network was able
to learn pivotal information for the target classification. As
expected, because of the highly correlated nature of the studied
diffusion-based measures, the difference among the obtained
attention weights was small. The proposed selection process
alleviated the fluctuating order of attention weights due to their
small differences. The threshold of 0.5 in the selection process was
empirically chosen considering the representativeness of selected
diffusion measures and the multiple comparison problem.

The core idea of the attention mechanism is to enhance
important features from the data themselves relevant to the
specific application (Bahdanau et al., 2015). Therefore, in most
of the applications in natural language processing and natural
image classification, the attention weights were used to enhance
the connection to the corresponding features based on their
importance instead of quantifying the relative importance among
the features (Maicas et al., 2017; Vaswani et al., 2017; Hu et al.,
2018; Woo et al., 2018). Using different designs of the attention
mechanism, the attention weights also provide the relative
importance among features as shown in a histopathological
image classification and image captioning (You et al., 2016;
Ilse et al., 2018). In GAMER-MRI, attention weights were
computed and validated on multicontrast MRI measures in
order to select their relative importance in a given neurological
disease classification.

To our knowledge so far, only few studies applied measures
derived from microstructural models to study focal MS
pathology (for a review, see Granziera et al., 2020) and
only one study used deep-learning to show the superior

performance of diffusion basis spectrum imaging to segment
voxel-wise different types of MS lesions compared to using
diffusion tensor imaging (Ye et al., 2020). However, the joint
comparison of multiple microstructural diffusion measures in
MS lesions has not been explored yet. This work considered
the potential interaction between the measures and tried to
address this issue.

The four selected diffusion measures include three measures
for the intra-axonal compartment from three models and one
measure for the isotropic compartment from one of the three
models. This means that most of the discriminating information
of the damaged neurons was from the loss of axonal integrity. The
additional information about the inflammatory processes might
be reflected by the measure for the isotropic compartment to
better characterize the distinction of lesions.

Besides, by combining the selected diffusion measures
in the discrimination of focal pathology, it was possible
to achieve a stronger correlation with patient disability
than one of those metrics alone or even conventional MRI
metrics, such as the lesion number and volume. These
results suggest that a comprehensive description of the tissue
microstructure in regions of focal damage in MS patients may
well help decrease the clinical–radiological paradox (Barkhof,
2002). Interestingly, the combined contrast achieving the best
correlation with disability was the sum of measures quantifying
intra-axonal and isotropic diffusion, which may be considered
surrogate measures of the loss of integrity of axons and
myelin as well as of inflammatory processes (i.e., increased
cellularity and edema).

Most of the combinations that best correlated to EDSS were
also highly related to the sNfL levels: remarkably, the correlation
coefficients between sNfL and combinations of diffusion-MRI
metrics were even higher than the ones obtained between sNfL
and the lesion load, which is known to be highly related to sNfL
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levels (Chitnis et al., 2018; Todea et al., 2020). The patient, who
had an extremely high level of sNfL, had a relapse 2 months before
the sNfL acquisition, which may have well influenced the strong
increased in sNfL levels.

To perform the correlation analyses with EDSS and sNFL,
we have used subject-wise normalized maps of diffusion-based
microstructural measures, which were the ones encoded by
GAMER-MRI. We also trained the neural network on the
original images, which, however, led to worse classification
performance. Because subject-wise normalized maps were
used, it is challenging to determine whether the network
could learn the right pattern and to generate representative
attention weights. Owing to the applied normalization
procedure, the interpretation of the pathological meaning
of the combined metrics is particularly difficult. Another
limitation of this study was that we divided the cross-
validation folds based on the number of patients instead
of the number of patches: this led to different distributions
of lesion and perilesional patches in the validation datasets
of all cross-validation folds and to the fluctuation of the
validation results. On the other hand, this also had the
advantage of preventing the leak of information induced
by the appearance of patches from one patient in both the
training and validation dataset. Based on the obtained result
(Table 2), the performance on the test dataset was stable, so the
limitation was alleviated.

CONCLUSION

In summary, our work showed that the proposed attention-
based neural network and the selection process based on
the previous work can select important diffusion measures
despite that they are highly intercorrelated. Those measures
have the potential to be combined to enhance the correlation
with the clinical measures. Future work will be required
to directly find the best combinations without using a
statistical test and tackling the multiple comparison problem.
Furthermore, the use of a combination of diffusion-
based microstructural measures deserves further attention
and development, allowing a better interpretability of its
pathological meaning.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the local Ethics Committee of Basel University
Hospital. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

P-JL: conceptualization, data curation, methodology,
investigation, formal analysis, and writing—original draft.
MB: data curation, methodology, and writing—reviewing and
editing. MW: resources, data curation, and writing—reviewing
and editing. RR, RG, and FL: data curation and writing—
reviewing and editing. SS, MBC, and AD: resources and
writing—reviewing and editing. RS: conceptualization and
writing—reviewing and editing. JK and LK: writing—reviewing
and editing. PC: supervision and writing—reviewing and
editing. CG: supervision, conceptualization, funding acquisition,
resources, and writing—reviewing and editing. All authors
contributed to the article and approved the submitted version.

FUNDING

This project was supported by Swiss National Funds
PZ00P3_154508, PZ00P3_131914, and PP00P3_176984. FL is
supported by the European Union’s Horizon 2020 research and
innovation program under the Marie Sklodowska-Curie project
TRABIT (agreement no. 765148).

ACKNOWLEDGMENTS

We would like to acknowledge all the patients and healthy
controls in this project. We acknowledge access to the expertise
of the CIBM Center for Biomedical Imaging, a Swiss research
center of excellence founded and supported by Lausanne
University Hospital (CHUV), University of Lausanne (UNIL),
Ecole polytechnique fédérale de Lausanne (EPFL), University of
Geneva (UNIGE), and Geneva University Hospitals (HUG).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.647535/full#supplementary-material

REFERENCES
Akçakaya, M., Moeller, S., Weingärtner, S., and Uğurbil, K. (2019). Scan-
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Recent decades have witnessed an increasing number of large to very large imaging
studies, prominently in the field of neurodegenerative diseases. The datasets collected
during these studies form essential resources for the research aiming at new biomarkers.
Collecting, hosting, managing, processing, or reviewing those datasets is typically
achieved through a local neuroinformatics infrastructure. In particular for organizations
with their own imaging equipment, setting up such a system is still a hard task,
and relying on cloud-based solutions, albeit promising, is not always possible. This
paper proposes a practical model guided by core principles including user involvement,
lightweight footprint, modularity, reusability, and facilitated data sharing. This model is
based on the experience from an 8-year-old research center managing cohort research
programs on Alzheimer’s disease. Such a model gave rise to an ecosystem of tools
aiming at improved quality control through seamless automatic processes combined
with a variety of code libraries, command line tools, graphical user interfaces, and instant
messaging applets. The present ecosystem was shaped around XNAT and is composed
of independently reusable modules that are freely available on GitLab/GitHub. This
paradigm is scalable to the general community of researchers working with large
neuroimaging datasets.

Keywords: processing workflows, neuroimaging, quality control, data management, neuroinformatics, cohort
studies

INTRODUCTION

Neuroimaging has now taken a central role in the context of research in Alzheimer’s disease (AD)
as in neuroscience in general. Its non-invasive nature, its relative widespread availability, and its
potential to provide efficient disease predictive markers have incentivized global efforts to assemble
large imaging datasets, with numbers of subjects starting to reach ranges of epidemiological studies
(Van Horn and Toga, 2014; Abe et al., 2015; Júlvez et al., 2016; Miller et al., 2016; Cox et al.,
2019). With the advent of modern computational methods and the constant progress in imaging
techniques, images are now routinely taken through automatic processing workflows, yielding a
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series of endpoints to be analyzed against other variables, which
may potentially develop into findings. Despite good practices and
quality assurance (QA), each step (acquisition or processing) is
likely to exhibit anomalous behaviors and may lead to erroneous
conclusions if unnoticed. In this regard, quality control (QC)
protocols are designed to track down and protect against such
errors but have until now faced major obstacles. Their purpose
is to assess the conformity of any applicable dataset with a set
of custom specifications and consequently determine whether
the dataset is suited for further processing/analysis. On the one
hand, individual visual inspection has proven to be neither fail-
safe nor compatible with the size of the largest cohort studies
(Alfaro-Almagro et al., 2018). On the other hand, automated or
semi-automated QC offers promising cost-reducing perspectives
(Esteban et al., 2019a; Sunderland et al., 2019); however, it
remains hard to generalize as it strongly depends on the study
design (single/multisite, clinical/cohort study) and needs to be
adapted to each imaging sequence (Oguz et al., 2014; Bastiani
et al., 2019) and each step of the workflow (raw images,
processing outputs) (Klapwijk et al., 2019). Table 1 draws an
inventory of existing resources focused on QC of neuroimaging
data, automated or not, with corresponding references and
repositories, if applicable. This list is first and foremost illustrative
of their variety and specificity in relation to types of input data.
Interestingly, the recent years have seen the emergence of new
approaches aiming at unifying, on one side, QC protocols across
groups and, on the other, processing workflows in some of these
modalities such as structural magnetic resonance imaging (MRI)
(Esteban et al., 2017) or functional MRI (Esteban et al., 2019b).
Such approaches may pave the way for a general process of
standardization of QC tools and procedures that would extend
to most used neuroimaging data modalities.

l Improved data management is also directly associated
with improved quality assessment: a system in which one can
easily find and work with the data is likely to make quality
assessment easier. Inversely, a system in which finding the
data is complicated will make quality assessment much harder.
As a consequence, the capacity to evaluate the results of any
workflow and the capacity to identify/navigate through them in
a larger repository are both tightly coupled. This is especially
relevant for workflows such as the ones used in neuroimaging
studies, which typically combine high levels of complexity,
heterogeneity (e.g., in numbers of files, nature/structure of
data) on the one hand, and, on the other, a high degree of
required expertise to assess their outputs. With respect to this,
to date, individual research groups may choose among different
strategies, essentially based on their size and allocated resources,
among which:

– organizing a local file repository and relying on core
tools/libraries, predefined procedures and adoption of best
practices.

– setting up a local management platform by building upon
some existing open-source or proprietary systems (or
developing it from scratch).

– subcontracting data management as a service, as included
in “Science in the cloud” solutions.

Different sets of technical solutions exist for each of these
approaches. In particular, initiatives such as BIDS (Gorgolewski
et al., 2016) or BIDS-Apps (Gorgolewski et al., 2017) play an
extremely valuable role in the spread of software-engineering
practices along the neuroimaging research workflow, with
beneficial consequences on reproducibility. The BIDS standard
has become, over the past years, a spearhead in the promotion
of FAIR principles (Wilkinson et al., 2016) by addressing
data findability, reusability, and interoperability across groups,
systems, and tools. As BIDS provides the formalism to organize
the data and metadata, data accessibility, for its part, requires
additional software that will generally include basic features
for data management and exploration. As two open-source
cloud-based solutions that have built upon BIDS, OpenNeuro
(Poldrack et al., 2013) and Brainlife.io (Avesani et al., 2019) are
iconic examples of platforms giving access not only to datasets
but also to online computational resources, giving substance
to the concept of virtual laboratory (Frisoni et al., 2011). As
such, the purpose of the “Science in the cloud” model is also
to facilitate data sharing and reproducibility by centralizing
resources for data storage, management, computation, and
QC in the neuroinformatics field. This model has begun to
spread (Redolfi et al., 2015; Manjón and Coupé, 2016; Kiar
et al., 2017; Glatard et al., 2018) and draws a promising
future for the community. Notwithstanding the preceding, it
may still fail to address immediate down-to-earth needs from
small to average-sized research groups, especially the ones
dealing with self-acquired imaging data. First, implementing
these frameworks or adapting them locally requires strong
IT skills and a specialized labor force, making it technically
out of reach for many groups with insufficient human
and/or computational resources, or without connection to large
consortia. Second, relying on existing open-access instances
is still hardly compatible with data confidentiality policies in
most studies, as these are rarely permissive enough to allow
upload to third-party platforms from the start. The basic
needs of the many research groups include, for instance, basic
data collection/querying/handling in average-sized datasets (e.g.,
up to several thousands of subjects), combined with further
exploration/review along most typical analysis workflows. It is
particularly compelling that in comparison to the magnitude
of efforts underway to assemble large imaging datasets, the
range of technical solutions to address such basic needs is
actually limited. As previously reported by Nichols and Pohl
(2015) and Shenkin et al. (2017), extensible neuroimaging
archive toolkit (XNAT) (Marcus et al., 2007), LORIS (Das et al.,
2010), and NIDB (Book et al., 2013) appear indeed as the
main existing open-source neuroinformatics software platforms
supporting data sharing.

Now that neuroscience has entered a propitious era of
data and computation, practical solutions are still required to
efficiently operate local databases and run tailored controls on
complex type-agnostic raw and processed data.

Quality control and data management are thus both
interrelated. They both have transversal impacts on the research
workflow, from the data acquisition to the analysis. Both if poorly
executed may have a strong negative impact on reproducibility.
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TABLE 1 | List of currently available resources intended for quality control of neuroimaging data (adapted from https://incf.github.io/niQC/tools).

Name References Data Technology Code repository

dashQC n/a fMRI, registration Javascript https://github.com/SIMEXP/dashQC_fmri/issues

qcApp n/a FreeSurfer Java https://github.com/ntraut/QCApp

qsiprep n/a DWI Python https://github.com/pennbbl/qsiprep

uniQC n/a fMRI Matlab https://github.com/CAIsr/uniQC

exploreDTI Leemans et al., 2009 DWI Matlab n/a

dtiprep Oguz et al., 2014 DWI C++ https://github.com/NIRALUser/DTIPrep

PCP-QAP Shehzad et al., 2015 T1w, fMRI Python https://github.com/preprocessed-connectomes-project/
quality-assessment-protocol

brainbox Heuer et al., 2016 segmentation Javascript https://github.com/OpenNeuroLab/BrainBox

exploreASL Mutsaerts et al., 2017 ASL Matlab n/a

mriqc Esteban et al., 2017,
Esteban et al., 2019a

T1w, fMRI Python https://github.com/poldracklab/mriqc

PALS Ito et al., 2018 T1w, fMRI Python https://github.com/npnl/pals

rtQC Heunis et al., 2019 fMRI Matlab https://github.com/rtQC-group/rtQC

visualqc Raamana, 2018 T1w, FreeSurfer Python https://github.com/raamana/visualqc

mindcontrol Keshavan et al., 2018 FreeSurfer Python, Javascript https://github.com/OpenNeuroLab/mindcontrol

AFQ-Browser Yeatman et al., 2018 DWI Python, Javascript https://github.com/yeatmanlab/AFQ-Browser

braindr (braindrles) Keshavan et al., 2019 snapshots Javascript https://github.com/OpenNeuroLab/braindr;
https://github.com/SwipesForScience/SwipesForScience

eddyqc/quad/squad Bastiani et al., 2019 DWI C (FSL) https://git.fmrib.ox.ac.uk/matteob/eddy_qc_release

fmriprep Esteban et al., 2019b fMRI Python https://github.com/poldracklab/fmriprep

qoala-t Klapwijk et al., 2019 FreeSurfer R https://github.com/Qoala-T/QC

snaprate Operto, 2019 snapshots Python, Javascript https://github.com/xgrg/snaprate

nisnap Operto and Huguet, 2020 snapshots Python https://github.com/xgrg/nisnap

As advocated in the neuroimaging community, e.g., by the
ReproNim initiative (Kennedy et al., 2019), core resources
may already exist but their use should be facilitated so as
reproducibility is achieved by design, not as an afterthought.
Such considerations have nurtured the development of a
novel infrastructure scheme–presented here–for imaging data
management and processing, focused on facilitating scalable
QC and aiming at maximizing the reuse of existing open core
tools/libraries.

This model was implemented and adapted to the needs
of a specific research program, namely, the ALFA project,
yet with concerns about lean development principles and
reusability. The ALFA project (Alzheimer’s and Families) is a
research platform started by the Barcelonaβeta Brain Research
Center (BBRC) for the prospective follow-up of a cohort of
cognitively normal subjects–most of which are the offspring
of AD patients. Extensive phenotyping of participants includes
cognitive assessment, lifestyle questionnaires, blood extraction
for further genetic analysis, cerebrospinal fluid collection,
positron emission tomography (PET) imaging, and multimodal
MRI examination performed on-site on a single Philips Ingenia
CX 3T scanner. The interested reader may refer to Molinuevo
et al. (2016) for a full description of the various arms of the
project and administered examinations. Since 2012 when BBRC
was created, its neuroimaging platform has been acquiring and
is currently managing data from over 5000 participants across
its different studies. Imaging protocols include standard MRI
sequences (with T1/T2/diffusion-weighted, inversion recovery,
and resting-state functional MRI), some more advanced ones

(arterial spin labeling, susceptibility-weighted imaging, and
quantitative flow, among others), and, for a subset of participants,
PET imaging–fluorodeoxyglucose (FDG) and flutemetamol. This
paper documents the core concepts and implementation of this
infrastructure for imaging data management, processing, and
control. The first section will detail the routine data flow at
BBRC, which this infrastructure partially supports. In a second
section, the paper will describe the different ways provided to
researchers of the group to interact with the platform. The third
section will focus on QC performed on large imaging datasets.
The fourth section will then elaborate on the employed strategy
to foster sustainability and reproducibility and describe principles
for future development.

BBRC: ANATOMY OF A SINGLE-SITE
IMAGING RESEARCH PLATFORM

Participants may be included in one of the hosted programs such
as the ALFA study, and get assigned with a unique accession
number (Figure 1). This accession number is represented
as a barcode and follows the participant through the whole
acquisition protocol, which, on a standard basis, includes full
neuropsychological evaluation, assessment of clinical history,
APOE genotyping, lifestyle questionnaires, blood sampling,
and–for a subset of individuals–cerebrospinal fluid extraction.
Structural and functional MRI is acquired on-site on a dedicated
MR scanner. Participants of the ALFA+ program undergo both
flutemetamol and FDG PET at the Hospital Clinic of Barcelona.
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FIGURE 1 | The Barcelonaβeta Brain Research Center: general view of the imaging data flow, from patient inclusion to data sharing. Imaging and non-imaging data
follow different data flows. Imaging sessions are automatically imported in XNAT from the in-house MR scanner and external PET camera. Processing workflows are
sent to computational resources from the Barcelona Supercomputing Center.

Imaging and non-imaging data are stored and managed in
two individual platforms. Non-imaging data are imported into
a relational database and follow a specific data flow that is
not described here. Imaging data are directly transferred from
the scanner to both a PACS archive and an XNAT platform.
Extensible neuroimaging archive toolkit (XNAT) (Marcus et al.,
2007) is the most broadly deployed open source system to
have emerged among imaging platforms in recent history. In
this context, the PACS archive is used for long-term backup
purposes, preserving a pristine copy of the acquired imaging
data, and for daily routine visual review and reporting by
radiologists, whereas XNAT is a much more flexible system
geared toward researchers, allowing transformation, automatic
processing, browsing, downloading, and eventually sharing.
A Clinical Trial Processor (CTP) service (Aryanto et al., 2012)
is run between the MR scanner and XNAT to ensure proper
de-identification of protected health information. Outsourced
PET imaging data are directly pulled from the acquisition site:
a daily daemon service pulls new imaging scans from an sFTP
server and pushes them to the PACS archive which then auto-
forward to XNAT (via CTP). The workflow is open to external
collaborators, who may also push data in independently managed
projects distinct from the ALFA study.

Once the data have been successfully imported into XNAT,
imaging sessions are routed to their corresponding XNAT
project/study and then taken through automatic workflows.
These workflows are managed by the XNAT Pipeline Engine,

which directly draws computational power from the Barcelona
Supercomputing Center1. Workflows include processing–e.g.,
involving all types of neuroimaging software or published
methods/algorithms–but also automatic controls based
on Validators, as described further in section “Generalized
Automatic Sanity Check/Quality Control.” This results in the
generation of derived images, numerical endpoints, or validation
reports. Along with the primary raw data, they form the body of
online available resources that users may reach by then logging
into the system.

This data flow is presented in Figure 1.

BETTER CONTROL ON DATA BY
PROVIDING MULTIPLE ACCESS WAYS

XNAT as the Infrastructure Core Engine
for Imaging Data Management
Among the most significant ones from the last decade,
neuroimaging projects like the Open Access Series of Imaging
Studies (Marcus et al., 2010), IMAGEN (Schumann et al.,
2010), the Human Connectome Project (Marcus et al., 2011),
the International Neuroimaging Data-sharing Initiative (Mennes
et al., 2013; Kennedy et al., 2016), the Adolescent Brain Cognitive
Development (Casey et al., 2018), the UK Biobank (Miller et al.,

1http://www.bsc.es
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2016), followed by the more recent ONDRI (Scott et al., 2020)
or EPAD (Ritchie et al., 2020), have all in common that their
respective infrastructures for data sharing are based on XNAT.
This not only confirms the status of XNAT as a central technology
but also highlights the opportunity of any model built around
XNAT in terms of reusability.

We chose to rely on XNAT as the core engine of our
infrastructure for imaging data. Among the few existing options
available, XNAT offers an adequate cost–benefit ratio for groups
of all sizes when comparing the complexity of implementation
to all of its built-in features. XNAT provides tools for common
management, user access, data processing, and sharing, thus
covering many aspects of the basic neuroimaging workflow.
It also includes a DICOM storage service (C-STORE SCP)
for receiving and sorting images from any DICOM-compliant
imaging device, which is essential for organizations managing
their own imaging equipment. User access to the archive is
provided by a secure web application. Workflow execution
is enabled by a Pipeline Engine, while XNAT maintains full
histories by tracking all changes to the data, thus enforcing
data traceability. Finally, XNAT implements a security system
that allows administrators to grant access to specific actions or
datasets following predefined user roles.

To date, XNAT is still under active development with strong
community-based support, aligning with current trends in the
community as shown by recent support for BIDS format and
containerized data processing (e.g., using Merkel, 2014). Most
users may operate the database and search the repository through
the built-in web-based application. Aside from this graphical
interface, XNAT provides a Representational State Transfer
(REST) Application-Program Interface (API) that allows users
to query the database and therefore programmatic interaction
with its contents. Furthermore, the pyxnat (Schwartz et al., 2012)
library capitalizes on this API and allows users to interact with
XNAT using Python.

We advocate that users should have multiple proposed ways
and be free to choose their preferred one to operate the platform,
as a greater flexibility in this regard is a stepping stone for
improved data review and issue tracking. With respect to this,
a few previous examples have built onto XNAT (Gee et al.,
2010; Harrigan et al., 2016; Job et al., 2017), often leveraging
its RESTful API (Schwartz et al., 2012; Gutman et al., 2014),
to extend its standard features and present new ones. Such an
approach stands out by its light footprint, relying on XNAT’s
core features without needing to touch its codebase, to the
mutual benefits of maintainability, dependability, portability, and
usability. In line with this approach, this present paper describes
a collection of lightweight solutions which together form an
adaptive modular ecosystem focused on user experience and
neuroimaging data QC.

Barcelonaβeta + XNAT: bx
Interacting with the data on XNAT can be done mainly in two
ways: either graphically using the web application or through a
REST API. While the former is suited for all profiles, the latter
is intended for a more technical category of users, allowing them
to automate bulk operations, e.g., downloading large collections
of data and populating projects or any type of systematic task

that would otherwise, using the web application, require many
manual operations. Version 1.7.5 of XNAT now includes a
Desktop Client that may be used to download collections of
images for instance from an entire study (or project in XNAT
jargon). Still, between “all clicks” and “all script” lies a large gray
zone with users who without being experienced coders may still
have some knowledge on how to use command-line tools. For
this special category, we wrote bx, which allows us to run from a
terminal among a predefined set of bulk operations using a single
command. This includes, for instance:

- downloading images of a given sequence over a project
in the NIfTI format (better suited to a majority of post-
processing software suites).

- downloading processing outputs over a project (e.g.,
segmentation maps, 3D models, etc.).

- downloading an Excel table with all numeric outcomes
from a given pipeline over a project.

- downloading a table with acquisition dates from an entire
project.

- in general, downloading any given type of resources over
an entire project.

In particular, to get a local copy of the results from FreeSurfer
recon-all pipeline (Fischl, 2012) over the entire XNAT project
ALFA, one would simply run:

bx freesurfer6 files ALFA

Destination folder is set in a locally stored configuration file
along with the user’s XNAT login credentials.

By extension, the following command:

bx freesurfer6 aseg ALFA

would generate a single spreadsheet file containing all
the structural volumes estimated by FreeSurfer (in aseg.stats
files). The current version (0.1.6) also includes, among others,
commands for SPM (Ashburner and Friston, 2005), ANTs
(Avants et al., 2009), FSL (Jenkinson et al., 2012), ASHS
(Yushkevich et al., 2015), and CAT (Gaser, 2016), with
subcommands for collecting output files, measurements yielded
by the pipeline, QC-oriented snapshots, validation reports,
or automatic test outcomes (as described later in section
“Generalized Automatic Sanity Check/Quality Control”).
Importantly, any command may be applied to an entire project,
one single MRI session, or also curated image collections2 relying
on discretionary criteria (e.g., based on clinical, genetic or
cognitive characterization, or any other external variable).

Such a tool thus provides an additional command-based
way to interact with the XNAT data which optimizes a
set of “frequent” use cases (based on user reports, like
bulk downloading pipeline outputs) while abstracting the
rest (i.e., obviating intermediate steps such as selection of
subjects/experiments/resources). Since it was built over pyxnat,
this makes it rather easy to get adapted to specific local
configurations (or additional resources).

2As inventoried by the command: bx lists.
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FIGURE 2 | Screenshots of the #xnat channel from the Barcelonaβeta Slack workspace. (Left) Monitors provide members of the channel with daily updates on the
current data available on the imaging platform without any user action. (Right) Basic human chatbot interactions give access to more specific statistics. In this
example, the user is querying for the progress over time of some processing task (with DTIFIT).

It is distributed as a PyPI package under the name bbrc-bx and
hosted on GitLab: https://gitlab.com/xgrg/bx.

Cron Jobs, Bots, and Monitors
In addition to bx-like scripts and XNAT’s standard interface,
daily summaries are delivered automatically through both
emails and instant messaging (IM). We built onto XNAT
email notification service so that subscribed users receive a
comprehensive sanity report (detailed in section “Generalized
Automatic Sanity Check/Quality Control”) for every new session
uploaded from the scanner. In parallel, automatic monitors
running on a Slack (Johnson, 2018) #xnat channel provides
authorized users with daily updates on numbers of available
subjects/raw sessions per project and available resources such
as processing outputs (derivatives) (left part in Figure 2). Such
automatic delivery systems complement standard user experience
by directly feeding with periodic statistics on the database, thus
allowing to check instantly on the system’s general integrity status
without user action. Users may also get further customized views
on this information through basic human-chatbot interactions,
e.g., longitudinal statistics. Figure 2 illustrates this integration:
on the left, members of the #xnat channel are updated every
day on available data, and on the right, users may ask about
the progress over time (daily numbers of a given resource)
of any pipeline on the platform. This approach may naturally
be adapted to other messaging systems (e.g., Mattermost, Riot,
Zulip, IRC) or project management tools possessing an API (e.g.,
Trello, Basecamp).

We advocate for giving users multiple controlled ways to
deal with data. XNAT RESTful API is one of the most powerful
features of its framework and allows to build a variety of access
modalities, each of which comes with pros and cons. For example,
the graphical user interface gives individual and comprehensive
control on the data, though manually operated; pyxnat adds a

programmatic interface to it and is, therefore, rather developer-
oriented; bx optimizes bulk downloading operations from scripts,
yet for a set of pre-selected resources; and IM-based tools
provide only high-level summarized information but add an
interactive and collaborative touch and nicely intertwine with
natural conversations among users.

“GIVEN ENOUGH EYEBALLS, ALL
GLITCHES ARE SHALLOW”3

Each step of an analysis workflow should ideally be paired
with specific checkpoints. Given the increasing quantity
and complexity of datasets, relying on automatic control is
imperative, but manual inspection can rarely be avoided.
The following approach aims at capitalizing on automatic
controls while allowing multiple users to jointly participate in
visual inspection.

Generalized Automatic Sanity Check/QC
In line with recent trending standards such as BIDS (Gorgolewski
et al., 2016) or NIDM (Keator et al., 2013), we present a validator-
based modular approach, which, in our current implementation,
covers image types such as T1-weighted, DWI, and PET images,
and processing outputs like FreeSurfer, SPM, and FSL DTIFIT,
and the approach may be easily extended to others. For each type
of data, we define a tailored procedure for QC. Such procedures
consist of predefined sequences of checkpoints: each checkpoint
(later referred to as Test) is associated with some particular
aspect of the data and would result either as passed or failed.
In this present implementation, every new imaging resource
pushed into the system is thus automatically taken through a QC

3Adapted from Raymond (1999)
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FIGURE 3 | (Left) Validators: concepts and classes. Validators and Tests all share the same template. Validators are defined by a list of Tests, which in turn yield
some Results. Each Results object embeds a main Boolean, which defines whether the Test was successful, and some additional data for logging purposes or
report generation. (Right) Example of a produced validation report (only the first page is displayed); the color code highlights the matching between sections of the
report and the corresponding concepts: green refers to Validators, each blue area corresponds to a Test, and Results are shown in red squares.

procedure adapted to the type of data. Checkpoints are defined
based on aspects of the data or metadata known to potentially
exhibit undesired variability, e.g., due to technical or human-
related factors. They may, for instance, include verifying that the
output of some process matches some expected list of files, that
some image parameters fall in specific intervals. Nevertheless,
the approach is designed so as to give the most flexibility and
scalability to the range of possible checkpoints. The use of a single
template for all checkpoints–each of them being documented
with human-readable specifications (e.g., detailed in each Test’s
docstring, as explained hereafter) and resulting in a binary
outcome–makes them easier to read and comprehend, especially
in code. As a result, every new imaging session is provided
with a checklist, by which the execution of further pipelines
may be conditioned. It is worth noting though that by being

designed as an independent command-line tool, any procedure
from this module may be executed, not only automatically, but
also manually upon request on any applicable dataset. The tool,
written in Python, is based on two nested concepts: Tests and
Validators (Figure 3).

A Validator is an object defined by a set of Test objects,
each of which would check specific traits of a given XNAT
entity (e.g., an incoming imaging session, or results from a
processing workflow). Validators are run like any other pipelines
by XNAT Pipeline Engine, triggered by some functional events
(e.g., archiving of a session and completion of a processing
pipeline, among others). The outputs from these series of checks
are stored as additional resources and would be used to infer,
either by visual review or programmatically, on the validity of the
target resource.
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A Test is defined by a run() and a report() function. The run()
function returns a Results() object that has two attributes, namely,
has_passed (Boolean) and data (list). This run() function may
target any resource, either an Experiment or a Scan (following
the XNAT terminology). Every Test has also two hardcoded
class-level attributes, namely, passing and failing, pointing at
two Experiments (or two 2-uples Experiment + Scan) from the
running XNAT instance on which the test should respectively
pass and fail [used for continuous integration (CI)]. Depending
on the test purpose, it may return Results(has_passed = True) or
Results(has_passed = False). One additional data argument may
be passed to the Results constructor to record extra information
(e.g., elapsed time) from the test execution.

In practice, running a Validator on a given experiment takes
its associated set of Tests and runs them sequentially. A Test
may apply to a Scan instead of an Experiment (e.g., checking that
DICOM files have been converted to NIfTI), in which case the Test
could be performed over all the existing Scans of the Experiment.
Upon failure of a Test, scan quality flags may be adjusted from
usable to questionable/not usable on XNAT. Once completed, the
Validator dumps the results data in a JSON record and generates
a Markdown-based PDF report (Figure 3). This report is built by
calling each Test’s report() function consecutively and compiling
their results in as many individual sections. By default, every
section includes the docstring attribute taken from every Test
class for the sake of traceability and self-sufficiency.

Both resulting PDF and JSON files appear on XNAT as
resources of the validated experiment, so that users may query
on them4 or dump them from the entire database, e.g., into a
single spreadsheet file5. This is made directly possible using bx
commands (section “Barcelonaβeta + XNAT: bx”) thanks to the
seamless integration between both tools.

One key strength of this model is its adaptability/genericity. It
allows rapid implementation of new Tests on any type of imaging
data provided it can be identified as an XNAT Experiment
or Scan. The actual performed verifications are stated in the
run() function and may hence use any required external library.
Another key advantage is the low cost associated with CI-
related maintenance. Regression testing is indeed critical for
the system to be sustainable as more checkpoints and more
data are added. Automated unit testing for CI is performed
after every new change in the code, based on the two class
attributes passing and failing provided for each Test. Every
single Test is thus systematically re-executed against two
specific cases after any change in the code. Along with this,
each generated report includes a reference to the last SHA
identifier issued by the version control system. As all Tests
share the same template, the testing code for CI requires no
updates and remains always adapted to any newly added Test.
Such a design yields to a unit-test-to-production-code ratio
currently under 1:30.

In our current implementation, Tests have so far covered
aspects related to both MR and PET acquisition and their

4For instance, using the following bx command: bx spm12 report
<project> (to download reports from SPM12 segmentations from a whole
XNAT project).
5The command would be: bx spm12 tests <project>.

post-processing derivatives. Supplementary Table 1 gives an
illustrative summary of currently implemented Tests, including
their associated docstrings to describe their purpose.

For example, every time a new PET session is imported to
XNAT, a PetSessionValidator is triggered. This Validator currently
includes a set of nine Tests. The first one, IsTracerCorrect,
checks that the tracer information is correctly registered in the
DICOM headers. The second one, IsSeriesDescriptionConsistent,
makes sure that metadata are consistent across the session;
then, IsScannerVersionCorrect checks in the DICOM headers
that the scanner model matches, in this case, “SIEMENS
Biograph64 VG51C”. Then, follow IsSubjectWeightConsistent
and IsTracerDoseConsistent controlling that the values registered
for subject’s weight and tracer dose match some target intervals
(between 40 and 150 kg and between 1.5e8 and 3.5e8 Bq,
respectively). Finally, the Validator runs IsSubjectIdCorrect to
ensure the subject’s ID has the right format; HasUsableT1,
which checks whether the subject has a valid T1-weighted
image stored on XNAT; and both IsCentiloidRunnable and
IsFDGQuantificationRunnable, which assess whether the data are
suited for the execution of two quantification pipelines.

Another example is ASHSValidator, which is triggered every
time some hippocampal subfield segmentation is executed
over an MR session (using the ASHS pipeline). The Validator
sequentially runs HasAllSubfields, which makes sure that
all expected subfields appear in the final segmentation;
HasCorrectASHSVersion controlling the software version;
HasCorrectItems checking that the list of generated files matches
the right one; HasNormalSubfieldVolumes, which assesses
whether resulting subfield volumes fall inside some safety
intervals; and ASHSSnapshot, which generates a snapshot of the
final segmentation (shown in Figure 4).

Other Validators include, for instance, ArchivingValidator
(triggered every time an MR session is imported/archived),
SPM12Validator, CAT12Validator, FreeSurfer6Validator,
ANTSValidator, and DTIFITValidator (triggered after every
execution of SPM12, CAT12, FreeSurfer6, ANTS, and FSL
DTIFIT, respectively). For a more comprehensive list of Tests,
Validators, and details on their purpose, the reader may refer
either to Supplementary Table 1 or directly to the code
repository for the latest version, as sharing the same template
[where each Test is a class with two test cases, a docstring, a
run(), and a report() function, as described above] makes them
easily readable.

The source code is released as an independent tool, bbrc-
validator, available as a PyPI package and code is hosted
on GitLab6.

Generating Summarized
Representations of Segmentation
Results: nisnap
Among the broad typology of outputs generated by most
neuroimaging analysis workflows, numeric and image-based
results are probably the most common. In particular, any
segmentation technique will generally yield either a label volume

6https://gitlab.com/bbrc/xnat/bbrc-validator
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FIGURE 4 | Snaprate: General user interface, running in a web browser. The upper part displays a zoomable snapshot (here a segmentation of hippocampal
subfields). The lower part shows a section for the review section and navigation controls, including links to XNAT and to other types of snapshots. Results from prior
checkpoints are also displayed in red (if failed) or green (if passed).

or probability maps to describe some target structures/objects,
possibly coming with some derived numeric descriptors, as this
is the case with standard software such as SPM or FreeSurfer for
cortical/subcortical segmentation. Despite some recent efforts to
predict it automatically (Klapwijk et al., 2019; Robinson et al.,
2019), the assessment of their performance is still relying mostly
on visual inspection. Pre-rendering summarized representations
of these results, or snapshots, instead of any manual procedure
involving standard visualization software (e.g., freeview, fsleyes,
BrainVisa/Anatomist, and mricron) is a way to minimize time
costs and risks of errors. To ease their generation from any
Python-enabled environment, we released nisnap (Operto and
Huguet, 2020). Through one main plot_segment() function, it
includes controls for opacity, layout, color map, plane/slice
selection, label picking, static, or animated rendering. Users may
also choose between contours or solid color rendering. Though it
also features a specific submodule for XNAT integration, nisnap
is designed to be used with any individual NIfTI images. The
function compiles a figure made of a selected set of slices, both
from the input segmentation and (if provided) the original image,
and renders an overlay of the former over the latter with the
desired options. Animated mode generates a GIF animation with
a fading effect on the segmentation. Eventually, an image file is
created at the specified location with the resulting snapshot.

The tool may be used from Python scripts or command-
line interfaces for offscreen rendering or from Jupyter notebooks
for real-time visualization. In our context, Validators rely
on nisnap to convert results from SPM, FreeSurfer, or
ASHS into snapshots which are then included in validation
reports (section “Generalized Automatic Sanity Check/Quality
Control”). Snapshots are then collected in a subsequent step
for visual review using snaprate (section “Assisted Visual QC:
snaprate”). Figure 4 shows an example of snapshot produced by
nisnap and displayed for review through snaprate.

nisnap is released as an independent tool, available as a PyPI
package and code is hosted on GitHub7.

Assisted Visual QC: snaprate
Automatic controls performed by Validators include generation
of snapshots (e.g., for segmentation results using SPM, CAT,
FreeSurfer, processing of diffusion-weighted imaging data using
FSL, and registration using ANTs, among others). Although
navigation is not enabled as it would be with a full-featured
NIfTI viewer, e.g., Papaya8, brainbrowser (Sherif et al., 2015),
and brainbox (Heuer et al., 2016), snapshots are lightweight

7http://github.com/xgrg/nisnap
8https://github.com/rii-mango/Papaya
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resources that are displayed instantly and easily cacheable at
runtime, hence resulting in optimized overall time of review.
Such rendered representations allow fine-grained customization
and are suited for the review of large collections of data.
Nevertheless, they can still not be checked in a fully automatic
way and generally require visual inspection. In particular, such
an approach involving tool-assisted visual review of summarized
versions of processing results has already been proposed, e.g.,
based on MR slices (Raamana, 2018) or pre-generated snapshots
(Keshavan et al., 2019). Some alternatives include features for
real-time NIfTI visualization and manual voxel labeling, thus
enabling crowdsourced reviews and corrections (Heuer et al.,
2016; Keshavan et al., 2018).

In line with this–and in order to minimize the burden
given to experts and optimize the review process–we present an
assisting tool (Figure 4) that naturally connects to the previously
described system, collects previously generated snapshots (along
with an optional predefined set of useful Test outputs), and
displays them within a multi-user collaborative web application.
Registered raters may navigate and assign each of them with a
descriptive comment and a quality score. Snapshots are produced
prior to the review process during automatic individual report
generation, described in the previous section. Rendering is done
based on either nilearn.plotting submodule (Abraham et al.,
2014) or nisnap (as described in section “Generating Summarized
Representations of Segmentation Results: nisnap”).

As snapshots are generated during the execution of Validators
and their corresponding Tests, they may then be displayed
along with the outcomes from those prior checkpoints. For
instance, segmentation results produced by SPM12 come with
prior Tests such as HasNormalVolumes (“do global gray/white
matter volumes fall inside predefined target intervals?”) or
SPM12SegmentExecutionTime (“did the pipeline take longer
than a given threshold?”). Such checkpoints may be displayed
under the snapshot to provide additional assistance to the review
process. One of them can be selected, at the user’s choice, so that
the navigation will jump from one failed case to the following
one. In case further inspection of a given case is required, a
direct link takes the user to the corresponding experiment on
the XNAT platform. Users are also allowed to switch between
pipelines/types of snapshots to assess their quality over the same
subject (Figure 4).

We present snaprate (Operto, 2019) in its particular XNAT-
centric software ecosystem. Nevertheless, the tool itself is
designed to work alone with any type of pre-generated
snapshots or figures. Here, image-based processing outputs are
represented as a collection of slices either from the original
images (e.g., fractional anisotropy or tensor maps from FSL
DTIFIT) or from the original T1-weighted images overlaid
with the segmentation/registration results (e.g., from SPM, CAT,
FreeSurfer, ASHS, ANTs) (Figure 4). Prior to the review, all
snapshots are extracted from reports and bulk downloaded into
a single folder using bx9. Then, snaprate operates as a web
application (using the Tornado10 Python web framework) on

9Using the command: bx snapshot <project>.
10http://www.tornadoweb.org

which users may log in using their individual browser. Every
action (addition/edit of any score/comment) is automatically
stored server-side as tabular data and may also be downloaded
locally as spreadsheet files.

Code is available on GitHub at: http://github.com/xgrg/
snaprate and a full demo can be found at http://snaprate.
herokuapp.com.

DISCUSSION

Recent decades have witnessed an increasing number of large
to very large imaging studies, prominently in the field of
neurodegenerative diseases. The datasets collected during these
studies form essential resources for the research aiming at new
biomarkers. Nevertheless, setting up a basic infrastructure to
collect, host, manage, process, review, and share those datasets
is still a hard task, especially for organizations with their own
imaging equipment, and the number of options in terms of
existing open-source software platforms for neuroinformatics
facilitating the seamless connection of an imaging scanner is
still quite limited. Larger projects may afford to develop their
own systems to serve these datasets, hence providing high-
performance and customized service (e.g., primary access to
the data, to computational resources, algorithms) to a restricted
set of users. However, such systems are rarely designed to
provide reusable solutions that could be easily adapted elsewhere.
As opposed to this, the approach described in this article
is characterized by its low footprint and high modularity,
hence facilitating selective reuse and allowing incremental
development. By low footprint, we suggest that the presented
components not only introduce little dependencies (i.e., essential
Python libraries) but also work with basic human-friendly
objects (e.g., spreadsheets, JSON files, JPEG images, and PDF
documents) making them again easily reusable independently.

The approach was implemented and is currently running in
the context of an individual research institution managing cohort
programs on risk factors and biomarkers of AD: the BBRC.
It may in itself serve as a practical example for organizations
with similar purposes. Such an empirical description, though,
may not substitute a proper comparative study, not presented
in this article, to assess the relative performance of this model.
Nevertheless, it was built following guiding principles taken from
best coding practices and software quality (e.g., extensibility,
reusability, minimum cost to develop, clear definition of purpose)
(Hoare, 1972). In that regard, all described components (bx,
nisnap, snaprate, bbrc-validator) include diligent automated
testing for CI (e.g., through sandboxed executions of most
commands), thus yielding code coverage rates consistently
over 90%. Additionally, as described in section “Generalized
Automatic Sanity Check/Quality Control,” each Test in every
Validator is, by definition, assigned with two imaging sessions,
one that is expected to pass and the other, to fail. This
not only complements the Test’s documentation by providing
the reader with genuine examples but also ensures that Tests
are systematically tested against real-life cases after every new
change in the code. It is also worth noting that those current

Frontiers in Neuroscience | www.frontiersin.org 10 April 2021 | Volume 15 | Article 63343882

http://www.tornadoweb.org
http://github.com/xgrg/snaprate
http://github.com/xgrg/snaprate
http://snaprate.herokuapp.com
http://snaprate.herokuapp.com
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-633438 April 11, 2021 Time: 10:47 # 11

Huguet et al. Management and QC of Large Neuroimaging Datasets

FIGURE 5 | General view on the XNAT-based ecosystem architecture. The different satellite tools described in this manuscript are represented with their mutual
interactions. Each of them is based on a specific type of user interaction, e.g., command line, scripts, web browser, and instant messaging (IM). Interaction with
XNAT (e.g., xnatbot, xnat-monitor, bx, nisnap) relies on the pyxnat library. Validators are run as pipelines and produce reports (calling nisnap for snapshot generation).
Snapshots are collected from any given XNAT project thanks to one of bx’s commands (snapshot) and passed to snaprate for visual quality assessment.

Validators (as the ones featured in Supplementary Table 1)
have been tailored to the needs of one specific organization
(e.g., checking the software version of a Philips MR scanner)
and may be considered neither comprehensive nor suited
for other institutions. However, the modularity and flexibility
of the system allow them to easily adapt them to their
respective contexts.

Another potential limitation of this present model is that by
mostly focusing on automatic outputs, it is not well-adapted
to handle manual corrections. In this version, workflows are
automatically launched and managed through the XNAT Pipeline
Engine, and their history is stored and searchable in the XNAT
database. Pipelines are defined by a set of dependencies and
conditions based on other pipelines and prior automatic tests.
Failing cases are then flagged and ignored in subsequent steps.
One drawback of this conservative approach is that failed cases
(failed workflows or QC) are simply discarded from further
analysis, resulting currently in a line loss of data that could
probably be harnessed if processed manually. On the other hand,
this strategy, by limiting manually input data/parameters, avoids
the creation of forks and makes traceability easier to control by
guaranteeing that any resource can only have a linear history.
In this respect, coupling the system to a solution like DataLad
(Wagner et al., 2019) to address version control may provide an
interesting avenue for improvement.

The overall system is built around XNAT, which is among
the most broadly deployed open source systems for managing

medical imaging data in research (Nichols and Pohl, 2015).
We then enriched the platform with QC-oriented features by
taking advantage of its REST API using Python (Schwartz et al.,
2012). QC is balanced between automatic tests and tool-assisted
visual inspection. On the one hand, automatic operations include
sanity checks, collection of quality metrics, quality prediction,
and generation of human-readable reports, all part of a single
module, bbrc-validator, which was designed to have new tests
easily added (and covered by CI automated testing). On the
other hand, visual inspection is based on collaborative review of
pre-rendered snapshots. Figure 5 illustrates this XNAT-centered
ecosystem as a whole.

With all neuroimaging studies growing in scale and
complexity, QA/QC has become a difficult task and a heavy
burden, which is managed in very heterogeneous ways
across research groups (depending on data type, sample
size, experience, and resource availability, among others).
Emergence of standardized QC methods is still required and
is currently hindered by the existing variety of acquisition
protocols (modalities and scanner manufacturers) or processing
pipelines. While efforts have been initiated by the community
in this regard–e.g., by the INCF Special Interest Group on
Neuroimaging Quality Control11 (niQC)–common frameworks
remain needed to make QC-related tasks easier and more
efficient, with enough practical flexibility to be adapted across

11https://incf.github.io/niQC/
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different contexts, and hence contribute to ongoing discussions
on standardization. Mistakes and errors are inevitable: such
a model as the one described in this paper does not claim to
eradicate them all, but to reduce their likelihood and severity by
punctuating workflows with tailored checkpoints and safeguards.
New caught inconsistencies get converted into new control
points, increasing general “test coverage rate” (Miller and
Maloney, 1963) across iterations, hence tending toward better
global data quality assessment in the long run–provided no
changes affect the data source.

We also think that such a model, by integrating a routine
automatic collection of quality-related parameters, on one side,
and a component for facilitated collaborative visual review, on
the other, may efficiently serve as a stepping stone for improved
automatic classifiers for QC and potentially contribute with new
crowdsourced quality metrics, as proposed by Esteban et al.
(2019a). Following this, one interesting future development
would be to connect snaprate to MRIQC’s automatic prediction
(Esteban et al., 2017).

On a different level, tools like monitors or bx are also based
on XNAT, through calls to its REST API using pyxnat, and as
such help in achieving customized and diversified user experience
with the database.

We hence present a collection of basic individual components
that, taken as a whole, form a novel ecological arrangement based
on strong core principles (lightweight, reuse of existing tools,
and reproducibility), which has shown efficiency in the context
of single-site imaging cohort studies conducted by an individual
research platform. Again, modularity makes it easy to take one
or several components and allow their reuse by other groups,
primarily the ones making use of large neuroimaging datasets
for their research.

Finally, some of the presented components such as snaprate or
nisnap are purely independent from XNAT since they are based
on source-agnostic snapshots and as such may be used in any
framework. The other ones are interfaced with the platform core
using a unique library, pyxnat (Figure 5), therefore making the
whole system virtually adaptable to other types of platforms just
by replacing the binding module. Nevertheless, by leveraging its
built-in features in particular for access right management, we
believe that having XNAT as a cornerstone of the model is bound
to have a downstream positive impact on data sharing (Herrick
et al., 2016), primarily in groups lacking the necessary technical
support (Poline et al., 2012; Haselgrove et al., 2014).

CONCLUSION

Quality control of neuroimaging datasets and their processed
derivatives is still an open problem in all cohort studies and
generally synonymous with heavy burden. Its strong dependence
on protocol specifications (i.e., study design, imaging protocol,
and processing workflows) hinders the adoption of standardized
approaches. Furthermore, the nature of subsequent analyses is
also linked to the right verification procedure to implement
and the same dataset may have to go through different QC
passes depending on the final research question. To cope with

this, a substantial amount of intermediate control steps may be
automatized, as described in this paper, while the remaining
needed visual inspection may be facilitated by integrated
collaborative semi-automatic tools. As both aspects are tightly
interconnected, all these QC procedures must be supported
by some flexible and efficient data management strategies. We
showed in that context that, capitalizing on existing components
and by only adding some light interaction layer between them,
user experience in accessing data can be diversified and thus
fit with a variety of user profiles. Hence, providing improved
access to data at its source is bound to give way to better analysis
workflows in terms of traceability and reproducibility. All these
components take part in a whole ecosystem that has been
assembled and is currently running at the BBRC, an individual
research unit managing cohort research programs on AD. By
its modularity and the lightweight footprint/reusability of its
parts, this ecosystem may be easily adjusted and/or augmented
in accordance with other research groups’ needs.
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Segmentation of brain images from Magnetic Resonance Images (MRI) is an

indispensable step in clinical practice. Morphological changes of sub-cortical brain

structures and quantification of brain lesions are considered biomarkers of neurological

and neurodegenerative disorders and used for diagnosis, treatment planning, and

monitoring disease progression. In recent years, deep learning methods showed an

outstanding performance in medical image segmentation. However, these methods

suffer from generalisability problem due to inter-centre and inter-scanner variabilities

of the MRI images. The main objective of the study is to develop an automated

deep learning segmentation approach that is accurate and robust to the variabilities

in scanner and acquisition protocols. In this paper, we propose a transductive transfer

learning approach for domain adaptation to reduce the domain-shift effect in brain

MRI segmentation. The transductive scenario assumes that there are sets of images

from two different domains: (1) source—images with manually annotated labels; and

(2) target—images without expert annotations. Then, the network is jointly optimised

integrating both source and target images into the transductive training process to

segment the regions of interest and to minimise the domain-shift effect. We proposed

to use a histogram loss in the feature level to carry out the latter optimisation problem.

In order to demonstrate the benefit of the proposed approach, the method has been

tested in two different brain MRI image segmentation problems using multi-centre and

multi-scanner databases for: (1) sub-cortical brain structure segmentation; and (2) white

matter hyperintensities segmentation. The experiments showed that the segmentation

performance of a pre-trained model could be significantly improved by up to 10%. For

the first segmentation problem it was possible to achieve a maximum improvement from

0.680 to 0.799 in average Dice Similarity Coefficient (DSC) metric and for the second

problem the average DSC improved from 0.504 to 0.602. Moreover, the improvements

after domain adaptation were on par or showed better performance compared to

the commonly used traditional unsupervised segmentation methods (FIRST and LST),

also achieving faster execution time. Taking this into account, this work presents one

more step toward the practical implementation of deep learning algorithms into the

clinical routine.

Keywords: deep learning, domain adaptation, magnetic resonance imaging, brain, segmentation, sub-cortical

structures, white matter hyperintensities, transductive learning
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1. INTRODUCTION

Medical image segmentation is a pivotal task in diagnosis,
treatment, and surgical planning, and monitoring disease
progression over time. Quantification of brain structures and
brain lesions from Magnetic Resonance Images (MRI) is crucial
as they are biomarkers for neurological and neurodegenerative
disorders. However, manually annotating MRI images is a time-
consuming and a laborious task, which has to be done by
experts with knowledge in disease-specific aspects and anatomy.
Therefore, there is a need for accurate and automated methods
to carry out different segmentation problems in brain MRI—
e.g., brain structure (González-Villà et al., 2016), multiple
sclerosis (MS) (García-Lorenzo et al., 2013), and brain tumour
(Bakas et al., 2018).

In recent years, deep learning methods—in particular,
Convolutional Neural Networks (CNNs)—have shown a
remarkable advance in the field of brain MRI segmentation
for many different applications (Akkus et al., 2017; Bernal
et al., 2019). Unlike the traditional hand-crafted features, CNNs
learn task-specific features directly from observed data (LeCun
et al., 2015). Most CNN based approaches for medical image
segmentation in literature are usually trained and tested with
images that share common characteristics—the same scanner
and acquisition protocol. However, the performance of such pre-
trained networks decline when tested on images with different
MRI characteristics, i.e., images from a different domain (MRI
scanner, protocol). Deep learning methods cannot generalise
to unseen domains where the image scans vary in brightness,
contrast, and resolution. Therefore, the network has to be re-
trained using the images from this new domain, requiring expert
annotated labels. This commonly faced issue is known as the
domain-shift problem, which hinders the applicability of deep
learning methods in practice. Moreover, the data-driven nature,
which demands a vast amount of expert annotated images, often
makes fully retraining a CNN impossible.

