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Editorial on the Research Topic

Compound Climate Extremes in the Present and Future Climates: Machine Learning, Statistical
Methods and Dynamical Modelling

Compound extremes, namely simultaneous, concurrent, or coincident extreme hydrometeorological
events, may have broader impacts on human society and the environment than any individual
extreme alone (Hao et al., 2018; Zscheischler et al., 2018, 2020, 2021; AghaKouchak et al., 2020;
Raymond et al., 2020). There are a wide range of compound events that occur on a variety of spatial
and temporal scales: typical examples include droughts coupled with heat waves, coastal flooding
coupled with wind hazards, sea level rise and storm surge, or tropical cyclones followed by heat
waves. However, we are yet to fully understand all types of compound extremes, the dynamical and
physical processes associated with their occurrence, the framework and the methods required for
their analysis, and their likelihood within the present and future climate.

This research topic aims to advance our knowledge about the processes and dynamical linkages
associated with different types of compound extremes, to showcase the development of new
statistical methods and machine learning techniques for efficiently examining these extremes, and
to quantify the potential risks of compound extremes in the present and future climate. This
Research Topic comprises 15 articles (14 research articles and 1 review article) on extreme weather
events and compound extremes. These articles have visited compound hydrometeorological
events, extreme temperatures, extreme weather and climate events in tropical ocean basins,
climate modeling and machine learning technologies for examining extremes and their
compounding effects.

Compound hydrometeorological events under present and future climates have been examined in
this research topic. Giang et al. used pattern scaling along with the Generalized Extreme Value (GEV)
distribution to calculate changes in multi-day extreme precipitation in North Central Vietnam in
future projections under three Representative Concentration Pathways from IPCC AR5. Similarly,
an attribution analysis over the mid–lower reaches of the Yangtze River of China found that
anthropogenic warming has reduced the likelihood of 2019-like 14-days heavy precipitation by 20%,
but increased that of 2-days extremes by 30% (Nanding et al.). Wu et al. found that the fraction of
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extreme precipitation events in Guangdong preceded by hot weather
is even larger inmore populated and urbanized areas such as the Pearl
River Delta (PRD) region, and revealed significant increases in the
frequency and fraction of compound extreme heat and precipitation
events. Lai et al. examined the evolution of compound flood days
based on global precipitation and storm surge data in observations
and reported that the frequency has risen significantly on the east
coast of the US and northern Europe, but decreased significantly in
southern Europe and Japan. Zhang et al. reviewed the physical
drivers, mechanisms and methods related to compound
hydrometeorological extremes and discussed current advances in
the understanding of compound heat wave and drought (hot-dry),
compound heat stress and extreme precipitation (hot-wet), and cold-
wet, cold-dry and compound flooding. Yang et al. investigated the
responses of heat stress to temperature and humidity changes due to
anthropogenic heating and urban expansion in South and North
China. Using gauge-based precipitation observations, they found that
heavy precipitation events were the main contributor to the
increasing trend of summer precipitation over the Three-Rivers
Headwater Region (Zhao et al.). Li et al. unraveled synoptic
weather patterns that modulate warm-sector heavy rainfall in
South China. They found that the locations of six large-scale
extreme precipitation events were related to the urban
agglomerations in Guangdong–Hong Kong–Macao Greater
Bay Area.

Two papers in this Research Topic have advanced the
understanding of extreme temperatures. Ngarukiyimana et al.
examined the spatial and temporal variations of daily maximum
and minimum surface air temperature (Tmin and Tmax) and
diurnal temperature range. With high confidence, the results
indicate a significant positive trend in both Tmin and Tmax in
three study regions in Rwanda during the whole study period.
Based on observations of automatic weather stations in Beijing
during the summers of 2014–2020, Zong et al. studied the
interaction between heat waves events and the Urban Heat
Island (UHI) effect and found that latent heat flux has
increased more in rural areas because of sufficient water
availability and vegetation.

Studies in this Research Topic have also focused on developing
machine learning technologies for examining extremes. For
example, Huang et al. reported that the stacking model and
the XGBoost model performed the best in predicting solar
radiation. Wang et al. developed a new extreme detection
method for unravelling remote compound extremes in
Southeast China. Wang et al. introduced the MultiLLR ML
model and found that the subseasonal prediction skill of
China precipitation with 2–6 weeks lead time could be

enhanced. Finally, the T-mode principal component analysis
statistical approach was used to study the warm-sector heavy
rainfall by unravelling large-scale circulation patterns (Li et al.).

Works in this Research Topic have also examined extreme
weather and climate events in tropical ocean basins. For example,
footprints of the Atlantic Multidecadal Oscillation (AMO) in the
western North Pacific assessed using observations and coupled
atmosphere-ocean simulations of sea surface temperature (WNP
SST) and atmospheric states exert a significant impact on tropical
cyclone intensity (Sun et al.). Chen et al. compared the temporal
evolution of environmental conditions for Rapid Intensification
(RI) and non-RI of TCs in the South China Sea (SCS) during
2000–2018, and identified key factors for RI of SCS TCs using the
box difference index and stepwise regression.

Several future research directions for compound climate
extremes are documented: 1) projecting the risk of compound
climate extremes corresponding to future warming; 2) evaluating
the impacts of the compound climate extremes on natural and
built environments; 3) designing adaptation measures to the
changing risk of the extremes; 4) improving subseasonal-to-
seasonal prediction of these compound extremes; 5) improving
the representation and evaluation of compound climate extremes
in fully-coupled climate models; and 6) applying machine
learning and other advanced methods to understand these
extremes.
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Sea surface temperature (SST) over the western North Pacific (WNP) exhibits strong
decadal to multidecadal variability and in this region, warmwaters fuel the tropical cyclones
(TCs). Observational records show pronounced decadal variations in WNP TC metrics
during 1950–2018. Statistical analysis of the various TC metrics suggests that the annual
average intensity of WNP TCs is closely linked to the AMO (r � 0.86 at decadal timescales,
p < 0.05). Observations and coupled atmosphere-ocean simulations show that the
decadal WNP SST variations regarded as the primary driver of TC intensity, are
remotely controlled by the AMO. Corresponding to the WNP SST warming, the local
SLP gets lower and the tropospheric air becomes warmer and moister, enhancing
atmospheric instability and the generation of convective available potential energy.
These favorable changes in the background environment provide more “fuel” to the
development of deep convection and intensify the WNP TCs. The footprints of AMO in
WNP SST and atmospheric states through trans-basin interaction eventually exert a
significant impact on the TC intensity over the WNP region.

Keywords: Atlantic multidecadal oscillation, inter-basin interaction, teleconnection, extreme weather and climate,
tropical cyclone

INTRODUCTION

Tropical cyclone (TC) is one of the most destructive natural disasters. Almost 30% of all TCs over the
globe take place in the western North Pacific (WNP; 100°–180°E, 0°–40°N). As the surface
temperature has warmed notably, observed changes in the WNP TC activity during the recent
decades are metric dependent, showing a strengthening trend in the intensity but decreasing trends
in the frequency and duration (Emanuel, 2005; Liu and Chan, 2013). In addition to the effects of
climate change (Knutson et al., 2019; Knutson et al., 2020), internal climate variability can also
influence TC activity. For example, WNP TC activity shows pronounced interannual variability and
most studies have identified ENSO as an important contributor to the interannual variations (Chan
1985; Camargo and Sobel 2005; Wang et al., 2014; Liu and Chen 2018; Patricola et al., 2018).
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Madden-Julian oscillation (MJO), Pacific–Japan (PJ)
teleconnection and other atmospheric variabilities also play
roles in influencing the WNP TC activity (Nakazawa 1986;
Maloney and Hartmann 2001; Li et al., 2014; Wu et al., 2020;
Zhou et al., 2019). Some other studies highlighted the remote
effects of SST variability in Indian and Atlantic Oceans on WNP
TCs but mostly focused on the frequency and genesis of TCs (Liu
and Chan, 2008; Liu and Chan, 2013; Huo et al., 2015; Zhang
et al., 2017; Gao et al., 2018; Zhang et al., 2018; Zhang and
Villarini, 2019; Gao et al., 2020). Besides the interannual
variability, some studies have suggested a significant
multidecadal change in the WNP TC activity (Leung et al.,
2005; Chan, 2006; Li and Zhou, 2014; Wang et al., 2015).
However, there have been much fewer studies focusing on the
decadal variations (or fluctuations) of the WNP TC activity, and
the decadal variability of WNP TC intensity and the driving
mechanism remain unclear.

It is widely recognized that sea surface temperature (SST) is an
important environmental condition for TC activity (Gray and
Brody, 1967; Landsea, 2005). The global SSTs show pronounced
interdecadal variabilities and one of the most well-known
patterns is the Atlantic Multidecadal Oscillation (AMO) (Kerr,
2000). Previous studies indicated that the AMO plays a crucial
role in climate around the Atlantic region (Enfield et al., 2001;
McCabe et al., 2004; Sutton and Hodson, 2005; Wang and Lee,
2009; Sutton and Dong, 2012), together with the remote regions
(Lu et al., 2006; Li and Bates, 2007; Sun et al., 2015; Sun et al.,
2017b). Hurricane activity over the North Atlantic basin has been
linked to the AMO (Zhang and Delworth, 2007), indicating the
effects of local SST variability. Meanwhile, inter-basin SST
interactions at decadal time scales have received considerable
attention in recent years as many studies have suggested a strong
SST teleconnection from North Atlantic to Pacific (Li and Zhou,
2014; McGregor et al., 2014; Lopez et al., 2016; Ruprich-Robert
et al., 2017). Particularly, some previous studies based on both
modeling and observational analysis have suggested that the
multidecadal variations in the SST and atmospheric circulation
aloft over the western tropical Pacific and North Pacific are
significantly influenced by the AMO signal (Sun et al., 2017a;
Gong et al., 2020). Zhang et al. (2018) have linked the
multidecadal variations of WNP TC genesis frequency since
1980 to the AMO, but the potential influence of AMO on the
WNP TC intensity remains to be studied. Previous studies have
reported that there are decadal variations in the WNP basin-wide
TC intensity, showing an increasing trend since the mid-1970s
(Wu et al., 2008; Wu and Zhao, 2012). Thus, it is of interest to
examine the relationship between the AMO and TC intensity at
decadal timescales.

Our analysis will focus on the decadal variations of the WNP
TC activity. In this study, the accumulated cyclone energy (ACE)
proposed by Bell et al. (2001) is used to represent the activity of
TCs. In addition to the ACE index, the number of TCs
(frequency), TC days, and average intensity are defined to
distinguish the characteristics of TC activity. Detailed
information can be found in the Methods. We also perform
statistical analysis on a suite of Atlantic Pacemaker experiments
to investigate the AMO effects on the WNP TC activity, and a

strong connection at decadal time scales can be found. A
mechanism is then proposed to explain the teleconnection
between the AMO and WNP TC activity which connects the
WNP climate to the North Atlantic Ocean. Our results highlight
the remote influence of AMO onWNP TC activity. This may also
have implications for better understanding the decadal variability
and predictability of the WNP TC activity.

DATA AND METHODOLOGY

Data
The global observational SST data set used in this study is the
Extended Reconstruction SST version 3 (ERSST v3b) data set
(Smith et al., 2008). The atmospheric data set derives from the
NOAA ESRL 20th Century Reanalysis, version 2 (20CRv2)
(Compo et al., 2011) which includes air temperature, specific
humidity and sea level pressure (SLP).

The data sets of the WNP TC metrics (the number of Named
TCs, the Named TC days, and the Accumulated Cyclone Energy)
we used are available online from the Department of
Atmospheric Science at Colorado State University (http://
tropical.atmos.colostate.edu/Realtime/). And the statistics are
calculated from National Hurricane Center, the Central Pacific
Hurricane Center and the Joint Typhoon Warning Center best
tracks as archived in the International Best Track Archive for
Climate Stewardship (IBTrACS) (Knapp et al., 2010; Knapp et al.,
2018). The code for calculating the maximum potential intensity
is publicly available (ftp://texmex.mit.edu/pub/emanuel/
TCMAX/).

The AMO index is defined as the area-weighted average of SST
anomalies over the North Atlantic region (0°–60°N, 80°W–0°).
And the index used in this study comes from the NOAA ESRL
Climate Timeseries, which is calculated from the Kaplan SST
dataset (Enfield et al., 2001). Other indices of climate modes are
obtained from the following websites: NPGO index: http://www.
o3d.org/npgo/, IPO index: https://psl.noaa.gov/data/timeseries/
IPOTPI/ and PDO index: https://cmdp.ncc-cma.net/pred/cn_
enso.php?product�cn_enso_pdo.

Statistics of Western North Pacific Tropical
Cyclone Activity
The Accumulated Cyclone Energy (ACE) index is a well-known
statistic that uses the maximum wind speed over time to quantify
cyclone activity (Bell, 2001). It is proposed to describe the total
TC activity (Waple et al., 2002) and is calculated by integrating
the squares of the maximum sustained surface wind every 6 h for
named cyclones (greater than 34 knots).

∑
N

n�1
∫D(n)

0
V2

max(n, t)dt � ACE (1)

where the Vmax is the maximum sustained surface wind. As
shown in Eq. 1, for a specific year the ACE of WNP TCs
equals the sum of the square of maximum sustained wind of
TCs (Vmax) over all named TCs (denoted as N in the Eq. 1) and
the corresponding TC durations (denoted as D in the Eq. 1). This
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definition takes three key factors into account: the TC count,
intensity, and duration of all the TCs in the active season of a year
and indicates that the annual ACE is the numerical integral of a
time series.

According to Eq. 1, ACE is a function of the TC intensity,
duration and total count, describing the annual TC activity in a
basin. To distinguish the individual contributions from the TC
intensity, duration and total count to the annual TC activity from
the ACE, Wu et al., (2008) defined a parameter of the annual
average intensity of TCs for a specific basin. Following the
method, the average intensity of WNP TCs for a specific year
(denoted as Va in the Eq. 2) is obtained by averaging the Vmax
over the duration of each TC and then for all of the TCs in that
year.

∑
N

n�1
∫D(n)

0
Vmax(n, t)dt � Va ·∑

N

n�1
D(n) (2)

Therefore, in addition to the parameter of annual ACE index, the
annual TC activity in the WNP basin can be characterized by the
TC average intensity and the annual accumulated TC duration
(total TC days, ∑N

n�1D(n) in Eq. 2), and the latter can be further
decomposed into TC total count and average duration (Wu et al.,
2008; Zhao et al., 2011; Wu and Zhao, 2012).

Statistical Methods
We use a two-tailed Student’s t-test to determine the statistical
significance of the linear regression and correlation between two
autocorrelated time series. The effective number of degrees of
freedom is Neff, which is given by the following approximation:

1
Neff

� 1
N
+ 2
N

∑
N

j�1

N − j
N

ρXX(j)ρYY(j)

where N is the sample size, and ρXX(j) and ρYY(j) are the
autocorrelations of two sampled time series X and Y,
respectively, at time lag j (Li et al., 2013; Sun et al., 2015).

Model and Experiments
We use the International Center for Theoretical Physics AGCM
(ICTPAGCM, version 41) (Kucharski et al., 2016) developed
from the general circulation model (GCM) with a coupled slab
ocean thermodynamic mixed-layer model to perform an Atlantic
Pacemaker experiment (partially coupled experiment, referred to
as ATL_VARMIX). The code of ICTPAGCM is available through
the URL: https://www.ictp.it/research/esp/models/speedy.aspx.
The mixed-layer model includes spatially varying annual mean
mixed-layer depths (varying from 40 m in tropics to 60 m in the
extra-tropics). To investigate the WNP SST and atmospheric
circulation responses to the Atlantic SST forcing, the SSTs over
the Atlantic basin (60°S–60°N, 70°W–10°E) are prescribed using
the observational monthly-varying SSTs from the Hadley Center
Sea Ice and Sea Surface Temperature (HadISST) data set (Rayner
et al., 2003). In the Indo-Pacific basins, the ocean is allowed to
integrate the atmospheric heat fluxes and to interact with the
atmosphere. Thus, the simulated SSTs in the Indo-Pacific basins
are interactively generated by coupling with the slab ocean. The

simulated variations in atmospheric circulation are the responses
to the combined effects of Atlantic SST forcing and atmosphere-
ocean coupling out of the Atlantic region. The large-scale
environmental conditions for WNP TC activity in ATL_
VARMIX (e.g., MPI and VWS) are further calculated based on
the simulation results of SST and atmospheric variables.

The simulations of the ATL_VARMIX experiment are
integrated from 1872 to 2013 and an ensemble of five
members is generated to reduce the uncertainties due to
different initial conditions. The ensemble mean of the five
integrations is analyzed and displayed in the figures unless
stated otherwise. More details about the ATL_VARMIX
simulations can be found in the Supplementary Material.

RESULTS

Western North Pacific Tropical Cyclone
Average Intensity and Climate Modes
In order to better understand the characteristics of WNP TC
time series at decadal time scales, in this study, we mainly focus
on the decadal variations of the four annual mean TC metrics,
including annual accumulated cyclone energy (ACE), number
of TCs (or frequency), total TC days and average intensity
between 1950 and 2018, which are calculated using Joint
Typhoon Warning Center (JTWC) best track dataset. The
detailed definitions of these quantities are given in the
Methods section. The index of each TC metric in WNP
manifests significant decadal variability and two peaks can
be found in this time series (Figure 1). More specifically, the
time series of the TC days index (Figure 1C) shows a similar
variation to that of ACE (Figure 1A) which reaches its
maximum in the mid-1990s and exhibits a decreasing trend
in the following 15 years. However, the frequency index
(Figure 1B) reaches its maximum in the mid-1960s, earlier
than the ACE and TC days. Here, the average intensity of TCs
is defined as the mean intensity of all named cyclones in a year,
and the product of the average intensity and the total number
of TC days in that year equals the annual ACE index (see
Statistics of Western North Pacific Tropical Cyclone Activity for
details). Moreover, decadal variability in TC average intensity
over WNP (Figure 1D) is also evident and manifests a decadal
trend for about 20 to 30 years. There are two turning signs
appearing in the 1970s and around 2000s which resemble the
AMO index (Kerr, 2000), further implying the potential
linkage between them. More evidence will be discussed in
the following sections.

Then, the comparison between the AMO index and annual
mean average intensity further supports our speculations based
on the consistency of their turning signs. The time series of the
AMO index (Figure 2) has approximately 50–60 years variation,
with changes of sign in reverse polarity in the 1920s, 1960s and
around 2000s (Schlesinger and Ramankutty, 1994; Enfield et al.,
2001), demonstrating that the AMO and WNP TC average
intensity are closely connected and share a similar decadal
fluctuation. This result indicates that the variation of WNP
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TC average intensity is highly correlated to the remote AMO
signal at decadal time scales and it might be affected by the North
Atlantic basin.

As the Pacific Decadal Oscillation (PDO/IPO) (Mantua et al.,
1997; Zhang et al., 1997) and North Pacific Gyre Oscillation
(NPGO) have been recognized for playing a dominant role in
modulating North Pacific SST at decadal time scales, it is essential
to examine the correlations of Pacific SST variability with each of
the four WNP TC metrics. Several studies have implied the

possible effects of PDO, IPO and NPGO on WNP TC activity
(Chan, 2008; Liu and Chan, 2008; Goh and Chan, 2010; Zhang
et al., 2013). Thus, we further calculate the correlation coefficients
between those four TC metrics and these decadal and
multidecadal oceanic modes (the time series are shown in
Supplementary Figure S1 and the correlations are listed in
Table 1), in order to clarify whether Pacific decadal SST
variability has such correlations with WNP TC as AMO
does and to highlight the relative roles of AMO and Pacific
decadal SST variability on WNP TC activity. In general, the
variations of the IPO and NPGO index are different from those
of the AMO and the WNP TC average intensity, and the
correlations of the TC intensity with the IPO and NPGO are
low and insignificant. Nevertheless, the NPGO show significant

FIGURE 1 | Interannual-to-decadal variability of various TC metrics. Time series of annual mean (A) ACE index (unit: 104 · knot2), (B) frequency, (C) TC days (unit:
days) and (D) average intensity (unit: 102· knot) of TCs in the western North Pacific as a function of time for 1950–2018 (thin solid black curve). The thick black curve in
each panel shows the 9-year running averages. The long-term linear trends were removed.

FIGURE 2 | Time series of annual mean average intensity (thin blue
curve; unit: 102· knot) and the AMO index (thin red curve; unit: K) for
1950–2018. The thick curves show the 9-year running averages. The long-
term linear trends were removed.

TABLE 1 | Correlations Between Four WNP TC Metrics and AMO, PDO, IPO, and
NPGO for 1950–2018.

Correlation
coefficients

TC days Frequency ACE Average
intensity

AMO (1950–2018) 0.36 (13) −0.35 (10) 0.36 (10) 0.86 (4)
PDO (1950–2018) 0.58 (11) 0.41 (9) 0.20 (7) -0.29 (4)
IPO (1950–2018) 0.65 (10) 0.46 (9) 0.24 (8) -0.30 (5)
NPGO (1950–2018) −0.72 (12) −0.59 (11) -0.43 (10) 0.10 (6)

The long-term linear trends were removed before analysis. Correlations significant at the
95% level based on the estimated effective degrees of freedom are underlined (in bold).
The effective degrees of freedom are included in parentheses next to the correlation
coefficient. The calculation of the effective degrees of freedom is given in the Methods.
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correlations with the WNP TC days and genesis frequency.
This is consistent with the previous study which suggests a
significant impact of NPGO on TC frequency. Meanwhile, the
PDO/IPO might correlate to the total TC days but the
correlation coefficient is relatively small. Such findings are
consistent with the previous studies which indicated that the
PDO plays a minor role in the decadal variations of WNP TC
characteristics (i.e., frequency and intensity) and it can barely
explain the regional-scale features of WNP climate variability
(Zhang et al., 2013; Sun et al., 2017a; Gong et al., 2020).
Another interesting thing is that the correlation coefficient
between WNP TC average intensity and the AMO index
reaches 0.86 (p < 0.05), further confirming the strong
connection between them as is inferred from Figure 2. We
can then conclude that the linkage between AMO andWNP TC
intensity is robust at decadal time scales, while other TC
metrics such as ACE, frequency and TC days show weaker
correlations with the AMO.

Previous studies have suggested that the TC intensity
records may be less reliable before the mid-1970s (Dvorak
1975; Chu et al., 2002; Ackerman et al., 2018). We repeat the
above analysis but for a more recent period 1975–2018. As
shown in Supplementary Table S1, the average intensity of
WNP TCs is mostly correlated with the AMO for 1975–2018,
while the effects of other SST modes are relatively
insignificant. This is in good agreement with the results for
the longer analysis period 1950–2018. The decadal-scale
variation in average intensity during 1975–2018 is
characterized by an increasing trend before 2000 and a
flattening trend afterward. These variations are best
matched with the AMO variability, leading to a highly
positive correlation (r � 0.89, significant at the 95%
confidence level). For the WNP TC days and frequency, the
effects of Pacific SST modes (PDO, IPO, and NPGO) are
stronger, with strong positive correlations observed for the
PDO/IPO and negative correlations for the NPGO during
1975–2018. Similar negative correlations are also observed for
the AMO, which shows a general warming trend during
1975–2018, coincident with the decreasing trend in the TC
days and frequency. Zhang et al. (2018) have also suggested
that the warming trend in AMO may lead to the decreasing of
WNP TC frequency during the period 1980–2014.
Nevertheless, consistent with the results for the longer
period, the correlation of the AMO with the TC average
intensity (0.89) is higher than that with the TC days and
frequency (−0.71 and −0.68, respectively), indicating a
more profound influence of AMO on the WNP TC
intensity. Supplementary Figure S2 further shows the
correlation map between WNP TC average intensity and
Northern Hemisphere SST at decadal timescales for the
period 1975–2018. The SST correlations over the North
Atlantic show a basin-wide coherent pattern with
significant positive values that resembles the AMO.
Therefore, both the analyses of temporal variations and the
spatial pattern of SST correlations confirm the close
relationship between the AMO and WNP TC average
intensity for the more recent period 1975–2018, indicating

that the finding of AMO footprint in WNP TC average
intensity is insensitive to the analysis period.

Western North Pacific Tropical Cyclone
Average Intensity and TC Activity
The average intensity of TCs over the WNP basin is a basin-wide
metric, and it is necessary to examine the relationships between
this basin-wide metric and variations in TC characteristics
(i.e., genesis location and track distributions). Observed TC
data are obtained from the International Best Track Archive
for Climate Stewardship (IBTrACS) including the Joint Typhoon
Warning Center (JTWC), Japan Meteorological Agency (JMA),
and Chinese Meteorological Administration (CMA) best track
data. Supplementary Figure S3 shows the regression map of the
annual genesis density of WNP TCs on the basin-wide average
intensity. The genesis density is calculated by counting the
number of tropical cyclones with genesis (first position) in
each 2.5° × 2.5° latitude and longitude square (Camargo et al.,
2007). The regression map shows that the increase (decrease) of

FIGURE 3 | (A) The regression map of SST anomalies (unit: K) onto the
normalized AMO index based on the data from the ERSST data for
1950–2010. (B) As in (A), but in the ATL_VARMIX experiment. The long-term
linear trends in the SST data set were removed before the regression
analysis, and dots indicate the regression coefficients significant at the 95%
confidence level.
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the TC average intensity corresponds to more TC genesis over the
western WNP basin and less TC genesis over the eastern WNP
basin. The results based on the data sets from the three agencies
are similar. We also analyze the relationship between average TC
intensity and track distributions. The time series of WNP TC
average intensity shows a period of weak intensity during
1970–1990 and two periods of strong intensity during
1950–1964 and 1996–2015. As shown in Supplementary
Figure S4, the average TC genesis location during the strong
intensity period (1950–1964 and 1996–2015) is to the west of that
during the weak intensity period (1970–1990). This is consistent
with the results of TC genesis density shown in Supplementary
Figure S3. For the average TC track distributions, the TCs during
the strong intensity period show a more north-oriented track
compared with the weak intensity period, and the average TC
track during the strong intensity period extends farther
northward than the weak intensity period. Therefore, during
the high TC intensity period, the TCs in the WNP basin tend
to travel a relatively long distance. In addition, the intensity-
related variations in TC genesis locations and track distributions
for the TC active season (JJASO, Supplementary Figure S5) are
generally consistent with the annual ones (Supplementary
Figures S3, S4). Overall, the increase of WNP average TC
intensity is associated with the westward shift of the TC
genesis locations and the more northward extension of TC tracks.

Previous studies (Byers, 1944; Palmen, 1948; Malkus and
Riehl, 1960; Chan et al., 2001) have illustrated the
fundamental physical basis between TC average intensity and
the ocean boundary and confirmed that the warm SST is
favorable to the intensification of TCs over the Northern
Hemisphere Oceans. Here, regression analyses are used to
quantify the relationships between those factors associated
with TC intensity and AMO index and to reveal the
underlying mechanism. The regression map of 9-year running
mean observational SST anomalies onto the normalized AMO
index (Figure 3A) exhibits significant positive SST anomalies
over the most area of the WNP region despite a slight northward
shift of the maximum. The warm SST anomalies are strong and
statistically significant over the western WNP basin, while over
the eastern WNP, the SST anomalies are relatively weak and
nearly opposite to the western WNP. We further calculate the
latitudinal average of SST anomalies between the equator and
20°N (Supplementary Figure S6), which also shows a peak of
warm SST anomalies between 110°E and 150°E, and east of 150°E,
the SST anomalies decrease rapidly and become weak. This
feature of WNP SST anomalies may explain the changes in
the average genesis location of TCs revealed in the above
analysis, and hence the average intensity of TCs formed in the
WNP basin.

We can further infer that the AMO indeed affects WNP TC
through modifying SST at decadal time scales, but the causality
cannot be suggested only by statistical analysis. We then perform
model simulations to further verify the remote effects of AMO on
the WNP SST. Similar results can be found in the ATL_VARMIX
experiment (Atlantic Pacemaker experiment, see Methods). The
simulated regression pattern of WNP SST onto the AMO index is
consistent with the observed one, and the regression coefficients

are significant over theWNP region. Overall, the experiment does
indicate the existence of warming responses of WNP SST to the
AMO and the results are consistent with previous studies that
explain the underlying mechanism of such phenomenon (Sun
et al., 2017a; Gong et al., 2020; Wu et al., 2020). The warm AMO
phase could induce anomalous surface high pressures over the
northern and eastern Pacific which generate diverging flow
toward the WNP, leading to anomalous convergence and low
pressures there. The warm SST anomaly further develops due to
the SST–sea level pressure–cloud–longwave radiation positive
feedback. For the TC active season (June to October, JJASO),
both observations and ATL_VARMIX simulations suggest a
significant inter-basin SST teleconnection from North Atlantic
to the WNP (Supplementary Figure S7), consistent with the
annual mean data (Figure 3). The AMO-induced atmospheric
teleconnection pattern is also similar to that based on annual
mean data, showing anomalous high pressures in the northern
and eastern Pacific accompanied by diverging flow toward the
WNP. The WNP is dominated by anomalous convergence and
low-pressure anomaly (Supplementary Figure S7), and the
warm SST anomaly can be further developed and maintained
through the local air-sea interaction. We can infer that the AMO
may influence WNP TC average intensity by modifying SSTs in
association with the inter-basin teleconnection. As shown in
Figure 3B, the model shows the capability to reproduce the
strong warm SST anomalies over the western WNP and rather
weak SST anomalies in the eastern WNP, and the simulated
latitudinal average of SST anomalies between the equator and
20°N also shows a peak of warm SST anomalies over the western
WNP basin. It should be also noted that there is a discrepancy of
SST anomaly center between observations and model
simulations, indicating that the model experiment shows
limitations in simulating the centers of maximum SST
anomalies in the WNP associated with the AMO.
Nevertheless, the model experiment reasonably reproduces the
basin-wide SST warming in the WNP in response to the warm
AMO phase, and the main structure of the observed SST anomaly
pattern in the tropical WNP and the amplitude are fairly well
reproduced by the model.

The effects of local SST changes on the WNP TC intensity at
decadal timescales have also been highlighted in the previous
studies (Wu and Zhao, 2012; Mei et al., 2015). Wu and Zhao
(2012) compared the individual contributions of changes in local
SST, vertical wind shear, and prevailing tracks to the increasing
trend in WNP TC intensity over the period 1975–2007. They
found that while the individual changes in vertical shear and
prevailing tracks played an insignificant role in TC intensity, the
warming SST over the period 1975–2007 significantly
contributed to the multidecadal increasing trend in TC
intensity. This is consistent with our present study that we
also find the TC average intensity in WNP is closely related to
the local SST at decadal timescales, and the increasing trend of TC
average intensity is coincident with the SST warming during the
period 1975–2018 (Supplementary Figure S2).

The relationship between local SST and TC intensity may be
timescale dependent. The interannual component of TC average
intensity is shown in Supplementary Figure S8 by using a 2–9-
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year band-pass filter. The correlation map of SST with
interannual TC intensity is further shown in Supplementary
Figure S8. The SST correlations clearly indicate an ENSO-like
pattern, with positive correlations over the tropical central and
eastern Pacific while negative correlations over the WNP region.
This suggests that the ENSO significantly influences theWNP TC
intensity at interannual timescales as previous studies suggested
(Zhao et al., 2011). On the other hand, the negative SST
correlations in WNP indicate that the dynamical large-scale
parameters may play a more important role than the WNP
local SST in the linkage between ENSO and WNP TC
intensity (Zhao et al., 2011).

Roles of Large-Scale Environmental
Factors
Relationships between the AMO index and other factors
influencing WNP TC intensity are also examined. The moist
convection associated with those factors plays a dominant role in
the development of TCs and their average intensity (Raymond
and Sessions, 2007). The maximum potential intensity is a direct
quantity to represent the effects of large-scale environmental

conditions on the TC intensity. Using the maximum potential
intensity (MPI) theory (Bister and Emanuel 2002; Emanuel
2018), the estimated TC MPI anomalies in the WNP basin
related to the AMO are shown in Figure 4A. The anomaly
pattern suggests that the AMO-induced changes in SST and
atmospheric conditions could result in significant variations in
the MPI of TCs over the WNP, namely, the warm (cold) AMO
phase could cause an overall significant increase (decrease) in the
TC MPI. Particularly, at the lower latitudes (south of 10°N), the
MPI anomaly pattern shows significant positive anomalies over
the western WNP, and in the eastern WNP, the anomalies are
relatively weak and nearly of opposite sign. This pattern of the
MPI is consistent with the SST anomalies, further suggesting a
key role of SST anomalies in modulating, the intensity of TCs in
WNP. In this study, the MPI is used as a proxy to represent the
effects of large-scale environmental conditions on the TC
intensity. At decadal timescales, the variability of WNP MPI is
closely related to the TC average intensity, indicating a significant
impact of large-scale environmental conditions over the WNP
(Supplementary Figure S9). In Figure 5B, lower tropospheric air
temperature over the WNP region exhibits a uniformly warming
response to the AMO. The sea level pressure (SLP) field is first
examined, and the regression between AMO and SLP
(Figure 5A) shows prominent consistency with that in SST.
The warming in the ocean surface related to the AMO would
further decrease the sea surface pressure over the entire WNP
region. Thus, it supports that the WNP SSTs interact with the
AMO and favor more intense TCs to develop. Corresponding to
the responses of WNP SST to the AMO, it could be induced by
the ocean-atmosphere interaction, with more heat fluxes released
from a warmer ocean surface. The pattern of air temperature over
300 hPa shows similar results, but more significant warming can
be found over the WNP region. Despite the differences in
distributions of maximum centers between upper and lower
troposphere, it still indicates tropospheric warming in WNP
associated with the AMO. As for specific humidity (Figures
5C,D), positive moisture anomalies are most pronounced in
WNP, especially near the tropics. Unlike the air temperature,
the lower-level specific humidity shows more significantly
increased responses to the AMO than the upper level, which is
probably due to more water vapor content at the lower level and
thus is more sensitive to the temperature changes.

By calculating the regressions of each factor onto the AMO
index, potential linkages between them can be addressed as
follow. All the variables exhibit significant responses to the
AMO. In the WNP region, the SST warming induced by the
AMOwould reduce the sea surface pressure and increase the low-
level air temperature, further intensifying the ascending motion
and increasing the water vapor content. As a result, more water
vapor could be pumped into the upper troposphere and release
the latent heat above the lifting condensation level (LCL), heating
the air over upper levels. Previous studies have pointed out that
the increased low-level specific humidity and warm air
temperature anomalies would intensify convective activity,
such as TC (Gettelman et al., 2002; Chen et al., 2019). Low-
level specific humidity can intensify positive buoyancy and more
latent heat release, and in this case, the decrease in SLP provides

FIGURE 4 | The regression map of maximum potential intensity
anomalies (m/s) onto the normalized AMO index based on the observational
SST and 20CR atmospheric data for 1950–2010. (B) As in (A), but in the
ATL_VARMIX experiment. The long-term linear trends in the data were
removed before the regression analysis, and dots indicate the regression
coefficients significant at the 95% confidence level.
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favorable initial perturbation for the air parcel being easily lifted
and passes the level of free condensation (LFC) to derive
convective energy from the atmosphere and be able to ascend

automatically. The WNP convective available potential energy
(CAPE) anomalies in response to the remote AMO SST forcing
correspond to the local SST warming and exhibit significantly

FIGURE 5 | The regressionmaps of (A) sea level pressure (unit: hPa), (B) 850 hPa air temperature anomalies (unit: K), (C) 300 hPa specific humidity anomalies (unit:
g · kg-1), and (D) 850 hPa specific humidity anomalies (unit: g · kg-1) onto the normalized AMO index for 1950–2010 in 20CR reanalysis data. Dotted shading in (A–D)
represents the regression coefficients significant at the 95% confidence level. The long-term linear trends for 1950–2010 in all variables were removed before the
regression analysis.

FIGURE 6 | The regressionmaps of (A) sea level pressure (unit: hPa), (B) 850 hPa air temperature anomalies (unit: K), (C) 300 hPa specific humidity anomalies (unit:
g · kg-1), and (D) 850 hPa specific humidity anomalies (unit: g · kg−1) onto the normalized AMO index for 1950–2010 in the ATL_VARMIX experiment. Dotted shading
represents the regression coefficients significant at the 95% confidence level. The long-term linear trends were removed.
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increased responses over most of the WNP region
(Supplementary Figure S10). Thus, more CAPE will be
produced with more latent heat released, and stronger
warming and moistening at the lower level further amplifies
this effect. Previous studies have also pointed out that the
increased low-level specific humidity and warm air
temperature anomalies would contribute to more CAPE
genesis, which plays an important role in the rapid
intensification of the WNP TCs (Gao et al., 2017), and the
enhanced CAPE further acts as a crucial bridge linking the
WNP SST warming and increase TC intensity. Meanwhile,
other variables, especially to air temperature and specific
humidity which are favorable to the increased MPI, also
exhibit physically consistent responses to the AMO. Based on
the observation and the ATL_VARMIX simulations, we can so
far conclude thatWNP atmospheric variables are closely linked to
the remote AMO and shows significantly increased responses.

Model simulation is then carried out to highlight the role of
AMO in the anomalies of atmospheric variables related to the
WNP TC intensity, and the same calculations performed in
Figure 4A and Figure 5 are also applied to the
ATL_VARMIX experiment. The Atlantic pacemaker
experiment (ATL_VARMIX) captures the main structure of
the MPI anomalies in the observation (Figure 4B), further
indicating that the AMO signal could induce an overall
increase/decrease in the MPI of TCs over the WNP. The SLP
response to the AMO (Figure 6A) is similar to that in the
observation, as the decrease in SLP induced by the AMO can
be seen in the WNP region. In addition, the distribution of
significant regression coefficients, corresponding to the SST
warming, shows prominent consistency with the observation.
It should be noted that the physical connections between MPI
and other variables (SLP, air temperature and water vapor) are
well captured by the model, as the variables in WNP show
consistent anomalies in response to the North Atlantic SST
forcing. Nevertheless, the vertical structure of air temperature
in response to the AMO exhibits different quantitative
relationships between the upper and lower level. In the
ATL_VARMIX, the lower-level air temperature shows stronger
warming responses to the AMO, compared with the upper level.
The simulated distribution of the maximum responses of 850 hPa
air temperature to the AMO (Figure 6B) is located over theWNP
region, which is consistent with the simulated SST anomalies as
more heat is released from a warmer ocean surface (Figure 3B).
The distributions of upper-level and low-level specific humidity
anomalies under the AMO forcing (Figures 6C,D) are similar to
the observational results (Figure 5C and 5D). In the
ATL_VARMIX experiment, WNP atmospheric factors exhibit
significant responses to the AMO, which is also consistent with
the observation. This result provides model evidence for the
conclusion emphasized above, that both troposphere air
warming and moistening are favorable for the TC average
intensity under the AMO forcing in the WNP region.

Given the significant relationships between AMO, MPI and
those associated factors have been discussed above (the
correlation maps are also shown in Supplementary Material),
how do they influence the TC intensity and connect it to the

remote AMO? First of all, SST has long been recognized as the
primary factor that modifies the TC intensity. Model evidence
suggests that when other environmental factors are fixed, the
varied SST still contributes to the variations in TC intensity. In
the WNP region, strong responses can be found in local SST to
the AMO forcing (Sun et al., 2017a; Wu et al., 2020). The warmed
SST related to the AMO would lower the minimum central
pressure around the core and provide favorable backgrounds,
such as large-scale convergence and SLP decrease for the
ascending motion (Figures 5A, 6A). Thus, more energy can
be released from the ocean to the atmosphere and directly
contributes to the intensification of TC activities. In addition,
SST warming would increase the water vapor content and
enhance the moist instability over the lower troposphere
(Figures 5D, 6D). As mentioned above, the WNP SST
warming induced by the AMO through the inter-basin SST
teleconnection (Sun et al., 2017a; Gong et al., 2020) can
partially explain such correlation between WNP TC intensity
and the AMO. Moreover, WNP SST warming also induces
significant changes in the vertical stability of the atmospheric
column that may regulate the development of TCs. The TC
intensity is closely linked to the ascending motion in the
eyewall that the air parcel must extract energy from the ocean

FIGURE 7 | The regression map of vertical wind shear (wind differences
between 850 hPa and 200 hPa levels, m/s) anomalies onto the normalized
AMO index based on the data from the 20CRv2 for 1950–2010. (B) As in (A),
but in the ATL_VARMIX experiment. The long-term linear trends in the
data were removed before the regression analysis, and dots indicate the
regression coefficients significant at the 95% confidence level.
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and atmosphere to fight against gravity for elevation. In
association with the WNP SST warming, the local SLP
decrease and tropospheric warming and moistening lead to
the increase of MPI over the WNP region (Figures 4A,B) and
hence provide a favorable environment for TC intensification.
Therefore, the interaction between lower-boundary SST and
atmospheric factors intensifies the deep convection and
provides energy to drive the development of TCs. Based on
that, the strong connection between AMO and WNP TC
intensity can be explained by the inter-basin footprints of
AMO on the WNP SST and the associated atmospheric states.

We finally investigate the role of vertical wind shear (VWS) in
the modulation of the WNP TC variations. The regression maps
of WNP VWS anomalies on the AMO index are shown in
Figure 7. In association with the warm AMO phase, the VWS
anomalies over the WNP show an overall reduction over the
WNP region, corresponding to the overall increase of average TC
intensity. This suggests that the VWS indeed plays an important
role in the connection between AMO and average TC intensity in
theWNP. In addition, the zonal structure of the VWS at the lower
latitudes shows a nearly dipole structure, with significantly
reduced VWS over the western WNP and stronger VWS over
the eastern WNP. The weakened-VWS region extends eastward
to about 170°E, but the intensified-VWS region is limited to the
east of 170°E. This pattern of VWS anomalies is consistent with
the previous study (Zhang et al., 2018). The SST warming in
WNP induces strong lower-level convergence, accompanied by
lower-level westerly anomalies in the western WNP and easterly
anomalies to the east (Sun et al., 2017a). Given the climatological
easterlies in the lower levels over the WNP region, the intensified
easterlies induce stronger VWS over the eastern WNP and
westerly anomalies tend to weaken the VWS (Zhang et al.,
2018), leading to the anomaly pattern of VWS shown in
Figure 7. Moreover, the pattern of VWS is also consistent
with the changes in genesis locations of WNP TCs, leading to
the westward shift of TC genesis locations (Zhang et al., 2018).
The overall reduction of WNP VWS and its spatial pattern are
reproduced in the ATL_VARMIX simulations, providing further
modeling evidence to support the influence of AMO on theWNP
VWS, which could further affect the TC intensity.

SUMMARY AND DISCUSSION

In this study, we find a significant decadal variability of TC
activity in the WNP region, based on the observational data set
from 1950 to 2018. Statistical analysis of the various TC metrics
suggests that the average intensity of WNP TCs is strongly
connected with the AMO (r � 0.86 at decadal timescales, p <
0.05), showing a much closer relationship than other TC statistics
(i.e., frequency and TC days). Observations and coupled
atmosphere-ocean simulations show significant decadal SST
warming over the WNP region in response to the AMO warm
phase, which acts as a primary driver of the increase in TC
intensity. The associated atmospheric changes also provide a
favorable background environment. Corresponding to the SST
warming, the local SLP decrease and the tropospheric air

warming and moistening would enhance the atmospheric
instability, which provides more energy to the development of
deep convection and intensify the WNP TCs. In conclusion, the
AMO-induced changes in SST and atmospheric states in WNP
through trans-basin interaction eventually exert a significant
impact on the TC intensity over the WNP region.

This study reveals a close relationship between AMO andWNP
TC average intensity. The connections of AMO with other TC
metrics, like the genesis frequency, are relatively weak. A possible
explanation for this may lie in the distribution of the anomalous
genesis density (Supplementary Figure S3). The genesis density
anomaly pattern associated with the AMO indicates a westward/
eastward shift of the WNP TC genesis rather than a basin-wide
increase/decrease of the TC genesis over the entire WNP region.
This anomalous pattern of WNP TC genesis density can be
explained by the VWS anomalies (Figure 7). During the warm
AMO phase, the VWS shows weakened VWS in the westernWNP
and intensified VWS in the eastern WNP, leading to the westward
shift of TC genesis locations.

Our findings may help us better understand the impacts of
AMO on the WNP climate, especially to the TC activity, which
causes large damage to the adjacent countries. Thus, it could be a
useful indicator for TC intensity prediction, when we take the
North Atlantic signal into consideration. Themain findings in the
present study are based on the available records of WNP TC data
since 1950, and future research is warranted as more
observational records accumulate. Although the fundamental
linkage between WNP TC intensity and the AMO can be
reasonably well reproduced by the model, some biases can still
be found, possibly due to the simplified and idealized physics of
the coupled model. Thus, state-of-the-art coupled models with
more comprehensive physics would be needed to better
reproduce such mechanisms and reduce model uncertainties.
The mixed layer ocean model shows the capability to
reproduce the roles of SST and large-scale environment
conditions in connecting the AMO to WNP TC intensity.
Despite this, further modeling studies are required to
understand the possible role of ocean dynamics in shaping the
AMO-TC intensity linkage. A shortcoming of the simulations in
the current study is low resolution, and TCs cannot be directly
simulated by the model. Nevertheless, the main findings here
indicate that statistical insights into the variations of TC metrics
may be gained from these simulations.
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Understanding the driving factors for precipitation extremes matters for adaptation
and mitigation measures against the changing hydrometeorological hazards in Yangtze
River basin, a habitable area that provides water resources for domestic, farming,
and industrial needs. However, the region is naturally subject to major floods linked
to monsoonal heavy precipitation during May–September. This study aims to quantify
anthropogenic influences on the changing risk of 2-week-long precipitation extremes
such as the July 2019 extreme cases, as well as events of shorter durations, over the
middle and lower reaches of Yangtze River basin (MLYRB). Precipitation extremes with
different durations ranging from 1-day to 14-days maximum precipitation accumulations
are investigated. Gridded daily precipitations based on nearly 2,400 meteorological
stations across China are used to define maximum accumulated precipitation extremes
over the MLYRB in July during 1961–2019. Attribution analysis is conducted by using
the Met Office HadGEM3-GA6 modeling system, which comprises two sets of 525-
member ensembles for 2019. One is forced with observed sea-surface temperatures
(SSTs), sea-ice and all forcings, and the other is forced with preindustrialized SSTs and
natural forcings only. The risk ratio between the exceedance probabilities estimated from
all-forcing and natural-forcing simulations is calculated to quantify the anthropogenic
contribution to the changing risks of the July 2019–like precipitation extremes. The
results reveal that anthropogenic warming has reduced the likelihood of 2019-like 14-
days heavy precipitation over the mid–lower reaches of the Yangtze River by 20%, but
increased that of 2-days extremes by 30%.

Keywords: precipitation extreme events, climate change, Yangtze (Changjiang) catchment, attribution studies,
anthropogenic influence
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INTRODUCTION

During July 3–16, 2019, the mid–lower reaches of the
Yangtze River basin (MLYRB) suffered from prolonged heavy
precipitation, with regional-mean record-breaking precipitation
total of 232 mm (90% higher) against the 1961–2010 July
climatology of maximum 14-days accumulated rainfall of
122 mm. This event endangered the main stream of the Yangtze
River, including Poyang Lake (China’s largest freshwater lake) and
Dongting Lake, by producing severe floods. Heavy rain and floods
killed 37 people, affected 10.3 millions of residents, and damaged
776,900 hectares of farmland across four provinces (China
Ministry of Emergency Management, 2020). The direct economic
loss is estimated to be at least 32 billion RMB (equivalent to
US $4.6 billion).

Tens of millions of people live in the floodplain of the
MLYRB, a habitable area that provides water resources
for domestic, farming, and industrial needs. However,
the MLYRB is naturally subject to major floods linked to
monsoonal heavy precipitation during May–September (Jiang
et al., 2008). In this region, water level rises and soils get
saturated gradually because of the accumulation of earlier-
stage (April–June) monsoon rainfall. When compounded with
subsequent heavy precipitation in the following months,
persistent events, in particular, catastrophic floods and
landslides, can occur.

Understanding the driving factors for precipitation extremes
matters for adaptation and mitigation measures against the
changing hydrometeorological hazards in this vulnerable region.
This study aims to address this scientific question by quantifying
anthropogenic influences on the changing risk of 2-week-long
precipitation extremes such as the July 2019 case, as well as events
of shorter durations, over the MLYRB.

DATA AND METHODS

Precipitation extremes during July 3–16, 2019, in the Yangtze
River basin (YRB), severely hit widespread regions (566,357 sq
km) within the study basin (Figure 1A). Gridded daily rainfall
observations (0.56◦ × 0.83◦) for 1961–2019 from∼2,400 quality-
controlled meteorological stations (Shen et al., 2010) are used.
This data set is provided by the China National Meteorological
Information Center.

The Met Office HadGEM3-GA6 attribution model at a spatial
resolution of 0.56◦ × 0.83◦ was applied in this study. The
model outputs include 525 members of all forced simulations
(Historical2019) conditioned on the observed 2019 sea surface
temperature (SST) and sea ice from the HadISST data set
(Rayner et al., 2003), and simulations of the natural climate
(Natural2019) with anthropogenic signals removed from 2019
SST patterns and with preindustrial levels. Additional 15-
member ensembles (Historical) spanning from 1960 to 2013
were ran using SST boundary conditions and historical forcing
conditions to provide a baseline climatology. More details for
the design of HadGEM3-GA6 attribution model are provided in
Christidis et al. (2013) and Ciavarella et al. (2018).

The multimodel ensembles from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) were also employed
to further corroborate the attribution results. Climate simulation
experiments of historical, historicalNat, and the Representative
Concentration Pathway projection scenario 8.5 (RCP8.5) are
used in this study. Specifically, historical runs reflect observed
atmospheric composition changes due to both anthropogenic
and natural forcings, whereas historicalNat only considers
the forcings of natural factors including solar irradiance and
volcanic aerosols (Van Vuuren et al., 2011). Only model runs
that provide daily-scale simulations in historical, historicalNat,
and RCP8.5 experiments (the latter are needed for extending
historical simulations) were used. This criterion leaves us 36
members from 16 models (Table 1). Then, two 36-member
ensemble simulations were constructed for the attribution
analysis. CMIP5 historicalNat runs for 1996–2005 were used as
natural-forcing runs (NAT), and RCP8.5 runs for 2016–2025
were used to represent the 2019 state driven by all forcings (ALL).
The selection of time periods for both CMIP5 ALL and NAT
simulations is to avoid impacts from major volcano activates
such as the 1991 eruption of Mount Pinatubo. Since the historical
runs terminate at the end of 2005, CMIP5 historical (1961–2005)
and RCP8.5 simulations (2006–2010) were combined to provide
a baseline climatology. This is because the projected greenhouse
gas forcings of RCP8.5 are more consistent with the present
realization than other scenarios (Peters et al., 2013). Note
that, unlike HadGEM3-GA6 simulations based on 2019 SSTs,
CMIP5 simulations encompass a wide range of ocean states.
Consequently, the event probabilities estimated hereafter are
differently conditioned, such that the results from the two model
sets will not be directly comparable.

Extreme precipitation events of varying durations
(RxNday, N = 2, 3, 7, 14) are defined based on the regional-
mean maximum accumulated rainfall during July. These
RxNday extreme events were expressed as the precipitation
anomaly (mm/day) with respect to the 1961–2010 climatology,
serving to remove the mean bias in model climatology. The
exceedance probability values of the 2019-like RxNday extreme
events were estimated from the generalized extreme value
(GEV) (Jenkinson, 1955; Ailliot et al., 2011) fitted probability
distribution function (PDF) of precipitation anomalies. The risk
ratios (RR = PALL/PNAT) between the exceedance probabilities
of the RxNday precipitation anomalies estimated from all
forcings (PALL) and natural-only forcing simulations (PNAT)
were calculated to quantify the changing risk of the 2019-
like precipitation extremes due to anthropogenic influences.
RR uncertainty with 90% confidence interval (90% CI) was
estimated by identifying the empirical 5th and 95th percentiles
among 1,000-times resampling of model ensemble members by
using Monte Carlo bootstrapping procedure (Christidis et al.,
2013). Doing each bootstrap, model ensemble simulations are
randomly resampled with replacement to get a set of new data
with the same length as the original. A two-sample Kolmogorov–
Smirnoff (K-S) test (Hodges, 1958) with a significance level
of 0.05 was applied to test whether the distributions of
observed and simulated precipitation anomalies during 1961–
2010 are from the same population. Note that precipitation
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FIGURE 1 | (A) Normalized observed anomalies (%) in precipitation accumulations for 3–9 July 2019 with respect to the Rx7day July precipitation anomalies during
1961–2010 climatology. The study basin (dark green) was located at the mid-lower reaches of the Yangtze River Basin; (B) Time series of observed and simulated
Rx7day July precipitation anomalies with respect to the 1961–2010 climatology. The shaded areas indicate the spread of 15 and 36 members of HadGEM3-GA6
Historical and CMIP5 ALL simulations, respectively, whereas the dotted lines show their ensemble means; (C) The empirical return periods of RxNday July events
estimated from the observations during 1961–2019; (D) PDFs of Rx7day July precipitation anomalies for the observations, HadGEM3-GA6 Historical and CMIP5
ALL ensemble simulations during 1961–2010 climatology.

anomalies estimated from each model were calculated with
their own 1961–2010 climatology, serving to remove the model
climatological mean bias.

RESULTS AND DISCUSSION

During July 3–16, 2019, the mid–lower reaches of the Yangtze
River were continuously hit by heavy rainfall, of which from July
3–9, precipitation totals more than doubled in 70% of the grids
and even tripled in 40% of the grids with respect to the 1961–2010
climatological counterparts during July (Figure 1A). From the
perspective of regional mean, the observed 2-, 3-, 7-, and 14-days
events are all the wettest case on record since 1961 (Figure 1C).

Model performances are evaluated against the 1961–2010
climatology. It is clear that the observations were enveloped
in their 90% CI uncertainty range for Rx7day event. The
probability distributions of simulations and observations are
not distinguishable based on visual inspection (Figure 1D)

and K-S test (Pval=0.97 for HadGEM3-GA6 and Pval=0.63 for
CMIP5, Table 2). Note that while precipitation anomalies are
reasonably simulated by HadGEM3-GA6 and CMIP5, residual
errors (systematic and random) remain in both models in terms
of actual precipitation values.

To quantify the anthropogenic influences on the changing
risk of precipitation extremes, the distributions of all forcings
and natural-only forcing simulations are compared. For Rx2day
event, the PDFs of all forcing simulations for both HadGEM3-
GA6 and CMIP5 models shift toward the larger precipitation
anomalies (Figure 2A), which indicates the increased probability
of daily extreme event when anthropogenic influences are
included. Specifically, the exceedance probability of HadGEM3-
GA6 Natural2019 increases from 0.008 (90% CI, 0.004–0.013)
to HadGEM3-GA6 Historical2019 of 0.011 (90% CI, 0.006–
0.016), giving an RR of 1.36 (90% CI, 0.63–3.08) for the 2019-
like Rx2day event. While PNAT of CMIP5 NAT increases from
0.016 (90% CI, 0.007–0.024) to PALL of 0.020 (90% CI, 0.011–
0.029) for CMIP5 ALL, which gives the empirical RR of 1.27
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TABLE 1 | List of 36 ensemble members from 16 CMIP5 models used in this
study.

Models Resolution (lat × lon) No. of members

ACCESS1.3 1.25× 1.875 1

BNU-ESM 2.7906× 2.8125 1

CCSM4 0.94× 1.25 3

CESM1-CAM5 0.94× 1.25 1

CSIRO-Mk3.6.0 1.865× 1.875 10

CanESM2 2.7906× 2.8 5

GFDL-CM3 2.0× 2.5 1

GFDL-ESM2M 2.0225× 2.5 1

HadGEM2-ES 1.25× 1.875 4

IPSL-CM5A-LR 1.8947× 3.75 3

IPSL-CM5A-MR 1.2676× 2.5 1

MIROC-ESM-CHEM 2.7906× 2.8125 1

MIROC-ESM 2.7906× 2.8125 1

MRI-CGCM3 1.1215× 1.125 1

NorESM1-M 1.8947× 2.5 1

BCC-CSM1 2.7906× 2.8125 1

(90% CI, 0.60–2.94). That is, the likelihood of 2019-like Rx2day
precipitation extreme has increased by about 30% over the study
basin because of the anthropogenic influences. Return periods
of simulations also confirm that 2019-like daily precipitation
extreme happens more frequently because of anthropogenic
influences (Figure 2B).

For the Rx14day event, however, the PDFs shift toward the
smaller anomalies in all forcing simulations compared to those
in natural-only forcing simulations, particularly for HadGEM3-
GA6 simulations (Figure 2C). Specifically, anthropogenic
influences reduce the exceedance probability of the 2019-like
Rx14day event from 0.006 (90% CI, 0.002–0.010) of PNAT to 0.003
(90% CI, 0.001–0.006) of PALL for HadGEM3-GA6 simulations,
which gives an empirical RR of 0.50 (90% CI, 0.14–1.42). The
CMIP5 multimodel attribution system provides similar results,
i.e., RR of 0.82 (90% CI, 0.49–2.12). Thus, the likelihood of
2019-like Rx14day persistent heavy precipitation is reduced by
about 20% at least over the study basin because of anthropogenic
forcings. Return periods of simulations also confirm that the
persistent heavy precipitation became less frequent in July
because of anthropogenic influences (Figure 2D).

The intensification of daily precipitation extremes could be
largely related to atmospheric moistening as temperature rises
due to anthropogenic forcings (Allen and Ingram, 2002), while
the reduced probability of 14-days extreme rainfall due to
anthropogenic forcings might be largely induced by aerosols.
By scattering and absorbing solar radiation, increased aerosols
over East Asia lead to the weakening of the East Asian
summer monsoon (EASM) and reduced summer seasonal mean
precipitation over monsoon regions (Song et al., 2014; Tian
et al., 2018; Dong et al., 2019; Zhou et al., 2020). These changes
induced by aerosols can overwhelm the greenhouse gasses–
induced intensification of EASM and precipitation (Song et al.,
2014; Tian et al., 2018; Zhou et al., 2020), leading to weakening
of EASM, reduced summer mean, and summer persistent (e.g.,
14-days) heavy rainfall. Further disentangling the contributions
from greenhouse gasses and aerosols on extreme precipitation
on different time scales would improve understanding of the
attribution outcome.

These findings are consistent with the attribution outcomes in
Li et al. (2018, 2021) and Zhang et al. (2020), which all reported
anthropogenic influences reduced the likelihood of warm-season
persistent precipitation extremes but focused on subregion at
the lower reaches of YRB, central-western China, and southern
China, respectively. As the other side of the coin, Lu et al.
(2021) found that the anthropogenic influences increased the
2019 May–June like droughts over southern China [Figure 2D in
Lu et al. (2021)].

Similar attribution analysis was also conducted with respect
to the RxNday (N = 2, 3, 7, 14) precipitation extremes during
summertime from June to August. These supplementary
analyses serve to test the sensitivity of attribution conclusions
on timing (entire summer vs. July) of cases considered.
It was found that anthropogenic influences have reduced
the likelihood of similar summertime Rx14day precipitation
extremes by about 20% in HadGEM3-GA6 and 10% in
CMIP5, whereas the likelihood of 2019 July-like Rx2day
precipitation extremes has increased about 35% and 50%
in HadGEM3-GA6 and CMIP5, respectively (Supplementary
Figure S2). The attribution analysis was also repeated based
on percentage anomaly thresholds (precipitation anomaly
divided by summer/July climatology) for events of various
durations (figures omitted). The qualitative statement that
anthropogenic forcings have made short-duration precipitation

TABLE 2 | Attribution results for July RxNday events with risk ratio, exceedance probability from all forcings, and natural-only forcing simulations.

Model Event RR (90% CI) PALL (90% CI) PNAT (90% CI) K-S test (Pval)

HadGEM3-GA6 Rx2day 1.36 (0.63–3.08) 0.011 (0.006–0.016) 0.008 (0.004–0.013) 0.46

Rx3day 1.45 (0.60–3.77) 0.008 (0.004–0.013) 0.006 (0.003–0.010) 0.53

Rx7day 1.19 (0.52–2.98) 0.007 (0.004–0.012) 0.006 (0.003–1.010) 0.97

Rx14day 0.50 (0.14–1.42) 0.003 (0.001–0.006) 0.006 (0.002–0.010) 0.86

CMIP5 Rx2day 1.27 (0.60–2.94) 0.020 (0.011–0.029) 0.016 (0.007–0.024) 0.32

Rx3day 1.21 (0.50–3.47) 0.012 (0.006–0.019) 0.010 (0.004–0.016) 0.43

Rx7day 1.60 (0.67–3.96) 0.012 (0.006–0.019) 0.007 (0.003–0.012) 0.63

Rx14day 0.82 (0.49–2.12) 0.025 (0.016–0.035) 0.031 (0.012–0.042) 0.66
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FIGURE 2 | PDFs of precipitation anomalies for the HadGEM3-GA6 and CMIP5 model ensembles with all-forcings (orange) and natural-only forcings (blue)
simulations for (A) Rx2day and (C) Rx14day extreme events; Return periods of (B) Rx2day and (D) Rx14day extreme events estimated from the HadGEM3-GA6 and
CMIP5 model ensembles; Empirical risk ratios (vertical line) with 90% confidence interval (shaded) for RxNday extreme events estimated from the (E) HadGEM3-GA6
and (F) CMIP5 multimodel ensembles.

extremes more frequent but long-lived events less frequent
robustly holds.

