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Editorial on the Research Topic

Application of remote sensing and GIS in earthquake-triggered

landslides

Introduction

Earthquakes have long been recognized as one of the main triggers for landslides

across the Earth (Keefer 1984; Tian et al., 2022). The earthquakes we experienced in the

last few decades (e.g., the 1994 Mw6.7 Northridge, United States, the

2008 Mw7.9 Wenchuan, China, the 2015 Mw7.8 Gorkha, Nepal, and the

2018 Mw6.6 Hokkaido, Japan, earthquakes) showed that moderate and large

earthquakes in mountainous terrain, can produce clusters of several hundred to

thousands of landslides in a very short period. In turn, the earthquake-triggered

landslides threaten our society by their direct and indirect, long-term effects such as

damaged infrastructure, increased debris flows and floods associated with landslide dam

failures and downstream river aggradations. As a result, the investigations of earthquake-

triggered landslides have received much attention in recent years, due to their probable

results of the tragic loss of life and economic devastation. With the rapid development of

GIS and remote sensing technologies, valuable progress has been made in the earthquake-

triggered landslides research field. The ability and efficiency of extracting large-scale and

massive earthquake-triggered landslide data have been greatly improved. The number and

quality of earthquake-triggered landslide records are increasing. The susceptibility,

hazard, and risk assessment models of earthquake-triggered landslides are becoming

more advanced and precise, and the ability to process large-scale and high-precision data

is more robust. Remote sensing and GIS technologies have greatly improved the ability of
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information acquisition and big data analysis of earthquake-

triggered landslides. Furthermore, remote sensing and GIS

technologies have significantly promoted the progress of

identification, mapping, monitoring, early warning, and risk

evaluation of earthquake-triggered landslides.

To present the latest achievements in this direction, we

organized a Research Topic entitled Application of remote

sensing and GIS in earthquake-triggered landslides. This

Research Topic includes 13 papers covering regional

earthquake-triggered landslide mapping and spatial

distribution analysis, monitoring and analysis of large-scale

individual landslides, landslide susceptibility and hazard

assessment, landslide evolution, and changes in rainfall

thresholds of debris flow in earthquake-affected areas, etc.

Remote sensing and GIS technologies have played an

important role in these studies.

Landslide inventory map and spatial
distribution analysis

Landslide inventory maps are an essential basis for related

research and have achieved rapid development in recent years

(Harp et al., 2011; Xu 2015), mainly due to the capability to

identify landslides based on high-resolution remote sensing

images and to manage and analyze massive landslides based

on GIS platform. In this Research Topic, there are three papers in

this field. Martinez et al. made an inventory map including

43 coseismic classified landslides triggered by the

2018 Anchorage Mw7.1 earthquake in Alaska, United States,

based on comprehensive methods such as field investigations,

multi-spectral optical satellite images, LiDAR data, and SAR

data. They compared the performance of these techniques, and

the results show that the comparison of NDVI data derived from

optical satellite images pre- and post-quake, and LiDAR data, are

more suitable for identifying soil slumps and rapid soil flows.

However, those landslides with small surface deformation can

only be detected through field investigations. This study provides

a reference for the selection of coseismic landslide mapping

methods in subarctic and urban areas.

Building an inventory map of ancient landslides and

establishing their connection with historical earthquakes are

other relevant works. The old landslide distribution database

is one of the critical issues. In this Research Topic, Peng et al.

identified 6,876 large-scale active and old landslides in the

Southwest of Ordos, China, based on the satellite images from

the Google Earth platform. They analyzed the spatial distribution

characteristics of these landslides and explored their relationship

with a historical earthquake, the 780 BC Qishan earthquake. This

work provides an interesting case study of the relationship

between ancient landslides and historical earthquakes.

Although the remote sensing image-based visual

interpretation method is currently the most crucial approach

for establishing landslide inventory maps, the automatic

extraction technology of landslides based on remote sensing

images has also received extensive attention. In this Research

Topic, Comert took the Mw6.7 earthquake in Hokkaido, Japan,

on 6 September 2018, as an example and used the random forest

method to carry out an experimental study on automatic

identification of coseismic landslides and studied the influence

of five different sizes of training samples on the results of

automatic landslide identification. The datasets include pre-

and post-quake differential images and only post-quake

images. The results show that the latter had better

performance, and the increase in the number of training

samples will slightly improve the result accuracy. This work

provides a reference for the preprocessing of data and the

selection of sample size to automatically identify landslides

based on remote sensing data.

GIS has dramatically promoted the spatial distribution

analysis of massive landslides. Taking the Mw7.8 earthquake

landslide in Gorkha, Nepal, 2015, as an example, Tian et al.

analyzed the geometric characteristics of 2,059 landslides with an

area larger than 10,000 m2 based on a landslide inventory map

obtained from the visual identification of pre- and post-quake

optical satellite images (Xu et al., 2018). They separated these

landslides into three types according to their geometry, and the

relationships between these landslides and environmental factors

are analyzed and compared, respectively. The results showed that

landslides with different geometric shapes are more likely to

occur in different environments, which provides a case study for

further understanding the spatial distribution characteristics of

earthquake-triggered landslides. Based on the data of nearly

200,000 coseismic landslides triggered by the 2008 Mw 7.

9 Wenchuan, China earthquake (Xu et al., 2014), Liu X. et al.

selected some typical watersheds and analyzed the area-

frequency distribution relationship of coseismic landslides,

and the obtained parameters reflect the landslide density and

the proportion of large-scale landslides. They also carried out a

hot spot analysis of landslides to evaluate the relationship

between the obtained parameters and the spatial distribution

of the landslide cluster. This work provides a case study to better

understand the landslide area-frequency distribution law.

Monitoring and analysis of large-
scale individual landslides

Remote sensing and GIS technology play an increasingly

important role in large-scale individual landslide research. The

occurrence of many large-scale landslides has a process of initial

deformation, deformation acceleration, and failure. Remote

sensing and GIS technologies are effective methods for

detecting slope deformation. For example, the Baige landslide

on the Jinsha River in China in 2018 had significant deformations

up to tens of meters within a few years before the final sliding
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(Cui et al., 2020). To analyze the creep process of the landslide,

Guo et al. examined the vegetation changes on the landslide

based on multi-temporal SPOT satellite data. The study showed

that the landslide has been creeping about 50 m in the past few

years, and the vegetation coverage on the back wall and the body

of the landslide decreases significantly as it is closer to the final

sliding, which revealed a strong correlation between vegetation

change rate and landslide creeping. This work provides a case

study for analyzing the deformation process of landslides based

on multi-temporal optical remote sensing data. Hu et al.

investigated the age of the residual deposits probable from a

large landslide on the east bank of the Qiaojia reach of the Jinsha

River based on UAVmapping technology and dating technology.

They considered the landslide event might be related to an

earthquake in AD 624, which provides a shred of evidence

from the ancient landslide for subsequent seismic hazard

analysis in this area. This work provides a case study for

analyzing regional seismic hazards based on large individual

landslides supported by remote sensing technology.

Monitoring the in-situ seismic response of rock slopes using

seismological or geophysical methods can be considered an

application of generalized remote sensing technology in the

field of landslide monitoring. Based on this method, Huang

et al. investigated the response of a high bedrock slope in the

mountainous area of southwest China related to the

2019 Changning, China Mw5.7 earthquake. They used

environmental noise interferometry to monitor the

performance of the rocky slope during the earthquake and

located a coseismic rock rupture at a depth of 75 m in the

slope that recovered after 2 weeks. This work demonstrates

the feasibility of using seismological techniques to analyze

coseismic deep fissures in bedrock.

Landslide susceptibility and hazard
assessments

Remote sensing and GIS technologies are essential for

regional earthquake-triggered landslide susceptibility and

hazard assessments. Remote sensing is important for

preparing completed and detailed landslide inventory maps

and producing environmental thematic maps. The

combination of GIS and machine learning models is one of

the main methods for this aspect. Machine learning methods and

Newmark physical model are the two most commonmethods. In

this Research Topic, we solicited one paper for each of these two

methods. In machine learning methods, the selection of landslide

samples is an important task. Chen et al. applied a one-class

classifier method to generate landslide negative sample data, and

performed a rapid earthquake-induced landslide susceptibility

analysis in an area affected by the 2008 Wenchuan Mw7.

9 earthquake in China. This work provided a method

reference for the production of landslide negative samples in

landslide susceptibility and hazard assessments. The application

of the Newmark model to regional seismic landslide hazard

analysis has received much attention in recent decades, in

which the thickness of landslide mass is an important, but

difficult, to obtain parameter. Maharjan et al. obtained the

median landslide thickness based on pre- and post-quake

high-resolution DEMs for subsequent landslide hazard

assessment. The results have good spatial consistency with the

real distribution of coseismic landslides. It shows that it is feasible

to obtain the pre- and post-quake DEMs based on remote sensing

technology to obtain the thickness of the landslide mass and

conduct a more objective and rapid earthquake-triggered

landslide susceptibility and hazard mapping.

Landslide evolution

Massive landslides and strength reduction in hillslope

materials related to large earthquakes will have serious

secondary effects and severe secondary disasters are likely to

occur under subsequent strong aftershocks and heavy rainfall

(Fan et al., 2019). Therefore, it is of great significance to study the

evolution of landslides in affected areas and the changes in

landslide susceptibility after earthquakes. Tanyaş et al.

prepared a sequence of multi-temporal landslide inventory

maps in three tropics areas affected by major earthquakes.

Based on the landslide inventory maps, they analyzed the

landslide susceptibility levels pre- and post-quake and

concluded that landslide susceptibility returned to pre-quake

levels in less than a year. Since the study areas are only parts of the

total earthquake-affected area, they are cautious that these

observations may not represent the entire area affected by

these earthquakes but only the phenomena in the study areas.

Guo et al. conducted a study on landslide susceptibility changes

in the 2017 Ms7.0 Jiuzhaigou, China earthquake based on

machine learning, remote sensing, and GIS technologies. They

produced a coseismic landslide inventory map and a post-event

landslide inventory map 2 years after the earthquake and found

that the total landslide area increased by 1.2 km2. They compared

and analyzed the relationship between the two landslide

inventory maps and the influencing factors. The results show

that the amplitude in susceptibility in high landslide

susceptibility areas is smaller than that in low susceptibility

areas. This indicates that the landslide susceptibility in the

earthquake-affected area is not a constant state, and reminds

us to pay attention to the change of the landslide susceptibility in

earthquake-affected areas. Earthquakes have also an important

impact on rainfall thresholds of debris flows. Liu S. et al. analyzed

the changes in the pre- and post-quake rainfall thresholds for

debris flows under the influence of different seismic intensities

based on the debris flow records in the affected areas of the

2008 Ms8.0 Wenchuan, 2013 Ms7.0 Lushan and 2017 Ms7.

0 Jiuzhaigou earthquakes in China. The study shows that the
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post-quake rainfall threshold for debris flows is much lower than

that of the pre-quake. In addition, they also considered the

influence of earthquake magnitude and focal depth on the

change of rainfall thresholds. This study provides support for

more objective post-quake debris flow early warning.

Conclusions and prospects

In recent years, with the development of remote sensing, GIS,

big data, artificial intelligence, and other high-tech, studies on

landslides, especially earthquake-triggered landslides, have

achieved rapid expansion, and relevant publications show a

growing trend year by year (Huang et al., 2022). The

13 papers in this Research Topic involve multiple directions

of remote sensing- and GIS-based seismic landslide research,

including landslide inventory mapping, automatic extraction,

spatial distribution, and evolution analysis, which have

accumulated knowledge for the excellent development of this

discipline. However, these studies also raised a few new questions

for researchers. For example, in the aspect of automatic landslide

extraction, although many advanced landslide extraction models

based on remote sensing data have emerged in recent years, it is

still a noteworthy direction to develop more scientific and

reasonable models and further improve the accuracy. As for

landslide inventory maps and their spatial distribution analysis,

more high-quality earthquake-triggered landslide mapping is

needed to reveal the more general temporal and spatial

distribution law of earthquake-triggered landslides. The

research on the relationship between ancient landslides and

historical earthquakes has always been a concern of

researchers (Jibson 1996), but most of the existing work is

based on individual landslides or local areas. Remote sensing

and GIS technology provide sufficient conditions for creating

high-quality ancient landslide inventory maps in broad areas,

even in the world. Of course, this great work requires the joint

efforts of lots of researchers. As most large landslide that can be

preserved for hundreds or even thousands of years, it will

undoubtedly be a direction worthy of long-term development.

Applying generalized remote sensing such as seismological and

geophysical methods in large landslides or seismic slope response

is a very meaningful attempt, and it is also a subject growth

direction worthy of in-depth exploration.

The increased capacity in remote sensing, geographic

information technologies, and computational power contribute

to a more thorough understanding of geoenvironmental and

earth surface processes. Natural disaster prevention, mitigation,

and relief are the eternal subjects of human survival and

development. We hope that this Research Topic can promote

the development of earthquake-triggered landslide research and

attract more researchers to pay more attention to the application

of high-tech, such as remote sensing and GIS, in the field of

earthquake-triggered landslides.
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Geomorphometry and Statistical
Analyses of Landslides Triggered by
the 2015 Mw 7.8 Gorkha Earthquake
and the Mw 7.3 Aftershock, Nepal
Yingying Tian1, Lewis A. Owen2, Chong Xu1,3*, Lingling Shen4, Qing Zhou1 and
Paula Marques Figueiredo2

1Key Laboratory of Active Tectonics and Volcano, Institute of Geology, China Earthquake Administration, Beijing, China,
2Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States, 3National
Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing, China, 4Beijing Meteorological Information
Center, Beijing Meteorological Service, Beijing, China

The 2015Mw 7.8 Gorkha earthquake in Nepal and the Mw 7.3 aftershock triggered at least
22,914 landslides that each had areas ≥500m2 and lengths and widths ≥20m. Amongst
these landslides, 2,059 had areas >10,000m2. Analyses of the landslide geometry, using
length (L), width (W), height (H, from the crown to toe), reach angle (arctan value of H/L), and
aspect ratio (L/W), show that most of the landslides have aspect ratios of 1.6–3.6 and reach
angles of 35–45°. The fitting relationship between H and L is H � 0.87L − 11.11. The steep
topography is likely the main factor that controls the landslide runout and planar shape. The
landslides are divided into 3 geomorphometric categories using the aspect ratio: LS1 (L/W ≤
2); LS2 (2 < L/W ≤ 4); and LS3 (L/W > 4). Statistical analyses of these categories with the
control factors show that the landslide distribution does not relate to the three large-
scale geologic faults that traverse the region, roads, accumulative precipitation before
the earthquakes, and the small earthquakes that occurred during the 2012–2015 pre-
monsoons in the study area. The 3 landslide categories are sensitive to similar
conditions related to curvature, slope position, lithology, and peak ground
acceleration. In contrast, the effects of elevation, slope angle, slope aspect, and
streams on landslide distribution differ. Moreover, massive landslides (with areas
>10,000 m2) are more likely to occur on the steeper hill slopes that in the higher
elevation settings, which provide more substantial gravitational potential energy and
long-runout space. As landslides with different geomorphometric shapes have various
susceptible conditions, examining the landslide distribution based on their geometric
characteristics provides a new way to study the landslide extent and mechanism.

Keywords: 2015 Gorkha earthquake, landslides, Himalaya, geometry, planar geomorphometric shapes, spatial
distribution

HIGHLIGHTS

(1) Geomorphometric parameters of landslides triggered by the 2015 Gorkha earthquakes are
defined;
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(2) Spatial distributions of the landslides of different planar
shapes show their vulnerable factor conditions;

(3) Landslides with areas >10,000 m2 are more likely to occur on
the steeper hill slopes and in higher elevation settings;

(4) The terrain and streams are the major factors controlling the
spatial distributions of landslides with various shapes
and sizes.

INTRODUCTION

Geometric characteristics of earthquake-triggered landslides are
associated with factors such as geomorphology, bedrock, soil,
topography, vegetation, and seismic ground motion (Yang et al.,
2006; Tian et al., 2017). Under strong ground shaking during an
earthquake, hill slopes with larger slope angles, higher slope
positions, and highly fractured rock masses can generate
landslides with a more considerable fall height, smaller width,
and larger length/travel distances (Nicoletti and Sorriso-Valvo,
1991). Since they run long distances, such landslides always have
relatively greater mobility and likely lead to more significant
hazards along their paths. Thus, the geomorphometric features of
earthquake-triggered landslides have the potential to be used to
study landslide mechanisms and hazard assessment (Hsü, 1975;
Corominas et al., 2003; Xu et al., 2016a). Height (H), length (L),
width (W), reach angle (arctan value of the height-length ratio,
arctan [H/L]), and aspect ratio (length-width ratio, L/W) are
primary parameters that can characterize the geometry of a
landslide. Our method section below provides our full
definitions of these descriptors. Among them, the reach angle
and aspect ratio represent the relative mobility and 2-D
morphology of landslides, respectively (Heim, 1932;
Scheidegger, 1973; Corominas 1996; Xu et al., 2014; Xu and
Xu, 2014; Tian et al., 2017; Roback et al., 2018; Tsou et al., 2018).
As well, the aspect ratio has relationships with the landslide type
(Parise and Jibson, 2000).