Transfer learning strategy is an effective way to adapt a
pre-trained neural network to a new domain. This procedure
consists in retraining only a few last layers, which can be
done using a remarkably smaller number of annotated images
(Ghafoorian et al., 2017; Valverde et al., 2019). However, it is not
always possible to obtain even a few images to perform transfer
learning for domain adaptation. Therefore, other unsupervised
domain adaptation methods are active research topics in medical
image analysis. A recent work of Orbes-Arteainst et al. (2019)
proposed an unsupervised domain adaptation approach in a
similar fashion to transfer learning with teacher-student learning
strategy. The authors used knowledge-distillation technique
where a supervised teacher model is used to train a student
network by generating soft labels for the target domain.

In general, unsupervised domain adaptation methods could
be categorised into: (1) image-level, where the images of
two domains are harmonised to share similar characteristics;
and (2) feature-level approaches where the CNN itself is
adapted to be more invariant to different imaging domains.
Common approaches for the image-level domain adaptation
include traditional pre-processing steps (Shah et al., 2011;

Fortin et al., 2016). One of the common challenges of
the traditional approaches include image artefacts that may
appear during intensity transformations that reduce the image
quality. Moreover, it was shown (Kushibar et al., 2019) that
approaches such as standardising images using the Nyúl
histogram matching (Nyúl et al., 2000) or mixing datasets from
different domains during training cannot overcome the effect of
the domain-shift.

More complex Generative Adversarial Networks (GAN)
(Goodfellow et al., 2014) based approaches have also been
introduced for translating images into a new target domain.
However, most of the works in the literature propose synthesising
images from a different imaging modality. For example, Huo
et al. (2018), utilise CycleGAN framework to generate CT images
from MRI to allow splenomegaly segmentation without using
manual annotation on CT. Also, Zhang et al. (2018) proposed
a modified CycleGAN approach for multi-organ segmentation
on X-ray images using Digitally Reconstructed Radiographs
by performing pixel-to-pixel style transfer from one modality
to another. Although such approaches have shown promising
results, there is still a lack of GAN based methods for single-
modality image harmonisation.

Some feature-level domain adaptationmethods have also been
proposed in recent years. Such methods employ a transductive
learning strategy for domain adaptation. In the transductive
scenario, the images without expert annotations from unseen
domain are included in the training process with the aim
to minimise the domain-shift effect. Adversarial training of
the network is a well-known transductive learning method.
Similarly to GAN architectures, the training strategy consists
of two network paths: one for classifying the input patch,
and another to force the network to learn domain-invariant
features by discriminating source and target domains. Recent
work of Kamnitsas et al. (2017) utilises an adversarial training
approach for unsupervised domain adaptation from Gradient
Echo images to Susceptibility Weighted Images for brain lesion
segmentation task. Moreover, an adversarial domain adaptation
from Whole Slide pathology to Microscopy images has been
studied in Zhang et al. (2019). Chen et al. (2020) proposed
simultaneous image to image translation and domain alignment
between CT andMRI images using amodification of a CycleGAN
for cardiac and abdominal multi-organ segmentation. However,
more investigation is needed for the adversarial training for
domain adaptation for a scenario where the domain difference
is subtle—i.e., multi-site and single-modality images.

There are some drawbacks of GAN based and adversarial
training strategies. These methods are usually formulated as a
competition between two agents: discriminator and segmenter
(Yi et al., 2019). In general, the objective for the latter can
vary according to the task (e.g., it is called generator for image
synthesis), but in most cases the objective of the former is to
differentiate between two distributions. In this non-convex min-
max formulation, the training of the network can be difficult and
unstable, which requires a careful selection of architecture, weight
initialisation, and hyper-parameter tuning (Roth et al., 2017).
For example, Li et al. (2020) proposed an adversarial approach
for single modality domain adaptation with flip-label technique
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where the labels of the discriminator model were partly inverted
during training to minimise over-fitting.

Other feature-level transductive domain adaptation methods
perform domain distribution discrepancy minimisation to learn
domain-invariant features. Most of the advancements of such
approaches are done for computer vision with natural images
(Damodaran et al., 2018; Rozantsev et al., 2018; Kang et al.,
2019). However, only a few works have been proposed in medical
imaging field for single-modality images. One of the recent
domain adaptation approaches is the work of Ackaouy et al.
(2020) for multi-site brain multiple sclerosis lesion segmentation.
The authors adopted a joint distribution optimal transport
framework proposed in Damodaran et al. (2018) to compare
the source and target distributions and bring them closer in
a feature-level.

In this paper, we propose a feature-level transductive domain
adaptation method that can be trained without extensive
hyper-parameter tuning. Similarly to Ackaouy et al. (2020),
our proposed method aligns the network feature distributions
between two different domains by forcing the convolutional
and fully connected layers to produce similar activation maps
by minimising the histogram distribution differences. The
images from a new domain are incorporated within training
transductively and do not require expert annotated ground
truths. To show its robustness and applicability, we utilise
and evaluate our domain adaptation approach for two active
brain MRI segmentation problems—brain sub-cortical structure
segmentation and brain White Matter Hyperintensities (WMH)
segmentation. We compare the performance of our proposal
with segmentation results without domain adaptation as well as
the unsupervised state-of-the-art approaches for each problem:
(1) FIRST (Patenaude et al., 2011) for sub-cortical structure
segmentation; and (2) LST (Schmidt and Wink, 2019) for WMH
lesion segmentation.

2. DATASETS AND PRE-PROCESSING

We used publicly available and in-house datasets to test
the performance of our proposed method for the selected
segmentation tasks. Internet Brain Segmentation Repository1

(IBSR) and Multi-Atlas Labelling Challenge (MICCAI2012)
datasets (Landman and Warfield, 2012) were used for the
sub-cortical structure segmentation problem. For the WMH
segmentation, one dataset comes from an international WMH
lesion segmentation challenge (Kuijf et al., 2019), and another
from the Vall d’HebronHospital Centre (Barcelona, Spain). More
information for each dataset is given below.

2.1. Sub-cortical Brain Structure
Segmentation
2.1.1. Motivation
The sub-cortical structures are located beneath the cerebral
cortex and include the thalamus, caudate, putamen, pallidum,
hippocampus, amygdala, and accumbens. Their deviations in
volume over time are considered as biomarkers of neurological

1https://www.nitrc.org/projects/ibsr.

diseases such as bipolar disorder (Frazier et al., 2005), Alzheimer’s
(De Jong et al., 2008), schizophrenia (Rimol et al., 2010),
Parkinson’s disease (Mak et al., 2014), multiple sclerosis
(Houtchens et al., 2007), and are used for pre-operative
evaluation and surgical planning (Kikinis et al., 1996), and
longitudinal monitoring for disease progression or remission
(Storelli et al., 2018). The volumes of the sub-cortical structures
differ drastically, in average, 8,500 and ≈ 550 mm3 for largest
thalamus and smallest accumbens structures, respectively. This
makes the segmentation task more challenging by introducing an
unbalanced class problem.

2.1.2. Multi-Atlas Labelling Challenge—MICCAI 2012
The MICCAI 2012 dataset consists of 35 T1-w images in total
with 15 training and 20 testingMRI scans. In our experiments, we
used the 20 testing set only for testing purposes and they were not
included in the training or validation processes in order to follow
the rules of the Multi-Atlas Labelling challenge. All T1-w scans
have 1mm3 isotropic resolution and image dimensions are 256×
256 × 256 voxels. All images in this dataset were acquired using
the same Siemens (1.5 T) MRI scanner. Manually annotated
ground truth masks were provided for 134 structures in total,
from which 14 classes were extracted for the seven sub-cortical
structures corresponding to the left and right hemispheres.

2.1.3. Internet Brain Segmentation Repository—IBSR
The IBSR dataset contains 18 T1-w images in total which
are publicly available under the Creative Commons: Attribute
license (CC-BY, 2020) as part of the Child and Adolescent
Neuro-Development Initiative (CANDI) (Kennedy et al., 2012).
The image volumes in this dataset come in three different
resolutions—0.84×0.84×1.5, 0.94×0.94×1.5, and 1 × 1 ×

1.5mm3—and were acquired using two differentMRI scanners—
GE (1.5 T) and Siemens (1.5 T). Manual annotations for all IBSR
images were provided by the Center for Morphometric Analysis
at Massachusetts General Hospital and consist of 43 different
structures in total (Rohlfing, 2012). For our experiments, we
selected the 14 labels corresponding to seven sub-cortical
structures with left and right parts separately.

2.2. White Matter Hyperintensity Lesion
Segmentation
2.2.1. Motivation
White Matter Hyperintensities are brain lesions that appear
bright in T2-weighted and Fluid Attenuated Inversion Recovery
(FLAIR) sequences. The presence of the WMH lesions can be
from different factors including small vessel disease (Van Norden
et al., 2011), multiple sclerosis (Kutzelnigg et al., 2005), stroke
or dementia (Debette and Markus, 2010). Monitoring the lesion
load and appearance of new lesions is important for diagnosis,
longitudinal analysis, and treatment planning (Polman et al.,
2011). In contrast to the sub-cortical structure segmentation task,
WMH lesions can appear anywhere in the brain within the white
matter and can be of different shape and size. Taking into account
the importance of lesion load quantification as biomarkers for
different neurodegenerative disorders, this task is a relevant and
a challenging segmentation problem.
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2.2.2. White Matter Hyperintensities Segmentation

Challenge—WMH 2017
The WMH 2017 dataset provides T1-w and FLAIR scans for 60
patients in total and were acquired from three different sites2: (1)
UMC Utrecht—3T Philips Achieva with 1 mm3 isotropic T1-w
and 0.96×0.95×3.0mm3 resolution FLAIR sequences; (2) NUHS
Singapore—3 T Siemens TrioTimwith 1mm3 isotropic T1-w and
1.0 × 1.0 × 3.0 mm3 resolution FLAIR sequences; and (3) VU
Amsterdam—3 T GE Signa HDxt with 0.94 × 0.94 × 1.0 mm3

T1-w and 0.98 × 0.98 × 1.2 mm3 resolution FLAIR sequences.
All T1-w volumes were re-sampled to their corresponding FLAIR
images. Ground truth labels for the WMH lesions were manually
annotated and peer-reviewed by experts (Kuijf et al., 2019).

2.2.3. In-House Dataset—Vall d’Hebron Hospital,

Barcelona (VH)
This dataset contains MRI images for 28 patients with clinically
isolated syndrome or early relapsing multiple sclerosis. All MRI
scans were acquired in the same 3T Siemens TrioTim scanner
that include T1-w and FLAIR images with 1.0 × 1.0 × 1.2 and
0.49 × 0.49 × 3.0 mm3 resolutions, respectively. Similarly to
the WMH 2017 dataset, all T1-w images were re-sampled to
their corresponding FLAIR sequences. The WMH lesions were
manually annotated and peer-reviewed by experts from the Vall
d’Hebron Hospital centre. The MRI volumes were included in
this dataset after the patients gave their informed consent which
was approved by the Institutional Review Board.

3. METHODS

3.1. CNN Architecture
In this work, to study the domain-shift problem and to evaluate
our transductive domain adaptation approach, we took the
recent architecture proposed in Kushibar et al. (2018), which
achieved state-of-the-art performance for sub-cortical brain
structure segmentation. The CNN is shown in Figure 1 and
consists of three paths to process 2D patches of size 32 ×

32. Each path is equipped with five convolution layers, which
are followed by a fully connected layer. The outputs of these
paths are concatenated together with an additional 15 units
corresponding to atlas probabilities for the 14 sub-cortical brain
structures and the background. According to Kushibar et al.
(2018), incorporation of the atlas probabilities as spatial prior to
guide the network significantly improved the performance. For
the case of WMH lesion segmentation the number of units for
the atlas probabilities is changed to three, which correspond to
white matter, grey matter, and cerebro-spinal fluid probabilities.
Finally, it is followed by fully connected layers to mine and
classify the produced output from the preceding layers. Three
2D patches are extracted for every voxel from the axial, sagittal
and coronal views of a 3D volume, making 2.5D patch samples.
Next, each orthogonal 2D patch of the 2.5D sample is inputted to
the three paths of the CNN. Although full 3D patches contain
more surrounding information per voxel, it is more memory-
demanding than using 2D patches in voxel-wise segmentation

2https://wmh.isi.uu.nl.

setup. Therefore, employing 2.5D patches is a good trade-off
between memory and contextual information for the network
(Kushibar et al., 2018).

3.2. Pre-processing
Some commonly used image pre-processing techniques were
applied to all of the images in the four datasets. First of all,
we non-linearly registered atlas probabilities to the images using
the fast free-form deformation method (Modat et al., 2010) that
was implemented by the NiftyReg tool3. We used the well-
known Harvard-Oxford probabilistic atlas (Caviness Jr et al.,
1996) distributed with the FSL (v5.0) tool4. Note that the
number of probabilistic maps for the structure segmentation
problem is 14, whereas it is 3 for the WMH lesion segmentation
which correspond to the three tissue types. In the next step,
we skull-stripped all the MRI volumes—i.e., removed non-brain
structures, such as the eyes and skull—using the ROBEX (v1.2)
tool (Iglesias et al., 2011). Additionally, we performed bias-field
correction to remove intensity inhomogeneities from the images
using the FSL-FAST tool. All subject volume intensities were
normalised to have a zero mean and unit variance before training
and testing the pipeline. Note that the images provided in WMH
2017 Challenge were already bias-field-corrected, co-registered,
and the 3D T1-weighted images were aligned (re-sampled) with
the FLAIR images by the organisers (Kuijf et al., 2019).

3.3. Initial Training
Before adapting the network to a new domain for a certain
task, we assume that the network is pre-trained for the same
segmentation problem. Therefore, in this section, we describe
how the initial training was done for each segmentation task.

For the sub-cortical structure segmentation problem, we
used the same initial training process as described in Kushibar
et al. (2018). All samples were extracted from the 14 sub-
cortical structures, and the background (negative) samples were
selected only from the structure boundaries within a five-voxel
margin. Extracting the negative samples in this way allows
the network to learn the most difficult areas of the region
of interest that correspond to the structure borders. Next, the
atlas probabilities for 14 structures and the background are
extracted, corresponding to all training samples and making a
vector of size 15. These probabilities provide the network with
spatial information and guide it to overcome intensity-based
difficulties in some MRI volumes such as imaging artefacts and
abnormalities caused by neurological diseases as black holes that
appear next to the structures (Kushibar et al., 2018).

For the WMH lesion segmentation task, we used a cascaded
training strategy as described in Valverde et al. (2017), where the
network was trained in two stages. In the first step, the network
is trained with a balanced number of samples extracted from all
lesion voxels and an equal number of negative voxels randomly
selected from non-lesion parts of the brain. Then, the same set
of training images is segmented to obtain initial lesion masks.
In the second stage, the network is also trained with a balanced

3http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg.
4http://www.fmrib.ox.ac.uk/fsl.
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FIGURE 1 | The CNN architecture has three convolutional branches and a branch for spatial priors. 2D patches of size 32× 32 pixels are extracted from three

orthogonal views of a 3D volume. For sub-cortical structure segmentation, the spatial prior branch accepts a vector of size 15 with atlas probabilities for each of the

14 structures plus the background, whereas for the WMH lesion segmentation the vector size is three corresponding to white matter, gray matter and cerebrospinal

fluid. Histogram loss is computed from the activation maps of the layers, highlighted with dashed blue rectangles. (A) CNN pipeline; (B) Convolutional layers.

set containing all lesion samples, however, the negative samples
are extracted only from the voxels that were incorrectly classified
in the first segmentation stage. This step is equivalent to a false
positive reduction step.

For both tasks, the training samples were extracted along with
their atlas probabilities, and randomly split into training and
validation sets with 75 and 25% proportions, respectively. The
training of the network was performed in batches of 128 for 200
epochs. An early-stopping protocol was defined with patience
20—i.e., the training stops if no increase was observed in the

validation accuracy for 20 consecutive epochs. Optimisation was
conducted for the categorical cross-entropy loss function using
the Adam optimisation method (Kingma and Ba, 2014) with a
learning rate of 10−2.

3.4. Transductive Domain Adaptation
In the problem of domain adaptation we refer to source and
target domains, where the former is the image domain with
ground truth labels used in the initial training phase and the latter
represents the new image domain without ground truth masks.

Frontiers in Neuroscience | www.frontiersin.org 5 April 2021 | Volume 15 | Article 60880892

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kushibar et al. Transductive Transfer Learning for Domain Adaptation

When looking at the activation maps of the convolutional layers
extracted for source and target, we can observe the differences
in intensity distributions as shown in Figure 2. As can be seen
in Figure 2A, the magnitude of the activation maps for the
source appear brighter compared to the target (Figure 2C). This
demonstrates how the domain-shift problem affects the CNN
in the feature level. Thus, the fully connected layers, which
are used to mine these extracted features, cannot generalise
to a different domain. When performing traditional transfer
learning by re-training the last few layers of the network, we
are adapting the fully connected part to better interpret the
changes shown in Figures 2A,C. However, ground truth labels
are not always available to perform such transfer learning for
domain adaptation.

In this paper, we propose an alternative approach to
traditional transfer learning by adapting the feature maps in
the network instead of retraining the last few layers. Figure 3
illustrates the transductive training process pipeline. First,
features maps are extracted from several layers of the CNN
for source and target training images. Then, the activation
maps from the source domain are mapped to the features of
target domain using a histogram matching technique. Next, we
calculate the distance from the original source features to the
histogram matched feature distributions. This difference is back-
propagated as a histogram loss to encourage the network to
produce feature maps similar to the target.

Let Li be the layers of the CNN that we want to apply the
histogram loss, and let us define Ai and Bi as the activation maps
from the source and target samples for the ith layer, respectively.
Then, the histogram loss is computed as:

Lhist =

L
∑

i

LogCosh(Ai,H(Ai,Bi)), (1)

where, H(·, ·) is a function that applies a regular histogram
mapping from source Ai to Bi target, and LogCosh is a logarithm
of hyperbolic cosine that mostly works like the mean squared
error but less affected by occasional large differences in the
feature maps. In this form, the histogram loss is differentiable,
and the loss can be computed easily by storing the histogram
matched matrices for Ai in memory. Moreover, with this
approach, the images from the target domain are included in
training in a transductive manner in the feature level with no
requirement for ground truth labels. An example of histogram
matched feature maps of the source samples is shown in
Figure 2B. Here, we can observe that the spatial integrity is
the same as the original features (Figure 2A) and the intensity
distribution is similar to the target features (Figure 2C).

Note that overall, we aim to minimise the following
loss function:

Ltotal = Lce + λLhist , (2)

where Lce is a cross-entropy loss and λ is a hyper-parameter to
weight the effect of the histogram loss. The cross-entropy loss
is computed using the source images with ground truth labels.
Inclusion of this term is important to make the network learn to

adapt to the changes in the feature maps after the histogram loss
takes effect.

In our experiments, setting λ to be 1.0 showed the best
results. Also, it has to be noted that the performance of the
method was not very sensitive to the values within 1 ± 0.6.
However, much larger or smaller values caused overshooting
or diminished the effect of histogram loss during training. One
could increase or decrease this weight out of the suggested range
when applying for a different task that was not addressed in
this study to change the influence of the histogram loss. The
learning rate was reduced to 10−4 to avoid rapid weight updates.
Applying histogram matching per sample could be limited due
to the variance of histograms from different locations in the
brain. Therefore, the histogram loss is computed over a batch—
in our case batches of 32—hence, the loss is computed over a
distribution rather than per sample, which we note as a necessary
requirement. We empirically chose the last three convolutional,
and all fully connected layers except for the last classification
layer to compute the histogram loss as shown in Figure 1 with
dashed blue rectangles. For both segmentation tasks, using only
one image from source and target sets was sufficient to perform
the domain adaptation.

3.5. Network Testing
To perform a segmentation with a trainedmodel, all 2.5D patches
and corresponding atlas probabilities are extracted from an MRI
volume, then passed through the CNN to obtain a probability
map for each patch.

For the sub-cortical structure segmentation, the final label
is defined using the argmax function. For this task, we used
patches only from a region of interest (ROI) defined by a mask
from the dilated atlas probabilities of the structures. In doing so,
we were able to speed up the segmentation process drastically
because the sub-cortical structures are located in the central
part of the brain. Since the network is well trained to classify
the borders of the structures, there may appear some wrongly
classified voxels, which are removed by keeping only the largest
volume for each class.

For WMH lesion segmentation, we use all the available brain
patches because lesions can be in any place in the brain within
the white matter. The obtained output probability maps from
the CNN are thresholded to produce binary outputs with lesion
candidates. Then, all lesion candidates that are outside the white
matter defined by the registered probabilistic atlas, as well as
candidates that have a volume less than 3 mm3 are removed
(Filippi et al., 2016).

3.6. Experiments and Evaluation
In this section, we describe the experimental setups used to test
our approach for the two different segmentation tasks.

For the sub-cortical structure segmentation problem, we set
up two pre-trained baseline models with MICCAI 2012 and IBSR
dataset images as source. Then, domain adaptation was carried
out in three ways: (1) from IBSR baseline to MICCAI 2012; (2)
from MICCAI 2012 baseline to IBSR-GE; and (3) from MICCAI
2012 baseline to IBSR-SIEMENS. We separated the IBSR dataset
into the IBSR-GE and IBSR-SIEMENS sub-groups according to
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FIGURE 2 | Illustration of some activation maps for (A) source, (B) source after applying histogram matching to the target, and (C) target. Here, 36 example activation

maps from the third convolutional layer are shown with the “seismic” color-map to visually emphasise the differences in magnitudes of the activation maps.

FIGURE 3 | Transductive domain adaptation training pipeline using histogram loss. Ai and Bi are feature maps extracted from the ith layers of the CNN. L is the

number of layers on which the histogram loss is computed. Segmentation loss, in our case cross-entropy loss, is computed using the source ground truth (GT) labels.

LC (LogCosh)—logarithm of hyperbolic cosine function.

the scanner manufacturer. This division was done to perform
evaluation using the images with inter-scanner variability.

For the WMH lesion segmentation task we defined two pre-
trained baseline models with WMH 2017 and VH dataset images
as source. Then, we applied domain adaptation in four ways: (1)
from WMH 2017 model to VH; (2) from VH model to UMC
Utrecht site; (3) from VH model to Singapore site; and (4) from
VHmodel to VU Amsterdam site.

Performing the domain adaptation for this experimental setup
ensures that the source and target domains are different, and
offers a realistic application of our proposal.We also compare our
results with well-known unsupervised segmentation methods for
both tasks. For the sub-cortical structure segmentation, we used
the FSL-FIRST with default parameters, whereas forWMH lesion
we used the LST method with κ thresholds empirically set to 0.4

and 0.1, which showed the best segmentation result for VH and
WMH 2017 datasets, respectively.

For the sub-cortical structure segmentation task we reported
the Dice Similarity Coefficient (DSC), since it is the most
commonly used metric in the literature. The DSC is an overlap
measurement that shows how well the automated segmentation
is aligned with the gold standard; zero being no overlap and
1.0 full overlap. For the WMH lesion segmentation, along with
the overlap DSC measure, we also used the common metrics
of detection—True Positive Rate (TPR) and False Positive Rate
(FPR)—which indicate the method’s performance for detection
and correct classification of the lesion candidates. Both the TPR
and FPR values range between zero and one, where higher values
are better for TPR and lower is better for FPR. Also, we used the
common F-score metric that incorporates both measures to show
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TABLE 1 | DSC results with standard deviations for the pre-trained baseline model without domain adaptation, transductive domain adaptation (TDA), and unsupervised

FIRST method for two-way validation: from IBSR to MICCAI 2012; from MICCAI 2012 to IBSR-SIEMENS; and from MICCAI 2012 to IBSR-GE.

IBSR to MICCAI 2012 MICCAI2012 to IBSR-SIEMENS MICCAI 2012 to IBSR-GE

Baseline TDA FIRST Baseline TDA FIRST Baseline TDA FIRST

Tha.L 0.301 ± 0.195 0.843 ± 0.028* 0.889 ± 0.017 0.842 ± 0.029 0.873 ± 0.023 0.892 ± 0.022 0.681 ± 0.102 0.699 ± 0.111* 0.894 ± 0.015

Tha.R 0.085 ± 0.203 0.857 ± 0.022* 0.890 ± 0.018 0.823 ± 0.026 0.886 ± 0.016 0.889 ± 0.014 0.701 ± 0.108 0.736 ± 0.124* 0.882 ± 0.011

Cau.L 0.867 ± 0.052 0.861 ± 0.057 0.797 ± 0.117 0.862 ± 0.020 0.887 ± 0.014 0.805 ± 0.028 0.801 ± 0.074 0.836 ± 0.046* 0.771 ± 0.047

Cau.R 0.873 ± 0.040 0.865 ± 0.044 0.837 ± 0.046 0.860 ± 0.011 0.864 ± 0.015 0.892 ± 0.016 0.828 ± 0.029 0.834 ± 0.025 0.860 ± 0.026

Put.L 0.888 ± 0.023 0.893 ± 0.022 0.860 ± 0.080 0.891 ± 0.024 0.888 ± 0.032 0.872 ± 0.016 0.852 ± 0.046 0.833 ± 0.053 0.867 ± 0.023

Put.R 0.887 ± 0.023 0.889 ± 0.025 0.876 ± 0.060 0.897 ± 0.008 0.899 ± 0.013 0.875 ± 0.011 0.842 ± 0.056 0.825 ± 0.064 0.883 ± 0.009

Pal.L 0.629 ± 0.083 0.785 ± 0.039* 0.815 ± 0.060 0.671 ± 0.048 0.737 ± 0.012 0.827 ± 0.034 0.557 ± 0.189 0.565 ± 0.182 0.802 ± 0.031

Pal.R 0.654 ± 0.058 0.768 ± 0.055* 0.799 ± 0.088 0.732 ± 0.053 0.785 ± 0.024 0.808 ± 0.055 0.574 ± 0.174 0.586 ± 0.175 0.809 ± 0.028

Hip.L 0.800 ± 0.025 0.814 ± 0.029* 0.809 ± 0.014 0.804 ± 0.044 0.813 ± 0.045 0.811 ± 0.036 0.783 ± 0.037 0.797 ± 0.039 0.804 ± 0.015

Hip.R 0.832 ± 0.019 0.839 ± 0.022* 0.810 ± 0.022 0.817 ± 0.049 0.828 ± 0.053 0.826 ± 0.034 0.795 ± 0.032 0.809 ± 0.031 0.812 ± 0.014

Amy.L 0.672 ± 0.041 0.685 ± 0.047 0.721 ± 0.054 0.630 ± 0.041 0.686 ± 0.053 0.736 ± 0.090 0.540 ± 0.130 0.601 ± 0.103* 0.745 ± 0.050

Amy.R 0.644 ± 0.056 0.671 ± 0.053* 0.707 ± 0.052 0.609 ± 0.074 0.637 ± 0.090 0.756 ± 0.08 0.455 ± 0.097 0.520 ± 0.088* 0.758 ± 0.055

Acc.L 0.695 ± 0.053 0.707 ± 0.060 0.699 ± 0.081 0.694 ± 0.050 0.744 ± 0.036 0.742 ± 0.069 0.646 ± 0.089 0.658 ± 0.084 0.655 ± 0.099

Acc.R 0.697 ± 0.067 0.709 ± 0.070 0.678 ± 0.089 0.634 ± 0.036 0.676 ± 0.042 0.725 ± 0.063 0.582 ± 0.081 0.595 ± 0.073 0.691 ± 0.082

Avg. 0.680 ± 0.038 0.799 ± 0.087* 0.799 ± 0.094 0.769 ± 0.107 0.800 ± 0.094* 0.818 ± 0.073 0.688 ± 0.159 0.707 ± 0.147* 0.802 ± 0.083

Structure acronyms are: Tha.L, left thalamus; Tha.R, right thalamus; Cau.L, left caudate; Cau.R, right caudate; Put.L, left putamen; Put.R, right putamen; Pal.L, left pallidum; Pal.R,

right pallidum; Hip.L, left hippocampus; Hip.R, right hippocampus; Amy.L, left amygdala; Amy.R, right amygdala; Acc.L, left accumbens; Acc.R, right accumbens; Avg., average value.

Significant improvements after domain adaptation over baseline are indicated with “*” and maximum DSC values are shown in bold.

classifier accuracy in correctly detecting lesions, and it ranges
from zero (low) to one (high).

We used the pairwise non-parametric Wilcoxon signed-rank
test (two-sided) to compare the statistical significance of our
results with respect to the results of the pre-trained baseline
model without domain adaptation and the state-of-the-art tools.
The results were considered significant for (p < 0.05). Moreover,
we perform Bonferroni correction to the significance levels
when comparing structure-wise and lesion-wise detection and
segmentation for both of the selected tasks to counteract the
multiple comparisons problem. Therefore, the differences will
be assumed to be significant for (p < 0.0036) and (p <

0.0125) for sub-cortical structure andWMH lesion segmentation
tasks, respectively.

All the experiments were run using a machine with a 3.40-
GHz CPU clock and on a single TITAN-X GPU (NVIDIA corp,
United States) with 12 GB of RAM memory. The network was
implemented using the Keras (Chollet et al., 2018) deep learning
library with Tensorflow backend5.

4. RESULTS

4.1. Sub-cortical Structure Segmentation
Table 1 shows the DSC results of the pre-trained baseline
model without domain adaptation, proposed domain adaptation
method, and FIRST for three datasets. Also, Figure 4 illustrates
segmentation improvements from the baseline after applying
domain adaptation with subject-wise correspondence of the
volumes in the target dataset. When testing the method on

5https://www.tensorflow.org.

the first set, where IBSR was source and MICCAI 2012 was
target, significant improvement in the overall result was observed
after applying the domain adaptation, reaching a DSC of 0.799
compared to the baseline segmentation with the DSC score of
0.680 (p = 2.8 × 10−27). The average DSC of our method
was similar to FIRST and the difference was not statistically
significant (p = 0.160). Significant structure-wise improvements
in the results were also observed for most of the structures when
domain adaptation was applied: left thalamus (p = 8.9 × 10−5),
right thalamus (p = 8.9 × 10−5), left pallidum (p = 8.9 ×

10−5), right pallidum (p = 8.9 × 10−5), left hippocampus
(p = 1.9 × 10−4), right hippocampus (p = 0.002), and right
amygdala (p = 8.9× 10−5).

Significant improvement from 0.769 to 0.800 in overall DSC
was achieved using the domain adaptation to the MICCAI 2012
baseline (p = 2.1 × 10−13), when tested on the IBSR-SIEMENS
dataset. Also, improvements for most of the structures were
observed compared to the baseline, however, not significant (p >
0.0036). The average DSC for FIRST was better compared to our
method (p = 0.008), however, our domain adaptation method
showed better or similar results for all structures, except for the
pallidum and amygdala.

The second subset of the IBSR dataset (IBSR-GE) showed to
be the most difficult to obtain better segmentation results as can
be also seen in Figure 4, where the increase in DSC was smaller
compared to other targets. However, significant improvements
were achieved by using domain adaptation, improving the
average DSC of the baseline from 0.688 to 0.707 (p = 6.8 ×

10−10). Also, performance improvements were achieved for most
of the structures and significant increases were observed for left
thalamus (p = 0.002), right thalamus (p = 0.0009), left caudate
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FIGURE 4 | Comparison of sub-cortical structure segmentation between direct testing (Baseline) and after domain adaptation (TDA). Black dots refer to each subject

volume in the target dataset. The connecting lines show correspondence for improved (green) and decreased (red) DSC values.

FIGURE 5 | Qualitative results for sub-cortical structure segmentation: (A) Ground truth; (B) FIRST segmentation; (C) Pre-trained baseline CNN output without

domain adaptation; (D) After domain adaptation. Arrows indicate: top → pallidum; bottom → thalamus.

(p = 0.0005), left amygdala (p = 0.0009), and right amygdala
structures (p = 0.0004). The average DSC of FIRST (0.802) was
significantly higher than our approach (p = 1.7 × 10−15) and
similar behaviour was observed formost of the structures. Similar
outcome with this sub-group of the IBSR dataset has also been
noticed in Kushibar et al. (2019) which will be further discussed
in section 5.

Some qualitative results are shown in Figure 5 for the
MICCAI 2012 dataset image as target. As can be seen, the
baseline model did not produce satisfactory segmentation results
for the thalamus and pallidum structures (indicated with
arrows), which were improved after the domain adaptation.
The proposed transductive domain adaptation method for
segmentation greatly improved the model’s performance and
alleviated the segmentation errors caused by the domain-shift.

The training time for this task was 11 min on average per
epoch. Additionally, the segmentation time using our method
was 1.3 min (run on GPU) + 3.7 min (atlas registration, run
on CPU) per volume on average. In contrast, FIRST took 10
min on average to segment all the sub-cortical structures in one
subject volume.

We also tested the proposed method with the well-known
U-Net architecture (Ronneberger et al., 2015) by applying the
histogram loss in the features of the bottleneck layer. The average
DSC for MICCAI 2012 dataset for baseline and after domain
adaptation was 0.815 ± 0.097 and 0.816 ± 0.087, respectively.
Similarly, the SIEMENS subset of the IBSR dataset yielded a
DSC of 0.791 ± 0.103 and 0.790 ± 0.110 for baseline and TDA,
respectively. A slight improvement was observed in DSC for the
GE subset increasing the average from 0.738 ± 0.129 to 0.756 ±
0.115. A more detailed analysis will be discussed in section 5.

4.2. WMH Lesion Segmentation
Table 2 shows quantitative results for the WMH lesion
segmentation using the pre-trained baseline model without
domain adaptation, our proposed domain adaptation method,
and the unsupervised method LST. Additionally, Figure 6

illustrates segmentation improvements with subject-wise
correspondence between baseline and domain adaptation
methods for the subject volumes of the target dataset.

When the WMH 2017 dataset was used as source and VH as
target, a significant improvement was achieved in segmentation,
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TABLE 2 | WMH lesion segmentation results for the pre-trained baseline model without domain adaptation, transductive domain adaptation (TDA), and unsupervised LST

method for four different sites: (1) source WMH 2017 and VH target; (2) source VH to Singapore; (3) source VH to UMC Utrecht; and (4) source VH to VU Amsterdam.

WMH 2017 to VH (3T Siemens TrioTim) VH to Singapore (3T Siemens TrioTim)

Baseline TDA LST Baseline TDA LST

DSC 0.478 ± 0.229 0.536 ± 0.232* 0.410 ± 0.232 DSC 0.636 ± 0.176 0.703 ± 0.198* 0.651 ± 0.176

TPR 0.735 ± 0.208 0.544 ± 0.231 0.319 ± 0.210 TPR 0.314 ± 0.089 0.451 ± 0.106 0.148 ± 0.092

FPR 0.611 ± 0.226 0.480 ± 0.256 0.477 ± 0.273 FPR 0.211 ± 0.186 0.469 ± 0.197 0.510 ± 0.153

F-score 0.270 ± 0.186 0.308 ± 0.187* 0.160 ± 0.140 F-score 0.265 ± 0.102 0.289 ± 0.118 0.106 ± 0.067

VH to UMC Utrecht (3T Philips Achieva) VH to VU Amsterdam (3T GE Signa)

Baseline TDA LST Baseline TDA LST

DSC 0.587 ± 0.203 0.624 ± 0.210* 0.620 ± 0.201 DSC 0.504 ± 0.148 0.602 ± 0.135* 0.581 ± 0.155

TPR 0.464 ± 0.107 0.464 ± 0.148 0.250 ± 0.130 TPR 0.478 ± 0.114 0.483 ± 0.106 0.290 ± 0.105

FPR 0.279 ± 0.151 0.319 ± 0.175 0.352 ± 0.221 FPR 0.284 ± 0.155 0.298 ± 0.184 0.358 ± 0.161

F-score 0.316 ± 0.103 0.318 ± 0.111 0.181 ± 0.091 F-score 0.300 ± 0.108 0.341 ± 0.126* 0.213 ± 0.095

DSC, dice similarity coefficient; TPR, true positive rate; FPR, false positive rate. Highest DSC and F-scores are shown in bold. Statistically significant improvements from baseline are

indicated with “*”.

FIGURE 6 | Comparison of WMH lesion segmentation between direct testing (Baseline) and after domain adaptation (TDA). Black dots refer to each subject volume in

the target dataset. The connecting lines show correspondence for improved (green) and decreased (red) DSC values.

increasing the DSC from 0.410 to 0.536 (p = 0.0002). The F-
score was significantly improved from 0.270 to 0.308 (p = 0.007)
as was the FPR, significantly improving from 0.611 to 0.480 (p =

2.9× 10−5), however, there was a decrease in TPR from 0.735 to
0.544 due to inter-rater variability, which will be further discussed
in detail (section 5). In comparison to the DSC result for LST
(0.410) and the F-score of 0.160, our method yielded significantly
higher DSC (p = 0.001) and detection rates (p = 2.4 × 10−5) at
similar operating points.

Significant improvements were obtained in lesion
segmentation after applying domain adaptation from the
pre-trained baseline without domain adaptation to the Singapore
site, increasing the DSC from 0.636 to 0.703 (p = 0.006). A
slight improvement was achieved in F-score but not statistically
significant (p = 0.156). In comparison to LST, our method
was significantly better in both segmentation and detection,
(p = 0.006) and (p = 0.0002), respectively.

Performing domain adaptation from source VH to the target
UMC Utrecht site significantly improved the DSC from 0.587
of baseline to 0.624 (p = 0.008). There were no improvements
in lesion detection rates, and the differences in F-scores for the
baseline and domain adaptation were not statistically significant
(p = 0.794). The DSC using our method was similar to that
of LST (0.620), and differences were not significant (p = 0.79),
but significantly higher lesion detection rate was observed after
domain adaptation in comparison to LST (p = 0.0003).

When the VU Amsterdam site was used as target, our
approach achieved a significant increase in DSC, improving the
baseline from 0.504 to 0.602 (p = 8.9 × 10−5). The F-score of
our method with 0.341 was also significantly higher than both
LST (p = 0.0006) and baseline (p = 0.0002) values, with
0.213 and 0.300, respectively. The segmentation performance of
our method was slightly better than LST but not statistically
significant (p = 0.433).
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FIGURE 7 | Qualitative results for WMH lesion segmentation. Small lesion (A) and large lesion (B) segmentation improvements are shown. The bottom row depicts

zoomed regions of interests shown in blue rectangles on whole-brain images (top row).

Figure 7 illustrates WMH lesion segmentation examples
for the pre-trained baseline without domain adaptation, after
transductive domain adaptation, and unsupervised LST. As can
be seen, our method produced more refined segmentation than
the baseline and better detection of smaller lesions. On the other
hand, LST produced more false negatives and false positives for
the smaller lesions. Some false negatives for the small lesions
could not be avoided even after applying domain adaptation.

In comparison to the sub-cortical structure segmentation, the
number of voxels in training was varying depending on the
lesion load in the source image. Since the ground truth labels are
available for the source images, we handpicked a representative
image with a large lesion load. It took 14 min on average per
training epoch. Furthermore, the segmentation time per volume
using our method was 4 min (run on GPU) + 3 min (atlas
registration, run on CPU) on average. Whereas LST took 25 min
on average to segment the WMH lesions in one subject volume.

5. DISCUSSION

In this paper, we have introduced a novel domain adaptation
method which minimises the differences in activation maps
between the source and target domains in a transductive manner.
As shown in Figure 2, the convolutional layers of the CNN
produce different intensity distributions due to the variations
in MRI images with different acquisition protocols. In order
to alleviate this domain-shift effect, we performed histogram
matching on the activation maps for the last convolutional layers
as well as the fully connected layers of the network (Figure 1).

In the transductive domain adaptation process, we consider
that manual annotations are only available for the source images,
hence, optimisation of the CNN for segmentation loss can be only
done using the source dataset. Therefore, the histograms of the
activation maps extracted from the source were matched to those
of the target. Then, the histogram loss function (Equation 1)
computes how far the source feature map distributions are from
the ones of target. In this way, the layers of the network are

trained to produce similar activation maps to the target to
minimise the distribution differences between two domains and
jointly training the network to classify the input patches.

As can be seen in the results for the sub-cortical structure
segmentation (Table 1), the performance of the pre-trained
baseline CNN without domain adaptation was low. Moreover,
this could also be observed in the segmentation example for
one of the MICCAI 2012 dataset images (Figure 5), where the
thalamus and pallidum structures were difficult for the network
to segment. This is due to the weaker contrast between the
structure boundaries and the background in comparison to
other sub-cortical structures. On the other hand, the baseline
segmentation for the putamen structure was better even for
the baseline model. Although significant improvements were
observed for both left and right putamen structures when using
our domain adaptation method for the MICCAI 2012 dataset,
this was not the case for the IBSR-SIEMENS and IBSR-GE
datasets. However, the performance of the baseline model was
similar to the one for transfer learning (Kushibar et al., 2019)
due to the high contrast that this structure has compared to the
background, which makes it easier for the network to generalise
between different protocols. Aside from the putamen structure,
our method was effective in improving the performance of the
CNN for all other structures and significantly improved overall
average DSC from the baseline.

The performance of the network after domain adaptation

was similar to that of FIRST for the MICCAI 2012 dataset and

slightly lower for the IBSR-SIEMENS dataset. However, for the

IBSR-GE dataset, the result of domain adaptation was lower
than that of FIRST. The MRI scans of IBSR-GE have imaging
artefacts and lower quality in terms of contrast and brightness,
which makes this subset of the IBSR dataset the most challenging
one. In fact, the result of supervised domain adaptation using
transfer learning with one image (0.784) was still lower than
that of FIRST, and according to Kushibar et al. (2019), it took
three images to significantly outperform FIRST using transfer
learning. Since FIRST is an active-shape based model it is more
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FIGURE 8 | Inter-operator variability in the lesion ground truth masks for the: (A,B) WMH 2017; and (C,D) VH datasets. Blue ellipses indicate the hyperintense tissues

near the ventricles.

robust to imaging artefacts such as motion, and can produce
moderate results despite the present difficulties. However, deep-
learning based supervised methods (Dolz et al., 2018; Wachinger
et al., 2018; Liu et al., 2020) outperform unsupervised ones if an
adequate number of images are used in training.

The proposed method showed similar improvements when
performing domain adaptation from pre-trained baseline
model in the results for the WMH lesion segmentation task
(Table 2). In general, significant improvements were observed
in segmentation for all the experiments, while lesion detection
was improved for some sites only. We have noticed that for
this segmentation problem, inter-operator variability in the
gold-standard lesion masks has an enormous effect on the
lesion detection. As can be seen in Figure 8, the periventricular
hyperintensities are annotated as lesions for the WMH 2017
dataset and not in VH. Moreover, there are more smaller lesions
in the WMH 2017 dataset compared to the VH that have images
with predominantly larger lesions. These differences introduce
more difficulties in terms of better generalisation for the network
and require supervised intervention to mitigate the problems of
inter-operator differences between datasets.

Apart from these challenges, as shown in Figure 7, the
proposed domain adaptation method significantly improved the
segmentation result and produced better delineations of the
lesion boundaries. Also, some smaller lesions were detected better
after the domain adaptation, but some false positives still could
not be avoided.

As shown in Table 2, adapting the network from WMH 2017
to the VH dataset significantly improved overall segmentation
and detection rates. Also, for the images of the VH site, the
results for both the baseline and domain adaptation were better
than that of LST in terms of segmentation and lesion detection.
However, for all the other target sites, we observed that the pre-
trained baseline model without domain adaptation performed
worse than LST and considerable improvements were achieved
after applying domain adaptation. Overall, when adapting the
model from VH to the different sites of the WMH 2017 datasets,
lesion detection was not improved substantially. This was due
to the inter-operator differences in the ground truths, where the

CNN model was specifically trained to classify the small and
periventricular hyperintense tissues as the background. However,
as could be seen in Figure 6, segmentation performance was
increasing for most of the subjects after applying the domain
adaptation. We observed no improvement or decline in DSC for
some subjects when the performance of the baseline was also
low. Additionally, we observed that having at least the same
scanner makes the network to be less affected by the domain
shift. This could be seen in the example of NUHS Singapore
site, which shares the same scanner as VH, but with different
voxel resolution.

In terms of the number of images, our experiments showed
that using only one image was enough for domain adaptation.
This is because the histogram loss is computed only over the
image features and the number of overall samples was adequate
for the network to converge for both tasks. Including more
training images did not improve the segmentation results due
to the inter-operator variability in the expert annotated ground
truths labels but increased the training time.

As could be seen in both the quantitative and qualitative
results, the proposed transductive domain adaptation method is
an effective way to mitigate the problems of domain-shift without
the requirement for expert annotated labels. However, there are
some limitations for domain adaptation when no ground truth
labels are available. As we have seen in the results for the sub-
cortical structure segmentation, transductive domain adaptation
did not improve the DSC for structures where the performance
of the pre-trained baseline model was already satisfactory to
a certain degree. Similar behaviour was also observed when
applying the proposed method with a commonly used U-Net
architecture where the results were similar to the baseline for the
MICCAI 2012 and IBSR-SIEMENS datasets. However, there was
a slight improvement in the case of the IBSR-GE dataset where
the baseline was affected by domain shift compared to the other
sets. In general, we have noticed that U-Net was less affected
by domain shift compared to our selected CNN. Moreover,
it could be that the encoder-decoder architecture makes it
difficult to performTDA at the feature-level. However, the overall
performance of U-Net when trained from scratch was lower
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than that of the 2.5D approach that achieves the state-of-the-
art results for the sub-cortical structure segmentation (Avg DSC
0.85 vs. 0.87, for UNet and our method in MICCAI 2012 dataset,
respectively). Further investigation on improving the feature-
level domain adaptation in encoder-decoder architectures with
our proposed transductive method will be taken as a future work.

Furthermore, the inter-operator variability between two
datasets also makes it challenging to evaluate such approaches.
We recommend applying the transductive approach for domain
adaptation to overcome extreme performance drops caused by
domain-shift, and when there are no manually annotated images
available. Although manually annotating the MRI scans for both
considered segmentation problems is a time-consuming task,
supervised transfer learning approaches remain a better way to
address the domain-shift problem which could be better than the
traditional unsupervised methods.

In general, most of the methods in the literature address
domain adaptation where the source and target images are
drastically different. Moreover, there are benchmark datasets
that allow such comparisons in computer vision [for example,
MNIST to The Street View House Numbers (SVHN)], but we
still lack such standard datasets in the medical domain. We
believe some medical benchmark datasets with minimal inter-
operator variability in the ground-truths masks will emerge. For
example, the iSeg infant brain tissue segmentation challenge (Sun
et al., 2020) and the MnM Challenge for multi-site and multi-
vendor cardiac MRI segmentation (Campello and Lekadir, 2020)
have recently been organised addressing this challenge. Such
initiatives would definitely serve as a benchmark for domain
adaptation methods. Especially for the cases when the differences
in images are not drastic but still affect the performance of deep
learning based methods. Also, note that in Sun et al. (2020),
the reported top five methods did not propose any domain
adaptation method, and the ones utilising adversarial training or
CycleGAN based approaches were not among the top methods,
which shows how challenging the problem is. Although these
more complex methods have shown their effectiveness in multi-
modality setup, there is still room for improvement in domain
adaptation for multi-site single-modality cases.

6. CONCLUSIONS

In this paper, we have introduced a transductive transfer learning
method for reducing the domain-shift effect in deep learning
caused by differences in MRI scanners and image-acquisition
parameters. In our approach, we computed the histogram loss
defined by the differences in the histogram distributions of
the activation maps for the source and target domains from
the convolutional and fully connected layers of the network.
Minimising the histogram loss forces the convolutional layers to
produce outputs for the source which are similar to those of the
target. The network is end-to-end trainable and does not require
exhaustive hyper-parameter tuning.

In order to implement our pipeline, we used a network
architecture recently proposed in Kushibar et al. (2018), which
had shown state-of-the-art performance in sub-cortical brain

structure segmentation. We employed this architecture to
perform domain adaptation for two different segmentation
problems. The proposed approach was tested with different
experimental setups using inter-site and inter-scanner datasets.

The experimental results confirmed the effectiveness of our
domain adaptation approach for two different segmentation
problems, where it was possible to significantly improve the
performances of the pre-trained baseline models. Performing
similarly to state-of-the-art traditional unsupervised methods,
our approach was able to overcome extreme performance drops
caused by domain-shift problem and achieve faster segmentation
process. Moreover, along with the domain-shift issue, there are
differences in the manual segmentation masks, which makes
evaluation of domain adaptation pipelines more challenging.

In summary, the approach presented in this work, can help
to improve brain biomarker extraction for various neurological
and neurodegenerative disorders, especially in clinical scenarios
where manual annotation are not available. Additionally, we
have made our transductive transfer learning domain adaptation
pipeline available to the research community at https://github.
com/NIC-VICOROB/sub-cortical_segmentation.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analysed in this study. This
data can be found at: https://www.oasis-brains.org/#data; https://
www.nitrc.org/projects/ibsr; https://wmh.isi.uu.nl.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Alex Rovira, Magnetic Resonance Unit, Department
of Radiology, Vall d’Hebron University Hospital, Spain. Written
informed consent for participation was not required for this
study in accordance with the national legislation and the
institutional requirements.

AUTHOR CONTRIBUTIONS

KK: methodology, experiments, and writing. MS, SV, and JS:
validation and review. ÀR: data provision and validation. AO and
XL: supervision and review. All authors contributed to the article
and approved the submitted version.

FUNDING

KK holds FI-DGR2017 grant from the Catalan Government
with reference number 2017FI_B00372. This work has been
supported by DPI2017-86696-R from the Ministerio de Ciencia
y Tecnologia.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the NVIDIA
Corporation with their donation of the TITAN-X PASCAL GPU
used in this research.

Frontiers in Neuroscience | www.frontiersin.org 13 April 2021 | Volume 15 | Article 608808100

https://github.com/NIC-VICOROB/sub-cortical_segmentation
https://github.com/NIC-VICOROB/sub-cortical_segmentation
https://www.oasis-brains.org/#data
https://www.nitrc.org/projects/ibsr
https://www.nitrc.org/projects/ibsr
https://wmh.isi.uu.nl
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kushibar et al. Transductive Transfer Learning for Domain Adaptation

REFERENCES

Ackaouy, A., Courty, N., Vallée, E., Commowick, O., Barillot, C., and Galassi,

F. (2020). Unsupervised domain adaptation with optimal transport in multi-

site segmentation of multiple sclerosis lesions from MRI data. Front. Comput.

Neurosci. 14:19. doi: 10.3389/fncom.2020.00019

Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D. L., and Erickson, B. J.

(2017). Deep learning for brain MRI segmentation: state of the art and future

directions. J. Digit. Imaging 30, 449–459. doi: 10.1007/s10278-017-9983-4

Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., et al.

(2018). Identifying the best machine learning algorithms for brain tumor

segmentation, progression assessment, and overall survival prediction in the

BRATS challenge. arXiv [Preprint]. arXiv:1811.02629.

Bernal, J., Kushibar, K., Asfaw, D. S., Valverde, S., Oliver, A., Martí, R.,

et al. (2019). Deep convolutional neural networks for brain image analysis

on magnetic resonance imaging: a review. Artif. Intell. Med. 95, 64–81.

doi: 10.1016/j.artmed.2018.08.008

Campello, M., and Lekadir, K. (2020). “Multi-centre multi-vendor & multi-disease

cardiac image segmentation challenge (M&Ms),” in Medical Image Computing

and Computer Assisted Intervention. (Lima).

Caviness, V. S. Jr., Meyer, J., Makris, N., and Kennedy, D. N. (1996).

MRI-based topographic parcellation of human neocortex: an anatomically

specified method with estimate of reliability. J. Cogn. Neurosci. 8, 566–587.

doi: 10.1162/jocn.1996.8.6.566

CC-BY (2020). About The Creative Commons Licenses. Available online at: http://

creativecommons.org/about/licenses

Chen, C., Dou, Q., Chen, H., Qin, J., and Heng, P. A. (2020). Unsupervised

bidirectional cross-modality adaptation via deeply synergistic image and

feature alignment for medical image segmentation. IEEE Trans. Med. Imaging

39, 2494–2505. doi: 10.1109/TMI.2020.2972701

Chollet, F. (2018).Deep Learning With Python, Vol. 361. New York, NY: Manning.

Damodaran, B. B., Kellenberger, B., Flamary, R., Tuia, D., and Courty, N. (2018).

“Deepjdot: Deep joint distribution optimal transport for unsupervised domain

adaptation,” in Proceedings of the European Conference on Computer Vision

(ECCV), (Munich), 447–463. doi: 10.1007/978-3-030-01225-0_28

De Jong, L., Van der Hiele, K., Veer, I., Houwing, J., Westendorp, R., Bollen, E.,

et al. (2008). Strongly reduced volumes of putamen and thalamus in Alzheimer’s

disease: an MRI study. Brain 131, 3277–3285. doi: 10.1093/brain/awn278

Debette, S., and Markus, H. (2010). The clinical importance of white matter

hyperintensities on brain magnetic resonance imaging: systematic review and

meta-analysis. BMJ 341:c3666. doi: 10.1136/bmj.c3666

Dolz, J., Desrosiers, C., and Ayed, I. B. (2018). 3D fully convolutional networks

for subcortical segmentation in MRI: a large-scale study. NeuroImage 170,

456–470. doi: 10.1016/j.neuroimage.2017.04.039

Filippi, M., Rocca, M. A., Ciccarelli, O., De Stefano, N., Evangelou, N.,

Kappos, L., et al. (2016). MRI criteria for the diagnosis of multiple

sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 15, 292–303.

doi: 10.1016/S1474-4422(15)00393-2

Fortin, J.-P., Sweeney, E. M., Muschelli, J., Crainiceanu, C. M., Shinohara,

R. T., Initiative, A. D. N., et al. (2016). Removing inter-subject technical

variability in magnetic resonance imaging studies. NeuroImage 132, 198–212.

doi: 10.1016/j.neuroimage.2016.02.036

Frazier, J. A., Chiu, S., Breeze, J. L., Makris, N., Lange, N., Kennedy, D. N., et al.

