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Editorial on the Research Topic

Application of Novel Statistical and Machine-Learning Methods to High-Dimensional Clinical

Cancer and (Multi-)Omics Data

The big genomics data from various aspects (e.g., DNA polymorphism, transcriptomics, and
proteomics) is now available in cancer research and clinic application. These (multi-)omics data
come with a new feature of high dimension: much more features/predictors relative to the
available sample size. Meanwhile, researchers are looking beyond individual omics study and
exploring integrative analysis of (multi-)omics data. Accordingly, there are novel statistical and
machine learning methods designed for the high-dimensional and/or integrative (multi-)omics
data analysis. The present Research Topic collects the methodology development and application
of statistical and machine-learning methods for high-dimensional clinical (multi-)omics, and
integration analysis, mostly, in cancer research.

For multi-omics integration analysis, classical statistical and machine leaning approaches are
widely used. Wang et al. did Cox regression analysis on combined immunohistochemical (IHC)
markers and synthetic lethal gene pairs. New prognostic markers for Asian oral cancer were
reported. Xu et al. used unsupervised cluster-of-clusters analysis to integrate subgroup classification
from different omics and identify potential driver genes in cervical cancer. They found four
statistically significant expression subtypes by clustering of tumor copy number variation (CNV)
and methylation profiles.

New approaches have been developed based on these classical methods as well. For example,
the Mimi-Surv Model built on Cox regression was designed to identify miRNA-mRNA integration
set associated with survival time (Kim et al.). Ye et al. proposed a new meta-analysis method to
integrate multiple transcriptomic studies and categorize biomarkers by concordant patterns with
application to Pan-Cancer studies. Jeong et al. presented a kernel canonical correlation analysis
(CCA) method to construct condition specific transcriptional networks. CCA with a positive
definite kernel is a well-used method for multiple source data analysis. They employed kernel CCA
to embed transcription factors (TFs) and target genes (TGs) into a new space where the correlation
of TFs and TGs are reflected. Their approach successfully detected novel TF-TG relations in
addition to replicated existing regulatory interactions.
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Current methods appropriate for high-dimensional data
includes penalized regression models (e.g., LASSO and Ridge
regression), kernel-based methods, tree-based methods (e.g.,
random forest), and latest versatile deep learning models [e.g.,
Generative Adversarial Networks (GANs)]. In our collection, Ge
et al. proposed a modified conditional GANs with new network
structures for estimation of individualized treatment effect,
which can handle binary and continuous type of treatments.
In their framework, LASSO was also used to select biomarkers
for optimal treatment selection. Liu and Li proposed a new
method for estimation and prediction of heterogeneous restricted
mean survival time based on random forest. The application
in ovarian cancer showed improved prediction performance vs.
existing methods.

With many powerful tools in the field, it is always interesting
to evaluate their strengths and appropriate usage. Källberg et al.
compared 13 feature selectionmethods for their ability to identify
a subset of genes that can be used to accurately classify cancer
subtypes based on gene expression data. Each of the feature
selection techniques was applied to four human cancer data
sets with known subtypes, enabling accuracy assessment. Their
findings demonstrated that the feature selection methods based
on modality outperformed the most commonly used approach of
selecting the genes with the highest variability.

In addition to the applications in cancer, Zhou et al.
used gene expression data and 6 machine learning methods
to predict the 3-year survival risk for patients having heart
failure with preserved ejection fraction (HFpEF). In their result,
the kernel partial least squares with the genetic algorithm
(GA-KPLS) outperformed penalized regression, random forest,
support vector machine (SVM), and logistic regression. Jiang
et al. employed mendelian randomization (MR) and meta-
analysis to study the causal relationship between alcohol
consumption and risk of autoimmune inflammatory diseases
from totaling 1 million individuals’ genetic data. With the
enormous genetic data and comprehensive analysis, they noted
an overall null association between alcohol consumption and
common autoimmune inflammatory disorders.

As summarized above, this collection of original research
papers presents a significant amount of progress made in the
integrative analysis of clinical and (multi-)omics cancer data,
prediction in cancer diagnosis/survival/progression, statistical,
and machine learning methods for high-dimensional data
analysis. While the generation of data has far outpaced our
ability to make sense of those data, further development and
application of statistical and machine-learning methods are
required for the analysis of contemporary genetics in cancer and
other diseases.
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Treatment response is heterogeneous. However, the classical methods treat the

treatment response as homogeneous and estimate the average treatment effects. The

traditional methods are difficult to apply to precision oncology. Artificial intelligence (AI)

is a powerful tool for precision oncology. It can accurately estimate the individualized

treatment effects and learn optimal treatment choices. Therefore, the AI approach can

substantially improve progress and treatment outcomes of patients. One AI approach,

conditional generative adversarial nets for inference of individualized treatment effects

(GANITE) has been developed. However, GANITE can only deal with binary treatment and

does not provide a tool for optimal treatment selection. To overcome these limitations,

we modify conditional generative adversarial networks (MCGANs) to allow estimation

of individualized effects of any types of treatments including binary, categorical and

continuous treatments. We propose to use sparse techniques for selection of biomarkers

that predict the best treatment for each patient. Simulations show that MCGANs

outperform seven other state-of-the-art methods: linear regression (LR), Bayesian linear

ridge regression (BLR), k-Nearest Neighbor (KNN), random forest classification [RF (C)],

random forest regression [RF (R)], logistic regression (LogR), and support vector machine

(SVM). To illustrate their applications, the proposed MCGANs were applied to 256

patients with newly diagnosed acute myeloid leukemia (AML) who were treated with high

dose ara-C (HDAC), Idarubicin (IDA) and both of these two treatments (HDAC+IDA) at M.

D. Anderson Cancer Center. Our results showed that MCGAN can more accurately and

robustly estimate the individualized treatment effects than other state-of-the art methods.

Several biomarkers such as GSK3, BILIRUBIN, SMAC are identified and a total of 30

biomarkers can explain 36.8% of treatment effect variation.

Keywords: causal inference, generative adversarial networks, counterfactuals, treatment estimation, precision

medicine
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INTRODUCTION

Traditional clinical management estimates the average treatment
effects from observational data, assuming that the complex
disease is homogeneous (Rosenbaum and Rubin, 1983; Hansen,
2004; Diamond and Sekhon, 2013; Kennedy et al., 2017; Liu et al.,
2018; Luo and Zhu, 2020). Alternatives to traditional clinical
management, “precision medicine” or “precision oncology”
attempts tomatch themost accurate and effective treatments with
the individual patient (Shin et al., 2017; Ali and Aittokallio, 2019),
rather than using monotherapy that treats all patients. In the real
world, treatment response is heterogeneous. Therapy should be
tailored with the best response possible and highest safety margin
to ensure that the right therapy is offered to “the right patient at
the right time” (Subbiah and Kurzrock, 2018). Precision oncology
can substantially improve progress and treatment outcomes of
patients. It plays a central role in revolutionizing cancer research.
Consequently, alternative to calculating the average effect of an
intervention over a population, many recent methods attempt
to estimate individualized treatment effects (ITEs) or conditional
average treatment effects from observational data (Makar et al.,
2019). To accurately estimate the individualized treatment effects
and learn optimal treatment choices are key issues for precision
oncology. More accurate estimation of individualized treatment
effects, which provides information to guide the individual
selection of the target therapies, is essential for the success of
precision medicine (Kornblau et al., 2009).

Methods for estimation of individualized treatment effects
(ITEs) using observational data largely differ from standard
statistical estimation methods. Estimating of ITEs and learning
optimal treatment strategies raise a great challenge for the
following reasons. First, a common framework for treatment
effect estimation is the potential outcomes assumptions (Ray
and Szabo, 2019) where every individual has two “potential
outcomes” covering the hypothesized individual’s outcomes with
and without treatment. Estimation of ITEs requires estimation
of both factual and counterfactual outcomes for each individual.
However, only the factual outcome is actually observed.We never
observe the counterfactual outcomes (Rosenbaum and Rubin,
1983; Chen and Paschalidis, 2018; Yoon et al., 2018a).

If the effect of each treatment in the subpopulation which
is separately estimated is taken as an individual effect, this can
create large biases. The estimated effect of each treatment in the
subpopulation is still the average effect of the treatment in that
subpopulation and is not an individualized treatment effect in
the subpopulation.

Second, clinical data often have many missing values.
Simultaneously imputing both counterfactual values and
missing values is not easy. Third, the function forms of
the treatment effects which are often non-linear functions
are unknown (Ray and Szabo, 2019). Statistical methods
and computational algorithms that can efficiently deal with
unknown forms of non-linear functions are still lacking
(Lengerich et al., 2019).

Classical works such as random forest and hierarchical models
are adapted to estimate heterogeneous treatment effects (Wager
andAthey, 2015). Recently, machine learning and neural network

methods are used to move away from average treatment effect
estimation to personalized estimation (Johansson et al., 2016;
Shalit et al., 2016; Alaa and van der Schaar, 2017). AI and
causal inferences are becoming a driving force for innovation in
precision oncology (Seyhan and Carini, 2019). A key issue for
ITE estimation is to learn unobserved (missing) counterfactuals.
The idea of using generative adversarial networks (GANs) for
handling missing data is a very promising approach to imputing
counterfactual (Goodfellow et al., 2014; Ding and Li, 2017; Yoon
et al., 2018a). Using conditional GAN (CGAN) to estimate the
individualized treatment effects (GANITE) has been developed
(Yoon et al., 2018a,b). The CGANs consist of a generator and a
discriminator. The generator (G) observes the factual part of real
data and imputes the counterfactuals (missing part) conditioned
on observed factual data, and outputs the complete dataset. The
discriminator (D) inputs the real dataset and tries to determine
which part was actually observed and which part was imputed
counterfactuals. The discriminator enforces the generator to
learn the desired distribution (hidden data distribution) (Yoon
et al., 2018b).

However, the original GANITE was designed for estimation
of the effects of binary treatment and cannot be applied to
continuous and categorical treatments. The treatment variable in
the original GANITE is a binary variable which only represents
the presence and absence of treatment. Therefore, the treatment
variable in the original GANITE is unable to quantify the dosage
of the treatment, and hence the original GANITE cannot be
applied to continuous treatment. To overcome this limitation,
we introduce a treatment assignment indicator variable and
treatment quantity variable. The treatment quantity variable
can represent binary treatment, categorical treatment, and
continuous treatment. We change mathematical formulations
of the generator and discriminator and extend GANITE from
binary treatment to all types of treatments including binary,
categorical, and continuous treatments. The modified GANITE
is abbreviated as MGANITE.

GANITE or in general, CGAN has not systematically
investigated the estimation of ITE for chemotherapy and
other types of treatments in cancer and compared the results
from causal inference using observed data with the results
of randomized clinical trials. One of our goals in this
manuscript is to examine whether MGANITE still works well in
cancer research.

InMGANITE, biomarkers that serve as conditioned variables,
will be used to estimate the ITEs of both single and multiple
treatments (Mirza andOsindero, 2014; Yoon et al., 2018a). Sparse
techniques will be employed to select biomarkers for prediction
of treatment effects and to learn optimal treatment choices of
patients (Emmert-Streib and Dehmer, 2019).

In summary, The novelty of modified GANITE (MGANITE)
is summarized below.

1. The previous conditional generative adversarial network

(CGAN)-based causal inference methods (GANITE) only

can estimate the individualized effects of binary treatment

and cannot estimate the individualized effects of continuous

treatments. The proposed MGANITE is the first time to use
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modified CGANs for estimation of individualized effects of
continuous treatments.

2. We develop new network structures for the generator and
discriminator in the CGANs.

3. We combined sparse techniques for selection of biomarkers
with MGANITE to predict the best treatment for each patient.

To evaluate its performance for estimating ITEs, simulations
are conducted to estimate ITEs using simulated data and
MGANITE, and to compare its estimation accuracy with five
other state-of-the-art methods (LR, KNN, BLR, random forest,
and SVM). To further evaluate its performance, MGANITE is
applied to 256 newly diagnosed acute myeloid leukemia (AML)
patients, treated with high dose ara-C (HDAC), Idarubicin
(IDA), and HDAC+IDA at M. D. Anderson Cancer Center
to estimate ITEs and identify the optimal treatment strategy
for each patient. Preliminary results from simulations and real
data analysis show that MGANITE outperforms five other
state-of-the-art methods. A program for implementing the
proposed MGANITE for ITE estimation and optimal treatment
selection can be downloaded from our website https://sph.uth.
edu/research/centers/hgc/software/xiong/.

MATERIALS AND METHODS

Potential Outcome Framework for
Estimation of Treatment Effects
We assume the Rubin causal model for estimation of treatment
effects (Rubin, 1974) and modifies the approach to the
individualized treatment effect estimation in Yoon et al.,
2018a). The original GANITE only can estimate ITE of binary
treatments, but it cannot be applied to categorical and continuous
treatments. We developMGANITE which can estimate ITE of all
types of treatments including binary, categorical, and continuous
treatments by introducing a treatment assignment indicator
variable and changing the formulation of the generator and
discriminator. ConsiderK treatments. Let Tk be the k

th treatment
variable that can be binary, categorical or continuous, and T =

[T1, . . . ,TK]
T be the treatment vector. We assume that there is

precisely one non-zero component of the treatment vector T,
which is denoted by Tη, where η is the index of this component.
Each sample has one and only one assigned treatment Tη.
To extend the binary treatment to include categorical and
continuous treatments, we define the treatment assignment
indicator vectorM = [M1, . . . ,Mk, . . . ,MK]

T as

Mk =

{

1 k = η

0 otherwise

where
∑K

k=1Mk = 1.
For example, if

T =





0
T2

0





then η = 2 and

M =





0
1
0





If we consider treated and untreated cases, then K = 2. Let T1

denote the treatment and T2 denote no treatment where T2 = 1.
For the sample with the treatment, we have

T =

[

T1

0

]

and M =

[

1
0

]

For the sample with no treatment, we have

T =

[

0
T2

]

and M =

[

0
1

]

.

Define the vector of potential outcome Y (T) =

[Y (T1) , . . . , Y(TK)]
T , where Y(Tk) is the potential outcome of

the sample under the treatment Tk. When K = 2, the potential
outcome Y(T1) corresponds to the widely used notation for
one treatment Y1, the potential outcome of the treated sample,
while the potential outcome Y(T2) corresponds to Y0, the
potential outcome of the untreated sample. Only one of the
potential outcomes can be observed. The observed outcome
that corresponds to the potential outcome of the individual
receiving the treatment Tη is denoted by Y(Tη). The observed
outcome is called the factual outcome and the unobserved
potential outcomes are called counterfactual outcomes, or simply
counterfactuals. For the convenience of notation, the factual
outcome is also denoted by Yf and the counterfactuals are
denoted by Ycf .

The observed outcome Yf can be expressed as

Yf = Yη =

K
∑

k= 1

MkY(Tk)

WhenK = 2, we haveM2 = 1−M1. The above equation becomes

Yf = M1Y (T1) + (1−M1)Y (T2) = M1Y
1 + (1−M1)Y

0

which coincides with the standard expression of the observed
outcome for one treatment.

Let X = [X1, . . . , Xq]
T be the q-dimensional feature

vector. Assume that n individuals are sampled. Let T(i) =

[T
(i)
1 , . . . , T

(i)
K ]T , Y(i) = [Y(i)(T

(i)
1 ), . . . , Y(i)(T

(i)
K )]T and

X(i) = [X
(i)
1 , . . . , X

(i)
q ]T , i = 1, . . . , n be the treatment vector,

the vector of potential outcomes, and feature vector of the ith

individual, respectively.
The most widely used measure of the treatment effect for

the multiple treatment is the pair-wise treatment effect. The

individual effect ξ
(i)
jk

between the pairwise treatments: Tj and Tk

is defined as ξ
(i)
jk

= Y(i)
(

T
(i)
j

)

− Y(i)(Ti
k
), the average pairwise

treatment effect
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τjk = E
[

ξ
(i)
jk

]

. The average pairwise treatment effect τjk|Tj on

the patients treated with Tj is defined as τjk|Tj = E
[

ξ
(i)
jk
|Tj

]

.

The focus of this paper is on the conditional distribution
of treatment effect, given the feature vector X. Let FY|X(Tk)
be the conditional distribution of the potential outcome Y (Tk)

under the treatment Tk, given the feature vector X, and FY|X(T)
be the conditional joint distribution of the potential outcome
vector Y(T) under the K treatment T, given the feature vector X.
Assume that n individuals are sampled. For the ith individual, Tη

treatment (Mη = 1) is assigned. Let X(i) and Y
(i)
η

(

T
(i)
η

)

= Y
(i)
f

be

the observed feature vector and the observed potential outcome
of the ith individual. Therefore, the observed dataset is given

by D = (X(i), T(i), Y
(i)
η , i = 1, . . . , n). The factual and

counterfactual outcomes of the ith individual are denoted by y
(i)
f

and y
(i)
cf
, respectively.

To estimate the treatment effects, we often make the following
three assumptions (Rubin, 1974; Yoon et al., 2018a):

Assumption 1 (Ignorability Assumption). Conditional
on X, the potential outcomes, Y(T) and the treatment T
are independent,

Y (T) = (Y (T1) , . . . , Y (TK))T|X (1)

This assumption requires no unmeasured confounding variables.
Assumption 2 (Common Support). For the feature vector X

and all treatment,

0 < P (Tk = tk|X) < 1 (2)

Assumption 3 (Stable Unit Treatment Value Assumption). No
interference (units do not interfere with each other).

Conditional Generative Adversarial
Networks as a General Framework for
Estimation of Individualized Treatment
Effects
The key issue for the estimation of individualized treatment
effects is unbiased counterfactual estimation. Counterfactuals
will never be observed and cannot be tested by data. The true
counterfactuals are unknown. Recently developed generative
adversarial networks (GANs) started a revolution in deep
learning (Luo and Zhu, 2020). GANs are a perfect tool formissing
data imputation. An incredible potential of GANs is to accurately
generate the hidden (missing) data distribution given some of
the features in the data. Therefore, we can use GANs to generate
counterfactual outcomes.

GANs consist of two parts: the “generative” part that
is called the generator and “adversarial” part that is called
the discriminator. Both the generator and discriminator are
implemented by neural networks. Typically, a K-dimensional
noise vector is input into the generator network that converts
the noise vector to a new fake data instance. Then the generated
new data instance is input into the discriminator network to
evaluate them for authenticity. The generator constantly learns

to generate better fake data instances while the discriminator
constantly obtains both real data and fake data and improves
accuracy of evaluation for authenticity.

Architecture of Conditional Generative Adversarial

Networks (CGANs) for Generating Potential

Outcomes
Features provide essential information for estimation of
counterfactual outcomes. Therefore, we use conditional
generative adversarial networks (CGANs) (Mirza and Osindero,
2014) as a general framework for individualized treatment effect
(ITE) estimation. The CGANs for ITE estimation consist of two
blocks. The first imputation block is to impute the counterfactual
outcomes. The second ITE block is to estimate distribution of
the treatment effects using the complete dataset that is generated
in the imputation block. The architecture of CGANs is shown
in Figure 1.

Both the generator and discriminator are implemented by
feedforward neural networks. The architectures of the neural
networks are described as follows. The generator consists of
seven layers of feedforward neural network. The first layer is
the covariate input layer that input a vector X of covariates.
The second and third layers are hidden layers, each layer with
64 nodes. The fourth layer concatenates the output of the third
layer, the response vector Y, treatment vector T and treatment
assignment indicator vector M and noise vector Z. The fifth and
sixth layers are hidden layers, each layer with 64 nodes. Finally,
the seventh layer is the output layer. All activation functions
of the neurons were sigmoid function. The architecture of the
discriminator is similar to the architecture of the generator
except for adding one more output layer with sigmoid non-linear
activation function.

Imputation Block
To extend GANTITE from binary treatments to all types of
treatments, we introduce the treatment assignment vector and
change some mathematical formulation of the generator. A
counterfactual generator in the imputation block is a non-linear
function of the feature vector, treatment vector T, treatment
assignment indicator vectorM, observed factual outcome yf and
K dimensional random vector zG with uniform distribution zG ∼

U((−1, 1)K) where Yf = Yη. The generator is denoted by

Ỹ = G
(

X,Yf ,T ⊙M, (1−M)⊙ zG, θG
)

(3)

where output Ỹ represents a sample of G. It can take binary
values, categorical values or continuous values. 1 is a vector of 1,
⊙ denotes element-wise multiplication, and θG is the parameters
in the generator. We use Y to denote the complete dataset that is
obtained by replacing Ỹηwith Yf .

The distribution of Ỹ depends on the determinant
of the Jacobian matrix of the transformation function
G

(

X,Yf ,T,M, zG, θG
)

. Changing the transformation function
can change the distribution of the generated counterfactual
outcomes. Let PY|x,t,m,yf

(y) be the conditional distribution of the

potential outcomes, given X = x,T = t,M = m,Y f = yf . The
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FIGURE 1 | Scheme of MGANITE for the estimation of potential outcomes.

goal of the generator is to learn the neural network G such that
G

(

x, yf , t,m, zG, θG
)

∼ PY|x,t,m,yf
(y).

Unlike the discriminator in the standard CGANs where the
discriminator evaluates the input data for their authenticity
(real or fake data), the counterfactual discriminator DG that
maps pairs (x, y) to vectors in [0, 1]k attempts to distinguish
the factual component from the counterfactual components.
The output of the counterfactual discriminator DG is a vector
of probabilities that the component represents the factual
outcome. Let DG(x, ỹ, t, m, θd)i represent the probability
that the ithcomponent of ỹ is the factual outcome, i.e., i =

η, where θd denotes the parameters in the discriminator.
The goal of the counterfactual discriminator is to maximize
the probability DG(x, ỹ, t,m, θd)i for correctly identifying
the factual component η via changing the parameters in the
discriminator neural network DG.

Loss Function
The imputation block in MGANITE attempts to impute
counterfactual outcomes by extending the loss function of the
binary treatment in GANITE (Yoon et al., 2018a) to all types
of treatments: binary, categorical or continuous treatments. We
define the loss function V(DG, G) as

E(x,t,m,yf )∼Pdata(x,t,m,yf )
EzG∼u((−1,1)K )

[

MT logDG
(

X, Ỹ , T, M
)

+ (1−M)T log (1− DG
(

X, Ỹ ,T, M
)

)
]

where log is an element-wise operation. The goal of the
imputation block is tomaximize the counterfactual discriminator

DG and then minimize the counterfactual generator G:

minGmaxDGV(DG, G, θd) (4)

In other words, we train the counterfactual discriminator DG to
maximize the probability of correctly identifying the assigned
treatment Mη and the quantity of the treatment Tη or Yf (Yη),
and then train the counterfactual generator G to minimize
the probability of correctly identifying Mη and Tη. After the
imputation block is performed, the counterfactual generator
G produces the complete dataset D = {x, y}. Next, we use
the imputed complete dataset D = {X, Y} to generate the
distribution of potential outcomes and to estimate the ITE via
CGANs which is called the ITE block.

ITE Block
The CGANs consist of three parts: generator, discriminator
and loss function which are summarized as follows
(Yoon et al., 2018a).

ITE Generator

Unlike the ITE in GANITE where the ITE generator is a non-
linear transform function of only X and ZI , the ITE generator GI

in MGANITE is a non-linear transform function of X, T and ZI :

Ŷ = GI(X,T, ZI , θgI ) (5)

where Ŷ is the generated K-dimensional vector of potential
outcomes, X is a feature vector, T is a treatment vector, and
ZI is a K-dimensional vector of random variables and follows
the uniform distribution ZI ∼ u((−1, 1)K). The ITE generator
attempts to find the transformation Ŷ = GI(X,T, ZI, θgI ) such

that Ŷ ∼ PY|X,T(y).
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ITE Discriminator

Following the CGANs, we define a discriminator DI as a non-
linear classifier with (X,T,Y∗ = Y) or (X,T,Y∗ = Ŷ) as input
and a scalar that outputs the probability of Y∗ being from the
complete dataset D.

Loss Function
Again, unlike the loss function in GANITE where the decision
function is DI(X,Y

∗), a decision function in MGANITE is
defined as D(X,T,Y∗). The loss function for the ITE block in
MGANITE is then defined as

VI (DI , GI) = EX,T∼P(x,T)
[

EY∗∼PY|X,T (y)
[

logDI(X,T,Y
∗ )

]

+ EZI∼u((−1,1)K )

[

log (1− DIX,T,Y
∗)

]]

(6)

where DI(X,T, Y
∗) is the non-linear classifier that determines

whether Y∗ is from the complete dataset D or from generator
GI .The goal of the ITE block is to maximize the probability
of correctly identifying that Y∗ is from the complete dataset
D and to minimize the probability of a correct classification.
Mathematically, the ITE attempts

minGImaxDIVI (DI , GI) (7)

The algorithms for numerically solving the optimization
problems (4) and (7) are summarized in the
Supplementary Note.

The learning parameters for the feedforward neural networks
are given below. We set batch size equal to 16. We assumed
that the learning rates for the discriminator and generator were
0.0001 and 0.001, respectively. We further assume that the decay
rate was 0.1. The learning rate decayed (exponentially) to 10%
of the starting learning rate during 70% of the total batches, and
stayed at 10% during the last 30% batches. The total number of
batches was 1,000,000. Adam Optimizer was used to perform
optimization. We assume that 20% of the nodes were dropped
randomly during the training process.

Sparse Techniques for Biomarker
Identification
The LASSO (least absolute shrinkage and selection operator) that
performs both variable selection and regularization in order to
enhance the prediction accuracy and interpretability of the results
can be used to select biomarkers for optimal treatment selection
(Ali and Aittokallio, 2019). Let Y i

k
and X(i)denote the estimated

effect of the kth treatment and feature vector of the ith individual,
respectively. Let

YT =







Y1
1 · · ·Y

1
K

...
...
...

Yn
1 · · ·Y

n
K






,X =









x
(1)
1 · · · x

(1)
q

...
...
...

x
(n)
1 · · · x

(n)
q









, β =







β11 · · ·β1K

...
...
...

βq1 · · ·βqK







The outputs of the neural networks are in general a continuous
function even if the potential outcomes are binary. For the

TABLE 1 | Performance of six methods for estimating the potential outcomes.

Methods MSE STD Accuracy

MGANITE 0.062 0.235 0.938

LR 0.104 0.305 0.896

LogR 0.120 0.325 0.880

SVM 0.126 0.332 0.874

KNN 0.148 0.355 0.852

RF (C) 0.098 0.297 0.902

convenience of presentation, we assume that the treatment effects
are continuous regardless if the potential outcomes are binary,
categorical or continuous.

The LASSO estimators for identifying biomarkers that predict
treatment effects are given by

β̂λ = argminβ ||YT − Xβ||2F + λ

q
∑

j=1

K
∑

l=1

|βjl| (8)

where ‖.‖F is the Frobenius norm of the matrix. Non-zero
elements βjl 6= 0 predict treatment effect variation and

hence its correspondence Xj =
[

X
(1)
j · · ·X

(n)
j

]T
can be used

as biomarkers for investigation of the lth treatment. For the
continuous treatment, we define the treatment matrix T and its
associated coefficient matrix Ŵ:

T =









T
(1
1 ) · · ·T

(1)
K

...
...
...

T
(n)
1 · · ·T

(n)
K









, Ŵ =







γ11 · · · γ1K
...
...
...

γK1 · · · γKK







Equation (8) should be changed to

[ γ̂λ1 , β̂λ2
] = argminγ ,β ||YT − TŴ − Xβ||2F + λ1

K
∑

j=1

K
∑

l=1

|γjl| + λ2

q
∑

j=1

K
∑

l=1

|βjl| (9)

where λ1, λ2 are penalty parameters.

Biomarker Identification for Optimal
Treatment Selection
Consider K treatments. Let Ŷ i =

[

Ŷ i
1 · · · Ŷ

i
K

]T
be the K-

dimensional vector of the estimated potential outcomes for the
ith individual and zi = argmax1,...,k{Ŷ

i
1, . . . , Ŷ

i
K } be the index

for the optimal potential outcomes of the ith individual. To
select biomarkers for optimal treatment selection, we define the
following LASSO:

Ŷ i
zi
=

q
∑

j=1

x
(i)
j αj + λ

q
∑

j=1

|αj|, i = 1, . . . , n (10)

Solving the above categorical LASSO problem, we obtain a set of
non-zero coefficients that are denoted as α̂l 6= 0, l = 1, . . . , L.
The covariates that correspond to the non-zero coefficients of the
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LASSO solution are chosen as biomarkers for optimal treatment
selection. Again, for the continuous treatment, Equation (10)
needs to be changed to

Ŷ i
zi
=

K
∑

l=1

T
(i)
l

δl +

q
∑

j=1

x
(i)
j αj + λ1

K
∑

l=1

|δl| +λ2

q
∑

j=1

|αj|, i = 1, . . . , n. (11)

Data Collection
The proposed MGANITE was applied to 256 newly diagnosed
acute myeloid leukemia (AML) patients, treated with high dose
ara-C (HDAC), Idarubicin (IDA), and HDAC+IDA at M. D.
Anderson Cancer Center. There were 212 valid samples and
85 useable features (14 discrete and 71 continuous), including
51 total and phosphoprotein from several biological processes
such as apoptosis, cell-cycle, and signal transduction pathways
(Kornblau et al., 2009). Among the 212 valid samples, 37
were treated with HDAC, 9 were treated with IDA and 54
were treated with HDAC+IDA, and 112 were treated with
other drugs. Data were downloaded from the M. D. Anderson
Cancer Center database (http://bioinformatics.mdanderson.org/
Supplements/Kornblau-AML-RPPA/aml-rppa.xls) and (https://
pubmed.ncbi.nlm.nih.gov/18840713/).

Prediction accuracy was defined as the proportions of
correctly predicted potential outcomes. The false positive rate
was defined as the proportion of individuals who were wrongly
classified as having a positive treatment response. Discriminator
accuracy is defined as the proportion of correctly classified real
or fake samples. Replication error is defined as cross entropy
−yf log ŷf where ŷf = G

(

x, t, t∗ , yf , zG, θg
)

, t = t∗ and separate

distance is defined as

1

n

n
∑

i=1

|yif − ŷif |

where ŷif = G
(

x, t, t∗ , yf , zG, θg
)

, t 6= t∗ .

RESULTS

Simulations
We first examine the performance of MGANITE in estimating
the ITE of binary treatment using simulations. A synthetic
dataset is generated as follows. A total of 10,000 individuals with
30-dimentinal feature vectors follow the normal distributions
N(0, I). Let

ŷ0i = 0.05+ 0.4x2i1 + 0.25xi2 + ni0, ni0 ∼ N(0, 0.05)

and

ŷ1i = 0.15+ 0.5x2i1 + 0.25xi1xi2 + 0.25xi2 + ni1

i = 1, 2, . . . , 10, 000, ni1 ∼ N(0, 0.05),

where i is a sample index.
Then, the potential outcomes are generated as

y0i =

{

1 ŷ0i ≥ 0.5

0 ŷ0i < 0.5
and y1i =

{

1 ŷ1i ≥ 0.5

0 ŷ1i < 0.5

Treatment is assigned by the Bernoulli distribution:

M = T|X ∼ Bern(sigmoid
(

WT
t X + nt

)

)

FIGURE 2 | (A) The true potential outcomes with treatment Y1 and estimated potential outcomes ŷ1 using MGANITE, where the x axis denoted a value of covariate

X1, the y axis denoted the potential outcome, a blue color dot represented the true outcome Y1 and a red color dot represented the estimated outcomes ŷ1. (B) The

true potential outcomes without treatment Y0and estimated potential outcomes ŷ0 using MGANITE, where the x axis denoted a value of covariate X1, the y axis

denoted the potential outcome, a blue color dot represented the true outcome Y0 and a red color dot represented the estimated outcomes ŷ0.
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where t is a treatment index, WT
t ∼ u(−0.1, 0.1)30×1,

nt ∼ N(0, 0.1), and Bern represents the Bernoulli distribution.
When one sample has only one treatment assigned, then t = i.

Treatment effect can take three values 1, 0, and −1. In
other words,

ξi =







1 y1i = 1, y0i = 0

0 y1i = 1, y0i = 1 or y1i = 0, y0i = 0

−1 y1i = 0, y0i = 1

We compare MGANITE with linear regression (LR) (Makar
et al., 2019), logistic regression (LogR) (Emmert-Streib and
Dehmer, 2019; Makar et al., 2019), support vector machine
(SVM) (Makar et al., 2019), k- nearest neighbor (k-NN) (Crump
et al., 2008), Bayesian linear regression (BLR) (Johansson et al.,
2016), causal forest (CForest) ( Wager and Athey, 2015), and
random forest classification [RF (C)] (Breiman, 2001). We use
six methods: MGANITE, LR, LogR, SVM, kNN, and RF (C)
to estimate the counterfactual potential outcomes and calculate
the mean square error (MSE) between the estimated treatment
effect and the true treatment effect, standard deviation (STD) and
prediction accuracy. Table 1 presents MSE, STD, and prediction
accuracy of six methods to fit the generated data. We observe that
MGANITEmore accurately estimate the potential outcomes than
the other five state-of-the-art methods. Figure 2 presents the true
counterfactuals and estimates counterfactuals using MGANITE.
We observe that MGANITE reaches remarkably high accuracy
for estimating counterfactuals.

The treatment effect estimation of eight methods [MGANITE,
LR, LogR, SVM, KNN (5,10), BLR, RF (C), RF (R)] are
summarized in Table 2. Table 2 shows that MGANITE has the
highest accuracy of estimation of all treatment effects: average
treatment effect (ATE), average treatment effects on the treated
(ATT), and average treatment effect on the control (ATC),
followed by RF (R) or RF (C). We observe that the estimations
of ATE using all methods are inflated. The inflation rates of ATE
using MGANITE and RF (C) are 3.9 and 7.9%, respectively. The
SVM reaches the inflation rate of the estimation of ATE as high
as 29.8%. All inflation rates of estimation of ATE using LR, LogR,
SVM, KNN, and BLR are very high. The simulations also show
that the false positive rates using MGANITE, LR, LogR, SVC,

TABLE 2 | Treatment effects estimated for simulation data using nine methods.

Methods ATT ATC ATE ITE = −1 ITE = 0 ITE = 1

Ground truth 0.391 0.321 0.356 0 322 178

MGANITE 0.399 0.341 0.37 0 315 185

LR 0.52 0.369 0.444 0 278 222

LogR 0.52 0.393 0.456 0 272 228

SVM 0.524 0.401 0.462 0 269 231

KNN (5) 0.508 0.401 0.454 1 271 228

KNN (10) 0.524 0.325 0.424 1 286 213

BLR 0.524 0.369 0.446 0 277 223

RF (C) 0.452 0.325 0.388 0 306 194

RF (R) 0.431 0.337 0.384 1 306 193

KNN (5), KNN (10), BLR, RF (R), and RF (C) are 3.9, 24.7,
28.1, 29.8, 28/1, 19.7, 25.3, 9, and 8.4%, respectively. The results
show that false positive rates of LR, LogR, SVM, KNN, and BLR
for prediction of positive treatment response are too high to be
applied to treatment selection. Even RF (R) reaches the false
positive rate as high as 8.4%. Table 2 also shows that the number
of individuals that show positive treatment effects increases while
the number of individuals that show no treatment effect decreases
from ground truth.

Next we examine the performance ofMGANITE in estimating
the ITE of continuous treatment using simulations. A synthetic
dataset is generated as follows.

1. Draw the covariate variable X from the standard normal
distribution for 10,000 individuals.

2. The treatment T is exponentially distributed as
P (t) = e−(t−1), t ≥ 1. Define g (t) = 0.1t2.

3. Define a non-linear function f (x) = 1
2+exp(−20

(

x− 1
3

)

)
.

4. Define y0i = 0.3 + f (x) + n0i , i = 1, .., 10, 000, where
n0i is a randomly sampled noise variable from a normal
distribution N(0, 0.01).

5. Define y1i = 0.3 + f (x) + g (t) + n1i , i = 1, . . . , 10, 000,
where n1i is a randomly sampled noise variable from a normal
distribution N (0, 0.01) .

6. Treatment assignment indicator variable Mi is drawn from a
Bernoulli distribution with P = 0.5 for each subject.

The mean square errors (MSE) for MGANITE, Linear
Regression, KNN, Bayesian ridge regression, RF (R), and
SVM regression are 0.011004916, 0.08500695, 0.012520364,
0.085007192, 0.014281599, 0.013962992, respectively.
Figures 3A,B plot the true ITE and estimated ITE for in-
samples and out-of-samples data, using six methods: MGANITE,
LR, KNN, BLR, RF (R), and SVM, respectively, where a dash
straight line indicates that the true ITE and the estimated ITE
are equal. We observe from Figures 3A,B that many green cross
points for both in-sample and out-of-sample data are much
closer to the dash straight line than other types of points. This
shows that the estimated ITE points using MGANITE are much
closer to the true ITE point than using the other five methods. In
other words, the estimator of the ITE using MGANITE is more
accurate than that of using the other five methods. The results
clearly demonstrate that MGANITE outperforms the 5 other
state-of-the-art treatment effect estimation methods.

To further evaluate the performance of MGANITE, we
provide Figure 4 that plots the receiver operating characteristic
(ROC) curve for evaluation of the ability of MGANITE to predict
potential outcomes of treatment. Our calculation shows that area
under the ROC curve (AUC) for MGANITE reaches 0.98, which
is a very high value. The ROC curve and AUC value demonstrate
that the power of MGANITE for prediction of the potential
outcomes of the treatments is very high.

Real Data Analysis
MGANITE is applied to 256 newly diagnosed acute myeloid
leukemia (AML) patients from the clinical trial dataset (Kornblau
et al., 2009). We first present the results of treatment using
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FIGURE 3 | (A) True ITE and estimated ITE for in-sample data using six methods: MGANITE, LR, KNN, BLR, RF (R), and SVM, where MGANTE was denoted by a

green cross point, LR was denoted by an orange point, KNN was denoted by a green point, BLR was denoted by a red point, RF (R) was denoted by a purple point

and SVM was denoted by a dark red point, the x axis denoted the true ITE and the y axis denoted the estimated ITE. (B) True ITE and estimated ITE for out-of-sample

data using six methods: MGANITE, LR, KNN, BLR, RF (R), and SVM, where MGANTE was denoted by a green cross point, LR was denoted by a orange point, KNN

was denoted by a green point, BLR was denoted by a red point, RF (R) was denoted by a purple point and SVM was denoted by a dark red point, the x axis denoted

the true ITE and the y axis denoted the estimated ITE.

HDAC, HDAC+IDA (101) vs. all other drugs (111). A
key issue for MGANITE is how to train MGANITE. To
track the training process of MGANITE, we present Figure 5

that shows ATE, discriminator accuracy, replication error,
and separate distance curves as a function of the number
of batches.
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FIGURE 4 | ATE, discriminator accuracy, replication error and separate distance curves as a function of the number of batches where the x axis denoted the number

of batches, the y axis denoted values of the ATE, discriminator accuracy, replication error, and separation distance for ATE, discriminator, replication, and separation

curves, respectively, red, orange, blue and green curves were ATE, discriminator, replication and separation curves, respectively.

FIGURE 5 | Receiver operating characteristic (ROC) curve for evaluation of performance of MGANITE.
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TABLE 3 | Treatment effects estimated for AML dataset using nine methods.

Methods ATT ATC ATE Number of individuals with

positive treatment effect

HDAC and No Other

HDAC+IDA difference drugs

CGANs 0.011 0.356 0.208 59 138 15

LR 0.033 0.207 0.107 62 112 38

LogR 0.083 0.209 0.137 63 115 34

SVM 0.112 0.165 0.135 65 130 17

KNN (5) 0.248 −0.011 0.137 55 131 26

KNN (10) 0.314 0.066 0.208 62 132 18

BLR 0.129 0.139 0.133 57 136 19

RF (C) 0.157 0.286 0.212 70 117 25

RF (R) 0.052 0.099 0.072 37 155 20

We observe from Figure 5 that discriminator accuracy
converges to 1, replication error converges to zero, separation
distance converges to a constant, and ATE converges to a stable
value. Figure 4 demonstrates thatMGANITE is trained very well.

Next we compared the treatment effect estimations using
nine methods: MGANITE, LR, LogR, SVM, KNN (5), KNN
(10), BLR, RF (C), and RF (R) where 5 and 10 are the number
of neighbors. Treatment with HDAC or HDAC+IDA, and 85
protein expressions and other geographical variables are used as
covariates. The response status (response or no response) is used
as the outcome.

Table 3 summarizes results of the estimation of HDAC
treatment effect usingMGANITE and other eight methods where
individuals with HDAC or HDAC+IDA are taken as the treated
population and individuals with other drugs are taken as the
control population. Comparison of treatment effect estimation
algorithms on real data analysis is not easy because of the lack of
ground truth treatment effects and small sample sizes. In general,
using MGANITE, we observe that the majority of individuals
who are treated by other drugs do not show any response
and that 65% of the individuals who are treated by HDAC or
HDAC+IDA respond. Only 13.5% of individuals who are treated
by other drugs respond. To illustrate the difference between the
estimated treatment effect and treatment response, we present
Figure 6 that shows the histogram of the estimated effects of
the treatments HDAC or HDAC+IDA vs. other drugs using
MGANITE (Figure 6A), and observe the number of responses
of the individuals in the population who are treated with HDAC
or HDAC+IDA vs. other drugs (Figure 6B). ITE is calculated
based on both the factual and counterfactual. We observe that
ITE = 0 consists of two scenarios: (1) no response of the
patients to any drugs and (2) response of the patients to both
HDAC or HDAC+IDA, and other drugs. A proportion of the
patients with response to HDAC or HDAC+IDA on the right
side of Figure 6B and the patient with response to other drugs
on the left side of Figure 6B has ITE = 0. The observed
response of the patients to one drug does not imply that these
patients would not respond to other drugs. However, ITE = 1

or ITE = 0 implies that the patients respond to only one type
of drug. To further compare the performance of MGANITE
and other methods for evaluation of ITE, we split a given
data set into an in-sample dataset (190 samples), used for the
initial parameter estimation and model selection, and an out-
of-sample dataset (22 samples), used to evaluate performance
of ITE estimation. The results are summarized in Table 4. We
observe that the difference in the estimated ATT, ATC, ATE and
proportions of the ITE between in-samples and out-of-samples
using MGANITE are much smaller than using other methods.
This shows that the ITE estimation using MGANITE is more
robust than using other methods. We calculate the Kullback-
Leibler (K-L) divergence between the distributions of the ITE
using in-sample and out-of-samples, and using nine methods.
The results are summarized in Table 5. Table 5 shows that K-
L divergence using MGANITE is much smaller than that using
other methods, which implies that MGANITE is more robust
than the other eight methods.

LASSO is used to identify biomarkers for prediction of
treatment effect and treatment selection. Table 6 lists the top 30
biomarkers identified by LASSO. All top 30 biomarkers explain
36.82% of the variation of HDAC or HDAC+IDA treatment
effect. The top Gene GSK3 accounts for 4.4% of the explanation
of treatment effect variation.

Garson’s algorithm (Garson, 1991; Siu, 2017; Zhang et al.,
2018) that describes the relative magnitude of the importance
of input variables (biomarkers) in its connection with outcome
variables (ITE) of the neural network can also be used
to identify biomarkers for predicting the ITE. The top 30
biomarkers identified by the Garson algorithm are listed
in Supplementary Table 1 where the relative contribution
of each biomarker to the ITE variation and cumulative
contribution of biomarkers to the ITE variation are also listed in
Supplementary Table 1. The correlation coefficient between the
importance ranking of the markers using the Garson algorithm
and LASSO is only−0.05.

Next, we study the joint estimation of effects of the multiple
treatments. The number of individuals that are treated with
HDAC, HDAC+IDA, and other drugs are 37, 54, and 121,
respectively. The widely used treatment estimation methods with
multiple treatments are simultaneous estimations of the effects
of pairwise treatments. We estimate the effects of the pairwise
treatments HDAC vs. HDAC+IDA, HDAC vs. other drugs,
and HDAC+IDA vs. other drugs. The results are summarized
in Table 7. Pairwise comparisons listed in Table 7 does not
present the results of the treatment compared with a placebo
(without using any drugs). We compare the effect of one
treatment with another treatment. Specifically, we make pairwise
comparisons: HDAC vs. other drugs, HDAC+IDA vs. other
drugs, andHDAC+IDA vs. HDAC. The average treatment effects
(ATE) of these three pairwise treatments: HDAC vs. other drugs,
HDAC+IDA vs. other drugs, and HDAC+IDA vs. HDAC using
MGANITE, are 0.1001, 0.2311 and 0.1310, respectively. This
demonstrates that on the average, the effect of the HDAC+IDA
is the largest among the three treatments: HDAC+IDA, HDAC,
and other drugs, followed by the treatment HDAC. In other
words, the treatment HDAC is better than other drugs, in turn,
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FIGURE 6 | (A) Histogram of estimated drug treatment effect using MGANITE, where the x axis denoted the value of ITE and the y axis denoted the number of

patients, ITE = +1 denoted the ITE of patients treated with HDAC or HDAC+IDA, ITE = −1 denoted the ITE of patients treated with other drugs, and ITE = 0

denoted the ITE of two groups of patients: one group of the patients treated with HDAC or HDAC+IDA and another group of the patients treated with other drugs.

(B) Histogram of observed drug treatment response where the x axis indicated three scenarios as described in (B) and the y axis denoted the number of patients, the

right side in the (B) denoted the number of patients only responding to the HDAC or HDAC+IDA, the middle denoted the number of the patients that responds to

both (HDAC or HDAC+IDA) and other drugs or did not respond to both (HDAC or HDAC+IDA) and other drugs, and the left side denoted the number of patients only

responding to the other drugs.

the combination of HDAC and IDA is better than HDAC. It is
also noted that the effect of HDAC+IDA vs. other drugs—effect
of HDAC vs. other drugs = 0.2311–0.1001 = 0.1310 = effect of
HDAC+IDA vs. HDAC.

However, using LR, LogR, SVM, RF (C), and RF (R), we
observe that HDAC is the best treatment. This conclusion violates
the biological interpretation. We explain the reasons that causes
this incorrect conclusion as follows. The traditional methods
for treatment estimation are mainly based on the population

average of the treatment responses. The number of observed
responses and no responses of the individuals treated with
other drugs is 66 and 55, respectively. The average response
rate of the other drugs is 0.545. The number of observed
responses and no responses of the individuals treated with
HDAC is 29 and 8, respectively. The average response rate
for HDAC is 0.784. The number of observed response and no
response of individuals treated with HDAC + IDA is 33 and
21, respectively. The average response rate for HDAC +IDA is
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TABLE 4 | Treatment effects estimated for AML dataset using nine methods.

Method ATT ATC ATE ITE = −1 ITE = 0 ITE = 1

Proportion

In-sample

MCGAN 0.3152 0.2733 0.2911 0.0842 0.5474 0.3684

LR 0.1077 −0.021 0.0339 0.2474 0.4789 0.2737

BLR 0.0843 0.0817 0.0828 0.1158 0.6684 0.2158

KNN (5) −0.0247 0.1743 0.0895 0.1474 0.6158 0.2368

KNN (10) 0.0494 0.1835 0.1263 0.1211 0.6316 0.2474

RF (C) 0.2099 0.0826 0.1368 0.1421 0.5789 0.2789

RF (R) 0.0852 0.0459 0.0626 0.1316 0.6737 0.1947

LogR 0.1358 0.1193 0.1263 0.1579 0.5579 0.2842

SVM 0.1081 0.0571 0.0788 0.1158 0.6263 0.2579

Out-of-sample

MCGAN 0.2000 0.3266 0.2691 0.0455 0.6364 0.3182

LR 0.4974 0.1222 0.2928 0.0909 0.5000 0.4091

BLR 0.3470 0.3129 0.3284 0.0000 0.5909 0.4091

KNN (5) 0.3000 0.5000 0.4091 0.0455 0.5000 0.4545

KNN (10) 0.2000 0.5000 0.3636 0.0000 0.6364 0.3636

RF (C) 0.0000 0.3333 0.1818 0.0455 0.7273 0.2273

RF (R) 0.2600 0.3583 0.3136 0.0000 0.7273 0.2727

LogR 0.6000 0.4167 0.5000 0.0000 0.5000 0.5000

SVM 0.3502 0.2823 0.3132 0.0000 0.5455 0.4545

TABLE 5 | K-L divergence between the distribution of ITEs using in-samples and

out-of-samples.

Methods Kullback–Leibler

divergence

MGANITE 0.00920

LR 0.04123

BLR 0.08201

KNN (5) 0.06024

KNN (10) 0.06293

RF (C) 0.02932

RF (R) 0.06407

LogR 0.09887

SVM 0.07913

0.611. Therefore, estimators of ATE for the treatment of HDAC
vs. other drugs using LR, LogR, SVM, RF (C), and RF (R)
are higher than the estimators of ATE for the HDAC + IDA
treatment. However, the individuals treated with HDAC+IDA
usually do not respond to HDAC treatment. Therefore, the
number of individuals with no response should be adjusted to
62. After adjustment, the response rate of HDAC is changed
to 0.319. Therefore, after adjustment, the ATE of HDAC vs.
other drugs is smaller than the ATE for HDAC +IDA. Then,
the estimators of the pair-wise treatments using MGANITE
are consistent with the treatment responses after the data are
adjusted. This example shows that these traditional methods

that are designed for single treatment effect estimation should
be modified when they are applied to multiple treatment
effect estimation.

Enrichment analysis to top ranking variables for explanation
of treatment effect variation is performed by the hypergeometric
test via the Reactome Pathway Database (RPD) (Jassal et al.,
2020) to assess whether the number of identified biomarkers
associated with the Reactome pathway is over-represented more
than expected. The original P-value from the hypergeometric test
is then adjusted by FDR for multiple test correction. We find
that top ranking biomarkers for the explanation of treatment
effect variation are enriched in multiple cancer related pathways
(Figure 7A), including the intrinsic pathway for apoptosis (R-
HSA-109606, P = 2.86 × 10−14), Signaling by Interleukins
(R-HSA-449147, P = 2.86 × 10−14), Programmed Cell Death
(R-HSA-5357801, P = 9.7 × 10−11), PIP3 activates AKT
signaling (R-HSA-1257604, P = 2.98 × 10−8), RUNX3 regulates
WNT signaling (R-HSA-8951430, P = 1.03 × 10−5), and RNA
Polymerase II Transcription (R-HSA-73857, P = 9.4 × 10−5). In
addition, we find that the drug target of idarubicin (TOP2A) and
Cytarabine (POLB) form a significant protein-protein interaction
network (P < 1.0 × 10−16) (Szklarczyk et al., 2019), indicating
that the predictive biomarkers work as the direct interactive
proteins of cancer drug targets (Figure 7B).

DISCUSSION

In this paper, we present MGANITE coupled with sparse
techniques as a framework to estimate the ITEs and select
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TABLE 6 | Top ranking variables for explanation of treatment effect variation.

Gene name R-square R-square Gene name R-square R-square

(single) (accumulated) (single) (accumulated)

GSK3 0.0440 0.0440 CD33 0.0134 0.1984

BILIRUBIN 0.0411 0.0790 TP53 0.0118 0.2376

DIABLO 0.0370 0.1266 STAT3 0.0085 0.2415

SRC 0.0333 0.1329 BIRC5 0.0071 0.2421

MEK 0.0282 0.1373 BAX 0.0070 0.2446

AKT.p308 0.0244 0.1405 DJI 0.0061 0.2591

Age_at_Dx 0.0226 0.1488 CREATININE 0.0057 0.2627

PRIOR_XRT 0.0202 0.1776 BAD 0.0052 0.2646

PSMC4 0.0196 0.1844 ACTB 0.0052 0.2816

PB_Blast 0.0181 0.1858 WBC 0.0045 0.2922

BM_Blast 0.0167 0.1878 PRIOR_MAL 0.0042 0.3190

CD20 0.0167 0.1883 FIBRINOGEN 0.0038 0.3213

NRP1 0.0147 0.1914 STAT6 0.0033 0.3383

TP38.p 0.0143 0.1954 CD13 0.0033 0.3409

PSMC4 0.0135 0.1971 PTEN 0.0030 0.3682

TABLE 7 | Multiple treatment effects estimated for AML dataset using nine methods.