On April 25, 2015, anMw 7.8 earthquake (28.230°N, 84.731°E,
known as the Gorkha earthquake) with a focal depth of 8.2 km
shook central Nepal, followed by anMw 7.3 aftershock (27.809°N,
86.066°E) onMay 12, 2015, that had a focal depth of 15 km. These
earthquakes resulted in >8,800 fatalities and about US $7 billion
in economic loss. Field surveys and synthetic aperture radar
(SAR) analysis suggest that the earthquake-triggered landslides
were the leading cause of the casualties, injuries, and financial
damages in the affected area (Collins and Jibson, 2015;Moss et al.,
2015; Yun et al., 2015). In all, the 2015 Gorkha earthquakes
triggered >47,200 landslides (Xu et al., 2018). The Langtang
landslide, in the Rasuwa region of Nepal, was the most
colossal slope failure that was triggered by the Gorkha
earthquake; it swept across the village of Langtang, resulting in
>200 deaths (Collins and Jibson, 2015). Studies on these
landslides include field investigations, interpretations of
imagery, spatial distribution, and susceptibility assessment
(Collins and Jibson, 2015; Kargel et al., 2016; Martha et al.,
2016; Regmi et al., 2016; Xu et al., 2016b; Xu et al., 2017;
Roback et al., 2018; Tsou et al., 2018), but there was little

geomorphometry research. Tsou et al. (2018), e.g., presented a
preliminary analysis on the planar geometry of the 912 seismic
landslides in the Trishuli Valley, central Nepal following the
Gorkha earthquake. In the study by Tsou et al. (2018), the
landslide lengths range from 7 to 1,145 m, about 60% of which
had aspect ratios (L/W) ≥ 5, and 90% ≥ 1.67. Roback et al. (2018)
applied the L/H ratio to study the landslide mobility, showing that
most of these landslides had L/H values close to 1 (the average L/H
is 1.17). They found that the 38 most highly mobile landslides had
L/H ratios >2 and runouts >200 m and mostly in an elevation
range of 2,500–3,000 m above sea level (asl).

In this paper, we present an extensive study of the landslides to
consider further the geomorphometric features of the landslides
triggered by the 2015 Gorkha earthquake and to understand
better the variety and nature of earthquake-triggered landslides in
high mountain regions. Using the >47,200 landslides of Xu et al.
(2018), we study landslides with areas >500 m2 and lengths and
widths longer than 20 m (totally 22,914 landslides) to make an
exhaustive analysis of their geometry, including the H, L, W, H/L
ratio and aspect ratio. According to their aspect ratios, they are
classified into three categories to statistically study their spatial
distribution patterns with control factors, including terrain,
geology, seismicity, streams, roads, and rainfalls. Our analysis
helps in understanding the movement mechanisms of seismic
landslides with different geomorphometric characteristics and it
is essential to assess geologic hazard in the affected area better,
and for similar tectonically active mountain regions.

TECTONIC SETTING AND STUDY AREA

Since the collision with Eurasia plate in the Cenozoic, the Indian
plate has continuously moved northward, resulting in the
2,500 km-long Himalayan orogen and creating one of the
most tectonically active regions on Earth. Many great
earthquakes have shaken the region during the last few
centuries, including the 1833 Mw ∼ 7.6 Kathmandu, 1905 Mw

∼ 7.8 Kangra, 1934 Mw ∼ 8.2 Nepal-Bihar, 1950 Mw 8.4 Assam-
Tibet, and the 2005 Mw 7.6 Kashmir earthquakes (Berthet et al.,
2014; Liu et al., 2015; Elliott et al., 2016; Owen 2017). From north
to south, the orogen consists of the Tethyan Himalaya, High/
Greater Himalaya, Lesser Himalaya, and sub-Himalaya which are
bounded by South Tibetan Detachment System (STDS), Main
Central Thrust (MCT), Main Boundary Thrust (MBT), and Main
Frontal Thrust (MFT), respectively (Yin and Harrison, 2000;
Moss et al., 2015). Amongst these continental-scale structures, the
MCT, MBT, and Main Frontal Thrust are the three outcropping
branch faults of the basal decollement zone, i.e., Main Himalaya
Thrust (MHT), between the Indian and Eurasia continental
lithospheric plates within the deep crust (Lavé and Avouac,
2000; Wobus et al., 2006; Liu et al., 2015). The April 25,
2015 Mw 7.8 mainshock and the May 12 Mw 7.3 aftershock
were focused on the MHT that dips to the north at an angle of
∼10° (Figure 1B). The mainshock rupture propagated eastwards
for ∼140 km and did not reach the topographic surface; there
were no identified surface ruptures (Avouac et al., 2015; Hayes
et al., 2015; Elliott et al., 2016; Gallen et al., 2017).
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Our study area is a mountainous region with deep gorges in
central and eastern Nepal and part of southern Tibet covering
∼35,664 km2 (Figure 1A). The transition between Lesser and
Higher Himalaya is known as physiographic transition 2 (PT2),
and it reflects an abrupt elevation change, which marks the
significant northward increase in rock-uplift rate (Hodges et al.,
2004; Whipple et al., 2016). The PT2 runs from west to east along
an elevation profile of ∼2,000 m asl across the study area
(Figure 1A). The study area rises northwards from ∼150 to
8,135 m asl with an average of 2,600 m asl. The areas with
elevations exceeding 3,500 m account for 33% of the total study
area. Hill slope angles range up to 87° (mainly concentrated in the
regions higher than 6,000 m asl) with an average of 27°; 27% of the
entire region has hill slopes >35°. The climate is tropical-
subtropical monsoonal, with the rainy season from June to
September, and the mean annual rainfall varying from 500 to
3,500 mm, and the northern Himalaya is relatively dry (the
average rainfall is <1,000 mm; Dahal and Hasegawa, 2008).

DATA AND METHOD

Definition of Landslide Geometry
We define the height (H) of a landslide as the elevation difference
between the crown and toe along the movement direction
(Figure 2). The 10m-resolution DEM originated from the
30m-resolution SRTM DEM was applied to estimate the
heights for the 22,914 landslides. The length (L) and width (W)
of a landslide are the corresponding values of the landslide
minimum bounding geometry along the sliding direction (Tian
et al., 2017). We separately created the convex hulls (the smallest
convex polygon) and the minimum bounding rectangles (we used
the rectangle with the smallest width), which enclose each
landslide. Then, we calculated and checked the angle between
the orientations of the geometries (solid green lines in Figure 2)
and the line directions linking the highest and lowest points (dash
green lines in Figure 2) for every landslide. For significant
differences, we manually measured (using the measure tool) or

FIGURE 1 | (A) Digital elevation model that highlights the main tectonic structures that traverse the study area (outlined by the quasi-ellipse by the thin black line) and
distribution of the 2015 earthquake-triggered landslides and the Gorkha earthquake and its Mw 7.3 aftershock. (B) Simplified cross-section across the Ganesh-Langtang
Himalaya [from Elliott et al. (2016)], its approximate location is shown as a black dashed line in (A). TH: Tethyan Himalaya, HH: High Himalaya; LH: Lesser Himalaya; SH: sub-
Himalaya; STDS: South Tibetan Detachment System; MCT: Main Central Thrust; MBT: Main Boundary Thrust; PT2: Physiographic Transition [digitalized fromWhipple
et al. (2016)]. Dataset 1 (22,914 landslides that are >500 m2 and have L andWboth >20 m) and Dataset 2 (2,059 landslides, which are >10,000 m2) are fromXu et al. (2018).
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chose the most approximate values as landslide L and W (Figures
2A,D); and for the smaller differences, we adapted the L and W of
the minimum bounding rectangles (Figures 2B,C and 2E,F). All
the analysis was conducted using the tools available in ArcGIS 10.5.

Calculating the landslide volume is challenging, and most of
the existing methods to calculate the landslide volume use
empirical “Area-Volume” relationships (Guzzetti et al., 2009;
Larsen et al., 2010; Parker et al., 2011; Xu et al., 2016a).
Therefore, in this study, we do not include the landslide
volume while talking about landslide geometry.

The reach angle is the arctan value of the height-length ratio
(H/L), and the aspect ratio is the length-width ratio (L/W). We
use the largest landslide (Langtang landslide) as an example to
illustrate the definitions for each geometrical parameter. For the
Langtang landslide, its runout is ∼3,652 m, and the height is
1,832 m; the H/L ratio, the reach angle, and L/W ratio are ∼0.5,
27° and 4.3, respectively (Figure 3).

Landslides Triggered by the 2015 Gorkha
Earthquake
Combining with field investigations (Tian et al., 2020), Xu et al.
(2018) prepared an inventory containing ∼47,200 landslides in an
area of 35,664 km2 based on pre- and post-seismic remote sensing
images from the Google Earth and the Chinese Gaofen and
Ziyuan satellites. The DEM in our research has 10 m-
resolution pixels, and aids in identifying 22,914 landslides that

are each >500 m2 in area and have L andW >20 m; each landslide
has at least one pixel in its narrowest profile. The Langtang
landslide covers an area of ∼1,610,957 m2, while the average
landslide area is ∼4,435 m2. Of the >500 m2 in area landslides,
3,850 landslides (accounting for 16.8% of the total number of
landslides) are of 500–1,000 m2, 10,568 (46.1%) are
1,000–3,000 m2, 6,437 (28.1%) are 3,000–10,000 m2, and 2,059
(9%) that are >10,000 m2 (Figure 4A). In the chosen slope
failures, 20,238 landslides (accounting for 88.3% of the total)
occur on the northern side of the PT2 line (Figure 1A) with high
altitude and steep terrain.

The maximum slope within each landslide was calculated by
obtaining the slope raster derived from the 10 m-resolution DEM
to examine the relationships between topography, and landslide
size and planar shape. The smallest value of the maximum slopes
is ∼3°, the steepest slope is ∼79°, and the mean value is ∼47°. The
maximum slopes of ∼54% of the chosen landslides concentrate in
the range of 45–55° (Figure 4B).

The shape of a landslide gives insights into its initial geo-
environment andmovement process (Niculita, 2016; Taylor et al.,
2018). To explore the failure mechanism of landslides in different
shapes, other than combined with the landslide 2-D shape, we
considered the statistical meaning of each classification by
balancing the landslide frequency distribution in each aspect
ratio range and classified the landslides into three
geomorphometric categories: LS1 (L/W ≤ 2), LS2 (2 < L/W ≤
4), and LS3 (L/W > 4) (Figure 6A). Two datasets that include

FIGURE 2 | Sketches of landslide length (L) and width (W). Landslide boundaries are real examples selected from the dataset. “L/W” is the aspect ratio/length-
width ratio.
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22,914 landslides that are >500 m2 in area with lengths and
widths >20 m (named as Dataset 1) and 2,059 large-scale
landslides that are >10,000 m2 from Dataset 1 (named as
Dataset 2) (Figure 1A) were considered in this study. The
landslide source area is where the rupture occurred as well as
the majority sliding material from, thus knowing its features is
vital for identifying potential landslides and susceptibility
mapping (Keefer, 1984; Dai and Lee, 2002; Lee et al., 2008).
The source area of a landslide is the grid cells with elevation larger
than the median elevation value within each landslide (red areas
in Figure 2) (Jibson et al., 2000; Wang and Rathje, 2013; Shao
et al., 2019). Thus, the source area of each landslide was separated,
and its center point (yellow points in Figure 2), which links with
the control factors. For each geomorphometric type, the number
percentage, which equals to the ratio of the landslide numbers in
each sub-classification of the setting factors to the total landslide
number of this type, is the index being used to explore the
distribution characteristics and size effect of landslides with
different geomorphometric features.

Control Factors of Landslides
We consider the setting factors, involving terrain (elevation, slope
angle, curvature, slope positions, and slope aspect), lithology,
streams, roads, and seismology (faults, peak ground acceleration,
and small earthquakes before the mainshock) as well as rainfalls
in our study. The elevation, slope angle, slope aspect, and
curvature derive from the 10 m-resolution DEM mentioned
above. The slope position was resampled to 10 m from 90 m-

resolution Topographic Position Index (TPI) data downloaded
from Geospatial Data Cloud site, Computer Network
Information Center, Chinese Academy of Sciences (http://
www.gscloud.cn). According to Weiss (2001) and Jenness et al.
(2013), hill slope position is divided into six categories based on
DEM and slope angles: ridges (TPI > 1 SD), upper slopes (0.5 SD
< TPI ≤ 1 SD), middle slopes (−0.5 SD < TPI < 0.5 SD, Slope > 5°),
flat slopes (−0.5 SD < TPI < 0.5 SD, Slope ≤ 5°), lower slopes (1 SD
< TPI ≤ −0.5 SD) and valleys (TPI < −1.0 SD). TPI refers to the
elevation difference between a cell and the average value of its
neighborhood around the cell, and the SD is the standard
deviation of elevation. The geology bedrock and faults of the
region in Nepal were digitalized from geological maps of Yin and
Harrison (2000), Dhital (2015), Kargel et al. (2016), and Tiwari
et al. (2017), and combined with the digital geology mapping of
the rest of the region in China from a geological map on a scale of
1:2,500,000 from the National Geological Data Museum of China
(2013). Rock types were classified into 16 categories, as shown in
Figure 5.

Road data was downloaded from the DIVA-GIS (http://diva-
gis.org/download). The river channels were mapped using the
30 m-resolution DEM and hydrology module of the ArcGIS with
a grid threshold of flow accumulation >50,000 cells. The 10 m-
resolution buffer raster layers were built along the roads and
streams in the study area. We built buffers for the streams and
roads using the interval of 200 m within the first 1 km-buffer and
an interval of 1 km outside to examine the effect of the drainages
and roads on different types of landslides.

FIGURE 3 | Geometrical parameters illustrated on the Langtang landslide.
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Peak ground acceleration (PGA), as a seismic factor, was
downloaded from United States Geological Survey (USGS),
according to the USGS ShakeMap and local sparse
macroseismic reports or measurements (“did you feel it” shake
reports) because of few available ground motion stations that
were available in Nepal when the earthquake shock the region
(USGS, 2015; Kargel et al., 2016).

All the vector layers, including lithology, PGA, and the buffer
layers around the faults, roads, and streams, were rasterized into
corresponding 10 m-resolution raster layers with reclassified
factor information. Then the raster layers were applied to
examine the landslide distribution as well as other raster layers
of elevation, slope angle, slope aspect, curvature, and slope
position.

Rainfall is another triggering factor of landslides. Global
Precipitation Measurement data (NASA Earth Observatory,
2019), with a temporal resolution of 1 day and spatial
resolution 0.1°, were used to check the relationships among
the landslide distribution and antecedent accumulative
precipitations (the total rainfalls received before the April 25
Gorkha earthquake at 06:11 UTC and its May 12 aftershock at 07:
05 UTC) in varied periods. We considered and mapped the
antecedent accumulative precipitations (mm) in the following
different periods: for the mainshock, they are 1 day (04/24/2015),

3 days (04/22/2015–04/24/2015), 1 week (04/18/2015–04/24/
2015), and 2 weeks (04/11/2015–04/24/2015); for the
aftershock, they are 1 day (05/11/2015), 3 days (05/09/
2015–05/11/2015), 1 week (05/05/2015–05/11/2015), and
2 weeks (04/28/2015–05/11/2015).

We analyze the effects posed by the regional seismicity
before and after the two main 2015 earthquakes from
January 2012 through June 2015. The seismicity data for
our study area was downloaded from USGS (2019) and was
used to explore the potential relationships between the
regional seismicity distribution and location of coseismic
landslides.

RESULTS AND ANALYSES

Geometrical Parameters
The H, L, and W are 1–1,947 m with an average of 103 m,
20–3,652 m with an average of 132 m and 20–856 m with an
average of 43 m, respectively. The aspect ratios range from 0.3 to
15.4, with an average of 3.2, mainly 1.6–3.6 (Figure 6A). H/L are
0.03–2.7 with an average of 0.7, and the reach angles range from 2
to 69° with an average of 34° (∼55% of the landslides are in the
range of 35–45°; Figure 6B).

FIGURE 4 | Landslide area (A) and maximum slope (B) vs. number and accumulation percentage.
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A plot using circles of different sizes and colors depicting
the landslide size examines the correlations of landslide
aspect ratio with terrain (maximum slope) and landslide
size (Figure 6C). This plot shows that although there is no
explicit relationship, most of the landslides are distributed in
the enclosed triangle area—above Line 1 (y � 3.40x + 3.98),
below Line 2 (y � -1.70x + 80.51), and on the right side of
Line 3 (x � 0.29). The smaller landslides have larger ranges
for the maximum slope and aspect ratio; however, the larger
landslides tend to concentrate in the upper-left corner of the

triangle, which means they are likely to develop on the
steeper slopes and their main aspect ratios range from 1.0
to 7.0. Specifically, the maximum slopes and aspect ratios for
the landslides with an area >8,000 m2 are generally 40–70°

and 1.0–8.5, respectively. The lower limit for the maximum
slope range gradually decreases to ∼10° for landslides
<8,000 m2. Approximately 700 large landslides have aspect
ratios <1.0.

The fitting relationship of H and L for the 22,914 landslides
triggered by the 2015 Gorkha earthquake is:

FIGURE 5 | Geology of the study area. The part in Nepal is from Dhital (2015), Kargel et al. (2016), and Tiwari et al. (2017); the area in China is from National
Geological Data Museum of China (2013).
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FIGURE 6 | Relationships for aspect ratio (A) and reach angle (B) vs. landslide number; and (C) for the landslide aspect ratio, maximum slope, and area.
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H � 0.87L − 11.11(R2 � 0.85)(Figure 11, curve I′) (1)

After excluding the largest Langtang landslide, the relationship
becomes:

H � 0.89L − 13.30(R2 � 0.86)(Figure 11B, curve I) (2)

For the landslides with areas >10,000 m2 (excluding the Langtang
landslide), the H and L have a relationship of

H � 0.76L + 40.77(R2 � 0.69)(Figure 11B, curve II) (3)

The corresponding average values of the reach angles for curve I,
I′, and II in Figure 11 are 41°, 42°, and 37°, respectively.