(2005). Structural brain magnetic resonance imaging of limbic and thalamic

volumes in pediatric bipolar disorder. Am. J. Psychiatry 162, 1256–1265.

doi: 10.1176/appi.ajp.162.7.1256

García-Lorenzo, D., Francis, S., Narayanan, S., Arnold, D. L., and Collins, D. L.

(2013). Review of automatic segmentation methods of multiple sclerosis white

matter lesions on conventional magnetic resonance imaging.Med. Image Anal.

17, 1–18. doi: 10.1016/j.media.2012.09.004

Ghafoorian, M., Mehrtash, A., Kapur, T., Karssemeijer, N., Marchiori, E., Pesteie,

M., et al. (2017). “Transfer learning for domain adaptation in MRI: application

in brain lesion segmentation,” in International Conference on Medical Image

Computing and Computer-Assisted Intervention (Quebec City, QC: Springer),

516–524. doi: 10.1007/978-3-319-66179-7_59

González-Villá, S., Oliver, A., Valverde, S., Wang, L., Zwiggelaar, R., and Lladó,

X. (2016). A review on brain structures segmentation in magnetic resonance

imaging. Artif. Intell. Med. 73, 45–69. doi: 10.1016/j.artmed.2016.09.001

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

et al. (2014). “Generative adversarial nets,” in Advances in Neural Information

Processing Systems, Vol. 27, eds Z. Ghahramani, M. Welling, C. Cortes, N.

D. Lawrence, and K. Q. Weinberger (Montreal, QC: Curran Associates, Inc.),

2672–2680.

Houtchens, M., Benedict, R., Killiany, R., Sharma, J., Jaisani, Z., Singh, B., et al.

(2007). Thalamic atrophy and cognition in multiple sclerosis. Neurology 69,

1213–1223. doi: 10.1212/01.wnl.0000276992.17011.b5

Huo, Y., Xu, Z., Bao, S., Assad, A., Abramson, R. G., and Landman, B. A.

(2018). “Adversarial synthesis learning enables segmentation without

target modality ground truth,” in 2018 IEEE 15th International Symposium

on Biomedical Imaging (ISBI 2018), (Washington, DC), 1217–1220.

doi: 10.1109/ISBI.2018.8363790

Iglesias, J. E., Liu, C.-Y., Thompson, P. M., and Tu, Z. (2011). Robust brain

extraction across datasets and comparison with publicly available methods.

IEEE Trans. Med. Imaging 30, 1617–1634. doi: 10.1109/TMI.2011.2138152

Kamnitsas, K., Baumgartner, C., Ledig, C., Newcombe, V., Simpson, J.,

Kane, A., et al. (2017). “Unsupervised domain adaptation in brain lesion

segmentation with adversarial networks,” in International Conference on

Information Processing in Medical Imaging (Boone, NC: Springer), 597–609.

doi: 10.1007/978-3-319-59050-9_47

Kang, G., Jiang, L., Yang, Y., and Hauptmann, A. G. (2019). “Contrastive

adaptation network for unsupervised domain adaptation,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (Long

Beach, CA), 4893–4902. doi: 10.1109/CVPR.2019.00503

Kennedy, D. N., Haselgrove, C., Hodge, S. M., Rane, P. S., Makris, N., and

Frazier, J. A. (2012). CANDIShare: a resource for pediatric neuroimaging data.

Neuroinformatics 10, 319–322. doi: 10.1007/s12021-011-9133-y

Kikinis, R., Shenton, M. E., Iosifescu, D. V., McCarley, R. W., Saiviroonporn,

P., Hokama, H. H., et al. (1996). A digital brain atlas for surgical planning,

model-driven segmentation, and teaching. IEEE Trans. Visual. Comput. Graph.

2, 232–241. doi: 10.1109/2945.537306

Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization.

ArXiv e-prints.

Kuijf, H. J., Biesbroek, J. M., de Bresser, J., Heinen, R., Andermatt, S., Bento,

M., et al. (2019). Standardized assessment of automatic segmentation of white

matter hyperintensities; results of the WMH segmentation challenge. IEEE

Trans. Med. Imaging. 38, 2556–2568. doi: 10.1109/TMI.2019.2905770

Kushibar, K., Valverde, S., González-Villá, S., Bernal, J., Cabezas, M., Oliver, A.,

et al. (2018). Automated sub-cortical brain structure segmentation combining

spatial and deep convolutional features. Med. Image Anal. 48, 177–186.

doi: 10.1016/j.media.2018.06.006

Kushibar, K., Valverde, S., González-Villá, S., Bernal, J., Cabezas, M., Oliver,

A., et al. (2019). Supervised domain adaptation for automatic sub-cortical

brain structure segmentation with minimal user interaction. Sci. Rep. 9:6742.

doi: 10.1038/s41598-019-43299-z

Kutzelnigg, A., Lucchinetti, C. F., Stadelmann, C., Brück, W., Rauschka, H.,

Bergmann, M., et al. (2005). Cortical demyelination and diffuse white matter

injury in multiple sclerosis. Brain 128, 2705–2712. doi: 10.1093/brain/awh641

Landman, B., and Warfield, S. (2012). “MICCAI 2012 workshop on multi-atlas

labeling,” in Medical Image Computing and Computer Assisted Intervention

Conference, (Nice).

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

doi: 10.1038/nature14539

Li, H., Loehr, T., Sekuboyina, A., Zhang, J., Wiestler, B., and Menze, B. (2020).

Domain adaptive medical image segmentation via adversarial learning of

disease-specific spatial patterns. arXiv e-prints: arXiv-2001.

Liu, L., Hu, X., Zhu, L., Fu, C.-W., Qin, J., and Heng, P.-A. (2020).ψ-Net: stacking

densely convolutional LSTMs for sub-cortical brain structure segmentation.

IEEE Trans. Med. Imaging 39, 2806–2817. doi: 10.1109/TMI.2020.2975642

Mak, E., Bergsland, N., Dwyer, M., Zivadinov, R., and Kandiah, N. (2014).

Subcortical atrophy is associated with cognitive impairment in mild Parkinson

disease: a combined investigation of volumetric changes, cortical thickness,

and vertex-based shape analysis. Am. J. Neuroradiol. 35, 2257–2264.

doi: 10.3174/ajnr.A4055

Modat, M., Ridgway, G. R., Taylor, Z. A., Lehmann, M., Barnes, J., Hawkes, D.

J., et al. (2010). Fast free-form deformation using graphics processing units.

Comput. Methods Prog. Biomed. 98, 278–284. doi: 10.1016/j.cmpb.2009.09.002

Frontiers in Neuroscience | www.frontiersin.org 14 April 2021 | Volume 15 | Article 608808101

https://doi.org/10.3389/fncom.2020.00019
https://doi.org/10.1007/s10278-017-9983-4
https://doi.org/10.1016/j.artmed.2018.08.008
https://doi.org/10.1162/jocn.1996.8.6.566
http://creativecommons.org/about/licenses
http://creativecommons.org/about/licenses
https://doi.org/10.1109/TMI.2020.2972701
https://doi.org/10.1007/978-3-030-01225-0_28
https://doi.org/10.1093/brain/awn278
https://doi.org/10.1136/bmj.c3666
https://doi.org/10.1016/j.neuroimage.2017.04.039
https://doi.org/10.1016/S1474-4422(15)00393-2
https://doi.org/10.1016/j.neuroimage.2016.02.036
https://doi.org/10.1176/appi.ajp.162.7.1256
https://doi.org/10.1016/j.media.2012.09.004
https://doi.org/10.1007/978-3-319-66179-7_59
https://doi.org/10.1016/j.artmed.2016.09.001
https://doi.org/10.1212/01.wnl.0000276992.17011.b5
https://doi.org/10.1109/ISBI.2018.8363790
https://doi.org/10.1109/TMI.2011.2138152
https://doi.org/10.1007/978-3-319-59050-9_47
https://doi.org/10.1109/CVPR.2019.00503
https://doi.org/10.1007/s12021-011-9133-y
https://doi.org/10.1109/2945.537306
https://doi.org/10.1109/TMI.2019.2905770
https://doi.org/10.1016/j.media.2018.06.006
https://doi.org/10.1038/s41598-019-43299-z
https://doi.org/10.1093/brain/awh641
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/TMI.2020.2975642
https://doi.org/10.3174/ajnr.A4055
https://doi.org/10.1016/j.cmpb.2009.09.002
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kushibar et al. Transductive Transfer Learning for Domain Adaptation

Nyúl, L. G., Udupa, J. K., and Zhang, X. (2000). New variants of a method

of MRI scale standardization. IEEE Trans. Med. Imaging 19, 143–150.

doi: 10.1109/42.836373

Orbes-Arteainst, M., Cardoso, J., Sørensen, L., Igel, C., Ourselin, S., Modat, M.,

et al. (2019). “Knowledge distillation for semi-supervised domain adaptation,”

in OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical

Neuroimaging, eds L. Zhou, D. Sarikaya, S. M. Kia, S. Speidel, A. Malpani, D.

Hashimoto, M. Habes, T. Löfstedt, K. Ritter, H. Wang (Shenzhen: Springer),

68–76. doi: 10.1007/978-3-030-32695-1_8

Patenaude, B., Smith, S. M., Kennedy, D. N., and Jenkinson, M. (2011). A Bayesian

model of shape and appearance for subcortical brain segmentation.Neuroimage

56, 907–922. doi: 10.1016/j.neuroimage.2011.02.046

Polman, C. H., Reingold, S. C., Banwell, B., Clanet, M., Cohen, J. A., Filippi, M.,

et al. (2011). Diagnostic criteria for multiple sclerosis: 2010 revisions to the

McDonald criteria. Ann. Neurol. 69, 292–302. doi: 10.1002/ana.22366

Rimol, L. M., Hartberg, C. B., Nesvåg, R., Fennema-Notestine, C., Hagler,

D. J. Jr, Pung, C. J., et al. (2010). Cortical thickness and subcortical

volumes in schizophrenia and bipolar disorder. Biol. Psychiatry 68, 41–50.

doi: 10.1016/j.biopsych.2010.03.036

Rohlfing, T. (2012). Image similarity and tissue overlaps as surrogates for image

registration accuracy: widely used but unreliable. IEEE Trans. Med. Imaging

31, 153–163. doi: 10.1109/TMI.2011.2163944

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-net: Convolutional networks

for biomedical image segmentation,” in International Conference on Medical

Image Computing and Computer-Assisted Intervention (Munich: Springer),

234–241. doi: 10.1007/978-3-319-24574-4_28

Roth, K., Lucchi, A., Nowozin, S., and Hofmann, T. (2017). “Stabilizing training of

generative adversarial networks through regularization,” in Advances in Neural

Information Processing Systems, (Long Beach, CA), 2018–2028.

Rozantsev, A., Salzmann, M., and Fua, P. (2018). Beyond sharing weights for

deep domain adaptation. IEEE Trans. Pattern Anal. Mach. intell. 41, 801–814.

doi: 10.1109/TPAMI.2018.2814042

Schmidt, P., Pongratz, V., Küster, P., Meier, D., Wuerfel, J., Lukas, C., et al. (2019).

Automated segmentation of changes in FLAIR-hyperintense white matter

lesions in multiple sclerosis on serial magnetic resonance imaging. NeuroImage

23:101849. doi: 10.1016/j.nicl.2019.101849

Shah, M., Xiao, Y., Subbanna, N., Francis, S., Arnold, D. L., Collins,

D. L., et al. (2011). Evaluating intensity normalization on MRIs of

human brain with multiple sclerosis. Med. Image Anal. 15, 267–282.

doi: 10.1016/j.media.2010.12.003

Storelli, L., Rocca, M. A., Pagani, E., Van Hecke, W., Horsfield, M. A., De

Stefano, N., et al. (2018). Measurement of whole-brain and gray matter atrophy

in multiple sclerosis: assessment with MR imaging. Radiology 2018:172468.

doi: 10.1148/radiol.2018172468

Sun, Y., Gao, K., Wu, Z., Lei, Z., Wei, Y., Ma, J., et al. (2020). Multi-site infant

brain segmentation algorithms: the iSeg-2019 Challenge. arXiv [Preprint].

arXiv:2007.02096. doi: 10.1109/TMI.2021.3055428

Valverde, S., Cabezas, M., Roura, E., González-Villá, S., Pareto, D., Vilanova, J.

C., et al. (2017). Improving automated multiple sclerosis lesion segmentation

with a cascaded 3D convolutional neural network approach. NeuroImage 155,

159–168. doi: 10.1016/j.neuroimage.2017.04.034

Valverde, S., Salem, M., Cabezas, M., Pareto, D., Vilanova, J. C., Ramió-Torrentá,

L., et al. (2019). One-shot domain adaptation in multiple sclerosis lesion

segmentation using convolutional neural networks. Neuroimage 21:101638.

doi: 10.1016/j.nicl.2018.101638

Van Norden, A. G., de Laat, K. F., Gons, R. A., van Uden, I. W., van Dijk,

E. J., van Oudheusden, L. J., et al. (2011). Causes and consequences of

cerebral small vessel disease. The RUN DMC study: a prospective cohort

study. Study rationale and protocol. BMC Neurol. 11:29. doi: 10.1186/1471-237

7-11-29

Wachinger, C., Reuter, M., and Klein, T. (2018). Deepnat: Deep convolutional

neural network for segmenting neuroanatomy. NeuroImage 170, 434–445.

doi: 10.1016/j.neuroimage.2017.02.035

Yi, X., Walia, E., and Babyn, P. (2019). Generative adversarial network

in medical imaging: a review. Med. Image Anal. 2019:101552.

doi: 10.1016/j.media.2019.101552

Zhang, Y., Chen, H., Wei, Y., Zhao, P., Cao, J., Fan, X., et al. (2019).

“From whole slide imaging to microscopy: deep microscopy adaptation

network for histopathology cancer image classification,” in International

Conference on Medical Image Computing and Computer-Assisted

Intervention (Shenzhen: Springer), 360–368. doi: 10.1007/978-3-030-3223

9-7_40

Zhang, Y., Miao, S., Mansi, T., and Liao, R. (2018). “Task driven generative

modeling for unsupervised domain adaptation: application to X-ray

image segmentation,” in International Conference on Medical Image

Computing and Computer-Assisted Intervention (Granada: Springer), 599–607.

doi: 10.1007/978-3-030-00934-2_67

Conflict of Interest: ÀR serves on scientific advisory boards for Novartis,

Sanofi-Genzyme, Icometrix, SyntheticMR, and OLEA Medical, and has received

speaker honoraria from Bayer, Sanofi-Genzyme, Bracco, Merck-Serono, Teva

Pharmaceutical Industries Ltd, Novartis, Roche, and Biogen Idec.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2021 Kushibar, Salem, Valverde, Rovira, Salvi, Oliver and Lladó. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 April 2021 | Volume 15 | Article 608808102

https://doi.org/10.1109/42.836373
https://doi.org/10.1007/978-3-030-32695-1_8
https://doi.org/10.1016/j.neuroimage.2011.02.046
https://doi.org/10.1002/ana.22366
https://doi.org/10.1016/j.biopsych.2010.03.036
https://doi.org/10.1109/TMI.2011.2163944
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/TPAMI.2018.2814042
https://doi.org/10.1016/j.nicl.2019.101849
https://doi.org/10.1016/j.media.2010.12.003
https://doi.org/10.1148/radiol.2018172468
https://doi.org/10.1109/TMI.2021.3055428
https://doi.org/10.1016/j.neuroimage.2017.04.034
https://doi.org/10.1016/j.nicl.2018.101638
https://doi.org/10.1186/1471-2377-11-29
https://doi.org/10.1016/j.neuroimage.2017.02.035
https://doi.org/10.1016/j.media.2019.101552
https://doi.org/10.1007/978-3-030-32239-7_40
https://doi.org/10.1007/978-3-030-00934-2_67
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


ORIGINAL RESEARCH
published: 25 May 2021

doi: 10.3389/fnins.2021.662005

Frontiers in Neuroscience | www.frontiersin.org 1 May 2021 | Volume 15 | Article 662005

Edited by:

Diana M. Sima,

Icometrix, Belgium

Reviewed by:

Ashok Panigrahy,

University of Pittsburgh, United States

Adil Bashir,

Auburn University, United States

*Correspondence:

Irina Grigorescu

irina.grigorescu@kcl.ac.uk

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 31 January 2021

Accepted: 21 April 2021

Published: 25 May 2021

Citation:

Grigorescu I, Vanes L, Uus A,

Batalle D, Cordero-Grande L,

Nosarti C, Edwards AD, Hajnal JV,

Modat M and Deprez M (2021)

Harmonized Segmentation of

Neonatal Brain MRI.

Front. Neurosci. 15:662005.

doi: 10.3389/fnins.2021.662005

Harmonized Segmentation of
Neonatal Brain MRI
Irina Grigorescu 1,2*, Lucy Vanes 1,3, Alena Uus 1,2, Dafnis Batalle 1,4,

Lucilio Cordero-Grande 1,2,5, Chiara Nosarti 1,3, A. David Edwards 1, Joseph V. Hajnal 1,2,

Marc Modat 2 and Maria Deprez 1,2

1Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London,

United Kingdom, 2 Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s

College London, London, United Kingdom, 3Department of Child and Adolescent Psychiatry, Institute of Psychiatry,

Psychology and Neuroscience, King’s College London, London, United Kingdom, 4Department of Forensic and

Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London,

United Kingdom, 5 Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid &

CIBER-BNN, Madrid, Spain

Deep learning basedmedical image segmentation has shown great potential in becoming

a key part of the clinical analysis pipeline. However, many of these models rely on

the assumption that the train and test data come from the same distribution. This

means that such methods cannot guarantee high quality predictions when the source

and target domains are dissimilar due to different acquisition protocols, or biases in

patient cohorts. Recently, unsupervised domain adaptation techniques have shown

great potential in alleviating this problem by minimizing the shift between the source

and target distributions, without requiring the use of labeled data in the target domain.

In this work, we aim to predict tissue segmentation maps on T2-weighted magnetic

resonance imaging data of an unseen preterm-born neonatal population, which has

both different acquisition parameters and population bias when compared to our

training data. We achieve this by investigating two unsupervised domain adaptation

techniques with the objective of finding the best solution for our problem. We compare

the two methods with a baseline fully-supervised segmentation network and report

our results in terms of Dice scores obtained on our source test dataset. Moreover,

we analyse tissue volumes and cortical thickness measures of the harmonized data

on a subset of the population matched for gestational age at birth and postmenstrual

age at scan. Finally, we demonstrate the applicability of the harmonized cortical gray

matter maps with an analysis comparing term and preterm-born neonates and a

proof-of-principle investigation of the association between cortical thickness and a

language outcome measure.

Keywords: deep learning, segmentation, neonatal brain, unsupervised domain adaptation, cortical thickness

1. INTRODUCTION

Medical image deep learning has made incredible advances in solving a wide range of scientific
problems, including tissue segmentation or image classification (Miotto et al., 2018). However, one
major drawback of these methods is their applicability in a clinical setting, as many models rely
on the assumption that the source and target domains are drawn from the same distribution. As
a result, the efficiency of these models may drop drastically when applied to images which were
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acquired with acquisition protocols different than the ones used
to train the models (Kamnitsas et al., 2017; Orbes-Arteaga et al.,
2019).

At the same time, combining imaging data from multiple
studies and sites is necessary to increase the sample size
and thereby the statistical power of neuroimaging studies.
However, one major challenge is the lack of standardization in
image acquisition protocols, scanner hardware, and software.
Inter-scanner variability has been demonstrated to affect
measurements obtained for downstream analysis such as voxel-
based morphometry (Takao et al., 2011), and lesion volumes
(Shinohara et al., 2017). Therefore, the purpose of harmonizing
magnetic resonance imaging (MRI) datasets is to make sure that
the differences arising from different image acquisition protocols
do not affect the analysis performed on the combined data. For
example, volumetric and cortical thickness measures should only
be affected by brain anatomy and not the acquisition protocol
or scanners.

A class of deep learning methods called domain adaptation
(DA) techniques aims to address this issue by suppressing
the domain shift between the training and test distributions.
In general, DA approaches are either semi-supervised, which
assume the existence of labels in the target dataset, or
unsupervised, which assume the target dataset has no labels.
For example, a common approach is to train a model on
source domain images and fine-tune it on target domain data
(Ghafoorian et al., 2017; Kushibar et al., 2019). Although these
methods can give good results, they can become impractical as
more often than not the existence of labels in the target dataset
is limited or of poor quality. Unsupervised domain adaptation
techniques (Ganin and Lempitsky, 2015; Kerfoot et al., 2019)
offer a solution to this problem by minimizing the disparity
between a source and a target domain, without requiring the use
of labeled data in the target domain.

In our previous work (Grigorescu et al., 2020), we investigated
two unsupervised DA methods with the aim of predicting brain
tissue segmentations on 2D axial slices of T2-weighted (T2w)
MRI data of an unseen neonatal population. We proposed
an additional loss term in one of the methods, in order
to constrain the network to more realistic reconstructions.
Our models were trained using as source domain a dataset
with majority of term-born neonates and as target domain a
preterm-only population acquired with a different protocol. We
calculated mean cortical thickness measures for every subject
in the two datasets and we performed an ANCOVA analysis in
order to find group differences between the predicted source
and target domains. This analysis showed that our proposed
method achieved harmonization of our two datasets in terms
of cortical gray matter tissue segmentation maps. In this
paper, we build on the aforementioned framework, which we
expanded in three main ways. First, we build and train 3D
neural networks in order to capture more information about
the neonatal brain. Second, we extend the validation of our
trained models to subsets of the two cohorts matched for
gestational age (GA) at birth and postmenstrual age (PMA) at
scan, for which we analyse tissue volumes and global and local
cortical thickness (CT) measures. Finally, we perform an analysis
comparing term and preterm-born neonates on the harmonized

cortical gray matter maps and we show the importance of
harmonizing the data by a proof-of-principle investigation
of the association between cortical thickness and a language
outcome measure.

2. MATERIALS AND METHODS

2.1. Data Acquisition and Preprocessing
The T2w MRI data used in this study was collected as
part of two independent projects: the developing Human
Connectome Project (dHCP1, approved by the National Research
Ethics Committee REC: 14/Lo/1169), and the Evaluation of
Preterm Imaging (ePrime2, REC: 09/H0707/98) study. The dHCP
neonates were scanned during natural unsedated sleep at the
Evelina London Children’s Hospital between 2015 and 2019. The
ePrime neonates were scanned at the neonatal intensive care
unit in Hammersmith Hospital between 2010 and 2013 (Edwards
et al., 2018). Infants with major congenital malformations were
excluded from both cohorts.

The dHCP data was acquired using a Philips Achieva 3T
scanner and a 32-channels neonatal head coil (Hughes et al.,
2017), using a T2w turbo spin echo (TSE) sequence with fat
suppression, and using the following parameters: repetition time
TR = 12 s, echo time TE = 156 ms, TSE factor 12, and SENSE
factors of 2.11 for the axial plane and 2.58 for the sagittal plane.
Images were acquired with an in-plane resolution of 0.8 × 0.8
mm, slice thickness of 1.6 mm and overlap of 0.8 mm. For each
volume, there was an acquisition of 125 slices in the transverse
plane and 134 slices in the saggital plane. All data was motion
corrected (Kuklisova-Murgasova et al., 2012; Cordero-Grande
et al., 2018) and super-resolution reconstructed to a 0.5 mm
isotropic resolution (Makropoulos et al., 2018).

The ePrime dataset was acquired with a Philips Intera 3T
system and an 8-channel phased array head coil, using a T2w TSE
sequence with parameters: repetition time TR = 8.67 s, echo time
TE = 160 ms, and TSE factor 16. Images were acquired with an
in-plane resolution of 0.86 × 0.86 mm, slice thickness of 2 mm
and overlap of 1 mm. For each volume, the acquisition ranged
between 92 and 106 slices in the transverse plane.

Our two datasets comprise of 403 MRI scans of infants (184
females and 219 males) born between 23 and 42 weeks GA at
birth and scanned at term-equivalent age (after 37 weeks PMA)
as part of the dHCP pipeline, and a dataset of 486 MRI scans
of infants (245 females and 241 males) born between 23 and
33 weeks GA and scanned at term-equivalent age as part of the
ePrime project. Figure 1 shows their age distribution.

Both datasets were pre-processed prior to being used by the
deep learning algorithms. The ePrime volumes were linearly
upsampled to 0.5mm isotropic resolution tomatch the resolution
of our source (dHCP) dataset. Both dHCP and ePrime datasets
were rigidly aligned to a common 40 weeks gestational age atlas
space (Schuh et al., 2018) using the MIRTK (Rueckert et al.,
1999) software toolbox. Then, skull-stripping was performed on
all of our data using the brain masks obtained with the Draw-EM
pipeline for automatic brainMRI segmentation of the developing

1http://www.developingconnectome.org/
2https://www.npeu.ox.ac.uk/prumhc/eprime-mr-imaging-177
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FIGURE 1 | Age distribution of the subjects in our datasets, showing both their GA at birth, as well as their PMA at scan.

neonatal brain (Makropoulos et al., 2018). Tissue segmentation
maps were obtained using the same pipeline (Draw-EM) for both
(dHCP and ePrime) cohorts.

To train our networks, we split our datasets into 80% training,
10% validation, and 10% test (see Table 1), keeping both the
distribution of ages at scan and the male-to-female ratio as
close to the original as possible. We used the validation sets to
keep track of our models’ performance during training, and the
test sets to report our final models’ results and showcase their
capability to generalize.

2.2. Unsupervised Domain Adaptation
Models
To investigate the best solution for segmenting our target
dataset (ePrime), we compared three independently trained deep
learning models:

• Baseline.A 3DU-Net (Çiçek et al., 2016) trained on the source
dataset (dHCP) only and used as a baseline segmentation
network (see Figure 2).

• Adversarial domain adaptation in the latent space. A 3D U-
Net segmentation network trained on source (dHCP) volumes,
coupled with a discriminator trained on both source (dHCP)
and target (ePrime) datasets (see Figure 3). This solution is
similar to the one proposed by Kamnitsas et al. (2017) where
the aim was to train the segmentation network such that it
becomes agnostic to the data domain.

• Adversarial domain adaptation in the image space. Two 3D
U-Nets, one acting as a generator, and a second one acting
as a segmentation network, coupled with a discriminator
trained on both real and synthesized ePrime volumes. The
segmentation network is trained to produce tissue maps of
the synthesized ePrime volumes created by the generator (see
Figure 4). The normalized cross correlation (NCC) loss is

TABLE 1 | Number of scans in different datasets used for training, validation and

testing the models, together with their mean GA and PMA.

Dataset #Subjects GA at birth

[weeks]

PMA at scan

[weeks]

Train dHCP 340 (160♀ + 180♂) 39.1 (±2.7) 40.7 (±1.7)

Validate dHCP 32 (12♀ + 20♂) 39.3 (±1.6) 40.7 (±1.8)

Test dHCP 30 (12♀ + 19♂) 30 (±2.4) 41.4 (±1.7)

Train ePrime 417 (214♀ + 203♂) 29.6 (±2.3) 42.9 (±2.6)

Validate ePrime 38 (18♀ + 20♂) 29.8 (±2.3) 43 (±2.6)

Test ePrime 30 (13♀ + 18♂) 30 (±2.4) 41.4 (±1.7)

added to the generator network to enforce image similarity
between real and synthesized images, a solution which was
previously proposed by Grigorescu et al. (2020).

To further validate the harmonized tissue maps, we trained an
additional network (a 3D U-Net) to segment binary cortical
tissue maps into 11 cortical substructures (see Table 2) based
on anatomical groupings of cortical regions derived from the
Draw-EM pipeline. The key reasons for training an extra network
are: first, we avoid the time consuming task of label propagation
between our available dHCP Draw-EM output segmentations
and predicted ePrime maps, and second, we can train this
network using Draw-EM cortical segmentations, and apply it on
any brain cortical gray matter maps as in this case there will be
no intensity shift between target and source distributions.

2.3. Network Architectures
The segmentation networks in all three setups and the generator
used in the adversarial domain adaptation in the image space
model have the same architecture, consisting of 5 encoding-
decoding branches with 16, 32, 64, 128, and 256 channels,
respectively. The encoder blocks use 33 convolutions (with
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FIGURE 2 | The baseline model consists of a 3D U-Net trained to segment source (dHCP) volumes. The input T2w MRI images, the predicted segmentation and the

Draw-EM output segmentations are marked with S as they all belong to the source (dHCP) dataset.

FIGURE 3 | The latent space domain adaptation setup consists of a 3D U-Net trained to segment the source (dHCP) T2w MRI volumes, coupled with a discriminator

network which forces the segmentation network to learn domain-invariant features. Both source (dHCP) and target (ePrime) images are fed to the segmentation

network, but only source (dHCP) Draw-EM output labels are used to compute the segmentation loss. Source domain images are marked with S, while target domain

images are marked with T, respectively.

a stride of 1), instance normalization (Ulyanov et al., 2016)
and LeakyReLU activations. A 23 average pooling layer is
used after the first down-sampling block, while the others
use 23 max pooling layers. The decoder blocks consist of
33 convolutions (with a stride of 1), instance normalization
(Ulyanov et al., 2016), LeakyReLU activations, and, additionally,
33 transposed convolutions. The number of encoding-decoding
blocks, as well as the use of LeakyReLU activations and instance
normalization layers, were chosen based on the best practices
described in Isensee et al. (2018). At the same time, the
network configurations that we have chosen allowed us to work
with the hardware we have at hand (Titan XP 12 GB). The

segmentation network outputs a 7-channel 3D volume (of the
same size as the input image), corresponding to our 7 classes:
background, cerebrospinal fluid (CSF), cortical gray matter
(cGM), white matter (WM), deep gray matter (dGM), cerebellum
and brainstem. The generator network’s last convolutional
layer is followed by a Tanh activation and outputs a single
channel image.

For our unsupervised domain adaptation models (Figures 3,
4) we used a PatchGAN discriminator as proposed in Isola et al.
(2017). Its architecture consists of 5 blocks of 43 convolutions
(with a stride of 2) with 64, 128, 256, 512, and 1 channels,
respectively), instance normalization and LeakyReLU activations.
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FIGURE 4 | The image space domain adaptation setup uses a generator network to produce ePrime-like T2w MRI images (marked with˜T), which are then used as

input into the segmentation network. The discriminator is trained to distinguish between real (ePrime) and synthesized (ePrime-like) volumes, while the generator is

trained to produce realistic images in order to fool the discriminator. The NCC loss enforces image similarity between real and synthesized volumes.

The cortical parcellation network has the same architecture
as the tissue segmentation network, but outputs a 12-channel
3D volume corresponding to the following cortical substructures:
frontal left, frontal right, cingulate, temporal left, temporal right,
insula left, insula right, parietal left, parietal right, occipital
left, and occipital right, respectively. The last class represents
the background.

2.4. Training
The baseline segmentation network (Figure 2) was trained
by minimizing the generalized Dice loss (Sudre et al., 2017)
between the predicted and the Draw-EM segmentation maps
(Equation 1).

Lmethod1 = Lseg = 1− 2

∑M
l=1 wl

∑

n plntln
∑M

l=1 wl

∑

n pln + tln
(1)

where wl = 1/(
∑

n tln)
2 is the weight of the lth tissue type, pln is

the predicted probabilistic map of the lth tissue type at voxel n,
tln is the target label map of the lth tissue type at voxel n, and M
is the number of tissue classes. While training, we used the Adam
optimizer (Kingma and Ba, 2014) with its default parameters and
a decaying cyclical learning rate scheduler (Smith, 2017) with a
base learning rate of 2 · 10−6 and a maximum learning rate of
2 · 10−3. The choice of optimizer was based on knowledge of
previous image translation literature (Isola et al., 2017; Zhu et al.,
2017; Liao et al., 2019; Ranzini et al., 2020) where it yielded good
results. At the same time, a varying learning rate during training

was shown to improve results in fewer iterations when compared
to using a fixed value (Smith, 2017).

The segmentation network from the adversarial domain
adaptation in the latent space model was trained to produce
tissue maps on the source (dHCP) volumes. In addition, both
target (ePrime) and source (dHCP) volumes were fed to the
segmentation network, while the feature maps obtained from
every level of its decoder arm were passed to the discriminator
network which acted as a domain classifier. This was done after
either up-sampling or down-sampling the feature maps to match
the volume size of the second deepest layer. This model was
trained by minimizing a Cross-Entropy loss between predicted
and assigned target labels representing our two domains. The
final loss function for our second model was therefore made up
of the generalized Dice loss and an adversarial loss:

Lmethod2 = Lseg − αLadv (2)

where α was a hyperparameter increased linearly from 0
to 0.05 starting at epoch 20, and which remained equal to
0.05 from epoch 50 onward. Similar to Kamnitsas et al.
(2017) we looked at the behavior of our discriminator and
segmentation network when training with different values of α ∈

[0.02, 0.05, 0.1, 0.2, 0.5]. We found the discriminator’s accuracy
during training stable for all investigated values, while the
segmentation network achieved the lowest loss when α = 0.05.
The segmentation network was trained similarly to the baseline
model, while the discriminator network was trained using the
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TABLE 2 | Grouping of cortical substructures showing their original tissue name

obtained from Draw-EM (Makropoulos et al., 2018) on the first column and their

corresponding cortical subregion on the second column.

Tissue name Cortical subregion

Anterior temporal lobe, medial part left

Anterior temporal lobe, lateral part left

Gyri parahippocampalis et ambiens anterior part left

Superior temporal gyrus, middle part left

Medial and inferior temporal gyri anterior part left

Lateral occipitotemporal gyrus, gyrus fusiformis anterior

part left

Temporal (left)

Gyri parahippocampalis et ambiens posterior part left

Lateral occipitotemporal gyrus, gyrus fusiformis posterior

part left

Medial and inferior temporal gyri posterior part left

Superior temporal gyrus, posterior part left

Anterior temporal lobe, medial part right

Anterior temporal lobe, lateral part right

Gyri parahippocampalis et ambiens anterior part right

Superior temporal gyrus, middle part right

Medial and inferior temporal gyri anterior part right

Lateral occipitotemporal gyrus, gyrus fusiformis anterior

part right

Temporal (right)

Gyri parahippocampalis et ambiens posterior part right

Lateral occipitotemporal gyrus, gyrus fusiformis posterior

part right

Medial and inferior temporal gyri posterior part right

Superior temporal gyrus, posterior part right

Insula left Insula (left)

Insula right Insula (right)

Occipital lobe left Occipital (left)

Occipital lobe right Occipital (right)

Cingulate gyrus, anterior part right

Cingulate gyrus, anterior part left Cingulate

Cingulate gyrus, posterior part right

Cingulate gyrus, posterior part left

Frontal lobe left Frontal (left)

Frontal lobe right Frontal (right)

Parietal lobe left Parietal (left)

Parietal lobe right Parietal (right)

Adam optimizer with β1 = 0.5 and β2 = 0.999, and a linearly
decaying learning rate scheduler starting from 2 · 10−3.

The generator network used in the image space domain
adaptation approach was trained to produce synthesized ePrime
volumes, while the segmentation network was trained using the
same loss function, optimizer and learning rate scheduler as
in the other two methods. In the previous model (adversarial
domain adaptation in the latent space) we fed both dHCP and
ePrime volumes to the segmentation network to obtain data
agnostic feature maps. For this reason, and to allow for a fair
comparison between the two unsupervised domain adaptation
models, we trained the segmentation network from the image
spacemodel on both real dHCP and synthesized ePrime volumes.

For both the discriminator and the generator networks the Adam
optimizer with β1 = 0.5 and β2 = 0.999 was used, together with
a linearly decaying learning rate scheduler starting from 2 · 10−3.
The loss function of the discriminator was similar to that of the
Least Squares GAN (Mao et al., 2017):LD = Ex∼T[(D(x)−b)2]+
Ex∼S[(D(G(x)) − a)2] where a signified the label for synthesized
volumes and b was the label for real volumes. The generator
and the segmentation network were trained together using the
following loss:

Lmethod3 = Lseg + Ladv (3)

where Ladv = Ex∼S[(D(G(x)) − b)2]. An additional NCC loss
was used between the real and the generated volumes in order
to constrain the generator to produce realistic looking ePrime-
like images.Without the additional NCC loss, the generator tends
to produce images with an enlarged CSF boundary in order to
match the preterm-only distribution found in the ePrime dataset,
as was previously shown in Grigorescu et al. (2020).

These three methods were trained with and without data
augmentation for 100 epochs, during which we used the
validation sets to inform us about our models’ performance and
to decide on the best performing models. For data augmentation
we applied: random affine transformations [with rotation angles
θi ∼ U(−10o, 10o) and/or scaling values si ∼ U(0.8, 1.2)],
random motion artifacts [corresponding to rotations of θi ∼

U(−2o, 2o) and translations of ti ∼ U(−2 mm, 2 mm)], and
random MRI spike and bias field artifacts (Pérez-García et al.,
2020). The cortical parcellation network was trained in a similar
fashion as the baseline tissue segmentation network, with data
augmentation in the form of random affine transformations (with
the same parameters as above).

The test set was used to report our final models’ results
and to showcase their capability to generalize on the source
domain. Finally, we produced tissue segmentation maps for all
the subjects in our datasets, and used them as input into ANT’s
DiReCT algorithm (Tustison et al., 2013) to compute cortical
thickness measures. To validate our results, we compared cortical
thickness measures between subsets of the two cohorts matched
for GA and PMA, for which we expect no significant difference
in cortical thickness if the harmonization was successful. We also
assessed the association between PMA and cortical thickness in
the two cohorts.

3. RESULTS

3.1. dHCP Test Dataset
3.1.1. Baseline and Domain Adaptation Models

In our first experiment we looked at the performance of the six
trained models when applied to the source (dHCP) test dataset.
The aim was to assess whether our trained models were able
to generalize to unseen source domain (dHCP) data for which
we have reliable Draw-EM outputs. Figure 5 summarizes the
results of our trained models, showing mean Dice scores, mean
Hausdorff distance calculated using SimpleITK (Lowekamp et al.,
2013; Yaniv et al., 2018), precision and recall. These metrics
were computed between the predicted tissue segmentation maps
and the Draw-EM output labels for each of the six trained
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FIGURE 5 | The results on our dHCP test dataset for all six methods. The yellow diamond highlights the model which obtained the best mean score for its respective

tissue type and metric. Models which obtained non-significant differences when compared to the best performing method are shown above each pair.

models. The model that obtained the best score is highlighted
with the yellow diamond for each metric and tissue type. In
terms of Dice scores, out of the six models, the baseline with
augmentation and image with augmentation methods performed
best on the source domain test dataset for CSF, dGM, cerebellum
and brainstem, with no significant difference between them. For
cGM andWM, the best performance was obtained by the baseline
with augmentationmodel, while the domain adaptation methods
showed a slight decrease in performance. The three models
trained without augmentation always performed significantly
worse than their augmented counterparts.

In terms of average Hausdorff distance, both the baseline with
augmentation and image with augmentation models performed
well, while the latent without augmentation model performed
worse than all the other models for all tissue types. Highest
precision scores were obtained by the baseline with augmentation

model for both CSF and WM, the image without augmentation
method for both cGM and brainstem, the baseline without
augmentation for dGM, and the latent with augmentation model
for cerebellum. Highest recall scores were obtained by the
baseline with augmentation model for cGM and cerebellum, the
latent with augmentation model for WM, dGM and brainstem,
and the latent without augmentation model for CSF. These
results show that our trained models were able to generalize
to unseen source domain data, and that the performance on
the dHCP dataset was not compromised by using domain
adaption techniques.

3.1.2. Cortical Parcellation Network

To assess the performance of our trained cortical parcellation
network, we applied it on the source (dHCP) test dataset, where
the inputs were binary Draw-EM cortical gray matter tissue
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TABLE 3 | Dice Scores obtained on the dHCP test set for the trained cortical

parcellation network.

Tissue Min Max Mean Tissue Min Max Mean

Frontal (left) 0.98 0.99 0.99 Frontal (right) 0.98 0.99 0.99

Temporal (left) 0.96 0.99 0.98 Temporal (right) 0.97 0.98 0.98

Insula (left) 0.95 0.97 0.96 Insula (right) 0.95 0.97 0.96

Parietal (left) 0.96 0.98 0.97 Parietal (right) 0.96 0.98 0.97

Occipital (left) 0.94 0.98 0.97 Occipital (right) 0.95 0.98 0.97

Cingulate 0.93 0.97 0.96

maps. For each subject in our test dataset, the network produced
a 12-channel output, consisting of: frontal left, frontal right,
cingulate, temporal left, temporal right, insula left, insula right,
parietal left, parietal right, occipital left, occipital right, and
background, respectively. Table 3 summarizes these results in
terms of minimum, maximum and mean Dice scores for each
of the 11 cortical substructures. When compared with the Draw-
EM outputs (Makropoulos et al., 2018), the network obtained an
overall mean Dice score of 0.97.

3.2. Validation of Data Harmonization
In order to evaluate the extent to which each of the trained
models managed to harmonize the segmentation maps of the
two cohorts, we looked at tissue volumes and mean cortical
thickness measures between subsamples of the dHCP (N = 30;
median GA = 30.50 weeks; median PMA = 41.29 weeks) and
ePrime (N = 30; median GA = 30.64 weeks; median PMA
= 41.29 weeks) cohort which showed comparable GA at birth
and PMA at time of scan (see Table 1). A direct comparison
between the two cohort subsets shows that the dHCP and
ePrime neonates did not differ significantly in terms of sex
[χ2(1) < 0.001, p > 0.05], or maternal ethnicity [χ2(4) =

4.32, p > 0.05], coded as “white or white British,” “black or
black British,” “asian or asian British,” “mixed race,” and “other.”
As a proxy for socio-economic status, we derived an Index of
Multiple Deprivation (IMD) score based on parental postcode
at the time of infant birth (Department for Communities and
Local Government, 20113). This measure is based on seven
domains of deprivation within each neighborhood compared
to all others in the country: income, employment, education,
skills and training, health and disability, barriers to housing
and services, living environment and crime. Higher IMD values
therefore indicate higher deprivation. IMD score did not differ
significantly between dHCP (M = 21.4, SD = 10.7) and ePrime
(M = 18.0, SD = 11.6) subsets, suggesting that these two groups
are comparable in terms of environmental background.

For these two cohort subsamples with similar GA and PMA,
we expected both volumes and cortical thickness measures
not to differ after applying the harmonization procedures. We
also investigated the relationship between PMA and volumes
and cortical thickness respectively, before and after applying
the harmonization. Linear regressions were performed in the

3https://tools.npeu.ox.ac.uk/imd/

comparable data subsets testing the effects of PMA and cohort
on volumes (or cortical thickness), controlling for GA and sex.

3.2.1. Volumes

Figure 6 shows the tissue volumes for both the original and the
predicted segmentations. Significant volume differences between
the two subsamples (i.e., significant effect of cohort in the
regression model) are reported above each tested model. To
summarize, the image with augmentation model performed
best, by showing no significant differences in the two cohorts
for cortical gray matter, white matter, deep gray matter,
cerebellum and brainstem. The cerebrospinal fluid volumes were
significantly different between the two cohorts for all our trained
models, as well as for the original ePrime segmentation masks.

3.2.2. Cortical Thickness

Figure 7 summarizes the results of applying the cortical thickness
algorithm on the predicted segmentation maps for all six
methods. Before harmonization, the matched subsets from the
dHCP and ePrime cohorts showed a significant difference in
mean cortical thickness [dHCP: M = 1.73, SD = 0.12; ePrime:
M = 1.93, SD = 0.13; t(58) = 6.33, p < 0.001]. After
applying the harmonization to the ePrime sample, mean cortical
thickness no longer differed between the two subsamples for
four of our methods. These results are summarized in panel H
from Figure 7, where the models which obtained harmonized
values in terms of mean cortical thickness measures are shown
in bold. Figure 7 also shows the association between PMA and
mean crtical thickness before (Figure 7A) and after applying
the models (Figures 7B–G) on the matched dHCP and ePrime
subsets. A linear model regressing unharmonized mean cortical
thickness on PMA, GA, sex, and cohort revealed a significant
effect of cohort (β = 0.20; p < 0.001), consistent with a group
difference in mean cortical thickness reported above, as well as
a significant effect of PMA (β = 0.04; p < 0.001), consistent
with an increase in cortical thickness with increasing PMA. After
applying the methods, the effect of cohort was rendered non-
significant for four of the methods (see highlighted panels C, E, F,
G from Figure 7), while the effect of PMA remained stable across
all six methods.

We performed a similar analysis on thickness measures of
the cortical substructures. To obtain these measures, we used
the original and the predicted cortical gray matter segmentation
maps (obtained by applying each of our six methods) as input
to the trained cortical parcellation network to predict cortical
substructure masks. We then used these masks to calculate
local cortical thickness measures. Our results are summarized in
Figure 8.

3.2.3. Example Predictions

To further narrow down which of the four remaining methods
was best at harmonizing our ePrime neonatal dataset, we looked
at the predicted segmentations. Figure 9 shows two example
neonates from the ePrime dataset with GA = 32.9 w, PMA =

43.6 w, and with GA = 28.7 w, PMA = 44.7 w, respectively. The
first column shows T2w saggittal and axial slices, respectively,
while the following four columns show example tissue prediction
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FIGURE 6 | Comparison of volume measures for our six tissue types (CSF, cGM, WM, dGM, cerebellum, and brainstem) between original Draw-EM dHCP

segmentations and original Draw-EM ePrime segmentations (first column), or between original Draw-EM dHCP segmentations and ePrime segmentations obtained

with the six trained models (columns 2–7). Linear regressions were performed in the comparable data subsets testing the effects of cohort on volumes, controlling for

PMA, GA, and sex (volume ∼ cohort + PMA + GA + sex). The asterisks indicate a statistically significant effect of cohort in the linear regression.

maps produced by the four models: baseline with augmentation,
latent with augmentation, image, and image with augmentation,
respectively. Although all four methods performed well in terms
of harmonizing tissue segmentation volumes and global mean
cortical thickness values for the two subsamples with similar GA
and PMA, previously presented quantitative results as well as the
example above suggest that the image with augmentationmethod
was more robust.

Finally, Figure 10 shows the axial, sagittal and coronal slices
of an ePrime neonate (GA = 32.86 w and PMA = 39.86 w). The
first line shows the T2w MR image, while the second and third
lines show the CSF boundary of both the Draw-EM algorithm
and the image with augmentation method. The green arrows
point to a WM region which was misclassified by the Draw-EM

pipeline as CSF. This problem was then corrected by the image
with augmentationmethod.

3.3. Analysis of Harmonized Cortical
Substructures
In this section we analyze the harmonized cortical gray matter
segmentation maps using the image with augmentation model.
We produce tissue segmentation maps for the entire ePrime
dataset and calculate cortical thickness measures on the predicted
and Draw-EM cortical gray matter tissue maps of both cohorts.
In addition, we use the trained cortical parcellation network
to produce cortical substructure masks. We perform a term vs
preterm analysis on the harmonized cortical gray matter maps
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FIGURE 7 | The association between PMA and mean cortical thickness before (A) and after (B–G) applying the data harmonization models on the matched dHCP

and ePrime subsets. A linear model regressing mean cortical thickness measures on PMA, GA, sex, and cohort revealed a significant effect of cohort for the original

segmentations (A), and the predicted maps (B - baseline without augmentation and D - latent without augmentation). The effect of cohort was rendered

non-significant for four of the methods (C - baseline with augmentation, E - latent with augmentation, F - image without augmentation, and G - image with

augmentation). (H) summarizes cortical thickness measures before and after applying the models.

and we show the importance of harmonizing the data with
a proof-of-principle application setting where we investigate
the association between cortical thickness and a language
outcome measure.

3.3.1. Comparison of Term and Preterm Cortical Maps

Associations between cortical thickness and GA or PMA in the
full dHCP and ePrime datasets (excluding subjects with PMA >

45 weeks) for the whole cortex are depicted in Figure 11, where
we show individual regression lines for preterm-born and term-
born neonates. The first column consists of dHCP-only subjects,

while the following two columns showcase both cohorts together,
before and after harmonizing the cortical graymatter tissuemaps.

A linear model regressing dHCP-only mean cortical thickness
on PMA, GA, sex, birth weight and the interaction between
PMA and GA revealed a significant effect of PMA (β = 0.19;
p < 0.001), a significant effect of GA (β = 0.16; p = 0.002),
and a significant effect of the interaction between PMA and GA
(β = −0.004; p = 0.002), indicating that infants born at a lower
GA showed a stronger relationship between PMA and CT. When
performing the same analysis in the pooled ePrime and dHCP
data before harmonizing the maps, the effect of GA and the effect
of the interaction were rendered not significant (GA: β = 0.009;
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FIGURE 8 | Comparison of local mean cortical thickness measures between original Draw-EM dHCP segmentations and original Draw-EM ePrime segmentations

(first column), or between original Draw-EM dHCP segmentations and ePrime segmentations obtained with the six trained models (columns 2–7). Linear regressions

were performed in the comparable data subsets testing the effects of cohort on local cortical thickness measures, controlling for PMA, GA, and sex (CT ∼ cohort +

PMA + GA + sex). The asterisks indicate a statistically significant effect of cohort in the linear regression.
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FIGURE 9 | Example predicted segmentation maps for the best performing models. On the first row we show an example where three of the models (baseline with

augmentation, latent with augmentation, and image) misclassified a part of the cortex as being deep gray matter. This is more pronounced in the baseline with

augmentation model, while the latent with augmentation and image show a slight improvement. The image with augmentation model corrected the problem entirely.

On the second row the yellow arrow points to an area of CSF where the baseline with augmentation model misclassified it as dGM, while the other three models did

not have this problem. The red arrow on the other hand points to an area where the latent with augmentation model misclassified cGM as deep gray matter. This

problem does not appear in the other models.

p = 0.7 and PMA∗GA: β = −0.0006; p = 0.5, respectively). This
is corrected after harmonizing the tissue maps, where the effects
of GA (β = 0.06; p = 0.02) and the effects of the GA and PMA
interaction (β = −0.001; p = 0.02) are, again, significant.

The second and third columns of Figure 11 show that
after harmonizing the tissue segmentation maps, the ePrime
preterm-born neonates (green dots) are brought downwards
into a comparable range of values to the dHCP preterms (red
dots). Moreover, when plotting the cortical thickness measures
against PMA, after harmonizing the tissue maps, the intersection
between the two individual regression lines (term and preterm-
born neonates) happens at roughly the same age (PMA = 38.5
weeks) as in the dHCP-only dataset.

We extended the term vs preterm analysis on cortical
thickness substructures. Figure 12 shows the results of applying
a linear model regressing mean cortical thickness measures on
PMA, GA, sex, birth weight and prematurity, where significant
differences (p < 0.05) between the two cohorts (term and
preterm-born neonates) are highlighted in the image.

3.3.2. Behavioral Outcome Association

As a final proof-of-principle, we demonstrate the importance of
data harmonization in an application setting investigating the
association between neonatal cortical thickness and a behavioral
outcome measure. For this, we consider language abilities
as assessed between 18 and 24 months in both dHCP and
ePrime cohorts using the Bayley Scales of Infant and Toddler
Development (Bayley, 2006). Age-normed composite language
scores were available for 203 toddlers from the dHCP cohort
(M = 96.43; SD = 14.89) and 136 toddlers from the ePrime
cohort (M = 91.25; SD = 17.37). For the neonatal cortical

thickness measure, we focus on the left and right frontal cortex
for illustration.

Regressing composite language score against left or right
frontal cortical thickness in each cohort separately, controlling
for PMA, GA, sex and intracranial volume showed that there
was no significant association between neonatal left/right frontal
cortical thickness and language abilities at toddler age in either
of the cohorts. However, when pooling data from both cohorts
together and rerunning the same analysis (using un-harmonized
cortical thickness measures), a significant association between
left/right frontal cortical thickness and language abilities is seen
(left: β = −17.56, p < 0.05, right: β = −18.76, p <

0.05), suggesting that greater frontal cortical thickness at term-
equivalent age is associated with reduced language abilities at
toddler age.

However, as can be seen in Figure 13, this is likely a spurious
effect due to (artifactually) heightened cortical thickness values
in un-harmonized ePrime data combined with lower language
composite scores in the ePrime cohort (consistent with effects
typically observed in preterm cohorts). Indeed, when rerunning
the same analysis on harmonized data pooled across both
cohorts, the effect of cortical thickness on language ability is
rendered non-significant in both left (β = −13.99, p = 0.15) and
right (β = −16.69, p = 0.068) frontal cortex, consistent with the
ground-truth findings in each individual cohort.