CONCLUSION

This attribution analysis reveals that anthropogenic forcings
reduce the likelihood of 2019 July-like persistent heavy

precipitation event (Rx14day) by about 20% at least, but
increase those of daily precipitation extremes (Rx2day) by
about 30% over mid–lower reaches of the YRB. The findings
are robust against attribution models, timing, and the form
of thresholds (absolute anomalies or percentage anomalies)
considered. This study highlights that despite reduced risks from
long-lasting precipitation extremes, anthropogenic forcings pose
the populous and highly urbanized YRB at higher risks of flash
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floods and resultant hydrometeorological hazards due to the
increase of shorter-duration precipitation extremes.
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Forecasting rapid intensification (RI) of the South China Sea (SCS) tropical cyclones (TCs)
remains an operational challenge, mainly owing to the incomplete understanding of its
physical mechanisms. Based on TC best-track data, atmospheric analysis data, and sea
surface temperature data, this study compares temporal evolution characteristics of
environmental conditions from the previous 24 h to the onset time for RI and non-RI
TCs in the SCS during 2000–2018, and then identifies key factors for RI of the SCS TCs
using the box difference index and stepwise regression. A combination of strong
divergence in the upper troposphere and strong convergence in the boundary layer,
weak deep-layer vertical wind shear, fast storm translation speed, and high TC
intensification potential (i.e., maximum potential intensity minus current intensity) north
of the storm center at the previous 24 h are favorable for RI of the SCS TCs, and their
importance for RI is in descending order. The results may shed light on operational
forecasting of rapid intensification of the SCS TCs.

Keywords: tropical cyclone, South China Sea, rapid intensification, environmental factors, box difference index

INTRODUCTION

The South China Sea (SCS) is the largest semi-closed sea in the tropical western Pacific. Its
basin is small and is surrounded by densely populated Asian countries. The SCS tropical
cyclones (TCs) include the TCs generated in the SCS and the TCs moving into SCS from the sea
to the east of the Philippines. They are usually featured by short duration and variable path and
intensity. The SCS TCs often make landfall in the coastal areas of South China and Vietnam
and then bring severe rainfalls, gales and storm surges, often leading to serious losses of life
and property near the landing sites. For example, super typhoon Rammasun (1409) made
landfall in Wenchang, Hainan Province, causing direct economic losses of nearly 27 billion
yuan in the three provinces of South China. Rammasun experienced rapid intensification (RI)
twice when it was near shore, which caused large errors in the TC intensity forecast, seriously
affecting the strategy making on preventing typhoons and reducing disasters. Therefore, the
in-depth research on the influencing factors of TC RI in the SCS has great practical significance
for improving the operational forecast of TC intensity and reducing the typhoon disaster
losses.
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The evolution of TC intensity involves complex physical
processes, and the factors affecting TC intensity change are
mainly from three aspects. The first is the influence of the
underlying surface, such as the ocean. The ocean heat is the
dominant factor affecting the formation and development of TCs,
which can be expressed by two related factors: ocean heat content
and sea surface temperature (SST). The SST, which can affect the
latent heat, sensible heat and water vapor fluxes transported from
the ocean into TCs (e.g., Emanuel, 1986; Holland, 1997; Gao and
Chiu, 2010; Gao et al., 2016), is a key factor determining the
maximum potential intensity (MPI; Emanuel, 1988) of TCs.
Large ocean heat content can provide the energy for TC
development and offset the cooling effect of ocean upwelling
(e.g., Shay et al., 2000). The second aspect is the internal dynamics
of TCs. For example, the asymmetry of the TC inner core can
limit the development of TCs (Yang et al., 2007). When the TC
eyewall starts to replace, the intensity would usually increase;
later, when the inner-core structure becomes a concentric ring,
the intensity would decrease; when the wind speed of the outer
eyewall exceeds that of the inner eyewall, the TC would intensify
again and could often reach its maximum intensity in its lift cycle
(Sitkowski et al., 2011), and meanwhile the radius of maximum
wind significantly decreases (Yang et al., 2017). The third aspect is
the effect of the large-scale environment field, such as the upper-
level trough. When the warm outflow of TC is close to the cold
trough, the increase of the temperature gradient leads to the
strengthening of the upper-level jet. If the TC center is exactly
located at the right of the jet entrance, the secondary circulation
related to this jet is conducive to the development of the
ascending motion and TC (Hanley et al., 2001). The
environmental vertical wind shear (VWS) could also affect the
TC intensity. The weak VWS is often considered to be conducive
to TC RI (e.g., Merrill, 1988; Zeng et al., 2007; Bai and Wang,
2016), but the mechanisms are different, mainly including the
theory of ventilation flow (Gray, 1968), the secondary circulation
effect (Tuleya and Kurihara, 1981), the tilt and stability effect
(Demaria, 1996), and the Rossby penetration theory (Jone, 1995),
and so on.

Previous studies on the RI of the SCS TCs show that RI
occurs further south, and is associated with weaker VWS,
weaker easterly wind at 200 hPa, and smaller radius of
15.4 m s−1 winds compared to non-RI TCs (Li et al., 2011).
The VWS and low-level water vapor convergence are the main
factors affecting TC RI in the SCS (Hu and Duan, 2016). TC RI
in the SCS mostly occurs after the monsoon season when the
middle-latitude trough invades the SCS and the southwesterly
wind in the southern SCS is still strong (Chen et al., 2015). The
anomalous warmer SST, the stronger low-level jet, the stronger
cross-equatorial air flow, the weaker environmental VWS and
the stronger upper-level outflow play important roles in RI of
the super typhoon Ramason (Cheng et al., 2017). The specific
location and timing of the nearshore RI of TCs in the SCS are
related to the adjustment of the East Asian summer monsoon

FIGURE 1 | Tracks of the SCS TCs during 2000–2018. Black box
denotes the SCS region defined in this study. Colors of the track represents
different TC intensity (TD, tropical depression; TS, tropical storm; STS, severe
tropical storm; TY, typhoon; STY, severe typhoon; Super TY, super
typhoon).

FIGURE 2 | (A) Original total wind (m s−1) field, and the corresponding
(B) environmental wind field and (C) disturbance wind field at 850 hPa at 0000
UTC August 9, 2000.
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when the Meiyu period in the Yangtze River Basin ends. The
adjustment of the East Asian summer monsoon can not only
strengthen the interactions between TCs and the upper-level
trough, but also make the water vapor flux accompanied by the
monsoon surge enter the TC circulation, preventing the dry air
accompanied by the western Pacific subtropical high (WPSH)
from intruding into the TC circulation. Thus, it is conducive to
the occurrence of the nearshore RI of the SCS TCs (Qiu et al.,
2020).

The above researches on RI of the SCS TCs only list some
favorable environmental factors, and fail to comprehensively
compare the importance of those factors and to analyze the
evolution of the factors before the onset of RI. In this paper, we
investigate the temporal evolution characteristics of potential
environmental factors during a 24 h period before the onset of
TC RI in the SCS, so as to find the indicative precursors and the
key influence areas of significant factors by composite analyses.
Furthermore, based on the box difference index (BDI; Fu et al.,

2012) of each factor calculated in the key influence area, the
key environmental factors for RI of the SCS TCs will be
identified. This research is expected to provide some
references for the operational intensity prediction of the
SCS TCs.

DATA AND METHOD

Data
The TC information at a 6 h interval (latitude and longitude of
the TC center and the maximum sustained wind speed) is
obtained from the TC best-track dataset (Ying et al., 2014)
released by the Shanghai Typhoon Institute of the China
Meteorological Administration (CMA). The atmospheric
environment fields are obtained from the FNL data released
by the United States National Centers for Environmental
Prediction (NCEP), with an interval of 6 h and a spatial

FIGURE 3 |Meridional cross sections of environmental relative vorticity (10−5 s−1). (A,D,G) are the composites for RI TCs at −24, −12, and 0 h, respectively; (B,C,H)
are the composites for non-RI TCs at −24, −12, and 0 h, respectively; (C,F,I) are the differences between RI and non-RI TCs at −24, −12, and 0 h, respectively, shadings
denote significant differences above the 90% confidence level.
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resolution of 1°. The daily SST data (OISST V2; Reynolds et al.,
2007) is released by the United States National Oceanic and
Atmospheric Administration (NOAA), with a spatial resolution
of 0.25°. We use the above datasets during our study period
2000–2018.

Method
To exclude the influence of land, the TCs located over the SCS
(5–22°N, 105–120°E) are selected as the research objects. The
tracks of the SCS TCs from 2000 to 2018 are shown in Figure 1. In
previous studies, the 95th percentile of all the samples of 24-h
changes in maximum sustained wind speed (ΔV24 � V+24h − V0h)
for TCs in an ocean basin was often used as the threshold to
define RI (e.g., Kaplan and DeMaria, 2003). In this paper the 95th
percentile of all ΔV24 samples of TCs in the SCS during the study
period is 12 m s−1 (Supplementary Figure S1), so ΔV24 ≥ 12 m
s−1 is defined as an RI event, and ΔV24 < 12 m s−1 is defined as a
non-RI event.

The RI/non-RI onset time is recorded as 0, 12, and 24 h
before the onset are recorded as −12 and −24 h, respectively.

For the horizontal two-dimensional physical quantity field, an
area of 20° × 20° outside the TC center is used as the analysis
area. For the three-dimensional physical quantity field, a
longitude/latitude-height cross section with a horizontal
span of 20° is used, and composite analyses are performed
for the RI and non-RI events of the SCS TCs at three times
(i.e., −12, −24, and 0 h), and the Student’s t test is used to judge
the significance of the difference in physical quantity between
the two groups of samples at the same time. There are 34 RI
samples and 463 non-RI samples at −24 h. For −12 and 0 h, the
numbers of RI samples are both 37, and the numbers of non-RI
samples are both 511.

The environmental divergence, relative vorticity, VWS and
relative humidity are all obtained from the large-scale
environmental field in which the TC vortexes have been
filtered from the original field. This vortex-removing
algorithm (Kurihara et al., 1993) can completely eliminate
the disturbances with the wavelength less than 1,000 km. The
850-hPa wind field at 0000 UTC on August 9, 2000 is used as an
example to verify the vortex-removing algorithm (Figure 2). At

FIGURE 4 | Same as Figure 3, but for environmental divergence (10−5 s−1).
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that time there were two TCs (Figure 2A) in the western North
Pacific (WNP), and the algorithm can completely remove the
two TC vortexes (Figure 2C). The large-scale monsoon gyre still
exists (Figure 2B) after the vortex removal, indicating good
performance of the algorithm.

Following Wang et al. (2015), the environmental VWS is
defined as the difference in environmental wind vector
between each level and 850 hPa:

VWSlev−850 �
����������������������
(ulev − u850)2 + (vlev − v850)2

√
(1)

where u and v are the zonal and meridional wind speed after
removing the vortexes, respectively, and the subscript represents
the level.

The area with significant difference between RI and non-RI
events for each factor is identified, and the areal average is
calculated. Following Fu et al. (2012), the BDI is then
calculated as

BDI � MRI −MnonRI

σRI + σnonRI
(2)

whereMRI and σRI (MnonRI and σnonRI) represent the average and
standard deviation of the physical quantity for the RI (non-RI)
samples, respectively.

COMPOSITE ANALYSES OF POTENTIAL
ENVIRONMENT FACTORS FOR RI

Relative Vorticity
The temporal evolutions of the meridional cross sections of
environmental relative vorticity are shown in Figure 3. At
−24 h, there is a broad region of positive relative vorticity near
the RI TC center at the middle and lower levels, and the
negative relative vorticity is dominant at the upper levels. The
relative vorticity to the north of the TC center is smaller than
that to the south, and the vorticity distribution of non-RI TCs
is similar. At −12 h, the middle- and lower-level relative
vorticity of RI and non-RI TCs increases significantly, and
the maximum positive vorticity at lower troposphere reaches
2 × 10−5 s−1. From −12 to 0 h, the relative vorticity variations of
the two TC types are small. The temporal evolutions of the
zonal cross sections of the relative vorticity are similar to those
of the meridional cross sections, except that the zonal
distribution is more symmetrical (figure not shown). The
relative vorticity at the three times (−24, −12, and 0 h) near
the RI TC center is larger than that near the non-RI TC center,
and the difference is the most significant at the middle and
lower levels (1,000–300 hPa) at −24 h, which has certain
indicative meaning for RI. The larger relative vorticity at
lower levels usually corresponds to a stronger Ekman

FIGURE 5 |Composite 850-hPa environmentalwind fields (m s−1) for RI and non-RI TCs and their differences. (A,D,G) are the composites for RI TCs at –24, –12, and 0 h,
respectively; (B,C,H) are the composites for non-RI TCs at –24, –12, and 0 h, respectively; Shadings in (C,F,I) denote significant differences above the 90% confidence level.
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pumping, that is, the stronger lower-level convergent inflow,
which is conducive to the maintenance and development of the
TC vorticity (Xu et al., 2017). The strong cumulus convection
near the TC center transports the lower-level positive vorticity
upward, thus there is also large cyclonic vorticity at middle
levels.

Divergence
Figure 4 shows the temporal evolutions of the meridional cross
sections of environmental divergence. At −24 h, there is strong
divergence at 200–150 hPa near the RI TC center, and weak
convergence in the boundary layer. Non-RI TCs have a similar
configuration, but the upper-level divergence and boundary-
layer convergence of RI TCs are both significantly stronger
than those of non-RI TCs, which can be used as a precursory
signal for RI. At −12 h, the upper-level divergence and
boundary-layer convergence near the RI TC center
significantly enhance, and the evolution for non-RI TCs is
similar. At 0 h, the upper-level divergent area of RI TCs
expands, with the maximum divergence exceeding 1.4 ×
10−5 s−1, while the upper-level divergence of non-RI TCs
weakens slightly. The temporal evolutions of the zonal cross
sections of divergence are similar (figure not shown). The
upper-level divergence and boundary-layer convergence of RI
TCs at the three times (−24, −12, 0 h) are significantly stronger

than those of non-RI TCs. The strong upper-level divergent
environment provides a favorable “pumping” effect. Together
with the convergence in the boundary layer, the “pumping”
effect is reinforced, which is conducive to the occurrence of TC
RI (Mei and Yu, 2016).

Wind Field
The composite environmental wind fields at upper, middle
and low levels are plotted to analyze the synoptic patterns for
the two types of SCS TCs. Figure 5 shows the composite
environmental wind fields at 850 hPa. The common feature of
the low-level wind fields for RI and non-RI TCs is that, the
easterly airflow southwest of the WPSH and the southwest
monsoon from the Bay of Bengal merge into a cyclonic gyre
near the TC center. At −24 h, the cyclonic wind field near the
RI TC center is significantly stronger than that near the non-
RI TC center, which is consistent with the stronger boundary-
layer convergence for RI TCs. From −12 to 0 h, the anomalous
easterly wind of RI TCs is stronger than that of non-RI TCs.
There are westerly troughs on the northeast side of RI TCs at
the three times, which is consistent with Chen et al. (2015).

The composite environmental wind field at 500 hPa is
shown in Supplementary Figure S2. The westerly trough is
located to the north, the continental high is located to the west,
and the WPSH is located to the east of the two types of TCs.

FIGURE 6 | Same as Figure 5, but for the composite 200-hPa environmental wind fields (m s−1).
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These systems for RI TCs are significantly stronger at the three
times (−24, −12, 0 h) than those for non-RI TCs. The cold air
mass behind the westerly trough invades southward into the
TC, and triggers baroclinic deep convection and produces
potential vorticity (PV) anomalies outside the TC inner-
core area. The inward transport of PV anomalies and the
subsequent symmetrization of the TC circulation are
conducive to RI of TCs (May and Holland, 1999; Moller
and Montgomery, 2000; Nolan et al., 2007). Besides, the
continental high accompanied by the westerly trough can
strengthen the cyclonic horizontal shear and convergence,
which is also conducive to TC intensification (Chen et al.,
2015).

Figure 6 shows the composite environmental wind field at
200 hPa. Both types of TCs are located to the south of the upper-
level westerly jet. RI TCs are located in the easterly flow on the
equator side of the upper-level anticyclonic ridge. The
southwestward outflow in the south and the northeastward
outflow in the northeast are significantly stronger than those

associated with non-RI TCs, which is consistent with the stronger
upper-level divergence of RI TCs mentioned above. The more
favorable upper-level outflow channels of RI TCs can strengthen
the TC secondary circulation, which is conducive to the spin-up
of the TC primary circulation.

VWS
The temporal evolutions of the meridional and zonal cross
sections of environmental VWS are shown in Figures 7, 8,
respectively. The spatial distributions of VWS for the RI and
non-RI TCs are similar. The VWS gradually increases from the
lower to upper troposphere. The VWS near the TC center is
notably weaker than that north and south of the center, and the
VWS to the north is stronger than that to the south. However,
the zonal distribution of VWS is more uniform. The VWS
evolutions of the two types of events are somewhat different.
During the 24-h period, the VWS around the RI TC center
shows a decreasing tendency while the VWS of non-RI TCs
changes little; the VuWS of RI TCs are always weaker than that

FIGURE 7 | Same as Figure 3, but for environmental VWS (m s−1).
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of non-RI TCs, and the deep-layer shear between the upper
levels and 850 hPa around the RI TC center is always less than
10 m s−1. The deep-layer shear northwest of the TC center at 0 h
shows the most significant difference between RI and non-RI
TCs (Figures 7, 8). However, Wang et al. (2015) pointed out
that the low-level shear between 850 and 1,000 hPa was more
negatively correlated with intensity change of the WNP TCs
than deep-layer shear. This inconsistency suggests that the
relative importance of VWS in different layers for TC
intensity change may depend on large-scale circulations over
the specific ocean basin.

Relative Humidity
The temporal evolutions of the meridional and zonal cross
sections of environmental relative humidity are indicated in
Figures 9, 10, respectively. At the three times (−24, −12, and
0 h), the spatial distributions of relative humidity of RI and
non-RI TCs are similar, featuring wet upper and lower
troposphere and dry middle troposphere, with the driest

middle-level air located northwest of the TC center. At
−24 h, there is a significant difference in relative humidity
southeast of the TC center at the middle and upper levels,
which can be used as a precursor to RI. Over time, the middle-
and upper-level air southeast of the TC center humidifies to a
certain extent, and the significant difference in relative
humidity southeast of the TC center at the middle and
upper levels is still maintained. This may be related to the
continuous water vapor transport by the southeasterly wind
southwest of the WPSH.

The intrusion of middle-level dry air from the northwest
to the TC inner core can suppress the development of
cumulus convection and the release of latent heat of
condensation, which is not conducive to TC intensification
(Braun et al., 2012; Ge et al., 2013). We notice that the
middle-level humidity near the RI TC center is
significantly higher than that of non-RI TCs, so it can
effectively resist the intrusion of middle-level dry air from
the northwest (Gao et al., 2017). In addition, moist air is

FIGURE 8 | Same as Figure 7, but for zonal cross sections.
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transported from the southeast to the inner core of RI TCs.
Both are conducive to the development of moist convection,
thus leading to TC RI.

SST
The temporal evolution of the composite SST is shown in
Figure 11. The spatial patterns for two types of TCs are both
characterized by cold SST in the north and warm SST in the
south, and SST near the TC center exceeds 28°C, which meets
the necessary SST condition for RI (Holliday and Thompson,
1979). SST of RI TCs around the storm center is significantly
higher than that of non-RI TCs at the three times. This result
is consistent with previous studies (e.g., Wang et al., 2015;
Gao et al., 2016). TCs tend to intensify at a higher rate under
higher SST because of a larger supply of surface latent and
sensible heat fluxes (e.g., Emanuel, 1986; Gao and Chiu,
2010). The meridional SST gradient does not show
meaningful differences between RI and non-RI SCS TCs
(figure not shown).

Intensification Potential (POT)
MPI is the theoretically-estimated maximum intensity that a TC can
achieve under current atmospheric and ocean conditions (Emanuel,
1988). POT is the difference between MPI and current intensity,
representing the intensification potential of TCs. The temporal
evolution of the composite POT is shown in Figure 12. The
POT of RI and non-RI TCs decreases from the south to the
north, and gradually reduces with time. At −24 h, the POT west
and north of RI TCs is significantly greater than that of non-RI TCs.
Since most of TCs move westward or northward (dsl), the POT over
40 m s−1 in the west and north at −24 h is conducive to the
occurrence of RI. Therefore, the POT north of TCs in the SCS at
−24 h has a good predictive significance for RI.

Key Factors for RI
According to the above composite results, the time with the
most significant difference in each factor between RI and non-RI
TCs and the area with significant difference are given in Table 1,
and the corresponding areal average for each factor is calculated.

FIGURE 9 | Same as Figure 3, but for environmental relative humidity (%).
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Figure 13 shows the BDI values of their areal averages and TC
translation speed as well as the t-test results. The difference in
environmental divergence between the upper and lower levels at
−24 h, the deep-layer environmental VWS at 0 h, SST around the
TC center, the POT north of the TC center at −24 h, the middle-
and upper-level environmental relative humidity southeast of the
TC center at −24 h, and TC translation speed from 0 to 24 h pass
the significance test at the 95% confidence level, indicating that
they are important factors for RI of the SCS TCs.

To further clarify the importance of different factors for RI,
stepwise regression is applied on the normalized variables
including the predictand ΔV24 and the potential predictors
listed in Table 1. The regression equation trained with the
95% confidence level is

ΔV24 � 1.06 + 1.39 pDIV − 0.62 pVWS + 0.31 p SPD

+ 0.10 pPOT (3)

The regression equation confirms that the difference in
environmental divergence between the upper and lower levels
at −24 h, the deep-layer environmental VWS at 0 h, TC
translation speed from 0 to 24 h, and the POT north of the
TC center at −24 h are key factors for RI of the SCS TCs. Their
decreasing absolute values of regression coefficients suggest their
importance in that order.

Figure 14 shows the boxplots for six factors of RI and non-
RI TCs. The RI samples are more concentrated than the non-
RI samples. Although all factors passing the 95% significance
test, the boxes of RI and non-RI TCs partly overlap. Therefore,
it is difficult to forecast RI by using an individual factor. In
general, such conditions, including strong divergence in the
upper troposphere and strong convergence in the lower
troposphere, weak deep-layer VWS, large POT north of the
TC center at −24 h, and fast TC translation speed, are favorable
for RI of the SCS TCs.

FIGURE 10 | Same as Figure 9, but for zonal cross sections.
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CONCLUSION AND DISCUSSION

The temporal evolution characteristics of the environmental
fields of RI and non-RI TCs in the SCS during 2000–2018
have been compared in this paper, and the following
characteristics of RI TCs have been found. From −24 to
0 h, the positive vorticity at 1,000–300 hPa, the divergence
at 200–150 hPa, and boundary-layer convergence continues
to increase. The deep-layer shear between the upper levels
and 850 hPa around the TC center is always less than 10 m
s−1. The environmental moist layer is thick. The underlying
SST is high. The POT north of the TC center is larger than 40
m s−1 at −24 h. Then, the average environmental factors
are calculated over the areas with significant difference
between the two types of TCs. Combined with the BDI

and t-test method as well as stepwise regression, it has
been found that the configuration of strong upper-level
divergence and strong boundary-layer convergence, weak
deep-layer VWS, fast TC translation speed, and large POT
north of the TC center are the key factors for RI of the
SCS TCs, and their importance to the RI decreases in
that order.

Compared with TCs in the entire WNP basin, the
environmental fields conducive to the occurrence of TC
RI in the SCS are somewhat different. First, RI TCs in the
SCS are accompanied by higher environmental relative
humidity at middle and upper levels, while RI TCs in
the WNP is accompanied by higher low-level relative
humidity (Shu et al., 2012). Secondly, RI TCs in the SCS
have weaker deep-layer VWS, while RI TCs in the WNP

FIGURE 11 | Same as Figure 5, but for SST (°C) in 20° × 20° areas around the TC center.
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FIGURE 12 | Same as Figure 11, but for POT (m s−1).

TABLE 1 | The selected time and range for calculating the areal average of each environmental factor.

Variable Description Time
(h)

Vertical and horizontal ranges for areal average

DIV Difference between upper-level and lower-level
divergence

−24 200–150 hPa, –6 to 6° in both zonal and meridional directions; 1,000–850 hPa, –3 to 6° in
meridional direction, and –6 to 4° in zonal direction

VWS Wind shear between the upper levels and
850 hPa

0 400–100 hPa, 0–4° in meridional direction, and −8 to 0° in zonal direction

SST Sea surface temperature 0 −2 to 2° in meridional direction, and −2 to 2° in zonal direction
POT MPI minus current intensity −24 0–6° in meridional direction, and –8 to 6° in zonal direction
RH Middle–upper-tropospheric relative humidity −24 500–200 hPa, −4 to 1° in meridional direction, and 0–8° in zonal direction
VOR Middle–lower-tropospheric relative vorticity −24 1,000–300 hPa, −2 to 5° in meridional direction, and −4 to 2° in zonal direction
SPD TC translation speed 0 to +24 N/A
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have weaker low-level VWS (Wang et al., 2015). Thirdly, RI
TCs move significantly faster than non-RI TCs in the SCS,
while there is no significant difference in translation speed

between RI and non-RI TCs in the WNP (Shu et al., 2012).
In addition, the areas with significant differences in these
key factors are also quite different from the areas for
calculation of the related predictors in operational
statistical intensity prediction schemes of the WNP TCs
(e.g., Knaff et al., 2005; Gao and Chiu, 2012), indicating
that the environmental factors affecting intensity change of
TCs in the SCS and WNP are somewhat different. Thus, we
should deal with the predictors separately when
establishing the statistical intensity prediction models
for the SCS TCs.

In this study, some key environmental factors for RI of the
SCS TCs have been identified through statistical methods.
However, some samples of these factors overlap in the
boxplots of RI and non-RI TCs, hence it is difficult to
effectively forecast RI by using an individual factor. In the
near future, combined with a variety of techniques, we will
use these key factors to establish TC intensity prediction
models, aiming to make more accurate forecasts for RI of the
SCS TCs. Due to the limitation of data availability, some
factors such as ocean heat content and mixed layer depth,
which could also contribute to RI, are not analyzed in this
study. The importance of these factors in intensity change of
the SCS TCs would be examined when the data over a long
period of time are available.

FIGURE 13 | BDI values of the environmental factors listed in
Table 1. Filled boxes denote those factors significant above the 95%
confidence level.

FIGURE 14 | Boxplots of the environmental factors for RI and non-RI TCs. The top (bottom) of each dashed line corresponds to the maximum
(minimum) value. The upper (lower) boundary of each box denotes the 75th (25th) percentile, and the red line (black cross sign) inside the box denotes the
median (mean).
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Prediction of the Variability of
Changes in the Intensity and
Frequency of Climate Change
Reinforced Multi-Day Extreme
Precipitation in the North-Central
Vietnam Using General Circulation
Models and Generalized Extreme
Value Distribution Method
Pham Quy Giang*

Faculty of Environment, Ha Long University, Quang Ninh, Vietnam

Flooding of downstream agricultural fields and cities is normally caused by consecutive
days of extreme precipitation in upstream areas. As climate change is widely projected to
accelerate the hydrological cycle, concerns about the increase in frequency and intensity of
extreme precipitation arise. The present study used Pattern Scaling coupled with
Generalized Extreme Value (GEV) distribution to calculate changes in multi-day extreme
precipitation in the North Central Vietnam in 2050, 2070, and 2090 under three AR5’s
Representative Concentration Pathways RCP2.6, RCP6.0 and RCP8.5. Twenty long-term
historical observation stations in the study area with daily data mostly date back to more
than 50 years were employed and 5-day maximum total precipitation was analyzed. The
results reveal an agreement among the employed GCMs on an increase in the intensity and
a shortening of the return periods of extreme precipitation, with the most reinforced trend
occurring under RCP8.5, followed by RCP6.0 and then RCP2.6. This indicates that the risk
of associated floods is likely to increase, especially under higher RCPs. Therefore, planning
and decision making of durable infrastructure along with floodmitigation strategies to cope
with such events are recommended.

Keywords: climate change, extreme precipitation, GEV, pattern scaling, frequency, intensity

INTRODUCTION

Extreme precipitation (EP) is the major cause of floods, erosion and landslides, which result in severe
damages to agriculture and infrastructures. It has been reported that during the past century, there
has been a significant increase in extreme precipitation events; and more notably, in many regions,
especially mid-latitude regions, increases in annual heavy precipitation events were disproportionate
compared to changes in mean values (IPCC, 2013). For instance, in the United States, the frequency
of extreme precipitation events since the 1920s/1930s was found to sizably increase (Kunkel, 2003).
In Germany, an analysis of precipitation observed during 1901–2000 shows that climate was getting
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more extreme in the winter during this period (Tromel and
Schonwiese, 2007). A similar finding was reported by Zolina
et al. (2008), and that a positive linear trend in heavy precipitation
was found not only for winter but also for spring and autumn
since 1950. Significant increases in Evapotranspiration (ET) were
also observed in different regions of China in the second half of
the 20th century, including its western part, the middle and lower
Yangtze River basin, and its southeast coastal part (Zhao et al.,
2014).

Although observations have shown significant increases in
extreme precipitation and it is widely acknowledged that extreme
climate events in general and ET in particular potentially produce
greater impacts on the society and environment than a shift in
average values (IPCC, 2007), less attention has been paid to their
future changes, especially at regional and local scales. This may be
due to the lack of an effective method. To date, General
Circulation Model (GCM) is still the most common tool for
the simulation and prediction of climate change in large scales.
However, because the spatial resolution of GCMs is generally low
so that it is not appropriate to directly use their output for local
scale, especially for extreme precipitation because extreme
precipitation is a much localized phenomenon (Ye and Li,
2011). In order to overcome the shortcoming of coarse spatial
resolution of GCMs, the downscaling approaches, including
dynamical downscaling and statistical downscaling have been
introduced and have become widely used in research (IPCC,
2001). The dynamic method refers to the use of Regional Climate
Models which utilize large scale and lateral boundary conditions
of GCMs to generate finer spatial resolution outputs; while in the
statistical method, a statistical relationship between the
observations of large scale variables and that of a local variable
is used for the calculation of the local variable in the future
from the GCM output (Trzaska and Schnarr, 2014). The use of
downscaling in climate research became widespread in the early
1990s (Wilby and Wigley, 1997). In Europe during the 1990s, the
Dutch Meteorological institute (KNMI) and the Danish
Meteorological institute (DMI) built the Regional Atmospheric
Climate Model (RACMO) based on the High Resolution Limited
Area Model (HIRLAM). Another related regional climate model
called HIRHAM established in 1992 (Christensen et al., 1996),
which was based on a subset of the regional HIRLAM and global
ECHAMmodels (Roeckner et al., 2003), combining the dynamics
of the former with the parameterization schemes of the latter.
Other regional models includeWeather Research and Forecasting
(WRF) and the HadRCM3 at the United Kingdom. Hadley
Centre, and RCA from the Swedish Rossby Centre. In North
America, the North American Regional Climate Change
Assessment Program (NARCCAP) was established with the
efforts to produce high-resolution climate change simulations
for the North American region, and in 2004, it launched
experiment 0.0 and 0.1 to compare (among other things)
temperature and precipitation from the models with
observations. In Asia, the Regional Climate Model
Intercomparison Project (RMIP) (Fu et al., 2005) was
established to examine and compare different climatological
drivers to those of its American and European counterparts.
The drivers in question included the Asian monsoon and the

effect of the Tibetan Plateau on the large-scale flows crossing the
Eurasian continent. In recent years, numerous studies applied
downscaling was conducted (such as Rummukainen, 2010;
Maraun et al., 2010; Gutiérrez et al., 2013; Trzaska and
Schnarr, 2014). For extremes, most of the past work on
extremes and their dependency on climate change has
involved RCMs or empirical-statistical downscaling (ESD),
using some index representing extremes (e.g., STARDEX).
ESD-based approaches can involve a number of different
methods and may be set up to estimate parameters of the
probability distribution function describing the local climate.
However, some methods may not be well suited for
downscaling extremes because they are unable to prescribe
values outside the historical sample on which it is trained.
According to Deser et al. (2012), from an analytics
perspective, it will become possible to derive better
information about extreme events, especially if ensembles of
GCMs increase in size, their resolution is improved, the range
of natural variability is better represented, and improved tools use
the latest statistical methods, and hence attribute probabilities. In
short, although downscaling methods are able to provide outputs
which can be used for a local scale, they require either extensive
computational power or a huge number of observations.

The present study predicts changes in future multi-day
extreme precipitation using both the result of climate models
through the application of Simple Climate Model so-called
pattern scaling method and the trend of historical extreme
precipitation using Generalized Extreme Value (GEV)
distribution. Pattern scaling method was first introduced by
Santer et al. (1990) with the assumption that the local
response of a climate variable is linearly related to the global
mean temperature change, with the geographical pattern of
change independent of the forcing. Spatial features of the
externally forced change, standardized by global average
temperature warming, were estimated on the basis of 2xCO2
equilibrium simulations by mixed-layer ocean GCMs. These
patterns were assumed to remain stable also during a transient
simulation where the main external forcing is an increase in well-
mixed greenhouse gases. These common features explain a large
portion of the variability of the externally forced changes in
temperature and precipitation over time and across scenarios
within a given model. Pattern scaling has been widely used, its
application therefore has a rich literature. Ruosteenoja et al.
(2007), Watterson (2008), Giorgi (2008), Harris et al. (2010),
Cabre et al. (2010), and Watterson and Whetton (2011) used
pattern scaling to produce regional climate change projections,
and Dessai et al. (2005) and Fowler et al. (2007) used pattern
scaling for impact studies. Although limitations of this method
have been found, such as it was less accurate for strongly
mitigated stabilization scenarios (May, 2012) or it needs to be
modified if future scenarios include significant changes over time
in the strength of regional sources of pollution (May, 2008), many
model experiments have shown that precipitation patterns scale
linearly with global average temperature to a good degree of
accuracy (Neelin et al., 2006; Shiogama et al., 2010), and that
pattern scaling method is accurately applicable for climate change
projection in general and precipitation projection in particular.
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Meanwhile, GEV distribution is a continuous probability
distribution evolved within extreme value theory and is used as
an approximation tomodel the maxima of long or finite sequences
of random variables. The use of GEV distribution in extreme
precipitation analysis and prediction is well documented. For
instance, Rahmani et al. (2014) used GEV (Weibull type)
distribution to calculate the extreme precipitation frequency in
Kansas and the adjacent states in the United States. Xia et al.
(2012) and Du et al. (2014) used (GEV) and Generalized Pareto
distribution (GPD) to study the historical extreme precipitation
frequency and its spatio-temporal variations in Haihe and Huaihe
river basins of China. Benyahya et al. (2014) compared GEV with
other four probability distributions (Generalized Logistic,
Weibull, Gamma, and Lognormal) to identify the appropriate
methods providing the most accurate seasonal maximum
precipitation in southern Quebec of Canada. Rahman et al.
(2013) investigated the suitability of GEV and other different
probability distributions based on large Australian annual
maximum flood datasets. In the Netherlands, most previous
studies applied the GEV model to climatological statistics to
describe the monthly and annual distribution of precipitation
maxima (such as Buishand et al., 2009; https://www.sciencedirect.
com/science/article/pii/S2212094716300433, Hanel and
Buishand, 2010; Overeem and Buishand, 2012). It was found
that the monthly variation generated by the GEV distribution
model contains information about return levels (Rust et al., 2009).
Previous studies have shown that GEV distribution is appropriate
for extreme precipitation prediction, especially for the greatest
values. According to Kharin et al. (2007) because it is impossible to
collect observations for future climate conditions, using the GEV
is a step to verify if a particular climate model can be used to assess
potential effects of climate change on future extreme weather
events.

In Vietnam, extreme precipitation is a serious concern due to its
direct and indirect effects (through flooding, erosion and landslides)
on agriculture, socio-economic activities and human life. Efforts
have been made in analysis and prediction of extreme precipitation
locally and nationally. Ho et al. (2011) studied extreme climatic
events, including hot days, cold nights and heavy rainfall days in
seven climatic sub-regions in Vietnam, based on historical observed
data (1961–2007) and climate projections of the International
Center for Theoretical Physics regional climate model version 3
(RegCM3). Extremes of each sub-region detected from the
simulation of RegCM3 for the baseline period 1980–1999 were
applied to the projection in the years 2001–2050, based on the IPCC
SRES A1B and A2 scenarios, to reveal the changing trend of
extremes in the future. The RegCM3 projections indicate that,
the rainy season heavy rainfall events tend to decrease for
allsub-regions except for two, in northwest and south-central
Vietnam. Strong opposite projected changes in precipitation
extremes over the southern half of Vietnam seem to be linked to
changes in southwesterly air flow from the Bay of Bengal and the
number of strong tropical cyclones coming from the South China
Sea and the NWPacific. Raghavan et al. (2017) applied a systematic
ensemble high resolution climate modeling to study extreme
precipitation over Vietnam using the PRECIS model developed
by the Hadley Center in United Kingdom. The PRECIS model

simulations were conducted at a horizontal resolution of 25 km for
the baseline period 1961–1990 and a future climate period
2061–2090 under scenario A1B. The annual cycles and seasonal
averages of precipitation over different sub-regions of Vietnam
show the ability of the model in reproducing the observed peak and
magnitude of monthly rainfall. The climate extremes of
precipitation were also fairly well captured. Projections of future
climate show both increases and decreases in the mean climate over
different regions of Vietnam. The analyses of future extreme rainfall
using the STARDEX precipitation indices show an increase in 90th
percentile precipitation (P90p) over the northern provinces
(15–25%) and central highland (5–10%) and over southern
Vietnam (up to 5%). The total number of wet days (Prcp)
indicates a decrease of about 5–10% all over Vietnam.
Consequently, an increase in the wet day rainfall intensity
(SDII), is likely inferring that the projected rainfall would be
much more severe and intense which have the potential to cause
flooding in some regions. Risks due to extreme drought also exist in
other regions where the number of wet days decreases. In addition,
the maximum 5 days consecutive rainfall (R5d) increases by
20–25% over northern Vietnam but decreases in a similar range
over the central and southern Vietnam. Nam et al. (2015) assessed
the near future (2,026–2,035) changes in extreme rainfall over
Vietnam using projections by four high resolution multi-model
belonging to the Coupled Model Intercomparison Project phase
five, as compared to the baseline period (1979–2003). Results
(ensemble mean) show that the highest precipitation amount in
3-day period and total precipitation on very wet days will greatly
increase in the near future climate with larger increases in the
northwest and southwest. Meanwhile, the highest precipitation
amounts in one-and consecutive 5-day tend to be slightly
increasing.

The application of GEV distribution and pattern scaling
method in the present study for the North Central Region of
Vietnam is a new method applied in Vietnam, and its result is
expected to present another outlook of the future precipitation
extreme in the studied region.

MATERIALS AND METHODS

The Study Area and Data
The area selected for this study is the Lower Ca River Basin
(LCRB) (17o50’N-20o50’N, 103o14’E-106o10’E), which is one of
the largest river basins in Vietnam. The LCRB is situated in the
North Central Region with a basin area of 17,730 km2, covering
the entire Provinces of Nghe An and Ha Tinh and a part of Nhu
Xuan District of Thanh Hoa Province. The North Central Region
in general and the LCRB in particular is well-known as a hotspot
of flooding in Vietnam due to high frequency and severity of
floods in the region. Geographic location of the LCRB is shown in
Figure 1.

Located in a tropical monsoon region, climate of the LCRB
is characterized by two distinct seasons: rainy season (May to
October) and dry season (November to April of the next year).
The rainy season is hot and humid with temperature up to
more than 42°C and humidity up to 95% around June and July,

Frontiers in Earth Science | www.frontiersin.org February 2021 | Volume 8 | Article 6016663

Giang Climate Change-Reinforced Extreme Precipitation

43

https://www.sciencedirect.com/science/article/pii/S2212094716300433
https://www.sciencedirect.com/science/article/pii/S2212094716300433
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


while the dry season is cold and dry with the lowest
temperature dropping to 0oC around January. Precipitation
in the LCRB is abundant, but is seasonally and spatially
uneven distributed (Giang et al., 2014; OECD, 2020).
According to data of 20 gauges recorded from the 1960s to
date, annual precipitation in the basin was mostly more than
1,000 mm, and exceeded 4,000 mm in some wet years. Mean
annual precipitation for the observation period (mostly
1960–2018) varies from 1,200 mm to 2,800 mm depending
on the weather station, with an average of approximately
2,000 mm. Precipitation was found to have an increasing
trend from north-west to south-east direction, with all of
10 gauges in the North of Vinh (S11) having mean annual
precipitation below 2,000 mm and eight of nine gauges in the
South of Vinh having mean annual precipitation above
2,000 mm (Except for S14, which has mean annual
precipitation of 1,974 mm) (Table 1). During the
observation period, there were some very wet years, of
which historic extreme precipitations and historic floods
were recorded; they are 1978, 1988, 1989, 1991, and 2010.
The highest annual precipitation in the basin was 4,391 mm
(in 1988 at S16) and the highest daily precipitation was 788.4
mm, recorded on September 27, 1978 at S9. Although the
basin receives a high amount of precipitation annually, more
than 80% of precipitation is in the wet season, and 80% of this
amount fall in the flood months which typically lasts from
August to October. This seasonal uneven distribution of
precipitation is the main factor causing annual floods and
droughts in the basin.

An analysis of historical rainfall and flood data shows that in
the study area, on average, the number of days from it starts
raining till floods reach the peak level is 5 days. The present study
therefore calculated the change of the maximum consecutive 5-

days precipitation, which is defined as five-day extreme
precipitation in this study.

In this study, twenty long-term historical observation stations
in the LCRB with daily data mostly date back to more than
50 years were employed. The observed daily station data was
firstly aggregated for every five consecutive days to construct a
five days total precipitation time series and five-days maximum
total precipitation was analyzed. The volume resolution of 24-h
precipitation is 0.1 mm and there is missing data at three stations:
S10 (missing June- December, 1981), S12 (missing 1967) and S19
(missing 1967 and 1968).

Methods
The present study applied Generalized Extreme Value (GEV)
distribution for extreme precipitation analysis. GEV distribution
is a continuous probability distribution evolved within extreme
value theory and is used as an approximation to model the
maxima of long or finite sequences of random variables. It is
parameterized with the three parameters: Shape parameter (c),
location parameter (μ) and scale parameter (σ), and is presented
by the following functions:

Fσ,γ,μ(x) � exp[ − (1 + γ
x − μ

σ
)−1/γ] with 1 + γ(x − μ

σ
) > 0, γ≠ 0

(1)

and

Fσ,γ,μ(x)� exp(−e− x−μ
σ ) with γ � 0

(2)

where μ ∈ R and σ > 0. The shape parameter c determines the type
of GEV distribution. There are three types of distribution called
Fréchet, Gumbel, and Weibull corresponding to c < 0, c � 0, and
c > 0, respectively.

FIGURE 1 | Geographic location of the LCRB and meteorological stations in the basin.
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The three parameters of GEV distribution (i.e. σ, μ, and c)
can be estimated by different approaches depending on the
object investigated. In hydrology and climatology, an
approach known as Probability Weighted Moments
(PWM) (Greenwood et al., 1979; Landwehr et al., 1979;
Hosking et al., 1985) is widely used. Thus, in this study,
GEV function parameters for the GCM baseline and future
periods were estimated using the PWM method for each
GCM grid (x,y). The change of extreme precipitation in a
future period compared to the baseline period corresponding
to a specific return period (the estimated time interval
between precipitation events of a similar intensity) T is
determined as:

ΔPTFR(xy) � PTFR(xy) − PT(xy) (3)

Where PT(xy) is baseline extreme precipitation value for the grid
(xy) attainted from applying GEV function to GCM simulation

for the baseline period. In IPCC AR5, the baseline period is
1986–2005, centered by 1995 (Collins et al., 2013). PTFR(xy) is
projected precipitation value for the future year F under
Representative Concentration Pathway R for the same grid.
The future year F is the central year of a projected period
(20 years in principle).

As global warming is driven by increased radiative forcing, the
Pattern Scaling method applied in this study can be described as:
for a given PT, its anomaly ΔP*T in future year (F) under
Representative Concentration Pathway R for grid (x,y) can be
derived as:

ΔP*
TFR(xy)� ΔCF · P’

T(xy) (4)

where ΔCF is the difference between annual global mean
temperature in future year F and that of the baseline period
derived from applying the Model for the Assessment of
Greenhouse-gas Induced Climate Change (MAGICC) (Wigley,

TABLE 1 | List of meteorological stations used in this study.

Station ID Station
name

Long
(oE)

Lat (oN) Elevation
(m)

Mean
annual
(mm)

Annual
max (mm)

24 h
max (mm)

Data
availability

Missing

S1 Muong Xen 104.133 19.400 335.0 1,198 1,960
(1973)

193.2 (25/6/11) 1967–2018 1968

S2 Tuong Duong 104.433 19.283 97.0 1,283 1,888
(2005)

192 (31/8/80) 1961–2018

S3 Quy Chau 105.117 19.567 87.0 1,673 2,492
(1978)

304.1 (18/8/91) 1961–2018

S4 Quy Hop 105.150 19.317 76.2 1,612 2,346
(1978)

272.4 (23/10/86) 1968–2018

S5 Tay Hieu 105.400 19.317 72.0 1,592 2,744
(1978)

344.6 (4/10/07) 1960–2018

S6 Quynh Luu 105.633 19.167 3.0 1,608 3,101
(1978)

710.1 (8/9/93) 1961–2018

S7 Con Cuong 104.883 19.050 32.0 1730 2,901
(1978)

449.5 (27/9/78) 1961–2018

S8 Dua 105.017 19.00 27.7 1761 3,089
(1978)

683.7 (27/9/78) 1960–2018

S9 Do Luong 105.300 18.900 14.0 1842 3,539
(1978)

788.4 (27/9/78) 1960–2018

S10 Nam Dan 105.483 18.700 10.4 1725 2,939
(1978)

419 (27/9/78) 1960–2018 Jun–Dec
1981

S11 Vinh 105.700 18.667 6.0 2055 3,521
(1989)

596.7 (11/10/89) 1960–2018

S12 Son Diem 105.383 18.500 18.1 2071 3,160
(1989)

364 (10/10/92) 1961–2018 1967

S13 Huong Son 105.433 18.517 11.0 2,193 3,344
(1989)

518.8 (11/10/83) 1963–2018

S14 Linh Cam 105.550 18.533 22.6 1974 3,279
(1989)

429.9 (16/10/13) 1971–2018

S15 Hoa Duyet 105.600 18.383 10.0 2,372 3,682
(1989)

681.5 (3/10/83) 1961–2018

S16 Ha Tinh 105.900 18.350 3.0 2,622 4,391
(1988)

546 (23/10/86) 1961–2018

S17 Chu Le 105.700 18.233 8.8 2,288 3,357
(2010)

548.2 (16/10/10) 1970–2018

S18 Huong Khe 105.717 18.183 17.0 2,389 3,774
(1989)

492.6 (4/10/83) 1961–2018

S19 Cam Nhuong 106.107 18.260 5.0 2,688 4,064
(1991)

583.6 (1/10/86) 1959–2018 1967, 1968

S20 Ky Anh 106.283 18.083 3.0 2,809 3,839
(1989)

573.1 (7/8/07) 1961–2018
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2008); and ΔP’T(xy) is the change rate of PT at grid (x,y) in
response to that change of annual global mean temperature.

Pattern scaling method assumes that, for a given GCM,
ΔP’T(xy) can be obtained from any simulation run of that
GCM. Practically, however, such a homogeneous result seldom
happens for given available GCM data. This may be due to the
GCM simulation period of 20 years is not long enough to obtain
ΔP’T(xy) with sufficient statistical significance. Another possible
reason would be that the change rate of precipitation PT does not
have a linear relationship with the annual global temperature
change in nature. In fact, in order to obtain more accurate
predictions of future climate, deeper studies of the
relationships between the change rate of climate variables and
the global mean temperature changes are in need. However, such
further studies require extensive experiments with purposely
designed input and outputs of GCM simulation, which cannot
be obtained by current technologies. Nevertheless, according to
Ruosteenoja et al. (2007), error of pattern-scaling method in
constructing regional climate projections for extreme events
seems to be not very large. Thus, if pattern scaling method is
applied for calculating ΔP’T(xy) for a given GCM, in order to
reduce the effects of the GCM internal variability from different
RCPs and time periods when calculating ΔP’T(xy), it is desirable to
take into the calculation all available GCM outputs. Mitchell
(2003) and Ruosteenoja et al. (2007) recommended a least
squares regression method as follows:

ΔP’
T(xy) �

∑m
F�1

∑n
R�1

ΔCFR · ΔPTFR(xy)
∑m
F�1

∑n
R�1

(ΔCFR)2
(5)

where m is the number of simulation periods from a GCM and n
is the number of Representative Concentration Pathway. For a
given baseline extreme precipitation value PT, a spatial ΔP’T was
calculated by applying Eq. 5 to each GCM grid (x,y). After that,
ΔP*T can be determined from Eq. 4 with a given ΔCF, and the
future extreme precipitation value for grid (xy) can be determined
by the following equation:

PTFR(xy) � POT(xy) + ΔP*
TFR(xy) (6)

where POT(xy) is the observed extreme value with return period T.
To establish the GEV function for a future year F, ΔPT(xy)

was calculated for seven different return period (i.e., 2, 5, 10,
20, 50, and 100 years) based on Eq. 6. Then, the Levenberg-
Marquardt algorithm developed by Press et al. (1997) was
applied to fit the seven extreme values to GEV function in
order to calculate the GEV function parameters. It should be
noted that although the same GEV function parameters were
applied to all selected GCMs, the change pattern of extreme
precipitation for the same region (or more precisely for the
same GCM grid) may vary among GCM simulations due to
inter-model uncertainty. To quantify the widest possible range
of uncertainties, large ensembles of GCM predictions are
needed. The quantified uncertainty range is helpful
information for proposing proper countermeasure for
tackling future climate change impact.

In the present study, fourteen GCMs from the Coupled
Model Intercomparison Project phase five (CMIP5) archive
(which is also the data source for IPCC AR5 climate change
projections) were employed. The selection of GCMs was
principally based on the spatial resolution of the GCMs. In
each GCM family, only one GCM with highest resolution was
selected. In the case there were two or more GCMs with the
same resolution, the latest GCM was selected. A list of GCMs
employed is presented in Table 2.

RESULTS AND DISCUSSION

Change in the Intensity of Extreme
Precipitation Events
To investigate the spatial variation of change of extreme precipitation,
ensemble median of all fourteen GCMs listed in Table 1 was carried
out for all twenty local stations in the studied basin. Employing
multiple ensemble members helps to reduce bias prediction of each
single member GCM. Results reveal increases in precipitation
extremes in the future time periods (2050, 2070, and 2090)
relative to the baseline scenario (1986–2005) under all the three
RCP pathways, but with a divergent pattern depending on the RCP
and the return period (Figure 2). Among the three scenarios, extreme
precipitation increases the most under RCP8.5, followed by RCP6.0
and increases the least under RCP2.6 for all return periods. Both
RCP6.0 and RCP8.5 show an upward trend throughout the
projection period but the increment is steadier under the higher
RCP. The low RCP2.6 pathway shows a downward trend in the
increase of the extreme precipitation from 2050 forward. The trend is
steady from 2050 to 2070 but becoming almost balance at around
1.0% from 2070 to 2090. Overall, it can be seen that the predictions of
the three RCP pathways diverge with time, with smaller differences in
2050 and largest differences in 2090. The projections discussed above
correspondwith the characteristics of the RCP pathways, which show
similar levels of greenhouse gas emission in early 21st century, and
then the emission becomes to diverge: RCP8.5 drives a sharp increase
overtime, RCP6.0 drives a moderate increase till the end of the 21st
century while RCP2.6 drives a moderate increase till halfway through
the century, peaks around 2050 and declines thereafter. The
correspondence between predicted future mean monthly/annual
temperature and precipitation to emission scenarios has been
reported by a number of studies applying Special Report on
Emissions Scenarios (SRES) scenarios (IPCC, 2000) for different
regions in the world such as United States (Liu et al., 2012), Spain
(Ribalaygua et al., 2013), and Southeast Asia (Giang et al., 2014). For
RCP pathways, because these scenarios were very recently adopted by
the IPCC (Collins et al., 2013), little research applying them for
extreme climates in general and extreme precipitation in particular
has been published. However, the characteristic of extreme
precipitation change under RCP scenarios may vary. Ahn et al.
(2016) found that future extreme precipitation over South Korea,
neither the mean value nor frequency had a significant trend such as
temperature response to radiative forcing under RCP4.5 and RCP8.5.
In contrast, findings of Saeed et al. (2013) show that future extreme
precipitation over the greater Congo region in Africa could change
prominently, led by RCP8.5, then RCP4.5 and then RCP2.6. Similar
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behavior was found by Janssen (2013) for precipitation in the
United States under RCP4.5 and RCP8.5: the higher the RCP, the
more prominent change is expected for both intensity and frequency.

These findings point to the fact that a regionmay differ from another
in the sensitivity to the radiative forcing which varies in the RCPs, as
indicated in Shindell et al. (2012). To our knowledge, however, no

TABLE 2 | List of GCMs used in this study.

No CMIP5 models Developer Resolution (long*lat) Vintage References

Atmospheric variable Ocean variable

1 ACCESS1-3 CSIRO and Bureau of Meteorology, Australia 192*145 360*300 2011 Dix et al. (2013)
2 CanESM2 Canadian Center for Climate Modeling and Analysis 128*64 256*192 2010 Von Salzen et al. (2013)
3 CESM1-BGC NSF-DOE-NCAR, United States 288*192 320*384 2010 Long et al. (2013)
4 CMCC-CM Centro Euro-Mediterraneo Per I Cambiamenti Climatici, Italy 480*240 182*149 2009 Fogli et al. (2009)
5 CNRM-CM5 CNRM and CERFACS, France 256*128 362*292 2010 Voldoire et al. (2013)
6 CSIRO-Mk-3–6 QCCCE and CSIRO, Australia 192*96 192*189 2009 Rotstayn et al. (2012)
7 GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory, USA 144*90 360*210 2012 Dunne et al. (2012)
8 HadGEM2-ES Met Office Hadley Center, United Kingdom 192*145 360*216 2009 Collins et al. (2011)
9 INMCM4 Institute for Numerical Mathematics, Russia 180*120 360*340 2009 Volodin et al. (2010)
10 IPSL-CM5A-MR Institut Pierre Simon Laplace, France 144*142 182*149 2009 Dufresne et al. (2013)
11 MIROC5 UTokyo, NIES, and JAMSTEC, Japan 256*128 256*224 2010 Watanabe et al. 2010
12 MPI-ESM-MR Max Planck Institute for Meteorology, Germany 192*96 802*404 2009 Stevens et al. (2013)
13 MRI-CGCM3 Meteorological Research Institute, Japan 320*160 360*368 2011 Yukimoto et al. (2011)
14 NorESM1-M Norwegian Climate Center, Norway 144*96 320*384 2011 Iversen et al. (2013)

FIGURE 2 | Spatial variability of change in future 5-day extreme precipitation under the ensemble scenario corresponding to different return periods: T � 2 years (A),
T � 5 years (B), T � 10 years (C), T � 20 years (D), T � 50 years (E), and T � 100 years (F). Figure presents data of 20 stations.

Frontiers in Earth Science | www.frontiersin.org February 2021 | Volume 8 | Article 6016667

Giang Climate Change-Reinforced Extreme Precipitation

47

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


research has been published for multi-day extreme precipitation,
which is focused in the present study.

It is noticeable that spatial variability of extreme precipitation also
consistent with the temporal change: The variability increases with
time under RCP8.5 and RCP6.0 but decreases with time under
RCP2.6, although the variability under RCP2.6 is very small. In
addition, the higher the RCP, the greater the spatial variability it
produces. For instance, the increase of the total 5-days precipitation
with T � 2 ranges between 11.96 and 17.35% (standard deviation Std
� 1.72%) in 2050, 18.21–26.47% (Std � 2.65%) in 2070, and
24.32–35.55% (Std � 3.59%) in 2090 under RCP8.5. Under
RCP6.0 it ranges between 5.82 and 8.46% (Std � 0.84%) in 2050,
7.99–11.59% (Std � 1.15%) in 2070, and 10.25–14.87 (Std � 1.47%) in
2090, meanwhile under RCP2.6 it ranges between 2.49–3.63% (Std �
0.36%), 1.02–1.49% (Std � 0.15%), and 0.92–1.34% (Std � 0.15) in
2050, 2070, and 2090, respectively.

Interestingly, comparison among the return periods, it is clear
that spatial variability of smaller extremes (closer to the lower tail)
and greater extremes (closer to the upper tail) is greater than
medium extremes. More specifically, the variability starts highest
for T � 2, but then reduces for T � 5, and reduces more for T � 10.
However, after T � 10 it starts to rise for T � 20, rise more for T �
50, and then more so for T � 100. This characteristic occurs under
all the three pathways, although under RCP2.6, the difference
among the return periods is very small. This characteristic can be
explained by the characteristic of GEV distribution. When fitting
data to GEV distribution, the uncertainty is often largest at its
tails, in other words, medium extremes are usually most fitted to
the distribution while small extremes and large extremes are often
lie farther from the GEV curve. This leads to variability in GEV
values among local datasets.

Most noticeable in Figure 2 is that extreme precipitation in the
LCRB with a return period of two years has large spatial variability,
especially in the end of the 21st century under the highest RCP
pathway (range between 24.32 and 35.55%); despite the moderate
basin size. Review from literature shows that large spatial variability
in the change of precipitation at local scale driven by a warmer
climate was also abundantly reported. For instance, research by

Mahmood et al. (2015) for the Jhelum river basin of Pakistan and
India, which has similar basin size as the LCRB in the present study,
reveals that precipitation change in the studied basin spatially varies
from a decrease of 12% to an increase of 12% in the 2050s, and from
a decrease of 11% to an increase of 16% in the 2080s under SRES
scenario A2. Research by Keuser (2012) for Milwaukee County of
the United State (3,082 km2) and 24 km buffer around it shows that
spatial variation of precipitation increases relative to the current
climate is likely to be large, ranging from 15.8 to 39.6% in 2050s and
from 21.3 to 46% in 2080s, also under SRES scenario A2. Note that
both studies used downscaled GCMs output together with trends in
observed precipitation for the predictions, which is similar to the
method used in the present study. According to Ye and Li (2011)
and Li et al. (2011), precipitation in general and extreme
precipitation in particular is a much localized phenomenon and
not always strongly influenced by large-scale dynamics. This means
that although a large-scale GCM gives homogenous prediction for
future precipitation change for the region within its particular grid,
more detailed approach such as downscaling or pattern scaling may
result in large spatial variability of the precipitation change. Spatial
distribution of 5-days extreme precipitations for different return
periods and their increase in 2070 under the highest RCP (RCP8.5)
compared to the baseline period is shown in Figure 3.

Comparison among the predictions of the employed GCMs for
2050, 2070, and 2090 under the three pathways is presented in
Figure 4 wherein data for Vinh (S11), which is considered as the
most central station in the LCRB, is shown. Prediction of the selected
GCMs is very divergent, but can be divided into two groups:

- Five GCMs including ACCESS1-3, CanESM2, CMCC-CM,
GFDL-ESM2G, and MPI-ESM-MR predict greater increases to
smaller extremes and smaller increases to greater extremes. This
is represented by downward lines in Figure 4 with CanESM2 being
the steepest, representing the most typical for this tendency. For
example, this model predicts that under RCP8.5 in 2070 5-days
extreme precipitation increases 50.60% for T � 2, 30.27% for T � 5,
20.87% for T � 10, 13.48% for T � 20, 5.51% for T � 50, and 0.39%
forT� 100 compared to the baseline period. This rate then decreases
from 62.18% (T � 2) to 0.37% (T � 100) in 2090. More noticeably

FIGURE 3 | Spatial variability of baseline 5-days extreme precipitation (A) and its change in 2070 according to RCP8.5 scenario (B).
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among this group is that the downward line ofMPI-ESM-MR passes
through the X-axis after the return period T � 20, meaning that the
change of extreme precipitation relative to the baseline period turns
from an increase for T � 2, 5, 10, and 20 to a decrease for T � 50 and
T� 100. In general, prediction of thismodel shows that by the end of
21st century 5-days extreme precipitation is expected to change from

+2.89 to −1.40% under RCP2.6, from +10.04 to −6.26% under
RCP6.0, and from +50.09 to −13.24% under RCP8.5.