Planar Geometry
In Dataset 1, 27% are LS1-type, 47% are LS2-type, and 26% are
LS3-type landslides (Table 1; Figure 6A), which we call LS1-1,
LS2-1, and LS3-1 (where “-1” denotes Dataset 1) in the
following analyses. For landslides >10,000 m2 in Dataset 2,
these three classes have 16, 47, and 37% for each landslide type.
These are called LS1-2, LS2-2, and LS3-2 (where “-2” denotes
Dataset 2).

For Dataset 1, ∼93% of the LS3-type landslides, 89% of the
LS2-type landslides, and 86% of the LS1-type landslides lie in the
steep areas north of PT2; for Dataset 2, the percentages of the
landslides in the northern part of PT2 are 97, 96, and 97%,
respectively. The dominant occurrence of all landslide types
distributing in the north of PT2 suggests that the long and
large landslides are more prone to developing in the steep
higher area.

Spatial Distribution of Landslides and
Control Factors
Elevation
The elevation range with the largest area is the 500–1,000 m asl,
followed by 1,000–1,500 and 1,500–2,000 m asl (grey columns in
Figure 7A). The landslide number percentages for all the
landslide types are much larger in the elevation ranges of
1,000–3,500 m asl (Figure 7A). For the landslides in Dataset 1,
LS1-1 and LS2-1 peak in 1,500–2,000 m asl, with percentages ∼26
and ∼24%, respectively, followed by 1,000–1,500 m asl.
Landslides of type LS3-1 mainly concentrate on elevations of
1,500–3,500 m asl. For Dataset 2, the peak percentage (∼22%) of
LS1-2 is in 1,500–2,500 m asl; for LS2-2 and LS3-2, they (22 and
25%, respectively) are in 2,500–3,000 m asl. Since the percentages
on the left-hand side of the peak elevation ranges are much

greater than the right-hand side for the LS1-type and LS2-type
landslides, we deduced that these 2 kinds of landslides are likely to
develop on the lower slopes (such as the free surfaces of the river
banks). In comparison, the LS3-type landslides are more
common at the higher elevation slopes reflecting by larger
percentages on the right-hand side of the peak ranges, and it
implies that the narrow landslides tend to form at higher
altitudes. Besides, the elevation ranges of the peak percentages
for Dataset 2 are much higher than those for Dataset 1. This
difference in ranges is possibly because the larger-scale landslides
are prone to slopes with much high elevation, which could
provide larger gravitational potential energy and long-runout
space, as stated by Roback et al. (2018).

Hill Slope Angle
The regions with hill slope angles ranging from 20 to 35° have
relatively larger classification areas. The steeper hill slopes are
more prone to sliding though their classification areas are
relatively small (Figure 7B). All of the percentage curves have
larger values for slopes of 40–60°. The percentage curve of type
LS3-1 firstly increases, then peaks at 40–45° with a percentage of
25% and falls in the slope class of >60°, while the curves for the
types LS1-1 and LS2-1 are relatively smoother, especially for the
LS1-1, and they both have two peaks in the ranges of 40–45° and
50–60°. The percentage curves of landslides in Dataset 2 have
similar trends as those in Dataset 1. However, few landslides in
Dataset 2 are present in the area with slope angles <30°.
Approximately 30% of the landslides of types LS1-2 and LS2-2
have slope angles of 50–60°, and the maximum percentage for
LS3-2 has slope angles of 40–45°. Generally, the slopes with an
angle >35° are much more prone to developing longitudinal and
elongated landslides, and the large landslides are more common
to the steeper slopes than the smaller landslides. This relationship
implies that the steep slopes are much easier to slide during
shaking, and the stripped debris is more likely to run a long way
downward rather than spreading transversely.

Curvature
The curvature range of the study area is −431 to 238. We applied
the breakpoints of −4, −0.5, 0.5, and 4 to identify the slope
shapes—concave hill slopes (−4 to −0.5), straight hill slopes (−0.5
to 0.5), and convex hill slopes (0.5–4). The regions with curvature
ranging from −0.5 to 0.5, hosting the largest classification area are
much vulnerable to slide for all the landslide classes, followed by
the concave and convex hill slopes (Figure 7C). The percentage
curve of the LS1-2 type of landslides has similar percentages in the
ranges of −4 to −0.5, −0.5 to 0.5, and 0.5–4, which suggests that
the possibility for slope failure related to the large-scale landslides
with L/W <2 are similar for the straight, concave and convex hill
slopes. According to the slope aspect classifications in Figure 7E,
few areas are horizontal straight and therefore debris does not
stay long on inclined straight slopes.

Slope Position
The percentage curves in Figure 7D show that the landslides, no
matter what planar shape or size, concentrate on the widespread
middle slopes. Moreover, in this classification, the percentages of

TABLE 1 | Classifications of the plane morphology of landslides.

Type Aspect ratio Dataset Number Percentage (%)

LS1 L/W ≤ 2 Dataset 1 (LS1-1) 6,091 27
Dataset 2 (LS1-2) 339 16

LS2 2 < L/W ≤ 4 Dataset 1 (LS2-1) 10,851 47
Dataset 2 (LS2-2) 966 47

LS3 L/W > 4 Dataset 1 (LS3-1) 5,972 26
Dataset 2 (LS3-2) 754 37

Note: Dataset 1–22,914 landslides that are >500 m2 and have L and W both >20 m;
Dataset 2–2,059 landslides which are >10,000 m2.
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FIGURE 7 | Analyses of the three geomorphometric types of landslides vs. control factors: (A) elevation; (B) slope; (C) curvature; (D) slope position/TPI; (E) aspect;
(F) lithology; (G) distance from streams; (H) distance from roads and (H’) shows the landslide distribution within 1 km from the roads; (I) distance from faults and (I’)
shows the enlarge statistical plot of the distance from faults; and (J) PGA. Figure 5 shows the distribution of bedrock and provides descriptions. LS1-1 (L/W ≤ 2), LS2-1
(2 < L/W ≤ 4), and LS3-1 (L/W > 4) are geometry-based types of landslides for Dataset 1 which includes 22,914 landslides; LS1-2 (L/W ≤ 2), LS2-2 (2 < L/W ≤ 4),
and LS3-2 (L/W > 4) are for Dataset 2 which includes 2,059 landslides.
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the elongated landslides (LS3), which are ∼83% for Dataset 1 and
∼93% for Dataset 2, respectively, are particularly larger than the
other two types (LS1 and LS2). Besides, few landslides distributed
on the flat slopes and the LS1-type landslides are relatively
widespread on the lower slopes as well.

Slope Aspect
Figure 7E shows that the SE-, S-, and SW-facing hill slopes are
landslide-prone for all types of landslides. The percentages of the
LS3-type landslides are notably higher in these aspects, which
means that they are much sensitive to the S-facing hill slopes than
LS1 and LS2. The southern aspect is consistent with the thrust
direction of the hanging wall of MHT, and the rock mass in the
thrusting front is relatively fractured. Also, the sunlight and
southwest monsoon likely make the south-facing slopes easier
to weather.

Lithology
Analysis of landslide number percentages of different
geomorphometric types and lithology (Figure 7F) shows that
the eighth class of the High Himalaya Sequence (Proterozoic:
undifferentiated higher Himalayan crystalline rocks, mainly
schist, quartzite, gneiss, and migmatite) has the largest
classification area and has most of the landslides, followed by
the fourteenth (Proterozoic: phyllite, amphibolite,
metasandstone, schist) and twelfth (Proterozoic: mainly slate,
shale, siltstone, sandstone, graphitic schist) classes of the Lesser
Himalaya sequence. In the area covering by the Proterozoic High
Himalaya Sequence (class 8), LS3-type landslides are most
common, then the LS2-type and the LS1-type landslides, but
the trend is opposite in the Less Himalaya sequence area.

Distance From Streams
Of all the landslide types, ≥40% of the landslides are within the
1 km-swath area along the streams (Figure 7G). The
percentage curves show that the landslide numbers generally
decrease with the increasing distance, which indicates that the
streams pose much influence on the nearby slopes. However,
within the 1 km-swath along the streams, different shapes of
landslides show different spatial distribution trends. LS1-type
landslides show an evident decrease in numbers as the distance
increases from the streams and the percentage curves peak in
the area which is <200 m to the streams with the largest
percentage of 21% for LS1-1 and 27% for LS1-2; LS3-type
landslides are less in the area within 200 m of the streams
and more in the 200–400 m-buffer and the peak percentages for
LS3-1 and LS3-2 are 11 and 13%, respectively. The curve for
LS2-1 decreases directly from 13 to 5%; and LS2-2, it first
increases, and peaks with a percentage of 16% then decreases.
This pattern suggests that the elongated landslides (LS3)
occurred much farther from the stream channels that
provide them more space to extend. The oblate or transverse
landslides (LS1) are much more susceptible to the influence of
the streams, and the locations of the longitudinal landslides
(LS2) depends on the landslide size—large landslides are prone
to developing farther from the streams while the small ones
close to the streams.

Distance from Roads
Other than the largest and farthest class that is >5 km away from
the roads, there is a negative relationship between landslide
number percentages and the distances from roads, which
suggests that the road excavation plays a vital role in
triggering landslides (Figure 7H). However, the landslide
spatial distributions for Dataset 1, within 1 km of the roads,
do not correlate with the distances to roads (Figure 7H’). For
Dataset 2 which contains large landslides, the percentage curves
show complex trends—the LS1-2 type of landslides peak in
distance ranges of <200 m (number percentage of ∼8%) and
600–800 m (number percentage of ∼6%) from the roads; LS2-2
and LS3-2 peak in distance ranges of 200–400 and 400–600 m
from the roads, respectively. Most roads in the mountainous area
are along rivers, and therefore the influence of the streams may
mask the effect posed by roads on landsliding.

Distance from Faults
We chose three large-scale exposed faults (STDS, MCT, and
MBT), instead of the deep buried MHT, to which these fault root,
to study the effect of the faults posed on the spatial distribution of
landslides in different shapes. The 200 or 500 m intervals were
used to build buffers along these faults. Statistics (Figure 7I,I’)
show that there is no relationship between landslide distribution
and the distance to the STDS, MCT, and MBT.

Peak Ground Acceleration
The PGA values of the study area range from 0.08 to 0.74 g from
the Gorkha earthquake. In general, the larger the PGA is, the
stronger the ground shaking (assuming other factors such as
substrate conditions and topography are the same). However, the
landslide distribution does not have a positive relationship with
the PGA in the study area. The largest areas of LS1, LS2, and LS3
are all in the class of 0.24 g, followed by the 0.28 g class
(Figure 7J). The reason may be the uncertainty resulted from
the estimation of ground shaking by GMPEs (Ground Motion
Prediction Equations), lacking enough real-time measurements
of seismic stations (Kargel et al., 2016). On the other hand, this
may suggest that the PGA is a triggering factor rather than the
predominant factor in controlling the distribution of the
earthquake-triggered landslides.

Antecedent Accumulative Rainfalls
Figure 8 shows the contours of the antecedent accumulative
precipitations for 1 day, 3 days, 1 week, and 2 weeks before the
April 25 Gorkha earthquake and its May 12 aftershock. The
landslide density is considerably greater in the northern part of
the PT2 line, while the rainfall was less on the north side than the
south side. The weather was relatively dry before the
mainshock—the 7-day-accumulative precipitation in the area
had the densest landslide clusters, was <10 mm, and the 14-
day-accumulative rainfall was <40 mm (Figures 8A–D). Besides,
the rainfall is almost even in the northern part where developed
dense landslides. Generally, the distribution of the precipitation
before the mainshock does not correlate with the location of the
dense landslide clusters. Though the study area received more
rainfall during the mainshock and aftershock, and the largest total
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FIGURE 8 | Landslide density vs. antecedent accumulative precipitations (mm) of 1 day, 3 days, 1 week, and 2 weeks before the April 25 mainshock (A–D) and 1
day, 3 days, 1 week, and 2 weeks before the May 12 aftershock (E–H). PT2: physiographic transition.
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rainfall was ∼170 mm, the places where most of the dense
landslide clusters developed received a total rainfall <70 mm
(Figures 8E–H). Therefore, the antecedent accumulative
precipitation might influence the landslide frequency and
location, but it is not the primary control factor for the
coseismic landslides related to the 2015 Gorkha earthquakes.

The May 12 aftershock occurred 18 days later than the April
25mainshock. In comparison with the mainshock, the antecedent
accumulative precipitation before the aftershock is greater in
different corresponding time spans in the north of PT2
(Figure 8). Differentiating the landslides triggered by the
mainshock or the aftershock is necessary to examine the
influence posed by the rainfalls on landslides triggered by the
strong aftershock.

Small Earthquakes Before and After the Mainshock
Totally 267 earthquakes recorded in the area are shown in
Figure 9. There were 5 of them (Mw ≤ 5.0) occurred before
the mainMw 7.8 event, 80 (including the mainshock) occurred on
April 25, and 182 aftershocks occurred after April 25, 2015
Gorkha earthquake, respectively. The majority of the
aftershocks were distributed between the locations of the
mainshock and the Mw 7.3 strong aftershock, so are the
majority of the coseismic landslides. Despite the majority of
the aftershocks are located closer to the Mw 7.3 aftershock,
they are almost evenly distributed on both sides of the PT2.
At the same time, the landslides are mainly located on the
northern side of the PT2 and along river channels (Figure 9).
Even though there is a higher number of coseismic landslides
toward the SE, which is coinciding with the location of the

aftershocks occurred before the Mw 7.3 strong aftershock, the
same is not recognized in the NW, or with the aftershocks after
the Mw 7.3. For these reasons, we found no clear correlation
between the aftershocks and landslides distributions. Therefore,
we deduce that shaking resulted from the earthquakes occurred
before the mainshock and the aftershocks have no apparent
dominant effects on the distribution of all three
geomorphometric types of landslides.

DISCUSSIONS

Landslide Size and the Distribution of
Different Shapes of Landslides
The above statistical analyses of landslides with different scales
and planar geomorphometric features show that, in general, the
large-scale landslides with an area >10,000 m2 in Dataset 2 have
similar failure-prone conditions concerning the predisposing
factors with the landslides in Dataset 1. The vulnerable ranges
are common in an elevation ranges of 1,000–3,500 m asl, slopes of
40–60°, curvature of −0.5 to 0.5, middle slopes, south-facing
slopes, PGA of 0.24 g, and areas covering by the lithology of
High Himalaya Sequence and closing to streams and roads
(Figure 7). Even so, for the landslides with L/W ≤ 2 (LS1
type), the larger-scale landslides have a slightly high elevation
(1,500–3,000 m asl, Figure 7A) and steeper slope (50–60°,
Figure 7B) ranges and they are less sensitive to slope
curvature (Figure 7C). While for LS2 and LS3 types, the large
landslides tend to develop in a larger space, so they are more

FIGURE 9 | Earthquake-triggered landslides and small magnitude earthquakes that occurred before the April 25Mw 7.8mainshock as well as the aftershocks in the
seismic area of the 2015 Gorkha earthquakes. EQ is short for earthquakes. Earthquake data are from USGS (2019). Landslide data are from Xu et al. (2018).
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common on the higher elevation (2,500–3,000 m asl, Figure 7A)
and relatively farther (200–400 m, Figure 7G) from the streams.

Comparing With Other Studies
Of the 22,914 landslides, 1,856 landslides were mapped in an area
of 465 km2 in the Trishuli Valley of central Nepal, which is the
scope of the study by Tsou et al. (2018). In our study, the L for
these landslides range from 20 to 1,119 m with an average L of
165 m, and the W/L values are in 0.07–2.7 (L/W in 0.4–15.4)
(Figure 10). Despite the similar W/L values, L for the 912
landslides mapped by Tsou et al. (2018) were 7–1,145 m with
an average L of 174 m in this region. Also, according to Tsou et al.
(2018), landslides with W/L < 0.6 account for 90%, close to 1,614
landslides in our work constituting up 87% of our sample;
whereas those of W/L smaller than 0.2 account for 60% of the
total according to Tsou et al. (2018), much larger than 398
landslides accounting for 21% of the total as shown by our
study. These differences probably result from the landslide
sampling rule of our research, i.e., we only considered the
landslide with areas >500 m2 and L and W both >20 m.
Another possible reason for the differences is due to the
different methods for computing landslide L and W. Tsou

et al. (2018) approximated W using the ratio of the landslide
area to L. When L is defined, Wmay be underestimated, resulting
in a smaller W/L. While in our method, L andW of the minimum
boundary rectangle of the landslide along the slide direction are
the effective L and W, which may be closer to real values.

An earthquake of larger magnitude generally produces
stronger ground shaking, and the resultant landslides usually
have longer runouts and larger aspect ratios (Tian et al., 2017).
Thus, the landslides triggered by the 1994 Mw 6.7 Northridge,
USA, and the 2013 Mw 5.9 Minxian, China earthquakes, both
moderate in magnitude, have relatively smaller average aspect
ratios of 2.6 and 2.11, respectively, (Table 2). However, the
mean aspect ratio (3.2) for the 2015Mw 7.8 Gorkha earthquake,
even the value (3.7) for the landslides >10,000 m2, is smaller
than ratios of the 2010Mw 7.0 Haiti (3.76) (Xu et al., 2014) and
the 2010 Mw 6.9 Yushu (4.15) (Xu and Xu, 2014) earthquakes.
Firstly, the larger aspect ratio (L/W) for the Haiti and Yushu
cases might as well resulted from underestimating W by
defining it as the ratio of landslide area to L (Xu and Xu,
2014; Xu et al., 2014). Also, the topography is a crucial factor in
determining the landslide geomorphometry and runout in
addition to the triggering factor of the ground shaking. The

FIGURE 10 | Percentage curves for landslide width-length ratio of this research in the study area of Tsou et al. (2018).