4. DISCUSSION AND FUTURE WORK

In this paper we studied the application and viability of
unsupervised domain adaptation methods for harmonizing
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FIGURE 10 | Example of a neonate from the ePrime dataset with GA = 32.86 w and PMA = 39.86 w where the Draw-EM algorithm performed worse than our

proposed image with augmentation model. The green arrow points at a region which was segmented as CSF by Draw-EM, but then corrected by our model.

tissue segmentation maps of two neonatal datasets (dHCP and
ePrime). Our aim was to obtain volumetric and cortical thickness
measures that are only affected by brain anatomy and not
by the acquisition protocol or scanner, in order to improve
the statistical power of imaging or imaging-genetic studies.
We proposed an image-based domain adaptation model where
a tissue segmentation network was trained with real dHCP
and synthesized ePrime T2w 3D MRI volumes. The generator
network was trained to produce realistic images in order to fool a
domain discriminator, while also minimizing an NCC loss which
aimed to enforce image similarity between real and synthesized
images (Grigorescu et al., 2020). We trained this model using
dHCP Draw-EM segmentation maps, and we compared it with a
baseline 3D U-Net (Çiçek et al., 2016), and a latent space domain
adaptation method (Kamnitsas et al., 2017). The three methods
were trained with and without data augmentation (Pérez-García
et al., 2020).

First, we looked at the performance of each of the six
trained models on the source (dHCP) test dataset, by comparing
predicted tissue segmentation maps with the Draw-EM output
labels, with the aim of measuring fidelity of our trained
segmentation methods for the original dHCP domain. Our
results on the source (dHCP) test dataset suggest that our trained

models were able to generalize to unseen source domain data.
At the same time, Dice score results on the test set for the
proposed image with augmentation model are high and are
similar in performance when compared with the baseline with
augmentation method. This suggests that adding the contrast
transfer step does not diminish the quality of the segmentations.

We then analyzed the extent to which each of the 6 trained
models managed to harmonize the tissue segmentation maps
of our two cohorts, by looking at tissue volumes and mean
cortical thickness measures between subsamples of the dHCP
and ePrime cohorts which showed comparable GA at birth
and PMA at time of scan, as well as similar gender and
maternal ethnicity. Our results showed that our proposed model
(image with augmentation) harmonized the predicted tissue
segmentation maps in terms of cortical gray matter, white matter,
deep gray matter, cerebellum and brainstem volumes (Figure 6).
In terms of mean global cortical thickness measures, four of
the trained methods (baseline with augmentation, latent with
augmentation, image, and image with augmentation) achieved
comparable values when compared to the dHCP subset. In fact,
we hypothesize that these four methods provided the best overall
results because either they were trained using data augmentation
or they acted as a deep learning-based augmentation technique
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FIGURE 11 | Mean cortical thickness measures in our dHCP dataset (first column), and in both cohorts before (second column) and after (third column) harmonizing

the tissue segmentation maps. The first row plots the cortical thickness measures against GA, while the second row plots the cortical thickness measures against

PMA, with individual regression lines on top.

FIGURE 12 | Comparison of cortical thickness measures for the whole cortex and for each of the 11 cortical subregions between term and preterm-born neonates.

The results of the linear regression are reported in the table in terms of differences between term and preterm-born neonates.

(Sandfort et al., 2019), which made the segmentation network
more robust to the different contrast, population bias and
acquisition protocol of the ePrime dataset.

Using the cortical parcellation network, we also produced
cortical thickness measures for the 11 cortical subregions
(see Table 2). Again, the models trained with augmentation
performed better than their no augmentation counterparts (see
Figure 8). However, our proposed image with augmentation
model performed best, whereby ePrime values, tending toward

higher values before harmonization, were brought downwards
into a comparable range of values to dHCP, for 10 out of 11
cortical subregions (see Figure 8 last column). For the right
parietal lobe, our proposed method outperformed the original
segmentations and the other 5 models, but did not manage to
bring the values down to a non-significant range. One potential
reason for this is that, on a visual inspection, the ePrime
cohort appears to suffer from more partial volume artifacts
than its dHCP counterpart, which can confuse the segmentation
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FIGURE 13 | Language composite score against predicted left and right frontal cortical thickness measures before and after harmonizing the tissue segmentation

maps. Without harmonization (columns 1 and 3) there appears to be a significant association between left or right frontal cortical thickness and language abilities, but

after harmonization (columns 2 and 4) the effect of cortical thickness on language ability is rendered non-significant in both left and right frontal cortex. This

demonstrates the importance of data harmonization without which pooling images from separate datasets can lead to spurious findings that are driven by differences

in acquisitions rather than by true underlying effects.

network and can lead to overestimation of the cortical gray
matter/cerebrospinal fluid boundary.

A close inspection of the predicted tissue segmentation
maps (see Figure 9) also showed that our proposed model
(image with augmentation) corrected misclassified voxels which
were prevalent in the other 3 methods. At the same time, the
proposed image with augmentation method outperformed the
original Draw-EM segmentation by correcting a region of
WM which was wrongly classified as CSF (see Figure 10). Our
results suggest that, in terms of consistency of volumes
and regional cortical thickness measures derived from
dHCP and ePrime neonates (Figures 6, 8), as well as the
qualitative examples (Figures 9, 10), our proposed image with
augmentation model resulted in more consistent outputs than
the other methods.

We used the harmonized cortical segmentation maps to
look at differences in both global and local cortical thickness
measures between term and preterm-born neonates. We showed
in Figure 12 that our harmonized cortical gray matter maps
resulted in global thickness measures which were comparable
with the dHCP-only neonates, while also revealing a significant
effect of GA and the interaction between age at scan and at
birth. We performed a similar analysis on the local cortical
thickness measures and highlighted three regions of interest
(frontal left, frontal right, and parietal left) which showed
significant differences between the two cohorts (see Figure 12).
These regions are consistent with previous studies (Nagy et al.,
2011) where cortical thickness measures were shown to differ in
preterm-born neonates when compared to term-born neonates
in an adolescent cohort.

Finally, we showed the importance of harmonizing the
cortical tissue maps by investigating the association between
neonatal cortical thickness and a language outcome measure.
After harmonization, regressing language composite score
against predicted left or right frontal cortical thickness in the
two pooled datasets, showed no significant effect of cortical
thickness (second column of Figure 13), consistent with the
ground-truth results seen in each cohort individually. This

analysis demonstrates that without data harmonization, pooling
images from separate datasets can lead to spurious findings that
are driven by systematic differences in acquisitions rather than
by true underlying effects. Our harmonization allows for our two
datasets to be combined into joint analyses while preserving the
underlying structure of associations with real-world outcomes.

Our study was focused on single-source unsupervised domain
adaptation approaches, which might limit application in terms
of applying the method to a different neonatal dataset. However,
by utilizing reliable tissue segmentation maps from multiple
neonatal databases, the proposed model can be extended to a
multi-source domain adaptation pipeline (Mansour et al., 2008;
Xu et al., 2018). Additionally, the latent based domain adaptation
method was trained using the features at every layer of the
decoding branch, without analyzing different combinations of
the encoding-decoding layers. Future work will therefore aim to
systematically evaluate our design choices via ablation studies. At
the same time, we focused our work on investigating structural
(T2w) datasets only, and in future we aim to extend this study to
harmonize diffusion data as well.
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In the central nervous system of primates, several pathways are characterized by different

spectra of axon diameters. In vivo methods, based on diffusion-weighted magnetic

resonance imaging, can provide axon diameter index estimates non-invasively. However,

such methods report voxel-wise estimates, which vary from voxel-to-voxel for the same

white matter bundle due to partial volume contributions from other pathways having

different microstructure properties. Here, we propose a novel microstructure-informed

tractography approach, COMMITAxSize, to resolve axon diameter index estimates at

the streamline level, thus making the estimates invariant along trajectories. Compared

to previously proposed voxel-wise methods, our formulation allows the estimation

of a distinct axon diameter index value for each streamline, directly, furnishing a

complementary measure to the existing calculation of the mean value along the bundle.

We demonstrate the favourable performance of our approach comparing our estimates

with existing histologically-derived measurements performed in the corpus callosum

and the posterior limb of the internal capsule. Overall, our method provides a more

robust estimation of the axon diameter index of pathways by jointly estimating the

microstructure properties of the tissue and the macroscopic organisation of the white

matter connectivity.

Keywords: human brain, white-matter axon signature, diffusionMRI, tractography, microstructure, microstructure

informed tractography
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1. INTRODUCTION

The white matter of the central nervous system comprises axons
with different diameters (Peters et al., 1991) organized in
pathways, tracts, bundles or fascicles. Diameters correlate with:
(i) the size of the parent cell body (Tomasi et al., 2012); (ii) the size
and density of synaptic boutons (Innocenti and Caminiti, 2017);
(iii) conduction velocity (Hursh, 1937), which together with axon
length determines conduction delays between brain sites; and
possibly, (iv) the frequency of firing (Perge et al., 2012). Being
able to quantify and characterise these different aspects may be
critical to understanding sensory, motor, and cognitive functions.
In particular, as the axon diameter is strictly related to conduction
velocity (Ritchie, 1982; Drakesmith et al., 2019), it is associated
with the flow of information between different cortical sites and is
thus a critical feature when trying to understand the relationship
between the structural and functional connectivity of the brain
(Honey et al., 2010). Reliable estimates of axon diameter are also
of utmost importance for interpreting pathological cases (DeLuca
et al., 2004; Zikopoulos and Barbas, 2013; Huang et al., 2016).

First attempts to characterize the composition of neuronal
pathways in the central nervous system used histological
techniques (Aboitiz et al., 1992; Tomasi et al., 2012; Innocenti
et al., 2018) and focused on samples of animal tissue. Besides
being possible only ex vivo, these analyses require laborious
measurements of axon diameters in a few slices along the course
of known pathways. Per contra, diffusion-weighted magnetic
resonance imaging (DW-MRI) is a non-invasive technology that
can provide in vivo structural information on white matter
pathways by probing the motion of water molecules and
analyzing how it is influenced by the cellular structure of the
tissue (Le Bihan and Breton, 1985; Moseley et al., 1990; Beaulieu
and Allen, 1994). Compared to histological measurements, this
technology is faster and non-invasive. Therefore, it can be applied
to the living human brain, with enormous potential in terms of
information that can be recovered.

On the one hand, it is possible to estimate the course of
major pathways using tractography; for a review, see (Jeurissen
et al., 2017) and references therein. These fiber-tracking methods
approximate the macroscopic trajectory of axons by seeking
pathways ofmaximum coherence of estimates of fibre orientation
derived in each voxel from DW-MRI. Each reconstructed
trajectory, or streamline, represents a coherent set of axons
coursing together. Despite a large number of algorithms
developed, none of the existing methods can provide information
about the axon diameter of the individual reconstructed fiber
bundles, as tractography only reconstructs their macroscopic
trajectory. On the other hand, a variety of DW-MRI biophysical
models have been proposed in the literature to obtain such
information at the voxel level. Pioneering work in this field was
done by Assaf et al. (2008), who proposed a method to estimate
axon diameter distributions on an ex vivo spinal cord sample,
exploiting the simple organization of the tissue with axons having
a single, known orientation. Their model, AxCaliber, was later
employed to study in vivo the axon composition of the corpus
callosum in rodents (Barazany et al., 2009). A major limitation is
that the DW-MRI signal must be acquired perpendicular to the

axons main orientation and, hence, it requires prior knowledge
on the orientation of the bundle to study. The ActiveAx technique
developed by Alexander et al. (2010) removed this constraint
by probing the DW-MRI signal along multiple directions and
estimating orientationally-invariant features of the axons, thus
not requiring any prior knowledge on their orientation. ActiveAx
extended axon diameter index estimation to the whole brain but
at the price of providing estimates of the mean axon diameter
rather than the full distribution. The model was validated in
monkeys and humans (Alexander et al., 2010; Dyrby et al., 2013),
in vivo and ex vivo, and the estimated trend of themean diameters
in the corpus callosum agreed with histology.

Despite their attractiveness, current techniques for axon
diameter estimation with DW-MRI suffer from several
fundamental limitations which render them unsuitable for
estimating conduction velocity and connectomics studies in the
whole brain. First, the estimation is performed voxel-wise and
independently in each imaging voxel, neglecting the fact that
axons are continuous three-dimensional structures that are not
limited to the extent of the voxel. This makes it impossible to
infer the full course of the axons passing through that location
or whether the estimated values correspond to distinct fiber
bundles. Second, most methods implicitly assume a single
axon population inside a voxel and cannot cope with complex
fiber configurations such as crossing and fanning. In such
voxels, [estimated to be as high as 90% of all white-matter
voxels (Jeurissen et al., 2013)], the models provide biased
estimates as they suffer from severe overestimation of the
axon diameters (Alexander et al., 2010), limiting de facto their
applicability to specific areas of the brain, e.g., mid-sagittal
plane of the corpus callosum. Recent advances extended these
models to multiple fiber populations (Barazany et al., 2011;
Zhang et al., 2011a; Auria et al., 2015; Farooq et al., 2016)
and orientation dispersion (Zhang et al., 2011b), allowing for
a more accurate estimation in complex fiber configurations.
Although these methods showed consistent differences in the
axon diameter index estimation from various axonal bundles,
they remain limited to voxel-wise estimates, and are unable to
recover bundle-specific methods. It would be desirable to obtain
an accurate estimation along bundle trajectories, and in all white
matter voxels, allowing for the characterization of the axon
composition of individual fiber bundles. Lastly, the accuracy of
the estimates crucially depends on the strength of the diffusion
gradients that can be generated by the MRI scanners (Dyrby
et al., 2013; Nilsson et al., 2017; Jones et al., 2018; Huang et al.,
2020; Paquette et al., 2020) and other acquisition protocol (Gore
et al., 2010; Siow et al., 2013; Kakkar et al., 2018; Xu et al., 2014,
2016; Drobnjak et al., 2016; Fan et al., 2020; Veraart et al., 2020),
which affects the accuracy of the parameters as well (Drobnjak
et al., 2010; Harkins et al., 2021); conventional human scanners
are equipped with gradient systems up to 80mTm−1, which do
not provide the required sensitivity to axon diameters (Novikov
et al., 2018; Veraart et al., 2020).

In this paper, we propose a novel method to overcome
the above limitations and enable, for the first time, a non-
invasive characterization of an invariant value of axon diameter
index per streamline in the living human brain. Our method
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combines tractography with a microstructure model of the
neuronal tissue and uses DW-MRI data acquired with a 3 T
Connectom scanner capable of exploiting diffusion gradients up
to 300mTm−1. We demonstrate the favourable performance of
our method comparing our estimates with existing histologically-
derived measurements (Caminiti et al., 2009) performed in the
corpus callosum and the posterior limb of the internal capsule.
Estimating bundle-specific axon diameter index within each
voxel of the whole white matter would represent a major advance
in neuroscience, as this could shed more light on the relation
between structural and functional connectivity (Honey et al.,
2010) and improve our understanding of brain dynamics.

2. THEORY AND BACKGROUND

2.1. Voxel-Wise vs. Bundle-Specific Axon
Diameter Estimation
To illustrate the importance of bundle-specific axon diameter
index estimation, let us consider the simple example in Figure 1.
This synthetic dataset consists of two crossing fiber populations
characterized by different axon compositions, with the green
bundle containing larger axons than the blue one (Figure 1A).
Today, the axon diameter index of a bundle is characterized using
tractometry. This procedure indirectly approximates bundle-
specific statistics by first estimating the axon diameter index with
voxel-wise techniques in every voxel of the image (Figure 1B).
For simplicity, we report only the estimated mean values rather
than the full distributions. Then, the representative value of
such a metric, for a given bundle, is obtained by averaging these
values in all the voxels that are traversed by the streamlines
belonging to the bundle. The purpose of this work is to develop
a novel technique capable of estimating bundle-specific statistics,
thus allowing us to obtain more reliable estimates of its axon
composition (Figure 1D).

2.2. Microstructure-Informed Tractography
Even though DW-MRI is a quantitative imaging modality by
nature, the sets of streamlines reconstructed by tractography
are not truly quantitative (Jones and Cercignani, 2010; Jbabdi
and Johansen-Berg, 2011; Jones et al., 2013). Microstructure-
informed tractography (Sherbondy et al., 2009, 2010; Smith et al.,
2013, 2015; Pestilli et al., 2014; Daducci et al., 2015b, 2016; Girard
et al., 2017) is a recent methodological advance which aims
to overcome such limitations by complementing tractography
with biophysical models of the tissue microstructure. One of the
recent proposed methods is the Convex Optimization Modeling
for Microstructure Informed Tractography (COMMIT) (Daducci
et al., 2015b). COMMIT assigns contibutions to the signal to each
reconstructed streamline according to a microstructural forward-
model and attempts to express all the acquired DW-MRI signals
as a linear combination of the contributions arising from the
whole set of streamlines:

y = Ax+ η, (1)

where y contains the DW-MRI measurements in all voxels of
the white matter, A is a matrix that accounts for the signal

contributions of the streamlines in each voxel according to
a given multi-compartment model (Panagiotaki et al., 2012)
(possibly in addition to local voxel-wise contributions of tissue
compartments, e.g., cerebrospinal fluid) and η is the acquisition
noise. The unknown contributions x of all the compartments can
then be efficiently estimated by solving the inverse problem using
non-negative least squares:

argmin
x≥0

||Ax− y||22. (2)

Similarly to other filtering approaches, COMMIT assumes that
the contributions of the streamlines are constant along their
trajectories. More information on the method can be found in
the original COMMIT manuscript (Daducci et al., 2015b).

3. MATERIALS AND METHODS

3.1. Bundle-Specific Estimation
To enable estimation of the axon diameter index of individual
bundles, similarly to the recently proposed COMMIT-
T2 method (Barakovic et al., 2021), we extended the COMMIT
framework with the Cylinder-Zeppelin-Ball model (Panagiotaki
et al., 2012). The new formulation, COMMITAxSize, is presented
in Figure 2. The proposed method considers each streamline as
consisting of a population of axons with an unknown distribution
of diameters, which must be estimated. The forward model
(columns of the matrix A) was the DW-MRI signal arising
from axons represented as parallel cylinders oriented in parallel
to the tangent to the streamline in the voxel and with fixed
diameters and fixed longitudinal diffusivity d‖. To account
for different contributions arising from axons with distinct
diameters, we considered 12 columns for each streamline
corresponding to 12 cylinders with equally-spaced diameters
in the range 1.5 µm to 7 µm. We modeled the extra-axonal
compartment with anisotropic tensors, i.e., Zeppelins, having the
same longitudinal diffusivity d‖. To capture different geometries
of the extra-axonal space in every voxel, we considered multiple
Zeppelins in every voxel, each with a distinct perpendicular
diffusivity d⊥. Moreover, a distinct set of Zeppelins was included
in A for every principal diffusion direction in a voxel. Finally,
the cerebrospinal fluid was modeled as an isotropic tensor, i.e.,
Ball, with fixed diffusivity diso; an independent contribution
was assigned to each voxel. The physical parameters were set
according to values found in the literature (Alexander et al.,
2010; Zhang et al., 2011b, 2012; Le Bihan and Iima, 2015):
d‖=1.7× 10−3mm2 s−1, diso=3.0× 10−3mm2 s−1, and four
reasonable values equally-spaced from 0.5× 10−3mm2 s−1 to
1.0× 10−3mm2 s−1 for d⊥.

The axon diameter index of a streamline, can be estimated
from the coefficients x computed by COMMITAxSize as done in
the ActiveAxAMICO method (Daducci et al., 2015a); in fact, the 12
contributions corresponding to a given streamline represent its
volume-weighted cylinder diameter distribution. Unlike in Assaf
et al. (2008), no assumptions are made on the axon diameter
distribution to be estimated. The cylinder diameter distribution
can be defined for a bundle, i.e., a group of streamlines coursing
through a specific region of interest (ROI). Hence, we grouped
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FIGURE 1 | Voxel-wise vs. bundle-specific axon diameter estimation. (A) Schematic illustration of two crossing fiber populations characterized by different

compositions: the green bundle contains larger axons than the blue. (B) Axon diameter estimation using a voxel-wise approach; for simplicity, we report the estimated

mean diameters. The arrow points to the crossing region where such methods are known to especially suffer from overestimation. (C) Characterization of the axon

diameter of a white matter bundle is typically done by averaging, along its entire course, the values previously estimated in every voxel; this indirect procedure is

affected by such overestimated voxels and leads to biased results. (D) Estimation of bundle-specific axon diameter.

FIGURE 2 | How to enable estimation of bundle-specific axon diameter index. (A) Simple crossing configuration of two fiber populations with different axon

compositions, i.e., the vertical one is composed of larger axons than the horizontal, to illustrate the construction of the proposed formulation. (B) Corresponding

DW-MRI signal in four representative voxels. (C) Example of two possible streamlines reconstructed with tractography. (D) Visual representation of the response

functions in the Cylinder-Zeppelin-Ball forward model for each compartment. (E) The vector y contains a concatenation of the DW-MRI signal acquired in all voxels,

while the matrix A is constructed by combining the response functions with the local orientations of the streamlines in each voxel.
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TABLE 1 | DW-MRI acquisition protocol parameters.

b-value (smm−2) δ (ms) 1 (ms) G (mTm−1) directions

1,000 7 17.3 138 30

4,000 7 17.3 276 60

1,000 7 30 102 30

4,000 7 30 203 60

1,000 7 42 85 30

4,000 7 42 169 60

1,000 7 55 74 30

4,000 7 55 175 60

The images were acquired using a 2 mm isotropic resolution and a matrix size of 110 ×

110. The echo-time (TE) was 80 ms and the repetition time (TR) was 3900 ms.

streamlines sharing the same anatomical pathways in bundles
as defined by an anatomical atlas. We then calculated the axon
diameter index of a bundle by performing the weighted sum,
column by column, of the cylinder signature of all streamlines
of the bundle.

To facilitate visual inspection of the results, we extended
the Axon Diameter Index (ADI) (Alexander et al., 2010) to
streamlines (sADI), which is the mean of the distribution, and
colored all streamlines accordingly. To compute the sADI, we
excluded the contributions of the smallest (1.5 µm) and the
biggest (7 µm) cylinder diameters. This is for two reasons: i)
the used DW-MRI acquisition was shown to be insensitive to
diameters smaller than 2 µm (Nilsson et al., 2017). ii) We found
that the smallest cylinder captures, only partially, the signal of
axons from 0 µm to 1.5 µm, and the biggest cylinder captures the
signal of axons above 7 µm; hence, the coefficients corresponding
to those columns of A are unreliable for the computation of the
sADI. Simulations were performed to validate this assumption,
see Supplementary Materials.

3.2. Data Acquisition
3.2.1. In-vivo Human Data

In vivo human data were acquired from 3 healthy volunteers
on a Siemens Connectom 3T MRI system (Cardiff University
Brain Research Centre, Cardiff, Wales). The studies involving
human participants were reviewed and approved by The
School of Psychology Ethics Committee, Cardiff University. All
participants provided written informed consent to participate
in this study. Each subject was imaged five times over 2 weeks
using the same DW-MRI acquisition protocol. The DW-MRI
acquisition protocol used is the following: echo-time (TE) 80ms,
repetition time (TR) 3.900ms, matrix size 110 × 110, 2mm
isotropic resolution. Other protocol parameters are reported in
the Table 1.

Five non-diffusion weighted images (b0) were acquired,
including one in reverse phase encoding. A 1mm isotropic
resolution T1-weighted anatomical image was also acquired,
using a magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence: TE = 2ms, inversion time = 857ms, TR
= 2.300ms, matrix size= 256× 256, flip angle= 9◦.

3.2.2. Simulation Data

A numerical phantom was generated with a 45◦ crossing
configuration between two bundles, from which, main directions
were obtained at each voxel. The intra-axonal and extra-axonal
signals were generated separately and then merged to generate
unique numerical phantom (Rensonnet et al., 2018). For each
bundle, the DW-MRI intra-axonal signal was simulated, using
a distribution of parallel cylinders (Van Gelderen et al., 1994)
following a gamma distribution. The first bundle had a gamma
distribution with volume weighted mean diameter of 2.70 (shape
= 3.2734 and scale = 0.2556). For the second bundle, the
volume weighted mean diameter was 4.00 (shape = 3.5027
and scale = 0.3655). The extra-axonal signal was generated
using a tensor with perpendicular diffusivity adapted to the
local intra-axonal volume fraction, following the tortuosity
approximation (Szafer et al., 1995). In single fiber voxels, the
intra-axonal signal fractions were set to 0.3 and 0.6 for the vertical
and diagonal bundles, respectively (i.e., the extra-axonal signal
was a tensor with perpendicular diffusivity equal to 0.7 × D
and 0.4 × D, respectively). The crossing voxels had an intra-
axonal volume fraction of 0.9 (i.e., the extra-axonal signals were
generated with a perpendicular diffusivity equal to 0.1 × D).
All signals were summed to have a total signal fraction of 1
in each voxel. The diffusivity of the simulations were fixed to
D = 1.7× 10−3mm2 s−1 (Alexander et al., 2010; Zhang et al.,
2011b, 2012), both for intra-axonal and extra-axonal signals. The
resulting dataset was corrupted with various levels of Rician noise.
Furthermore, four additional dataset were generated, adding
voxel-wise dispersion using a Watson distribution with k =

4, 8, 12, 16 (Zhang et al., 2011b, 2012).
For the voxel-wise estimation, the ADI for each voxel

was estimated with the ActiveAx method (Alexander et al.,
2010) implemented in the AMICO framework (Daducci et al.,
2015b). For the COMMITAxSize method, the bundle-specific
axon diameter index were estimated using both the ground-
truth bundle trajectories and using the MrTrix3 second-
order integration over Fiber Orientation Distribution (iFOD2)
algorithm generating approximately 1,000 streamlines per
bundle. Streamlines not ending at the bundle extremities were
removed before processing with COMMITAxSize.

3.3. Data Pre-processing
The anatomical T1-weighted image was registered to the
preprocessed average b0 image using FSL/FLIRT (Jenkinson
and Smith, 2001) using rigid-body registration. The white
matter and gray matter masks were estimated using FSL/FAST
(Zhang et al., 2001). The brain cortical parcellation was
performed using FreeSurfer (Destrieux et al., 2010). The DW-
MRI images were corrected for magnetic field inhomogeneities,
eddy currents (Andersson and Sotiropoulos, 2016) and motion
using the TOPUP (Graham et al., 2017), and EDDY tools
of FSL (Jenkinson and Smith, 2001). Subsequently, gradient
non-linearity correction was performed (Jovicich et al., 2006;
Rudrapatna et al., 2021). The shell with diffusion time 1 =

17.3ms, G = 276mTm−1 and b-value = 4000 smm−2 was
used to perform Constrained Spherical Deconvolution (CSD)
(Tournier et al., 2007). Tractography was then performed using
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iFOD2 algorithm (Tournier et al., 2012), generating 10,000,000
streamlines seeding from the white matter mask. Streamlines
not reaching the gray matter mask were removed. To make the
computational time practical, a sub-set of 300,000 streamlines
was randomly selected for each DW-MRI dataset.

3.4. Analysis of Specific Neuronal
Connections
We report the sADI estimated for the streamlines passing
through individual sectors of corpus callosum (CC) and of the
posterior limb of the internal capsule (PIC). The midsagittal
section of the CC was outlined using to the FreeSurfer
parcellation, and the transverse section of the PIC was manually
outlined on the T1-weighted image by an expert anatomist.
The skeletons (longitudinal centerline) of both regions were
computed and then subdivided into equally-spaced segments.
The boundaries of each sector were drawn roughly perpendicular
to the skeleton by associating all voxels within the outlines to their
closest segment. We fixed 11 regions of interest (ROIs) in the CC
showed in Figure 3A, and 6 ROIs in the PIC showed for each
hemisphere in Figure 3E.

Our in vivo study is focused on two well-characterized axonal
tracts: the CC and the PIC. The CC has been well studied in the
past with different methodologies, including DW-MRI (Barazany
et al., 2009; Alexander et al., 2010). The PIC has been less studied
with DW-MRI but is extremely important since it is traversed
by cortico-descending axons involved in motor control, whose
lesions lead to irreversible paralysis. Moreover, we concentrate
the analysis on these two bundles since they are known to
have a sufficiently large axon diameter, Figure 6. To study the
topology of bundles, the CC and the PIC were segmented and
subdivided in, respectively, 11 and 6 equal ROIs normalized for
different individuals as described in section 3.4. The streamlines
passing through regions of interest (ROIs) corresponding to these
sectors were selected, and we analyzed their projections to and
from the cortex. These projections correspond to corticofugal
and corticopetal (for the CC) connections since DW-MRI does
not distinguish the direction of the connections. Bundles of
streamlines systematically organized from anterior to posterior
connect the CC to similarly ordered slabs of cortex extending
from the cingulate gyrus to the lateral sulcus (see Figure 3). This
is usually neglected the aspect of CC topology, albeit already
shown by tracer injections in the CC of the cat (Nakamura
and Kanaseki, 1989), and is compatible with the ordering of
CC connections already described with DW-MRI (Hofer et al.,
2015). Also, anteroposteriorly organized bundles of streamlines
connect the sectors of PIC to anteroposterior cortical territories,
compatible with the topology shown by tracer injections and
DW-MRI in monkeys (Morecraft et al., 2017) and DW-MRI in
humans (Archer et al., 2018).

3.5. Comparison With Histology
The fiber composition of the CC obtained with
COMMITAxSize was compared with postmortem measurements
from a previous study (Caminiti et al., 2009); however, to
evaluate the impact of histological sampling one of the sectors
was measured again (see Supplementary Figure 8). Between 451

and 1934 axons stained for myelin were measured in CC sectors
crossed by axons connecting the prefrontal, motor, parietal and
visual cortices. From the histological data, we estimated the
histogram of diameters in each sector. However, since DW-MRI
estimates the signal fractions that are related to the volume
occupied by axons of different diameter, not their number, the
data was converted to volume-weighted distributions, to allow
comparison with the DW-MRI estimates. In the absence of
human data, the in vivo estimates of the PIC were compared with
measurements of axons stained for myelin in the monkey PIC
(Innocenti et al., 2018).

4. RESULTS AND DISCUSSION

4.1. Numerical Simulations
Figure 4 compares the estimated ADI obtained using the
conventional voxel-wise procedure and the proposed bundle-
specific COMMITAxSize on the numerical phantom described
in Section 3.2. The results from COMMITAxSize show more
consistent estimates of the bundles mean cylinder diameter,
compared to the voxel-wise method, in particular at low
SNR (Figure 4 first column). Moreover, at SNR = 50
COMMITAxSize estimated on average a sADI of 2.90 µm
and 4.01 µm compare to 3.37 µm and 4.25 µm for the
ActiveAxAMICO (the mean ground-truth diameter of each bundle
is 2.7 µm and 4.0 µm, respectively). The estimates provided by
COMMITAxSize are both more robust to noise, and closer to the
real values, when compared to voxel-wise estimates.

The second columns of Figure 4 show the ADI estimates
at SNR = 50, changing the dictionary diameter sampling of
both methods. Results improve for COMMITAxSize increasing
the sampling density, in particular for the bundle with the
smallest mean diameter. Results of the voxel-wise method are
similar using all dictionaries, with the best performances using
12 or 15 values. In all cases, COMMITAxSize outperformed the
voxel-wise method. Although more elements in the dictionary
improve the estimation, the optimisation problem becomes
harder and increases the computation requirements. Nonetheless,
a dictionary sampling of 12 columns in matrix A provides
a reasonable estimate on synthetic data, while keeping the
computation requirement feasible for in vivo data.

Finally, Figure 4 (third column) show the ADI estimated in
the same phantom, but including various levels of dispersion
(SNR = 50, dictionary diameter sampling of 12). Rather
than using the ground-truth cylinder trajectories, we used
probabilistic tractography to estimate their trajectories, capturing
the dispersion information from the data. The rightmost boxplot
shows the estimates using the probabilistic tractography with
no dispersion (κ = inf). Using the probabilistic tractography
streamlines, COMMITAxSize shows an underestimation of the
mean diameter when compared to the ground-truth bundle
trajectories. However, the increase in dispersion (lower κ value)
show a systematic over-estimation of the mean diameter of
the largest bundles, and little effect on the bundle with the
smallest cylinder diameter. However, the trend changes at κ = 4,
where both bundle ADI are estimated between 2.9 µm and 3.5
µm. This could be explained by the inability of probabilistic
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FIGURE 3 | Topology of fibers in the Corpus Callosum (CC) and posterior limb of the internal capsule (PIC), reconstructed with DW-MRI tractography of a single

healthy volunteer. (A) Subdivision of the mid-sagittal section of the CC in 11 sectors (corresponding to ROIs), see Supplementary Figure 9. (B,C) Streamlines

colored according to the corresponding ROIs (medial and lateral views of the hemisphere). (D) Projection of the streamlines onto the pial surface. (E) Subdivision of

PIC in 6 sectors (ROIs). (F,G) Streamlines colored according to the corresponding ROIs (medial and lateral view of the hemisphere). (H) Projection of the streamlines

onto the pial surface.

tractography to properly capture this high level of dispersion.
Although COMMITAxSize cannot fully model the dispersion, the
estimate along the streamlines provides more robust estimates of
the bundle diameter than the voxel-wise method.

Moreover, contrary to the voxel-wise method,
COMMITAxSize can disentangle bundles in crossing
configurations and provide a reliable bundle-specific ADI in
those areas. Something not achievable robustly with a voxel-wise
method assuming a single fiber population. These numerical
experiments showed the benefit of COMMITAxSize when
estimating axon diameter indexes.

4.2. In vivo Data
Figure 5 shows the streamlines passing through the CC (A)
and the PIC (C), colored following their corresponding sADI.
Figures 5B,D show sADI projected onto the pial surface. In both
bundles we studied, the largest sADI were found in sectors of
PIC traversed by axons connecting the motor cortex (BA 4)
while smaller sADI were found for other areas. This visualization
reveals that streamlines with larger sADI connect the CC to the
precentral gyrus, corresponding to the primary motor cortex
(M1; Broadman area BA 4), the more lateral part of premotor
cortex (BA 6), and the postcentral gyrus (BA 3,1,2) corresponding
to the primary somatosensory cortex (S1). Streamlines with
progressively smaller sADI terminate in the medial premotor
cortex (BA 6) and the parietal cortex (BA 5,7 and 40) and
still smaller sADI in the rostral prefrontal cortex (BA 8 and
9) and BA 44 and 45. In case of the CC, human postmortem
material was used to validate the estimates obtained with our
novel technique. The comparison was performed in four different
ROIs. Figure 6 shows that the bundle sADI estimated with
COMMITAxSize closely corresponds to the histological estimates
within the DW-MRI range of sensitivity.

In monkey species (Caminiti et al., 2009; Tomasi et al., 2012),
a hierarchy of axon diameters exists with thicker and faster-
conducting axons connecting the motor and somatosensory

cortices, thinner and slower axons elsewhere. The streamlines
coursing in the PIC were color-coded as above according to their
estimated sADI. These with the high sADI mapped onto the
dorsal part of the precentral BA 4 (M1) and postcentral (BA
3,1,2; S1) gyrus. Progressively smaller sADI mapped onto the
parietal cortex (BA 5 and 7) and the premotor cortex (BA 6)
and still smaller sADI onto the rostral prefrontal cortex (BA 8
and 9). This arrangement is similar to that demonstrated with
injections of anterogradely transported tracers in corresponding
areas of the monkey, although in the monkey the diameter of
axons originating in the precentral gyrus exceeds that of axons
originating in the postcentral gyrus (Innocenti et al., 2018).
Identical findings were reproduced for different sectors of the CC
and PIC in three subjects and five times for each subject, Figure 6
and Supplementary Figure 10.

Current technologies restrict the resolution of axon diameters
to about 2.0 µm (Nilsson et al., 2017). Nevertheless, axons
with larger diameter show a detectable contrast according to
our simulations, see Supplementary Materials. Despite this
limitation, since large axons are found preferentially in specific
pathways, their absence in the expected pathways, or abnormal
presence in unexpected pathways can disclose the neural basis
of specific neurological or psychiatric pathologies (DeLuca et al.,
2004; Zikopoulos and Barbas, 2013; Huang et al., 2016; Judson
et al., 2017; Golden et al., 2020) and, possibly, of individual skills
(de Manzano and Ullén, 2018).

4.3. Strengths and Limitations
Our proposed bundle-specific approach allows investigation of
the intrinsic axon composition of white matter pathways as
opposed to sampling their composition at discrete locations
along their course, making no assumptions on the axon
composition of a bundle. As the DW-MRI signal in each voxel is
expressed as the combined contributions of multiple intersecting
streamlines, our method naturally handles the presence of
different pathways within a voxel and allows their individual
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FIGURE 4 | Axon diameter indexes (ADI) estimated on the 45-degrees crossing synthetic phantom. The figures show the bundle-specific ADI estimated using the

COMMITAxSize method (top row) and the voxel-wise ADI estimated using the ActiveAxAMICO method (bottom row). The boxplots show the results 50 different Rician

noise realisations for COMMITAxSize and 100 voxels sampled in each single bundle areas and in the crossing area, for the ActiveAxAMICO method. The mean ground

truth cylinder diameter of the green and blue bundles are 4.0 µm, and 2.7 µm, respectively (colored dashed line). The first boxplot column show the estimated ADI at

various SNR, the second column using various number of columns in matrix A to compute the ADI and the last column shows the estimates for data with various

levels of dispersion.

FIGURE 5 | Streamline Axon Diameter Index (sADI) in the Corpus Callosum (CC) and posterior limb of the internal capsule (PIC) of a single healthy volunteer. (A,C)

show streamlines colored according to their sADI. (B,D) show the projection of streamlines’sADI onto the pial surface; colors correspond to the sADI averaged across

streamlines. Abbreviations: ces, central sulcus; ifs, inferior frontal sulcus; ips, interparietal sulcus; prs, precentral sulcus; sfs, superior frontal sulcus. Numbers

correspond to Brodman areas.
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FIGURE 6 | DW-MRI cylinder diameter distribution of CC and PIC sectors compared to histological mean volume-weighted axon diameter from human (CC) and

monkey (PIC) histology. Star markers represent the means of volume weighted histological distributions; hexagon markers represent the means of volume weighted

cylinder distributions in the range 2.0µm to 6.5µm.

contributions to be decoupled. This contrasts with methods in
which a ‘powder average’ of the diffusion-weighted signal is
taken as part of the axon diameter estimation process (Veraart
et al., 2018). On the contrary, in voxels with such complex fiber
configurations, the current voxel-wise estimation approaches
provide biased estimates. Another advantage of our approach
is that the cylinder diameter distribution of a bundle could be
mapped onto the cortex where it originates (and/or terminates),
eliminating the ambiguities of following axon diameters at
selected locations along the white matter pathways (Assaf et al.,
2008; Barazany et al., 2009; Alexander et al., 2010).

One could argue that it has been demonstrated that although
the axonal diameter of single axons can undergo local changes
along its trajectory (Lee et al., 2019); the axon diameter
distribution of diameters in a pathway remains stable over long
distances (Tomasi et al., 2012).

Nevertheless, we stress that a streamline represents a group of
axons that share a similar trajectory; thus, our method estimates
an average diameter for the represented group. Moreover, by
discretizing the intra-axonal signal in the contributions arising
from multiple impermeable cylinders (Van Gelderen et al., 1994),
each streamline can be composed of a different amount of
cylinders with different diameters without imposing any prior on
the eventual distribution.

By decomposing the signal of each voxel into three
components (intra-axonal, extra-axonal and isotropic
compartments) and regularizing the intra-axonal signal fractions
along streamlines, we were able to detect the signal fractions
corresponding to each component. In particular, we discretized
the signal coming from each cylinder diameter using the formula
for impermeable cylinders of Van Gelderen et al. (1994) and
what we estimated through the COMMITAxSize method was
the weighting factor in front of each diameter di, which is of
the order of d2i (Burcaw et al., 2015). Similarly, we discretized
the signal coming from the extra-axonal compartment in
two main components, parallel and perpendicular, along

each principal direction. Both components were fixed using
physically plausible constant values for the diffusion coefficient
(Alexander et al., 2010; Zhang et al., 2012). Moreover, for the
perpendicular direction, we accounted for four possible diffusion
coefficients (i.e., in each voxel for each main direction we
estimated five possible fractions of extra-axonal signal: one
parallel to the fiber population and four perpendiculars to it).
The remaining fraction of the signal in each voxel was then
captured by the signal contribution of an isotropic compartment
with fixed diffusivity. With these parameters, we do not account
for the eventual residual time dependence of the extra-axonal
diffusion tensor. However, by allowing a different fraction
for each discretized value in the perpendicular direction, we
account for a positive contribution of this compartment. Indeed,
although we acquired data with strong gradients, we are not in a
regime for which the extra-axonal signal may not be completely
suppressed (Veraart et al., 2019). The model we used in the signal
discretization, as well as the acquisition parameters chosen for
the DW-MRI sequence, can be improved to be more sensitive to
microstructure features.

Recent studies have suggested that axons may vary in
diameter along their length, may present undulations and
microscopic orientation dispersion (Brabec et al., 2020; Lee et al.,
2020a; Rafael-Patino et al., 2020) which impacts the estimate
obtained with DW-MRI (Lee et al., 2020b). The impact of
those tissue properties on COMMITAxSize will be addressed
in future studies. Furthermore, the volume fractions selected
for our simulation experiment were limited by the choice of
substrate simulator (Rafael-Patino et al., 2020). Future numerical
simulations will address more complex configurations, and more
realistic substrates will be constructed (e.g., varying volume
fractions and diameter distributions).

In this study, we proposed to estimate the bundle-specific
axon diameter index implementing the Cylinder-Zeppelin-Ball
forward model. We believe that the selection of the optimal
microstructure forward model and dictionary parameters
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could be improved in future studies. In particular, the
dictionary discretization used (i.e., 12 values for the intra-axonal
component) and fixed values for diffusivities, which may cause
loss of accuracy (Jelescu et al., 2016), will be two aspects to explore
extensively. Moreover, various tractography algorithms will be
tested to build the COMMITAxSize dictionary (e.g., deterministic
and probabilistic, and tractography parameters). Future works
will address these aspects, including the exploiting different
diffusion acquisition protocols, using similar approaches as in
Drobnjak et al. (2016) andNilsson et al. (2017), to find an optimal
set of parameters and protocols improving the sentitivity to the
tissue properties (Lampinen et al., 2017). Another important
aspect to mention is that the COMMITAxSize may be inaccurate
in the diseased brain, affected by focal lesions along white matter
tracts. However, it may be applicable to developmental disorders,
psychiatric disorders and neurological diseases such as epilepsy.

5. CONCLUSION

In this paper, we focused on the non-invasive characterization
of the composition of central nervous system pathways in the
living human brain from DW-MRI acquisitions. In particular,
we tackled some fundamental limitations of current voxel-wise
techniques and proposed a novel formulation to estimate the
axon diameter index of a fiber bundle all along its trajectory,
rather than sampling it at a few selective locations along its
course. We compared our bundle-specific approach to the state-
of-the-art voxel-wise methods, both on synthetic and in vivo
human brain data, comparing our findings with histological
measurements in two well-studied cortical pathways. Our results
demonstrated the feasibility and the benefits of our proposed
formulation. Moreover, the bundle composition estimated agree
with histology and known anatomy. Further studies could extend
the present approach to other pathways in the central nervous
system, enhancing the human connectome enterprise (Craddock
et al., 2013; Jbabdi et al., 2015; Glasser et al., 2016).
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Structural (also known as anatomical) and diffusion MRI provide complimentary

anatomical and microstructural characterization of early brain maturation. However, the

existing models of the developing brain in time include only either structural or diffusion

MRI channels. Furthermore, there is a lack of tools for combined analysis of structural and

diffusion MRI in the same reference space. In this work, we propose a methodology to

generate amulti-channel (MC) continuous spatio-temporal parametrized atlas of the brain

development that combines multiple MRI-derived parameters in the same anatomical

space during 37–44 weeks of postmenstrual age range. We co-align structural and

diffusion MRI of 170 normal term subjects from the developing Human Connectomme

Project using MC registration driven by both T2-weighted and orientation distribution

functions channels and fit the Gompertz model to the signals and spatial transformations

in time. The resulting atlas consists of 14 spatio-temporal microstructural indices and

two parcellation maps delineating white matter tracts and neonatal transient structures.

In order to demonstrate applicability of the atlas for quantitative region-specific studies, a

comparison analysis of 140 term and 40 preterm subjects scanned at the term-equivalent

age is performed using different MRI-derived microstructural indices in the atlas reference

space for multiple white matter regions, including the transient compartments. The atlas

and software will be available after publication of the article1.

Keywords: multi-modal MRI, neonatal brain, spatio-temporal atlas, atlas-based analysis, multi-channel

registration, white matter maturation, white matter parcellation

1. INTRODUCTION

In addition to being a routine diagnostic tool in neonatal brain imaging (Rutherford et al., 2010),
MRI has been widely used for quantification and interpretation of neonatal brain development
in term- and preterm-born infants. Premature birth before 37 weeks postmenstrual age (PMA)
is associated with an increased risk of atypical brain maturation leading to neurocognitive
and neurobehavioural disorders. Multiple studies demonstrated correlation of MRI metrics with

14D MC neonatal brain atlas: https://gin.g-node.org/alenaullauus/4d_multi-channel_neonatal_brain_mri_atlas

133

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.661704
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.661704&domain=pdf&date_stamp=2021-06-16
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:alena.uus@kcl.ac.uk
https://doi.org/10.3389/fnins.2021.661704
https://www.frontiersin.org/articles/10.3389/fnins.2021.661704/full
https://gin.g-node.org/alenaullauus/4d_multi-channel_neonatal_brain_mri_atlas


Uus et al. 4D MC Neonatal Brain Atlas

prematurity, clinical and environmental factors and
neurodevelopmental outcomes (Ball et al., 2017; Barnett
et al., 2018; Dimitrova et al., 2020). In this context, models
of normal brain development such as spatio-temporal atlases
(Schuh et al., 2018) can also potentially facilitate detection
of altered maturation patterns. The advanced acquisition
and reconstruction protocols (Cordero-Grande et al., 2018)
produce high-resolution structural T1-weighted (T1w) and
T2-weighted (T2w) MRI volumes that allow segmentation of
fine brain anatomical structures (Makropoulos et al., 2014).
But these MRI modalities have low contrast for white matter
(WM) structures that also vary during the neonatal stage due
to ongoing myelination. On the other hand, lower resolution
diffusion MRI reflects the properties of tissue microstructural
complexity in terms of diffusivity, anisotropy, neuronal density
and fiber orientation (Pannek et al., 2012; Bastiani et al., 2019;
Batalle et al., 2019; Feng et al., 2019; Pietsch et al., 2019; Zollei
et al., 2019). Combined diffusion and structural MRI analysis has
already shown a potential to increase interpretability of brain
maturation patterns (Ball et al., 2017).

1.1. Structural MRI Metrics
The structural MRI-derived metrics most commonly used in
neonatal brain studies include tissue- and structure-specific
volumetry (Kuklisova-Murgasova et al., 2011; Makropoulos et al.,
2016; Thompson et al., 2019) and surface measurements such
as cortical thickness and curvature (Bozek et al., 2018; Fenchel
et al., 2020) that can be extracted from automated segmentations
(Makropoulos et al., 2014). Recently, automated segmentation
of T2w images has also been applied for quantification of the
volume of myelinated regions (Wang et al., 2019). Intensity
changes in T1w and T2w images characterize white matter injury
(O’Muircheartaigh et al., 2020) and diffuse excessive high signal
intensity (DESHI) regions (Morel et al., 2021). Quantitative and
semi-quantitative metrics applied to developing neonatal brains
include the T1w/T2w signal ratio associated with myelin content
(Bozek et al., 2018) and T2 relaxometry (Pannek et al., 2013;
Kulikova et al., 2015; Wu et al., 2017; Knight et al., 2018).

1.2. Diffusion MRI Metrics
Brain microstructure can be probed using a variety of
quantitative metrics derived from diffusion MRI. Even though
diffusion tensor imaging (DTI) is limited by inconsistencies
in fiber-crossing regions (Jeurissen et al., 2013), DTI-derived
metrics, including the fractional anisotropy (FA) and the mean,
radial and axial diffusitivity (MD, RD and AD) are still most
widely used in neonatal brain studies (Barnett et al., 2018;
Feng et al., 2019; Thompson et al., 2019; Dimitrova et al.,
2020). Recently, higher order metrics, that alleviate some of the
limitations of DTI in the fiber crossing regions, have also been
applied to investigate neonatal brain development, including
the mean kurtosis (MK) index derived from diffusion kurtosis
imaging (DKI) (Bastiani et al., 2019) and intracellular volume
fraction (ICVF), fiber orientation dispersion index (ODI) and
volume fraction of the isotropic compartment (FISO) derived
from Neurite Orientation Dispersion and Density Imaging
(NODDI) model (Zhang et al., 2012). The NODDI-derived

indices have been used to characterize development of both
white and gray matter microstructural features (Kunz et al., 2014;
Batalle et al., 2019; Fenchel et al., 2020; Kimpton et al., 2020).
The microscopic fractional anisotropy (µFA) index (Kaden et al.,
2016) designed to disentangle microscopic diffusion anisotropy
from the orientation dispersion has not yet been applied to
neonatal brains. Constrained spherical deconvolution (CSD)
(Tournier et al., 2007; Jeurissen et al., 2014) allows extraction of
orientation-resolved microstructural information as orientation
distribution functions (ODF) from multi-shell high angular
resolution diffusion imaging (HARDI) data. Based on fiber ODF,
fixel-based analysis (Raffelt et al., 2017) provides the means for
assessment of specific fiber populations in terms of fiber density
(FD) and fiber-bundle cross-section (FC) (Pannek et al., 2018;
Pecheva et al., 2019).

1.3. Atlases and Models of Neonatal Brain
Development
Spatio-temporal normalization and construction of age-specific
group-average templates have been routinely employed in
processing pipelines in the recent large neonatal brain MRI
studies to detect inter-group differences and anomalies in
individual brains (Oishi et al., 2019). Themajority of the reported
spatio-temporal population-averaged atlases of the neonatal
brain include either structural (T2w and T1w) (Kuklisova-
Murgasova et al., 2011; Serag et al., 2012; Schuh et al., 2014,
2018; Wright et al., 2014; Makropoulos et al., 2016; Schwartz
et al., 2016; Wang et al., 2019; O’Muircheartaigh et al., 2020)
or diffusion (Feng et al., 2019; Pietsch et al., 2019; Dimitrova
et al., 2020) channels. In this context, the term channel means
an image of a single MRI contrast that is a part of a group of
images belonging to the same subject. To our knowledge, the only
existing multi-channel population-averaged 3D T1w+T2w+DTI
atlas (Oishi et al., 2011) was constructed from a set of normal
term subjects from 38 to 41 weeks PMA. However, the averaged
template was reported to have significantly lower sharpness
than the original T2w and DTI images. Apart from Feng et al.
(2019) and Pietsch et al. (2019) who used FA+MD or multi-
component ODF channels for registration, these atlases were
constructed based on registration driven by a single channel
and the output transformations were propagated to the rest.
The reported multi-channel (MC) registration methods for brain
studies are based on either combination of FA+structural (Park
et al., 2003; Forsberg et al., 2011; Geng et al., 2012; Roura
et al., 2015) or DTI+structural channels (Avants et al., 2007;
Gupta et al., 2015; Irfanoglu et al., 2016). However, DTI-extracted
metrics are characterized by inconsistencies in fiber-crossing
regions (Tournier et al., 2012). In general, one of the challenges
of multi-channel registration is considered to be the alignment
between the structural and diffusion MRI volumes. Following
spatial normalization, the templates are generally created using
either weighted or direct averaging of the signal in the reference
space. As an alternative, (Zhang et al., 2016) proposed to
perform averaging in the frequency domain and reported higher
sharpness of the atlas features.
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Due to rapid changes of structure, volume and
cytoarchitecture during the fetal and neonatal period, the
majority of the atlases have also been resolved in time in the
form of weekly templates. Smooth transitions between the
atlas time points have been provided through kernel regression
(Kuklisova-Murgasova et al., 2011; Serag et al., 2012; Schuh et al.,
2014, 2018), logistic regression (Wang et al., 2019) or Gaussian
process regression (Marquand et al., 2016; Dimitrova et al., 2020;
O’Muircheartaigh et al., 2020). Recently, a Gompertz function
(GF) was successfully used to parametrize fetal and neonatal
brain volumetry and surface measurements (Wright et al.,
2014; Makropoulos et al., 2016; Schwartz et al., 2016), showing
better approximation than the linear model (Makropoulos
et al., 2016), even though the changes in averaged structural
(O’Muircheartaigh et al., 2020) and DTI (Bastiani et al., 2019;
Feng et al., 2019; Dimitrova et al., 2020) metrics in white and
gray matter can be approximated by linear trends. However, so
far, there has been no reported works combining structural and
diffusion MRI into a spatio-temporal atlas of the normal term
born neonatal brain development.

1.4. Region Specific Analysis
The majority of neonatal brain studies have employed region-
specific quantitative analyses based on correlation between the
MRI-derived metrics measured within specific regions and
parameters such as gestational age (GA) at birth, clinical
factors or neurodevelopmental outcomes. In structural-only
MRI datasets, segmentation is normally performed by atlas-
based methods (Makropoulos et al., 2014). In the WM atlas-
based analysis, the parcellation maps for the single-subject
or population-average WM DTI atlases (Oishi et al., 2011;
Feng et al., 2019; Alexander et al., 2020) were created by 2D
manual delineation based on DTI directionally-encoded color
maps for single subject or population-averaged templates. Label
propagation based on DTI channel-guided registration has been
widely used in neonatal brain studies (Kersbergen et al., 2014;
Rose et al., 2014; Wu et al., 2017; Claessens et al., 2019; Feng
et al., 2019). The tract-based spatial statistics (TBSS) (Smith
et al., 2006) approach uses skeletonized FA maps for definition
of the regions (Krishnan et al., 2016; Barnett et al., 2018; Young
et al., 2018; Thompson et al., 2019). As an alternative, tract-
specific analysis employs tractography to identify and segment
the major WM pathways (Kulikova et al., 2015; Akazawa et al.,
2016; Pecheva et al., 2017; Bastiani et al., 2019; Zollei et al., 2019;
Dubner et al., 2020; Kimpton et al., 2020). In this case, the seed
regions for tractography are defined in the template space and
the segmentation of WM tracts is achieved by thresholding of
the resulting probabilistic tractography maps. In Akazawa et al.
(2016), this approach was also used to create population-specific
average probabilistic maps of the major WM tracts.