- The other nine GCMs including CESM1-BGC, CNRM-CM5,
CSIRO-Mk-three to six, HadGEM2-ES, INMCM4, IPSL-CM5A-
MR, MIROC5, MRI-CGCM3, and NorESM1-M predict smaller
increases to smaller extremes and greater increases to greater

FIGURE 4 |Change in 5-day extreme precipitation under 14GCMs and their ensemble at Vinh Station corresponding to RCP2.6 (A), RCP6.0 (B), and RCP8.5 (C).
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extremes. This is represented by the upward lines in Figure 4.
Among these models, INMCM4 shows the most dramatically
upward trend toward more extreme precipitation, except for a
short down from T � 2 to T � 5 for all three future time periods
under RCP2.6 and RCP6.0 and for 2050 under RCP8.5. The
largest range of 5-days extreme precipitation change relative to
the baseline period according to this model is in 2090 under
RCP8.5 when it rises from a decrease of 5.93% for T � 2 to an
increase of 106.28% for T � 100.

Prediction of the ensemble median of the 14 selected GCMs is
in line with the later group: smaller increases for smaller extremes
and greater increases for greater extremes. Under this ensemble
scenario, in mid-21st century, 5-days extreme precipitation at S11
with return period ranging from T � 2 years to T � 100 years is
expected to rise between 3.19% (T � 2 years) and 4.81% (T �

100 years) under RCP2.6, between 7.43 and 11.28% under
RCP6.0, and between 15.19 and 23.28% under RCP8.5.
Meanwhile, by the end of the 21st century, it would rise
between 1.17 and 1.78%, 13.03–19.93%, and 30.90–47.90%
under RCP2.6, RCP6.0 and RCP8.5 respectively.

Considering the prediction of each individual GCM relative to the
three RCPs, it is obvious that the magnitude of change produced by
each individual GCM under RCP2.6 is smaller than RCP6.0, and
smaller still than RCP8.5. The change under RCP2.6 becomes smaller
while the change under RCP6.0 and RCP8.5 becomes greater toward
the end of this century. These behaviors of prediction are consistent
with the characteristics of RCP pathways as discussed earlier in this
paper. An overview of the predictions of the employed GCMs for 20
monitoring stations in the study area under the three pathways is
presented in Figure 5.

FIGURE 5 | Variation of projected 5-day extreme precipitation under 14GCMs and their ensemble in 2070 corresponding to different return periods: T � 2 years (A),
T � 5 years (B), T � 10 years (C), T � 20 years (D), T � 50 years (E), and T � 100 years (F). Figure presents data of 20 monitoring stations
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FIGURE 6 |Change in frequency of extreme precipitation according to RCP 2.6 (A), RCP 6.0 (B), and RCP 8.5 (C). Number in each block presents the future return
period of current return level.
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Change in the Frequency of Extreme
Precipitation Events
Frequency of extreme precipitation, represented by its return period
provides important information for assessing its impact to the
environment and society as well as for decision making. For
instance, a return period of T-years represents an extreme
precipitation event that has a 1/T probability of occurring in any
given year. Stationary climate assumes that the frequency of extreme
climates does not change over time (Klein et al., 2009). However,
according to IPCC (2007), the frequency of extreme climates in
general and extreme precipitations in particular has been changing
and more so in the future. In this study, we examined the changes in
the frequency of future extreme precipitations which presently have
return periods of 2, 5, 10, 20, 50 and 100 years.

Figure 6 presents the change for five-days extreme precipitation
at Vinh (S11) in 2050, 2070, 2090 relative to the baseline period. It
can be seen that for all return levels, extreme precipitation is likely to
be more frequent (as their return periods shorten) in the future,
except for a few cases wherein it remains unchanged or becomes less
frequent. In general, the uncertainty in the frequency is smallest for
present return levels with T � 2 years and largest for present return
levels with T � 100 years in all three RCPs. The uncertainty also
increases consistently with the order of the RCPs (RCP8.5 > RCP6.0
> RCP2.6) and increases with time.

Specifically, under RCP2.6 extreme precipitation is projected
to remain unchanged in frequency in many cases for T � 2 years,
but only in 7 cases for T � 5 years (in 2090 under CMCC-CM,
and in 2070 and 2090 under HadGEM2-ES and MIROC5), and
in no cases for the other greater return periods. The frequency is
also projected to decrease but only in six cases (for return level
with current return period T � 50 and T � 100 years in 2050,
2070, and 2090. All are under MPI-ESM-MR). The other
majority of cases show an increase in frequency. However, it
should be noted that all of the increases or decreases in
frequency under RCP2.6 are within twice less frequent to
twice more frequent.

Under RCP6.0, only one case exhibits an unchanged frequency,
meanwhile many cases exhibit double frequency (twice more
frequent) or beyond and a few cases exhibit quadruple frequency
or beyond. In comparison with RCP2.6, the decrease in frequency
was also projected for larger extremes (with current return period
T � 50 and T � 100 years), but for eight cases under CanESM2 and
MPI-ESM-MR in which one case show a double decrease in
frequency (return level with current return period T � 100 in
2090 under MPI-ESM-MR).

Under RCP8.5, many cases show a double (or more) increase in
frequency, even for lower return levels, meanwhile the number of
cases with a quadruple (or more) increase has become more
dominant in larger return levels. The number of cases which
show a balance frequency and a decreased frequency remains the
same compared with RCP6.0 although they are not exactly the same
cases. Most noticeable among the cases with decreased frequency is
that three of these cases are likely not to happen in the future as their
predicted frequency is infinitive. These cases include the return levels
with current return period T � 50 in 2090 and T � 100 in 2070 and
2090, all are under MPI-ESM-MR.

CONCLUSION AND RECOMMENDATION

This study investigated the variability in the intensity and frequency of
future multi-day extreme precipitation using pattern scaling method
coupled with Generalized ExtremeValue Analysis with the case study
of the LCRB in the Northcentral Vietnam of Vietnam. The results
exhibit different uncertainties following the characteristics of RCP
scenarios and depending on each GCM employed. In general, the
uncertainty in both intensity and frequency is in line with the order of
the RCP scenarios and increase with time. In the future, multi-day
precipitation is likely to become more extreme and more frequent
in most cases. The increase in extreme precipitation found in this
study was in line with findings of previous studies on climate change
in Vietnam including the Northcentral region, however, the pattern
of changewas different due to the difference inmethodologies and the
GCMs used. It is also valuable to note that the present study provided
more details of the pattern of changes in both intensity and frequency
of extreme precipitation. The shortening of return periods for
extreme precipitation events and greater intensity of such events
has potential consequences for the increase in flood magnitude and
frequency, which could ultimately produce large impacts on the
environment and society. Therefore, planning and decisionmaking of
durable infrastructure along with flood mitigation strategies to cope
with such events are recommended.
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Rwanda has experienced high temperature rising phenomena over the last decades and
hence, highly vulnerable to climate change. This paper examined the spatial and temporal
variations of daily maximum and minimum surface air temperature (Tmin and Tmax) and
diurnal temperature range (DTR). It studied variables at monthly, seasonal and annual time-
scales from 1961 to 2014. The study applied various statistical methods such as ordinary
least-square fitting, Mann-Kendall, Sen’ slope and Sequential Mann-Kendall statistical test
to the new reconstructed ENACTS dataset that cover the period from 1983 to 2014 while
pre-1983s recorded data from 24 meteorological stations have been added to complete
the lengthiness of ENACTS data. The January to February season did not show a
significant trend at seasonal time-scales. The authors decided only to consider March-
to-May, June-to-August and October-to-December seasons for further analyses.
Topography impacts on temperature classified stations into three regions: region one
(R1) (1,000–1,500 m), region two (R2) (1,500–2,000m) and region three (R3) (≥2,000m).
With high confidence, the results indicate a significant positive trend in both Tmin and Tmax
in all three regions during the whole study period. However, the magnitude rate of
temperatures change is different in three regions and it varies in seasonal and annual
scale. The spatial distributions of Tmax and Tmin represent a siginificant warming trend
over the whole country notably since the early 1980s. Surprisingly, Tmin increased at a
faster rate than Tmax in R3 (0.27 vs. 0.07°C/decade in March-to-May) and (0.29 vs.
0.04°C/decade in October-to-December), resulting in a significant decrease in the DTR.
This is another confirmation of warming in Rwanda. Themutation test application exhibited
most of the abrupt changes in the seasonal and annual Tmax and Tmin trends between
1984 and 1990. The present work mainly focus on the spatial and temporal variability of
Tmin, Tmax and DTR in Rwanda and their relationship with elevation change, leaving a gap
in other potential cause factors explored in the future.
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INTRODUCTION

The harmful impacts of climate change on human life,
infrastructure and ecosystem have led to increased studies on
the subject globally (IPCC, 2001a; Alexander et al., 2006;
Myoung et al., 2013). Temperature is one of the most critical
climate factors that affect human, agriculture, and to a
significant extent, thermal comfort (Walther et al., 2002; Diaz
et al., 2005). Global warming and climate variability have
remained a hot topic of debate worldwide (Morak et al.,
2013; Otto and Friederike, 2016; Easterling et al., 2000;
Penuelas and Flella, 2001; IPCC, 2001b). Globally, the
temperature has been characterized by warming in minimum
and maximum temperature (Vose et al., 2005; Brown et al.,
2008; Donat et al., 2013).

The fifth assessment report (AR5) of the Intergovernmental
Panel on Climate Change (IPCC) approximated an average
increase of global temperature in 1951–2012 to be 0.72°C.
Furthermore, The IPCC (2013) revealed that the hottest 30-
year period in the last 1,400 years might have been between
1983 and 2012. The report suggested that the trend in Tmean
may be due to changes in either Tmax or Tmin, or relative
changes in both (IPCC, 2013). Considering that the changes in
mean temperature (Tmean) were broadly an essential indicator of
climate change, but changes in maximum and minimum
temperatures (hereafter Tmax and Tmin) provide more
valuable information than the Tmean alone (Safeeq et al.,
2013; Iqbal et al., 2016; Yang et al., 2013; 2020a). Several
authors noted that the minimum temperatures are warming
more rapidly than maximum temperatures (IPCC, 2007;
Christy et al., 2009; Stern et al., 2011; Nicholson et al., 2013).
Consequently, the assessment of fluctuations of observed and
simulated Tmax and Tmin has captured many researchers’
attention (Revadekar et al., 2013; Sayemuzzaman et al., 2015;
Easterling et al., 1997; Lobell et al., 2007; Tingley and Huybers,
2013). It is likely agreed that Tmax and Tmin trends and
variability play an essential role in detecting climate change
impacts on human health such as vector-borne disease (Ren
et al., 2016; Sun et al., 2017). The impacts of extreme temperature
on mortality have been confirmed in a number of other studies
(Barreca et al., 2016; Heal and Park, 2016; Ndenga et al., 2006)
revealed that unusual high maximum temperatures positively
correlate with many malaria cases. For instance, according to the
findings from Rwanyiziri and Rugema (2013), the rise in
temperature and changes in the amount of rainfall and its
distribution have altered water resources availability,
consequently affecting rice productivity across Bugesera
District. Moreover, studies have indicated that spatiotemporal
changes of Tmax and Tmin significantly affect the intensity,
duration and extent of temperature extremes worldwide (Salman
et al., 2017; Sun et al., 2017). Furthermore, food production,
biodiversity, and ecosystems are highly affected by Tmax and
Tmin changes (Qasim et al., 2016; Walther et al., 2002; Smith
et al., 1999). Similarly, Parmesan et al. (2003) found that climate
change is already affecting living systems. Other studies indicate
that the changes in Tmax and Tmin has a significant impact on
agriculture, health, food security (Iqbal et al., 2016). Thus, the

assessment of Tmax and Tmin’s long-term changes is to better
understand impacts of climate change to a country with economy
depending on agriculture like Rwanda (Minitere, 2006).
Moreover, such information is useful for proper climate
adaptation plan in future at the local level (Berardy and
Chester, 2017).

Rwanda has experienced a significant increase in temperatures
in recent years and hence, highly vulnerable to climate change.
Previous studies have reported dynamic changes in Tmax and
Tmin over different parts of Rwanda (Henninger, 2009; Minitere,
2006; Eriksen and Rosentrater, 2008; Safari, 2012). An increase in
temperature of approximately 0.7–0.9°C over Rwanda in the last
century were reported (Eriksen and Rosentrater, 2008). Similarly,
Henninger (2009) reported an average of 1.5°K increase in
temperature with air pollution increase in Kigali city. The
detected temperatures fluctuation in Kigali city was attributed
to the growing population urbanization and industrialization
experienced in that area. By analyzing precipitation and air
temperature records from 6 sites in Rwanda for the period
1964–2010, a warming pattern over past 40 years at the
average of 0.35°C per decade has been noted by Mohammed
et al., 2016.

Moreover, a significant warming trend for the period after
1977–1979 has been detected where the capital Kigali recorded a
slope of 0.0455°C/year (Safari, 2012). The studies mentioned
above have reported significant results in terms of dynamic
variability of Tmax and Tmin over some regions of Rwanda.
However, most of those previous studies were limited to a specific
area, which may fail to cover country’s general representation.
Furthermore, none of those previous studies did consider the
impact of topography and seasonal variation factors, which are
very important in detecting and attributing climate change in
Rwanda’s regional difference. Previous studies have almost
agreed that topography regulates temperatures distribution in
many regions where Tmin changes has been recorded to be
significantly related to the elevation (Revadekar et al., 2013;
Sun et al., 2017). Therefore, it is of great importance to have
appropriate knowledge of previous Tmax and Tmin variability to
reduce the impact caused by their changes in the future.

The present study’s objective is to examine the long-term
variations and trends of the surface air temperature based on a
perspective of Tmax and Tmin, and diurnal temperature range
(DTR) series over Rwanda on monthly, seasonal and annual
time-scales. Thus, this study improves terms of changes in Tmax
and Tmin with the extended time scale, stations and additional
statistical analysis. Furthermore, no comprehensive research
made to assess the spatial and temporal changes in Tmax and
Tmin over the whole country. Rwanda recorded significant
economic development over last years. The government aims
to achieve more in its vision 2050 (Punam and Manka, 2011; U.N
Economic Commission for Africa, 2016). However, climate
change and its related risks could become potential threats to
achieving these goals. Therefore, it is vital to assess the spatial and
temporal changes in Tmax, and Tmin in the study area.

This study focus on observed changes in Tmax and Tmin over
Rwanda for the period 1961–2014. It is also the first of its kind to
detect abrupt changes in seasonal and annual time series of Tmax
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and Tmin in the target area and to combine the new
reconstructed ENACTS (the Enhancing National Climate
Services) data with the previous observed stations data for
analysis.

STUDY AREA, DATA AND METHODOLOGY

Rwanda with equatorial climate lies within latitude 1°4′–2°51′S
and longitude 28°53′–30°53′E (Figure 1A). It is positioned near
the equator in between central and East Africa. Rwanda is
bounded with Uganda in the north, Tanzanian East, the
Democratic Republic of the Congo in West and Burundi in
South. The high elevation influence leads the country to enjoy
temperate climate varying with topography (Figure 1A). Its
topography dominated by mountains in the volcanic highland
areas of north and north-western region with abundant rainfall
(>1,200 mm) and savannah region to the east and southeast with
less rainfall (<900 mm) through the year (Figure 1B). Rwanda
has two rainy seasons separated by two dry seasons with March-
May being the ‘long rains’ season. The monthly averaged
maximum temperature occurs in August. The monthly
averaged sub-maximum monthly averaged temperature occurs
in February. There are two minima for monthly averaged
temperature in May and November (Figure 1C). The average,
maximum andminimum temperature for Rwanda varies with the
topography. For example, the warmest annual average
temperatures are in the eastern plateau (20–21°C), and the
southwestern in the valley of Rusizi (23–24°C), and cooler

temperatures are in higher elevations of the central plateau
(17.5–19°C) and high-lands (<17°C) (Figures 2A–C).

The data used in this study were obtained from Rwanda
Meteorology Agency (RMA). Due to the existing gap in
observed stations data of mid-1990s during the Genocide to
2010, the ENACTS project supported by the International
research Institute for Climate and Society (IRI) and its partners
was initiated and aimed to fill that gap. The reconstructs
temperature data were obtained by combining station data with
reanalysis data and the merged final product is spatiotemporally
complete from the early 1983s to present. The ENACTS data used
in this study cover the period from 1983 to 2014. The quality
control of station data was performed during the generation of new
data set. The same ENACTS data were used by Siebert et al. (2019)
to analysis the temperature climatology for the period between
1981 and 2016. Detailed information on ENACTS data can be
freely accessed online via http://maproom.meteorwanda.gov.rw. In
order to cover the whole study period of 54 years, a monthly
temperature was calculated from observed daily data from 24
weather stations covering the period from 1961 to 1983. The
selected stations from observed data are the same stations used
in ENACTS data. Data quality was checked and only stations with
length records completeness are used. The selected stations from
observed data are the same stations used in ENACTS data. It is very
important to mention that before 1990s, there is no significant gap
in reported data frommeteorological stations. Safari, 2012 used the
same observed data to examine the trend of mean annual
temperature from five observatories during 1958–2010. While
those previous studies have used stations observed data and

FIGURE 1 | Study area: (A) Location of Rwanda in Middle Africa, (B) Topography of Rwanda, (C) Climatological monthly means of Tmax, Tmean and Tmin over
Rwanda during 1961–2014.
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ENACTS data separately, the current study combine both datasets
to give more information on Rwanda’s climate. Due to the strong
influence of topography those stations were classified into three
different regions; region one (R1), region two (R2) and region three
(R3) with the elevation ranging 1,000–1,500 m, 1,500–2,000 m, and
≥2,000 m respectively (Table 1), to provide a proper spatial
coverage over the entire country.

Table 1 shows the details of theweather stations used in this study
to complete the ENACTS dataset. For each region, stations with
elevation in the same range are combined together and monthly
values were averaged for the temperature to get seasonal and annual
averages. Although the calculation of data from each station can
provide an insight into climatic trends for those particular regions, it

is not appropriate to use a single station to represent the entire region.
Homogeneity of the regional series was checked before in-depth
analysis and confirmed by applying the Kruskal-Wallis test
(Theodorsson-Norheim, 1986). The three seasons considered were
long rains season “March to May” (MAM), the dry season “June to
August” (JJA), and short rains season “October to December”
(OND). Those chosen three seasons have a very significant
impact on crop production and hence people’s life. During
preliminary results, the JF season temperatures did not show a
significant change, therefore JF was removed from further analysis.

The magnitude of the trends was derived from the regression
line’s slop using the least-squares method. Simultaneously, the
statistical significance was determined by Mann-Kendall and

FIGURE 2 | Distribution of (A) Minimum, (B) Maximum and (C) diurnal temperature over Rwanda for the period of 1961–2014. Unit (°C) (Note: X-axis refers to
longitude while Y-axis stand for latitude).

TABLE 1 | Selected Stations and their respective location based on their elevation in three various regions (region one, region two and region three).

Region Observatory Lat (°S) Lon (°E) Altitude (m) Tmin (°C) Tmax (°C)

REGION one (R1) (1,000–1,500 m) KANOMBE 1.965 30.13 1,490 15.2 26.8
GITEGA 1.95 30.07 1,474 14.7 26.6
KAWANGIRE 1.82 30.45 1,473 14.3 27.2
GABIRO 1.38 30.24 1,472 13.3 26.9
RUSOMO 2.16 30.44 1,450 13.2 26.8
NYAMATA 2.09 30.05 1,428 15.4 28.3
KARAMA P 2.17 30.16 1,403 14.7 27.8
NYAGATARE 1.3 30.33 1,377 13.8 26.3

REGION two (R2) (1,500–2,000 m) RULINDO 1.43 29.55 1,800 12.6 22.9
RWANKUBA 1.45 29.5 1,750 12.7 24.3
BYIMANA 2.11 29.44 1,750 12.8 23.7
RUTONGO 1.43 30.3 1,700 13.6 24.7
RUBENGERA 2.06 29.42 1,700 14.8 26.1
KIBUNGO 2.15 30.5 1,680 15.7 26.2
KAMEMBE 2.47 28.92 1,591 15.2 25.2
GISENYI 1.67 29.25 1,554 14.9 25.5

REGION three (R3) ≥2,000 m RWERERE 1.32 29.53 2,312 11.8 21.7
KABAYA 1.44 29.32 2,250 9.6 21.3
RWANKERI 1.35 29.32 2,250 8.9 18.2
GICUMBI 1.35 30.04 2,235 11.9 19.5
BIGUTU 2.3 29.02 2,025 12.7 23.7
KINIGI 1.27 29.35 2,200 9.5 18.9
BUSOGO 1.58 29.55 2,100 9.9 21.6
KIGEME 2.29 29.32 2,000 12.7 22.6
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Student t-test (Sneyers, 1990). The Sneyers’ research, in
temperature and precipitation studies, the moving average is a
conventional procedure used to reduce the intra-annual
variability of series. A 5-years running average was employed
in this study. For each element Xi (i � 1, . . . ,n), the number of
lower elements Xj (Xj <Xi) preceding it (j < i) is calculated and the
statistical parameter t is given by:

ti � ∑ ni (1)

The distribution of the test statistic t under the null hypothesis
has an expected value E(t) and variance φ(t) such that:

E(t) � n(n − 1)/4
ϕ2 � n(n − 1)(2n − 5)/72 (2)

The hypothesis is rejected for |u|(t) > 1.96 with a statistical
significance of 5% and with:

u(t) � t − E(t)/(ϕ2
(t))1/2 (3)

Mann-Kendall (MK) Test
The Mann-Kendall (Mann 1945; Kendall 1975) test is applied in
trend analysis to detect the type of trend in temperatures and its
significance. The MK test is a nonparametric test widely known
for its flexibility and simplicity f in estimating trends. This test is
commonly used in meteorological studies (Asfaw et al., 2018;
Weldegerima et al., 2018; Praveen et al., 2020). It is based on null
and alternative hypotheses (H0 and H1). In the assessment, the
null hypothesis (H0) assuming no trend in the data is rejected if
standard normal test statistics Z > 1.96. Alternative hypothesis
H1 suggests a monotonic trend. The computation of the MK test
is shown below:

S � ∑
n−1

k�1
∑
n

j�k+1
sgn(xj − xk) (4)

where,

sgn(xj − xk) �
⎧⎪⎨
⎪⎩

1 if xj − xk > 0
0 if xj − xk � 0
−1 if xj − xk < 0

The components xj and xk are seasonal mean temperature values
in years j and k with k > j.

S represents the Kendall test statistics and is assumed to be
normal distributed. A positive (negative) value of S indicates an
increasing (decreasing) trend. Thus, for the selected sample with
n≥ 10, the E(S) � 0, and the variance is calculated as follows:

Var(S) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
n(n − 1)(2n − 5) − ∑m

t�1
ti(ti − 1)(2ti + 5)

18

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

n is the number of observation and variablesm and ti stand for the
number of ties and sample points in the sample i, respectively.

The statistical test Z is obtained from Eqs (2) and (3) as follow:

Zα �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

S − 1,������
Var(S)√ if S> 0

0, if S � 0

S + 1������
Var(S)√ if S< 0

(6)

The positive or negative Z value depict trends directions (upward
or downward). In case Z � 0, the data series is assumed to be
normally distributed. The standard test statistic Zα is used to
measure the trend significance. In case |Zα| is greater than Zα/2,
the trend is significant. Here α represents the chosen significance
level (e.g., 5% with Z 0.025 � 1.96).

Theil Sen’s Slope Estimator
The magnitude of seasonal temperature trends is based on Theil
sen’s slope method (Sen, 1968). Senvs slope estimator is another
nonparametric method widely used to detect the magnitude of
time series data. It frequently used to estimate an intercept of a
linear regression equation.

For a given time series x, the computation of slope Q between
two random values use equation below:

Ti � xj − xk
k − j

(7)

xk and xj are the data values at times k and j (j > k).
The Median of N Values of Qi is Computed as

Qmed �
⎧⎪⎨
⎪⎩

T(N+2)/2, N is odd

1
2
TN/2 + T(N+2)/2, N is even

(8)

The positive or negative Qmed indicates an increasing or
decreasing trend.

Sequential Mann-Kendall (SMK) test is employed to show a
change in trend with time. Forward sequential statistic [u(t)]
and backward sequential statistic [u′(t)] from progressive
analysis of the MK test help in the analysis of change in
trend with time (Sneyers, 1990). Hence, trend analyses on
monthly, seasonal and annual time-scales were performed in
order to capture changes in temperature series for Rwanda.
The progressive MK values u(t) and u′(t) were calculated using
the appropriate MK test for each dataset, from the beginning to
the end of the study period. In the analysis of SMK, the
confidence limits of the standard normal z values at α �
5%. The lower and upper confidence limits, thus,
correspond to −1.96 and +1.96, respectively. The method
has been used in related studies in East Africa (Nsubuga
et al., 2014; Ongoma and Chen 2017) as well as over
Rwanda by Safari (2012).

RESULTS

Using available temperatures data for the period 1961–2014,
the distribution of Tmin, Tmax and DTR is displayed in
Figure 2 (Temperature unit (Degree Celsius). Over Rwanda,
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the distribution of temperature increase eastwards, from region of
high altitude in north and south west to the low land in east part
of the country (Figures 2A–C). Topography regulates the
temperatures distribution over the country. The maximum
and minimum data were analyzed for the period 1961–2014.
In general, maximum and minimum temperature increase
through most of the period whereas the STR is basically trendless.

Long-Term Trends in Daily Minimum and
Maximum Temperature
Tmin, Tmax and DTR trends in R1, R2 and R3, are presented in
Table 2 with significant trends at a 95% confidence level. The
seasons’ MAM, JJA and OND are considered along with the
annual trend for further analysis. Figure 3A shows seasonal and
annual temperatures trends from the observatories over the
period 1961–2014 using a linear regression model. The slope
of the regression line describes the rate of change. The Tmin,
Tmax and DTR were analyzed separately. Table 2 shows that the
region one (R1) made up by all stations with altitude ranging
between 1,000 and 1,500 m has experienced a considerable
increase of 0.3°C/decade of Tmin during MAM season while

0.32°C/decade Tmin is noted during the JJA season and 0.37°C/
decade of Tmin during OND season. The rate of increase of Tmin
is higher in OND season compared to the two remaining seasons.
On the annual scale, a positive trend at the rate of 0.33°C/decade
of Tmin is noted. On the other hand, Tmax has significantly
increased at the rate of 0.61°C/decade in MAM season and 0.63
°C/decade in JJA in R1 while 0.58°C/decade for OND season is
registered. In contrast to Tmin, the highest rate of increase for
Tmax is observed in JJA season as well as in annual scale with a
rising rate of 0.63°C/decade. Thus, the region one (R1) has
experienced increase in both minimum and maximum
temperature. The Tmax has increased more rapidly than Tmin
in R1 during MAM, JJA and at annual scale which leads to the
observed positive trend of diurnal temperature in that region
(Figure 3A,B, left column and Table 2).

Same as the analysis above, the situation in region two (R2)
which is composed by all stations between 1,500 and 2,000 m of
altitude was examined. Results show that both Tmin and Tmax
have increased with Tmin raising more rapidly in OND season.
An increased rate of 0.3°C/decade Tmin in MAM and 0.31°C/
decade in JJA while the rate of increase of 0.35 and 0.32°C/decade
are observed in OND season and Annual, respectively. There is
no observed trend of diurnal temperature in R2 and this is
because the rate of Tmin increase is greater particularly in
OND season. Authors also note a Tmax moderate positive
trend rate of 0.31°C/decade in MAM and 0.4°C/decade in JJA
while 0.26 and 0.33°C/decade are noted in OND season and
annual scales in R2 (Figure 3A,B, middle column and Table 2).

Further investigation on the temperatures trend was
conducted in the region three (R3) formed by all observatories
with an altitude greater than 2,000 m. This highmountains region
is commonly known to have low temperatures compared to the
previous two regions. Surprisingly, the results show a positive
increase of both Tmin and Tmax with a very rapid increase of
Tmin in all seasons and at annual scale. The rate of increase is
recorded to be 0.07°C/decade for Tmax in comparison to 0.28°C/
decade of Tmin during MAM and 0.17°C/decade of Tmax along
with 0.27°C/decade of Tmin during JJA (Table 2). Similarly, the
rate of rising of Tmin in OND season was higher than that of
Tmax at the rate of 0.28 and 0.04°C/decade, respectively in R3
(Figure 3A,B, right column and Table 2).

Generally, an increase of maximum temperature and minimum
temperature is revealed for the whole study period at different rate
on seasonal and annual scale. Surprisinly, Tmin increase rate is also
noted to be higher than that of Tmax in R3. Figure 3A,B depicts
theMAM, JJA andOND seasonal along with annual time series for
each variable. Results show that both Tmax and Tmin increase
from later 1970s to present, with decreasing in DTR in region
three. The DTR is not decreasing in R1 as both Tmin and Tmax
increase with rapid increase in Tmax. However, a slightly decreases
in R2 is noted during the study period, with a notable decrease in
R3. From 1961 to 2014, the Tmax trend during OND season in R1,
R2 and R3 is 0.58, 0.26, 0.04°C/decade respectively. The Tmin
trend in the same seasons is 0.37, 0.35, and 0.28°C/decade for R1,
R2 and R3 andDTR trend is 0.27, −0.07 and −0.22°C/decade in R1,
R2 and R3, respectively (the trends were computed using least-
squares regression). DTR trend decreases, which likely reflects the

TABLE 2 | Annual and Seasonal Trends (°C/decade) from 1961 to 2014 for
minimum, maximum and DTR for R1, R2 and R3 at 95% confidence level.

Region Temp Period Mean Trend Z score Sen’s
slope

P
Value

R1 Tmax MAM 25.95994 Increasing 5.759 0.061* 0
R1 Tmax JJA 26.84309 Increasing 6.162 0.063* 0
R1 Tmax OND 26.49632 Increasing 6.132 0.058* 0
R1 Tmax ANN 26.5335 Increasing 6.401 0.063* 0
R1 Tmin MAM 14.67805 Increasing 5.804 0.03* 0
R1 Tmin JJA 13.96235 Increasing 5.215 0.032* 0
R1 Tmin OND 14.49871 Increasing 7.147 0.037* 0
R1 Tmin ANN 14.39297 Increasing 6.326 0.033* 0
R1 DTR MAM 11.24416 Increasing 4.118 0.035* 0
R1 DTR JJA 12.76529 Increasing 4.521 0.038* 0
R1 DTR OND 12.02416 Increasing 3.297 0.027* 0.001
R1 DTR ANN 12.10011 Increasing 4.894 0.035* 0
R2 Tmax MAM 24.47446 Increasing 5.386 0.031* 0
R2 Tmax JJA 25.01556 Increasing 5.476 0.04* 0
R2 Tmax OND 24.84689 Increasing 5.013 0.026* 0
R2 Tmax ANN 24.86244 Increasing 6.118 0.033* 0
R2 Tmin MAM 13.78974 Increasing 6.147 0.03* 0
R2 Tmin JJA 13.07773 Increasing 5.536 0.031* 0
R2 Tmin OND 13.63125 Increasing 6.759 0.035* 0
R2 Tmin ANN 13.51054 Increasing 6.446 0.032* 0
R2 DTR MAM 10.68472 No trend 0.179 0.001 0.858
R2 DTR JJA 11.93783 No trend 1.895 0.012 0.058
R2 DTR OND 11.21565 Decreasing -2.283 -0.014 0.022
R2 DTR ANN 11.3519 No trend 0.791 0.003 0.429
R3 Tmax MAM 20.5834 No trend 1.41 0.007 0.159
R3 Tmax JJA 20.6977 Increasing 2.79 0.017* 0.005
R3 Tmax OND 21.09731 No trend 0.776 0.004 0.438
R3 Tmax ANN 20.91214 Increasing 2.387 0.01* 0.017
R3 Tmin MAM 11.14877 Increasing 4.931 0.028* 0
R3 Tmin JJA 10.52238 Increasing 5.044 0.027* 0
R3 Tmin OND 10.7277 Increasing 6.088 0.029* 0
R3 Tmin ANN 10.78338 Increasing 6.147 0.027* 0
R3 DTR MAM 9.434,634 Decreasing -2.447 -0.018* 0.014
R3 DTR JJA 10.17532 No trend -1.156 -0.008 0.248
R3 DTR OND 10.36961 Decreasing -4.133 -0.022* 0
R3 DTR ANN 10.12876 Decreasing -2.641 -0.013* 0.008

Significant test (p ≤0.05) trend at a 95% confidence level.
The symbols (*) stand for significant.
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FIGURE 3a | Five-year moving average of monthly, seasonal (MAM and JJA) Maximum, Minimum and Diurnal Temperature and their linear Trends for three regions
(R1: 500 ≤ stations ≤1,500 m; R2:1,500 m ≤ stations ≤2,000 m; R3: stations ≥2,000 m) over the period of 1961–2014. Green line indicates significant raising while the
blue line indicates a neutral or decreasing trend.
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accelerated rate of warming in the Tmin. Considering the rate of
annual trend from 1961 to 2014, the Tmax trend rate in R1, R2 and
R3 is recorded to be 0.63, 0.33 and 0.1°C/decade. On the other side,
the rates of 0.33, 0.32, 0.27°C/decade, in R1, R2 and R3 for Tmin

are registered with DTR trend rate of 0.35, 0.03, and −0.134°C/
decade. Thus, temperatures in R3 (normally cold region) exhibit
notable increases in all seasons while OND season experiences
many variations in all regions.

FIGURE 3b | The same analysis for OND and Annual.
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Generally, the analysis of temporal variations of seasonal and
annual Tmax and Tmin over Rwanda (Figure 3A,B) indicates
that both Tmax and Tmin have increased in all seasons and

annual scales. a sharp increase is observed in October to
December season and annual scales. The results agreed with
the previous study by Safari, 2012 who also reported a significant

FIGURE 4a | Spatial distribution of seasonal and annual Tmax over Rwanda during 1961–2014; (A) Annual, (B)MAM, (C) JJA, (D)OND and Spatial distribution of
Decadal Tmax over Rwanda during 1961–2014; (A) 1961, (B) 1970, (C) 1980, (D) 1990, (E) 2000, (F) 2010. T stands for temperature.
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warming trend for the period after 1977–1979 where Kigali, The
capital city presented the highest value of 0.0455°C/year
(i.e., 0.45°C per decadal). Furthermore, the results show that

Tmax increasing rate was four times (around 0.61°C/decade) the
rate of global average increase of 0.15°C/decade in R1, two times
in R2.

FIGURE 4b | The same analysis for Tmin.
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The Spatial Variations of Annual and
Seasonal and Decadal Tmax
The country has 30 districts and each district is represented at least
by one station. In order to have a complete coverage of the whole
nation the linear interpolation from the station data was employed.
Figure 4A depicts the spatial distribution of seasonal and annual of
Tmax over Rwanda during 1961–2014. Low temperatures are
observed in northern part in all seasons with average Tmax of
20°C while high temperatures are observed in the eastern and south
eastern regionwith average of 28°C. In comparison to seasonal Tmax
distribution over the study period, more warming is observed in JJA
as compared to MAM and OND season. The distribution of
temperatures at decadal series shows that the country has
generally experienced an extended warming in all regions since
1961 which is clearly noted in latter 1980s. The decadal Tmax for
MAM, JJA, OND season and annual are displayed in Figure 4A. In

agreement with the observed standardized anomaly (Figure 3A), the
highest warming was observed in last decade of 2010s covering
almost the whole study area. The early 1960s period is dominated by
lower temperatures in all regions. The highest warming is recorded
in the eastern and southern parts of the country.

The Spatial Variations of Annual and
Seasonal and Decadal Tmin
Same as for Tmax analysis, the Tmin spatial variations at annual,
seasonal and decadal scale over Rwanda are showing in Figure 4B.
The analysis indicates that the whole country has experienced
warming during the study period. Similar toTmax, decadal Tmin
and forMAM, JJA, OND and annual are also displayed in Figure 4B.
In agreement with the observed standardized anomaly (Figure 3B),
the highest warming was observed in last decade covering almost the
whole study area. The early 1960s period is dominated by lower

TABLE 3 | Occurrence of abnormal temperatures (above, normal and below) in R1, R2 and R3 based on observed data during 1961–2014.

Location Grades Years Condition Occurrence
(%)

R1 Above
normalYears

2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 2006, 2005, 2004, 2003, 2000,
1999, 1998, 1997, 1995, 1994, 1993, 1992, 1991, 1990, 1988, 1987, 1985

Xh � (Ti > Tv +0.3°C) 47.86

Normal years 2002, 2001, 1996, 1989, 1986, 1984, 1983, 1982, 1982, 1980, 1963, 1962 Xn � (Ti ≥ Tv−0.3°C and Ti ≤
Tv +0.3°C)

21.55

Below
normalYears

1979, 1978, 1977, 1976, 1975, 1974, 1973, 1972, 1971, 1970, 1969, 1968,1967,
1966, 1965, 1964, 1961

Xc � Ti < Tv +0.3°C 30.58

R2 Above
normalYears

2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005,2004,1999, 1998,
1997, 1993, 1987, 1993

Xh � Ti > Tv +0.3°C 31.50

Normal years 1962, 1969, 1977, 1978, 1979, 1980, 1984, 1985, 1986, 1990, 1991, 1992, 1994,
1995, 1996, 2000, 2001, 2002, 2003

Xn � (Ti ≥ Tv−0.3°Cand Ti ≤
Tv +0.3°C)

35.20

Below
normalYears

1961, 1963, 1964, 1965, 1966, 1967, 1968, 1970, 1971, 1972, 1973, 1974, 1975,
1976, 1981, 1982, 1988, 1989

Xc � Ti < Tv +0.3°C 33.30

R3 Above
normalYears

2014, 2013, 2012, 2011, 2010, 2009, 2007, 2005, 1993, 1992, 1991, 1990, 1984,
1982, 1981, 1980, 1979

Xh � Ti > Tv +0.3°C 31.50

Normal years 2008, 2006, 2004, 2003, 2002, 2000, 1998, 1997, 1996, 1995, 1994, 1989, 1988,
1987, 1986, 1985, 1978, 1974, 1973, 1972, 1971, 1969, 1966, 1965, 1964, 1963,

1962

Xn � (Ti ≥ Tv−0.3°C and Ti ≤
Tv +0.3°C)

50

Below
normalYears

2001, 1999, 1983, 1977, 1976, 1975, 1970, 1968, 1967, 1961 Xc � Ti < Tv +0.3°C 18.50

Whereby; Xh: Above normal Year, Xn: Normal Year, Xc: Below normal Year While Ti: Yearly mean temperature &Tv: 54Years temperature average and Tv+0.3°C as threshold temperature.

FIGURE 5 | Temperature variation (Hot condition) (Normal condition) and (Cold condition) in (A) R1, (B) R2 and (C) R3 based on the period of 1961–2014.
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temperatures in all three regions. The higest Tmin is recorded in the
easten and southern parts of the country with average of 15° celcius
while the lowest Tmin is observed in the northern part with average
of 8.5° celcius. In comparison to seasonal Tmin distribution over the
study period, more above normal minimum temperatures are
observed in OND as compared to MAM and JJA seasons.

Abnormal Maximum and Minimum
Temperatures
The above normal temperatures affect the comfort of the human
body and agriculture production and many other socio economic
activities. In this study, we used the 54 years temperature average
plus 0.3°C as the threshold temperature (Tv + 0.3°C). A year with
abnormal Tmax was consireded as above normal temperature (Xh)
while a year with abnormal Tmin was connected with below
normal temperature (Xn). The 54 years temperature average is
noted as Tv. On the other hand, any yearly mean temperature that
was found to be in the range between the temperature greater or
equal to Tvminus 0.3°C and Tv plus 0.3°C, was considered as a year
with normal temperature (see Table 3). Although, the temperature
trend analysis is very important to understand the rate of the
variable increase or decrease over a period of time, yet, a deeper

analysis of abnormal temperatures (above, normal and below) can
give a more information on the impact of that variability
(Figure 5). The results from Table 3 indicate that the region
one (R1) has been dominated by above normal temperature years
(hot condition) representing 47.86% (highest) of the total 54 years
study period while 21.55 and 30.58% were recorded for normal
temperature years (normal condition) and below temperature
years (cold condition), respectively. Region two (R2) has less
temperature fluctuations condition with 31.5% of above normal
temperature years (hot condition), 35.2% of normal temperature
years (normal condition) and 33.3% of below temperature years
(cold condition). On the other hand, above normal temperature
years (hot condition) at the rate of 31.5% is recorded in the region
three (R3) which is another affirmation of warming in that high
elevated area. Based on the present study findings, we encourage
future studies to investigate the causes of the observed high rate of
hot condition in the whole regions especially in region three (R3).

Impact of Topography on Temperature
Variability
Without the consideration of the topography, it can be very hard
to understand Rwanda’s climate. In order to examine further,

FIGURE 6 | (A) Topography distribution, (B) relationship between temperature and topography, (C)Maximum, Minimum and DTR trend, (D)maximum, minimum
and DTR anomalies at every station selected for the period of 1961–2014.

Frontiers in Earth Science | www.frontiersin.org March 2021 | Volume 9 | Article 61951212

Ngarukiyimana et al. Climate Change in Rwanda

66

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


whether the topography features has a significant influence on the
distribution of temperatures; two variables, topography and
temperatures were analyzed to understand their relationship.
The results reveal a very significant positive correlation
between temperature distribution and elevation with a
coefficient of determination value of 0.79 (Figure 6B).

Every single selected station in three regions is displayed
and each of the represnted histogram columns in Figure 6
refers to an individual station. The stations are arranged in the
same order and each station has three variables (elevation, rainfall
and temperature). The lowest minimum and maximum
temperature were noted in R3 at Rwankeri station located in
the northern part of the country with 8.9 and 23.7°C while the
highest minimum and maximum temperature were localized in
R1 at Nyamata station situated in eastern region with 13.2 and
28.3°C, respectively. This indicates that topography in Rwanda
decreases eastwards with an increase in temperature (Figures
6A,E), which also influences the distribution of rainfall which
decreases eastwards (Figures 6A–D). This information is helpful
for agricultural activities plans. Figures 6C,D indicate the
exisiting relationship between temperature and elevation where
it is widely known that the higher elevation the lower the
temperature. However, the temperatures’ temporal distribution
show an unusual abnormal temperature in the early 1990s

(Figure 6F). This led us to test an existence of abrupt change
in the Rwanda temperatures. According to the mutation (SQMK)
test, most of the abrupt changes in seasonal and annual Tmin and
Tmax time series have occurred during 1984 and 1990.
Furthmore, the results show that the country has experienced
a significant abrupt changes in Tmax in the period between
1980–1985 for MAM and JJA season while the change in
OND season was recorded in early 1990s. This period is
remarkably followed by frequent above normal in
temperatures revealed by the temporal temperatures variability
in Figure 7A. On the other hand, the significant abrupt change in
annual and seasonal Tmin was noted in the early 1990s followed
by an increase in minimum temperature Figure 7B.

To further understand the changes and trends, a temporal
series was displayed. The time series shows the minimum and
maximum temperature records from 1961 to 2014 (Figure 8).
The mean maximum temperature (Tmax mean) was noted to be
24.41°C for the whole period. The warmest year of the entire
series was 2010 with a maximum temperature of 1.16°C above
1961–2014 mean. This year was followed by 2005 (0.95°C above
1961–2014 mean), 2013 (0.91°C above 1961–2014 mean) and
1998 (0.77°C above 1961–2014 mean). The coldest year of the
whole period was 1961 (1.5°C below 1961–2014 mean). From the
year 1980–2014 the temperature was above the mean of

FIGURE 7a | Abrupt change of annual and seasonal Tmax over Rwanda during the period of 1961–2014; (A) Annual, (B) March–May season, (C) June–August,
(D) October–December.
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1961–2014 except 1989, 1991, 1992 and 2001. Our future
investigation will focus on revaling the causes of the observed
above normal temperature after the 1980s and the causes of rapid
minimum temperature in R3. This result is in agreement with
Morice et al., 2012 who concluded that the decade 2001–2010 was
warmer than that of 1991–2000. On the other hand, the data
analysis indicate that the temperature of 1961–1979, was below
the average of 1961–2014 except for the year 1962, 1978 and 1979
(Figures 8A–D).

DISCUSSIONS

Generally, Tmax and Tmin have increase over Rwanda at
different rates in three considered regions. The variations are
also different on seasonal and annual scale. The area averaged
trend analysis for Tmax and Tmin is presented in Table 2. The Z
scores in Tmin, Tmax and DTR are dominantly positive, an
indication of an upward trend. Only the DTR in R2 during OND
season and DTR of R3 recorded downward trend. For Tmin and
Tmax, the scores exceed the significant value at α � 5%, the
evidence against the null hypothesis (Ho). Contrarily, hypothesis
(Ha) was accepted proving the existence of trend in series. Sen’s

slope estimator is displayed to explain the magnitude of change in
Tmax, Tmin and DTR. The Sen’s values for Tmax and Tmin are
positive in all seasons and at annual series. On the other hand,
absence of slope and insignificant trend are noted in DTR in R3
(Table 2). This shows that Tmax and Tmin in R3 are almost
similar in magnitude. Decadal Tmin and Tmax for MAM, JJA,
OND and annual are also displayed in Figures 4A,B, respectively.
In agreement with the observed standardized anomaly (Figures
3A,B), the highest warming was observed in last decade covering
almost the whole study area. The early 1960s period is dominated
by lower temperatures in all three regions. The highest warming is
recorded in the eastern and southern parts of the country. In
comparison to seasonal anomalies over the study period, more
warming is observed in JJA as compared to OND in all regions.
The noted significant positive trend of both Tmax and Tmin is in
agreement with a study by Safari (2012) who reported the trend
analysis of Rwanda’s mean annual temperature during the period
1958–2010 using five observatories. Safari 2012 recorded a
significant warming trend for the period after 1977–1979 with
a slope of 0.0455°C/year in Kigali city. The results from Figure 6
shows how important it is to consider the topography effect for a
better analysis of temperature distribution. The observed absence
of slope and insignificant trend in DTR in R3 indicate that Tmax

FIGURE 7b | Same analysis for Tmin.
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and Tmin in R3 are almost similar in magnitude. This affirms that
initially cool (high elevation) zones in R3 are getting warm faster
than the warm (low elevation) areas. A summary of temperature
tendency is presented in Table 2. The spatial distributions of
Tmax and Tmin represent a siginificant warming trend over the
whole country notably since the early 1980s. Generally, this study
classified all stations in three regions based on elevation
distribution. This subdivision method is very helpful in having
a deeper analysis of those weather variables in a certain specific
region.

Based on observed temperature, the Inter-governmental
Panel on Climate Change reported that equatorial and
southern parts of eastern Africa (where Rwanda lies) had
experienced a significant increase in temperature since the
early 1980s (IPCC, 2014). Over Rwanda, the average
temperature increase for the period 1961–2014 is 0.45°C per
decade for the whole country. In their study on projections of
precipitation, air temperature and potential evapotranspiration
in Rwanda under changing climate conditions, Mohamed et al.
(2016) also suggested an average of 0.35°C per decade from 1964
to 2014 over Rwanda. Although, Rwanda’s government has
made remarkable effort to increase agriculture production
through many programs such as crop intensification program
introduced in 2007, scaling up the consolidated land among
many others. The observed increase of temperature will
definitely harm agricultural production and food security
over Rwanda with small-scale farmers being the most

affected. This call for more measures and new adaption
strategies to ensure future capacity to cope with the
challenges caused by the temperature increases. In the same
logic, many scholars have concluded that temperature plays a
big role on spatial and temporal distribution of disease vectors
(Sun et al., 2017). The policymakers have to be well aware to take
the necessary measures in their national planning program for
sustainable development.

In general, the present study aims mainly to have a better
understanding of maximum, minimum and diurnal
temperature variability and their trends over Rwanda for the
period 1961 to 2014 based on new ENACTS data. The new
reconstructed data could not cover the whole study period
hence stations data are added for the period 1961–1983.
Previous studies have focused on temperature trend
variability but the importance of topography as a regulator
of Rwanda climate has not been well recognized. In addition,
those previous studies focus mainly on annual and intra-annual
series and used few observatories, which may fail to capture the
true image of trend behavior from each season. The present
work mainly focus on the spatial and temporal variability of
Tmax and Tmin in Rwanda and their relationship with
elevation change, leaving a gap in other potential casue
factors, e.g., urbanization, air pollution, sunshine duration
and so on (Vose et al., 2005; Henninger, 2009; Yang et al.,
2013; Yang et al., 2020a; 2020b), which should be explored in
the futue.

FIGURE 8 | Standardized anomalies of (A) minimum temperature, (B) maximum temperature and (C) minimum temperature trend, (D) maximum temperature
trend over Rwanda for the period of 1961–2014. The pink line represents the 5-years running.
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CONCLUSION

In the present study, the long-term temporal analysis indicates
that both Tmax and Tmin ere significantly increased on seasonal
and annual scale. However, the minimum temperature
increased at a faster rate than maximum temperature in the
highest altitude region (R3) (0.27 vs. 0.07°C/decade in March-
to-May) and (0.29 vs. 0.04°C/decade in October-to-December).
Similarly, the spatial distribution of Tmin and Tmax shows that
the warming trend in seeason and annual temperatures was
noticeable over the three regions. Region one (R1) which lies
mostly in east part show high rate in above normal temperature
condition at the level of 47.85% while region two (R2) and three
(R3) almost recorded the same rate of 31.5% above normal
temperature during the study period.

The reported minimum temperature increased at a faster rate
was observed during the early 1980s, resulting in a significant
decrease in the DTR during OND and MAM seasons. According
to the mutation (SQMK) test, most of the abrupt changes in
seasonal and annual Tmin and Tmax time series have occurred
during 1984 and 1990. However, the June-August season of Tmax
and Tmin showed an abrupt positive changes in the early 1980s.
In Tmin trends, most of rapid changes are detected during the
early 1990s while in Tmax, sharpt positive changes are noticable
during 1980–1985. Our findings recommend that future studies
should focus on elaborating the factors that caused the observed
Tmax and Tmin changes in the targeted regions. The knowledge
of seasonal patterns of temperature is very important in
understanding changes in land uses, crop yields, water
resources and ecosystems. From the current study, it is crucial
to consider local factors such as topography to better understand
possible climate change for any specific area.
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The compound heat wave and extreme precipitation events are responsible for severe

damages to the environment and human societies. Although major advances have been

made in understanding the compound extremes (e.g., drought and heat wave), little

is known about two types of extremes synchronized/connected in different regions in

China. Here we identify a new type of compound extreme termed as “remote compound

extreme” with the aid of a new extreme value detection method that combines isolated

forest and quantile statistics. The new compound extremes are reflected by a statistically

significant correlation (i.e., 0.52) between heat wave in the Pearl River Delta and extreme

precipitation in the Yangtze River Delta. The remote compound extreme may be tied to

the western Pacific subtropical high that modulates typhoons, surface temperature in

the Pearl River Delta and extreme precipitation in the middle and lower reaches of the

Yangtze River.

Keywords: compound extremes, heat wave, extreme precipitation, extreme detection, isolation forest

1. INTRODUCTION

Extreme weather and climate events have devastating effects, which have been projected to intensify
under climate change (Murray and Ebi, 2012; National Academies of Sciences and Medicine, 2016;
Stott, 2016). Extreme events like heat waves may claim thousands of lives every year and destroy
ecological systems (Gasparrini and Armstrong, 2011; Peng et al., 2011; Ma et al., 2015). This is also
true for extreme precipitation related to tropical cyclones, atmospheric rivers, monsoonal systems
associated with flash floods across the globe (Christensen and Christensen, 2003; Teegavarapu,
2012; Yin et al., 2018; Zhang et al., 2018).

Mounting evidence has shown that extreme weather events are connected, rather than
independent or isolated (Leonard et al., 2014; Zscheischler and Seneviratne, 2017; AghaKouchak
et al., 2020; Raymond et al., 2020; Zscheischler et al., 2020). Over the past years, a new type of
extreme events, so-called compound extreme, has been identified (Leonard et al., 2014; Zscheischler
and Seneviratne, 2017; AghaKouchak et al., 2020; Raymond et al., 2020; Zscheischler et al., 2020),
leading to cascading effects on human and the environment (AghaKouchak et al., 2018). Therefore,
a better understanding of this new type of extreme climate events can pave the road for projecting
future climate risk assessment.
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Recent studies have documented compound extreme
including concurrent drought and heat wave (Fischer et al.,
2007), tropical cyclone and heat waves in the future climate
(Matthews et al., 2019), concurrent wind and precipitation
extremes (Martius et al., 2016), concurrent heat and air pollution
(Zhong et al., 2017), heat stress followed by floods in the central
United States (Zhang and Villarini, 2020), and precipitation and
storm surge (Wahl et al., 2015; Lentz et al., 2016). Because these
extremes have been identified in the same spatial region/domain,
it is still unclear regarding whether compound extremes could be
connected and located in different regions.

The Pearl River Delta in South China has been frequently
attacked by heat waves (Sun et al., 2017; You et al., 2017; Liu
et al., 2018; Deng et al., 2020). Moreover, the Yangtze River Delta
is affected by the Meiyu belt that may lead to fluvial flooding (Ge
et al., 2008; Han et al., 2015; Wang and Gu, 2016; Yin et al., 2016),
with the 2020 summer flooding that has wreaked havoc in China
(Guo et al., 2020; Wei et al., 2020). We are yet to understand
whether the heat wave (extreme heat) in the former region relates
to the extreme precipitation in the later region. We will examine
whether, the extent to which and how the heat wave events in the
Pearl River Delta are connected to extreme precipitation in the
middle and lower reaches of the Yangtze River.

Moreover, the definition of extreme events (e.g., what
precipitation is extreme) may lead to large uncertainties in
analysis results (Rivas et al., 2008; Stephenson et al., 2008;
Pendergrass, 2018). Here we propose a new extreme value
detection method that combines machine learning (i.e., isolated
forest) and statistical methods. The extreme detection method
is an advanced machine learning algorithm, that identifies the
outlier set, followed by using the quantile function to determine
the critical point of the extreme value from the outlier set (Liu
et al., 2008, 2012). Therefore, the main objective of this study
is to identify and investigate a new type of compound extreme
(termed as “remote compound extreme”) in China usingmachine
learning technologies (i.e., isolated forest).

In what follows, the study area and data source, methods
are introduced in section 2. In section 3, we give the analysis
results and their interpretations. The paper is then concluded by
a summary and discussion in section 4.

2. DATA AND METHODOLOGY

2.1. Study Area and Data Source
The present study focuses on extreme weather events that are
connected across two regions (i.e., the Pearl River Delta and the
Yangtze River Delta). The study area of this research thus covers
the middle and lower reaches of the Yangtze River and the Pearl
River Delta. We select daily temperature data in the Pearl River
Delta region and daily precipitation data in the middle and lower
reaches of the Yangtze River region, during June and July from
1979 to 2020.

We obtain daily precipitation and temperature data from
the European Center for Medium-Range Weather Forecasts
(ECMWF) ERA-5 reanalysis data with a spatial resolution of
0.25◦. The 500-hPa geopotential height, 850 hPa winds and
500 hPa vertical velocity (omega) are also used to diagnose

large-scale circulation that is conducive to extreme precipitation
and temperature events across the study regions. Typhoon
information is obtained from the Shanghai Typhoon Institute
best track data.

2.2. A New Extreme Detection Method
This paper combines the isolated forest method and the quantile
statistical method to propose a new extreme detection method.

2.2.1. Isolation Forest

In this paper, we use the isolated forest algorithm (Liu et al.,
2008, 2012) to find and detect outliers. The term isolation means
“separating an instance from the rest of the instances.” Note
that the isolated forest algorithm is different from “decision tree”
and “random forest,” which are also commonly used machine
learning methods. Since anomalies are “few and different” and
therefore they are more susceptible to isolation. The method
exploits two particularities of anomalies: they represent fewer
instances in the observed set, and, compared to healthy instances,
they have discrepant attribute-values.

Anomaly detection using iForest is a two-stage process. The
first (training) stage builds isolation trees using subsamples of the
training set. The second (testing) stage passes the test instances
through isolation trees to obtain an anomaly score for each
instance (Liu et al., 2008, 2012).

In the training stage, iTrees are constructed by recursively
partitioning a subsampleX′ until all instances are isolated. Details
of the training stage can be found in Algorithms 1 and 2. Each
iTree is constructed using a sub-sample X′ randomly selected
without replacement from X, X′ ⊂ X.

Algorithm 1: iForest(X, t,ψ)

Input:

X - input data,
t - number of trees,
ψ - subsampling size

Output:

a set of t iTrees
1: Initialize Forest
2: for i = 1 to t do
3: X′ ← sample(X,ψ);
4: Forest← Forest ∪ iTree(X′);
5: end for

6: return Forest;

There are two hyperparameters to the iForest algorithm in
Algorithm 1: the subsampling size ψ and the number of trees t.
The subsampling size ψ controls the training data size and the
number of trees t controls the ensemble size.

The normal points tend to be isolated at the deeper end of the
tree, whereas anomalies are closer to the tree root, due to their
singularity nature. The shorter the average path length, the higher
the chances to be anomalies. Hence, the anomaly score s is then
defined by:

s(x, n) = 2
−

E(h(x))
c(n) (1)
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Algorithm 2: iTree(X′)

Input:

X′ - input data
Output:

an iTree
1: Initialize Forest
2: if X′ cannot be divided then

3: return exNode{Size = |X′|}
4: else

5: let Q be a list of attributes in X′

6: randomly select an attributes q ∈ Q
7: randomly select a split point p between the max and min

values of attribute q in X′

8: Xl ← filter(X′, q < p)
9: Xr ← filter(X′, q ≥ p)
10: return inNode{Left ← iTree(Xl),Right ←

iTree(Xr), SplitAtt← q, SplitVale← p}
11: end if

where n is the number of samples in the dataset, E(h(x)) is the
average of path length h(x)from a group of isolation tree, and
c(n) is the average of h(x) given n, used for normalizing the
path length.

Details of the testing stage can be found in Algorithm 3.

Algorithm 3: PathLength(x,T, hlim, e)

Input:

x - an instance, T - an iTree, hlim - height limit, e - current
path length;
to be initialized to zero when first called

Output:

path length of x
1: if T is an external node or e ≥ hlim then

2: return e + c(T.size)
3: end if

4: a← T.splitAtt
5: if xa < T.splitValue then
6: return PathLength(x,T.left, hlim, e+ 1)
7: else

8: return PathLength(x,T.right, hlim, e+ 1)
9: end if

2.2.2. Quantile Statistical Methods

In probability and statistics, the quantile function, associated
with a probability distribution of a random variable, specifies
the value of the random variable such that the probability of
the variable is less than or equal to the given probability. It
is also called the percent-point function or inverse cumulative
distribution function.

With reference to a continuous and strictly monotonic
distribution function, for example the cumulative distribution
function of a random variable X, the quantile function Q returns

a threshold value x below which random draws from the given
c.d.f would fall p percent of the time (Parzen, 2004).

In terms of the distribution function F, the quantile function
Q is then defined by:

Q(p) = inf {x ∈ R : p <= F(x)}. (2)

2.2.3. A New Extreme Detection Method

Definition of extreme values: In this paper, we treat extreme
values as a subset of outliers. Therefore, we first use the isolated
forest algorithm to identify and label the outliers of temperature
or precipitation at each spatial grid, and then for the outliers of
each grid point, the 95-quantile method is used to determine the
critical point of the extreme value, and the value greater than the
critical point is defined as the extreme value.

We use “isolated forest,” which is an advanced machine
learning algorithm, to detect the outlier set, followed by using
the quantile function in statistics to determine the critical point
of the extreme value from the outlier set. We finally identify
values greater than the critical point as extreme values. We apply
this extreme identification methodology to precipitation and
temperature data over the Pearl River Delta and the middle and
lower reaches of the Yangtze River in China.

In this paper, we propose a new extreme value detection
algorithm as shown in Algorithm 4. The return value label of
the isolated forest model uses −1 to denote the outlier. After
that, the percentile function is used to obtain the critical value of
the pth percentile, and finally record the points greater than the
critical value in the original vector as extreme values to realize the
discovery and identification of extreme values.

Algorithm 4: A new extreme detection method

Input:

x - an vector
Output:

the extreme label corresponding to the vector value
0 means non-extreme value, 1 means extreme value

1: Use the isolated forest algorithm to identify outliers on x
2: Use quantile statistics to obtain the critical point θ of extreme

values in the outlier vector
3: if x > θ then

4: return 1(extremevalue)
5: else

6: return 0(non− extremevalue)
7: end if

Based on the assumption that extreme values are outliers, we
propose a new extreme value detection method introduced in
this paper. Compared with other algorithms, the isolated forest
algorithm (Liu et al., 2012) has better generalization ability and
robustness in the detection and recognition of outliers. It can
be applied to univariate or multivariate outlier detection and
identification problems, and absorbs the advantages of ensemble
learning ideas.