TABLE 2 | Landslide’s lengths, widths and aspect ratios of five earthquake cases.

Events Magnitude
(Mw)

Landslide
number

Length
(m)

Mean
length
(m)

Width
(m)

Mean
width
(m)

Aspect
ratio

Mean
aspect
ratio

References

Minxiana 5.9 635 15.3–946.7 60 12.0–284.7 31.6 0.3–8.02 2.11 Tian et al. (2017)
Northridge 6.7 1,052 9–367 69 4–195 26 — 2.6 Parise and Jibson

(2000)
Yushu 6.9 2,036 6–415 40 1.7–76.7 10.8 1.5–32.8 4.15 Xu and Xu (2014)
Haiti 7.0 30,828 — — — — 1.37–54.3 3.76 Xu et al. (2014)
Gorkha Dataset1 7.8 22,914 20–3,652 132 20–856 43 0.3–15.4 3.2 This study

Dataset2 78–3,652 349 37–856 106 0.23–13.7 3.7

a1 shows the parameters of the 635 landslides with areas >500 m2 triggered by the 2013 Minxian, China earthquake.
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V-shape steep topography in Nepal likely blocks landslide
masses from running for a long distance, and the sliding
debris accumulates in the valley, which would lead to a
larger W. Thus, although these landslides have larger
lengths, their aspect ratios are relatively small (mainly in
1.6–3.6). However, just as the Yushu earthquake, the
earthquake-affected region is an area of gentle slopes (most
<30°) on a plateau with sparse vegetation which provides a
favorable condition (the longer slope surfaces with few
obstacles) for unstable slope masses to run for long
distances (Xu et al., 2013). Therefore, although they have a
small size, L, andW, the landslides ran a long distance and have
large aspect ratios as well as longitudinal shapes (Table 2).
Another possible reason might be that in our study, the
landslide sampling size (account for 49% of the total) is
smaller, and we did not examine the landslides with an area
of <500 m2 and L and W > 20 m.

The reach angle of landslides triggered by the 2015 Gorkha
earthquake is ∼40° (Figure 11), which is steeper than those
determined from other studies, which include ∼32° for the
landslides >500 m2 induced by the 2013 minxian, Gansu, China
earthquake (Tian et al., 2017), 31° for landslides triggered by the
2010 Haiti earthquake (Xu et al., 2014), 28° for the rainfall-induced
landslides in Lantau Island, Hong Kong (Dai and Lee, 2002), and
15° for the long-runout rock avalanches triggered by the 2008
Wenchuan, Sichuan, China earthquake (Qi et al., 2011) (Table 3).
The reason for this difference is probably due to the V-shape
valleys, high mountains, and gorges in this study area that blocked
the landslide masses from advancing long distances.

CONCLUSIONS

We described the geomorphometry of the 22,914 landslides
triggered by the 2015 Gorkha earthquake sequence, which
have areas ≥500 m2 and L and W ≥20 m, in an extensive area
affected by the earthquakes. Results show that the ranges of L, W,
and H are 20–3,652, 20–856, and 1–1,947 m, respectively. The
reach angle (arctan H/L) ranges from 2 to 69°, with an average of
34°, and the aspect ratio ranges from 0.3 to 15.4, with an average
of 3.2. The height and length have a relationship of H � 0.87L –
11.11 (R2 � 0.85), and the fitting average reach angle is ∼41°. This
average reach angle is much larger than existing studies in other
regions. The mean aspect ratio is smaller than those for
earthquakes that have smaller magnitude (e.g., Yushu and
Haiti earthquakes). One probable reason is that the steep
gorges could block the landslide masses from moving long
distances, thus resulting in smaller L and larger W as well as a
smaller aspect ratio.

The landslides are classified into three geomorphometric types
based on their 2-D shape and ratio distributions: LS1 (L/W ≤ 2),
LS2 (2 < L/W ≤ 4), and LS3 (L/W > 4). Dataset 1 containing the
total 22,914 landslides and Dataset 2 (from Dataset 1 but only
includes 2,059 landslides with areas >10,000 m2) enable the
examination of the spatial distributions of the three types of
landslides. Results show that, regardless of the size, all the three
geomorphometric types of the landslides have similar susceptible
ranges including curvature, slope position, lithology, and
PGA—they all can occur on straight hill slopes, middle slopes,
areas underlain by High Himalayan Proterozoic rocks

FIGURE 11 | Fitting relationships of landslide length and height. (A) Fitting plot with the 22,914 landslides. (B) Fitting plots for the 2015 Gorkha earthquake (curve I
for landslides (22,913) in Dataset 1 without the Langtang avalanche, curve I’ for all landslides (22,914) in Dataset 1 and curve II for landslides (2,059) in Dataset 2) and
other existing research (curves III–VI are for landslides in areas related to Minxian, Haiti, Hongkong and Wenchuan cases). Table 3 provides further details.
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TABLE 3 | Fitting relationships of landslide height and length for five study cases.

Event and landslide Landslide
number

Function of height and length Mean reach
angle

References

Landslides triggered by the 2015 Gorkha
earthquake

Area ≥500 m2, length ≥20 m, and width ≥20 m 22,914 Curve I’ (Figure 11): H � 0.87L − 11.11 (R2 � 0.85) 41° This study
Area ≥500 m2, length ≥20 m and width ≥20 m (without
langtang landslide)

22,913 Curve I (Figure 11B): H � 0.89L − 13.30 (R2 � 0.86) 42°

Area ≥10,000 m2 (without langtang landslide) 2,058 Curve II (Figure 11B): H � 0.76L + 40.77 (R2 � 0.69) 37°

Landslides triggered by the 2013 Minxian earthquake (area ≥500 m2) 635 Curve III (Figure 11B): H � 0.6164L + 0.4589 (R2 �
0.7312)

32° Tian et al. (2017)

Landslides triggered by the 2010 Haiti earthquake (volume ≥10,000 m3) 452 Curve IV (Figure 11B): H � 0.595L (R2 � 0.6972) 31° Xu et al. (2014)
Rainfall-induced landslides in Lantau Island, Hong Kong 2,103 Curve V (Figure 11B): H � 0.524L + 1.257 (R2 � 0.87) 28° Dai and Lee

(2002)
Long runout landslides triggered by the 2008 Wenchuan earthquake 66 Curve VI (Figure 11B): H � 0.2638L + 212.4 (R2 �

0.6716)
15° Qi et al. (2011)
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(undifferentiated higher Himalayan crystalline rocks, mainly
schist, quartzite, gneiss, and migmatite), and PGA of 0.24 g.
However, the effects posed by elevation, hill slope angle, slope
aspect, and streams are different. The LS3-type landslides are
more abundant in areas that are more prone to failure and can
provide ample space to extend, which include those with a higher
elevation of 1,500–3,000 m asl, hill slopes of 40–45°, and the areas
within 200–400 m from the streams. While areas with the highest
concentration of LS1-type and LS2-type landslides are at
elevations of 1,000–2,000 m asl, slopes of 40–45° and 50–60°,
southeast-facing slopes, and within 200 m from the streams.
Moreover, the distributions of landslides in Dataset 2 suggest
that the large landslides are more likely to occur on much higher
and steeper slopes than the small landslides. The roads, three
large-scale faults, antecedent precipitations, and the small
earthquakes before and after the mainshock do not have
dominant impacts on the landslide distribution. In sum, the
terrain factors and streams are the major factors controlling
the spatial distributions of landslides with various shapes and
sizes. Therefore, geometric features of coseismic landslides
provide a new view to understand the landslide extent
characteristics and mechanism.

One urgent problem is that there is no generally agreed
definition for the geomorphometric parameters for
earthquake-triggered landslides. Aspect ratios differ because
the methods to approximate the L and W for landslides vary.

There is a need for a standard method and more case studies to
contrast the geomorphometric shapes of earthquake-triggered
landslides.
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Monitoring In-Situ Seismic Response
on Rock Slopes Using Ambient Noise
Interferometry: Application to the 2019
Changning (Mw 5.7) Earthquake,
China
Huibao Huang1,2, Shigui Dai3 and Fan Xie2*

1Dadu River Hydropower Development Co., Ltd., Chengdu, China, 2Institute of Geophysics, China Earthquake Administration,
Beijing, China, 3Sichuan Earthquake Administration, Chengdu, China

Study of the mechanical response of rock slopes to moderate earthquakes is important for
understanding the local rheology of landslide and earthquake interactions and for
mitigating the risks associated with subsurface geological processes in tectonically
active mountainous belts. To complement existing point measurements from surface
observations (e.g., global positioning system and interferometric synthetic-aperture radar
measurements), measuring the ambient noise-based velocity change (δv/v) allows for
remote observations of mechanical state changes of the slope, at depth and continuously
in time. We herein investigate the seismic responses of the Pubugou rock slope, a typical
steep rock slope in south-west China, to the 2019 Mw 5.7 Changning earthquake. We
apply ambient noise interferometry to the slope and measure the coda wave velocity
changes at frequencies from 2 to 20 Hz with a 1-h temporal resolution, 2 days before and
14 days after the earthquake. We observe a significant co-seismic wave velocity decrease
caused by the Changning earthquake of up to 0.9% followed by a gradual logarithmic
recovery process over 2 weeks. The earthquake-induced stress sensitivity of δv/v on the
slope is estimated as ∼ 3.2 × 10−8 Pa−1. Through the analysis of the co-seismic and post-
seismic δv/v with different time lapses of the coda, we characterize the healing process on
the slope and also constrain such changes to 75 m in depth. This study highlights the
possibility of quantitatively characterizing the slope weakness usingmoderate earthquakes
in mountainous areas in the future.

Keywords: seismic noise, rock slope, seismicity, slow dynamics, velocity change

INTRODUCTION

Deep-seated rock slopes are widely distributed in the mountainous areas of Sichuan Province, which
is one of the most active geohazard regions in China. There are over 300,000 slopes in this area, which
are susceptible to a high level of landslide activity (Lin and Wang, 2018). Simultaneously, it is also a
seismically active area. Increased seismicity has been recognized in the last decade since the 2008
Wenchuan earthquake (Chigira et al., 2010). According to the earthquake catalogs from Sichuan
Earthquake Administration, over 4,000 earthquakes occurred in 2019 with magnitudes ranging from
Mw 1 to Mw 5.7.
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Mass movement on the damaged rock slopes constitutes a
major geological hazard, damaging infrastructure such as dams,
roads, railways, and bridges and leading to loss of life. Among a
variety of physical parameters (e.g., atmospheric pressure, tide,
temperature, and rainfall), seismicity has a strong impact on the
damage evolution of the rock slopes as dynamic strain is applied
by seismic shaking. Previous studies on seismic hazard
assessment on slopes after earthquakes have been based on the
statistical analysis of regional inventories of earthquake-triggered
landslides (Keefer, 1984; Keefer, 2002). Due to a lack of in-situ
data and a cost-effective method that is sensitive to the changes of
elastic properties, there have been few quantitative studies on
earthquake-induced temporal changes on slopes.

Observational evidence (Larose et al., 2015) and theoretical
models (Colombero et al., 2017) suggest the earthquake-induced
damage is associated with changes in thematerial’s elastic moduli,
which lead to failure of the rock slopes. Owing to the
heterogeneous elastic nonlinearity, it is hard to quantify such
damage on the rock slopes at scales ranging from macroscopic
fractures to microscopic contact changes between grains.
Nevertheless, it is widely recognized that loss of rigidity is a
fundamental signature of the damage development. Therefore,
this makes monitoring the changes in elastic wave velocity
(Murnaghan, 1951) an ideal method to remotely assess the
internal damage development of the rock slopes.

Among the emerging techniques in this field, one promising
monitoring approach is ambient seismic noise cross-correlation.
This is a passive technique that enables retrieval of impulse
responses through cross-correlation of ambient seismic noise
recorded at any two sensors. Depending on the multiple
scattered coda waves retrieved by the ambient cross-
correlation technique (Larose et al., 2006), it is possible to
further monitor stress changes of the medium by inferring
velocity changes from the phase shift in the coda at different
times (Snieder, 2006). This forms the basis of ambient seismic
noise interferometry for time-lapse applications. Ambient seismic
noise interferometry has been used in geophysics for more than
30 years, e.g., to study the dynamic evolution in faults by
monitoring velocity changes caused by nearby earthquakes
(Brenguier et al., 2008). This method has been proposed to
study the precursor instabilities responsible for landslides. A
significant velocity reduction was reported several days before
the failure on the Pont Bourquin clay soil of the Swiss Alps
(Mainsant et al., 2012). Moreover, the method enhances the
knowledge of deformation by environmental variations (e.g.,
seasonal fluctuations and groundwater infiltration) on slopes
with materials composed of clay soil and/or volcanic deposits
(Larose et al., 2015).

Monitoring changes of rock slopes during earthquake shaking
and the subsequent recovery phase is used to study the dynamic
elastic properties of the rock slopes and also to evaluate the
damage level. However, to the best of the authors’ knowledge,
only few observations with limited typology of the slope have
successfully tracked co-seismic changes. Even less understood is
the healing process due to post-seismic changes when moderate
dynamic stress solicitation is applied on rock slopes by a distant
earthquake.

This paper focuses on the co-seismic and post-seismic changes
on the Pubugou rock slope due to the Changning Mw 5.7
earthquake in 2019. The coda wave velocity changes with a 1-h
temporal resolution are measured by applying ambient seismic
noise interferometry to continuous recordings on the slope. With
these results, some possible explanations and implications of the
observations are discussed.

MATERIALS AND METHODS

Study Area
As shown in Figure 1A, the Pubugou rock slope is in the middle
of the deep-seated bare bedrock alpine valleys of Dadu River
between the west margin of Sichuan Basin and the Tibet Plateau.
The rock slope is ∼800 m from the dam of the Pubugou
Hydropower Station (3,600 MW capacity) and is surrounded
by active faults characterized by complex Cenozoic structures.
There are intense deformations and high levels of seismic activity
in this area.

Figure 1B illustrates that the east-facing slope with its height
of about 1,180 m above mean sea level (m a.m.s.l.) consists of
highly weathered tuffaceous rocks and diabases, in addition to
gravels with thin clays on a shallow layer at the upper rear part.
The gradient of the slope is approximately 45°. The surface
displacement monitoring indicates progressive toppling of the
upper part (980–1,180 m a.s.m.l.) at an annual displacement rate
of 21 mm/yr. The damaged lower part (< 980 m a.s.m.l.) has been
reinforced by removing shallow weathered gravels and rocks and
inserting ∼100 anti-slide piles with cement grout into drilled
holes. Thus, the annual displacement rate in this area is now
approximately 3 mm/yr. According to the drilling data provided
by a geology study (Yang et al., 2013), intact rocks exist at an
average depth of ∼70 m. The drilling samples also suggest that
the weathering level on the rocky material varies with depth. The
strongest weathered material appears at a shallow depth of a few
meters.

Data
As illustrated in Figure 2A, two observational huts (T01 and
T02) were located ∼157 m apart on either side of the center part
(∼990 m a.s.m.l.) of the slope. In such way, a global slope
coverage due to limited sensors as well as strong mobile
network signal condition was expected. Each hut had a three-
component short period seismometer (GL-CS2, GEOLIGHT™)
installed, which allowed a relatively flat frequency response
from 0.5 to 50 Hz. Each seismometer was digitized by a 24-
bit EDAS-24 GN (GEOLIGHT™) at a 100 Hz sampling rate
with a system clock error less than 10− 6 s. The seismic noise data
were stored locally in 1-h long records and simultaneously
transmitted to the server at Sichuan Earthquake
Administration via a mobile network.

A bi-frequency global positioning system (GPS) receptor
(GMX902, Leica™) was installed on the roof of each hut,
together with a GPS antenna at each hut, to measure the
surface deformation along the central part of the slope since
April 24, 2019. The hourly global navigation system satellite
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(GNSS) measurements were transformed into daily values by
averaging over every 24 h. Daily rainfall data were gathered from
a weather station on the east bank of the rock slope.

On June 17, 2019, an Mw 5.7 earthquake occurred in
Changning county, a region of Sichuan Province in
southwest China. Despite the distance between the rock slope

and the epicenter of the earthquake being ∼221 km, the
seismometers on the slope clearly recorded earthquake-
induced ground motion. In Figure 2B, the seismic shaking
intensity is estimated by directly computing the peak ground
velocity (PGV) for its vertical component. The measured PGV is
2.34 cm/s for T01 and 2.96 cm/s for T02. Hence, the

FIGURE 1 | (A) Tectonic settings surrounding the Pubugou slope (the hypocenter of the Changning Mw 5.7 earthquake is indicated by the black star).
(B) Geological profile of the slope, mainly composed of sedimentary rocks.

FIGURE 2 | (A) Configuration of two seismic stations (yellow triangles) on the slope (the boundary of the slope is delineated by a red dashed line). (B) Peak ground
velocity (red circles) due to the Changning Mw 5.7 earthquake recorded for its vertical component by the two stations T01 and T02 on the slope.
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approximate PGV is 2.62 cm/s by averaging the PGV value
measured at each seismometer.

METHOD

The hourly ambient seismic noise was pre-processed at each
seismometer following a standard routine procedure (Larose
et al., 2015): the hourly seismic noise was first normalized in
the frequency domain between 2 and 20 Hz using the
whitening method and then normalized in the time
domain using the clipping method with amplitudes
exceeding three standard deviations. The purpose of the
above steps was to enhance the specific frequency band of
the ambient noise and also reduce the impact of spatially
isolated noise sources such as earthquakes. Finally, the
vertical components of the pre-processed noise values
between the seismometers were cross-correlated for each
hour with a 15 s time lag. As the cross-correlation
functions were asymmetric, due to the anisotropy of the
noise propagation direction, the causal and acausal parts
of the cross-correlation functions were further averaged.