1.5. Contributions
In this work, we propose to merge multiple metrics extracted
from both diffusion and structural MRI in a single multi-channel
spatio-temporal atlas of normal neonatal brain development
parametrized using Gompertz function.

The generated 4D multi-channel atlas covers 37 to 44
weeks PMA range and includes structural (T1w, T2w and
T1w/T2w myelin contrast) and diffusion channels with ODF,
DTI, DKI, µFA and NODDI derived metrics. Furthermore,
the atlas includes two parcellation maps: (i) the major WM
tract regions (Alexander et al., 2020) refined using probabilistic
tractography in the template space and (ii) a map of the transient
WM regions associated with high maturation rates during the
neonatal period. To ensure accuracy of spatial alignment, we
propose MC registration method (Uus et al., 2020) guided
by spatially-weighted structural MRI, diffusion (ODF) MRI
and cortical segmentation (Makropoulos et al., 2018) channels.
Parametrization in time is performed by the Gompertz function
widely used for fitting of growth data. We implemented the atlas
construction and fitting functionalities based on the MRtrix3
software package (Tournier et al., 2019). To demonstrate the
application of the proposed atlas we perform a multi-modality
study to compare term and preterm brain development and
identify regions where WM maturation has been altered by
preterm birth.

2. MATERIALS AND METHODS

2.1. Cohort, Datasets and Preprocessing
The atlas was constructed using 170 multi-modal MRI datasets of
term-born neonates (born and scanned between 37 and 44 weeks
PMA) that included T1w, T2w and HARDI scans. An additional
40 datasets of preterm neonates (born between 23 and 32 weeks
GA: 28.94∓2.54 and scanned between 37 and 44 weeks PMA)
were used for comparison analysis. Inclusion criteria were high
image quality for scans of all modalities, singleton pregnancies
and no major brain abnormalities. All scans were acquired
under the developing Human Connectome Project (dHCP)2.
The datasets were qualitatively assessed and graded by a team
of dCHP researchers in terms of the reconstruction and motion
correction quality, SNR levels, presence of artifacts and the global
coverage of the brain ROI. Only the datasets with the best image
quality were selected for this particular study. The distribution of
the GA at birth and PMA at scan is given in Figure 1.

The datasets were acquired without sedation on a 3T
Philips Achieva scanner equipped with a dedicated 32-channel
neonatal head coil and baby transportation system (Hughes
et al., 2017). The multi-shell HARDI volumes were acquired
with four phase-encode directions on four shells with b-values
of 0(20), 400(64), 1000(88) and 2, 600(128) s/mm2, TE
90 ms, TR 3800 ms (Hutter et al., 2018; Tournier et al.,
2020) with 1.5 × 1.5 × 3 mm resolution and 1.5 mm slice
overlap and reconstructed to 1.5 mm isotropic resolution using
the spherical harmonics and radial decomposition (SHARD)
pipeline (Christiaens et al., 2018, 2021) that includes slice-
wise motion correction, distortion correction and exclusion of
corrupted slices. Prior to reconstruction, the diffusion datasets
were preprocessed using the dedicated dHCP pipeline including:
Marchenko-Pastur-PCA-based denoising (Veraart et al., 2016)

2dHCP project: http://www.developingconnectome.org.
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FIGURE 1 | Selected cohort of neonatal subjects from dHCP project: GA at birth and PMA at scan of 170 term subjects (A) and 40 preterm subjects (B).

(MRtrix33), Gibbs ringing removal (Kellner et al., 2016),
susceptibility and eddy-current distortion correction and inter-
volume motion correction with outlier replacement using topup
(Andersson et al., 2003) (FSL4) and eddy (Andersson and
Sotiropoulos, 2016) (FSL), bias field correction based on the b =

0 shell using N4 (Tustison et al., 2010) (ANTs5).
The structural T2w volumes were acquired using a TSE

sequence with TR 12 s, TE 156 ms. The T1w volumes
were acquired using an IR TSE sequence with TR 4.8 s,
TE 8.7 ms. The isotropic T2w and T1w volumes with
0.5 mm resolution were reconstructed using a combination of
motion correction (Cordero-Grande et al., 2018) and super-
resolution reconstruction (Kuklisova-Murgasova et al., 2012).
Intensities of individual T1w and T2w volumes were bias-
corrected and normalized to the same intensity ranges as a
part of the standard dHCP preprocessing pipeline based on
DRAW-Em6 (Makropoulos et al., 2014, 2018). In addition, the
T2w images were normalized with respect to mean CSF signal
intensity. The brain tissue and structure segmentations were
generated by DRAW-Em pipeline (Makropoulos et al., 2014).
For each dataset, the structural and diffusion volumes were
coaligned based on affine registration of T2w and MD volumes
using normalized cross-correlation (NCC) similarity metric
implemented in MRTrix3. The diffusion-weighted imaging
(DWI) volumes were globally normalized prior to the nonlinear
multi-channel registration step (Tournier et al., 2019).

2.2. Extraction of MRI Metrics
The structural metrics include normalized T1w and T2w
intensities and the T1w/T2w ratio reported to be associated
with the myelin content (Glasser and Van Essen, 2011).
Furthermore, we extracted Jacobians (J) of deformation fields
from the MC registration output (section 2.4) to measure local
volumetric changes.

3MRtrix3 toolbox: https://www.mrtrix.org.
4FSL toolbox: https://fsl.fmrib.ox.ac.uk.
5ANTs toolbox: http://stnava.github.io/ANTs.
6DRAW-Em toolbox: https://github.com/MIRTK/DrawEM.

The DTI metrics included MD, RD and FA extracted using
MRtrix3 toolbox (Tournier et al., 2019). The DKI fitting and
calculation of MK was performed similarly to Bastiani et al.
(2019). The NODDI (Zhang et al., 2012) toolbox was used for
fitting FISO, ICVF and ODI metrics. The estimation of micro FA
maps was performed using SMT toolbox (Kaden et al., 2016).
Only the two top HARDI shells were used for µFA and DKI
fitting in order tominimize the impact of artifacts. In addition, we
computed the mean DWI signal mDWI for the top 2, 600 s/mm2

shell since it provides high contrast for WM structures. We
extracted WM ODF from HARDI using MRtrix3 multi-shell
multi-tissue constrained spherical deconvolution (Jeurissen et al.,
2014). The track density imaging (TDI) maps were generated
in the original space of dMRI volumes from the outputs of the
standard MRtrix3 probabilistic tractography based on the 2nd
order integration over fiber orientation distributions (iFOD2)
(Tournier et al., 2010, 2019) with whole brain as the seed region
and 700,000 streamlines for all datasets. This particular number
of streamlines was selected arbitrarily.

2.3. Multi-Channel Registration of Blue
Combined Structural and HARDI MRI
Datasets
We propose a multi-channel non-linear registration technique
to improve accuracy of spatial normalization of both structural
and diffusion MRI images. The method is build on a multi-
contrast ODF registration framework (Raffelt et al., 2011; Pietsch
et al., 2017) implemented in MRtrix3 (Tournier et al., 2019)
which employs SyN Demons (Avants et al., 2007) with an
SSD metric and reorientation of ODF using apodized point
spread functions (Raffelt et al., 2012). In order to decrease
the sensitivity to acquisition or physiology related changes
in signal intensities, we propose to replace the the standard
SSD metric with a new robust local angular correlation (LAC)
registration metric for ODF channels, which is an extension
of angular correlation (Anderson, 2005) originally proposed
for for quantitative assessment of ODF datasets. We further
add structural and tissue parcellation channels with local NCC
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(LNCC) similarity measure. The channels are combined through
weighted fusion of the displacement field updates (Forsberg et al.,
2011). Implementation of the LAC and LNCCmetrics is based on
the registration pipeline in MRtrix3 (Tournier et al., 2019) that
includes reorientation of ODF (Raffelt et al., 2012).

In ODF diffusion model, diffusion signal is represented
as a linear combination of real valued spherical harmonic
(SH) orthonormal basis functions Ylm(θ ,φ). For the task of
image registration, two dMRI volumes can be expressed in
terms of spatially varying spherical functions AODF(θ ,φ, x) and
BODF(θ ,φ, x), where θ ,φ are coordinates on the sphere and x is a
spatial location:

AODF(θ ,φ, x) =

∝
∑

l=0

l
∑

m=−l

alm(x)Ylm(θ ,φ)

BODF(θ ,φ, x) =

∝
∑

l=0

l
∑

m=−l

blm(x)Ylm(θ ,φ) (1)

We define local angular correlation ra between AODF and
BODF as:

ra(x) =
〈A,B〉x

〈A〉
1
2
x 〈B〉
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2
x

=

∑
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2 (
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(x′))
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2

, (2)

where A and B are 4D images of SH coefficients of order L
with even l = {2, 4, ..., L} harmonic degree terms, e.g., A(x) =

{alm(x)}l=2,...,L,m=−l,...,l and B(x) = {blm(x)}l=2,...,L,m=−l,...,l, N(x)
is the local neighborhood centered at x, and <>x denotes the
inner product calculated over N(x). A(x) and B(x) are also
normalized with respect to local means (Avants et al., 2008). In
this case, the l = 0 term does not contribute to ra values.

Since this is a correlation metric, the corresponding
symmetric updates to the displacement fields 3A and 3B can be
computed in a similar manner to LNCC demons (Avants et al.,
2008):

3A(x) =
2〈A,B〉x

〈A〉x〈B〉x

(

B(x)−
〈A,B〉x

〈A〉x
A(x)

)

∇A(x) (3)

3B(x) =
2〈A,B〉x

〈A〉x〈B〉x

(

A(x)−
〈A,B〉x

〈B〉x
B(x)

)

∇B(x)

Note that LAC operates in 4D (3D space plus SH dimension)
while LNCC is calculated in 3D spatial neighborhood for each
individual ODF channel separately (Raffelt et al., 2011).

In the proposed multi-channel registration pipeline, the fixed
and moving inputs consist of a set of structural (e.g., T2w) and
ODF channels i = 1, ..., I. At every iteration, the fixed Ai and
moving Bi images are registered individually resulting in 3A

i
and 3B

i updates to the displacement fields. The contributions
from each of the channels to the global symmetric displacement
field updates 3A

MC and 3B
MC are locally weighted by 3D gradient

certainty maps based on the approach proposed in Forsberg et al.
(2011).

First, at every iteration, the certainty gradient maps αA
i and

αB
i are computed from the current version of warped channels

Ai and Bi (including both structural and ODF volumes) and
normalized as:

αA
i =‖ ∇AT

i ∇Ai ‖, α̂i
A =

αA
i

max(αA
i )

(4)

Then, the global symmetric MC updates to the displacement
fields 3A

MC and 3B
MC are computed by weighted averaging of the

channel-specific update fields

3A
MC =

∑

i α̂i
A3A

i
∑

i α̂i
A

, 3B
MC =

∑

i α̂i
B3B

i
∑

i α̂i
B

(5)

This downweights the contributions of the regions in individual
channels characterized by low contrast, ensuring that the output
deformation fields are locally defined by the channels with the
highest structural content. In comparison, themulti-channel SyN

approach (Avants et al., 2007) or the existing alternative DTI-
based MC registration methods (Geng et al., 2012; Gupta et al.,
2015) employ simple averaging of the individual channel updates.
Figure 2 shows an example of certainty maps of T2w, ODF and
cortex mask channels computed for one of the dHCP subjects
along with the average MC weights used for normalization.

2.4. Generation of 4D Multi-Channel Atlas
The 4D parametrized MC atlas of neonatal brain development
was generated from 170 term neonatal datasets in three
sequential steps: (A) initial registration of structural channels to
a single structural template and creation of an average multi-
channel template, (B) refined registration of structural and
diffusion channels to the multi-channel template and creation
of age-dependent average multi-channel templates, (C) fitting of
the signal and deformation fields in time using the Gompertz
function to generate the parametrized 4D multi-channel atlas.
The proposed pipeline is summarized in Figure 3.

2.4.1. Generation of a 3D Multi-Channel Template
We chose the T2w 36 week template from the dHCP neonatal
brain atlas7 (Schuh et al., 2018) as the global 3D reference space
(Y(reforg)) due to the lower degree of gyrification that facilitates
more accurate registration of the cortex. All datasets {Xi},i=1,...,N

were registered to this template using affine alignment with global
NCC followed by non-linear registration guided by two structural

7dHCP weekly neonatal brain atlas: https://gin.g-node.org/BioMedIA/dhcp-

volumetric-atlas-groupwise.
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FIGURE 2 | An example of gradient-based certainty maps of T2w, ODF and cortex mask channels computed for one of the dHCP subjects along with the average

MC gradient map used for normalization.

channels (T2w + cortex mask), similarly to O’Muircheartaigh
et al. (2020):

W
(1)
i = D

LNCC(Y
(reforg)
c ,Xi,c), c={T2; Mcortex};i=1,...,N , (6)

where D is the MC Demons registration operator, W
(1)
i are

the output deformation warps for each of the N datasets Xi,c

with c = {T2; Mcortex} channels and Y
(ref )
c is the reference

volume. The MC registration included spatially weighted fusion
of the channels (section 2.3, Uus et al., 2020). The output

deformation warps {W
(1)
i },i=1,...,N were propagated to the rest

of the structural and dMRI channels. The preliminary set of

3D MC templates {Y
(1)
c },c={T2; Mcortex; normODF} was generated by

weighted averaging of all registered volumes of T2w, cortex mask
and normalized (section 2.1) ODF channels (Figure 3A).

2.4.2. Generation of Age-Specific Multi-Channel

Templates
At the second iteration (Figure 3B), we used registration with
T2w + cortex mask + normalized ODF channels (section 2.3) to
align all datasets to the multi-channel template (section 2.4.1):

W
(2)
i = D

LNCC+LAC(Y(1)
c ,Xi,c), c={T2; Mcortex; normODF};i=1,...,N

(7)
Next, the datasets were divided into 15 subsets according to PMA,
to sample the range from 37 to 44 weeks PMA into 0.5 week
time-windows. Each of the subsets Nt contains 6-17 subjects

depending on availability. The templates Y
(2)
c,t for each of the

metrics (c) described in section 2.2 were generated by robust
weighted averaging of the metric maps Xi,c transformed with

W
(2)
i in subsets i ∈ Nt :

Y
(2)
c,t =

∑

i∈Nt

ωi,c · 2(Xi,c,W
(2)
i )/

∑

i∈Nt

ωi,c, t=37,...,44, (8)

where2 is the transformation operator, c is the list of all channels
(see Figure 3C). The voxel-wise weights ωi,c are binary maps
with all values with > 1.5 standard deviations from the mean
set to zero. This minimizes the impact of outliers due to any
abnormalities, artifacts or local misregistrations are excluded.

The templatesY
(2)
c,t are biased toward 36 weeks reference space,

therefore we calculate the transformations to remove this bias
for each time-point. Since the registration is symmetric, it is

acceptable to choose the inverse warps (W
(2)
i )−1 to create the

transformation W−1
av,t from the age-specific average space to the

global reference space:

W−1
av,t =

∑

i∈Nt

(W
(2)
i )−1/Nt , t=37,...,44 (9)

Similarly, we create average inverse affine transformation A−1
av,t by

selecting only the scaling and shearing components, followed by
averaging and inverting.

2.4.3. Parametrized 4D Multi-Channel Atlas
In the final step, a continuous 4D spatio-temporal multi-
channel model of the developing neonatal brain (Figure 3C)
was constructed by fitting the Gompertz growth curves to the
time-dependent average metric maps and transformations. We
propose the following form of the Gompertz function since
it allows interpretation of both growth rate (γ ) and peak in
time (τ ):

G(t) = (α − δ)exp(−exp(−γ (τ − t)))+ δ, (10)

where t is the time point, α and δ control the upper and
lower limits of G(t), γ represents the growth rate and τ is
the center point corresponding to the growth peak. The model

was fitted to the time-dependent average metric maps Y
(2)
c,t and

transformations W−1
av,t ,A

−1
av,t using least square minimization to

produce continuous spatio-temporal maps in the reference space
as well as average inverse transformations:

Y
ref
c (t) = G(αc, δc, γ c, τ c, t), t=[37;44] (11)

W−1(t) = G(αW , δW , γW , τW , t), t=[37;44] (12)

A−1(t) = G(αA, δA, γ A, τA, t), t=[37;44], (13)
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FIGURE 3 | The proposed pipeline for generation of parametrized 4D MC atlas of neonatal brain development during 37–44 weeks PMA range.

where αc, δc, γ c and τ c are the Gompertz function parameters
of metrics c = {T1w; T2w; T1w/T2w; mDWI; ODF: SH ODF,
TDI; DTI: MD, RD, FA; DKI: MK; NODDI: ODI, FISO, ICVF;
µFA; Jacobian} and t is continuous over 37–44 weeks PMA
range. Unbiased spatio-temporal maps Yc(t) are obtained by
applying nonlinear transformation W−1(t) followed by affine
transformation A−1(t) to the biased spatio-temporal maps

Y
ref
c (t).

2.5. Parcellation of WM Regions
The dHCP structural atlas (Schuh et al., 2018) already provides
parcellations of cortical and subcortical regions based onDRAW-
EM pipeline (Makropoulos et al., 2014), therefore, this work
specifically focuses on WM tracts and transient regions. At first,
we propagated the parcellation map of the major WM tract
regions from M-CRIB-WM atlas (a single subject template at 41
weeks PMA Alexander et al., 2020) by registration of one of the
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T2w M-CRIB-WM atlas subjects to our T2w 44 week template

Y
ref
T2w(44).
Then we performed the MRTrix3 iFOD2 probabilistic

tractography (Tournier et al., 2010) in Y
ref
ODF(41) channel for each

of the 54 WM regions (defined in Alexander et al., 2020) with
propagated labels as seeds. We performed the tractography in
the average template because of the lower noise levels due to
averaging. This was followed by manual refinement of all labels
using the 3D brush with thresholding editing tool in 3DSlicer
(Fedorov et al., 2012) based on the thresholded TDI maps for
individual tracts and inspection of the FA and T2 channels.
The procedure was performed in three iterations with iFOD2
tractography being performed for the WM ROIs refined in the
previous step. The labels were created in the atlas reference space
resampled to 0.5 mm isotropic resolution to account for finer
WM structures.

The transient WM regions were localized as regions with
high rates of signal changes during 37–44 weeks PMA. The
parcellation was generated semi-automatically from the γ av map
obtained by averaging the absolute of growth rate γ c maps for
T1w, T2w, RD and FISO channels. These channels were selected
since they showed similar patterns in the region associated with
the transient fetal compartments (Pittet et al., 2019). The γ av map
(with values varying within [0; 0.5]) was thresholded at 0.25 and
manually refined.

2.6. Atlas-Based Region-Specific Analysis
In order to assess the feasibility of the proposed approach
for atlas-based region-specific analysis studies, we performed
a comparison of term and preterm cohorts. The analysis was
based on both the WM and γ av parcellation maps. At first, all
subjects (selected 40 preterm and 140 term subjects scanned
between 38 and 43 weeks PMA range) were registered to the
PMA-matched atlas space (section 2.3) with T2w, ODF, cortex
and ventricle mask channels. It was identified experimentally,
that adding the ventricle mask channel improves registration
results for preterm subjects since preterm brains commonly have
enlarged ventricles. Therefore, it was used for all subjects in the
term-preterm comparison study.

The comparison analysis between the cohorts was performed
in the atlas space. The structural and dMRI metrics were
computed for each of the ROIs using robust weighted averaging
with only the values with the difference< 1.5 standard deviations
from the mean included. The robust averaging helps to avoid
errors due to image artifacts or local misregistration at the
structure boundaries. The associations between the extracted
metrics and the PMA at scan and the GA at birth were assessed
using the standard ANOVA linear model analysis. The output
p-values were corrected for multiple comparisons using the
Bonferroni correction.

2.7. Implementation Details
The atlas was constructed with isotropic resolution 0.75 mm.
The LAC metric for MC registration of ODF channels was
implemented in MRtrix3 (Tournier et al., 2019). In addition,
we implemented the LNCC Demons metric (Avants et al.,

2008) in MRtrix3 for registration of the structural channels
which, although described in Raffelt et al. (2011), was not
available in the current implementation of MRtrix3. We chose
the default MRtrix3 registration parameters8 for multi-resolution
({0.5; 0.75; 1.0}), SH order (lmax = {0; 2; 2}), regularization of
the gradient update field with Gaussian smoothing with 1 voxel
standard deviation and regularization of the displacement field
with Gaussian smoothing with 0.75 voxel standard deviation.
For LNCC and LAC we chose the local neighborhood with 3
voxel radius (similarly to Raffelt et al., 2011). The proposed 4D
GF fitting step (10) was implemented in MRtrix3. The ANOVA
analysis for comparison between the term and preterm subjects
was performed in RStudio (RStudio Team, 2020) using the
standard lm() function.

3. RESULTS AND DISCUSSION

3.1. Multi-Channel Registration
In our previous work (Uus et al., 2020) we have demonstrated
that the proposed MC registration improves overall alignment
of cortical and WM regions when driven by both structural
and ODF channels in longitudinal cases. Here we confirm
these results in cross-sectional registration. Additionally, we
demonstrate that including the cortex mask as an additional
channel improves accuracy of cortical alignment, which is
otherwise decreased in the presence of ODF channel. This
approach was also used in Makropoulos et al. (2018) and
O’Muircheartaigh et al. (2020) to improve single-channel
T2w registration.

We investigated six scenarios of registration of individual

dHCP subjects to the templates Y
ref
c (t) based on different

combinations of channels: (I) T2w, (II) T2w + Mcortex, (III)
T2w + Mcortex + FA, (IV) T2w + Mcortex + ODF(LAC), (V)
T2w + ODF(LAC) and (VI) ODF(LAC). The performance was
tested on 11 term datasets from 42.00 to 42.57 weeks PMA
since at this age the subjects have significantly higher degree of
gyrification than the average templates. To assess the alignment
in both WM and cortical regions we evaluated similarity of
aligned individual images with the age- and contrast-matched
templates using mutual information (MI) for (A) T1w channel in
the cortical region and (B) TDI channel in the dilatedWM region
(highlighted in yellow in Figure 4). The mutual information
similarity metric and the T1w and TDI channels were selected for
evaluation to minimize bias toward the channels and similarity
metrics used in registration.

We observed that all ODF-guided scenarios led to highest
quality alignment of TDImaps (p < 0.001) and adding additional
channels did not decrease the similarity after alignment (p >

0.05). Including the FA channel improved TDI similarity
compared to T2w and T2w+M (p < 0.001), but it was still
significantly lower than for ODF guided alignments (p < 0.001)
due to the contrast of poorly defined cortical features in FA. In
the cortical region similarity of T1w contrast for the proposed
T2w + Mcortex + ODF MC registration was only slightly lower

8MRtrix3 mrregister function: https://mrtrix.readthedocs.io/en/latest/reference/

commands/mrregister.html.
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FIGURE 4 | Comparison of MC registration results for different combinations of channels. The performance was measured by mutual information (MI) between aligned

images and the age- and contrast-mached templates for (A) the T1w images in the cortical region and (B) TDI maps in the WM region. The regions are highlighted in

yellow contours. The results are statistically significant with p < 0.001 for all cases apart from: all ODF-guided scenarios for the WM ROI, T2w vs. T2w+Mcortex for

WM ROI and T2w vs. T2w+Mcortex + FA for the cortex ROI.

FIGURE 5 | Multi-channel 4D atlas in the reference space (corresponding to 36 weeks PMA). Structural channels: T1, T2, T1/T2 and Jacobian; ODF channels: SH

ODF, mDWI, TDI; DTI channels: MD, RD, FA; DKI channel: MK; NODDI channels: ODI, FISO, ICVF; µFA.
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FIGURE 6 | Example unbiased 4D atlas channels at 38, 41, and 44 weeks PMA. The corresponding Jacobian maps (J) are shown in the reference space.

than the T2w + Mcortex, but it was significantly higher than all
the other scenarios (p < 0.001). Addition of the Mcortex channel
improved the cortical alignment in all cases thus resolving the
limitation reported in our previous work (Uus et al., 2020).

3.2. 4D Multi-Channel Atlas of Normative
Neonatal Brain Development
The resulting multi-channel 4D atlas Y

ref
c (t) in the reference

space (36 weeks PMA dHCP atlas Schuh et al., 2018) is shown
in Figure 5. Unbiased atlases Yc(t) obtained after application
of average inverse warps for 38, 41 and 44 weeks PMA time
points are presented in Figure 6. There are distinct nonlinear
changes due to cortical folding in the T2w templates and
volumetric expansion/contraction due to growth the is visible in
the Jacobian maps.

The created WM parcellations map with 54 ROIs created
in the atlas reference space (section 2.5) for the region-specific
analysis of the metric values is shown in Figure 7B. The
label annotation information follows the original annotations
defined in Alexander et al. (2020). The tractography-based

manual refinement of the originally propagated 2D-slice-
wise segmentations (Figure 7A) from the M-CRIB-WM atlas
provided a more accurate 3D definition of the WM ROIs that
are developed by 44 weeks PMA. Furthermore, it removed
the structural inconsistencies in the original 2D slice-wise
WM segmentations that were performed on DTI directionally-
encoded color maps.

Figure 8A presents the parcellation map of the transient
regions identified by high rates of signal changes during 37–44
weeks PMA segmented from the average γ av map (Figure 8B).
The parcellation map has 24 left/right regions with the majority
being consistent with the transient fetal compartment regions
described in the recently introduced extended MRI scoring
systems of neonatal brain maturation (Pittet et al., 2019)
including periventricular crossroads (Judaš et al., 2005), Von
Monakow WM segments and subplate. We also identified
fast developing regions within the cerebellum and subcortical
gray matter.

In addition, we calculated voxel-wise R2 scores to evaluate
the Gompertz function fit. Our results confirmed that GF offers
higher R2 scores than linear regression with p<0.001 for the
combined γ and WM parcellation map region. The primary
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FIGURE 7 | (A) Original WM parcellation map propagated from the M-CRIB-WM atlas using T2w-guided registration. (B) Final WM parcellation map after

tractography-based manual refinement in the atlas reference space. The 54 ROIs are based on the structures defined in the M-CRIB-WM atlas (Alexander et al.,

2020). The corresponding TDI map highlights the WM pathway regions.

FIGURE 8 | (A) The parcellation map of 24 paired regions identified by high change rates during 37–44 week PMA. (B) The average maturation rate map γ av

computed from T1w, T2w, RD, and FISO channels.
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FIGURE 9 | Comparison of the Gompertz function and linear fitting results in terms of R2 values evaluated within the combined WM and γ av parcellation map regions

(A) and frontal Von Monakow WM regions (B). The results are statistically significant with p < 0.001.

FIGURE 10 | Whole brain probabilistic tractography generated from the ODF channel Y ref
ODF

(t) and the corresponding T1w channel Y ref
T1w (t) (in the reference space) in

the frontal WM region at 38, 41, and 44 weeks PMA time points. The developing WM pathway (red circle) can be linked to the increasing T1w signal intensity (yellow

region). The graphs show the signal in age-specific templates Y
(2)
c,t and fitted Gompertz function Y ref

c (t) in the TDI and T1w channels averaged over the region

highlighted in yellow.

regions where the GF fitting outperformed linear fitting were
the γ av parcellation map and the local WM regions such as the
frontal Von Monakow WM regions (labels 1 and 4 in the γ av

parcellation map). Figure 9 shows R2 values for GF vs. linear
fitting comparison for a subset of channels.

Examples of the non-linear patterns in signal changes also
can be observed in the graphs in Figures 10–13 showing
average signal values in 3 × 3 × 3 voxel ROIs and the
corresponding average GF fitting results. However, the relatively
small improvement in R2 suggests that a linear fit also offers

a reasonable approximation during this short time-window
and that it is acceptable to use the linear model based
ANOVA analysis for interpretations of trends in early neonatal
brain development.

3.3. Visual Analysis of Normal Neonatal
Brain Development
Figure 10 shows the output of iFOD2 probabilistic tractography
(Tournier et al., 2010) generated from the ODF channel and
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FIGURE 11 | Examples of the signal changes in time (in the reference space) in T1w/T2w (A), FA (B), µFA (C), and MD (D) channels. First column: 37 week template.

Second column: 44 week template. Third column: signal change in time. Fourth column: γ c maps. Fifth column: Signal change in time in age-specific templates Y
(2)
c,t

and fitted Gompertz function Y ref
c (t) computed over 3 × 3 × 3 voxel regions in two locations: PLIC (blue) and superior corona radiata (red). The regions highlighted with

yellow contours have > 0.2 weeks growth peak offset in τ c.

the corresponding T1w channel (in the reference space) in the
frontal WM region at 38, 41, and 44 weeks PMA time points. The
increase in the T1w signal (known to be sensitive to proliferation
of cells and myelin precursors and decreasing water content
Girard et al., 2012) can be linked to the developingWMpathways
seen in tractography (highlighted in red circle). The graphs
show the corresponding increasing intensities in the age-specific

average templates Y
(2)
c,t and fitted signal values Y

ref
c (t) of the TDI

and T1w channels computed in the small frontal Von Monakow
WM segment (Pittet et al., 2019) highlighted in yellow in the
T1w channel.

The examples of signal intensity changes in time in different
channels and the corresponding growth rate maps γ c are
presented in Figures 11–13. The regions highlighted in yellow
have a growth peak offset in time ≥ 0.2 weeks from the
40.5 weeks central time point in τ c and can be interpreted
as indicators of earlier or later maturation with respect to
the central time point of 40.5 weeks PMA. The graphs show

average signal values in 15 discrete age-specific templates Y
(2)
c,t

and the corresponding fitted signal Y
ref
c (t) calculated within

small 3 × 3 × 3 voxel regions at specific locations, including
the right posterior limb of internal capsule (PLIC), superior
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FIGURE 12 | Examples of the signal changes in time (in the reference space) in TDI (A), FISO (B), and T2w (C) channels. First column: 37 week template. Second

column: 44 week template. Third column: signal change in time. Fourth column: γ c maps. Fifth column: Signal change in time in age-specific templates Y
(2)
c,t and fitted

Gompertz function Y ref
c (t) computed over 3 × 3 × 3 voxel regions in two locations: prefrontal corpus callosum (red) and Von Monakow WM segment (blue). The

regions highlighted with yellow contours have > 0.2 weeks growth peak offset in τ c.

corona radiata, periventricular crossroads, corpus callosum, Von
MonakowWM segment and cerebellum.

The WM tracts are characterized by different maturation
times and rates (Iida et al., 1995). The T1w/T2w contrast (linked
to myelination by Glasser and Van Essen, 2011) shows gradual
signal increase from 37 to 44 weeks (Figure 11A). The γ T1w/T2w

map and the average signal graphs YT1w/T2w(t) confirm that
the rate of T1w/T2w signal increase is the highest in the PLIC
region (blue) and the corona radiata (red). The value of the
τT1w/T2w parameter of the Gompertz function is approximately
40.5 weeks in both regions which is in agreement with the
previously reportedmyelinationmilestones (Counsell et al., 2002;
Wang et al., 2019). There is also a noticeable increase in the
cortical T1w/T2w signal, also previously reported by Bozek et al.

(2018), which may be due to the ongoing myelination or the
increased cell density (Girard et al., 2012). Both FA and µFA
signals (Figures 11B,C) gradually increase in all WM regions in
agreement with the trends reported in Feng et al. (2019) and
Dimitrova et al. (2020). The µFA map shows generally higher
degree of changes than FA, potentially due to the increasing
crossing fiber effect, while in γ FA, the more prominent WM
changes are observable primarily in the corona radiata, sagittal
stratum and superior longitudinal fasciculus as well as the parietal
crossroads and subplate (highlighted with arrows). The γMD

map of the MD channel (Figure 11D) shows a large decrease
in the superior corona radiata, sagittal stratum and the transient
fetal compartments associated withWMmaturation (Judaš et al.,
2005; Pittet et al., 2019) including the periventricular crossroads
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FIGURE 13 | Examples of the signal changes in time (in the reference space) in T1w (A), RD (B), MK (C), and FISO (D) channels. First column: 37 week template.

Second column: 44 week template. Third column: signal change in time. Fourth column: γ c maps. Fifth column: Signal change in time in age-specific templates Y
(2)
c,t

and fitted Gompertz function Y ref
c (t) computed over 3 × 3 × 3 voxel regions in two locations: cerebellum (blue) and periventricular crossroads (red). The regions

highlighted with yellow contours have > 0.2 weeks growth peak offset in τ c.

and subplate regions (highlighted with arrows). The MD signal
is slowly decreasing the PLIC region as can be seen in the
corresponding graph (blue). All of the presented γ c maps also

show significant changes in the periventricular parietal crossroad

regions (highlighted with arrows) with the significant decrease in
MD and increasing in T1w/T2w.

Given the fixed number of streamlines used for probabilistic

tractography, there is a notable redistribution of the TDI
amplitude from the main to proximal WM tracts (Figure 12A).

The corresponding growth rate γ TDI map is positive in the

frontal (anterior corona radiata) and thalamic radiation WM
regions (highlighted with arrows) and negative in the internal

capsule. The R-L time profile in the frontal region (Von

MonakowWM segment, blue) shows the increased track density

at 44 weeks. The average TDI signals Y
ref
TDI(t) in this region

(blue) and the corpus callosum (red) are also characterized by a
significant degree of nonlinearity. the NODDI FISO component

(Figure 12B) shows a prominent reduction in the same frontal
region which is in agreement with the expected decrease of water
content and progressing maturation of WM pathways (Girard

et al., 2012). Similarly to TDI, the average FISO signals Y
ref
FISO(t)

in the investigatedWMROIs have nonlinear shape with the steep
decrease occurring during the 39.5–43 weeks period. A similar
decrease is observed in T2w signal (Figure 12C). The FISO
channel in the sagittal view in Figure 13D also demonstrates
similar patterns in the periventricular crossroads (red).

Most of the channels also show prominent changes in
the cerebellum associated with the normal maturation process

(Figure 13, blue). The T1w signal intensity Y
ref
T1w(t) is gradually

increasing due to WM development along with the increasing
microstructural complexity reflected in the MK channel with
the high γMK map values and the expected decreasing trends of

the RD Y
ref
RD(t) and FISO YFISO(t) signals (potentially due to the

decreasing amount of free water Girard et al., 2012).
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FIGURE 14 | Atlas-based region-specific analysis. The regions significantly associated with GA at birth are highlighted with red (p < 0.001), yellow (p < 0.01) and

cyan (p < 0.05) and overlaid over the averaged TDI map in two coronal view locations. (A) WM parcellation regions. (B) γ av parcellation regions.

3.4. Atlas-Based Region-Specific Analysis
In order to demonstrate the feasibility of the proposed MC atlas-
based analysis approach and give an example of one of the
possible applications, we performed ANOVA analysis to assess
the influence of GA at birth on microstructure of WM regions
delineated in our new atlas, with PMA as a confounding variable.
To assess the feasibility of using the ANOVA analysis for the
investigated datasets, we performed linear fitting for each of the
channels. The γ c values showed high correlation with the linear
slope maps with the average NCC for all channels in the whole
brain ROI 0.90∓0.09 (without CSF).

This is in agreement with the appearance of the global trends
in Figures 10–13 as well as the other reported studies (Feng
et al., 2019; Dimitrova et al., 2020; O’Muircheartaigh et al., 2020)
and confirms that during the short period between 37 and 44
weeks PMA range a linear approximation can be considered to
be acceptable for ANOVA-based studies.

Figure 14 visualizes WM and transient regions in selected
channels where average signal value was significantly associated

with GA at birth. The main regions that have significant
correlation of multiple indices with GA include: the corona
radiata, superior longitudinal fasciculus, corpus callosum and
thalamic radiation. The T1w/T2w contrast also showed to have
significant correlation with GA in the internal and external
capsule ROIs (Figure 14A). There is also a significant difference
between the cohorts within the majority of γ av parcellation
regions (Figure 14B), which is in agreement with the expected
prolonged existence of transient compartments in preterm
subjects (Kostović and Judaš, 2006).

Figure 15A highlights the differences in the maturation rate
γ c maps between the term and preterm cohorts. The graphs
in Figure 15B show the average signal values in the frontal
right Von Monakow WM segment (highlighted in yellow in
the γ c maps). The rather wide range of values in all indices
is potentially related to both the large size of the investigated
WM region (approximately 3000 voxels) as well the individual
variability also commonly observed in other neonatal brain
studies (Feng et al., 2019; O’Muircheartaigh et al., 2020). There
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FIGURE 15 | Atlas-based analysis: comparison of the term (140) and preterm cohorts (40) for 38 to 43 weeks scan PMA range for a subset of channels c={

T1w/T2w; TDI; RD; FA; FISO; µFA }. (A) The γ c maps of GF fitting for the term and preterm cohorts for 38 to 43 weeks PMA range. (B) The mean signal values in the

frontal WM ROI from the γ average parcellation map (highlighted in yellow in the gamma maps) for the term (blue) and preterm (red) cohorts for 38–43 weeks PMA range.

is a clear increasing trend in T1w/T2w, FA and TDI for the
term cohort along with decreasing FISO and RD. However,
the slopes for the preterm cohort are close to zero with high
variance in the signal values. Furthermore, in this region, the
preterm subjects are characterized by significantly higher FISO
and RD values and lower T1w/T2w, TDI and FA than the term

cohort at the 42–43 week PMA period. This is consistent with
the commonly reported lower FA and higher diffusivity values
in preterm groups (Hermoye et al., 2006; Knight et al., 2018;
Dimitrova et al., 2020), again suggesting delayed maturation
of transient compartments in premature babies (Kostović and
Judaš, 2006).
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4. LIMITATIONS AND FUTURE WORK

The generated atlas is specific to the dHCP acquisition protocols,
which might limit its application in terms of comparison with
datasets from other studies. However, the proposed tools can
be applied to generate study- and acquisition-specific 4D MC
atlases. We investigated a relatively narrow neonatal period, and
extension to a wider age range would improve the reliability
of the Gompertz function fit and bring more insights into
early brain development. In addition, a detailed region-specific
statistical evaluation of the expected signal distributions of MRI-
derived indices within the normal term cohort would need to
be performed to allow accurate detection of image artifacts and
brain abnormalities. Furthermore, the current work did not
investigate the optimal preprocessing parameters required for
fitting NODDI andµFA dMRI models, the effect of filtering (e.g.,
Smith et al., 2015) on the tractography outputs or the impact of
different registration settings (e.g., channel weighting).

The study comparing term and preterm brain development
included only 40 preterm subjects and they were not grouped
with respect to specific types of anomalies, which can
be addressed in future as more datasets become available.
Furthermore, this work did not evaluate the influence of
multi-channel registration on the extracted values of different
microstructural indices. The generated WM parcellation map
also potentially requires additional verification with respect to the
correct definition of individualWM regions. Including additional
cortical and sub-cortical regions or fixel-based analysis (Raffelt
et al., 2017) could also enrich the insights into normal and
preterm microstructural brain development.

5. CONCLUSIONS

In this work, we proposed and implemented a novel pipeline
for generation of continuous 4D multi-channel atlases. It is
based on multi-channel ODF+T2w+Mcortex guided registration
and the Gompertz function fitting of both signal intensities
and spatial transformations. The multi-channel registration
pipeline implemented in MRtrix3 employs the novel local
angular correlation similarity metric for ODF channels, LNCC
metric for structural T2w and weighted fusion of the updates
to the displacement fields. It also includes the cortex mask
channel guided by LNCC metric for better alignment of the
cortical regions.

Based on the proposed methods, we generated the first
continuous multi-channel atlas of the normal term neonatal
brain development during 37–44 weeks PMA generated from
170 subjects from the dHCP project. The atlas contains 14
channels including structural (T1w, T2w and T1w/T2w contrast)
and DWI-derived metrics based on ODF, DTI, DKI, µFA and
NODDI models. The Gompertz function fitting of the signal
intensity and spatial transformation components in 4D allowed
parametrization of the atlas. The output γ maps representing the
rate of change can be used for interpretation of how maturation
processes are manifested in different structural and diffusion
MRI-derived metrics. Visual inspection of the fitting results
showed that γ c maps of the T2w, T1w, FISO, MD, RD and

TDI channels are characterized by the high contrast in the fetal
transient compartments (Pittet et al., 2019).

The atlas also includes two detailed WM parcellation maps:
(i) the map with the major WM tract ROIs based on the
definitions from the recently introduced M-CRIB-WM neonatal
atlas (Alexander et al., 2020) and (ii) the map of the regions
associated with high γ signal change rates during the normal
WM maturation process. We tested the applicability of these
parcellation maps for region-specific atlas-based studies on
comparisons between the term and preterm cohorts. The results
of this study showed significant effects linked to prematurity in
multipleWM regions including the transient fetal compartments.
The atlas and the software tools will be publicly available after
publication of the article to support future studies of early
brain development1.

In summary, the proposed multi-channel registration and
atlas facilitate combined analysis of structural and diffusion
MRI indices in the same reference space without a bias from
single-channel registration. Furthermore, combination of high
resolution T2w and cortex mask channels with low resolution
ODF channels aids better combined alignment of cortical and
WM structures. To our knowledge, this is the first work that
defines the pipeline for merged structural and diffusion MRI
atlas-based analysis in neonatal brain studies.
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The brain of neonates is small in comparison to adults. Imaging at typical resolutions

such as one cubic mm incurs more partial voluming artifacts in a neonate than in an adult.

The interpretation and analysis of MRI of the neonatal brain benefit from a reduction in

partial volume averaging that can be achieved with high spatial resolution. Unfortunately,

direct acquisition of high spatial resolution MRI is slow, which increases the potential

for motion artifact, and suffers from reduced signal-to-noise ratio. The purpose of this

study is thus that using super-resolution reconstruction in conjunction with fast imaging

protocols to construct neonatal brain MRI images at a suitable signal-to-noise ratio and

with higher spatial resolution than can be practically obtained by direct Fourier encoding.

We achieved high quality brain MRI at a spatial resolution of isotropic 0.4 mm with 6 min

of imaging time, using super-resolution reconstruction from three short duration scans

with variable directions of slice selection. Motion compensation was achieved by aligning

the three short duration scans together. We applied this technique to 20 newborns

and assessed the quality of the images we reconstructed. Experiments show that

our approach to super-resolution reconstruction achieved considerable improvement

in spatial resolution and signal-to-noise ratio, while, in parallel, substantially reduced

scan times, as compared to direct high-resolution acquisitions. The experimental results

demonstrate that our approach allowed for fast and high-quality neonatal brain MRI for

both scientific research and clinical studies.

Keywords: neonatal brain MRI, super-resolution, image reconstruction, anisotropic acquisition, isotropic

reconstruction, fast imaging, spatial resolution, high-resolution MRI

1. INTRODUCTION

Magnetic resonance imaging (MRI), as a noninvasive neuroimaging method, has revolutionized
our knowledge over the past 20 years in understanding the human brain. Imaging for neonates
and infants enables studying brain developments and neurodevelopmental disorders from early
stages, which is crucially important to both scientific research and clinical studies (Weisenfeld
and Warfield, 2009; Giampietri et al., 2015; Mongerson et al., 2019; Tortora et al., 2019; Ding
et al., 2020). However, it is challenging to precisely delineate the anatomical structures of the
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brain of neonates due to the small size of brain tissues in
comparison to adults (Dubois et al., 2020). The spatial resolution
is thus a critical factor in neonatal brain MRI. The typically used
spatial resolutions in current clinical MRI practices, such as 3D
imaging at isotropic 1 mm and 2D imaging with 0.5 mm in-plane
resolution and 2 mm slice thickness, unfortunately, incur more
partial voluming artifacts in neonates than in adults.

The interpretation and analysis of MRI of the neonatal brain
benefit from a reduction in partial volume effect by increasing
spatial resolution (Makropoulos et al., 2018; Dubois et al., 2019).
Unfortunately, direct high-resolution (HR) MRI acquisition is
time consuming and costly, and suffers from reduced signal-to-
noise ratio (SNR). The long MRI scan for high spatial resolution
potentially causes motion artifacts (Afacan et al., 2016). It is
more prominent to the neonates who cannot be sedated, e.g.,
in a scan for the purpose of scientific research where sedation
is typically unavailable. Also, even in scans where sedation is
enabled to avoid subject motion, e.g., in a clinical scan, the
long MRI scan for high spatial resolution leads to a substantial
reduction in SNR, which in turn, increases the difficulty in
distinguishing the signal of interest from noise. The underlying
principle, from the imaging physics perspective, is that the
reduced voxel size raises a reduction in the amount of signal
received by the individual voxels. Consequently, the acquisition
of short duration is critically important to neonatal MRI. The
limitations of direct HR acquisition, therefore, necessitate the
development of the methods that allow for imaging for neonates
at high spatial resolution and high SNR, while in parallel, with
short scan duration.

Current methods address the above limitations with a number
of techniques, including parallel imaging (Pruessmann et al.,
1999; Griswold et al., 2002), shifting to the ultra high field (7T)
MRI (Annink et al., 2020), and super-resolution reconstruction
(SRR) (Plenge et al., 2012). Parallel imaging and 7T MRI rely
on hardware and imaging platforms, such as high density phased
array receive coils and appropriate pulse sequence modification.
In contrast, SRR, as a post-acquisition processing method, is
performed on the acquired data that is in general of low spatial
resolution and high SNR. Therefore, SRR is not subject to these
limitations in hardware and platforms.

SRR originated in Tsai and Huang (1984) and was used for
improving the quality of natural images. Fiat (2001) introduced
SRR to MRI. It was showed in Scheffler (2002), and Peled and
Yeshurun (2002) that SRR is unable to enhance the in-plane
resolution of a 2D MRI or the resolution of a true 3D acquisition
due to the Fourier encoding scheme. Also, it was demonstrated
in Greenspan et al. (2002) that SRR is effective to improve
the through-plane resolution of acquisitions of 2D slice stacks
since the slices are individually Fourier encoded. Consequently,
current SRR methods are designed to reduce the slice thickness
of 2D slice stacks. Combining multiple low-resolution (LR)
scans with different orientations was leveraged in Shilling et al.
(2009), and then this framework was extended in Poot et al.
(2010) to perform SRR with arbitrary image orientations and
translations. SRR was quantitatively assessed and experimentally
demonstrated in Plenge et al. (2012) to allow for a trade-off
between spatial resolution, SNR, and acquisition time. Extensive

SRR methods have recently been developed to improve MRI
quality with a various of techniques (Gholipour et al., 2010a,b,
2015; Rousseau et al., 2010; Murgasova et al., 2012; Scherrer et al.,
2012, 2015; Van Reeth et al., 2012; Kainz et al., 2015; Dalca et al.,
2019; Sui et al., 2019, 2020).

SRR algorithms can mainly be classified as either a
learning-based or a model-based method. Learning-based SRR
summarizes the patterns mapping between LR and HR images
over HR training data sets. Deep learning-based SRR has recently
gained significant interest (Chaudhari et al., 2018; Chen et al.,
2018; Zhao et al., 2019; Cherukuri et al., 2020; Wang et al.,
2020; Xue et al., 2020). However, these methods require a large
number of HR MRI acquisitions as the training data sets to learn
the SRR model. The quality of the training data sets directly
determines the quality of SRR. As discussed above, however, it is
practically challenging to acquire HR data sets. Therefore, model-
based SRR is commonly used in practice. Model-based SRR relies
on an MRI acquisition model, from which an inverse problem
is derived. As SRR estimates the super-resolved slices from
much fewer acquired slices, the inverse problem is severely ill-
posed. Prior knowledge, also known as regularization, is typically
incorporated to separate the optimal estimate from the infinitely
many solutions to the inverse problem. State-of-the-art priors
include total variation (TV) (Plenge et al., 2012; Shi et al., 2015;
Tourbier et al., 2015), non-local mean (Manjón et al., 2010), and
gradient guidance Sui et al. (2019, 2020).

In this work, we developed a methodology for SRR based
on the gradient guidance regularization method (Sui et al.,
2019). It allows for high spatial resolution MRI with high
SNR, excellent contrast-to-noise ratio (CNR), and reduced scan
time, in comparison to direct HR acquisition. We achieved
high quality brain MRI at a spatial resolution of isotropic
0.4 mm with 6 min of imaging time, using SRR from three
short duration scans with variable directions of slice selection.
Motion compensation is achieved by aligning the three short
duration scans together. Our technique is thus suitable for use
in a setting where direct HR acquisition is impractical. We
applied this technique to 20 newborns and assessed the quality
of the images we reconstructed. Experiments show that our
SRR approach achieved considerable improvement in spatial
resolution and SNR, while, in parallel, substantially reduced scan
time, as compared to direct HR acquisition. The experimental
results demonstrate that our approach allows for fast and high-
quality neonatal brain MRI for both scientific research and
clinical studies.

The novelty of this work is four-fold: (1) We take advantage
of undersampling which allows us to form three undersampled
neonatal scans with reduced acquisition time; (2) We encode the
HR k-space data with three rapid undersampled observations
of the HR k-space data convolved with a spatially oriented
low-pass filter (being oriented axial, coronal, and sagittal). The
estimation of the HR image from the undersampled observations
is formulated as a deconvolution reconstruction problem; (3)
The deconvolution reconstruction benefits from priors on edge
position, which are easy to obtain and accurate in our setting; and
(4) We apply our technique to neonatal brain MRI and achieve
high quality images with reduced acquisition time.
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2. MATERIALS AND METHODS

The purpose of our approach is to construct neonatal brain MRI
images at isotropic high spatial resolution and high SNR with
reduced acquisition time for both scientific research and clinical
studies. We develop an SRR technique that can reconstruct
isotropic HR images from multiple anisotropic acquisitions with
variable directions in slice selection. To assess our approach, we
simulated an MPRAGE data set based on images at an ultra high
resolution of isotropic 250 µm and acquired 60 T2 FSE images
from 20 newborns on a Siemens 3T scanner. In this section,
we present the theory and algorithm used in our approach, the
detailed descriptions of our data sets, the criteria used in the
assessments, and the experimental designs, respectively.

2.1. Neonatal MRI Acquisition Strategy
As SRR is effective in enhancing the through-plane resolution
of 2D slice stacks, we acquire the images with large matrix
size and thick slices. The large matrix size ensures the in-plane
high resolution while the use of thick slices enables short scan
duration and high SNR. However, the thicker the slices, the more
severe the partial volume effect, and thus the more difficult the
super-resolution. To this end, we acquire multiple LR images to
facilitate SRR, where an increased number of slices are acquired.
However, the total acquisition time is increased accordingly due
to the increased number of scans. Fortunately, we can employ
fast imaging techniques to accelerate the scans, such as fast
spin echo (FSE) imaging. For images that yield long repetition
time (TR), such as T2-weighted images, the FSE technique can
significantly reduce the scan duration by nETL times with an echo
train length (ETL) of nETL that typically ranges from 4 to 32 in
clinical routines.

The goal of SRR is to estimate the missing signal in k-space
based on the sampled k-space data. Our approach performs the
estimation in the spatial image domain, which relates to the k-
space data through Fourier transforms. Variable slice selection
directions are incorporated in the acquisitions of the LR scans,
where each LR scan contains a certain amount of k-space data
in the slice selection direction. Consequently, the LR scan set
comprises the spatial frequencies in different directions in the 3D
frequency spectrum space. By combining multiple such LR scans,
the difficulty of the SRR is thus reduced as an increased amount
of k-space data is sampled. Although the slice selection directions
and the number of the LR scans can be arbitrary, orthogonal
(axial, coronal, and sagittal) acquisitions typically achieved a
trade-off between acquisition time and SRR performance, since
the acquired data yields the three complementary imaging planes.

We acquire three T2 FSE images from each neonate with
variable directions in slice selection, which are typically carried
out in three complementary planes (axial, coronal, and sagittal),
and perform SRR to form an isotropic HR image. We set the
parameters according to the scan time:

T ≃ TR ·

⌈

FoVp

Sp · facc · ETL

⌉

· NNEX , (1)

where FoVp denotes the Field of view (FoV) in the phase
encoding direction, Sp denotes the voxel size in the phase

encoding direction, facc is the acceleration factor of parallel
imaging, ETL is the echo train length, NNEX is the number of
excitations, and ⌈x⌉ returns the smallest integer that is >x. We
recommend that FoVp ranges from 120 to 150 mm to fit the
head size of the subject. Sp is kept at 0.39 mm. GRAPPA parallel
imaging is leveraged with an acceleration factor of 2. Averaging
is not considered in our fast imaging protocol, so NNEX = 1. We
recommend using ETL between 16 and 21 for fast scans of high
quality. TR is typically set over 10 s depending on the number of
slices required as well as the head size of the subject. We typically
acquire 60–80 slices per image, and the slice thickness is fixed at
2 mm. It takes <2 min with our fast imaging protocol to acquire
a T2 FSE image, i.e., T ≤ 120 s. For the largest value of FOV,
i.e., FoVp = 150 mm, with an ETL =21, it allows a TR ≤13.1
s according to (1), which is a sufficiently high value for TR.
Consequently, our protocol can ensure less than two minutes of
imaging time to acquire a T2 FSE image at the in-plane resolution
of 0.39 mm for a neonate. Besides the parameters related to the
scan time, we set TE = 93 ms, flip angle = 160◦, and echo spacing
= 9.8 ms. We use an interleaved acquisition mode, with which
an even-first ascending slice order with an interleave factor of 2
is incorporated, i.e., the slice order is [2 : 2 :N, 1 : 2 :N − 1] for
an image with N slices. The HR image is reconstructed at the
resolution of isotropic 0.39 mm, which is sufficiently high for
the interpretation and analysis of the anatomical structures of the
neonatal brain in clinical practices.