ATE Number of individuals with treatment effect

Method HDAC vs. other HDAC No difference Other

MGANITE 0.1001 59 115 38

LR 0.1149 58 122 32

LogR 0.0896 54 123 35

SVM 0.1463 59 140 13

KNN (5) 0.1887 62 128 22

KNN (10) 0.3538 80 127 5

BLR 0.0860 45 138 29

RF (C) 0.2264 73 114 25

RF (R) 0.2127 58 145 9

Method HDAC+IDA vs. other HDAC+IDA No difference Other

MGANITE 0.2311 79 103 30

LR 0.0965 59 115 38

LogR 0.2123 56 115 41

SVM 0.2453 52 138 22

KNN (5) 0.1012 62 133 17

KNN (10) 0.1604 63 138 11

BLR 0.1307 49 137 26

RF (C) 0.0708 70 106 36

RF (R) 0.0835 43 155 14

Method HDAC+IDA vs. HDAC HDAC+IDA No difference HDAC

MGANITE 0.1310 52 136 24

LR −0.0184 36 130 46

LogR −0.0189 45 118 49

SVM −0.0628 9 181 22

KNN (5) 0.0236 34 149 29

KNN (10) −0.1085 11 167 34

BLR 0.0152 40 139 33

RF (C) −0.0660 31 136 45

RF (R) −0.0821 8 184 20
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FIGURE 7 | Reactome pathway analysis and protein-protein interaction (PPI) network analysis to top ranking biomarkers for explanation of treatment effect variation.

(A) Enrichment analysis to the top 44 ranking biomarkers for explanation of treatment effect variation with the Reactome pathway database by hypergeometric test to

assess whether the number of identified biomarkers associated with the Reactome pathway was over-represented more than expected. The original P-value from the

hypergeometric test was then adjusted by FDR for multiple test correction. The top 15 most significantly enriched pathways was shown. (B) PPI network analysis was

performed by String 11.0 to show the protein-protein interaction among top ranking biomarkers. We found that these proteins were highly interacted which was

consistent with pathway enrichment analysis (PPI enrichment P-value is 1.0e-16).

the optimal treatments. We demonstrate that the proposed
MGANITE has several remarkable features.

First, MGANITE extends GANITE from binary treatment
to all types of treatments: binary, categorical, and continuous
treatments. We show that MGANITE has a much higher
accuracy for estimation of ITE than other state-of-the-
art methods.

Second, in-sample and out-of-sample analysis show that the
K-L divergence between the distributions of ITE for in-sample
and out-of-samples for MGANITE is much smaller than that of
other methods, which implies that MGANITE is more robust
than other state-of-the art methods.

Third, unlike many popular methods that are usually used to
estimate the average effect of the single treatment, MGANITE
not only can estimate the ITE of a single treatment, but also can
accurately and jointly estimate the ITE of multiple treatments.
We also show that the results of the joint estimation of multiple
treatments using other classical methods are inconsistent and
might violate the biological interpretation.

Fourth, precision oncology is the identification of the right
treatment for the right patient. The essential aim is to discover
biomarkers that can accurately predict individual treatment effect
for each individual. Our results show that MGANITE with sparse
techniques can identify a set of biomarkers with significant
biological features. The following identified biomarkers are such
typical examples.

GSK3 is a kinase so adaptable that it has been recruited
evolutionarily to phosphorylate over 100 substrates, and can
regulate numerous cellular functions (Beurel et al., 2015). GSK3
phosphorylates HDAC3 and promotes its activity, including the

neurotoxic activity of HDAC3 (Bardai and D’Mello, 2011). GSK3
also phosphorylates HDAC6 to modify its activity and the link
between GSK3beta and HDAC6 involved in neurodegenerative
disorders (Chen et al., 2010).

Bilirubin is a reddish yellow pigment generated when the
normal red blood cells break. Normal levels range from 0.2 to
1.2 mg/dL (Davis, 2020). In adults, indirect hyperbilirubinemia
can be due to overproduction, impaired liver uptake or
abnormalities of conjugation (Gondal and Aronsohn, 2016).
For AML patients,[[Inline Image]][[Inline Image]] enasidenib
is an inhibitor of mutant IDH2 proteins used to treat
newly diagnosed mutant-IDH2 AML patients (Pollyea et al.,
2019). The most common treatment-related adverse events are
indirect hyperbilirubinemia (31%), nausea (23%), and fatigue
(Steinwascher et al., 2015). Therefore, bilirubin is an important
biomarker for monitoring adverse effect in AML patients who
receive treatment.

Preclinical studies have discovered that Smac mimetics can
directly cause cancer cell death, or make tumor cells become
more sensitive to various cytotoxic treatment agents, including
conventional chemotherapy, radiotherapy, or new drugs (Fulda,
2015). There is synergistic interaction of Smac mimetic and
HDAC inhibitors in AML cell lines, and Smac mimetic and
HDAC inhibitors can trigger necroptosis when caspase activation
is blocked (Meng et al., 2016).

AKT.p308 and Src.p527 are phosphorylated signal
transduction proteins. These two proteins are found to
have lower expression in M0, M1, M2, but they have higher
levels in the other AML French-American-British (FAB) types.
The expression of those two proteins, together with 22 other
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proteins, can be used to define distinct signatures for each FAB
type (Kornblau et al., 2009).

PTEN is a tumor suppressor protein. Promising anti-cancer
agents, HDAC inhibitors, particularly trichostatin A (TSA),
can promote PTEN membrane translocation. Meng et al.
(2016) reveals that non-selective HDAC inhibitors, such as TSA
or suberoylanilide hydroxamic acid (SAHA), induces PTEN
membrane translocation through PTEN acetylation at K163
by inhibiting HDAC67. Similarly, treatment with an HDAC6
inhibitor alone promoted PTEN membrane translocation and
correspondingly dephosphorylated AKT. The combination of
celecoxib and an HDAC6 inhibitor synergistically increases
PTEN membrane translocation and inactivated AKT (Zhang and
Gan, 2017).

Our results show that multiple treatments improve efficiency
of drugs for curing AML. This can be biologically explained.
HDAC inhibitors have emerged as a potent and promising
strategy for the treatment of leukemia via inducing differentiation
and apoptosis in tumor cells (Jin et al., 2016). A phase II
study with 37 refractory acute myelogenous leukemia (AML)
patients shows only minimal activity of Vorinostat (HDACi),
and Vorinostat fails to control the leukocyte count among most
AML patients (Schaefer et al., 2009). A preclinical study reveals
that the combination regimen of chidamide (a novel orally
active HDAC inhibitor) and IDA could rapidly diminish the
tumor burden in patients with refractory or relapsed AML (Li
et al., 2017). A Phase II trial of Vorinostat with idarubicin
(IDA) and Ara-C for patients with newly diagnosed AML or
myelodysplastic syndrome reveals good activity with overall
response rates of 85%. No excess toxicity due to Vorinostat is
observed (Garcia-Manero et al., 2012). Taken together, HDACs
in combination therapy with IDA or other chemotherapeutic
drugs show encouraging clinical activity in different hematologic
malignancies. This explains that the combination of HDAC and
IDA is the best treatment.

Although MGANITE shows remarkable features in ITE for
estimation and optimal treatment selection; the results in this
paper are very preliminary. Training stable GANs is a challenging
task. The training process is inherently unstable, resulting in
the inaccurate estimation of ITEs. In this study, we ignore
unobserved confounders, unmeasured variables that affect both
patients’ medical prescription and their outcome. Overlooking
the presence of unobserved confounders may lead to biased
results. The main purpose of this paper is to stimulate discussion
about how to use AI as a powerful tool to improve the estimation
of ITEs and optimal treatment selection.We hope that our results

will greatly increase the confidence in using AI as a driving force
to facilitate the development of precision oncology.
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Estimation and prediction of heterogeneous restricted mean survival time (hRMST) is

of great clinical importance, which can provide an easily interpretable and clinically

meaningful summary of the survival function in the presence of censoring and individual

covariates. The existing methods for the modeling of hRMST rely on proportional hazards

or other parametric assumptions on the survival distribution. In this paper, we propose

a random forest based estimation of hRMST for right-censored survival data with

covariates and prove a central limit theorem for the resulting estimator. In addition, we

present a computationally efficient construction for the confidence interval of hRMST.

Our simulations show that the resulting confidence intervals have the correct coverage

probability of the hRMST, and the random forest based estimate of hRMST has smaller

prediction errors than the parametric models when the models are mis-specified. We

apply the method to the ovarian cancer data set from The Cancer Genome Atlas (TCGA)

project to predict hRMST and show an improved prediction performance over the existing

methods. A software implementation, srf using R and C++, is available at https://github.

com/lmy1019/SRF.

Keywords: estimating equation, high dimensional data, non-parametric survival estimation, regression

forest, inference

1. INTRODUCTION

In epidemiological and biomedical studies, time to an event or survival time T is often the primary
outcome of interest. Important quantities related to survival time include hazard rate (HR), t-
year survival probability, and the mean survival time. Among these, HR is one of the most
commonly used quantity due to its strong connection to the proportional hazards regression model
or Cox model. Cox model is a very popular regression model for censored survival data due to its
computational feasibility and theoretical properties (Cox, 1972, 1975; Andersen and Gill, 1982; Gill
and Gill, 1984; Huang et al., 2013; Fang et al., 2017). However, when there is a departure from the
proportional hazards assumption, the connection between HR and survival function is lost and
it is difficult to interpret HR (Wang and Schaubel, 2018). The t-year survival probability is the
probability of survival time greater than a pre-specified time t. It is not suitable for summarizing
the global profile of T over the duration of a study (Tian et al., 2014). In contrast, mean survival
time is an alternative quantity since it takes the whole distribution of T into account. However, the
mean of T may not always be estimable in the presence of censoring. For example, let C denotes the
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FIGURE 1 | Training data are simulated from Equation (2), with n = 600

training points, dimension p = 20 and errors ǫ ∼ N(0, 102). Random forests are

trained based using R package grf. Truth is shown as red curve, with green

curve corresponding to the random forest predictions, and upper and lower

bounds of the point-wise confidence intervals connected in the black lines.

Brown curve and blue curve are based on the approaches of Wang and

Schaubel (2018) with Identity and Exp link functions.

censoring time, and Cmax = infc{P(C ≤ c) = 1} be the upper
limit of the censoring distribution,

ET[T] = ET[T|T ≤ Cmax]P(T ≤ Cmax)

+ ET[T|T > Cmax]P(T > Cmax)

If the survival time T satisfies P(T > Cmax) > 0, then we cannot
estimate ET[T], since we never observe any event after Cmax.

The restricted mean survival time (RMST) (Royston and
Parmar, 2013) summarizes the survival process and provides
an attractive alternative to the proportional hazards regression
model (Tian et al., 2014). The restricted survival time of T up to a
fixed point L is defined as T ∧ L, and the restricted mean survival
time is defined as the expectation of the restricted survival time.
Denote µL(x) = E[T ∧ L|X = x] be the heterogeneous RMST
with covariates X = x. It can be written as the area under the
survival curve on [0, L].

µL(x) =

∫ ∞

0

( ∫ ∞

0
1u<t1u<Ldu

)

fT(t|X = x)dt

=

∫ L

0
S(u|X = x)du.

(1)

If L is chosen to be less than Cmax, hRMST is estimable since
P(T ∧ L > Cmax) = 0. RMST also plays a role in the
context of inverse probability censoring weighting (IPCW). A
key assumption for applying IPCW is P(T < Cmax) = 1,
making 1/(1− G(T)) well-defined, where G(T) = P(C ≤ T|T).
If we set L properly such that P(T ∧ L < Cmax) = 1, then
G(T ∧ C ∧ L|X) < 1 and the IPCW is well-defined under the
restricted survival time context.

There are two main approaches for hRMST regression.
One approach is to estimate hRMST indirectly through hazard
regression (Zucker, 1998; Chen and Tsiatis, 2001; Zhang
and Schaubel, 2011). This approach starts by estimating the
regression parameters and the baseline hazard from a Coxmodel,
calculating the cumulative baseline hazard, transforming it to
obtain the survival function and, finally, obtaining the hRMST
through Equation (1). Such an indirect hRMST estimation is
inconvenient and computationally cumbersome for obtaining a
point estimate and its corresponding asymptotic standard error.
An alternative approach is to model hRMST with the baseline
covariates X directly via some parametric assumptions, eg.
g[µL(Xi)] = β ′0Xi, where g is a strictly monotone link function
with a continuous derivative within an open neighborhood (Tian
et al., 2014; Wang and Schaubel, 2018). A major weakness of
this approach, however, is their inability to choose a proper link
function, which may lead to the model misspecification. As an
example, we simulate x1, . . . , xn independently from the uniform
distribution on [0, 1]20 with a survival time model

T = exp(2X1 + 5)+ 1+ ǫ, ǫ ∼ N(0, 102), (2)

where we assume that the censoring time C and the restricted
time L satisfy P(C ≤ T∧L) = 33% and P(L ≤ T∧C) = 11%. Our
goal is to estimateµL(x). Figure 1 shows a set of predictions on an
artificially generated data set from Equation (2). Compared with
other methods, the random forest is able to estimate the target
function closely, especially when µL(x) approaches L.

For the continuous outcomes without censoring, random
forest (Breiman, 2001, 2004) is a popular method of non-
parametric regression that has shown effectiveness in many
applications (Svetnik et al., 2003; Díaz-Uriarte and Alvarez de
Andrés, 2006; Cutler et al., 2007). It is invariant under scaling
and various other transformations of feature values, robust to
inclusion of irrelevant features (Hastie et al., 2001), and versatile
enough to be applied to large-scale problems (Biau and Scornet,
2016). Besides strong empirical results, theoretical results such
as consistency (Meinshausen, 2006; Biau et al., 2008; Biau, 2012;
Denil et al., 2014) and asymptotic normality (Wager and Athey,
2015; Mentch and Hooker, 2016; Athey et al., 2018; Friedberg
et al., 2018) have also been obtained for regression models
without censoring. Extending random forest to censored survival
data has been proposed in several recent papers (Ishwaran et al.,
2008; Steingrimsson et al., 2019), focusing on implementations
and algorithms. However, there has been little theoretical work in
statistical inference of such random survival forest. Ishwaran and
Kogalur (2011) proved the consistency of the random survival
forest by showing that the forest ensemble survival function
converges uniformly to the true population survival function.

Instead of focusing on predicting the survival function or the
survival probability as the algorithms implemented by Ishwaran
et al. (2008) and Steingrimsson et al. (2019), we develop in
this paper a random forest framework to model the hRMST
directly given the baseline covariates in the presence of possibly
covariate-dependent censoring. This approach provides a non-
parametric estimation of hRMST adjusting for covariates. Due
to the complex relationship between the survival time and the
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covariates, it is desirable to have more flexible methods to
estimate the hRMST than the approaches that a certain link
function has to be assumed. Our construction of random forest
is based on the estimated IPCW. We show that the resulting
survival random forest estimates of hRMST has the asymptotic
normality property that can be used to obtain the point-wise
confidence interval with theoretical guarantees. To the best of
our knowledge, it is the first asymptotic normality result for
the predictions in the context of censored survival data using
random forest.

The remainder of the paper is organized as follows. In section
2, we describe the proposed random forest estimator. Asymptotic
properties are given in section 3. In section 4, we conduct
simulation studies to evaluate the accuracy of the proposed
method in the finite sample settings. In section 5, we apply our
method to an ovarian cancer data set of The Cancer Genome
Atlas (TCGA) project (http://cancergenome.nih.gov/abouttcga)
to evaluate the predictions of the hRMST for ovarian cancer
patients using their acylcarnitine measurements and clinical
variables. We conclude this chapter with a brief discussion in
section 6.

2. RANDOM FOREST FOR ESTIMATING
THE hRMST

Webegin with some notation. LetXi be the baseline covariates for
subject i from a cohort of sample size n andTi be the survival time
for subject i. Let Ci be the censoring time, which is independent
of Ti conditional on the baseline covariates Xi. The observation
time for subject i is Zi = Ti ∧ Ci, where a ∧ b = min{a, b}. The
indicator for censoring is denoted by δi = 1{Ti≤Ci}. Our observed
i.i.d. data are given as {(Xi,Zi, δi) : i = 1, . . . , n}.

Let L be a pre-specified time point of interest, before the
maximum follow-up time τ = max{Zi : i = 1, . . . , n}. As in
Wang and Schaubel (2018), L is normally chosen as a time point
of clinical relevance or, at least, of particular interest to the
investigators, respecting the bound at the maximum follow-up
time. Denote the restricted observation time as ZL

i = Zi∧L and its
corresponding indicator δLi = 1{Ti∧L≤Ci}. Our goal is to estimate
covariate-adjusted RMST or hRMST µL(x) = E(ZL|X = x) and
to construct its confidence interval.

2.1. Forest-Based Local Estimating
Equation for hRMST
Given the observed data {(Xi, δi,Zi)}

n
i=1, and a restriction

threshold L, we first present a random forest method to estimate
µL(x). The idea of the approach is to solve a weighted estimating
equation for µL(x), where the estimating equation functions of
the observations whose covariates closer to x will have larger
weights. Specifically, let wi = δ

L
i /(1− G(ZL

i |Xi)) be the IPCW of
the ith data point under the true censoring distribution G(·|Xi).
The (infeasible) estimating equation function wi(Z

L
i − µ

L(x)) of
Xi = x satisfies E[wi(Z

L
i − µ

L(x))|Xi = x] = E[Ti ∧ L|Xi =

x]−µL(x) = 0. If the local weights {αi(x)}
n
i=1 are also known, the

solution to the empirical estimating equation for µL(x)

n
∑

i=1

αi(x)wi(Z
L
i − µ) = 0 (3)

is given as
∑n

i=1 αi(x)wiZ
L
i

∑n
i=1 αi(x)wi

,

which provides a good candidate of estimator forµL(x). However
we do not know the censoring distribution G and the local
weights {αi(x)}

n
i=1, which need to be estimated from the data. We

assume censoring distribution G follows a Cox model, a natural
choice for modeling censoring times in the context of IPCW. Let

ŵi =
δLi

1− Ĝ(ZL
i |Xi)

be the estimated IPCW for ith observation with Ĝ(·|Xi) derived
from the data through Cox model. We define the estimating
equation function for ith observation with its corresponding
estimated IPCW as

ψµL(x)(Xi,Z
L
i , δ

L
i ) = ŵi(Z

L
i − µ

L
i (x)).

Our approach to derive the local weights {αi(x)}
n
i=1 is through the

random forest, which is an ensemble of survival trees constructed
by Algorithm 1.

Algorithm 1: Survival tree

SurvivalTree (set of observations J, domain X);
IPCW←CoxModel(J);
Root P0 ←CreateNode(J, X);
Queue Q→InitializeQueue(P0);
while Q is NotNull do

node P← Pop(Q);

Solve µ̂L
P = argmin

µ

|
∑

Xi∈P
ψµ(Xi,Z

L
i , δ

L
i )|;

Set ρi =
ŵi(Z

L
i −µ̂

L
P)

(
∑

Xi∈P
ŵi)/|{i :Xi∈P}|

;

Split P by maximizing

1̃(C1,C2) =
2

∑

j=1

1
|{i :Xi∈Cj}|

(

∑

i :Xi∈Cj

ρi

)2

;

if split succeeds then
AddQueue(C1);
AddQueue(C2);

end

end

It can be shown that ρi is the influence function of the
ith observation for µ̂L

P. Let Fn be the empirical distribution
of the observations in node P, and let Fn,i = (1 − ǫ)Fn +
ǫνi, with νi be the Dirac delta function at ith observation. Set
µ̂L
P,i = µ̂L

P + 1i, where µ̂
L
P,i = argmin

µ

|
∫

ψµ(X,Z
L, δL)dFn,i|.

By Taylor expansion,

0 =

∫

ψµ̂L
P,i
(X,ZL, δL)dFn,i
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=

∫

[ψµ̂L
P
(X,ZL, δL)+ ψ ′µ∗ (X,Z

L, δL)1i]dFn,i,

where µ∗ is a value between µ̂L
P and µ̂L

P,i. The above
equation implies

1i = −
ǫψµ̂L

P
(Xi,Z

L
i , δ

L
i )

∫

ψ ′µ∗ (X,Z
L, δL)dFn,i

,

and therefore the influence function of ith observation for µ̂L
P is

lim
ǫ→0

1i/ǫ = −
ψµ̂L

P
(Xi,Z

L
i , δ

L
i )

∫

ψ ′
µ̂L
P

(X,ZL, δL)dFn
=

ŵi(Z
L
i − µ̂

L
P)

∑

i∈P
ŵi

|{i :Xi∈P}|

= ρi.

Athey et al. (2018) shows that maximizing the splitting
criterion 1̃(C1,C2) is approximately equivalent to minimizing
the weighted mean squared error err(C1,C2) =

∑

i=1,2 P(X ∈

Ci|X ∈ P)E[(µ̂L
Ci
− µL(X))2|X ∈ Ci].

In order to achieve consistency and asymptotic normality,
we split the tree and make predictions in an honest way as
introduced in Wager and Athey (2015). Specifically, each tree in
an honest forest is grown using two non-overlapping subsamples
of the training data. For the bth tree, given Ib and Jb, we first
choose the tree structure Tb using only the data in Jb, and write
x ↔b x′ as the boolean indicator for whether the points x and x′

fall into the same leaf of Tb. In a second step, we define the set of
neighbors of x as Lb(x) = {i ∈ Ib : x↔b xi}. The weights of point
x from a survival forest with B trees can be written as

αi(x) =
1

B

B
∑

b=1

1{Xi∈Lb(x)}

|Lb(x)|
.

The empirical locally weighted estimating equation for µ̂L(x) is
then defined as

n
∑

i=1

αi(x)ψµ(Xi,Z
L
i , δ

L
i ) = 0, (4)

FIGURE 2 | Simulation results of the coverage probability for Model 1 with three different link functions, sample size of n = 1, 000, 2, 000, 5, 000, and p = 2, 4, 6, 8.

For each case, prediction coverage probability is calculated over the samples in the testing data set.
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and the random forest estimator for the hRMST is the solution of
Equation (4), which is

µ̂L(x) =

n
∑

i=1

αi(x)ŵiZ
L
i

∑n
i=1 αi(x)ŵi

.

We emphasize the difference between the IPCW used in building
the survival trees and IPCW used to derive µ̂L(x). The IPCW
used in building survival trees is estimated only by the data points
from Jb so that the resulting survival forest is honest. The IPCW
used to derive µ̂L(x) is estimated from all data points.

3. ASYMPTOTIC DISTRIBUTION OF µ̂
L(X)

3.1. Asymptotic Normality
We derive a central limit theorem for survival forest estimate of
hRMST. We first give three common assumptions that required
for the most of the theoretical analysis of random forests.

Assumption 1. µL(x) is Lipschitz continuous w.r.t x.

Assumption 2. There exists a restricted time threshold L, such
that P(C > t ∧ L|X = x) ≥ ǫL > 0 for any x, t.

Assumption 3. Var(T ∧ L|X = x) > 0 for any x.

As mentioned in the previous section, we model the conditional
survival function of censoring distribution G given baseline
covariates. Because of its flexibility and popularity in practice,
we adopt the proportional hazards model for hazard function of
censoring distribution.

Assumption 4. The hazard function of censoring distribution
follows λCi (t) = λ

C
0 (t) exp(X

′
iβC)

We make additional regularity assumptions that are widely used
in analysis of estimates from the proportional hazards models.
These assumptions are needed in order to quantify the difference
between the estimated IPCW and true IPCW.

Assumption 5. ||X||∞ < MX <∞

Assumption 6. λC0 (t) ≤ λ
C
0 <∞ for all t.

FIGURE 3 | Simulation results of coverage probability for Model 2 with three different link functions, sample size of n = 1, 000, 2, 000, 10, 000, and p = 2, 4, 6, 8. For

each case, prediction coverage probability is calculated over the samples in the testing data set.
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Assumption 7. �C(β) = E

[

∫ τ

0
r(2)(t,β)

r(0)(t,β)
− x̄(t,β)⊗2dNC

i (t)

]

is positive definite, where Ri(t) = 1(Zi ≥ t), r(k)(t,β) =

E[exp(β ′Xi)Ri(t)X
⊗k
i ], x̄(t,β) = r(1)(t,β)

r(0)(t,β)
,NC

i (t) = 1Zi≤t,δi=0.

Assumption 8. P(Ri(t) = 1|Xi = x) ≥ r > 0 for some positive
constant and for any t, x. This assumption implies that

r(0)(t,β) = E[exp(β ′Xi)Ri(t)] = E[exp(β ′Xi)E[Ri(t)|Xi]]≥r>0.

Following Wager and Athey (2015) and Athey et al. (2018),
we assume that all trees are symmetric, in that their output is
invariant to permuting the indices of Estimation-Part in training
examples (see Corollary 6 of Wager and Athey (2015) for more
details about this symmetry). They also require balanced splits
in the sense that every split puts at least a fraction ω of the

FIGURE 4 | Estimated vs. the true RMST for Model 1 (left) and Model 2 (right) with exponential link function and the number of covariates p = 5, 10, 20

(top–bottom). SRF, proposed random forest-bases estimator, and upper and lower bounds of the point-wise confidence intervals of the proposed random forest

estimator are connected in the gray lines; Naive.km, estimate based on Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based

estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel

(2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.
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observations in the parent node into each child, for some ω > 0.
Finally, the trees are randomized in such a way that, at every split,
the probability that the tree splits on the jth feature is bounded
from below by some π > 0. The forest is honest and built
via subsampling with subsample size s satisfying s/n → 0 and
s→∞.

Under the assumptions listed above, we have the following
asymptotic distribution result for the random forest-based
estimate of the hRMST.

Theorem 1. Under Assumptions 1, 2, 3, 4, 5, 6, 7, 8, for each fixed
test point x, there is a sequence σ 2

n (x) = Var(µ̂L(x))→ 0,

µ̂L(x)− µL(x)

σn(x)
→d N(0, 1)

if subsampling size

βmin = 1−

(

1+
π−1

(

log(ω−1)
)

log
(

(1− ω)−1
)

)−1

,

where ω > 0 is the low-bound fraction for observations in the
parent node into each child, and π > 0 is the lower-bound of the
probability that the tree splits on any features.

We give a consistent estimate of σ 2
n (x) based on half-sampling

(Efron, 1980) and the method of Sexton and Laake (2009).

3.2. Estimation of the Variance
Following Athey et al. (2018), we use the random forest
delta method to develop a variance estimate of the survival
forest prediction µ̂L(x). Athey et al. (2018) provides a
consistent estimate of σ 2

n (x) using s2n(x), where s2n(x) =

(V(x)−1)Hn(x)(V(x)
−1)′ with

Hn(x) = Var[

n
∑

i=1

αi(x)ψµL(x)(Xi,Z
L
i , δ

L
i )]

V(x) =
∂

∂(µL)
E[ψµL (X,ZL, δL)|X = x]|µL=µL(x)

In our context, V(x) = −1, then simply we have s2n(x) = Hn(x).
A consistent estimator for Hn(x) can be obtained using half-

sampling estimator (Efron, 1980; Athey et al., 2018). Let 9H

be the average of the empirical estimating equation functions
averaged over the trees that only use the data from the half-
sampleH, denoted by SH,

9H(x) =
1

|SH|

∑

b∈SH

∑n
i=1 1Xi∈Lb(x)ψµ̂L(x)(Xi,Z

L
i , δ

L
i )

∑n
i=1 1Xi∈Lb(x)

,

where Lb(x) contains neighbors of x in the bth tree. An ideal
half-sampling estimator is then defined as

ĤHS
n (x) =

(

n

n/2

)−1
∑

H : |H|=n/2

(E2[9H(x)]− E29̄(x))2

TABLE 1 | Comparison of Mean-Absolute-Error (MAE) and Rooted-Mean-Squared-Error (RMSE) for Model 1 with different link functions.

p SRF Naive.Cox Naive.km Lu.id Lu.exp Wang.id Wang.exp

Model 1: identity link, n = 3, 000, SNR = 0.3

5 0.1359 0.1371 0.2067 0.1341 0.1346 0.1341 0.1346

0.1699 0.1695 0.2466 0.1687 0.1691 0.1686 0.1691

10 0.1396 0.1394 0.2108 0.1371 0.1377 0.1371 0.1376

0.1721 0.1710 0.2497 0.1710 0.1715 0.1709 0.1714

20 0.1373 0.1372 0.2064 0.1342 0.1348 0.1342 0.1347

0.1703 0.1693 0.2464 0.1686 0.1691 0.1685 0.1690

Model 1: log-exp link, n = 3, 000, SNR = 0.3

5 0.1347 0.1359 0.2048 0.1330 0.1335 0.1330 0.1335

0.1684 0.1680 0.2441 0.1673 0.1677 0.1672 0.1677

10 0.1384 0.1382 0.2088 0.1359 0.1366 0.1359 0.1365

0.1706 0.1695 0.2472 0.1695 0.1701 0.1695 0.1699

20 0.1361 0.1360 0.2044 0.1331 0.1337 0.1330 0.1336

0.1689 0.1679 0.2439 0.1672 0.1678 0.1671 0.1676

Model 1: exp link, n = 3, 000, SNR = 0.3

5 24.724 25.398 33.688 24.496 24.723 24.436 24.709

30.827 30.860 39.296 30.608 30.773 30.577 30.749

10 25.254 25.681 34.208 24.843 25.162 24.812 25.149

31.085 31.052 39.621 30.869 31.076 30.850 31.048

20 24.878 25.260 33.587 24.390 24.679 24.325 24.651

30.744 30.695 39.181 30.479 30.689 30.438 30.646

The number of covariates p = 5, 10, 20, for each p, the first row is MAE, the second row is RMSE. SRF, proposed random forest-bases estimator; Naive.km, estimate based on

Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian

et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.
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9̄(x) =

(

n

n/2

)−1
∑

H : |H|=n/2

9H(x)

where 2 is the randomness in building honest tree, including
splitting data into random halves and randomness in selecting
variables to split. ĤHS

n (x) is similar to classic bootstrap estimator
for the standard error, except that the sampling distribution
for ĤHS

n (x) is the half sampling distribution instead of the
bootstrap sampling. Denote Ess and Varss as the expectation and
variance under the half sampling distribution, then ĤHS

n (x) =
Varss[E2[9H(x)]].

Since carrying out the full half-sampling computation and
expectation with respect to 2 are impractical, Sexton and Laake
(2009) pointed out that ĤHS

n (x) can be efficiently approximated
by the following law of total variance:

ĤHS
n (x) = Varss

[

E2[
1

M

M
∑

m=1

9H,2m (x)]

]

= Varss

[

1

M

M
∑

m=1

9H,2m (x)

]

−Ess

[

Var2[
1

M

M
∑

m=1

9H,2m (x)]

]

(5)

which leads to a Monte Carlo approximation of ĤHS
n (x) by

σ̂ 2
n (x) =̂Varss

[

1

M

M
∑

m=1

9H,2m (x)

]

− Êss

[

̂Var2[
1

M

M
∑

m=1

9H,2m (x)]

]

.

(6)

In order to approximate random forest randomness quantity
̂Var2 and sampling randomness quantities ̂Varss, Êss, we split B
trees in G groups and each group has l trees, and the trees in
the same group have the same half sample. The final consistent
estimator σ̂ 2

n (x) can be written as

σ̂ 2
n (x) =

1

G− 1

G
∑

g=1

(9̄g(x)− 9̄(x))2

−
1

(l− 1)

1

B

G
∑

g=1

l
∑

i=1

(9ig(x)− 9̄g(x))
2

where 9̄g(x) =
1
l

l
∑

i=1
9ig(x), and 9̄(x) = 1

G

G
∑

g=1
9̄g(x).

The following diagram summarizes the procedure of
estimating the variance σ 2

n (x).

σ 2
n (x)

Asym.equivalent
←−−−−−−−−− s2n(x)

Half-Sampling estimator
←−−−−−−−−−−−−−

TABLE 2 | Comparison of mean-absolute-error (MAE) and rooted-mean-squared-error (RMSE) for Model 2 with different link functions.

p SRF Naive.Cox Naive.km Lu.id Lu.exp Wang.id Wang.exp

Model 2: identity link, n = 3, 000, SNR = 0.3

5 0.1218 0.1386 0.1384 0.1388 0.1388 0.1382 0.1382

0.1498 0.1658 0.1656 0.1660 0.1660 0.1656 0.1656

10 0.1257 0.1414 0.1412 0.1418 0.1418 0.1411 0.1411

0.1525 0.1682 0.1679 0.1687 0.1687 0.1684 0.1684

20 0.1239 0.1390 0.1385 0.1393 0.1393 0.1387 0.1387

0.1507 0.1662 0.1655 0.1667 0.1667 0.1663 0.1663

Model 2: log-exp link, n = 3, 000, SNR = 0.3

5 0.1201 0.1366 0.1364 0.1368 0.1368 0.1362 0.1362

0.1479 0.1635 0.1633 0.1637 0.1637 0.1634 0.1634

10 0.1240 0.1395 0.1393 0.1399 0.1399 0.1392 0.1392

0.1506 0.1660 0.1657 0.1664 0.1664 0.1661 0.1661

20 0.1222 0.1371 0.1366 0.1374 0.1374 0.1368 0.1368

0.1487 0.1640 0.1633 0.1645 0.1645 0.1641 0.1641

Model 2: exp link, n = 3, 000, SNR = 0.3

5 21.030 23.794 23.733 23.915 23.911 23.542 23.541

25.984 28.185 28.135 28.297 28.292 28.126 28.125

10 21.641 24.165 24.127 24.322 24.319 23.928 23.928

26.357 28.475 28.430 28.618 28.614 28.473 28.472

20 21.368 23.802 23.712 23.956 23.952 23.571 23.571

26.071 28.216 28.102 28.379 28.375 28.208 28.207

The number of covariates p = 5, 10, 20, for each p, the first row is MAE, the second row is RMSE. SRF, proposed random forest-bases estimator; Naive.km, estimate based on

Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian

et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.
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ĤHS
n (x)

Empirical estimator
←−−−−−−−−−− σ̂ 2

n (x)

where from left to right, the first arrow is based on Theorem 5 of
Athey et al. (2018), the second arrow is based on half-sampling of
Efron (1980), and the third arrow is supported by Equations (5)
and (6) and the method of Sexton and Laake (2009).

4. SIMULATION STUDIES

We present simulations to evaluate the performance of the
proposed method in finite sample setting. Two different models
for the survival time are considered

• Model 1: T = g−1(α0 +
∑p

i=1 αiXi)+ ǫ

• Model 2: T = g−1(α0 +
∑p

i=1 αiX
2
i )+ ǫ

where Xi1, . . . ,Xip are independently generated from
Unif (−1, 1), α0 = 5, α1 = α2 = 0.25 and αi = 0 for
i > 2, and ǫ ∼ N(0, σ 2). The variance σ 2 is chosen to have
proper signal-noise ratio (SNR),

SNR =
Var(g−1(α0 +

∑p
i=1 αiXi))

Var(ǫ)
.

We generate the independent censoring time Ci from a Cox
model with the following hazard λ = λC exp(X1 log 2) and λC

is chosen to have a proper un-censoring rate. The link function g
can have the following form

• Identity link: g−1(x) = x;
• Exp link: g−1(x) = exp(x);
• Log-exp link: g−1(x) = log(exp(x)+ 1).

4.1. Evaluation of Coverage Probability of
Predictions
To evaluate the asymptotic results in Theorem 1, we generate five
training data sets and one testing data set with the same sample
size. The coverage probability performance is evaluated on the
testing data set with predictions and confidence intervals derived
from 5 independent training data sets. More specifically, for each
observation in the testing sample, we obtain the 95% confidence
intervals and record how many times a hRMST observation in
test sample is within five estimated 95% confidence intervals.
The coverage probability of an observation is defined by the its
proportion of being covered, and the overall coverage probability
of the testing sample is defined by the average of coverage
probability of each of its observation. We present the coverage
probability results with sample size n = 1, 000, 2, 000, 5, 000 for
Model 1, and n = 1, 000, 2, 000, 10, 000 for Model 2. By choosing
the proper λC, we control the un-censoring rate around 60–70%
for different link functions: λC ∼ 0.08 for Identity link and Log-
exp link, and λC ∼ 0.003 for Exp link. The truncation time L is

TABLE 3 | Comparison of Mean-Absolute-Error (MAE) and Rooted-Mean-Squared-Error (RMSE) for Model 1 with different link functions and the censoring distribution is

mis-specified with α = 0.5.

p SRF Naive.Cox Naive.km Lu.id Lu.exp Wang.id Wang.exp

Model 1: identity link, n = 3, 000, SNR = 0.3

5 0.1361 0.1353 0.2051 0.1337 0.1344 0.1336 0.1342

0.1706 0.1681 0.2457 0.1687 0.1693 0.1685 0.1690

10 0.1444 0.1430 0.2160 0.1402 0.1408 0.1403 0.1408

0.1755 0.1732 0.2523 0.1726 0.1731 0.1725 0.1730

20 0.1392 0.1372 0.2078 0.1345 0.1351 0.1345 0.1351

0.1723 0.1699 0.2484 0.1694 0.1700 0.1692 0.1698

Model 1: log-exp link, n = 3, 000, SNR = 0.3

5 0.1348 0.1341 0.2032 0.1325 0.1333 0.1324 0.1330

0.1691 0.1667 0.2432 0.1673 0.1679 0.1671 0.1676

10 0.1431 0.1418 0.2139 0.1390 0.1396 0.1391 0.1396

0.1740 0.1718 0.2497 0.1712 0.1717 0.1711 0.1716

20 0.1380 0.1360 0.2060 0.1335 0.1341 0.1334 0.1340

0.1708 0.1685 0.2460 0.1681 0.1687 0.1679 0.1685

Model 1: exp link, n = 3, 000, SNR = 0.3

5 24.906 25.157 33.628 24.471 24.826 24.427 24.784

30.984 30.687 39.205 30.609 30.852 30.591 30.800

10 26.381 26.553 35.410 25.738 26.015 25.678 25.996

31.799 31.593 40.265 31.403 31.607 31.373 31.574

20 25.096 25.145 33.418 24.461 24.741 24.365 24.680

30.940 30.746 39.152 30.609 30.831 30.551 30.759

The number of covariates p = 5, 10, 20, for each p, the first row is MAE, the second row is RMSE. SRF, proposed random forest-bases estimator; Naive.km, estimate based on

Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian

et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.
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chosen to make the truncation rate fall into 2%−5%. Specifically,
L ∼ 5.4 for Identity link and Log-exp link, and L ∼ 220 for
Exp link.

Figures 2, 3 present the results for Model 1 and Model 2
under three different link functions. We see that the coverage
probability approaches to nominal level 95% when the sample
size gets larger. If p is smaller, the coverage probability is closer
to 95%. This corresponds to the result of Theorem 3 in Wager
and Athey (2015), which states that the rate of convergence of

the bias of random forest estimator is O(n
K
p ) for some constant

K. When the sample size n is fixed, bigger p leads to larger
bias in the estimates of hRMST, and under-coverage of the
confidence interval. On the other hand, when p is fixed, bigger
n results in a smaller bias and leads to a better coverage of the
confidence interval.

4.2. Comparison of Prediction
Performance With Existing Methods
We compare our proposed method with several existing methods
for hRMST estimation, including

• Naive.km: using Kaplan–Meier estimator for survival function
and computing hRMST by Equation (1). Covariates are not
adjusted.
• Naive.Cox: using proportational hazards estimator for the

survival function and computing hRMST by Equation (1). The

censoring distribution is assumed to follow the proportional
hazards assumption.
• Lu.method: using some parametric forms of hRMST and

computing hRMST by solving a weighted estimating equation.
The censoring distribution is assumed to be independent of
the covariates (Tian et al., 2014).We consider Identity link and
Exp link in the simulations.
• Wang.method: using some parametric forms of hRMST

and computing hRMST by solving a weighted estimating
equation. The censoring distribution is assumed to follow the
proportional hazards assumption. We consider Identity link
and Exp link in the simulations (Wang and Schaubel, 2018).

We compare all these methods under Model 1 and Model 2,
and use the Mean-Absolute-Error (MAE) and Rooted-Mean-
Squared-Error (RMSE), introduced in Davison and Hinkley
(1997), Tian et al. (2007), and Wang and Schaubel (2018), to
measure the performance of these methods.

MAE =
1

n

n
∑

i=1

δLi

1− Ĝ(ZL
i |Xi = x)

∣

∣

∣

∣

ZL
i − µ̂

L(Xi)

∣

∣

∣

∣

,

RMSE =

√

√

√

√

1

n

n
∑

i=1

δLi

1− Ĝ(ZL
i |Xi = x)

[

ZL
i − µ̂

L(Xi)

]2

.

(7)

TABLE 4 | Comparison of Mean-Absolute-Error (MAE) and Rooted-Mean-Squared-Error (RMSE) for Model 2 with different link functions and the censoring distribution is

mis-specificed with α = 0.5.

p SRF Naive.Cox Naive.km Lu.id Lu.exp Wang.id Wang.exp

Model 1: identity link, n = 3, 000, SNR = 0.3

5 0.1230 0.1378 0.1374 0.1385 0.1385 0.1377 0.1377

0.1514 0.1657 0.1653 0.1663 0.1663 0.1658 0.1658

10 0.1310 0.1450 0.1442 0.1457 0.1457 0.1447 0.1447

0.1562 0.1704 0.1695 0.1712 0.1712 0.1704 0.1704

20 0.1262 0.1394 0.1384 0.1403 0.1403 0.1392 0.1392

0.1533 0.1668 0.1657 0.1681 0.1681 0.1673 0.1673

Model 1: log-exp link, n = 3, 000, SNR = 0.3

5 0.1213 0.1359 0.1355 0.1365 0.1365 0.1358 0.1358

0.1494 0.1634 0.1630 0.1640 0.1640 0.1636 0.1636

10 0.1292 0.1430 0.1422 0.1437 0.1437 0.1427 0.1427

0.1543 0.1681 0.1673 0.1689 0.1689 0.1681 0.1681

20 0.1244 0.1374 0.1364 0.1383 0.1383 0.1372 0.1372

0.1512 0.1645 0.1634 0.1658 0.1658 0.1650 0.1650

Model 1: exp link, n = 3, 000, SNR = 0.3

5 21.270 23.793 23.697 24.016 24.009 23.535 23.534

26.187 28.147 28.075 28.329 28.322 28.133 28.132

10 22.824 25.159 24.946 25.408 25.399 24.843 24.842

27.067 29.009 28.823 29.239 29.227 28.945 28.943

20 21.832 23.896 23.708 24.188 24.177 23.698 23.697

26.635 28.417 28.221 28.753 28.740 28.499 28.499

The number of covariates p = 5, 10, 20, for each p, the first row is MAE, the second row is RMSE. SRF, proposed random forest-bases estimator; Naive.km, estimate based on

Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian

et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.
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TABLE 5 | Comparison of Mean-Absolute-Error (MAE) and Rooted-Mean-Squared-Error (RMSE) for Model 1 with different link functions and the censoring distribution is

mis-specificed with α = 1.5.

p SRF Naive.Cox Naive.km Lu.id Lu.exp Wang.id Wang.exp

Model 1: identity link, n = 3, 000, SNR = 0.3

5 0.1363 0.1378 0.2067 0.1352 0.1357 0.1352 0.1357

0.1701 0.1702 0.2467 0.1697 0.1702 0.1697 0.1702

10 0.1376 0.1385 0.2073 0.1358 0.1363 0.1358 0.1363

0.1709 0.1706 0.2472 0.1699 0.1704 0.1699 0.1704

20 0.1371 0.1371 0.2062 0.1341 0.1347 0.1342 0.1347

0.1698 0.1691 0.2464 0.1682 0.1688 0.1682 0.1688

Model 1: log-exp link, n = 3, 000, SNR = 0.3

5 0.1350 0.1366 0.2046 0.1340 0.1345 0.1340 0.1345

0.1686 0.1687 0.2441 0.1683 0.1688 0.1683 0.1688

10 0.1363 0.1373 0.2053 0.1346 0.1352 0.1347 0.1352

0.1695 0.1692 0.2447 0.1685 0.1690 0.1685 0.1690

20 0.1359 0.1359 0.2043 0.1330 0.1335 0.1330 0.1336

0.1683 0.1677 0.2439 0.1669 0.1674 0.1669 0.1674

Model 1: exp link, n = 3, 000, SNR = 0.3

5 24.537 25.171 33.190 24.322 24.601 24.304 24.600

30.701 30.750 38.999 30.549 30.735 30.532 30.715

10 24.802 25.317 33.359 24.468 24.743 24.445 24.744

30.798 30.832 39.142 30.577 30.757 30.560 30.742

20 24.852 25.188 33.406 24.300 24.567 24.272 24.570

30.732 30.654 39.103 30.384 30.583 30.371 30.576

The number of covariates p = 5, 10, 20, for each p, the first row is MAE, the second row is RMSE. SRF, proposed random forest-bases estimator; Naive.km, estimate based on

Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian

et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.

We set n = 3, 000, SNR = 0.3. For Identity link and Log-exp
link, λC = 0.08, L = 5.3. For Exp link λC = 0.0026, L = 190.
We calculate the MAE and RMSE for our method and four
existing methods(both Lu.method and Wang.method have two
link functions) under Model 1 and Model 2 and p = 5, 10, 20.
Among all the considered models, our method in general has
a better performance. As an example, Figure 4 visualizes the
observed hRMST generated from Log-exp link and predicted
hRMST from our method and Wang.method, showing that the
random forest can give better predictions.

Tables 1, 2 show the MAE and RMSE for Model 1 and Model
2, respectively. For Model 1, the parametric models are correctly
specified using the methods of Tian et al. (2014), Wang and
Schaubel (2018), we expect that both methods perform well, and
our method can have a comparable performance. For Model 2,
our proposed method dominates all other methods. Increasing
the number of non-predictive covariates does not have a big
impact on the performance of our method.

When the censoring distribution does not follow PH
assumption, we may expect a difference in the prediction
performance because of the bias of IPCW frommis-specification.
To check whether our method can still outperform the
existing methods, we conduct additional numerical studies. In
particular, we simulate the censoring time from the following
gamma distributions

C ∼ Ŵ(α,β),β =
1

λC exp(X1 log 2)
, and α ∈ {0.5, 1.5}

When α = 1, the gamma distribution degenerates to the
exponential distribution we used for Tables 1, 2. Tables 3, 4 show
the MAE and RMSE for Model 1 andModel 2 when α = 0.5, and
Tables 5, 6 show the MAE and RMSE for Model 1 and Model 2
when α = 1.5. Results of α ∈ {0.5, 1.5} are not very different
from the results of α = 1. Under Model 1, our method performs
comparably well as methods of Tian et al. (2014), Wang and
Schaubel (2018), and it dominates the others under Model 2.
When feature dimension is low(p = 5), the error metrics of
our method when α = 1 are in general lower than the error
metrics when α = 0.5, 1.5 for both Model 1 and Model 2. The
additional errors can be regarded as the bias induced from the
violation of PH assumption of the censoring distribution. When
feature dimension is high(p = 10, 20), bias from large p may
dominate the bias from the violation of PH assumption of the
censoring distribution.

5. APPLICATION TO THE TCGA OVARIAN
CANCER DATA SET

We apply the proposed method to The Cancer Genome Atlas
(TCGA) ovarian cancer functional proteomics data set (Akbani
et al., 2015) that is publicly available (http://gdac.broadinstitute.
org). The data sets include proteomic characterization of tumors
using reverse-phase protein arrays (RPPA). Specifically, Akbani
et al. (2015) reported an RPPA-based proteomic analysis using
195 high-quality antibodies that target total, cleaved, acetylated
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and phosphorylated forms of proteins in 412 high-grade serous
ovarian cystadenocarcinoma (OVCA) samples. The function
space covered by the antibodies used in the RPPA analysis
emcompasses major functional and signaling pathways of
relevance to human cancer, including proliferation, DNA
damage, polarity, vesicle function, EMT, invasiveness, hormone
signaling, apoptosis, metabolism, immunological, and stromal
function as well as transmembrane receptors, integrin, TGFβ ,
LKB1/AMPK, TSC/mTOR, PI3K/Akt, Ras/MAPK, Hippo,
Notch, and Wnt/beta-catenin signaling (Akbani et al., 2015).

After removing a few samples with missing data, the final
data set includes 407 OVCA samples with a mean/median

follow-up of 3.20/2.79 years and a total of 242 deaths and
40% censoring. To assess how different methods predict the
hRMST, we performed the following cross-validation analysis.
For a given L, we did 10-fold cross-validation on the data set.
For each training data set in the cross-validation, we perform
a univariate analysis to select top 5 most significant features
based on univariate Cox regression analysis. We then estimate
the hRMST on the test set using the training data sets with
these 5 features as the predictors. We apply 7 different methods,
including estimate based on the KM estimator, estimate based
on the Cox model, the method of Tian et al. (2014) and the
method of Wang and Schaubel (2018). We report the average

TABLE 6 | Comparison of Mean-Absolute-Error (MAE) and Rooted-Mean-Squared-Error (RMSE) for Model 2 with different link functions and the censoring distribution is

mis-specificed with α = 1.5.

p SRF Naive.Cox Naive.km Lu.id Lu.exp Wang.id Wang.exp

Model 1: identity link, n = 3, 000, SNR = 0.3

5 0.1227 0.1396 0.1395 0.1397 0.1397 0.1394 0.1394

0.1507 0.1666 0.1664 0.1668 0.1668 0.1666 0.1666

10 0.1241 0.1391 0.1389 0.1393 0.1393 0.1390 0.1390

0.1514 0.1667 0.1664 0.1669 0.1669 0.1668 0.1668

20 0.1232 0.1390 0.1386 0.1393 0.1393 0.1389 0.1389

0.1499 0.1659 0.1654 0.1663 0.1663 0.1661 0.1661

Model 1: log-exp link, n = 3, 000, SNR = 0.3

5 0.1210 0.1376 0.1375 0.1378 0.1378 0.1374 0.1374

0.1487 0.1643 0.1642 0.1645 0.1645 0.1643 0.1643

10 0.1224 0.1372 0.1370 0.1374 0.1374 0.1371 0.1371

0.1494 0.1644 0.1642 0.1646 0.1646 0.1645 0.1645

20 0.1215 0.1371 0.1368 0.1374 0.1374 0.1370 0.1370

0.1480 0.1637 0.1632 0.1641 0.1641 0.1638 0.1638

Model 1: exp link, n = 3, 000, SNR = 0.3

5 21.071 23.719 23.699 23.787 23.785 23.581 23.580

26.092 28.241 28.217 28.313 28.311 28.238 28.238

10 21.334 23.649 23.612 23.711 23.710 23.524 23.524

26.159 28.231 28.186 28.283 28.281 28.224 28.224

20 21.176 23.629 23.571 23.748 23.745 23.492 23.492

25.893 28.077 27.993 28.208 28.204 28.085 28.085

The number of covariates p = 5, 10, 20, for each p, the first row is MAE, the second row is RMSE. SRF, proposed random forest-bases estimator; Naive.km, estimate based on

Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian

et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.

TABLE 7 | Performance of the proposed random forest estimator compared with other methods for L = 3, 4, 5.