Figure 3B illustrates the 384 hourly correlograms hi (i denotes
the hour during the period of interest from June 15 to June 30)
calculated, along with the reference href (Figure 3A) that was
obtained by averaging all the correlograms.

To understand how changes in seismic velocities can be
measured from phase shifts in the correlograms, consider a

ray that travels a distance L between two seismometers in time
t at velocity v. These quantities are related via

L � vt (1)

Taking the differential of L,

δL � tδv + vδt (2)

For a homogeneous velocity change, the ray path does not
change (δL � 0). This yields a relation between the velocity
change δv and the change in arrival time δt:

δt
t
� −δv

v
(3)

The change in arrival time scales linearly with lag time,
resulting in stretching or compression of the waveform
following a decrease or an increase, respectively. Thus, to
quantify the temporal changes, the stretching method was
applied, which consisted of a grid search testing over a series
of candidate velocity changes δv/vk between hi(t) and the
stretched reference signal href(t(1 + δv/vk)) within a given
time window [t1, t2]:

CC(
δv
vk
) � ∫

t2

t1
href[t(1 + δv/vk)]hi(t)dt

����������������������������
∫
t2

t1
href[t(1 + δv/vk)]2dt∫t2

t1
hi(t)2dt

√ (4)

The apparent velocity changes δv/v can be obtained by
maximizing the correlation coefficient CC(δv/vk). The
uncertainty on δv/v, which is the indicator of the
measurement reliability, can be estimated using the theoretical
formula proposed by Weaver et al. (2011):

σe �
�������
1 − CC2

√
2CC

���������
6

���
π/2

√
T

ω2
c(t

3
2 − t31)

√

(5)

where T is the inverse of the frequency bandwidth and ωc is the
central frequency. The lower the uncertainty is, the robuster the
measurement is.

RESULTS

Co-Seismic Change
A time window from 1 to 12 s was used (Figure 3) to measure the
in-situ global temporal change using scattered coda waves.
Figure 4A illustrates the general evolution of the apparent
velocity change together with its color-coded uncertainty as a
function of time during the period of interest from June 15 to June
30. The uncertainty (∼10− 5) is one or two orders of magnitude
smaller than the apparent velocity change (∼10− 3), suggesting
that the measurement is consistently good in quality.

We observe a rapid co-seismic velocity drop by ∼0.9% on the
slope. Simultaneously, the recorded PGV is 2.34 cm/s for T01 and
2.96 cm/s for T02 due to the Changning earthquake. Thanks to
the measured PGV, the earthquake-produced dynamics stress on
the slope can be estimated using the following equation (Hill
et al., 1993):

FIGURE 3 | (A) Reference trace averaged over all the correlograms. (B)
Hourly correlograms from June 15 to June 30, 2019, in the 2–20 Hz frequency
range. Vertical red dash lines mark the time window (1–12 s) of the coda used
to estimate δv/v.
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Δσd � G
PGV
vp

(6)

where G is the bulk modulus and vp is the bulk velocity. As with
the estimation of physical properties of tuffaceous rocks (Yang
et al., 2013), we use vp � 1.5 km/s and G � 1.6 GPa. Hence, Δσd is
approximately ∼280 kPa, and a velocity-stress sensitivity of
∼3.2 × 10− 8 Pa− 1 can be estimated.
The seismologists (Peng et al., 2010; Gonzalez-Huizar et al.,

2012) have reported that even though the earthquake generating
PGV remains as low as millimeters per second at a distance of
thousand kilometers, the induced stress loading still exists at least
10,000 Pa and has the potential to remotely trigger seismicity.
Therefore, such a strong but sudden decease in velocity cannot be
influenced by the undrained loading effect due to the
groundwater-induced liquefaction of the slope (Lecocq et al.,
2017), or by the thermal loading effect due to the air temperate
change (Tsai, 2011). The only possible mechanism is attributed to
the opening of new or pre-existing cracks/fractures on the slope
which decrease the elastic modulus due to the stress loading of
earthquake shaking (Bontemps et al., 2020). We interpret that the
observed co-seismic velocity drop is caused by the weakness of
the slope due to the earthquake-induced dynamic stress transient.

Post-Seismic Change
Almost immediately after the co-seismic velocity drop, a clear
logarithmic recovery of the velocity change to the pre-earthquake
state is observed over approximately 14 days. Such a healing

increase back toward its initial value following a logarithmic
evolution after moderate solicitation is referred to as “slow
dynamics” (TenCate, 2011).

Slow dynamics is a nonlinear elastic response of the material
after imposing a strain of moderate amplitude that does not
generate any macroscopic damage and has been found to be
universal in granular solids of various compositions ranging from
that of the Earth’s crust to the inter-grained microscopic cracks of
sedimentary rocks or concrete samples of the order of
micrometers (TenCate et al., 2000). Hence, we interpret this
recovery phase as a nonlinear response to the re-compaction
of the opened fractures and micro-cracks due to seismic shaking.
Note there was an earthquake sequence that began with an Mw
5.7 earthquake on June 17 and comprised ∼600 aftershocks for
more than 2 weeks. Within this context, several moderate
earthquake-induced ground motion events were recorded on
the slope during this period. Among them, there was a 0.1%
co-seismic velocity decrease caused by the largest Mw 5
aftershock on June 22 during the healing process, with a PGV
value of 1 cm/s on the slope.

In addition, a small velocity fluctuation was observed at the
end of the recovery phase. It was noted that such velocity
fluctuations occurred after 2 days of precipitations with a total
of ∼90 mm rainfall. Rather than earthquake shaking (with
loading effects that have low PGV values (< 0.1 cm/s)) during
these days, the possible main mechanism response for such
velocity fluctuations was rigidity decrease due to an
augmentation of the water content/pore saturation in the

FIGURE 4 | (A) δv/v decrease and subsequent recovery due to the Changning Mw 5.7 earthquake. (B) δv/v as a logarithmic function of recovery time for the
earthquake (the black dash line characterizes the recovery time with the Mw 5 aftershock on June 22, and the blue dash line characterizes the recovery time without the
Mw 5 aftershock). (C) Time series of GNSS horizontal displacements at two stations with a 1-day sampling rate.
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highly weathered granular material of the slope above a certain
rainfall threshold (Guzzetti et al., 2008). However, the complex
interactions between seismic shaking and rainfall are out of the
scope of this work and will be demonstrated in a separate paper.

To quantify the healing process, the logarithmic evolution of
δv/v can be fitted as follows:

δv/v � A −m log10(d) (7)

where d is the recovery time in hours, A is the extrapolated δv/v
after the co-seismic shaking, m is the slope of the logarithmic
decay, and 10A/m represents the recovery time.

Figure 4B shows the estimation of these parameters with (June
18–27) and without (June 18–22) theMw 5 aftershock on June 22.
The characterized recovery times (10A/m) are 146 and 177 h,
respectively.

This suggests that the rigidity of the slope experiences a faster
recovery process with the effect of additional small seismic
event(s). It also implies that even seismic shaking with its
PGV value as low as 1 cm/s can accelerate the healing
recovery processes by altering the slope’s weakness. A possible
mechanism for this effect is the re-arranging of existing grains/
cracks that favor the closing of opened earthquake-generated
micro/macro-fractures (Bontemps et al., 2020).

It is worth noting that compared with ambient noise
interferometry, the horizontal displacement (Figure 4C)
measured at each seismometer site did not show
significant co-seismic and post-seismic effects. One reason
is that due to low temporal resolution (1 day) of the GNSS
measurements, it was hard to track sudden earthquake-
induced changes over such a short time. However, such
measurements hardly reveal small changes of mechanical
properties of the material because they are less sensitive to
the state of stress, rigidity, or damage due to their surface
measurement configuration.

Different Times in the Coda
The changes are assumed to be in a spatially global homogeneous
medium (Snieder, 2006). Thus, velocity change is proportional to
a time shift in the later arriving coda waves. However, as a strong
heterogeneous material, velocity change in the rock slope is not
global, but is influenced by the time in the coda with respect to the
sampled domain. Therefore, instead of analyzing a long coda
segment as in the previous section, the stretching technique is
applied to a series of sliding windows of 3 s in the coda, with the
window width corresponding to six periods of applied lowest
frequency (2 Hz).

Figure 5 illustrates the velocity changes within seven
consecutive shorter time windows centered around tc � 1.5, 3,
4.5, 6, 7.5, 9, and 10.5 s. The strongest co-seismic velocity reduction
and post-seismic recovery process were found at the earliest time of
tc � 1.5 s in the coda. With increasing time, the magnitude of the
co-seismic velocity drop decreased from ∼0.9% to ∼0.1%.
Simultaneously, a weaker logarithmic post-seismic recovery
process in the later arriving coda was observed. The weakest co-
seismic and post-seismic velocity perturbations were observed
during the last time window of tc � 10.5 s in the coda.

As the early coda waves are mostly sensitive to the changes at
shallow depths, as well as the weaker bonds between the elements
of the weathered tuff rocks, we suggest that earthquake-induced
strong ground motion can introduce more opening cracks/
fractures, which is the signature of mechanical damage in the
form of crack appearance, at a shallow depth of the higher-
weathered rock material in the slope.

It is worth noting that the sensitivity to absolute depth requires
detailed measurements of the scattering properties of the slope,
which are not available for the study area. Nevertheless, the
relative depth resolution of coda waves measured at different
time lapses of the coda using existing theoretical and numerical
testing can be discussed.

DISCUSSION

The in-situ apparent velocity evolution on the rock slope due to
moderate earthquake shaking raises at least two questions. First,
what is the depth sensitivity of the measurements? Second, why is
the slow dynamics effect due to earthquake shaking related to the
damage features?

To answer the first question, we estimate that the first-order
depth resolution for the velocity decrease is due to earthquake.
Although the depth sensitivity of coda waves has not yet been
fully solved (Obermann and Hillers, 2019), as the study area is
neither a layeredmedium nor a completely solid rockmaterial, we
thus evaluate the bulk sensitivity of the scattered coda waves by
considering a two-dimensional body wave sensitivity kernel
formulation (Obermann and Hillers, 2019):

K(s, r, r0, t) � 1
p(s, r, t) ∫

t

0
p(s, r0, t′)I(r0, r, t − t′)dt′ (8)

where s and r are the positions of the stations, r0 is the local
velocity variation, and t is the lapse time. The energy propagator p
is calculated by the radiative transfer solution approximation for
isotropic scattering of the medium:

p(s, r, t) � e−ctℓ
−1

2πc‖s − r‖ δ(t −
‖s − r‖

c
) + eℓ

−1(
�������
c2t2−‖s−r‖2

√
−ct)

2πℓ
������������
c2t2 − ‖s − r‖2

√

× H(t − ‖s − r‖
c

)

(9)

whereH(x) is the Heaviside function and c is the energy velocity.
With an empirical scattering mean free path of ∼10 m as well

as a bulk energy velocity of ∼1,100 m/s, Figure 6A gives the
theoretical depth sensitivities with respect to the different time
lapses (tc) of the coda, in which sensitivity is normalized by a body
wave kernel.

Figure 6B plots the normalized depth sensitivities with values
greater than 10% as a function of measured co-seismic velocity
reduction at each lapse time. Figure 6B shows that the δv/v
measurement is most sensitive to changes within the top ∼100 m,
and velocity reduction varies with its depth above ∼75 m. This
result is in agreement with geological investigation that the intact
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rockymaterial exists to an average depth of ∼70 m, where it is less
affected by the seismic shaking.

For the second question, due to their direct sensitivity to the
higher-order elastic properties of materials, scattered coda
waves are more sensitive to the nonlinear elastic response of
the material than direct waves (Xie et al., 2018). Compared
with nondestructive testing techniques based on common
elastic waves, the emerging methods based on coda waves
have shown great promise in terms of being more accurate and
sensitive in detecting the initiation of damage in various solid
materials as early as possible (Xie et al., 2019). As a particularly
attractive nonlinear elastic effect, time-logarithmic recovery
(slow dynamics) back to the unperturbed elastic modulus

following a sharp drop in the elastic modulus (fast
dynamics) has been reported in response to moderate
mechanical solicitation. Such nonlinear responses were first
probed with nonlinear resonant ultrasound spectroscopy and
can now be monitored efficiently via velocity changes from
coda wave interferometry at various scales (Tremblay et al.,
2010).

As far as earthquake-triggered landslides are concerned,
some studies have suggested that in contrast to the post-
seismic recovery during the dry season, rainfall-produced
fluid activities disturbed the post-seismic relaxation process
causing a slower recovery time (Bontemps et al., 2020).
Laboratory studies have also suggested that the characterized

FIGURE 5 | Velocity changes with seven different time lapses of the coda.

FIGURE 6 | (A) Numerical modeling of the depth resolution of coda waves measured at different time lapses of the coda. (B) Kernel depth sensitivity values greater
than 10% as a function of measured co-seismic velocity reduction at each lapse time.
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recovery times are dependent on the damage of the medium
(Tremblay et al., 2010).

In addition, in contrast to seismometer’s record, daily GNSS
has been applied comprehensively to measure subtle surface
mass deformation at a high confidence level of millimeter scale
with 24-h static data. It is presumed that the deformation
continuously accumulates from months to years, where the
GNSS suffices in such high precision level. Nevertheless,
there are indeed strong-motion scenarios with rapid
deformation (e.g., storm surge loading, pre-eruption volcanic
unrest, and earthquakes), which require epoch-wise GPS
displacements to capture motions on a wide sub-daily
timescale from seconds to hours. However, high-rate GPS
solutions to detect sub-daily deformations in a reliable
manner are still of great challenges as the magnitudes of
such signals are usually close to the lower bound of GNSS
carrier-phase measurement precision (Bilich et al. (2008); Geng
et al. (2017)). Therefore, so far, it is hard for current GNSS
techniques to reveal such small changes of mechanical
properties of the rock slope due to their low sensitivity.

To summarize, from scientific point of view, this work
quantitatively characterizes the weak but solid dynamic loading
effect due to a distant earthquake and subsequent time-dependent
recovery process in terms of elastic change using ambient noise
interferometry. It is the first time to reveal such physical process
inside the rock slope at such highly temporal (1-h) and stress-
sensitive (∼ 3 × 10− 8 Pa− 1) ways due to seismic shaking at a
distance over 200 km. It facilitates the understanding of on-site
damage evolution of the rock slope during the earthquake. From
engineering point of view, since seismic shaking is ubiquitous in
tectonically active mountainous belts, it has the potential to
quantitatively characterize the slope weakness, which is
susceptible to nonlinear elastic changes in terms of velocity
changes by monitoring the post-seismic relaxation process. It
facilitates the in-situ seismic hazard assessment of the rock
slope during the earthquake which was previously based on the
statistical analysis of regional inventories of earthquake-triggered
landslides.

CONCLUSIONS

This study has applied in-situ ambient noise interferometry to
two seismic stations installed on a slope and has measured coda
wave velocity changes at frequencies between 2 and 20 Hz with a
1-h temporal resolution, 2 days before and 14 days after an
earthquake. The findings are as follows:

(1) Co-seismic wave velocity decreases caused by the Changning
earthquake of up to ∼0.9% were followed by a gradual
logarithmic recovery process over 2 weeks. An earthquake-
induced stress sensitivity of δv/v on the slope was estimated
as ∼ 3.2 × 10− 8 Pa− 1.

(2) By analyzing the co-seismic and post-seismic δv/v with
different coda time lapses, the healing process on the
slope was characterized, and such changes were
constrained to ∼ 75 m in depth.

(3) It may be possible to quantitatively characterize slope
weakness using moderate earthquakes in mountainous
areas in the future.
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Using Google Earth Images to Extract
Dense Landslides Induced by
Historical Earthquakes at the
Southwest of Ordos, China
Du Peng, Xu Yueren*, Tian Qinjian and Li Wenqiao

Key Laboratory of Earthquake Prediction, Institute of Earthquake Forecasting, China Earthquake Administration, Beijing, China

As historical earthquake records are simple, determining the source parameters of
historical strong earthquakes over an extended period is difficult. There are numerous
uncertainties in the study of historical earthquakes based on limited literature records. Co-
seismic landslide interpretation combined with historical documents can yield the
possibility of reducing these uncertainties. The dense co-seismic landslides can be
preserved for hundreds to thousands of years in Loess Plateau, North China;
furthermore, there are notable attribute differences between earthquake landslides and
rainfall-triggered landslides. Along the southwestern margin of the Ordos Block, only one
severe earthquake has been recorded in the past 3,000 years. The records of “Sanchuan
exhaustion and Qishan collapse” provide clues for an investigation of the 780 BC Qishan
earthquake. In this study, combined with historical documents, current high-resolution
Google Earth images were used to extract historical landslides along the southwestern of
the Ordos Block. There were 6,876 landslides with a total area of 643 km2. The landslide-
intensive areas were mainly distributed along the Longxian–Qishan–Mazhao Fault in the
loess valley area on the northeastern side of the fault. Loess tableland and river terraces
occur on the southwest side of the fault; dense landslides have not been examined due to
the topographical conditions in this area. By analyzing the spatial distribution of historical
earthquake damage in this region, comparing the characteristics of rainfall-triggered
landslides, and combining existing dating results for bedrock collapse and loess
landslides, the interpretation of dense historical landslides can be linked to the Qishan
Earthquake. The interpretation results are associated with historical records. Analyses of
current earthquake cases show that the distribution of dense landslides triggered by
strong earthquakes can indicate the episeismic area of an earthquake. In addition, the non-
integrated landslide catalog without small- and medium-scale coseismic landslides can be
used to effectively determine the source parameters of historical strong earthquakes and
perform quantitative evaluations. This study evaluates the focal parameters of the 780 BC
Qishan earthquake based on interpretations of the spatial distribution range of historical
landslides as representations of the range of the extreme earthquake zone.