This new extreme value detection method, on the one hand,
absorbs the advantages of the isolated forest algorithm in the
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FIGURE 1 | Spatial distribution of climatological mean (A) precipitation

(mm/day) and (B) temperature (◦C) during June and July of 1979–2020 in

Southeast China.

FIGURE 2 | Spatial distribution of composite (A) extreme precipitation

(mm/day) and (B) extreme temperature (◦C) for the date of compound

precipitation and temperature extremes in Southeast China during June and

July of 1979–2020.

detection and identification of outliers, on the other hand, it also
incorporates the method of using statistics to determine extreme
values in related papers. It belongs to a comprehensive method
of extreme value discovery and recognition, and uses advanced
machine learning technology and traditional statistical methods.
Compared with using a single method, it has a stronger learning
ability and recognition.

3. ANALYSIS RESULTS AND
INTERPRETATION

We start with analyzing the climatology of temperature and
precipitation across the study area: the Pearl River Delta and the
middle and lower reaches of the Yangtze River (Figure 1). The
middle and lower reaches of the Yangtze River exhibit higher
climatological precipitation (e.g., 10 mm/day) than the other
regions in South China during June and July (Figure 1, left

FIGURE 3 | Composite winds at 850 hPa (vector, m/s) and vertical velocity

(omega) at 500 hPa (shading, Pa/s) for the date of compound precipitation

and temperature extremes in Southeast China during June and July of

1979–2020. Red rectangular denotes the study area.

panel). Meanwhile, a high climatological surface temperature
is observed in the Pearl River Delta, suggesting a high risk
of heat wave events (Figure 1, right panel). It is noted that
the climatological surface temperature in Hunan and Jiangxi
provinces is also high during June and July (Figure 1, right
panel). In order to detect extreme temperature and precipitation,
we apply the new extreme value detection method to detect
extreme precipitation and extreme temperature in June and July
in the Pearl River Delta and the middle and lower reaches of
the Yangtze River. The spatial pattern of extreme precipitation
and extreme temperature (Figure 2) is different from that for
climatological precipitation and temperature (Figure 1). Because
the extreme precipitation date and extreme temperature date
occurred simultaneously for 169 days, accounting for 30.8% of
the extreme temperature date, based on the extreme precipitation
and extreme temperature at each grid point under the coincident
date, we found that Figure 2A has more blank areas (missing
values) than Figure 2B. Specifically, the regions with extreme
temperature are shifted poleward compared with climatological
temperature (Figures 1, 2). The high-low-high tripolar pattern
of climatological precipitation (Figure 1) cannot be identified for
extreme precipitation (Figure 2). Extreme precipitation exhibits
high values in eastern Guangdong Providence and a large portion
of the middle and lower reaches of the Yangtze River.

Figure 3 displays composite winds at 850 and 500 hPa vertical
velocity during the days with compound precipitation and
temperature extremes in Southeast China. The updraft (negative
omega) is consistent with regions in themiddle and lower reaches
of the Yangtze River with extreme precipitation (Figure 2).
Meanwhile, the downdraft associated with high temperature is
located in the western part of the Pearl River Delta (Figure 3).
The composite 500-hPa circulation pattern during days of the
compound extreme features teleconnections that propagate from
the east of the Philippines to South China (Figure 3). This 500-
hPa circulation pattern, together with the pattern of 500-hPa
omega, serves to interpret the compound extreme (Figures 2, 3).
The easterly winds along the north flank of the cyclonic system
(Figure 3) can transport water vapor from the Pacific Ocean
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to the continent and may also contribute to the precipitation
over Yangtze River (Yu et al., 2020). The circulation patterns are
similar to the circulations related to tropical cyclones (known as
typhoons in the western North Pacific) because previous studies
have suggested some potential connections between tropical
cyclones and heat waves (Parker et al., 2013; Lin, 2019; Matthews
et al., 2019; Zhong et al., 2019). During the days with compound
extremes, tropical cyclones are located close to or inside the
study region (Figure 4), in agree with previous studies showing
that tropical cyclones may be associated with heat waves (Parker
et al., 2013; Lin, 2019; Matthews et al., 2019; Zhong et al., 2019).
During 1979–2019, we identify 157 days of compound extremes,
85 of which are accompanied by typhoons located west of 130◦E.

FIGURE 4 | Six-hourly tropical cyclone positions (blue crosses) west of 130◦E

for the date of compound precipitation and temperature extremes in Southeast

China during June and July of 1979–2019. Note that tropical cyclone positions

in 2020 are not shown because the tropical cyclone best-track data in 2020

are not yet available. Red rectangular denotes the study area.

Therefore, 54% of compound extremes coincide with typhoon
activities, indicating an association between the compound
extreme and typhoons. While tropical cyclones are influenced by
large-scale circulation in terms of steering flow (tracks), genesis
and intensity, these storms can also modulate the climatology of
the background large-scale circulation (Arakane and Hsu, 2020).
Although typhoons may modulate the circulations conducive to
the compound extreme, typhoon tracks are overall controlled
by the subtropical high. Therefore, the major driver of the
compound extreme is the subtropical high with typhoons playing
a certain role.

Based on the new extreme value identification method, we
find the date of extreme temperature and the date of extreme
precipitation in the middle and lower reaches of the Pearl
River and the Yangtze River Delta. We use the date of extreme
temperature as the reference point, and analyze the date of
extreme precipitation lags 0–60 in sequence. When the date of
extreme precipitation lags behind the date obtained after 18 days,
49.18% of the date is included in the date of extreme temperature.
This relationship is shown in Figure 5.

To examine whether there is an association between extreme
temperature in the Pearl River Delta and extreme precipitation
in the Yangtze River Delta, we calculate the Pearson correlation
coefficient between the median value of extreme temperature in
the former region and the median value of extreme precipitation
in the later region (Figure 6). There is a statistically significant
Pearson correlation (0.52) between the median value of extreme
temperature and the median value of extreme precipitation
during the 26 years when we can detect extreme temperature
and precipitation (Figure 6A). The Kendall’s tau (0.35) between
the median value of extreme temperature and the median value
of extreme precipitation is also statistically significant at the
0.05 level. The significant association between the two types of
extremes suggests the compound nature of this event (remote

FIGURE 5 | Probability distribution of different days after extreme precipitation date lagging extreme temperature date.
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FIGURE 6 | The scatter plot of extreme temperature in the Pearl River Delta and extreme precipitation in the Yangtze River Delta during June and July using (A) a new

extreme detection method, (B) the traditional 95th quantile method, (C) the traditional 99th quantile method.

compound extremes). That is, heat wave characterized by
extreme temperature in the Pearl River Delta may be concurrent
and connected with extreme precipitation events in the Yangtze
River Delta (Figure 6). At the same time, we compared and
analyzed the use of the 95% quantile method to identify extreme
values, and found that the correlation between the annual median
value of extreme temperature in the Pearl River Delta and
extreme precipitation in the Yangtze River Delta is weak (0.12),
which does not meet statistical significance (Figure 6B). The
results by using the 99th percentile lead to a correlation of 0.33,
which is not statistically significant (Figure 6C).

In addition to potential impacts of typhoons on the compound
extremes, the physical mechanisms underlying the remote
compound extremes may be tied to the subtropical high that
modulates weather and climate in China, responsible for extreme
temperature and precipitation. Figure 7 exhibits the 5,880-
gpm contour of 500-hPa geopotential height when extreme
temperature and precipitation events occurred. The subtropical
high during extreme temperature is quite consistent with that
during extreme precipitation (Figure 7). When the subtropical
high shift westward and sits on the Pearl River Delta, there
tends to excite heat waves. Meanwhile, this subtropical high
setting is also conducive to extreme precipitation in the Yangtze
River Delta because strong moisture transport to this region
is prevalent along the western flank of the subtropical high
(Figure 7). Subtropical high also modulates the steering flow,
which determines typhoon tracks (Gao et al., 2020). Therefore,
the subtropical high plays a dominant role with typhoons playing
secondary roles.

4. CONCLUSIONS AND DISCUSSION

Although major advances have been made in understanding the
compound extremes (e.g., drought and heat wave), little is known
about two types of extremes synchronized/connected in different
regions. Here we have identified a new type of compound
extremes termed as “remote compound extremes” with the aid
of a new extreme value detection method that combines isolated
forest and quantile statistics. The main findings of this paper are
summarized as follows.

FIGURE 7 | The 5,880-gpm contour (red) of 500-hPa geopotential height for

the 26 years with extreme temperature in the Pearl River Delta and extreme

precipitation in the Yangtze River Delta during June and July, and the

climatological mean 5,880-gpm contour (black) during June and July of

1979–2020.

1. We apply a new extreme detection method that combines
isolated forest and quantile methods to identify the extreme
temperature and precipitation, thereby leading to the new
compound extremes.

2. We have found a statistically significant correlation (i.e.,
0.52) between the heat waves in the Pearl River Delta and
extreme precipitation in the Yangtze River Delta, suggesting
the existence of the remote compound extremes.

3. The remote compound extreme may be tied to the western
Pacific subtropical high that modulate typhoons, surface
temperature in the Pearl River Delta and extreme precipitation
in the middle and lower reaches of the Yangtze River.

This study for the first time quantifies the occurrence of this type
of compound extreme using machine learning technologies and
attempts to understand this compound. Efforts are still required
to dissect the exact mechanisms underlying this compound
extreme. Our future work will focus on three aspects of the
new compound extreme. First, we will evaluate this new type
of compound extremes across different regions. Second, we
will examine the capability of climate models in simulating
and reproducing this compound extreme. Last but not least,
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further study will focus on the predictability of this new type of
extremes among the seasonal forecasting systems [e.g., TheNorth
American Multi-Model Ensemble (Kirtman et al., 2014)].
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Solar radiation is the Earth’s primary source of energy and has an important role
in the surface radiation balance, hydrological cycles, vegetation photosynthesis, and
weather and climate extremes. The accurate prediction of solar radiation is therefore very
important in both the solar industry and climate research. We constructed 12 machine
learning models to predict and compare daily and monthly values of solar radiation and
a stacking model using the best of these algorithms were developed to predict solar
radiation. The results show that meteorological factors (such as sunshine duration, land
surface temperature, and visibility) are crucial in the machine learning models. Trend
analysis between extreme land surface temperatures and the amount of solar radiation
showed the importance of solar radiation in compound extreme climate events. The
gradient boosting regression tree (GBRT), extreme gradient lifting (XGBoost), Gaussian
process regression (GPR), and random forest models performed better (poor) prediction
capabilities of daily and monthly solar radiation. The stacking model, which included the
GBRT, XGBoost, GPR, and random forest models, performed better than the single
models in the prediction of daily solar radiation but showed no advantage over the
XGBoost model in the prediction of the monthly solar radiation. We conclude that the
stacking model and the XGBoost model are the best models to predict solar radiation.

Keywords: solar radiation prediction, meteorological factors, machine learning, stacking model, climate
extremes model comparison

INTRODUCTION

Solar radiation is the Earth’s main source of energy and the amount of solar radiation
reaching the Earth’s surface is affected by the atmosphere, hydrosphere and biosphere
(Budyko, 1969; Islam et al., 2009). Solar radiation also has a vital role in the global
climate, and even small changes in the output of energy from the Sun will cause
considerable changes in the Earth’s climate (Beer et al., 2010; Siingh et al., 2011). Variations
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in solar radiation affect global temperatures, global mean
sea-level, and compound extreme climate events (Bhargawa
and Singh, 2019). Accurate observations and analyses of
the temporal and spatial variability of solar radiation are
therefore essential in research on solar energy, building
materials, and extreme weather and climate events (Garland
et al., 1990; Cline et al., 1998; Hoogenboom, 2000; Grant
and Tuohimaa, 2004; Wild, 2009; Beer et al., 2010; Besharat
et al., 2013; Ohunakin et al., 2015). Many methods have been
developed to predict solar radiation, including theoretical
parameter models, empirical models, artificial intelligence
models, and satellite retrieval data (Iziomon and Mayer, 2002;
Mellit, 2008; Lu et al., 2011; Li et al., 2012; Halabi et al.,
2018; Makade et al., 2019). Angstrom (1924) and Prescott
(1940) first proposed the A–P model, which is widely used
to predict solar radiation. Bristow and Campbell (1984)
constructed the BCM model by analyzing the relationship
between solar radiation and daily maximum and minimum
temperatures. Yang et al. (2001) developed a hybrid model
(YHM), improving the A–P model by exploring the effects
of meteorological parameters and then validating the model’s
accuracy in Japan. Salazar (2011) compared the YHM and a
climatological solar radiation model to estimate the horizontal
direct and diffuse components of solar radiation to generate
a corrected version of the YHM (CYHM). Gueymard, 2003
selected 19 solar radiation models to investigate solar irradiance

predictions, concluding that detailed transmittance models
perform better than bulk models. The development of
machine learning has inspired many researchers to use machine
learning algorithms to develop solar radiation prediction models
(Azadeh et al., 2009; Jiang, 2009; Chen et al., 2011; Voyant
et al., 2012). Fadare (2009) and Linares-Rodríguez et al. (2011)
adopted artificial neural network (ANN) technology to construct
solar radiation prediction models to test their predictive ability.
Xue (2017) used a back-propagation algorithm to develop a
solar radiation prediction model and showed that the predictive
accuracy depended on the combination and configuration of
the input parameters. Chen et al. (2011) used the support
vector machine (SVM) method to construct a solar radiation
prediction model and showed that the SVM-based algorithm
had a differential predictive accuracy when using different kernel
functions. Olatomiwa et al. (2015) and Shamshirband et al.
(2016) both optimized the SVM algorithm and achieved good
prediction results. Tree algorithms, such as the random forest
algorithm and the gradient boosting regression tree (GBRT)
algorithm, have been used to construct solar radiation prediction
models with encouraging results (Sun et al., 2016; Persson et al.,
2017; Fan et al., 2018; Zeng et al., 2020). In recent years,
some scholars have carried out the comparative analysis of a
variety of machine learning algorithms (Meenal and Selvakumar,
2018; Pang et al., 2020; Shamshirband et al., 2020), and all
these works show that the ANN algorithm does not realize

FIGURE 1 | The geographical location of solar radiation monitoring station in Ganzhou County (red triangle).
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good prediction results but provides a direction for algorithm
improvement. Some studies use deep learning techniques to
predict solar radiation. For example, Shamshirband et al. (2019)
discuss different types of deep learning algorithms applied
in the field of solar, and results show hybrid networks have
better performance compared with single networks. Mishra
et al. (2020) proposed a short-term solar radiation prediction
model using WT-LSTM and achieved good results, showing that

deep learning technology has great potential in solar radiation.
A CEEMDAN–CNN–LSTM model is proposed by Gao et al.
(2020) for hourly multi-region solar irradiance forecasting, and
the results present that the model can achieve more accurate
prediction performance than other models.

As an investigative technique, machine learning has achieved
noteworthy success in many areas, including natural language
processing and image recognition (Angra and Ahuja, 2017).

FIGURE 2 | The framework of the stacking model.
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The use of machine learning has come to the forefront of the
construction of solar radiation models and is a popular direction
of research. However, many researchers have focused on the
construction of one or several machine learning methods, and
there are few in-depth considerations of the differences among

these models. Therefore, we used a daily dataset of meteorological
elements and basic radiation elements for Ganzhou, China, for
the time period 1980–2016 to explore the differences between
models of solar radiation prediction. After data processing,
we applied the random forest algorithm to selected variables

FIGURE 3 | Flow chart of the machine learning models used to estimate solar radiation.
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and extracted a monthly dataset based on the daily dataset.
We selected 12 machine learning methods to construct a solar
radiation prediction model. By comparing the prediction results
of these 12 machine learning models, we found the solar
radiation prediction models with the best prediction ability. The
models with the best prediction ability were then stacked in a
linear model. A stacking model was obtained and the predicted
results were analyzed.

DATA AND MACHINE LEARNING
ALGORITHMS

Study Area and Datasets
Ganzhou city (24.48–30.06◦ N, 113.57–118.46◦ E) lies in the
south of Jiangxi province in the southern subtropical zone of
China and is characterized by a subtropical monsoon climate. It
is bordered to the south by Guangdong province, to the east by
Fujian province, and to the west by Hunan province. Ganzhou
has a mild climate with four distinct seasons and both winter
and summer monsoons, with precipitation concentrated in the
spring and summer seasons. The annual average temperature is
19.1–20.8◦C and the annual rainfall is 1152.2–1554.9 mm. There
is a solar radiation monitoring station (No. 57993) in Ganxian
County (25.51◦ N, 114.57◦ E, 137.5 m above sea-level) (Figure 1).

Experimental data were gathered from the China
Meteorological Information Center website, including a

dataset (V3.0) of daily climate data (temperature, precipitation,
air pressure, humidity, temperature, visibility, wind speed,
and sunshine duration) from surface stations in China
and a daily radiation dataset from Ganzhou’s surface solar
radiation monitoring station. After referring to relevant
research (Will et al., 2013; Mohammadi et al., 2016) and
analyzing the quality of the collected data, we selected
the data from 1980 to 2016 to estimate solar radiation.
The data were selected including the visibility (VIS), the
mean relative humidity (RHU-mean), the minimum relative
humidity (RHU-min), the mean wind speed (WIN-mean),
the mean precipitation (PRE-mean), the mean pressure (PRS-
mean), the maximum pressure (PRS-max), the minimum
pressure (PRS-min), the sunshine duration (SSD), the
mean temperature (TEM-mean), the maximum temperature
(TEM-max), the minimum temperature (TEM-min), the
mean ground temperature (GST-mean), and the total solar
radiation (RAD).

Quality control of the data was essential considering the length
of the study period and the inherent errors in the instrument-
based observations. We excluded missing and abnormal values
in the meteorological data from the final dataset and then
applied the requirements for solar radiation data quality
control proposed by Younes et al. (2005). In total, 13,100
daily data records and 432 monthly average data records
were obtained. The dataset was further divided into training
and test sets and then normalized, with the training set

FIGURE 4 | Predictive performance (R2 and RMSE) of the random forest model during variable selection. Variables were removed in the order PRS-min, PRS-max,
RHU-min, PRE-mean, TEM-mean, WIN-mean, TEM-max, TEM-min, RHU-mean, PRS-mean, and VIS.
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accounting for 90% and the test set accounting for 10% of
all data. Our final sample consisted of 11,790 daily training
sets, 1,310 daily test sets, 388 monthly training sets, and 44
monthly test sets.

Machine Learning Predictive Algorithms
and Stacking Techniques
Machine Learning Algorithms
With the development of machine learning technology, an
increasing number of researchers are using machine learning
to predict solar radiation. We investigated 12 different machine
learning predictive algorithms: multiple linear regression (Baczek
et al., 2005; Nathans et al., 2012), the radial basis function neural
network (Mahanty and Dutta Gupta, 2004; Li M. et al., 2008),
the K-nearest neighbor model (Shen and Chou, 2005; Deng
et al., 2016), the decision tree (Brodley and Friedl, 1997; Quinlan,
1999), the back-propagation neural network (Van Ooyen and
Nienhuis, 1992; Trappey et al., 2006), the extreme learning
machine (Deng et al., 2015; Huang G. et al., 2015), SVM
regression (Burges, 1998; Shamshirband et al., 2016), Gaussian
process regression (GPR) (Nguyen-Tuong et al., 2009; Ebden,
2015), the GBRT (Zhang and Haghani, 2015; Johnson et al.,
2018), adaptive boosting (Adaboost) (Zhu et al., 2006; Li X.
et al., 2008; Wang, 2012), extreme gradient lifting (XGBoost)
(Nielsen, 2016; Torlay et al., 2017), and random forest (Kapwata
and Gebreslasie, 2016; Sun et al., 2016) algorithms. A detailed
description of machine learning methods can be found in
Supplementary Text S1.

Stacking Model
Stacking technology is a general integration algorithm that
integrates advanced learners by using multiple lower-level
learners to achieve higher performance (Agarwal and Chowdary,
2020). In general, the K-fold cross-validation method is used to
train and test these models and then output the prediction results.
The prediction results output by each model is then combined
into a stacking model, which is built to reduce the generalization
errors. The stacking model usually consists of two layers. The first
layer is the base learner, and the input is the initial training set.
The second layer is trained with the output data from the first
layer as the input data and gives the final results.

The steps of the stacking model construction are as Figure
2. Each model is trained using five-fold cross-validation. The
training set is divided into five parts, and four parts are selected
as the training data and one set as the test data. The test data in
each of the four training sets is predicted to obtain a prediction
result (a) and the test set data are predicted by the trained model
to obtain the test set prediction result (b). After five training runs,
the prediction result a of each of the five runs is combined into
one column as A and the prediction result b is averaged as B.
The new datasets A and B are obtained, in which the number
in A is the same as the number of training sets, but A is one-
dimensional data. After constructing N single models, N A and N
B are generated, then the N A and N B data are combined into a
new training set and a new test set. A simple linear model is used
as the second layer to train using the new training set and test
with the new test set. TA
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MATERIALS AND METHODS

Prediction of the Flow of Solar Radiation
Our experiment consisted of three parts (Figure 3): data
preprocessing, model building, and model prediction. The data
preprocessing involved four steps: data quality control, dataset
partitioning, data scaling, and variable selection. Among them,
data quality control, dataset partitioning, and data scaling are
described in Section “Study Area and Datasets,” and variable
selection is described in Section “Variable Selection.” The main
processes of the model building were as follows: the selection
of the machine learning algorithm, parameter selection, model
construction, and model saving. We used the 10-fold cross-
validation method (Jiang and Wang, 2017) in the parameter
selection step. We can get a detailed description of the model
building in Section “Model Building.” In the model prediction
step, the saved model from the model building step was used to
predict the solar radiation using the test dataset. Then, we save
the predicted results and analysis. The specific experimental steps
proceeded as follows:

(1) data collection and data preprocessing;
(2) choose a machine learning algorithm from the 12

algorithms to predict solar radiation;
(3) compare solar radiation predictive ability based on

different parameters;
(4) if the best predictive ability is achieved, save the model;
(5) return to step (2) and choose another machine learning

algorithm until all 12 algorithms have been subjected to
machine learning model building;

(6) input the preprocessing dataset (we prepared datasets
on two timescales—daily and monthly—to estimate the
solar radiation predictive performance of the 12 machine
learning models) and use the 12 saved machine learning
models to predict solar radiation and obtain the predicted
results;

(7) save predicted results and analyze.

Variable Selection
The variable selection step is important in constructing machine
learning models. The current mainstream variable selection
algorithms include the genetic algorithm (Huang and Chiu,
2006), the Tabu search (Corazza et al., 2013), particle swarm
optimization (Khatibi Bardsiri et al., 2013), and the random
forest algorithm (Kapwata and Gebreslasie, 2016). We used the
random forest algorithm to select data variables (Zeng et al.,
2020). Normalized daily data were used to construct and train
the random forest model and to calculate the model’s importance.
The data preprocessing experiment was intended to verify the
importance of variables in a given model and to analyze the
impact of changes in the variables on the model’s predictive
performance. The experiment proceeded as follows:

(1) divide the dataset into a training set and test set after
completing the data quality control process;

(2) use the training set to train and save the model, then
calculate the correlation coefficient (R2) and the root mean
square error (RMSE) of the saved model;

(3) based on the order of importance of the variables in the
model, eliminate the least important variable;

(4) repeat steps (2) and (3) until only two variables remain (the
minimum required for calculation).

Figure 4 shows that when the model contained <10 variables,
R2 tended to decrease and the RMSE tended to increase. Between
12 and 10 variables, R2 reached 0.921 and the RMSE was
2.042 MJ/m2. With four variables, R2 decreased sharply from
0.904 to 0.895 and the RMSE decreased from 2.19 to 2.28 MJ/m2.
Therefore, the prediction of solar radiation can achieve the best
performance when using 10 variables, then the subsequent model
experiments were trained with these 10 variables.

Model Building
Experiments were performed in Python 3.6 using third-party
libraries such as Pandas, NumPy, the scikit-learn machine
learning library (Sklearn), and the Xgb library. Twelve machine
learning algorithms were chosen to build the models. The initial
parameter settings of each algorithm were determined according
to the algorithm’s characteristics. For example, for a neural
network model, the number of hidden layers and the number
of neurons were determined based on empirical formulas and
neural network design principles (Basheer and Hajmeer, 2000).
The respective selection ranges of the adjustment parameters
and other parameters were then set according to the parameter
adjustment methods for different machine learning algorithms.
We used Sklearn’s GridSearchCV method to select parameters
for each of the 12 machine learning models, ultimately saving the
best model. The first layer of the stacking model consists of those
multiple models with excellent predictive power. The parameters
of the first layer model are the parameters selected previously
and the second layer is constructed by multiple linear regression.
After obtaining the best parameters, the train set was used to train
the model and the final model was saved. The time spent training
the model is the model construction time, and the final model size
is the model memory. When the model was constructed, input the
test set was input to get the prediction result.

Statistical Metrics
The models were evaluated using four indicators: R2, RMSE,
MAE, and BIAS:

R2
=

(∑n
t = 1 (yot−ȳo)(ymt− ¯ym)

)2∑n
t = 1 (yot−ȳo)

2
·
∑n

t = 1 (ymt− ¯ym)2 (1)

RMSE =

√√√√ 1
n

n∑
t = 1

(yot−ymt)
2 (2)

MAE =
1
n

n∑
t = 1

∣∣∣∣ (yot−ymt
) ∣∣∣∣ (3)

BIAS =
(
yot−ymt

)
(4)
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where n indicates the amount of data, ymt is the predicted
solar radiation, yot is the observed solar radiation, and ¯ym
and ȳo represent the average of the predicted and observed
results, respectively.

If R2 is close to 1, then the observed and predicted values are
closely correlated. The closer the RMSE/MAE values are to 0, the
better the predicted value fits the observed value. A combination
of metrics, including, but not limited to, the RMSE and MAE, are
often required to assess the performance of the model.

RESULTS

Description and Selection of Variables
The average annual range of the RAD was 1–30.48 MJ/m2,
with a mean value of 12.02 MJ/m2 and a standard deviation of
6.28 MJ/m2 (Table 1). The annual mean (standard deviation)
values were VIS 16.02 (6.21) km, RHU-mean 74.46 (11.04)%,
WIN-mean 1.45 (0.78) m/s, PRE-mean 39.5 (98.9) mm, PRS-
mean 999.51 (4.86) hPa, TEM-mean 19.66 (4.46)◦C, TEM-
max 24.28 (5.46)◦C, TEM-min 16.39 (4.2)◦C, GST-mean 22.29
(5.56)◦C, and SSD 4.79 (3.92) h. Apart from the RHU-
mean, PRE-mean, and PRS-mean, the mean values of the
variables were highest in summer, followed by spring and
autumn, and were lowest in winter. Supplementary Figure 1
shows the annual maximum GST-mean and the corresponding

solar radiation from 1980 to 2016. The trend of GTS-max
and the corresponding solar radiation values were generally
consistent and increased with the solar radiation, confirming
the importance of solar radiation in compound climate extreme
events (Ohunakin et al., 2015).

Figure 5 shows the importance of the input variables as
predictors in the final random forest model. SSD was identified
as the most critical variable, followed in descending order
by GST-mean, VIS, PRS-mean, RHU-mean, TEM-min, TEM-
max, WIN-mean, TEM-mean, PRE-mean, RHU-min, PRS-
max, and PRS-min. The importance of SSD was 85%, which
agrees with the results of earlier studies (Chen et al., 2013;
Suehrcke et al., 2013; Zeng et al., 2020). The importance
of GST-mean was 6% and the importance of all other
variables was <5%.

Predictive Performance for Daily Solar
Radiation
Figure 6 shows the performance of the 12 machine learning
models in predicting solar radiation for the given daily dataset.
The statistical results show that most of the machine learning
models used to predict solar radiation yielded satisfactory results.
The R2 values of the 12 machine learning models ranged from
0.838 to 0.925. The GBRT, GPR, XGBoost, and random forest
models were the best machine learning models to predict solar
radiation with R2 values of 0.925, 0.923, 0.922, and 0.921,

FIGURE 5 | Importance of variables in predicting solar radiation using the random forest model.
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FIGURE 6 | Scatter plots of the cross-validation results for 12 machine learning models in predicting daily solar radiation at Ganzhou from 1980 to 2016.
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respectively. The R2 values of the extreme learning machine and
decision tree models were 0.874 and 0.838, respectively, which
indicated that these models had the poorest precision for the

prediction of solar radiation. The RMSE values of the 12 machine
learning models were in the range 1.987–2.999 MJ/m2. The
RMSE value of the GBRT model was the lowest (1.987 MJ/m2),

FIGURE 7 | Deviation distribution of machine learning models in predicting daily solar radiation at Ganzhou from 1980 to 2016.
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indicating that this model was the best for predicting solar
radiation. By contrast, the RMSE value of the decision tree
model was the largest (2.999 MJ/m2), suggesting that this
model was the poorest predictor of solar radiation. The MAE
values of the 12 machine learning models ranged from 1.498
to 2.266 MJ/m2, with the GBRT model returning the smallest
value (MAE = 1.498 MJ/m2), meaning that the deviation
between the predicted and measured values was also the smallest.
The MAE value of the decision tree model was the largest
(MAE = 2.266 MJ/m2), demonstrating that this model had the
largest prediction bias. The MAE values of the other machine
learning models were both <2.0 MJ/m2.

Figure 7 shows distribution maps of the daily deviation
probability to further explore the distribution of the deviation of
solar radiation prediction for the 12 machine learning models.
The results showed that the bias of the GBRT and the decision
tree models both were 0.01 MJ/m2, followed by the RBNN
model (−0.02 MJ/m2). The bias of the AdaBoost model for solar
radiation prediction was −0.32 MJ/m2. The deviation values of
most models were mainly distributed between−6 and+6 MJ/m2,
whereas those of the decision tree and extreme learning machine
models were mainly distributed between −8 and +8 MJ/m2.
Table 2 shows the number of deviation values that fell within the
range ±2 MJ/m2 in the prediction of solar radiation for the 12
models. The deviation in solar radiation prediction for the GBRT,
GPR, XGBoost, and random forest models each exceeded 940,
compared with only 734 for the decision tree model.

The prediction results from the daily value data indicate
that the GBRT, XGBoost, GPR, and random forest models
had a relatively good predictive ability, whereas the extreme
learning machine and decision tree models performed poorly.
The random forest model had the longest construction time,
followed by the GBRT and the GPR models; the XGBoost model
had the shortest construction time. This is related to the model
principle—for example, to obtain better training results, the
random forest model needs more CART-based models, which
increases the training time. By contrast, XGBoost uses parallel
processing to increase the operational speed and therefore
requires less time.

TABLE 2 | Statistics for the amount of daily data for each model deviation within
±2 8 MJ/m2.

Model Number of data points Percentage

Multiple linear regression 861 65.7

Radial basis function neural network 804 61.4

K-nearest neighbor 894 68.2

Decision tree 734 56.0

Back-propagation neural network 935 71.4

Extreme learning machine 768 58.6

Support vector machine regression 846 64.5

Gaussian process regression 941 71.8

AdaBoost 794 60.6

Gradient boosting regression tree 956 73

XGBoost 950 72.5

Random forest 945 72.1

Predictive Performance for Monthly
Solar Radiation
Figure 8 presents a scatter plot of the monthly predicted and
measured values for different models. The R2 values for the
12 machine learning models ranged from 0.900 to 0.944 and
were > 0.9 for all models. The XGBoost model gave the best
prediction result, with an R2 value of 0.944; the GPR (R2 = 0.941),
GBRT (R2 = 0.938), and random forest (R2 = 0.936) models
also demonstrated a good prediction performance. The K-nearest
neighbor (R2 = 0.900) and decision tree (R2 = 0.901) models gave
relatively poor prediction results. The RMSE of each model fell
between 1.131 and 1.580 MJ/m2. The XGBoost model returned
the lowest RMSE of 1.131 MJ/m2, reflecting the highest precision
of all the models. The decision tree model had the lowest
precision (RMSE = 1.580 MJ/m2). The MAE values for all models
ranged from 0.870 to 1.174 MJ/m2. The MAE of the XGBoost
model was the smallest (MAE = 0.870 MJ/m2), indicating that
the predicted value was close to the observed value.

For the monthly average data, Figure 9 shows the largest
deviation in the RBNN model (bias 0.88 MJ/m2), followed by
random forest (bias −0.02 MJ/m2) and SVM regression (bias
0.08 MJ/m2) models and the lowest deviation in the GBRT model
(bias −0.01 MJ/m2). In contrast with the deviation in the daily
data, the monthly average prediction bias of most models was
positive, although the decision tree, GBRT, and random forest
models showed a negative deviation. According to the monthly
mean deviation probability distribution, the main distribution
interval of the model deviation was within ±4. Table 3 gives the
statistical results for the monthly data with a predicted deviation
between −2 and +2 MJ/m2, with 37 data points in the random
forest model and 40 data points in the GBR model.

The XGBoost, GPR, GBRT, and random forest models
showed better predictive ability on the monthly average data,
whereas the K-nearest neighbor and decision tree models
performed poorly. When the amount of data is small, the
XGBoost, GPR, GBRT, and random forest models are all
built very quickly, but the XGBoost model is the fastest
with the highest prediction accuracy. Besides, XGBoost has
strong anti-overfitting and generalization abilities. This is
advantageous for the construction of the monthly radiation value
in models with a small number of data points, which is an
advantage over the other machine learning models. The XGBoost
model is therefore recommended when there is only a small
number of data points.

Predictive Performance of the Stacking
Model
The XGBoost, GPR, GBRT, and random forest single models
showed excellent prediction capabilities. These four models were
therefore used as the first layer model and multiple linear
regression was used as the second layer model to build a
stacking model. Figures 10A,B show the predicted results and
bias probability distributions. Figure 10A shows that the R2 of
the stacking model is 0.929, the RMSE is 1.940 MJ/m2, and the
MAE is 1.457 MJ/m2. Compared with the 12 single models, the
stacking model has the highest R2 value, but the lowest RMSE
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FIGURE 8 | Scatter plots of the results of machine learning models in predicting monthly average solar radiation at Ganzhou from 1980 to 2016.

and MAE. Figure 10B shows that the average deviation of the
stacking model is 0 MJ/m2 and the deviation of the distribution
is more uniform than that of the single models. The stacking

model predicts 74.8% of the data with a bias distribution in
[−2, 2]. The stacking model has a better prediction ability for
the daily data than the single models. Figure 10C shows that
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FIGURE 9 | Deviation distribution of machine learning models in predicting the monthly average solar radiation at Ganzhou from 1980 to 2016.

the R2 value of the stacking fusion model is 0.943, the RMSE
is 1.142 MJ/m2, and the MAE is 0.884 MJ/m2, all lower than
the XGBoost model (R2 0.944, RMSE 1.131 MJ/m2, and MAE
0.870 MJ/m2). Figure 10D shows that the average value of the

stacking deviation of the stacking model is 0.13 MJ/m2 and
there are only 39 deviations between [2, −2]. The stacking
model has no advantage over the XGBoost model in terms of
construction time.
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TABLE 3 | Statistics for the amount of monthly data in each model
deviation within ±2.

Model Number of data points Percentage

Multiple linear regression 35 79.5

Radial basis function neural network 36 82

K-nearest neighbor 36 82

Decision tree 38 86.4

Back-propagation neural network 34 77.3

Extreme learning machine 35 79.5

Support vector machine regression 36 82

Gaussian process regression 40 90.9

AdaBoost 37 84.1

Gradient boosting regression tree 38 77.3

XGBoost 40 90.9

Random forest 37 84.1

DISCUSSION

Many studies have compared the ability of machine learning
algorithms to predict solar radiation (Supplementary Table 1).
Moreno et al. (2011) used an ANN and generalized regression
to build models separately, positing that an ANN has the same
predictive power as generalized regression. Yang et al. (2014)
applied ANN-SVM, SVM, and ANN to construct separate

models, giving a model performance in the order ANN-
SVM > SVM > ANN. Wang et al. (2016) compared the MLP,
RBNN, and GRNN models and noted RBNN > GRNN > MLP
in terms of performance. We used daily and monthly data to
predict the performance of 12 machine learning models and
showed that the GBRT, GPR, XGBoost, and random forest
models had better prediction capabilities than the other models.
We also combined the XGBoost, GBRT, GPR, and random
forest models using stacking technology. The performance of
the stacking model in predicting the daily solar radiation
set was better than that of the 12 single models, but the
performance using the monthly dataset gave no advantage over
the XGBoost model.

We found that the input of a small measured value of
solar radiation returned a large predicted output value, whereas
the input of a large value of solar radiation returned a
small predicted output value after machine learning processing.
This phenomenon may be linked to data that were relatively
concentrated and contained fewer, but higher, measured values.
The data scaling method greatly influences the performance
of machine learning models (Huang J. et al., 2015; García
et al., 2016). Normal processing methods include no processing,
normalization, standardization, and regularization. We adopted
four different data processing methods to build 12 different
machine learning models with daily or monthly data. The results
are shown in Supplementary Tables 2, 3.

FIGURE 10 | (A–D) Scatter plot and distribution of deviation of the prediction results of the stacking model.
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CONCLUSION

We performed data preprocessing and variable selection
based on meteorological elements and solar radiation data
from 1980 to 2016 for Ganzhou station, China. Then, 12
machine learning models were developed using Sklearn and
the Xgb library. By comparing and evaluating the predictive
ability of the 12 machine learning models using R2, the
RMSE, the MAE and BIAS indices, the XGBoost, GPR,
GBRT, and random forest models were selected as the
first layer, and multiple linear regression was selected as
the second layer to construct a stacking model to predict
solar radiation.

Using the random forest algorithm to select the variables,
the SSD was identified as the most important variable.
The time series of the annual maximum GST-mean and
the corresponding solar radiation value from 1980 to 2016
showed that the maximum GTS-max increases with the solar
radiation, which confirms the importance of solar radiation
in compound extreme climate events. The GBRT, XGBoost,
random forest, and GPR models performed better than
the other models for the daily and monthly datasets. The
GBRT model had the best predictive ability for the daily
datasets, whereas the XGBoost model had the best predictive
ability for the monthly datasets. The random forest model
had the longest construction time, followed by the GBRT
and GPR models, whereas the XGBoost model had the
shortest construction time. This phenomenon is related to the
principles of the models.

The prediction ability of the stacking model was improved in
the daily solar radiation prediction model, but the monthly model
performed poorly, which may be related to too little monthly
training data. We concluded that the XGBoost model is the
best solar radiation value prediction model, although when the
amount of data is large, we suggest using the stacking fusion or
XGBoost model to build the model.
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Based on hourly high-density precipitation data in Guangdong Province, China, 134
warm-sector heavy rainfall (WSHR) events were selected from 2016 to 2018. The
synoptic weather patterns of these WSHR events were objectively classified using
T-mode principal component analysis. Six WSHR weather patterns were identified, as
follows: Type 1-southwest (T1-SW), Type 2-southeast (T2-SE), Type 3-coastal jets I (T3-
CJI), Type 4-coastal jets II (T4-CJ II), Type 5-western low vortex (T5-WL), and Type
6-high-pressure (T6-HP). Three high-occurrence WSHR centers were finally extracted:
the areas of Yangjiang and Shanwei, and the urban agglomeration of Guangdong–
Hong Kong–Macao Greater Bay Area (GBA). Compared with the other five patterns,
T6-HP is a newly identified WSHR weather pattern, which is related to a local/small-
scale weather system in the context of anomalous northward movement of the
western Pacific subtropical high. Notably, the precipitation area of the T6-HP type of
WSHR event is smaller, which can only be captured by high-density observations. In
addition, the occurrence locations of six large-scale extreme precipitation events were
closely associated with the urban agglomerations in GBA, implying that urbanization
plays an important role in extreme magnitudes of large-scale WSHR events and their
occurrence centers.

Keywords: warm-sector heavy rainfall, objective weather classification, T-mode principal component analysis,
South China, high-density observations

INTRODUCTION

South China has the most abundant rainfall in China. Rainstorms in South China usually occur not
only in front and behind the front, but also in the warm sector south of the front. Due to the effect
of the inconspicuous baroclinicity of the environment, sufficient atmospheric water vapor, strong
instability, complex topography, and underlying surface, the warm-sector heavy rainfall (WSHR)
often happens suddenly, with significant regional characteristics, and frequent activities of micro
and meso-scale systems, which is difficult to forecast (He et al., 2016; Sun et al., 2019).
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Previous studies have shown that there are many factors
influencing WSHR events in South China, including large-scale
circulation, weather systems, the underlying surface, topography,
and cloud microphysical processes (Zhao and Wang, 2009).
The atmospheric circulations in the middle and high latitudes
of Eurasia, the West Pacific subtropical high, the South Asian
high, and the subtropical westerly jet are the main weather
systems that lead to WSHR in South China. The weather system
plays an important role in the configuration and adjustment
of the conditions of the convective environment, such as
vertical shear, convective stability, and water vapor distribution
(Wang et al., 2018). The typical weather systems of WSHR
events have been classified and summarized based on different
criteria. For example, the large-scale circulation patterns can
be divided into the Eurasian circulation type, subtropical high
type, and tropospheric divergence type (Li et al., 1981; Zhao
and Wang, 2009). According to the weather situation of the
low-level troposphere, Huang (1986) summarized four types
of WSHR: warm wind shear line, the Low Level Jet (LLJ)
along coastlines, the prefrontal LLJ, and cold fronts or quasi-
stationary fronts. Lin (2006) classified WSHR in the pre-rainy
season into three types: (1) high-altitude trough, which means
heavy rain caused by the convergence of southerly winds
in the boundary layer and forced uplift of the terrain; (2)
strong southwest monsoon, which is a type of heavy rain
caused by strengthening of the monsoon and formation of
low-level jets; and (3) backflow heavy rainfall, which is where
the cold air flows back after moving out to sea, and the
easterly and southwesterly winds converge. This last type is
relatively rare compared with the other two. Chen et al. (2012)
used reanalysis data and 77 meteorological stations to count
the WSHR events from 2000 to 2009 in May and June, and
divided them into three types: shear linear, low vortex, and
southerly wind. He et al. (2016) summarized three WSHR
weather system configuration models – namely, boundary layer
convergence line type, southerly wind speed convergence type,
and strong southwest jet type. Based on the data of 124
national stations in the South China region, Liu et al. (2019)
identified 177 WSHR events from 1982 to 2015 and summarized
their spatial and temporal distribution characteristics. They
suggested that the weather patterns of WSHR in South China
mainly include wind shear, a low vortex, southerly wind, and
backflow. However, despite these efforts, due to differences in
case selection, classification, data selection, and study period,
no unified conclusion has yet been reached on classifying the
weather situation that affects WSHR.

The main influencing factors of WSHR are the southerly wind,
jet stream, low vortex, and shear line, which play key roles in
determining the location, time, and intensify of WSHR. Based
on statistical analysis of operational practice and experience, and
by using precipitation data from national basic stations along
with reanalysis data, previous studies mainly classified the WSHR
events before 2016, and the statistical results were mostly the
typical circulation characteristics. However, WSHR is sometimes
caused by abnormal weather patterns, which tend to be small
in scope, and the width of some extremely heavy rains are only
20–30 km (Lin, 2006).

To date, there have been few examples of applying objective
weather classification methods to studying the weather pattern
statistics of WSHR. With this in mind, the present paper
uses an objective classification method to classify the weather
situation affecting WSHR. Not only can it identify the typical
circulation situation when the rainstorm occurs, but it can also
distinguish the abnormal circulation, so as to better reflect the
temporal and spatial characteristics of precipitation in different
types of WSHR events.

Guangdong Province has a high spatiotemporal density of
automatic weather stations (Wu et al., 2020), As the increased
station density, more extreme precipitation events can be
recorded by automatic weather stations. For example, a persistent
torrential rain event associated with monsoon depression
occurred in Guangdong from 27 August to 1 September 2018
resulting in a 24 h rainfall amount of 1056.7 mm recorded by
automatic weather station, which refreshed the historical record
of Guangdong Province (Cai et al., 2019). Hence, we employed
the data of this dense observation station network, which is
conducive to capturing small-scale processes, to explore WSHR
events. The rest of the paper is organized as follows: The data
and methods are introduced in section 2. The WSHR selection
and classification results are presented in sections 3 and 4,
respectively. The temporal and spatial distribution characteristics
of WSHR under different weather types are analyzed in section
5. The possible reasons for abnormal weather are discussed in
section 6, and conclusions are given in section 7.

DATA AND METHODS

Data
The rainfall cases were selected by using the hourly precipitation
data of Guangdong regional automatic stations from 1 April
2016 to 30 September 2018. Considering the continuity of the
data, the proportion of effective hourly precipitation data was
required to be no less than 85% of the total data, meaning a
total of 2,667 stations were selected. To identify the synoptic
patterns, we used ERA5 [the fifth major global reanalysis
produced by the European Center for Medium-Range Weather
Forecasts (ECMWF)]. Severe precipitation events in southern
China caused by typhoons were excluded (Ying et al., 2014).

Classification Method
T-mode principal component analysis (PCT) in COST733
software (Philipp et al., 2014) were used to objectively classify the
weather system when the rainstorm occurred in WSHR events.
COST733 is a weather classification software developed by the
EU COST (European Cooperation in Science and Technology)
733 program. PCT is the most widely used objective classification
method at present. Huth (1996) pointed out that the principal
component analysis (PCA) method is more stable in time and
space, less dependent on preset parameters, and can better
retain the information of the original field, making it a more
promising objective classification method. PCT is based on the
PCA, and further improved by Huth (2000); and Huth et al.
(2008). T-mode means daily patterns form the columns in the
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input data matrix, whereas the grid-point values form its rows.
The PCT method has been widely used in classifying weather
patterns in research on precipitation, ozone, and haze, amongst
others (Dong et al., 2020; Ning et al., 2020; Yang et al., 2021;
Zong et al., 2021).

In this study, daily mean GH at 850 hPa level is chosen to
identify synoptic patterns of WSHR, as the water vapor flux is
closely related to 850 hPa synoptic systems (Yang et al., 2021).
More detailed information about the objective classification and
the PCT method is provided in the supplementary document. To
assess the performance of synoptic classification and determine
the number of classes, the explained cluster variance (ECV)
is selected in this study (Hoffmann and Schlünzen, 2013;

Philipp et al., 2014; Ning et al., 2019, 2020). The detailed
information about the ECV is also provided in the
supplementary document.

DEFINITION AND SELECTION OF WSHR
EVENTS

Due to the complexity and variability of WSHR, there is no
uniform definition of the WSHR in South China. According
to Liu et al. (2019), heavy precipitation events were selected
first, as follows: (1) the precipitation affected by typhoons was
eliminated; (2) the daily precipitation of three or more stations

FIGURE 1 | (A) the spatial distribution of major cities mentioned below in Guangdong Province (B) Average daily precipitation during WSHR events recorded by
meteorological stations from April to June 2016–2018 (units: mm/d). The black boxes indicate the locations of the three heavy rainfall centers.

FIGURE 2 | Mean 850-hPa geopotential height and wind vector in six types of WSHR. The gray shading indicates areas where the wind speed is greater than
10 m/s.
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whose distance was less than 100 km was greater than or equal
to 50 mm; (3) the total precipitation of a single station in
three consecutive hours was greater than or equal to 30 mm,
and the hourly precipitation of each of these 3 h was greater
than or equal to 5 mm (Wang et al., 2014). In these heavy
precipitation events, the criteria for selecting the WSHR events
were as follows: (1) According to the distribution of the daily
precipitation of the selected cases, sites were selected that met
the requirements of three consecutive hours of precipitation
greater than or equal to 30 mm and a single hour greater than
or equal to 5 mm. In the precipitation area, the station with the
largest amount of precipitation that met the above conditions was
the representative station (if there were multiple precipitation
areas at the same time, a representative station for each
precipitation area was chosen). (2) Along the longitude of each
representative station, a vertical profile of the relevant physical
quantities was drawn (potential pseudo-equivalent temperature
(θse), temperature advection, station precipitation) (the figure is
omitted), and the location of the front (with dense θse profiles),
cold advection, and precipitation determined. (3) If there was no
obvious front in the profile, the middle and low altitudes of the
precipitation area featured southerly wind and the distance from
the surface northerly wind was greater than 200 km. (4) If there
was an obvious frontal system in the profile, the distance between
the precipitation area and the front was greater than 200 km.

Based on the data of 2,667 automatic stations in Guangdong,
134 cases of WSHR events were selected from April to September
2016 to 2018. By counting the average rainfall of each station
in all WSHR events (Figure 1), it can be seen that the average
precipitation of WSHR events in Guangdong is more in the
coastal area and less in the inland area. There are three
WSHR centers. In addition to the two WSHR centers on the
western coast of Guangdong near Yangjiang and the eastern

coast of Guangdong near Shanwei mentioned by Wu et al.
(2019), a precipitation center over the urban agglomeration near
Guangzhou is also apparent.

OBJECTIVE WEATHER CLASSIFICATION
OF WSHR

Classification Results
PCT objective typing was performed on the 850 hPa geopotential
height field, and six circulation types were obtained (Figure 2).
These patterns exhibit distinct spatial characteristics, as follows:
(1) Type1-southwest wind (T1-SW), in which Guangdong is
mainly controlled by southwesterly wind. This kind of weather
situation is similar to the southerly wind pattern described in
previous study (Chen et al., 2012). The rainstorm of T1-SW
is mostly caused by the convergent shear of the southwesterly
wind. It is a common type of rainstorm in WSHR (Chen et al.,
2012), and accounts for nearly half of the total (Table 1). (2)
Type2-southeast wind (T2-SE), in which the southeasterly wind
is perpendicular to the coastline, which is similar to the southerly

TABLE 1 | Number and percentage of WSHR events for six
synoptic weather types.

WSHR events Percentage

T1-SW 66 49.20%

T2-SE 32 23.80%

T3-CJI 16 11.90%

T4-CJII 2 1.50%

T5-WL 13 9.70%

T6-HP 5 3.70%

FIGURE 3 | Distributions of WSHR during six synoptic weather types: (A) daily, (B) monthly, and (C) annual.
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FIGURE 4 | Average daily precipitation anomaly of WSHR for six synoptic weather types (units: mm/d).

TABLE 2 | Comparison of the precipitation area with previous studies.

Precipitation area in
previous research

Precipitation area in this
research

T1-SW Around Yangjiang (Chen et al.,
2012)

Yangjiang, Guangzhou, and
Shanwei

T2-SE Yangjiang and Jiangmen area
(Miao et al., 2018)

Yangjiang, Jiangmen, and
Zhanjiang

T3-CJI Pearl River Estuary to East
Coast of Guangdong (Miao
et al., 2018)

GBA and the Shantou area

T4-CJII / Zhanjiang

T5-WL Shantou (Chen et al., 2012; Liu
et al., 2019)

The GBA and the coastal areas
of Shantou

T6-HP / The GBA

wind pattern in previous study (Miao et al., 2018). In the pre-
rainy season, heavy rain, local heavy rain, and extreme heavy
rain that forms along the coast of South China – especially to
the west of the Pearl River Estuary in Guangdong – are mostly
caused by this circulation (Miao et al., 2018). (3) Type3- coastal
jets I (T3-CJI) and (4) Type4- coastal jets II (T4-CJII), which are
both accompanied by coastal jets (gray shaded area in Figure 2),
but differ in that the T3-CJI jet is located to the north and
Guangdong is in the jet stream, which is similar to the southwest
jet stream (Miao et al., 2018) and the strong southwest jet stream
(He et al., 2016). This type of WSHR is mainly triggered by
the low-level jet stream axis or the high-wind core, as well as
by boundary layer wind speed pulsation and topographic uplift.
Compared with previous studies, the T4-CJII jet stream is slightly
southerly, and wind speeds converge in Guangdong. (5) Type5-

western low vortex (T5-WL), in which there is a low vortex in
the western part of Guangdong, and Guangdong is in the front
part of the low vortex, which is consistent with the low vortex
type obtained in previous studies (Chen et al., 2012; Liu et al.,
2019). The precipitation corresponding to this type is large, and
the WSHR event occurs in the low vortex circulation area – close
to the center of the low vortex (Chen et al., 2012). (6) Type6-
high pressure (T6-HP), in which the wind speed in Guangdong
is relatively low, and the entire area is under the control of high
pressure. This is a new type of weather circulation that cannot be
classified into previous weather types. The number of cases and
their percentages of the six weather types are shown in Table 1.
T6-HP has a relatively lower frequency of occurrence, which is
different from the typical weather circulation in previous studies
and belongs to abnormal weather types.

Temporal and Spatial Characteristics of
Different WSHR Types
Figure 3 shows the daily, monthly, and annual distributions of
the six synoptic weather types. It can be seen that the six types
of circulation have obvious monthly and intra-year changes. The
incidence of WSHR is high in June and July, with 32 and 35
occurrences. After August, the frequency of WSHR decreases
significantly, with only 14 occurrences. This shows that WSHR
occurs not only in the pre-rainy season, but also in the post-rainy
season, which should be paid more attention.

As the main circulation type, T1-SW appears throughout
almost the whole of the rainy season. T2-SE, T3-CJI, T5-WL,
and T6-HP have obvious temporal distributions. The pre-rainy
season mainly consists of T3-CJI; the post-rainy season is mainly
T5-WL; and T6-HP occurs before the onset of the South China
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FIGURE 5 | Number of stations with heavy rain (daily precipitation >50 mm/d) around the central station for six weather types.

FIGURE 6 | Regional distribution characteristics of six WSHR types.

Sea summer monsoon. Afterward, T6-HP almost disappears,
while the frequency of T2-SE increases significantly. T4-CJII only
occurs twice, on 30 August 2016 and 11 June 2018, respectively.
It is worth mentioning that T6-HP has not been seen in previous
studies and only appears in 2018 during the 3 years of statistics
(Figure 3C), which is discussed in detail below.

Figure 4 shows the anomaly distributions of the
corresponding warm rainstorms under six synoptic weather
patterns, and mean values of daily precipitation of WSHR
are provided in the supplementary document. The spatial
patterns of the average precipitation are highly consistent with
the anomalies of precipitation, indicating that the results for
precipitation spatial patterns of WSHR associated with six

synoptic patterns are robust. The precipitation of the T1-SW
type is concentrated in the areas of Yangjiang, Guangzhou and
Shanwei, while that of a similar weather type in previous work
was in Yangjiang area (Chen et al., 2012). The precipitation
of the T2-SE type is concentrated in Yangjiang, Jiangmen and
Zhanjiang areas, which is similar to previously reported (Miao
et al., 2018), but with Zhanjiang added. In previous studies,
T3-CJI and T4-CJII were not distinguished owing to their similar
weather conditions, but because of the different locations of
the jet stream, the precipitation area also differs. The T3-CJI
type is concentrated over the urban agglomerations of the
Guangdong – Hong Kong – Macao Greater Bay Area (GBA)
urban agglomeration and Shantou, which is basically consistent
with the conclusion of Miao et al. (2018). T4-CJII concentrates
in the area of Zhanjiang. The rainfall of T5-WL is relatively large,
concentrated over urban agglomerations and coastal areas of
Shantou. Compared with the conclusion in previous studies that
the precipitation center is concentrated in Shantou (Chen et al.,
2012; Liu et al., 2019), urban agglomerations have been added
in the present study. The high T6-HP precipitation areas are
concentrated in urban agglomerations.

Comparing the results of previous studies (Table 2), the T1-
SW type adds two high precipitation areas – namely, Guangzhou
and Shanwei. For the T2-SE type, Zhanjiang also becomes a
high precipitation area. For T3-CJI, T4-CJII, T5-WL, and T6-
HP, GBA becomes a high precipitation area. It is found that
the precipitation centers of the same type are roughly similar,
but the newly discovered urban agglomerations have become
precipitation centers under multiple types, indicating that it too
is an area with a high incidence of WSHR.

In order to explore the scope and intensity of the WSHR
events, station with the maximum amount of precipitation
among all stations during an extreme precipitation event
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FIGURE 7 | Hourly precipitation (unit: mm) and UHII (unit:◦C) change with time on (A) 12 April 2016, (B) 5 June 2016, (C) 7 May 2017, (D) 3 May 2018, (E) 28
August 2018 and 29 August 2018.

was set as central station, and the number of stations with
daily precipitation exceeding 50 mm within 100 km were
counted (Figure 5). It can be seen that the number of
stations with precipitation exceeding 50 mm around the central
station generally does not exceed 20, and the diameter of
the precipitation area is less than 60 km. However, there are
also extreme precipitation events. There are more than 100
stations with precipitation exceeding 50 mm around the central
station. The estimated diameter of the precipitation area is
greater than 134 km, indicating that these WSHR events have

strong precipitation and large scope. Six large-scale heavy rainfall
events were counted, among which T1-SW occurs twice (on
12 April 2016 in Foshan and on 7 May 2017 in Guangzhou),
T5-WL occurs three times (on 5 June 2016 in Zhongshan,
on 28 August 2018 in Guangzhou, and on 29 August 2018
in Zhongshan), and T6-HP occurs once (on 3 May 2018 in
Jiangmen). These large-scale WSHR events are mostly located
closer to the urban agglomeration, which may be related to
the heat island effect of the city. Wu et al. (2019) showed
that most of the stations in the Pearl River Delta region have
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TABLE 3 | WSHR events associated with UHII in GBA.

Date Precipitation area UHII Date Precipitation area UHII

20160404 Jiangmen 1.81 20170905 Dongguan 1.58

20160503 Jiangmen 0.49* 20170908 Dongguan 0.34*

20160605 Zhongshan −0.18 20170909 Zhongshan 0.74

20160610 Guangzhou 1.79 20180503 Jiangmen 3.18

20160614 Guangzhou 2.06 20180705 Zhongshan 1.07

20160616 Zhuhai 1.34 20180706 Guangzhou 0.88

20160902 Guangzhou 0.39* 20180801 Huizhou 2.42

20170507 Guangzhou 1.82 20188028 Guangzhou 0.28*

20170711 Dongguan −0.10 20188029 Zhongshan 2.15

20170718 Shenzhen −0.72 20188031 Huizhou 1.55

20180906 Guangzhou 1.61

The bold values means strong UHI events, *means weak UHI events.

FIGURE 8 | The locations of national basic stations (black dots) and regional automatic stations (colored dots), for which the color refers to the daily precipitation
(units: mm/d).

experienced a trend of extreme hourly rainfall and increased
frequency caused by urbanization in the past few decades. Su
et al. (2019) analyzed the variation in presummer precipitation
in South China from 1979 to 2015 and its relationship with
urbanization, the results also revealed that the intensity of
precipitation and the occurrence of extreme precipitation events
during the presummer season in South China have increased
significantly, and the upward trend is much more significant
in urban areas than in non-urban areas. This is because
the release of anthropogenic heat and the aerosols produced
by urbanization have changed the radiation budget in urban
areas, which is conducive to enhanced water vapor transport
and upward convergence movement, leading to more frequent
extreme precipitation events (Lin et al., 2020).

The percentages of precipitation centers of the six types of
WSHR are shown in Figure 6. According to the location of
the precipitation center, the WSHR events of South China can
be divided into three areas – namely, the coast of Guangdong
(coastal), inland of Guangdong (inland), and GBA. It can be
seen that in different types the distribution characteristics are
also different. Among the six types, coastal precipitation accounts
for a large proportion (38.5–100%). T2-SE also accounts for a
high percentage of coastal precipitation, reaching 75%. The T4-
CJI type of precipitation only occurs along the coast. In addition,
T5-WL has the most significant effect on GBA, reaching 38.5%.
Under the circulation of T6-HP, the proportion of precipitation
in warm areas in inland Guangdong has increased compared with
other types, reaching 40%.
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FIGURE 9 | The 500-hPa geopotential height (colorbar; unit: dagpm) and wind field (arrows; units: m/s) in WSHR of six weather types.

POTENTIAL ASSOCIATION BETWEEN
EXTREME PRECIPITATION AND
URBANIZATION

Previous studies have revealed urban areas are more exposed
to extreme precipitation than non-urban areas, due to changed
land cover, enhanced urban heat island (UHI) and resultant
specific local circulation in urban areas (Su et al., 2019; Wu
et al., 2019; Lin et al., 2020; Zheng et al., 2020). For example,
when there are sufficient water vapors in the lower-level
atmosphere, UHI can induce strong updrafts to easily trigger
moist convection, enhancing precipitating convective systems
with extreme precipitation (Han and Baik, 2008; Su et al., 2019;
Lin et al., 2020). To explore the relationship between the six
extreme precipitation events mentioned above and UHI effect,
the urban heat island intensity (UHII) is introduced (Wu, 2019),
which is defined as:

UHII = Tu − Tr (1)

Where Tuand Tr are the hourly average temperatures of urban
agglomeration stations and non-urban agglomeration stations,
respectively. When there is at least 2 h of UHII >0.53◦C, the event
is regarded as a strong UHI event; otherwise, it is regarded as a
weak UHI event (Wu, 2019).