L SRF Naive.Cox Naive.km Lu.id Lu.exp Wang.id Wang.exp

3 0.6879 0.9247 0.9463 0.9266 0.9355 0.7630 0.7721

0.8258 0.8925 0.8967 0.8966 0.8983 0.8438 0.8455

4 1.2033 1.5450 1.5686 1.5704 1.5777 1.2862 1.3044

1.2403 1.3597 1.3648 1.3830 1.3817 1.2719 1.2752

5 1.7479 2.2107 2.2395 2.2467 2.2306 1.8251 1.8540

1.6761 1.8594 1.8655 1.8989 1.8858 1.7168 1.7193

The first row is MAE, the second row is RMSE. SRF, proposed random forest estimator; Naive.km, estimate based on Kaplan–Meier estimator without adjusting for the covariates;

Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian et al. (2014) with exponential link; Wang.id, method of Wang

and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.
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FIGURE 5 | Performance of the proposed random forest estimator compared with other methods for L = 3, 4, 5. The left penal is the MAE across of 10-fold

cross-validation. The right panel is the RMSE across of 10-fold cross-validation. SRF, proposed random forest estimator; Naive.km, estimate based on Kaplan–Meier

estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian

et al. (2014) with exponential link; Wang.id method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with

exponential link.

of MAE and RMSE on the samples in the testing sets over the
10-fold cross-validation.

The results are shown in Table 7 and Figure 5 for L =
3, 4, 5 (see Supplementary Material for L = 6, 7, 8). There are
45.9, 31.2, 19.4, 11.8, 8.1, 4.4% of the observations larger than L
for L = 3, 4, 5, 6, 7, 8 correspondingly. For different choices
of L, our proposed random forest based method dominates
the other methods in MAE and RMSE. The methods of Tian

et al. (2014) and Wang and Schaubel (2018) are based on
parametric form of hRMST. Cox model is heavily dependent
on the proportional hazard assumption, and the Kaplan–Meier
approach does not take the covariates into account. We also
notice that the method of Wang and Schaubel (2018) always
performs better than the method of Tian et al. (2014), possibly
due to the fact that the censoring mechanism in the data depends
on the covariates.
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6. DISCUSSION

In this paper, we have developed a non-parametric random
forest-based method for estimation of hRMST. Compared
with traditional Cox model, which gets hRMST estimates by
transforming the estimated hazard functions, directly modeling
hRMST would be more preferable for computation and feature
importance analysis. The proposed estimator can relax the
parametric assumptions imposed on the survival time used in
Tian et al. (2014) and Wang and Schaubel (2018), and can
achieve better prediction performance. We have derived the
asymptotic distribution of the random forest estimator using
IPCW approach, and presented a procedure based on bags of
little bootstraps to obtain the variance of the estimator. Our
simulation results and analysis of TCGA data sets have shown
promising performance in predicting hRMST as compared to
the other available methods, even when the dimension is high
and the covariates include irrelevant variables. The method is
implemented by R and C++, and is available at https://github.
com/lmy1019/SRF.

The proposed method can be used to estimate the
heterogeneous treatment effects in randomized clinical
trials when the outcome is censored. One can simply apply
the method separately to the treated group and the placebo
group and take the difference. However, for the observational
studies, one needs to account for the fact that the treatment
assignments might not be completely at random. Wager
and Athey (2015) developed a non-parametric causal forest
for estimating heterogeneous treatment effects that extends
Breiman’s random forest algorithm. In the potential outcomes
framework with non-confounding, they showed that causal
forest are pointwise consistent for the true treatment effect
and have an asymptotically Gaussian and centered sampling
distribution. For the observational studies with censored
survival outcomes, it is also possible to combine the methods
proposed here and the method of Wager and Athey (2015) in
order to estimate the treatment effect on the restricted mean
survival time.

The proposed methods can also be extended to take into
account possible competing risk. This can be done by introducing

an additional inverse probability weight (IPCW) to differentiate
the non-informative censoring and competing risk censoring.
In this case, the estimation equation ψ function with covariates
history X̃ = x̃ under true GC and GR becomes

ψ̃µ(x̃,Z
L, δL) =

1

1− GC(ZL|X = x)

1

1− GR(ZL|X̃ = x̃)

δL
(

ZL − µ

)

, (8)

where under competing risk scenario, δL = 1{T∧L≤C∧R}. The
method proposed in this paper can be automatically adapted to
the competing risk case and the asymptotic normality result can
be derived similarly.
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Background: Cervical cancer became the third most common cancer among women,

and genome characterization of cervical cancer patients has revealed the extensive

complexity of molecular alterations. However, identifying driver mutation and depicting

molecular classification in cervical cancer remain a challenge.

Methods: We performed an integrative multi-platform analysis of a cervical cancer

cohort from The Cancer Genome Atlas (TCGA) based on 284 clinical cases and identified

the driver genes and possible molecular classification of cervical cancer.

Results: Multi-platform integration showed that cervical cancer exhibited a wide

range of mutation. The top 10 mutated genes were TTN, PIK3CA, MUC4, KMT2C,

MUC16, KMT2D, SYNE1, FLG, DST, and EP300, with a mutation rate from 12 to 33%.

Applying GISTIC to detect copy number variation (CNV), the most frequent chromosome

arm-level CNVs included losses in 4p, 11p, and 11q and gains in 20q, 3q, and 1q.

Then, we performed unsupervised consensus clustering of tumor CNV profiles and

methylation profiles and detected four statistically significant expression subtypes. Finally,

by combining the multidimensional datasets, we identified 10 potential driver genes,

including GPR107, CHRNA5, ZBTB20, Rb1, NCAPH2, SCA1, SLC25A5, RBPMS,

DDX3X, and H2BFM.

Conclusions: This comprehensive analysis described the genetic characteristic of

cervical cancer and identified novel driver genes in cervical cancer. These results provide

insight into developing precision treatment in cervical cancer.

Keywords: cervical cancer, TCGA, multi-platform analysis, molecular classification, driver mutation

INTRODUCTION

As the most common gynecological malignancy, cervical cancer has been reported to have
about 570,000 new cases and 311,365 deaths in 2018 worldwide and has become the third
most common cancer among women (Bray et al., 2018). Persistent infection with oncogenic
types of human papillomavirus (HPV) is now considered the principal etiological agent in
cervical cancer (Moody and Laimins, 2010; Litwin et al., 2017). In fact, the majority of
HPV infections are transient and do not result in malignant transformation. Only a small
percentage of women experience persistent infection, which leads to genomic instability and
accumulation of somatic mutations, thus developing malignant cancers finally (Litwin et al., 2017).
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Although major achievements have been made in surgery,
chemotherapy, and radiotherapy in current decades, the
molecular biomarkers and potential treatment targets
remain necessarily.

Appreciable evidence implicates specific genomic alterations
involved in the initiation and progression of cervical cancer. The
genome characterization of a large number of cervical patients
has revealed the extensive complexity of molecular alterations,
such as somatic aberrations (Ojesina et al., 2014), copy number
alterations (CNAs) (Rao et al., 2004), DNA methylation (Verlaat
et al., 2017), and dysfunctional microRNA (miRNA) (Cheung
et al., 2012). Chen et al. (2013) performed the first genome-wide
association study (GWAS) of cervical cancer and identified three
independently acting loci (DAP, NR5A2, and MIR365-2 gene
regions) within the major histocompatibility complex (MHC)
region contributing to the risk of developing cervical cancer,
which support its role in high-riskHPV infection and persistence.
Ojesina et al. (2014) reported 115 cervical carcinoma–normal
paired samples’ whole-exome sequence analysis, 79 cases’
transcriptome sequence, and 14 tumor–normal pairs’ whole
genome sequence and detected significantly recurrent somatic
mutations in the mitogen-activated protein kinase 1 (MAPK1)
gene among squamous cell cervical cancers and provided
evidence of potential ERBB2 (also means HER2/neu) activation
by somatic mutation, amplification, and HPV integration to
combat cervical carcinoma. Despite these discoveries, attempts to
apply molecular-targeted agents for treatment of cervical cancer
have met with limited success thus far.

During the development of cancer, a large number of somatic
mutations occur; however, only a handful of somatic mutations
are expected to initiate and promote tumor growth, so-called
driver mutations (Nehrt et al., 2012). Several driver mutations
have been identified as a subtype for specific cancer type or
as a target in therapy. Li et al. (2018a) identified 11 novel
driver genes through integrative analysis of 1,061 hepatocellular
carcinoma genomes and employed three MutSig algorithms,
non-negative matrix factorization, Kaplan–Meier survival and
Cox regression analyses, as well as logistic regression model and
discovered 11 novel driver genes and further validated AURKA,
a small molecule inhibitor, as a druggable target in this disease.
Ganly et al. (2018) identified the genomic characterization of
56 primary Hurthle cell carcinoma and elucidate the mutational
profile and driver mutations of these tumors. They also identified
the disease pathogenesis signaling pathway and the importance
of the receptor tyrosine kinase (RTK)/(It is encoded by ras
gene which acts as a oncogene) RAS/(it has Ser/Thr protein
kinase activity) RAF/MAPK and phosphoinositide 3-kinase
(PIK3)/AKT/mammalian target of rapamycin (mTOR) pathways
in Hurthle cell carcinoma, and further clinical trial demonstrated
multiple tyrosine kinase inhibitor sorafenib and the mTOR
inhibitor everolimus showed a significant response rate for these
agents (Ganly et al., 2018).

However, driver genes in cervical cancer remain to be
identified. In the current study, we integrated somatic mutation,
copy number variation (CNV), DNA methylation, and miRNA
profile; depicted a comprehensive genomic landscape of cervical
cancer; performed molecular classification; and finally identified
driver genes. Thus, developing novel targeted therapy against

specific somatic alterations finally improves current strategies to
combat cervical carcinomas.

MATERIALS AND METHODS

Data Resource
The mutant MAF file of cervical cancer was downloaded using
the R package TCGA biolinks (Colaprico et al., 2016), which
contains the mutation results of 297 samples. Screening the
various cancer type, single-nucleotide polymorphism (SNP)6
copy number segment 287 datasets, and 299 methylation
chip data of cervical cancer samples were downloaded from
FireBrowse (http://firebrowse.org/) with Cervical Squamous Cell
Carcinoma and Endocervical Adenocarcinoma (platform for
Illumina 450K chip). Besides, 304 messenger RNA (mRNA)
expression profile data and 307 miRNA expression profile
data of cervical cancer samples were downloaded from the
National Cancer Institute Genomic Data Commons Data
Portal (https://portal.gdc.cancer.gov/). Overall, we integrated
284 samples of multiple data features for further analysis,
including mutation location, CNV information, methylation
data, and mRNA and miRNA expression profile datasets. In
addition, cervical cancer fusion genes were downloaded from
the Tumor Fusion Gene Data Portal (https://tumorfusions.org/
PanCanFusV2/database).

Single-Nucleotide Polymorphism
Correlation and Copy Number Variation
Analysis
Driver gene analysis was performed by GenePattern (https://
cloud.genepattern.org/gp/pages/index.jsf) with corresponding
MutSigCV module (Reich et al., 2006). Maftools of R package
was used for mutation spectrum to identify mutations in tumor
samples. SomaticSignatures was applied for mutation detection
and plots the mutation spectrum and mutation characteristics
(Gehring et al., 2015; Mayakonda et al., 2018). The GISTIC
algorithm was used to detect the common CNV regions in
all samples with q-value <0.05, including chromosome arm
horizontal CNV and the smallest common region between
samples. For chromosomal mutation, a region ratio higher
than 0.98 was recognized as a chromosomal arm alternative
site. Tumor purity and ploidy analysis were performed based
on CNV results using R-package Absolute (https://software.
broadinstitute.org/cancer/cga/absolute_download).

Subgroup Identification and Molecular
Characteristics Analysis
Unsupervised clustering algorithmwas applied to cluster the data
from four different platforms (DNA copy, DNA methylation,
mRNA expression profile, miRNA expression profile), and
subpopulations were identified based on each data platform
analysis. The cluster-of-clusters analysis (CoCA) was used to
recluster the obtained classification results and integrated the
subgroup classification results from different data platforms
(Hoadley et al., 2014; Chen et al., 2016).

Chi-statistical tests were performed on each subgroup
and clinical features, including tumor stage, differentiation
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grade, HPV infection, and the association relationship
between each subgroup and clinical features. Furthermore,
we applied the R package Seurat (https://satijalab.org/seurat/)
FindAllMarkers to preform characteristic marker screening
of subpopulations including mRNA, miRNA, and methylation
profiles. Subpopulation genemutation characterization:Maftools
was applied for each subgroup mutation type (C > T, T > C,
C > A, T > G, C > G, T > A, converting Ti, translating Tv).
Statistical analysis was performed to compare the differences
in the types of mutations between subgroups and used for
the identification of co-mutation/exclusion mutation genes
and mutation signature analysis. In addition, comparing the
difference features between subgroups, APOBEC (apolipoprotein
B mRNA editing enzyme, catalytic polypeptide-like) enrichment
analysis was performed to count the TCW (W refers to G or T)
and non-TCWmutation ratio. Genes with significant differences
in the proportion of mutations in each subpopulation were
screened for further analysis.

Subgroup CNV characteristics: each subgroup was checked
for the copy number changes of all chromosomes, counting

the samples with copy number changes for each chromosome
segment in each subgroup and performing chi-square test. The
identified region is filtered by significantly different copy number
changes for chromosome segments in each subgroup.

Statistical Analysis
Two-tailed Student’s t-test was used to compare the means of
two groups. One-way ANOVA analysis of variance with Tukey–
Kramer post-hoc test was used for analyzing data when means
from more than two groups were compared. P < 0.05 was
considered to be statistically significant. All the statistical analysis
was performed with SPSS 17.0 statistical software.

RESULTS

Patient Cohort and Molecular Analysis
Strategy
To identify and characterize cervical cancer genome alterations,
tissue specimens were analyzed by multiple genomic assays,
including whole-exome sequencing formutations, SNP arrays for

FIGURE 1 | A summary of the genes mutated in 284 cervical cancer samples. (A) Variant classification; (B) Varian type; (C) SNV class; (D) Variants per sample; (E)

Variant classification summary; (F) Top 10 mutated genes.
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copy number analysis, mRNA sequencing, miRNA sequencing,
and DNA methylation arrays (Supplementary Table 1). Totally,
284 cases were available for the multiplatform, and the
clinical characteristics of the included patients are presented in
Supplementary Table 2. The mean age at initial diagnosis of
cervical cancer was 46 years, with a range of 20–88 years. Among
them, 233 patients (81.7%) were squamous cervical cancer, 46
were adenocarcinoma, and five were adenosquamous carcinoma.
After a median follow-up period of 636 days, 221 patients
suffered death.

Mutation Landscape of Cervical Cancer
Massively parallel sequencing was performed to detect somatic
mutations on tumor samples from the cohort of cervical cancer
patients. Here, 233 patient samples (82.04%) have been detected
to have somatic mutations, and a total number of 83,386 somatic
mutations were obtained, including 50,644 missense mutations.
SNV occurs predominantly in cervical cancer, with C > T being
the most common type of mutation. Figure 1 showed a summary
of the genes mutated in cervical cancer. The top 10 mutated
genes were TTN, PIK3CA, MUC4, KMT2C, MUC16, KMT2D,
SYNE1, FLG, DST, and EP300, with a mutation rate from 12 to
33% (Figures 1F, 2A,B).

We then described the mutation spectrum and mutational
signatures among cervical cancers and identified 96 types
of mutation signatures (Figure 2C). Mutational signatures of

cervical cancer were enriched in deficiency of DNA mismatch
repair (COSMIC Signature 6; cosine similarity: 0.895), APOBEC-
cytidine deaminase (COSMIC Signature 2; cosine similarity:
0.846), and spontaneous deamination of 5-methyl cytosine
(COSMIC Signature 1; cosine similarity: 0.951) (Figure 2D).

Copy Number Variation of Cervical Cancer
Applying GISTIC to detect CNV, the most frequent chromosome
arm-level CNVs included losses in 4p, 11p, and 11q and gains in
20q, 3q, and 1q (Figure 3A). Besides, 25 focal deletion peaks and
21 focal amplification peaks were detected (Figure 3B). Among
them, the most significant amplification region was 3q26.31 and
11q22.1, while the most marked deletion region was 11q24.2
and 2q37.2 (Figure 3B). We used ABSOLUTE to estimate tumor
purity and tumor ploidy. As described in Figure 3C, tumor
purity was in range in 0.21–1 and the ploidy was 1.70–9.87,
suggesting genomic disorder was a common phenomenon in the
development of cervical cancer.

Molecular Classification
To derive a molecular classification for cervical cancer, we
performed unsupervised consensus clustering of tumor CNV
profiles, methylation profile, mRNA profile, and miRNA profile,
respectively, finally detecting four statistically significant
expression subtypes. Firstly, hierarchical clustering was
performed according to CNV profile, resulting in 284 samples

FIGURE 2 | Mutation distribution in cervical cancer patients. (A,B) Frequency of specific mutation genes. (C,D) Mutation signature analysis.
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FIGURE 3 | Copy number variation (CNV) of cervical cancer. (A) Chromatin amplification and deletion. (B) Genome-wide distribution of chromatin amp and del. (C)

Purity and ploidy of cervical cancer.

divided into two subtypes (Figure 4A). Then, gene methylation
data of 284 cervical tumor tissues were clustered, and cases
were divided into a higher cluster and lower cluster based
on the clustering results (Figure 4B). However, the effect of
clustering was not obvious based on mRNA or miRNA profile.
Therefore, unsupervised clustering of all samples based on
CNV profile and methylation profile was further performed
for molecular classification. Finally, unsupervised clustering
defined four subtypes that had diverse CNV and methylation
events using COCA approach. Cluster 1 was enriched for
CNV and poor in methylation. Cluster 2 was enriched for
methylation and poor in CNV. Cluster 3 was poor in both CNV
and methylation. Cluster 4 was enriched for both CNV and
methylation (Figures 4C,D).

We then analyzed the correlation between each subgroup
and clinical characteristic, including pathology, differentiation,
TNM stage, HPV integration, and survival status. As shown in
Figure 5, with respect to pathology, squamous cell carcinoma,
adenosquamous carcinoma, and adenocarcinoma had significant
differences in the distribution of four subpopulations, especially,
Cluster 3 is almost squamous cell carcinoma. In addition,

comparing the distribution of HPV integration samples,
HPV integration was significantly different among the four
subpopulations, with the highest proportion of HPV integration
samples in Cluster 2. We then analyzed gene mutation in these
four clusters (Figure 5), 81 gene mutations showed differences
across clusters. Of note, mutation samples were more frequent
in Cluster 3 than in other clusters, further suggesting Cluster
3 has special molecular mutation characteristics. Distinguishing
the characteristic genes of each subgroup, we calculated the
differentially expressed genes, miRNAs, and methylation of each
subgroup. Several specific high expression genes were identified
in cluster 2, and one specific high expression gene (MAL) was
identified in cluster 1. However, there was no specific high
expression gene in clusters 3 and 4. These results indicated that
cluster 2 was significantly different from other subgroups in gene
expression and had its special molecular features. In clusters
2 and 3, 182 and 138 special methylation sites were detected,
commenting on 130 and 96 genes, respectively. Functional
enrichment analysis showed these genes were involved in bone
morphogenesis and skeletal development (Figure 5). In Cluster
4, 104 special methylation sites were detected, commenting on
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FIGURE 4 | (A) Copy number variation (CNV) landscape in cervical cancer. Hierarchical clustering of CNV data, with the heatmap showing beta values ordered by

CNV clusters. (B) DNA methylation landscape in cervical cancer. Unsupervised clustering of DNA methylation data, with the heatmap showing beta values ordered by

DNA methylation clusters. (C,D) Cluster-of-clusters analysis (CoCA) clustering for subgroup identification.

92 genes. Functional enrichment analysis showed these genes
were involved in Rap1 pathway, hypoxia-inducible factor (HIF)-1
pathway, and cell adhesion (Figure 5).

Moreover, after analyzing the mutation types among the
four subtypes, the results showed that all these four subtypes
were mainly C > T mutation and the conversion ratio
was generally higher than the transversion ratio (Figure 6A).
Mutually exclusive or co-occurring events were determined by
Fisher exact test, and there weremore co-mutated genes in cluster
3 and no exclusive mutations were detected in all subpopulations
(Figure 6B). APOBEC enrichment analysis showed that the
majority samples were APOBEC enriched samples (Figure 6C).
Further signature analysis showed that signatures 1, 2, and 13
were involved in clusters 1, 2, and 4, and signatures 6 and 10 were
involved in cluster 3 (Figure 6D).

With respect to CNV, seven deletion regions and 22
amplification regions were identified, showing significant
differences across clusters. Both CNV samples and CNV values
in clusters 2 and 3 were less compared with those of clusters 1
and 4 (Figure 7A), suggesting that the main factor promoting
tumor in clusters 2 and 3 was not CNV but mutation. Tumor
purity and tumor ploidy were analyzed by using ABSOLUTE.
As described in Figure 7B, tumor purity showed no difference

among subgroups, whereas tumor ploidy showed a difference
between cluster 1 (mean= 3.75) and cluster 3 (mean= 3.32) and
between cluster 2 (mean = 3.80) and cluster 3 (mean = 3.32).
With respect to fusion gene detection, 5UTR-3UTR was only in
cluster 2 (Figure 7C), and CDS-3UTR was only in clusters 1 and
4. Thus, fusion genes varied in different clusters.

Identification of Drive Mutation
As it is both clinically important and challenging to distinguish
high-risk cervical cancer patients with poor progression and
prognosis, we sought to identify molecular features associated
with poor prognosis. Combining the above multidimensional
datasets, a series of genes associated with poor prognosis was
identified, including 77 genes in cluster 1, 17 genes in cluster
2, 92 genes in cluster 3, and 20 genes in cluster 4. Further
Mut2sigC analysis finally identified a total of 10 unique driver
genes, including GPR107, CHRNA5, ZBTB20, Rb1, NCAPH2,
SCA1, SLC25A5, RBPMS, DDX3X, and H2BFM.

DISCUSSION

Previous studies have implicated somatic mutations in PIK3CA,
TP53, STK11, EP300, FBXW7, and HLA-B in the pathogenesis of
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FIGURE 5 | The cluster-of-clusters analysis separated 276 cervical cancers into four clusters. Upper covariate tracks show (A) clinical characteristics; (B) mutations in

top 10 different mutated genes across four clusters; and (C) copy number variation (CNV) in 1p, 1q, 3q, 3p, 12p, 19q, and 20p. (D) The heatmap shows methylation

in cervical cancers.

cervical carcinomas (Ojesina et al., 2014; Bager et al., 2015). As
expected, in the current study, recurrent mutations in PIK3CA,
EP300, and FBXW7 were presented in 32, 12, and 7% cervical
patients, respectively, consistent with similar findings in previous
reports (Ojesina et al., 2014). In addition, we found significantly
recurrent mutations in TTN (33%), MUC4 (31%), and MUC16
(19%), here reported for the first time, to our knowledge,
in cervical carcinomas. The most frequently mutated gene in
the current study is titin (TTN). The 364 exon TTN gene
encodes TTN, the largest known protein, playing key structural,
developmental, mechanical, and regulatory roles in cardiac and
skeletal muscles (Gerull et al., 2002; Chauveau et al., 2014).
Missense mutation of TTN was detected in 85% lung squamous
cell carcinoma and predicted a favorable prognosis of these
diseases (Cheng et al., 2019). More recently, TTN mutation was
reported to predict an increased tumor mutational burden, a
beneficial response to immune checkpoint blockade treatment,
and a long survival among pan-solid tumors, including cervical
cancer (Jia et al., 2019). MUC4, a transmembrane glycoprotein,
was involved in many different biological processes such as
cell proliferation, cell death, invasion, and metastasis (Singh

et al., 2007). MUC4 was activated during the process of cervical
squamous dysplastic transformation (Lopez-Ferrer et al., 2001),
aberrantly expressed in cervical cancer (Munro et al., 2009),
and associated with lymph node metastasis (Munro et al.,
2009). Abrogation of MUC4 expression reduces invasion and
the mesenchymal properties of cervical cancer cells (Xu et al.,
2017). We observed MUC16 mutation in our dataset, similar
to recent reports in gastric cancers (Li et al., 2018b). Therefore,
the recurrent site-specific TTN and MUC4 mutations and the
known role of these genes in cancer suggest the possibility that
mutant TTN and MUC4 may exert oncogenic activity in cervical
cancer. Further validation of these results is required in the
future, especially the predictive role of TTN in cervical cancer
immunotherapy response.

Pathway analyses revealed that the most significantly mutated
gene set in cervical cancer involved a deficiency of DNA
mismatch repair, APOBEC-cytidine deaminase, and spontaneous
deamination of 5-methyl cytosine. Previous study has described
deficient DNAmismatch repair as a common phenomenon in the
process of cervical cancer development (Nijhuis et al., 2007; Feng
et al., 2018). APOBEC-cytosine deaminase activity has recently
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FIGURE 6 | Differentiation between clusters including (A) mutation, (B) co-mutated genes, (C) APOBEC enriched samples, and (D) mutation signature analysis.

emerged as a significant mutagenic factor in human cancer.
APOBEC activity served as a key driver of PIK3CA mutagenesis
and HPV-induced transformation in head and neck squamous
cell carcinomas (Henderson et al., 2014). Moreover, APOBEC
cytidine deaminase mutagenesis pattern has been detected in
human cervical cancer (Roberts et al., 2013). Our current
results further support the concept that deficient DNAmismatch
repair and APOBEC-mediated mutagenesis were carcinogenic in
the cervix.

CNV is a very common phenomenon and contributes to
gene transcript expression in cervical cancer (Dellas et al., 2003;
Narayan et al., 2007; Yan et al., 2017). In our genome-wide CNV
analysis, the most prevalent gains are detected at the 3q26.31
and 11q22.1, while the most frequent deletions are at 11q24.2
and 2q37.2, consistent with previous reports (Rao et al., 2004;
Narayan et al., 2007). These observations further suggest genomic
disorder was a common phenomenon in the development of
cervical cancer.

Molecular classification may prove more clinically impactful
compared to traditional histopathological classifications in terms
of treatment predictions and predicting patient prognosis.
Based on the above comprehensive genetic alterations, using
a “cluster-of-clusters” analytic approach, we identified four
major genomic subtypes of cervical cancer. Cluster 2 was
enriched in methylation and poor in CNV. HPV integration
was most enriched in cluster 2 with lots of overexpressed
genes. Rb-1 was detected as the driver mutation in this
subgroup, suggesting that HPV integration unregulated lots
of genes via methylation, especially the driver gene Rb-1,
abrogated cell cycle arrest, and stimulated proliferation in
cervical cancer. More recently, cervical cancer with Rb1mutation
is reported to be more sensitive to cisplatin through PI3K/AKT
pathway. Cluster 3 was characterized by poor CNV and poor
methylation, most of which were squamous carcinoma. In
this subgroup, co-mutations were common events. NCAPH2,
SCA1, and SLC25A5 were identified as driver mutations.
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FIGURE 7 | Differentiation between clusters including (A) copy number variation (CNV) counts, (B) tumor purity and tumor ploidy, and (C) fusion gene types.

Cluster 4 was enriched both for CNV and methylation. In
this subgroup, RBPMS,DDX3X和H2BFM were identified as
driver mutations.

Our study represents the first integrated multidimensional
molecular and computational investigation of somatic mutations
in cervical cancer, which strongly complements previous gene-
and pathway-focused studies. Cervical cancer is a heterogenous
disease likely driven by multiple genomic disorders. We
tried to elucidate the driver gene(s) and potential molecular
subtypes of cervical cancer by using a public database. In the
current study, we integrated multi-omics data including somatic
mutation, CNV, DNA methylation, and miRNA profile, depicted
a comprehensive genomic landscape of cervical cancer, and
then performedmolecular classification, finally identifying driver
genes, such as GPR107, ZBTB20, NCAPH2, and SLC25A5. These
results contribute to the identification of clinically important
biomarkers and potential treatment targets. However, this paper
also has some limitations. Firstly, majority samples of selected
cohorts were confirmed as squamous cancers, limited numbers
of different histologic types and para-cancer tissues working as
control, which might bring bias into the classification process.
As for the unsupervised classification, we used COCA, a two-
step approach, to build binary matrix from multiple omics,
and then returned a global clustering structure. The algorithm
COCAwas first introduced in TCGA network (2012), combining
and summarizing the clustering structures, even if the original
datasets (level 1/2) are unavailable to the public. Yet, we should

notice that the first step combination of such clustering structures
from each dataset is unweighted, which might make the output
of the algorithm sensitive to the inclusion of poor-quality
datasets. Therefore, biologic functions of these driver genes
in cervical cancer remain to be verified, which is now under
further exploration.
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Cancer subtype identification is important to facilitate cancer diagnosis and select
effective treatments. Clustering of cancer patients based on high-dimensional RNA-
sequencing data can be used to detect novel subtypes, but only a subset of the
features (e.g., genes) contains information related to the cancer subtype. Therefore,
it is reasonable to assume that the clustering should be based on a set of carefully
selected features rather than all features. Several feature selection methods have been
proposed, but how and when to use these methods are still poorly understood. Thirteen
feature selection methods were evaluated on four human cancer data sets, all with
known subtypes (gold standards), which were only used for evaluation. The methods
were characterized by considering mean expression and standard deviation (SD) of
the selected genes, the overlap with other methods and their clustering performance,
obtained comparing the clustering result with the gold standard using the adjusted Rand
index (ARI). The results were compared to a supervised approach as a positive control
and two negative controls in which either a random selection of genes or all genes
were included. For all data sets, the best feature selection approach outperformed the
negative control and for two data sets the gain was substantial with ARI increasing
from (−0.01, 0.39) to (0.66, 0.72), respectively. No feature selection method completely
outperformed the others but using the dip-rest statistic to select 1000 genes was overall
a good choice. The commonly used approach, where genes with the highest SDs are
selected, did not perform well in our study.

Keywords: feature selection, gene selection, RNA-seq, cancer subtypes, high-dimensional

INTRODUCTION

The human genome consists of around 21,000 protein coding genes (Pertea et al., 2018). By
analyzing genes using high-throughput technologies (e.g., sequence and microarray technologies),
researchers get access to huge amount of data that can be of relevance for prognosis of a
disease (classification), identification of novel disease subtypes (cluster analysis) and detection
of differentially expressed genes. Aside from the fact that the number of genes often far
exceeds the number of samples, most features (i.e., genes) contain no information related
to the trait of interest. Whether the aim is to distinguish between different tumor stages
or identifying new disease subtypes, the identification of discriminating features is key.
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Diseases like cancer arise by various causes and there is
reason to believe that today’s cancer diseases can be divided
further into several subtypes, which potentially should be treated
differently. Cluster analysis applied on gene expression data
from samples (e.g., tumor samples or blood samples) taken
from cancer patients has successfully been used to detect novel
cancer subtypes (Eisen et al., 1998; Sotiriou et al., 2003; Lapointe
et al., 2004; Bertucci et al., 2005; Fujikado et al., 2006; Ren
et al., 2016). However, the problem of detecting new subtypes
is challenging since most of the genes’ expressions are not
affected by disease subtype and some genes are influenced by
other factors such as gender, age, diet, presence of infections
and previous treatments. Ideally, a cluster analysis aimed at
detecting novel disease subtypes should only utilize genes that
are informative for the task, i.e., genes that have their expression
mainly governed by which disease subtype the patient has.
Hence, it is of interest to apply some sort of gene selection
procedure prior to the cluster analysis. This task would be
relatively easy if it was known which subtypes (i.e., labels) the
patients have, but for unsupervised classification problems, the
labels are unknown making gene selection a true challenge.
When the labels are unknown, statistical tests such as t-tests,
Wilcoxon rank sum tests or one-way ANOVA cannot be
used to identify differentially expressed genes. Instead, other
data characteristics need to be considered. For example, a
common approach to discover subgroups in high-dimensional
genomic data is to apply clustering on a subset of features
that are selected based on their standard deviation (SD) across
samples (Bentink et al., 2012; Kim et al., 2020; Shen et al.,
2020). Thus, the SD is used as a score that measures how
informative a gene is for the underlying subgroups. Here we
also consider a set of alternative scores for selecting informative
genes, i.e., genes affected by the subtype. Aside SD, other
examples within the category of variability scores include, e.g.,
the interquartile range (IQR) and measures based on entropy
(Liu et al., 2005; Seal et al., 2016). If instead it is assumed
that informative genes are likely to be expressed at a relatively
high level it makes sense to select highly expressed genes.
Another class of measures is based on quantifying the extent
to which the gene expression distribution can be described
by two or more relatively distinct peaks, or modes, which
represent different subtypes. In the simplest case, we assume
that the tumor samples can be divided into two subtypes.
Given that this assumption is true, the gene expression of an
informative gene may have a bimodal distribution. By ranking
genes according to some bimodality measure and including
only the top scoring genes (i.e., the genes with the highest
bimodality measures), it is possible to remove uninformative
and redundant genes before performing clustering. Several gene
selection procedures based on bimodality have been proposed
(Moody et al., 2019), including the bimodality index (BI; Wang
et al., 2009), the bimodality coefficient (BC; SAS Institute, 1990)
and various variants of the variance reduction score (VRS;
Bezdek, 1981; Hellwig et al., 2010). A more general approach is
to search for genes with an apparent multimodal distribution.
The dip-test suggested by Hartigan and Hartigan (1985)
addresses this problem.

It may be argued that genes that are involved in the same
biological processes should have similar expression profiles across
samples (Wang et al., 2014). Under the assumption that a fair
number of genes are affected by the disease subtype, it is natural
to search for a large set of genes that are highly correlated. In
the established taxonomy for feature selection approaches, the
methods studied here are filtering methods, other important
classes are wrapper, embedded, and hybrid methods thereof
(Ang et al., 2016).

It is evident that fundamentally different selection procedures
will identify different sets of genes. Moreover, several of the
approaches are likely to include not only informative genes
but also genes affected by other factors and genes that have
general inclusion properties (e.g., genes with highly variable gene-
expressions). In the worst-case scenario, a gene selection may fail
to identify genes associated with the subtype partition of interest.
This risk is particularly relevant if the influence of the disease
subtype is weak compared to other factors. Hence, gene selection
can have a negative influence on the clustering performance.

Multiple studies have compared feature selection methods
where the ultimate goal is to classify patients according to
some disease status. Arun Kumar et al. (2017) compared
feature selection algorithms based on execution time, number of
selected features and classification accuracy in two microarray
gene expression data sets. Abusamra (2013) compared eight
feature selection methods on two publicly available microarray
gene expression data sets of glioma and found that no
single method outperformed the others. Cilia et al. (2019)
concluded that the feature selection process plays a key role in
disease classification and that a reduced feature set significantly
improved classification, but no selection method had a superior
performance in all data sets. Much fewer studies have compared
feature selection methods where the objective is detection of
novel subgroups using clustering (Freyhult et al., 2010).

Here we focus on evaluating and comparing means of
selecting informative genes in high-dimensional RNA-seq data
from human cancers before performing cluster analysis for
identification of subtypes. The study is extensive and evaluates
13 gene selection procedures on four human cancer tumor types,
each with two known subtypes. The approaches are compared to
two negative controls (including all genes or a set of randomly
selected genes) and a positive control (genes selected using
label information). We study the performance of the methods,
properties of the selected genes and overlap between sets of
selected genes. We also investigate how the performance changes
when the relative distribution of the subtypes is altered.

MATERIALS AND METHODS

Data
Experimental RNA-sequencing raw count data from the TCGA-
database were obtained through Broad institute GDAC Firehose1.
Four different cancer types with known subgroups were used in
the analyses: breast (BRCA), kidney (KIRP), stomach (STAD),

1https://gdac.broadinstitute.org
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and brain (LGG) cancer. In all evaluations we treated the defined
cancer subtypes as gold standard partitions, although there exist
several ways of grouping the data.

The Brain data (denoted LGG by TCGA) consists of data
from 226 tumor samples from patients with lower grade glioma,
where 85 patients had the IDH mutation and 1p/19q co-
deletion (IDHmut-codel) while the remaining 141 patients had
the IDH mutation without the 1p/19q co-deletion (IDHMut-
NOcodel)(Brat et al., 2015). The Breast data (BRCA by TCGA)
consists of data from 929 tumor samples from patients with
breast invasive carcinoma (BRCA), where 216 patients had
negative Estrogen Receptor status (ER−) while the remaining
713 patients had positive ER status (ER+). The Kidney data
(KIRP by TCGA) includes data from tumor samples from 150
patients with kidney renal papillary cell carcinoma (KIRP), where
73 patients were histologically determined as subtype 1 and
the remaining 77 samples were determined as subtype 2 (The
Cancer Genome Atlas Research Network, 2016). The Stomach
data was obtained from tumors in 178 patients with stomach
adenocarcinoma (STAD), where 55 patients had microsatellite
instability (MSI) tumors and the remaining 123 patients had
tumors with chromosomal instability (CIN) (Cancer Genome
Atlas Research Network, 2014).

Clustering of Samples
Raw gene level count data were obtained from the TCGA-
database, i.e., an integer value was observed for each sample
and gene. First, the raw data were pre-processed, including
initial filtration, between sample normalization and applying a
variance stabilizing transformation, see section “Pre-processing”
for further details. A variety of gene selection approaches were
applied to the pre-processed data, see section “Selection of
Informative Genes”. Hierarchical clustering using Ward’s linkage
and the Euclidean distance was performed on the selected genes.
In addition, k-means (k = 2) clustering (Hartigan and Wong,
1979) and hierarchical clustering using Ward’s linkage and a
correlation-based distance (i.e., 1-| ρ|, where ρ is the Spearmans
correlation coefficient) were performed in some selected cases.
The two major groups identified by the clustering algorithm
defined a binary sample partition that was compared to our gold
standard partition (i.e., the partition defined by the considered
subgroups), see section “Evaluations”.

Simulation Study
Prior to analyzing the cancer data, a small simulation study was
conducted to understand if inclusion of non-informative features
(here defined as features with identically distributed feature
values) has a negative effect on the clustering performance. Data
from 100 samples (50 labeled A and 50 labeled B) with 10,000
features were simulated. Here, 100 features were informative such
that the A-values were simulated from a normal distribution
with mean 0 and variance 1 [i.e., N(0,1)] and the B-values
were simulated from N(1,1). All the non-informative values
were simulated from N(0,1). Hierarchical clustering using Ward’s
linkage and the Euclidean distance was performed on: all features,
only the 100 informative features and the k features with the
highest SD, k = 100, 200, . . ., 10,000. The simulations were
repeated 40 times. For each clustering, the performance was

measured using the adjusted Rand index (ARI) (Hubert and
Arabie, 1985), where the clustering result was compared to
the AB-partition.

Pre-processing
All four data sets originally contained gene expression for 20,531
genes. As a first step in finding informative genes, we excluded
genes expressed at low levels. A score was constructed for each
gene by counting the number of samples with expression values
below the 25th gene percentile (i.e., the expression value below
which 25% of the genes in a sample can be found). The 25%
of the genes with highest score were filtered out. Next, the
R-package DESeq2 (Love et al., 2014) was used for between
sample normalization using the standard settings. Finally, the
normalized data was transformed using a variance-stabilizing
transform (VST), which conceptually takes a given variance-
mean relation σ2

= var (x) = h (µ) and transforms the data
according to

y (x) =

∫ x 1√
h(µ)

dµ.

We used the VST implemented in the R-package DESeq2, a
model-based approach that relies on the variance-mean relation
implied by a negative binomial distribution for the gene
expression count data. The choice of transformation approach
was motivated by properties of the clustering method, which
often yields best results for (approximately) homoscedastic
data, meaning that the variance of the variable, such as gene
expression, does not depend on the mean. For RNA-seq count
data, however, the variance typically increases with the mean.
The commonly used procedure to handle this is to apply a
logarithmic transform to the normalized count values after
adding a small pseudo count. Unfortunately, now genes with
low counts have a tendency to dominate the clustering result
since they give the strongest signals in terms of relative difference
between samples.

Selection of Informative Genes
Our focus was to study how gene selection affects the clustering
performance. For the considered data sets there are two “true”
clusters defined by our gold standards. For supervised problems,
where the class labels of the samples are known, feature selection
is done by identifying a set of informative genes, in the simplest
case, by applying a two-sample t-test to each gene and select
the genes with the lowest p-values (Önskog et al., 2011). For
cluster analysis problems, it can be argued that removing “non-
informative” genes prior to the clustering will increase the
clustering performance (Freyhult et al., 2010). Feature selection
for cluster analysis is difficult for two reasons: (a) the sample
labels are unknown and cannot be used to select informative
genes, (b) in contrast to supervised classification it is not possible
to use performance measures (e.g., error rates in classification) to
compare and choose the best feature selection approach for the
considered clustering problem.

We evaluated 13 different methods used for gene selection,
where some are commonly used while others were included
because they constitute principally different approaches. The
methods ranked all genes based on how informative they were
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predicted to be, and the top ranked genes (100, 1000, or 3000
genes) were used in the downstream clustering. Hence, altogether
39 gene selection approaches were applied to the four data sets
and evaluated against the gold standard.

The considered feature selection methods are motivated
by fundamentally different ideas, which were used to group
the methods into four categories. The four principles include
selecting highly expressed genes, highly variably genes, highly
correlated genes and genes with bi- or multimodal profiles.
Below we give a general motivation behind the selection
procedures within each group and a detailed description of the
included methods.

One idea is to select genes with overall high expression values.
Discriminating between disease subtypes can be difficult when
the level of noise is high compared to the mean expression values,
which makes it easier to detect differentially expressed genes
among highly expressed genes. In this category of methods, we
included the methods mean value (M) and third quartile (Q3).

Another group of methods is based on the spread of gene
expression values across samples. Genes with large variability can
contain interesting variations caused by disease subtype. In this
category, we included the SD, the IQR, and the quadratic Rényi
entropy (ENT).

A category involving correlation of genes includes a technique
called co-expression (CoEx1) and a modified version (CoEx2).
Tumor cells are under constant attack by the immune
system and to survive, the genes must coordinate against
the threat. Genes that are highly correlated to other genes
may be involved in the same exposed networks and is
therefore of interest as potential biomarkers. Co-expression
among informative genes has been used for variable selection

in clustering problems for high-dimensional microarray data
(Wang et al., 2014).

Six of the methods studied in this article are based on the
idea of modality. For informative genes, the distribution of gene
expression among patients with different cancer subtypes can be
expected to differ. It is therefore of interest to identify genes that
have an expression distribution with more than one peak. We
included the so-called dip-test (DIP), a method that identifies
genes with multimodal distributions. In addition, we considered
five methods that identify genes with bimodal distributions. We
included the parametric method called the BI and four non-
parametric methods: VRS, weighted variance reduction score
(wVRS), modified variance reduction score (mVRS), and BC. The
relationship between the considered gene selection methods is
summarized in Figure 1.

The Mean Value Selection (M)
The mean value was calculated for each gene over all samples and
the highest expressed genes were included in the analyses.

Third Quartile Selection (Q3)
Genes were arranged according to decreasing values of the third
quartile and the genes with the highest Q3 values were selected.

The Standard Deviation Selection (SD)
The SD was calculated for each gene and the genes with the
highest SDs were selected.

The Interquartile Range Selection (IQR)
The distance between the first and third quartile was calculated
for each gene and genes with large distances were selected.

FIGURE 1 | Feature selection methods divided into groups based on their properties. The included methods are mean value (M), third quartile (Q3), co-expression
(CoEx1), modified co-expression (CoEx2), standard deviation (SD), interquartile range (IQR), entropy estimator (ENT), dip-test statistic (DIP), bimodality index (BI),
variance reduction score (VRS), weighted variance reduction score (wVRS), modified variance reduction score (mVRS). and bimodality coefficient (BC).
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The Entropy Estimator Selection (ENT)
Entropy is an alternative to SD for measuring variability in
gene expression across samples. Assuming the observed values
x1,x2,...,xn for a gene can be described by a distribution with
density f (x), its quadratic Rényi entropy is defined as:

H2 (X) = − log
(∫

f (x)2dx
)

.

To estimate this parameter, we use a non-parametric kernel-
estimator (Gine and Nickl, 2008), obtained as

ENT = −log

 2
n(n− 1)h

∑
i<j

K
(

xi − xj

h

) .

The user specifies the kernel function K(·) and the bandwidth h.
Here we employed the rectangular kernel, and for h we applied
Silverman’s rule-of-thumb for kernel-density estimators and
put h = 1.06× σ̂× n−1/5, where σ̂ is the sample SD. Genes with
high entropy values were selected for the cluster analysis.

The Co-Expression Selection (CoEx1)
For each gene, the co-expressions to all other genes were
calculated using Spearman correlation. Let sij =

∣∣ρij
∣∣ denote the

absolute value of the Spearman rank correlation ρij between
expression profiles for genes i and j. The matrix S with elements
sij is considered as a similarity matrix for the genes with respect
to co-expression. In the original article, the authors use Pearson
correlation, but we applied Spearman correlation instead, which
in earlier studies have proven to be more efficient in identifying
co-expressed genes (Kumari et al., 2012; Wang et al., 2014). To
rank genes according to their co-expression we define the CoEx1
score for gene i as the median of the sij values, i.e.,

CoEx1i = medianjj6=i
{

sij
}
.

The genes with highest median correlations were selected.

The Modified Co-Expression Selection (CoEx2)
The co-expression network analysis was developed for variable
selection in cluster analysis of microarray data. Since microarray
data tend to be noisy, the authors argue that directly using the
similarity matrix for co-expression analysis may be inappropriate
and therefore suggests a transformation of the similarity matrix.
The modified version uses a power transformation of the
elements in the similarity matrix (Wang et al., 2014). The CoEx2
score for gene i is defined as:

CoEx2i =
∑
j6=i

s3
ij,

where sij are the elements of the similarity matrix. The genes with
highest scores were selected for analysis.

The Dip-Test Statistic Selection (DIP)
The dip-test was used to test unimodality and is based on
the maximum difference between the empirical distribution
and the unimodal distribution that minimizes that maximum
difference (Hartigan and Hartigan, 1985). Genes with low
p-values were selected for analysis. The R-package diptest was
used for calculations (Maechler, 2013).

The Bimodality Index Selection (BI)
For each gene, it is assumed that the density f (x) of the
expression value can be described by a normal-mixture model
with two components, i.e.,

f (x) = pN (µA, σ)+
(
1− p

)
N (µB, σ) ,

where µA and µB denote the mean in the two subgroups and p is
the proportion of samples in one group (Wang et al., 2009). The
BI is defined as

BI =
√

p(1− p)
|µA − µB|

σ
.

The expectation-maximization (EM) algorithm was used to
estimate the BI using the R package mixtools (Benaglia et al.,
2009). Ten different starting values were used for the EM-
algorithm, generated from a grid with 10 values for the fraction
parameter p, evenly spaced between 0 and 1, for more details,
see Karlis and Xekalaki (2003). Genes with high BI were
selected for analysis.

The Variance Reduction Score Selection (VRS)
The VRS is used for measuring the reduction of variance when
splitting the data into two clusters (A and B) and is defined as
the ratio of the within sum of squares (WSS) and the total sum of
squares (TSS):

VRS =
WSS
TSS
=

∑
A (xi − xA)2

+
∑

B (xi − xB)2∑
i (xi − x)2 ,

where xA and xB denotes the mean values within group A and B.
These values lie between zero and one, where a low score indicates
an informative split (Hellwig et al., 2010). Hence, genes with a
low score were selected for cluster analysis. The clusters were
obtained using k-means clustering with k= 2.

The Weighted Variance Reduction Score Selection
(wVRS)
The wVRS is a weighted version of VRS that takes sample size
into account, i.e.,

wVRS =
1
2 ( 1

nA

∑
A (xi − xA)2

+
1

nB

∑
B (xi − xB)2)

1
n
∑

i(xi − x)2
,

where nA and nB are the sample sizes in group A and B
(Hellwig et al., 2010). The grouping of the data was obtained
by the k-means algorithm, k = 2. Again, genes with a low
score were selected.

The Modified Variance Reduction Score Selection
(mVRS)
The mVRS considers the proportion of variance reduction
when splitting data into two cluster by using the fuzzy
c-means algorithm, also known as soft k-means clustering
(Bezdek, 1981). Genes with a low score were selected for
further analysis. The R-package cluster was used for calculations
(Maechler et al., 2019).
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The Bimodality Coefficient Selection (BC)
The BC yields a value between 0 and 1 (for large samples) and is
calculated by

BC =
γ2
+ 1

κ+ 3 (n−1)2

(n−2)(n−3)

,

where γ is the sample skewness, κ is the sample excess kurtosis
and n is the sample size. The genes with largest BCs were selected
for cluster analysis. The R-package modes was used for calculating
the coefficient (Sathish and 4D Strategies, 2016).

Evaluations
The considered gene selection approaches (13 methods times
three levels of number of selected genes) were evaluated and
compared to two negative controls (random selection and no
selection) and a positive control (supervised selection).

Random Selection (RAND)
Here we randomly selected k genes, k = 100, 1000, or 3000.
The performance of the random selection (RAND) was highly
variable, therefore, the procedure was repeated 1000 times,
resulting in 1000 performance measures. The evaluated gene
selection methods were compared to the 25th, 50th, and 75th
percentile and the mean value (RAND) of the random selection
performance measures.

Supervised Selection (PVAL)
The gold standard partitions were used to rank genes according
to how well they separated the two subtypes. A standard test
for comparing two groups is the t-test, but for identification of
differentially expressed genes it is common to use a generalized
linear model (GLM). To describe the read count Kij for gene i
observed in sample j, we used a GLM from the negative-binomial
(NB) family with a logarithmic link, given as:

Kij ∼ NB (mean = µij, dispersion = αi),

µij = sijqij,

log2qij = βi0 + βi1xj.

The normalizing factors sij compensate for differences in
sequencing depth between samples and for eventual gene-related
technical biases such as gene length. We used the default
procedure where these factors are considered as fixed within
each sample, sij = sj and then only accounts for differences in
sequencing depth between samples. These so-called size factors
were estimated by the median-of-ratios method:

sj = mediani:KR
i 6=0

(
Kij

KR
i

)
,KR

i =

 n∏
j=1

Kij

1/n

The linear part βi0 + βi1xj1 contains a categorical variable
xj1 with two levels, corresponding to the cancer subgroups.
The coefficient βi1 quantifies the extent to which gene i
is differentially expressed between the groups. The intercept
term βi0 models the base mean, which is allowed to differ
between genes. The dispersion αi was regarded as a gene-specific
parameter in the model.

To fit the model (i.e., estimation of the parameters αi, βi0, βi1
for each gene i) we applied the R-package DESeq2, which
implements the empirical Bayes shrinkage method (Love et al.,
2014). The p-value for the test that gene i is differently expressed
(i.e., H0 : βi1 = 0) was then used to rank genes, so that genes with
lowest p-values were used for clustering. The method was applied
to data that had been filtered for low expressed genes, but not
normalized using the variance stabilizing transform.

No Selection (ALL)
Gene selection is performed to remove non-informative and
irrelevant genes. An alternative is to base the clustering on
all genes, and we included the case of no selection as a
reference point.

Similarity Between Feature Selection Methods
Each selection procedure was characterized by calculating the
mean value and SD of the selected genes. Procedures with similar
characteristics may also make similar selections. In addition, we
carried out a more direct analysis by measuring the overlap
between the approaches, i.e., for each pair of approaches we
measured the percentage of genes selected by both methods.

Performance of the Feature Selection Methods
The clustering performance was measured using the ARI based
on the clustering result compared to the gold standard partition.
An ARI-value of 1 indicates a complete match to the gold
standard partition, whereas a value of 0 indicates an agreement
as good as a random clustering.