2.2. Neonatal MRI Reconstruction
We leverage the gradient guidance regularized SRR algorithm
(Sui et al., 2019) to reconstruct the neonatal MRI images1. Given
n acquired LR images {Y}n

k=1
, the forward model that describes

the MRI acquisition process can be found from the HR image
X by

yk = DkHkTkx+ εk, , k = 1, 2, 3, . . . , n, (2)

where yk and x are column vector form of Yk and X, respectively;
Tk denotes a coordinate transform of X in the 3D space; Hk

denotes a blur kernel;Dk denotes a downsampling operation; and
εk denotes the imaging noise.

The noise εk can be considered as additive and Gaussian when
SNR>3 (Hansen and Kellman, 2015). Therefore, the noise in
each acquisition can be independently formulated as an identical
Gaussian distribution. The HR reconstruction x is consequently
obtained by solving the inverse problem

min
x

n
∑

k=1

∥

∥DkHkTkx− yk
∥

∥

2

2
+ λ

∑

s∈S

∥

∥∇sx− gs
∥

∥

1
, (3)

where S indexes a set of spatial image gradients, gs denotes
the s-th component of the gradient guidance, ∇sx computes the
s-th spatial gradient of x, which is calculated from the same
orientation and the same scale as gs, and λ > 0 is a weight
parameter for the regularization term. The above minimization
can be accomplished by a subgradient descent (Bertsekas, 1999)

1The term “image” indicates a volumetric image of slice stack here and hereafter.
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or a proximal gradient descent algorithm (Daubechies et al.,
2003).

As the images are acquired fast, we consider that there is no
intra-volume head motion during the acquisition. Therefore, the
transform Tk in Equation (3) compensates for the misalignment
between scans. We use a rigid body transform to represent the
misalignment. Consequently, Tk is defined by the parameters
of six degrees of freedom (three for rotation and three and
translation). We first interpolate all the LR images to those
of the same size and the same resolution as the HR image
being reconstructed by using a third-order B-spline interpolation
method. We set T1 to an identity transform and evaluate Tk for
k > 1 by aligning the k-th interpolated LR image to the first
interpolated LR image. In the alignments, mutual information
is leveraged to measure the similarity between the first and k-th
images. We use the CRKIT2 to accomplish the image alignment.

The blur kernel Hk in Equation (3) is a spatial invariant
operator. It raises the partial volume effect in the acquired image.
As only the through-plane resolution is enhanced while the in-
plane resolution is kept unchanged, we design the blur kernel
as a low-pass filter in the slice selection direction, also known
as the slice profile. In the MRI acquisition, each slice is excited
by incorporating a selective gradient that is generated by the
radio frequency (RF). Ideally, the slice profile is desired to be
a boxcar function. This requires infinitely many frequencies to
yield the RF, which are impossible to obtain in practice. It is
crucial to appropriately approximate the slice profile in SRR
as the approximation directly influences the accuracy of the
forward model. In general, bell-curve profiles with wider bases
and narrower central peaks are leveraged, and slice thickness
is measured as the full width at half maximum (FWHM)
signal intensity. Gaussian profiles are widely used in MRI
reconstruction and have been demonstrated to be effective in
SRR (Rousseau et al., 2005; Jiang et al., 2007; Gholipour et al.,
2010a,b; Murgasova et al., 2012; Sui et al., 2019, 2020). Therefore,
we approximate the slice profile by a Gaussian function with an
FWHM equal to the slice thickness.

As the downsampling factor can be arbitrary, instead of
an integer for natural images, it is inconvenient to perform
the downsampling in the image domain. Consequently, the
downsampling operator Dk in Equation (3) is implemented in
the frequency domain by cropping out the low frequencies.
The respective upsampling operation is thus implemented
by inserting zeros at the missing high frequencies. In our
implementations, we combine the Gaussian profile and the
downsampling operator into a single filter in the frequency
domain for computational efficiency. As the Gaussian profile
is performed in a manner of a low-pass filter, truncating
high frequencies for downsampling does not cause intensity
oscillations in the image domain.

The spatial image gradient guides the HR reconstruction. The
index set S in the regularization term of Equation (3) comprises
40 spatial gradient fields that yield different orientations and
different scales, as suggested in Sui et al. (2019). All the 40
gradient fields are combined into a gradient guidance, denoted

2CRKIT - Computational Radiology Kit, http://crl.med.harvard.edu/software/.

by g in Equation (3). The s-th component of g is separately
computed from the image constructed by the interpolation and
average (IAA) method. In the IAA method, the n aligned LR
images are interpolated to the same size at the same resolution as
the HR reconstruction, and then the reconstructed HR image is
formed by averaging out the n interpolated images. Specifically,
with an image obtained by IAA, denoted by I, a component of

the gradient guidance is calculated by I − Dα
xD

β
yD

γ
z I where D

n
m

denotes the operation that circularly shifts an image in m ∈

{x, y, z} direction by n voxels. We set α to integers between −2
and 2, and β and γ between 0 and 2. We exclude the components
calculated at α = β = γ = 0 and α + β + γ < 0 to eliminate
the replicates. Consequently, we have 40 components calculated
for the gradient guidance. We put all the 40 components in a set
S and index them by gs in Equation (3). We set the regularization
weight parameter λ in Equation (3) to 0.1 in all experiments in
this paper according to our experimental investigation.

The source codes and a docker version of our reconstruction
algorithm can be checked out from our website3.

2.3. Assessment Criteria
We assess our approach in terms of spatial resolution, SNR, CNR,
and acquisition time.

2.3.1. Spatial Resolution

The signal intensity in a voxel is quantified as the integration
of the signal over a spatial region defined by the position and
size of the voxel. Spatial resolution is usually used to describe in
an image the number of independent voxels per unit length or
volume. Different from the measure based on voxel size, spatial
resolution refers to the ability to differentiate two types of brain
tissues that are relatively close together. As partial voluming
artifacts occur due to the dependent voxels, the number of voxels
suffering from partial volume effects can be an effective measure
for spatial resolution. The higher the spatial resolution, the fewer
the voxels affected by partial volume effects. To this end, we
evaluate the percentage of the voxels that comprise the signal
from more than one type of brain tissue and use it as the metric
of the partial volume effect estimation. An image at a higher
spatial resolution thus yields a lower metric value of partial
volume effect.

We consider three types of brain tissues in the estimation of
the partial volume effect from the neonatal MRI reconstruction:
cerebrospinal fluid (CSF), gray matter (GM), and white matter
(WM). As the three tissues yield different contrasts in MR
images, the intensities of the voxels from them scatter in three
clusters. Due to the partial voluming, there may be overlaps in
the three clusters. We thus investigate the distribution of the
voxel intensities of the HR reconstruction. First, we select an
image region that contains the three tissues, and then construct a
histogram of the voxel intensities over the selected image region.
It has been shown in Laidlaw et al. (1998) that the distribution
of voxel intensities from a pure tissue is Gaussian. Therefore, we
fit the histogram of the voxel intensities by a Gaussian mixture

3We are preparing the codes and the docker file, and will make them publicly

available after the paper is accepted.
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model (GMM) with three components that characterize the three
types of brain tissues. The voxels from a pure tissue are thus
identified if their intensities range from µ − δ to µ + δ for µ

and δ being the mean and half of FWHM of the corresponding
Gaussian component in the GMM, respectively. We apply the
GMM to the entire image to form the voxel set-1 containing all
voxels from the three tissues (i.e., voxels may contain the signal
from more than one tissues) and set-2 consisting of the voxels
identified from each pure tissue (i.e., voxels contain the signal
from only one tissue). The difference between the two sets of
voxels consequently indicates the number of voxels suffering
from the partial volume averaging.

2.3.2. SNR and CNR

We compute the SNR of an image from the mean of signal
intensities over the noise. Specifically, the SNR is found by

SNR = 10 log10

∑3
k=1 wksk

σ
∑3

k=1 wk
where sk andwk denote themean signal

intensity of the voxels and the percentage of the voxels from
the k-th pure tissue, respectively, and σ denotes noise measure.
Both sk and wk can be directly obtained from the fitted GMM
constructed above. sk is computed from the mean of the k-th
Gaussian component, while wk is evaluated as the maximum of
the k-th Gaussian component. We select an image region in the
background and compute the standard deviation of the voxel
intensities over the region as the noise measure.

Similar to SNR, we compute the CNR from the difference of
the mean of signal intensities between two types of tissues over

the noise: CNRj,k = 10 log10
|si−sj|

σ
We evaluate in the assessment

the CNR between CSF and GM, denoted by CNR:CSF-GM, the
CNR between CSF andWM, denoted by CNR:CSF-WM, and the
CNR between GM andWM, denoted by CNR:GM-WM.

2.4. Experimental Design
We conduct two experiments to assess our approach on
simulated data as well as the data acquired from 20 newborns
on a Siemens 3T scanner. The goal of the experiments is to
demonstrate that our approach achieves high-quality neonatal
brain MRI with reduced imaging time, which allows for the
studies with both research and clinical purposes.

We leveraged two other acquisition strategies as baseline
schemes to compare to in the experiments, including direct HR
acquisition (DA) and the single image-based super-resolution
(SISR) method. Our approach was assessed by comparing to DA
to verify the improved image quality and reduced acquisition
time. The SISR used the same SRR algorithm as our approach
with the same parameters setting. It is in fact a special case of our
approach when only one LR scan was acquired, i.e., n = 1 in
Equation (3). We used approximately three times more slices in
a single LR image than in an LR image in our approach, in order
to ensure equal acquisition time (by conducting the same number
of phase encoding steps) for a fair comparison. Consequently, the
comparisons to SISR evaluated the superiority of our approach
to variable slice selection direction over the acquisition with
constant slice selection direction.

We employed other four state-of-the-art SRR methods
as baseline methods to assess our approach, including the

interpolation and average (IAA) method, total variation (TV)
prior (Plenge et al., 2012), non-local upsampling (NLU) method
(Manjón et al., 2010), and a deep convolutional network-based
SRR (SRCNN) method (Dong et al., 2016). The IAA method
interpolated the n LR images to the same size at the same
resolution as the HR reconstruction by a third-order B-spline
method, and then aligned all the interpolated images together.
The reconstruction was finally obtained by averaging all the
interpolated and aligned images. IAA is one of the most widely
used methods in both clinical practices and scientific research
studies due to its effectiveness in improving SNR. We therefore
compared our approach to IAA to assess the applicability of our
approach in practical imaging tasks. The NLU method further
processed the results generated by IAA with a non-local mean
algorithm. The TVmethod used the same deconvolution scheme
as our approach to reconstruct the HR image. Our scan strategy
allows for training deep 2D SRR models as it acquires in-plane
HR slices. The deep SRR models can be trained on these HR
slices and then used to super-resolve the through-plane LR slices
to generate an isotropic HR image. Although recent years have
witnessed the extensively proposed deep neural networks-based
SRR methods, only lightweight deep architectures allow for the
training due to the limited number of HR slices acquired with our
scan strategy. We therefore employed SRCNN as a deep baseline
model in the experiments, which comprises about 8 k parameters
to train. The trained model was applied to the through-plane
LR slices of each LR image. The reconstructed HR image was
formed by averaging out all the super-resolved images on their
voxels. We set the weight parameter of the TV method at 0.1
for its best results according to the simulation results. We set the
parameters in NLU according to the recommendation in Manjón
et al. (2010).

2.4.1. Experiment 1: Simulations on MPRAGE Data

The goal of this experiment is three-fold: (1) to investigate
the influence of the gradient guided regularization on the SRR
performance; (2) to demonstrate that our anisotropic acquisition
strategy with variable directions in slice selection leads to
superior SRR to the strategy of single acquisition; and (3) to show
that our SRR approach achieves the MR images of higher quality
than direct HR acquisition in terms of spatial resolution and SNR.

For the experimental goal, we simulated a data set based on
the Dryad data set containing eight MPRAGE images at an ultra
high resolution of isotropic 250 µm (Lusebrink et al., 2017). This
data set was acquired from an adult subject, and the acquisition
time was about 1 h per image with very complicated protocols
and pre- and post-acquisition processing operations, in order
to preserve a satisfactory SNR. So it is practically impossible to
acquire such images in clinical routines. As there is currently no
publicly available HR neonatal brain scan, and it is challenging
to acquire an HR image from a neonate at a satisfactory SNR, we
used this data set for the simulation demonstrations. Considering
the goal of this experiment addressed above, it is reasonable to use
this data set for the demonstrations.

We generated eight images at the resolution of isotropic 0.5
mm by downsampling each original image, and used them as the
direct HR acquisitions. The downsampling followed the process
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FIGURE 1 | Investigation on the influence of the gradient guided regularization to the SRR performance in terms of PSNR and SSIM. The results show that our SRR

approach performed the best with the regularization weight parameter λ ranging from 0.05 to 0.3. The results also suggest that the regularization considerably

improved the SRR performance on the simulation data set by referring to the results at λ = 0 (in the case of no regularization).

defined in the forwardmodel, as shown in Equation (2). Then, we
simulated three LR images based on each direct HR acquisition
in the three complementary planes and used them as our
anisotropic acquisitions with variable directions in slice selection.
The in-plane resolution of these LR images was 0.5× 0.5 mm and
the slice thickness was 2mm. To keep the contrast unchanged, we
assumed the echo time (TE) and repetition time (TR) of these LR
images the same as the direct HR acquisitions. Each direct HR
acquisition comprised 193,600 phase encoding steps, while the
three LR images contained 132,000 phase encoding steps in total.
Therefore, the acquisition time of the three LR images was∼68%
of that of the direct HR acquisition. For the single acquisition-
based SRR, we generated an LR image at the resolution of 0.5 ×

0.5 × 0.73 mm. The resolution was derived from that the same
number of phase encoding steps (132,000 steps) were conducted
for this image. All the simulations for the LR images followed the
process described in Equation (2).

We investigated the regularization weight parameter λ in
Equation (3) to study the influence of the gradient guided
regularization on the SRR performance. We ran our SRR
approach with different λ values in a certain range and evaluated
the peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) (Wang et al., 2004) against the ground truth image
in the simulation experiment. We fixed the value of λ in
all other experiments reported in this paper according to the
investigation results.

We reconstructed the HR images at the resolution of
isotropic 0.5 mm by using the gradient guidance regularized
SRR algorithm, as shown in Equation (3) on the data sets
simulated from the anisotropic and single acquisition strategies,
respectively. We compared the HR images reconstructed by our
approach to the HR reconstructions by SISR and the direct
HR acquisitions in terms of the spatial resolution, SNR, and
CNR. Through the comparisons, we can answer the questions:
(1) can SRR constructs images of higher quality with lower

acquisition time than direct HR acquisition? and (2) with
the same acquisition time, which acquisition strategy leads to
better SRR, our anisotropic acquisition or the single acquisition?
The second question is essentially about how we allocate data
acquisitions for a better SRR given a fixed acquisition time.

2.4.2. Experiment 2: Assessment on Clinical T2 FSE

Data

The objective of this experiment is to evaluate our approach
on the clinical data and to demonstrate that our approach
can provide high quality images for both scientific research
studies and clinical routines in neonatal brains. To this end, we
acquired a data set with the protocol presented above. The data
set comprised 60 neonatal brain MR images acquired from 20
newborns (acquired three from each). All scans were performed
in accordance with the local institutional review board (IRB)
protocol. We incorporated the IAA method as a baseline in this
experiment, which is one of the most widely used methods in
both clinical practices and scientific research studies. The HR
images were reconstructed at the resolution of isotropic 0.39
mm in this experiment by our approach and the IAA method.
These reconstructed HR images were assessed in terms of spatial
resolution, SNR, and CNR.

3. RESULTS

Our reconstruction algorithm was implemented in MATLAB
(The MathWorks Inc.) without any code optimizations. We
carried out our algorithm on a workstation with an Intel Xeon
CPU@2.1 GHz and 128 GB memory. It took about 15 min to
reconstruct an image of the typical size 384× 384× 384 voxels.

We reported and visualized our quantitative results by using
the box and whisker plot (McGill et al., 1978; Langford, 2006).
On each box, the central mark indicated the median, and the
bottom and top edges of the box indicated the 25th and 75th
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FIGURE 2 | Estimates of partial volume effects (PVE) from the eight MPRAGE

images directly acquired and reconstructed by SISR and our approach on the

simulated data set, respectively. The average percentages of the voxels

suffering from PVE were, respectively 10.82 ± 5.02, 10.48 ± 4.93, and 9.99 ±

4.80% with the methods of direct acquisition (DA), SISR, and ours. The results

show that our approach generated the highest spatial resolution on this data

set. Our approach yielded a 7.7% reduction in the partial volume effects,

leading to the enhancement in spatial resolution, as compared to the direct HR

acquisitions. The results also suggest that SRR (both SISR and our approach)

achieved higher spatial resolution with much lower acquisition time than direct

HR acquisition.

percentiles, respectively. The whiskers extended to the most
extreme data points.

3.1. Experiment 1: Simulations on MPRAGE
Data
Figure 1 shows the investigation results on the influence of the
gradient guided regularization on the SRR performance in terms
of PSNR and SSIM. The results show that our SRR approach
performed the best with the regularization weight parameter
λ ranging from 0.05 to 0.3. The results also suggest that the
regularization considerably improved the SRR performance on
the simulation data set by referring to the results at λ = 0 (in the
case of no regularization). According to the investigation results,
we therefore fixed the regularization weight parameter λ at 0.1 in
all the rest experiments reported in this paper.

Figure 2 shows the estimates of partial volume effect from the
eight MPRAGE images directly acquired and reconstructed by
SISR and our approach on the simulated data set, respectively.
The average percentages of the voxels suffering from partial
volume effect were respectively 10.82 ± 5.02%, 10.48 ± 4.93%,
and 9.99 ± 4.80% with the methods of direct acquisitions, SISR,
and ours. The results show that our approach generated the
highest spatial resolution on this data set. Our approach yielded
a 7.7% reduction in the partial volume effects, leading to the
enhancement in spatial resolution, as compared to the direct
acquisitions the resolution of isotropic 0.5 mm. The results also
suggest that SRR (both SISR and our approach) achieved higher
spatial resolution with much lower acquisition time than direct
HR acquisition.

Figure 3 shows the results of direct acquisition, SISR, and our
approach in terms of SNR and CNR from the eight MPRAGE

acquisitions/reconstructions on the simulated data set. The
average SNRs obtained from direct acquisition, SISR, and our
approach were 14.51 ± 0.57, 15.66 ± 0.48, and 16.62 ± 0.56
dB, respectively. Our approach achieved higher SNR on this data
set, and yielded 2.11 dB enhancement in SNR as compared to
the direct acquisitions. Two-sample t-test at the 5% significance
level showed that our approach significantly outperformed DA
(p = 3.02e−6) and SISR (p = 2.40e−3). Wilcoxon signed-rank
tests, where the null hypothesis was the difference of two sets of
data comes from a distribution with zeromedian, showed that the
populationmean rank of our approach significantly differed from
the two baselines in SNR at the 5% significance level (rejected
the null hypothesis with p = 7.8e−3 for both DA and SISR).
Our approach consistently offered the highest CNRs between
the three types of brain tissues on this data set. In particular,
our approach achieved 1.31 dB higher CNR between GM and
WM than direct acquisition. The results show that SRR led to
considerably improved SNR and CNR as compared to direct
HR acquisition.

Figure 4 shows the qualitative results in representative slices
from the images directly acquired, reconstructed by SISR and our
approach, respectively. The slices directly acquired and formed
by SISR were much noisy as compared to our reconstructions.
The noise was more prominent for SISR in the voxels from the
skull, as highlighted by the red arrows. Although what we were
interested in were CSF, GM, and WM, the noisy voxels from the
skull rendered that SISR generated noise all over the images but
just not as obvious as those from the skull.

3.2. Experiment 2: Assessment on Clinical
T2 FSE Data
Figure 5 shows the quality of the 20 HR images reconstructed by
the five SRR methods on the clinical data set in terms of SNR
and CNR. The average SNR achieved by the five methods are,
respectively: IAA = 20.19 ± 2.57 dB, TV = 19.17 ± 3.40 dB,
NLU = 19.92 ± 2.04 dB, SRCNN = 20.18 ± 1.98 dB, Ours =
20.04± 2.77 dB. IAA, NLU, and SRCNN generated high SNR, as
they benefited from the averaging to improve the SNR and CNR.
Our approach offered comparable SNR with IAA, NLU, and
SRCNN, and outperformed TV by ∼1 dB in terms of SNR. Our
approach generated slightly superior CNRs to the five baselines
about cerebrospinal fluid, and yielded considerably higher CNR
between gray matter and white matter than these baselines.

Figure 6 the spatial resolution evaluated from the twenty
images reconstructed by the four baselines and our approach on
the clinical data set in terms of partial volume effect. The average
PVE achieved by the five methods are, respectively: IAA = 19.40
± 11.85%, TV = 9.02 ± 7.30%, NLU = 11.35 ± 7.69%, SRCNN
= 10.88 ± 7.46%, Ours = 7.25 ± 4.37%. Our approach offered
a considerably lower percentage of the voxels suffering from
partial volume averaging in the HR reconstructions than the four
baselines, leading to substantially enhanced spatial resolution.
Two-sample t-test at the 5% significance level showed that our
approach significantly outperformed IAA (p = 1.40e−6), NLU
(p = 2.65e−4), and SRCNN (p = 5.39e−4). Wilcoxon signed-
rank tests, where the null hypothesis was the difference of two sets
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FIGURE 3 | Results of direct acquisition (DA), SISR, and our approach in terms of SNR and CNR from the eight MPRAGE acquisitions/reconstructions from the

simulated data set. (A) The average SNRs obtained from DA, SISR, and our approach were 14.51 ± 0.57, 15.66 ± 0.48, and 16.62 ± 0.56 dB, respectively. Our

approach achieved higher SNR on this data set, and yielded 2.11 dB enhancement in SNR as compared to direct acquisition. Two-sample t-test at the 5%

significance level showed that our approach significantly outperformed DA (p = 3.02e−6) and SISR (p = 2.40e−3). Wilcoxon signed-rank tests, where the null

hypothesis was the difference of two sets of data comes from a distribution with zero median, showed that the population mean rank of our approach significantly

differed from the two baselines in SNR at the 5% significance level (rejected the null hypothesis with p = 7.8e−3 for both DA and SISR). (B–D) Our approach

consistently offered the highest CNRs between the three types of brain tissues on this data set. In particular, our approach achieved 1.31 dB higher CNR between GM

and WM than direct acquisition. The results show that SRR led to considerably improved SNR and CNR as compared to direct HR acquisition.

of data comes from a distribution with zero median, showed that
the population mean rank of our approach significantly differed
from the baselines in PVE at the 5% significance level (rejected
the null hypothesis with p = 8.86e−5 for IAA, p = 2.76e−2

for TV, p = 1.89e−4 for NLU, and p = 2.93e−4 for SRCNN).
Figure 6B shows the demonstration of the partial volume effect
estimation on a representative image. The curve with a square
marker shows the voxel distribution of the image. The dotted
lines depict the three Gaussian components in the fitted GMM.
The solid line addresses the fitted GMM. The three components
from left to right represented the voxels fromGM,WM, and CSF,
respectively. The difference in the area under the curve between
the voxel distribution and the fitted GMM in the range between
two successive components corresponded to the estimate of the
partial volume effect.

Figure 7 shows the estimated voxels suffering from partial
volume averaging in the representative slice from the image
reconstructed by the four baselines and our approach,
respectively. The results show that almost all voxels with
partial volume effect were from the boundaries between different
types of brain tissues. Our approach comprised much fewer
voxels with partial volume effect than the four baseline methods.
The red arrows highlight the image regions with severe partial
volume effect in the slice obtained from the four baseline
methods. The results demonstrate that our approach offered
considerably enhanced spatial resolution of this image.

Figure 8 shows the qualitative results in representative slices
of the images reconstructed by the five SRR methods. The
results show that our approach achieved the best qualitative
performance with regarding to the image contrast and sharpness,
in particular, on the delineation of the structures of the
hippocampus as shown in the coronal and sagittal planes.
The TV method sharpened the image excessively, resulting in
noisy reconstructions. Our approach appropriately suppressed
the noise contamination while enhancing the sharpness of the
image edges. The images reconstructed by IAA, NLU, and
SRCNN contained artifacts caused by averaging the images
transformed due to the alignment, as highlighted by the
red arrows. In contrast, our approach was not affected by
the alignment.

4. DISCUSSION

We have developed a methodology to perform fast and high-
resolution neonatal brainMRI. This methodology allows for high
spatial resolution, high SNR and CNR, and reduced scan time,
in comparison to direct HR acquisition. We have achieved high
quality brain MRI at a spatial resolution of isotropic 0.4 mm with
6 min of imaging time. We have also demonstrated our approach
on simulated data as well as clinical data acquired from twenty
newborns. The experimental results have demonstrated that our
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FIGURE 4 | Qualitative results in representative slices from the images (A) directly acquired, (B) reconstructed by SISR, and (C) reconstructed by our approach,

respectively, on the simulated data set. The slices directly acquired and formed by SISR were much noisy as compared to our reconstructions. The noise was more

prominent for SISR in the voxels from the skull, as highlighted by the red arrows. Although what we were interested in were CSF, GM, and WM, the noisy voxels from

the skull rendered that SISR generated noise all over the images but just not as obvious as those from the skull.

approach allows for fast and high-quality neonatal brain MRI for
both research and clinical studies.

We have shown in the simulation experiment that SRR
achieved 7.7% lower partial volume effects and 2.11 dB higher
SNR than the direct acquisitions at the resolution of isotropic 0.5
mm, while, in parallel, with only 68% of scan time of direct HR
acquisition, as reported in Figure 2. Because the directly acquired
HR images were very noisy, the image edges were blurred by the
noise and in turn the spatial resolution was reduced. In SRR,
because thick slices were used, the SNR was improved in the LR
images, as described in the forward model shown in Equation
(2). The blur kernel Hk in Equation (2) reduced the noise by the
low-pass filtering. The thicker the slices, the more the reduction
in the noise. Furthermore, the gradient guidance regularized
SRR algorithm was used to reconstruct the HR images in both

SISR and our approach. This algorithm incorporates an image
deconvolutional filter that allows for further noise reduction in
the HR reconstructions. If the scan time can be increased, e.g.,
taking the rest 32% of scan time to acquire more LR images
with our protocol, our approach can achieve much higher spatial
resolution and SNR.

In the experiment on the clinical T2 FSE data, we have
shown that our approach generated comparable SNR to the IAA,
NLU, and SRCNN methods while considerably higher spatial
resolution. The averaging operation in the three baselinemethods
improved the SNR since the noise was smoothed out by the
averaging. However, the averaging unexpectedly reduced the
spatial resolution since it also blurred the tissue boundaries
(image edges), as shown in Figure 7. Our approach, instead
of averaging the data, combined the three LR images in a
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FIGURE 5 | Quality of the 20 HR images reconstructed by the five SRR methods on the clinical data set in terms of SNR and CNR. (A) SNR; (B) CNR between

cerebrospinal fluid and gray matter; (C) CNR between cerebrospinal fluid and white matter; and (D) CNR between gray matter and white matter. The average SNR

achieved by the five methods are, respectively: IAA = 20.19 ± 2.57 dB, TV = 19.17 ± 3.40 dB, NLU = 19.92 ± 2.04 dB, SRCNN = 20.18 ± 1.98 dB, Ours = 20.04 ±

2.77 dB. IAA, NLU, and SRCNN generated high SNR, as they benefited from the averaging to improve the SNR and CNR. Our approach offered comparable SNR

with IAA, NLU, and SRCNN, and outperformed TV by ∼1 dB in terms of SNR. Our approach generated slightly superior CNRs to the five baselines about

cerebrospinal fluid, and yielded considerably higher CNR between gray matter and white matter than these baselines.

FIGURE 6 | Spatial resolution evaluated from the twenty images reconstructed by the five SRR methods on the clinical data set in terms of partial volume effect (PVE).

(A) The average PVE achieved by the five methods are, respectively: IAA = 19.40 ± 11.85%, TV = 9.02 ± 7.30%, NLU = 11.35 ± 7.69%, SRCNN =10.88 ± 7.46%,

Ours = 7.25 ± 4.37%. Our approach offered a considerably lower percentage of the voxels suffering from PVE in the HR reconstructions than the four baselines,

leading to substantially enhanced spatial resolution. Two-sample t-test at the 5% significance level showed that our approach significantly outperformed IAA

(p = 1.40e−6), NLU (p = 2.65e−4), and SRCNN (p = 5.39e−4). Wilcoxon signed-rank tests, where the null hypothesis was the difference of two sets of data comes

from a distribution with zero median, showed that the population mean rank of our approach significantly differed from the baselines in PVE at the 5% significance

level (rejected the null hypothesis with p = 8.86e−5 for IAA, p = 2.76e−2 for TV, p = 1.89e−4 for NLU, and p = 2.93e−4 for SRCNN). (B) The demonstration of the

PVE estimation on a representative image. The curve with a square marker shows the voxel distribution of the image. The dotted lines depict the three Gaussian

components in the GMM. The solid line addresses the fitted GMM. The three components from left to right represented the voxels from GM, WM, and CSF,

respectively. The difference in the area under the curve between the voxel distribution and the fitted GMM in the range between two successive components

corresponded to the estimate of the PVE.

deconvolution manner that simultaneously improved the spatial
resolution and SNR. As addressed in the forward model shown
in Equation (2), the acquired image yk was degraded by the
convolution with the blur kernel Hk. In the derived inverse
problem defined in Equation (3), a deconvolution operation was
leveraged, as an inverse operation of the convolution with Hk, to

restore the image from the blurring. This operation is also known
as deblurring. As only the kernel Hk was involved, the noise
that was filtered out in the convolution was not restored by the
deconvolution, leading to an improved SNR in the reconstructed
HR image. The TV method leveraged the same deconvolution
scheme as our approach. However, the TV prior sharpened the
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FIGURE 7 | Estimated voxels suffering from partial volume effect (PVE) in the representative slice of from the image reconstructed by the four baselines and our

approach. The results show that almost all voxels with PVE were from the boundaries between different types of brain tissues. Our approach comprised much fewer

voxels with PVE than the four baselines. The red arrows highlight the image regions with severe PVE in the slice obtained from the four baseline methods. The results

demonstrate that our approach offered considerably enhanced spatial resolution of this image.

image excessively as it left the local smoothing unconsidered,
resulting in noisy reconstructions.

As shown in Figure 8, the IAA, NLU, and SRCNN methods
introduced the artifacts caused by averaging over the different
number of voxels at the lattice because the image alignment
rendered some voxels with undefined intensity values. Although
the artifacts were outside the brain in this case, it would be an
issue if the LR images, which only contain partial regions of the
brain, are included in the SRR, leading to usable reconstructions.
Benefiting from the method that we used to combine the images,
our approach was not affected by the alignment and did not
introduce such artifacts in the HR reconstructed images. As
shown in the inverse problem defined in Equation (3) for
our SRR, the deconvolution operations on each LR image
are jointly combined in the data fidelity term. Furthermore,
the regularization incorporates a spatial gradient guidance
that constrains the HR reconstruction including local smooth
regions separated by strong image edges. The ℓ1-minimization
imposed on the regularization guarantees that the local regions
are not smoothed excessively. Consequently, our SRR offered

both local region smoothing for homogeneous intensities and
edge enhancement for tissue boundary preservation in the
reconstructed HR image and did not involve the artifacts raised
by the image alignment.

Our protocol allows for acquiring a T2 FSE image at the
resolution of 0.39 × 0.39 × 2 mm in 2 min. It is considerably
fast for neonatal MRI to obtain an image with T2 contrast at the
resolution of isotropic 0.39 mm in 6 min of total imaging time.
As a comparison, in 6 min of imaging time, we can only directly
acquire a 3D T2 SPACE image at the resolution of isotropic 1 mm
on our 3T scanner. Acquiring that same data at the resolution
of isotropic 0.39 mm can be carried out, but acquires about 16.9
times more data, and so requires an extended acquisition time,
with lengthened phase encodes, reduced readout bandwidth per
pixel, and much more demanding variable flip angle calculation
for signal loss in the lengthened phase encodes. Assuming we
account for only the increased number of phase encodes required,
this data would require 6 × 6.57 = 39.4 min to acquire. In
addition, the SNR is reduced as each voxel shifts from 1 cubicmm
to 0.393 cubic mm, a reduction in the signal by a factor of 16.9.
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FIGURE 8 | Qualitative results in representative slices of the images reconstructed by the five SRR methods. Our approach achieved the best qualitative performance

with regarding to the image contrast and sharpness, in particular, on the delineation of the structures of the hippocampus as shown in the coronal and sagittal planes.

The TV method sharpened the image excessively, resulting in the noisy reconstruction. Our approach appropriately suppressed the noise contamination while

enhancing the sharpness of the image edges. The images reconstructed by IAA, NLU, and SRCNN contained artifacts caused by averaging the images transformed

due to the alignment, as highlighted by the red arrows. In contrast, our approach was not affected by the alignment.

In order for the HR data SNR to match the SNR of the 1 cubic
mm data requires increasing the SNR by a factor of 16.9, which
can be done by averaging together 16.9× 16.9≈285 acquisitions.
Consequently acquired one HR image with matched SNR would
require 285 × 39.4 = 11,266 min, or slightly shorter than 8 days
in the MRI scanner.

Our approach enables extensive resolution critical clinical
applications due to the enhanced spatial resolution and improved
SNR while in parallel at reduced imaging time. It has shown that
high spatial resolution facilitates the diagnosis of brain diseases,

such as epilepsy (Conlon et al., 1988), multiple sclerosis (Truyen
et al., 1996), and tumor characterization (Naruse et al., 1986).
Our approach has achieved an isotropic spatial resolution of 0.4
mm, which allows for the clinical routines, such as the detection
of signal abnormalities due to brain injury and the measurement
of biometrics for impaired brain growth (Kidokoro et al., 2013),
and in turn enables new assessment tools for neonatal brainMRI.
Our fast and high-resolution imaging technique can be applied to
the clinical and scientific research studies in the neonatal brain,
such as the prediction and prognosis of brain injury (Kidokoro
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et al., 2014; Haebich et al., 2019), for a better understanding
of the potential pathways leading to altered brain structure and
outcome in the preterm infant (Inder et al., 1999; Thompson
et al., 2007).

In conclusion, we have exploited the acquisition strategy for
improved SRR in neonatal brain MRI, which utilizes multiple
anisotropic acquisitions with variable directions in slice selection.
We have achieved neonatal brain MRI at a spatial resolution
of isotropic 0.4 mm with 6 min of imaging time. We have
demonstrated that our approach enabled considerably fast and
high-quality neonatal brain MRI, as compared to direct HR
acquisition. Extensive experimental results have shown that our
approach allowed for high quality neonatal brain MRI for both
scientific research and clinical studies.
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G-ratio weighted imaging is a non-invasive, in-vivo MRI-based technique that aims
at estimating an aggregated measure of relative myelination of axons across the
entire brain white matter. The MR g-ratio and its constituents (axonal and myelin
volume fraction) are more specific to the tissue microstructure than conventional MRI
metrics targeting either the myelin or axonal compartment. To calculate the MR g-ratio,
an MRI-based myelin-mapping technique is combined with an axon-sensitive MR
technique (such as diffusion MRI). Correction for radio-frequency transmit (B1+) field
inhomogeneities is crucial for myelin mapping techniques such as magnetization transfer
saturation. Here we assessed the effect of B1+ correction on g-ratio weighted imaging.
To this end, the B1+ field was measured and the B1+ corrected MR g-ratio was
used as the reference in a Bland-Altman analysis. We found a substantial bias (≈-
89%) and error (≈37%) relative to the dynamic range of g-ratio values in the white
matter if the B1+ correction was not applied. Moreover, we tested the efficiency of a
data-driven B1+ correction approach that was applied retrospectively without additional
reference measurements. We found that it reduced the bias and error in the MR g-ratio
by a factor of three. The data-driven correction is readily available in the open-source
hMRI toolbox (www.hmri.info) which is embedded in the statistical parameter mapping
(SPM) framework.

Keywords: myelin volume fraction, axon volume fraction, radio-frequency transmit field inhomogeneities, B1+

correction, multi-parameter mapping, diffusion MRI, magnetization transfer saturation, MR g-ratio

INTRODUCTION

The g-ratio [i.e., the ratio between the inner (r) and outer (R) radius of an axon with myelin sheath
(g-ratio = r/R)] of a given axon quantifies the degree of relative myelination, ranging between 0 (no
axon) and 1 (no myelin). The g-ratio captures both axonal and myelin damage by incorporating
axonal and myelin volumes in one metric, making it potentially more specific to tissue integrity than
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focusing on one of these aspects only. For example, in
multiple sclerosis, the g-ratio increases if the underlying disease
mechanism is solely driven by demyelination (Yu et al., 2019), but
is expected to remain unaffected if demyelination is accompanied
by axonal degeneration. To differentiate such processes and
understand their functional implications, neuroscience and
clinical research would greatly benefit from in-vivo whole-brain
measurements of MR g-ratio. Until recently, the g-ratio was
measurable only by means of histology (Hildebrand and Hahn,
1978), which restricted the analyses to a small number of axons
and a limited number of small brain regions or pathways. Stikov
et al. (2011, 2015) introduced a methodology for an MRI-based
whole-brain “aggregate” g-ratio mapping, to which we refer as
“MR g-ratio” or “g-ratio weighted imaging.” In g-ratio weighted
imaging, the MR g-ratio is computed on a voxel-by-voxel basis
from the axonal (AVF) and myelin volume fraction (MVF) maps
and reflects a weighted mean of g-ratio values within the voxel
(West et al., 2016). Therefore, g-ratio weighted imaging requires
the acquisition of separate sets of images that are sensitive to AVF
and MVF, respectively (Campbell et al., 2018; Mohammadi and
Callaghan, 2020). To generate MVF and AVF from the measured
MR parameters, a calibration step is required that converts the
measured MR-visible water signals into the respective volume
fractions (Mohammadi and Callaghan, 2020).

Magnetization transfer saturation (MTsat) has often been used
as proxy for MVF (Mohammadi et al., 2015) as it is minimally
affected by the longitudinal relaxation time (Helms et al., 2008)
and is expected to show high correlation with macromolecular
content (Sereno et al., 2013; Callaghan et al., 2015a; Campbell
et al., 2018), making it a sensitive metric of MVF. One common
approach to estimate AVF complements the parameters from
neurite orientation and dispersion density imaging (NODDI
Zhang et al., 2012) with a MVF-proxy, e.g., MTsat (Ellerbrock
and Mohammadi, 2018; Kamagata et al., 2019), to correct for
the missing myelin water signal in diffusion MRI measurements
(Stikov et al., 2015). Maps of MTsat can be obtained, among
others, from the multi-parameter mapping (MPM) protocol
(Weiskopf et al., 2013) in combination with the hMRI toolbox1

(Callaghan et al., 2019; Tabelow et al., 2019).
Although the MTsat measure is largely insensitive to transmit

field (B1+) inhomogeneities (Helms et al., 2008), it still shows
a residual dependence which introduces a bias and/or error
in the MTsat maps that can propagate into the MR g-ratio
and lead to systematic bias. Such B1+ inhomogeneities can be
corrected based on an independently acquired B1+ field map
measurement (Helms, 2015; Helms et al., 2021). Residual B1+

inhomogeneity effects on MTsat have been shown to be not
negligible when the B1+ correction was omitted (Helms, 2015;
Helms et al., 2021). However, the impact of B1+ correction on
MR g-ratio estimates is unknown. Additionally, it is unclear
whether these residual B1+ inhomogeneity in MTsat and the
MR g-ratio can retrospectively be corrected using a data-driven
B1+ field inhomogeneities estimation approach such as the
“unified segmentation based correction of R1 maps for B1+

inhomogeneities“ (UNICORT, (Weiskopf et al., 2011)).

1www.hMRI.info

In this study, we investigate the effect of B1+ inhomogeneities
on MR g-ratio maps when omitting the B1+ correction. As a
reference, we use the B1+ corrected MR g-ratio from a dataset
of healthy controls. We compare the reference MR g-ratio
values against (i) values obtained without B1+ correction and
(ii) values obtained with B1+ correction using the data-driven
UNICORT approach.

MATERIALS AND METHODS

Subjects
This study included 25 healthy control subjects (12 females,
age (mean ± standard deviation) of 25.4 ± 2.4 years). They
were recruited at the University Medical Centre Hamburg-
Eppendorf and screened for neurological or psychiatric illness.
The study was in agreement with the Declaration of Helsinki
and was approved by the local ethics committee (Ärztekammer
Hamburg #PV5141).

Data Acquisition
Each subject was scanned twice within 1 week in a whole-body
3T Tim TRIO MR scanner (Siemens Healthcare, Erlangen,
Germany) using the body RF-coil for transmission and a 32-
channel radiofrequency (RF) head coil for signal reception,
respectively. The MR acquisition on both scan days included
a multi-parameter mapping (MPM) (Weiskopf et al., 2013;
Callaghan et al., 2015b) and a diffusion-weighted imaging
(DWI) protocol. The MPM protocol consists of three differently
weighted 3D-multi-echo spoiled gradient echo sequences
(Siemens FLASH). The echo train length and flip angle for the
proton density (PD) weighted, T1-weighted, and magnetization
transfer (MT) weighted sequences were 8/6, 8/21, and 6/6◦,
respectively. The MT-weighted sequence had a Gaussian RF
pulse (2 kHz off resonance with 4 ms duration and a nominal flip
angle of 220◦). All other sequence parameters were the same for
the three sequences: repetition time (TR) 25 ms, echo spacing,
resolution 0.8 mm isotropic; field of view (FoV) 166 × 224 ×
256 mm3, readout bandwidth 488 Hz/pixel, partially parallel
imaging using the GRAPPA algorithm was employed in each
phase-encoded direction (anterior-posterior and right-left) with
40 reference lines and a speed up factor of two, total acquisition
time: ∼25 min. The B1+ field reference map was acquired using
the three-dimensional echo-planar imaging (3D EPI) method,
including field maps for distortion correction (Lutti et al., 2010).

The DWI sequence was a twice-refocused single-shot spin-
echo EPI scheme (Reese et al., 2003), consisting of 12 non-
diffusion-weighted images (b0 images), equidistantly distributed
across the diffusion weighted images. The diffusion-weighted
images were acquired at two b-values (1000 s

mm2 and 2000 s
mm2 ),

sampled along 60 unique diffusion-gradient directions within
each shell. The entire protocol was repeated with identical
parameters but with reversed phase encoding direction (anterior-
posterior) to correct for susceptibility-related image distortions
(blip-up, blip-down correction). In total, 264 images were
acquired per subject (120 diffusion-weighted images, 12 b0
images, each acquired twice). Other acquisition parameters were:
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86 slices with no gap, TR = 7.1 s, TE = 122 ms, an isotropic
voxel size of (1.6 mm)3, FoV = 224 × 224 × 138 mm3, 7/8
partial Fourier imaging in phase encoding direction, readout
bandwidth. To accelerate the data acquisition, GRAPPA (in-
plane acceleration with factor two) and simultaneous multi-slice
acquisitions (“multiband,” slice acceleration factor two) (Feinberg
et al., 2010; Moeller et al., 2010; Xu et al., 2013) were used as
described in Setsompop et al. (2012). The image reconstruction
algorithm was provided by the University of Minnesota Centre
for Magnetic Resonance Research. The total acquisition time
was∼37 min.

Data Processing
MTsat maps were generated in the SPM-based hMRI toolbox
(Tabelow et al., 2019). Note that the hMRI toolbox also
generates additional maps of longitudinal (R1) and effective
transverse relaxation rates (R?

2) and PD. Three MTsat maps
were generated: (i) MTNO

sat maps, without B1+ correction; (ii)
MTB1

sat map, using the reference B1+ field map for correction
(Lutti et al., 2010); and (iii) MTUN

sat maps, using the data-
driven UNICORT approach for B1+ estimation (Weiskopf et al.,
2011; see Supplementary Figure 2). UNICORT is a probabilistic
framework for unified-segmentation based correction of R1
maps for B1+ inhomogeneities. The framework incorporates
a physically informed generative model of smooth B1+

inhomogeneities and their multiplicative effect on R1 estimates
(Weiskopf et al., 2011). Parameters used in UNICORT such as
the smoothness and regularization were optimized for R1 B1+

correction in a 3T scanner (i.e., Tim Trio scanner—Weiskopf
et al., 2011).

For B1+ correction, we used the following heuristic correction
factor as detailed in Helms (2015), and Helms et al. (2021):

MTCorr
sat = MTNO

sat
1− C

1− CB+1
, (1)

where C has been calibrated to be 0.4 for the MT pulse used
in this paper. B1+ can be either measured (MTCorr

sat = MTB1
sat) or

estimated with the UNICORT approach (MTCorr
sat = MTUN

sat ).
The DWI data were processed based on the pipeline described

in Ellerbrock and Mohammadi (2018) using the SPM-based
ACID toolbox2. It included several artifact corrections such as
Rician signal bias correction (i.e., denoising) (André et al., 2014),
correction for eddy current and motion artifacts (Mohammadi
et al., 2010, 2014), and correction for image distortions due to
susceptibility artifact using reversed phase encoding (Ruthotto
et al., 2012, 2013; Macdonald and Ruthotto, 2018). The corrected
images were fitted with the NODDI signal model (Zhang et al.,
2012) to estimate the intra-cellular volume fraction (νicvf), the
isotropic volume fraction (νiso), and the orientation dispersion
index (ODI) in each voxel.

2http://www.diffusiontools.com

Spatial Alignment
Co-registration
The voxel-wise arithmetic between the MTsat and νicvf maps,
necessary for MR g-ratio computation, requires an accurate
spatial alignment between the two maps (Mohammadi et al.,
2015). To this end, we created two white matter (WM)
tissue probability maps (TPMs) based on the ODI and MTB1

sat
maps, respectively (Figure 1). To reduce the influence of
contrast-specific artifacts (e.g., due to subject motion) on the
registration quality, the WM TPM of the ODI map was co-
registered to the WM TPM of the MTB1

sat map using rigid-body
registration (spm_coreg algorithm, SPM toolbox). The estimated
transformation parameters were applied to all other NODDI
maps as well. Note that the segmentation quality of the second
session was unsatisfactory for two subjects, and the RB1

1 map
(R1 with B1+ inhomogeneities bias correction using the B1+

reference measurements) was used to generate the WM TPM
instead. In another subject, the νiso was segmented instead of the
ODI to achieve satisfactory WM segments.

Normalization
Spatial normalization was performed in four steps. First, a
rough alignment of the MTB1

sat maps with the T1-weighted MNI
template image was achieved using the Auto-Reorient function
(hMRI toolbox) and this was applied on the NODDI maps as
well. Second, both MTB1

sat maps of each subject (corresponding
to two sessions) were registered to the mid-point average
using the Pairwise Longitudinal Registration (SPM12). Hereby,
values below zero and above 10 were excluded to improve
the registration. Third, the resulting mid-point average image
was normalized to the MNI space using the DARTEL-based
(Ashburner, 2007) Spatial Processing module (hMRI toolbox).
Fourth, a combined deformation field was generated per subject
and session, combining the deformation fields from steps 2 and 3.

Computation of MVFMR, AVFMR and gMR
In this section, our approach to estimating MVF and AVF from
the measured MR parameters is introduced. The MR-based MVF
(MVFMR) was assumed to be proportional to MTsat without
intercept, following (Mohammadi and Callaghan, 2020):

MVFMR = αMTsat (2)

The proportionality constant α was estimated from Equation (2)
in a region where the histological MVF (MVFhist) was known.
Due to the lack of own histological data, we used published
histological data which contain the frequency distribution of
inner-axon radius (r) and myelin sheath thickness (m) of
2,400 myelinated fibers in the medullary pyramids of a 71
years old human (see Table 1 in Graf von Keyserlingk and
Schramm, 1984). The total volume (TV) of the sample is
the sum of the total volume of myelinated axons (TAVm),
unmyelinated axons (TAVu), myelin volume (TMV), and extra-
cellular volume (TEV). TAVm was calculated as

∑Nm
i=1 πr2

i with i
indexing the Nm myelinated axons only, and TMV was computed
as

∑Nm
i=1 π(ri +mi)

2
− TAVm. TAVu, while not reported in

Graf von Keyserlingk and Schramm (1984), was found to be
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FIGURE 1 | Illustration of the spatial alignment pipeline of the MTsat and NODDI maps. The pipeline consists of (i) co-registration between MTsat and NODDI maps
(driven by ODI map), (ii) normalization into MNI space, and (iii) back-projection of ROIs into the native space. Note that each subject consists of two sets of images
acquired in separate sessions. In the co-registration step (section “Co-registration”), the white matter (WM) tissue probability map (TPM) of the ODI was co-registered
to the WM TMP of the MTsat in each subject and session using rigid-body registration (spm_coreg algorithm, SPM12). The resulting transformation was applied to all
other NODDI maps as well. In the normalization step (section “Normalization”), MTsat maps were roughly aligned with the T1-weighted MNI template in each subject
and session using the Auto-Reorient function. The realigned MTsat maps from both sessions were then registered to their mid-point average using the Pairwise
Longitudinal Registration (SPM12). In each subject, the mid-point average MTsat map was normalized to the MNI space using the DARTEL-based (Ashburner, 2007)
Spatial Processing module. Finally, all deformation fields were converted to a single deformation field and applied on the NODDI maps. In the last step (section
“Region of Interest Selection”), the ROIs and the WM masks were back-projected into the native space using the inverse of the combined deformation field.

approximately 43% of TAVm for multiple mammals (Swadlow
et al., 1980; LaMantia and Rakic, 1990; Olivares et al., 2001; Wang
et al., 2008; Liewald et al., 2014). Note that the aforementioned
papers typically reported the unmyelinated axons as 30% of the
total volume of axons, which corresponds to 43% ( = 0.3

1−0.3 ·

100) of TAVm. EVF was estimated to be 25%, according to
Lehmenkühler et al. (1993), Nicholson and Hrabìtová (2017),
Tønnesen et al. (2018). Finally, MVF was calculated as

MVFhist ≈
1

TV

N∑
j=1

π
((

rj +mj
)2
−r2

j

)
(3)

with j indexing all N fibers, yielding MVFhist ≈ 0.3623. Plugging
this value into Equation (2) (assuming that MVFMR ≈ MVFhist)
along with the group-average MTsat within the medullary

pyramids (see Figure 2 for ROI definition) yielded an α of 0.2496
for MTB1

sat, 0.2414 for MTUN
sat , and 0.2884 for MTNO

sat .
The MR-based AVF (AVFMR = (1−MVFMR) AWFMR) was

calculated as

AVFMR = (1−αMTsat) (1−νiso) νicvf (4)

where AWF = (1−νiso) νicvf is the axonal water fraction
estimated from the NODDI parameters (Stikov et al., 2015)
and MVFMR = αMTsat. The MR g-ratio was then computed
according to Stikov et al. (2011, 2015)

gMR =

√
1−

MVFMR

MVFMR + AVFMR
(5)

Note that three versions of MTsat, AVFMR, and gMR were
generated according to notation in section “Data Processing”: (i)

Frontiers in Neuroscience | www.frontiersin.org 4 July 2021 | Volume 15 | Article 674719172

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-674719 October 7, 2021 Time: 10:48 # 5

Emmenegger et al. B1+ Correction in G-ratio Imaging

TABLE 1 | Group-averaged mean and standard deviation (SD) of gB1
MR, MVFB1

MR, and AVFB1
MR in 21 high-SNR ROIs.