Figure 7 shows changes of UHII before and after six extreme
precipitation near urban agglomerations. It can be seen that
within a few hours before precipitation, the UHII increased in
varying degrees, and decreased rapidly due to the cooling effect
after precipitation. According to the statistics of UHIIs in 3 h
before the occurrence of WSHR events in GBA from 2016 to
2018, a total of 21 WSHR events occurred, and the UHII is shown
in Table 3. There are 14 strong UHI events (bold), four weak

UHI events (∗), and three weak urban cold island events, showing
that most extreme precipitation events occurred under the strong
UHI situation before precipitation. This implies that urban heat
island effect has a potential role in promoting the occurrences
of local extreme precipitation events in warm sector, which is
coincide with previous studies over south China (Su et al., 2019;
Wu et al., 2020; Lin et al., 2020).

ABNORMAL WEATHER TYPE

Previous studies failed to mention that WSHR can occur under
the control of high-pressure weather systems, possibly because of
the absence of capturing these processes. Figure 8 shows the daily
precipitation distributions of five WSHR events under T6-HP
circulation. It can be seen from the figure that the WSHR events
under this type are mostly small in scale and strong in locality.
Many high-value areas lack the distribution of basic stations.
According to the criteria for judging WSHR, this may lead to
the this process not being identified when quantifying the WSHR,
thereby omitting this type of weather.

In addition to the objective limitation of station density, the
circulation in this year was also different from the previous
2 years. Comparing the location of the 500-hPa subtropical high
of the six types (Figure 9) and four related indexes (Figure 10), it
can be seen that the subtropical high area of T4-CJII and T6-HP
is relatively small, the ridge point is westward, and the intensity is
weak. The ridge line in T2-SE and T5-WL is also northward, but
the location is eastward. The reason for this phenomenon may be
attributable to interannual changes. By observing the variation of
the Niño3.4 index (Figure 11), the anomaly is lower than 0.5◦C
for six consecutive months from 2017 to 2018, and it is judged
that a La Niña event occurred in that year (Trenberth, 1997).
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FIGURE 10 | Indices for the (A) western Pacific subtropical high area, (B) western Pacific subtropical high western ridge point, (C) western Pacific subtropical high
ridge line, and (D) western Pacific subtropical high intensity.

FIGURE 11 | Monthly Niño3.4 index from 2016 to 2018.

According to the research of Ai and Chen (2000), La Niña will
affect the position of the subtropical high, leading to a northward
displacement of the subtropical high in the following summer.
Other studies have shown that when the tropical western Pacific

is cooling in spring, the subtropical high moves westward (Hung
et al., 2006). In summary, the subtropical high is northward and
westward, and Guangdong is under the control of the subtropical
high. The wind direction is a weak southerly wind, but the overall
strength of the subtropical high is relatively weak. The southern
branch trough is active, cold air is prone to intrusion in the lower
layer, and a convection system can develop. Under this condition,
the T6-HP circulation situation appears.

CONCLUSION AND DISCUSSION

Based on high-density station data, 134 WSHR events from
April to September 2016 to 2018 were identified, and the typical
weather patterns that caused WSHR objectively classified by
using the PCT method. Our conclusions are as follows:

(1) On average, WSHR rainfall occurs more in coastal areas
and less in inland areas. There are three heavy rain centers:
Yangjiang, Shanwei, and the GBA urban agglomeration.
The weather types of WSHR in Guangdong can be divided
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into six types: T1-SW, T2-SE, T3-CJI, T4-CJ II, T5-WL, and
T6-HP. T1-SW is the main weather system, which mainly
appears from April to July. T2-SE is obvious after the onset
of the monsoon; T3-CJI mainly occurs in the pre-rainy
season; and T5-WL occurs in the post-rainy season.

(2) Different weather types have different precipitation
locations. T1-SW and T3-CJI are concentrated in the
GBA urban agglomeration and the areas of Shantou
and Shanwei; T2-SE is concentrated along the coast,
especially in the area of Yangjiang. There were two cases of
precipitation for T4-CJII, both of which occurred along the
southwest coast (Zhanjiang and Maoming). GBA is most
affected by T5-WL, and three of six extreme precipitation
events occurred under this type. Therefore, for the T5-
WL type, attention should be paid to the possibility of
large-scale extreme precipitation in urban agglomerations.
Precipitation for the T6-HP type is also concentrated in
urban agglomerations, and the inland proportion of WSHR
has increased compared with other types, reaching 40%. So,
we can conclude that urbanization plays an important role
in extreme magnitudes of large-scale WSHR events and
their occurrence centers.

(3) T6-HP is a new weather type, and its appearance may
be related to ENSO. During the La Niña period, the
subtropical high moved northward but the overall strength
was weaker, the southern branch trough was active, and
cold air intruded at the lower level. In such weather
conditions, the scale of precipitation is often small. Previous
low-resolution observations have been unable to capture
these small-scale events, thus omitting local/small-scale
rainfall under this weather situation. In contrast, the
high-density observations employed in the present work
were able to capture T6-HP WSHR events with their
smaller coverage areas.

Previous research found that weather patterns of WSHR over
the southern of middle and lower reaches of the Yangtze River
include subtropical high pattern, which is similar to T6-HP (Chen
et al., 2016; Wang et al., 2018). The mechanism is that the area
where the heavy rain occurs has been under high temperature
control for a long time and has accumulated considerable energy

and water vapor, and with the role of mesoscale convergence line,
atmospheric stratification becomes unstable, causing convective
instability condition development. Our findings provide new
insight into the cause of WSHR events over South China, but the
formation mechanism of T6-HP type WSHR events needs to be
further studied to improve the accuracy of WSHR forecasts.
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Precipitation change, which is closely related to drought and flood disasters in China,

affects billions of people every year, and the demand for subseasonal forecasting of

precipitation is even more urgent. Subseasonal forecasting, which is more difficult than

weather forecasting, however, has remained as a blank area in meteorological service

for a long period of time. To improve the accuracy of subseasonal forecasting of

China precipitation, this work introduces the machine learning method proposed by

Hwang et al. in 2019 to predict the precipitation in China 2–6 weeks in advance. The

authors used a non-linear regression model called local linear regression together with

multitask feature election (MultiLLR) model and chosen 21 meteorological elements

as candidate predictors to integrate diverse meteorological observation data. This

method automatically eliminates irrelevant predictors so as to establish the forecast

equations using multitask feature selection process. The experiments demonstrate that

the pressure and Madden–Julian Oscillation (MJO) are the most important physical

factors. The average prediction skill is 0.11 during 2011–2016, and there are seasonal

differences in forecasting skills, evidenced by higher forecast skills of winter and spring

seasons than summer and autumn seasons. The proposed method can provide effective

and indicative guidance for the subseasonal prediction of precipitation in China. By

adding another three factors, Arctic Oscillation (AO) index, Western North Pacific

Monsoon (WNPM) index and Western North Pacific Subtropical High (WNPSH) index

into the MultiLLR model, the authors find that AO can improve the forecast skill of China

precipitation to the maximum extent from 0.11 to 0.13, followed by WNPSH. Moreover,

the ensemble skill of our model and CFSv2 is 0.16. This work shows that our subseasonal

prediction of China precipitation should be benefited from the MultiLLR model.

Keywords: subseasonal forecasting, machine learning, MultiLLR, China precipitation, intraseasonal variability,

seasonal cycle
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INTRODUCTION

Against the backdrop of global warming, relatively frequent
extreme floods and droughts can not only cause heavy economic
damages but also life of threaten people, especially in China
who has the largest population in the world (Cai et al., 2017;
Matthews et al., 2017). Subseasonal prediction of 2-weekly to
2-monthly time scale with good skill of China precipitation is
associated with crop-planting choice, disaster reduction, and
life safety. Furthermore, subseasonal prediction will fill the
gap between weather forecasting and climate prediction (Vitart
et al., 2012). Although the statistical method and dynamic
models, two mainstream methods for subseasonal prediction,
have shown a higher forecast skill (Li and Robertson, 2015;
Zhu and Li, 2017), subseasonal prediction that depends on both
local weather and global atmospheric circulations (Robertson
et al., 2015; Vitart et al., 2017) is called “predictability desert”
(Vitart et al., 2012) and still remains full of challenges. It is
encouraging that previous research has found certain processes
in the land, ocean, and atmosphere that would increase the
possibility of subseasonal prediction. Sea surface temperature
(SST), which affects the atmospheric circulation through air-
sea heat flux and convection, can improve the intraseasonal
variability forecast skill (Woolnough et al., 2007; Liang and
Lin, 2018). Arctic Oscillation (AO) and the Madden–Julian
Oscillation, which modulate the teleconnection patterns in
Northern Hemisphere (NH) and the tropic convective activity,
are two important sources of subseasonal predictability in
the atmosphere process (Baldwin, 2003; Waliser et al., 2003;
Black et al., 2017). Sea ice (Holland et al., 2011), snow cover
(Sobolowski et al., 2010), and soil moisture (Koster et al.,
2010) are the key factors of prediction on intraseasonal time
scales. Besides, the summer precipitation intraseasonal variability
(ISV) in China also serves as an important factor (Liu et al.,
2020).

With the development of machine learning (ML) in

meteorology, ML, as a new statistical technique, has been used
in various forecast systems and helps to improve the forecast skill
on different time scales (McGovern et al., 2014; Liu et al., 2016).
ML improves the decadal climate predictions (Strobach and Bel,
2016). As for the subseasonal to seasonal (S2S) forecast, statistical
techniques are noticed again due to theMLmethod (Cohen et al.,
2019). ML makes precipitation nowcasting no longer be limited
to two existing methods, radar echo extrapolation and numerical
weather prediction (NWP) (Shi et al., 2015; Qiu et al., 2017).
Besides, ML techniques are also able to improve the prediction
and detection of severe weather events (McGovern et al., 2014;
Liu et al., 2016).

Hwang et al. (2019) developed a forecasting system, which
was a combination of two non-linear regression models based
on ML, to improve the subseasonal prediction skills. To improve
the accuracy of subseasonal prediction of China precipitation,
the authors explore the effects of Hwang’s forecasting system
on them. The article is presented as follows. In the “Data and
Methodology” section, the data andmethodology are introduced.
In the “Results” section, we provide the conclusions of the effects

of Hwang’s forecasting system on subseasonal forecasting of
China precipitation. Finally, the last section offers the summary
of the study.

DATA AND METHODOLOGY

Data
This study uses the newly released CN 05.1 daily precipitation
dataset in China from 1961 to 2017, which is provided by the
observing stations of the China National Climate Center (Wu
and Gao, 2013). The daily precipitation is converted to a sum
of ensuing 2 weeks. The authors choose daily reanalysis data
from NCEP/NCAR Reanalysis dataset (Kalnay et al., 1996), and
obtain temperature data at 2m, relative humidity at the sigma
level 0.995, pressure at the surface, and geopotential height at 10
hPa. By projecting the daily geopotential height anomalies into
the leading EOF mode at 1,000 hPa, the daily AO index has been
obtained from the Climate Prediction Center (CPC). Besides,
the Madden–Julian Oscillation (MJO) and the Multivariate
ENSO index (MEI) are obtained from the NOAA/Earth System
Research Laboratory and the Australian Government Bureau
of Meteorology. Phase and amplitude are extracted from the
daily MJO data starting from 1974 on the target forecast date
to characterize tropical convection (Hwang et al., 2019). MEI
values combine six variables associated with ENSO from 1949,
including SST, sea-level pressure, surface air temperature, zonal
and meridional surface wind components, and sky cloudiness.

The sea ice concentration and the sea surface temperature
(SST) are obtained from the optimum interpolation sea surface
temperature (OISST) analysis of NOAA, and the top three
principal components (PCs) over the Pacific (20◦S–65◦N,
150◦E–90◦W) from 1981 to 2017 are also used.

The Western North Pacific Monsoon (WNPM) index is
defined as the difference of zonal wind between a southern region
of 5◦–15◦N, 100◦–130◦E and a northern region of 20◦–30◦N,
110◦–140◦E at the level of 850 hPa, and U850 represents the
zonal wind at 850 hPa (Wang and Fan, 1999; Wang et al., 2001).
WNPM index is defined as follows:

WNPM Index = U850(100◦E− 130◦E, 5◦N− 15◦N)

− U850(110◦E− 140◦E, 20◦N− 30◦N)

Following the results of Lu (2002), this research selected two
indexes to describe the location of Western North Pacific
Subtropical High (WNPSH) by averaging the geopotential
height anomalies at 850 hPa over two regions. WNPSH1 is
meridional index, over the area of 120◦–150◦E, 30◦–40◦N,
and WNPSH2 is zonal index, over the area of 110◦–150◦E,
10◦–30◦N. The authors select the two WNPSH indexes because
of considering the advantages in well describing the precipitation
pattern (Lu, 2002), and WNPSH stands for WNPSH1 and
WNPSH2 below.

According to the forecast date of the local linear regression
together with multitask feature election (MultiLLR) model, we
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FIGURE 1 | The prediction skill of (A) annual average (red bar), winter (blue bar), spring (green bar), summer (orange bar), and autumn (yellow bar) for each year of

2011–2016. (B) 2011–2016 averaged skills for annual mean and four seasons.

got the forecast results for the total precipitation of CFSv2
Operational Forecasts 6-Hourly Products from 2011 to 2016.

The three-dimensional predictors, i.e., temperature data at
2m, relative humidity at the sigma level 0.995, pressure at the
surface, and total precipitation of CFSv2, were interpolated with
a resolution of 1◦ by 1◦ and extracted over the forecast China
region (14.75◦N to 55.75◦N, 69.75◦E to 139.75◦E). The top three
principal components (PCs) of geopotential height at 10 hPa for
all grid points globally, sea ice concentration, and sea surface
temperature over the Pacific (20◦S−65◦N, 150◦E−90◦W) are
also used. Except for MJO, which has the property of weekly
time scales, all predictors used in this study were converted
into the average of ensuing 2 weeks to be consistent with the
sum precipitation of ensuing 2 weeks. The total precipitation of
CFSv2 averaged during the next 14 days for each forecast date is
also used.

MultiLLR Model
The authors take reference from the method of Hwang’s
MultiLLR model (Hwang et al., 2019) and put forward the
physical factors mentioned earlier, which lagged on the basis
of the frequency of the dataset, so as to provide the latest
data and the temporal resolution and to add “ones” as a
candidate regressor to represent intercept term that equals 1
for all data points in the total 21 candidate regression factors
into the model, which is shown in the Y-axis of Figure 3.
As shown in the Y-axis of Figure 3, the suffix anom of some
candidate regression factors means that candidate regression
factors are the anomalies based on daily climatology over
the period of 1980–2010, and the “shift x” has a hysteresis
characteristic from the measurement of the previous x days
based on the data update time and the temporal resolution
of measurement.

TheMultiLLRmodel includes two parts, one part named local
linear regression (LLR), by which we get regression coefficients
for each grid point separately, and the other part called multitask
backward stepwise feature selection, by which the relevant
predictors are obtained from the candidate regressors through

the performance forecast based on the spatial cosine similarity
automatically. More algorithm details of the MultiLLR model
can be referred from Hwang et al. (2019). Twenty-six forecast
target dates for each year from 2011 to 2016 were made by the
MultiLLR model, with a total of 156 times. For a forecast target
date, the range of training data is from the first year when all the
selected predictor data are commonly available to the year of the
target date.

The authors choose spatial cosine similarity as the forecast
skill, which is defined as:

forecast skil (Y , Ŷ) =
< Y , Ŷ >

‖Y‖2 ∗ ‖Ŷ‖2

where Y represents observed anomalies and Ŷ represents
predicted anomalies; the anomalies were obtained by removing
the climatological annual cycle during 1981–2010. We forecast
every 2 weeks, resulting in 26 times forecast for each year. The
forecast skill for annual mean or seasonal mean can be calculated
by averaging the associated period.

RESULTS

Figure 1A shows that the average prediction skill is 0.11 for
all target dates, and the forecast skills vary from 2011 to 2016.
The prediction skill for 2012 is highest with a value near 0.2,
and it is around 0.15 for 2011 and 2016. The forecast skill for
2014, however, is −0.027, the lowest one among 6 years in the
model. The 6 years can be divided into high-skill years, including
2011, 2012, 2013, and 2016, and low-skill years including 2014
and 2015.

There are also seasonal differences in forecasting skills
(Figure 1B). To be specific, the skills of winter and spring are
higher than the annual average, especially that the winter skill
is the highest and exceeds 0.21. On the contrary, the summer
forecast skill is the lowest and near zero, and the skill of the
autumn season is also lower than the annual average. The result
shows that the model is poor in forecasting precipitation in
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FIGURE 2 | The prediction skill of (A) annual average (red bar), winter–spring season (blue bar), and summer–autumn (yellow bar) for each year of 2011–2016 and of

(B) annual average (red bar), winter–spring season (blue bar), and summer–autumn (yellow bar) for high-skill years and low-skill years, respectively.

summer and autumn seasons. As a result, the authors divide the
four seasons into two types according to the annual mean values
of the forecast skills, one type with winter and spring called Win-
Spr, whose prediction skills are above the annual average, and
the other type is to add summer and autumn together called
Sum-Aut. Figure 2B shows that the prediction skills of Win-Spr
are much higher than those of Sum-Aut in high-skill years. But
in low-skill years, the skills of Win-Spr are lower than those of
Sum-Aut. Moreover, not only the skills of Sum-Aut are <0.1
but also the changes are small during 2011–2016 (Figure 2A).
In contrast, the Win-Spr prediction skills are high. Whether it
is in the high-skill years or the low-skill years, the skills of Sum-
Aut are nearly equal (Figure 2B). As for Win-Spr, the skill is very
high in the high-skill years, but the skill in the low-skill years
is lower than that of Sum-Aut. In summary, the annual average
skill depends on that in Win-Spr, and the forecast model has
good effect on winter and spring, compared with that on summer
and autumn.

The authors put 21 candidate factors into MultiLLR model in
the precipitation prediction task for weeks 3–4. The MultiLLR
model chooses relevant features automatically from the 21
candidate factors for different target dates to improve the
pertinence. According to the inclusion frequency of 21 candidate
factors shown in Figure 3, different factors are selected with
different frequencies, and the average is about 30 times. “Ones”
that represent intercept term is the most frequently selected
factor of them and has been used 66 times, followed by
pressure (pres) and phase of MJO as the second and third,
respectively. The selection frequency of temperature anomaly
(tmp2m), which is the lowest, is only 7 times. Pressure and
MJO are the most important physical factors in all 21 indexes
for weeks 3–4 precipitation forecasting in China, inconsistent
with many previous findings (He et al., 2011; Neena et al.,
2014; Yao et al., 2015). Since MJO is a major source of
intraseasonal predictability (Neena et al., 2014), Yao et al.
(2015) found that the MJO makes effects on part of the
variability of precipitation during November–March in South
China, and as for the rest part which has nothing with

MJO, and “cold surge” indicated by pressure at surface plays
an important role. MJO is also found to be related to the
subseasonal variability of precipitation over East Asian (He et al.,
2011).

Figure 4 shows the distribution of ISV activity, represented
by the variance of forecast and observed precipitation for four
patterns. The strong ISV activity is located over the Yangtze River
and Southeastern China in the Win-Spr season and expands to
Central China, Northern China, and Northeast China in the
Sum-Aut season (Liu et al., 2020). The model for the forecast
of ISV activity performs better in winter and spring of high-skill
years, which is reflected in the forecast of value and range for the
ISV activity over China, including strong ISV activity over the
Yangtze River and Southeastern China. In the Win-Spr season
of low-skill years, the prediction of strong ISV activity value
is much weaker than the observed. The forecast ability of ISV
activity in the Sum-Aut season of high-skill years is similar to that
of low-skill years. Specifically, forecast patterns show weak ISV
activity over Northern China and Northeast China in the Sum-
Aut season, inconsistent with the observations. The predicted
ISV activity ofWin-Spr is better than that of Sum-Aut, consistent
with the higher prediction skill of Win-Spr than Sum-Aut.

According to the earlier classification, the seasonal mean
forecasted pattern is near to negative anomalies, which show
that the MultiLLR model mainly predicts a drought pattern
for China precipitation no matter which season and year,
except Win-Spr of high-skill years (Figure 5). Figure 5 means
the seasonal mean of the predicted precipitation, not ISV,
which indicates the average statement of the forecast. The
observed seasonal mean precipitation of years with higher
forecast skills is less than that of lower skills. For summer
and autumn seasons, the positive anomalies of the observed
truths are hard to be predicted whether in the high-skill
years or low-skill years, which is consistent with the low
prediction skills of summer and autumn mentioned above.
Comparing the forecast results of summer with those of
autumn, the forecasted pattern of Win-Spr can resolve the
distribution of drought and flood in certain parts of China.
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FIGURE 3 | Candidate factors inclusion frequencies selected by local linear regression with multitask feature selection (MultiLLR) models for all target dates during

2011–2016.
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FIGURE 4 | Standard deviation of MultiLLR model predicted and observed precipitation (mm/day) of Win-Spr (A,B,E,F) and Sum-Aut season (C,D,G,H) in the

high-skill years (up panels) and low-skill years (low panels), the first and third columns represent the forecast, and the second and fourth columns represent the

observation values.

FIGURE 5 | Seasonal-mean MultiLLR model prediction and observations (mm/day) of Win-Spr (A,B,E,F) and Sum-Aut (C,D,G,H) seasons in the high-skill years (up

panels) and low-skill years (low panels). The first and third columns represent the forecast, and the second and fourth columns represent the observation.

Furthermore, in high-skill years, the model forecast results
were consistent with precipitation truth values, except for
Southeastern China. But in the low-skill years, the forecast
results of Win-Spr were worse than those in high-skill years.
As for the seasonal mean precipitation pattern in Southeastern
China, the model can hardly predict the distribution with 21
candidate factors.

Arctic Oscillation and the East Asian monsoon affect rainfall
in China through changing the southern branch trough (SBT)
and Middle East jet stream (MEJS) over the Bay of Bengal,
and northward moisture transport and convergence, respectively
(Ding et al., 2008; Mao et al., 2011). Many studies show

that WNPSH is related to the subseasonal forecast of rainfall
over China. The WNPSH has an important impact on the
precipitation over Eastern China (Xiao-Xia et al., 2010), and
the enhancement and location of the WNPSH were associated
with two dominant subseasonal variation modes of the summer
rainfall over the Yangtze River (Yang et al., 2010). Moreover,
El Niño and La Niña cause the asymmetry of southern China
rainfall anomalies in the winter half year, mainly through the
intraseasonal oscillation of the WNPSH in lower troposphere
(Zhang et al., 2015). Based on MultiLLR model with the 21
candidate factors mentioned earlier, the authors added WNPM
index, two WNPSH indexes and AO index, which were notably
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FIGURE 6 | The prediction skill of annual average, winter season, spring

season, summer, and autumn season of 2011–2016 for 21 index model (light

blue bar), 21 index+AO model (red bar), 21 index+WNPM model (blue bar),

and 21 index+WNPSH model (yellow bar).

related to rainfall in China, into the MultiLLR model to
improve the subseasonal China precipitation forecast skills,
namely, 21 index+AO model, 21 index+WNPM model, and
21 index+WNPSH model. It is encouraging that the model
including the new factor improves the rainfall forecast skill,
especially the forecast skills of 21 index+AOmodel is 0.13, 16.1%
more than that of the 21 index model, and AO is used 36 times.
Also, the predication skill is improved, due to WNPSH index
being added to the 21 index model. WNPSH1 and WNPSH2,
which describe WNPSH in two ways, were selected 31 times
and 35 times, respectively. After adding WNPM, the forecasting
skill is reduced to 0.1 during 2011–2016. This means that AO
and WNPSH physical factors contribute to the forecast skills
of China precipitation, but WNPM is a negative contribution
factor. Figure 6 shows that the performance of forecasting skills
improvement varies in each season. As for 21 index+AO model,
all seasons forecast skills have improved except for the summer
season, and the autumn forecast skill improves by the maximum
extent among the four seasons by 49.1%, from 0.081 to 0.121.
The 21 index+WNPSH model results of rainfall forecast skill
in four seasons are consistent with those of the 21 index+AO
model, but only improved in a slight way. In the winter, the
21 index+WNPSH model improves by the maximum extent.
On the contrary, the 21 index+WNPM model only improves
the autumn forecast skill. In summary, the comparison of the
three newly added factors shows that AO is most conducive in
improving the forecasting skills for MultiLLR model with the
21 candidate factors, followed by WNPSH. Moreover, WNPM
is a negative factor in the MultiLLR model for subseasonal
forecasting of China precipitation due to the annual average
forecast skill of 0.1, less than that of the 21 index model, despite
that it increases the autumn forecast skill. In a summary, the
inclusion of AO mainly improves the prediction skill of spring
and autumn, while the WNPSH mainly works to improve that

of winter. The skill of summer, however, is weakened by the
inclusion of these teleconnection factors.

This study not only evaluates the performances of MultiLLR
models with different candidate predictors mentioned above, but
also makes a comparison with the dynamical Climate Forecasting
System (CFSv2) model. The forecast skill of CFSv2 is 0.11,
compared to which the empirical model with 21 index+AO has
a little better skill of 0.13. The ensemble model combining the 21
index+AO model and the CFSv2 by the same weight presents a
much better skill of 0.16, and the skill improvement from 0.11
to 0.16 is above 80% confidence level, more than one standard
deviation which has some reference significance. This shows that
the MultiLLR model, a new statistical model, is useful to improve
the subseasonal precipitation predication of China.

Also, authors try to improve the MultiLLR model by
implementing the AutoKNN method proposed by Hwang et al.
(2019), a local linear regression with the precipitation of 20
historical dates when the precipitation is the highest similarity to
that of the target date. The negative skill of the AutoKNN model
shows that subseasonal forecasting of China precipitation is hard
from historical precipitation.

SUMMARY

Due to unique local weather conditions and climate circulations,
subseasonal forecast of precipitation 2 weeks to 2 months in
advance remains full of challenges. This study takes advantage
of the local linear regression with multitask feature selection
model with 21 candidate factors in the precipitation prediction
task for weeks 3–4 to predict the precipitation of China in the
ensuing 2 weeks. The result shows that the average prediction
skill is 0.11, and the skills for four seasons vary from each
other. To be specific, the forecast skill of winter is the highest,
more than 0.21, and the summer forecast skill is near zero.
In general, the skills of winter and spring are much higher
than those of summer and autumn (Figure 1). This means that
the model is poor in forecasting precipitation in summer and
autumn. Consistent with the results of the forecast skills are
that the predicted ISV activity of Win-Spr is better than that
of Sum-Aut. And the model can hardly predict the seasonal
mean precipitation pattern in Southeastern China with 21
candidate factors.

Besides, on the basis of MultiLLR model with 21 candidate
factors, the additional physical factors AO and WNPSH are
helpful to improve the forecasting skills, especially in winter,
spring, and autumn. In contrast, WNPM is a useless factor
for China precipitation generally in the MultiLLR model.
Therefore, it is necessary that AO and WNPSH are to be
added into MultiLLR model as candidate factors to improve
the prediction ability of subseasonal forecasting of China
precipitation. Moreover, when authors combine the MultiLLR
model and CFSv2 model by the same weight, the forecast
skills improved from 0.11 to 0.16. This result shows that the
MultiLLR model, a new statistical model, improves the accuracy
of the dynamical CFSv2 model for the subseasonal forecasting of
China precipitation.
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In this study, we make a first try on the subseasonal prediction
of China precipitation using a simple machine learning method.
In the MultiLLR, only the local regression has been used, limiting
the forecast skill. More suitable methods should be tested in
the future.
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Due to global warming and human activities, heat stress (HS) has become a frequent
extreme weather event around the world, especially in megacities. This study aims to
quantify the responses of urban HS (UHS) to anthropogenic heat (AH) emission and its
antrophogenic sensible heat (ASH)/anthropogenic latent heat (ALH) components and
increase in the size of cities in the south and north China for the 2019 summer based
on observations and numerical simulations. AH release could aggravate UHS drastically,
producing maximal increment in moist entropy (an effective HS metric) above 1 and 2
K over the south and north high-density urban regions mainly through ALH. In contrast,
future urban expansion leads to an increase in HS coverage, and it has a larger impact
on UHS intensity change (6 and 2 K in south and north China) relative to AH. The city
radius of 60 km is a possible threshold to plan to city sprawl. Above that city size,
the HS intensity change due to urban expansion tends to slow down in the north and
inhibit in the south, and about one-third of the urban regions might be hit by extreme
heat stress (EHS), reaching maximal hit ratio. Furthermore, changes in warmest EHS
events are more associated with high humidity change responses, irrespective of cities
being in the north or south of China, which support the idea that humidity change is
the primary driving factor of EHS occurrence. The results of this study serve for effective
urban planning and future decision making.

Keywords: heat stress, anthropogenic heating, urban expansion, temperature change, humidity change

INTRODUCTION

In the context of global warming, the probability, intensity, and duration of heat stress (HS) have
been increasing around the world (Lee and Min, 2018; Wang et al., 2020), especially in megacities.
Different from a common heat wave with high temperature, heat stress is characterized as being an
extremely hot and humid environment, and it is known in China as “sauna weather”. It usually lasts
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for several days to a week, causing illness or even death. In
addition, stable atmospheric circulation and sinking motion
prevent the dispersal of pollutants during an HS period.
Therefore, health problems associated with HS have attracted
widespread attention (Weatherly and Rosenbaum, 2017; Napoli
et al., 2019; Zander et al., 2019).

Heat stress, especially an extreme heat stress (EHS) event,
usually occurs locally. The driving factors [e.g., natural factors,
such as high temperatures, humidity, and solar radiation, and
human activities, such as urban heat island (UHI) effect,
anthropogenic heat (AH), etc.] and physical mechanisms are
very different among regions (Seneviratne et al., 2012; Fischer
and Knutti, 2013; Ohashi et al., 2014; Steinweg and Gutowski,
2015; Lee and Min, 2018; Lorenz et al., 2019). Furthermore,
the commonly used heat stress metrics (Steadman, 1994; Willett
and Sherwood, 2012; Buzan et al., 2015), such as apparent
temperature and wet bulb globe temperature (WBGT), are
functions of both temperature and humidity. Thus, HS change
is determined by the coaction of temperature and humidity
changes, which further increases the complexity of HS variation.
Therefore, region-scale studies are fundamentally required to
project future changes in extreme events and to assess the
dependence of HS or EHS on temperature and humidity changes
(Napoli et al., 2019; Lutsko, 2021).

As typically vulnerable regions in the south and north China,
Pearl River Delta (PRD) and Beijing–TianJin–Heibei (JJJ) city
clusters have experienced an increase in the number of heat
stress events, leading to negative social influences, economic
loss, and great risk in human health (Ohashi et al., 2014; Hass
et al., 2016; Xie et al., 2016, 2017; Wang et al., 2020). Rapid
urbanization and economic development bring about land use
changes and explosive growth in both population and overloaded
energy expenditures. The frequent HS events might be associated
with the UHI effect because of urban expansion and excessive AH
emission from human activities (Sun et al., 2016; Yang W. et al.,
2017; Yang X. et al., 2017; Luo and Lau, 2018; Ye et al., 2018;
Wang et al., 2019).

The UHI effect and its relationship with heatwave have been
identified from a climatological perspective by previous research
studies (Feng et al., 2012; Yang L. et al., 2014; Chen et al., 2016;
Xie et al., 2016, 2017; Ramamurthy and Bou-Zeid, 2017), but for
region-scale HS events, the UHI effect generated by urban sprawl
tends to be accompanied with urban dry island (UDI). They
play the opposite roles on HS change by increasing temperature
but decreasing humidity. So in the future, how does continuous
urban expansion impact HS change after neutralization of the
positive and negative contributions of rise in temperature and
decrease in humidity to HS? In the south and north China, to
which factor is the occurrence of extreme urban heat stress events
more sensitive, temperature change or humidity change?

In addition, the extent of AH emission is synchronously
increasing because of the excessive release of waste heat from
human activities. Waste heat is released to an urban canopy
mainly by means of transportation and industries in the form
of anthropogenic sensible heat (ASH), or through sprinkling
on roads and in parks, irrigations, etc., as anthropogenic latent
heat (ALH) (Sugawara and Narita, 2008; Allen et al., 2011;

Yang et al., 2015). As an important heat source for urban
surface energy balance (Offerle et al., 2005; Smith et al., 2009;
Iamarino et al., 2012), AH could impact HS through varied urban
thermal environments (Yang S. et al., 2014; Nie et al., 2017).
For instance, based on numerical simulation conducted from
December 1, 2006 to December 31, 2008, AH release produced
0.66◦C warming in summer over the Yangtze River Delta (Feng
et al., 2012), so as to be a powerful inducing factor of UHI
(e.g., Chen et al., 2008, 2016; Feng et al., 2012; Nie et al., 2017;
Zhang et al., 2016, 2017a). The daily average contribution ratio
of AH to UHI intensity in Hangzhou city of Zhejiang province
in China is 43.6 and 54.5% in summer and winter, respectively
(Chen et al., 2009). In the PRD region, the proportion is even
higher for certain cases, reaching up to 74% of total UHI intensity
estimated by an averaged 2-m temperature difference from an 8-
day numerical simulation (Zhang et al., 2016). Thus, it follows
that AH and HS might change urban meteorology by aggravating
UHI via directly enhanced upward heat flux (Ichinose et al.,
1999; Narumi et al., 2009; Feng et al., 2012; Nie et al., 2017).
Over two target regions in the south and north China, how
are the responses of HS to temperature and humidity changes
due to anthropogenic heat and its components (ASH and ALH)
quantified?

Therefore, the goals of this study are as follows: (1) to
determine the impacts of AH and its components on the
pattern and diurnal variation feature of heat stress; (2) to
evaluate the future HS evolution with an increase in the size
of south and north cities of China; and (3) by separating the
contributions of temperature and humidity changes to EHS
change, to evaluate their relative significance on EHS occurrence.
To address these goals, this study is arranged as follows: in
Section “Model, Data, Experiment Design, and Methodology,”
the models, data, and experiment design will be introduced. By
invoking high-resolution numerical simulations and performing
sensitive experiments, the influences of AH and increase in city
size on HS over south and north cities will be explored in Section
“Results.” Then, we will focus on EHS to determine the primary
driving factor for its occurrence by weighting temperature change
and humidity change more heavily. A summary will be given in
the last section.

MODEL, DATA, EXPERIMENT DESIGN,
AND METHODOLOGY

Model
In this study, the WRF model (V4.1.5) with an embedded
single-layer urban canopy model (SLUCM) was used to conduct
numerical simulations (Skamarock et al., 2019). The coupled
model was able to capture the complex interaction between
urban land surface characteristics and atmospheric processes.
Thus, we took the urban canopy effect into full consideration,
and the coupled SLUCM-WRF model system was employed
during the simulation.

The main run parameters of the WRF numerical model and
UCM parameters are listed in Tables 1, 2, where the parameters
refer to the geometric features of Chinese cities (Zhang et al.,
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TABLE 1 | The main parameters used in the WRF model setup.

Model parameters D01 D02/D03 D04/D05

Horizontal resolution (km) 9 km 3 km 1 km

Grids number 324 × 383 249 × 231 390 × 372

Vertical level 51 51 51

Time step (s) 54 18 6

Cumulus parameterization Kain-Fritsch (Kain, 2004) None None

Microphysical scheme Kessler (Kessler, 1969)

Planetary boundary scheme MYJ (Mesinger, 1993; Janjic, 1994)

Long wave transfer scheme RRTM (Iacono et al., 2008)

Short wave transfer scheme RRTM (Iacono et al., 2008)

Land-surface model Noah (Tewari et al., 2004) Noah (Tewari et al., 2004) Noah(S)/Noah-MP(N) (Niu et al., 2011; Yang et al., 2011)

Urban canopy model SLUCM (Kusaka et al., 2001; Chen et al., 2011)

TABLE 2 | Urban canopy parameters used in this study.

ZR CAPR CAPB CAPG AKSR AKSB AKSG ALB EPSB EPSG

15 / 10 / 5 1.19 1.19 1.49 0.8 0.88 0.67 0.09 0.92 0.96

Where the parameters refer to the geometric features of Chinese cities (Zhang et al., 2017b), with ZR (m) representing building height in high-/medium-/low-density urban
areas; CAPR/CAPB/CAPG (106Jm−3K−1), heat capacity of roof/building wall/ ground (road); ALB (%), surface albedo; AKSR/AKSB/AKSG (J ·m−1

·s−1
·K−1), thermal

conductivity of roof/building wall/ ground (road); and EPSB/EPSG, surface emissivity of building wall/ ground (road).

2017b). Five nested domains are shown in Figure 1a. The vertical
grid contains 51 non-uniformed full sigma levels from the surface
to 50 hPa, with 16 of these levels below 1 km. Thus, we obtained
a fine vertical resolution within the planetary boundary layer
(PBL). The integration started at 00UTC 23 and lasted for 6 days.
The first 24 h was used as a spin-up time and was not included in
subsequent analyses. The model outputs with 1 h interval from
the innermost D04 and D05 domains (covering PRD and JJJ,
respectively, typical of south and north city clusters) were utilized
as two target regions for comparative analyses.

Data
Metrological Data
In this study, multi-metrological data support observation
analysis and numerical simulation were performed. The
European Center for Medium-Range Weather Forecast
(ECMWF) ERA5 hourly reanalysis data, with a spatial resolution
of 0.25 degrees and 37 pressure levels vertically extending
from 1,000 to 1 hPa, were used to drive the WRF simulation
as initial and boundary conditions. Also, from the ERA5
data, we described the general synoptic situation during a
heat stress episode. The humidity and temperature profiles of
the PRD and JJJ target regions were depicted from upper-air
sounding observation. Surface automatic weather station (AWS)
observations were performed to implement model verifications.

Land Use Data and Impervious Surface Map
We adopted the Moderate-resolution Imaging Spectroradiometer
(MODIS) land use/land cover data from 2019 (Figures 1b,c).
In addition, taking the heterogeneity of urban land cover into
account, we further classified urban land use (Figures 1b,c)
into high-/medium-/low-density types (Figures 1f,g), retrieved
according to the percentage of impervious area. Herein, we

took the percentage thresholds of 80 and 50% to identify high-
/medium-/low- density urban areas and referred to Tewari et al.
(2007) and Zhang et al. (2017b). To test inversion validity, global
30m impervious surface maps, amplified in the PRD and JJJ
regions (Figures 1d,e), were also plotted. They were derived
from multisource and multitemporal remote sensing datasets
with the Google Earth Engine platform developed by Zhang et al.
(2020). By contrast, the high-intensity urban areas, as shown in
Figures 1f,g, matched well with impervious surface-dominant
regions (Figures 1d,e).

Anthropogenic Heat Emission
The importance of AH in changing the near-ground energy
balance as a heat source has been recognized (Oke, 1988;
Grimmond, 1992; Sailor, 2011; Sailor et al., 2015; Chrysoulakis
et al., 2016). AH is wasted heat in the form of sensible and
latent heat due to human activities, and is released to an urban
canopy (Yang et al., 2015; Yang W. et al., 2017). However, most
studies have assumed that anthropogenic heat is sensible in
nature without accounting for the latent heat component. Several
studies have suggested that water vapor emission by cooling
systems constitutes a substantial portion of latent heat flux in
urban areas (Sailor et al., 2007; Miao and Chen, 2014), and this
flux was shown to exceed 500 W m−2over central Tokyo in
summer (Moriwaki et al., 2008).

In the current WRF-SLUCM system, both the ASH and
ALH components of AH are considered. We adopted local
AH releases (Table 3) over Chinese cities (Miao and Chen,
2014; Yang et al., 2015; Chew et al., 2021; Peng et al., 2021),
replacing the default value modeled in WRF to improve HS
simulation. The diurnal cycles of ASH and ALH (W m−2)
in high-, medium- and low-density cities were added into the
model by diurnal profiles coefficient (shown in Figures 1g,i)
acting on the AH values shown in Table 3. Two peaks of ASH
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FIGURE 1 | (a) The nested simulation domains; (b) land cover for JJJ, and (c) PRD city cluster regions (red) in 2019, Beijing (BJ), Tianjin (TJ), Guangzhou (GZ), and
Shenzhen (SZ) cities are marked; (d,e) the impervious surface ratio maps; (f,g), the high-, medium-, and low-density cities retrieved from impervious surface ratio for
PRD (left) and JJJ (right). In panels (b,c), the black shaded regions show the terrain north of PRD and northwest of JJJ, while red, blue, and gray indicate urban,
water body and other land uses. In panels (f-g), red, yellow, and blue denote high-, medium-, and low-density cities. The diurnal cycle coefficients of panels (h) ASH
and (i) ALH in high-, medium-, and low-density cities. By acting on AH values in Table 3, these coefficients are used to produce gridded ASH and ALH (W m−2)
values in high-, medium-, and low-density cities, characterized by diurnal variation, to be added into the model.
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TABLE 3 | ASH and ALH releases in high-/medium-/low-density urban areas used in this study. The diurnal cycles of ASH and ALH (W m−2) profiles in high-, medium-
and low-density cities refer to Figures 1g,i.

High-density urban Medium-density urban Low-density urban References

ASH_South 131.6 96.3 52.7 Yang et al., 2015; Peng et al., 2021

ALH_South 85 60 30 Chew et al., 2021

ASH_North 88 48.9 19.6 Yang et al., 2015; Peng et al., 2021

ALH_North 120 75 60 Miao and Chen, 2014; Yang et al., 2015

have coincided with local rush hours (8–9 and 17–18 LST),
consistent with the default profile in the model and the bimodal
mode of diurnal ASH profiles over the south and north Chinese
cities (Wang and Wang, 2011; Wang et al., 2016). While the
ALH profile was derived by combining Beijing-325 m weather
tower observation analysis with land surface model (Miao and
Chen, 2014), the diurnal variation of ALH flux followed the
schedule of human activity and was relatively independent
of season (Moriwaki et al., 2008). Both ASH and ALH were
gradually strengthened on the heels of an increase in city density.
Thereinto, the ASH flux in south cities exceeded the maximal
value in Guangzhou (approximately 50 W·m−2), which has been
recently estimated by Zhu et al. (2017).

Experiment Design
We conducted numerical experiments in two groups (Table 4)
to quantify how heat stress responds to AH release and increases
in city size. By evaluating the contributions of temperature and
humidity changes to HS change, the attribution to HS change was
further dissected.

In the first group, we conducted four sets of experiments,
which were named as Real, no ASH, no ALH, and no AH.
All runs took the high-/medium-/low-density urban types of
the current land cover into account. Meanwhile, reasonable AH
ejections (including both ASH and ALH releases) were coupled
into WRF by the SLUCM for the Real run. Then ASH run, ALH
run, or both (i.e., total AH) were set to zero in turn to perform
other simulations. By contrasting each run with Real run, we
quantified the response of HS to each contributor. Additionally,
the occurrence probabilities of EHSs in various-type urban
regions were explored under different AH release scenarios.

We conducted the second group experiment to focus on how
a gradual increase in city size influences heat stress intensity
by utilizing the Real atmosphere idealized land-surface (RAIL)
method (Schmid and Niyogi, 2013). We also probe into that,
the varied HS with urban expansion is mainly determined by
which driving factor, temperature change or humidity change.
For the two target regions, Guangzhou (GZ) and Shenzhen (SZ)
in the PRD region and Beijing (BJ) and Tianjin (TJ) in the JJJ
region were selected to represent inland and coastal cities in south
and north China (Figures 1b,c). In the Ideal run, urban land
uses are replaced by the homogeneous crop land surface (i.e.,
the nearby rural land cover type), to remove the influence of
urban land cover. Then, cities of 30, 40, 50, 60, 70, and 80 km
radii (centered by green dots in Figures 1b,c) are designed to
represent the process of urban expansions in the present and
future. Refer to Schmid and Niyogi (2013) in which cities of
different radii with the simplified, homogeneous land surface

are designed to represent current and future city scenarios. The
experiment results were used to perform comparative HS studies
among inland and coastal cities in the south and north China.

Methods to Evaluate
Temperature–Humidity Dependence for
Heat Stress
Moist Enthalpy and Moist Entropy
Due to the high-temperature and high-humidity features of heat
stress weather, two moisture-thermal energy metrics (Lutsko,
2021), moist enthalpy (H = CpT + Lqv) and moist entropy
(S = Cp ln θe) were introduced to differentiate the different
characteristics during a heat stress episode in the PRD and JJJ city
clusters. They included both temperature and humidity factors.
And we are easily to separate temperature change from humidity
change based on moist entropy or moist enthalpy formula, to
evaluate their respective contributions to heat stress variation.

Moist entropy and moist enthalpy are classic thermodynamic
variables in meteorology. Despite not being frequently used for
heat stress compared to other several commonly used metrics,
their application potentials as HS metrics and clear advantages
in dynamics attract us to use them as indicators to discuss HS in
this study. Note that in this study we did not attempt to determine
the best way to measure heat stress. Rather, we examined
whether moist enthalpy and entropy could be evaluative metrics
to demonstrate an HS episode besides the three other widely
used HS metrics. (1) By contrast between them and other
commonly used HS indicators, we will evaluate the validities
of moist entropy and moist enthalpy as metrics to characterize
HS evolution to further prove their application potentials for
HS weather. (2) They are classic thermodynamic and dynamic
variables in meteorology. Taking moist entropy as an example, it
has conservation property for a moistly adiabatic and frictionless
atmosphere. Thus, it could be used as a mass surface or a tracer to
demonstrate the convergence and dispersion of high-temperature
and high-humidity atmosphere, so as to illustrate the genesis
and diffusion of HS weather. In this regard, it is convenient to
extend dynamically to further give mechanism responsible for
HS weather and as a predicative factor in our follow-up study.
(3) It is easy to separate the contributions of humidity change
from temperature change by taking the differential operator on
the moist entropy formula. Thus, by calculating and comparing
the magnitudes of temperature and humidity changes, which one
is the primary driver of the moist entropy fractional change will
be judged. The entire separation and comparison do not depend
on some subjective and empirical parameters, such as clothing
index, exposure index, medical discomfort index, etc. This is easy
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TABLE 4 | Experiment design and description in section “Experiment Design.”

Experiment groups Experiment names Descriptions

Group 1: AH experiment Real Real land cover with high-, medium-, low- density urban types is used, and
UCM model is coupled. Both ASH and ALH releases are considered.

No ASH The same as Real, except that ASH release is set to zero.

No ALH The same as Real, except no ALH.

No AH The same as Real, except that neither ASH nor ALH is considered.

Group 2: City size experiment Ideal Urban land use is replaced by homogeneous crop land surface to remove the
influence of urban land cover.

Ideal_R30, Ideal_R40,
Ideal_R50, Ideal_R60,
Ideal_R70, Ideal_R80

Cities of 30, 40, 50, 60, 70 and 80 km radii, centered at BJ, TJ, GZ, and SZ
(green dots in Figures 1b,c) are designed to represent the process of urban
expansions in the present and future.

to implement based on observations and numerical model. In
terms of these, in this study, we mainly used moist enthalpy and
especially moist entropy as indicators to discuss heat stress:

Where T and qv are absolute temperatures and specific
humidity, Cp is the specific heat of dry air at constant pressure p. L
is latent heat of vaporization and θe = θ exp(

Lqv
CpTL

) is equivalent
potential temperature (Holton and Hakim, 2013). Herein, TL is
the temperature at the lifting condensation level.

Methods to Separate Temperature–Humidity
Contribution to Heat Stress
By taking the differential operator on the θe formula, we
have 1

θe
∇θe

.
=

1
θ
∇θ+ 1

CpT∇(Lqv) [Eq. (1)], wherein the relation

O( 1
T∇T)� O( 1

qv
∇qv) is used after analyzing the order of

magnitude (Yang S. et al., 2014). In the near-surface level,
surface pressure change is small, therefore fractional change in
potential temperature (1θ) is roughly equal to fractional change
in temperature (L/Cp1qv) in Eq. (1). Thus, by calculating and
comparing the magnitudes of 1θ and L/Cp1qv, which one
(temperature or humidity change) is the primary driver of the θe
fractional change will be judged.

Other Metrics to Evaluate Heat Stress Weather
Furthermore, additional several commonly used heat stress
metrics (Steadman, 1994; Willett and Sherwood, 2012; Buzan
et al., 2015), such as Humidex to compute the “feels-like”
temperature for humans (Humidex = Tc +

5
9 (e− 10)), apparent

temperature (AT, where AT = Tc + 0.33e− 0.7u10m − 4),
simplified SWBGT, where (SWBGT = 0.56Tc + 0.393e+ 3.94),
were adopted to strengthen the validity of moist enthalpy and
moist entropy as metrics to characterize heat stress events, where
Tc and e are air temperature and vapor pressure in units of
degrees Celsius and hPa, u10m is the 10-m speed wind, and e is
calculated by relative humidity and saturated vapor pressure.

RESULTS

Model Validation
Figures 2A–H compare the simulated (red) 2-m air temperature
(Figures 2A–D) and relative humidity (Figures 2E–H) with
observations (blue) derived from multi-stations over the region
of the four cities. All these observations are from the national

surface AWSs system network, with station locations shown in
Figure 3.

According to the criterion of heat stress weather issued by
China Meteorological Administration, a 4-day episode in PRD
(01 LST 25-00 LST 29, i.e., 17 UTC 24-16 UTC 28) and a 2-
day episode (01 LST 27-00 LST 29, i.e., 17 UTC 26-16 UTC 28)
in JJJ are selected (framed by green boxes in Figures 2A–H) as
examples to perform a comparative study for typical summer
urban heat stress between the south and north cities of China.
They generally satisfy the HS criterion that daily maximum
temperature is more than 32◦C. Meanwhile, the mean daily
relative humidity (RH) is not less than 60%, and the weather
process lasts at least 2 days.

The model performs well in reproducing the diurnal cycles
(Figure 2) and spatial distributions (Figure 3) of near-surface
air temperature and humidity during heat stress episodes (within
green boxes), two key factors to evaluate heat stress intensity.
It is remarkable that the simulated and observed diurnal
peaks of temperature and humidity show a good agreement,
despite slightly lower humidity simulations (Figures 2E-H). By
comparing the observations between south and north cities
(Figures 2, 3), higher humidity (e.g., nearly 100% in GZ) and
relatively lower temperature (∼about 2–4◦C difference) present
in south (e.g., temperatures of GZ and SZ exceed 36 and 34◦C,
while maximal temperatures of BJ and TJ reach up to 38 and
37◦C, respectively). From simulations, the comparative results
among south and north cities are also reasonable, which have
similar tendency with observations.

The root-mean-square error for all stations over the GZ,
SZ, BJ, and TJ city regions are shown in Table 5. Overall, the
simulation is improved by adding AH release (cf. Real and no
AH runs in Table 5) and is comparable with previous studies
(Meir et al., 2013; Ramamurthy and Bou-Zeid, 2017), which is
directly attributable to the upward AH flux into UCM model.
A certain degree of improvement presents, as ASH or ALH is
considered alone (by comparing no AH with no ASH or no
ALH run), but the improvement is most pronounced when both
factors are considered.

The general synoptic situation during the heat stress
episode is briefly described. In the near-surface level, weak
southerly (with region-mean intensity of wind speed less than
2 ms−1) prevails in PRD, bringing moisture from the ocean
to the target region (not shown). In the JJJ region, southerly
dominates Beijing, leading to positive temperature advection
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FIGURE 2 | (A–H) Observed (red) and simulated (blue) 2-m air temperature (◦C) and relative humidity (%). The green frames show the heat stress episodes in south
and north cities. Sounding plots in panels (I) Qingyuan (QY) and (J) Beijing (BJ) stations, denote observations in south and north, with black and blue curves
representing temperature and dew point, respectively.
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FIGURE 3 | (A–D) The spatial charts of observed (shaded circles) and simulated (shaded) 2-m air temperature (◦C) at 05 UTC and relative humidity (%) at 21 UTC
27. All these observations are from the national surface AWS system network, with station locations shown by circles. Where the shaded circles have sizes
proportional to temperature and humidity (cf. the color scales below A-D).

TABLE 5 | Root-mean-square errors of simulated air temperature (oC) for all stations over various city regions.

Experiments Guangzhou (GZ) Shenzhen (SZ) Beijing (BJ) Tianjin (TJ)

Real 1.75 1.02 3.01 2.61

No ASH 2 1.1 3.1 2.7

No ALH 1.77 1.03 3.04 2.65

No AH 1.98 1.1 3.13 2.73

from south China; while easterly presents in coastal Tianjin,
convenient to moisture transport from eastern ocean to JJJ.
We also address the synoptic chart extending upward into
the troposphere. A deep-layer high-pressure system caused by

the in-phase superposition of middle-level subtropical high
and low-level ridges, sinking motion, and weak southerly
or easterly near surface, coacton HS weather. From the
observed sounding plots (Figures 2I,J), stable stratification
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FIGURE 4 | (A–D) Curves of five metrics to evaluate heat stress intensity evolution over GZ, SZ, BJ, and TJ city regions based on multi-station observations. Five
metrics are apparent temperature (blue), Humidex (green), and simplified wet bulb globe temperature (black) (◦C), moist enthalpy (H, purple) (K J/kg), and moist
entropy (S, red) (K), respectively, where H and S minus 300 K in magnitude, to be comparable with other metrics.

(black curve, denoted by temperature) inhibits vertical mixing
under the boundary layer, which plays a key role in the
formation of HS. High dew point (blue curve) indicates high
humidity, especially in the south (Figure 2I), and a high-
humidity pattern stretches up toward the whole troposphere,
manifesting as approached temperature and dew point profiles.
In the north (Figure 2J), large humidity presents in a low
level. It decreases swiftly above 800 hPa, characterized by
abruptly depressed dew point. All these provide favorable
environments to HS weather.

Heat Stress Metrics
Several metrics are utilized to demonstrate the heat stress
evolution, as shown in Figure 4. First, three commonly used
heat stress metrics (Steadman, 1994; Willett and Sherwood, 2012;
Buzan et al., 2015), AT, Humidex, and SWBGT (blue, green, and
black curves in Figure 4), could effectively define the heat stress
periods in the south and north cities (see the green boxes as
shown in Figure 2) and reflect the HS characteristics of high
temperature and high humidity. Second, moist enthalpy and
moist entropy (H and S, purple and red curves in Figure 4),
recently utilized by Lutsko (2021), are evaluative metrics to
heat stress, since their evolution follow similar tendencies with
other three metrics, except that they have larger value (∼370 K
of moist entropy) in magnitude relative to AT, Humidex, and
SWBGT (∼50◦C below). In addition, consistent with SWBGM
and AT, moist entropy and moist enthalpy over BJ and TJ
in north China (Figures 4B,D) show more obvious diurnal

variations compared with HS over GZ and SZ in south China
(Figures 4A,C). Note that albeit there are strong HS signals in
BJ for the 3rd day (01 LST 26-00 LST 27, i.e., 17UTC 25-16UTC
26), which is derived from little higher simulations for T2 and
RH (Figures 2B,F). Since the observed daily mean humidity
does not reach the HS criterion, we mainly concern the latter
2 days as HS episode in northern cities. The peak of HS present
in the afternoon and early midnight (about 370 K for moist
entropy, at about 06-12UTC) in north, while it takes on generally
hot and moist in the south. For instance, the curves of moist
entropy in GZ and SZ (Figures 4A,C) have less fluctuation
than those in north cities (Figures 4B,D), maintaining a mean
value above 360 K, which accords with our common sense and
physical feelings.

Note that we do not attempt to determine the best way to
measure heat stress here. Rather, we examine whether moist
enthalpy and entropy could be evaluative metrics to demonstrate
an HS episode, besides the other three widely used HS metrics.
By contrast among metrics, we strengthen the validities of
moist entropy and moist enthalpy as metrics to characterize
HS evolution. The heat stress illustrates more extreme intensity
and diurnal cycle in the north than in the south, for inland
than for coastal cities. Of more importance is that it is easy
to separate the key factors from each other (temperature and
humidity herein) to drive heat stress change based on the moist
entropy or moist enthalpy formula themselves. Therefore, we
mainly utilize moist entropy or moist enthalpy as metrics to
investigate the response of heat stress to AH and increase in city
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FIGURE 5 | The spatial distribution of moist enthalpy and moist entropy changes (1H and 1S) and their pattern correlations with temperature and humidity change
(1T and 1Q) for group 1 experiment (Table 2), taking account of the impact of AH and its components, and R at the top of each panel denotes the correlation
coefficient between its two subscript variables. By taking the difference between Real run and the other three runs, we quantify the sole influence of ASH (Real–no
ASH), ALH (Real–no ALH), and AH (Real–no AH) in south (A–D) and north (E–H), where gridding by slash line represents urban region.

size, and to explain the attribution to HS change by separating
the contributions of temperature and humidity changes in the
subsequent analyses.

Impact of AH on HS
Pattern
Figure 5 shows the spatial distributions of moist entropy and
moist enthalpy changes (1H and 1S) due to AH and its
components, and their pattern correlations with temperature and
humidity changes (1T and 1Q) for the group 1 experiment
(Table 4). Variable R at the top of each panel denotes the
correlation coefficient between its two subscript variables. By
taking the difference between Real run and the other three runs,
we quantify the sole influence of ASH (Real-no ASH), ALH (Real-
no ALH), and AH (Real-no AH) in the south (Figures 5A–D) and
north (Figures 5E–H), where gridding by slash line represents
the urban region.

From Figures 5a1–d1, the ASH effect leads to UHI
(Figure 5a1) and UDI (Figure 5b1). However, their combination
produces intensified urban heat stress (Figures 5c1,d1). In
contrast to ASH, ALH (Figures 5a2–d2) has cooling (Figure 5a2)
and humidifying (Figure 5b2) roles over the urban regions,
which even produces more intense HS (Figures 5c2,d2)
relative to the ASH effect (Figures 5c1,d1). Considering both

components of AH (Figures 5a3–d3), AH makes the air
over the urban region become hot (Figure 5a3) and moist
(Figure 5b3) after neutralizing the contrary contributions of ASH
(Figures 5a1,a2) and ALH (Figures 5b1,b2) effects on 1T and
1Q, which largely exacerbates heat stress (Figures 5c3,d3).This
kind of aggravation of HS is particularly evident over the
urban region (Figures 5c3,d3). The strong signals of positive
1H and 1S nearly outline the urban region. Comparing
ASH (Figures 5c1,d1), ALH (Figures 5c2,d2), and AH effects
(Figures 5c3,d3), the ALH accounts for larger proportion of total
AH to strengthening HS.

In north cities (Figures 5E–H), the case is similar to
that in south cities (Figures 5A–D), except for enhanced HS
induced by stronger ASH effect (cf. Figures 5c1,d1,g1,h1),
which produces stronger UHI in north than in south (cf.
Figures 5a3,e3). In short, compared with the ASH component
(Figures 5c1,d1,g1,h1) among total AH (Figures 5c3,d3,g3,h3),
ALH (Figures 5c2,d2,g2,h2) has more significant impact on
HS change. However, the contribution of ASH to HS change
increases in north (Figures 5g1,h1), relative to that in south cities
(Figures 5c1,d1).

As for spatial distribution, moist entropy and moist enthalpy
present similar patterns of HS growth due to the AH effect over
the urban regions (cf. Figures 5c3,d3,g3,h3). Both temperature
and humidity changes have better pattern correlation with HS
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change in the north. For example, the correlation coefficients
R1T1S (/R1Q1S) between 1T(/1Q) and moist entropy change
(1S) reaches up to 0.944(/0.977) for the AH effect experiment
(Figures 5e3,f3), indicative of strong dependence of HS change
on both temperature and humidity change in the north.
While in the south, the spatial pattern of HS change due
to AH release is determined mostly by the coverage of UHI
(R1T1S = 0.820), relative to humidity change distribution
(R1Q1 S = 0.752).

Diurnal Variation Features
In consideration of clear diurnal cycles of ASH and ALH
profiles (Figures 1h,i), diurnal variation features of how
heat stress intensity responds to AH and its components
are also demonstrated (Figures 6A–I), indicated by both
heat stress metrics (Figures 6G–I) and temperature–humidity
meteorological variables (Figures 6A–F). From Figure 5, the
spatial patterns of 1H and 1S give strong signals in GZ and BJ
(Figures 5c3,d3,g3,h3), indicative of a remarkable HS response
to the AH effect. Thus, as typical cities in the south and north,
GZ and BJ are chosen to illustrate the diurnal variation features
of HS response to AH release.

Impacts of AH on meteorological variables are investigated
first. Near-surface air temperature and humidity changes are
plotted, as shown in Figures 6A–F, to explain the attributions
to HS change (Figures 6G–I). Consistent with previous studies
(e.g., Nie et al., 2017; Li et al., 2018), ASH heats the atmosphere
by 0.2–1.2◦C (Figures 6A1,A2), more pronounced in BJ than
in GZ, with two peaks matching the ASH profile, as shown
in Figure 1h, while ALH slightly cools T over the urban
regions during daytime (Figures 6B1,B2), associated with
human activities. Irrigated parks, greenbelt, highway sprinkling
operation generate cooling but comparatively little (0.2◦C).
After partly offsetting between ASH and the ALH effect,
ASH among total AH contributes most of urban heating.
Consequently, UHI is determined mainly by ASH rather than
ALH. Its peak reaches 0.6◦C in south and 1.1◦C in north cities
(Figures 6C1,C2), with increased heating as the density of
urbanization increases (e.g., mean 1T>0.5◦C between high- and
low-density cities in BJ).