Detailed Evaluation of Top-Performing Feature
Selection Methods
The evaluations described above utilize four data sets and were
used to identify a set of interesting feature selection methods.
To deeper understand our findings, we used these data sets to
simulate two types of data sets using stratified subsampling with
replacement from the original data: balanced data sets where 50
samples were drawn from each subtype and skewed data sets were
25 (75) of the samples were drawn from the least (most) common
subtype. Hundred data sets were sampled for each type. The
chosen selection methods were applied to each of the simulated
data sets, hierarchical clustering with Euclidean distance, was
performed on the top 1000 ranked genes to cluster the samples
in two groups and ARI was used to measure the performance.
For each pair of methods, the pairwise ARI-observations
were used to construct differences and the one sample t-test
was used to test if the expected value of the difference
deviated from zero.

In addition to the ARI-values we also observed the number
of samples in the smallest of the two groups generated by the
clustering, i.e., a number between 1 and 50. Again, the one sample
t-test was used to investigate differences between the considered
selection methods. Since BI is computationally heavy, the EM-
algorithm was used with only one initial value of the parameter
vector, obtained as follows: first the data was divided into two
groups using the k-means (k = 2) clustering algorithm, and then
the means, SDs and size fraction in the two subsamples were used
as starting values for the mixing parameters.
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For the top-performing feature selection methods, we also
investigated the change in ARI-values when increasing the
number of selected genes in the cluster analysis. The number of
selected genes was increased gradually in 1000 steps between two
selected genes up to all genes remaining after initial filtration.
Since the clustering result is highly variable, we applied a running
mean over 100 values to get a smoother curve.

The aim of the feature selection is to exclude genes that are
non-informative for distinguishing between the disease subtypes.
As a way of measuring the relevance of the selected features, the
list of 1000 top scoring genes were compared to 299 known cancer
driver genes (Bailey et al., 2018). Enrichment of genes relevant to
cancer etiology were tested using a one sided Fisher’s exact test.

RESULTS

We tested the performance of 13 feature selection methods
when identifying subgroups using cluster analysis on four human
cancer data sets. For each method the k top ranked genes
were selected, k = 100, 1000, and 3000. Three references were
considered: a negative control where all genes were selected, a
negative control where k genes were randomly selected and a
positive control where genes were selected using a supervised
approach. The selection methods were applied on the 15,298,
15,388, 15,397, and 15,397 genes that remained after filtering low
expressed genes in KIRP, STAD, LGG, and BRCA, respectively.
In addition, a small simulation study was performed with the
objective to investigate how clustering is affected when non-
informative features are included in the analysis.

Simulation Study
In the case when the clustering was based on only the informative
features all the clustering results were identical to the desired
AB-partition with an average ARI equal to 1. In the case when
all features were included, the average ARI was 0.34. For the
case when the clustering was based on the features with the
highest SDs the clustering performance peaked when around
600 features were included and declined when more features
were added, see Supplementary Figure 1. Although the negative
effect of including non-informative features is likely to be
general, it should be stressed that the magnitude of the effect
depends on the effect size, the sample size, and the percentage
of informative features. Moreover, in real problems we may
in addition to informative and non-informative features have
features that are informative to secondary factors, e.g., gender,
age, and prior treatments.

Characteristics of Top Ranked Genes
As an initial investigation, we studied the mean expression and
SD of top ranked genes obtained for the considered feature
selection approaches.

The Mean Value of Selected Genes
As expected, genes selected using the median (M) or the third
quartile (Q3) were highly expressed compared to the other
methods. The BC approach selected genes expressed at a very

low level. The supervised approach (PVAL) selected genes at an
intermediate gene expression level, which was comparable to the
expression level seen in the whole data (ALL). Approaches using
SD, IQR, ENT, CoEx1, and CoEx2 selected genes with mean gene
expression similar to that obtained by the supervised approach.
The remaining methods, BI, the dip-test statistic (DIP) and the
variance reduction scores (VRS, wVRS, and mVRS), selected
genes expressed at a relatively low level. Interestingly, the same
relative patterns were observed for all data sets and independently
of the number of selected genes, see Figure 2 and Supplementary
Figures 2, 3.

The Standard Deviation of Selected Genes
It is natural to assume that informative genes should have
relatively high SD, compared to most other genes. As expected,
genes selected using SD, ENT, and IQR, had high SDs. The M
and Q3 methods selected genes with relatively low variation,
which was close to the SD observed in the whole data sets (ALL).
Intermediate values of SD were observed among genes selected
using the variance reduction scores (VRS, wVRS, and mVRS),
and BI. For BC, DIP, CoEx1, CoEx2, and the supervised approach
(PVAL), the level of SD varied between low and intermediate
depending on data set and number of selected genes, see Figure 3
and Supplementary Figures 4, 5.

Overlap of Selected Genes
The above results show that methods based on similar selection
principles also have similar properties with respect to the mean
and SD of the selected genes, see Figures 2, 3. Next, we
investigated to what degree the methods selected the same genes,
by studying the overlap when 1000 genes were selected. The
overlap between M and Q3 was high (>90%) in all data sets,
but both methods showed very limited resemblance to the other
methods (<6% overlap in average). High agreement was also
observed between SD, ENT and IQR (85% in average), as well as
between CoEx1 and CoEx2 (77% in average). CoEx1 and CoEx2
showed low overlap with the remaining methods (<10%). The
intersection between VRS, mVRS and wVRS was in average 73%
in all data sets, and the group showed a greater resemblance to
BI than to BC (in average 67 vs 40%), see Figure 4. The positive
control (PVAL), that is expected to be a good selection procedure,
had a very small overlap with the methods M, Q3, CoEx1, and
CoEx2. For detailed results, see Figure 4.

Feature Selection Methods
The performance was measured using the adjusted Rand index
(ARI) comparing the obtained clustering result with the gold
standard. Each of the 13 selection methods were used to cluster
the four cancer data sets by selecting the 100, 1000, or 3000
top ranked genes. Hence, each method was used to perform 12
cluster analyses and generated 12 ARI-values. The results were
compared to two negative controls (randomly selected genes and
a selection including all genes) and a positive control (PVAL).
As expected, the supervised selection approach (PVAL) had the
highest combined performance (considering the median value of
the 12 ARI-values) followed in decreasing order by DIP, BI, IQR,
ENT, RAND, Q3, mVRS, M, VRS, SD, BC, wVRS, CoEx1, and

Frontiers in Genetics | www.frontiersin.org 7 February 2021 | Volume 12 | Article 63262054

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-632620 February 18, 2021 Time: 19:5 # 8

Källberg et al. Feature Selection in RNA-Sequencing Data

FIGURE 2 | Boxplots of mean expression values over all samples for 1000 selected genes. The figure shows the result for the data sets KIRP (A), STAD (B), LGG
(C), and BRCA (D). Each plot displays expression values of preprocessed data for the 13 feature selection methods, the positive control (PVAL) and the negative
control (ALL) including all genes. The gene selection methods are: dip-test statistic (DIP), bimodality index (BI), bimodality coefficient (BC), variance reduction score
(VRS), modified variance reduction score (mVRS), weighted variance reduction score (wVRS), entropy estimator (ENT), interquartile range (IQR), standard deviation
(SD), mean value (M), third quartile (Q3), co-expression (CoEx1), and modified co-expression (CoEx2).

CoEx2, see Figure 5. However, the relative performance of the
methods varied between the four data sets and was also affected
by the number of selected genes. Evaluating the approaches based
on their mean ranking taken over all 12 analyses revealed that
the supervised approach performed best followed by BI, mVRS,
DIP, VRS, RAND, IQR, ENT, Q3, M, SD, wVRS, BC, CoEx1, and
CoEx2, see Table 1.

Ranking genes according to Q3 or M is a simple way of
selecting highly expressed genes. The performance for Q3 and
M varied from being top performing (BRCA 3000 genes) to
be at the very bottom (STAD 3000 genes). In KIRP, Q3 was
always ranked higher than M and for STAD it was the other way
around. For LGG and BRCA it varied depending on number of
features included, see Figure 6 and Supplementary Figures 6, 7.
Altogether, Q3 performed slightly better than M.

Of the three methods relying on variability across samples,
IQR and ENT generally performed better than the commonly

used SD procedure. IQR outperformed ENT in the LGG data,
while ENT performed better on the BRCA data. In KIRP and
STAD it depended on the number of included features, see
Figure 6 and Supplementary Figures 6, 7. Within this category,
IQR performed best and should be considered as a simple
alternative to SD.

The methods relying on gene correlation (CoEx1 and CoEx2),
performed worst of all considered methods, with CoEx2 slightly
worse than CoEx1, see Table 1.

Among methods based on modality (i.e., DIP, BI, VRS, mWRS,
wVRS, and BC), BI and DIP where the methods with the overall
highest performance. The relative performance of DIP was
particular good when more genes were selected (1000 or 3000),
while BI performed particularly well on the KIRP and STAD
data, see Table 1, Figure 6, and Supplementary Figures 6, 7.
When 1000 genes were selected, the overlap between DIP and
BI varied between 21 and 37%, see Figure 4. Furthermore,
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FIGURE 3 | Boxplots of standard deviation across samples for 1000 selected genes. Each plot displays standard deviation based on preprocessed data for the 13
feature selection methods, the positive control (PVAL) and the negative control (ALL) including all genes. The figure shows the result for the data sets KIRP (A), STAD
(B), LGG (C), and BRCA (D). The gene selection methods are: dip-test statistic (DIP), bimodality index (BI), bimodality coefficient (BC), variance reduction score
(VRS), modified variance reduction score (mVRS), weighted variance reduction score (wVRS), entropy estimator (ENT), interquartile range (IQR), standard deviation
(SD), mean value (M), third quartile (Q3), co-expression (CoEx1), and modified co-expression (CoEx2).

DIP tended to select genes that were slightly higher expressed
than BI, see Figure 2 and Supplementary Figures 2, 3. More
evident, BI selected genes with higher SD than DIP, see Figure 3
and Supplementary Figures 4, 5. Altogether, this suggests that
although performing similar, and relatively well, DIP and BI
select rather different genes with different characteristics.

Comparisons to Positive and Negative
Controls
Intuitively, selecting the k top scoring genes using a good feature
selection method should in average result in a better clustering
performance than obtained when randomly selecting k genes, but
worse performance than using a supervised approach. However,
if the gene expressions are highly influenced by a secondary factor

(i.e., a factor that is not informative for predicting the subgroups)
applying feature selection may result in a performance worse than
the random selection.

As expected, the supervised approach PVAL was commonly
superior to the unsupervised selection approaches, although
occasionally performed slightly worse than some other methods,
see Table 1. For the LGG data randomly selecting k genes
outperformed most of the selection methods, see Figure 5 and
Supplementary Figures 6, 7. This may indicate that the RNA-
expression of the individuals is influenced by secondary factors
or that the binary partitions defined by the gold standard are
heterogeneous and preferably should be divided further.

An alternative to applying feature selection is to include all
genes in the cluster analysis for which the ARI-values 0.28,
−0.01, 0.39, and 0.73 were observed for KIRP, STAD, LGG, and
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FIGURE 4 | Percentage overlap between 1000 selected genes for the 13 different feature selection methods and the four data sets KIRP (A), STAD (B), LGG (C),
and BRCA (D). The feature selection methods are: dip-test statistic (DIP), bimodality index (BI), bimodality coefficient (BC), variance reduction score (VRS), modified
variance reduction score (mVRS), weighted variance reduction score (wVRS), entropy estimator (ENT), interquartile range (IQR), standard deviation (SD), mean value
(M), third quartile (Q3), co-expression (CoEx1), modified co-expression (CoEx2), and the positive control (PVAL).

BRCA, respectively. For KIRP and BRCA, including all genes
was as good as the best performing selection methods, but for
STAD and LGG the best selection methods yielded considerably
higher ARI-values, 0.66 and 0.72, respectively, see Table 2. On
the other hand, variable selection often resulted in lower ARI-
values compared to including all genes, in particular when just
100 genes were selected, see Table 2. This suggests that variable
selection has potential to improve the clustering, but that the
choice of methods and the number of selected genes are crucial
for the performance.

Detailed Evaluation of Top-Performing
Feature Selection Methods
Based on our findings we conclude that DIP, BI, and mVRS
are the most promising methods and that good performance
is usually obtained when 1000 genes are selected. These

methods also ranked high when k-means (k = 2) clustering
and hierarchical clustering with a correlation-based distance
measure were used, see Supplementary Tables 1–4. DIP, BI,
and mVRS together with the commonly used SD method
were therefore selected for a deeper study based on hundreds
of simulated balanced and skewed data sets, see section
“Detailed Evaluation of Top-Performing Feature Selection
Methods.”

Pairwise comparisons with respect to ARI between DIP, BI,
mVRS, and SD showed that DIP was as good or better than the
other methods, with the exception that BI was slightly better than
DIP for the skewed KIRP data set, see Table 3 and Figure 7.
Furthermore, SD did not perform well and was the worst
performing method for most of the simulations, Table 3. For
LGG, STAD, and BRCA the difference in average ARI between
DIP and SD ranged between 0.03 and 0.35 and five out of six
findings were significant, see Table 3.
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FIGURE 5 | Boxplot of aggregated clustering performance over the four data sets KIRP, STAD, LGG, and BRCA. Performance is measured using adjusted Rand
index and the feature selection methods are ordered according to increasing median values. The selection methods are: dip-test statistic (DIP), bimodality index (BI),
bimodality coefficient (BC), variance reduction score (VRS), modified variance reduction score (mVRS), weighted variance reduction score (wVRS), entropy estimator
(ENT), interquartile range (IQR), standard deviation (SD), mean value (M), third quartile (Q3), co-expression (CoEx1), modified co-expression (CoEx2), the positive
control (PVAL), and the negative control (RAND).

TABLE 1 | Rank of feature selection methods for data sets KIRP, STAD, LGG, and BRCA based on adjusted Rand index.

DIP BI BC VRS mVRS wVRS ENT IQR SD M Q3 CoEx1 CoEx2 PVAL RAND

KIRP100 14 2 3.5 6 3.5 12 7.5 9 10 7.5 5 13 15 1 11

STAD100 7 4.5 8 4.5 6 1 13 15 14 10 12 11 9 3 2

LGG100 14 10 10 10 10 10 7 5 6 15 13 4 3 1 2

BRCA100 6 2 8.5 5 3 4 7 8.5 10 11 13 14 15 1 12

KIRP1000 6.5 1 10.5 8 6.5 13 4.5 2.5 9 4.5 2.5 14 15 10.5 12

STAD1000 2 3 14 11 6 9 7 4 5 12 15 10 13 1 8

LGG1000 2 10 13 14 9 15 11 7 8 3 4 6 12 1 5

BRCA1000 5 8.5 6.5 1.5 3 6.5 11.5 11.5 13 10 4 14 15 1.5 8.5

KIRP3000 7 1 12 6 11 9.5 3.5 3.5 3.5 13 9.5 14 15 3.5 8

STAD3000 13.5 1 6 5 8 9 4 3 12 13.5 15 10 11 2 7

LGG3000 2 9 15 13 8 14 11.5 10 11.5 6 3 7 5 1 4

BRCA3000 6 11.5 11.5 3.5 3.5 11.5 6 9 6 2 1 14 15 11.5 8

Mean rank 7.1 5.3 9.9 7.3 6.5 9.5 7.8 7.3 9.0 9.0 8.1 10.9 11.9 3.2 7.3

The table shows results for selection of top ranked genes at three levels: 100, 1000, and 3000 genes. The gene selection methods are: dip-test statistic (DIP), bimodality
index (BI), bimodality coefficient (BC), variance reduction score (VRS), modified variance reduction score (mVRS), weighted variance reduction score (wVRS), entropy
estimator (ENT), interquartile range (IQR), standard deviation (SD), mean value (M), third quartile (Q3), co-expression (CoEx1), modified co-expression (CoEx2), and the
positive control (PVAL).
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FIGURE 6 | Adjusted Rand index for hierarchical clustering using the top 1000 ranked genes on the datasets KIRP (A), STAD (B), LGG (C), and BRCA (D). The
vertical lines represent the first, second, and third quartiles of a random selection. The feature selection methods on the y-axis are: dip-test statistic (DIP), bimodality
index (BI), bimodality coefficient (BC), variance reduction score (VRS), modified variance reduction score (mVRS), weighted variance reduction score (wVRS), entropy
estimator (ENT), interquartile range (IQR), standard deviation (SD), mean value (M), third quartile (Q3), co-expression (CoEx1), modified co-expression (CoEx2), the
positive control (PVAL), and the two negative controls ALL and RAND. The selection methods are ordered according to increasing performance.

TABLE 2 | Adjusted Rand index for 13 feature selection methods, a negative (RAND) and positive control (PVAL) for data sets KIRP, STAD, LGG, and BRCA.

DIP BI BC VRS mVRS wVRS ENT IQR SD M Q3 CoEx1 CoEx2 PVAL RAND

KIRP100 0.01 0.25 0.23 0.18 0.23 0.10 0.17 0.14 0.14 0.17 0.19 0.05 0.00 0.39 0.11

STAD100 0.03 0.05 0.03 0.05 0.04 0.07 −0.01 −0.02 −0.02 0.01 −0.01 0.01 0.01 0.06 0.07

LGG100 0.00 0.01 0.01 0.01 0.01 0.01 0.08 0.10 0.09 0.00 0.01 0.12 0.22 0.96 0.29

BRCA100 0.67 0.77 0.61 0.75 0.76 0.75 0.61 0.61 0.60 0.58 0.37 0.11 0.07 0.78 0.49

KIRP1000 0.24 0.29 0.20 0.23 0.24 0.15 0.25 0.28 0.21 0.25 0.28 0.02 0.00 0.20 0.19

STAD1000 0.49 0.43 −0.03 0.09 0.33 0.16 0.28 0.40 0.34 0.02 −0.03 0.10 0.00 0.58 0.17

LGG1000 0.72 0.16 0.08 0.07 0.18 0.06 0.14 0.20 0.18 0.55 0.39 0.34 0.11 0.95 0.37

BRCA1000 0.62 0.60 0.61 0.73 0.73 0.61 0.60 0.60 0.58 0.60 0.64 0.17 0.05 0.73 0.60

KIRP3000 0.21 0.29 0.12 0.27 0.16 0.18 0.28 0.28 0.28 0.11 0.18 0.03 0.00 0.28 0.21

STAD3000 −0.01 0.66 0.19 0.35 0.04 0.02 0.38 0.42 −0.01 −0.01 −0.06 0.00 0.00 0.61 0.14

LGG3000 0.71 0.19 0.08 0.15 0.27 0.14 0.17 0.17 0.17 0.32 0.63 0.32 0.33 0.74 0.38

BRCA3000 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.65 0.74 0.04 0.01 0.60 0.60

The table shows results for selection of top ranked genes at three levels: 100, 1000, and 3000 genes. Adjusted Rand index when including all genes was obtained as 0.28,
−0.01, 0.39, and 0.73 for KIRP, STAD, LGG, and BRCA, respectively. The gene selection methods are dip-test statistic (DIP), bimodality index (BI), bimodality coefficient
(BC), variance reduction score (VRS), modified variance reduction score (mVRS), weighted variance reduction score (wVRS), entropy estimator (ENT), interquartile range
(IQR), standard deviation (SD), mean value (M), third quartile (Q3), co-expression (CoEx1), and modified co-expression (CoEx2).

In order to better understand the results, we investigated
the number of samples in the smallest group (NSSG) obtained
doing a cluster analysis resulting in two groups. This number

should be close to 50 for the balanced data set and close
to 25 for the skewed data sets. Moreover, if this number is
very small it indicates that the clustering is governed by just
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TABLE 3 | The mean value of 100 pairwise adjusted Rand index-differences (row
method – column method) for different pairs of feature selection methods: the
dip-test (DIP), bimodality index (BI), modified variance reduction score (mVRS) and
standard deviation (SD).

25% 50%

BI mVRS SD BI mVRS SD

KIRP DIP −0.01 0.00 0.01 0.00 0.00 0.01

BI 0.01 0.02* 0.00 0.01

mVRS 0.01 0.01

STAD DIP 0.05 0.07** 0.10*** 0.00 0.02 0.05**

BI 0.02 0.06** 0.02 0.06**

mVRS 0.03 0.03

LGG DIP 0.06** 0.04 0.04 0.37*** 0.37*** 0.35***

BI −0.03* −0.02* 0.00 −0.02

mVRS 0.00 −0.02

BRCA DIP 0.01 0.00 0.03** 0.06*** 0.02 0.07***

BI −0.01 0.03*** −0.03* 0.01

mVRS 0.03** 0.05***

Simulations were made for the data sets KIRP, STAD, LGG, and BRCA, and two
types of data sets were simulated: unbalanced data where 25% of the individuals
belonged to the minor class and a balanced data set were 50% of the individuals
belonged to each of the two classes. The number of samples was 100 in each
simulation. The one sample t-test was used to test if the mean difference deviated
from zero. Positive (negative) differences indicate that the row-method was better
(worse) than the column method. Here *, **, ** denote a significant result at the
0.05, 0.01, and 0.001 significance level, respectively.

a few samples (outliers). Interestingly, the ARI-differences and
NSSG-differences were correlated, so that methods with relatively
high ARI also had a relatively high NSSG, see Table 3 and
Supplementary Table 5. In particular SD had considerably lower
NSSG than the other methods, especially for the balanced data,
see Supplementary Table 5.

It is not trivial to select how many genes to include in
the cluster analysis. The results from the analysis of ARI in
relation to the number of selected genes showed a highly variable
performance, especially in STAD and LGG, see Figure 8. The
most noticeable result was the gradual decrease in performance
in the LGG data for DIP and PVAL when including more genes,
indicating that it is possible to increase the ability to identify
disease subgroups substantially when choosing features wisely.
For BI, mVRS, and SD in the LGG data, the general trend was an
increase in performance when including more genes. In STAD,
the general trend was a decreasing performance when including
more genes. In both KIRP and BRCA the performance was
relatively stable when changing the number of included genes. At
least for BRCA, this might be explained by the high number of
informative genes.

The overlap between the 299 cancer driver genes and all
genes remaining after initial filtration were 279, 285, 279,
and 286 for KIRP, STAD, LGG, and BRCA, respectively. No
enrichment of cancer driver genes was observed for the 1000
top ranked genes for DIP, BI, mVRS, and SD, except for in
BRCA where genes selected using SD had a significantly higher
proportion of cancer driver genes (p < 0.001), see Table 4.
When extending the comparison to include all 13 selection

methods, a significant overrepresentation of cancer driver genes
was observed for both M and Q3 (data not shown) in all four data
sets, suggesting that the detected cancer driver genes are generally
high expressed.

DISCUSSION

Feature selection prior to clustering RNA-seq is common and is
often done by selecting the genes with the highest SD (i.e., the
SD method). However, this problem has not been well studied
and there is little evidence that selecting genes with high SD is
the best approach. Before we discuss our findings, it is worth
pointing out that measuring the performance of feature selection
methods is difficult. The clustering performance, in our case
measured using ARI-values, does in addition to the feature
selection algorithm also depend on clustering method, the nature
of the data and how the gold standard is defined. Samples from
a cancer cohort can be divided in several logical partitions, e.g.,
partitions defined by gender, age or disease subtype. For these
partitions, it is likely that a set of genes will be differentially
expressed between the groups. Hence, a low ARI-value does not
automatically mean that the cluster analysis failed, it can also
be a consequence of secondary factors affecting the data or that
the groups defined by the gold standards are heterogeneous and
should be further divided.

The general idea behind feature selection prior to cluster
analysis is to remove genes that do not contain information about
the “true partition” of the samples, e.g., genes that are identically
distributed among all samples and therefore only contribute with
noise, making the analysis harder.

In the considered simulation study only a small set of the
genes were informative and including all genes in the analysis
had a negative effect on the clustering result. This negative effect
will be reduced when the number of informative genes increases
(data not shown). RNA-seq cancer data are much more complex
than the simulated data and the informative genes are unknown
although they in our case can be predicted using a supervised
test. For the LGG and STAD data considerably better clustering
results were obtained when genes predicted to be informative
were used compared to when all genes were included, which
suggests that feature selection has the potential to improve the
clustering performance. For BRCA and KIRP, the gain of using
supervised selection was limited, which suggests that feature
selection is unlikely to have a positive effect on the clustering
result. Arguably, a feature selection approach should identify
informative genes related to the factor of interest.

For the considered four data sets, there were feature selection
approaches that either were equally good or considerably better
than including all genes, which again suggests that feature
selection has potential. For example, for the STAD data, including
all genes resulted in a partition no better than expected by chance
(i.e., ARI close to 0) while the best feature selection approach
resulted in a partition highly correlated with the partition defined
by the gold standard (ARI = 0.66). On the other hand, applying
feature selection often resulted in a lower performance than
including all genes in the analysis, which suggests that the
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FIGURE 7 | Adjusted Rand index for clustering based on 1000 selected genes with different proportions of the subtypes based on 100 random samplings of the
KIRP (A), STAD (B), LGG (C), and BRCA (D) data. The figure shows results for unbalanced data with 25 (75) samples in the smaller (larger) subgroup and for
balanced data sets with 50 samples in each subgroup. The selection methods on the x-axis are the dip-test statistic (DIP), bimodality index (BI), the modified
variance reduction score (mVRS), and standard deviation (SD).

choice of feature selection method and the number of selected
genes are important.

We included 13 variable selection methods that theoretically
and methodologically can be grouped in four fundamentally
different groups: methods that select highly expressed genes
(M and Q3), methods that select highly variable genes (ENT,
IQR, and SD), methods that select highly correlated genes
(CoEx1 and CoEx2) and methods that select genes with respect
to modality (BI, BC, DIP, mVRS, VRS, and wVRS). The
correlation-based methods had surprisingly low performance,
often worse than by selecting genes randomly. These methods
were developed for variable selection in microarray data, which
might explain the poor performance and suggest that these
methods need to be modified for RNA-sequence data. Since
CoEx1 and CoEx2 select genes with a relatively low SD

across samples (Figure 3), a hybrid method that combines
correlation and a bimodality score or measure of spread could
be worth to investigate further. Selecting highly expressed genes
is motivated by the fact that the signal to noise ratio is believed
to be relatively high for highly expressed genes. Hence, by
including highly expressed genes we get less noisy data and
thereby better results. These methods, in particular Q3, worked
surprisingly well and commonly better than selecting genes
randomly. Although these methods did not perform as well as
the best selection methods, the results suggest that they may
work well in combined approaches as discussed at the end
of this section.

An important finding is that the commonly used SD method
did not perform well. One reason for this may be that SD
compared to other methods is more likely to include genes with
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FIGURE 8 | Adjusted Rand index for a gradual increase in number of selected genes. The number of included genes was increased over a 1000 steps from 2 to up
to all genes remaining after filtration. Of low expressed genes. The feature selection methods are: dip-test statistic (DIP), bimodality index (BI), modified variance
reduction score (mVRS), standard deviation (SD), and the positive control (PVAL). The performance is shown for the KIRP (A), STAD (B), LGG (C), and BRCA (D)
data. A running mean over 100 values was applied to get a smoother curve.

outliers and extreme values. Samples with extreme values can
govern the clustering and incorrectly result in a binary clustering
where the smaller of the two groups contains a low number of
individuals. The results showed that SD indeed had fewer samples
in the minority group compared to DIP, BI, and mVRS, which
may explain the ARI-results. Furthermore, the IQR that is a
robust alternative to SD performed better than SD.

The best performing selection methods BI, DIP, and mVRS all
aim to identify genes based on modality. With the exception of
DIP, these methods strive to detect genes with a clear bi-modality
pattern, while DIP is more general a search for multimodality
patterns. For the case where 1000 genes were selected, DIP
achieved the best performance and worked well for both balanced
and skewed data sets. Interestingly, DIP had compared to BI and
mVRS often more samples in the minority group obtained from
the binary clustering.

For the LGG data with 1000/3000 selected genes, both
the original data and the simulated data sets, DIP performed
considerably better than BI and mVRS, which in turn performed
worse than a strategy including all genes. Furthermore, the
overlap between the genes selected by DIP and the two other
methods was small, much smaller than observed for the other
data sets, see Figure 4. This may indicate that the partition

TABLE 4 | Proportion of cancer driver genes among the 1000 top ranked genes.

DIP BI mVRS SD PVAL

KIRP 0.013 (0.92) 0.011 (0.98) 0.011 (0.98) 0.013 (0.92) 0.009 (0.99)

STAD 0.018 (0.59) 0.015 (0.84) 0.015 (0.84) 0.023 (0.17) 0.021 (0.31)

LGG 0.021 (0.27) 0.016 (0.73) 0.015 (0.81) 0.013 (0.92) 0.021 (0.27)

BRCA 0.017 (0.68) 0.018 (0.59) 0.016 (0.77) 0.032 (0) 0.024 (0.12)

The proportions in the entire data setswere obtained as 0.018, 0.019, 0.018, and
0.019 for KIRP, STAD, LGG, and BRCA, respectively. The p-value from a one sided
Fisher’s exact test is given within paranthesis.

defined by the gold standard should be further divided, which
in turn explain why methods searching for genes with a bimodal
pattern fails. In general, all methods aiming to identify bimodality
will suffer if the partitioning of interest consists of more than two
groups, in particular if there exist one or more secondary factors
that define two groups, e.g., gender.

Some potential secondary factors and their partitions are
sometimes known, e.g., the age and gender of the patients, prior
treatments and technical design questions, e.g., which hospital
analyzed the samples. This information can in principle be used
when selecting the genes, e.g., by omitting genes that are highly
correlated to any of the known secondary factors. Another way
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to improve feature selection may be to combine two or more
approaches, e.g., demand that the selected genes are both highly
expressed and have high DIP scores. How to include additional
meta information and combine different selection methods are
open questions that requires more research.

For most of the feature selection methods, the overlap
between selected genes and previously identified cancer driver
genes was relatively low. Lists of candidate cancer driver genes
are continually updated as new discoveries are made and
there are several published lists of genes that are important
for cancer development. Comparing against alternative gene
lists may affect the results. Moreover, many of the considered
cancer driver genes are affected by cancer in general but are
not necessarily informative for the partition of interest. We
did observe an enrichment of cancer driver genes among
the set of genes selected using M and Q3, suggesting that
the confirmed cancer driver genes are in general expressed
at higher levels.

Here k-means (k = 2) and hierarchical clustering with Ward’s
linkage and either the Euclidean distance or a correlation-
based distance were used to cluster the samples. It should
be stressed that the choice of clustering method may affect
the relative performance of the considered feature selection
methods. The choice was motivated by prior findings and since
these approaches are widely used. The number of selected
genes were 100, 1000, or 3000 and these choices were based
on our prior experience (Vidman et al., 2019 and Freyhult
et al., 2010). However, how to determine the optimal number
of genes to include is an open question that needs more
research. These choices affect the ARI-values and may also
have an effect on the relative performance of the considered
feature selection methods. Moreover, the performance of any
clustering approach, including pre-processing, standardization,
feature selection, and the clustering, is highly dependent on the
data making it difficult to give general advices. Nevertheless,
the results presented in this article suggest that variable
selection using DIP with 1000 selected genes is a good
choice and considerably better than selecting genes based on
the observed SD.

The study focuses on the relative merits of feature selection
strategies commonly categorized as filtering methods in the
literature, and a direction of future research with great potential
would be to investigate other classes of methods that have been
developed in the field, for example, wrapper, ensemble, and
hybrid methods (Ang et al., 2016).

CONCLUSION

Partitioning cancer patients based on RNA-seq data with the
objective to identify subgroups is an important but also very

challenging problem. The main difficulty is that only some genes
are differentially expressed between the subgroups of interest and
that several secondary factors affect gene expressions. Therefore,
it is reasonable to assume that the clustering should be based
on a set of carefully selected genes rather than all genes. The
commonly used SD-approach, where genes with the highest SDs
are selected, did not perform well in our study. We argue that
SD is more likely to select genes affected by outliers, which in
turn has a negative effect on the downstream cluster analysis.
Although the performance in general is highly data-dependent,
our study shows that selecting 1000 genes using the dip-test is a
sensible selection approach, which performs considerably better
than the SD-selection.
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Heart failure with preserved ejection fraction (HFpEF) has become a major health issue 
because of its high mortality, high heterogeneity, and poor prognosis. Using genomic data 
to classify patients into different risk groups is a promising method to facilitate the 
identification of high-risk groups for further precision treatment. Here, we applied six 
machine learning models, namely kernel partial least squares with the genetic algorithm 
(GA-KPLS), the least absolute shrinkage and selection operator (LASSO), random forest, 
ridge regression, support vector machine, and the conventional logistic regression model, 
to predict HFpEF risk and to identify subgroups at high risk of death based on gene 
expression data. The model performance was evaluated using various criteria. Our analysis 
was focused on 149 HFpEF patients from the Framingham Heart Study cohort who were 
classified into good-outcome and poor-outcome groups based on their 3-year survival 
outcome. The results showed that the GA-KPLS model exhibited the best performance 
in predicting patient risk. We further identified 116 differentially expressed genes (DEGs) 
between the two groups, thus providing novel therapeutic targets for HFpEF. Additionally, 
the DEGs were enriched in Gene Ontology terms and Kyoto Encyclopedia of Genes and 
Genomes pathways related to HFpEF. The GA-KPLS-based HFpEF model is a powerful 
method for risk stratification of 3-year mortality in HFpEF patients.

Keywords: risk prediction, kernel partial least squares, genetic algorithm, heart failure with preserved ejection 
fraction, machine learning

INTRODUCTION

Heart failure (HF) is the leading cause of death and disability worldwide among older adults 
(Manolis et  al., 2019). Over 50% of patients with HF exhibit heart failure with preserved 
ejection fraction (HFpEF; Komajda et  al., 2011; Rich et  al., 2018), and the prevalence of 
HFpEF is increasing relative to heart failure with reduced ejection fraction (HFrEF) at an 
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alarming rate of 1% per year (Monika et  al., 2018). HFpEF 
is a heterogeneous syndrome that contributes to abnormal 
cardiac structure or function, seriously endangering human 
health (Antlanger et al., 2017; Garg et al., 2017). HFpEF patients 
have a poor prognosis, and the 5-year mortality rate of HFpEF 
is as high as 50% (Shah et  al., 2017). While the mortality 
rate of HFrEF has significantly decreased over the past few 
years because of specific HFrEF treatments (Loh et  al., 2013), 
no effective treatment has been identified for HFpEF patients 
(Shah et al., 2014). Arguably, with an aging population worldwide, 
the emerging epidemic of HFpEF requires urgent attention to 
determine methods for faster disease risk assessment and to 
predict clinical outcomes to guide therapy, monitoring, and 
patient management.

While numerous risk assessment models have been developed 
in cohorts with HFrEF or a mixture of HFrEF and HFpEF, 
risk prediction in HFpEF patients has been less studied 
(Thorvaldsen et  al., 2017; Angraal et  al., 2020). This may 
be  associated with the poor prognostic factors used to predict 
HFpEF patients (Kanda et al., 2018). The existing risk assessment 
models for HFpEF are predominantly based on clinical phenotype 
data, such as baseline demographic and clinical data and 
electrocardiographic, echocardiographic, and laboratory testing 
data (Komajda et  al., 2011; Thorvaldsen et  al., 2017; Rich 
et  al., 2018; Angraal et  al., 2020). Unfortunately, these models 
constructed using clinical phenotypic data have low sensitivity 
or specificity, and patients are likely to be  misdiagnosed. No 
model has gained widespread acceptance to date. The estimate 
of an HFpEF patient’s prognosis in daily practice is still mainly 
based on the experience of clinicians (Ferrero et  al., 2015; 
Thorvaldsen et  al., 2017; Manolis et  al., 2019). A great need 
exists to develop an effective risk model for HFpEF to aid in 
the design of future clinical trials.

With advances in sequencing and computer technology, high 
throughput expression data can be  extracted without limits. 
Genomic measures of gene expression offer rich information 
about the underlying disease mechanism and have provided 
new possibilities of using these molecular data to understand 
the disease gene function and further predict disease outcomes 
(Haring and Wallaschofski, 2012). Based on the expression 
data, great efforts have been devoted to disease classification, 
clinical outcome prediction, and the identification of genes 
with potential therapeutic molecular signatures (Penney et  al., 
2011; Khan et  al., 2012; Vargas and Lima, 2013; Wang et  al., 
2019). HFpEF is a complicated clinical syndrome with high 
molecular heterogeneity and diverse manifestations (Shah et al., 
2015) and is further complicated with a potentially nonlinear 
relationship between genes and the clinical outcome. Thus, 
conventional generalized linear models (e.g., logistic regression) 
are poor choices for risk prediction. Advanced statistical 
techniques and machine learning methods show great potential 
in improving the classification performance over conventional 
statistical tools through the nonlinear effects of variables to 
achieve accurate prediction (Angraal et  al., 2020) and should 
be  studied for HFpEF prediction.

The purpose of this work is to evaluate six different risk 
stratification models and to predict the survival risk of HFpEF 

patients based on gene expression profiles using data from a 
high-quality epidemiologic study, the Framingham Heart Study 
(FHS). We  applied five advanced machine learning methods 
[i.e., kernel partial least squares based on the genetic algorithm 
(GA-KPLS), random forest (RF), the least absolute shrinkage 
and selection operator (LASSO), ridge regression (RR), support 
vector machine (SVM), and a conventional logistic regression 
model (Logit)] to build an optimal risk stratification model. 
Identification of patients with a high risk of HFpEF will 
be helpful for targeted interventions and clinical trials to further 
improve the survival of HFpEF patients.

MATERIALS AND METHODS

Data
Framingham Heart Study
The FHS data used in this study included clinical, survival, 
and expression data downloaded from dbGAP (study accession: 
phs000007, http://dbgap.ncbi.nlm.nih.gov). The FHS has recruited 
participants from Framingham, MA, United  States, to undergo 
biennial examinations to investigate cardiovascular disease and 
its risk factors since 1948 (Oppenheimer, 2005). Offspring (and 
their spouses) and adult grandchildren of the original cohort 
of participants were recruited into the second- and third-
generation cohorts in 1971 and 2002, respectively (Yao et al., 
2015). In this study, the clinical and gene expression data 
were obtained from the offspring cohort who (i) attended the 
eighth examination cycle conducted between 2005 and 2008 
and (ii) had both clinical and gene expression profiles.

HFpEF Patients
According to the guidelines of the European Society of Cardiology 
(McMurray et  al., 2018), patients were diagnosed with HFpEF 
using the following four conditions: (1) typical signs or symptoms 
of HF, (2) B-type natriuretic peptide >35  pg/ml and/or 
N-terminal-pro hormone B-type natriuretic peptide >125  pg/
ml, (3) left ventricular ejection fraction >50%; and (4) structural 
HF (left ventricular hypertrophy/left atrial enlargement) and/
or diastolic dysfunction. We  excluded patients with valvular 
stroma and/or hypertrophic cardiomyopathy, resulting in 
inclusion of 172 HFpEF patients (103 males and 69 females). 
Patients whose 3-year survival status was unknown were filtered 
out by design (Fransen et  al., 2011). Finally, 149 individuals 
(91 males and 58 females) who had full survival information 
after 3  years were included in the study.

Gene Expression Data
The expression data contained 17,873 gene expression probes. 
We  mapped these probes to genes following the annotation 
from the Affymetrix Human Exon 1.0 ST GeneChip platform, 
which yielded 17,358 genes. The gene expression data were 
log2 (x + 1) transformed and then standardized (Cheerla and 
Gevaert, 2017). A variable screening procedure called as sure 
independence screening was applied to reduce the gene expression 
dimensionality from an ultra-high to a moderate scale, with 
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a binary response defined as a “good outcome” or “poor 
outcome” for each individual. Following the sure independence 
screening criterion {i.e., keeping d  =  [2n/log(n)] features; Fan 
and Lv, 2008}, the top  137 features were retained for 
further analysis.

Clinical Outcome
The clinical outcome was defined as a good or poor outcome 
based on patients’ survival status. The good-outcome group 
had event-free survival for at least 3  years [survival time was 
measured from the time of admission for HFpEF diagnosis 
to the time of last follow-up (2011) or time of death from 
cardiovascular disease]. The poor-outcome group included 
patients who died because of cardiovascular disease during 
the 3-year period. We further explored the differentially expressed 
genes (DEGs) between the good-outcome and poor outcome 
groups using significance analysis of microarrays (Tusher et al., 
2001) and then conducted Gene Ontology (GO) enrichment 
analysis and the Kyoto Encyclopedia of the Genes and Genomes 
(KEGG) pathway analysis based on the DEGs using KOBAS 
software1 (Ai and Kong, 2018).

Statistical Analysis
KPLS Prediction Model Optimized With the 
Genetic Algorithm
The kernel partial least squares method can map the original 
data points from the original input space RN into a high-
dimensional feature space ℱ, and therefore, original data that 
cannot be linearly separated in RN can be separated in ℱ (Rosipal 
and Trejo, 2002), which improves the classification performance 
to achieve accurate prediction. A genetic algorithm (GA) is an 
optimization method based on the genetic mechanism of “survival 
of the fittest.” In this study, we  used a Gaussian kernel function 
to construct the kernel matrix for gene expression data and 
then used the genetic algorithm to optimize the Gaussian kernel 
function parameter σ. The Gaussian kernel function is given 

as K x x x xi j i j, ( )= − −( )exp
2 2

2 s . For the details of the 

method, readers are referred to Yang et  al. (2020). Because 
we  only used gene expression data for prediction, the only 
parameter that needed to be optimized was the kernel bandwidth σ.

Other Prediction Models
Ridge regression and LASSO fit prediction models by shrinkage 
or regularization of the regression coefficients (Frank and 
Friedman, 1993; Tibshirani, 1996). The LASSO method can 
shrink some coefficients to exactly zero. Both models were 
developed to minimize prediction errors. For the LASSO and 
RR methods, the optimal tuning parameter λ was chosen by 
10-fold cross-validation over a grid of 100  λ values. The RR 
and LASSO methods were performed using the R glmnet package.

The SVM method was developed to solve high-dimensional 
classification problems (Furey et  al., 2000) and was performed 

1 http://kobas.cbi.pku.edu.cn

using the R e1071 package. The radial basis kernel function 
was used in the SVM.

An RF uses the bootstrap method to extract n samples 
from the original data and generate B classification trees. These 
B trees constitute a random forest. Each observation’s predictive 
result is determined by a majority vote; the overall prediction 
is the most commonly occurring class among the B classification 
trees (Austin et  al., 2013). The RF method was performed 
using the randomForest package in R. All parameter values 
were set using the default.

Model Training and Testing
In our study, the original data were divided into two 
non-overlapping data sets: modeling data and external testing 
data. We randomly selected modeling data and external testing 
data at a ratio of 80:20. The modeling set was used to train 
the prediction model, and the testing set was used to evaluate 
the prediction performance. The entire process of randomly 
selecting the modeling and testing data was repeated 1,000 
times to increase the stability and repeatability of the results.

Model Performance
We used multiple evaluation criteria to evaluate the predictive 
performances of the six models, including the area under the 
curve (AUC), sensitivity (Se), specificity (Sp), accuracy (ACC), 
Youden index, G-means, and Matthews correlation coefficient 
(MCC). The MCC and AUC were mainly used to evaluate 
the model performance because they are more comprehensive 
evaluation criteria. We  employed one-way ANOVA, followed 
by Dunnett’s multiple-comparison test, to compare the 
performance of the GA-KPLS and the five other models (RF, 
LASSO, RR, Logit, and SVM). Statistical significance was 
indicated by a value of p  <  0.05.

RESULTS

Characteristics of HFpEF Patients in the 
FHS
At the end of the 3-year period, 42 patients (28.19%) met 
the study endpoint of cardiovascular disease-related death, and 
107 patients (71.81%) had survived. There were 91 males 
(61.07%) and 58 females (38.93%). The average age was 75.02 
(±8.02) years old. Table  1 shows the baseline condition of 
both groups, patients with good outcomes, and those with 
poor outcomes. There was no significant difference in age, 
gender, comorbidities, vital signs, or laboratory data (except 
for systolic blood pressure) between the two groups.

Model Performance Comparison
We compared the classification performance of the six models: 
GA-KPLS, RF, LASSO, RR, SVM, and Logit. The evaluation 
index of the six models was summarized as the average value 
obtained by repeating the data partition 1,000 times. Table  2 
shows the prediction results of the six models. As shown in 
the table, the GA-KPLS model exhibited the best performance 
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in nearly all the criteria except for specificity. This finding clearly 
demonstrates the superior performance of the GA-KPLS model. 
To further display the prediction results, we chose the evaluation 
criterion AUC to demonstrate the performance obtained by 
1,000 random splits (see Figure  1). The AUC of the GA-KPLS 
model was significantly different from those of the RF, LASSO, 
RR, Logit, and SVM models, indicating the superior performance 
of the GA-KPLS model over the other models. It is interesting 
to note that the performance of the SVM model was quite 
similar to that of the GA-KPLS model. Based on the results, 
we  concluded that the risk prediction model constructed by 
the GA-KPLS method had the best performance and can provide 
a methodological reference to assess the risk of HFpEF.

Prediction Result of HFpEF Using the 
GA-KPLS Method
To demonstrate the clinical significance of identifying high-risk 
patients, we  selected the prediction result of one random split 
with 120 training samples and 29 testing samples, which gave 
an MCC  =  0.920 (close to MCCmean  =  0.921). The Kaplan-Meier 
curves based on the original and predicted data yielded significantly 
different survival probabilities (p  <  0.0001). Figure  2 shows the 
survival curves of the two groups. The left panel shows the survival 
curve from the original data, and the right panel shows the 
survival curve based on the newly predicted risk group with the 
GA-KPLS method. The prediction method exhibited good 
performance because the survival curves using the original and 
predicted values were very similar. To predict a future event, all 
the data can be  used as the training set, and then the risk group 
status can be  predicted based on measured gene expression data.

DEGs Between the Good-Outcome and 
Poor-Outcome Patients
We treated the good-outcome group as the control group to 
identify DEGs. Of a total of 137 top genes, 116 DEGs were 
identified based on a threshold value of q  <  0.05, among 
which 70 genes were upregulated and 46 were downregulated. 
The significant features of gene expression are shown in a 
heat map (see Figure 3). A block-like structure can be observed 
between the good-outcome and poor-outcome groups.

Among the 116 DEGs, the TRAℱ3IP2, C1QTNℱ9, TECRL, 
and Eph genes have been reported to be  associated with 
HF. TRAℱ3IP2 is an upstream regulator of multiple 
proinflammatory pathways. TRAℱ3IP2 overexpression may 
activate IKK/NF-B, p38 MAPK, and JNK/AP-1 and induce 
proinflammatory cytokines, leading to cardiac fibrosis and 
contractile dysfunction (Yariswamy et  al., 2016). C1QTNℱ9 
(CTRP9) is an important member of the CTRP protein family. 
Appari et  al. (2016) found that C1QTNℱ9 knock-out mice 
were protected from left ventricular dilatation and contractile 
dysfunction; however, C1QTNℱ9 overexpression promoted 
ventricular remodeling and systolic dysfunction. TECRL was 
recently suggested to play a key role in the electrical activity 
of the heart. TECRL affects the electrical conduction system 
of the heart by causing mutations in a calcium-processing 
protein, which eventually leads to arrhythmia (Perry and 
Vandenberg, 2016). The Eph/ephrin receptor ligand comprises 
the largest family of receptor tyrosine kinases and affects 
the behavior of cells mainly by activating signal transduction 
pathways. Eph/ephrin expression may lead to phenotypic 
changes in the vascular endothelium during inflammation, 

TABLE 1 | Clinical characteristics of the study population (N = 149).

Characteristic Good-outcome group (107) Poor-outcome group (42) 𝜒𝜒2/t p-value

Age, years 74.44 ± 8.23 76.50 ± 7.46 0.572 0.568
Female, n (%) 40(37.4) 18(42.9) 0.380 0.538
Comorbidities, n (%%)

Hypertension 84(78.5) 33(78.6) <0.001 0.993
Hyperlipidemia 70(65.4) 26(61.9) 0.163 0.687
Diabetes 27(25.2) 11(26.2) 0.015 0.904
Vital signs and laboratory data

Systolic blood pressure, mmHg* 127.74 ± 18.44 138.88 ± 22.71 −3.102 0.002
Diastolic blood pressure, mmHg 65.64 ± 11.58 67.83 ± 9.55 −1.08 0.279
Body mass index, kg/m2 29.84 ± 5.47 29.21 ± 5.68 0.633 0.528
Serum creatinine, mg/dl 1.24 ± 0.86 1.29 ± 0.88 0.288 0.774
Total cholesterol, mg/dl 162.12 ± 36.70 167.74 ± 41.31 −0.811 0.419
Heart rate, bpm 62.50 ± 10.90 64.45 ± 12.97 −0.929 0.354

*Shows the statistical significance at the α = 0.05 level.

TABLE 2 | Model performance.

Model Se Sp AUC ACC Youden F-measure MCC G-means

GA-KPLS 0.925 0.984 0.955 0.968 0.909 0.939 0.921 0.953
RF 0.319 0.974 0.646 0.793 0.293 0.445 0.427 0.535
LASSO 0.605 0.943 0.774 0.850 0.548 0.678 0.608 0.745
RR 0.469 1.000 0.734 0.853 0.469 0.618 0.620 0.669
Logit 0.549 0.574 0.591 0.567 0.122 0.410 0.112 0.548
SVM 0.870 0.989 0.929 0.956 0.859 0.913 0.891 0.926
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causing inflammatory cells to enter the interstitial tissue 
from the vascular space (Coulthard et  al., 2012).

The role of DUSP1 is controversial, as both anti-inflammatory 
and pro-atherosclerotic actions have been suggested (Hahn 
et  al., 2014). Auger-Messier et  al. (2013) suggested that the 
disruption of DUSP1 promoted p38 MAPK activity, which 
could reduce cardiac contractility and calcium handling; 
thus, DUSP1 could be  a target gene for prevention of HF. 
In addition, LHℱPL2 and SNX24 are associated with coronary 
artery disease (Lin et  al., 2013; Shendre et  al., 2017). 
HIST1H4B is associated with the immune process (Zhang 
et al., 2019). OXER1 is involved in the inflammatory response 
of the disease (Dattilo et  al., 2015). The empirical evidence 
suggests the importance of the identified DEGs associated 
with HFpEF.

Functional Analysis of DEGs
To further investigate the functional relevance of the DEGs, 
we  performed GO enrichment and KEGG pathway analyses. 
The DEGs were significantly enriched in 12 GO terms, with 

a corrected value of p  <  0.05. GO terms comprised three 
categories: biological process, cell component, and molecular 
function. Figure  4 shows all significant GO terms. The most 
significantly enriched GO terms were plasma membrane (corrected 
value of p  =  2.67E−07), G protein-coupled receptor signaling 
pathway (corrected value of p = 3.06E−04), and protein binding 
(corrected value of p = 3.06E−04). The plasma membrane plays 
important roles in maintaining homeostasis, cell material 
exchange, and information transmission (Lutz et al., 2003; Wang 
et al., 2017). The G protein-coupled receptor signaling pathway 
mediates cardiac functions, such as those of inotropy and 
vasodilation in peripheral vessels, participates in the occurrence 
and development of HF and may serve as the molecular 
underpinning for future HF therapeutics (Wang et  al., 2018; 
Altamish et  al., 2020). Protein binding, including fatty acid-
binding proteins, has been related to cardiac alterations, e.g., 
systolic and diastolic cardiac dysfunction (Rodriguez-Calvo 
et  al., 2017). In the KEGG analysis, the olfactory transduction 
pathway was identified, with a corrected value of p  <  0.05. 
The olfactory system uses G protein-coupled receptors to 
accomplish its vital task (Ronnett and Moon, 2002).

FIGURE 1 | Boxplot of the area under the curve (AUC) values for the six different models (based on 1,000 random splits). The y-axis represents the AUC value. 
Values of p were obtained using Dunnett’s multiple-comparison test.