Name Acronym gB1
MR mean ± SD AVFB1

MR mean ± SD MVFB1
MR mean ± SD

Anterior limb of internal capsule right ACL r 0.688 ± 0.029 0.384 ± 0.052 0.419 ± 0.022

Retrolenticular part of internal capsule left RIC l 0.665 ± 0.020 0.341 ± 0.025 0.428 ± 0.023

Anterior corona radiata right ACR r 0.651 ± 0.012 0.321 ± 0.014 0.435 ± 0.014

Anterior corona radiata left ACR l 0.644 ± 0.015 0.313 ± 0.014 0.440 ± 0.018

Superior corona radiata right SCR r 0.679 ± 0.014 0.356 ± 0.018 0.413 ± 0.087

Superior corona radiata left SCR l 0.674 ± 0.013 0.350 ± 0.016 0.419 ± 0.017

Genu of corpus callosum GCC 0.642 ± 0.020 0.315 ± 0.021 0.445 ± 0.024

Body of corpus callosum BCC 0.657 ± 0.021 0.328 ± 0.025 0.425 ± 0.020

Posterior corona radiata right PCR r 0.662 ± 0.019 0.326 ± 0.025 0.416 ± 0.019

Posterior corona radiata left PCR l 0.667 ± 0.018 0.337 ± 0.023 0.418 ± 0.019

Posterior thalamic radiation right PTR r 0.643 ± 0.016 0.308 ± 0.017 0.438 ± 0.018

Posterior thalamic radiation left PTR l 0.645 ± 0.017 0.313 ± 0.016 0.438 ± 0.020

Sagittal stratum left SAS l 0.645 ± 0.021 0.314 ± 0.020 0.439 ± 0.025

External capsule right EXC r 0.683 ± 0.020 0.359 ± 0.023 0.410 ± 0.028

External capsule left EXC l 0.682 ± 0.025 0.357 ± 0.023 0.408 ± 0.034

Cingulum left CGM l 0.661 ± 0.023 0.330 ± 0.028 0.422 ± 0.029

Fornix/Stria terminalis left FNX l 0.669 ± 0.027 0.349 ± 0.036 0.426 ± 0.028

Superior longitudinal fasciculus right SLF r 0.666 ± 0.016 0.334 ± 0.017 0.418 ± 0.022

Superior longitudinal fasciculus left SLF l 0.668 ± 0.013 0.340 ± 0.015 0.420 ± 0.020

Superior fronto-occipital fasciculus right SFO r 0.678 ± 0.020 0.361 ± 0.031 0.422 ± 0.020

Superior fronto-occipital fasciculus left SFO l 0.672 ± 0.021 0.350 ± 0.029 0.424 ± 0.020

FIGURE 2 | Location of the pyramidal tracts in the medulla oblongata ROI, overlaid on the group-averaged MTB1
sat map, that was used to determine the calibration

constant, converting MTsat into MVFMR (section “Computation of MVFMR, AVFMR, and gMR
′′). To create this ROI, the corticospinal tract ROI of the JHU-ICBM-DTI-81

atlas, which extends across the pons and medulla pyramids, was modified to cover only the medulla pyramids. Left-right position: X = 82; anterior-posterior position:
Y = 77; superior-inferior position, Z = 30.

MVFNO
MR, AVFNO

MR, gNO
MR for no correction, (ii) MVFB1

MR, AVFB1
MR,

and gB1
MR for B1+ reference measurement, and (iii) MVFUN

MR,
AVFUN

MR, and gUN
MR for UNICORT B1+ correction.

Definition of White Matter Masks
As gMR and its constituents (MVFMR, AVFMR) are defined
only in the WM, we restricted the analysis to the WM by
creating binary WM masks (Mohammadi and Callaghan,
2020). WM tissue probability maps (WM-TPM) were created
for each subject by segmenting AWF and MTB1

sat using the
hMRI toolbox, and taking their intersection according
to Mohammadi and Callaghan (2020). In two subjects,
the MTB1

sat segmentation was of insufficient quality for

segmentation and was replaced by the RB1
1 map. A group-

specific binary WM mask (WMgroup) was generated by
averaging all individual WM-TPMs in the MNI space and
thresholding it at 0.95.

A so-called high-SNR WMgroup was also defined by taking the
intersection of the WMgroup and a binary signal-to-noise ratio
(SNR) map. Hereby, the latter was used to reduce the number of
voxels with unrealistically high values of νicvf (νicvf ≥ 0.999). In 6
of 25 subjects, an SNR map was created by dividing the mean b0
image by a single noise estimate in the native space and multiplied
by the square root of the number of b0 images per DWI dataset
(n = 12). The noise was estimated within a noise ROI outside the
brain in 72 images (6 subjects, both timepoints and 6 b0 images
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FIGURE 3 | Relationship between signal-to-noise ratio (SNR) and unrealistically high νicvf values—here defined as νicvf ≥ 0.999. (A) Sagittal, coronal, and axial view
of the whole-brain SNR map (i), with a zoom-in view of the brainstem (ii). The brainstem is characterized by low SNR due to the spatial characteristics of the receive
coil array (ii) and high occurrence of unrealistically high νicvf (iii), also shown as a binary mask (iv). (B) Given the co-occurrence of low SNR and unrealistically high
νicvf, a binary SNR mask was created to exclude low-SNR voxels. To determine the optimal threshold for the SNR mask, the ratio between the number of voxels with
unrealistically high νicvf and the total number of voxels within the mask were plotted against the SNR threshold. The solid dots and error bars represent the group
mean and group standard deviation of the ratio, respectively. The SNR value that yielded the minimum of this ratio was considered optimal (SNR = 39, shown in red).

FIGURE 4 | Location of the ROIs used for analysis. The 21 high-SNR ROIs (listed in Table 1) are part of the JHU-ICBM-DTI-81 WM atlas (Hua et al., 2008) and are
displayed here on the group-averaged normalized MTB1

sat image. Note that for ROI analysis, the ROIs were projected into the native space using the inverse of the
combined deformation field.

each) using the ACID toolbox, with the values averaged to obtain
a single noise estimate. The threshold for SNR maps to create
binary SNR map was chosen such that it minimizes the ratio
between the number of artifactual voxels where νicvf ≥ 0.999
and the total number of voxels in the SNR mask (Figure 3B),

yielding a value of 39. This was motivated by the observation that
unrealistically high νicvf values typically occur in low-SNR areas
(Figures 3Aii,iii). This threshold selection represents a trade-
off between removing unrealistic voxels while retaining as many
voxels as possible.
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TABLE 2 | Summary statistics of gB1
MR, AVFB1

MR, and MVFB1
MR.

4DR mini∈ROI maxi∈ROI mean SD

gB1
MR, 0.046 0.642 0.688 0.664 0.014

AVFB1
MR 0.076 0.308 0.384 0.337 0.020

MVFB1
MR 0.037 0.408 0.445 0.425 0.010

This table lists the dynamic range (4DR), lowest (mini∈ROI ) and highest (maxi∈ROI)
ROI average value, mean value of the 21 analyzed ROI’s (mean) with its
corresponding standard deviation (SD).

Region of Interest Selection
For the region of interest (ROI) analysis, the JHU-ICBM-DTI-
81 WM atlas (Hua et al., 2008) was transformed into the native
space using the inverse of the combined deformation field. Two
sets of ROIs were defined: (i) whole-WM ROIs and (ii) high-
SNR ROIs, used for the main analysis. The whole-WM ROIs
included those of the JHU-ICBM-DTI-81 WM atlas that were
completely in WMgroup defined in 2.6, yielding 43 ROIs (out of
48, leaving out the column and body of the fornix, the left and
right cingulum part in the vicinity to the hippocampus, and the
left and right uncinate fasciculus). The high-SNR ROIs included
only those whole-WM ROIs that overlapped with the high-SNR
WMgroup to at least 95%, yielding 21 ROIs (Figure 4 and Table 2).
For the analyses, group-averaged gMR, AVFMR, and MVFMR were
calculated within the WMgroup. Note that averaging included both
sessions of each subject for all analyses except for the analysis in
section “Test-Retest Analysis of the Group-Averaged MR G-ratio,
Axon, and Myelin Volume Fraction.”

Test-Retest Analysis of the
Group-Averaged MR G-ratio, Axon, and
Myelin Volume Fraction
The group-averaged gB1

MR of the first and second session
were compared within the previously mentioned 21 high-
SNR ROIs using Bland-Altman plots (Bland and Altman,
1986). In the Bland-Altmann plots, the differences in
gB1

MR between the first (gB1
MR1

) and second (gB1
MR2

) session
(δretest

i = (gB1
MR1

)i−(gB1
MR2

)i) were plotted against their means

(meanretest
i =

(gB1
MR1

)
i
+(gB1

MR2
)
i

2 ), where i is the index of ROI
i. Bias captures the offset (δretest

=
1

21
∑21

i=1 δretest
i ), while

error (εretest
= 1.96 ·

√
1

20
∑21

i=1 (δretest
i − δ

retest
)) captures the

variation between the first and second scan within the ith
ROI. The computed δ

retest and εretest were normalized by the
dynamic range (4DR) of gB1

MR within the high-SNR ROIs, defined
as 4DR = maxi∈ROI (meanretest

i )−mini∈ROI (meanretest
i ),

yielding the relative error (δretest
DR% =

εretest

4DR
· 100) and relative bias

(δretest
DR% =

δ
retest

4DR
· 100). The same procedure was also applied to

AVFB1
MR and MVFB1

MR.
The distinction between bias and error is important, because

while a potential bias can be retrospectively corrected, the error in
the MR g-ratio method defines its sensitivity to detect differences
between individuals, groups, or time points. To reliably capture

these differences, the error must be significantly lower than the
expected effect size.

Influence of B1+ Correction in the
Group-Averaged MR G-ratio, Axon, and
Myelin Volume Fraction
Bland-Altman analysis was used to compare gMR with and
without B1+ correction. In particular, the difference δB1

i in
gMR between (gB1

MR)i, when using the reference method B1+

correction, and (gk
MR)i, when using no (k = NO) or UNICORT

(k = UN) B1+ correction: δB1
i = (gB1

MR)i−(gk
MR)i was plotted

against their mean: meanB1
i =

(gB1
MR)i+

(
gk

MR

)
i

2 , with i being the
index of the 21 high-SNR ROIs. The bias and error associated
with the lack of (or UNICORT) B1+ correction are defined

as δ
B1
=

1
21
∑21

i=1 δB1
i and εB1

= 1.96 ·
√

1
20
∑21

i=1 (δB1
i − δ

B1
),

respectively.
The computed εB1 and δ

B1 were normalized by the dynamic
range of gB1

MR within the high-SNR ROIs, yielding the relative

error (εB1
DR% =

εB1

4DR
· 100) and relative bias (δB1

DR% =
δ

B1

4DR
· 100).

The same procedure was also applied to AVFMR and MVFMR,
comparing them to their respective reference method and
dynamic range. For MVFMR, the Bland-Altman analysis was
additionally done using the whole-WM ROIs instead of the high-
SNR ROIs (see section “Region of Interest Selection”) to assess
the influence of including low-SNR voxels in the analysis.

FIGURE 5 | Voxel-wise maps of group-averaged gB1
MR, AVFB1

MR, and
MVFB1

MR, restricted to the group WM mask (cf. section “Definition of White
Matter Masks”). Depicted are a single sagittal (x = 100), coronal (y = 91), and
axial (z = 85) slice.
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Group Variability in MR G-ratio, Axon,
and Myelin Volume Fraction
To assess group variability for each correction method, the
coefficient-of-variation (CoV) across subjects and sessions was
calculated for MVFMR, AVFMR, and gMR in the MNI space
after applying tissue-weighted smoothing (Tabelow et al.,
2019), yielding: CoVB1

MR, CoVUN
MR, and CoVNO

MR, where MR ∈
{gMR, AVFMR, and MVFMR}. For tissue-weighted smoothing,
a full width at half maximum Gaussian smoothing kernel of
6 mm was used. Bland-Altman analysis (see section “Test-
Retest Analysis of the Group-Averaged MR G-ratio, Axon, and
Myelin Volume Fraction”) was used to compare CoVUN

MR and
CoVNO

MR against CoVB1
MR based on the reference method, yielding

bias (δCoV) and error (εCoV) values. A higher variability across
the brain is expected to increase δ

CoV whereas a higher local
variability is expected to increase ε CoV.

RESULTS

G-ratio, Myelin, and Axonal Volume
Fraction Across the White Matter
Voxel-wise maps of group-averaged gB1

MR, AVFB1
MR, and MVFB1

MR
in WM are shown in Figure 5. The group-averaged mean and
standard deviation of gB1

MR, MVFB1
MR, and AVFB1

MR in 21 high-
SNR ROIs are reported in Table 1 and Figure 6. The dynamic
range (4DR), minimum and maximum values, and mean and
standard deviation of gB1

MR, AVFB1
MR, and MVFB1

MR across ROIs

are listed in Table 2. The largest gB1
MR and AVFB1

MR were found
in the right anterior limb of the internal capsule (0.688 and
0.384, respectively), while the largest MVFB1

MR was in the genu
of corpus callosum (0.445), where also the lowest gB1

MR (0.642)
can be found. The lowest AVFB1

MR, and MVFB1
MR were found in

the right posterior thalamic radiation (AVFB1
MR = 0.308) and in

the left external capsule (MVFB1
MR = 0.408), respectively. The4DR

was the smallest for MVFB1
MR (0.037), followed by gB1

MR (0.046) and
AVFB1

MR (0.076).

Test-Retest Analysis of the
Group-Averaged MR G-ratio, Axon, and
Myelin Volume Fraction
The relative error (εretest

DR% ) and bias (δretest
DR% ) values of the

test-retest analysis are summarized in Table 3 and shown
as Bland-Altmann plots in Figure 7. The test-retest analysis

TABLE 3 | Bias and error between scans, in gB1
MR, AVFB1

MR, and MVFB1
MR.

MAP δ
retest

εretest δ
retest
DR% εretest

DR%

gB1
MR 0.0021 0.0102 4.57 22.17

AVFB1
MR 0.0006 0.0156 0.79 20.53

MVFB1
MR −0.0031 0.0076 −8.38 20.54

List of the bias (δ
retest

) and error (εretest) values, defined as in Figure 7, along with
their relative value with respect to the dynamic range 4DR: εretest

DR% =
εretest

4DR
· 100;

δ
retest
DR% =

δ
retest

4DR
· 100.

FIGURE 6 | Violin plots representing the distribution of gB1
MR (A), MVFB1

MR (B), and AVFB1
MR (C) across the group and in 21 high-SNR ROIs listed in Table 1. The mean

and standard deviation of the distribution are indicated by solid dot and whiskers, respectively.
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FIGURE 7 | Depicted are scatter and Bland-Altman plots of gB1
MR (first row), AVFB1

MR(second row), and MVFB1
MR (third row) from two session across 21 WM regions

(denoted high-SNR ROIs, see Figure 4). The Bland-Altman plot illustrates the differences between values obtained from the two sessions (e.g., gB1
MR1

vs. gB1
MR2;

δretest
i =

(
gB1

MR1

)
i−(gB1

MR2)i ) against their mean (e.g., meanretest
i =

(gB1
MR1)i+(gB1

MR2)i
2 , with i indexing the ith ROI). Each point in the scatter plot represents the

group-averaged value in a single ROI. The bold black line represents the bias (δ
retest
=

1
21
∑21

i=1 δretest
i ), while the dashed line shows error (εretest

= 1.96 · SD(δretest
i ))

between the two sessions.

revealed a δ
retest
DR% below an absolute value of 8.4% for

each metric (gB1
MR, AVFB1

MR, and MVFB1
MR), where the AVFB1

MR

showed the lowest δ
retest
DR% with 0.79% (Figure 7 and Table 3).

The εretest
DR% was below 22.2% for each metric, where the

AVFB1
MR showed the lowest εretest

DR% with 20.5% (Figure 7 and
Table 3).
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TABLE 4 | Bias and error between methods, in gMR, AVFMR, and MVFMR.

MAP δ
B1

εB1 δ
B1
DR% εB1

DR%

gB1
MR vs. gNO

MR −0.041 0.017 −89.13 36.96

gB1
MR vs. gUN

MR 0.014 0.005 30.44 10.87

AVFB1
MR vs. AVFNO

MR −0.031 0.012 −40.79 15.79

AVFB1
MR vs. AVFUN

MR 0.011 0.004 14.47 5.26

MVFB1
MR vs. MVFNO

MR 0.053 0.022 143.24 59.46

MVFB1
MR vs. MVFUN

MR −0.018 0.006 −48.65 16.22

EWM MVFB1
MR vs. MVFNO

MR 0.033 0.048 36.48 52.75

EWM MVFB1
MR vs. MVFUN

MR −0.012 0.022 −13.08 23.96

List of the bias (δ
B1

) and error (εB1) values as defined in Figure 9, along with their

relative value with respect to the dynamic range4DR: εB1
DR% =

εB1

4DR
· 100; δ

B1
DR% =

δ
B1

4DR
· 100. Note that the error and bias in the last two rows were obtained when

using the whole-WM ROIs instead of the high-SNR ROIs (see Supplementary
Figure 1).

Influence of B1+ Correction on the
Group-Averaged MR G-ratio, Axon, and
Myelin Volume Fraction
The relative error (εB1

DR%) and bias (δB1
DR%) values of the B1+

correction analysis are summarized in Table 4 and shown as
Bland-Altmann plots in Figures 8, 9. For gMR, compared to
the no-correction case, UNICORT showed both lower εB1

DR%

(UNICORT vs. no correction: 10.9% vs. 37.0%) and δ
B1
DR% (30.4%

vs. −89.1%). For both AVFMR and MVFMR, UNICORT yielded
lower εB1

DR% (UNICORT vs. no correction; AVFMR: 5.3% vs.
15.8%; 16.2% vs. 59.5%) and lower δ

B1
DR% (AVFMR: 14.5% vs.

−40.8%; MVFMR: 48.6% vs. 143.2%). Altogether, the UNICORT
correction reduced the bias and error in the MR g-ratio and
its constituents by roughly a factor of three. The lower εB1

DR%

and δ
B1
DR% associated with UNICORT was also reflected by the

fact that values of gUN
MR, AVFUN

MR, and MVFUN
MR (Figure 8, lower

panel) lie closer to the unit slope line than values of gNO
MR, AVFNO

MR,
and MVFNO

MR (Figure 8, upper panel). When computing εB1
DR%

and δ
B1
DR% of gMR in the whole-WM ROIs (see Supplementary

Figure 1), δB1
DR% was consistently lower for both the no-correction

case (whole-WM ROIs vs. high-SNR ROIs: 36.5% vs. 143.2%)
and UNICORT (13.1% vs. 48.6%), whereas εB1

DR% was similar
(no-correction: 52.8% vs. 59.5%; UNICORT: 24.0% vs. 16.2%).

Group Variability in MR G-ratio, Axon,
and Myelin Volume Fraction
gMR showed on average smaller CoV than AVFMR and MVFMR
(Figure 10). In all maps, the CoV was the highest in the deep

brain areas. The relative error ( εCoV

CoVB1 · 100) and bias ( δ
CoV

CoVB1 · 100)
values of CoV with respect to the B1+ reference measurement

FIGURE 8 | Scatter plots of gMR, AVFMR, and MVFMR, plotting values obtained without B1+ correction (superscript: NO, top row) and with UNICORT B1+ correction
(superscript: UN, bottom row) against values obtained with the reference method, i.e., B1+ field map correction (superscript: B1). A dashed unit slope line is plotted
for reference. Each point in the scatter plot represents the group-averaged value in a single ROI (see Figure 4 for the locations of the 21 high-SNR ROIs).
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FIGURE 9 | Bland-Altman plots of gMR, AVFMR, and MVFMR, comparing values obtained without B1+ correction (NO, top row) and with UNICORT B1+ correction
(UN, bottom row) against values obtained by B1+ field map correction (superscript: B1). The Bland-Altman plot illustrates the differences between values obtained by

two different methods (reference vs. tested method); e.g., δB1
i = (gB1

MR)i−(gk
MR)i against their mean (meanB1

i =
(gB1

MR)i+(gk
MR)i

2 , with k =
{
UN, NO

}
and i indexing the ith

ROI). Each point in the scatter plot represents the group-averaged value in a single ROI (see Figure 4 for the locations of the 21 high-SNR ROIs). The bold black line

represents the bias (δ
B1
=
∑21

i=1 δB1
i ), while the dashed line shows error (εB1

= 1.96 · SD(δB1
i )) between the reference and the tested method. Error and bias values

averaged across all ROIs and subjects are listed in Table 5.

are summarized in Table 5 and the error and bias are also
displayed as Bland-Altman density plot in Figure 11. For gMR,
compared to the no correction case, UNICORT showed similar
εCoV (UNICORT vs. no correction: 0.6% vs. 0.6%) but lower δ

CoV

(−0.1% vs. −0.4%). UNICORT yielded higher εCoV (UNICORT
vs. no correction; 1.0% vs. 0.8%) and lower δ

CoV (−0.2% vs.
−0.4%) for AVFMR, and higher εCoV (1.2% vs. 0.4%) and higher
δ

CoV(−0.5% vs. −0.1%) for MVFMR. The lower δ
CoV of gMR and

AVFMR associated with UNICORT reveals itself as a slight shift
of the points toward the unit slope line in the scatter density
plot (Figure 12).

DISCUSSION

In this study, we showed that omitting the correction of the
magnetization transfer saturation map (MTsat) for residual B1+

effects introduces large error and bias in the MR g-ratio and
the constituents (myelin and axon volume fractions, or in
short MVFMR and AVFMR). We also demonstrated that this
error and bias can be reduced by roughly a factor of three
using the data-driven UNICORT B1+ correction (implemented
in the hMRI toolbox, see text footnote 1) when a B1+ field
measurement is unavailable.

The Effect of Omitting the B1+ Field
Measurement
MTsat have been often used as a proxy for the MVFMR
in g-ratio weighted imaging (Mohammadi et al., 2015;
Campbell et al., 2018; Ellerbrock and Mohammadi, 2018;
Hori et al., 2018; Kamagata et al., 2019), because they are
directly linked to the macromolecular pool with an intrinsic
correction for underlying longitudinal relaxation time and
B1+ field inhomogeneities effects (Helms et al., 2008). Despite
the latter intrinsic correction for B1+ field inhomogeneities,
we found that the residual B1+ effects on MTsat map were
still observable. In particular, the bias and error of the MR
g-ratio (gMR) was about −89 and 37% higher, respectively, when
omitting the B1+ correction. We found the same trend for
MVFMR and AVFMR; while the error and bias were even larger
for MVFMR when B1+ correction was omitted, it was smaller
but still substantial for the AVFMR. We found that omitting
B1+ leads to a substantially higher (more than 10-fold) bias
in the MR g-ratio and its constituents when compared to a
test-retest analysis of our data (Figure 7 and Table 3). Also,
the error due to omitting the B1+ correction was twice as
large as the error observed in the test retest analysis for the
MR g-ratio and the MVF, whereas for AVF the errors were
similar. We expect that the high error will be of particular

Frontiers in Neuroscience | www.frontiersin.org 11 July 2021 | Volume 15 | Article 674719179

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-674719 October 7, 2021 Time: 10:48 # 12

Emmenegger et al. B1+ Correction in G-ratio Imaging

FIGURE 10 | Coefficient of variation (CoV) maps of gMR, AVFMR, and MVFMR with B1+ correction (CoVB1
g , CoVB1

AVF, and CoVB1
MVF), no correction (CoVNO

g , CoVNO
AVF, and

CoVNO
MVF), and UNICORT B1+ correction (CoVUN

g , CoVUN
AVF, and CoVUN

MVF). CoV maps, expressed in percentage, were computed as the voxel-wise ratio between the
group mean and group standard deviation maps of the normalized gMR, AVFMR, or MVFMR. The voxel-wise computation of CoV is restricted to the group WM mask
(cf. section “Definition of White Matter Masks”). Shown are a single coronal (y = 91), sagittal (x = 100), and axial (z = 85) slice.

relevance for group studies because it can be regarded as an
error that evolves when replacing the reference method with
the alternative method. For comparison, age-related changes
assessed by g-ratio weighted imaging (Cercignani et al., 2017;
Berman et al., 2018) have been reported to vary between 30 and
100% (in absolute values: gMR0.02–0.04 (Figure 5 in Cercignani
et al., 2017). Consequently, the reported effect size of age-related
changes would have become potentially undetectable if the B1+

field correction has been omitted in the study of Cercignani
et al. (2017). The B1+ effect is particularly relevant for the
MR g-ratio method by Cercignani et al. (2017) that combined
quantitative MT (Gloor et al., 2008) with NODDI, because the
qMT method does not possess an intrinsic correction for B1+

field inhomogeneities as opposed to the MTsat methods used
here. Note that we reported, for better intuition, the bias and
error relative to the dynamic range of the parameters across the
investigated white matter (WM) ROIs (the dynamic range of
gMR is 4DR = 0.046; the absolute bias and error can be found in
Table 4).

To reduce this source of bias and error, we propose a data-
driven approach to correct for B1+ field inhomogeneities when
no B1+ field measurement is available. To this end, we used
UNICORT to estimate the B1+ field (Weiskopf et al., 2011). We

found that using the UNICORT-estimated B1+ field to correct
residual B1+ field inhomogeneities in MTsat reduces at the group
level the bias and error in the MR g-ratio and its constituents
by roughly a factor of three. However, the UNICORT estimated
B1+ inhomogeneity can be erroneous with the error varying
across subjects. To assess this variability, we estimated coefficient-
of-variance (CoV) maps of gMR, AVFMR, and MVFMR for all

TABLE 5 | Bias and error between methods, in the CoV of gMR, AVFMR, and
MVFMR.

MAP δ
CoV

εCoV δ
CoV

CoVB1
MR
· 100 εCoV

CoVB1
MR
· 100

CoV gB1
MR vs. CoV gNO

MR −0.42 0.56 −17.3 23.1

CoV gB1
MR vs. CoV gUN

MR −0.12 0.62 −4.9 25.5

CoV AVFB1
MR vs. CoV AVFNO

MR −0.40 0.78 −7.3 14.3

CoV AVFB1
MR vs. CoV AVFUN

MR −0.21 1.02 −3.8 18.7

CoV MVFB1
MR vs. CoV MVFNO

MR −0.05 0.41 −1.1 9.2

CoV MVFB1
MR vs. CoV MVFUN

MR −0.52 1.20 −11.9 27.0

List of the bias (δ
CoV

) and error (εCoV ) values as defined in Figure 11, along with
their relative value with respect to the group-average CoV across the MR g-ratios

using the reference B1+ field correction method: δ
CoV

CoVB1
MR
· 100; εCoV

CoVB1
MR
· 100.
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FIGURE 11 | Bland-Altman density plots of CoVg, CoVAVF, and CoVMVF for no correction (NO, top row) and UNICORT B1+ correction (UN, bottom row) against the
reference method (B1+) (yellow indicates high density and blue low). The Bland-Altman plot depicts the differences between the tested parameter maps and the

reference method (e.g.,δCoV
i = (CoVB1

g )
i
−(CoVk

g)
i
) against their mean (e.g., meanCoV

i =
(CoVB1

g )
i
+CoVk

g)
i

2 ) with k =
{
UN, NO

}
and i being the index of the ith region.

The bold white line represents the bias (δ
CoV
=
∑N

i=1
CoV
i ; N = number of voxels) and the dashed lines represent δ

CoV
the error (εCoV

= 1.96 · SD(δCoV
i )]. The error

and bias values are summarized in Table 5.

three methods. In general, an increased CoV can be found at
tissue boundaries (e.g., cerebral spinal fluid to WM) due to slight
misregistration between the maps of axonal and myelin markers
and/or imperfect normalization (Figure 10). Additionally, we
found a strong increase in the bias and error of the CoV of MVF
maps (increase in bias: 11% and in error: 18%) when UNICORT
B1+ correction was used as compared to no correction. The CoV
of gMR and AVFMR did not show a consistent trend: while the
bias decreased, the error increased for both parameters. In other
words, the UNICORT B1+ correction leads to higher accuracy in
the g-ratio and its constituents but comes at the cost of a lower
precision in MVF.

G-ratio, Myelin, and Axonal Volume
Fraction Across the White Matter
Our gB1

MR and AVFB1
MR across the white matter were within

the range of the reported values of previous studies (gMR:
0.64–0.76; AVFMR: 0.26–0.43 in (Cercignani et al., 2017;
Berman et al., 2018). The range of MVFB1

MR was in the
upper half of previously reported values (0.17–0.42 in
Cercignani et al., 2017). Our slightly higher MVFMR values
might be due to differences in the calibration approach:

while we calculated the reference MVFREF from previously
published ex-vivo histology data (Graf von Keyserlingk and
Schramm, 1984), Cercignani et al. (2017), used a reference
from previously published ex-vivo histology g-ratio data
in the corpus callosum and Berman et al. (2018), did not
perform any calibration assuming that macromolecular
tissue volume and MVFMR are equal. An error in the
calibration constant can lead to a bias in the MVF estimates
which in turn leads to an error and bias in the MR g-ratio
(Campbell et al., 2018).

Confounding Factors
As this study calculates the in-vivo MR g-ratio, there is no
histological data available from the participants of this study,
which could be used for calibration or as a gold standard
reference. For calibration of MTsat to MVFMR, we estimated
the histological MVF (MVFhist) from published ex-vivo data
within the human medulla oblongata (Graf von Keyserlingk
and Schramm, 1984). Since the reference MVFhist and the
calibrated MTsat map were taken from different subjects, this
might introduce a systematic bias in the MR g-ratio. However,
since we found a relatively good agreement between our gMR,
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FIGURE 12 | Scatter density plots of CoVg (left column), CoVAVF (middle column), and CoVMVF (right column), plotting values obtained with no correction
(superscript: NO, top row) and with UNICORT B1+ correction (UN, bottom row) against values obtained by B1+ field map correction (superscript: B1). The unit slope
line is plotted for orientation (dotted line). The dots in the scatter plots represent the WM voxels in the CoV maps in Figure 10 (yellow indicates high voxel density).

AVFMR, and MVFMR values with previously reported values
obtained by a different calibration approach (Cercignani et al.,
2017; Berman et al., 2018), we expect that it had a small effect
on the results. Moreover, we focused on the effect of omitting
B1+ correction, which will lead to additional inaccuracies
in g-ratio weighted imaging, independent of the quality of
the calibration.

Although, not reported in previous NODDI-based g-ratio
mapping studies (Stikov et al., 2015; Cercignani et al., 2017; Jung
et al., 2017; Mancini et al., 2017; Ellerbrock and Mohammadi,
2018; Hori et al., 2018), we found that the intra-cellular volume
fraction (νicvf) determined with NODDI tends to be biased
at small signal-to-noise ratios (SNR < 39), resulting in a
ceiling effect, i.e., νicvf ≈ 1. To avoid a corresponding bias in
gMR (and AVFMR), we restricted the analysis to regions with
sufficiently high SNR (Figure 3). To investigate whether our
findings generalize to low-SNR regions as well, we performed
an additional Bland-Altman analysis of MVFMR in whole-WM
ROIs. To this end, a larger set of ROIs was used covering the
entire white matter. Although the bias was smaller for the whole-
WM as compared to the high-SNR ROI analysis, we found
the same trend: the error and bias were reduced when using

UNICORT B1+ correction relative to no correction. Note that
the smaller bias for the whole-WM analysis is most probably
an artifact of the calibration procedure. Since the ROI used for
calibration was not part of the high-SNR ROIs but was part
of the whole-WM ROIs, we think it could have reduced the
bias in the whole-WM ROI analysis as compared to the high-
SNR analysis.

We note that the presented results were based on a customized
B1+ mapping method (Lutti et al., 2010). Using vendor specific
protocols for B1+ and MTsat mapping may influence the
results (Leutritz et al., 2020). Moreover, the calibration factor in
Equation (1) may have to be recalibrated for different MT-pulses.

Future studies should investigate the effect of B1+ correction
on MR g-ratio mapping when using alternative biomarkers to
estimate AVFMR and MVFMR (e.g., Ellerbrock and Mohammadi,
2018). Moreover, there are alternative B1+ mapping approaches
available which might vary in precision (Lutti et al., 2010)
and therefore can affect the MR g-ratio values. However, the
differences in the precision of these methods are in the order of
few percentage and thus much smaller than the effect of omitting
the B1+ field or using the data-driven UNICORT B1+ estimate
(Weiskopf et al., 2011).

Frontiers in Neuroscience | www.frontiersin.org 14 July 2021 | Volume 15 | Article 674719182

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-674719 October 7, 2021 Time: 10:48 # 15

Emmenegger et al. B1+ Correction in G-ratio Imaging

CONCLUSION

In this study, we assessed the effect of B1+ correction on the
accuracy of MR g-ratio as well as axonal and myelin volume
fraction based on MTsat and NODDI. Our results demonstrate
that B1+ correction via a measured B1+ field map is the method
of choice. If the B1+ field map cannot be acquired, we propose
the retrospective, data-driven UNICORT B1+ correction to
estimate and correct for B1+ field inhomogeneities, which
reduces the error and bias by a factor of three. UNICORT is
implemented in the free and open-source hMRI toolbox (see
text footnote 1).
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Most data-driven methods are very susceptible to data variability. This problem is

particularly apparent when applying Deep Learning (DL) to brain Magnetic Resonance

Imaging (MRI), where intensities and contrasts vary due to acquisition protocol,

scanner- and center-specific factors. Most publicly available brain MRI datasets originate

from the same center and are homogeneous in terms of scanner and used protocol.

As such, devising robust methods that generalize to multi-scanner and multi-center

data is crucial for transferring these techniques into clinical practice. We propose a

novel data augmentation approach based on Gaussian Mixture Models (GMM-DA)

with the goal of increasing the variability of a given dataset in terms of intensities and

contrasts. The approach allows to augment the training dataset such that the variability

in the training set compares to what is seen in real world clinical data, while preserving

anatomical information. We compare the performance of a state-of-the-art U-Net model

trained for segmenting brain structures with and without the addition of GMM-DA. The

models are trained and evaluated on single- and multi-scanner datasets. Additionally,

we verify the consistency of test-retest results on same-patient images (same and

different scanners). Finally, we investigate how the presence of bias field influences

the performance of a model trained with GMM-DA. We found that the addition of the

GMM-DA improves the generalization capability of the DL model to other scanners not

present in the training data, even when the train set is already multi-scanner. Besides,

the consistency between same-patient segmentation predictions is improved, both

for same-scanner and different-scanner repetitions. We conclude that GMM-DA could

increase the transferability of DL models into clinical scenarios.

Keywords: multi-scanner, magnetic resonance imaging, segmentation, data augmentation, gaussian

mixture models

1. INTRODUCTION

The segmentation of different brain structures from Magnetic Resonance Imaging (MRI) is an
important problem in the field of neuroimaging. Obtaining precise and consistent delineations is
crucial in the diagnosis, follow-up and treatment of neurological disorders. Important examples
are the monitoring of the progression of Multiple Sclerosis (MS) or dementia, both connected
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to accentuated neurodegeneration (Giorgio and De Stefano,
2013). In recent years, convolutional neural networks (CNN)
have become an increasingly popular segmentation approach,
but the fact that these models are extremely sensitive to data
variability has hindered their large scale adoption in clinical and
research settings. Specifically, these algorithms remain sensitive
to factors such as hardware and acquisition settings, which can
be especially problematic when integrating data from different
cohorts (Mårtensson et al., 2020). For these models to generalize
to data collected using new or unseen scanners, large multi-
center and multi-scanner datasets are necessary at the training
stage. Nevertheless, collecting such data is not trivial and most
available datasets are homogeneous in terms of scanner types and
acquisition protocols.

1.1. Related Work
The above mentioned problem is often termed as the scanner
bias problem. A popular way to deal with it in large clinical
trials is through approaches based on statistical harmonization.
In most cases the focus is on removing the scanner bias from
the volumetric measurements based on scanner- or center-
information (Fortin et al., 2018; Garcia-Dias et al., 2020). At
the image level, it is common to use the standardization of
the MRI intensity scale to reduce scanner sensitivity (Wang
et al., 1998; Nyúl and Udupa, 1999; Shinohara et al., 2014),
which has been previously shown to improve the outcome of
computer vision tasks like segmentation (Zhuge and Udupa,
2009) and registration (Bagci et al., 2010). Recently, some
works have attempted to use Deep Learning (DL) methods to
modify the analyzed images such that they appear to have been
acquired under similar settings (Dewey et al., 2019; Zhao et al.,
2019b). However, harmonization methods have the undesirable
property that the results will always be bound by the least
informative scanner in the dataset, as shown in Moyer and
Golland (2021), while standardization methods are not able to
remove residual across-subject variability (Shinohara et al., 2014;
Fortin et al., 2016; Wrobel et al., 2020). Additionally, many of
these approaches require retraining and updating of the models
when including new data from unseen scanners or centers.

In order to avoid these unwanted effects, it is interesting
to tackle the problem from a generalization perspective, by
improving the performance and reproducibility of the methods
of interest (often segmentation of brain tissues or lesions). When
considering DL methods in particular, a common approach is
to increase the variability in the data by applying well designed
data augmentation (DA). The idea behind DA is simple: by
applying transformations to the labeled data it is possible to
artificially increase the training set, which implicitly regularizes
the trained CNN. The most common DA strategies explore
transformations of the original data, mostly based on the
application of operations such as elastic distortions (Simard
et al., 2003), linear geometric transformations such as translations
and rotations, color transformations (mostly by altering the
intensities of the RGB channels in 2D images) (Krizhevsky et al.,
2012) or noise injection (Sietsma and Dow, 1991).

In the medical imaging field, DA is especially important
since annotated datasets are typically small. Although simple

transformations such as the ones described above can alleviate
overfitting and improve performance on the test sets in medical
applications (Milletari et al., 2016), they do not take into
account the high variability in terms of contrast found in
MRI. Some works have attempted to overcome this limitation
by generating completely synthetic images using generative
adversarial networks, as is the case in Shin et al. (2018).
Nonetheless, there is still a long way to go until these images
can be used effectively. Other more promising approaches start
from existing images and alter them in such a way that new
sequences or contrasts are simulated. One relevant example is
described in Jog et al. (2019), where a CNN-based algorithm
resilient to variations in the input acquisition is presented.
To achieve this, approximate forward models of different MRI
pulse sequences are built. This way, synthetic versions of the
training images are generated such that they appear to have
been acquired using different sequences. The method has the
disadvantage that it is complex, slow and it requires nuclear
magnetic resonance parameter maps of the training images,
which are often unavailable. Zhao et al. (2019a) proposed to
learn a model of transformations from an atlas to images in
a dataset and to use this model along with a single labeled
example to synthesize additional labeled examples with variable
appearance and spacial deformations. More recently, Billot et al.
(2020) presented a contrast-agnostic brain segmentationmethod,
again based on generating synthetic images. The method uses
only a segmentation map to generate new images with varying,
sometimes even unrealistic, contrasts. The generated images have
random appearance, deformation, noise, and bias field. With this
type of extreme augmentation, it is possible to obtain a final
model that is not biased toward any specific MRI contrast and
that achieves good performance on unpreprocessed brain scans
of any contrast. Although this method is very promising, by
design it is limited to segmentation applications and nuanced
variations in the individual images are lost.

1.2. Our Contribution
In the present work we propose a novel intensity-based DA
strategy with the main goal of reducing the scanner bias of
models trained on data with low protocol-, scanner- or center-
variability. Although scanner factors cause variations to other
image characteristics (e.g., noise, artifacts, geometric distortions),
we have previously found a clear relationship between tissue
contrast and volume measurements (Meyer et al., 2019). As such,
we hypothesize that augmenting the tissue intensity variability
will have a positive effect in the model generalization to new,
unseen scanners or center-specific acquisition configurations.
The method is based on the Gaussian Mixture Model (GMM)
framework: we estimate the individual tissue components of
an MRI image and randomly modify them, while preserving
structural information. As a result the contrast between different
tissues varies, in a similar way to what happens when different
scanners or sequences are used during acquisition. We validate
the approach in the task of brain structure segmentation. Unlike
currently existing methods, the proposed approach does not
depend on any existent segmentations or parameter maps; it is
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FIGURE 1 | Diagram of the main steps in the proposed DA method. This augmentation is performed only while training the segmentation network.

simple and fast; it can be used on-the-fly during training; and it
is not necessarily limited to segmentation applications.

This work extends the preliminary research presented in
Meyer et al. (2021). We previously compared the performance
of the same CNN-based model trained under three different
settings: (i) single-scanner data, (ii) single-scanner data with
the addition of our DA method, and (iii) multi-scanner data.
We now additionally investigate the effect of adding the DA
method to multi-scanner data and evaluate the reproducibility
and consistency of the models on a test-retest dataset containing
same-patient repetitions in the same and different scanners.
Finally, we investigate the effect of the presence of bias field on
the training images. Overall we observe a clear improvement
in generalization to unseen scanner types when adding the
proposed method to the training pipeline, not only when the
original training dataset is homogeneous, but also in the case
when a large, heterogeneous dataset is used as training set.

2. GAUSSIAN MIXTURE MODEL-BASED
INTENSITY TRANSFORMATION

The idea behind the proposed approach is to increase the
intensity and contrast variability of images in datasets with low
scanner and center acquisition diversity, such that it becomes
representative of what is found in large multi-scanner and multi-
center cohorts. This DA method is applied during the training
phase of a DL network of choice, and is not necessary at inference.
Figure 1 shows a depiction of the method. An implementation is
available at https://github.com/icometrix/gmm-augmentation.

2.1. The Gaussian Mixture Model
Framework
It is well documented that in a skull-stripped T1w brain MRI
without contrast injection, characteristic peaks in the histogram
correspond to different tissues, i.e., CSF has the lowest intensity,
followed by GM and WM. This has been explored by several
segmentation methods based on Gaussian Mixture Models
(GMM) (Van Leemput et al., 1999; Ashburner and Friston, 2005).
GMM is a type of probabilistic model that assumes that data
can be modeled as a superposition of K Gaussians. Within
this framework, if we have a set of observations {v1, . . . vN},
corresponding to the intensities v of each voxel n ∈ N in an image
I, we can model each observation in the data using a mixture of
Gaussians, such that:

p(vn) =

K
∑

k=1

πkN (vn|µk, σ
2
k ). (1)

Each N (µk, σ
2
k
) is a component of the mixture, with its own

mean µk and variance σ 2
k
, and πk are the mixing coefficients. For

simplicity we hide the subscript n when referring to the intensity
of a given voxel: vn is represented as v from here on.

We start by selecting K = 3 Gaussian components for
the GMM, where each component roughly corresponds to
the CSF, GM, and WM classes. The parameters are initialized
and updated iteratively using the Expectation Maximization
(EM) (Dempster et al., 1977) algorithm implemented in the
scikit-learn package for Python (Pedregosa et al., 2011) with
default parameters.
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FIGURE 2 | Variation of the three considered GMM components in terms of mean µk (left) and variance σ 2
k (right). The components vary much more in a

multi-scanner dataset than in a single-scanner setting.

Once we estimate the parameters for each component k, we
can use Bayes’ rule to compute the probability of each class label
C, such that:

p(C = k|v) =
πkN (v|µk, σ

2
k
)

∑K
k′=1 πk′N (v|µk′ , σ

2
k′
)
. (2)

2.2. Altering the Components of the GMM
If we modify the individual components of a 3-component GMM
we can modify images in the training data by changing their
GMM probability distributions while preserving the inherent
image characteristics. We can create a new intensity distribution
for each of the tissues by generating new parameters µk → µ′

k

and σ 2
k
→ σ 2′

k
for each of the components in an individual skull

stripped image. To do this we:

a) sample individual variation terms qµk
and qσ 2

k
for each

component from a uniform distribution,
b) add these values to the original parameters, such that µ′

k
=

µk + qµk
and σ 2′

k
= σ 2

k
+ qσ 2

k
.

To define the range of the uniform distributions we use to sample
the variation terms qµk

and qσ 2
k
, we start by estimating the range

of typical variation for each component from a large multi-
scanner collection of patient data (dataset C in section 3). To do
this, all images are first skull stripped, intensities are clipped at
percentiles 1 and 99 to remove extreme values, and normalized to
the range [0, 1]. Then we fit a 3-component GMM to each image
in the dataset using the same procedure as described above. We
extract the mean µk and variance σ 2

k
values of each component.

We then use the standard deviation (s(·)) of the estimated
parameters to define the range of variability we allow. qµk

and qσ 2
k

are sampled for each component from the uniform distributions
U(−s(µk), s(µk)) and U(−s(σ 2

k
), s(σ 2

k
)), respectively.

The distribution of the estimated parameters µk and σ 2
k

is depicted in Figure 2. In this figure we illustrate how the
variability of the estimated parameters in a multi-scanner and

multi-center setting is larger than that of a homogeneous dataset
(same center, same scanner, same acquisition protocol) (dataset
A in section 3). Besides differences in hardware, acquisitions
in different centers tend to not be perfectly harmonized, which
causes variations in contrast of the images. This is one of the
many factors that contribute to the increased variability of the
estimated parameters, and can be addressed by the proposed
approach. For the multi-center data, mean and variance values
for the 3 components have approximate standard deviations of
s(µ) = {3, 6, 8}×10−2 and s(σ 2) = {1, 1, 3}×10−3, respectively.

The choice of a uniform distribution for sampling the
new variation terms implies that any random combination of
tissue intensities can be generated. We could restrict this to
more probable distributions by selecting a normal distribution.
However, since exposing networks to extreme but anatomically
plausible augmentation can be beneficial for learning (Billot et al.,
2020), we decided to allow the possibility for some unrealistic
combinations to arise.

2.3. Reconstruction
Once the new parameters have been defined, we could think
that a logical next step would be to generate a new histogram of
intensities by mixing the new Gaussian distributions and using
histogram matching (Wang et al., 1998) techniques to generate
a new image I′. However, doing this would not guarantee that
structural information is preserved (e.g., two components could
overlap or even shift order, and voxels from one tissue would be
wrongly assigned to another class). To avoid this we describe the
intensity v of some voxel n ∈ N in terms of the distance from the
mean of the component measured with theMahalanobis distance
dvk = (v − µk)/σk. This implies that if we know the values of
µk and σ 2

k
we can find the updated value of v → v′ for each

component k by preserving the distance dvk:

v′k = µ′
k + dvkσ

′
k. (3)

Finally, we can compute the new intensity v′ for a voxel
n by leveraging each component by the initial probability
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that this voxel belonged to a certain class p(C = k|v),
such that

v′ =

N
∑

k=1

p(C = k|v)v′k. (4)

This guarantees that the voxels that have a high probability
of belonging to a certain class will represent the same class,
while allowing for nuanced variations at the borders between
different tissues.

3. DATASETS AND EXPERIMENTAL SETUP

From here onwards, the method will be referred to as GMM-
DA, for simplicity. In order to validate the GMM-DA method,
we investigate the added value of the described method on the
task of brain structure segmentation using a well described type
of CNN architecture. We train the same network on two different
datasets: a collection of single-scanner data from healthy subjects,
and a multi-scanner and multi-center collection of patient data.
We compare the performance of the models trained with and
without the addition of the GMM-DA strategy. The different
models are evaluated onmanual segmentations and on test-retest
data. The available datasets and the different experiments are
described in the following sections.

3.1. Available Datasets
A) OASIS

Contains T1w MRI scans from 416 subjects (age: [18, 96]
years) (the OASIS-1 cohort) (Marcus et al., 2007). Only 280
of the 316 healthy subjects were considered (see dataset B).
The data was randomly split into train/validation/test sets
[n = 179(64%)/45(16%)/56(20%)]. Although the data is
heterogeneous from a population point of view, it is extremely
homogeneous in terms of protocol and scanner. All images
were acquired on a 1.5T Siemens Vision scanner, using the MP-
RAGE sequence with constant repetition time (TR) and echo
time (TE) (TR: 9.7 ms; TE: 4.0 ms). Slice thickness is also
constant (1.25 mm).

B) MICCAI 2012

Contains 35 T1w scans from healthy subjects. The original MRI
scans are from OASIS, but this dataset contains manual labels of
brain structures. These data were provided for use in theMICCAI
2012 Grand Challenge and Workshop on Multi-Atlas Labeling
(Landman and Warfield, 2012). All the images in this dataset
were removed from OASIS prior to splitting the data into the
different training and test sets, to avoid overlap. We exclude
5 scans from repeated subjects and use the remaining 30 for
evaluating the methods on the manual labels.

C) MS Dataset

This is a collection of multi-center T1w MRI scans from 421
individual Multiple Sclerosis (MS) patients. It contains a lot of
variability both at the population level and in terms of scanner-
and center- or acquisition-specific factors, i.e., age ([16, 81]
years), sex (M/F ∼ 33%/67%), slice thickness in T1 ([0.4, 1.5]

mm), magnetic field strength (1.5T/3T ∼ 43%/57%), scanner
manufacturer (Philips, GE, Siemens and Hitachi), scanner model
(29 devices) and acquisition sequence (TR: [4.9, 5000] ms; TE:
[1.9, 8.0] ms). This dataset, which we term heterogeneous, was
used to estimate the range of typical variation of the GMM
components for the different tissues, as described in section 2.2.
Additionally, we used this data to generate an independent test
set, containing 92 images from 10 different scanner models. For
an additional experiment we pooled a train/validation set of
251/44 images, ensuring that any scanner models present in the
pre-selected test set or in OASIS were not included.

D) Test-Retest Dataset

Contains T1w MRI scans from 10 MS patients. Each patient was
scanned twice (with re-positioning) on three different 3T scanner
types with different acquisition sequences: (i) Philips Achieva: 3D
T1-weighted FSPGR sequence (TR 4.93 ms); (ii) Siemens Skyra:
3D T1-weighted MP-RAGE sequence (TR 2300 ms, TE 2.29 ms);
(iii) GE Discovery MR450w: 3D T1-weighted FSPGR sequence
(TR 7.32 ms, TE 3.14 ms). Further details regarding this data can
be found in Jain et al. (2015). This dataset allows the models to be
tested for consistency, both in an intra-scanner setting as well as
in an inter-scanner setting.

3.2. Data Pre-processing
All images were normalized using a modified z-score function
robust against outliers, where the median of the distribution
was preferred over of the mean, and the standard deviation
of the distribution was computed within percentiles 10 and
90. Additionally, images were bias-field corrected using the
N4 inhomogeneity correction algorithm as implemented in the
Advanced Normalization Tools (ANTs) toolkit (Tustison et al.,
2010) and linearly registered to MNI space using the tools
implemented in NiftyReg (Ourselin et al., 2001).

3.3. Experimental Setup
We trained a CNN to segment White Matter (WM), Gray
Matter (GM), Cerebro-Spinal Fluid (CSF), Lateral Ventricles
(LV), Thalamus (Tha), Hippocampus (HC), Caudate Nucleus
(CdN), Putamen (Pu) and Globus Palidus (GP). Due to scarcity
of manual delineations, we train and evaluate the CNN models
using brain substructure delineations obtained with icobrain
(Jain et al., 2015; Struyfs et al., 2020), a clinically available and
FDA-approved Software.

3.4. Model Architecture
For the segmentation task we use a 3D UNet architecture (Çiçek
et al., 2016) with a few adaptations, namely:

• Weight normalization layers (Salimans and Kingma, 2016)
are added after each convolutional operation instead of batch
normalization;

• LeakyReLU (Maas et al., 2013) is used as the main activation
function;

• Strided convolutions are used instead of max pooling.

The models are trained using a combination of the soft-dice loss
(LDice) and the weighted categorical cross-entropy loss (LwCE), as
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TABLE 1 | Summary of the trained models.

Training/Testing datasets Testing datasets

Model types OASIS MS dataset MICCAI 2012 Test-retest

CNNOASIS T, E E E E

CNNOASIS-DA T, E E E E

CNNMS E T, E E E

CNNMS-DA E T, E E E

CNNMS-BF - T, E - -

CNNMS-BF-DA - T, E - -

T, trained; E, evaluated.

suggested in Isensee et al. (2021):

Ltotal = LwCE + LDice. (5)

Considering that yn ∈ {0, 1} is the one-hot-encoded label of the
nth voxel in the model’s input and ŷn ∈ [0, 1] is the prediction
output of the model for the same voxel, the soft-Dice loss is
an extension to K classes of the popular Dice loss presented, as
presented in Sudre et al. (2017):

LDice = 1− 2

∑K
k=1

∑

n ŷnkynk
∑K

k=1

∑

n ŷnk + ynk
. (6)

To deal with the accentuated class imbalance of this problem we
use the weighted categorical cross-entropy loss similarly to what
was described in Ronneberger et al. (2015). This loss function can
be expressed as:

LwCE = −
1

N

N
∑

n=1

K
∑

k=1

wnkynk log ŷnk, (7)

where wnk is the weighting factor for the n-th voxel belonging to
the k-class in the training set. These weights allow to compensate
the scarcity of voxels from some of the classes.

The network takes as input patches of size 128 × 128 × 128
and outputs probability maps of size 88× 88× 88. Kernel size is
3 × 3 × 3 and initial number of filters 16 (raised to the power of
2 at each layer in the encoder path). The model is implemented
using Tensorflow 2.0 and trained until convergence using mini-
batch stochastic gradient descent (Adam optimizer) with initial
learning rate λ = 0.001 on a machine equipped with a Tesla K80
Nvidia GPU (12 GB dedicated).

3.5. Experiments
To validate the approach we compare the performance of models
trained with and without the addition of the GMM-DA strategy.
First, we evaluate how a model trained on single scanner data
generalizes to an unseen multi-scanner dataset (train on the
OASIS training set, and evaluate on the OASIS test set and the
MS dataset test set). This is the key experiment in the results,
since we are particularly interested in evaluating the increase
in generalizability of the CNN to multi-scanner and multi-
center data after adding the augmentation step. Although we

acknowledge the presence of white matter lesions in the images
from the MS dataset, we decide not to deal with them explicitly
in this context. Secondly, in order to evaluate how the same
network performs on unseen scanners and centers when trained
on heterogeneous data, we train the same models on the MS
dataset described in section 3. We additionally investigate if the
addition of GMM-DA in this setting is still beneficial.We proceed
to compare these four approaches on manual labels and on the
test-retest dataset. Finally, we evaluate how the presence of bias
field (BF) on the training images impacts the performance of the
GMM-DA. To this end, we train the same models on the MS
dataset images, this time without the bias field correction step.

We train and evaluate a total of six models. The models
are named according to the architecture (CNN), training data
(OASIS or MS), presence of bias field (BF) on the training images
and addition of the data augmentation (DA) step. As such, a
model trained on the MS dataset, on data with bias field and
to which GMM-DA was applied is termed CNNMS-BF-DA. The
investigatedmodels and a description of the data where they were
trained (T) or evaluated (E) are summarized in Table 1.