As for humidity change due to AH and its components
(Figures 6D-F), UDI from ASH through decreased 1Qv
(Figures 6D1,D2) is partly neutralized by the humidifying effect
from ALH (Figures 6E1,E2). The ASH dries air, responsible
for 1Qv < 0, as shown in Figures 6D1,D2; while the ALH
moistens air, directly leading to 1Qv > 0, as shown in
Figures 6E1,E2, which is consistent with the spatial pattern, as
shown in Figures 5b1,b2,f1,f2. The changes in 1Qv as shown
in Figures 6F1,F2, can be explained via a combination of ASH
and ALH effects on humidity change. In brief, the 1Qv > 0
tendency maintains for the diurnal cycle in GZ, and the curve has
two peaks (Figure 6F1). One happens during nighttime because
of decreased evaporation loss, and then humidity decreases with
sunrise. The other presents in the afternoon because of ALH from
irrigation and watering park, etc. However, the 1Qv > 0 trend
is broken down in the afternoon in BJ (Figure 6F2), even if the
ALH peak synchronously presents in the afternoon (Figure 1i).

FIGURE 6 | (A-I) The diurnal variations of temperature (K), humidity (g/kg),
moist entropy (K) in high-/medium-/low-density urban areas (dark red/light
red/blue) due to ASH, ALH, AH release. The curves denote the difference
fields between Real run and other experiments (refer to Group 1 experiment in
Table 4). Left and right panels are GZ and BJ, respectively.

Under higher-temperature conditions in the north, dramatic
evaporation dries down the near-surface moisture, responsible
for the afternoon humidity deficit (Figure 6F2).
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The impact of AH on heat stress metrics are analyzed and
shown in Figures 6G–I. Since the impact of three AH releases’
strategies on the pattern (cf. Figures 4C,D, or cf. Figures 4G,H)
and diurnal cycle of moist enthalpy (not shown) resemble those
of moist entropy (Figures 6G–I), we examine moist entropy as an
example (Figures 6G–I).

The AH effect has a substantial impact on the heat stress index.
Both ASH and ALH (Figures 6G,H) could aggravate the HS
(Figure 6I), with a maximal increment of moist entropy about
1 K at 06/20 LST in GZ and 09/21 LST in BJ. Furthermore,
the magnitude of the HS index increases with the density of
urbanization. In contrast of south and north HS, there is a
larger diurnal variation in BJ (Figure 6I2), even decreased HS
between 12 and 16LST. It means that sprinkling water on the
road under high-temperature conditions (Figure 6C2) might
alleviate HS in north cities. The additional irrigation increases
the amount of moisture in the air. A large amount of evaporation
takes away excessive heat, reducing near-surface temperature and
therefore alleviating HS. In contrast, it does not work to sprinkle
water on roads or gardens in southern cities, from the positive
contributions of both ASH and ALH (Figures 6G1,H1) to HS
aggravation (Figure 6I1).

Impact of City Size on HS
Pattern
Figure 7 shows the spatial distributions of HS changes (1H and
1S) due to an increase in city size and their pattern correlations
(R) with temperature and humidity changes (1T and 1Q) for the
group 2 experiment in Table 4. By taking the difference between
Ideal run and the other six simulations with varied city radii from
30 to 80 km, we evaluate HS scenarios in present and future in
south (Figures 7A–D) and north (Figures 7E–H), wherein slash
line regions indicate urban coverage.

From Figures 7A–D, UHI and UDI are remarkable over
the urban regions. 1T and 1Q are almost in opposite-
phase distributions. The coverage of UHI and UDI presents a
dramatic extension with the expansion of the city, as shown
in Figures 7a1–a6, b1–b6. After neutralizing the contrary
contributions of UHI (Figures 7a1–a6) and UDI (Figures 7b1–
b6) effects, we depict the HS evolution with urban sprawl
(Figures 7c1–c6,d1–d6). It can be seen that the extension of
HS coverage is also pronounced as an urban area grows. Strong
HS covers an urban region well, except to the northeast of the
PRD region, because of downwind heat accumulation by thermal
advection originating from upstream urban. However, the
enhancement of HS intensity is not as significant as that of UHI
because of anti-phase synchronous growths of positive/negative
contribution of UHI/ UDI to HS. In contrast, the case in north
cities (Figures 7E–H) is similar to that in the south (Figures 7A–
D), except for intensified HS induced by stronger UHI (cf.
Figures 7A,E) and weaker UDI (cf. Figures 7B,F) in the north.

Also, from the spatial distribution, temperature change has
a large pattern correlation coefficient with HS change, about
0.9 for 1T and 1S in the north (Figure 7E) and >0.6 in the
south (Figure 7A). However, the correlation coefficients between
humidity change and moist entropy change R1Q1S is small

(<0.3) (Figures 7B,F). It indicates strong dependence of the HS
pattern on temperature change due to urban expansion. If we
build megacities, the temperature change will be the primary
control on the spatial pattern of HS.

Intensity Change
The histograms in Figure 8 show intensity changes in UHI
(yellow histogram), UDI (blue histogram), and UHS (grown
curve) under R1–R6 city size scenarios in BJ, TJ, GZ, and SZ.
Thereinto, we take the daily maximum of urban region averaged
temperature rise and moisture depict relative to Ideal run without
the city as UHI and UDI, and the maximal equivalent potential
temperature change is adopted to estimate the UHS change.

We use the temperature-humidity separation method
introduced in section “Methods to Separate Temperature–
Humidity Contribution to Heat Stress” to assess the relative
significance of temperature and humidity changes (UHI and UDI
effects) on UHS change, by weighting 1θ and L/Cp1qv more
heavily (Figures 8A–D). Note that the coefficient L/Cp is added
into the moisture change factor, so as to produce comparable
order of magnitude and equivalent unit to temperature change.

The heat stress change in south and north cities becomes
complex via the combined effects of temperature and humidity
changes due to urban sprawl. The UHS maintains less variation
in the south in the progress of urban expansion, because of
nearly simultaneous growth of the out-of-phase contributions
due to UHI and UDI effects (Figures 8A,B). However, UHS
experiences slow enhancements with the increase in city sizes
in north cities (Figures 8C,D), mostly driven by the UHI effect.
Thus, temperature change dominates the HS change due to urban
expansion in north, but both temperature and humidity changes
contribute equivalently to HS in the south. As expected, the
contrast of environmental conditions between south and north
China supports the above conclusion. It is generally wet and
hot in the south, which produces large contributions of both
temperature and humidity to the HS weather: while in the north,
it is hotter but not as wet as in the south (Figure 2), so the
temperature change dominates intensity evolution of HS. In
contrast, stronger UHS change on account of increased urban
area happens in the north, with a larger peak (∼6 K) relative to
that in the south (∼2 K), and stronger HS presents over inland
BJ/GZ than in coastal TJ/SZ. Also, note that the intensified HS
over TJ (Figure 8D) and a little weakened HS over SZ (Figure 8B)
due to growing city radius are associated with the urban sprawl
toward inland and coastal areas. Therefore, it is more prone to
severe UHS risk if we build megacities in the north in the future.

Extreme Heat Stress
Threshold of Extreme Heat Stress
To explore the EHS events, we try to derive a local threshold
based on the statistical distribution mode of extreme heat stress
metric, equivalent potential temperature herein. Referring to the
CFAD (contoured frequency by altitude diagram) method widely
applied to convective burst definition (Yuter and HouzeJr., 1995;
Rogers, 2010; Heng et al., 2020), we examine the distribution
pattern of equivalent potential temperature by using contoured
frequency by latitude diagram (CFLD) (Figure 9).
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FIGURE 7 | (A-H) The same as Figure 5 but for group 2 experiment in Table 4 by taking account of the impact of increasing city size from R = 30 to 80 km.
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FIGURE 8 | (A-D) Daily maximum of region-averaged urban heat island effect (1θ, K, yellow histogram), urban dry island effect (moisture depict in K, L/Cp1qv, blue
histogram), and urban heat stress change (1θe, K, grown curve) under R1–R6 (R = 30–80 km) city size scenarios in BJ, TJ, GZ, and SZ city regions. The fractional
changes (1θ, L/Cp1qv ,1θe ) are taken as difference between the R1–R6 experiment and Ideal run without city (refer to Group 2 experiment in Table 4).

FIGURE 9 | The contoured frequency by latitude diagram distribution of equivalent potential temperature (K) (A) in south and (B) in north.

It shows the CFLDs of the simulated equivalent potential
temperature binned every 1 K at various latitudes within the
PRD (Figure 9A) and JJJ (Figure 9B) regions based on Real
run, where blank area represents sea or other non-urban
land covers. By comparative analyses of the south and north
cities (Figures 9A,B), the frequency distribution of equivalent
potential temperature is relatively spatially homogeneous in the
whole PRD region (21.9–23.7◦N). All θe values concentrate

within 343–363 K irrespective of varied latitude (Figure 9A),
with peak θe (98th percentile, refer to Lutsko, 2021) of
362 K, while the frequency distribution of θe experiences
dramatic amplification and is characterized by a broader mode
(varied between 335 and 365 K) in JJJ, with peak θe (still
98th percentile) growing mainly from 359 to 362 K with
latitude (Figure 9B). To be convenient to perform comparisons
among various cities, we need to develop a common, unified
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FIGURE 10 | (A,B) Scatter plots of changes in humidity (L/Cp1qv, K) versus changes in temperature (1θ, K) associated with extreme heat stress (98th percentile θe)
events for the ASH, ALH, and AH runs. The triangle, star, and dot represent high-/medium-/low- density urban areas, colored by their associated θe value. Left and
right panels denote south and north urban regions, respectively.

standard to feature an EHS episode based on the statistical
distribution of equivalent potential temperature in our target
regions. It seems that 362 K is suitable to the extreme heat
stress definition derived from θe statistics. Therefore, this
criterion is attempted to analyze the EHS episode in the
following section.

Temperature–Humidity Dependence
Figures 10, 11 are the scatter plots of 1θ (abscissa) and
L/Cp1qv (ordinate) associated with EHS, which is used to study
the relative importance of fractional changes in temperature
and humidity on EHS occurrence under various AH release
(Figure 10) and city size scenarios (Figure 11). By weighting
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1θ and L/Cp1qv more heavily, we estimate which factor is the
primary driver of EHS occurrence. Also shown is the θe value
in high-/medium-/low-density urban regions (color triangle,
star, dot in Figure 10) and cities with increasing size (color
dot in Figure 11). It provides another way to estimate the
sensitivity of EHS dependence on temperature–humidity change
due to AH and increased city size by comparing whether the
relative spread degree of EHS points is towards the abscissa or
ordinate variables. The R value inset in each panel represents
the hit ratio of EHS among total grids over the urban regions,
with subscripts L, M, and H denoting low-/medium-/high-
density city types.

From Figure 10, the spread in humidity changes is larger
than the spread in temperature changes in southern cities,
irrespective of ALH, ASH, or AH run (Figures 10A1–A3),
which signifies humidity change is the primary driving factor
of EHS events in the south. In the north, the spread in
humidity changes is larger/less than the spread in temperature
changes in ALH/ASH run (Figures 10B1,B2), which implies
humidity/temperature change is the primary driving factor of
EHS events under an ALH/ASH release scenario. For AH
simulation (Figure 10B3), the spread degrees in both factors
are comparable, which means the occurrence of EHS is sensitive
to both temperature and humidity increase over the north
cities. In contrast, the hit ratios of EHS in high-/medium-
/low-density urban are different. For the present urban land
cover, considering various urban types and AH emission, above
50% (/a quarter of) south (/north) urban region is hit by
EHS (Figures 10A3,B3), and EHS tends to occur in high-
density urban regions in south, followed by medium-density
urban regions (e.g., for AH run, as shown in Figure 10A3,
RH = 62.88%, RM = 57.88%, and RL = 41.98%, indicating
that 62.88% of the high-density urban regions is hit by EHS).
However, EHS is more easily to happen in medium-density urban
regions in all of the simulation experiments for north cities
(e.g., for ASH, ALH, and AH runs, RM = 24.51, 39.42, and
30.94%, respectively).

As a city will expand dramatically in the future (Figure 11,
and for group 2 experiment in Table 4), about one-third of
the urban regions might be hit by EHS, with a wider scope
of influence in the south than in the north (R = 28.13–40.48%
in the south from Figures 11A1–A6, R = 24.80–37.87% in the
north from Figures 11B1–B6). In addition, a larger extremum
(with θe > 376 K) happens in northern cities, relative to that
in the south (θe ∼ 366 K). Furthermore, changes in the very
warmest θe events are associated with large 1qv responses in
north cities (Figures 11B1–B6). In the south (Figures 11A1–
A6), EHS is sensitive to both temperature and humidity changes
for smaller cities (Figures 11A1,A2), but the shift is to be
determined by larger 1qv in the larger cities of the future
(Figures 11A3–A6). For the EHS events in megacities in the
south (Figures 11A3–A6), the specific humidity response is again
the leading factor driving EHS occurrence in response to city
size change. Therefore, constraining the probability of occurrence
and regional distribution of EHS events largely comes down to
constraining the humidity change associated with these events,
particularly in a megalopolis or a city cluster in the future.

FIGURE 11 | (A,B) The same as Figure 10 but for different city size (R1–R6)
runs.

CONCLUSION AND DISCUSSION

The impacts of anthropogenic heat emission and increase in city
size on urban heat stress and extreme heat stress are investigated
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based on numerical simulation by utilizing the coupled SLUCM-
WRF model system. As effective HS metrics, moist enthalpy
and moist entropy are used to evaluate the HS response to
AH and urban expansion and explain the attribution to HS
change by separating the contributions of temperature change
from humidity change. Several main conclusions are summarized
as follows.

Anthropogenic heat release could aggravate UHS drastically.
It produces a maximal increment of moist entropy (an effective
HS metric), above 1 and 2 K over south and north high-density
urban regions, mainly through ALH. HS change shows a more
prominent diurnal variation in the north than in the south,
in high-density than in low-density urban regions. Despite the
diurnal cycle of temperature/humidity rise due to ASH/ALH
generally matching the ASH/ALH profile, HS change does not
strictly obey the diurnal variation rule of any one single factor.
It depends on the combined effect of both, indicative of the
complexity of HS research. Note that there are slightly decreased
HS between 12 and 16LST in the north in AH run, mainly by
the ALH effect. It means that sprinkling water on roads under
high-temperature conditions might alleviate HS in north cities.
In contrast, it does not work to sprinkle water on roads or gardens
in south cities, because of the positive contributions of both ASH
and ALH to HS aggravation.

Urban expansion leads to an increase in HS coverage, and it
has a larger impact on UHS intensity change (6 and 2 K in south
and north) relative to AH. The city radius of 60 km is a possible
threshold to plan to city sprawl. Above that city size, the HS
intensity change due to urban expansion tends to slow down in
the north and inhibit in the south (Figure 8), and about one-third
of the urban regions might be hit by extreme heat stress (EHS),
reaching maximal hit ratio (Figure 11). Stronger intensities of
HS present over inland than in coastal cities. Therefore, it is
more prone to severe UHS risk if we build megacities in the
north in the future.

Furthermore, changes in warmest EHS events are more
associated with high humidity change responses, irrespective of
cities being in north or south of China, which supports the
idea that humidity change is the primary driving factor of EHS
occurrence. Therefore, constraining the occurrence probability
and regional distribution of EHS events largely comes down to
constraining the humidity change associated with these events,
particularly in a megalopolis or a city cluster in the future.

In comparison to previous studies, Ramamurthy and Bou-
Zeid (2017) performed a comparative analysis of heat waves over
multiple cities. They found that UHI intensity is proportional
to the physical size of the city. Based on this study, we quantify

how the increase in city size impacts a heat stress episode
and derive the threshold mentioned above in which this kind
of influence will be slowed down. Yang et al. (2019) pointed
out that urbanization increases thermal discomfort hours by
27% during summer over the urban areas of the Yangtze River
Delta in East China, and that the contribution of AH to the
increase in total discomfort hours is almost equal to that due to
urban land use change. Our results reveal a stronger response
of HS to urban expansion relative to AH in south and north
cities in China. Furthermore, we demonstrate the influence
path of AH on HS, mainly via its latent component but not
the traditional anthropogenic sensible component. Certainly,
updated numerical model setup, local UCM parameter, and
densely gridded ASH and ALH data are expected to further
simulate HS, and more thermodynamic and dynamic aspects
based on conserved moist entropy are needed in the next
study to reveal the mechanism responsible for the genesis and
dispersion of HS.
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Large-scale modifications to urban underlying surfaces owing to rapid urbanization have
led to stronger urban heat island (UHI) effects and more frequent urban heat wave (HW)
events. Based on observations of automatic weather stations in Beijing during the
summers of 2014–2020, we studied the interaction between HW events and the UHI
effect. Results showed that the UHI intensity (UHII) was significantly aggravated (by 0.55°C)
during HW periods compared to non-heat wave (NHW) periods. Considering the strong
impact of unfavorable weather conditions and altered land use on the urban thermal
environment, we evaluated the modulation of HW events and the UHI effect by wind speed
and local climatic zones (LCZs). Wind speeds in urban areas were weakened due to the
obstruction of dense high-rise buildings, which favored the occurrence of HW events. In
detail, 35 HW events occurred over the LCZ1 of a dense high-rise building area under low
wind speed conditions, which was much higher than that in other LCZ types and under
high wind speed conditions (< 30 HW events). The latent heat flux in rural areas has
increased more due to the presence of sufficient water availability and more vegetation,
while the increase in heat flux in urban areas is mainly in the form of sensible heat flux,
resulting in stronger UHI effect during HW periods. Compared to NHW periods, lower
boundary layer and wind speed in the HW events weakened the convective mixing of air,
further expanding the temperature gap between urban and rural areas. Note that LCZP
type with its high-density vegetation and water bodies in the urban park area generally
exhibited, was found to have a mitigating effect on the UHI, whilst at the same time
increasing the frequency and duration of HW events during HW periods. Synergies
between HWs and the UHI amplify both the spatial and temporal coverage of high-
temperature events, which in turn exposes urban residents to additional heat stress and
seriously threatens their health. The findings have important implications for HWs and UHII
forecasts, as well as for scientific guidance on decision-making to improve the thermal
environment and to adjust the energy structure.
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INTRODUCTION

Economies around the world are developing rapidly with global
economic integration. Meanwhile, the processes of urbanization
and industrialization are also accelerating year by year. Due to
increases in population density, immense changes in land use,
increases in anthropogenic heat emissions, and reduced green
space have led to strong urban heat island (UHI) effects (Yang
et al., 2016; Li et al., 2020). This phenomenon, manifested by
enhanced air/surface temperature in urban areas compared to
their rural surrounding areas (Oke and Maxwell, 1975; Roth,
2007), is one of the key characteristics of urban climates. The UHI
effect has become one of the primary factors affecting the urban
ecological environment, with important impacts on extreme
climate events, human health, and economic losses (Ren, 2015;
Rizwan et al., 2008; Yang et al., 2019; Luo and Lau, 2018; Luo and
Lau, 2019).

As the capital of China, Beijing is one of the fastest developing
metropolizes in recent decades. A significant UHI phenomenon
has been induced in Beijing by its rapid urbanization in the past
few decades (Liu et al., 2007; Zheng et al., 2018; Yang et al.,
2020b). Liu et al. (2007) studied the interannual variation of the
near-surface UHI intensity (UHII) during 1977–2000 in Beijing
and found that the temperature rise in urban areas was greater
than in rural areas. Based on long-term temperature observations
from 1967 to 2016, Huang and Lu (2018) reported that the UHII
had increased significantly, with a growth rate of about 0.29°C/
10a, in those 50 years. Many studies have also pointed out that,
usually, the UHII in Beijing is stronger in winter and weaker in
summer (Xie et al., 2006; Yang et al., 2013); while in terms of daily
variation, it tends to be stronger at night than during the day (Ren
et al., 2007; Huang and Lu, 2018).

In the context of global warming, extreme high-temperature
events are increasing in both frequency and duration (Meehl and
Tebaldi, 2004; Yang et al., 2017; Lehner et al., 2018). The
superimposed effect of heat waves (HWs) and UHIs causes
more days and areas to experience high-temperature events,
which poses a serious threat to the health of urban dwellers
owing to intensified and prolonged heat exposure (Tan et al.,
2010; Chew et al., 2021). Li et al. (2015) revealed that the UHII is
enhanced during HW periods compared to non-HW (NHW)
periods in Beijing. Also, consistent synergies between UHIs and
HWs have been reported in western Sydney (Khan et al., 2020),
Seoul (Ngarambe et al., 2020), Singapore (Mughal et al., 2020),
and Rome (Zinzi et al., 2020). Regarding the factors modulating
UHIs and HWs, they are complex and vary both spatially and
temporally, but can broadly be categorized into natural-type
factors (local topography, synoptic weather, meteorological
factors such as wind speed, cloud cover, relative humidity,
etc.) and anthropogenic-type factors (i.e., anthropogenic
activities such as emissions of anthropogenic heat and
aerosols, as well as land use/land cover changes related to
rapid urbanization, etc.) (Li et al., 2015; Ngarambe et al., 2020;
Zinzi et al., 2020). To some extent, buildings, the surface
composition, and pavements also affect the exchanges of heat
in cities (Shahidan et al., 2012; Wong et al., 2017; He, 2019).
Therefore, the synergies between UHIs and HWs are highly

localized. In most previous studies, the air temperature at a
single urban site has been used to represent the air
temperature of an entire city. Clearly, this is flawed, as the
temperature at a meteorological station can only represent the
temperature of its immediate surroundings, and different
meteorological stations in large cities might differ completely
in terms of their underlying surface types. Therefore, it is difficult
to make generalizations on this basis.

Accordingly, in this study, we took local climate zones
[LCZs—a new and systematic classification of field sites for
heat island studies (Stewart and Oke, 2012)] around the
selected automatic weather stations into account. Besides, we
also considered the impact of wind speed, since it has a certain
heat dissipation effect on different building structures and urban
forms (Uehara et al., 2000; Wang Q. et al., 2020). Based on the
data from the selected automatic weather stations in Beijing
during the summer seasons of 2014–2020, we explored how
LCZs, together with wind speed, modulate the UHI and HWs
in Beijing.

DATA AND METHODS

Summertime hourly meteorological data (surface air temperature
and wind speed) during 2014–2020, for 10 urban sites and 7 rural
sites, were retrieved from automatic weather stations in Beijing
(http://data.cma.cn/en). As the capital of China, Beijing has
experienced large-scale and rapid changes to its urban
environment in the past few decades, with the urban space
having expanded mainly in suburban areas in the most recent
decade (Li et al., 2021). Therefore, an important selection
criterion was applied in that, during the study period
(2014–2020), urban stations had to be within the urban center
(considered here as within or near the Fifth Ring Road), and rural
stations had to be far away from major construction areas
(Figure 1; Table 1). The selection of urban and rural stations
refers to the method of previous studies (Yang et al., 2013; Shi
et al., 2015; Shi et al., 2021). The method described by Xu et al.
(2013) was used for quality control and homogenization of the
daily meteorological data.

In this study, we defined UHII as the difference between the
surface air temperature at each urban site and the surface air
temperature averaged over rural sites. Countries and regions
around the world adopt different methods to study high-
temperature HW events, and the standards for defining high-
temperature HWs also vary greatly. HW events are usually
identified as cases in which the daily maximum temperature
reaches or exceeds a certain threshold for several consecutive
days. The threshold for high temperature can be a relative value
or an absolute threshold (Ngarambe et al., 2020). In this paper, an
HW event is defined as when the daily maximum temperature
exceeds 35°C for three consecutive days or more, as described by
Yao et al. (2020).

To explore the potential impact of urban forms and land-cover
types on the interaction between the UHI and HWs, we obtained
the LCZ category of each reference station based on the LCZ
dataset produced by the Institute of Urban Meteorology, China
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Meteorological Administration, Beijing. The fine-scale
underlying surface data were derived in SAGA GIS by a
random forest classification of the Landsat eight satellite data
in 2018 according to the workflow provided by the World Urban
Database and Access Portal Tools. This LCZ dataset for Beijing

consists of 17 LCZ types with significant differences based on the
characteristics of the underlying surface of the urban climate
proposed in previous studies (Stewart and Oke, 2012; Stewart
et al., 2014). In particular, owing to the rapid urbanization of the
city, we defined a special category, LCZH, to classify regions

FIGURE 1 | (A)Geographical locations of reference stations within the boundaries of Beijing. (B)Google Earth images of urban stations. The built-up areas data can
be accessed at https://zenodo.org/record/4034161#.YFc56driuUl.
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composed of a large number of construction areas. Exploring the
thermal environment of urban green spaces as well can help to get
a better understanding of their contribution to urban
environment and a more comprehensive view on urban
thermal environment. Therefore, we also defined the
underlying surface of the green space and forest park in the
urban as a new type of LCZP to distinguish between the greenery
within and outside city. We chose the five most common
categories of LCZ (i.e., LCZ1, LCZ2, LCZ4, LCZ5, and LCZP)
in the Beijing urban area. Two urban stations for each chosen
LCZ were selected in this study (see Figure 1 and Table 1 for their
geographical locations). To ensure that the impact of
urbanization changes on the reference stations was minimized,
an important criterion was employed in that urban stations had to
be within or near the 5th Ring Road and remote from LCZH. It is
important to emphasize that green space was found in both urban
and rural areas, and they had similar underlying surface
structures, but a major difference between them was that
urban LCZP was mostly forest parkland in the urban center,
and there were still urban buildings around it, while the rural
green space was far away from urban built-up areas and the
thermal impact of human activities was smaller. It is worth noting
that this provides strong evidence that green space and vegetation
in the city help to effectively alleviate the UHI effect (Doick et al.,
2014; Zhou et al., 2019).

Besides, we also referred to observational heat flux data during
an HW event (2016.07.09–2016.07.11) and an NHW event
(2016.07.06–2016.07.08) at an urban site (Institute of
Atmospheric Physics Tower, IAP, at 47 m) and rural site
(Miyun Tower, MY, at 36 m) (specific locations are shown in
Figure 1A). Similarly, sounding profiles at 0800, 1400, and 2000
LST at Guanxiangtai (GXT) station (see Figure 1A) during this
period were used to calculate the boundary layer height (BLH).
Furthermore, to study the potential effect of wind speeds on the
UHI and HWs, wind speeds were classified into three categories
[low (0–0.74 m/s), medium (0.75–1.44 m/s) and high
(1.45–11.7 m/s)] using the k-means clustering algorithm.
Finally, we employed analysis of variance (ANOVA) tests to

assess the UHII differences under different wind speed and LCZ
categories, and the statistical significance was tested at a 0.001
confidence level.

RESULTS

UHII Differences Between HW and NHW
Periods
Figure 2 shows that the summer UHII in Beijing was strong at
night and in the early morning, and weak during the daytime in
2014–2020, which is similar to the results of previous studies (Xie
et al., 2006; Liu et al., 2007; Yang et al., 2013). In general, the
diurnal variation of summer UHII displays a U-shaped
fluctuation. The 7-years average UHII during HW and NHW
periods ranged from 0.55 to 2.53°C and from 0.28 to 1.72°C,
respectively. Overall, the average UHII during HW periods was
larger than that during NHW periods. Moreover, the impact of
urbanization on HW events cannot be ignored. With the
acceleration of urbanization, urban and suburban stations have
experienced varying degrees of warming, which has not only led
to a more extensive UHI effect, but also caused more HW events
with long durations in urban areas compared to rural areas (Tan
et al., 2010; see also Supplementary Figure S1).

In addition, the diurnal cycles of maximum UHII among all
urban stations are also shown, to detect the relationship between
hourly maximum UHII and HW events (Supplementary Figure
S2). Similarly, the average maximum UHII during HW periods
was stronger than during NHW periods. To further analyze the
difference in UHII between HWandNHWperiods, we calculated
ΔUHII as the UHII during HW periods minus the UHII during
NHW periods, and the diurnal variation of ΔUHII is shown in
Figure 3. The ΔUHII reached up to 1.77 and 1.67°C in 2015 and
2020, respectively. While ΔUHII usually reached a minimum at
0900 and 1800 LST, the peak often occurred at noon or at
midnight. The diurnal variation of ΔUHII roughly followed a
“W” shape. In general, the diurnal variation of ΔmaxUHII is
consistent with that of ΔUHII, and are mainly modulated by
anthropogenic heat emissions, aerosols, atmospheric circulation,
etc. (Zheng et al., 2018; Zheng et al., 2020; Yang et al., 2020a). The
HW–NHW differences in UHII suggest that UHII can be
amplified by HW events, and then the enhancement of UHII
can feed back positively to HWs (Luo and Lau, 2018; Ngarambe
et al., 2020).

Modulation of HWs and UHII by Wind Speed
To assess the influence of wind speed on HWs and UHII, we
applied k-means clustering to the wind speed data and divided the
results into three categories—namely, high, medium, and low.
The numbers of HW events under these different wind speed
categories for each urban station are shown in Figure 4 (see also
Supplementary Figure S3 for the durations of HW events under
different wind speed categories for each urban station). Under
high wind speeds, the highest number of HW events (6) was at
station SYQ, out of a total of 19 HW days. The number of
occurrences of HW events at GGXT, HD, and OP was 0. During
medium wind speed periods, 5 out of 10 urban stations

TABLE 1 | Geographical locations of the reference stations.

Station Lon (°E) Lat (°N) Site type Local climate zone

LWT 116.85 40.23 Rural LCZA
AD 116.51 39.61 Rural LCZB
DXC 116.45 40.22 Rural LCZC
YLD 116.78 39.67 Rural LCZC
PGZ 116.34 39.61 Rural LCZC
DSGZ 116.92 40.08 Rural LCZD
NZ 116.11 39.6 Rural LCZD
GGXT 116.43 39.91 Urban LCZ1
GY 116.35 39.93 Urban LCZ1
FSC 116.27 39.87 Urban LCZ2
SYQ 116.46 39.98 Urban LCZ2
FT 116.25 39.87 Urban LCZ4
JG 116.44 39.81 Urban LCZ4
XNT 116.39 39.87 Urban LCZ5
SHQ 116.48 39.91 Urban LCZ5
HD 116.28 39.98 Urban LCZP
OP 116.39 40.02 Urban LCZP
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experienced more than 10 HW events, the average duration of
which was more than 35 days. SHQ had 20 HW events (72 days).
As for periods of low wind speed, the number of HW events at

GGXT (25) was much higher than at other stations, and much
longer (average of 109 days). At many stations, there were fewer
HW events under low wind speeds, which may have been due to

FIGURE 2 | Diurnal variation of UHII between HW and NHW periods during summertime (June–August) 2014–2020. HW and NHW periods are indicated by red and
blue, respectively. Lines denote average UHII values and shaded areas present the standard deviation of the average UHII values according to all urban reference stations.

FIGURE 3 | Diurnal differences in UHII between HW and NHW periods during summertime (June–August) 2014–2020. Red lines present average maximum UHII
values, and blue lines present average UHII values according to all urban reference stations.
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the smaller threshold difference between the low and medium
wind speed categories.

Figure 5 depicts the UHII values under for each urban station
and all urban stations under different wind speed categories. The

average UHII value under high, medium and low wind speed was
0.82, 0.85 and 0.99°C, respectively. Based on ANOVA, the average
UHII difference of the three wind speed groups was statistically
significant, with F (6418) � 18.46 and p < 0.001. Under high wind

FIGURE 4 |Number of HW events under different wind speed conditions at each urban station during 2014–2020: (A) high wind speeds; (B)mediumwind speeds;
(C) low wind speeds; (D) wind speeds per LCZ.

FIGURE 5 | Box-and-whisker plots of the UHII values under different wind speed conditions at each urban station during 2014–2020. In the plots, the central box
represents the values from the lower to upper quartile (25th to 75th percentile). The vertical line extends from the maximum to the minimum value. The middle black solid
line represents the median, the middle red solid line represents the average, and the red plus signs represent outliers.
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speeds, the UHIIs of SYQ, FT and SHQ were significantly higher
than at other stations. This may have been due to the low number
of wind speed samples at these stations; plus, even those samples
classified into the high wind speed category were closer to the
lower bound of the qualifying range.

Modulations of HWs and UHII by the LCZs
To explore how the LCZs modulate HW events and UHI effects,
we quantified the HW events and UHII values under each LCZ
category. Two urban stations for each category of LCZ were
included, and the specific LCZ types of each urban station can
be seen in Table 1. It is worth mentioning that LCZ1 stands for a
dense high-rise building area, and LCZ2 for a dense middle-rise
building area, LCZ4 for an open high-rise building area, LCZ5

for an open mid-rise building area, and LCZP for a sparse
tree area.

As shown in Figure 6, in the 7 years of the study period, there
were 46, 37, 26, 41 and 32 HW events in LCZ1, LCZ2, LCZ4,
LCZ5, and LCZP, with durations of 205, 148, 101, 171, and
135 days, respectively. It is clear that the number and duration of
HW events under LCZ1, LCZ2, and LCZ4 was significantly
decreasing. It strongly proves that the LCZs have a very
positive regulatory effect on HW events. In dense high-rise-
building areas, HW events occur more frequently and last
longer. Compared with LCZ1 and LCZ2, LCZ4, LCZ5, and
LCZP have a lower building density and a relatively small
building height to width ratio, which may reduce the duration
and frequency of HW events (Ngarambe et al., 2020).

FIGURE 6 | Number and duration of HW events under each LCZ.

FIGURE 7 | Box-and-whisker plots of the UHII values under each LCZ.
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Surprisingly, the number of HW events in LCZ5 was higher than
in LCZ2 and LCZ4. Why this was the case is further discussed in
the next section.

Furthermore, ANOVA was employed to test the differences in
the UHII levels under the five LCZs, giving a result of F (6423) �
498.64 and p < 0.001. The UHII levels under the five LCZs varied
significantly. The largest mean UHII value was found in LCZ1,
which was 1.38°C. The average UHII of LCZ2, LCZ4, LCZ5, and
LCZP was 1.14, 0.51, 1.28 and 0.29°C, respectively. The UHII
under LCZ1, LCZ2, LCZ4, and LCZP depended strongly on the
characteristics of the underlying surface. Similar to what was
found for HW events, the UHII under LCZ5 was also higher than
under LCZ2 and LCZ4 (Figure 7).

DISCUSSION

In UHII Differences Between HW and NHW Periods we analyzed
the daily variation of UHII during HW and NHW periods in the
summers of 2014–2020. The difference between them was also
calculated. We found that the UHII during HW periods was
significantly stronger than during NHW periods. This means
that, compared to NHW periods, the urban heat during HW
periods increased more than in rural areas, resulting in a stronger
UHI effect. In general, the surface receives more shortwave and
longwave radiation during HW periods than NHW periods
(Supplementary Figure S5; Hong et al., 2018). Additionally,
the latent heat flux in rural areas has increased more due to the

FIGURE 8 | The differences of heat flux at urban station (IAP) and rural station (MY) between HW days (2016.07.06–2016.07.08) and NHW days
(2016.07.09–2016.07.11). LE: latent heat flux, H: sensible heat flux, to calculate Q as LE + H, ΔLE � LEHWS-LENHWS, ΔH � HHWS-HNHWS, ΔQ � QHWS-QNHWS.

FIGURE 9 | The averaged BLH during a case for 2016.07.06–2016.07.11, included both HW days (2016.07.06–2016.07.08) and NHW days
(2016.07.09–2016.07.11).
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presence of sufficient water availability and more vegetation, while
the increase in heat flux in urban areas is mainly in the form of
sensible heat flux (Li et al., 2015; Zheng et al., 2018; see also
Figure 8, and Supplementary Figure S6). Coupled with the high-
pressure controlled during the HW period, the downdraft
restrained the boundary layer development (Tressol et al.,
2008). Similarly, relative to the NHW period, lower BLH
during the HW period was observed in the present work
(Figure 9), which was not conducive to convective mixing.
Moreover, due to the unique underlying city canopy-layer
structure with good thermal conductivity and large heat
capacity (Stewart and Oke, 2012; Ren, 2015; Wang L. et al.,
2020), the increase in net heat flux was more over urban areas
than rural areas (i.e., Δ QN, Rural<Δ QN, Urban in Figure 10),
resulting in stronger UHI effect during HW periods. In addition,
the demand for water and electricity for heatstroke prevention and
cooling during HW periods has soared, which may increase
anthropogenic heat emissions in the urban. As a result, the
temperature of dry air in urban areas will rise more than
humid air in rural areas, causing a wider temperature gap
between urban and rural areas under HW conditions. In
general, the schematics of mechanisms of HW events
enhancing UHI effect can be summarized in Figure 10. In the
present work, the daily variation ofΔUHII betweenHWandNHW
periods roughly followed a W-shaped curve, with the troughs
appearing at 0800 and 1800 LST. Interestingly, at around 1800
LST, the interaction between HWs and UHII was almost negligible
(ΔUHII between HW and NHW periods was zero or close to
zero). As shown in Figure 8, the difference in radiation flux
between HW and NHW periods, both in urban and rural areas,
was also approximately zero, resulting in little difference in the
temperature increase between urban and rural areas.

Moreover, in view of the impact of weather conditions and
land-use characteristics on the urban thermal environment, we
evaluated the influences of wind speed and LCZs on HW events
and UHII. It was found that, when the surface temperature
increases rapidly and the horizontal wind speed is low, this is
conducive to the formation of HW events with a high-pressure
anticyclone controlled by a prevailing downdraft and stable
atmosphere (Tressol et al., 2008). Wind speed plays an
important role in local heat exchange (Tong and Leung, 2012),
wherein reduced horizontal advection cooling could promote an
increased UHII (Figure 5 indicates that UHII under low wind
speeds was higher than under medium or high wind speeds). The
characteristics of surface land use and the spatial configuration of
urban buildings are also likely to be responsible for enhancing the
UHII during HW periods. Bare soil and vegetation in rural areas
might favor soil evapotranspirative cooling. On the contrary, less
water content due to pavements and buildings restrains
evapotranspiration in urban areas. As a result, there will be a
greater frequency of HW events and a stronger UHI effect in
dense high-rise-building areas such as LCZ1, LCZ2, LCZ4, LCZ5,
etc. However, in the present study, the results for LCZ5 conflicted
with this assertion. In this respect, it should be noted that XNT is
located close to the Beijing South Second Ring Road, and SHQ is
near the East Fourth Ring Road, close to the most complex
overpass in Beijing (Figure 1B). Vast heat emissions caused by
traffic may therefore have been partly responsible for high-
temperature events and strong UHI effects under LCZ5.

Note that LCZP experienced many more and longer HWs than
other LCZs. Usually, LCZP is composed of low-density plants, and
its vegetation and green spaces alleviate the overall UHII
considerably owing to higher rates of evaporation causing
surface cooling (Doick et al., 2014; Zhou et al., 2019). However,

FIGURE 10 | Schematics of mechanisms of HW events enhancing UHI effect.
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numerous studies have established that cooler surfaces caused by a
higher proportion of green space and associated additional
irrigation increased the risk from HW events over the North
China Plain (Kang and Eltahir, 2018; Krakauer et al., 2020). In
this study, the LCZP atOP station, with high-density vegetation and
water bodies, was similar to an irrigation area. In the early stage of
an HW event, due to the evapotranspiration of water bodies and
vegetation, a large amount of heat is stored, and then this enormous
quantity of heat might be emitted into the air in the form of sensible
heat (Figure 8), resulting in a sharp rise in temperature (Stap et al.,
2014; Teuling et al., 2010). The evaporation of vegetation and water
effectively suppresses the increase in the surrounding air
temperature during the initial period. However, this process will
eventually accelerate the consumption of soil moisture, and then
dissipate more heat to the air, leading to increased temperature,
especially in HW periods with strong solar radiation. In addition,
Zhao et al. (2014) observed that the cooling efficiency of UHIs was
reduced by 58% in humid areas with more vegetation, and Feinberg
(2021) believed that, in this case, water vapor, as a greenhouse gas,
can double the direct radiative forcing to heat the air. As a result, it is
more conducive to increasing the occurrence of HW events.
Although the effects of vegetation and water bodies on the
process of radiation transmission are highly complex, we
observed two opposite effects on the urban thermal
environment. On the one hand, in general, green space and
water bodies in the urban area had a mitigating effect on the

UHI phenomenon. On the other hand, during HW periods, they
also increased the frequency and duration of HW events.
Elucidating the physical mechanism involved here is worthy of
further study via numerical experiments.

There was a clear correlation between wind speed and the LCZ
categories, and this is because wind speed may be weakened due
to the obstruction of dense high-rise buildings (the distributions
of wind speed under different LCZ categories are shown in
Supplementary Figure S4). Therefore, HW events and UHI
effects are regulated by LCZs in combination with wind speed.
Table 2 shows the influence of wind speed and LCZs on UHII via
two-way ANOVA. It is clear that, under the interactive effect of
wind speed and LCZs, the average UHII difference was significant
[F (8) � 16.42, p < 0.001]. This is robust proof of a co-regulatory
effect of LCZ type and wind speed on UHII, and that the LCZ is
more sensitive to the regulation of UHII. In addition, Figures 4D,
11 present the number of HW events and the distribution of UHII
under different wind speed periods for each LCZ, which to some
extent can separate the effects from wind speed and LZCs. When
considering the impact of LCZs only on HW events, there were
clear gaps in the frequency and duration of HW events under
different LCZs. It shows that, under a specific wind speed
category, HW events in dense high-rise-building areas have a
higher frequency and longer duration. High-frequency and long-
duration HW events are more likely to happen under lower wind
speeds in a certain LCZ area.

TABLE 2 | Two-way analysis of variance between wind speed and LCZs to UHII.

Source Sum Sq d.f Mean Sq F Prob>F

WS 1.01 2 0.505 0.79 0.3755
LCZ 458.71 4 114.677 178.35 0
WS*LCZ 10.56 8 10.56 16.42 0
Error 4121.49 6410 0.643
Total 5514.08 6424

FIGURE 11 | Box-and-whisker plots of the UHII values under different wind speed categories in each LCZ.
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Our work still has a few limitations. For example, relative
humidity, cloud cover, precipitation, and other meteorological
factors also have an impact on the UHI effect, which may affect
the interaction between HWs and UHII. In addition, the
atmospheric circulation situation, anthropogenic heat
emissions, and the impact of aerosols on the balance of
surface radiation are other potential influencing factors of HW
events and UHI effects (Li et al., 2015; Yang et al., 2020b;
Ngarambe et al., 2020; Zinzi et al., 2020). Therefore, future
studies should also consider these factors to explore their
influences on HW events and the UHI effect.

CONCLUSION

Based on the observations of automatic weather stations in
Beijing during the summers of 2014–2020, the joint effects of
wind speed and LCZs on urban extreme high-temperature
events and the UHI effect were explored. Results showed that
UHII was significantly aggravated during HW periods
compared to NHW periods. Wind speeds in urban areas
were weakened due to the obstruction of dense high-rise
buildings, which favored the occurrence of HW events.
During HW periods, both rural and urban surfaces received
more shortwave and longwave radiation, resulting in increased
heat storage. The latent heat flux in rural areas has increased
more due to the presence of sufficient water availability and
more vegetation, while the increase in heat flux in urban areas is
mainly in the form of sensible heat flux. Moreover, due to city
canopy-layer structure with good thermal conductivity and
large heat capacity, the increase in net heat flux was more
over urban areas than rural areas, resulting in stronger UHI
effect during HW periods. Lower boundary layer and wind
speed in the HW events have weakened the convective
mixing of air, which would further expand the temperature
gap between urban and rural areas, compared to NHW periods.
Meanwhile, LCZP in the urban park area, with its water bodies
and vegetation, was found to play unique roles in HWs and
UHII as follows: On the one hand, in general, green space and
water bodies in urban areas can have a mitigating effect on the
UHI phenomenon. On the other hand, during HW periods, they
can also increase the frequency and duration of HW events.

In general, synergies between HWs and UHI amplify both the
spatial and temporal coverage of high-temperature events, which
in turn exposes urban residents to additional heat stress and

seriously threatens their health. The present work can lend
support to the prediction of extreme high-temperature events
and UHI effects in megacities like Beijing. Our findings have
important implications for HWs and UHII forecasts, as well as for
scientific guidance on decision-making to improve the thermal
environment and to adjust the energy structure.
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Compared with individual events, compound weather and climate extremes may impose
more serious influences on natural systems and human society, especially in populated
areas. In this study, we examine the changes in the compound precipitation events that
follow extremely hot weather within several days during 1961–2017 in South China by
taking the Guangdong Province as an example. Additionally, we assess the impacts of
urbanization on these changes. It is found that extreme precipitation events in Guangdong
are often preceded by hot weather, with an average fraction of 28.25%. The fraction of
such compound events is even larger in more populated and urbanized areas such as the
Pearl River Delta (PRD) region. Moreover, our results reveal significant increases in the
frequency and fraction of the compound extreme heat and precipitation events. These
increases are especially stronger in more developed areas (e.g., PRD), and their increasing
trends tend to accelerate in recent decades. Furthermore, the local urbanization
contributes to 40.91 and 49.38% of the increases in the frequency and fraction of the
compound events, respectively. Our findings provide scientific references for policy-
makers and urban planners to mitigate the influences of the compound heat and
precipitation extremes by considering their increasing risks under the context of global
climate change and local urbanization.

Keywords: compound events, extreme precipitation, heatwave, urbanization effects, long-term trend, climate
change, South China

INTRODUCTION

Global warming increases the occurrence probability of climate extremes in worldwide ranges, and
these climate events seriously impact human communities and the natural environment (IPCC,
2014; World Economic Forum, 2019). For example, heatwaves and heavy precipitation are more
harmful to human health (Matthies and Menne, 2009; Lin et al., 2015), agriculture (Wreford and
Adger, 2010; Sun et al., 2014), economy (Kjellstrom, 2015; Zhang et al., 2017b), and public
infrastructure (McEvoy et al., 2012). For instance, heatwaves increased the death rate by 2,300
folds (136,000 deaths) from 2001 to 2010, compared with the last decade of the 20th century (World
Meteorological Organization, 2013). Additionally, precipitation extremes resulted in the devastating
floods in the Yangtze River of China in 1998, which caused thousands of deaths andmissing country-
wide (Orsolini et al., 2015). Furthermore, these resultant influences of climate extremes have been
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proved to be exacerbated due to global warming (Liu et al., 2020a;
Perkins-Kirkpatrick and Lewis, 2020).

Extreme climate and weather events often occur
simultaneously or sequentially within a short period of time,
known as compound events (Leonard et al., 2014). As a
combination of two or more extremes (e.g., preconditioned
heat and subsequent extreme precipitation), compound events
often result in larger impacts than individual events (Zscheischler
et al., 2018; Weber et al., 2020). Moreover, the hazards resulting
from interacted climate extremes may further intensify the
magnitude and severity of the risks caused by individual
events (Leonard et al., 2014; Alizadeh et al., 2020). For
instance, the compound high-temperature and severe
precipitation events have vital effects on plants during the
growing season (Madden and Williams, 1978). A compound
event with low temperatures, strong wind, and following
extreme precipitation in Queensland of Australia caused the
deaths of half a million cattle (Cowan et al., 2019). While
most existing studies paid much attention to individual events,
few focused on compound events with magnified impacts
compared to the individual events (Weber et al., 2020).

In addition to global warming, local urbanization significantly
affects changes in regional weather and climate extremes. During
the urbanization process, land use/land cover (LULC) changes
such as the transformation from vegetation to impervious
surfaces accelerate the variations in surface temperature and
increase the frequency and duration of severe precipitation
events (Pielke Sr et al., 2011; Sun et al., 2019; Lin et al., 2020).
Furthermore, LULC changes affect the original energy balance
generating a prominent phenomenon, i.e., urban heat island
(UHI), making urban areas warmer than surrounding rural
areas (Oke, 1982; Zhou et al., 2004; Jones et al., 2008; Luo and
Lau, 2018). Urbanization and the associated UHI can deteriorate
extreme heat and heavy precipitation events under a warming
climate (Stone, 2012; Oleson et al., 2015; Yu and Liu, 2015; Zhang
et al., 2018). For instance, Luo and Lau (2018) estimated that
urbanization accounted for nearly 30% of the increases in average
extreme heat stress in the urban areas of eastern China. The rising
numbers of heatwaves may increase mortality in urban regions
(Li et al., 2013; Mishra et al., 2015). Liang and Ding (2017) found
that urbanization is conducive to enhance the frequency and
intensity of heavy precipitation events on urban stations, thus
further increasing the total precipitation. Although previous
studies have linked increasing extreme events to urbanization
and its associated UHI effects (Yang et al., 2017a; Luo and Lau,
2017), the possible physical mechanisms underlying these
linkages have not been revealed and warrant further
investigations.

China has been experiencing rapid urbanization since the
1970s, and its urban population proportion increased from
18.4 to 58.52% during 1961–2017 (National Bureau of
Statistics of China, 2018). Under global climate change and
rapid region urbanization in China, the characteristics in
terms of frequency, duration, and intensity of extreme weather
and climate events have been drastically intensified in most parts
of China (Ren and Zhou, 2014; Yang et al., 2017b; Sun et al.,
2019). For example, Ren and Zhou (2014) estimated that

urbanization contributed to 37.8% for tropical nights and
12.8% for summer days in China during 1961–2008. In
particular, Yang et al. (2017b) suggested that urbanization
accounts for more than one-third of the increase of the
intensity of heat extremes in East China, and urbanization
tends to have stronger effects on cold and warm nights than
the daytime extremes in this region (Sun et al., 2019). These
effects are especially stronger in urbanized and populated areas,
such as the Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta
(YRD), and the Pearl River Delta (PRD) region (Zhang et al.,
2017a; Peng et al., 2017). As one of the most populated and
urbanized areas, South China suffers from the impacts brought by
both frequent extreme hot weather and intense precipitation
events (Wang et al., 2019), which pose remarkable impacts on
public health in this area. Nevertheless, the temporal and spatial
changes in compound heat and extreme precipitation in South
China, along with the possible effects of urbanization on these
changes have not been reported in the literature.

In this study, therefore, we investigate the changes in
sequentially compound precipitation events with
preconditioned hot weather in South China, and evaluate the
contribution of local urbanization to these changes. The
remainder of this paper is structured as follows. Section
Materials and Methods introduces the study area, data, and
methods. The examinations of the changes of compound
events and urbanization effects are presented in Section
Results. Section Conclusion and Discussions summarizes the
main findings of this study.

MATERIALS AND METHODS

Study Area
In this research, we examine the changes in compound extreme
heat and precipitation events in South China, by taking
Guangdong Province as an example since it possesses the
densest population and is the most urbanized province in
South China. It is characterized by a subtropical monsoon
climate with hot-humid summer and cool-dry winter.
Guangdong has experienced rapid urbanization and
industrialization since the commence of China’s economic
reform and opening-up policy (Xiong et al., 2012). Among all
provincial units of China, Guangdong has been holding the
largest Gross Domestic Product (GDP) since 1989. Its
urbanization level reached 69.85% in 2017. Of Guangdong, the
PRD region (as denoted by the red boundary in Figure 1) exhibits
the highest urbanization level of 85.29% and the largest
population density (Statistics Bureau of Guangdong Province,
2017). Moreover, this area has been severely suffering from
dramatic increases in extreme weather and climate events over
the past decades (Chen et al., 2015; Lin et al., 2019).

Data
In this study, the compound extreme heat and precipitation
events are derived from daily maximum temperature (Tmax)
and daily precipitation. Observations recorded at 86
meteorological stations in Guangdong from 1961 to 2017 are
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obtained from the China Meteorological Data Service Center
(http://data.cma.cn). The raw data have been homogenized using
a statistical approach proposed by Xu et al. (2013). Their
temporal inhomogeneity has been evaluated by the Easterling-
Peterson method (Li et al., 2004; You et al., 2010). In this study,
stations with ≥3 missing days in any month from June to August
are excluded.

Definition of Compound Events
Compound events are defined as comprising a combination of
two or more different extremes occurring coincidentally or
sequentially within a certain period of time (Mueller and
Seneviratne, 2012; AghaKouchak et al., 2014; Leonard et al.,
2014; Wahl et al., 2015). These extremes are considered
contributing to complex interactions of multiple hazards such
as widespread wildfires (Witte et al., 2011), large-scale air
pollution (Konovalov et al., 2011) to human society/
ecosystems (Weber et al., 2020). In this study, compound heat
and precipitation extremes are defined for each station
individually. An extreme precipitation event is first detected
when daily precipitation is larger than the 90th percentile value
for all rainy days (≥0.1 mm) in the summers of the reference
period of 1961–1990. Then the compound event is counted if the
extreme precipitation event is preceded by an extreme heat event
within three days. Here, a heat event is defined when daily Tmax is
larger than the 90th percentile of the reference period. To quantify
the compound events, we adopt a probabilistic metric by using
the fraction of the compound events accounting for all extreme
precipitation events in a calendar year.

Statistical Methods
In order to evaluate the possible influences of urbanization on
compound events, we classify all meteorological stations into urban
and non-urban types, as suggested by previous studies (Mishra
et al., 2015; Luo and Lau, 2018; Wang et al., 2019). Stations are
tagged as urban type if they are located in urban areas or urban
buffers of 25 km that have a population more than 250,000;

otherwise, they are classified as non-urban type. The urban area
extents are derived from the DeLorme World Base Map dataset
(https://www.baruch.cuny.edu/confluence/display/geoportal/
ESRI+International+Data), which has been validated by the urban
extents extracted from Moderate Resolution Imaging
Spectroradiometer (MODIS) satellite data (Mishra et al., 2015).

The urbanization effects are quantified by calculating the
differences in the trends between the urban and non-urban
series (Ren and Zhou, 2014; Luo and Lau, 2019b). The urban
(non-urban) series of the frequency and fraction of compound
events are obtained by averaging all urban (non-urban) stations.
The secular trend of the series of compound events is estimated by
the conventional linear regression, and its significance is evaluated
by the modified nonparametric Mann-Kendall (mMK) test. The
mMK method considers the autocorrelation in the time series to
provide an unbiased evaluation of the trend (Hamed and Rao,
1998). It has been widely used in hydrological and climatological
studies (e.g., Luo and Lau (2019a); Sa’adi et al. (2019))

RESULTS

Climatology of Compound Events
Based on the above definition, we search for the compound events
at all stations from 1961 to 2017, and obtain the multi-year mean
frequency and fraction of these events. As shown in Figure 2,
compound events with extreme precipitation and hot days have
occurred in all parts of Guangdong. On average, 28.25% of
extreme precipitation events are preceded by a heat extreme
within three days, and the study area experiences 1.26
compound events per year. The frequency and fraction of
compound events demonstrate obvious spatial variations
across the study area. Specifically, compound events are more
prominent in densely populated and highly urbanized areas such
as PRD, in which the highest frequency and fraction of
compound events are observed. The PRD region has 1.49
compound events per year, and 31.81% of its precipitation

FIGURE 1 | Locations of the meteorological stations in Guangdong Province of South China. Urban and non-urban stations are marked as red and green dots,
respectively. PRD is marked by the red boundary.
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extremes occur following a previous extreme heat day within a
short period. The larger (smaller) frequency and fraction in more
(less) urbanized areas indicate that local urbanization may
increase the occurrence of compound events.

Nearly all stations have experienced the compound events
(with the frequency of compound events > 0). This result is in
accordance with the findings of Hao et al. (2013) that heat and
precipitation extremes have co-occurred in the high latitudes and
tropical regions. The spatial variations of the compound heat and
extreme precipitation events are highly consistent with the
distribution of the urban and non-urban stations,
i.e., compound events tend to occur more frequently at the
urban than non-urban stations.

Spatial and Temporal Changes of
Compound Events
To understand the temporal evolution of compound events, we
calculate the regional mean frequency and fraction of compound
events by averaging all stations (Figure 3). Both the frequency
and fraction show dramatic increasing trends, i.e., statistically
significant at the 0.05 level. The regional mean frequency of
compound events has increased by 0.18 events per decade, and
the fraction has risen by 3.17% per decade over the study period.
It indicates that the probability of extreme precipitation events
following a heat event tends to increase.

It is also shown in Figure 3 that the increasing trends of the
compound frequency and fraction tend to be accelerated since the
1960s. The magnitudes of the trends are 0.25 and 4.49% per
decade during 1971–2017 for the frequency and fraction of
compound events, respectively. These trend magnitudes
become larger during 1981–2017, i.e., 0.30 and 5.23%,
respectively. The trends remain significant and continue to
increase till at least the 1990s, since which the frequency and
fraction increased by 0.29 and 7.60%, respectively. These results
suggest that the increasing speed of the proportion of extreme
precipitation that follows a heat event has elevated.

Figure 4 depicts the spatial distribution of the secular trends of
the frequency and fraction of compound events at the individual
station during 1961–2017. Compound events exhibit increasing
tendencies in measure of frequency (fraction) since the 1960s at
nearly all stations, of which 55.81% (56.98%) are significant at the
0.05 level. The upward trends show regional disparities with
stronger magnitude in more populated and urbanized areas and
weaker in less developed regions. In particular, the PRD region
with the densest population and highest urbanization level has
the most substantial increasing tendency, whereas other less
urbanized areas such as the northern parts of Guangdong
possess relatively weaker trends. These features indicate that
the residents living in PRD are facing intensifying threats
induced by compound heat-precipitation events. More
substantial intensification of compound events in faster-

FIGURE 2 | Spatial distribution of mean (A) frequency and (B) fraction of compound events in Guangdong Province from 1961 to 2017.

FIGURE 3 | Time series of regional mean (A) frequency and (B) fraction of compound events in Guangdong Province from 1961 to 2017. Straight lines denote the
corresponding linear trends in different subperiods.

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 6367774

Wu et al. Urbanization Elevates Increasing Compound Extremes

154

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


urbanized areas implies that the urbanization process possibly
plays an important role in accelerating this phenomenon.

The trends of compound heat-precipitation events revealed
above are consistent with the findings of Scherrer et al. (2016) in
such a way that the increasing trends of hot days and heavy
precipitation were found in warmer places. Hao et al. (2013) used
the Coupled Model Intercomparison Project phase 5 (CMIP5)
climate model to simulate concurrent wet and warm events, and
demonstrated that those events increased significantly in high-
latitude and tropical regions (Hao et al., 2013). The reason for the
increasing trend of compound events in South China is likely that
the preconditioned extreme hot weather with higher temperature
leads to increased higher evaporation rates and vapor content,
thus accelerating the hydrological cycle under the context of
global warming (Menzel and Bürger, 2002). Moreover, the
preceded heat can enhance the moisture flux and the
convective available potential energy (CAPE) and thereby
provide a suitable environment for extreme precipitation and
flooding in several subsequent days (Zhang and Villarini, 2020).
In our study, we also find that the upward trends of frequency and
fraction of the compound climate events in South China became
even steeper from 1990 to 2017. A possible reason for the
acceleration since the 1990s is that the increased Tibetan
Plateau snow cover and sea surface temperature in the

equatorial Indian Ocean boosted the precipitation in South
China (Wu et al., 2010).

Urbanization Effects and Contribution
To quantify the impacts of urbanization on the increases in the
frequency and fraction of compound events, all stations are
categorized into urban and non-urban types (Figure 1), and
we calculate the annual mean values for the two types of stations
from 1961 to 2017 (see Figure 5). Both the urban and non-urban
areas exhibit rising trends in terms of the compound frequency
and fraction. It is noteworthy that the urban stations (as shown in
pink shading) exhibit even steeper trends than those in the non-
urban areas (as shown in cyan shading), demonstrating a
remarkable contribution of urbanization. The frequency
(fraction) of compound events in the urban and non-urban
areas increased by 0.22 events (4.05%) and 0.13 events (2.05%)
per decade, respectively. The differences in the trend between the
urban and non-urban regions are 0.09 events for the compound
frequency and 2.00% for the compound fraction. Since possible
influences by other impact factors such as global warming and
large-scale circulations are comparable at the local scale, the
differences between trends for the urban and non-urban
regions mainly result from local urbanization. Accordingly, we
estimate that urbanization accounts for 40.91% (49.38%) of the

FIGURE 4 | Spatial distribution of the trends in the (A) frequency and (B) fraction of compound events in Guangdong Province from 1961 to 2017. The black circle
indicates significance at the 0.05 level.

FIGURE 5 | Time series of regional annual mean (A) frequency and (B) fraction of compound events from 1961 to 2017 for urban (red) and non-urban (blue)
stations. The pink (cyan) shading indicates the mean ± standard deviation of frequency and fraction of compound events for urban (rural) stations. The straight lines
indicate their corresponding linear trends (unit: event per decade and % per decade for the frequency and fraction, respectively).
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total increasing trend in the frequency (fraction) of the
compound events in the urban region.

