About this Research Topic
Although terahertz time-domain spectroscopy (THz-TDS) has achieved fruitful results in the nondestructive testing (NDT) field especially for biomedical analytics and engineering diagnosis, THz-TDS nondestructive testing also faces the increasing demand for improving the existing theoretical methods, detection range, and low detection speed and resolution. Because of these limitations in THz sensing and diagnosis, there is an increasing awareness that THz technology may be combined with methods such as the use of strongly confined electromagnetic fields to enhance light-matter interactions and thereby produce a better measurement effect. This Research Topic focuses on the recent progress of terahertz sensing and diagnosis, and trends in developing leading-edge fundamental concepts and novel applications.
The purpose of this Research Topic of Frontiers in Physics is to highlight the recent progress and trends in the development of leading-edge terahertz nondestructive testing technologies. Areas of interest include (but not limited to):
- Ultrahigh-sensitivity terahertz sensing
- Terahertz non-destructive testing
- Terahertz diagnosis
- Ultrahigh-resolution imaging and spectroscopy
- Terahertz signal processing
- Plasmonic devices
- Novel metamaterials for sensing applications
- Monitoring biomolecular interactions, structures, and functions on the sub-wavelength
- New devices to generate Terahertz radiation
- Novel concepts, techniques, and simulations for the THz measurement of physical, chemical, biological, and optical parameters
Dr. Yi Huang: Co-ordinator for the project.
Keywords: terahertz, sensing, terahertz non-destructive testing, terahertz diagnostics, terahertz signal processing
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.