Keywords: 780BC Qishan Earthquake, Earthquake-triggered landslides, Loess plateau, Google Earth, seismic
parameters
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INTRODUCTION

The macro-epicenter, magnitude, range of influence, and rupture
scale of historical earthquakes are mostly based on damages
recorded in historical documents. However, for earlier
historical earthquakes, due to the long history and unknown
or missing historical records, determining the relevant seismic
parameters is often difficult, or there is significant uncertainty.
Previous studies have shown that in addition to fault
investigations, the spatial distribution of coseismic landslides
can indicate the seismic intensity and rupture zone (Dadson
et al., 2004; Meunier et al., 2008; Larsen et al., 2010; Parker et al.,
2011; YuanD et al., 2013). TheWenchuan earthquake produced a
240 km long surface rupture zone. Within the 240 km range, the
cumulative number of landslides accounted for 86% of the total
landslides triggered by the Wenchuan earthquake, and the
cumulative landslide area accounted for 91% of the total
landslides triggered by the Wenchuan earthquake. Landslides
triggered by the Wenchuan earthquake were mainly distributed
in the IX degree area. The landslide area within the IX degree area
accounted for 81.1% of the total landslide area while the landslide
number accounted for 76.6% of the total landslide number (Du
et al., 2020a). The distribution of 5,019 landslides triggered by the
Tongwei earthquake in 1718 coincides with X degree isoseismal
lines (Xu et al., 2020b). The 7,151 landslides triggered by the
Haiyuan M8.5 earthquake in 1920 were distributed within the IX
degree area (Xu et al., 2020c). In the Loess Plateau region of
China, a large number of valleys, empty areas, and an arid climate
have created favorable conditions for the formation and
preservation of landslides due to earthquakes. Large-scale
dense landslides triggered by historical strong earthquakes can
be preserved for decades, hundreds, or even thousands of years.
There is a significant difference in the scale between loess
landslides due to rainfall and seismic landslides (Xu et al.,
2020a). Based on the principle of “connecting the present to
the past,” the spatial distribution of preserved large-scale
landslides can be used to determine the source parameters of
historical strong earthquakes. Similar to analyzing present-day
earthquake cases, we can use remote sensing interpretation

technologies to perform detailed interpretations and
investigations of landslides triggered by historical strong
earthquakes, which yield determinations (or modifications) of
the magnitude and epicenter parameters of historical
earthquakes.

The 780 BC Qishan earthquake, which occurred along the
southwestern margin of the Ordos Block in China, was the
earliest destructive earthquake recorded in Chinese history.
The "Book of Songs" and "Historical Records" clearly record
that the earthquake occurred in the second year of King Zhou
You. The ground damage included "three rivers exhausted,
Qishan collapse, hundred rivers boiled, and hills collapsed”.
“The high banks turned into valleys,” and “The deep valley
became a mausoleum," among other accounts. These records
indicate that the earthquake triggered a large number of coseismic
landslides. According to these records, this earthquake was a
strong event, such that it has attracted the attention of numerous
researchers. However, there has been substantial debate over the
magnitude of the Qishan earthquake, the macro-epicenter, the
range of the extreme earthquake zone, and the seismogenic
structure. Various earthquake catalogs have determined the
location of the macro-epicenter of this earthquake in Qishan
County, Shaanxi Province based on the "Qishan collapse."
Scholars suggest that "Sanchuan" in "Sanchuan Exhaust" refers
to the present day Jinghe, Weihe, and Luohe rivers. The
magnitude is uncertain; various earthquake catalogs generally
estimate the magnitude at 6 to ≥ 7. The epicenter intensity is also
uncertain; the lack of a consensus yields uncertainty in the
assessment of regional seismic activity and seismic risk
analysis (Gu, 1983 and Table 1).

In addition to studying historical earthquakes on the edge of
the Ordos block through limited historical records, a large
number of landslides triggered by earthquakes also carry
seismic parameter information (e.g., the AD 1303 Hongdong
earthquake, AD 1556 Huaxian earthquake, AD 1654 Lixian
earthquake, AD 1718 Tongwei Earthquake, and 1920 Haiyuan
Earthquake) (Gu, 1983; Department of Earthquake Disaster
Prevention, National Seismological Administration, 1995).
Except for smaller landslides that have transformed and

TABLE 1 | Records of the 780 BC Qishan earthquake from different documents.

Literature Estimated epicenter location Estimated
magnitude

Epicenter
intensity

Remarks and references

“China Earthquake Catalog” 1960 Guanzhong (epicenter is omi-
nous, likely not far from Qishan)

6–6.75 Sanchuan (Jinghe, Weihe, and Luohe rivers) (Li,
1960)

“China Earthquake Catalog” 1983 Qi’shan (34.5°N, 107.8°E) 6–7 Sanchuan (Jinghe, Weihe, Luohe and rivers). Un-
known epicenter (Gu, 1983)

“A brief List of earthquakes in China” 1988 Qi’shan (34.5°N, 107.8°E) 6–7
Catalog of Strong Earthquakes in Chinese
History 1995

Qi’shan (34.5°N, 107.8°E) ≥ 7 ≥ IX Sanchuan (Jinghe, Weihe, and Luohe rivers)
(Department of Earthquake Disaster Prevention,
National Earthquake Administration, 1995)

“Catalog of Strong Earthquakes in four Prov-
inces (Regions) of Shaanxi, Gansu, Ningxia,
and Qinghai”

Qi’shan (34.5°N, 107.8°E) 6–7 Sanchuan (Jinghe river, Weihe river, Luohe river)
(Lanzhou Institute of Earthquake Research, State
Seismological Administration, 1985)

“Qishan county chronicles” Qi’shan (34.5°N, 107.8°E) 6–7 VIII Sanchuan (Jinghe, Weihe, and Luohe rivers)
National Earthquake Science Data Center,
China Historical Earthquake Catalog

(34.5°N, 107.8°E) 6.5
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disappeared, larger landslides remain clearly visible on remote
sensing images. A large number of dense historical loess
landslides are currently preserved along the southwestern
margin of the Ordos Block.

This study attempts to implement the interpretation methods
detailed in the current strong earthquake landslide survey,
combined with a historical literature review and field surveys,
and uses current remote sensing images to interpret, in detail,
historical landslides along the southwestern margin of the Ordos
block. Based on dating results of existing bedrock collapses and
loess landslides, historical landslides in the dense area along the
southwestern margin of the Ordos block can be linked to the 780
BC Qishan earthquake. In addition, we discuss the possible
magnitude, epicenter location, seismogenic structure, and
earthquake damage scale associated with the 780 BC Qishan
earthquake based on the distribution of landslides.

MATERIALS AND METHODS

Geological Background
The southwestern margin of the Ordos Block has a special
structural location, i.e., it is at the forefront of the
northeastward expansion of the Tibetan Plateau (Figure 1)
(Yuan R et al., 2013; Zheng et al., 2013; Zheng et al., 2017; Li,
2018). This area experiences strong tectonic activity and frequent
occurrences of both strong historical and current earthquakes.
The southwestern margin of the Ordos Block is one of the areas
where casualties are extremely tragic (Peng, 1992). The AD1654
Lixian M8 earthquake caused 30,000 deaths (Yang et al., 2015).
The AD1718 Tongwei M7.5 earthquake caused more than 70,000
deaths, and there is a clear record that a considerable number of

deaths are related to the earthquake landslide (Sun et al., 2017).
The AD1920 Haiyuan M8.5 earthquake caused 270,000 deaths
(Cheng et al., 2017), of which more than 100,000 deaths may be
directly related to the earthquake landslide (Li et al., 2015). At the
same time, this area is a danger zone for strong earthquakes in the
future. GPS deformation observation results show that since
1920, the remaining seismic moments on the southwestern
margin of the Ordos Block have been accumulating and have
been in a state of loss, which has the potential to generate Mw ≥ 7
earthquakes (Li, 2019). The Liupanshan Fault zone and
Longxian–Baoji Fault zone are the main fault zones along the
southwestern margin of the Ordos Block. Ye et al. (2018) used
GPS data inversion to examine the northern section of the
Longxian–Baoji Fault zone, finding that this area is in a highly
closed state with a greater seismic risk. Previous studies suggest
that the middle–south section of the Liupanshan Fault zone and
Longxian–Baoji Fault zone are two dangerous areas where strong/
major earthquakes may occur in the future. Magnitude estimates
of possible earthquakes along the Liupanshan and
Longxian–Baoji Fault zones are Mw 7.3 and 7.2, respectively
(Du et al., 2018). The Longxian–Qishan–Mazhao Fault is the
most active fault in the Longxian–Baoji Fault zone, with a total
length of approximately 180 km. This fault is a late Quaternary
active fault with an overall NW trend. The fault is mainly left-
lateral sliding, accompanied by a certain normal fault (Li, 2018).

Landforms along the southwestern margin of the Ordos Block
can be mainly divided into three components: mountains formed
by bedrock, the Loess Plateau, and the Weihe Basin. The
mountain ranges composed of bedrock include uplift areas,
such as Liupan Mountain, Longshan Mountain, Qinling
Mountain, Qianyangling Mountain, and Beishan Mountain.
They are mainly Precambrian metamorphic basement, granite

FIGURE 1 | Regional background map. LBF: Longxian Baoji Fault Zone; LPSF: Liupanshan Fault; HYF: Haiyuan Fault; WQLF: West Qinling Fault; EKLF: East
Kunlun Fault; QLNPF: West Qinling North Margin Fault; The black box represents the range of Figure 2.
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bodies, Paleozoic strata, and some Mesozoic strata. The Loess
Plateau is covered by Quaternary aeolian loess-paleosol, with
thicknesses reaching from 120 to approximately 180 m. The main
components of loess are silt or clay, characterized by loose, easily
erodible soil. The Loess Plateau is one of the regions with the most
serious soil erosion in the world (Li et al., 2019). The eroded
landform types include plateaus, beams, and ridges. The terrain is
undulating, ravines are vertical and horizontal, and mountains
are high and steep. These characteristics create excellent terrain
conditions for the occurrence of landslides. The Weihe River
Basin includes various levels of loess tableland and Weihe river
terraces. The loess plateaus are flat and do not have topographical
conditions appropriate for dense landslides.

From the late Holocene to the present, the Baoji area on the
southwestern margin of Ordos has been affected by global climate
change, the climate has become colder, the intensity of the
summer monsoon has weakened, and the winter monsoon has
increased. The climate has entered a phase of relatively cold, arid,
and scarce precipitation (Deng, 2011). The dry climate along the
southwestern margin of the Ordos Block is conducive to the
preservation of loess landslides.

Interpretation Method
Satellite images taken before and after earthquakes can be used for
detailed interpretation of landslides after modern major
earthquakes. The image data used to interpret historical
earthquake landslides must conform to the two following
requirements: 1) the resolution of the image should be
sufficiently high to facilitate the identification of the range of
each part of the landslide body through user experience and 2) the
area should be covered by the maximum number of temporal
images to facilitate comparative interpretations. The
interpretation of historical landslides is based on the following.
1) Current earthquake case studies show that only large
earthquakes can trigger dense landslides; larger landslides can
be preserved for extended periods (Xu et al., 2020a). The scale of
landslides caused by moderate earthquakes is limited which has a
negligible impact on the interpretation of landslides caused by
large earthquakes (Du et al., 2020a). 2) Seismic landslides and
rainfall-triggered landslides have distinct characteristics with
respect to their duration, area scale, and distribution (Xu
et al., 2020a). 3) Large-scale artificially-induced landslides
appear as single points or distributed across residential areas;
these are also significantly different from dense large-scale
landslides. 4) We cannot overlook that earthquake landslides
occurred before rainfall or human activity-induced landslides;
however, the overall shapes between these landslide types remain
clearly distinguishable. We used high-resolution satellite images
fromGoogle Earth to systematically interpret historical landslides
in the study area and surroundings. Google Earth can provide
multi-temporal images with different resolutions of up to 0.15 m.
We used Google Earth images of the study area collected from
2005 to 2018, with resolutions of 1–5 m; most areas had an image
coverage of more than three times. Google Earth supports a 3-D
display at any angle, such that the shape and outline of the
landslide can be clearly distinguished. To understand the
completeness of the translation, we interpreted it on a river-

by-basin basis. In addition, domestic high-resolution satellite
images collected by the GF-1, GF-2, and American Keyhole
satellites from the 1960s to the 1970s were used as
supplementary data sources. If some parts of Google Image
are covered by clouds, etc., we used domestic high-resolution
satellite image as supplementary data. The Keyhole historical
satellite images as a supplementary data source can eliminate the
impact of landslides caused by human activity in recent decades.
Later field excursions were also used to verify the accuracy of the
interpretations. Using Google Earth images, we manually
extracted and saved the boundaries of the target landslides as
vector files in a kml format. Attribute information for the
landslide body was assigned using ArcGIS software. The
attribute information included the length and width of the
landslide, the elevation of the scarp top and foot edge, and the
top and bottom elevations of each located slope.

RESULTS

Interpretation Results
The landslides in the study area had the following image
characteristics. 1) There are abnormal arc shapes developed on
the rear margin of the landslide body, including "round chair-
shaped" and "dustpan-shaped" landslide back wall steep ridges,
curved terrain variation lines, and abnormal color lines, among
other feature. 2) Landslides protruding toward the bottom of the
valley often have slight topography. Landslides often form
dammed lakes in the valleys, which occasionally discharge
water. The original "V"-shaped loess valley bottom becomes
flat terrain, which has been mostly transformed into cultivated
land. 3) Most landslides are distributed in the partial deficit areas
of steep slopes, such as valleys and rivers. Landslides cause river
water to shift to the side of the river where the landslide has not
occurred. 4) The valley slopes on both sides of the steep loess
valley have abnormally flat cultivated land.

In this study, the historical landslides in the 28,000 km2 area of the
southwestern edge of Ordos was interpreted in detail. Figure 2 shows
the spatial distribution of the interpreted historical landslides. The
landslides are mainly distributed along faults to the north of the
Longxian–Qishan–Mazhao Fault, east of Longxian, south of Lingtai,
and the uplift area of the fault block south of Qianyang. There are
6,876 landslides in this dense area, with a total area of 643 km2. There
are relatively few dense landslides on the Loess Plateau, Weihe river
terraces, and floodplains on the southwest side of the
Longxian–Qishan–Mazhao Fault due to topographical conditions.
At the same time, dense landslides were not interpreted in the
bedrock area of the Qishan mountains and north of Fengxiang.

The area density analysis of the interpreted landslides in the
study area (Figure 3) shows that, although there are landslides in
the study area, the high-density areas occur on the northeastern
side of the Longxian–Qishan–Mazhao Fault. The area density can
reach as high as 28–35% while the area density value at the center
of the high-density area is 4- to 5-fold greater than the background
density of the Loess Plateau, highlighting this as an abnormal area.

The 6,876 landslides in the dense area were projected onto the
projection line along the horizontal and vertical strike of the
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Longxian–Qishan–Mazhao Fault; we then counted the frequency
and cumulative area of the landslides (at 10 km intervals)
(Figure 4).

Along the strike of the Longxian–Qishan–Mazhao Fault, landslides
are mainly concentrated within a range of 90 km between Longxian
and Qishan (reaching 6,003 events, accounting for 87.3% of the total
number of landslides). The cumulative landslide area is 557.4 km2,
accounting for 86.7% of the total landslide area. The peak appears at
approximately 10 km northwest of Qishan County. By projecting the
landslide body onto the projection line perpendicular to the strike of
the Longxian–Qishan–Mazhao Fault, we observe that the main body
of the landslide is distributed on the northeast side of the
Longxian–Qishan–Mazhao Fault, where there is a sharp reduction
in the number and area of landslides southwest of the fault. This is
because the southwest side of the fault is the loess tableland andWeihe
River terraces and floodplains, which do not have topographical
conditions suitable for large-scale landslides. The landslide-intensive
area is distributed unilaterally along the Longxian–Qishan–Mazhao
Fault.

Landslide Database and Parameter
Statistics
Based on our interpretations, parameter assignments were made for
the landslides in dense areas on a case by case basis to establish a
coseismic landslide database. The manually assigned attributes of the

landslide database included the length, width, elevation of the scarp
top and foot edge, and the top and bottom elevations of each located
slope. Accorded to these assigned attributes, we calculated several
landslide attributes, including the landslide height, H (elevation of the
scarp top-elevation of the foot edge), slope difference (the top and
bottom elevation difference of each located slope), aspect ratio, and
landslide height/slope difference ratio, i.e., H/(R − V).

A statistical analysis of the landslide parameters was
conducted based on the coseismic landslide database. The
length advantage interval of the historical landslides in the
dense area along the southwestern margin of the Ordos Block
is 100–500 m; this interval accounts for 82% of the total number
of landslides. The width advantage interval is 100–400 m; this
interval accounts for 72.6% of the total number of landslides
(Figures 5A,B). The aspect ratio of the landslide represents the
plane spread of the landslide, which ranged from 0.1 to 5.6 for the
historical landslides in the dense areas, mainly concentrated
between 0.5 and 2.5. This interval accounts for 91% of the
total landslides. An aspect ratio of ≤ 0.5 accounted for 5.6% of
the total landslides while an aspect ratio of >2.5 accounted for
3.4% of the total landslides, with an average of 1.25 (Figure 5C).