These results indicate that the urbanization process tends to
exert intensifying impacts on compound heat-precipitation
events. Previous studies such as Chen et al. (2015); Wang
et al. (2018) found that the PRD region experienced much
stronger precipitation compared to its surrounding rural areas
and attributed this difference to urbanization. Other studies have
also confirmed that urbanization can affect extreme precipitation
by influencing UHI (Oke, 1982; Dixon and Mote, 2003), urban
canopy (Miao et al., 2009), and urban aerosols (Han and Baik,
2008). Specifically, UHI effects can be enhanced by the increases
in anthropogenic heat release, as suggested in many modeling
studies by the Weather Research and Forecasting (WRF) model
coupled with the Urban Canopy Model (UCM) (Feng et al., 2012;
Chen et al., 2014; Yang et al., 2019). The urban development
enhances the total thermal discomfort hours by 27% in the urban
core areas of YRD, and anthropogenic heat release and urban
land use change contribute nearly equally to this change (Yang
et al., 2019). Warmer temperature in urban areas enhances the
disturbance above the ground and strengthens the upward
motion and convective activities (Collier, 2006). Moreover,
urban canopy disturbs the water vapor and energy balance in
urban boundary layers and impacts heavy convective
precipitation by increasing the surface roughness, which
reduces surface wind, bifurcates the approaching moist air
mass upward, and then aggregates them in the downwind of
urban areas (Cotton and Pielke, 2007; Zhang et al., 2014).
Additionally, extreme precipitation is contributed by the
interactions of urban aerosols with radiation and clouds (Liu
et al., 2020b). Urban aerosols absorb and scatter solar radiation to
generate condensation nuclei, which can influence deep
convection and hence precipitation (Li et al., 2011; Liu et al.,
2020b). Consequently, via these processes, the local urbanization
provides favorable conditions for extreme compound heat and
precipitation events.

CONCLUSION AND DISCUSSIONS

In this study, we investigate the changes in sequentially compound
extreme heat and precipitation events during 1961–2017 in South
China and quantify the contribution of urbanization to the long-
term changes of this type of extreme weather for the first time. Our
results indicate that extreme precipitation events in South China
are often preceded by hot weather within three days, and
demonstrate that the local urbanization exerts significant
impacts on this compound extremes event.

The compound heat and precipitation extremes occur
frequently in South China and they are more frequent in more
populated and urbanized regions such as PRD. The increases in
the frequency and fraction of the compound events are observed
almost everywhere in Guangdong, especially in the PRD region.
Similarly, Zhang and Villarini (2020) found that compound heat
stress and flooding extremes in the central United States become
more frequent, and these increasing compound events may lead
to greater societal and economic impacts. In our research, we

demonstrate that the increasing trends of compound heat and
precipitation extremes in China also tend to accelerate in recent
decades. This result is also consistent with the study by Scherrer
et al. (2016), who found increasing trends in hot temperature and
heavy precipitation extremes in Switzerland, while the upward
trends of compound heat-precipitation events have not been
linked to human activities such as urbanization. These studies
collectively suggest that compound heat-precipitation events
have increased in many parts of the world, posing increasing
threats to human society and the natural environments. A better
understanding of such events is urgently warranted and thus of
great significance to improve the forecast, prediction and
mitigation of the compound weather and climate disasters.

Previous studies have shown that urban expansion plays an
important role in extreme precipitation, and urbanization
contributes to nearly 50% of the increase in the heatwave
frequency in the PRD region of South China (Luo and Lau,
2017; Wang et al., 2018). However, these studies only considered
individual extreme events, without examining the extreme events
that occur simultaneously or sequentially within a short period of
time. Our present study provides the first examination of the
changes in compound heat-precipitation events in South China
and quantifies the urbanization effects on these changes by
classifying the stations into urban and non-urban ones. Chen
et al. (2021) has studied another type of compound event,
i.e., sequential flood-heatwave events across China, and found
that anthropogenic forcings contributed greatly to these
compound extremes. Nevertheless, to what degree local
urbanization influences the compound events has not been
evaluated and needs to be further investigated.

In this study, we estimate that the contributions of urbanization
to the increases in the frequency and fraction of compound heat-
precipitation events are 40.91% and 49.38%, respectively. It is
noteworthy that the frequency and fraction of compound event
in urban areas increase more steeply than in non-urban areas. Our
results demonstrate a prominent urbanization contribution by local
human activities to these compound events. Local urbanization
contributes to nearly half of the increases in the frequency and
fraction of compound events. It is thus suggested that future
mitigations to climate change and disasters should take more
consideration of urban planning and the increasing threats by
compound weather and climate extremes.

Additionally, previous observational and modeling studies
revealed various mechanisms underlying the urbanization
effects on regional or local climate change, such as UHI
(Dixon and Mote, 2003; Chen et al., 2014), urban canopy
(Miao et al., 2009; Chen et al., 2011), and urban aerosol effects
(Han and Baik, 2008; Jin et al., 2010). Many studies have used
WRF model simulations to qualify the urbanization effects on
climate (Feng et al., 2012; Yang et al., 2014; Zhang et al., 2018;
Yang et al., 2019). This modeling approach may broaden our
understanding of the mechanisms of compound events and the
urbanization effects. In our future work, we shall use climate
modeling to conduct a deeper investigation of the processes
associated with the compound heat-precipitation events and
reveal the mechanisms underlying the urbanization effects on
these events. It is also of great interest to examine how these
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compound event will change in the future under different
scenarios of emission and socio-economic development,
i.e., via analyzing the projections of phase six of the Coupled
Model Intercomparison Project (CMIP6). Moreover, as it
remains unclear how compound heat-precipitation events
changed in other climate regimes beyond South China,
compound extremes in other urbanized and populated areas of
China such as YRD and BTH also warrant investigations.
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Concurrent Heavy Precipitation and
Storm Surge at the Global Scale:
Implications for Compound Floods
Yangchen Lai 1,2,3,4, Qingquan Li1*, Jianfeng Li 2,3,4*, Qiming Zhou2,4, Xinchang Zhang5 and
Guofeng Wu1
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Hong Kong Joint Laboratory forWater Security, Hong Kong, China, 4Institute for Research and Continuing Education, Hong Kong
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Compound flood raised from the concurrent heavy precipitation and storm surge receives
increasing attention because of its potential threat to coastal areas. Analyzing the past
changes in the characteristics of compound flood events is critical to understand the
changing flood risks associated with the combination of multiple drivers/hazards. Here, we
examined the evolution of the compound flood days (defined as days of concurrent
extreme precipitation and extreme storm surge exceeding the 90th percentiles) based on
the observed precipitation and storm surge data across the globe. Results show that the
annual number of compound flood days increased significantly by 1–4 per decade (α � 0.1)
on the east coast of the US and northern Europe, while the annual number of compound
flood days decreased significantly in southern Europe and Japan. The increasing trends in
precipitation under extreme storm surge and storm surge under extreme precipitation
were found extensively across the world except in Japan, suggesting that more intense
precipitation appeared when extreme storm surges occurred, and higher storm surge
emerged when extreme precipitation occurred. Comparatively, the global fractional
contributions of storm surge (i.e., 65%) on changes in compound flood days were
higher than that of precipitation (i.e., 35%), demonstrating that storm surge was more
likely to dominate the changes in the number of compound flood days. This study
presents the spatial and temporal characteristics of the compound flood events at the
global scale, which helps better understanding the compound floods and provides
scientific references for flood risk management and an indispensable foundation for
further studies.

Keywords: compound flood, extreme precipitation, storm surge, interannual variability, climate change

INTRODUCTION

Floods can be classified into three types according to different triggering mechanisms: 1) fluvial
floods caused by precipitation over an extended period (riverine floods); 2) pluvial floods due to high-
intensity and short-duration rainstorms (waterlogging floods); and 3) coastal floods resulting from
the extreme sea levels associated with storm surge and high tides (Huntingford et al., 2014). Different
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types of floods can co-occur in certain weather conditions, for
example, the concurrence of heavy rainfall and storm surge
caused by tropical cyclones (Wahl et al., 2015; Ikeuchi et al.,
2017; Lai et al., 2020). These combinations of two or more
different floods are referred to as compound floods.

Compound floods are highly risky because the interplay
among multiple extremes can exacerbate the adverse impacts
(Intergovernmental Panel on Climate Change, 2012; Leonard
et al., 2014; Zscheischler et al., 2018; Raymond et al., 2020). For
their privilege of proximity to the sea, coastal areas are usually the
most densely populated and economically developed areas of a
country, and they are also the most vulnerable regions to the risk
of compound floods from heavy precipitation and storm surge
exactly because of the high population and property density as
well as the special location (Chan et al., 2012; Neumann et al.,
2015). For examples, Hurricane Harvey in 2017 caused heavy
rainfall exceeding 1,000 mm and extreme storm surge higher than
1.8 m (Emanuel, 2017; Zhang et al., 2018a); and severe flooding
was developed from the storm surge and rainfall during super
typhoon Hato in Macau, 2017 (Hong Kong Observatory, 2017;
Wang et al., 2019). These two compound floods led to record-
breaking economic damages and life losses (Hong Kong
Observatory, 2017; Klotzbach et al., 2018). Given the
substantial damage caused by compound floods, a better
understanding of the characteristics and driven mechanisms of
compound floods is urgently needed.

Even though compound floods can occur coincidently, the
dependence among different types of floods has been widely
evidenced. For examples, Svensson and Jones (2002), Svensson
and Jones (2004) analyzed the dependence among precipitation,
river flow, and storm surge; Zheng et al. (2013) identified the
significant dependence between precipitation and storm surge
along the coastlines of Australia; and at the global scale, Ward
et al. (2018) assessed the dependence between high sea level and high
river discharge in most areas across the globe. The correlations
among precipitation, river flow, and storm surge are determined by
various factors such as meteorological conditions and regional
topography. For example, the compound floods from heavy
precipitation and storm surge can occur in certain weather
conditions. In general, the weather conditions associated with
compound floods are characterized by deep low pressure,
cyclonic winds, and high precipitable water content, which can
be found in storm systems (Wahl et al., 2015; Bevacqua et al., 2019).
Therefore, storms (including tropical cyclones and extratropical
cyclones) are one of the most important triggers of compound
floods from heavy rainfall and storm surge (Wahl et al., 2015; Booth
et al., 2016; Ikeuchi et al., 2017). The meteorological forcings-caused
correlation between precipitation and storm surge can be identified
between stations hundreds of kilometers far away (Zheng et al.,
2013). The regional topography can also significantly impact the
correlation among precipitation, river flow, and storm surge. For
instance, the strong dependence between precipitation and storm
surge is more likely to be found in hilly coastal areas, and the
dependence between storm surge and river flow will be stronger in
the steep catchments because of the shorter time required by peak
flow to reach the estuary (Svensson and Jones, 2002; Svensson and
Jones, 2004).

It’s vital to take account of the dependencies among different
floods when assessing the compound flood risk because ignoring
these dependencies would result in considerable underestimation of
compound flood risk. By constructing the joint distribution, previous
studies have assessed the potential risk of compound floods from
precipitation, river discharge, and storm surge at the regional and
global scale (e.g., Moftakhari et al., 2007;Moftakhari et al., 2019; Lian
et al., 2013; Van Den Hurk et al., 2015; Wahl et al., 2015; Bevacqua
et al., 2017, Bevacqua et al., 2019; Bevacqua et al., 2020a; Bevacqua
et al., 2020b; Xu et al., 2019; Couasnon et al., 2020). The regional
studies on evaluation of compound flood risks were mainly
concentrated on the US and Europe, where the tide gauges are
densely distributed and have the best data completeness in a longer
period (e.g.,Moftakhari et al., 2007;Wahl et al., 2015; Bevacqua et al.,
2017, 2019). Besides, some studies assessed the risk of compound
floods using hydrodynamic models (e.g., Lian et al., 2013; Ikeuchi
et al., 2017; Moftakhari et al., 2019; Gori et al., 2020; Jane et al., 2020;
Khanam et al., 2021). These studies, better considered the
interactions between flood drivers and localized features,
however, were limited to analysis of regional compound flood
cases. Constrained by the available data, the global-scale studies
based on long-term observations are rare. However, a number of
global studies have recently emerged benefitting from the
development of simulated storm surge data (Bevacqua et al.,
2020a; Bevacqua et al., 2020b; Couasnon et al., 2020; Ridder
et al., 2020). These studies provided valuable information of
compound floods in the areas where observations were absent
(e.g., the coastal area of South America and Africa) but contained
substantial uncertainties. Furthermore, Bevacqua et al. (2019),
Bevacqua et al. (2020b) projected that driven by the changes in
extreme precipitation and meteorological tide under the high
emissions scenario, the compound flood risks would increase
generally by >25% by the end of this century. These studies have
well assessed the risk of compound floods; however, rare studies
illustrated the evolutions of occurrences of compound floods based
on long-term observations.

In this study, the evolutions in concurrences of heavy
precipitation and extreme storm surge were analyzed based on
the observed precipitation and storm surge data across the globe.
The main research questions we aimed to address are as follows:
1) How’s the spatial distribution of compound floods? Which
areas of the world are the most susceptible to compound floods?
In which season do most compound floods occur? 2) What is the
interannual variability of compound floods in past decades? And
how’re the contributions of precipitation and storm surge to the
interannual variability? 3) What could be the meteorological
drivers causing the changes in compound floods? The answers
are critical to understanding the changing compound flood risks,
and serves as a scientific reference for flood risk management and
an indispensable foundation for further studies.

DATA AND METHODS

Data
The compound floods from heavy precipitation and extreme
storm surge were analyzed based on the observed precipitation
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and storm surge data. The observed hourly sea level data were
obtained from the Global Extreme Sea Level Analysis version 2
(GESLA-2, https://www.gesla.org/; Woodworth et al., 2016). The
observed sea level consists of mean sea level, astronomical tides,
and non-tidal residual (i.e., storm surge and waves), in which the
astronomical tides are caused by the gravitational effects of the
moon and the sun, while the storm surge and waves are
meteorological phenomena driven by atmospheric pressure
and wind (Karim and Minura, 2008; Vousdoukas et al., 2018).
Even though the actual water levels causing coastal flood can be
estimated as the superpositions of extreme storm surge and
astronomical high tides (Bevacqua et al., 2019; Yu et al., 2019),
the astronomical tides are not likely to have relationships with
meteorologically driven factors such as storm surge and
precipitation. Therefore, we used the non-tidal residual to
represent the storm surge to better investigate the
meteorological drivers that cause the changes in compound
floods as many previous studies did (e.g., Bevacqua et al.,
2020a, Bevacqua et al., 2020b; Couasnon et al., 2020; Ridder
et al., 2020; Wahl et al., 2015; Zheng et al., 2013). To extract the
storm surge component, we applied a tidal harmonic analysis
(T-tide; Pawlowicz et al., 2002) to analyze the observed sea level of
each year to remove the impact of mean sea level rise. Hence,
hourly storm surge data was converted to daily time series by
extracting the daily maxima.

Daily precipitation data of more than 4,900 stations with
the record lengths varying from 18 to 126 years were obtained
from the Global Historical Climatology Network (GHCN-
Daily, https://www.ncdc.noaa.gov/ghcn-daily-description;
Menne et al., 2012). For each tide gauge, the average
precipitation of all stations within a radius of 25 km from
the tide gauge was used (Wahl et al., 2015). In the case there
was no precipitation station within 25 km from the tide gauge,
the search radius was expanded to 50 km. The years with >25%
missing days were discarded. To assess whether the choice of

precipitation average method would affect our analysis, the
results based on precipitation calculated by inverse distance
weighted method are shown in Supplementary Material. Only
the tide gauges with record lengths >18 years over 1979–2014
were considered. 314 tide gauges were selected, and they are
mainly located along the coasts of North America, Europe,
Australia, East Asia, and Southeast Asia (Figure 1). The
atmospheric variables used to analyze the weather
conditions associated with compound floods included sea
level pressure, three-dimension winds, and precipitable
water content at 2.5° × 2.5°spatial resolution during
1948–2014, and they were obtained from NCEP/NCAR
reanalysis dataset (https://www.esrl.noaa.gov/psd/data/
gridded/data.ncep.reanalysis.html; Kalnay et al., 1996).

Methods
There is no consistent mathematical definition of compound
floods, and a widely used definition is based on the annual
maxima. For example, Wahl et al. (2015) identified the
compound floods from the time series of annual maxima of
one variable (e.g., precipitation) and the corresponding block
maxima of the other variable (e.g., storm surge). The sample
size of compound floods based on this method is small because
only one data pair is sampled for each year and each location,
which is not ideal for the following statistical analyses of
changes in compound floods. An alternative method to
define compound floods is based on the peak-over-
threshold method, in which, compound floods are usually
defined as the co-occurrences of univariate extremes (e.g.,
extreme precipitation and extreme storm surge) exceeding a
given percentile (Bevacqua et al., 2019; Bevacqua et al., 2020b).
One advantage of this method is that more compound flood
days could be sampled. In this study, the 90th percentiles were
used to identify extreme precipitation/storm surge, and
compound floods were defined as the co-occurrence of both

FIGURE 1 | Locations of tide gauges and the number of overlapping years. Only tide gauges with ≥18 overlapping years were used in this study.
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extreme precipitation and extreme storm surge exceeding the
percentiles. Here, the storm surge and precipitation data at the
same calendar day were paired without consideration of time
lag, and each day with precipitation and storm surge exceeding
the threshold was taken as a compound flood day. The number
of compound flood days was defined as an index to investigate
the evolution of the days of concurrent heavy precipitation and
storm surge. Indices based on similar definitions (e.g., number
of days with precipitation >75th, 95th, and 99th percentiles)
have been widely used in previous studies to detect the changes
in extreme events (Fatichi and Caporali, 2009; Li et al., 2013;
Zhang et al., 2013).

One drawback of defining compound flood days using the
peak-over-threshold method is that the threshold exceedances
may occur successively during extreme weather systems (e.g.,
tropical cyclones), thus not fully respect the independence
assumption (Fatichi and Caporali, 2009). However, since the
objective of this study is to assess whether the number of
compound flood days is changing instead of evaluating the
changes in the return period of compound flood events, the
dependence between some compound flood days should not
substantially affect our results of the trend detection (Fatichi
and Caporali, 2009). Besides, a compound flood event that lasts
longer might lead to greater damage than that lasts shorter. An
increase in compound flood days implies more frequent
compound flood events and/or longer durations of compound
flood events. In either case, the potential risk of compound floods
increases, and vice versa.

Even though using a lower threshold (i.e., 90th percentile)
implies that the concurrent extreme precipitation and extreme
storm surge may not lead actual compound floods, but it can
ensure that enough compound flood days could be sampled to
conduct a more robust analysis. The 90th percentile was widely
used as a threshold to define flood events in previous studies
(Gemmer et al., 2011; Iannuccilli et al., 2021; Li et al., 2015;
Muis et al., 2018; Zhang et al., 2013). Besides, whether an
actual flood occurs or not highly depends on localized
characteristics such as topography, land use, regional
climate, and their interactions (Bevacqua et al., 2020a;
Hendry et al., 2019). In this case, we limited our analysis to
the compound flood potentials (i.e., probability of
occurrences) rather than the actual compound flood to
better understanding their changes. To evaluate whether the
choice of threshold would affect the analysis, the results with
thresholds of 85th and 95th percentiles are shown in
Supplementary Material. Considering the non-stationary
statistics of hydrometeorological variables under climate
change, the probability distribution of a
hydrometeorological variable might change over time and
hence the statistics of a period can not reflect those of
another period (Gu et al., 2017; Milly et al., 2008; She et al.,
2015). If we estimate the percentile threshold based on the data
in a long period, the statistics of the variable may have altered
in the study period (for example, the percentile in an earlier
sub-period may be different from that in a later sub-period).
To mitigate the impact of non-stationarity, the percentiles of
precipitation/storm surge at all stations were estimated based

on the daily time series from 1979 to 2014. This approach is the
same as that used in many previous studies about climate
extremes (You et al., 2011; Zhai et al., 2005; Zhang et al., 2005).
For example, the Expert Team on Climate Change Detection
and Indices (ETCCDI; https://www.wcrp-climate.org/etccdi)
includes a number of climate extreme indices based on
percentile thresholds (Li et al., 2013; Kurniadi et al., 2021).
The percentile threshold is calculated from the fixed period of
1961–1990 in ETCCDI (Zhang et al., 2011). For instance,
R95pTOT is defined as annual total precipitation when
daily precipitation exceeds the 95th percentile in the
1961–1990 period (Dong et al., 2021). The 95th percentile
threshold estimated in 1961–1990 is used to identify climate
extremes in the past (e.g., before 1961) and the future (e.g., the
21st century).

The precipitation under extreme storm surge
(i.e., precipitation of days with storm surge exceeding the 90th
percentile) and storm surge under extreme precipitation (i.e., the
storm surge of days with precipitation exceeding the 90th
percentile) were analyzed to investigate the relationship
between changes in compound floods, precipitation and storm
surge. According to our definition of compound floods, the
intensity of compound floods is determined by the intensity of
precipitation and storm surge height. With this understanding,
the changes in precipitation under extreme storm surge and the
changes in storm surge under extreme precipitation reflect the
changes in the intensity of compound floods. That is, given one of
the two variables (e.g., precipitation as an example) exceeds the
threshold, the increase (or decrease) in the other variable (e.g.,
storm surge) indicates the increase (or decrease) in the intensity
of a potential compound event. Once the storm surge exceeds the
threshold, it is considered a compound flood in this study.
Therefore, the changes in the intensity of compound floods
can be reflected in terms of 1) the changes of precipitation
under extreme storm surge, and 2) the changes of storm surge
under extreme precipitation.

The contributions of changes in precipitation and storm surge
to the changes in the number of compound flood days were
determined by the multivariate regression methodology. This
method has been applied in the attribution analysis of changes in
soil moisture (Zhang et al., 2018b). The regression equation is
written as:

CF′ � a × P + b × S + ε , (1)

where CF′ is the number of compound flood days predicted; P
and S represent the precipitation under extreme storm surge, and
storm surge under extreme precipitation, respectively; a and b are
regression coefficients, and ε is a constant intercept coefficient.
Therefore, the annual number of compound flood days is jointly
affected by precipitation and storm surge, and the changes in the
number of compound flood days, ΔCF′, can be estimated by:

ΔCF′ � a × ΔP + b × ΔS , (2)

where ΔP and ΔS are the changes in precipitation under extreme
storm surge, and storm surge under extreme precipitation,
respectively. The contributions of precipitation under extreme
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storm surge, and storm surge under extreme precipitation to the
number of compound flood days can be calculated as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

CP � (a × ΔP)
ΔCF′ × 100%

CS � (b × ΔS)
ΔCF′ × 100%

, (3)

where CP and CS represent the contributions of precipitation
under extreme storm surge, and storm surge under extreme
precipitation to the number of compound flood days,
respectively. Since the trends of the annual number of
compound flood days can be positive or negative, so do the
contributions. To facilitate the comparison of contributions of
precipitation and storm surge, we transferred the contributions
into fractional contributions through:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

CP′ � |CP|
|CP| + |CS| × 100%

CS′ � |CS|
|CP| + |CS| × 100%

, (4)

where CP′ and CS′ represent the fractional contributions of
precipitation under extreme storm surge, and storm surge
under extreme precipitation to the number of compound flood
days, respectively.

To reveal the drivers associated with the changes in compound
floods, themeteorological variables (i.e., precipitable water content,
vertical wind shear, sea level pressure, and near-land wind speed)
associated with extreme precipitation and extreme storm surge
(i.e., >90th percentiles) in three tide gauges (i.e., New York, NY in
the US, Honmoku in Japan, and Tregde in Europe) were analyzed.
These three tide gauges were selected based on three criteria: 1) the
tide gauges should distribute in different parts of the world for the
analysis of spatial variations; 2) the tide gauges should have longer
data record years for more robust trend analysis; 3) the changes in
compound flood days are significant at the selected tide gauges, and
at least one significant trend can be detected in time series of
precipitation and storm surge. For each tide gauge, the precipitable
water content and vertical wind shear (calculated as the wind
difference between 850 hPa and 200 hPa levels; Chen et al., 2006;
Chen et al., 2011; Zhang et al., 2018c) during extreme storm surge
events were extracted and averaged by year to examine their
relationships with changes in precipitation under extreme storm
surge, while sea level pressure and near-land wind speed (i.e., wind
speed at the 0.995 sigma level) during extreme precipitation events
were extracted and averaged by year to examine their relationships
with the changes in storm surge under extreme precipitation. It
shall be noted that our analysis on meteorological variables was
based on extreme events from 1948 to 2014 because NCEP/NCAR
reanalysis dataset is not available before this period. The trends in
compound floods between the periods of 1948–2014 and
1979–2014 were analyzed and shown in the Supplementary
Material.

The trend of time series was detected using the Modified
Mann-Kendall test, which is a nonparametric trend detection

method that considers autocorrelation in time series (Hamed and
Ramachandra Rao, 1998). A trend was taken as a significant trend
when the p-value is < 0.1 (i.e., a � 0.1). Sen’s slope method was
used to estimate the magnitude of the trend of time series (Sen,
1968).

RESULTS

Spatial Pattern and Seasonal Variation of
Compound Floods
As shown in Figure 2, we examined the annual number of
compound flood days with extreme precipitation and extreme
storm surge exceeding the 90th percentiles. In southern Europe,
the west and northeast coast of the US, and northern Japan, the
compound floods occurred most frequently (i.e., >12 per year),
followed by the east and southeast of the US, northern Europe,
western Australia, and Japan, where experienced average 8–12
compound flood days per year. The co-occurrences of extreme
precipitation and storm surge can happen by chance or because
of the dependence between univariate extreme events driven by
associated meteorological systems. If the precipitation and
storm surge are independent of each other, the expected
annual number of co-occurrences of precipitation and storm
surge exceeding the 90th percentile should be
0.1 × 0.1 × 365 � 3.65. However, the actual number of
compound flood days in reality is affected by various factors
such as the dependence between precipitation and storm surge
and autocorrelation of time series (Martius et al., 2016). The
observed annual number of compound flood days in 305 out of
314 tide gauges was higher than 3.65, which means that not all
compound floods occurred by chance, and the extra compound
flood days were very likely to be associated with the dependence
between precipitation and storm surge (Zheng et al., 2013;
Couasnon et al., 2020). Besides, the dependence between
precipitation and storm surge at regional and global scales
has been reported in many previous studies (e.g., Zheng
et al., 2013; Wahl et al., 2015; Bevacqua et al., 2019;
Bevacqua et al., 2020a). For example, Bevacqua et al. (2020a)
calculated Kendall’s t correlation between precipitation and
storm surge and found a stronger correlation between
precipitation and storm surge on the coast of the US,
western Europe, East Asia, and Australia. This spatial pattern
generally coincides with that of the annual number of
compound flood days, which further proves the relationship
between compound floods and dependence. From these results,
the hotspots of compound floods, including the coast of the US,
southern Europe, East Asia, and Australia, were identified. The
identified hotspots of compound floods are consistent with that
of studies that using reanalysis data (Bevacqua et al., 2020a;
Couasnon et al., 2020). These areas involve many socio-
economically important regions, such as Europe, the coast of
the US, and southeastern China, which hold densely distributed
populations and properties and thus exposed to compound
flood hazards. When using the 85th and 95th percentiles to
identify the compound flood events, or examining the trends
between different periods (i.e., 1948–2014 and 1979–2014), the
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spatial distributions of compound floods showed very similar
patterns with those based on the 90th percentile and all available
data (Supplementary Figures S1, S5, S8).

Figure 3 shows the months in which compound floods
occurred most frequently to illustrate the seasonal variation
of compound floods. In Europe, the west coast of North
America, and northeast of the US, compound floods tended
to occur in November and December, while in the southeast

coast of the US, and East Asia, the peak season of compound
floods was September. In the Southern Hemisphere, the peak
season of compound floods in southern Australia is June, while
this was February in northern Australia. In the areas affected by
tropical cyclones such as East Asia, the southeast coast of the US,
and northern Australia (Walsh et al., 2016; Khouakhi et al.,
2017), the occurrences of compound floods were affected by
tropical cyclone activities (Wahl et al., 2015; Ikeuchi et al., 2017;

FIGURE 2 | The annual number of compound flood days. Compound flood days are the days with extreme precipitation and extreme storm surge exceeding the
90th percentile values.

FIGURE 3 | The month with the most frequent concurrences of extreme precipitation and extreme storm surge exceeding the 90th percentile values.
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Xu et al., 2018), and therefore the peak seasons of compound
floods were concentrated on tropical cyclone seasons
(i.e., July–September in the North Hemisphere, and
December–February in the South Hemisphere). In mid and
high-latitude areas, the compound floods tended to occur
during winter (i.e., November–January in North Hemisphere,
and June–July in South Hemisphere).

Trends in Frequency and Intensity of
Concurrences of Heavy Precipitation and
Storm Surge
Figure 4 shows the trends in the annual number of compound
flood days across the globe. The largest increasing trend was
found in the UK, where the number of compound flood days
increased by > 2 days per decade. Besides, in northwestern
Europe and the east coast of the US, the annual number of
compound flood days increased with a magnitude of 1–3 days per
decade, implicating increasing compound flood risks in these
areas. In contrast, the number of compound flood days decreased
significantly in some tide gauges of southwestern Europe and
Japan. The changes in the annual number of compound flood
days were not significant (i.e., p > 0.1) in most locations of the east
coast of North America, South America, Australia, and Southeast
China. Noted that these changes in compound flood days were
estimated based on record lengths varying by tide gauge
(Figure 1). When constraining the study period as 1948–2014
or 1979–2014, the spatial patterns of changes in compound flood
days are similar (Supplementary Figures S6, S9).

To investigate the evolution of the intensity of compound
floods, we examined the changes in precipitation under extreme
storm surge and the changes in storm surge under extreme
precipitation. Figure 5A shows that precipitation under

extreme storm surge increased significantly on the coast of
North America, Europe, the east coast of Japan, and some
locations of northern Australia, indicating the elevating
probability of occurrences of heavy rainfall when extreme
storm surges occurred. The changes in storm surge under
extreme precipitation showed greater regional variation. On
the west and northeast coast of the US and Japan, the storm
surge under extreme precipitation decreased slightly (i.e., <4 mm/
year), while on the southeast coast of the US and Europe, storm
surge under extreme precipitation showed an increasing trend
(Figure 5B). We examined the sensitivity of these results to the
choice of thresholds (i.e., 85th and 95th percentile values. The
spatial patterns of changes are consistent with those using the
threshold of 90th percentile even though the magnitudes of
changes and number of significant trends might be different
(Supplementary Figures S2–S4). When conducting these
analyses in different periods (i.e., 1948–2014 and 1979–2014),
the results are similar except that the storm surge under extreme
precipitation showed increasing trends on the northeast coast of
the US during 1979–2014, while decreasing trends were detected
in this area during the long period (e.g., 1948–2014;
Supplementary Figures S7, S10).

Comparing the spatial patterns of changes in compound
floods, precipitation under extreme storm surge, and storm
surge under extreme precipitation (Figures 4, 5), it can be
found that, on the west coast of the US where the
precipitation increased but the storm surge decreased, the
changes in the number of compound flood days were not
obvious; in northwestern Europe, both precipitation under
extreme storm surge and storm surge under extreme
precipitation showed increasing trends, thus the number of
compound flood days increased most substantially. In contrast,
in Japan, where the precipitation showed different directions in

FIGURE 4 | Trends in the annual number of compound flood days. Compound flood days are the days with extreme precipitation and extreme storm surge
exceeding the 90th percentile values. Open circles denote the trends are insignificant (α � 0.1).
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different areas (i.e., negative trends on the west coast and positive
trends on the east coast) while the storm surge showed significant
decreasing trends across the country, the number of compound
flood days also decreased significantly. Comparatively, the spatial
distribution of changes in storm surge under extreme
precipitation matched better with that of changes in
compound floods, implicating that the changes in storm surge
were more likely to dominate the changes in compound floods.

To justify this inference, the fractional contributions of
precipitation under extreme storm surge, and storm surge
under extreme precipitation were calculated based on the
multivariate regression methodology. As shown in Figure 6A,
the changes in precipitation under extreme storm surge

contributed to more than 50% of changes in compound floods
in northern Europe (mainly on the coast of the North Sea and
Baltic Sea) and tide gauges on the east coast of the US and
southern Australia, indicating the changes in precipitation
dominated the changes in compound floods in these areas. By
contrast, in the other areas including the west coast of the US,
western and southern Europe, Japan, northern Australia, and also
some tide gauge on the east coast of the US, the fractional
contribution of changes in storm surge under extreme
precipitation exceeded 50%, demonstrating the dominate role
of storm surge in affecting the number of compound flood days
(Figure 6B). The average contributions of precipitation and
storm surge across the globe were 35 and 65%, respectively.

FIGURE 5 | Trends in (A) precipitation under extreme storm surge (i.e., >90th percentile); and (B) storm surge under extreme precipitation (i.e., >90th percentile).
Open circles denote the insignificant trends (α � 0.1).
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These results further prove our inference that changes in storm
surge were more likely to dominate the changes in compound
floods.

Changes in Meteorological Variables
Associated With Precipitation Under
Extreme Storm Surge and Storm Surge
Under Extreme Precipitation
The meteorological variables including precipitable water
content, vertical wind shear, sea level pressure, and near-land
wind speed associated with extreme precipitation and extreme
storm surge (i.e., >90th percentiles) in three tide gauges (i.e., New

York, NY, Honmoku, and Tregde) were analyzed to explore the
meteorological drivers associated with changes in the compound
floods. Before evaluating the changes in meteorological variables,
the time series of the annual number of compound flood days,
precipitation under extreme storm surge, and storm surge under
extreme precipitation in tide gauges New York, NY, Honmoku,
and Tregde were analyzed for more details (Figures 7, 8). In New
York, NY, the annual number of compound flood days showed an
insignificant increasing trend during the long period between
1921 and 2014, while the significant slight increasing trend was
detected in the shorter period between 1948 and 2014
(Figure 7A). In Honmoku, the number of compound flood
days significantly decreased by 40% during 1961–2006

FIGURE 6 | Fractional contribution of (A) changes in precipitation and (B) storm surge to the changes in number of compound flood days. Open circles denote that
the Sen’s slope of the number of compound flood days is 0.
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(Figure 7B). In contrast, the number of compound flood days
increased by 153% during 1928–2014 in Tregde, and this
percentage is 97% for the shorter period from 1948 to 2014
(Figure 7C). The results of changes in the number of compound
flood days were also supported by the changes in precipitation
under extreme storm surge and storm surge under extreme
precipitation. In New York, NY, the precipitation under
extreme storm surge increased significantly in both longer and
shorter periods, which contributed to more than 90% of the
changes in the number of compound flood days (Table 1). The
storm surge under extreme precipitation showed no obvious
trend and contributed less to the increase of compound floods
(Figures 8A,B). In Honmoku, the changes in precipitation under
extreme storm surge were not significant, but the storm surge

under extreme precipitation decreased by 26%, which was
responsible for the increase in the number of compound flood
days (Figures 8C,D; Table 1). For the tide gauge Tregde, both
precipitation under extreme storm surge and storm surge under
extreme precipitation showed significant increasing trends
(Figures 8E,F), indicating more intense precipitation when
extreme storm surge events occurred, and higher storm surge
during extreme precipitation events. The fractional contributions
of precipitation and storm surge in Tregde are 62.7 and 37.3%,
respectively (Table 1).

The changes in precipitable water content and vertical wind
shear on the days of extreme storm surge were estimated to
investigate their relationships with changes in precipitation under
extreme storm surge. The precipitable water content measures the
amount of available moisture in the atmosphere, which is closely
related to precipitation (Dong et al., 2019; Kunkel et al., 2020).
Vertical wind shear measures the changes of winds with height,
which relates to convective activity (Tramblay et al., 2020).
Vertical wind shear has different impacts on different types of
storms: an environment of weak vertical wind shear favors the
genesis and maintenance of tropical cyclones (Frank and Ritchie,
2001; Wong and Chan, 2004), while significant vertical wind
shear is required for the development of extratropical cyclones
(Lim and Simmonds, 2007; Ynase and Niino, 2015; Ynase and
Niino, 2019). In New York, NY, the precipitable water content
around the New York showed an insignificant trend, while the
vertical wind shear was stronger at the north of New York, NY,
and weaker in the south of New York, NY (Figures 9A,D). The
weaker vertical wind shear over the sea to the southeast of New
York, NY allowed the tropical cyclones to sustain for a longer
duration and move to the midlatitudes, and the increased vertical
wind shear at higher latitude areas is likely a signature of the
extratropical transition processes of tropical cyclones (Liu et al.,
2017; Towey et al., 2018; Evans and Hart, 2003). The more
frequent cyclone activities imply more precipitation events,
which is consistent with the observed increasing trend of
precipitation under extreme storm surge during the period
from 1948 to 2014 in New York, NY. In Honmoku, the
precipitable water content decreased significantly, which was
consistent with the decreasing trend of precipitation under
extreme storm surge (Figure 9B). The vertical wind shear
showed an increasing but insignificant trend (Figure 9E).
Considering that Honmoku is frequently affected by tropical
cyclones (e.g., tropical cyclones contribute to 40–65% of
extreme precipitation in Japan; Khouakhi et al., 2017), the
increased vertical wind shear might apply an adverse impact
on the strength maintenance of tropical cyclones and cause a
shorter duration of tropical cyclones over this region. In Tregde,
the changes in precipitable water content were insignificant, while
the vertical wind shear showed increasing trends over most of
western Europe, implicating the enhanced convective activity in
this region (Figures 9C,F). Furthermore, the increased vertical
wind shear in higher latitude might contribute to the
development of extratropical cyclones, which is an important
driver of heavy rainfall and extreme storm surge in Europe
(Hawcroft et al., 2012; Hawcroft et al., 2018; Weisse et al.,
2012; Pinto et al., 2014). In this case, the increase in

FIGURE 7 | Temporal evolution of the annual number of compound
flood days in tide gauge (A)New York, NY, (B)Honmoku, and (C) Tregde. The
black straight line in (A) and (C) indicates the trend of the complete time series.
The red straight line indicates the trend of the time series during
1948–2014. The Sen’s slopes were estimated. Significant trends are identified
by an asterisk (α � 0.1).
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precipitation under extreme storm surge might be related to the
increase of vertical wind shear.

The sea level pressure and near-land wind speed on the days of
extreme precipitation were analyzed to examine their
relationships with storm surge under extreme precipitation.
Results showed that the changes in sea level pressure around
the New York, NY were not significant (Figure 10A), while the
wind over the waterside of New York, NY increased significantly,
which can cause higher wind waves (Figure 10D). In Honmoku,
the sea level pressure increased over large areas of the Western
North Pacific (Figure 10B). The increasing trend over large areas
helps little in increasing the pressure gradient, thus may not help
increase the storm surge. What’s more, the winds were weaker
over the near-coast sea area, which is unfavorable for the

generation of wind waves (Figure 10E). In Tregde, the sea
level pressure decreased over the north of the location of
interest, but increased over the other side (Figure 10C). This
change increased the pressure gradient, resulting in higher storm
surges. At the same time, the significant intensifying winds over
western Europe also contributed to the increase of wind waves
under extreme precipitation (Figure 10F).

DISCUSSIONS

In this study, we analyzed the evolution of precipitation under
extreme storm surge and storm surge under extreme precipitation
to attribute the changes in compound floods. According to the

FIGURE8 | Temporal evolution of (A, C, E) precipitation under extreme storm surge, and (B, D, F) storm surge under extreme precipitation in tide gauge (A, B)New
York, NY (C, D)Honmoku, and (E, F) Tregde. The black straight line in (A) and (C) indicates the trend of the complete time series. The red straight line indicates the trend
of the time series during 1948–2014. The Sen’s slopes were estimated. Significant trends were identified by an asterisk (α � 0.1).

TABLE 1 | Statistics of compound floods, precipitation and storm surge between 1948 and 2014.

Tide gauge New York, NY Honmoku Tregde

Trends of compound flood days (year−1) 0.06* −0.11* 0.11*
Trends of precipitation (mm/year) 0.05* −0.04 0.06*
Trends of storm surge (10–3 m/year) 0.3 −0.9* 0.6*
Contribution of precipitation (%) 94.8 9.3 62.7
Contribution of storm surge (%) 5.2 90.7 37.3

The asterisks (*) denote significant trends (α � 0.1).
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definitions provided in Intergovernmental Panel on Climate
Change, 2012, compound events can be two or more extreme
events occurring simultaneously (i.e., compound floods defined
in this study), and the combinations of events, that alone are not
extreme, leading to an extreme impact. For floods events, the
compound floods can be combinations of 1) extreme
precipitation and extreme storm surge (i.e., compound floods
defined in this study), 2) extreme storm surge and precipitation
that can produce runoff and thus increase water level at the
estuary, and 3) extreme precipitation and storm surge that may be
not extreme but great enough to block or slow down the drainage
(Wahl et al., 2015; Zscheischler et al., 2018). In this case, the
precipitation under extreme storm surge contains the second type
of compound flood events, and the third type of compound floods
was included in the storm surge under extreme precipitation. The
increasing trends in precipitation under extreme storm surge
across the worlds can be interpreted in two aspects: 1) As the
precipitation increasing, the probability of concurrence of
extreme precipitation and extreme storm surge is higher than
before (i.e., more precipitation under extreme storm surge
reaches extreme levels). 2) Given an extreme storm surge
event, the precipitation is more intense (not has to be
extreme), therefore its interplay with storm surge is more
probable to exacerbate the adverse impact. This interpretation
also applies to storm surge under extreme precipitation. From
this perspective, analyzing the precipitation under extreme storm
surge and storm surge under extreme precipitation could provide

more information than analyzing the precipitation and storm
surge directly.

Even though compound floods are receiving more and more
attention, rare studies have analyzed the inter-annual changes in
compound floods during past decades based on observational
data. At the regional scale, Wahl et al. (2015) examined the
enhanced dependence between precipitation and storm surge,
and reported the increasing trends in compound flood risk in past
decades along the coast of the US. At the global scale, our study
analyzed the trends in compound floods, precipitation under
extreme storm surge, and storm surge under extreme
precipitation based on observations, and found the significant
increasing trends in compound flood risk over Europe and the US
in past decades. These findings are critical to better understand
the changing compound flood risk, and provide important
references for the evaluation of the simulation-based studies.
For example, Bevacqua et al. (2019), Bevacqua et al. (2020b)
projected the higher probability of occurrence of compound
floods from precipitation and storm surge across the globe
under a high emission scenario in the future, which means the
increasing trends identified in this study are probable to continue
in the future. However, in Japan, where the compound floods and
storm surge under extreme precipitation decreased significantly
from 1961 to 2006, the return periods of compound floods were
projected to shorten by >60% under a high emissions scenario
(Bevacqua et al., 2020b). The mechanisms behind this transition
from the downward trend in the past to the upward trend in the

FIGURE 9 | Trends in (A–C) precipitable water contents (kgm−2/year) and (D–F) vertical wind shear (ms−1/year) during precipitation under extreme storm surge in
tide gauge New York, NY (A, D), Honmoku (B, E), and Tregde (C, F). Locations of the tide gauges interested are denoted by the green spots. Stippled regions represent
areas with significant trends (α � 0.1).

Frontiers in Earth Science | www.frontiersin.org July 2021 | Volume 9 | Article 66035912

Lai et al. Evolution of Global Compound Floods

171

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


future are worth exploring. Considering the relatively short
record lengths of observational data in this region and the
large uncertainties of simulation-based studies, further studies
are needed to examine the characteristics of compound flood
events in Japan.

The results of compound floods from heavy precipitation and
extreme storm surge exceeding the 90th percentiles were
discussed in this study. The compound floods exceeding the
85th percentiles and 95th percentiles were analyzed and were
shown in the SI (Supplementary Figures S1–S4). Compared the
changes in the annual number of compound flood days of
different intensities, we found that the direction of trends
(i.e., increase or decrease) was consistent between compound
floods of different intensities, but the lower the threshold, the
more stations showing significant trends (Figure 4 and
Supplementary Figure S2). This phenomenon could also be
found in the changes in precipitation under extreme
precipitation (Figure 5A and Supplementary Figure S3). For
storm surge under extreme precipitation, the spatial pattern of
changes in storm surge under extreme precipitation exceeding the
85th percentiles was almost the same as that of exceeding the 90th
percentiles. However, the changes in storm surge under extreme
precipitation turned from negative to positive in some stations on
the coast of the US when the thresholds elevated from 85th to
95th percentiles (Figure 5B and Supplementary Figure S4),
indicating the higher storm surge occurred during the most
extreme precipitation events. In general, the spatial patterns of

changes in compound floods, precipitation under extreme storm
surge, and storm surge under extreme precipitation defined by
85th and 95th percentiles were very similar, except that when
using the higher threshold (i.e., the 95th percentile), less
significant trends could be detected because less extreme
events could be identified when using the higher threshold.
However, if the threshold is set too low, there is a risk of
failing in capturing the change signal of the most extreme
event. Results of the sensitivity analyses show that the spatial
and temporal characteristics of compound floods are similar
when using the inverse distance weighted method to calculate
the average precipitation (Supplementary Figures S11–S13).

Previous studies found that the weather conditions associated
with compound floods were characterized by the deep low-
pressure system, cyclonic winds, and high precipitable water
contents (Wahl et al., 2015; Bevacqua et al., 2019). We also
analyzed these meteorological variables to explain the changes in
precipitation under extreme storm surge and storm surge under
extreme precipitation. Results found that the changes in storm
surge under precipitation in three locations (i.e., New York, NY,
Honmoku, and Tregde) could be well explained by the changes in
sea level pressure and near-land wind speed. The physical
mechanisms that impact the precipitation under extreme
storm surge might be more complex. The changes in
precipitable water content could not explain all the changes in
precipitation under extreme storm surge. For example, in Tregde,
the precipitable water content showed no significant trends, while

FIGURE 10 | Trends in (A–C) sea level pressure (hPa/year) and (D–F) wind speed (ms−1/year) during storm surge under extreme precipitation in tide gauge New
York, NY (A, D), Honmoku (B, E), and Tregde (C, F). Locations of the tide gauges interested are denoted by the green spots. Stippled regions represent areas with
significant trends (α � 0.1).
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the precipitation under extreme storm surge here increased
significantly by 51%. Therefore, there might be some other
factors causing the increase in precipitation. We further
analyzed the vertical wind shear. Results showed that the
increased vertical wind shear might reflect the enhanced
convective activity in Europe, which might be related to the
increased precipitation under extreme storm surge. But the
impact of vertical wind shear should be identified carefully
because of its complex effect on storms. Storms such as
tropical cyclones and extratropical cyclones are accompanied
by low-pressure, cyclonic wind, and abundant moisture
transportation, and thus usually cause compound floods.
Further studies focused on the impact of storm activities on
compound floods will be helpful to better understand the
characteristics of compound floods.

In this study, we used the non-tidal residual to represent the
meteorologically driven coastal flood without consideration of the
storm-tide interaction, which might cause uncertainties in the
results. Many studies have pointed out that the storm-tide
interaction can not be neglected when estimating the extreme
sea levels, because the storm-tide interaction could modulate the
actual highest water level (Horsburgh and Wilson, 2007; Zhang
et al., 2010; Mawdsley and Haigh, 2016; Williams et al., 2016;
Arns et al., 2020). When neglecting the storm-tide interaction, the
storm surge was assumed to be independent of the water level,
which is not true because the observed highest storm surge was
found to be more likely to occur at mid- or low-tides rather than
at the high-tides (Horsburgh and Wilson, 2007). If neglecting the
non-linear storm-tide interaction, the extreme sea level would be
overestimated by 30% (Arns et al., 2020). However, since the
storm-tide interaction is highly affected by local features such as
locations, topography, oscillations, tide ranges, etc., it shows less
robust correlation with tidal levels or tidal contributions and
varies greatly across different regions of the world (Zhang et al.,
2010; Arns et al., 2020). In general, it has been identified that the
storm-tide interaction is strongest on the east coast of the US,
western Europe, northern Australia, and Japan (Mawdsley and
Haigh, 2016; Arns et al., 2020). Even though we are aware of the
important role of storm-tidal interaction in modulating the
estimation of coastal floods, it is still uncertain that what
method can be used to take care of storm-tide interaction
efficiently when assessing the coastal flood. Some previous
studies have tried to use skew surge, which is the difference
between the maximum total water level and maximum predicted
tidal level within a tidal cycle, to represent the coastal floods, and
suggested the independence between skew surge and tide
(Mawdsley and Haigh, 2016; Williams et al., 2016). However,
a more recent statistical method-based study assessed the non-
linear storm-tide interaction and found that both non-tidal
residuals and skew surges associated with the highest water
levels were significantly dependent on tide (Arns et al., 2020).
Besides, since the skew surge is an integrated measure calculated
within tidal cycles, it runs the risk of losing information of
changes in water levels driven by meteorological factors
(Mawdsley and Haigh, 2016; Williams et al., 2016). For
example, Mawdsley and Haigh (2016) mentioned that the
skew surge failed in capturing extreme storm surge caused by

tropical cyclones. Therefore, we studied the compound floods
based on the traditional non-tidal residual in this study. Although
the uncertainties remain, we would like to highlight the
contribution of our results on revealing the evolutions of
compound floods potential from heavy precipitation and
storm surge driven by meteorological systems based on
historical observations.

CONCLUSION

In this study, the spatial and temporal characteristics of
concurrences of precipitation and storm surge were examined
based on observed storm surge and precipitation with the longest
overlapping record of >120 years. First, the spatial distribution
and seasonal variation of concurrent extreme precipitation and
storm surge were presented. Then the trends in compound floods,
precipitation under extreme storm surge, and storm surge under
extreme precipitation were estimated to illustrate the long-term
changes in compound floods. Last, the changes in weather
conditions associated with precipitation under extreme storm
surge, and storm surge under extreme precipitation in three tide
gauges were analyzed to investigate the possible mechanisms
associated with the changes in compound floods. Our main
findings include:

1) The areas including southern Europe, the west and northeast
coast of the US, and northern Japan experienced >12
compound flood days per year, followed by the east and
southeast of the US, northern Europe, western Australia,
and Japan, where experienced average of 8–12 compound
flood days per year. The seasonal variation analysis showed
that in the south and east coast of the US, the north of South
America, East Asia, and northern Australia, most of the
compound floods occurred during tropical cyclones seasons
(i.e., July–September in North Hemisphere and
December–February in South Hemisphere), while in mid
and high-latitude areas (i.e., the north of North America,
Europe, the south of South America and southern Australia),
most occurrences of compound floods concentrated on the
winter (i.e., November–January in North Hemisphere and
June–August in South Hemisphere).

2) Our results on evolutions of frequency of compound flood
days showed an increasing trend in compound flood risk in
most areas across the globe except Japan. Europe experienced
the most substantial increase in compound flood days
(i.e., increased by > 2 days per decade), followed by the
east coast of the US (i.e., increased by 1–3 days per
decade). Increased precipitation under extreme storm surge
could be identified in North America, Europe, and Australia,
indicating more intense precipitation under extreme storm
surge events. The changes in storm surge under extreme
precipitation showed larger regional variation. The
significant increasing trends could be found in Europe, the
east coast of the US, while decrease trends were mainly found
in Japan and the west coast of the US. This result was
consistent with the changes in the annual number of
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compound flood days. The contribution analysis indicated
that except in northern Europe and some tide gauges on the
east coast of the US and southern Australia, the fractional
contribution of storm surge on the changes in the number of
compound flood days exceeded 50% in most areas across the
globe, which demonstrated that the changes in storm surge
were more likely to dominate the changes in compound
floods.

3) The analyses on meteorological variables suggested that the
changes in storm surge under extreme precipitation were
likely driven by changes in sea level pressure and near-land
winds, while the changes in precipitation under extreme storm
surge were associated with the changes in precipitable water
content and the convective activity.

This study presented the spatial distribution and seasonal
variation of compound floods from precipitation and storm
surge, estimated the changes in compound floods,
precipitation under extreme storm surge, and storm surge
under extreme precipitation across the globe. These analyses
were based on the observed precipitation and storm surge data
with the longest record lengths of 126 years, which can provide
useful information for better understanding the evolution in
compound floods, and serve as scientific references in flood
risk management and climate change adaptation strategy design.
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Intensified Moisture Sources of Heavy
Precipitation Events Contributed to
Interannual Trend in PrecipitationOver
the Three-Rivers-Headwater Region in
China
Ruiyu Zhao, Bin Chen* and Xiangde Xu

State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Evidence has indicated an overall wetting trend over the Three-Rivers Headwater Region
(TRHR) in the recent decades, whereas the possible mechanisms for this change remain
unclear. Detecting the main moisture source regions of the water vapor and its increasing
trend over this region could help understand the long-term precipitation change. Based on
the gauge-based precipitation observation analysis, we find that the heavy precipitation
events act as the main contributor to the interannual increasing trend of summer
precipitation over the TRHR. A Lagrangian moisture tracking methodology is then
utilized to identify the main moisture source of water vapor over the target region for
the boreal summer period of 1980–2017, with focus particularly on exploring its change
associated with the interannual trend of precipitation. On an average, the moisture sources
for the target regions cover vast regions, including the west and northwest of the Tibetan
Plateau by the westerlies, the southwest by the Indian summer monsoon, and the adjacent
regions associated with the local recycling. However, the increased interannual precipitation
trend over the TRHR could be largely attributed to the enhanced moisture sources from the
neighboring northeastern areas of the targeted region, particularly associated with the heavy
precipitation events. The increased water vapor transport from the neighboring areas of the
TRHR potentially related to the enhanced local hydrological recycling over these regions
plays a first leading role in the recent precipitation increase over the TRHR.

Keywords: heavy precipitation, interannual trend, Three-Rivers headwater region, moisture sources, climate
change

INTRODUCTION

The Three-Rivers Headwater Region (TRHR), located at the high-altitude region of the Tibetan
Plateau (TP), acts as the “Asian water tower” (Immerzeel et al., 2010; Xu et al., 2014; Yao et al., 2017),
which supplies considerable water for many Asian major rivers, including the Yellow, Yangtze, and
Lantscang (as shown in Figure 1A). The TRHR is considered to be more vulnerable to extreme
weather events since it is under the influences of the South Asianmonsoon, East Asianmonsoon, and
mid-latitude westerlies (Xi et al., 2018; Sun et al., 2019).

During the past decades, the whole TRHR was getting wetter under the global climate change (Li
et al., 2010; Gao et al., 2014). The annual precipitation overall shows an increasing trend, even though
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the precipitation in the TRHR exhibits spatial heterogeneity
(Liang et al., 2013; Yi et al., 2013; Tong et al., 2014; Sun et al.,
2018). In this context, the exploration of the nature of long-term
trend and reasons behind increasing precipitation over the TRHR
has become a hotspot of the academic community because of its
societal ramifications ( Yang et al., 2014; Wang et al., 2018; Gao
et al., 2019).

Generally, a large amount of water vapor supply has been
regarded as a priority for precipitation formation (Gimeno et al.,
2012; Wang et al., 2018). Knowledge about the origin of water
vapor that produces the rainfall over a target region could
promote a better understanding of the long-term precipitation
trend (Stohl and James 2004; Gimeno et al., 2012; Wang et al.,

2018). It can be speculated that the increased precipitation in the
TRHR could be associated with more water vapor supply, from
either the internal sources or external moisture origins (Gao et al.,
2014). The identification of the moisture origins in the TRHR and
its change thereby merit further exploration.

Based on the above consideration, two questions will be
discussed in this study: 1) What is the relative importance of
different categories of precipitation that contributed to the long-
term changes of summer precipitation over the TRHR? 2)What is
the relationship between the change in moisture sources and the
interannual trend of summer precipitation in the TRHR?

DATA AND METHODS

Data
The daily observed rainfall data with a spatial resolution of 0.25°

× 0.25° across mainland China are derived from more than 2,400
gauge stations by the National Meteorological Information
Center of the China Meteorological Administration (NMIC/
CMA). These observed precipitation data have been
extensively utilized to explore the characteristics of the
precipitation multi-scale spatiotemporal variation over the vast
East Asian monsoon region (Shen et al., 2010; Zhang et al., 2021).

To conduct the Lagrangian modeling, the European Center for
Medium-Range Weather Forecasts reanalysis (ERA)–Interim
data are adopted as the meteorological fields to force the
Lagrangian model. The meteorological fields contained in the
ERA-Interim data are in the 60 hybrid model levels from the
surface layer to 0.1 hPa, at a spatial resolution of 0.75° × 0.75° and
6-hour time step. Further details of ERA-Interim can be found in
the reference section (Dee et al., 2011).

Lagrangian Model and its Configuration
The FLEXPART model (FLEXIBLE PARTicle dispersion model)
version V9.0 was used to carry out the multiyear simulations to
produce the datasets for further moisture source diagnosis. This
Lagrangian model has been widely utilized for a large amount of
research on air mass and water vapor transport, particularly for
the identification of moisture sources ( Sodemann et al., 2008;
Drumond et al., 2011; Drumond et al., 2019; Gimeno et al., 2012;
Sun and Wang, 2014).

To start with, the model divides the whole column atmosphere
over the Asian monsoon region (−15–60°N and 0–160°E) into
approximately 2 million air parcels of constant mass (roughly
equals 1.12 × 1,012 kg), which are advected freely by the three-
dimensional winds during the simulation. The model integrates
from 15 April to 15 September for each boreal summer.
Eventually, a 6-hourly Lagrangian simulation output dataset,
including three-dimensional positions, specific humidity, and
temperature, is then constructed for each air parcel for the
period of 1980–2017.

Method for Water Vapor Source Diagnosis
Considering that the high values of long-term summer
precipitation trend are mainly located in the northwestern
TRHR (Figure 1C), the target region is defined as the area

FIGURE 1 | (A) The topographical distribution (color shaded, unit in m)
with the height exceeding 2000 m. (B) The climatology of the summer
seasonal mean (June, July, and August) precipitation during the period of
1980–2017 over the TRHR (unit in mm). The shaded area represents
precipitation exceeding 330 mm; (C) The trend of annual summer
precipitation over the TRHR calculated from the gauge-based precipitation
from 1980 to 2017 (unit in mm yr−1). The observed station precipitation data
are based on the gridded daily precipitation observation data with a spatial
resolution of 0.25° × 0.25°.
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within 32.5°N–36°N and 80.5°E–92.5°E. To estimate the source of
the water vapor, all air parcels that reached the target region in
each time interval (6 h) during the modeling period are first
selected and then tracked backward in time of 10 days, which
approximately equals to the residence time of the water vapor in
the atmosphere (Numaguti, 1999). A database of trajectories
entering into this target region is then constructed first. Thus,
the changes in the specific humidity (q) along each air particle
within the time step (t) can be expressed as e−p � m (dq/dt),
where m is the mass of the individual air particle and (e−p) is the
evaporation-minus-precipitation. By adding (e−p) for all the
particles over the entire atmospheric column for all the
resident air parcels, we obtained the surface fresh water flux
(E−P), where E and P are the rates of evaporation and
precipitation, respectively. We track (E−P) from the target
region backwards in time along the trajectories. The sources of
water vapor are recognized as the regions in which the
evaporation exceeds the precipitation, that is, (E−P)> 0. Then,
the moisture source fields from all backward air parcels are
linearly interpolated to a regular grid with 1.0° × 1.0° spatial
resolution. Eventually, the climatology of well-resolved 6-hourly
trajectory-based moisture uptake fields for the TRHR is
constructed.

Definition of Extreme Precipitation Indices
In this study, eight extreme precipitation indices of ETCCDI
(Expert Team on Climate Change Detection and Indices) were
selected to characterize the precipitation anomalies over the
TRHR (Table 1), which are defined and utilized commonly as
the precipitation indices to study the extreme precipitation events
(Karl, 1999; Peterson et al., 2001; Sillmann et al., 2013).

RESULTS AND DISCUSSION

The Interannual Trend of Summer
Precipitation Over the TRHR
The climatological seasonal mean of summer precipitation over
the TRHR calculated from the NMIC/CMA dataset for the period
of 1980–2017 is shown in Figure 1B. It is not surprising that the
distributions of the precipitation are less spatially uniform over
this region due to its large spatial extent of a high-elevation
terrain. The values of precipitation decrease from the southeast to

northwest over the TRHR. This spatial pattern of summer rainfall
reflects that the precipitation over the TRHR is mainly modulated
by the water vapor conveyed by the low-latitudinal atmospheric
flows associated with the Indian and Eastern Asian summer
monsoon (Yao et al., 2013; Pan et al., 2018; Lai et al., 2021).

The corresponding interannual trend of precipitation over the
TRHR is shown in Figure 1C. It is worth noting that a wide range
of the south–southeast TRHR shows a negative trend, indicating
that precipitation over these regions decreased for the past
decades. However, the TRHR shows a general wetting trend,
with the positive values mainly located north of 34°N, particularly
in the northwestern TRHR, illustrating a significant increase in
precipitation. Taking the TRHR as a whole region, the summer
precipitation over the target region is increased due to the
contribution from the northwestern part (as shown in
Figure 1C, black dots). This interannual precipitation trend of
the “south-drier and north-wetter” spatial pattern is consistent
with the wetting trend in the TRHR, which have been
demonstrated in previous studies, for example, by Yi et al.
(2013) and Liu et al. (2019).