A B

FIGURE 2 | Kaplan-Meier survival curves of the good-outcome and poor-outcome groups. (A) The survival curve including the original 29 patients in the testing 
cohort and (B) the survival curve based on the predicted survival outcomes using the GA-KPLS method.
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DISCUSSION

Accurately predicting disease outcomes are essential for patient-
centered care, both for making treatment decisions and 
monitoring the quality of health care (Angraal et  al., 2020). 
Using the gene expression data of HFpEF patients, this study 
explored five machine learning methods and one conventional 
logistic regression model to predict the survival status of patients 

with HFpEF. The GA-KPLS based HFpEF model could predict 
patient survival status with high accuracy. Furthermore, the 
identification of molecular markers (i.e., DEGs) of HFpEF may 
lead to the development of novel targeted therapies.

The ability to assess survival outcomes of patients with 
cardiovascular diseases has great clinical value in an era 
with multiple treatment options. Although previous studies 
have devoted great effort to predicting clinical outcomes of 

FIGURE 3 | The heatmap of DEGs between the good-outcome and poor-outcome groups. Each column represents a patient, and each row represents a gene. 
Patients labeled with the black bar are poor-outcome samples, and those with the gray bar are good-outcome samples.

FIGURE 4 | Gene Ontology (GO) enrichment analysis of DEGs. The x-axis shows the number of genes, and the y-axis indicates the GO terms. Bars with different 
colors correspond to different GO categories, with green representing biological process, orange representing cellular component, and blue representing molecular 
function.
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HF patients, the current study has several unique merits. 
There are many studies being conducted to predict HF. 
However, few studies are focused on HFpEF. By evaluating 
six models, we  showed that the GA-KPLS model using gene 
expression data may be  a powerful and highly accurate 
prediction model of survival status in HFpEF patients. A 
prediction model using gene expression data can be  an 
alternative means to the currently used models based on 
clinical data, such as the Enhanced Feedback for Effective 
Cardiac (EFFECT) study risk scores (Thorvaldsen et  al., 
2017) and Meta-Analysis Global Group in Chronic Heart 
Failure (MAGGIC) scores (Pocock et  al., 2013).

Second, because of the highly heterogenous nature of HFpEF, 
a consensus has not been reached on which predictors can 
be  used to reliably predict HFpEF. We  demonstrated that gene 
expression can be  used to predict HFpEF survival status with 
high accuracy using the GA-KPLS prediction model. With the 
availability of increasing types of omics data (e.g., copy number 
variants, microRNAs, and epigenetic data), we  can further 
improve the prediction accuracy by integrating different data 
sources with the GA-KPLS model. Our study illustrates the 
development of new machine learning methods for HFpEF 
risk prediction by integrating different omics data types.

Current studies have focused on single or multiple clinical 
indicators to identify patients at high risk for HFpEF. However, 
most methods can only achieve an AUC of 0.7, which is 
unrealistic for application in clinical practice (Kanda et  al., 
2018; Shen et  al., 2020). Many researchers have also used 
statistical methods to construct stratification models such as 
Cox proportional hazards models and logistic regression models. 
However, these methods fail to capture the nonlinear relationship 
between predictors and the disease outcome (Komajda et  al., 
2011; Rich et  al., 2018; Angraal et  al., 2020). In contrast, the 
GA-KPLS model uses the advantage of kernel functions to 
extract nonlinear relationships between genomic features and 
survival outcomes, hence achieving more accurate predictions 
than its counterparts.

Risk prediction in HFpEF patients using the GA-KPLS model 
may (1) serve to motivate patients to adhere to recommended 
treatments and lifestyle modifications (Oktay et  al., 2013); (2) 
help clinicians to make treatment decisions, especially for high-
risk groups of patients who may progress to circulatory failure 
when administered routine clinical therapeutics, and these 
patients may have the opportunity to undergo active therapeutic 
interventions such as mechanical circulatory assistance, heart 
transplantation, or new trials (Wang et  al., 2019); and (3) help 
to inform the design of future HFpEF clinical trials.

However, our study had some limitations. First, because 
of the lack of additional external data on HFpEF, we  cannot 
validate our findings in another data set. Second, we  focused 
on gene expression data in our study. As lifestyle is an 
important risk factor for HF, further research should 
be  performed to predict HFpEF risk by integrating both 
clinical and genomic data to improve the prediction performance 
because potential interactions may exist between these factors. 
Third, the HFpEF data set is imbalanced, with a ratio of 
28:72 between the poor-outcome and good-outcome groups. 

However, the GA-KPLS and SVM methods performed well, 
with high sensitivity and specificity. If either low sensitivity 
or specificity becomes a concern, the SMOTE algorithm can 
be  applied (Chawla et  al., 2002), which is designed to handle 
prediction with imbalanced data.

In conclusion, the GA-KPLS-based HFpEF prediction model 
using gene expression data represents a valuable tool to improve 
the prognosis of HFpEF patients with different risk levels. The 
discovered transcriptional biomarkers of HFpEF provide new 
insight to the understanding the complex mechanism of HFpEF, 
leading to the development of novel targeted therapies for 
HFpEF. It is expected that integrating multi-omics and clinical 
data can further improve HFpEF outcome prediction, leading 
to the development of targeted, adaptive, and precision treatment 
of HFpEF patients with different risk levels.
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Oral squamous cell carcinoma (OSCC) has a high mortality rate (∼50%), and the
5-year overall survival rate is not optimal. Cyto- and histopathological examination
of cancer tissues is the main strategy for diagnosis and treatment. In the present
study, we aimed to uncover immunohistochemical (IHC) markers for prognosis in
Asian OSCC. From the collected 742 synthetic lethal gene pairs (of various cancer
types), we first filtered genes relevant to OSCC, performed 29 IHC stains at different
cellular portions and combined these IHC stains into 398 distinct pairs. Next, we
identified novel IHC prognostic markers in OSCC among Taiwanese population, from the
single and paired IHC staining by univariate Cox regression analysis. Increased nuclear
expression of RB1 [RB1(N)↑], CDH3(C)↑-STK17A(N)↑ and FLNA(C)↑-KRAS(C)↑were
associated with survival, but not independent of tumor stage, where C and N
denote cytoplasm and nucleus, respectively. Furthermore, multivariate Cox regression
analyses revealed that CSNK1E(C)↓-SHC1(N)↓ (P = 5.9 × 10−5; recommended for
clinical use), BRCA1(N)↓-SHC1(N)↓ (P = 0.030), CSNK1E(C)↓-RB1(N)↑ (P = 0.045),
[CSNK1E(C)-SHC1(N), FLNA(C)-KRAS(C)] (P = 0.000, rounded to three decimal places)
and [BRCA1(N)-SHC1(N), FLNA(C)-KRAS(C)] (P = 0.020) were significant factors of poor
prognosis, independent of lymph node metastasis, stage and alcohol consumption. An
external dataset from The Cancer Genome Atlas HNSCC cohort confirmed that CDH3↑-
STK17A↑was a significant predictor of poor survival. Our approach identified prognostic
markers with components involved in different pathways and revealed IHC marker pairs
while neither single IHC was a marker, thus it improved the current state-of-the-art for
identification of IHC markers.

Keywords: biomarker, cox regression, immunohistochemistry, oral cancer, overall survival, prognosis, gene
expression data
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INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the sixth
most common cancer globally (Bray et al., 2018). Every year,
more than 700,000 new cases of HNSCC are diagnosed and
350,000 related deaths are reported worldwide. Oral squamous
cell carcinoma (OSCC) is the most common cancer of the head
and neck region and has a high mortality rate. However, little
improvement has been made in the five-year overall survival rate
over the years (Bray et al., 2018). Identifying reliable prognostic
factors remains challenging. OSCC is believed to originate from
the multistep accumulation of heterogeneous genetic changes in
squamous cells. These changes progressively enable transformed
cells to proliferate and invade (Oliveira and Ribeiro-Silva, 2011).
These accumulated changes may explain why tumors at the same
clinical stage and localization often show significant differences
in clinical outcome.

The main causes of OSCC in Taiwan and some South Asian
countries (Belcher et al., 2014) are the consumption of alcohol,
tobacco, and betel nut. This contrasts with human papillomavirus
(HPV)-positive oropharyngeal SCC which is associated with
HPV infection, with higher proportions in western populations
than Asian populations (Gillison et al., 2000).

Unlike other malignancies, the relationships between
mutations of genes and clinical morphological characteristics
such as tumor grade in OSCC are obscure, which has impeded
the development of personalized medicine. Cytopathological
and histopathological examination of cancer tissues remains the
main diagnostic and treatment strategy for OSCC. Although
immunohistochemical (IHC) staining may be limited by small
volumes taken from samples, varying expression with selected
antibodies, and partial reliance on subjective perception, IHC
staining provides morphological information about protein
expression, and it is simple and cost-effective. Moreover, the
procedures and guidelines (Wolff et al., 2007; Hammond et al.,
2010; Dowsett et al., 2011) for IHC staining are well established,
and widely used in clinics.

The primary aim is to identify a panel of IHC prognostic
markers for Asian OSCC, to enable the selection of patients
best suited for intensive adjuvant therapy in clinics. Most
of previous results on IHC prognostic markers in OSCC
were mainly based on one protein, few on two proteins or
on one pathway and are reviewed briefly as follows. IHC of
cyclin D1, MDM2, and γ-catenin were shown to be potential
prognostic markers in a study of 55 patients with buccal SCC
who regularly chewed betel nut (Peng et al., 2011). In 2005,
IHC of cyclin D1 and Rb overexpression combined with p16
underexpression (denoted by cyclin D1↑-Rb↑p16↓) (Jayasurya
et al., 2005) and Rb↓–p53↑ (Soni et al., 2005) were shown to
be associated with poor prognosis in a cohort of 348 and a
cohort of 98 Indian patients with OSCC, respectively. Moreover,
simultaneous coexpression of p53, cyclin D1, and EGFR was
a significant prognostic factor in a cohort of 140 Japanese
patients with oral cancer (Shiraki et al., 2005). P-cadherin was
reported to be marginally significantly associated with poor
survival in a small cohort (Muzio et al., 2005). About a decade
later, CK1ε nonexpression (Lin et al., 2014) and expression
of BRCA1 and γH2AX (Oliveira-Costa et al., 2014) were

shown to be associated with poor overall and disease-specific
survival, respectively.

We started with a list of 742 synthetic lethal (SL) gene
pairs collected from the literature, which consisted of several
oncogenes, tumor-suppressor genes, genome stability and other
cancer genes with important functions. Two genes are termed
SL genes if a single mutation of either is not lethal, but
their simultaneous mutation leads to cell death (Chang et al.,
2016). The SL interactions of these collected pairs in various
cancer types are validated either with human cancer cell lines
(Bryant et al., 2005; Farmer et al., 2005) or by genome-wide
RNA interference (RNAi) knockdown (Barbie et al., 2009; Luo
et al., 2009). The list of SL gene pairs can be accessed at1.
SL pairs are shown to be correlated to survival of cancer cells
(Kaelin, 2005). In general, the more cancer cells killed, the
better cancer patients’ survival. Thus, we speculated that SL
pairs are relevant to prognosis assessment. We hypothesized that
IHC (protein) expression is concordant to its gene expression,
and we used gene expression data of Asian OSCC to select an
initial panel of SL pairs which are relevant to OSCC, from the
collected SL pairs (of all types of cancer). Next, we adopted
the rule of frequently co-expressed gene pairs along with prior
knowledge of OSCC to select ∼20 genes for IHC staining.
IHC staining is conducted because protein is more stable than
mRNA, ultimately functions in cells, and IHC is usable in the
clinic. We also combined single IHC into 398 distinct IHC
pairs. To identify prognostic markers, we applied Cox regression
analysis to each single IHC (each combined IHC pair) and
the overall survival of patients with OSCC. Previously, we
applied this approach to colorectal cancer (Chang et al., 2016)
and lung adenocarcinoma (Liu et al., 2004), and both studies
successfully uncovered IHC prognostic markers independent of
tumor stage, in addition to revealing novel IHC marker pairs
where neither single IHC was a marker. Our approach starts with
the collected SL pairs, which allows components participating in
different pathways to be identified as prognostic marker pairs.
This improves the current state of the art for IHC marker
discovery, which hitherto has mainly relied on one protein, few
on two proteins or one pathway (Oliveira-Costa et al., 2014).
After the prognostic markers were revealed, we validated them
using OSCC data with HPV(−) from The Cancer Genome Atlas
(TCGA) HNSCC cohort. A schematic graph of our method is
presented in Figure 1.

MATERIALS AND METHODS

Study Population
A total of 163 cases of oral cavity cancers were identified in the
Kaohsiung Medical University Hospital. Although this sample
size was moderate, it was less than only four of the 20 and
more previous studies. Furthermore, we conducted a large scale
of IHC study and the sample size was sufficiently large for
multivariate Cox regression analysis. The inclusion criteria for
this study were as follows: (1) age at diagnosis of 20 years or
older; (2) tumor histology of squamous cell carcinoma with

1http://www.stat.sinica.edu.tw/~gshieh/OC/SL_pairs.html
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FIGURE 1 | Schematic graph of the study approach. Microarray gene
expression of 57 oral cancerous and 22 noncancerous tissues selected
OSCC-relevant gene pairs from 742 verified synthetic lethal pairs. Twenty-one
genes were marked for immunohistochemistry staining. Pairwise
combinations of the 29 IHCs followed by a log-rank test and Cox regression
models revealed single/paired and combined prognostic markers.

grade 1 to grade 3; (3) ICD-9 site code specific for the oral
cavity; (4) patients underwent surgical interventions,; and (5)
disease was diagnosed between 2012 and 2014. The exclusion
criteria were: (1) patients who underwent biopsy without surgery;
(2) patients with secondary malignancy; (3) tumor histology of
carcinoma in situ; and (4) SCC from nasopharynx, oropharynx,
hypopharynx, and larynx.

Statistical Analyses, Tissue Arrays and
IHC Staining
In the following, all statistical tests were two-sided except where
otherwise specified, and all analyses were conducted in R software
(R Core Team, 2019).

Preprocessing of Gene Expression
Profiles for Oral Cavity Cancerous
Versus Non-cancerous Tissues
Gene expression datasets were selected based on the following
parameters: cancerous and noncancerous tissues, no treatments,
no metastasis, and Affymetrix chips (up to November 2010). The
OSCC gene profiles conforming to the aforementioned criteria
were downloaded from GEO. Mutated genes associated with
oncogenesis may differ among various ethnic groups (Ding et al.,
2008). Therefore, we collected gene expression data from patients
of Han Chinese origin [tissues from patients in Taiwan, GSE
25099 (Peng et al., 2011)], which was the same ethnicity as that
of IHC and clinicopathological data used here. Gene expression
profiles of the 57 OSCC and 22 noncancerous tissues in the
dataset were quantile-normalized using “expresso” in R, then for
a given gene the log ratio of its expression in each cancer tissue
versus that of the averaged non-cancerous tissues was computed.

Inference of the Initial Panel of Relevant
SL Gene Pairs (Table 2) Using Microarray
Gene Expression Data
For each SL gene pair, the fractions of (up, up), (up, down),
(down, up), and (down, down) patterns were computed, where
the cutoff value for up and downregulation was 1.5-fold.
The pattern fractions were computed using the log ratios of
the microarray gene expression data for the 57 patients with
OSCC (GSE 25099).

Permutation Test and False-Positive
Rates of the Fractions of Paired Gene
Expression
To evaluate the statistical significance (P value) of the fractions of
(up, up) and (down, up) patterns of each gene pair in Table 2,
for each fraction we conducted a permutation test to generate
its nonparametric distribution. The total rearrangements of the
labels of (57) cancer and (22) noncancerous tissues was equal to(

79
22

)
, from which we randomly chose 10,000 rearrangements.

For each rearrangement, we computed the fraction of a pattern
to form its distribution, from which we assessed the P value of an
observed fraction. Moreover, we applied the q-value (Storey and
Tibshirani, 2003) (“q value” in R) to estimate the false discovery
rate (FDR) of the significance of the gene pairs in Table 2.

Selection of Genes From the Initial Panel
for IHC Staining
We first selected genes whose fractions of the (up, up) and (down,
up) patterns were ≥15%, except ≥25% (more stringent) for the
(down, up) pattern of KRAS SL pair, because the mutation rate
of KRAS was only ∼2% in OC and there were 200 and more
KRAS pairs. Next, we applied prior knowledge to (i) select CDH3
(the top-3) from the top three partners of EGFR and the top-1
[STK17A, relevant to OSCC (Pickering et al., 2013)] and top-
3 (CDK6, a tumor suppressor gene) partners of KRAS from the
KRAS SL pairs satisfying the above fraction cutoffs, and to (ii)
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include genes whose fractions were on the borderline of 15%;
this included FEN1-RAD54B [involved in nonhomologous DNA
end joining repair pathway (Storey and Tibshirani, 2003); 14%],
RB1 [relevant to OSCC (Liu et al., 2004; Presson et al., 2011);
12%] and MSH2-POLB (Kang et al., 2009; Tiong et al., 2014;
Chang et al., 2016).

Tissue Microarray Preparation
Clinicopathological features of 163 OSCC patients were collected
(Table 1), and their representative cancer specimens were
randomly selected from H&E-stained sections and confirmed
by pathologists (Chun-Chieh Wu and Yi-Ting Chen). Three
cancerous and one noncancerous tissue cores (diameter 2 mm)
were longitudinally cut from each paraffin block. The tissue cores
were mounted with fine steel needles in new paraffin blocks
to produce tissue microarrays. This study was approved by the
Institutional Review Board and Ethics Committee of Kaohsiung
Medical University Hospital and the Institutional Review Board
of Academia Sinica [Nos. KMUHIRB-E(I)-20170034 and AS-
IRB-BM-16075]. The data was analyzed anonymously, and
therefore no additional informed consent was required. All
methods were performed in accordance with the approved
guidelines and regulations and the waiver for the informed
consent had been obtained from the approving committee.

Immunohistochemistry Staining
Patients cancer samples were cut into 4-µm-thick sections
and deparaffinized in xylene as previously described (Chang
et al., 2016). Endogenous peroxidase activity was quenched
with 3% (v/v) H2O2. The sections were boiled in 10 mM citrate
buffer for 20 min to revive the antigens. The tissues were
incubated with 21 primary antibodies at room temperature
for 30 min then rinsed three times with phosphate-buffered
saline (PBS) (Supplementary Table 1) according to the
manufacturer’s protocol. The tissues were then incubated at
25◦C for 30 min with secondary antibodies and a horseradish
peroxidase/Fab polymer conjugate [EnVision detection systems
peroxidase/DAB, rabbit/mouse (K5007 HRP; DaKo)] then rinsed
three times with PBS. Finally, chromogen was developed using
3,3′-diaminobenzidine tetrahydrochloride as the substrate,
and counterstained with hematoxylin and viewed under
a microscope. Staining intensity in the cancer tissue was
independently examined by two pathologists (Chun-Chieh Wu
and Yi-Ting Chen).

The scoring criteria used here were the same as those of
previous studies (Su et al., 2004; Tiong et al., 2014; Chang et al.,
2016) (Supplementary Table 2). Stain intensity is graded as
negative (0), indeterminate (±), weakly positive (1+), moderately
positive (2+), or strongly positive (3+). The criterion is exactly
based on the strongest intensity followed by the % expression of
the detected protein. Negative (0) indicates no expression of the
detected protein, indeterminate means that the staining is weak
and its percentage cannot be accurately counted, weakly positive
indicates <5% expression of the detected protein, moderately
positive is focal expression in 5–20% of the cancer cells, and
strongly positive indicates diffuse expression in >20% of the
cancer cells. The mean staining intensity of three cancerous
tissues was compared with that of noncancerous oral mucosa and

TABLE 1 | Clinicopathological characteristics of the OC patients in the study
population.

Study population

KMU (N = 163)

Characteristic N %

Age at diagnosis, year

555 84 51.5

>55 71 43.6

NAa 8 4.9

Grade

Low 67 41.1

Intermediate 85 52.1

High 2 1.2

NA 9 5.5

Stage

I 66 40.5

II 26 16.0

III 19 11.7

IV 41 25.2

NA 11 6.7

Morphology

Squamous 163 100.0

Tb

T1 74 45.4

T2 42 25.8

T3 11 6.7

T4 28 17.2

NA 8 4.9

Nb

N0 115 70.6

N1 24 14.7

N2 16 9.8

NA 8 4.9

aNA denotes missing data; bT and N denote tumor size and lymph node status of
“TNM” (AJCC version 7), respectively.

was categorized as either over- or underexpressing, determining
the criteria for IHC analyses. The cutoffs for the 29 IHC stains are
listed in Table 3.

Log-Rank Test
For each individual and paired IHC staining, a log-rank test of
the “high-” and “low-” risk patients was conducted. The high-
and low-risk groups consisted of patients classified according to
the IHC amounts shown in Table 3. If the log-rank test was
significant (P < 0.05), which indicated the survival curves of the
two groups significantly different, then a Kaplan-Meier survival
curve was plotted by the R software.

Univariate Cox Proportional Hazard (PH)
Regression Models
In the univariate Cox regression models, the associations between
the 29 individual IHC or 398 combined IHC staining pairs and
the 10-year overall survival of the OSCC patients were analyzed
in the study cohort. The associations between clinical factors such
as age (>55 vs. ≤55 years), sex (male vs. female), tumor grade
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TABLE 2 | The initial panel of SL gene pairs relevant to oral cancer.

Relevant SL gene pair Fractions of SL gene pairs computed from 79 Asian OSCC versus non-cancerous tissues that were expressed
1.5-fold or higher

Gene1 Gene2 (up, up) (up, down) (down, up) (down,down) Permutation q-value

Gene1 Gene2 pattern pattern pattern Pattern p-value q-value

EGFR DUSP6 0.26a 0.00 0.12 0.00 0.0001 0.0004

EGFR PLSCR1 0.26 0.00 0.12 0.00 0.0001 0.0004

EGFR CDH3 0.26 0.00 0.05 0.00 0.0001 0.0004

BRCA1 PARP1 0.26 0.00 0.00 0.00 0.0001 0.0004

BRCA2 PARP1 0.26 0.00 0.00 0.00 0.0001 0.0004

EGFR FLNA 0.18 0.00 0.04 0.00 0.0001 0.0004

EGFR SHC1 0.18 0.00 0.02 0.00 0.0001 0.0004

FEN1 RAD54B 0.14 0.00 0.00 0.00 0.0001 0.0004

EGFR SLEGFR
b 0.11∼0.12 0.00 0.00∼0.12 0.00 0.0001∼0.3250 0.0004∼0.4220

PIMI PLK1 0.00 0.00 0.68 0.02 0.0001c 0.0004

TP53 MET 0.00 0.00 0.63 0.00 0.0001 0.0004

TP53 PLK1 0.00 0.00 0.54 0.02 0.0001 0.0004

TP53 CDKN2A 0.00 0.00 0.39 0.05 0.0001 0.0004

TP53 BRCA1 0.00 0.00 0.37 0.02 0.0001 0.0004

KRAS SLKRAS
d 0.00 0.00 0.18∼0.28 0.00 0.0001∼0.0011 0.0004∼0.0185

TP53 CSNK1E 0.00 0.00 0.18 0.00 0.0001 0.0004

TP53 PARP1 0.00 0.00 0.18 0.00 0.0001 0.0004

TP53 RB1 0.00 0.00 0.12 0.00 0.0024 0.0063

aThe four fractions were computed from gene pairs that were 1.5-fold differentially expressed, thus they might not sum up to 100%.
bFour verified EGFR SL pairs were identified in the (up, up) pattern.
cThe p-value shows the significance of the (down, up) pattern.
d26 verified KRAS SL pairs were identified in the (down, up) pattern.
The p-value for the highest fraction four patterns was computed by permutation test with 10,000 repeats, and the false discovery rate was estimated by q-value.
Fractions of the four differentially expressed patterns based on the 1.5-fold threshold and filtered from 742 synthetic lethal gene pairs.

(medium and high vs. low), lymph node metastasis (yes vs. no),
stage (III, VI vs. I, II), and habits alcohol use (yes/no), betel nut
chewing (yes/no), and cigarette smoking (yes/no) with 10-year
Taiwanese OSCC overall survival were also assessed.

Multivariate Cox PH Regression Model
When fitting the multivariate Cox regression models, the clinical
factor stage significantly associated with overall survival in the
univariate Cox regression models was adjusted, because the stage
had stronger significance than that of the grade. Likelihood ratio
test (LRχ2 ) and the statistical significance values generated (P
values) were used to compare model fit between the uncovered
prognostic IHC markers.

Determination of the Cutoff for
Differential Expression of the TCGA Data
We first used 1.5-fold as the threshold for differential TCGA
OSCC gene expression, but there were too few patients (less than
5) (Vittinghoff and McCulloch, 2007) in the poor/good overall
survival subsets to perform univariate Cox regression for most
of the six prognostic markers (Table 4A). Thus, the cutoff was
relaxed to 1.4-fold, and there were ensure adequate numbers of
patients in the poor/good overall survival subsets of two pairs
CDH3-STK17A and FLNA-KRAS, respectively, for the univariate
Cox regression analysis.

RESULTS

Description of Study Population
As shown in Table 1, about half of the patients in our study cohort
were <55 years old at the time of diagnosis. The histologic grades
were defined as low grade: well differentiated, intermediate grade:
moderately differentiated, and high grade: poorly differentiated.
Most of the cancers (98%) were intermediate- or low histological
grade, only 1.3% were high grade. About 60% of the patients were
stage I and II, and 26.5% were stage IV (most of them were stage
IVA). All cancers were squamous cell carcinoma. According to
the stratification of 7th version of the American Joint Committee
on Cancer (AJCC), 71.2% of the tumor sizes belonged to T1 and
T2, and 17.2% belonged to T4. Most of the lymph node statuses
were N0 and N1 (85.3%).

Initial Panel of Relevant SL Gene Pairs
for OSCC
In general, tumor cells show aberrant expression of oncogenes
and tumor suppressor genes. Validated SL pairs comprised
oncogenes and tumor suppressor- and genome stability genes.
Therefore, we first selected gene pairs relevant to OSCC from
the 742 SL pairs, using the microarray gene expression data of
57 Asian OSCC and 22 non-cancerous tissues {GSE 25099 from
the gene expression omnibus database [GEO (Srivastava and
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FIGURE 2 | Representative IHC images. Over- and underexpression of IHCs
involved in the revealed markers [CSNK1E(C), SHC1(N), RB1(N), CDH3(C),
STK17A(N), BRCA(N), FLNA(C), and KRAS(C)] are shown for cancer and
normal tissues from OSCC patients (original magnification: × 400).

Raghavan, 2015)]} (Peng et al., 2011). The selected SL gene pairs
were further sorted by the fractions of the (up, up), (down, up),
(up, down), and (down, down) patterns (Table 2), where up and
down denoted upregulation and downregulation with the cutoff
1.5-fold; this less stringent cutoff was set to include important
OSCC onco- and tumor suppressor genes not expressed at
twofold level, e.g., TP53, EFGR, and CDKN2A, but that were
frequently mutated in Asian OSCC (Liu et al., 2004; Presson et al.,

2011). Overexpression of tumor suppressor- and genome stability
gene pairs associated with DNA repair such as BRCA1 and FEN1
was unexpectedly noted (Table 2). However, this finding was
consistent with the dramatic increase in genomic instability and
DNA replication caused by mutant oncogenes such as MYC.

Twenty-One Genes Were Selected for
IHC Staining
We selected 21 genes from Table 2 to conduct IHC staining, and
some of them were stained at two cellular portions. Most of the
genes were selected according to relatively high fractions of the
(up, up) and (down, up) patterns (≥15%) in Table 2. For an
extended list of the sorted (up, up) and (down, up) gene pairs,
please see2. Next, we applied prior knowledge to (i) select CDH3
from the EGFR SL pairs and STK17A and CDK6 from the KRAS
SL pairs, which satisfied the above fraction cutoffs, and to (ii)
include genes whose fractions were on the borderline of 15%; this
included FEN1-RAD54B (Srivastava and Raghavan, 2015) (14%),
RB1 (Liu et al., 2004; Presson et al., 2011) (12%) and MSH2-
POLB (Kang et al., 2009; Tiong et al., 2014; Chang et al., 2016).
Please see the section “Materials and Methods” for details of the
selection method.

Eight out of these 21 genes were stained at two cellular
portions, such as CDH3 and EGFR, the remaining 13 genes were
stained at one cellular portion. Table 3 lists these 29 different IHC
stains, the cutoffs for over- and underexpression of IHC staining
and the corresponding fractions of OSCC patients satisfying
the cutoffs. See section “Materials and Methods” for the basis
determining the cutoff values. Some representative IHC figures
are shown in Figure 2, including CSNK1E(C), SHC1(N), RB1(N),
CDH3(C), STK17A(N), BRCA(N), FLNA(C), and KRAS(C). The
IHC figures of all proteins are in Supplementary Figure 1.

We next explored if the results of IHC stains are suitable
for use as prognostic markers. For each of the 29 IHC results
in Table 3 and all of the combined IHC pairs, we applied
log-rank tests to the 153 Taiwanese patients with OSCC for
whom overall survival was recorded. We first observed that
the patients with overexpressed RB in nucleus (denoted as
RB1(N)↑) had significantly poorer overall survival than patients
with underexpressed RB1 (P = 0.027, Figure 3A). Additionally,
underexpressed FLNA in cytoplasm [FLNA(C)↓] was also
associated with poor clinical outcomes (P = 0.047, Figure 3B).

RB1↑ AND FLNA(C)↓ WERE
ASSOCIATED WITH POOR OVERALL
SURVIVAL

IHC of Eight Protein Pairs Were
Associated With Overall Survival
Furthermore, we combined the 29 IHC stains into all the
possible distinct IHC pairs (398 in total), which allowed
novel paired IHC markers to be uncovered, excluding
those of the same protein stained at different cellular

2https://www.stat.sinica.edu.tw/gshieh/OC/UU-DU_list
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FIGURE 3 | Immunohistochemistry of individual and paired proteins correlated with overall survival of 153 Taiwanese oral squamous cell carcinoma patients.
Kaplan-Meier survival curves were significantly different in terms of (A) RB1(N), (B) FLNA(C), (C) CSNK1E(C)-SHC1(N), (D) CSNK1E(C)-RB1(N),
(E) CDH3(C)-STK17A(N), (F) BRCA1(N)-SHC1(N), (G) SHC1(N)-TP53(N), (H) FLNA(C)-SHC1(C), (I) FLNA(C)-KRAS(C), and (J) POLB(N)-SGK2(C). Curves for
patients with paired abnormal IHCs (according to Table 3) are plotted with dashed lines. Curves for the other patients are plotted with solid lines. The symbols ↑ and
↓ denote overexpression and underexpression of the corresponding IHCs, respectively.

portions. Univariate Cox regression procedure revealed that
CSNK1E(C)↓-SHC1(N)↓, CSNK1E(C)↓-RB1(N)↑, CDH3(C)↑-
STK17A(N)↑, BRCA1(N)↓-SHC1(N)↓, and SHC1(N)↓-TP53↑
were associated with poorer overall survival (Figures 3C–G;
P = 1.8× 10−7, 0.001, 0.010, 0.018, and 0.048, respectively;
log-rank test). On the other hand, FLNA(C)↑-SHC1(N)↓,
FLNA(C)↑-KRAS↑, and POLB↓-SGK2↑ were correlated with
better overall survival (Figures 3H–J; P = 0.032, 0.035, and 0.044,
respectively; log-rank test).

Multivariate Cox Regression Analysis
Revealed That CSNK1E↓-SHC1(N)↓,
CSNK1E↓-RB1↑, and
BRCA1(N)↓-SHC1(N)↓Were Independent
Prognostic Markers
As reported previously, biomarkers can be identified from
gene- or protein expression data (Presson et al., 2011; Ha
et al., 2015). For the 29 IHC results, univariate Cox regression
models (Table 4A) confirmed that RB1(N) [hazard ratio
(95% confidence interval) = 2.03 (1.07–3.86); P < 0.05]
was a prognostic marker. The univariate Cox regression
analysis was also applied to the combined IHC pairs. The

results suggested that CSNK1E↓-SHC1(N)↓ [hazard ratio
(95% confidence interval) = 7.54 (3.08–18.43); P < 0.001],
CSNK1E↓-RB1↑ [hazard ratio (95% confidence interval) = 2.92
(1.46–5.83); P = 0.002], CDH3(C)↑-STK17A(N)↑ [hazard ratio
(95% confidence interval) = 3.58 (1.27–10.10); P = 0.016],
BRCA1(N)↓-SHC1(N)↓ [hazard ratio (95% confidence
interval) = 2.96 (1.15–7.59); P = 0.024], and FLNA(C)↑-
KRAS↑[hazard ratio (95% confidence interval) = 0.49
(0.25–0.96); P = 0.039] were significant predictors of the
risk of death in Asian patients with OSCC (Table 4). In addition,
the paired markers CSNK1E↓-SHC1(N)↓ (LR2

x = 12.8) and
CSNK1E(C)↓-RB1(N)↑ (LR2

x = 7.6) provided more powerful
prognostic information than the individual marker RB1(N)
(LR2

x = 4.7). There were too few patients in the MSH2↓-TP53↑
and MSH2↓-SHC1↓ subsets to perform univariate Cox
regression analysis.

Of the clinical variables [age, sex, tumor grade, lymph node
(LN) metastasis and stage], grade, lymph node metastasis and
stage were significantly associated with the patients’ overall
survival (Table 4A). The univariate model based on stage
(LR2

x= 13.1) fit better than that based on grade (LR2
x= 4.8).

Therefore, we used stage as the adjustment factor in the
multivariate Cox regression models.
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Because the high incidence of oral cancer in Asian OSCC is
related to alcohol use, betel nut chewing, and cigarette smoking,
we investigated whether these habits were associated with overall
survival in this population. As shown in Table 4A, only alcohol
use [hazard ratio (95% confidence interval) = 2.01 (1.01–3.97);
P = 0.045] was a significant predictor of overall survival in
these Taiwanese patients with OSCC. Betel nut chewing [hazard
ratio (95% confidence interval) = 0.72 (0.38–1.38); P = 0.329]
and smoking [hazard ratio (95% confidence interval) = 1.79
(0.64–5.00); P = 0.267] were not significant predictors for the
risk of death in these patients. Furthermore, the correlation
between alcohol use and each IHC marker was tested (Fisher’s
exact test) and none was significant at P = 0.05. Similarly, the
correlation between “the combined habits” and each IHC marker
was tested, and again none was significant at P = 0.05; please see
Supplementary Table 3 for details.

We then evaluated the associations of the novel IHC
prognostic markers with overall survival after adjusting for
alcohol use, age and tumor stage, via multivariate Cox regression
analysis. The paired prognostic markers CSNK1E↓-SHC1(N)↓
[hazard ratio (95% confidence interval) = 7.75 (2.85–21.07);
P = 5.9 × 10−5], CSNK1E↓-RB1(N)↑ [hazard ratio (95%
confidence interval) = 2.16 (1.02–4.58); P = 0.045], and
BRCA1(N)↓-SHC1(N)↓ [hazard ratio (95% confidence
interval) = 2.87 (1.11–7.42); P = 0.030] were significant
predictors of the overall survival of the patients with OSCC.
For patients with CSNK1E↓-SHC1(N)↓, CSNK1E↓-RB1(N)↑,
and BRCA1(N)↓-SHC1(N)↓, the risk of death was 7.8, 2.2,
and 2.9 times higher, respectively, than that for the other
patients in this population. However, RB1(N) [hazard ratio (95%
confidence interval) = 1.71 (0.89–3.30); P = 0.108] was no longer
a significant predictor (Table 4B). After alcohol use, age, and
stage were entered into the multivariate Cox regression models
along with each of the markers, neither alcohol use nor age was
selected by stepwise selection or Akaike information criterion
(AIC). Thus, neither appeared in the final models (Table 4B).
Following a reviewer’s suggestion, we further adjusted the effect
of lymph node metastasis and tumor stage in the multivariate
Cox regression models, because lymph node density and
metastasis were shown to be significant prognosis predictors in
OSCC (Zanaruddin et al., 2013; Chang et al., 2018). Excluding
the effect of LN metastasis and stage that are used in clinical
practice conventionally, the revealed five combined markers are
still significant (Supplementary Table 4). This highlights the
potential of these markers being targeted for cancer treatments.

Combinations of Significant Markers
Were Studied; CSNK1E↓-SHC1(N) Was
Suggested for Clinical Practice
We then combined any two of the significant markers in Table 4A
and selected eight combinations whose good/poor OS subsets
consisted of a sufficient number of (≥5) patients. Note that
the (↑,↑) subset of FLNA(C)-KRAS(C) was correlated with a
good OS, so we combined its complementary subsets (↓, ↑),
(↑, ↓), and (↓, ↓) with the poor OS subsets of the remaining
five markers in Table 4A. We fitted multivariate Cox regression

TABLE 3 | Immunohistochemistry (IHC) proteins derived from cancerous tissues
which were sampled from 163 local oral cancer patients, the cutoff values for
over- and under-expression of IHC.

No. Protein Criterion for Criterion for

No. name under-expression over- expression

1 BRCA1(N)a <1+ =1+

2 CDH3(C)a <1+ =1+

3 CDH3(N) <1+ =1+

4 CDK6(C) ≤1+ >1+

5 CSNK1E(C) ≤1+ >1+

6 EGFR(C) ≤1+ >1+

7 EGFR(M)a <1+ and < 10%b =1+ and =10%b

8 FEN1(C) <1+ =1+

9 FLNA(C) <1+ =1+

10 FLNA(N) ≤1+ >1+

11 KRAS(C) <1+ =1+

12 MET (C)c ≤1+ >1+

13 MSH2(N) <1+ =1+

14 P16(C) ≤1+ >1+

15 P16(N) <1+ =1+

16 PARP1(N) <1+ =1+

17 PIM1(C) <3+ =3+

18 PIM1(N) <3+ =3+

19 PLK1(C) <3+ =3+

20 POLB(C) ≤ 1+ >1+

21 POLB(N) ≤ 1+ >1+

22 RAD54B(N) <1+ =1+

23 RB1(N) <1+ =1+

24 SGK2(C) ≤1+ >1+

25 SHC1(C) <1+ =1+

26 SHC1(N) ≤1+ >1+

27 STK17A(C) ≤1+ >1+

28 STK17A(N) ≤1+ >1+

29 TP53(N) ≤0% >0%

aThe notation (C), (N) and (M) represent cytoplasm, nucleus and
membrane, respectively.
bBoth strength of staining ≥ 1+ and stained area ≥ 10% are required.
cPhosphorylated MET was stained.
dThe stained area > 0% is required.

to these combinations, and found that [CSNK1E-SHC1(N),
FLNA(C)-KRAS(C)] (hazard ratio = 8.71; P = 0.000 rounded
to three decimal places) and [BRCA1(N)-SHC1(N), FLNA(C)-
KRAS(C)] (hazard ratio = 3.14; P = 0.020) were significant
prognostic markers (Table 4C). For combinations of three or
more significant markers, the (good/poor OS) subsets had too
few patients to fit any multivariate Cox regression model.
Taking Table 4A–C together, we suggest using the combination
CSNK1E↓-SHC1(N)↓, which has the most significant P value
(from likelihood-ratio test) among all markers, to identify Asian
OSCC patients with worst survival in clinical practice.

External Validation of the Association of
CDH3-STK17A With Overall Survival
Ethnicity and geography may play a role in the etiology of cancer.
If the newly discovered markers are confirmed by independent
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TABLE 4 | Overall survival of 153 oral squamous cell carcinoma patients relative to clinical covariates, IHC prognostic markers, and habits.

A. Univariate Cox regression

Variable Subset Hazard ratio (95% CI) p-value LRx2

Lymph node metastasis yes/no 3.47 (1.92–6.28) 0.000 15.6

Stage III–IV/I–II 3.15 (1.67–5.95) 0.000 13.1

Grade low, moderate and high 1.94 (1.06–3.54) 0.031 4.8

RB1(N) ↑/↓a 2.03 (1.07–3.86) 0.031 4.7

[CSNK1E(C), SHC1(N)] (↓, ↓)/otherwise 7.54 (3.08–18.43) 0.000 12.8

[CSNK1E(C), RB1(N)] (↓, ↑)/otherwise 2.92 (1.46–5.83) 0.002 7.6

[CDH3(C), STK17A(N)] (↑, ↑)/otherwise 3.58 (1.27–10.10) 0.016 5.4

[BRCA1(N), SHC1(N)] (↓, ↓)/otherwise 2.96 (1.15–7.59) 0.024 4.2

[FLNA(C), KRAS(C)] (↑, ↑)/otherwise 0.49 (0.25–0.96) 0.039 3.9

Habit Subset Hazard ratio (95% CI) p-value LRx2

Alcohol use Yes/No 2.01 (1.01–3.97) 0.045 4.4

B. Multivariate Cox Regressionb

Variable Subset Hazard ratio (95% CI) p-value LRx2

RB1(N) ↑/↓ 1.71(0.89–3.30) 0.108 16.2

Stage III–IV/I–II 3.18(1.65–6.14) 0.001

[CSNK1E(C), SHC1(N)] (↓, ↓)/otherwise 7.75(2.85–21.07) 5.9 × 10−5 23.3

Stage III–IV/I–II 3.45(1.74–6.85) 4.1 × 10−4

[CSNK1E(C), RB1(N)] (↓, ↑)/otherwise 2.16(1.02–4.58) 0.045 16.4

Stage III–IV/I–II 3.04(1.57–5.87) 0.001

[BRCA1(N), SHC1(N)] (↓, ↓)/otherwise 2.87(1.11–7.42) 0.030 17.1

Stage III–IV/I–II 3.34 (1.68–6.61) 0.001

C. Combination of two gene pairs

Variable Hazard ratio (95% CI) p-value LRx2

CSNK1E(C)-SHC1(N) (↓, ↓) and FLNA(C)-KRAS(C) (↑, ↑)c* 8.71(2.88–26.36) 0.000 1.98

Stage 2.95(1.45–6.02) 0.003

BRCA1(N)-SHC1(N) (↓, ↓) and FLNA(C)-KRAS(C) (↑, ↑) 3.14 (1.2–8.24) 0.020 14.94

Stage 2.91 (1.42–5.95) 0.004

aThe symbols “↑” and “↓” denote over- and under-expression of IHC, respectively of the corresponding protein.
bVariables were selected by stepwise selection and AIC.
*The symbol (↑, ↑);cdenotes the complementary set of (↑, ↑), namely (↓, ↑), (↑, ↓) and (↓, ↓), in which FLNA(C)-KRAS(C) is in the same direction (poor OS) as that of
BRCA1(N)-SHC1(N).

datasets of patients with OSCC from different geographic regions
and ethnicities, they may be useful tools in clinical medicine.
OSCC with HPV(−) from the TCGA head and neck SCC cohort
(henceforth, TCGA) (The Cancer Genome Atlas Network, 2015)
more closely resembled Asian OSCC than those with HPV(+).
Therefore, we analyzed microarray gene expression data of 160
OSCC cases with HPV (−) to validate the novel prognostic
markers in Table 4.

We used 1.4-fold as the cutoff for differential expression of
TCGA OSCC RNA-seq data (see section “Materials and Methods”
for details), such that of all markers in Table 4A, CDH3-STK17A
and FLNA-KRAS had a sufficient number of (five or more)
(Vittinghoff and McCulloch, 2007) patients in the (good/poor
OS) subsets for the univariate Cox regression analysis. Of these,
CDH3↑-STK17A↑ was a significant gene predictor of good
survival [hazard ratio (95% confidence interval) = 0.55(0.35–
0.87); P = 0.011], while FLNA↑-KRAS↑ was not significant
(P = 0.117). The former finding was not consistent with ours,
which showed that CDH3(C)↑-STK17A(N)↑ was a significant
predictor of poorer overall survival in Taiwanese patients with

OSCC (Table 4A). This discrepancy may be explained by the
different genetic backgrounds in the two populations, since the
significant downregulation of the CDH3 gene has been reported
in metastatic OSCC (Méndez et al., 2009). The estimated survival
curves of CDH3-STK17A are shown in Figure 4. This external
validation demonstrates that if IHC or gene expression data are
available, CDH3-STK17A can be used to stratify patients with
OSCC in the future.

DISCUSSION

Here, we established a cost-effective approach for the
identification of prognostic IHC markers of OSCC. This
approach is also efficient, as merely 29 IHC stains were
performed, but five clinically beneficial prognostic markers
were identified through extensive statistical analysis. Our
technique rapidly uncovered the prognostic markers without
any prerequisite knowledge of the molecular pathways. In
contrast, previous studies relied on pathway information
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(Sadanandam et al., 2013; Kosari et al., 2014) to reveal prognostic
markers, such as cellular phenotypes and protein expression
levels. Moreover, our approach was able to reveal IHC prognostic
markers with components from different pathways. This
improves the current state of art, as most of methods to
uncover IHC markers to date have been mainly based
on one or two proteins (Lin et al., 2014), or one pathway
(Oliveira-Costa et al., 2014).

Of the single IHC results, RB1(N) was a predictor of poorer
survival in the Taiwanese patients with OSCC, however, it was
not independent of tumor stage. This finding was consistent with
earlier studies wherein RB1 was a biomarker in HPV(−) head
and neck cancers (The Cancer Genome Atlas Network, 2015;
Beck et al., 2016). Previous studies showed that expression of Rb
increased in the development and/or with disease progression
of OSCC (Pavelic et al., 1996; Schoelch et al., 1999; Thomas
et al., 2015), and the latter study reported high expession of
Rb in patients with combined habits (alcohol use, betel nut
chewing and smoking), suggesting Rb pathway altered. However,
in our study, the over-expression of Rb was confounded with
stage (Tables 4A,B), but not associated with the combined habits
(P = 0.19, Fisher’s exact test; Supplementary Table 3). The over-
expression of RB1(N) in our study may be due to over-expression
of cyclin D1 or under-expression of p16INK4A, as cyclin D1
and p16INK4A are related to Rb through an autoregulatory
loop (Gimenez-Conti et al., 1996; Andl et al., 1998). Although
expression of RB1(N) was high in our study, its function was
likely inactivated which may be due to regulation of cyclin D1,
HPV infection (Gimenez-Conti et al., 1996; Andl et al., 1998), loss
of heterozygosity (Maestro et al., 1996; Yokoyama et al., 1996)
or Rb hyperphosporylation (Chatterjee et al., 2004), but further
studies are required to elucidate this.

Of the 398 IHC pairs, multivariate Cox regression analyses
showed that CSNK1E↓-SHC1(N)↓, CSNK1E↓-RB1(N)↑, and
BRCA1(N)↓-SHC1(N)↓ were significant predictors of the risk
of death in this Taiwanese OSCC population, independent of
tumor stage. Of all combinations of two significant markers
in Table 4A, [CSNK1E-SHC1(N), FLNA(C)-KRAS(C)] was the
most significant poor prognostic factor. Nevertheless, this marker
was less significant than CSNK1E↓-SHC1(N)↓ statistically. Thus,
in clinical practice we recommend using CSNK1E↓-SHC1(N)↓
to identify patients with severe and/or advanced Asian OSCC,
who should be suggested for alternate or more intense treatment
strategies in clinical practice. CK1 ε could be an oncoprotein or a
tumor suppressor (Lin et al., 2014), but phosphorylation of CK1
ε can stabilize and activate tumor suppressor p53 (Knippschild
et al., 2005). SHC1 is a known downstream target of p53,
which involves in stress-induced signal transduction pathway
(Trinei et al., 2002). Moreover, SHC1 was downregulated by
miR-5582-5p, thus led a tumor suppressive activity with GAB1
(An et al., 2016). In our study, the mean survival rate of OSCC
patients with CSNK1E↓-SHC1↓ is 13.8 months compared to
37.8 months of the remaining group. Collectively, CSNK1E-
SHC1 might be a tumor suppressor, but this requires further
studies for elucidation. As phosphorylation of CK1 ε can stabilize
and activate tumor suppressor p53, moreover, expression of
p53 was lower in OSCC lesions than in malignant lesions,
and Rb expression was observed in OSCC lesions (Oliveira

FIGURE 4 | Kaplan-Meier survival curves of 160 HPV(−) oral squamous cell
carcinoma patients from the TCGA cohort. Kaplan-Meier survival curves were
significantly different in terms of gene expression for CDH3-STK17A, where
the symbols ↑ and ↓ denote overexpression and underexpression of the
corresponding genes at the 1.4-fold cutoff.

and Ribeiro-Silva, 2011). Thus, we speculate p53 may indirectly
interfere with RB1, after p53 been regulated by phosphorylated
CK1, which supports the finding CSNK1E↓-RB1(N)↑ is a poor
prognostic marker.

External gene expression data of HPV(−) OSCC from the
TCGA cohort (98.7% non-Asian patients) validated that CDH3↑-
STK17A↑as a significant predictor of good survival in 160
patients with HPV(−) OSCC, where the cutoff was set at 1.4-fold.
Nevertheless, when we set the cutoff at 1.5-fold, this gene pair was
no longer significant (P = 0.124). Thus, this gene pair may not be
a robust prognosis marker. Our result showed that CDH3(C)↑-
STK17A(N)↑ was correlated with poor survival of 163 Taiwanese
patients with OSCC. The difference in the aforementioned results
may be because overexpression of P-cadherin (coded by CDH3)
in membrane was associated with good survival of 67 OSCC
patients, however, cytoplasmic expression of P-cadherin was
correlated with poor survival (Muzio et al., 2005). Furthermore,
high cytoplasmic expression of STK17A was reported to increase
tumorigenic potential through inhibition of TGF-beta1-mediated
tumor suppressor activity in HNSCC cells (Park et al., 2015).

Some of the prognostic markers our approach revealed are
well-known and reported in the literature, thus we performed
a comparative analysis as follows. Among all biomarkers,
CSNK1E↓-SHC1(N)↓ was the most significant in terms of
P < 0.0001 (Table 5). Consistently, the loss of CK1ε expression
was shown to be a poor prognostic marker in Taiwanese patients
with oral cancer (Lin et al., 2014). Next, overexpression of
cyclin D1 and Rb and low expression of p16 was significantly
associated with reduced disease-free survival in 348 Indian
patients with OSCC (Jayasurya et al., 2005), consistent with
our findings that the overexpression of cytoplasmic Rb was
a poor prognostic marker in Taiwanese patients. However,
Soni et al. (2005) reported that 105 Indian patients with OSCC
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TABLE 5 | A comparison of our prognostic markers to those reported in literature.

Previous studiesa This study

IHC marker Sample size/P value IHC marker Sample size/P value

Cyclin D↑-Rb↑-p16↓Jayasurya 348/0.002 CSNK1E↓- SHC1(N)↓ 163/5.9 × 10−5

Rb↑ 348/0.062 CSNK1E↓- Rb↑ 163/0.002

Rb↓Soni 98/0.036 Rb↑ 163/0.031

Rb↓-p53↑Soni 98/0.004

CSNK1E↓Lin 195/0.024 CSNK1E↓ 163/insignificantb

p53-Cyclin D1-EGFRShiraki 140/0.0019

EGFR 140/insignificant EGFR↑ 163/insignificant

p53 140/insignificant p53↑ 163/insignificant

BRCA1↑Oliveira* 150/0.030 BRCA1(N)↓ 163/insignificant

BRCA1(N)↓- SHC1(N)↓ 163/0.024

P-cadherin↓Muzio 67/0.056 CDH3(C)↑-STK17A (N)↑ 163/0.016

CDH3(C)↑ 163/insignificant

aThe first author’s last name was indicated in the upper right corner of each study’s first marker.
bP value ≥ 0.05.
*BRCA1↑ was associated with disease-specific survival.

with loss of Rb expression had poor prognosis. This discrepancy
may be explained by a recent finding (Sanidas et al., 2019) that
there are many different forms of active Rb, and they have
distinct functional properties. Both Shiraki et al. (2005) and
our team found that overexpression of p53 (EGFR) was not a
significant prognostic marker in OSCC, but the former study
revealed that p53-Cyclin D1-EGFR was significantly associated
with poor overall survival (P = 0.019). Moreover, BRCA1
overexpression was shown to be associated with reduced overall
survival of 150 Brazilian patients with OSCC (Oliveira-Costa
et al., 2014), whereas we did not find prognostic significance
of BRCA1 underexpression, but BRCA1(N) ↓-SHC1(N)↓ was
an independent prognostic marker (P = 0.024; Table 4B). This
discrepancy may be due to the different genetic backgrounds of
the populations.