The term H/(R − V) refers to the ratio of the height, H, of a
landslide to the slope difference (R–V: Ridge–Valley), which
represents the ratio of the longitudinal length of the landslide to
the slope length where the landslide is located, ranging from 0 to 1.
The greater the value of H/(R − V), the greater the proportion of

FIGURE 2 | Interpreted historical landslide distribution map at the Southwest of Ordos. LQMF: Longxian–Qishan–Mazhao Fault; QBF: Qianyang–Biaojiao Fault;
GGF: Guguan–Guozhen Fault; TGF: Taoyuan-Guichuansi Fault; QLNPF: Qinling North Margin Fault; TBF: Taibai Mountain Fault; WHF: Weihe Fault; and BSF: Beishan
Piedmont Fault. The purple dashed oval area is the extreme earthquake zone of the AD 600 Qinlong earthquake (Wang, 2018); the blue dashed rectangle represents the
surface rupture of the AD 600 Qinlong earthquake along the Longxian–Qishan–Mazhao fault of the Dazhuangke–Dengjiacao section (Li et al., 2019); the area
denoted by the white dotted line is the dense landslide area; and projection lines A–A′ and B–B′ correspond to Figure 4.
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landslides in the slope in the longitudinal direction. Among the
landslides in the dense areas, 85.4% of landslides have H/(R − V)
ratios >0.6 while 57.7% are greater than 0.8 (Figure 5E). This shows
that the scarp tops of these landslides basically reach the Loess
Plateau, with notable landform deficits While the foot edge
accumulation basically reaches the bottom of the valley, which
can lead to the damming of loess valleys at different scales,
forming abrupt landform sedimentary features; these features are
consistent with the observation results collected during the field
survey (Figures 6A–D–D).

In terms of the area, the number of small-area landslides is
relatively small; landslides with an area greater than 10,000 m2

account for 93.2% of the total number of landslides. The area

advantage of historical landslides interpreted in the study area is
10,000–200,000 m2; the number of landslides in this section
accounts for 82.3% of the total number of landslides in the
dense area of this study (Figure 5D).

DISCUSSION

Dense Historical Landslides and the 780 BC
Earthquake
In addition to the 780 BC Qishan earthquake, the AD 1704
Longxian earthquake and AD 600 Qinlong earthquake occurred
in the study area (Figure 2).

FIGURE 3 | Interpreted historical landslide areal density map. LQMF:Longxian–Qishan–Mazhao Fault; AD 600 M6:AD 600 Qinlong M6 earthquake; AD 1704 M6:
AD 1704 Longxian M6 earthquake;

FIGURE 4 | Frequency and cumulative area along strike and vertical strike of the Long xian–Qishan–Mazhao Fault (10 km) (Projection lines A–A′ and B–B′ are
shown in Figure 2).
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Wang (2018) suggested that the seismogenic structure of the
AD 600 Qinlong earthquake was due to the Guguan-Caojiawan
section of the Liupan Mountain East foot Fault based on an
ancient seismic exploration trough, collapsed body, and
formation time. Li et al. (2019) proposed that the epicenter of

the AD 600 Qinlong earthquake was located 15 km (34.9°N,
106.7°E) northwest of Long County. The epicenters (highly
seismic regions) reported in the above two most recent studies
are close, providing sufficient evidence. Therefore, we consider
that the epicenter of the AD 600 Qinlong M6 earthquake was

FIGURE 5 | Landslide parameter statistics. (A), statistics on the relationship between landslide length and frequency; (B), statistics on the relationship between
landslide width and frequency; (C), statistics on the relationship between landslide aspect ratio and frequency; (D), statistics on the relationship between landslide area
and Frequency; (E), statistics on the relationship between landslide H/(R − V) and frequency.

FIGURE 6 | Google images of typical historical landslides and barrier lakes (A–C), UAV. photos of historical landslides(d), and photos of rainfall landslides (E).
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15 km northwest of Longxian County (Figure 2). For the AD
1704 Longxian earthquake, The "China Earthquake Catalog" (Gu,
1983), published in 1983, set the earthquake at a magnitude of 6,
with an epicenter intensity of VII–VIII. As there are relatively few
research results on this earthquake, we consider that the epicenter
of the AD 1704 Longxian M6 earthquake was in the vicinity of
Longxian based on the historical earthquake catalog (Gu, 1983).

In addition to the 780 BC earthquake, there were two
earthquakes at a magnitude of approximately 5 that occurred
in AD 880 and AD 1037 along the southwestern margin of the
Ordos Block. According to the historical descriptions of "Three
rivers exhausted, Qi mountain collapse," "Hundred rivers boiled,
mountain mounds collapsed. High banks turned into valleys, and
deep valleys turned into tombs" recorded in "Book of Songs" and
"Historical Records", the damage intensity and scope of the "780
BC Qishan Earthquake" were greater than those of the other two
earthquakes. The relevant historical earthquake catalog also sets
the magnitudes of these two historical earthquakes in AD 880 and
AD 1037 as 4.75 and 5, respectively. Therefore, considering the
limited energy of moderate and strong earthquakes, we suggest
that the two most recent historical earthquakes, i.e., the "Qishan
collapse" and "Qishan collapse again," were only records of
earthquake occurrences, not triggers of a large number of
landslides. Moreover, the most recent historical earthquakes
were more than 1,500 years after the 780 BC earthquake. If
the earthquake that triggered the “Qishan collapse” really
occurred, records of earthquake damage should theoretically
be more abundant than those for the Qishan earthquake in
780 BC; however, there are no other relevant records on these
two earthquakes.

According to the interpretation and cataloging results of
landslides triggered by earthquakes at a magnitude of
approximately 6 (Table 2), the scale of landslides triggered by
these earthquakes is limited and the range of dense landslides is
small. Therefore, although a small part of the landslides at the
northwest end of the landslide distribution range in the study area
may have been triggered by the AD 600 Qinlong and AD 1704
Longxian earthquakes, the proportion is small and the impact
range is limited. The main landslides in the dense area cannot
have been triggered by these two earthquakes.

Analyses of the landslides triggered by the Wenchuan
earthquake indicate that the far-field effect of strong
earthquakes will not trigger large dense landslides outside the
extreme earthquake zone (Xu et al., 2014; Du et al. 2020a). Several
large earthquakes outside the landslide distribution range are far
from the landslide dense area (Table 3), such that the possibility
of large dense landslides triggered by strong earthquakes outside
the range is negligible.

The age of a single landslide is the most powerful evidence
to establish a connection between landslides and historical
earthquake. Zhou et al. (unpublished, 1993) used lichen
geochronology technologies to date 382 bedrock collapses in
the Jiankou ridge and Jueshan Mountain region (Figure 2).
The results showed that the huge collapses in this region were
caused by the 780 BC Qishan earthquake. The age of the
sediment at the bottom of the landslide dammed lake can
represent the age of the landslide. Du et al. (2020b) selected a

typical Qiuzigou landslide dam (Figure 2) in the study area
and obtained 14C dating samples in the bottom sediment of the
dammed lake through drilling. These samples are measured by
American Beta Laboratories using an accelerator mass
spectrometer. The dating results are close to the Qishan
earthquake time. Combined with the above age results and
comprehensive analysis, we believe that the main body of the
dense landslides was most likely caused by the 780 BC Qishan
earthquake.

"Incomplete" Historical Landslide Database
Comparing the area–frequency relationship between historical
landslides in the dense area (inside the white dotted line in
Figure 3) along the southwestern margin of the Ordos Block
and the Wenchuan earthquake landslide (Du et al., 2020a)
(Figure 7), there are large differences in the number of
landslides in different area intervals. The number of historical
landslides in the dense area along the southwestern margin of the
Ordos Block is small, ranging from 1 to 10,000 m2 with only 469
landslides (approximately 6.8% of the total), while the number of
landslides due to the Wenchuan earthquake is 32,007, accounting
for 61% of the total. This significant difference in the proportion
of landslides of <104 m2 reflects that with the passage of time,
small-to-medium-scale historical landslides have basically
"disappeared" due to surface processes and man-made
transformations, such that they can no longer be identified on
current remote sensing images. In particular, the smaller
landslides are increasingly rare.

In the 2008 Wenchuan earthquake, small landslides, which
accounted for a large proportion of the total, contributed little to
the total area of landslides induced by the earthquake (Figure 8)
(Du et al. 2020a). Large-scale landslides that can be identified
today may represent the main body of a historical earthquake
landslide; they can also reflect the overall scale of a historical
earthquake landslide. Therefore, we discuss medium- and large-
scale historical landslides in the dense area along the
southwestern margin of the Ordos Block.

In August 2010, partial heavy rain in southeastern Tianshui
that triggered a large rainfall landslide. These landslides are
generally small in scale, mostly slippery on their slopes, and
have a short duration. Rainfall landslides that occurred in 2010
could not be identified in remote sensing images taken after 2016.
Some rainfall landslides develop on the back or sidewalls of large
earthquake landslides, or on the ridges of loess terraces that have
been transformed by humans (Xu et al., 2020a). Xu et al. (2020b)
used historical document analysis, remote sensing interpretation,
field verification, and other methods to interpret 5,019 landslides
triggered by the AD 1718 Tongwei earthquake on both sides of
the Tongwei Fault, with a total area of 635 km2. As this
earthquake landslide has clear historical records, it can be used
as a typical example of a loess earthquake landslide.

Comparing the area–quantity relationship between historical
landslides in dense areas (inside the white dotted line in
Figure 3), the 2010 Tianshui rainfall landslides, and the AD
1718 Tongwei earthquake landslide (Figure 9), rainfall landslides
mainly have areas of <10,000 m2, accounting for 99% of the total
landslides. However, there are few small-area landslides in the
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dense areas and within the landslides triggered by the AD 1718
Tongwei earthquake. Landslides with areas >10,000 m2

accounted for 93.2% and 88.7% of the total in the dense areas
and due to AD 1718 Tongwei earthquake, respectively. Therefore,
the remaining historical landslides in this study and rainfall
landslides can be distinguished by size.

Comparing the length, width, and aspect ratio of historical
landslides in the dense area (within the white dotted line in
Figure 3) with the 2010 Tianshui rainfall landslide and the AD
1718 Tongwei earthquake landslide (Figure 10), we observe that
88.4 and 98.9% of the rainfall landslides have a length of ≤100 m
and a width of ≤100 m, respectively. The lengths and widths of
the historical landslides in dense areas are similar to those of the
AD 1718 Tongwei earthquake. Landslides with a length ≤100 m
accounted for only approximately 4.2 and 7.2% of the total while
landslides with a width ≤100 m accounted for only approximately
7.9 and 14.4% of the total, respectively.

The aspect ratio of historical landslides in dense areas is
similar to that of the AD 1718 Tongwei earthquake landslides,
mainly between 0.5 and 2.5; landslides in this interval accounts
for 89.1% of the total landslides. There is a significant difference
between the 2010 Tianshui rainfall landslide and the two
earthquakes mentioned above. The landslide aspect ratio for
the 2010 Tianshui rainfall landslide ranged from 0.03 to 57.18,
with an average value of 3.06. The aspect ratios of rainfall
landslides mainly range from 0.5 to 4. The landslides in this
interval account for 71% of the total; aspect ratios ≤0.5 account
for 5.5% of the total while aspect ratios >4 account for 23.5% of

the total, indicating that most rainfall landslides are long and
narrow (Figure 10C).

Compared with rainfall landslides, there are notable
differences with historical landslides in dense areas in terms of
their areas, lengths, and widths. The dense historical landslide is
highly similar to the AD 1718 Tongwei earthquake landslide in
terms of their areas, lengths, and widths. Therefore, there is a clear
macroscopic difference between historical earthquake landslides
and rainfall landslides. The main part of the landslides in the
dense areas was not likely triggered by rainfall events but was
more likely triggered by earthquake events. Strong earthquakes
can cause such a large-scale landslide. Several earthquakes of
magnitudes ≤5 have occurred in the landslide-intensive area and
did not trigger large-scale landslides.

Rainfall landslides that occur on the Loess Plateau are
generally small in scale and short-lived. Usually, the landslide
will be transformed with the restoration of surface vegetation and
human activities a few years after its occurrence, such that they can
no longer be identified in high-resolution satellite images. Medium-
and large-scale landslides triggered by earthquakes will cause
significant changes in local landforms, which generally endure for
an extended period. Although various natural and man-made
modifications may have contributed to these landslides, their
basic shapes can still be identified (Xu et al., 2020b).

We note that the previous discussion only points out the
differences between historical earthquake landslides and rainfall
landslides from a macro perspective. Individual large-scale
rainfall landslides may be characterized by continuous activity;

TABLE 2 | Interpretation and cataloging results of landslides triggered by earthquakes of approximately M6.

Earthquake cases Intensity at macro-epicenter Distribution scale (km) Size of landslides References

2013 Minxian M6.6 Ⅷ Narrow belt, < 15 Small (total area of 1.71 km2) Xu et al. (2013)
1970 Xiji M5.5 Ⅶ–Ⅷ 4–5 Small Wang (2003)
1936 Kangle M6 ¾ Ⅷ 8 Rock falls Zhang et al. (2015)
1936 tianshui town M6.0 Ⅷ – Not clear record Wang et al. (2018)
1837 Minxian M6.0 Ⅷ – Not clear record Zheng et al. (2007)
AD 1125 Lanzhou M7.0 Ⅸ ∼7 Landslides along the fault Song et al. (2007)

TABLE 3 | Basic parameters of three historical strong earthquakes around Qishan Longxian and the impact of the earthquake on Qishan Longxian.

Historical
earthquake

Distance to landslide
dense area (km)

Triggered landslides Impact of the earthquake on Qishan Longxian References

1,556 Huaxian M8.0 200 The east and west ends of the
Huashan Piedmont fault zone

(Qishan) The city, government offices, temples, and houses
were destroyed, and the people were crushed to death; (Feng-
xiang) many people and animals were crushed to death; (Linyou)
Destruction of confucian temple

Xu et al. (2018)

1,654 Lixian M8.0 190 Between Tianshui Town and Li
County

(Baoji) “House destruction, crushing people”; (Fufeng) “Gyeong-
bok Palace, Yuanyu collapsed, crushing people and animals.”
(Lin You) “Kilins collapsed, crushing people and animals.”;
(Qishan, Feng Xiang) “The walls and houses burst up, people
and animals can’t stand in shock”

Yuan et al. (2017)

1920 Haiyuan M8.5 250 Xiji, Haiyuan, Longde area The Qishan wall collapsed, the ground was cracked and deep
gully, people were killed and injured everywhere

Li et al. (2015)
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large-scale earthquake landslides may also be characterized by
continuous activity due to rainfall after the earthquake.

Regional Control Characteristics of Strong
Historical Earthquake Landslides
The landslides in the dense area are mainly distributed along the
north side of the Longxian–Qishan–Mazhao Fault with an
asymmetric distribution. According to the analysis, the Loess
Plateau and river terraces lie toward the southwest side of the fault
while the Loess Plateau and mountain hills lie toward the
northeast side. Limited by topographical conditions, dense
landslides do not occur on the southern and western sides of
the fault; therefore, "sand liquefaction" and "seismic soil" will

more likely form in soft areas, such as river terraces and valleys,
due to violent earthquake vibrations (Figure 11). According to
the characteristics, landslides triggered by strike-slip fault
activities are mainly distributed on both sides of the fault
(Chen et al., 2014). If the geological engineering conditions on
the south side of the Longxian–Qishan–Mazhao Fault are the
same as those on the north side, there may also be dense historical
landslides.

780 BC Qishan Earthquake Parameters
The 780 BC Qishan earthquake is an earthquake that is
historically difficult to interpret, with a long elapsed time and
unknown historical records. Determining the intensity/isoseismic
distribution is difficult. However, for a major earthquake that
triggers a secondary disaster, the range of its extreme earthquake
zone/severely damage zone can be obtained through the spatial
distribution and characteristics of secondary disasters revealed by
high-resolution remote sensing images. The center of the
macroscopic damage zone is the macroscopic epicenter.
Therefore, the epicenter of the 780 BC Qishan earthquake
may be located northwest of Qishan, closer to Fengxiang.

The Longxian–Qishan–Mazhao Fault has been the most
active fault in the Longxian–Baoji Fault zone since the late
Quaternary. The National Earthquake Administration (1988)
divided the fault into three sections: Xinjichuan–Longxian
section, Longxian–Qishan section, and Qishan–Mazhao
section. Historical landslides in dense areas are mainly
concentrated in the range of 90 km between Longxian and
Qishan, corresponding to the Longxian–Qishan section of the
Longxian–Qishan–Mazhao Fault.

The extension of the severe damage zone of a major
earthquake along the seismogenic fault can represent an
extension of the fracture. The surface rupture zone produced
by theWenchuan earthquake spread within the IX intensity zone.

FIGURE 7 | Comparison of the area-frequency relationship between the Qishan earthquake landslide and Wenchuan earthquake landslide.

FIGURE 8 | Relationship between the cumulative number and area of
landslides in the Wenchuan earthquake (Du et al., 2020a).
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The area of landslides within the IX zone accounted for 81.1% of
the total area, and the number of landslides in the IX zone
accounted for 76.9% of the total landslides. We suggest that
the landslide-intensive area within a range of 90 km between
Long and Qishan Counties can represent the rupture area of the
780 BC Qishan earthquake, as well as the severely damaged area.
Therefore, the minimum possible rupture length for the rupture
zone of the 780 BC Qishan earthquake was 90 km.

We assumed that the Longxian–Qishan section of the
Longxian–Qishan–Mazhao Fault is completely broken.
According to the global empirical formula, i.e., Mw � 5.16 +
1.12lgL (Wells and Coppersmith, 1994), for the rupture length
andmagnitude of strike-slip faults, the moment magnitude is Mw
7.35 According to the empirical formula, i.e., M � 5.303 +
1.181lgL (Ran, 2011), for the strike-slip fault magnitude-
fracture parameter in western China, the magnitudes is 7.61.