The Association of Interannual Trend With
the Precipitation Intensity Anomalies
To further understand the characteristics of interannual trend of
precipitation over the TRHR, we computed the time series of the
extreme precipitation indices for the period of 1980–2017,
together with the corresponding interannual precipitation
(Figure 2). In general, most indices exhibited an increasing
trend during the past decades. There are six indices (SDII,
RX1day, R99Ptot, R10mm, R20mm, and CWD), which agree
with the variation of regional summer precipitation in the TRHR
on an interannual scale, with the correlation coefficient between
each index and regional average precipitation being 0.658, 0.543,
0.628, 0.814, 0.628, and 0.549, respectively. Note that the
variation of consecutive dry days (CDDs), which exhibits a
small decreasing trend, is obviously in contrary to the
variation of summer precipitation. This result is similar to the
work by Xi et al. (2018), in which they argued that the consecutive
dry days in the TRHR have been declining significantly in the past
50 years, with a decadal variability of 4.5 days per 10 years.

It is noteworthy that, on the interannual scale, the daily
intensity index (SDII), precipitation fraction due to extremely

TABLE 1 | Definition of extreme precipitation indices.

Extreme precipitation index Abbreviation Definition Unit

Simple daily intensity index SDII Intensity of daily precipitation (PR) on wet days mm
Highest 1 day precipitation amount RX1day Maximum amount of precipitation on a single day mm
Precipitation fraction due to very wet days R95pTOT Percentage of total precipitation from amount on very wet days when PR> 95th percentile of

precipitation
%

Precipitation fraction due to extremely wet
days

R99pTOT Percentage of total precipitation from amount on extremely wet days when PR> 99th percentile of
precipitation

%

Heavy precipitation days R10 mm Count of days when PR≥ 10 mm days
Very heavy precipitation days R20 mm Count of days when PR≥ 20 mm days
Consecutive dry days CDD Longest number of consecutive days with PR< 1 mm days
Consecutive wet days CWD Longest number of consecutive days with PR≥ 1mm days
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wet days (R99pTOT), and very heavy precipitation days
(R20mm) are closely correlated with the summer rainfall, with
the correlation coefficients being 0.658, 0.628, and 0.628 (Figures
2A,D,F), respectively. In particular, the correlation coefficient
between the heavy precipitation days and the summer mean
precipitation in the TRHR reaches the highest value of 0.814
(Figure 2E). These results indicate that the interannual trend of
summer precipitation over the TRHR may be related to the
variation in the intensity and frequency of heavy and extreme
precipitation events. In other words, the increase in the heavy and
extreme heavy precipitation is potentially playing a critical role in
the increasing summer mean rainfall.

To further demonstrate the impacts of changes in the intensity
of precipitation events on the interannual trend of summer
precipitation, we divided the precipitation events into four
categories based on their daily values, namely, drizzle, little

rain, moderate rain, and heavy rain (Table 2). We calculated
the correlation coefficient, on the interannual scale, between the
precipitation days of each category and the summer mean
precipitation over the TRHR. Note that the annual
precipitation is only positively correlated with days of heavy
rain (PR≥ 9 mm) that occurred with a correlation coefficient
reaching 0.547 but negatively correlated with other categories of

FIGURE 2 | The interannual variation of the eight extreme precipitation indices (A) SDII; (B) RX1 days; (C) R95dTOT; (D) R99pTOT; (E) R10mm; (F) R20mm; (G)
CDD; and (H) CWD; the meaning of abbreviation for the six indices is shown in Table 1, together with the regional mean precipitation over the TRHR. The correlation
coefficient between each index and the regional average precipitation is shown in the left corner, and seven indices have passed the 0.05 significance level except for the
precipitation fraction due to wet days (R95pTOT).

TABLE 2 | Correlation coefficient between precipitation intensity and the four
categories of precipitation events on the interannual scale.

Range of rainfall Precipitation type Correlation coefficient

1 mm < PR < 2 mm Drizzle −0.58
2 mmPR<4 mm Little rain −0.537
4 mmPR<6 mm Moderate rain −0.383
PR≥9mm Heavy rain 0.547
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precipitation events. This result further suggests that the increase
in heavy rainfall may be the main cause for the increasing
interannual trend of precipitation over the TRHR, while light
or moderate precipitation events play a minor role
(Supplementary Figure S1). Combined with the results of the
correlation coefficient of extreme precipitation indices above, the
increase in the summer mean rainfall in the TRHR is largely
dominated by the change of heavy precipitation events, which are
reflected both in the increase of heavy precipitation days and the
enhancement of precipitation intensity. These results would be
further evidenced in the following section.

Summer Seasonal Mean of Evaporative
Moisture Sources and its Long-Term Trend
Figure 3A exhibits the climatology of the summer seasonal mean
moisture uptakes, that is, integrated (E - P)> 0 of days 1–10,
together with the vertically integrated water vapor flux (vector).
This result shows the average of all gains of moisture over the
previous 10 days prior to reaching the TRHR. It can be found that
those regions with the largest values, that is, the most influential
moisture origins are largely located in India and its northwestern
areas. This result partly agrees with previous researches by Sun

and Wang (2014) and Chen et al. (2016), indicating that the
moisture contribution from the adjacent regions could play a
critical role in the water vapor supply and the remote moisture
uptake from oceanic areas could be precipitated out during their
period of transport. The regions over the Arabian Sea, the
northern India, and even the tropical Indian Ocean are ranked
as the second moisture source. It can be deduced that this spatial
pattern of the moisture sources is consistent with the pattern of
water vapor transport (Figure 3A, vector), indicating that the
atmospheric vapor reaching the TRHR is mainly shaped by the
Indian summer monsoon and the westerlies (Yao et al., 2013; Pan
et al., 2018).

Note that the objective of this study was to identify the
moisture sources of external water vapor reaching the TRHR;
thus, only those air parcels penetrating the target region in each
time interval (6 h) during the boreal summer are selected and
then were tracked backward for 10 days to diagnose the moisture
sources, which gave rise to a sharp discontinuity of moisture
sources contribution at the edges of the target region box.
However, a fraction of selected air parcels could return and
reside in the target region by backward tracking, due to the
influence of complicated local atmospheric circulations. These
multi-boundary–crossing air parcels with increased humidity will

FIGURE 3 | (A) Horizontal spatial distribution of the climatological (1980–2017) integrated moisture source contribution, that is, the Lagrangian E-P diagnosed (E -
P)> 0 of days 1–10 for the TRHR (units: millimeter per day). The vector indicates the vertically integrated water vapor flux derived from the ERA-Interim (JJA, 1980–2017,
vector, in kgm−1 s−1). The target region for the water sources diagnosis is defined as the continental areas within the red rectangular box (32.5°N–36°N and
80.5°E–92.5°E. (B) The interannual trend of the moisture contribution in the THRR for the period of 1980–2017. The dotted areas indicated the regions that
exceeded the 0.05 significance level with the Student’s t test. (C) Time series of interannual regional average moisture sources (red) and the regional average summer
mean precipitation (black) in the TRHR. The dot lines indicate the long-term trend, respectively.

Frontiers in Earth Science | www.frontiersin.org July 2021 | Volume 9 | Article 6740375

Zhao et al. Intensified Moisture Sources Contributed Precipitation

181

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


result in the target region itself as a contributor, but with less
significance.

The variation of the regional summer precipitation and
moisture contribution represents a good consistency on the
interannual scale (Figure 3C). Both the precipitation and
moisture contribution show a similar trend, with turning
points from decreasing to increasing occurring in the middle
and late 1990s (1995). The Pearson correlation coefficient is 0.46,
with a significance level above 0.05. This result shows that the
moisture contribution for the precipitation could capture the
variation of precipitation, which in turn indicates that the
exploration on the variability of moisture sources could reveal
the underlying mechanism of the regional precipitation
evolution.

The interannual trend of moisture sources over the TRHR is
illustrated in Figure 3B, with the dotted areas indicating the
regions with a trend exceeding the 0.05 significance level with the
Student’s t test. The areas with positive values cover vast regions,
including but not limited to southern Asia, the Arabian Sea, the
Bay of Bengal, the northern India, and the vast areas of the Indian
Ocean. However, the region that exhibits a significant increase in
the trend is mainly centered on the adjacent regions to the TRHR
itself, where contributions from the targeted west–northeastern
TRHR increased the most in intensity.

Above results emphasize the importance of the local water
vapor recycling, particularly in the surrounding area on the
northwest side of the TRHR and the Tibetan Plateau. It has
been evidenced that the strengthening of the local water vapor
recycling process may correlate with the evapotranspiration over
the TRHR, which in turn facilitated the growth of vegetation (Gan
et al., 2020). Studies have further pointed out that the
enhancement of the westerlies over the mid-latitude may be
one reason for the continuous increase in moisture around the
northwestern side of the plateau ( Liao et al., 2018). Thus, we can
deduce that the neighboring west–northeastern region supplies a
large amount of extra moisture for increased precipitation, with
the increased moisture contribution from the ocean playing a
secondary role, although the water vapor from this region has a
strong correlation with the interannual variation of precipitation
in the TRHR (Chen et al., 2012; Zhang et al., 2019).

Interannual Trend Comparison for Different
Categories of Precipitation Events
We have demonstrated that the interannual trend of summer
rainfall over the TRHR could be largely attributed to the
enhancement of the heavy and extreme precipitation events,
both in frequency and intensity. However, a question remains
to be elucidated: Do the areas with larger values of the interannual
trend for the moisture contribution for summer mean

precipitation coincide spatially with that for the heavy
precipitation events?

To address this question, we utilized different percentiles as
thresholds to categorize the precipitation events based on the
daily observed regional precipitation. The details on the threshold
selection and their corresponding magnitude of daily rainfall are
listed in Table 3. The moisture sources for the different category
precipitation events are calculated individually (Figure not
shown). The moisture sources for the different category
precipitation events show a similar spatial pattern, which is
analogous to that for the summer mean precipitation, with a
large amount of moisture originating from the vaster regions,
such as the Central Asia, Indian Peninsula, the Bay of Bengal, and
to the northwest of target region. However, differences exist
among the different types of precipitation events. For example,
the cross-equatorial moisture transport from the Indian Ocean is
getting more significant for the heavy and extreme, comparing to
the light and moderate (shown in Supplementary Figure S2).
Further examination of the differences in the moisture sources for
five categories of precipitation is beyond the scope of the
present study.

Figure 4 shows the interannual trend of the moisture
contribution, which is the same as Figure 3B, but corresponds
to the five predefined category precipitation events. Obviously,
the spatial distributions of the interannual trend for the moisture
uptake vary significantly among the five categories of
precipitation events. For the dry days, the long-term trend is
less significant. For other types of precipitation events (i.e., the
light, moderate, heavy, and extremely heavy), the interannual
trend gets higher and higher. With the strength of precipitation
intensity, the moisture contribution from the remote moisture
sources originating from the tropical to subtropical Arabian Sea
corridor gets more significant, which means that the external
regions as the moisture uptake fields play an important role in the
enhancement of rainfall. However, when we compare the results
shown in Figure 3B to that in Figure 4, it is easy to find that the
spatial pattern of the interannual trend in the moisture
contribution by the heavy rainfall events coincides roughly
with that for the overall moisture contribution, with the
majority of the positive high-value areas centered over the
areas neighboring the TRHR, including the northeastern and
western parts of the Tibetan Plateau. This result affirms again that
the heavy but not the extreme rainfall events play a first leading
role in the increased interannual trend in the summer mean
precipitation in the target region.

For a specific region, the trend of the moisture uptakes
contribution to the rainfall events could be impacted by two
factors: 1) the increases in large-scale water vapor transport and
2) the enhancement of local evaporation over the source origins
(Gimeno et al., 2012). As shown in Figure 4, except for the relatively

TABLE 3 | Determination of five precipitation types.

Threshold <5th (10th, 30th) (40th, 60th) (70th,95th) >99th

Precipitation PR < 0.44 mm (0.64 mm,1.65 mm) (2.26 mm,3.58 mm) (4.36 mm,7.29 mm) PR > 9.25 mm
Type Dry Light Moderate Heavy Extremely heavy
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small contribution from the remote moisture sources, the increase of
water vapor for the heavy rainfall events from the adjacent
northwestern land areas are particularly significant, indicating the
importance of the local recycling process of the plateau itself to the
interannual trend of heavy precipitation over the TRHR.

CONCLUSION

During the recent decades, the Three-Rivers Headwater Region
(TRHR) experiences an overall wetting trend, whereas the
reasons it behind remain elusive. In order to shed some light
on this issue, we examined the association of interannual trend of
the summer mean precipitation with the anomalies in the
intensity of precipitation. We also identified the remote
evaporative moisture uptakes contributed to the rainfall over
the TRHR during a summer period of 38 years (1980–2017), with
focus particularly on the association of moisture sources with the
variability in precipitation intensity. The main results of the
present study could be summarized as follows:

1) The results show that the TRHR has been getting wetter
during the recent decades, especially with the obvious
increasing precipitation in the northwest of the TRHR. The
interannual variation of the observed summer precipitation
agrees well with the integrated diagnosed moisture sources,

indicating that the changes of precipitation could be well
captured by the moisture sources.

2) The moisture sources for the TRHR cover vast regions,
including but not limited to the west and northwest of the
Tibetan Plateau by the westerlies, and that from the southwest
by the Indian summer monsoon. Compared to the
contribution of oceanic moisture sources, the terrestrial
moisture supply is more important. Also, the increased
interannual precipitation trend over the TRHR could be
largely attributed to the enhanced moisture sources from
the neighboring northeastern areas of the target region.

3) Further analysis shows that enhanced moisture
contribution highly resemble the heavy precipitation
events. Thus, the enhanced water vapor transport
conveyed by the heavy precipitation events from the
neighboring areas of the TRHR, which is largely
associated with the intensified land surface evaporation
or local hydrological recycling over these regions, in
combination with enhanced transport from low-latitude
oceanic regions, play a critical role in supplying vapor for
the recent summer rainfall increase over the TRHR.

The results of this research shed some light on the
characteristics of the rainfall and underlying mechanisms
associated with its interannual trend. However, due to the
complexity of the land surface conditions and atmospheric

FIGURE 4 |Distribution for the interannual trend of the Lagrangian E-P diagnosedmoisture sources contribution of the five category precipitation events for (A) dry,
(B) light, (C) moderate, (D) heavy, and (E) extremely heavy, respectively. The dotted regions are significant at the 95% confidence level.
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circulations over the target area, the relationship between the
changes in the atmospheric moisture uptakes and atmospheric
circulations over the TRHR is elusive, which invites further
studies.
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Compound extremes pose immense challenges and hazards to communities, and this is
particularly true for compound hydrometeorological extremes associated with deadly
floods, surges, droughts, and heat waves. To mitigate and better adapt to compound
hydrometeorological extremes, we need to better understand the state of knowledge of
such extremes. Here we review the current advances in understanding compound
hydrometeorological extremes: compound heat wave and drought (hot-dry),
compound heat stress and extreme precipitation (hot-wet), cold-wet, cold-dry and
compound flooding. We focus on the drivers of these extremes and methods used to
investigate and quantify their associated risk. Overall, hot-dry compound extremes are tied
to subtropical highs, blocking highs, atmospheric stagnation events, and planetary wave
patterns, which are modulated by atmosphere-land feedbacks. Compared with hot-dry
compound extremes, hot-wet events are less examined in the literature with most works
focusing on case studies. The cold-wet compound events are commonly associated with
snowfall and cold frontal systems. Although cold-dry events have been found to decrease,
their underlying mechanisms require further investigation. Compound flooding
encompasses storm surge and high rainfall, storm surge and sea level rise, storm
surge and riverine flooding, and coastal and riverine flooding. Overall, there is a
growing risk of compound flooding in the future due to changes in sea level rise,
storm intensity, storm precipitation, and land-use-land-cover change. To understand
processes and interactions underlying compound extremes, numerical models have
been used to complement statistical modeling of the dependence between the
components of compound extremes. While global climate models can simulate certain
types of compound extremes, high-resolution regional models coupled with land and
hydrological models are required to simulate the variability of compound extremes and to
project changes in the risk of such extremes. In terms of statistical modeling of compound
extremes, previous studies have used empirical approach, event coincidence analysis,
multivariate distribution, the indicator approach, quantile regression and the Markov Chain
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method to understand the dependence, greatly advancing the state of science of
compound extremes. Overall, the selection of methods depends on the type of
compound extremes of interests and relevant variables.

Keywords: compound hydrometeorological extremes, hot-dry, hot-wet, storm surge, tropical cyclones,
floods/droughts, cold-dry, cold-wet

INTRODUCTION

Extreme weather and climate events can have devastating
consequences on human societies and the environment (Troy
et al., 2015; Zscheischler et al., 2020b). A combination of extreme
events can exacerbate the damages by cascading individual
natural hazard (AghaKouchak et al., 2018), leading to
compound events. Compound extremes events are defined as
“1) two or more extreme events occurring simultaneously or
successively, 2) combinations of extreme events with underlying
conditions that amplify the impact of the events, or 3)
combinations of events that are not themselves extremes but
lead to an extreme event or impact when combined. The
contributing events can be of similar (clustered multiple
events) or different type(s)” (Seneviratne et al., 2012).
Recently, a more general definition of compound extremes has
been developed as “A compound event is an extreme impact that
depends on multiple statistically dependent variables or events”
(Leonard et al., 2014). Under this definition, compound events
may be interpreted as extreme impacts that depend on multiple
variables or events.

Over the past several years, major efforts have been devoted to
advancing the science of compound extremes, evidenced by several
review articles in the literature (Leonard et al., 2014; Hao et al.,
2018; Zscheischler et al., 2018; AghaKouchak et al., 2020; Raymond
et al., 2020a; Zscheischler et al., 2020a). For example, compound
events have been organized into four themes: preconditioned,
multivariate, temporally compounding, spatially compounding,
and temporal connections (Zscheischler et al., 2020a). This
structuring of compound events facilitates the unravelling of
their physical mechanisms and societal impacts, marking a big
step in scientific advancements. As a global investigation of
compound extremes, Ridder et al. (2020) identified twenty-
seven pairs of compound events (e.g., extreme precipitation and
temperatures) that provide the first spatial estimates of their
occurrences at the global scale.

Compound hydrometeorological extremes are themost deadly
and dangerous compound events in terms of damages and
impacts (Martius et al., 2016; Hao et al., 2018; Sedlmeier et al.,
2018; Li et al., 2020a). Overall, compound hydrometeorological
extremes may be subdivided into five categories: hot-dry
(Mazdiyasni and AghaKouchak, 2015; Schumacher et al., 2019;
Tavakol et al., 2020a), hot-wet (Fischer and Knutti, 2013; Russo
et al., 2017; Tavakol and Rahmani, 2019a), cold-wet (Bisci et al.,
2012; Hao et al., 2018; Hochman et al., 2019; De Luca et al., 2020),
cold-dry (Dabhi et al., 2018; Wu Y. et al., 2021), and compound
flood (e.g., storm surge and rainfall) (Wahl et al., 2015;
Moftakhari et al., 2017a). First, compound hot and dry (or
heat wave and drought) events have been evaluated globally

and regionally (Feng et al., 2020), including Europe (Ionita
et al., 2017; Liu et al., 2020), China (Chen L. et al., 2019; Kong
et al., 2020; Xu et al., 2021; Yu and Zhai, 2020), Australia (Cowan
et al., 2014; Herold et al., 2016), northern hemisphere (Vogel
et al., 2019), the United States (Mazdiyasni and AghaKouchak,
2015; Hao et al., 2020c; Tavakol et al., 2020a), southern Africa
(Hao Y. et al., 2020) and at the global scale (Zscheischler and
Seneviratne, 2017; Feng et al., 2020; Wu et al., 2021). Overall, this
type of compound extreme is manifested by drought, heat and
aridity events in which there are usually low soil moisture, high
temperature and high vapor pressure deficit (Zhou et al., 2019).
Second, compound hot and wet extremes have been reported
across the globe, including hot-humid events (Fischer and Knutti,
2013; Li et al., 2020; Poppick and McKinnon, 2020; Yuan et al.,
2020; Luo and Lau, 2021). The main driver of this compound is
that heat stress is associated with high humidity, which is
conducive to precipitation. In order to better quantify the
future change of precipitation extremes, dew point
temperature may be used (Zhang et al., 2019b), highlighting
the role of humidity in formulating the compound hot and
wet extremes. For example, extreme heat stress events are
followed by flooding in the central United States (Zhang and
Villarini, 2020). Third, compound cold-wet extreme events were
documented over the Mediterranean (Bisci et al., 2012; Hao et al.,
2018; Hochman et al., 2019; De Luca et al., 2020), associated with
snowfall and cold frontal systems. Fourth, compound cold-dry
events have been reported across China (Miao et al., 2016; Zhou
and Liu, 2018), Europe (Potopová et al., 2021) and the globe
(Dabhi et al., 2018; Wu Y. et al., 2021). Fifth, compound flooding
arising from storm surge and rainfall has received attention
(Wahl et al., 2015; Moftakhari et al., 2017a; Paprotny et al.,
2018; Bevacqua et al., 2019; Marsooli et al., 2019; Bevacqua et al.,
2020; Couasnon et al., 2020; Gori et al., 2020a, 2020b).
Compound floods include storm surge and heavy rainfall,
storm surge and sea level rise, storm surge and high discharge,
and sea level rise and river flow. Compound flooding in the
coastal regions may be caused by tropical cyclones and other
weather systems (e.g., frontal systems, atmospheric rivers and
low-pressure systems). Associated with strong wind and
torrential precipitation (Khouakhi et al., 2017; Rios Gaona
et al., 2018; Zhang et al., 2018), tropical cyclones play a
central role in causing compound flooding (Wahl et al., 2015;
Gori et al., 2020a, 2020b). Table 1 summarizes compound hot
and dry, hot and wet, cold and dry, cold and wet and compound
flooding, which fall into the four categories documented in
(Zscheischler et al., 2020) (i.e., preconditioned, multivariate,
temporally compounding and spatially compounding).

Despite substantial progress in understanding compound
extremes, there is still no review summarizing the drivers,
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mechanisms, and methods employed for their evaluation. A
previous review article by Hao et al. (2018) did summarize
advancements in the study of compound hydrometeorological
extremes, but the present work, in contrast, focuses on physical
mechanisms and drivers. Here, we review the status of recent
scientific advancements and suggest potential future directions
for studying compound extremes and extremes in general. We
additionally assess recent advancements in understanding
compound hydrometeorological extremes in terms of their
fundamental drivers, underpinning mechanisms, and methods
employed.

COMPOUND HOT AND DRY EXTREMES

Compound hot and dry extreme is among the first investigated
compound hydrometeorological extremes in the literature
(Chang and Wallace, 1987; Easterling et al., 2000; Ciais et al.,
2005). Back to the 1980s, drought and heat wave in Kansas City
have been identified to occur together, associated with circulation
patterns and moisture conditions (Chang and Wallace, 1987).
This type of compound is featured by two variables: temperature
and precipitation, which are closely associated with one another
due to the well-known thermodynamic relationship (Held and
Soden, 2006). The land-atmospheric feedbacks are commonly
used to interpret this compound mechanism (Miralles et al.,
2019).

Overall, there are two physical mechanisms used to explain
compound hot and dry extremes in the literature. The first
concept is that there are persistent atmospheric circulation
patterns which are responsible for both drought and heat
waves (Vautard et al., 2007; Rowell, 2009; Mueller and
Seneviratne, 2012; Quesada et al., 2012; Schneidereit et al.,
2012; Seager and Hoerling, 2014). The large-scale circulation
patterns related to drought or heat wave consist of blocking
highs (Schneidereit et al., 2012; Horton et al., 2014; Dong et al.,
2018; Luo et al., 2020; Luo and Lau, 2020), atmospheric
stagnation events (Horton et al., 2014), planetary wave
patterns (Teng et al., 2013; Screen and Simmonds, 2014;
Mann et al., 2017) and subtropical highs (Luo and Lau, 2017;
Zhang Y. et al., 2019; Li et al., 2019; Liu et al., 2019; Kong et al.,
2020). For example, blocking highs and ridge patterns sit on the
atmosphere for a long period of time, increasing temperature
and evapotranspiration and suppressing precipitation
(Matsueda, 2011; Schneidereit et al., 2012; Hoskins and
Woollings, 2015; Dong et al., 2018; Schumacher et al., 2019).

Moreover, atmospheric stagnation events not only influence
temperature and precipitation—because of lack of convection
and atmospheric movement and transport (Tressol et al., 2008;
Zou et al., 2020)—but they can also deprive the air quality (Kerr
and Waugh, 2018; Toro et al., 2019; Zou et al., 2020).
Subtropical high/anticyclonic patterns are known as a strong
high-pressure system that drives drought and heat waves over
East Asia and North America, responsible for the compound
hot-dry extreme.

n addition to large-scale circulation patterns, atmosphere-land
feedbacks are also responsible for the compound heat waves and
droughts (Lansu et al., 2020, 2020; Zhou et al., 2021). Overall, dry
soil and plants tend to reduce evaporation, leading to dry
atmospheric condition and suppressed precipitation, thereby
resulting in meteorological droughts (Dickinson, 1995;
Seneviratne et al., 2006). On the other hand, the reduced
evapotranspiration can also be associated with more solar
radiation and sensible heat that increase temperatures on the
earth surface, leading to or magnifying the heat wave. The
atmosphere-land feedback is known as a fundamental
mechanism for interpreting compound heat wave and drought.
For example, the severity of atmospheric aridity is dramatically
decreased if the feedback from soil to atmosphere state does not
exist (Zhou et al., 2019). Moreover, surface albedo change
induced by drought conditions may also be coupled with heat
waves (Eltahir, 1998). However, the impacts of albedo on the
land-atmosphere coupling may be limited and secondary
(Teuling and Seneviratne, 2008).

The evaporation and transpiration on land play a central
role in the land-atmosphere feedback, which is influenced by
changes in radiation and temperature, shapes cloud feedback
and water vapor variability, and acts as a bridge between water
and carbon cycles through its connection to photosynthesis. In
other words, evapotranspiration modulates the surface energy
partitioning by affecting key meteorological variables
including air temperature and precipitation. Observing
evaporation is still quite challenging and the capability of
observing evaporation is limited (Wang and Dickinson,
2012). Although some evaporation data have been released
over the years, these data are not directly sensed from space or
in situ. Rather, they are produced by simple physical or
statistical models (Fisher et al., 2008; Jung et al., 2010;
Miralles et al., 2011; Mu et al., 2011). The evaporation is
associated with land conditions and plant physiology during
droughts and heat waves, potentially modulating the
atmospheric boundary layer state (Betts et al., 1996;

TABLE 1 | Types of compound hydrometeorological extremes under the four categories documented in (Zscheischler et al., 2020). “X” represents that the compound
extreme type falls into a category based on literature.

Types Preconditioned Multivariate Temporally compounding Spatially compounding

Hot and Dry Tavakol et al. (2020a) Wu et al. (2020) Zhang and Villarini (2020) Alizadeh et al. (2020)
Hot and Wet Wang et al. (2019b) Soneja et al. (2016)
Cold and Dry Miao et al. (2016) Dabhi et al. (2018) Hsiao et al. (2021)
Cold and Wet Hochman et al. (2019) De Luca et al. (2020)
Compound Flooding Ridder et al. (2018) Xu et al. (2018)
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Holtslag and Ek, 1996; Ek and Holtslag, 2004). Under
increased vapor pressure deficit (VPD), plants tend to close
the stomata to avoid water loss (Figure 1), thereby reducing
evapotranspiration (Rigden and Salvucci, 2017; Massmann
et al., 2019). Compound hot extremes consist of both

daytime and nighttime heat extremes (Wang et al., 2020).
The spatially compound dry events have been identified to
cause damages to agriculture (Singh et al., 2021). The
schematic of compound hot-dry extremes is illustrated from
the perspective of land-atmosphere feedbacks (Figure 1).

FIGURE 1 | Physical mechanisms of compound hot-dry extremes and land-atmosphere interactions. The physical mechanisms are based on previous studies on
compound hot-dry extremes (e.g., Mazdiyasni and AghaKouchak, 2015; Massmann et al., 2019; Miralles et al., 2019; Schumacher et al., 2019; Tavakol et al., 2020a).

FIGURE 2 | Schematic of compound hydrometeorological extremes: (A) heat-wet (Soneja et al., 2016; Wang S. S.-Y. et al., 2019; Imada et al., 2019; Zhang and
Villarini, 2020; Chen et al., 2021), (B) heat-humid extremes (Fischer and Knutti, 2013; Li et al., 2020; Poppick andMcKinnon, 2020; Yuan et al., 2020), (C) cold-wet (Bisci
et al., 2012; Hao et al., 2018; Hochman et al., 2019; De Luca et al., 2020) and (D) cold-dry (Dabhi et al., 2018; Wu Y. et al., 2021; Potopová et al., 2021). The Clausius-
Clapeyron scaling represents the water holding capacity of the atmosphere corresponding to air temperature changes (Held and Soden, 2006).
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COMPOUND HEAT AND WET EXTREMES

Compared with compound hot and dry extremes, compound
heat and wet extremes are less explored in the literature
(Figure 2). This type of extreme is manifested by flooding and
heat wave (Soneja et al., 2016; Wang S. S.-Y. et al., 2019; Imada
et al., 2019; Zhang and Villarini, 2020; Chen et al., 2021) and heat
wave and humid events (Fischer and Knutti, 2013; Li et al., 2020;
Poppick and McKinnon, 2020; Yuan et al., 2020). We will
elaborate on these compound extremes in the following
discussion.

Flooding/Precipitation and Heat Wave/
Stress
This type of compound can be classified into temporal
compounding (e.g., occur sequentially) (Raymond et al., 2020a;
Zscheischler et al., 2020a). The compound flooding and heat
waves are featured by heat waves followed by floods or vice versa.
The understanding of this compound extreme is still limited and
previous research has mainly focused on case studies. No theories
have been proposed to formulate these compounds. There are
compound summer heat and precipitation extremes reported
over central Europe (Beniston, 2009; Sedlmeier et al., 2018), Spain
(Morán-Tejeda et al., 2013) and China (Hao et al., 2013; Wu S.
et al., 2021; Wang P. et al., 2021). Moreover, floods that follow
heat waves have been identified across the central United States
(Zhang and Villarini, 2020), and this compound is manifested by
the fact that heat stress may set the stage for extreme precipitation
and flooding due to increasing sensible heat flux and moisture
convergence under extreme heat stress. Similarly, the floods
followed by elevated heat have also been identified across
China during 1961–2018, exhibiting an increasing trend (Chen
et al., 2021). Western Japan experienced catastrophic floods
followed by a record-breaking heatwave during early July 2018
(Wang S. S.-Y. et al., 2019; Imada et al., 2019) and this
catastrophic compound event caused an estimated 10 billion
USD in damage. Based on climate projections, this type of
compound will be more frequent under global warming
(Wang S. S.-Y. et al., 2019). Currently, the compound flooding
and heat waves are still under investigation, and
furtherunderstanding of their drivers and mechanisms is
required in the near future.

Heat Wave and Humid Event
The combined humidity and temperature extremes have been
discussed in the literature and identified by climate models and
observations (Fischer and Knutti, 2013) and the joint behavior of
temperature and humidity extremes arises from the Clausius-
Clapeyron (C-C) relationship. Overall, surface humidity increases
as temperatures increase over open water bodies. However, this
relationship may not hold over land due to the lack of soil
moisture (Fischer and Knutti, 2013). Many factors may
influence the risk of such humid heat extremes, including
irrigation (Lobell et al., 2008; Krakauer et al., 2020), external
forcing that contains both natural (e.g., volcanic eruption) and
anthropogenic (e.g., greenhouse gases) sources (Fischer and

Knutti, 2013; Russo et al., 2017; Lutsko, 2021), and
urbanization (Oleson et al., 2015; Luo and Lau, 2018; Wang Y.
et al., 2019).

While the heat and humid events have been projected to
increase under global warming (Russo et al., 2017; Byrne and
O’Gorman, 2018; Chen X. et al., 2019; Tavakol and Rahmani,
2019b; Wang P. et al., 2021), the combination of heat and relative
humidity in the future is still uncertain (Byrne and O’Gorman,
2018). We commonly use wet bulb temperature or apparent
temperature to quantify the compound heat-humid events (Russo
et al., 2017), although the wet bulb temperature exhibits nonlinear
relationship between temperature and relative humidity which is
magnified by an increase in temperature (Coffel et al., 2019).

COMPOUND COLD-DRY AND COLD-WET
EXTREMES

Cold-wet compound extreme events have been reported over the
Mediterranean (Bisci et al., 2012; Hao et al., 2018; Hochman et al.,
2019; De Luca et al., 2020). The wintertime cold-wet compound
events are commonly associated with snowfall and cold frontal
systems. For example, the polar air outbreak associated with a
cold front tends to cause heavy snowfall and rainfall. In contrast,
compound cold-dry events have been found in China (Miao et al.,
2016; Zhou and Liu, 2018), Europe (Potopová et al., 2021) and the
globe (Dabhi et al., 2018; Wu Y. et al., 2021). Compound cold/dry
and cold/wet extremes have decreased over the vast majority of
the world, and are projected to be less frequent using CMIP6
model projection (Wu Y. et al., 2021).

COMPOUND FLOODING

Rising attention has been paid to compound flooding that arises
from storm surge and rainfall (Wahl et al., 2015; Moftakhari et al.,
2017a; Paprotny et al., 2018; Bevacqua et al., 2019; Marsooli et al.,
2019; Bevacqua et al., 2020; Couasnon et al., 2020; Gori et al.,
2020a, 2020b). Compound flooding includes storm surge and
high rainfall, storm surge andmean sea level rise, storm surge and
riverine flooding, and coastal and riverine flooding. Tropical
cyclones, atmospheric rivers and extratropical cyclones play a
central role in causing the compound flooding (Wahl et al., 2015;
Gori et al., 2020a, 2020b) because these storms associated with
strong wind are responsible for storm surge and heavy
precipitation (Khouakhi and Villarini 2016a; Khouakhi et al.,
2017; Rios Gaona et al., 2018; Zhang et al., 2018, 2019a; 2021) in
the coastal regions (Figure 3). Tropical cyclones have been
projected to intensify under climate change, thereby probably
leading to higher storm surge (Knutson et al., 2010, 2015; Bhatia
et al., 2019). Meanwhile, rainfall caused by tropical cyclones has
also been projected to increase in the future (Knutson et al., 2010;
Wright et al., 2015; Scoccimarro et al., 2017; Liu et al., 2018). The
changes in the intensity of tropical cyclones in concert with the
increase in rainfall suggest a higher future risk of compound
extremes caused by storms.
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Storm Surge and Heavy Rainfall
Storm surge is defined as a rise in sea level during tropical/
extratropical cyclones due to strong winds that force the sea water
on shore (Lin and Chavas, 2012; Waliser and Guan, 2017; Veatch
and Villarini, 2020), leading to coastal flooding (Khouakhi and
Villarini, 2016b; Garner et al., 2017; Herdman et al., 2018; Xu
et al., 2019). When storm surge is accompanied by heavy rainfall
associated with tropical cyclones, the resulting damages would be
exacerbated. Strong dependence has been found between extreme
rainfall and storm surge in coastal regions (Zheng et al., 2013;
Mohanty et al., 2020). Overall, the compound storm surge and
heavy rainfall events are associated with tropical cyclones,
atmospheric rivers (Lin et al., 2010a), medicanes (Amores
et al., 2020; Davolio et al., 2020; Zhang et al., 2020), and
extreme extratropical cyclones (Danard et al., 2004; Colle
et al., 2015; Mäll et al., 2017; Lin et al., 2019).

This type of compound has also been reported in many parts
of the world including the Netherlands (van den Hurk et al., 2015;
Ridder et al., 2018), in coastal and estuarine regions of Australia
(Wu et al., 2018), Morocco (Zellou and Rahali, 2019), the
United States (Lin et al., 2010b; Gori et al., 2020a), China (Xu
et al., 2018; Fang et al., 2021), Britain (Svensson and Jones, 2002,
2004), and Europe in general (Bevacqua et al., 2019). In
particular, the catastrophic impacts of the compound storm
surge and heavy precipitation are marked in urban watershed
(Joyce et al., 2018).

The risk of compound flooding resulting from storm surge and
heavy rainfall has been increasing in major coastal cities of the
United States (Wahl et al., 2015). The risk of compound storm
surge and heavy rainfall is projected to increase in the future
(Karim and Mimura, 2008; Bevacqua et al., 2019; Bates et al.,
2020; Hsiao et al., 2021). However, there are still large
uncertainties in quantifying changes in the risk of compound
flooding due to the insufficient skill of climate models in

simulating extreme precipitation caused by storms (Zhang
et al., 2019a; Roberts et al., 2020; Vannière et al., 2020).
Alternatively, previous efforts have been made to develop
parametric tropical cyclone rainfall models (Marks and
DeMaria, 2003; Lonfat et al., 2007; Langousis and Veneziano,
2009; Zhu et al., 2013; Emanuel, 2017; Brackins and Kalyanapu,
2020; Xi et al., 2020). The parametric tropical cyclone rainfall
models are listed in Table 2, including R-CLIPER (Marks and
DeMaria, 2003; Tuleya et al., 2007), IPET (IPET 2006), PHRaM
(Lonfat et al., 2007), MSR (Langousis and Veneziano, 2009), RMS
(Grieser and Jewson, 2012) and TCRM (Zhu et al., 2013;
Emanuel, 2017; Xi et al., 2020). The parametric models are
very useful to quantify the future risk of tropical cyclone
rainfall and coastal flooding (Zheng et al., 2014; Geoghegan
et al., 2018).

Storm surge caused by tropical/extratropical cyclones will be
exacerbated by the rise of sea level, magnifying the coastal flood
hazards (Little et al., 2015; Haigh et al., 2016; Muis et al., 2016;
Vousdoukas et al., 2018; Marsooli et al., 2019). Indeed, sea level
rise can greatly increase the risk of coastal flooding caused by
storm surge (McInnes et al., 2003; Karim and Mimura, 2008;
Hallegatte et al., 2011; Tebaldi et al., 2012; Zhang et al., 2013; Arns
et al., 2015).

Storm Surge and Riverine Floods
While storm surge can be compounded with extreme rainfall, it is
also dangerous when storm surge is in concert with riverine
flooding. Many studies have analyzed the co-occurrence of storm
surge and riverine/fluvial floods (Kew et al., 2013; Klerk et al.,
2015; Khanal et al., 2019), including simulations using global
coupled river-coast flood model (Ikeuchi et al., 2017). The effect
of compound storm surge and riverine flooding has also been
examined using remote sensing technologies in western coastal
Louisiana (Ramsey et al., 2011), in a tidal river in Rhode Island

FIGURE 3 | Annual average tropical cyclone precipitation (unit: mm/year) in observations based on the International Best Track Archive for Climate Stewardship
(IBTrACS; Knapp et al., 2010) dataset and the Multi-Source Weighted-Ensemble Precipitation Version 2 (MSWEP v2, Beck et al., 2017a; 2017b) precipitation data.
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(Teng et al., 2017), the Rhine–Meuse Delta (Klerk et al., 2015), the
United Kingdom (Hendry et al., 2019), the Netherlands (Khanal
et al., 2019), the USA (Dietrich et al., 2010; Couasnon et al., 2018)
and Italy (Bevacqua et al., 2017). In addition to regional scale
analysis of this compound extreme, some studies have examined
the dependence of storm surge and extreme discharge at the
global scale (Ward et al., 2018). The compound flooding is caused
by the interactions between physical drivers from oceanographic,
hydrological, and meteorological processes in coastal areas,
leading to highly complex interplays (Couasnon et al., 2020).
Overall, the compound flooding is based on their drivers,
including storm surge, precipitation, and river discharges.
While many compound flood events are associated with
tropical cyclones, some are related to typical synoptic weather
systems (Couasnon et al., 2020).

Statistical methods and coupled modeling have been used to
quantify the compound storm surge and riverine flood (Dietrich
et al., 2010). For example, a global river routing model forced by
global hydrological models and bounded downstream by a global
tide and surge model has been used to assess the effect of storm
surge on riverine flood (Eilander et al., 2020). Hydrologic and
hydrodynamic models are combined to assess compound
flooding caused by the 2016 tropical storm Matthew (Zhang
and Najafi, 2020). In addition, joint probabilities and copula have
been widely used to examine the compounds (Czajkowski et al.,
2013; Petroliagkis et al., 2016; Couasnon et al., 2018).

Sea Level Rise and Coastal Flooding
Sea level rise may reduce the gap between high tidal datum and
flood stage, increasing the frequency of coastal flooding
(Andersen and Shepherd, 2013; Kriebel and Geiman, 2014;
Schindelegger et al., 2018). When riverine and coastal floods
occur back-to-back, their impacts would be stronger than they
happen in isolation (Ward et al., 2018, 2018). Overall, sea level
rise can double the frequency of coastal flooding in the next few
decades (Mousavi et al., 2011; Woodruff et al., 2013; Karegar
et al., 2017; Vitousek et al., 2017). For example, due to sea level
rise, there is increased coastal flooding in California (Heberger
et al., 2011; Garcia and Loáiciga, 2014), Mekong Delta (Takagi
et al., 2015), Italian coastal plains (Rinaldo et al., 2008; Antonioli
et al., 2017), Mediterranean (Reimann et al., 2018), the US East
Coast (Ezer and Atkinson, 2014; Dahl et al., 2017), Miami Beach,
Florida (Wdowinski et al., 2016), Latin America (Reguero et al.,
2015), China (Fang et al., 2016). Sea level rise is found to be
compounded with fluvial flooding using a bivariate flood hazard
assessment (Moftakhari et al., 2017a). Sea level rise can influence

cyclonic storm surge floods in Bangladesh (Karim and Mimura,
2008). Future sea level rise can not only increase the probability of
infrastructure failure, but it can also increase the compounding
flood drivers (Moftakhari et al., 2017a). Climate change will
increase the potential to cause higher frequency and
magnitude of coastal flooding due to hurricane intensification
and sea level rise (Figure 4) (Mousavi et al., 2011).

Coastal and Riverine Floods
Riverine and coastal floods characterized by the simultaneous or
successive occurrence of high sea levels and high river flows can
be life threatening and cause infrastructures damage (Nadal et al.,
2010; Ganguli et al., 2020; Khanam et al., 2021). This type of
flooding was remarkable during hurricane Harvey in Houston-
Galveston Bay (Valle-Levinson et al., 2020; Huang et al., 2021b).
For example, around 600 million people in coastal regions may be
exposed to this type of compound flood by 2,100 (Kulp and
Strauss, 2019). Over the years, the location in a river system where
riverine and coastal flood drivers can contribute to the water level
has been defined as the transition zone (Bilskie and Hagen, 2018).
For example, the 2016 Louisiana flood was caused by excessive
rainfall and coastal floods (Wang et al., 2016).

NUMERICAL MODELING

Climate models have been used to quantify compound extremes
and their distributions (Sherwood, 2018; Raymond et al., 2020b; Xu
et al., 2021; Yuan et al., 2020). Given the five types of compound
extremes (Table 1), it is still quite challenging to represent the
extremes in numerical models (Table 3). Due to the key role of
land-atmosphere feedbacks in shaping the compound dry-hot
events, fully-coupled models are desirable for performing
simulations (Fischer et al., 2007; Stéfanon et al., 2014; Keune
et al., 2016; Sillmann et al., 2017). Current numerical models
have been used to simulate the compound extremes, including
large eddy simulators (Cioni and Hohenegger, 2017), column
models (Van Heerwaarden et al., 2010; Miralles et al., 2014),
regional climate models and global climate models (Vautard
et al., 2013; Chung et al., 2014; Stegehuis et al., 2015). While
regional climate models are extremely useful in resolving land
conditions (Fischer et al., 2007; Stéfanon et al., 2014; Keune et al.,
2016; Sillmann et al., 2017), global climate models are commonly
used to assess changes in land conditions on extreme weather (e.g.,
drought and heat wave) (Hauser et al., 2016; Kala et al., 2016;
Rasmijn et al., 2018). The models in the Coupled Model

TABLE 2 | Parametric models for tropical cyclone rainfall.

Parametric models Short name References

Rain-Climatology and Persistence R-CLIPER Marks and DeMaria, 2003, Tuleya et al. (2007)
Interagency Performance Evaluation Task Force IPET IPET, (2006)
Parametric Hurricane Rainfall Model PHRaM Lonfat et al. (2007)
Modified Smith for Rainfall MSR Langousis and Veneziano, (2009)
Risk Management Solutions, LTD. RMS Grieser and Jewson, (2012)
Tropical cyclone rainfall model TCRM Zhu et al. (2013), Emanuel. (2017)
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Intercomparison Project Phase 6 (CMIP6) exhibit some skill in
simulating the co-occurrence of hot and dry compound events
in North America and Europe (Ridder et al., 2021). Because the
numerical models’ outputs are limited by the climatological
biases, univariate and multivariate bias correction methods
have been used to correct the biases, and thus improving the
performance and usability of the models (Maraun, 2016;
Vezzoli et al., 2017; Vrac, 2018; Zscheischler et al., 2018;
François et al., 2020). While univariate bias correction
operates well in a single variable, multivariate bias
correction methods aim to reduce biases that depend on
multiple variables, which is an important feature of
compound extreme events. Climate model evaluation is
usually univariate without considering the multivariate
nature of multiple hazards, it is thus important to evaluate
the biases in the dependence between the contributing
variables in climate models (Vezzoli et al., 2017). However,
rare studies have evaluated the climate model multivariate
representation of hazard indicators (Bevacqua et al., 2019;
Villalobos-Herrera et al., 2021; Zscheischler et al., 2021).

Regional climate models also take initial and boundary
conditions from the output of global climate models and can
resolve small-scale processes, thereby perform well in simulating
single events simulations (Fischer et al., 2007; Stéfanon et al.,
2014; Keune et al., 2016; Sillmann et al., 2017). Therefore, regional
climate models depend heavily on the simulation of global
climate models, which are commonly used to simulate a
longer simulation (e.g., years or decades) with a coarser spatial
resolution (∼1–2°) (Orlowsky and Seneviratne, 2013; Cook et al.,
2020; Ridder et al., 2020, 2021; Ukkola et al., 2020; Vogel et al.,
2020; Su et al., 2021).

Numerical models have also been used to study compound
flooding. Ideally, an earth system model that resolves tropical
cyclones, waves, ocean circulation, and hydrological cycle can
simulate all the processes and interactions at play (Flato, 2011).
However, the current generation of earth system models cannot
resolve or simplify the processes responsible for the compound
flooding (Meehl et al., 2020). To quantify the impacts of sea level
rise on storm surge, previous studies have used three methods:
numerical simulation of storm surge with sea level rise using the

FIGURE 4 | Schematic illustrating the risk of coastal flooding under the present and future climates (Andersen and Shepherd, 2013; Kriebel and Geiman, 2014;
Moftakhari et al., 2017a; Schindelegger et al., 2018).

TABLE 3 | Numerical models for studying compound extremes.

Numerical models References Description

Single column models Van Heerwaarden et al., 2010 Miralles et al.,
2014

A mechanistic model of the soil-water-atmosphere column

Large eddy simulators Cioni and Hohenegger (2017) A very high-resolution regional model (<1,000 m)
Regional climate models Vautard et al. (2013) Chung et al. (2014)

Stegehuis et al. (2015)
A high-resolution model that can simulate atmosphere-land
interactions

Global climate models Hauser et al. (2016) Kala et al. (2016) Rasmijn
et al. (2018)

A model the simulates the global climate with a lower spatial
resolution

Storm surge models coupled with wave model (SLOSH,
ADCRIC) and hydrological models

Sebastian et al. (2014) Yin et al. (2016) A coupled system that simulates storm surge, sea level rise,
river discharge and stream flow
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Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model
(Glahn et al., 2009) or the Advanced Circulation (ADCIRC)
model (Sebastian et al., 2014; Yin et al., 2016), the simple linear
addition method (Kleinosky et al., 2007; Frazier et al., 2010) and
Linear addition by expansion method (McInnes et al., 2013). The
storm surge model and hydrological model are forced with high-
resolution climate model outputs for analyzing the joint
occurrence of coastal water levels and river peaks (Ganguli
et al., 2020).

STATISTICAL MODELING

Statistical models and observations have been used to investigate
compound hydrological extremes. For example, a theoretical
framework has been developed to examine compound
extremes (Leonard et al., 2014). Recently, much attention has
been paid to understand the dependence between multiple
relevant variables associated with compound extremes,
particularly from a statistical perspective. Overall, the
statistical methods employed across the literature consist of
empirical approach, event coincidence analysis (ECA),
multivariate distribution, the indicator approach, quantile
regression and the Markov Chain method (Table 4) (Hao
et al., 2018).

Empirical Approach
The empirical approach is performed by counting the
simultaneous or sequential frequency/occurrence of the
extremes based on the definition (e.g., maxima, threshold or
percentile). This approach has been used to examine the

compound temperature and precipitation extremes (Fischer
and Knutti, 2013; Hao et al., 2013; Morán-Tejeda et al., 2013;
Miao et al., 2016, 1961–2011), air pollution and temperature
extremes (Schnell and Prather, 2017), storm surge and rainfall
(Wahl et al., 2015). Based on the frequency/occurrence of the
compound events, the trend and change point of the time series
has been commonly examined to identify temporal change
patterns (Dabhi et al., 2021; Feng and Hao, 2020).

Event Coincidence Analysis
Event coincidence analysis (e.g., events synchronization) has been
used to formulate and test null hypotheses on the origin of the
observed relationship (Donges et al., 2016). In the analysis of
temporal compound extremes (e.g., floods that follow heat stress)
(Zscheischler et al., 2020a), it is important to test the null
hypothesis that whether this lagged association between floods
and heat stress is randomly distributed (Zhang and Villarini,
2020). This method has been used to quantify the lagged
compound droughts and pluvial floods (He and Sheffield,
2020), the association between precipitation and soil moisture
extremes (Sun et al., 2018), and flood-heatwave events (Chen
et al., 2021).

Multivariate Distribution
As discussed before, an essential element of the compound
extreme is the dependence between different drivers (Leonard
et al., 2014). In order to quantify the dependence, multivariable
distribution has been widely used in applications (Trepanier et al.,
2017; Zscheischler and Seneviratne, 2017). The multivariate
distribution has been employed to quantify the joint
distribution of temperature and precipitation extremes

TABLE 4 | Statistical methods for studying compound extremes.

Statistical methods References Description

Empirical Approach Fischer and Knutti, (2013) Count the occurrence frequency based on threshold and percentile
Hao et al. (2013)
Morán-Tejeda et al. (2013)
Miao et al. (2016)

Event coincidence analysis He and Sheffield, (2020) Examine the coincidence of two events against random occurrence
Zhang and Villarini, (2020)
Chen et al. (2021)

Multivariate Distribution Trepanier et al. (2017) Examine the dependence of the two or more extremes using the joint/marginal probability
Zscheischler and Seneviratne, (2017)
Sadegh et al. (2018)
Alizadeh et al. (2020)
Hao et al. (2020b)
Ribeiro et al. (2020a)

Indicator Approach Karl et al. (1996) Combine the components of the compound extreme into an indicator
Gallant and Karoly, (2010)
Gallant et al. (2014)
Wu et al. (2020)

Quantile Regression Quesada et al. (2012) Examine the relationship between predictand and predictor, which are extremes
Meng and Shen, (2014)

Markov Chain Model Steinemann, (2003) Describe a sequence of events where the present state depends only on the antecedent state
Chowdhury et al. (2015)
Sedlmeier et al. (2016)

Complex Networks Boers et al. (2019) Identify interacting extreme events with a dynamic lead-lag
Nowack et al. (2020)
Sun et al. (2018)
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(Hawkes, 2008; Tebaldi and Sansó, 2009; Rodrigo, 2015;
Zscheischler and Seneviratne, 2017). Different ways have been
proposed to construct the multivariate distribution, including
parametric distribution, copula, entropy, and nonparametric
models.

Copula theory has been employed to characterize the bivariate
and trivariate joint distribution and assess complex dependence
structures, e.g., in the case of upper tail dependence (Bevacqua
et al., 2017; Ribeiro et al., 2020b; Tavakol et al.,
2020b).C(x, y) � P(X≤x, Y≤y) � S(U,V; θ), where θ
denotes the copula parameter, X and Y are two random
variables and U and V denote the marginal distribution and S
is the copula. In order to better quantify the dependence, a
number of copula families have been developed including
extreme-value copula, archimedean copula and elliptical
copula (Nelsen, 2007).

The copula models can be used to calculate the joint
probability and/or bivariate return periods of compound
extremes, thereby quantifying their risk (Sadegh et al., 2018;
Alizadeh et al., 2020; Ribeiro et al., 2020a; Hao et al., 2020b).
In addition, the copula theory has also been used in multivariate
bias correction methods to adjust dependencies among variables
in climate models’ output (Vezzoli et al., 2017).

The multivariate distribution approach can also quantify the
conditional association among different extremes. A common
compound extreme (hot-dry event) is characterized by the
dependence of high temperatures on precipitation deficit
(Alizadeh et al., 2020; Hao et al., 2020b) due to land-
atmospheric feedbacks. Different from previous methods in
which the extremes were selected prior to analysis, some
compound extremes may happen when not all components
are defined as extreme. The conditional probability approach
can solve this problem (Heffernan and Tawn, 2004; Zhang and
Singh, 2007).

Indicator Approach
In defining compound extremes, it is extremely difficult to define
a “threshold” for identifying extremes in a multivariate situation
(Salvadori et al., 2013). The indicator approach develops an
indicator based on the information of multiple variables by
formulating a function F, which could be a linear combination
or joint distribution of these variables.

Previous studies have developed such indicators for
compound extremes (Karl et al., 1996; Gallant and Karoly,
2010; Gallant et al., 2014; Wu et al., 2020). Similar indicators
have been developed to characterize drought and flood conditions
(Kao and Govindaraju, 2010; Hao and AghaKouchak, 2013; Hao
and Singh, 2015; Paprotny et al., 2018; Wang L. et al., 2019).

Quantile Regression, Markov chain Model
and Complex Networks
The quantile regression enables the quantification of the
relationship between the extremes of two variables
(i.e., predictand and predictor). The quantile regression is
therefore useful to study the compound extremes (e.g.,
drought and temperature extremes) (Quesada et al., 2012;

Meng and Shen, 2014) and humidity and temperature
extremes (Poppick and McKinnon, 2020; Huang et al., 2021),
compound cool/dry and cool/wet events (Zhou and Liu, 2018).
The Markov Chain model is another method to examine the
connections between a sequence of extreme events. Previous
works have used this method to examine the temporal change
of drought (Steinemann, 2003) and heavy precipitation
(Chowdhury et al., 2015; Sedlmeier et al., 2016). Complex
networks are a powerful tool to unravel the connections
between nodes of the network (Boers et al., 2019; Nowack
et al., 2020). Complex networks are capable of driving the
casual relationship between two or more variables (Sun et al.,
2018). In addition, Bayesian network (Couasnon et al., 2018;
Tilloy et al., 2019; Sanuy et al., 2020) and Artificial Neural
Network (Kabir et al., 2020; Feng et al., 2021; Huang et al.,
2021a) have been used to understand compound extremes (e.g.,
compound flooding).

CONCLUSION AND DISCUSSION

Compound hydrometeorological extremes (e.g., hot and drought
compound) exert profound impacts on agriculture and water
irrigation demand (Zampieri et al., 2017; Lu et al., 2018; Ribeiro
et al., 2020b; Haqiqi et al., 2021; Vogel et al., 2021). For example,
the compound drought and heatwave events may affect socio-
ecological systems (Mukherjee et al., 2020), wildfires (Abatzoglou
and Williams, 2016; AghaKouchak et al., 2020; Sutanto et al.,
2020), air pollution (Tressol et al., 2008; Zhang H. et al., 2017;
Wang et al., 2017; Lin et al., 2020), heat-related deaths (D’Ippoliti
et al., 2010; Mitchell et al., 2016). Hot and dry weather conditions
may lead to outbreaks of extreme fire due to low humidity and dry
vegetation (AghaKouchak et al., 2020).

To mitigate and adapt to compound hydrometeorological
extremes, we need to better understand the current state of
the science of such extremes. Here, we have reviewed the
current understanding of hydrometeorological extremes
focusing on heat waves and drought (hot-dry events), heat
stress and extreme precipitation (hot-wet events), compound
flooding, dynamical models, and statistical methods.

Overall, there are two physical mechanisms used to explain
compound hot and dry extreme in the literature. The first concept
is that there are persistent atmospheric circulation patterns which
are responsible for both drought and heat waves, and land-
atmosphere feedbacks which are also responsible for the
compound heat waves and droughts. Compared with
compound hot and dry extremes, compound hot and wet
extremes are less visited in the literature with case studies. We
have summarized compound flooding events that include storm
surge and high rainfall, storm surge and sea level rise, storm surge
and riverine flooding, and coastal and riverine flooding. Looking
ahead, there is a rising risk of compound flooding in the future
because of changes in sea level rise, storm intensity and
precipitation, land-use-land-cover change in the future (Slater
et al., 2021).

In terms of methods, numerical modeling and statistical methods
have been used to investigate compound extremes. Overall, climate
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models alone or coupled with land models, hydrological models,
hydrodynamic models and wave models are common tools to
investigate compound floods by complementing statistical
modeling tools. Climate models still lack skill in simulating
dynamical compound extremes, although they perform well in
simulating some thermodynamic aspects. Overall, the statistical
methods consist of empirical approaches, event coincidence
analysis, multivariate distributions, the indicator approach, quantile
regression and the Markov Chain method. These methods have
greatly advanced our understanding of such extremes, providing a
quantification of risk associated with the extremes. Over the decades,
machine learning algorithms have advanced many research fields in
recent years including climate science. However, while machine
learning research has been used to examine individual extreme
events (e.g. Grazzini et al., 2019; Bruneau et al., 2020;
Chattopadhyay et al., 2020), work on compound extremes is still
in its infancy. At the time of writing this article, there were hardly any
published studies harnessing machine learning or deep learning to
better understand compound hydrometeorological extremes.
Therefore, machine learning and its recent algorithmic advances
can provide an opportunity and a promising avenue to improve
our understanding of compound extreme events.

It would be extremely valuable to build prediction systems for
compound hydrometeorological extremes. Indeed, a statistical
prediction system has been built to predict compound hot-dry
extremes (Hao et al., 2019). Building a statistical prediction model
for compound extremes requires the identification of predictors
and the evaluation of the predictability of the predictors, which
are still challenging tasks (Sillmann et al., 2017). Hybrid
statistical-dynamical prediction systems which combine
statistical modelling with outputs from dynamical climate
models would be promising for predicting compound extremes.
Specifically, hybrid statistical-dynamical prediction systems train the
relationship between predictors and predictands based on statistical
modeling and make predictions based on predictors based on
dynamical models. Indeed, several hybrid prediction systems have
been developed for individual extremes such as tropical cyclones in
the westernNorth Pacific andNorthAtlantic (Murakami et al., 2016;
Zhang W. et al., 2017) and more recently for flood prediction in the
USA (Slater and Villarini, 2018). Future research may use
Subseasonal to Seasonal (S2S) forecasts such as the products of
the North American Multi-Model Ensemble (NMME) or the C3S
system of the European Centre for Medium-Range Weather
Forecasts (ECMWF) and Copernicus to develop an enhanced
prediction of compound extremes.

Given the strong impacts of compound extremes on society,
the bottom-up approach is used to examine the compound
extremes (Culley et al., 2016; Zscheischler et al., 2018), by

identifying the drivers and/or hazards that lead to large
impacts. This approach usually begins with a strong impact
(e.g., disaster), followed by identifying underlying factors,
processes or phenomena shaping the outcome. This includes
identifying which factors lead to large impacts. This bottom-up
approach has been widely used to study compound weather and
climate events. While the bottom-up approach is relevant, the
perspective of the present study lies in the physical hazards
associated with compound events.

Finally, we have identified several future research directions
for compound hydrometeorological extremes, including:

• projecting the risk of compound extremes for different
levels of future warming (Zscheischler et al., 2018; Wang
et al., 2020);

• evaluating the impacts of the compound extremes on
natural and built environments (AghaKouchak et al.,
2020; Zhang and Najafi, 2020);

• developing adaptation measures to the changing risk of
compound extremes (Weber et al., 2020; Clarke et al., 2021);

• enhancing subseasonal-to-seasonal prediction of these
extremes (Zamora et al., 2021; Zou, 2021);

• improving the representation and evaluation of compound
extremes in fully-coupled climate models (Ridder et al.,
2021; Zscheischler et al., 2021) and developing multivariate
bias correction for these models (Vezzoli et al., 2017;
Zscheischler et al., 2019);

• applying machine learning to understand these extremes
(Wang L. et al., 2021; Zou, 2021).
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