In conclusion, our study revealed that the combined
evaluation of CSNK1E↓-SHC1(N)↓ in OSCC identified a group
of patients with the poorest survival, who should be suggested
to undergo alternate or more intense treatment strategies. CK1ε
combined with SHC adaptor protein 1 emerged as the most
promising IHC prognostic marker in Asian OSCC. Of the 398
combined IHC pairs, genes of ten pairs are known to be SL, out
of which only FLNA-KRAS was revealed to be a good OS marker,
but not independent of stage. Excluding the effect of tumor stage
and LN metastasis (Zanaruddin et al., 2013; Chang et al., 2018)
that are used in clinical practice conventionally, the revealed
markers of our study are still significant (Supplementary
Table 4). This highlights the potential of these markers being
targeted for cancer treatments.

Despite that we conducted a large scale of IHC study, the
present study is limited by the moderate sample size and no
genomic data profiled. Further studies based on larger sample
sizes of patients with OSCC and on DNA sequencing data will

reveal whether the expression of the uncovered IHC markers are
due to their mutations. With ready availability of gene expression
and tissue array data and resources to match clinicopathological
features in the public and commercial domains, our approach
can immediately be applied to other types of cancers. Moreover,
additional IHC stain of cyclin D1 will enable us to evaluate the
prognostic significance of protein triplets such as cyclin D1-
Rb-p16 and p53-cyclin D1-EGFR. This is interesting, as the
component of our most significant marker SHC adaptor protein
1-CK1↑ is involved in the EGFR pathway and is SL to both TP53
and EGFR, respectively. Given that the triplet IHC cyclin D1-
Rb-p16 is a promising marker, future studies will extend to the
prognostic effect of triplets of IHC in OSCC.
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Gene expression profile or transcriptome can represent cellular states, thus

understanding gene regulation mechanisms can help understand how cells respond

to external stress. Interaction between transcription factor (TF) and target gene

(TG) is one of the representative regulatory mechanisms in cells. In this paper, we

present a novel computational method to construct condition-specific transcriptional

networks from transcriptome data. Regulatory interaction between TFs and TGs is

very complex, specifically multiple-to-multiple relations. Experimental data from TF

Chromatin Immunoprecipitation sequencing is useful but produces one-to-multiple

relations between TF and TGs. On the other hand, co-expression networks of genes

can be useful for constructing condition transcriptional networks, but there aremany false

positive relations in co-expression networks. In this paper, we propose a novel method to

construct a condition-specific and combinatorial transcriptional network, applying kernel

canonical correlation analysis (kernel CCA) to identify multiple-to-multiple TF–TG relations

in certain biological condition. Kernel CCA is a well-established statistical method for

computing the correlation of a group of features vs. another group of features. We,

therefore, employed kernel CCA to embed TFs and TGs into a new space where the

correlation of TFs and TGs are reflected. To demonstrate the usefulness of our network

construction method, we used the blood transcriptome data for the investigation on the

response to high fat diet in a human and an arabidopsis data set for the investigation

on the response to cold/heat stress. Our method detected not only important regulatory

interactions reported in previous studies but also novel TF–TG relations where a module

of TF is regulating a module of TGs upon specific stress.

Keywords: kernel canonical correlation analysis, gene regulatory network, network dynamics, transcription factor,

TF cooperation, condition specific network
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1. INTRODUCTION

In a living cell, rewiring of interactions among proteins, genes,
and RNA molecules orchestrates how cells respond to external
stimuli. One of the most fundamental regulatory relationships
arise from transcription factors (TFs) that bound to the promoter
of target genes (TGs) resulting in changing transcriptional
dynamics. Since TF–TG interactions can be represented as a
network, dynamics of gene regulatory mechanisms upon stimuli
can be modeled and analyzed as gene regulatory network
(GRN). High-throughput experimental techniques, such as
Chromatin Immunoprecipitation sequencing (ChIP-seq), have
been widely utilized to construct GRNs detecting one-to-multiple
relationships of TF and TGs (i.e., relations of a TF and the
promoters of TGs where the TF binds to). Such experimental
techniques are powerful but provide only partial snapshot of
condition-specific GRN. TF ChIP-seq can measure only one TF
at a time and it is not practical to perform ChIP-seq experiments
for all TFs under various conditions. More importantly, multiple
TFs work together to regulate multiple TGs in a condition-
specific way, thus data from TF ChIP-seq needs to be combined
for constructing networks of multiple TFs and multiple TGs
simultaneously. Thus, it is necessary to develop computational
methods for elucidating multiple-to-multiple relations of TFs
and TGs in a specific condition. There have been several studies
to identify multiple-to-multiple interactions. A study by Jolma
et al. (2015) tried to identify TF–TG regulations using a tailored
experimental technique in a multiple-to-multiple fashion. Their
work is still limited in identifying only 315 TF–TF interactions
from∼2,000 putative TFs.

There have been growing attention in in silico reverse
engineering methods that infer GRNs from gene expression
data. Correlation-based network inference methods—the most
straightforward approach—detect regulatory relations if two
genes are linearly correlated (Eisen et al., 1998). However, the
correlation-based methods are prone to produce many false-
positive relations, i.e., the relations predicted by computational
methods but not detected in experimental validations, because
the methods consider solely a linearly correlated expression
pattern between a pair of genes. For example, if two genes B

and C are regulated by a common gene A, expression patterns
of B and C are correlated thus detected as regulatory relations
even though there are no direct regulatory relationships between
B and C. A number of computational methods with different
strategies have been developed over two decades. Methods based
on mutual-information (MI) is a generalization of correlation-
based model that can detect non-linear dependencies, taking
into account the effect of third-party genes in addition to
two correlating genes. ARACNe (Margolin et al., 2006) and
ARACNe-AP, one of the most popular reverse engineering
methods, use the data-processing inequality to prune the indirect
regulations if a pair of genes interact only through a third gene
in every possible gene triplets. Likewise, the three-way mutual
information (MI3) and conditional mutual information (CMI)-
based models consider the effect of co-regulators in order to
remove false-positive interactions (Luo et al., 2008; Zhang et al.,

2012). Besides, regression-based methods considers multiple-to-
one relations of TFs and a TG as a feature selection problem,
where the expression of TGs is predicted from the expression
of all other TF genes (Xiong and Zhou, 2012; Hill et al., 2016).
GENIE3, one of the most best-performing methods, utilized
an ensemble of regression trees to select putative TFs for each
TG. Although MI-based approaches showed lower false-positive
rate than correlation-based methods, they do not consider the
biological nature of TFs—combinatorial and cooperative nature
of TFs—when regulating TGs are disregarded.

Then, how TFs work in order to coordinate certain
biological functions? First, TFs regulate a biological function
through interacting with protein complexes rather than
simply elevating mRNA concentration (Sutherland and
Bickmore, 2009; Rieder et al., 2012; Duren et al., 2019).
Therefore, to detect important TFs that are related to a certain
biological function, TF interaction network should be utilized
rather than simply detecting TFs with the highest mRNA
concentration. Second, combinatorial interaction of TFs
regulates TGs to control certain biological functions. That is,
given alternative stimuli, different combinations of TFs may
regulate expression of different sets of TGs to certain cellular
response involving multiple-to-multiple relations of TFs and
TGs. Several studies have suggested an atlas of combinatorial TF
module interactions (Ravasi et al., 2010; Wise and Bar-Joseph,
2015; Guo and Gifford, 2017) and inferred their associated
regulators using probabilistic graph models (Segal et al.,
2003).

In this paper, we present a new computational method that
reconstructs GRN from gene expression data incorporating
the aforementioned biological nature of TFs. We detected
cooperating TFs that coordinate common biological functions
utilizing public protein–protein interaction (PPI) network. For
detection of combinatorial relations of TFs and TGs specific
to the dataset, i.e., condition-specific combinatorial relations,
we utilized kernel canonical correlation analysis (kernel CCA).
Kernel CCA is a well-established statistical method for learning
coefficients of two groups of features that maximize the
correlation of a group of features vs. another group of features
(Kuss and Graepel, 2003; Akaho, 2006; Rhee et al., 2009;
Ashad Alam and Fukumizu, 2015; Richfield et al., 2016; Tang
et al., 2019). A high value of coefficients or weights of features
implies that the features from different groups are relevant. For
example, applying kernel CCA in motif data and gene expression
data, features (e.g., motif) with high weights are deduced as
relevant motifs in regulating gene expression (Rhee et al., 2009).
Therefore, conducting kernel CCA on gene expression data
consisting of groups of features—one feature set composed of
TFs and another feature set composed of TGs—can detect TF–
TG regulatory relations. Specifically, we employed kernel CCA
to embed TFs and TGs into a new space where the correlation
of TFs and TGs are reflected to detect context-specific, i.e.,
response to external stimulus, TF–TG relations. This enables the
construction of GRN that models responses to stimuli shows
dynamics of GRN over time, applying our method in time-series
data. Since we utilized PPI network to detect co-working TFs,
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we can modularize a GRN into sub-networks of manageable size,
which resulted in the improved interpretability of GRN.

2. METHOD

The method proposed in this paper aimed at constructing
condition-specific GRNs considering the cooperative and
combinatorial nature of TFs. To detect cooperative TFs that
share common biological process, we utilized PPI network as
a prior knowledge. Then, to detect combinatorial multiple-to-
multiple regulatory relations between TFs and TGs, we utilized
kernel CCA in inferring regulatory interactions. Our approach
uses gene expression profile data in multiple conditions (e.g.,
time points) as input and produces a network of gene–gene
regulatory relations. Public PPI network and GRN network were
utilized as a prior knowledge to guide the detection of correct
TF–TG relations. Specifically, our approach consists of three
steps—Step 1: Identification of TFs and TGs modules. Step
2: Construction of regulator relationships among the TF/TG
modules. Step 3: Inference of condition-specific GRN—as
described in Figure 1.

2.1. STEP 1: Identification of TF and TG
Modules
Since TFs work as a protein complex or as a group to direct
common biological functions (Sutherland and Bickmore, 2009;
Rieder et al., 2012; Duren et al., 2019), we aimed at identifying
a group of TFs that work together and TGs that are regulated
by the TFs. Genes were classified as TFs referring to the public
TF catalogs (Jin et al., 2016; Lambert et al., 2018), otherwise as
TGs. We used PPI network—STRING (v10.5) (Szklarczyk et al.,
2016) and BioGrid (v.3.5.179) (Stark et al., 2006) database—
as putative interactions of genes. STRING database compiled
interaction based on experimental data or from the literature.
Some interactions in STRING are made by using computational
prediction methods, which may contain many false-positive
interactions. On the other hand, BioGrid primarily compiled
experimentally validated interactions. Thus, interactions in
BioGrid may be more reliable but inference using BioGrid may
suffer a high level of false-negatives. We concatenated both of
the databases to complement each other’s limitations. Then,
we filtered the network with TFs to build TF–TF interaction
network and with TGs to build non-TF–non-TF interaction
network (i.e., TG–TG interaction network). In our study, these
two networks are used as template networks of co-working
or interacting genes. To detect condition-specific network of
TFs and TGs for a given context, we instantiated the TF–TF
interaction network with expression data of TFs and the TG–TG
interaction network with expression data of non-TFs (Ahn et al.,
2017). In particular, among gene–gene interactions in template
networks, interactions whose Pearson’s correlation coefficient
between expression vector of corresponding genes below 0.5 are
discarded. Using condition-specific networks, respectively, we
detected clusters of TFs ad TGs with a multi-level community
detection algorithm to detect condition-specific TFs and TG
modules. We utilized multilevel.community function in

R igraph package that implemented the Louvain algorithm for
community detection (Csardi and Nepusz, 2006).

2.2. STEP 2: Construction of Preliminary
GRN Between TF and TG Modules
A very large search space of TF–TG relationships is one of the
challenges in reverse engineering of GRN. Given n genes, n2

combinations of interactions should be considered. In particular,
it is not computationally feasible to perform kernel CCA analysis
on a very large network. Even if it is feasible, no computational
methods can produce correct results when there are many
unknown factors, true relations in this case. To reduce search
space, we used publicly reported gene regulatory relationships
as a guide to navigate TF–TG relationships. Specifically, we
merged public GRNs: TRRUST (Han et al., 2018) and HTRIdb
(Bovolenta et al., 2012), computationally predicted TF-DNA-
binding sites data (Ernst et al., 2010) for Human dataset;
PlantRegMap (Tian et al., 2020) and ATRM (Jin et al., 2015)
for Arabidopsis dataset. Then, we pruned the network with
genes with signature genes—for example, differentially expressed
genes (DEGs) or genes with high variance across samples—to
navigate the GRN in condition-specific perspectives. A subgraph
of GRN that contained signature genes and their first nearest
neighbors in public GRNs is utilized as condition-specific gene
regulation candidates. For every combination of TF modules and
TGmodules, projection from a TF cluster to a TG cluster through
all shortest paths in the GRN yields a sub-network of GRN
and we utilized these edges from the sub-network as a TF–TG
relationship candidate.

2.3. STEP 3: Inference of
Condition-Specific GRN With Kernel CCA
For each of preliminary sub-network of GRN determined in
section 2.2, our goal is to construct condition-specific sub-
networks considering multiple-to-multiple relationships of TFs
and TGs. Specifically, we utilized kernel CCA to embed TFs
and TGs in canonical dimensions. Then, we measured cosine
similarity between TFs and TGs in the embedding space to
discover TF–TG pairs that contribute to the correlation between
the groups of TFs and TGs. Since TFs can also regulate
expression of other TFs, which in turn generate TF cascading
network, we iteratively conducted kernel CCA embedding and
TF–TG relation detection for every possible relationship in each
GRN sub-network.

2.3.1. Kernel Canonical Correlation Analysis
A common biological phenomenon shared by groups of genes
tends to yield a high correlation detected between expression
vectors of the genes (Yamanishi et al., 2003; Rhee et al., 2009).
CCA is a method to detect shared correlation across variables
from heterogeneous datasets and yield canonical vectors, which
are weight coefficients for linear combination of variables in
each dataset. These canonical vectors represent how much
contribution or weights each variable has in correlation. Kernel
CCA is a generalized version of CCA that can detect non-
linear relationships between variables. Therefore, we utilized
regularized kernel CCA (Bilenko and Gallant, 2016) to retrieve
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FIGURE 1 | Workflow. STEP 1: To detect interacting transcription factor (TF) and target gene (TG) modules, respectively, prior protein–protein interaction (PPI) network

was instantiated with gene expression data and community detection algorithm was used to detect condition-specific TF and TG modules. STEP 2: To get putative

TF–TG relations, we conducted projection from a TF module to a TG module through public gene regulatory network (GRN). This process is conducted for every

possible TF–TG module pair. STEP 3: Utilizing kernel canonical correlation analysis (CCA), we constructed condition-specific GRN that detects multiple-to-multiple

regulatory relationships between TFs and TGs.
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new embedding of TFs and TGs that reflects contribution of
genes in correlation between expression level of TFs and TGs.
Highly scored TFs and TGs in canonical vectors are considered
as genes that contribute to correlation of shared biological
phenomenon between TFs and TGs.

Let X = (x1, x2, . . . , xn) ∈ R
n×p and Y = (y1, y2, . . . , yn) ∈

R
n×q be the gene expression matrices of TFs and TGs with

n samples and p genes and with n samples and q genes,
respectively. The original gene expression profiles are mapped
to high-dimensional feature space, reproducing kernel Hilbert
space (RKHS), through feature maps φx : x ∈ R

p 7→ Hx and
φy : y ∈ R

q 7→ Hy. Feature vector φx(x) is the projection of
a data point x ∈ X and likewise φx(x) is the projection of
a data point y ∈ Y. We represent the datasets projected in
feature space as 8x =

(

φx(x1),φx(x2), · · · ,φx(xn)
)

and 8y =
(

φy(y1),φy(y2), · · · ,φy(yn)
)

, respectively. Applying kernel trick,
the similarities of feature vectors can be defined as a positive
definite kernel kx(xi, xj) = 〈φx(xi),φx(xj)〉Hx and ky(yi, yj) =

〈φy(yi),φy(yj)〉Hy , where i, j = 1, 2, . . . , n. Specifically, we applied
Gaussian RBF kernel (Equation 1)

kx(xi, xj) = exp
[

−
‖xi − xj‖

2

2σ 2

]

ky(yi, yj) = exp
[

−
‖yi − yj‖

2

2σ 2

]

(1)

We define kernel projection of data or kernel Gram matrices as
Kx = (kx(xi, xj))

n
i,j=1 = 8T

x 8x and Ky = (ky(yi, yj))
n
i,j=1 =

8T
y 8y.
The aim of kernel CCA is to find projection vectors fx and

fy that maximize the correlation of canonical components u =

〈fx,φx(x)〉Hx and v = 〈fy,φy(y)〉Hy . Since canonical vectors fx
and fy lie in space spanned by the feature space mapped objects,
we can represent canonical vectors as linear combinations of 8x

and 8y, where fx = 8T
x α and fy = 8T

y β . Therefore, canonical
components u and v are represented with kernel matrix, u =

8T
x 8xα = Kxα and v = 8T

y 8yβ = Kyβ . The objective function
of the kernel CCA is restated with kernel projections as follows:

argmax
α,β

corr(u, v) = argmax
α,β

α Kx Ky β (2)

where α ∈ R
n,β ∈ R

n are expansion coefficients. The problem
can be reformulated as a generalized eigenvalue problem with
regularization as follows:

(

0 KxKy

KyKx 0

) (

α

β

)

= ρ2

(

K2
x + λI 0
0 K2

y + λI

)

(3)

where I denotes the identity matrix, λ is regularization parameter,
and ρ = max〈u, v〉/(‖u‖‖v‖). Once we obtain solutions for
the above equations that represent the amount of contribution
of each sample, we multiplied the transpose of gene expression
matrices XT ∈ R

p×n and YT ∈ R
q×n with canonical weight

vectors α ∈ R
n and β ∈ R

n to get the TF and TG embeddings,
wx ∈ R

p andwy ∈ R
q that represents the amount of contribution

of each gene (Equation 4).

wx = XT α

wy = YT β
(4)

We can now compute k canonical components orthogonal to
each other, so that we can get TF and TG embeddings matrix
Wx ∈ R

p×k and Wy ∈ R
q×k where each row in matrix stands

for new embeddings of TGs and TGs in k canonical dimensions.

2.3.2. Detection of Multiple-To-Multiple Relations of

TFs and TGs
Using kernel CCA, genes that greatly contribute to the
correlations of TFs and TGs gain greater weights in canonical
embeddings and TF–TG pair that both TF and TG show
high weights should be remarked as valid pair. Inspired by
Seo and Kim (2013), we weighted every k dimension with
the corresponding eigenvalue so that the eigenvalue-weighted
embeddings is dominated by the leading eigenvectors. For
every possible TF–TG pair retrieved from public GRN, we next
computed dot-product similarity of TF and TG embeddings to
define an edge weight of the pair. We then filtered out edges that
have weights below 0.5. This process is iteratively performed until
there are no TFs left in candidate TG lists.

3. DATA AND PERFORMANCE
EVALUATION SCHEME

3.1. Data
We analyzed public time-series gene expression data from NCBI
GEO datasets (GSE127530, GSE5621, and GSE5628).

• GSE127530 is an RNA-seq data that measure human blood
transcriptome after high-fat meal (HFM) measured in three
time points (Fast, +3, and +6 h after stimulus) with 15 samples
for each time point, where each time point denoted as tp0,
tp1, and tp3. Raw counts are normalized in terms of gene
length with TPM (transcripts per million). For our method,
we applied MinMaxscaler in Python sklearn library in order
not to make correlations dominated by highly expressed genes

• GSE5621 is an microarray data that measures transcriptome
from shoots in Arabidopsis thaliana in response to cold stress
at seven time points (0, +0.5, +1, +3, +6, +12, and +24 h)
with two replicates for each time point, where each time point
denoted as tp0, tp1, tp2, tp3, tp4, tp5, and tp6. GSE5628 is
an microarray data responsive to heat stress, which consists of
heat-shocked samples at 38 Centigrade and recovered samples
after heat-shock treatment prolongs to 21 h at 25 Centigrade
measured at five time points (0, +0.25, +0.5, +1, and +3 h)
with two replicates for each time point, where each time
point denoted as tp0, tp1, tp2, tp3, and tp4. We applied
MinMaxscaler in Python sklearn library for normalization.

3.2. Evaluation 1: Performance
Comparison With Existing Methods
We compared our method with the existing methods: ARACNe-
AP (Lachmann et al., 2016) and GENIE3 (Irrthum et al., 2010).
ARACNe-AP is a representative reverse engineering method
based on information theoretic approach for GRN construction
while GINIE3 uses a regression tree method. We then compared
howmuch condition-specific signature eachmethod can capture,
utilizing GSE127530 dataset. ARACNe-AP does not yield valid
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edges from the datasets, thus GRN constructed with GSE5621
and GSE5628 datasets were excluded.

• Construction of Ground Truth GRN: To assess the network
inference performance, we constructed condition-specific
GRN as a ground truth gene set. A comprehensive biomedical
entity search tool, BEST (Lee et al., 2016), was utilized to
retrieve condition-specific gene sets using four keywords from
literature search related to HFM: “lipid metabolism (Ming
et al., 2009),” “obesity (Golay and Bobbioni, 1997),” “diabetes
(Salmeron et al., 2001; Marshall and Bessesen, 2002),” and
“innate immunity (McLaughlin et al., 2017; Childs et al.,
2019).” Among the four keywords, “innate immunity” is
the term reported as a related biological term in the paper
that reported the GSE127530 dataset (Lemay et al., 2019).
The literature search identified 1,131 HFM-associated genes.
These genes were mapped according to the public GRN
described in section 2.2. As a result, we constructed a ground
truth network of 738 nodes and 1,991 edges that connect 2
HFM-associated genes.

• Metrics for Performance Measurements: Given the nodes
and edges of an inferred GRN by our method, we measured
the overlap of the nodes and edges between the inferred GRN
and the ground truth GRN.

− specificity = TN/(TN+FP)
− precision = TP/(TP+FP)
− recall = TP/(TP+FN)

For the node-level comparison, we measured specificity and
recall. True-positive (TP) are a set of genes that are both in
the ground truth network and reported by our method. False-
positive (FP) is a set of genes that are reported by our method
but do not exist in the ground truth network. True-negative
(TN) is a set of genes that are not in the ground truth network
and not reported by our method. False negative (FN) is a set
of genes that are not reported by our method but exist in
the ground truth network. For the edge-level comparison, we
measured precision and recall. TP are a set of edges that are
both in the ground truth network and reported by ourmethod.
FP is a set of edges that are reported by our method but do
not exist in the ground truth network. FN is a set of edges
that are not reported by our method but exist in the ground
truth network.

3.3. Evaluation 2: Investigation of TF
Cooperation
A sub-network constructed by our method contains multiple TFs
that cooperate with each other for regulating TGs in the sub-
network. One way to evaluate the power of TF cooperation is
to compare metrics from all TFs in the sub-network vs. metrics
from a set of individual TFs in the sub-network. That is, we
constructed sub-networks using individual TFs in TF modules
without considering the cooperativeness of TFs. The original
sub-network (denoted as Gall) that was constructed using all
cooperating TFs in TF modules was compared to the sub-
networks (each sub-network denoted as Gi) that was constructed
using individual TFs in TF modules. We used two metrics for the

evaluation of TF cooperation: the biological significance and the
cooperative potential.

3.3.1. Biological Significance
Biological significance (Bp) of TF cooperation in terms of each
pathway was calculated using Equation (5). Pathway enrichment
with nodes in Gall and all G′

is were was calculated using Enrichr
(FDR < 0.05) (Chen et al., 2013) in gseapy library. For
each pathway p, the p-value obtained from Gall is denoted as
p
p
a and the p-value obtained from Gi is denoted as p

p
i . Since

multiple Gis are constructed, aggregating pathway p-values from
Gi was performed by Fisher’s combined probability test (Fisher,
1992). Specifically, a set of p-values from k independent tests

to calculate a test statistic χ2
F = −2

∑k
i=1[ln[p

p
i ] that follows

χ2 distribution with 2k degrees of freedom under the null
hypotheses of the k tests. The p-value combined with the Fisher’s
combined probability test as denoted as p

p
c .

For each pathway p, Rp value was calculated to compare the

relative significance of Ga and Gis dividing p
p
a with p

p
c ).

Bp = log2

[

log10(p
P
a )

log10(pPc ))

]

(5)

3.3.2. Cooperative Potential
The cooperative property of TFs was measured by comparing
network centrality values between Gall and Gis (Equation 6). We
used betweenness centrality of a node in a given sub-network that
measures the proportion of the shortest paths present in the sub-
network that pass through the corresponding node. Gene-level
network centrality values were calculated on the Gall and the set
ofGis, which are denoted as c

g

all
and c

g
i s. Then, the centrality value

of the Gall (c
g

all
) was divided by the square-rooted squared sum of

c
g
i s. The cooperative potential of a pathway (Cp) was calculated
by summing up the cooperative potential of the overlap genes.

Cp =
∑

g∈P

log2





c
g

all
√

∑k
i=1(c

g
i )

2)



 (6)

3.4. Evaluation 3: Dynamics of GRNs
Across Time
One of the advantages of our method is that the whole GRN is
divided into small sub-networks. We suggest two approaches to
choose sub-networks for detailed inspection.

• To emphasize on the dynamics of network over time, we chose
sub-networks where regulatory relations vary significantly
over time. For assessing the amount of variance across time,
we measured the fraction of time-point exclusive nodes and
edges to the size of a sub-network for each time point and
then averaged across time. We applied this approach to the
human dataset.

• To investigate how combinations of co-working TFs vary
over time, we chose a Differentially Expressed Gene (DEG)-
enriched TG module and inspected the DEG-enriched sub-
networks connected to the TG module. We applied this
approach to the Arabidopsis thaliana datasets. There were too
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TABLE 1 | Comparison of our method to ARACNe-AP and GENIE3 in terms of specificity, precision, and recall with respect to the ground truth network from a literature

search tool, BEST (Lee et al., 2016).

ARACNe-AP GENIE3 Linear CCA Kernel CCA

+3 h

Node comparison
Specificity 0.841 0.270 0.692 0.961

Recall 0.230 0.829 0.533 0.483

Edge comparison
Precision 0 8.05× 10−6 9.01× 10−3 3.12× 10−2

Recall 0 9.04× 10−3 0.413 0.591

+6 h

Node comparison
Specificity 0.869 0.277 0.741 0.957

Recall 0.197 0.830 0.451 0.389

Edge comparison
Precision 6.30× 10−6 8.20× 10−6 6.51× 10−4 2.89× 10−2

Recall 8.84× 10−4 9.04× 10−3 0.188 0.340

many genes in the Arabidopsis thaliana network, thus we used
only DEGs to reduce the number of genes.

4. RESULTS

Given gene expression profiles, our method produces GRN
that consists of multiple sub-networks where condition-specific
interacting TFs regulate a set of TGs through intermediate
genes. Utilizing the public GRN and signature genes as a
guide, our method selects edges of the network with kernel
CCA to model cooperative and combinatorial natures TFs and
TGS. Another strength is that our method decomposes the
whole GRN in to sub-networks to improve interpretability.
When an organism is exposed to an environmental stimulus,
it orchestrates multiple biological process as a response and
what our method determines is the intermingled regulatory
interactions. Therefore, decomposition of the whole GRN into
sub-networks helps us to interpret the result better.

4.1. Comparative Analysis
We compared our method with the existing methods: ARACNe-
AP (Lachmann et al., 2016) and GENIE3 (Irrthum et al.,
2010). We compared how well each method can capture
condition-specific network using GSE127530 dataset. Our
method produced a set of TF–TG modules, i.e., a set of sub-
networks, but existing methods produced a single network of
large size. To compare the results, we combined a set of sub-
networks from our method into a large single network. GENIE3
produced a set of million edges with importance score, and
top 0.5% edges in terms of importance score were used for
comparative analyses. To assess the performance of network
inference, we retrieved 1131 HFM-related gene sets using a
comprehensive biomedical entity search tool, BEST (Lee et al.,
2016), as a condition-specific gene set (see section 3.2 for details).
Both specificity and recall were used as metrics to compare the
three methods for quantitative evaluation (Table 1). In node-
level comparison, our method showed the best performance in
terms of specificity and the second best in terms of recall in
all time points. In edge-level comparison, our method showed
the best performance in terms of both precision and recall
in all time points. Additionally, in order to demonstrate that
the non-linear technique for the construction of canonical

components is necessary, we compared the performance of
network inference by the regularized linear CCA with the
performance of the regularized non-linear kernel CCA. In a
majority of cases of performance comparisons, except recall of
node comparison, utilizing kernel CCA exceeds in inferring the
ground truth network.

4.2. Case Study 1: GRN in Response to
HFM in Human
4.2.1. Dynamics of GRN Over Time in Response to

HFM
Dynamics of GRN over time in response to HFM was
investigated. We executed our method on GSE127530 dataset
obtaining a GRN for each time point (tp1 and tp2) with respect
to tp0 as a baseline; a GRN with 7,021 nodes and 99,455 edges in
tp1, and with 5,985 nodes and 61,646 edges in tp2. One challenge
that arises in inspection of GRN is that regulatory relations are
too complex to interpret in which multiple biological processes
are intermingled together. One of the strengths of our method is
that we can decompose the giant network into a feasible size of
sub-network consisting of GRN projection from a TF module to
a TG module. The resulting GRN from our method consisted of
31 TFmodules and 76 TGmodules in tp1 and 26 TFmodules and
52 TGmodule in tp2 whichmeans that 31× 76 sub-networks and
26× 52 sub-networks consists of a GRN of each time point.

To investigate the regulatory mechanism over time, a network
dynamics score of a TF–TG sub-network between two adjacent
time points was measured. Basically, the score represents an
average proportion of exclusiveness of genes at each time point.
Detailed description of the score is given in section 3.4. With
the score, we now can sort out TF–TG networks that show
bigger change in network dynamics over time. By sorting TF–
TG networks in terms of the score, we selected top 100 TF–TG
networks. Each TF–TG network is a pair of a TF module and a
TG module. Interestingly, many sub-networks shared common
TF modules. Among 100 TF–TG networks, i.e., 100 pairs of a
TF module and a TG module, 95 pairs of TF and TG modules
share a TF module. With this observation, we can merge multiple
TF–TG networks into single sub-networks. One sub-network
that include 17 TG modules was used to investigate network
dynamics over time after HFM—denoted as G3h for tp1 and G6h

for tp2. We then compared how much biological pathways were
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enriched in these networks over time (Figure 2). As a result,
immune system related pathways—Th17 differentiation, Th1 and
Th2 cell differentiation, and inflammatory bowel disease (IBD)—
were high ranked both in G3h and G6h. Specifically, AGE-RAGE
signaling pathway in diabetic complications was enriched in both
time points. Advanced glycation end products (AGEs) and their
receptor, RAGE, are known to deal with the accumulation of
metabolite end product in diabetes (Ramasamy et al., 2011). The
amount of soluble RAGE is also reported to play an important
role in post-prandial response to HFM (Fuller et al., 2018).

Here are detailed discussions on dynamics of a TF–TG sub-
network with the highest dynamics score (Figure 2). FOXO3
and FOXO4, which are the interacting TFs and are at the top
hierarchy in TF cascading network, are isoforms of well-known
nuclear TFs—FOXO family—that are involved in metabolic
regulation (Barthel et al., 2005) and promoting inflammatory
response in T cell (Kerdiles et al., 2010; Hedrick et al.,
2012) implying the regulatory link between immune response
and metabolic process. After 3 h after HFM, tumor necrosis
factor α (TNF-α) and interleukin-6 (IL-6) are pro-inflammatory
cytokines whose concentration reaches peak around 2–3 h
after HFM (Herieka and Erridge, 2014). One of the TGs
in the sub-network, S1P phosphatase 2 (SPP2) is known to
play a pro-inflammatory role in induction of TNF-α and IL-
6 (Mechtcheriakova et al., 2007). A differentially expressed
gene, ETS1, encodes a TF involved in production of cytokine
and chemokine in T helper cells (Russell and Garrett-Sinha,
2010; Garrett-Sinha, 2013) where one of the early responses
of HFM is pro-inflammatory cytokine production. GATA3 is
a family of GATA TF family that is an important regulator of
T-cell development. According to Ibarra et al. (2020), FOXO1-
ETS1 is reported as a potential cooperative TFs. FOXO1
and FOXO3 are the most dominant isotypes of Forkhead
box family TF that coordinate common biological function—
regulatory T cell development (Ohkura and Sakaguchi, 2010),
implying that cooperative potential of FOXO regulation with
ETS1 genes which is detected in our network. After 6 h
after HFM, TF–TG relations that are regulating SPP2—one
of the acute post-prandial responses—is diminished in the
sub-network. However, other immune-responsive genes (i.e.,
POU2F1, RUNX1, NFKB1, and LEF1) are still enriched that are
promoting other immune responses.

4.2.2. Investigation of TF Cooperation in HFM
We next investigated how much cooperation occurs in sub-
networks (Figure 3). To demonstrate this, we analyzed the
level of disruption if a single TF were considered—there are n
simulations for n TFs in a given sub-network. To demonstrate
this, we analyzed the level of disruption in pathways comparing

sub-networks using multiple TFs (denoted as G
′

all
) vs. simulated

networks using individual TFs (denoted as G
′

i). The level
of cooperation was measured at two perspectives: biological

significance (Bp) and cooperative potential (Cp) between the G
′

all

and G
′

i.
The greater the RP value is in a certain pathway p, the

more genes exist in the p utilizing multiple TFs compared to

the simulation with individual TFs. Heatmap in the left panel
of Figure 3 depicts Bp value of the enriched pathways in G

′

all
.

Pathways including inflammatory bowel disease, hepatitits B,
and estrogen signaling pathways showed greater TF cooperation
at tp1. While at tp2, FOXO signaling pathway showed greater
Bp at tp2 compared to that of the previous time point despite
most of the pathways showed subtle enrichment changes against
simulations. Such temporal changes indicate that there are
regulatory dynamics in multiple pathways co-regulated by
multiple TFs. Cp value in Equation (6) was developed here to

investigate the degree of TF cooperation at G
′

all
in comparison

to G
′

i by summing up the individual contribution to cooperative
potential of the genes in a sub-network. The greater betweenness
centrality of a node is, the more shortest paths go through
the node. As the whole network topology is more likely to be
disrupted, the genes with high centrality are removed, and the
node would play an important role in maintaining the given
network topology.

Cp showed that tighter TF regulations were made by multiple
TFs compared to the simulations throughout the enriched
pathways. Compared to the subtle changes in Bp value, the
ability of kernelCCA to construct a sensitive regulatory sub-
network to temporal dynamics reflected greater Cp value across
the pathways. Specifically, pathways related to cellular signaling
were consistently co-regulated by two TFs (FOXO3 and FOXO4).
This was also supported by a previous study that suggests greater
co-regulation by multiple TFs stay invariant to perturbations as
well as play a central role in controlling pivotal dynamics in
response to external stimuli (Kim et al., 2012).

4.3. Case Study 2: GRN in Response to
Heat and Cold Stress in Arabidopsis

thaliana
4.3.1. Dynamics of GRN Over Time in Response to

Heat and Cold Stress
To investigate how combinations of co-working TFs vary over
time, the sub-networks connected to the most DEG-enriched TG
module are scope of our inspection. Since GRN of Arabidopsis
thaliana is denser and more DEGs are detected than in human
dataset, we, therefore, used DEG-centric approach that paths to
DEGs from co-working TFs are inspected. All paths detected are
listed in Appendix A.

It has been a long question how plants detect the lower and
higher temperature and how they are sensing differences in the
temperature. Usually, plants complete their whole life in one
place where they germinated. Their growth undergoes diurnal
rhythm and seasonal periodicity, which means the temperature
condition is changing all the time. Plants can recognize the small
change of temperature, such as 2–3 centigrade, called ambient
temperature. The effects of these small changes are cumulative,
having retention time to appear certain consequences even
though the ranges of results vary depending on the stage
of growth, other environmental conditions, and their genetic
backgrounds. All of these processes occur in plants started
from very minute changes at the molecular level. So, it has
been an important task to undercover how plants recognize
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FIGURE 2 | Network dynamics of a gene regulatory network (GRN) sub-network after high-fat meal (HFM) over time. Two circular diagrams in the upper panel show

the change in gene–gene relationship, in particular, TF–TG regulation. Two tables in the middle summarize top 10 most enriched biological pathways with p-value

corrected by false discovery rate (FDR) < 0.05. Two networks are dynamics of a TF–TG sub-network with the highest dynamics score. In the TF–TG sub-network, two

transcription factors (TFs), FOXO3 and FOXO4, regulates different sets of target genes (TGs) over time. TFs were denoted with diamond-shaped nodes. Square nodes

denotes TGs and circle nodes denote genes connected to TFs and TGs. Nodes colored pink denote genes that consist of GRN in each time point. Nodes colored red

denote shared TFs among concatenated sub-networks and nodes colored green DEGs that are detected by DESeq with FDR < 0.05.
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FIGURE 3 | Examination of transcription factor (TF) cooperation. High score of Bp and Cp represents the amount of cooperativity of co-working TFs in the pathways.

Heatmap in the left panel shows the cooperation in terms of pathway enrichment over time in high-fat meal (HFM). Pathway enrichment in the Gall was compared to

the simulations given each TF (Gi ) and measured using Equation (5). Heatmap in the right panel shows the cooperative potential using enriched pathway genes.

Betweenness centrality was compared between Gall and Gi using Equation (6).

and trigger the serial and reversible and sometimes irreversible
responses. Still, it is challenging to find out the group of
genes in the thermal physiology of plants. We used two
different Arabidopsis datasets, GSE5628 and GSE5621. GSE5628
represents heat stress that consists of heat-shocked samples up
to 3 h at 38 centigrade and recovered samples after heat-shock
treatment prolongs to 21 h at 25 centigrade. When outranged
thermal changes have occurred, all responses of plants go for
stabilizing homeostasis.

Interestingly, we detected both genes of circadian clock
associated (CCA1) and late elongated hypocotyl (LHY), a short
period after high-temperature treatment. These two genes,
detected as a co-working TFs in our proposedmethod (Figure 4),
involve in common biological pathway—a central role in the
phytochrome-medicated circadian clock (Alabadi et al., 2002;
Dong et al., 2011). After that, we observed in one of our early-
stage tp1 and tp2 of heat-path various TCP genes, PIF5 (PUT2)
and CAT genes, those involved in thermosensory (Michael
et al., 2003; Zhou et al., 2019; Balcerowicz, 2020). A path
of phytochrome-mediated thermo-response appears tp3 stage.
Mainly PIF4 and many of its downstream genes include directly
related genes, such as TCPs and BZIP28 and indirectly related
genes that mediate heat shock responses (Che et al., 2010).

Unlike a higher temperature treatment for several hours
that increases physiological reactions and results in less severe
consequences, lower temperature treatment over hours is
life threatening. This characteristic difference of temperature
treatment is why we found a relatively broad range of gene
regulatory paths from cold treatment. We found well-defined
cold response genes, such as CBF, DREB, COR, ERF, ZAT,
RVE, and ABF1 (Vogel et al., 2005; Lee and Thomashow, 2012;
Meissner et al., 2013; Wang et al., 2017; Dubois et al., 2018)
and many cold stress-related genes from the early stage of cold
treatment (Figure 5, Appendix A). Co-working TFs, such as
RVE1, CPD45, and ATCBF2, detected in our GRN are involved in
common cold related pathways implying cooperative functions

of the TFs (Eremina et al., 2016; Chen et al., 2020). We found
CCA1, LHY, and PIF4 gene from DEGs of cold temperature
treated samples (Figure 5). It might have resulted from the
thermosensory networkś change even though the treatmentś
degree was far beyond the ambient temperature to the lower
direction. It might be noteworthy that we observed the genes
of developmental processes like RVE and cold acclimation
related COR and CBF. There are several reports on CBF
gene regulation. We found most of CBF promoter binding
TFs, such as PIFs, CCA1, and LHY (Dong et al., 2011; Jiang
et al., 2017). Several genes reported as intermediate genes—
connecting the co-working TFs and the DEGs regulated by
the TFs—are involved in common cold responsive pathways,
implying that cooperative action of regulating downstream
DEGs (Appendix A).

4.4. Discussion and Conclusion
In this paper, we proposed a kernel CCA based condition-
specific GRN inference method that models combinatorial and
cooperative nature of TF–TG relations. The traditional approach
is to start with the whole network and test validity of edges, which
lead to a condition-specific network based on gene expression
data. One major issue with this approach is to deal with a
single large network as a whole, which is challenging. However,
we know that each TF regulates a relatively small number of
genes, typically several hundred genes. So, it is possible to
limit the scope of TGs that are regulated by a single TF. In
fact, experimental techniques, such as TF ChIP-seq provide
condition-specific comprehensive snapshot of genes that are
targeted by a TF. Although these experimental data provides
condition-specific targets of a TF, there are two major issues for
utilizing such TF ChIP-seq data. First, a TF ChIP-seq experiment
provides TGs of the TF only. Since TF may target different genes
under different conditions, reconstruction of condition-specific
networks requires TF ChIP-seq experiments for “all” relevant
TFs, which is infeasible due to the time and budget constraints.
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FIGURE 4 | Network dynamics of a gene regulatory network (GRN) sub-network after heat stress over time. Network in the left panel shows the change in gene-gene

relationship, in particular, TF–TG regulation. DEGs are denoted as pink. Four tables in the middle summarize top five most enriched biological pathways with p-value

corrected by false discovery rate (FDR) < 0.05. Heat stress related Gene Ontology (GO) terms are enriched in GO enrichment tests with DEGs. The networks in the

right panel are dynamics of a TF–TG sub-network that are DEG enriched. Transcription factors (TFs) were denoted with green nodes. Blue nodes denote target genes

(TGs) and gray nodes denote genes connected to TFs and TGs. Square nodes denote DEGs that are detected by Limma with FDR < 0.05.

Second, even if we can perform such expensive experiments, we
need to combine many TF-networks into large networks. One
major issue for this task is to identify co-operating TFs in a
specific condition, but this is largely unknown.

4.4.1. Advantages and Limitations
The novelty of our approach is to address the two issues in
a single computational framework. First, we used clustering

approach to reduce the search space by generating a set of
TF clusters and a set of TG clusters. This approach allows us
handle much smaller networks. Specifically, a TF set vs. a TG
set is considered one at a time. Second, use of kernel CCA
allows us to investigate on the complex relationship of multiple
TFs vs. multiple TGs. In the final step of our computational
framework, all TG sets that are related to a single TF set are
merged, which generates condition-specific sub-networks. By
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FIGURE 5 | Network dynamics of a gene regulatory network (GRN) sub-network after cold stress over time. Networks in the left panel shows the change in

gene–gene relationship, in particular, TF–TG regulation. DEGs are denoted as pink. Four tables in the middle summarize top five most enriched biological pathways

with p-value corrected by false discovery rate (FDR) < 0.05. Cold stress related Gene Ontology (GO) terms are enriched in GO enrichment tests with DEGs. The

networks in the right panel are dynamics of a TF–TG sub-network that are DEG enriched. TFs were denoted with green nodes. Blue nodes denote TGs and gray

nodes denote genes connected to transcription factors (TFs) and target genes (TGs). Square nodes denote DEGs that are detected by limma with FDR < 0.05. We

showed GRN from tp3 to tp6, since GRN constructed in tp1 and tp2 is too small because the number of DEGs are too small in tp1 and tp2—41 and 23, respectively.

performing analysis on transcriptome of human high-fat data
and of arabidopsis cold and heat data at each time point, temporal
dynamics of TF–TG networks was constructed by explaining
condition-specific biological mechanisms successfully.

Although our method was successful in constructing
dynamics of condition-specific TF–TG networks over time in
both data sets, there are several issues remaining as further study.
In the current framework, clustering of TF and TG modules
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need more rigorous definitions. The size of TF and TG modules
vary greatly—some clusters consist of few genes while others
consists of hundred genes. Merging TF–TG sub-networks in
the final step of our method also need more rigorous guideline.
We suggested two approaches in selecting sub-networks that
show condition-specific response, which is meaningful, but there
is still room for improvement to consider the non-responsive
gene regulatory interactions that are required for fundamental
cellular functions.

In terms of biological perspectives, there are also several
issues that requires further study. First, our method does
not discriminate stimulative or repressive gene regulation.
Another issue is with kernel CCA. Kernel CCA can detect
multiple-to-multiple relations of TFs and TGs, it does not
discriminate whether correlations are positive or negative. In
addition, our method assume that TF is a major regulator.
However, there are other regulatory mechanisms, such
as mutations, copy number variations, and epigenetic
mechanisms, that can affect transcription level of genes.
This requires a comprehensive model, e.g., ensemble of deep
learning (Kang et al., 2020). Combining network analysis
techniques and deep learning technologies is a major current
research topic.
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Purpose: Observational studies have suggested a protective effect of alcohol intake
with autoimmune disorders, which was not supported by Mendelian randomization (MR)
analyses that used only a few (<20) instrumental variables.

Methods: We systemically interrogated a putative causal relationship between alcohol
consumption and four common autoimmune disorders, using summary-level data
from the largest genome-wide association study (GWAS) conducted on inflammatory
bowel disease (IBD), rheumatoid arthritis (RA), multiple sclerosis (MS), and systemic
lupus erythematosus (SLE). We quantified the genetic correlation to examine a shared
genetic similarity. We constructed a strong instrument using 99 genetic variants
associated with drinks per week and applied several two-sample MR methods.
We additionally incorporated excessive drinking as reflected by alcohol use disorder
identification test score.

Results: We observed a negatively shared genetic basis between alcohol intake and
autoimmune disorders, although none was significant (rg = −0.07 to −0.02). For most
disorders, genetically predicted alcohol consumption was associated with a slightly
(10–25%) decreased risk of onset, yet these associations were not significant. Meta-
analyzing across RA, MS, and IBD, the three Th1-related disorders yielded to a
marginally significantly reduced effect [OR = 0.70 (0.51–0.95), P = 0.02]. Excessive
drinking did not appear to reduce the risk of autoimmune disorders.

Conclusions: With its greatly augmented sample size and substantially improved
statistical power, our MR study does not convincingly support a beneficial role of alcohol
consumption in each individual autoimmune disorder. Future studies may be designed
to replicate our findings and to understand a causal effect on disease prognosis.

Keywords: Mendelian Randomization (MR), alcohol consumption amount, excessive drinking, autoimmune
disease, genetic correlation, large-scale genetic analysis
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INTRODUCTION

Alcohol contains components such as ethanol and antioxidants
and is considered as a complex modulator to the immune system
(Barr et al., 2016). Several in vitro and in vivo studies have
demonstrated that ethanol modulates the function of monocytes
and dendritic cells (innate immune cells) in a dose- and time-
dependent manner. For example, while acute high-level exposure
to ethanol inhibits proinflammatory cytokine production, long-
term moderate administration of ethanol stimulates the process.
In addition, in vivo consumption of moderate doses of alcohol
enhances phagocytosis and reduces inflammatory cytokine
production whereas chronic consumption of large doses inhibits
phagocytosis and production of growth factors. For cell-mediated
and humoral immunity (adaptive immunity), chronic alcohol
abuse significantly reduces both the number and frequency of T
lymphocytes, resulting in an increased proportion of memory T
cells relative to naïve T cells, which interferes the development
of efficacious responses to infection and vaccination. In contrast,
moderate alcohol intake increases the frequency of lymphocytes.
Moreover, alcohol also modulates the hypothalamic–pituitary–
adrenal axis and influences the function of immune cells residing
in the central nervous system (CNS) particularly astrocytes and
microglia, which tightly regulates the stress response, neuronal
function, and CNS homeostasis, in turn affecting immunity
(Barr et al., 2016).

While it appears that high doses of alcohol directly suppress
a wide range of immune responses and moderate doses of
alcohol play a beneficial role in the immune system, the
complex interplay among alcohol intake, immune response, and
inflammatory processes remains to be understood (Romeo et al.,
2007). The relationship between alcohol consumption and a
number of chronic autoimmune inflammatory disorders has been
investigated through conventional epidemiological studies, of
which results remain inconclusive (Wang et al., 2008, 2015; Jin
et al., 2014; Linneberg and Gonzalez-Quintela, 2016). It has been
argued that the validity of findings from observational studies
could be plagued by measurement error, confounding, and/or
reverse causality.

Mendelian randomization (MR) is a novel statistical approach
that uses genetic variants (instrumental variables, IVs; usually
single-nucleotide polymorphisms, SNPs) as proxies to make
causal inference between exposure(s) and outcome(s). Since
genotypes are randomly assigned at conception and always
precede disease onset, MR mirrors the randomization process
in controlled trials and is less susceptible to confounding and
reverse causality (Smith and Ebrahim, 2003). Nevertheless,
application of MR in the field of autoimmune diseases remains
limited—so far, only two MR(s) have been conducted to
investigate the effect of alcohol with the risk of rheumatoid
arthritis (RA; Bae and Lee, 2019b) and systemic lupus
erythematosus (SLE; Bae and Lee, 2019a), each involving less than
20 genetic instruments.

A recent genome-wide association study (GWAS) conducted
in alcohol drinking behavior (defined as drinks per week) has
identified 99 significant independent loci (Liu et al., 2019), and
the GWAS summary statistics for most autoimmune diseases

have been made publicly available. Taking advantage of these
enormous progresses made in genetic discoveries for complex
traits, we aim to perform a large-scale comprehensive study
to systemically interrogate the effect of alcohol consumption
on a range of common autoimmune inflammatory disorders,
leveraging the genetic information available for 1 million
individuals of European ancestry. We will explore both a shared
genetic basis as reflected by genetic correlation analysis and a
causal relationship as reflected by MR analysis.

MATERIALS AND METHODS

We performed the current study employing a standard
framework, that is, a genetic correlation analysis defined as
the proportion of variance that two traits share due to genetic
causes, and a two-sample MR analysis, where instrument–
exposure (or IV–exposure, SNP–exposure) and instrument–
outcome (or IV–outcome, SNP–outcome) associations were
extracted from two independent non-overlapping sets of
participants. For a conceptual framework of our MR (a flowchart
of current study), please see Supplementary Figure 1; for
characteristics of exposure and outcome genetic data, please see
Supplementary Table 1.

IV–Exposure
The hitherto largest GWAS of alcohol consumption was
conducted using an imputation-accuracy-aware meta-analysis
totaling 941,280 individuals of European ancestry recruited
from 34 participating studies (Liu et al., 2019). The exposure,
drinks per week, was defined as the average number of
drinks a participant reported drinking each week, aggregated
across all types of alcohol. If a participating study recorded
binned response ranges (e.g., one to four drinks per week,
5–10 drinks per week), the midpoint of the range was used.
The phenotype was left-anchored at 1 and log-transformed
prior to analysis. This large-scale meta-GWAS has identified
99 genome-wide significant variants associated with drinks
per week after conditional and joint analyses. We used these
99 independent SNPs as our instruments and extracted IV–
exposure associations (beta-coefficients, standard errors) and
relevant information (rsID, effect allele, allele frequency, genomic
coordinates) from the abovementioned alcohol GWAS. Details
on characteristics of the 99 IVs are presented in Supplementary
Table 1. We also obtained full-set GWAS summary data for
genetic correlation analysis.