3.6. Performance Metrics
Dice scores (DC), sensitivity (Se) and precision (Pr) are
reported (complete Se and Pr results are given in the
Supplementary Material). DC values are compared using
Wilcoxon paired rank-sum and Levene tests to evaluate the
null hypotheses H0 that the results from the different models
have equal median and variance values, respectively. These tests
were selected given the presence of outliers and deviations from
normality in the distributions (see Figure 3). When evaluating
the reproducibility of the methods, absolute volume differences
between acquisitions from the same patient are reported. Results
are summarized in terms of median (P50) and percentile 10 (P10)
or 90 (P90), where relevant.

4. EXPERIMENTS AND RESULTS

4.1. GMM Augmentation of a
Homogeneous Dataset
To evaluate the influence of the addition of GMM augmentation
when training on a homogeneous dataset (OASIS), we test
CNNOASIS and CNNOASIS-DA on the two cross sectional datasets
with automated delineations (test sets of OASIS and MS dataset).
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FIGURE 3 | Dice scores for the CNNOASIS and CNNOASIS-DA models on the OASIS (left) and MS dataset (right) test sets. Marks indicate that there is a significant

difference between the two models (Wilcoxon, ◦p < 0.05, ⋆p < 5×10−4).

TABLE 2 | Summary of the Dice score (DC) performance of models trained on the OASIS data (CNNOASIS and CNNOASIS-DA ) and tested on the OASIS and MS dataset

test sets.

OASIS-test set MS dataset-test set

Tissues CNNOASIS CNNOASIS-DA CNNOASIS CNNOASIS-DA

WM 0.945 0.939 0.897 0.909

GM 0.907 0.900 0.864 0.876

LV 0.964 0.959 0.931 0.948

Tha 0.953 0.951 0.930 0.939

HC 0.909 0.907 0.884 0.893

CdN 0.932 0.930 0.907 0.921

Pu 0.934 0.931 0.906 0.918

GP 0.914 0.911 0.874 0.905

ALL 0.932 0.929 0.899 0.914

Highlighted results indicate that median values are larger (P50: Wilcoxon, p < 0.05).

This will allow us to determine: (i) if applying GMM-DA
decreases the performance on data similar to the training set in
comparison to the base model, and (ii) how the models perform
in a multi-scanner setting. The results in terms of Dice scores are
summarized in Figure 3 and Table 2. The corresponding Se and
Pr results can be found in the Supplementary Table 1.

4.1.1. OASIS

The models achieve high Dice scores and low variability. Se
and Pr are very similar for CNNOASIS and CNNOASIS-DA (min:
SeGM = 0.87, PrGM = 0.87; mean: Se = 0.94, Pr = 0.94).
There is no statistical difference between the Dice score results
(Wilcoxon: p > 0.05, Levene: p > 0.05), except for WM and
GM, where CNNOASIS tends to perform better (Wilcoxon, p <

0.05). Although statistically different, the difference is marginal,
especially when considering the lower limits of the distributions,
as can be appreciated on the left hand side panel of Figure 3.

4.1.2. MS Dataset

CNNOASIS-DA outperforms CNNOASIS for all structures
(Wilcoxon: p ≪ 0.05). Se values are also lower in the CNNOASIS

model (min: SeGP = 0.81, mean: Se = 0.88), while Pr values
are overall comparable between the two models, with local
differences for specific tissues (refer to Supplementary Table 1

for details). Additionally, we can observe in the right hand side
panel of Figure 3 that the variability and incidence of outliers
is reduced for CNNOASIS-DA. All these observations imply that
the addition of GMM-DA greatly improves the performance of
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FIGURE 4 | Dice scores for the CNNMS and CNNMS-DA models on the OASIS (left) and MS dataset (right) test sets. Marks indicate that there is a significant difference

between the two models (Wilcoxon, ◦p < 0.05, ⋆p < 5×10−4).

TABLE 3 | Summary of the Dice score (DC) performance of models trained on the MS dataset (CNNMS and CNNMS-DA ) and tested on the OASIS and MS dataset test sets.

OASIS-test set MS dataset-test set

Tissues CNNMS CNNMS-DA CNNMS CNNMS-DA

WM 0.938 0.950 0.934 0.942

GM 0.851 0.878 0.877 0.896

LV 0.947 0.954 0.957 0.957

Tha 0.949 0.949 0.945 0.952

HC 0.905 0.910 0.900 0.906

CdN 0.922 0.923 0.919 0.933

Pu 0.920 0.924 0.928 0.932

GP 0.894 0.899 0.888 0.907

ALL 0.916 0.923 0.919 0.928

Highlighted results indicate that median values are larger (P50: Wilcoxon, p < 0.05).

the model to new data containing unseen scanner types from
different centers.

4.2. GMM Augmentation of a
Heterogeneous Dataset
Now that we have established that the addition of GMM-DA
is beneficial for the generalization of a model trained on a
homogeneous dataset to multi-scanner settings, we evaluate the
performance of a model trained on the MS dataset, which is very
heterogeneous. We additionally investigate the effect of adding
GMM-DA when training on a dataset with these characteristics.
The CNNMS and CNNMS-DA models are evaluated in the same
way as the above, and results are summarized in Figure 4 and
Table 3. The corresponding Se and Pr results can be found in the
Supplementary Table 2.

4.2.1. OASIS

The MS dataset does not contain images with the same
characteristics as OASIS. This explains a drop in performance in
terms of DC for CNNMS on the OASIS test set. From Table 3 we
can observe that after the addition of GMM-DA the performance
increases: CNNMS-DA performs better for all the structures, with
the exception of Tha and CdN, where there is no statistical
difference in terms of performance (see the left hand side panel
of Figure 4).

4.2.2. MS Dataset

As mentioned in section 3, the MS test set contains scanner
types which were not present in the training set. CNNMS-DA

outperforms CNNMS for all structures (Wilcoxon: p ≪ 0.05)
except LV (Wilcoxon: p > 0.05) in terms of DC (see Table 3

and the right hand side panel of Figure 4). Se and Pr values are
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FIGURE 5 | Dice scores for the CNNOASIS-DA and CNNMS models on the OASIS (left) and MS dataset (right) test sets. Marks indicate that there is a significant

difference between the two models (Wilcoxon, ◦p < 0.05, ⋆p < 5×10−4).

also generally lower in the CNNMS model, with local differences
for specific tissues (see Supplementary Table 2 for details). This
indicates that adding GMM-DA to an already heterogeneous
dataset can further increase the generalizability of the network.

4.3. Comparison Between the Different
Models
Given that large multi-scanner and multi-center datasets are not
commonly available to researchers, we are particularly interested
in the comparison between the model trained on OASIS with
augmentation (CNNOASIS-DA) against the model trained on the
MS dataset without augmentation (CNNMS). To facilitate the
comparison, the performance of both models is displayed in
Figure 5.

4.3.1. OASIS

For most of the evaluated structures, CNNMS shows a significant
decrease in performance in comparison to CNNOASIS-DA. It is
expected that themodels trained on theMS dataset have generally
lower performance than the models trained on OASIS, since the
images in the MS dataset training set do not share the same
characteristics as the ones in OASIS (as previously illustrated in
Figure 2). The addition of GMM-DA to CNNMS can help reduce
this performance gap, as seen in the previous section.

4.3.2. MS Dataset

Analyzing the right hand side panel of Figure 5, it is interesting
to verify that CNNOASIS-DA approximates the variability of
the CNNMS for all the structures. In terms of median DC
values it sometimes equals or even surpasses its performance
(GM, GP and CdN). It is important to keep in mind that
the MS dataset contains pathological images which are not
present in OASIS. CNNMS has been exposed to many more
types of images, with some patients possibly presenting a small

number of lesions. However, the contrary is not true, given that
OASIS only contains images from healthy subjects. At best, the
networks trained on this data were exposed to a few lesions
present in the older subjects’ scans. It is thus not possible to
guarantee that the differences in performance between CNNMS

and CNNOASIS-DA on a pathological dataset are caused only
by scanner or acquisition variability. Nevertheless, these results
show that with a simple data augmentation strategy it is possible
to achieve competitive results on unseen data from various
scanners and centers.

In order to visualize the different results, Figure 6 illustrates
the results obtained on three different images from the MS
dataset using the four different models described so far. For
simplicity, WM and GM are not shown. Looking at this figure
it is very clear that when the image contrast is not good,
the CNNOASIS model can produce segmentation results which
infiltrate WM and CGM regions in unexpected ways. The
addition of GMM-DA brings the results much closer to the
ground truth results.

4.4. Evaluation on Manual Labels
To validate the performance of the models on manual
segmentations we evaluate them on the MICCAI 2012 dataset.
It is interesting to compare their performance against the
performance of the method used to get the automated labels the
models were trained on (icobrain). The results are summarized
in Figure 7, where results which are statistically different to
icobrain are indicated (Wilcoxon: p < 0.05).

For most structures the models reach comparable
performance. CNNMS−DA is the model with overall best
performance, but still does not surpass icobrain. For GM,
CNNMS and CNNMS−DA achieve much lower performance than
the other models. This is in line with the results observed for
the OASIS dataset. Recalling that this dataset is derived from a
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FIGURE 6 | Segmentation results for the different models on three test examples from the MS dataset. The automated ground truth is computed by icobrain. Results

from CNNOASIS are very variable depending on image intensity. The addition of GMM-DA improves the segmentation prediction.

subset of OASIS, CNNOASIS and CNNOASIS-DA were exposed to
images with these characteristics during training, while CNNMS

and CNNMS−DA were not. Variances are not statistically different
for any tissue type. Se and Pr values are also comparable for all
models, with mean Se ≈ 0.84, Pr ≈ 0.85.

4.5. Consistency on Test-Retest Data
By evaluating the models on the test-retest dataset described
in section 3 it is possible to evaluate how each model deals
with differences in scanner type. As previously mentioned, the
dataset contains two repetitions per scanner in two or three
different scanners. We compute the difference in predicted
volume for each of the evaluated structures between same
scanner repetitions (intra-scanner differences) and between
the repetitions in different scanners (inter-scanner differences).
We consider all possible scanner combinations, which means
that we end up with 26 intra-scanner and 88 inter-scanner
repetitions. We compare the performance of our methods
against icobrain. As already mentioned, this method is clinically
available. However, when performing longitudinal evaluations,
this method has a key limitation: the results are considered
reliable only if the two images being analyzed were acquired
in the same, or compatible, scanner. As such, we are interested
in achieving better inter-scanner volume estimation differences,
and we consider inter-scanner results to be consistent if the

volume differences are in a comparable range to the intra-scanner
differences obtained by icobrain.

For a simplified overview of the results, we plot the
distribution of volume differences for all the considered brain
structures in Figure 8. Additionally, in Table 4 we showcase
the results in terms of median and P90, which translates the
variability in the distributions. We exclude the CNNOASIS model
from the table, since it is clear from Figure 8 and Table 2 that the
performance of this method is low for multi-scanner datasets.

Globally we observe that intra-scanner differences are much
lower than inter-scanner differences for all the models. In the
intra-scanner case, CNNOASIS produces a higher error than
the other models for all structures. Interestingly, CNNOASIS-DA

produces very stable results, comparable to or even better than
icobrain for several structure types (Tha, HC, CdN). CNNMS-DA

produces the most consistent results for most of the structures,
especially when considering P90.

Regarding inter-scanner differences, we observe that the
CNNOASIS model produces extremely large variability. The other
models either compare to icobrain or produce more consistent
results. The exception is WM and GM, where icobrain still
outperforms the other methods in terms of consistency. This is
in line with the previous observations that performance (in terms
of Dice) was lower in these two tissues. The most important
observation is that CNNMS-DA produces the most consistent
results for all the substructures. The results for this model are
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FIGURE 7 | Dice scores on the MICCAI2012 test set for icobrain, CNNOASIS, CNNOASIS-DA, CNNMS and CNNMS−DA models. Asterisks indicate that there is a

significant difference between the result and icobrain (Wilcoxon, ◦p < 0.05, ⋆p < 5×10−4).

FIGURE 8 | Volume difference between intra-scanner and inter-scanner repetitions from the same patient. To be able to keep the same scale for intra-scanner and

inter-scanner the CNNOASIS results are sometimes not fully shown.

sometimes comparable to the values obtained by icobrain in
the intra-scanner case (noticeably for HC and GP). Overall, the
addition of GMM-DA results in a very significant improvement,
both in comparison to icobrain and to the CNNMS method.
Additionally, a very interesting observation is that CNNOASIS-DA

achieves a performance which is comparable to that of CNNMS,
sometimes even surpassing it (Tha, HC, CdN).

4.6. Influence of Bias Field
A bias field is an undesirable spatially smoothly varying low
frequency signal that often corrupts MRI images (Juntu et al.,
2005). A number of methods have been proposed to remove this
signal from the images, and bias-field correction is often used
as a pre-processing step. Given that this is a slow procedure
which can sometimes produce underlying errors, it has become
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TABLE 4 | Volume differences (mL) between intra- and inter-scanner repetitions from the same patient.

Intra-scanner differences

WM GM LV Tha HC CdN Pu GP

P50 5.00 5.22 0.44 0.23 0.11 0.17 0.17 0.07
icobrain

P90 12.94 12.38 1.04 0.47 0.56 0.43 0.48 0.19

P50 8.08 4.06 0.35 0.08 0.12 0.08 0.16 0.06
CNNOASIS-DA

P90 19.72 13.54 1.17 0.43 0.31 0.34 0.44 0.16

P50 4.86 3.48 0.38 0.22 0.07 0.09 0.08 0.07
CNNMS

P90 15.82 14.73 1.02 0.46 0.28 0.36 0.28 0.19

P50 4.94 3.51 0.33 0.11 0.06 0.08 0.12 0.05
CNNMS-DA

P90 14.11 12.12 0.82 0.33 0.16 0.26 0.34 0.13

Inter-scanner differences

WM GM LV Tha HC CdN Pu GP

P50 40.26 7.68 1.08 0.67 0.41 0.62 0.44 0.37
icobrain

P90 76.52 23.77 2.73 1.38 1.15 1.16 1.04 0.67

P50 71.28 31.07 1.15 0.29 0.15 0.27 0.46 0.14
CNNOASIS-DA

P90 117.65 65.34 3.15 1.21 0.56 0.82 1.11 0.30

P50 49.43 31.58 1.07 0.47 0.26 0.33 0.29 0.10
CNNMS

P90 94.36 55.98 2.56 1.46 0.65 0.91 1.13 0.73

P50 57.45 19.71 0.84 0.37 0.13 0.24 0.23 0.09
CNNMS-DA

P90 93.47 35.75 2.85 0.88 0.29 0.57 0.87 0.27

Best results are highlighted.

FIGURE 9 | Influence of bias field on the GMM. Images and corresponding histograms with GMM prediction overlaid in red. Left: original image with bias field; right:

bias field corrected image.

popular to skip bias field correction when using deep learning
approaches, and instead allow the networks to learn the bias-field
mechanisms, with good results (Kamnitsas et al., 2017).

However, bias field correction is extremely important for
GMM-based methods, since it changes the intensity profiles of
the different tissues. This effect is illustrated in Figure 9, where
the histogram of a bias field corrected image is compared to that
of an image with bias field. It is very likely that when applying
GMM-DA some of the voxels corresponding to WM will be
treated as GM, or vice-versa. This implies that the structural
information can be lost, which will very likely result in drop in

the performance of a model trained on images with bias field and
the addition of GMM-DA.

To test our hypothesis we trained two models, following
the same scheme as in the previous experiments, on images
with bias field. More specifically, we repeated the experiment
from the previous section training on the MS dataset without
the bias field correction at pre-processing. The results of this
experiment are detailed in Table 5. As expected, applying GMM-
DA on this type of data either decreases the performance
of the method (WM, GM and LV), or has no effect on the
segmentation performance. This is in line with our hypothesis
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TABLE 5 | Summary of the performance of models trained and evaluated on data with bias field on MS dataset.

MS dataset-test set (with bias field)

CNNMS-BF CNNMS-BF-DA

Tissue DC(P50) DC(P10) DC(P50) DC(P10)

WM 0.950 0.920 0.945 0.914

GM 0.914 0.877 0.903 0.859

LV 0.941 0.854 0.845 0.554

Tha 0.937 0.911 0.937 0.896

HC 0.865 0.842 0.858 0.827

CdN 0.915 0.880 0.910 0.865

Pu 0.903 0.885 0.911 0.891

GP 0.855 0.803 0.854 0.807

ALL 0.910 0.872 0.895 0.827

DC, Dice scores. Highlighted results indicate that median values are larger (P50: Wilcoxon, p < 0.05) or variances are lower (P10: Levene, p < 0.05).

and indicates that the GMM-DA should be applied on bias-field
corrected images.

5. CONCLUSIONS AND FUTURE WORK

In this work we present a novel intensity-based data
augmentation strategy. The main goal of this approach is
to aid models trained on scanner- and center-homogeneous
datasets generalizing to multi-scanner, multi-center data. The
proposed method is fast, simple and can be added to any MRI
training pipeline to generate images on-the-fly. We observed that
applying the augmentation step while training on homogeneous
data leads to a pronounced improvement in performance
when the trained model is tested in multi-scanner data from
difference centers. This is the case in terms of segmentation
quality (as measured by Dice score), but also in the consistency
of the produced prediction (as measured in terms of volume
differences). When applied to the test-retest dataset there is a
remarkable improvement, especially for repetitions in different
scanners. The baseline model trained on homogeneous data
produces extremely inconsistent results, while the same model
with addition of GMM-DA compares to a model trained on
multi-scanner, multi-center data. We additionally verify that
applying GMM-DA when training a model on multi-center data
results in an increase in performance, again both in terms of
accuracy and consistency of the predictions. These observations
are particularly interesting because large multi-scanner, multi-
center datasets are not commonly available to researchers in the
field. Nevertheless, even when such a dataset is available, it is
possible to obtain even more generalization by adding a simple
augmentation strategy.

It should be noted that the heterogeneous dataset contains
several sources of variability, including acquisition sequence
parameters. The resulting contrast variability is also addressed by
the GMM-DA. Therefore, we can attribute the improvement in
the generalization capabilities of the CNN not only to scanner,
but also to generalization to unseen acquisition parameters, or
other center-specific factors.

It is possible that combining this method with other DA
procedures would result in an even more robust model.
Nevertheless, we opted to restrict the augmentation procedures
such that we could observe the added value of our method alone.
Additionally, since the images were registered to MNI space
adding geometric transformations such as rotations and flips is
not necessary. Nonetheless, it is expected that the DA algorithm
still works well if the images are in native space. Registration was
performed as a way to simplify the learning of the network, since
we were interested in comparing the effect of the augmentation
step in a simplified setting.

There are a few limitations to the present work. Namely,
the images need to be bias-field corrected as a pre-processing
step to successfully apply the GMM-DA. We don’t see this as a
disadvantage, since GMM-DA is only needed at training time.
We argue that it would be possible to add back the bias-field to the
augmented image, which would allow the model to be effectively
trained with bias field. This step would allow the final trained
model to generalize to images with bias-field, thus eliminating
the need for bias-field correction at inference time. Experimental
validation of this claim remains out of the scope of the present
work, given that it is related to improving the overall model
performance, and is not connected to the effectiveness of the
proposed approach.

Additionally, the presence of pathology in the MS dataset
introduces an extra source of variability. In images with WM
lesions, as is the case for MS, it is tempting to assume that a
fourth component to the GMM would be a good way to capture
the lesion class. However, lesions in T1w images overlap with
the GM class in terms of intensity, for which reason it would
be impossible to perfectly disentangle the two classes with the
current framework. A more sophisticated approach would be
necessary for this, likely at the cost of the possibility to generate
images on-the-fly, unless lesion masks are available.

Finally, due to scarcity of manual delineations, the models
were trained on automated segmentations. This is not ideal,
because ourmodel is likely to inherit any bias or known problems
that might exist in the ground truth. However, given that we are
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especially interested in the effect of the augmentation we can still
make a fair comparison between the approaches.

Although we focused on the task of brain structure
segmentation in T1wMRI images, we believe this simple method
has the potential to be used for other tasks in medical imaging
that make use of MR images. As long as there are discernible,
anatomically-related peaks in the intensity histograms, the
method is transferable to other MR protocols and sequences. It
is an open question whether the method is helpful for different
tasks without further adaptations. For tasks such as lesion
segmentation we hypothesize that if lesion masks are available
it would be simple to adapt the method such that contrasts and
intensities are locally modified within the abnormal area. We
further see potential in this method to be adapted such that it
offers a fast way to replace missing modalities in tasks requiring
two or more MRI modalities (e.g., as often performed for brain
tumor segmentation). This would expectably come at the expense
of some performance power, but could allow existing pipelines to
be used on incomplete data.

Given these considerations, an immediate next step would be
to apply the current method to different applications (e.g., brain
age or disability scores prediction from MR images) and verify
our claim. A second step would be to extend the method to
different types of brain lesions when such masks are available, to
model the intensity of the tissues of interest individually, and test
the added value of the extended method to applications such as
detection, classification and segmentation of MS lesions, stroke,
or brain tumors. Additional future directions include extending
the augmentationmethod by introducing changes to the different
components of the mixture such that they are not necessarily
represented by Gaussian distributions. Moreover, it would be
interesting to investigate how the addition of (preferably Rician)
noise to the images would impact performance on unseen
scanner types. Typical geometric distortions and bias fields
can also be modeled and included in a more complex data
augmentation scheme.
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Childhood obstructive sleep apnea (OSA) is a common chronic sleep-related breathing
disorder in children, which leads to growth retardation, neurocognitive impairments,
and serious complications. Considering the previous studies about brain structural
abnormalities in OSA, in the present study, we aimed to explore the altered spontaneous
brain activity among OSA patients, using amplitude of low-frequency fluctuation (ALFF),
fractional ALFF (fALFF), and regional homogeneity (ReHo) methods based on resting-
state functional magnetic resonance imaging (MRI). Thirty-one untreated OSA children
and 33 age-and gender-matched healthy children (HC) were included in this study.
Compared with controls, the OSA group showed significant lower ALFF in the right
lingual gyrus, decreased fALFF in the left middle frontal gyrus (MFG), but increased
fALFF in the left precuneus. Decreased ReHo was found in the left inferior frontal gyrus
(orbital part) and left middle frontal gyrus. Notably, the mean fALFF value of left MFG
was not only significantly related to multiple sleep parameters but also demonstrated
the best performance in ROC curve analysis. These findings revealed OSA children
were associated with dysfunctions in the default mode network, the frontal lobe, and
the lingual gyrus, which may implicate the underlying neurophysiological mechanisms of
intrinsic brain activity. The correlation between the altered spontaneous neuronal activity
and the clinical index provides early useful diagnostic biomarkers for OSA children
as well.

Keywords: obstructive sleep apnea, children, amplitude of low-frequency fluctuation fractional, regional
homogeneity, functional magnetic resonance imaging, resting state, spontaneous activity, cognitive impairment

INTRODUCTION

Obstructive sleep apnea (OSA) is a common chronic sleep-related breathing disorder characterized
by partial or complete closure of the upper airway during sleep, which results in recurrent
intermittent hypoxia, carbon dioxide retention, and frequent awakening (Chen et al., 2016; Stevens
et al., 2020). Nowadays, prevalence of OSA increased strikingly with the increasing population age
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and obesity. The total prevalence of OSA among children ranges
from 1 to 4% (Kirk et al., 2017). Clinically, pediatric OSA always
presents with loud and irregular snoring and sleep disorders, in
contrast to adults, with a range of different symptoms including
growth retardation, enuresis, and behavioral problems, such as
attention deficit/hyperactivity (ADHD) disorders (Krysta et al.,
2017). Besides, noteworthy neurocognitive impairments also
occur in pediatric OSA, involving learning, memory, executive
function, visuospatial function, and psychomotor development
(Copes and Rosentswieg, 1972; Hamasaki et al., 2007; Krysta
et al., 2017), which severely diminished academic performance,
social adaptation, and even the quality of life in children.
Nevertheless, compared with adults, the scholars have paid little
attention to brain abnormalities of pediatric OSA before.

Several previous studies exhibited that cortical thinning or
gray matter volume reductions occurred in the superior frontal,
ventral medial prefrontal, the superior and lateral parietal
cortices, the superior temporal lobe, and the brainstem in
OSA children, which arose from delayed neuronal development,
damage, or atrophy (Philby et al., 2017; Macey et al., 2018).
However, unlike in adults, pediatric OSA observed cortical
thickening, including the precentral gyrus, the mid-to-posterior
insular cortices, and the right anterior insula cortex in OSA
children, which might involve in hypoxia-induced inflammatory
changes (Macey et al., 2018). Furthermore, entropy measures
based on high-resolution T1-weighted imaging identified early
damages of brain tissue integrity in pediatric OSA. The affected
brain sites included the prefrontal cortex; corpus callosum;
and insular, frontal, temporal, hippocampus, and cerebellar
areas, which localized within regulated autonomic, respiratory,
and cognitive functions (Kheirandish-Gozal et al., 2018). These
findings indicated that pediatric OSA presented extensive injury
to the brain structures, which might account for underlying
executive and cognitive deficits in children.

Currently, resting-state functional magnetic resonance
imaging (rs-fMRI) has been found to be a useful and non-invasive
technique for detecting spontaneous neural activity. Using rs-
fMRI, several studies have demonstrated that OSA patients have
shown noteworthy resting-state functional connectivity (rsFC)
deficits, especially in the default mode network (DMN), which
plays a role in sustaining brain function in the resting-state
(Prilipko et al., 2011; Chen et al., 2018). Zhang et al. (2013)
reported that OSA patients showed significantly reduced rsFC
within the anterior DMN and bilateral fronto-parietal network
but increased rsFC between the posterior cingulate cortex and
precuneus within the DMN. Similarly, decreased rsFC was
observed in DMN subregions, including the medial prefrontal
cortex, anterior cingulate, and posterior cingulate in patients
with OSA (Chen et al., 2016). Li et al. (2016) found that patients
with OSA displayed a dysfunction of rsFC between the right
hippocampus formation and posterior cingulate cortex within
the DMN and significant negative correlation with delayed
memory. In addition, the frontal lobe as a crucial brain area
involved in multiple cognitive functions has been increasingly
reported. Yu H. et al. (2019) showed that OSA patients showed
significantly increased rsFC between the left dorsal amygdala, the
right ventrolateral amygdala, and the left inferior frontal gyrus.

Regarding these findings, OSA may be related to the abnormal
rsFC between distinct brain areas in DMN, fronto-parietal,
and limbic system, whereas which area is more responsible
for the observed abnormal connectivity was still unclear. It is
meaningful to directly locate the abnormal regional spontaneous
neural activity in OSA patients during resting state and their
relationships with behavioral performances.

Amplitude of low-frequency fluctuation (ALFF), fractional
ALFF (fALFF), and regional homogeneity (ReHo) are three
major data-driven measures for quantification of spontaneous
neural activity based on BOLD signals. ALFF detects the total
power within the range between 0.01 and 0.10 Hz and positively
correlates to the alterations of spontaneous neural activity (Zang
et al., 2007; Zou et al., 2008). Moreover, fALFF measures the ratio
of the specific power spectrum of low frequency to that of the
total power in the entire frequency range (Qiu et al., 2019). Both
ALFF and fALFF have been proven to exhibit greater test–retest
reliability, especially in gray matter (Zuo et al., 2010). Notably,
fALFF produces better effects in reducing the physiological noise
than ALFF, and it can effectively suppress artifacts in non-specific
brain regions, such as the ventricles and the vicinity of blood
vessels (Zou et al., 2008). ReHo is a data-driven measure for
the local measurement of spontaneous neural activity (Xia et al.,
2018), and it can effectively evaluate resting-state brain activity
based on the hypothesis that brain activity is more likely to
occur in clusters rather than in a single voxel (Zhang et al.,
2012). Recently, these methods have wide access to explore brain
diseases with potential functional alterations, such as depression
(Yu Y. et al., 2019), Alzheimer’s disease (Cheng et al., 2019),
Tourette syndrome (Liu et al., 2017), and so on. Accordingly, the
combination of the three may provide more detailed information
about the intrinsic activity than each method alone.

In the present study, we not only investigated abnormal
intensity of neural activity via ALFF/fALFF analysis but also
investigated abnormal neural synchronization via ReHo analysis
in OSA children. Based on previous studies, we hypothesized
that (1) OSA children would show altered ALFF/fALFF and
ReHo values in the DMN, frontal lobe, and lingual gyrus;
(2) the alterations of the spontaneous brain activity would
be related to sleep-related respiratory parameters in OSA
children; and (3) abnormal spontaneous activity pattern might be
utilized as diagnostic neuroimaging biomarkers to discriminate
OSA from controls. We aim to take a crucial step towards
identifying spontaneous brain activity abnormalities in OSA
children and providing potential targets for better understanding
and treatment of this neurologic and sleep dysfunction disorder.

MATERIALS AND METHODS

Subjects
Thirty-one OSA children (age: 5.65 ± 2.82 years, range: 3–
10 years; 12 female) were recruited in Beijing Children’s Hospital
from April 2016 to October 2019. We also included 33 age-
(p = 0.585, two-sample t-test) and gender-matched (p = 0.431,
chi-square test) healthy children (age: 6.01 ± 2.43 years; range:
2–11 years; 16 female) in our study (Table 1). All the participants
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TABLE 1 | Demographic and clinical characteristics of OSA patients and healthy controls.

Characteristics OSA (n = 31) HC (n = 33) p-value

Gender 19M/12F 17M/16F 0.431χ2

Age (y) 5.65 ± 2.82 6.01 ± 2.43 0.585t

Weight (kg) 29.14 ± 18.49 30.05 ± 13.59 0.842t

Duration of disease (y) 1.79 ± 1.07 – –

BMI (kg/mm2) 18.39 ± 5.05 18.40 ± 3.33 0.996t

AHI (per hour) 12.90 ± 13.89 1.34 ± 1.30 <0.001t

OAI (per hour) 2.30 ± 3.47 0.07 ± 0.15 0.002t

HI (per hour) 8.31 ± 11.05 0.69 ± 0.77 0.001t

LSaO2 (%) 87.82 ± 6.76 93.49 ± 2.84 <0.001t

SaO2 < 90% (%) 1.31 ± 2.45 0.00 ± 0.00 0.002t

Sleep efficiency (%) 83.02 ± 10.28 89.03 ± 8.91 0.016t

AI (per hour) 4.89 ± 6.26 0.74 ± 0.83 0.002t

WISC-V IQ 97.08 ± 7.69 103.27 ± 15.23 0.229t

VIQ 96.00 ± 6.90 106.09 ± 14.75 0.052t

PIQ 98.38 ± 10.25 99.18 ± 16.42 0.869t

SAFE 9.80 ± 0.41 9.73 ± 0.47 0.656t

Attention 17.08 ± 6.50 13.54 ± 9.24 0.233t

Gesell Adaptability DQ 80.86 ± 6.15 – –

Developmental GMQ 88.14 ± 6.34 – –

Scale FMQ 95.43 ± 8.98 – –

Language DQ 85.29 ± 11.32 – –

Personal-social DQ 88.43 ± 7.87 – –

Overall Score 87.71 ± 5.59 – –

FD_Jenkinson 0.06 ± 0.05 0.09 ± 0.06 0.065t

SaO2 < 90%, percentage of total sleep time spent at an oxygen saturation < 90%; LSaO2, lowest oxygen saturation; AHI, apnea–hypopnea index; OAI, obstructive
apnea index; HI, hypopnea index; AI, arousal index; BMI, body mass index; WISC, the Wechsler Intelligence Scale for Children; VIQ, verbal intelligence quotient; PIQ,
performance intelligence quotient; SAFE, Social Adaptive Functioning Evaluation Scale; DQ, developmental quotient; GMQ, gross motor quotient; FMQ, fine motor
quotient; t, two-sample t-test; χ2, chi-square test. Data are presented as mean ± standard deviation.

were right-handed. The exclusion criteria included (1) history of
brain structural injury, neurological or psychiatric disorders; (2)
suffering from cardiovascular diseases, neuromuscular diseases,
or defined genetic syndromes; (3) abnormal blood pressure,
blood fat, and glucose; (4) being with any known acute
or chronic illness; and (5) undergone treatment with drugs
and surgery. Before the scan, children under 7 years old
needed to take chloral hydrate for sedation. The dosage was
0.5 ml/kg and the maximum dose was 10 ml. This study
was approved by the Medical Ethics Committee of Beijing
Children’s Hospital, Beijing, China. The study was carried out in
line with relevant guidelines by the Medical Ethics Committee
of Beijing Children’s Hospital, which include MRI scan and
clinical diagnosis.

Polysomnography
All subjects underwent a polysomnography (PSG) evaluation
(Compumedics E; Compumedics, Melbourne, Australia; or
ALICE 5; Philips Respironics, Amsterdam, Netherlands), which
recorded a polysomnogram of more than 7.5 h. Simultaneous
monitoring was included for EEG, bilateral electro-oculogram,
electromyogram of mentalis activity and bilateral anterior tibialis,
ECG, arterial oxyhemoglobin saturation and plethysmographic
signal by pulse oximetry, heat-sensitive airflow and nasal
pressure, chest and abdominal movements, snoring sensor, body

position, and other indicators. All sleep monitoring results
were scored manually by experienced professional pediatric
PSG technicians according to the diagnostic criteria published
by the American Academy of Sleep Medicine (AASM) (Berry
et al., 2012). The criteria for the OSA group diagnosis
consisted of obstructive apnea (OAI) > 1 times/h or apnea–
hypopnea index (AHI)> 5 times/h and lowest oxygen saturation
(LSaO2)< 92% by PSG.

Image Acquisition
Magnetic resonance imaging scanning was performed on a
3-T MR scanner (GE Medical Systems, Discovery MR750).
Before the scan, all participants should keep respiration
and heart rate in a normal state. All participants were
required to be awake and quietly breathing until the end
of the scan. The scanner parameters for fMRI data are
TR/TE = 2000/24 ms, 240 time points, image matrix = 64 × 64,
voxel size = 3.5 mm × 3.5 mm × 3.5 mm, field of view
(FOV) = 224 mm × 224 mm. The scanner parameters
for T1-weighted images are TR/TE = 8.19/3.78 ms, voxel
size = 0.4688 mm × 0.4688 mm × 1 mm, matrix = 512 × 512,
FOV = 240 mm × 240 mm. During MRI scanning, participants
were asked to close their eyes and lie still in the scanner.
Head positioning was standardized using canthomeatal
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landmarks. The head was stabilized with foam pads to
minimize its movement.

Data Preprocessing
Resting-state fMRI data reprocessing was performed using the
statistical parametric mapping (SPM8) and Data Processing &
Analysis for Resting-state Brain Imaging (DPABI Version 2.1)1.
The first 10 image volumes of functional images were removed
for the signal equilibrium and subject’s adaptation to the scanning
noise. Then, the functional images were corrected for time
offsets between slices and geometrical displacements due to head
motion. We further calculated the mean frame-wise displacement
(FD) to measure voxel-wise differences in motion in its derivation
(Jenkinson et al., 2002). None of the participants were excluded
based on the excluding criteria of 3.0 mm and 3.0 degree in
max head motion, with mean FD > 0.2 mm. The T1-weighted
images were co-registered to the average functional images and
then segmented into the white matter (WM), gray matter (GM),
and cerebrospinal fluid (CSF) by using the New Segment tool
in DPABI. We removed linear trends and regressed out several
nuisance signals from each voxel’s time course, including 24-
parameter head-motion profiles (Friston et al., 1996; Yan et al.,
2013), mean WM, and cerebrospinal fluid (CSF) time series
within the respective brain masks derived from prior probability
maps in SPM8 (threshold = 0.8). All the corrected functional
data were then normalized by DARTEL (Ashburner, 2007) to the
Montreal Neurological Institute (MNI) space using an optimum
12-parameter affine transformation and non-linear deformations
and then resampled to a 3-mm isotropic resolution.

Measurement of Amplitude of
Low-Frequency Fluctuation/Fractional
ALFF and Regional Homogeneity
To calculate ALFF, we firstly performed the spatial smoothing on
the resampled images with a 4-mm full width at half maximum
(FWHM) Gaussian kernel. We then converted the smoothed
signal of each voxel from time domain to frequency domain via
Fast Fourier Transform (FFT) to obtain the power spectrum. This
power spectrum (frequency range: 0–0.25 Hz) was square-rooted
at each frequency, and then averaged across 0.01–0.08 Hz at each
voxel, which was taken as ALFF (Zang et al., 2007). To calculate
fALFF, the sum of the amplitude (square root of power spectrum)
across 0.01–0.08 Hz was divided by that of the entire frequency
range (0–0.25 Hz) (Zou et al., 2008). ALFF/fALFF of each voxel
was divided by the global mean ALFF/fALFF for standardization
purpose, and mALFF/mfALFF was obtained as a parameter for
further statistical comparison and analysis.

Regional homogeneity maps were generated before spatial
smoothing. After normalization, the band-pass filtering (0.01–
0.08 Hz) was performed on the normalized images to reduce the
effects of low-frequency drift and high-frequency physiological
noise. ReHo maps were conducted by calculating the Kendall
coefficient of concordance (KCC) as synchronization of fMRI
signals of nearest neighboring 27 voxels (Zang et al., 2004).

1http://www.restfmri.net

For standardization purposes, the ReHo value of each voxel
was divided by the whole brain mean ReHo value, and then
smoothing was done with a 4 mm FWHM Gaussian kernel. The
smReHo map was obtained as the ReHo parameter for further
statistical comparison and analysis.

Receiver Operating Characteristic
Curves Analysis
Once significantly altered ALFF/fALFF/ReHo areas were
found between groups, they might be utilized as markers
to discriminate OSA from controls, as useful diagnostic
neuroimaging biomarkers (Li et al., 2015). To test this possibility,
the mean ALFF/fALFF/ReHo values of significantly altered brain
clusters were extracted and used for analysis of the receiver
operating characteristic (ROC) curves, using the MedCalc
Statistical Software2. To summarize the overall diagnostic
ability of the tests, we computed the maximum Youden
index (sensitivity + specificity − 1) (Fluss et al., 2005), and
corresponding sensitivity, specificity, and 95% confidence
intervals (CIs) for each cluster.

Statistical Analysis
Further statistical analysis was performed based on a 90% group
mask (meaning 90% of subjects have this voxel) generated in
DPABI toolbox to detect group differences. We conducted a
two-sample t-test to compare whole-brain ALFF, ALFF and
ReHo values between OSA children and controls, including age,
gender, and mean FD (Jenkinson et al., 2002) as covariates. The
Gaussian random field (GRF) correction (Bansal and Peterson,
2018) was used to correct for multiple comparisons, and the
statistical threshold was set at a voxel level of p < 0.001 with
a cluster-level p < 0.05 (two-tailed) in DPABI toolbox. All
coordinates were reported in MNI space. Brain regions with
significant intergroup differences in ALFF/fALFF/ReHo were
defined as regions of interest (ROIs). We extracted the mean
ALFF/fALFF/ReHo values of these ROIs from OSA children.
Partial correlations controlling for age, gender, and FD values
were applied in SPSS version 24.0 (SPSS Inc., Chicago, IL,
United States) to identify mean ALFF/fALFF/ReHo values related
to clinical parameters of OSAS children, using the statistical
threshold of p< 0.05.

RESULTS

Demographic and Clinical Characteristic
Demographic and clinical characteristics of each group are
summarized in Table 1. The OSA had significantly higher scores
for AHI, OAI, HI, SaO2 < 90%, and AI and significantly lower
scores for LSaO2 and sleep efficiency than controls. No significant
differences were found in age, gender, weight, BMI, and mean
FD between the two groups. Of note, there is no significant
Pearson correlation between mean FD and age for the OSA group
(r = 0.197, p = 0.289) and control group (r = 0.204, p = 0.255).

2https://www.medcalc.org
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Amplitude of Low-Frequency Fluctuation
Results
Compared with controls, the OSA group showed significant
lower ALFF in the cluster of the right lingual gyrus (Brodmann
area 18). The details are presented in Table 2 and Figure 1.

Fractional ALFF Results
Compared with controls, the OSA group showed significant
lower fALFF in the cluster of the left middle frontal gyrus and
higher fALFF in the left precuneus. The details are presented in
Table 3 and Figure 2.

Regional Homogeneity Results
Compared with controls, OSA group showed significant lower
ReHo in the cluster of the left inferior frontal gyrus (orbital part)

and left middle frontal gyrus. The details are presented in Table 4
and Figure 3.

Receiver Operating Characteristic
Curves Analysis Results
In the ROC curve analysis, the mean fALFF value of left middle
frontal gyrus achieves the highest sensitivity, specificity, and
area under the ROC curve (AUC). All the altered brain clusters
achieve the significance level p < 0.001 of AUC, indicating these
findings as potential useful diagnostic biomarkers. The details are
presented in Table 5 and Figure 4.

Correlation Results
In the OSA group, the mean fALFF value in the left
middle frontal gyrus showed significantly negative
correlations with HI (r = −0.385, p = 0.043), SaO2 < 90%

TABLE 2 | Two-sample t-tests demonstrated regions with significantly decreased ALFF in OSA children compared with controls (with GRF correction, voxel level
p < 0.001, cluster level p < 0.05).

Condition Brain regions Cluster size t-score of peak voxel MNI coordinates of peak voxel

x y z

OSA < HC Right lingual gyrus (BA 18) 64 5.25 6 −72 −9

HC, healthy children; BA, Brodmann area.

FIGURE 1 | Cluster with significantly decreased ALFF in OSA children compared with controls (with GRF correction, voxel level p < 0.001, cluster level p < 0.05).

TABLE 3 | Two-sample t-tests demonstrated regions with significantly altered fALFF in OSA children compared with controls (with GRF correction, voxel level p < 0.001,
cluster level p < 0.05).

Condition Brain regions Cluster size t-score of peak voxel MNI coordinates of peak voxel

x y z

OSA > HC Left precuneus 32 3.98 −18 −75 18

OSA < HC Left middle frontal gyrus 22 4.34 −27 0 45
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FIGURE 2 | Cluster with significantly altered fALFF in OSA children compared with controls (with GRF correction, voxel level p < 0.001, cluster level p < 0.05). The
blue and red areas denote higher and lower fALFF in OSA group.

TABLE 4 | Two-sample t-tests demonstrated regions with significantly decreased ReHo in OSA children compared with controls (with GRF correction, voxel level
p < 0.001, cluster level p < 0.05).

Condition Brain regions Cluster size t-score of peak voxel MNI coordinates of peak voxel

x y z

OSA < HC Left inferior frontal gyrus, orbital part 50 4.15 −45 48 −6

OSA < HC Left middle frontal gyrus 58 4.39 −45 33 27

FIGURE 3 | Cluster with significantly decreased ReHo in OSA children compared with controls (with GRF correction, voxel level p < 0.001, cluster level p < 0.05).

(r = −0.381, p = 0.046), AI (r = −0.391, p = 0.040), and
a significantly positive correlation with LSaO2 (r = 0.378,
p = 0.047). The mean fALFF value in the left precuneus
showed a significantly negative correlation with LSaO2

(r = −0.506, p = 0.006) and a significantly positive
correlation with SaO2 < 90% (r = 0.396, p = 0.037)
(shown in Figure 5). All the p-values were uncorrected for
multiple comparisons.
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TABLE 5 | The statistics of ROC curve analysis for altered brain clusters.

Clusters SEN SPE AUC 95% CIs

ALFF_Right lingual gyrus 83.87% 78.79% 0.822 0.706–0.906

fALFF_Left precuneus 70.97% 69.70% 0.732 0.607–0.835

fALFF_Left middle frontal gyrus 83.87% 84.85% 0.871 0.764–0.942

ReHo_Left ORBinf 74.19% 84.85% 0.790 0.670–0.882

ReHo_Left middle frontal gyrus 70.97% 78.79% 0.802 0.683–0.891

SEN/SPE, sensitivity/specificity corresponding to maximum Youden index; AUC,
area under the ROC curve; CIs, confidence intervals; ORBinf, inferior frontal
gyrus, orbital part.

FIGURE 4 | ROC curve analysis of mean ALFF/fALFF/ReHo signal values for
altered brain clusters. AUC, area under the curve; ORBinf, inferior frontal
gyrus, orbital part.

DISCUSSION

Amplitude of Low-Frequency Fluctuation/Fractional ALFF and
ReHo approaches are used to investigate the intrinsic brain
activities in OSA, as effective noninvasive imaging tools. These
methods are based on different neurophysiological mechanisms,
ALFF/fALFF analysis represents neural intensity, whereas ReHo
reflects neural coherence (Liu et al., 2017). Our study is the first
to utilize the combination of three methods to detect abnormal
neural activities in certain brain regions in pediatric OSA, which
contributed to the exhibition of more comprehensive functional
alterations. Compared to previous study (Li et al., 2015), we
applied more clinical parameters analysis and obtained more
outstanding correlations with functional parameters. Moreover,
the ROC curve analysis was demonstrated in detail, along with
sensitivity and specificity, which provided remarkable guidance
for clinical diagnosis. In addition, a large sample size was enrolled
with 31 OSA individuals in this study. Taken together, we believe
our study contributes to obtain more reliable results for revealing
the abnormalities of neural activity in OSA children.

Compared with healthy controls, the OSA group showed
significant lower ALFF in the right lingual gyrus (Brodmann area
18). In the OSA group, fALFF was significantly decreased in the
left middle frontal gyrus as well as increased in the left precuneus.
We also observed that the OSA group showed a significant
decrease of ReHo in the left inferior frontal gyrus (orbital part)
and left middle frontal gyrus. These results revealed the changes
of spontaneous brain activities were closely associated with the
DMN, the frontal lobe, and the right lingual gyrus. Furthermore,
in the OSA group, the mean fALFF value in the left middle
frontal gyrus showed significantly negative correlations with HI,
SaO2 < 90%, and AI and a significantly positive correlation with
LSaO2. The mean fALFF value in the left precuneus showed a
significantly negative correlation with LSaO2 and a significantly
positive correlation with SaO2 < 90%. Additionally, in the
previous studies (Zang et al., 2007; Zou et al., 2008), scholars
have found the ALFF method may be affected by physiological
noise irrelevant to brain activity. However, the artifacts from
non-specific brain areas (the ventricles and the vicinity of blood
vessels) were significantly reduced by the fALFF approach,
while signals from cortical regions correlated with brain activity
were enhanced, which contributed to the superior sensitivity
and specificity in detecting spontaneous brain activities (Zou
et al., 2008). In line with previous researches, in our study,
we also noted the fALFF approach showed more rewarding
results among these approaches. The mean fALFF value not
only significantly associated with the sleep parameters but also
demonstrated the best performance in ROC curve analysis.

Our study revealed the increase of fALFF in the left precuneus.
The precuneus is located in the posteromedial cortex of the
parietal lobe and plays a key role in a range of highly integrated
tasks, including visuospatial imagery, self-processing operations,
and episodic memory retrieval, namely, first-person perspective
taking and an experience of agency (Cavanna and Trimble,
2006). Peng et al. (2014) found that patients with OSA showed
decreased ReHo in the precuneus, besides the significant negative
correlation between altered ReHo in the precuneus with sleep
time, suggesting decreased sleep time might be a key factor
for dysfunction in the precuneus. An 18F-fluoro-2-deoxy-D-
Glucose positron emission tomography study showed a decrease
of brain metabolism in the precuneus (Yaouhi et al., 2009).
Another functional imaging study displayed lower ALFF in the
right precuneus; in addition, a significant positive correlation was
found in the right precuneus between MoCA score and the ALFF
value, which indicated the abnormalities of the precuneus may be
associated with a cognitive dysfunction (Li et al., 2015).

As is well known, the precuneus is a vital node in the
default mode networks (DMN), and others include the posterior
cingulate cortex; medial prefrontal cortex; and medial, lateral,
and inferior parietal regions. These brain regions are highly
interconnected to form DMN, a large-scale network, which
is thought to be involved in an array of advanced cognitive
functions, such as visuospatial imagery, consciousness, attention,
adaptation, episodic memory, executive cognitive control, and
behavioral inhibition (Andrews-Hanna et al., 2010; Wilson
et al., 2010). As similarly reported in the past, abnormal
inactivation in the DMN among patients with OSA was found
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FIGURE 5 | The mean fALFF values in altered clusters show the significantly partial correlations with clinical parameters. Of note, the coordinate value of both X-axis
(clinical parameter) and Y-axis (fALFF value) do not reflect the initial values of these variables, while considering age, gender and FD as covariates. All the p-values
were uncorrected for multiple comparisons.

during working memory tasks and also significantly positively
correlated with behavioral performance, which may imply
that the inhibition of activity in the DMN plays a role in
cognitive impairment (Prilipko et al., 2011). Specifically, reduced
functional connectivity is related to cognitive dysfunction in
the DMN at rest and the enhanced functional connectivity of
the OSA may be a compensatory mechanism for the decrease
of cognition (Chen et al., 2016). Chen et al. (2018) found
that the OSA group showed significantly decreased FC of the
anterior–posterior DMN and within the posterior DMN and was
associated with the MoCA score, using graph theory approaches.
Furthermore, they found abnormal FC within the DMN may
contribute to the topological reconfiguration of the DMN in
patients with OSA, which illuminated the cognitive dysfunction
and topological reconfiguration in OSA. Nevertheless, based on
these findings, we found that patients with OSA had increased
fALFF in the left precuneus, which may imply an adaptive
compensatory response in the DMN. Furthermore, our study
also found a significant negative correlation between the altered
fALFF in the local region of the DMN and the LSaO2, suggesting
that intermittent hypoxia may be a principal element for the
DMN abnormity in OSA.

Our study showed fALFF and ReHo were decreased in the
left middle frontal gyrus and the left inferior frontal gyrus
(orbital part), and left middle frontal gyrus, respectively. To our
knowledge, the frontal lobe is the higher cortex of cognitive
executive function and also plays an important role in emotion,
language, attention, working memory, problem solving, impulse

control, and social behavior (Stern et al., 2001; Johnson et al.,
2009; Nie et al., 2017). Huang et al. (2019) found both decreased
gray matter volume (GMV) and functional response in the orbital
frontal cortex (OFC) in patients with OSA, which may indicate
that OFC is a vulnerable and sensitive area in the brain. Another
study demonstrated that patients with OSA showed significantly
lower ReHo in the right medial frontal gyrus and right superior
frontal gyrus (Peng et al., 2014). Ji et al. (2021) also found
significant lower ReHo in the left medial superior frontal gyrus
and was positively associated with VIQ, which reflected that such
brain area may play a crucial role in the cognitive processing
related to VIQ. The inferior frontal gyrus was attributed to
the language function, decision making under risk, and the
regulation of cognitive control (Foland-Ross and Gotlib, 2012;
Luo et al., 2015). Song et al. (2018) found that the impaired FC
between the caudate and inferior frontal gyrus may become the
basis of the cognitive regulation defects of emotion, which leads
to comorbid mood disorders in OSA.

Consistent with these findings, in our study, we found that
patients with OSA showed significantly altered brain activities
in the left frontal gyrus when compared with controls. Notably,
the mean fALFF value of left middle frontal gyrus achieves the
highest sensitivity, specificity, and AUC value in ROC curve
analysis. Also, significant correlations were found between the
mean fALFF values of the left middle frontal gyrus with the more
clinical parameters, suggesting the middle frontal gyrus might be
a sensitive region in the brain among OSA children, which might
turn into the potential useful diagnostic biomarkers.
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In the present study, we also observed significant lower ALFF
in the right lingual gyrus among patients with OSA. The lingual
gyrus of the occipital lobe is located between the calcarine
sulcus and the posterior portion of the collateral sulcus and then
extends to the tentorial surface of the temporal lobe and joins
the hippocampus (Joo et al., 2007). A study by Luo et al. (2015)
found that the OSA showed a tendency of decreased degree in
the right lingual gyrus, as a topological alteration in and regional
properties in patients with OSA. Our study is also consistent
with their results of different modalities. Besides, Joo et al. (2007)
found that the cerebral blood flow of parahippocampal and
lingual gyrus were reduced in OSA during wakefulness, using
the 99mTc-ethyl cysteinate dimer (ECD) single photon emission
computed tomography method, which partly indicated memory
impairment and spatial learning deficits in patients with severe
OSA. The lingual gyrus has been believed to be involved in
visual recognition and episodic memory consolidation (Kukolja
et al., 2016) and are considered to play a role in the process of
generating and recalling dreams as well (Bischof and Bassetti,
2004). Therefore, the decreased metrics of lingual gyrus possibly
account for certain deficits in visual memory and learning.

LIMITATIONS

Several limitations deserve to be mentioned in the present study.
Firstly, our study obtained a larger sample size compared with
previous neuroimaging researches in pediatric OSA (Luo et al.,
2015; Ji et al., 2021). However, the sample size was still relatively
small, which implies an urgent need for expanding data to
validate the results of future studies. Secondly, the p-values
of the correlations between network properties and clinical
measurements are not corrected for multiple comparisons in this
study, as this is currently a preliminary exploratory research. We
will reveal the correlations corrected for multiple comparisons
based on more subjects in future research, which obtains the
more reliable mechanisms of brain activity in OSA children.
Thirdly, the previous study found that the test–retest reliability
of PerAF is better than ALFF and fALFF, and the test–retest
reliability between machines is better (Zhao et al., 2018). We will
investigate this using perAF to measure the spontaneous brain
activity of OSA children in our future study.

CONCLUSION

We have investigated the alterations of spontaneous neural
activity in OSA, based on the ALFF/fALFF and ReHo approaches
on rs-fMRI data. Abnormal regions with the altered neural
activity in OSA children include the precuneus, the middle and
inferior frontal gyrus, and the lingual gyrus. Moreover, we also

found that the altered fALFF in the precuneus was negatively
correlated with the LSaO2 in OSA. These results expounded
the underlying neurophysiological mechanisms of altered
spontaneous brain activity and revealed the correlation between
the changes of sleep function and functional activity in brain.
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