While drinks per week reflect normal or general drinking
behavior, we included one additional exposure, alcohol use
disorder identification test consumption score (AUDIT), which
reflects excessive or harmful drinking behavior. The GWAS
of AUDIT was conducted in a multi-ancestry Million Veteran
Program sample of 274,424 individuals, and 13 GWAS-
significant independent loci were identified among Europeans to
be associated with alcohol use disorder (Kranzler et al., 2019). We
used these 13 SNPs as IVs to perform additional analysis and to
complement with our main findings (Supplementary Table 2).
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IV-Outcome
We systemically examined the role of alcohol consumption in
four autoimmune diseases. We collected the hitherto largest
full-set GWAS summary data of inflammatory bowel disease
(IBD; Liu et al., 2015) and its subsets [Crohn’s disease (CD)
and ulcerative colitis (UC)], RA (Okada et al., 2014), SLE,
(Bentham et al., 2015) and multiple sclerosis (MS; International
Multiple Sclerosis Genetics Consortium, 2019), all of European
ancestry. We selected these four autoimmune disorders due to
two reasons: (1) they are common and (2) they had GWAS
with decent sample size and SNP coverage (>5,000 cases and
>10,000 controls and >1,000,000 genetic markers) to ensure
statistical power. From these GWAS summary data, we extracted
IV–outcome associations (beta-coefficients and standard errors)
and relevant information (rsID, effect allele, allele frequency,
genomic coordinates).

The abundant available samples make our study so far the
largest of its kind, leveraging on the genetic information from
49,336 cases of autoimmune disorders and 108,387 controls
(number of cases/controls for each outcome, IBD: 12,882/21,770;
UC: 6,968/20,464; CD: 5,956/14,927; RA: 14,361/43,923; MS:
14,802/26,703; SLE: 7,291/15,991). Details of the outcome
GWAS(s) are shown in Supplementary Table 3.

Statistical Analysis
Genetic Correlation Analysis
The correlation between the genetic influences on a trait and
the genetic influences on a different trait estimates the degree
of causal overlap or pleiotropy. We quantified the genome-
wide genetic correlation between alcohol consumption and
each disorder, using an algorithm implemented in statistical
software linkage disequilibrium score regression (LDSC). LDSC
leverages the relationship between association statistics and
linkage disequilibrium patterns across the genome and estimates
the genetic correlation using only GWAS summary-level data
(Bulik-Sullivan et al., 2015).

Mendelian Randomization Analysis
We next evaluated a causal relationship between alcohol
consumption and autoimmune disorders. MR yields an unbiased
causal estimate based on observational data only when three
model assumptions are satisfied. Namely, IVs should be robustly
associated with the exposure (relevance), affect outcome only
through the exposure (exclusion restriction), and should not
be associated with confounders in the exposure–outcome
relationship (exchangeability). To guarantee model assumption,
we applied several MR approaches including a random-effect
inverse variance-weighted method (IVW; Burgess et al., 2015), a
maximum likelihood approach (Burgess et al., 2013), a weighted
median approach (Bowden et al., 2016), and an MR–Egger
regression (Bowden et al., 2015).

Briefly, the random-effect IVW pools estimate from each IV
and provide causal estimation, assuming that all IVs are valid
or are invalid in a way that the overall pleiotropy is balanced
to be zero (Burgess et al., 2015). When there is considerable
imprecision in the estimates, causal effect estimates from the
IVW are overprecise, whereas the likelihood method gives

appropriately sized confidence intervals (Burgess et al., 2013). In
addition, we performed MR–Egger regression to test for bias due
to directional pleiotropy, where the average of direct effects of the
tested genetic variants on outcome is non-zero (Bowden et al.,
2015). We employed a weighted median to provide consistent
estimates even when up to 50% of the analyzed genetic variants
are invalid (Bowden et al., 2016).

In addition, we performed several important sensitivity
analyses to further validify model assumptions. For example, we
excluded palindromic IVs (SNPs with alleles represented by the
same pair of letters on the forward and reverse strands such as
A/T or G/C SNPs. These SNPs can introduce ambiguity into
the identity of the effect allele in the exposure and outcome
GWASs.) (Hemani et al., 2018). We excluded IVs that were
associated with potential confounding traits according to the
GWAS catalog. Further, we employed a multivariable MR
approach to adjust for potential horizontal pleiotropy acting in
particular through the body mass index and smoking—the two

FIGURE 1 | (A) Genetic correlation between alcohol consumption (drinks per
week) and risk of autoimmune inflammatory diseases. Blue squares and
horizontal bars represent the point estimate and confidence intervals of
genetic correlation with each disorder. (B) Pairwise correlation among
autoimmune disorders. The color of each checker represents the magnitudes
of correlation. A darker color represents a stronger correlation. **Bonferroni
correct significance, *suggestive significance. IBD, inflammatory bowel
disease; UC, ulcerative colitis; CD, Crohn’s disease; RA, rheumatoid arthritis;
SLE, systemic lupus erythematosus; MS, multiple sclerosis.
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lifestyle behavioral traits tend to cluster together with alcohol
consumption (Burgess and Thompson, 2015). We extracted
IV-BMI effect sizes and IV-smoking effect sizes from the
hitherto largest obesity (N = 700,000) (Yengo et al., 2018)
and smoking (N = 1,232,091) (Liu et al., 2019) GWAS(s).
Finally, we excluded one SNP at a time and performed IVW on
the remaining SNPs to identify potential influence of outlying
variants on the estimates.

Mendelian randomization methods evaluate an overall casual
estimation; it is likely that several distinct causal mechanisms
underlie the alcohol–disease relationship, in which a risk factor
influences outcome with different magnitudes of causal effect. We
examined such a scenario through MR-Clust (Foley et al., 2019),
an approach that divides IVs into distinct clusters such that all
variants in the cluster have similar causal estimates.

Finally, we complemented our main results of general
drinking behavior, by incorporating genetic instruments
associated with excessive or harmful drinking behavior (alcohol
use disorder identification test). Given the fewer IVs associated
with AUDIT (N = 13), we only performed primary analysis for
this exposure (IVW and MR–Egger), as the diagnostic analyses

including MVMR and MR-Clust were underpowered with the
limited availability of genetic instruments.

We included four autoimmune disorders as main outcomes
(CD and UC were treated as subsets of IBD) and performed
analysis using different sets of instruments as well as different
statistical approaches; our results were likely to suffer from false
positives due to multiple comparisons. Therefore, we considered
a two-sided P-threshold of 0.05 as suggestive significance. An
arbitrarily corrected P-threshold of 0.01 (0.05/4) was used
as statistical significance. All MR analyses were performed
using R software version 4.0.2 with packages “TwoSampleMR,”
“MendelianRandomization,” and “MRclust.”

RESULTS

As shown in Figure 1A, using full-set GWAS summary data,
we observed negligible shared genetic similarities of alcohol
consumption with each disorder. Indeed, the genetic correlation
estimates were all negative ranging from −0.07 to −0.02,
meaning that the genetic variant associated with an increase in

TABLE 1 | The association between genetically predicted levels of alcohol consumption and risk of common autoimmune inflammatory diseases.

Methods # SNP OR (95%CI) P-value P-value for intercept # SNP OR (95%CI) P-value P-value for intercept

Full-set Remove palindromic SNPs

Inflammatory bowel disease

IVW 98 0.84 (0.54–1.29) 0.42 84 0.84 (0.52–1.34) 0.46

Maximum likelihood 98 0.84 (0.63–1.11) 0.23 84 0.84 (0.62–1.13) 0.25

Weighted median 98 0.92 (0.56–1.51) 0.73 84 0.92 (0.56–1.52) 0.75

MR–Egger 98 0.96 (0.46–2.00) 0.92 0.64 84 1.01 (0.47–2.21) 0.97 0.55

Ulcerative colitis

IVW 98 0.93 (0.59–1.49) 0.77 84 0.92 (0.56–1.52) 0.75

Maximum likelihood 98 0.93 (0.65–1.33) 0.70 84 0.92 (0.63–1.34) 0.66

Weighted median 98 0.99 (0.51–1.91) 0.97 84 1.00 (0.52–1.92) 1.00

MR–Egger 98 0.97 (0.44–2.18) 0.95 0.90 84 0.99 (0.43–2.28) 0.98 0.84

Crohn’s disease

IVW 98 0.70 (0.38–1.27) 0.24 84 0.70 (0.36–1.36) 0.30

Maximum likelihood 98 0.71 (0.48–1.03) 0.07 84 0.70 (0.47–1.03) 0.07

Weighted median 98 0.98 (0.51–1.87) 0.95 84 0.99 (0.52–1.88) 0.98

MR–Egger 98 0.98 (0.36–2.63) 0.97 0.40 84 1.02 (0.36–2.96) 0.96 0.37

Rheumatoid arthritis

IVW 93 0.80 (0.54–1.19) 0.27 80 0.85 (0.56–1.29) 0.45

Maximum likelihood 93 0.80 (0.56–1.14) 0.22 80 0.85 (0.58–1.24) 0.40

Weighted median 93 1.38 (0.77–2.50) 0.28 80 1.43 (0.74–2.75) 0.29

MR–Egger 93 1.45 (0.66–3.18) 0.36 0.09 80 1.58 (0.71–3.54) 0.27 0.08

Multiple sclerosis

IVW 93 0.75 (0.49–1.12) 0.16 80 0.74 (0.47–1.16) 0.18

Maximum likelihood 93 0.74 (0.53–1.03) 0.07 80 0.73 (0.52–1.04) 0.08

Weighted median 93 1.13 (0.66–1.95) 0.65 80 1.13 (0.63–2.02) 0.68

MR–Egger 93 1.17 (0.49–2.83) 0.72 0.26 80 1.27 (0.49–3.28) 0.62 0.20

Systemic lupus erythematosus

IVW 82 1.10 (0.51–2.37) 0.80 70 1.14 (0.49–2.66) 0.76

Maximum likelihood 82 1.11 (0.62–1.97) 0.73 70 1.14 (0.61–2.14) 0.67

Weighted median 82 1.91 (0.71–5.12) 0.20 70 1.85 (0.65–5.27) 0.25

MR–Egger 82 2.14 (0.29–15.69) 0.46 0.48 70 1.24 (0.13–11.89) 0.85 0.94
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dose of alcohol tends to be associated with a decreased risk of
autoimmune disorder. However, all these genetic correlations
were not significant with confidence intervals including 1 and
P-values > 0.05, contrasted by the significant pairwise genetic
correlation observed among autoimmune disorders (Figure 1B).

Genetic correlation describes the intrinsic genome-wide
average sharing of genetic effects between traits that are
independent of environmental factors. We next performed MR
analysis to elucidate a potential directional or causal association
between alcohol and autoimmune disorders. We were able
to match almost all alcohol-associated genetic instruments to
our outcome data, ranging from 98 (99%) in IBD, 93 in RA
and MS (94%), and 82 in SLE (83%)—a virtually complete
coverage (Supplementary Table 4). These 99 alcohol-associated
genetic variants constructed a strong IV with an overall
F-statistic of 122.4.

As shown in Table 1, for most autoimmune disorders
examined by us, genetically predicted alcohol consumption was
associated with a slightly (10–25%) decreased risk of disease onset

TABLE 2 | Genetically predicted levels of alcohol consumption and the risk of
autoimmune inflammatory diseases.

Methods # SNP OR (95%CI) P-value P-value for
intercept

Inflammatory bowel disease

IVW 71 0.78 (0.44–1.36) 0.38

Maximum likelihood 71 0.77 (0.51–1.16) 0.21

Weighted median 71 0.63 (0.33–1.21) 0.17

MR–Egger 71 2.18 (0.50–9.59) 0.31 0.14

Ulcerative colitis

IVW 71 0.89 (0.47–1.69) 0.72

Maximum likelihood 71 0.89 (0.53–1.48) 0.64

Weighted median 71 0.66 (0.30–1.46) 0.31

MR–Egger 71 1.52 (0.27–8.39) 0.64 0.51

Crohn’s disease

IVW 71 0.61 (0.28–1.34) 0.22

Maximum likelihood 71 0.60 (0.34–1.04) 0.07

Weighted median 71 1.19 (0.48–2.93) 0.71

MR–Egger 71 3.24 (0.41–25.51) 0.27 0.09

Rheumatoid arthritis

IVW 68 0.51 (0.30–0.88) 0.02

Maximum likelihood 68 0.50 (0.31–0.81) 0.005

Weighted median 68 0.88 (0.42–1.85) 0.73

MR–Egger 68 2.08 (0.42–10.30) 0.37 0.07

Multiple sclerosis

IVW 67 0.85 (0.50–1.42) 0.54

Maximum likelihood 67 0.85 (0.55–1.30) 0.44

Weighted median 67 1.12 (0.60–2.13) 0.71

MR–Egger 67 3.01 (0.62–14.71) 0.18 0.10

Systemic lupus erythematosus

IVW 60 1.24 (0.49–3.15) 0.66

Maximum likelihood 60 1.25 (0.61–2.54) 0.54

Weighted median 60 0.63 (0.20–2.02) 0.44

MR–Egger 60 4.23 (0.31–57.18) 0.28 0.32

A sensitivity analysis excluding SNPs associated with potential confounding traits.

TABLE 3 | Genetically predicted levels of alcohol consumption and risk of
common autoimmune diseases.

Methods # SNP OR (95%CI) P-value

Inflammatory bowel disease

Body mass index 48 0.94 (0.42–2.11) 0.89

Smoking status 97 0.80 (0.51–1.30) 0.38

Ulcerative colitis

Body mass index 48 1.20 (0.52–2.75) 0.67

Smoking status 97 0.94 (0.56–1.59) 0.83

Crohn’s disease

Body mass index 48 0.56 (0.17–1.82) 0.34

Smoking status 97 0.64 (0.33–1.25) 0.19

Rheumatoid arthritis

Body mass index 48 0.66 (0.36–1.21) 0.18

Smoking status 92 0.79 (0.50–1.24) 0.31

Multiple sclerosis

Body mass index 48 0.49 (0.26–0.91) 0.02

Smoking status 92 0.79 (0.49–1.27) 0.33

Systemic lupus erythematosus

Body mass index 42 0.86 (0.31–2.38) 0.77

Smoking status 93 0.83 (0.34–2.03) 0.69

Multivariable analysis adjusting for the effect of body mass index
and smoking status.

(IBD: ORIVW = 0.84; UC: ORIVW = 0.93; CD: ORIVW = 0.70; RA:
ORIVW = 0.80; MS: ORIVW = 0.75); for SLE, an ORIVW of 1.10 was
observed. However, all these associations were not statistically
significant with confidence intervals covering 1.00 (95%CI, IBD:
0.54–1.29; UC: 0.59–1.49; CD: 0.38–1.27; RA: 0.54–1.19; MS:
0.49–1.12; SLE: 0.51–2.37) and P-values larger than 0.05. Such
null findings were supported by the maximum likelihood method
and the weighted median approach where we observed non-
significant effects (although in opposite directions for RA and
MS) with confidence intervals covering 1. MR–Egger regression
did not reveal apparent signs of horizontal pleiotropy (P-values
for the MR–Egger intercept, IBD: P = 0.64; UC: P = 0.90; CD:
P = 0.40; RA: P = 0.09; MS: P = 0.26; SLE: P = 0.48).

Palindromic SNPs introduce ambiguity for the identity of
effect alleles in exposure and outcome data. Sensitivity analysis
removing palindromic SNPs (Table 1) revealed similar null
associations for all autoimmune disorders.

A search of GWAS catalog1 reveals considerable potential
for pleiotropic effects, as some IVs were identified to be
associated with important potential confounders with genome-
wide significance (Supplementary Table 1). We next performed
a sensitivity analysis excluding those SNPs. As shown in Table 2,
consistent with our primary analysis, we did not observe any
significantly altered risk of autoimmune disorders with genetic
predisposition to alcohol consumption. A significantly reduced
risk of RA was identified [IVW, OR (95%CI) = 0.51 (0.30–0.88)],
yet such an association did not pass multiple corrections and did
not remain directionally consistent in other methods [MR–Egger,
OR (95%CI) = 2.08 (0.42–10.30)]. In both sensitivity analyses, no

1https://www.ebi.ac.uk/gwas/
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FIGURE 2 | Genetic associations with alcohol consumption (drinks per week) and risk of autoimmune inflammatory diseases (log odds) per additional alcohol
consumption increasing alleles. Each genetic variant is represented by a point. Error bars are 95% confidence intervals for the genetic associations. Colors represent
the clusters. Variants are only assigned to the cluster if the conditional probability is >0.8 and cluster only displayed if at least four variants are assigned to the cluster.
IBD, inflammatory bowel disease; UC, ulcerative colitis; CD, Crohn’s disease; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; MS, multiple sclerosis.

apparent horizontal pleiotropy was observed as reflected by the
intercepts of MR–Egger regression (Tables 1, 2).

Inflammatory bowel disease, RA, and MS are Th1-related
autoimmune disorders, meta-analyzing across these three
traits yielded to a reduced effect with marginal significance
[ORmeta(95%CI) = 0.79 (0.63–1.01), P = 0.06 using all IVs;
ORmeta(95%CI) = 0.70 (0.51–0.95), P = 0.02 using IVs excluding
confounders]. Meta-analyzing all four traits did not reveal any
significant effect [ORmeta(95%CI) = 0.82 (0.65–1.03), P = 0.08
using all IVs; ORmeta(95%CI) = 0.74 (0.54–1.02), P = 0.06 using
curated IVs without pleiotropic effects].

Obesity and smoking are two important environmental risk
factors clustering together with alcohol intake. We therefore
employed a multivariable MR approach to adjust for potential

horizontal pleiotropy acting in particular through BMI and
smoking. As shown in Table 3 and consistent with our sensitivity
analysis, we did not observe apparent significant effects of alcohol
consumption with risk of autoimmune disease after adjusting for
BMI and smoking, except a suggestive reduced effect with MS
which did not withstand multiple corrections (OR = 0.49 and
P = 0.02). Leave-one-out analysis did not identify any outlying
variants (Supplementary Table 5).

Alcohol consumption-associated variants may influence the
risk of autoimmune diseases via distinct biological mechanisms.
We therefore examined a scenario where variants can be divided
into different clusters. According to MR-Clust, each IV is only
assigned to a cluster if the conditional probability of belonging
to that cluster is high (larger than 0.8) and clusters are only

Frontiers in Genetics | www.frontiersin.org 6 June 2021 | Volume 12 | Article 687745107

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-687745 June 16, 2021 Time: 15:57 # 7

Jiang et al. Alcohol and Autoimmune Disorder

displayed if at least four IVs are assigned to it (Foley et al.,
2019). As shown in Figure 2, for IBD, we observed two distinct
clusters suggesting one strong positive causal effect and one
strong negative causal effect; for SLE, we observed a single
cluster suggesting a strong positive causal effect; and for MS,
we observed a single cluster suggesting a strong negative causal
effect. However, when we performed MR-Clust analysis excluding
confounding IVs (corresponding to IVs used in Table 2), all
previously observed clusters disappeared, largely consistent with
an overall null finding (data not shown).

Finally, we complemented our main results by incorporating
IVs associated with excessive or harmful drinking behavior
(AUDIT, N = 13). As shown in Table 4 and consistent with our
main findings, excessive drinking did not appear to reduce the
risk of autoimmune disorders. On the contrary, we observed an
increased non-significant risk of IBD (OR = 1.21; 1.25 for UC
and 1.14 for CD) and RA (OR = 1.16) with harmful drinking. We
stress caution when interpreting these results given the very few
genetic instruments associated with AUDIT.

DISCUSSION

We conducted a large-scale comprehensive genetic analysis to
systemically interrogate the role of alcohol consumption in
several common autoimmune inflammatory disorders. Overall,
alcohol consumption and autoimmune disorder share a reverse
yet non-significant genetic basis. Despite a few suggestive
significant findings from MR in support of alcohol intake
and a reduced risk of RA and MS, these results did not
withstand multiple corrections. Meta-analyzing all traits did not
reveal significant effects, and meta-analyzing three Th1-related

disorders (IBD, RA, and MS) yielded to a reduced effect with
significance (P = 0.02) not withstanding multiple corrections.
Therefore, we consider an overall null association as our
main conclusion.

To the best of our knowledge, the current MR study is the
largest in sample size of its kind, leveraging information on 99
genetic instruments and involving data from more than one
million individuals of European ancestry (941,280 individuals
for exposure and 157,723 individuals for outcome). Two MR
studies have been conducted for alcohol use and autoimmune
disorder; none had the opportunity to achieve our power. For
example, Bae and Bae and Lee (2019a,b) examined the causal
relationship of alcohol intake with risk of RA and SLE, using
approximately 20 alcohol-associated genome-wide significant
SNPs as IVs. For outcomes, two meta-GWAS(s) were included,
one with 5,539 autoantibody-positive RA patients (and 20,169
controls) and the other with 1,311 lupus patients (and 1,783
controls). No evidence of a causal relationship was identified for
either RA [OR (95%CI) = 1.24 (0.82–1.89), P = 0.31] or lupus
[OR (95%CI) = 0.46 (0.07–2.94), P = 0.42]. It is very likely that
the few IVs did not fully capture the effect of alcohol. Our current
study, with a largely augmented sample size and by incorporating
additional alcohol consumption associated loci, greatly improved
the strength of genetic instruments (F-statistic = 122.4) as well as
both the accuracy and precision of MR estimates, as compared
with previous findings.

We found an overall protective effect of alcohol intake on
the three Th1-mediated autoimmune disorders (IBD, RA, and
MS) as a whole; however, when breaking down into individual
disorders, we did not find convincing evidence in support
of a beneficial role of alcohol consumption. Our conclusion,
although consistent with previous small-scale MR studies, is not

TABLE 4 | The association between genetically predicted levels of harmful alcohol consumption (alcohol use disorder identification test score) and risk of common
autoimmune inflammatory diseases.

Methods # SNP OR (95%CI) P-value P-value for intercept # SNP OR (95%CI) P-value P-value for intercept

Full-set Remove SNPs associated with confounders

Inflammatory bowel disease

IVW 13 0.86 (0.63–1.16) 0.33 9 1.21 (0.87–1.70) 0.26

MR–Egger 13 0.83 (0.52–1.31) 0.44 0.83 9 0.62 (0.15–2.51) 0.52 0.36

Ulcerative colitis

IVW 13 0.95 (0.73–1.24) 0.70 9 1.25 (0.86–1.81) 0.24

MR–Egger 13 0.90 (0.60–1.36) 0.64 0.76 9 0.40 (0.08–2.15) 0.32 0.21

Crohn’s disease

IVW 13 0.77 (0.50–1.21) 0.26 9 1.14 (0.72–1.78) 0.58

MR–Egger 13 0.80 (0.41–1.56) 0.52 0.89 9 0.90 (0.12–6.51) 0.92 0.82

Rheumatoid arthritis

IVW 13 1.20 (1.00–1.44) 0.05 9 1.16 (0.82–1.64) 0.42

MR–Egger 13 1.23 (0.82–1.83) 0.34 0.91 9 1.15 (0.22–5.99) 0.87 1.00

Multiple sclerosis

IVW 12 0.91 (0.70–1.18) 0.46 8 0.95 (0.69–1.32) 0.76

MR–Egger 12 0.85 (0.51–1.39) 0.53 0.76 8 0.78 (0.20–3.04) 0.74 0.78

Systemic lupus erythematosus

IVW 10 1.04 (0.64–1.69) 0.86 8 0.95 (0.59–1.54) 0.85

MR–Egger 10 1.60 (0.40–6.37) 0.53 0.54 8 0.50 (0.10–2.53) 0.43 0.44
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supported by observational studies. For example, Jin et al. (2014)
summarized results from eight prospective studies containing
195,029 participants and 1,878 RA cases and found that low to
moderate alcohol consumption yielded a preventive effect on the
disease development [RR (95%CI) = 0.86 (0.78–0.94)]. Moreover,
Wang et al. (2008) conducted a meta-analysis including six case–
control studies and one cohort study and found a significantly
decreased risk of lupus with moderate alcohol drinking [OR
(95%CI) = 0.72 (0.55–0.95)]. Further, Zhu et al. (2015) aggregated
data from nine case–control studies and one cohort study
and identified an OR for the association between alcohol
consumption and MS to be 0.91 (95%CI = 0.39–2.41). Reasons
underlying such discrepancies can be multifactorial. Results from
observational studies are likely to be plagued by measurement
error or biases. For example, assessment of alcohol consumption
is usually done by questionnaires, where frequency and amount
of consumption are collected—precisely determining the amount
of consumed alcohol is difficult. Indeed, alcohol intake can be
expressed as a single measurement with “low,” “medium,” and
“high” categories; such categorical measurement may however be
of limited resolution.

Our study has several advantages in addition to its large
sample size. We restricted participants to individuals of European
ancestry which largely controlled for bias arising from population
stratification as compared to using mixed ethnicity populations.
We interrogated four common autoimmune disorders which
greatly expanded pervious findings. We conducted several
important sensitivity analyses to verify MR model assumptions.
We selected the most significant independent SNPs identified
by the largest alcohol GWAS, so all were robustly and strongly
associated with exposure of interest, guaranteeing “relevance”
assumption. We excluded SNPs associated with potential
confounders on the exposure–outcome relationship as confirmed
by GWAS catalog, to satisfy “exclusion restriction” assumption.

Nevertheless, insufficient power remains a common limitation
of MR studies, because genetic variants usually explain a
modest proportion of phenotypic variance. This is also a
concern for alcohol consumption, a complex human behavior
largely influenced by non-genetic factors. Our non-significant
findings are perhaps not surprising, considering that the 99
currently reported alcohol-associated SNPs only explain ∼1% of
phenotypic variance. Although improvement in the proportion
of variability explained by IVs was modest, our overall statistical
power was considerably raised using data from substantially
augmented GWASs of four autoimmune disorders. We had
80% power at an alpha level of 0.05 to identify a ∼25–30%
relative decreased risk of IBD, RA, MS, and lupus (i.e., an
OR of 0.70–0.75) per SD increase in alcohol consumption.
We note that most of our estimated ORs are in the expected
direction, and the suggested associations for the three Th-
1-mediated autoimmune diseases are in line with what have
been observed previously in studies based on self-reported
alcohol consumption.

Alcohol consumption plays a complicated role in human
health as its effect on diseases depends on dose. In most

autoimmune diseases, moderate weekly intake shows the lowest
disease incidence. Such a U-shaped or J-shaped relationship
cannot be identified by MR design with only summary-level data
which is set out for a linear relationship. It has been proposed
that a high dose of alcohol can directly suppress a wide range
of immune responses (Romeo et al., 2007). We try to address
this question by incorporating IVs associated with harmful
drinking behavior; yet, excessive drinking does not appear to
reduce the risk of autoimmune disorders. We stress caution when
interpreting these results given the very few instruments available
for AUDIT. Another major hypothesis for the null association
is the heterogeneity of phenotypes. For example, RA can be
divided into different subsets based on seropositivity. This means
that even though the association is null with overall disease,
signals may appear when we subtype the outcome. It is also likely
that alcohol consumption, albeit with no convincing evidence
to demonstrate a causal link with disease risk, may complicate
symptoms or aggravate disease prognosis.

To conclude, our updated analysis, with its greatly augmented
sample size and substantially improved statistical power, does not
convincingly support a beneficial role of alcohol consumption
in autoimmune disorder. Our findings should be interpreted
with caution. Future studies may be performed to update our
findings when additional alcohol-associated IVs are revealed by
GWAS analysis; as well as to explore a non-linear relationship
(capitalizing on individual-level data) or to understand the
impact on disease prognosis.
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In the “personalized medicine” era, one of the most difficult problems is identification of
combined markers from different omics platforms. Many methods have been developed
to identify candidate markers for each type of omics data, but few methods facilitate
the identification of multiple markers on multi-omics platforms. microRNAs (miRNAs)
is well known to affect only indirectly phenotypes by regulating mRNA expression
and/or protein translation. To take into account this knowledge into practice, we
suggest a miRNA-mRNA integration model for survival time analysis, called mimi-surv,
which accounts for the biological relationship, to identify such integrated markers more
efficiently. Through simulation studies, we found that the statistical power of mimi-
surv be better than other models. Application to real datasets from Seoul National
University Hospital and The Cancer Genome Atlas demonstrated that mimi-surv
successfully identified miRNA-mRNA integrations sets associated with progression-free
survival of pancreatic ductal adenocarcinoma (PDAC) patients. Only mimi-surv found
miR-96, a previously unidentified PDAC-related miRNA in these two real datasets.
Furthermore, mimi-surv was shown to identify more PDAC related miRNAs than other
methods because it used the known structure for miRNA-mRNA regularization. An
implementation of mimi-surv is available at http://statgen.snu.ac.kr/software/mimi-surv.

Keywords: statistical method, miRNA-mRNA integration, personalized medicine, pancreatic ductal
adenocarcinoma, The Cancer Genome Atlas

INTRODUCTION

MicroRNAs (miRNAs) are small, non-coding RNAs that function to regulate target messenger
RNAs (mRNAs), based on sequence complementarity. It is well known that miRNAs affect nearly
all developmental and pathological processes in animals, particularly in cell development, and
many cancer types are affected by miRNA regulation by downregulating their target mRNAs
(Ha and Kim, 2014).

Using a well-known regulation mechanism, many studies have focused on finding the target
mRNAs. The biological context of regulation mechanism between miRNA and target mRNA can be
easily explained by showing significant negative correlation between them and investigating their
relationship with the phenotypes (Enerly et al., 2011; Xu et al., 2019). For instance, hierarchical
clustering on miRNA expression profiles found that the expression levels of the tumor suppressor
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gene, TP53 are associated with specific clusters (Enerly et al.,
2011). When the number of target genes is small, this approach
is effective. However, it is more difficult to identify novel
combinations of miRNA and its target mRNAs that are
concurrently associated to the phenotype.

To perform an integrated analysis of miRNA and its target
mRNAs, two-step analysis has been commonly used in many
studies. The first step chooses miRNAs associated with specific
phenotypes. The second step further investigates expression
levels of known target mRNAs that are negatively correlated
with each miRNA (Enerly et al., 2011; Yonemori et al., 2017).
However, this approach only focuses on the relationship between
phenotypes and miRNAs without providing information about
how miRNAs and their inhibited mRNAs affect observed
phenotype together.

On the other hand, a hierarchical structured component
analysis of miRNA-mRNA integration (HisCoM-mimi) has
been recently proposed to investigate how miRNAs indirectly
affect the phenotype with biological relationships between the
miRNAs and their target mRNAs [5; 6]. HisCoM-mimi is a
component-based method that models biological relationships
as hierarchically structured “components,” to efficiently identify
miRNA-mRNA integration sets. HisCoM-mimi has an advantage
of handling many types of phenotypes from an exponential
family distribution under the framework of a generalized linear
model. While its application to cancerous vs. normal tissues
successfully identified more biologically plausible and intuitive
interpretations than other methods (Kim et al., 2018), it cannot
be applicable to the survival analysis which is one of prominent
interest among the cancer studies.

In this study, we propose a hierarchical structured component
analysis of miRNA-mRNA integration to survival phenotype,
called mimi-surv using a Cox Proportional Hazard (Cox-PH)
model (Cox, 1972; Kim, 2018; Kim et al., 2018). Like HisCoM-
mimi, mimi-surv is also a component-based analysis, such
as pathway models we developed for rare variant pathway
analysis (Lee et al., 2016, 2019). In this respect, the proposed
model introduces a latent variable for each miRNA and its
target mRNAs as a component and fits one augmented model
including all latent variables to determine the associations with
the survival phenotype.

We applied the proposed approach, mimi-surv, to two
real datasets from pancreatic ductal adenocarcinoma (PDAC)
patients. It is noted that PDAC is one of the most lethal
gastrointestinal malignancies. Despite improvements in
perioperative outcomes, PDAC has a poor prognosis, with
a 5-year survival rate of only 6%, worldwide (Greither et al.,
2010). Because most patients are diagnosed in the advanced
stages, and effective systemic therapies are lacking. Consequently,
many researchers have focused on developing novel prognostic
markers of PDAC. For example, several studies have identified
cell-free miRNAs as prognostic markers of PDAC among which
high expression of miR-21 was shown to have a significant effect
on overall survival time (Frampton et al., 2015). We considered
two real PDAC datasets; one is a microarray-based dataset from
PDAC patients from Seoul National University Hospital (SNUH),
and the other is high-throughput sequencing data, obtained

from The Cancer Genome Atlas (TCGA). From those datasets,
we tried to find prognostic factors for survival after surgery of
PDAC by survival analysis on integrated miRNA-mRNA sets,
using mimi-surv.

In spite of that some prognostic miRNAs have been identified,
their precise roles in the progression of PDAC have not been easy
to interpret due to absence of overall grasp of vast network of
miRNA-mRNA interaction. In this article, we demonstrated how
well our hierarchical component-based approach can embrace
such a biological concept. Moreover, the proposed mimi-surv was
compared with many other survival analysis methods throughout
the simulation studies.

MATERIALS AND METHODS

The Mimi-Surv Model
Figure 1 shows the schematic plot for mimi-surv model. For
survival data analysis, the Cox-PH model is used (Cox, 1972).
miRNA-mRNA integration set contains the miRNA, mRNA
affected by the miRNA, and miRNA integration latent variable.
The miRNA-mRNA integration set shows that the miRNA’s
direct and indirect effects on the phenotype are coming from
target mRNAs. Each miRNA-mRNA integration set consists
of one miRNA (zij), and mRNAs (xij1, xij2, . . ., xijGj) which
were regulated by the miRNA. miRNA-mRNA integration set
j is summarized by the latent variable fij which is a linear
combination of zij and xij1, xij2, ..., xijGj. Thus, the effect
of miRNA-mRNA integration set j on the hazard rate is
computed by βj. Detailed fitting approaches for mimi-surv are
described as follows.

Adjusting mRNA Expression by miRNA
Regulation Information
The mimi-surv model consists of three parts. First, the miRNA-
mRNA part estimates effect of miRNA on target mRNAs. Second,
the miRNA integration latent part models overall effect of each
miRNA. Finally, the phenotype-latent part associates all latent
variables with the target phenotype. In the miRNA-mRNA part,
a simple linear combination relationship is constructed between
miRNA and target mRNAs, as shown in the following Equation 1:

X̂ijk = xijk − γjkzij, i = 1, · · · ,N, j = 1, · · · , J, k = 1, · · · ,Gj,
(1)

where xijk is the ith individual’s mRNA expression of the kth

gene, which is inhibited by jth miRNA, zij is the ith individual’s
jth miRNA expression, γjk is the inhibition coefficient for the
jth miRNA for the kth gene, and Gj is the number of inhibited
mRNAs by the jth miRNA. By estimating the miRNA inhibition
coefficients γjk, the kth gene’s mRNA expression after adjusting
the inhibition effect of the jth miRNA can be obtained.

Latent Structures
The proposed mimi-surv models an aggregated effect of both
miRNA and mRNA as a latent variable fij. As defined in Equation
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FIGURE 1 | Schematic diagram of mimi-surv model. Rectangles and circles indicate observed and latent variables, respectively. Arrows indicate conceptualized
directions of effects between the variables. Each miRNA-mRNA integration set consists of one miRNA and its target mRNAs. Each miRNA-mRNA integration set j is
summarized by the latent variable fj which is linear combination of zj and its adjusted mRNA expressions.

2, the latent variable fij represents the global effect of the
miRNA’s activity, as measured by a linear combination of both
the inhibition effects (wjk) of its target mRNA(s) expression and
the direct effect (γj0) of the miRNA expression value.

fij = γj0zij +
Gj∑

k = 1

X̂ijkwjk (2)

The latent variables are finally associated to the target
phenotype using a Cox-PH model (Cox, 1972) as shown in
Equation 3, under the assumption that the hazard rate is
proportional to the risk factors over time.

h
(
yi|Fi

)
= h0

(
yi
)

exp

 J∑
j = 1

γj0zj +
Gj∑

k = 1

X̂ijkwjk

 βj

 =
h0 (Y) exp

 J∑
j = 1

fijβj

 , (3)

where yi denotes the survival time, Y denotes the vector of yi,
and h

(
yi
∣∣ F) denotes the hazard function of the ith sample. In

addition, h0(Y) is a baseline hazard function, and βj represents
the effect of fij on the hazard rate, as a risk factor. Then, the partial
likelihood function, Lp, is defined as follows:

Lp =

∏
i:Ci = 1 exp

(∑J
j = 1 fijβj

)
∑

q:yq = yi exp
(∑J

j = 1 fqjβj
) ,

Ci =

 0
(
ith individual is censored

)
1
(
ith individual is deceased

) (4)

Model Fitting
In model fitting, we estimate the parameters of mimi-surv by
adopting the algorithm of HisCoM-mimi which is based on the
alternating least squares (ALS) algorithm for the penalized log-
likelihood function, with penalty parameters (Kim et al., 2018).
In the mimi-surv model, the objective function to be maximized
is expressed as follows:

φ =
∑

i:ci = 1

 J∑
j = 1

fijβj − log
∑

q:yq = yi

exp

 J∑
j = 1

fqjβj

−
1
2
λm

J∑
j = 1

Gj∑
k = 1

Pλmm(wjk)−
1
2
λmm

J∑
j = 0

Pλm(βj). (5)

Here, the first sum consists of the partial likelihood from
a Cox-PH model and the remaining term consists of two
penalization parts with tuning parameters of λm and λmm.
These two λs are so-called the tuning parameters of both the
miRNA-mRNA pairs and the integrated latent components to
adjust the strength of the penalty function (Cox, 1972). Pλmm
and Pλm denote penalty functions for w and β, respectively.
Any regularization function can be used. For example, for β it
can be defined as

∑J
j = 1 β2

j for ridge,
∑J

j = 1
∣∣βj∣∣ for lasso, and(

1
2
∑J

j = 1 β2
j +

∑J
j = 1

∣∣βj∣∣) for Elastic-Net.
We used the ALS algorithm to maximize the objective function

by the two-step algorithm. The first part of the ALS algorithm
is maximizing the objective function, φ, with the conditioning
set of fqj, and finding solutions for a set of βj. The second
part of algorithm is, maximizing the objective function, with a
conditioning set of βj, as calculated in the previous step, and
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updating the set of f values. Then these two steps are iterated until
the solution is converged.

In the mimi-surv model, βj indicates the effect size of jth
miRNA-mRNA integration set and wjk indicates the effect size
of kth mRNA inhibited by jth miRNA. In this study, we find
the significant integrated effects of miRNA and its inhibited
mRNAs, and we used mimi-surv to test βj, which summarized
mRNA-miRNA integration set.

We performed a simple permutation scheme to test the
statistical significance of βj and computed p-values and their
q-values for the multiple testing adjustment (Ma et al., 2014).
The number of permutations was set to 1,000. However, it can
be increased easily to improve the accuracy of p-values. If one
of the penalty functions is pre-specified, mimi-surv provides
the corresponding p-values. However, if the choice of a penalty
function is not given, mimi-surv can use a simple approach that
picks the maximum estimate from multiple penalties, namely
maxT. Through permutations, the null distribution of maxT is
generated from which the p-value can estimated.

Comparative Models
We compared the performance of mimi-surv with various types
of Cox-PH models, including a single miRNA Cox-PH model
(single) and multiple penalized Cox-PH regression models with
different penalties such as ridge, lasso, Elastic-Net (EN), and
group lasso (grplasso) (Lee and Silvapulle, 1988; Tibshirani, 1996;
Zou and Hastie, 2005; Meier et al., 2008)]. The objective function
for multiple penalized Cox-PH model is given as follows:

φ1=
∑

i:ci = 1

 J∑
j = 1

δjzij − log
∑

q:yq ≤ yi

exp

 J∑
j = 1

δjzqj

− Pθ

(
δj
)
,

(6)
where Pθ

(
δj
)

denotes regularization function, which can be
defined as θ

∑J
j = 1 δ2

j for ridge,θ
∑J

j = 1
∣∣δj∣∣ for lasso, and

θ
(

1
2
∑J

j = 1 δ2
j
∑J

j = 1
∣∣δj∣∣) for EN. Here θ is the tuning parameter

to adjust the strength of the penalty function.
For a grplasso Cox-PH model (Meier et al., 2008), using the

group information from the miRNAs and mRNAs, the following
regression model is given:

h (Y) = h0 (Y) exp

 J∑
j = 1

δjzj +
J∑

j = 1

Gj∑
k = 1

λjkx̂jk

,

subject to

∣∣δj
∣∣+ Gj∑

k = 1

∣∣λjk
∣∣ ≥ t. (7)

To find the optimal tuning parameter θ, we performed
10-fold cross-validation and then determined the value of
θ, which minimizes the value of the objected function for
the validation set.

SNUH and TCGA Datasets
The SNUH dataset consists of 95 PDAC patients in which the
average of age was 65.2 years with a standard deviation 9.4 years.
There were 46 male and 49 female patients. The median survival
time after surgery was 795 days, which is indicated by a red
vertical line in a Kaplan-Meier plot as shown in Figure 2A.

mRNA expression data was produced by the Human Gene
1.0 ST array (Affymetrix, Santa Clara, CA, United States). For
background correction, the expression values were processed
by Robust Multi-array Averaging (RMA), using the Affymetrix
console, followed by quantile normalization. For the same
patient, miRNA expression was obtained from the GeneChip
miRNA 3.0 array (Affymetrix, Santa Clara, CA, United States).
miRNA expression values were normalized by RMA, and only the
human-derived miRNA targets were selected. The normalization
of the background correction of the jth human probe of the
ith sample (xij) was done using the other species’ probes as
background intensities as shown in Equation 8.

xij (norm) = xij −median
(
xij, j ∈ non− human miRNA

)
(8)

On the other hand, TCGA PDAC dataset were downloaded
from the Genomic Data Commons (GDC) data portal of
the U.S. National Cancer Institute1 (Cancer Genome Atlas
Research Network, Weinstein et al., 2013). To normalize mRNA-
seq and miRNA-seq datasets, Fragments Per Kilobase Million
(FPKM) was measured for each read count. For miRNA
expression profiling, Illumina HiSeq (Illumina Inc., San Diego,
CA, United States) was used. We collected 185 TCGA PDAC data
sample for analysis. The read counts were log-transformed after
adding a pseudo count of 0.5. In survival analysis, we excluded
25 non-PDAC samples and 47 PDAC samples whose follow-up
time was less than 3 months because the cause of their deaths is
not clear. After excluding these cases, we have 112 samples that
consist of 48 males and 64 females. The mean age was 63.9 years
with a standard deviation 11.1 years. Furthermore, the median
survival time was 585 days as indicated by a red vertical line in a
Kaplan-Meier plot in Figure 2B.

Identification of miRNA-mRNA
Integration Set
For miRNA-mRNA integration analysis, we generated miRNA-
mRNA integration sets which collected miRNAs and their
target mRNAs satisfying two conditions as follows: (i) Reported
target mRNAs by sequence-based target prediction results
from TargetScan 7.1 (Agarwal et al., 2015) and (ii) significant
negative correlation coefficients between miRNAs and mRNAs
from SNUH dataset.

From the miRNA-mRNA pairs from TargetScan using SNUH
dataset, we calculated Pearson’s correlation and performed one-
sided t-test to select the pairs with significant (p< 0.05) negative
correlation. For those using TCGA dataset that contains many
zero read counts, we first filtered out spurious pairs of miRNA-
mRNA by performing one-sided t-test to test whether the average
mRNA expression of the samples with zero miRNA read count

1https://portal.gdc.cancer.gov/
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FIGURE 2 | Kaplan-Meier curves of (A) 95 samples of SNUH dataset and (B) 112 samples of TCGA dataset. Red vertical lines indicate median survival times (795
and 652 days SNUH and TCGA, respectively).

TABLE 1 | List of causal miRNAs and the numbers of target mRNAs used in simulation.

miRNA # target mRNAs Regulated mRNAs in SNUH data

miR-2121,2,3 425 PAX5, SHISA9

miR-2191,2,3 445 HMGA2, EGR3

miR-200b2,3 9 SLIT2, BNC2, CDH11

miR-322,3 172 PRKAB2, SNX2

miR-3622,3 125 PLAT, SMAD2, CHRDL1

miR-2043 56 GRIN2B, HMGA2, ARNTL2, ACADL, TDRD6

miR-2173 449 LHX1, NR4A2, PKP1, SHOX, TRIM71, CAMK2A

miR-12973 285 MCL1, RLF, RAB5IF, EDEM3

miR-4963 149 FLRT2, PAX6, SDHC, SERAC1, SYT5, UBXN2A

miR-6703 550 FRAS1, ANKRD50, LIN28B, PDE7A, SLC4A4, TP53INP1, TRIB2, CD248

1miRNAs used in the simulation with two causal miRNAs.
2miRNAs used in the simulation with five causal miRNAs.
3miRNAs used in the simulation with ten causal miRNAs.

was larger than that of the samples with non-zero miRNA read
counts (p < 0.05). For those significant pairs, we then tested
whether a correlation between target mRNAs and miRNAs was
less than 0, using the samples with nonzero miRNA read counts.

Simulation Study and Real Data Analysis
To compare which method had a better power to discover
the true signal miRNA-mRNA pair, we performed simulation
studies to compute type I errors and power of mimi-surv and
the compared methods, using the miRNA expression values of
the SNUH PDAC dataset that consists of 64 miRNAs and 6,226
significant miRNA-mRNA pairs. Among those miRNA-mRNA
pairs, we selected two, five and ten causal miRNAs to simulate
phenotypes. Table 1 lists those miRNAs and their regulated
mRNAs. To generate a simulation dataset, we used the same
simulation settings as we did for our previous HisCoM-mimi
analysis (Kim et al., 2018).

We assumed a true model for generating simulated phenotype,
as given in Equation 9. We considered that all causal miRNA-
mRNA sets, having an effect size of β. Also, we considered
regulated target mRNAs of the miRNA-mRNA sets, having the
common effect size, w11 = w1p, and their regulating miRNA

TABLE 2 | The number of mRNAs included in the miRNA-mRNA integration set.

miRNA # overlapped # mRNAs (SNUH) # mRNAs (TCGA)

miR-105 41 331 51

miR-133b 3 10 281

miR-141 28 469 37

miR-192 1 47 1

miR-200b 2 4 9

miR-200c 10 336 15

miR-206 8 50 114

miR-211 60 461 119

miR-372 7 24 207

miR-429 3 32 14

miR-488 13 43 62

miR-524 4 50 17

miR-670 2 8 131

miR-96 3 36 43

having the effect size γ10. We then considered three scenarios
with different number of causal miRNAs (2, 5, and 10). For the
scenario with two causal miRNAs, miR-212 and miR-219 were
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used to generate phenotypes. In the scenario with five causal
miRNAs, miR-200, miR-32, miR-362 were considered, in addition
to the aforementioned two miRNAs. Lastly, five miRNAs (miR-
204, miR-217, miR-1297, miR-496, miR-670) were additionally
used in the scenario with ten causal miRNAs (see Table 1
and section “Results”). The statistical powers were computed as
the proportion of replicates whose empirical p-values of causal
miRNAs are nonzero and significant.

h(Y|X,Z) = h0 (Y) exp

(
β

(
γ10z1 +

K∑
k = 1

w1kx̂k

))
(9)

In the real data analysis, to deal with the multiple testing
problem, we used Benjamini-Hochberg procedure to calculate
False Discovery Rate (FDR) and calculated the q-value. The
threshold of q-value was set to 0.1.

RESULTS

miRNA-mRNA Pairs Extraction
We first extracted miRNA-mRNA pairs using the SNUH and
TCGA datasets. For the SNUH dataset, TargetScan provided
370,075 pairs of miRNA-mRNA for 503 unique miRNAs. Our
filtering strategy (see Methods) narrowed down the initial
370,075 set of pairs to 6,226 pairs that resulted in 54 unique
miRNAs. For the TCGA dataset, TargetScan provided 51,014
pairs of miRNA-mRNA for 69 unique miRNAs. Unlike SNUH
microarray dataset, we found that only 133 pairs of miRNA-
mRNA from nine unique miRNAs were left when Pearson
correlation tests were used. As noted in the Methods, the two-
side filtering step resulted in 1,456 pairs with 23 unique miRNAs
having at least one significant mRNA.

While two datasets showed generally concordant patterns
of miRNA-mRNA selection as shown in Table 2, the number
of mRNAs in each integration set has dataset-specific patterns.
While miR-211 integration set has the greatest number of
overlapped mRNAs when combining those of SNUH and TCGA,
the greatest number from each of SNUH and TCGA was miR-141
and miR-133b, respectively.

Simulation Results
The simulation was conducted using the SNUH dataset with
54 miRNAs and their 6,226 miRNA-mRNA pairs, with the
following parameters: two censoring fractions (δ = 0.15 and
0.3), three miRNA effect sizes (γ = 0.2, 0.3, and 0.4), three
mRNA effect sizes (w = 0.5, 0.6, and 0.7). Effect of miRNA-
mRNA integration set β was fixed to 1 for simplicity. The
significance level α was set to 0.05. First, we estimated the
type I error of each method by setting all parameters to 0
with the censoring fraction as δ. As shown in Figure 3, type
I errors were controlled at α = 0.05 in all models, except
grplasso (Meier et al., 2008) model which showed slightly inflated
type I errors. In addition, mimi-surv models generally showed
slightly smaller standard deviations of type I errors than the
compared methods (±0.009∼0.01 for mimi-surv,±0.013∼0.014
for the other models). Note that the type I errors of both
mimi-surv and the compared methods were not affected by
the zero proportion of miRNA expression (zero proportion
10, 30, and 50%). In addition, we also checked an effect of
penalty selection in the simulation. Since the selection of optimal
penalty is challenging in Cox-PH regression (Benner et al.,
2010; Ojeda et al., 2016), we applied a simple strategy that
combines the three penalties by selecting the maximum of the
estimates from three different penalties (lasso, ridge, and EN),
namely maxT. Simulation results showed that mimi-surv with the
proposed maxT approach successfully controlled type I errors

FIGURE 3 | Result of type I error evaluation. Bars indicate estimated type I error rate with given parameters (censoring fraction δ). Note that the type I errors were
evaluated by fixing all parameters to 0.
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FIGURE 4 | Statistical powers of mimi-surv and the compared methods with different miRNA effect sizes (γ = 0.2, 0.3, and 0.4). The phenotypes were generated
from two, five and ten causal miRNA-mRNA integration set and censoring fraction of 0.15 and 0.3.

with significance level of 0.05 (0.049 ± 0.014 for mimi-surv), as
shown in Figure 3.

Second, we assessed the statistical powers of seven methods
(mimi-surv with three different penalties, grplasso, lasso, ridge,
and EN). Here, we generated 200 replicates of simulated
phenotypes to assess the power. When variable selection methods
(lasso, EN, grplasso, mimi-surv with lasso, and EN penalties)
produced zero coefficients, their effects were regarded as non-
significant. Figure 4 depicts statistical powers of the compared
methods with different miRNA effect sizes (0.2, 0.3, and 0.4)
and two censoring fractions (0.15 and 0.3). Note that other non-
causal miRNAs or mRNAs were also included to the analysis,
but they actually did not contribute to the phenotypes at
all. In this case, mimi-surv with ridge penalty and grplasso
showed the first and second largest powers, regardless of the
miRNA effect sizes. Lasso, EN, mimi-surv with EN and lasso
penalties had smaller power than the other methods. While
the powers generally increased with the miRNA effect size,

their ranks vary widely (Figure 4). Higher censoring rate
yielded generally lower power. Note that those tendencies
were maintained even if γ, w, or the number of connected
mRNAs were changed.

Figure 5 shows the barplots comparing the power of each
method for a fixed miRNA effect size (γ = 0.2) and various
mRNA effect sizes with censoring fractions of 0.15 and 0.3.
Similarly, mimi-surv with ridge penalty showed the largest
power. Unlike the results from Figure 4, mimi-surv with EN
and lasso showed comparable power to grplasso when the
number of causal miRNA increases. The same tendency was
observed for various values of γ and w. In addition, the power
differences between the results from various values of γ and
w were small.

SNUH Dataset Analysis Result
In order to identify miRNA-mRNA integration sets, 54 miRNA-
mRNA integration sets were selected to which mimi-surv along
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FIGURE 5 | Statistical powers of mimi-surv and the compared methods with different mRNA effect sizes (w = 0.5, 0.6, and 0.7). The phenotypes were generated
from two, five and ten causal miRNA-mRNA integration set and censoring fraction of 0.15 and 0.3.

with other methods was applied to identify significant miRNA-
mRNA integration sets. In this analysis, we focused on comparing
the lists of significant miRNAs obtained from single, ridge, lasso,
EN, grplasso, and mimi-surv (Lee and Silvapulle, 1988; Tibshirani,
1996; Zou and Hastie, 2005; Meier et al., 2008).

Figure 6 shows a Venn diagram displaying the number of
miRNAs identified by each method, in which the number without
brackets shows the number of miRNAs reported in other studies,
and those within brackets show the total number of miRNAs
found significant by each method. Note that the largest number
of miRNAs was detected by single marker analysis. Interestingly,
about half (6 out of 14) overlapped with other methods. Of
these, mimi-surv detected a total of six miRNAs, in which four
miRNAs were reported in other PDAC analyses (Ma et al., 2014;
Tanaka et al., 2014; Debernardi et al., 2015; Li et al., 2015; Cheng
et al., 2017). In general, the penalized Cox-PH methods identified
relatively fewer miRNAs than other methods, but ridge penalty

had the largest detection rate. Note that all methods commonly
detected miR-204, which is known for the differential expression
relationship between PDAC stage I and stage II-IV samples
(Debernardi et al., 2015). In addition, miR-204 has been used
to distinguish solid pseudo-papillary tumors from pancreatic
malignancies (Li et al., 2015).

TCGA Dataset Analysis Result and
Comparison
For the analysis of TCGA data, 23 miRNA-mRNA integrations
pairs were constructed. Table 2 shows information for the
miRNAs detected in the TCGA dataset analysis. For the TCGA
data analysis, all the compared methods including single marker
analysis and penalized regression methods failed to identify any
significant miRNAs. However, mimi-surv detected five significant
miRNAs with their significant genes, using various types of
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FIGURE 6 | Venn diagram for the number of miRNAs detected by each method in analysis of PDAC data from SNUH. The numbers without brackets show the
numbers of miRNAs found in other PDAC analyses, while those within brackets show the number of miRNAs not previously identified.

TABLE 3 | Results of statistically significant miRNA and its significant mRNAs from both datasets using mimi-surv.

miRNA # mRNAs # significant mRNAs (names) βmimi pmimi qmimi Penalty

S N U H miR-204 5 N/A −0.018 0.015 0.690 Ridge

1 (GRIN2B) −0.179 0.004 0.221 Lasso

1 (GRIN2B) −0.142 0.031 0.490 EN

N/A −0.179 0.021 0.382 maxT

miR-93 901 9 −0.406 0.012 0.319 Lasso

7 −0.544 0.003 0.178 EN

N/A −0.544 0.005 0.259 maxT

miR-212 2 1 (PAX5) 0.015 0.045 0.690 Ridge

1 (PAX5) 0.008 0.033 0.601 Lasso

miR-96 34 2 (GPM6B, EPHA3) 0.209 0.017 0.462 EN

N/A 0.209 0.020 0.382 maxT

miR-497 189 2 (LRRC14, PHF13) −0.252 0.036 0.490 EN

N/A −0.252 0.046 0.620 maxT

miR-339 46 N/A 0.024 0.045 0.690 Ridge

T C G A miR-133b 281 2 (ELFN1, KCNJ12) 0.679 0.010 0.218 EN

N/A 0.679 0.002 0.044 maxT

miR-200c 15 2 (BASP1, LPAR1) 0.131 0.038 0.154 Lasso

N/A 0.131 0.029 0.167 maxT

miR-506 109 2 (OXSR1, RAB43) 0.023 0.040 0.249 Ridge

miR-206 115 N/A 0.018 0.018 0.142 maxT

miR-96 43 2 (FRMD4A, SH3BP5) 0.419 0.021 0.244 EN

N/A 0.419 0.004 0.046 maxT

The replicated miRNA (miR-96) has embolden, and the significant mRNAs after the multiple testing adjustment (miR-96 and miR-133b) has underlined.

penalties. Among those results, we successfully replicated one
miRNA miR-96, which was identified in the analysis of SNUH
dataset. miR-96 is a well-known marker as a suppressor of
the KRAS signaling pathway (Tanaka et al., 2014). Among
our detected miRNAs, miR-200c, miR-506, and miR-96 were

previously reported in other PDAC studies (Mees et al., 2010;
Bryant et al., 2012; Tanaka et al., 2014; Cheng et al., 2016; Pan
et al., 2018; Zhuo et al., 2018).

Table 3 lists the significant miRNAs and their significant target
mRNAs detected by mimi-surv from both datasets. Interestingly,
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using the proposed maxT approach, mimi-surv successfully
identified two significant miRNAs (miR-96 and miR-133b) after
the multiple testing adjustment (FDR q-value < 0.05), and one of
those miRNAs (miR-96) was the replicated miRNA. In addition,
our approach successfully showed the advantage of penalization
approach. For instance, miR-93 has more than 901 target mRNAs,
therefore the significance level after multiple testing adjustment
can be dramatically small. However, only 7 mRNAs were found
significant by EN, and only 9 mRNAs were found significant
by lasso. As a result, by using mimi-surv, we could reduce the
number of candidate miRNA-mRNA sets.

DISCUSSION

In this study, we proposed mimi-surv which is a novel approach
to identifying significant miRNA-mRNA sets associated with
survival time, reflecting the nature of biological process between
miRNA and mRNA. The objective of our analysis is to propose an
integrative method for using an additional information of mRNA
to the analysis of miRNA. Thus, we investigated how much the
integrative analysis of miRNAs and mRNAs performs better than
the other integrative methods using both miRNAs and mRNAs
and the model using only miRNAs.

Through simulation studies, we compared the performance
of mimi-surv, with various methods such as a single Cox-PH
model, penalized Cox-PH methods with ridge, lasso, EN penalties
and grplasso, including selection of optimal penalties. From
the simulation results, it was shown that mimi-surv with ridge
penalty outperformed other methods, in terms of the statistical
power. The analysis of two real datasets of PDAC patients
from SNUH and TCGA on which mimi-surv showed superior
performance in identifying miRNA-mRNA integration sets for
survival time. Moreover, mimi-surv successfully replicated one
miRNA (miR-96) from TCGA dataset with statistical significance
(q-value < 0.01), despite difference of the generation platform
(Affymetrix chip vs. Illumina sequencing).

Our study remains with some limitations. First, although
our simulation study based on the real SNUH dataset and
simulated phenotypes showed that performance of mimi-surv
with ridge penalty had better power than other penalties, mimi-
surv with maxT approach or EN penalty detected more miRNAs
in real PDAC data analysis. It is well known that selection
of optimal penalty is challenging for Cox-PH model (Benner
et al., 2010; Ojeda et al., 2016). For real data application, we
recommend trying all applicable penalties to the dataset and
select the penalty with less excessive shrinkage and lower dataset
dependency. Although some additional simulation studies are

required to evaluate performance, the maxT approach can be
alternatively used. Finally, our permutation strategy requires an
intensive computational burden to compute p-values. Thus, in
future studies, we will derive a statistical distribution of the
beta coefficient in mimi-surv, to avoid permutation procedures.
Nonetheless, our mimi-surv remains promising for associating
survival time with the expression of miRNAs and small non-
coding RNAs whose misexpression is now widely accepted.
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With the increasing availability and dropping cost of high-throughput technology in
recent years, many-omics datasets have accumulated in the public domain. Combining
multiple transcriptomic studies on related hypothesis via meta-analysis can improve
statistical power and reproducibility over single studies. For differential expression (DE)
analysis, biomarker categorization by DE pattern across studies is a natural but critical
task following biomarker detection to help explain between study heterogeneity and
classify biomarkers into categories with potentially related functionality. In this paper,
we propose a novel meta-analysis method to categorize biomarkers by simultaneously
considering the concordant pattern and the biological and statistical significance across
studies. Biomarkers with the same DE pattern can be analyzed together in downstream
pathway enrichment analysis. In the presence of different types of transcripts (e.g.,
mRNA, miRNA, and lncRNA, etc.), integrative analysis including miRNA/lncRNA target
enrichment analysis and miRNA-mRNA and lncRNA-mRNA causal regulatory network
analysis can be conducted jointly on all the transcripts of the same category. We applied
our method to two Pan-cancer transcriptomic study examples with single or multiple
types of transcripts available. Targeted downstream analysis identified categories of
biomarkers with unique functionality and regulatory relationships that motivate new
hypothesis in Pan-cancer analysis.

Keywords: biomarker categorization, differential expression, meta-analysis, pan-cancer, transcriptomics

INTRODUCTION

The revolutionary advancement of high-throughput technology in recent years has generated
large amounts of omics data of various kinds (e.g., genetics variants, gene expression and
DNA methylation, etc.), which improves our understanding of human disease and enables the
development of more effective therapies in personalized medicine (Richardson et al., 2016). As
more studies are conducted on a related hypothesis, meta-analysis, by combining evidence from
multiple studies, has become a popular choice in genomic research to improve upon the power,
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accuracy, and reproducibility of individual studies (Ramasamy
et al., 2008; Begum et al., 2012; Tseng et al., 2012). One of the main
purposes of transcriptomics studies is to identify genes or RNAs
that express differently between two or more conditions (e.g.,
diseased patients vs. healthy controls), also known as differential
expression (DE) analysis or candidate biomarker detection. Many
meta-analysis methods have been developed or applied to DE
analysis, including combining p-values (Fisher, 1992) or effect
sizes (Choi et al., 2003) and rank-based approaches (Hong et al.,
2006). One may refer to Tseng et al. (2012) for an overview of
the major meta-analysis methods in transcriptomic studies and
Ma et al. (2019) for an overview of available software tools. Yet,
a majority of conventional meta-analysis methods only generate
a list of differentially expressed genes with strong aggregated
evidence without further investigating in what studies are the
genes differentially expressed.

Study or population heterogeneity always exists and has
been critical to biomarker detection (Di Camillo et al., 2012).
For example, The Cancer Genome Atlas (TCGA) consortium
completed a Pan-Cancer Atlas of multi-platform molecular
profiles spanning 33 cancer types in an effort to provide insights
into the commonalities and differences across tumor lineages
(Weinstein et al., 2013; Hoadley et al., 2018). When meta-
analysis is performed on Pan-cancer transcriptomic studies,
we expect to see both DE genes common in all tumor
types as well as genes differentially expressed in some tumor
types but not others. Biomarker categorization according to
their DE patterns across studies is demanding in genomic
studies for three reasons. First, biomarkers that share unique
cross-study DE patterns are potentially involved in related
functions (Berger et al., 2018). Such unique categories of genes
with similar function can be used to generate new biological
hypotheses. Second, biomarker categorization can make high
dimensional genomic data more tractable. For example, in
cancer transcriptomic studies, which frequently detect thousands
of DE genes, downstream analysis methods such as pathway
enrichment analysis or network analysis cannot be applied
directly. By partitioning the original large set of DE genes
into smaller subsets, biomarker categorization facilitates more
focused downstream analysis. Third, RNA sequencing (RNA-
seq) technology has led to an explosion of transcriptomic studies
profiling both coding (i.e., mRNA) and noncoding RNAs (i.e.,
miRNA, rRNA, lncRNA, etc.) (Di Bella et al., 2020). Joint analysis
of different RNA types with the same cross-study DE patterns can
improve understanding of their regulatory relationships, which
may lead to inferences about the underlying mechanisms of
complex human diseases like cancer.

Li and Tseng (2011) first proposed an adaptively weighted
Fisher (AW-Fisher) method for biomarker categorization that
assigns a binary weight of 0 or 1 to each study and searches
for the pattern of weights that minimizes the aggregate statistics
for each gene. Though the method incorporates statistical
significance by combining two-sided p-values across studies, it
does not take into account the direction of regulation (e.g.,
up-regulated or down-regulated). Other methods incorporate
biomarker categorization within the Bayesian framework and
combine one-sided p-values or Bayesian posterior probabilities

(Ma et al., 2017; Huo et al., 2019) but not the magnitudes of effect
sizes. In practice, biological significance (i.e., large effect size) and
statistical significance (i.e., small p-value) do not always occur
in tandem (depending on sample size and variance) though they
are equally important in interpreting study results (Sullivan and
Feinn, 2012; Solla et al., 2018).

In this paper, we propose a novel meta-analysis method to
detect and categorize biomarkers by simultaneously considering
concordant pattern (i.e., direction of regulation), biological
and statistical significance across studies. In addition, we
develop a permutation test to assess the uncertainty of the
proposed statistics and to control the false discovery rate (FDR).
When only coding genes are included, after categorization
we perform downstream pathway enrichment analysis with
topological information on each category of genes for more
biological insights (Figure 1A). In the presence of diverse
RNAs, we jointly analyze all RNA species in the same category
using miRNA/lncRNA target enrichment analysis and lncRNA-
mRNA and miRNA-mRNA causal regulatory network analysis
(Figure 1B). We show by simulation that our method detects
both concordant and discordant biomarkers and assigns the
correct weights. We apply our method to two Pan-cancer
transcriptomic data examples: (1) Pan Gynecologic cancer (Pan-
Gyn) data with coding genes only; (2) Pan Kidney cancer (Pan-
Kidney) data that include mRNA, miRNA as well as lncRNA.
The identified biomarker categories show unique functionality
and informative regulatory relationships and could suggest new
hypotheses about mechanisms underlying exclusive and shared
features of different cancer types.

MATERIALS AND METHODS

Popular Meta-Analysis Methods
Tseng et al. (2012) reviewed the major types of meta-analysis
methods for DE gene detection in microarrays and classified the
methods into four main classes: combining p-values, combining
effect sizes, combining ranks, and direct merging. We will discuss
selected meta-analysis methods from the first two classes that are
relevant to our proposed method.

Combining P-Values
Fisher’s method (Fisher, 1992)
The conventional Fisher’s method combines log transformed
p-value from each study with the statistic TFisher =

−2
K∑

k=1
log

(
pk
)
, which follows a χ2 distribution with 2K

degrees of freedom under the null hypothesis (i.e., genes not
differentially expressed in all studies), where K is the number of
studies and pk is the p-value of study k, 1 ≤ k ≤ K.

Stouffer’s method (Stouffer, 1949)
The Stouffer’s method proposes inverse normal transformation of
p-value with the statistic TStouffer

∑K
k=18

−1(1− pk)/
√
K, which

follows a standard normal distribution under the null, where
8−1(x) is the inverse cumulative distribution function of the
standard normal distribution.
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FIGURE 1 | Conceptual framework of our method. (A) The scenario with mRNA (or coding genes) only. The heatmap shows the gene expression of all samples from
three studies. Rows refer to genes sorted by the specified weight category, columns refer to samples, and solid white lines are used to separate different conditions
(control vs. case). Colors of the cells correspond to scaled expression level. The green/red indicates lower/higher expression. Pathway enrichment analysis is applied
to genes belonging to the same weight category with topological information to visualize the cross-study DE patterns at the molecular level. (B) The scenario with
diverse RNA species (e.g., mRNA, miRNA, and lncRNA). The three heatmaps show the expression of different types of transcripts of all samples from three studies,
sorted by weight category. In the presence of multiple types of RNA species, we will perform integrative analysis on all the transcripts belonging to the same weight
category together. Possible downstream analysis includes miRNA/lncRNA target enrichment analysis and lncRNA-mRNA and miRNA-mRNA causal regulatory
network analysis.

Adaptively weighted fisher’s method (AW-Fisher) (Li and
Tseng, 2011)
Fisher’s method does not differentiate DE in a single study or
multiple studies as long as their aggregate contribution to the final
statistics remains the same. To overcome this and better explain
the between study heterogeneity, Li and Tseng (2011) introduced
an AW-Fisher’s method as a modification of the original
Fisher’s method. The AW-Fisher method considers U(−→w ) =
−2

∑K
k=1 wklog(pk) for each gene, where−→w = (w1, . . . ,wK) and

each wk is a binary weight of 0 or 1 assigned to each study k.
Denote by p

(
U(−→w )

)
the p-value when the weight−→w is given, the

AW-Fisher statistic is defined as:TAW = min−→w p
(
U(−→w )

)
, where

the optimal weight (ŵ1, . . . , ŵK) that minimizes the p-value
indicates the subset of studies that contribute to the aggregate
statistics and naturally categorizes the biomarkers. There is no
closed-form distribution for AW-Fisher statistics under the null,
so permutation tests and importance sampling is used to obtain
the p-value and control the FDR.

Combining Effect Size
Fixed effect model (FEM) and random effect model (REM)
(Choi et al., 2003)
Fixed effect model (FEM) combines effect sizes across all studies
for each gene using a simple liner model: Tk = µ+ εk, εk ∼

N(0, s2k), where µ is the overall mean and the within-study
variance s2k represents the sampling error conditioned on study k.
The combined point estimate of µ is a weighted average of study-
specific effect sizes, where weights are equal to the inverse of s2k.
FEM will prioritize concordant genes with the same directionality
across all studies.

When strong between studies heterogeneity exists and the
underlying population effect size is assumed to be unequal across
studies, an REM is given hierarchically as Tk = θk + εk, εk ∼

N
(
0, s2k

)
; θk = µ+ δk, δk ∼ N(0, τ2), where between-study

variance τ2 represents the additional source of variability between
studies. A homogeneity test can be performed to test whether
τ2 is zero or not, and determine the appropriateness of FEM
or REM. Like FEM, REM also prioritizes concordant genes but
with more flexibility across studies. Neither of FEM nor REM
produces biomarker categorization results.

Remarks
P-value combination methods are powerful for detecting genes
that have non-zero effects in at least one study (HSB alternative
hypothesis setting as in Chang et al. (2013) without considering
the magnitudes and directionality of effects across studies.
Thus, p-value methods cannot distinguish concordant genes (i.e.,
upregulated or downregulated in all studies) from discordant
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genes (i.e., upregulated in some studies but downregulated
in others). In contrast, effect size combination methods
take directionality into account but favor only concordant
genes. Even so, discordant genes can still be of interest
in, for example Pan-cancer analysis, to understand between
tumor heterogeneity. We, therefore, propose a new meta-
analysis method that incorporates both p-value and effect size
combination methods, and considers concordant pattern as well
as biological and statistical significance simultaneously to assist
biomarker detection and categorization. Here we will introduce
our method namely BCMC (Biomarker Categorization in Meta-
analysis by Concordance).

New Meta-Analysis Method for
Biomarker Detection and Categorization
Suppose there are K transcriptomic studies, each study k (1 ≤
k ≤ K) measures the gene expression of nk samples and G genes.
We use gene expression as example to introduce our method
though the method is ready to analyze other types of transcripts
such as miRNA and lncRNA. Our objective in meta-analysis is to
detect candidate genes differentially expressed between the case
(e.g., patients diagnosed with disease) and control (e.g., healthy
subjects) group in multiple studies and categorize the detected
genes by their DE patterns across studies. We first perform DE
analysis using popular methods such as limma (Ritchie et al.,
2015) for microarray or DESeq2 (Love et al., 2014) for RNA-seq
in each study and obtain the summary statistics including effect
size estimates (log2 fold change or LFCgk) and p-values (pgk) for
each gene g (1 ≤ g ≤ G) in each study k. Effect sizes and p-values
represent biological and statistical significance, respectively, and
can be treated as DE evidence for single studies. The smaller
the p-value and the larger the magnitude of effect size, the more
likely a gene will be a DE gene in the study. In meta-analysis,
concordance (i.e., a gene having the same sign of effect size in
different studies) is regarded as additional piece of DE evidence.
We define gth gene as being up-regulated in kth study when
LFCgk > 0 (i.e., having higher expression in case group) and being
down-regulated when LFCgk < 0 (i.e., having higher expression
in control group).

When integrating multiple transcriptomic studies, DE genes
may be altered in study-specific patterns. For example, some
genes are differentially expressed in all studies while others
are only differentially expressed in specific subset of studies.
Meta-analysis methods also have different groups of targeted
biomarkers as reflected by different statistical hypothesis settings.
The null hypothesis for each gene in meta-analysis is commonly
defined as: H0 : θg1 = · · · = θgK = 0, where θgk represents the
true effect of gene g in study k. Depending on the types of targeted
biomarkers, three alternative hypotheses have been proposed in
the meta-analysis literature (Birnbaum, 1954; Tseng et al., 2012;
Song and Tseng, 2014). The first setting (HSA) aims to detect DE
genes that have non-zero effect in all studies, i.e., θgk 6= 0 for all
k. The second setting (HSB) aims to detect DE genes that have
non-zero effect in at least one study, i.e., θgk 6= 0 for some k. The
third setting (HSr) aims to detect DE genes that have non-zero
effect in at least r studies, i.e.,

∑K
k=1 I

{
θgk 6= 0

}
≥ r. As we show

next, our method generally follows HSr setting with specifically
r = 2 (i.e., we detect DE genes that have non-zero effect in at
least two studies).

To detect DE genes and categorize them by cross-study DE
patterns, we propose the following two aggregate statistics for
each gene that combines DE evidence across up-regulated studies
or down-regulated studies, respectively:

T+
g(−→w +g )

=

∑
LFCgk>0; LFCgk′>0; k6=k′(w

+

gkw
+

gk′LFCgkLFCgk′

|log10pgk + log10pgk′ |)∑
k w
+

gk

T−
g(−→w −g )

=

∑
LFCgk<0; LFCgk′<0; k6=k′

(w−gkw
−

gk′LFCgkLFCgk′ |log10pgk + log10pgk′ |)∑
kw−gk

,

where w+gk and w−gk are binary weights of 0 or 1 assigned
to the kth study for gth gene, indicating whether a study is
selected for inclusion in aggregate statistics or not, +/− indicate
upregulation or downregulation part, −→w +g =

(
w+g1, . . . ,w

+

gK

)
and −→w −g =

(
w−g1, . . . ,w

−

gK

)
. LFCgk is the log2 fold change and

pgk the corresponding p-value for gene g in study k obtained from
single study DE analysis.

For gth gene, T+
g(−→w +g )

aggregates the information of single

study summary statistics (including both p-value and effect size)
over up-regulated studies (i.e., those studies with LFCgk > 0),
while T−

g(−→w −g )
aggregates that over down-regulated studies (i.e.,

those studies with LFCgk < 0). The binary weights are used to
indicate what studies to include to the aggregate statistics and the
optimal weights that maximize the statistics will be searched for
each gene. In the proposed aggregate statistics, we simultaneously
account for concordant patterns (where LFCgk and LFCgk′ have
the same sign), biological significance (estimated as the product
of LFCgk) and statistical significance [estimated as the sum of
log10(pgk)]. This will encourage combining studies with the same
directionality to find the best evidence for DE, which is consistent
with the purpose of meta-analysis to identify more reproducible
genes in multiple studies. Similar statistics have been proposed
for concordant and discordant analysis of orthologous genes
between a pair of species (Domaszewska et al., 2017). From the
formula, we can see that the proposed statistic is essentially a
weighted average of all study pairs with effect sizes in the same
direction. A weighted average of all studies instead of study
pairs is an alternative approach but it tends to exclude studies
with moderate effect sizes or p-values (see a toy example in
Supplementary Table 1).

By default, we assume w+gk = 0 for studies with LFCgk < 0
and w−gk = 0 for LFCgk > 0 to avoid conflict between the two
statistics. When no studies are up-regulated or down-regulated
for a particular gene, we suppress the corresponding T+

g(−→w +g )
or

T−
g(−→w −g )

to zero and assign zero weights. The statistics aggregates

over study pairs so we need to choose at least two studies to
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make it meaningful. When only one study is up-regulated or
down-regulated, we also suppress the corresponding T+

g(−→w +g )
or

T−
g(−→w −g )

to zero.

We then search for the optimal weights to identify the subset
of studies that maximize each of the two aggregate statistics.
Such optimal weights describe the DE patterns of each gene
across studies and provide natural categorization of all genes with
potential biological interpretation. The corresponding maximum
statistics are defined as:

R+g = max
−→w +g ∈W

T+
g(−→w +g )

;R−g = max
−→w −g ∈W

T−
g(−→w −g )

,

where W is the pre-defined searching space of weights with
aforementioned restrictions. The resulting optimal weights
are denoted as −→w +∗g and −→w −∗g . The biomarkers are then
categorized according to the distribution of optimal weights
among studies by merging the information of w+∗g and

w−∗g , i.e., the final weights −→w ∗g =
−→
1 ◦ −→w +∗g +

−→
−1 ◦ −→w −∗g

For example, concordantly up-regulated genes with −→w +∗g =
(0, 0, 1, 1, 1) and −→w −∗g = (0,0,0,0,0) will be in one category
[−→w ∗g = (0, 0, 1, 1, 1)], while concordantly down-regulated genes
with −→w +∗g = (0, 0, 0, 0, 0) and −→w −∗g = (0,0,1,1,1) will be in
the other category [−→w ∗g = (0, 0,−1,−1,−1)]. Note that the
proposed statistics can describe both up-regulated and down-
regulated patterns in the same gene, thus also allowing the
detection of discordant genes. In cases both patterns exist and
we want to find a dominant pattern in the discordant gene, we
can further define Rg = max (R+g , R

−
g ) and use the corresponding

−→w +∗g or−→w −∗g for biomarker categorization.
To assess the uncertainty of R+g and R−g and determine DE in

meta-analysis, we develop a permutation-based test to calculate
the p-value and FDR adjusted p-value (also known as q-value)
of the statistics. We permute group labels (i.e., case or control
group) in each study B times and calculate the maximum statistics
in each permuted dataset. For each gene, we obtain two p-values
corresponding to R+g and R−g , respectively:

p+g
(R+g )
=

∑B
b=1

∑G
g′=1 I

{
R+(b)g′ ≥ R+g

}
+ 1

B ∗ G+ 1
;

p−g
(R−g )
=

∑B
b=1

∑G
g′=1 I

{
R−(b)g′ ≥ R−g

}
+ 1

B ∗ G+ 1
,

where R+(b)g′ and R−(b)g′ are the maximum statistics for gth gene
in bth (1 ≤ b ≤ B) permutation. The value of one is added to
both numerator and denominator to avoid zero p-values. After
p-values are generated, we further estimate the proportion of null
genes π0 as:

π̂+0 =

∑G
g=1 I{p

+
g
(R+g )

εA}

G ∗ `(A)
; π̂−0 =

∑G
g=1 I{p

−
g
(R−g )

εA}

G ∗ `(A)
,

normally we choose A = [0.5, 1] and ` (A) = 0.5 to estimate the
null proportion, following the guidance in the previous methods
and the literature of FDR (Storey, 2002; Storey and Tibshirani,
2003; Li and Tseng, 2011). In most cases, the density of p-values
beyond 0.5 is fairly flat, implying most null p-values are located
in this region. In practice, depending on the problem, other
common choices of A = [0.05,1] or A = [0.025,1] can also
be applied. The optimal A can be empirically determined by
minimizing some loss function, we do not discuss further here
and refer readers to Storey (2002), Storey and Tibshirani (2003)
for more details.

Then, q-values can be calculated as

q+g
(R+g )
=

π̂+0
∑B

b=1
∑G

g′=1 I
{
R+(b)g′ ≥ R+g

}
+ 1

B ∗
∑G

g′=1 I
{
R+g′ ≥ R+g

}
+ 1

,

q−g
(R−g )
=

π̂−0
∑B

b=1
∑G

g′=1 I
{
R−(b)g′ ≥ R−g

}
+ 1

B ∗
∑G

g′=1 I
{
R−g′ ≥ R−g

}
+ 1

Likewise, p-value and q-value of the dominant pattern
statistics Rg (i.e., pg(Rg) and qg(Rg)) can be obtained in the
same way. In real data application, we determine DE in meta-
analysis using the permuted p-value or q-value for the dominant
pattern. Note that p-values and q-values of a zero R+g or R−g
are equal to one.

Downstream Analysis on Each Identified
Categories of Biomarkers
Each transcriptomic study was carefully assessed for inclusion
to meta-analysis using objective criteria or systematic quality
control methods (Kang et al., 2012). When only expression of
mRNA data is available for the K selected transcriptomic studies,
we applied our meta-analysis and identified multiple categories
of mRNAs at certain BCMC p-value or q-value cutoffs, each with
a unique DE pattern across the studies. DE analysis is useful
to narrow down targets but focusing on single gene change
across datasets is not sufficient. We still need to conduct further
investigation on whether mRNAs belonging to the same category
contain unifying biological theme. For each unique category of
mRNAs, we then performed pathway enrichment analysis to
gain more insights into their unique functions (section “Pathway
Enrichment Analysis of mRNA Expression”). When expression
data of mRNA, miRNA and lncRNA are all available, we applied
our meta-analysis method to each type of transcripts separately
and then analyzed each unique category of differentially
expressed mRNA, miRNA, and lncRNA (those with the same
weight or same cross-study DE pattern) together. Specifically,
we performed miRNAs/lncRNAs target gene enrichment analysis
(section “miRNAs/lncRNAs Target Gene Enrichment Analysis”)
and LncRNA-mRNA and miRNA-mRNA causal regulatory
network analysis (section “LncRNA-mRNA and miRNA-mRNA
Causal Regulatory Network Analysis”).
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Pathway Enrichment Analysis of mRNA Expression
For each category of mRNAs with unique DE pattern across
the studies, we looked for biological pathways that are enriched
in each category of genes more than would be expected by
chance. The enriched pathways for each category can infer the
unique biological functions only associated with specific study
subsets and help generate new hypotheses. The p-value for the
enrichment of a pathway was calculated using Fisher’s exact test
(Upton, 1992) and multiple testing was corrected by Benjamini-
Hochberg (BH) procedure (Benjamini and Hochberg, 1995).
Multiple popular pathway databases were used including Gene
Ontology (GO) (Ashburner et al., 2000), Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa et al., 2017), Oncogenic
signaling Pathways (Sanchez-Vega et al., 2018) and Reactome
(Fabregat et al., 2016). Pathways in each pathway database was
carefully selected for their relatedness to the problem of interest
and small pathways (e.g., pathway size <10) were filtered out for
the lack of power. For pathways with topological information
available (e.g., pathways in KEGG), we apply the R package
“Pathview” (Luo and Brouwer, 2013), to display the study-specific
information (e.g., weights, effect sizes, etc.) on relevant pathway
topology graphs.

miRNAs/lncRNAs Target Gene Enrichment Analysis
Going beyond the traditional central dogma, non-coding RNAs
such as micro-RNA (or miRNA) and long non-coding RNAs
(lncRNA) play important regulatory roles in mRNAs expression
(Bartel, 2004; Hubé and Francastel, 2018). To understand
whether miRNA/lncRNA target at mRNAs in the same category
with unique cross-study DE pattern, we analyzed each unique
category of mRNA, miRNA and lncRNA of the same cross-
study DE pattern together and performed miRNA/lncRNAs
target gene enrichment analysis on each category. Specifically,
for each unique category, we first used the miRTarBase database
(Chou et al., 2018) and LncRNA2Target v2.0 database (Cheng
et al., 2019) to obtain common target genes of each miRNA and
lncRNA in this category. We then looked for miRNA/lncRNA
with target genes enriched in the gene list falling in the same
category more than would be expected by chance. The p-value for
the enrichment of miRNA/lncRNA was calculated using Fisher’s
exact test (Upton, 1992) and multiple testing was corrected by BH
procedure (Benjamini and Hochberg, 1995).

LncRNA-mRNA and miRNA-mRNA Causal
Regulatory Network Analysis
In addition to target gene enrichment analysis, we are also
interested in investigating the causal regulatory relationship
among the various types of transcripts in the same category
using network analysis. For each unique category of mRNA and
lncRNA with the same cross-study DE pattern, we followed the
MSLCRN pipeline to perform module-specific lncRNA-mRNA
regulatory network analysis (Zhang et al., 2019). The MSLCRN
pipeline starts by using WGCNA (Langfelder and Horvath,
2008) to construct lncRNA-mRNA co-expression networks and
identify modules that contain both lncRNA and mRNA. For
each lncRNA-mRNA module, parallel IDA (Le et al., 2016) is
then applied to learn the causal structure and estimate the causal
effect of lncRNA on mRNA. IDA consists of two main steps. It

first uses a parallel version of the PC algorithm (Spirtes et al.,
2000; Kalisch and Bühlman, 2007; Le et al., 2016), commonly
used approach for learning the causal structure of a Bayesian
network, to obtain the directed acyclic graphs (DAGs) for each
module. Then, the causal effect of lncRNAs on mRNAs (i.e., the
lncRNA ≥ mRNA directed edges in the DAG) are estimated
by applying do-calculus (Pearl, 2000), causal calculus that uses
Bayesian conditioning to generate probabilistic formulas for
the causal effect. Lastly, the module-specific causal regulatory
networks are integrated to form the global lncRNA-mRNA causal
regulatory network and visualized using Cytoscape (Shannon
et al., 2003). In constructing the regulatory network, we use
absolute values of the causal effects cutoffs to assess the regulatory
strengths and confirm the regulatory relationships. More details
on the use of MSLCRN to infer causal regulatory network can
be found in Zhang et al. (2019). Module-specific miRNA-mRNA
causal regulatory networks can be obtained in a similar way
using the same tool.

SIMULATION

We conduct simulation studies to evaluate the performance of
our method in biomarker detection and categorization when
compared to AW-Fisher (Li and Tseng, 2011), FEM and REM
methods (Choi et al., 2003). Only power is assessed for FEM
and REM methods since they do not categorize biomarkers. We
assume a total of G = 2000 genes expressed in K = 5 studies, each
study has a total sample size of n = 100, evenly split into control
and case groups

(
ncase = ncontrol =

n
2 = 50

)
. The details on how

data are simulated are described below:

1. We generate 800 genes with 40 gene clusters (20 genes
in each cluster) and another 1,200 genes that do not
belong to any cluster. The cluster indexes for each gene g(
1 ≤ g ≤ 2000

)
is randomly sampled.

2. For genes in cluster c (1 ≤ c ≤ 40) and study k (1 ≤
k ≤ 5), we first generate a covariance matrix according
to inverse Wishart distribution 6

′

ck ∼W−1(9, 60), where
9 = 0.5I20×20 + 0.5J20×20, I is the identity matrix and J
is the matrix with all elements equal to one. Then, we
standardized 6

′

ck into 6ck to make sure all the diagonal
elements are one.

3. We sample baseline gene expression levels of the
20 genes in cluster c for sample i in study k by(
X
′

gc1ik, . . . ,X
′

gc20ik

)T
∼ MVN(0, 6ck), where 1 ≤ i ≤ n

and 1 ≤ k ≤ K. For those 1200 genes that are not in
any cluster, we sample the baseline gene expression level
independently from N

(
0, σ2

k
)
, where 1 ≤ k ≤ 5 and σk ∼

Unif (σ− 0.2, σ+ 0.2) with σ = 2.
4. Denote by δgk ∈ {0, 1,−1} that gene g is non-DE, up-

regulated or down-regulated in study k. We assume the
first 800 genes to be DE genes divided into four mutually
exclusive parts:

(1) Concordantly up-regulated genes (N = 225): randomly
sample δgk ∈ {0, 1,−1} such that

∑
k
I{δgk=1} ≥ 2 and∑

k
I{δgk=−1} ≤ 1.
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FIGURE 2 | Plot of the number of true DE genes vs. top ranked genes by p-value of each method.

(2) Concordantly down-regulated genes (N = 225):
randomly sample δgk ∈ {0, 1,−1} such that∑
k
I{δgk=−1} ≥ 2 and

∑
k
I{δgk=1} ≤ 1.

(3) Discordant genes with both up-regulated and down-
regulated patterns (N = 150): randomly sample
δgk ∈ {0, 1,−1} such that

∑
k
I{δgk=1} ≥ 2 and∑

k
I{δgk=−1} ≥ 2.

(4) Other genes that are DE in only one study without any
concordant patterns (N = 200): we randomly sample
δgk ∈ {0, 1,−1} such that

∑
k
|δgk | = 1.

5. To simulate effect size for DE genes in each study (when
δgk 6= 0), we sample from a uniform distribution µgk ∼

Unif (1, 3). The gene expression level Xgik are assumed to
be X

′

gik for control samples and Xgik = X
′

g(i+n/2)k + µgk ·

δgk for case samples, where 1 ≤ g ≤ 2000, 1 ≤ i ≤ n/2, and
1 ≤ k ≤ 5.

To assess power and biomarker categorization performance,
we focus on DE genes in the first three categories of genes
with concordant patterns in at least two studies (N = 600). We
also simulate additional scenario with smaller sample size and
variance: n = 20 & σ = 1, results are included in the Supplement
(Supplementary Figure 1 and Supplementary Table 2).

Figure 2 shows the number of true DE genes detected among
the top genes ranked by p-value for each method. BCMC is more
powerful than AW-Fisher and FEM/REM by detecting more true
DE genes among the top ranked genes. Table 1 summarizes
the number of true DE genes detected as well as with correct
weight pattern in each of the three categories of DE genes
identified by each method. BCMC and FEM detect more true DE
genes than AW-Fisher for concordant genes. Due to the model

restriction, FEM and REM fail to detect most discordant genes.
AW-Fisher is equally powerful as BCMC in detecting discordant
genes, however, it ignores the directionality of effects, and thus
assigns the incorrect weights to genes with both up-regulated
and down-regulated patterns (basically they fail to distinguish
w = −1 from w = 1). Our method detects these discordant
DE genes while at the same time assigns the correct weights
categorizing these genes.

REAL DATA APPLICATION

Gene Expression Analysis in
Pan-Gynecologic (Pan-Gyn) Studies
We applied our method to the gene expression data of
TCGA Pan-Gyn studies including high-grade serous ovarian
cystadenocarcinoma (OV), uterine corpus endometrial
carcinoma (UCEC), cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC), uterine carcinosarcoma
(UCS), and invasive breast carcinoma (BRCA) (Berger et al.,
2018). Berger et al. (2018) identified 23 genes (e.g., BRCA1,
PTEN, TP53, etc.) that were mutated at higher frequency
across all Pan-Gyn cancers than non-Gyn cancers, highlighting
the similarities across Pan-Gyn cohort. We focused on 19 of
these genes and split samples in each study into a mutation
“carrier” group and a mutation “non-carrier” group depending
on whether subjects gained mutations in at least one of the genes
(Supplementary Figure 2). Since no or very few samples were
assigned to the mutation carrier group for UCS (Nmutation = 0)
and UCEC (Nmutation = 8), we excluded those two studies and
restricted our meta-analysis to only three gynecologic cancer
types (i.e., number of studies K = 3) including OV (mutation
carrier vs. non-carrier: 217/90), BRCA (692/408) and CESC
(109/197). The purpose is to detect differentially expressed genes
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TABLE 1 | Summary of number of true DE genes detected and with correct weight patterns by the four methods in each of the three categories of DE genes described
in the simulation setting.

Methods BCMC AW-Fisher FEM REM

DE Gene categories Number of
true DE genes

Number of true DE genes
with correct weight

Number of
true DE genes

Number of true DE genes
with correct weight

Concordant up (N = 225) 206 116 195 106 203 151

Concordant down (N = 225) 210 119 195 108 201 144

Discordant (N = 150) 148 135 148 0 47 2

Total (N = 600) 564 370 538 214 451 297

between mutation carrier and non-carrier groups and categorize
them according to their cross-study DE patterns. We found the
overall survival differed significantly between the two groups for
each cancer type (Supplementary Figures 3–5). This implied the
differentially expressed biomarkers between these two groups can
have potential prognostic values related to mutational processes
and serve as optimal therapeutic intervention targets (Helleday
et al., 2014; Lawrence et al., 2014).

The RNA-seq data in Transcripts Per Million (TPM) values of
each cancer type were downloaded from LinkedOmics (Vasaikar
et al., 2018). We first merged the three datasets by matching
the gene symbols and removed genes with mean TPM < 5.
A total of 9,900 mRNAs remained and were log2 transformed
for analysis. We performed DE analysis by limma (Ritchie et al.,
2015) and obtained the p-value and LFC from each of the three
studies. We then performed meta-analysis using BCMC and
the other methods.

All methods detected thousands of DE genes at both q-value
cutoffs (for BCMC, q-value for dominant pattern was used so
we focused on concordant genes only), which is common in
Pan-cancer studies (Table 2). It becomes imperative task to
partition these DE genes into smaller subsets by cross-study
DE patterns before performing downstream analysis. BCMC
categorized these DE biomarkers (q < 0.05) into eight groups
according to the optimal weight assignments, each displaying a
unique expression pattern across the different studies (Figure 3
and Supplementary Table 3). We then merged genes with equal
|Ew∗g | into the same group (i.e., genes with Ew∗g = (0, 1, 1) and
those with Ew∗g = (0,−1,−1) are merged into the same group,
allowing both up-regulated and down-regulated genes in the
same pathway) and performed pathway enrichment analysis on
each of the four merged groups using four pathway databases:
GO (Ashburner et al., 2000), KEGG (Kanehisa et al., 2017),
Oncogenic (Sanchez-Vega et al., 2018) and Reactome (Fabregat
et al., 2016). The top 100 pathways enriched by each category

TABLE 2 | Summary of numbers of DE genes detected by each method at
different cutoffs for the Pan-Gyn study example. For BCMC, q-values for the
dominant pattern are used.

Methods

q-value BCMC AW-Fisher FEM REM

q < 0.05 1,345 3,113 2,866 983

q < 0.15 3,931 4,743 4,342 1,641

have little overlap partly validating our speculation in motivation
that the different categories of biomarkers may play different
functional roles (Figure 4). For example, top pathways for | Ew∗g | =
(1, 0, 1) (i.e., DE in OV and CESC but not in BRCA) are
mainly involved in cell junction and adhesion related functions
(Supplementary Table 4 in Supplemental File 1). Top pathways
for | Ew∗g | = (1, 1, 0) (i.e., DE in OV and BRCA but not in CESC)
are mainly involved in immune and defense response. Figure 5
shows the topology of one example KEGG pathway “Antigen
processing and presentation” enriched by the genes with | Ew∗g | =
(1, 1, 0). The highlighted DE genes showed strong DE signals
(signed LFC) in OV and BRAC but not in CESC. These genes
colocalized and interacted with each other as a functional unit
inside the pathway.

These unique gene sets of different cross-cancer DE patterns
and the associated pathways enriched help gain more insights
into the homogeneous and heterogenous molecular mechanism
of different Gynecologic cancer and assist the development of
useful diagnostic and therapeutic strategies common or specific
to cancer types. Understanding commonality and difference in
drug targets can also guide the drug repurposing strategy in
cancer drug development (Li et al., 2021).

Integrative Analysis of mRNA, lncRNA,
and miRNA in Pan-Kidney Studies
We also used BCMC to perform integrative analysis of three
different types of transcripts (mRNA, lncRNA, and miRNA) in
the TCGA Pan-Kidney cohort including kidney chromophobe
(KICH), kidney renal clear cell carcinoma (KIRC), and kidney
renal papillary cell carcinoma (KIRP). LncRNA and miRNA
have been found playing important regulatory roles on gene
expression in kidney cancers (Linehan et al., 2010; Linehan, 2012;
Ricketts et al., 2018). The integrative analysis of these multi-omics
data provides additional insights into the biological mechanism
underlying the multiple histologic subtypes of kidney cancers. We
aimed to detect the differentially expressed biomarkers (mRNA,
miRNA, or lncRNA) that drive the progression of kidney cancer
by comparing samples from early pathologic stage (stage I and II)
to late stage (stage III and stage IV) for three kidney cancer types
(i.e., number of studies K = 3) and investigating the regulatory
relationships among these biomarkers. Number of subjects in
the two pathologic stages of each kidney cancer available in
mRNA, miRNA and lncRNA expression data were summarized
in Supplementary Table 5.
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FIGURE 3 | Heatmap of standardized expression values of differentially expressed genes (BCMC q < 0.05) sorted by weight patterns for the Pan-Gyn cancer
example.

We downloaded mRNA (in Reads Per Kilobase of transcript
per Million mapped reads or RPKM) and miRNA (in Reads
Per Million mapped reads or RPM) sequencing data from
LinkedOmics (Vasaikar et al., 2018) and lncRNA sequencing
data (in RPM) from The Atlas of Noncoding RNAs in Cancer
(TANRIC) (Li et al., 2015) for all the three kidney cancer
subtypes. We first merged the three subtypes by matching
RNA symbols/IDs. We then separately filtered each of the
three types of biomarkers by removing mRNAs with mean
RPKM < 5, lncRNAs with mean RPM < 0.1, and miRNAs
with mean RPM = 0, followed by log2 transformation. A total
of 15,332 mRNAs, 2,415 lncRNAs and 719 miRNAs remained
for analysis. We performed DE analysis by limma (Ritchie
et al., 2015) in each study and then meta-analysis to categorize
biomarkers according to cross-study DE patterns for each RNA
species. For different types of RNA belonging to the same
category, we further performed miRNA target gene enrichment
analysis and lncRNA-mRNA causal regulatory network analysis
to understand their complex interacting relationships in
kidney cancer.

Both BCMC and AW-Fisher methods detected thousands of
differentially expressed biomarkers (including mRNA, lncRNA,
and miRNA) at both q-value cutoffs with high proportion
of overlap (Table 3). Biomarkers detected by BCMC tend
to have both significant p-values and large effect sizes in
the studies indicated by optimal weights (Supplementary
Figure 6). These biomarkers (q < 0.05) were partitioned into
eight categories by different weight patterns (Supplementary
Table 6). We merged biomarkers with the same | Ew∗g | into
the same group. We focused on the group with | Ew∗g | =
(1, 1, 1) to understand the common multi-omics regulatory
among all histologic subtypes of kidney cancer and performed
downstream analysis. In miRNA target gene enrichment analysis,
we found the target gene sets of two DE miRNAs “miR-
655” and “miR-326” were enriched in the DE gene list

FIGURE 4 | Venn diagram of top 100 pathways enriched by each of the four
categories [|w∗g| = (0,1,1) , (1,0,1) , (1,1,0) , and (1,1,1) ; corresponding
to OV, BRCA and CESC, respectively] for the Pan-Gyn study example.

in the same group (p < 0.05; Supplementary Table 7 in
the Supplementary File 1), implying the potential regulatory
relationship between different biomarker types consistent in all
kidney cancer subtypes. The gene ATAD2 targeted by miR-
655 was reported as a prognostic marker for kidney disease
(Chen et al., 2017). In causal network analysis, we identified two
lncRNA-mRNA regulatory networks (Supplementary Figure 8
and Supplementary Table 8). Figure 6 shows the network
with two hub lnRNAs, the hub lncRNA ENSG00000267449 and
several mRNAs belonging to the ribosomal protein family in the
same network were found consistently differentially expressed
in all three subtypes, implying their potentially joint role in
promoting the development of kidney cancers (Zhou et al., 2015;
Dolezal et al., 2018).
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FIGURE 5 | Visualization of the topology plot of a KEGG pathway “Antigen processing and presentation” enriched by the genes with |w∗g| = (1,1,0) (corresponding
to OV, BRCA and CESC, respectively) for the Pan-Gyn example. Each box that represents a gene is split into three parts to represent the three studies. Colors
indicate the signed LFC of the mapped DE genes in the three studies.

These results demonstrate the power of our method to
detect biomarkers of different types in Pan-cancer meta-
analysis and to categorize them into functionally relevant
biomarkers by DE patterns, which could suggest commonalities
and differences in underlying mechanisms of multiple
cancer types.

DISCUSSION

In this paper, we proposed a novel meta-analysis method for
candidate biomarker detection in multiple transcriptomic studies
that further categorizes biomarkers by concordant patterns as
well as by biological and statistical significance across studies.

TABLE 3 | Summary of number of differentially expressed biomarkers among each of the three RNA species detected by each method at different cutoffs for the
Pan-Kidney study example. For BCMC, q-values for the dominant pattern are used.

Type of biomarkers mRNA lncRNA miRNA

q-value BCMC AW-Fisher BCMC AW-Fisher BCMC AW-Fisher

q < 0.05 7,317 9,472 764 1,281 239 283

Intersection 6,391 622 206

q < 0.15 11,810 11,440 1,468 1,464 358 358

Intersection 10,057 1,244 292
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FIGURE 6 | One example lncRNA-mRNA regulatory network identified from
biomarkers with | w∗g| = (1,1,1) (corresponding to KICH, KIRC, and KIRP,
respectively) for the Pan-Kidney example. The circle shapes represent
lncRNAs highlighted in green and diamond shapes represent mRNAs
highlighted in purple. The arrows indicate the network relationships between
lncRNAs and mRNAs.

Numerous downstream analysis tools including pathway analysis
and causal network analysis are applied to each category
of biomarkers with either single or multiple types of RNA
species. Simulations and real data application to two Pan-cancer
multi-omics studies showed the advantage of our method in
classifying differentially expressed biomarkers into classes with
unique biological functions and relationships that can be further
investigated in future studies.

Meta-analysis is a set of statistical analytical methods and
tools that combine multiple related studies to improve power
and reproducibility over a single study. In recent years, we
have witnessed the development of many useful meta-analysis
methods applied to genomic studies for different biological
purposes (Choi et al., 2003; Shen and Tseng, 2010; Li and Tseng,
2011; Huo et al., 2016, 2020; Kim et al., 2016, 2018; Zhu et al.,
2017; Ma et al., 2019; Zeng et al., 2020). Genomic data is usually
of high dimension and the between study heterogeneity is large
due to both technological and cohort effects. In addition to
improving power, post-hoc categorization of biomarkers into
smaller subsets by cross-study patterns for subsequent analysis is

important in genomic meta-analysis. Our meta-analysis method
that aggregates over both p-value and effect size is a fast and
intuitive solution for this purpose. Compared to other popular
meta-analysis methods that include biomarker categorization,
our method considers concordant pattern, and biological and
statistical significance simultaneously. By calculating statistics
separately for up-regulated and down-regulated parts, we can
detect both concordant genes that have consistent patterns across
all studies and discordant genes that are up/down regulated
in some studies while down/up regulated in others. Both of
these kinds of genes can be of interest in Pan-cancer analysis.
For example, high expression of some genes might worsen the
prognosis of all cancer types, while high expression of other genes
might worsen prognosis for some cancers but be beneficial to
other cancer types.

Our method also applies to the scenario when there is more
than one RNA species present and proposes to jointly analyze
different types of biomarkers under the same category for more
biological insights. As more omics data are accumulated in the
public domain, similar strategies can be applied for integrative
analysis, for example with epigenomic (e.g., DNA methylation,
histone modification), proteomic and metabolomic data. Unique
features of each omics data type need to be addressed and will be
considered as a future direction to extend our method.

Like most other two-stage meta-analysis methods, our method
is based on summary measures such as p-values and log2
fold changes from each study. In addition, the method assigns
a single optimal weight to each gene without quantifying
the uncertainty in weight assignment. A more comprehensive
Bayesian hierarchical model can be applied to raw data and
summary measures to better capture the stochasticity and
provide soft weight assignment. Our method requires the DE
genes to be concordant in at least two studies to be detected,
consistent with the purpose of meta-analysis in prioritizing more
reproducible biomarkers. As the number of studies becomes
large, the likelihood of being differentially expressed in only
one study decreases. Thus, we expect the method to perform
well as the number of studies increases. Since the method relies
on summary measures, increasing the number of studies will
not materially increase the computational burden. Additionally,
use of more sophisticated parallel computing techniques will
improve the speed of permutation tests. An R package called
“BCMC” is available at https://github.com/kehongjie/BCMC to
implement our method.
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