According to the empirical formula, i.e., Ms � 5.704 + 0.9871lgL
(Sun et al., 2016), the surface wave magnitude is Ms 7.63.

The earthquake disasters due to six strong earthquakes of
magnitude 8 on the Loess Plateau are comparable to the 780 BC
Qishan earthquake. For example, for the AD 1739 Ningxia Pingluo
and YinchuanM8 earthquake that occurred on the plains, there were
no records of landslides, but the other five earthquakes produced
documented landslides. The six M8 earthquakes have records of
spring overflowing/river overflowing similar to the "boiled rivers"
(Table 4). This shows that the intensity of the 780 BC Qishan
earthquake may have been similar to the six M8 earthquakes.

For the magnitude of the 780 BC Qishan earthquake, except for
the "Catalog of China’s Historical Strong Earthquakes" published in
1995, which set the magnitude as ≥ 7, other historical earthquake
catalogs all set the magnitude at 6–7. Based on the distribution and
scale of landslide disasters, we posit that the magnitude of the 780

FIGURE 9 | Comparison of the dominant area of the rainfall landslide and the 1718 Tongwei earthquake landslide (Xu et al., 2020a; Xu et al., 2020b) and the
historical landslide area in Long County, Qishan

FIGURE 10 | Comparison of the lengths, widths, heights, and aspect ratio of landslides: (A) comparison chart of landslide lengths; (B) comparison chart of
landslide widths; and (C) comparison chart of landslide aspect ratios.
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BC Qishan earthquake should be higher than the magnitude
reported in the historical earthquake catalog, i.e., a magnitude
of approximately 7.6 (Mw7.3). This is similar to the maximum
moment magnitude Mw7.2 ± estimated by Du et al. (2018) for
potential earthquakes in the Longxian–Baoji Fault zone.

CONCLUSION

Combining historical records and referring to current
interpretation methods for strong earthquake landslides, we
used high-resolution Google Earth images to extract historical
landslides along the southwestern margin of the Ordos Block.

The results showed that there are 6,876 historical landslides in
the landslide-intensive area along the southwestern margin of the
Ordos Block, with a total area of 643 km2. The landslide-intensive
areas are mainly distributed unilaterally along the
Longxian–Qishan–Mazhao Fault in the loess valley area on the
northeast side of the fault. The southwest side of the fault is Loess
Pateau and river terraces; owing to the topographical conditions, there

is no dense landslide distribution in this area. Through a
comprehensive analysis, combined with the dating results of
existing landslides and bedrock collapses, the dense historical
landslides on the southwestern margin of the Ordos Block were
linked with the 780 BC Qishan earthquake. According to studies of
landslides due to the Wenchuan earthquake, large-scale landslides in
dense coseismic landslide areas can represent the main body of
coseismic landslides. Finally, according to the spatial distribution
characteristics of the landslide, we suggested that the epicenter of
the Qishan earthquake may be located in northwestern Qishan, near
Fengxiang, with a possible magnitude of Mw7.3 (M7.6) and possible
seismogenic structure belonging to the Longxian–Qishan–Mazhao
Fault along the Longxian–Qishan segment.

We note that if landslides in a target area can be confirmed to
have been triggered by a single strong historical earthquake, a
"relatively complete" coseismic landslide database of historical
earthquakes can be obtained using current high-resolution
satellite images. This could provide more objective evidence for
the revision of source parameters associated with strong historical
earthquakes as compared with the use of historical records.

FIGURE 11 | Relationship between the distribution pattern of landslides in the dense area in this study and the 780 BC Qishan earthquake.

TABLE 4 | Historical records of earthquake damage due to 6 strong M8 earthquakes in or around China’s Loess Plateau (Gu, 1983).

Historical earthquake Phrases that appear numerous times in records of earthquake geological disasters

780 BC Qishan M7.6 Three rivers are exhausted, Qishan falls/Hundred rivers boil, and hills collapse. High banks become valleys, deep valleys
become mausoleums

1,303 Hongtong M8.0 Ground fissure/ground gushing sand/water/city subsidence/landslide
1,556 Huaxian M8.0 Water surges and sand overflows/mountains move, ground rifts/mountains are exhausted/wells are exhausted, Luohe and

Weihe rivers can be waded/landslides and rivers surge
1,654 Tianshui M8.0 Landslides and water stagnated, blocked as river ponds/ground fissures/gushing water
1739 Yinchuan M8.0 Ground fissure/city subsidence/gushing yellow sand and black water
1879 Wudu M8.0 Mountain fissure/water surge/landslide/landslide/river choked, then re-washed, the water was turbulent
1920 Haiyuan M8.5 The ground may become high tombs or sink into deep valleys, landslides and ground fissures, cliffs and landslides/blocked

rivers/gushing water belts, black sand/mountains move away, peaks and valleys interchange/loess landslides/landslides
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Monitoring and Assessment for the
Susceptibility of Landslide Changes
After the 2017 Ms 7.0 Jiuzhaigou
EarthquakeUsing the Remote Sensing
Technology
Xinyi Guo1,2, Bihong Fu1*, Jie Du3, Pilong Shi1, Jingxia Li 1,2, Zhao Li1,2, Jiaxin Du1,2,
Qingyu Chen1,2 and Han Fu1,2

1Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing,
China, 2University of Chinese Academy of Sciences, Beijing, China, 3Jiuzhaigou Administration Bureau, Sichuan, China

Monitoring the change of post-seismic landslides could provide valuable information for
geological disaster treatment. The 2017 Jiuzhaigou Ms 7.0 earthquake has triggered a
large number of landslides in the Jiuzhaigou United Nations Educational, Scientific and
Cultural Organization (UNESCO) Natural Heritage site, which provides a unique
opportunity for monitoring the spatio-temporal characteristics and exploring the impact
factors of post-seismic landslides change. In this study, the spatio-temporal
characteristics of landslides and their post-seismic changes are analyzed using multi-
source, multi-temporal, and multi-scale remote sensing data combining with the field
study. The Support Vector Machine classification, visual interpretation, field investigation,
and Geographic Information System technology are employed to extract landslides and
analyze their spatial distribution patterns. Moreover, the Certainty Factor method is used to
explore the susceptibility of landslides and to find key impact factors. Our results show that
the net increase area of landslide is 1.2 km2 until September 27th, 2019, which are induced
by the expansion of coseismic landslide, the post-seismic landslide, and the expansion of
vegetation degradation. Moreover, the area expansion of the coseismic and post-seismic
landslides is mainly related to the increase of debris flow induced by the post-seismic
torrential rainfalls. The highest net increase rate of post-seismic landslide change does not
distribute on the regions with the highest density of coseismic landslides. The susceptibility
of post-seismic landslide change is greatly influenced by slope, altitude, aspect, peak
ground acceleration fault, and strata. It is higher in the coseismic landslide area with low
susceptibility. This study also suggests that the potential landslides will most likely occur in
the unstable slope region affected by the additional driving force. Therefore, great attention
should be paid to identify and prevent the potential landslides on unstable slopes in
addition to treatments of the sliding slopes. This study provides a good example for the
monitoring and assessment of post-seismic landslides in mountainous regions with a
steep slope and deep valley.

Keywords: jiuzhaigou earthquake, post-seismic landslide, spatio-temporal variation, certainty factor method,
Susceptibility analysis
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HIGHLIGHTS

(1) Both coseismic landslides and post-seismic landslide change
are concentrated in Jiuzhaitiantang-Panda Lake;

(2) The susceptibility of post-seismic landslide change is mainly
influenced by slope, altitude, aspect, PGA, fault, and strata;

(3) The risk of post-seismic landslide change reduces in the high
susceptibility area of coseismic landslide, but it increases in
the low susceptibility area of coseismic landslide.

INTRODUCTION

This general term of landslides comprises almost all varieties of
mass movements on slopes, including some, such as debris flows,
rock falls, and rock slides (Varnes, 1984; Cruden and Varnes,
1996; Fan et al., 2019). In this study, landslides refer to the
exposed rocks and soil area caused bymass movements on slopes,
including their provenance, scraping, and accumulation areas,
which are secondary disasters related to the seismic events.
According to the triggers, the landslides related to earthquakes
can be divided into 1) The slopes slide due to the strong force
generated by earthquakes, which are called coseismic landslides;
2) The loose and unstable slopes affected by earthquakes are
triggered by additional forces, such as heavy rainfall and other
forces. They are called post-seismic landslides (Wang, 2004; Fan
et al., 2018). In this study, the post-seismic landslide changes
include the increase of landslides and the decrease of landslides
after the earthquake, such as post-seismic landslides and restored
landslides.

The strong earthquake will trigger large-scale coseismic
landslides, which will cause great damage to people, buildings,
natural and cultural heritages, such as the Ms 7.6 Chi-Chi
earthquake in 1999 (Khazai and Sitar, 2004), the Ms 7.6
Pakistan earthquake in 2005 (Khattak et al., 2010), the Ms 8.0
Wenchuan earthquake in 2008 (Yin et al., 2009), theMs 8.1 Nepal
earthquake in 2015 (Regmi et al., 2016), and the Ms 7.0
Jiuzhaigou earthquake in 2017 (Dai et al., 2017; Fan et al.,
2018). However, the effect of destructive earthquakes on
landslides is not only in the coseismic stage but also in several
years after the earthquake. Because of the destruction of
earthquakes, the rock and soil are broken and the stability of
slopes is reduced, resulting in active post-seismic landslides. The
disaster activity time may last more than 10 years (Cui et al.,
2011). Nakamura et al. (2000) studied the landslides for the
periods after the 1923 M 7.9 Kanto Earthquake in Japan and
considered that the most active stage of landslides was 15 years
after the earthquake. The stage made the landslide area in a
constantly changing process of increasing and recovering. To
summarize the change characteristics of landslides and analyze
the susceptibility of the impact factors can obtain the trend and
the change rules of landslides, which has great significance for the
post-seismic landslide treatment and ecological restoration.

At present, the previous studies on the post-seismic landslide
change usingmulti-temporal remote sensing images have become
a common concern in seismic landslide researches. The studies
on different landslides show that the characteristics of

post-seismic landslide change are as follows: 1) The
restoration of landslide collapse area is worse than that of
accumulation area (Lin et al., 2008); 2) The restoration ratio
of landslides in two years after the earthquake is low (Khattak
et al., 2010); 3) There is a good correlation between landslide
restoration and terrain factors such as slope and altitude (Lu et al.,
2012); 4) The restoration of landslides is related to lithology (Li
et al., 2016). There are also some studies on the change
characteristics of post-seismic landslide susceptibility, but the
number of studies is small.

The post-seismic landslide change is still regarded as a part of
coseismic landslides in the previous studies. There are essential
differences between post-seismic landslides and coseismic
landslides. Generally, the factors affecting landslides are
mainly divided into background factors and trigger factors.
Background factors are the necessary conditions for landslide
occurrence, and trigger factors are the sufficient conditions for
landslide occurrence (Qiao, 2010). For coseismic landslides,
ground motion during earthquakes is the direct trigger factor.
For post-seismic landslides, earthquake shaking is the
background factor, which breaks the critical stability of the
slope, and the trigger factors which directly trigger sliding are
often external dynamic conditions such as heavy rainfall.
Therefore, the post-seismic landslides should be studied as a
separate landslide event and choose impact factors. Currently,
since the post-seismic landslide changes and coseismic landslides
are not considered separately, the characteristics of post-seismic
landslide change obtained from the previous studies are not
prominent enough, and the applicability of the characteristics
is not common among different research areas.

There are few susceptibility studies on the selection of factors
in the susceptibility analysis and the susceptibility change law of
each factor in the process of landslide change after the
earthquake. In previous studies, because the influence of some
factors which are chosen is not significant, these factors have little
contribution to susceptibility evaluation and the laws summarized
from one impact factor can only be applied to this impact factor.
There are almost no laws from the previous studies that can be used
in different factors. Therefore, it is necessary to further study how to
choose the factors and summarize the laws of the factors of the post-
seismic landslide change.

On August 8th, 2017, a Ms 7.0 earthquake struck Jiuzhaigou,
Sichuan Province, China. This earthquake triggered a large
number of landslides (Wu et al., 2018), causing great damage
to the Jiuzhaigou UNESCO Natural Heritage site. It is of great
significance to study post-seismic landslide change for
implementing the landslide treatments and the heritage site
restoration. At the same time, because of detailed observation,
dense vegetation, and significant change, the Jiuzhaigou area can
provide a natural laboratory for studying the characteristics and
impact factors of post-seismic landslide change. In the process of
the dynamic change of landslide after the earthquake, it is
necessary to extract landslides quickly and effectively, analyze
their spatial distribution, summarize the characteristics of post-
seismic landslide change, discuss the impact factors of post-
seismic landslide change, conduct the multi-stage susceptibility
analysis, and put forward the scientific treatment suggestions,
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which are of great significance and value for the reconstruction of
landslide areas.

In the Jiuzhaigou area with dense vegetation, bare land can be
used as a symbol to identify landslides and even accurately
extract the location and area of landslides. In this study,
landslides are extracted by combining the SVM classification,
visual interpretation, and field investigation. This study will
analyze the pattern of spatial distribution and control factors of
the post-seismic landslide change and the coseismic landslide.
Then, the susceptibility of the landslide is explored by using the
CF method, and the change rule is found out, the reasons for the
change are summarized, and reasonable treatment suggestions
are put forward.

STUDY AREA AND DATA

Study Area
Jiuzhaigou is located in the northeastern Tibetan Plateau. The
terrain is high in the South and low in the North. It is the
transition zone from the Tibetan Plateau to the Sichuan Basin
and is also the turning point in front of the ridge of the highest
terrain step in China (Guo et al., 2000). The area features

deep-incized gullies and high mountains, the maximum peak is
over 4700 m a.s.l. the minimum elevation is about 1200 m a.s.l.
and the slope gradient is higher than 30° (Fan et al., 2018)
(Figure 1).

The study area features outcrops of Devonian to Triassic
sedimentation. The most representative lithology is a thick
sequence of deep marine deposits, including limestone, flysch
complex, and sandstone. The main lithology of Devonian strata is
stratiform limestone and massive dolomite, the main lithology of
Carboniferous stratum is layered and dense massive limestone,
the main lithology of Permian stratum is siliceous limestone and
sandy limestone, the lithology of Triassic stratum is mainly
limestone and sandstone, and Quaternary loose deposits are
distributed in river valleys (Dai et al., 2017).

At 21:19:46 on August 8th, 2017, a Ms 7.0 earthquake occurred
in Jiuzhaigou County, Aba Autonomous Prefecture, Sichuan
Province, China with an epicenter of (33.20°N, 103.82°E). The
area affected by the Jiuzhaigou earthquake is more than
4,000 km2 (VII degrees earthquake intensity and above). Due
to the high magnitude, shallow source, and high intensity of the
earthquake, as well as the fragile geological environment (high
slope gradient, fragile lithology), the earthquake triggered
thousands of landslides (Dong et al., 2020).

FIGURE 1 | Active tectonic map of the 2017 Jiuzhaigou Earthquake. MJF: Minjiang Fault, NHYF: North Huya Fault, TZF: Tazang Fault.
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Data Description
To study the quantity, scale, and spatial distribution characteristics
of post-seismic landslides, we used Sentinel-2 images (10 m) before
and after the earthquake for preliminary identification of landslides.
Erial images (1m and 0.16m) and a series of pre-earthquake images
including Google Earth were used for more careful identification
and verification. In this study, three Sentinel-2 images with low
cloud and good data quality were selected and processed. Before the
earthquake, the image on July 29th, 2017, was selected. After the
earthquake, to ensure that the phenological differences have the
least impact on the change detection results, the images on
September 7th, 2017, and September 27th, 2019, in the same
season after the earthquake were selected. All images cover the
area of VII degree Jiuzhaigou earthquake intensity and above, where
most of the disasters are distributed. The ortho-level erial remote
sensing image of emergency observation after the earthquake is
from the large aircraft of the Bureau of Surveying and mapping on
August 10th, 2017, with a spatial resolution of 1 m. It covers the
Shuzheng Gully Jianzhu Lake area about 97.17 km2. The ortho-level
unmanned erial vehicle (UAV) image after the earthquake is from
the UAV (CW-15) image taken on June 10th, 2020, with a spatial
resolution of 0.16 m. It covers the Shuzheng Gully Five Flower Lake
area about 92.06 km2. The images on Google Earth are from remote
sensing images on August 13th, 2013, and October 21st, 2015.
Terrain data, stratigraphical data, and seismic data are used to
analyze the control factors of disasters and to evaluate their
susceptibility. Terrain data are downloaded from ALOS DEM
with a spatial resolution of 12.5 m. Stratigraphical data come
from the 1:200,000 geological map. Seismic data obtained from
the open data of the Jiuzhaigou earthquake on the USGS website
(http://earthquake. usgshakemap.gov).

Data Preprocessing
The Sentinel-2 images in this study are L1C products, which are the
top of atmosphere (TOA) reflectance products. They have been
corrected by radiometric correction and orthorectification. This
study uses the Sen2Cor plug-in provided by ESA for atmospheric
correcting which converts TOA reflectance products into surface
reflectance products (L2Aproducts). The data resampled and format
conversion are processed by SNAP. Finally, image products are
under WGS 1984 coordinate system and UTM projection.

There may be geometric distortion and offset between the
images in 2017 and 2019, which may cause errors in change
detection. This study uses ENVI to register remote sensing images
until the accuracy of registration is higher than 0.5 pixels, which
can meet the requirements of landslide change detection.

METHODS

Landslide Identification
The Jiuzhaigou area has dense vegetation, with a coverage rate of 85.5%
(Deng, 2011). Inmost landslide events, the vegetation on the slopes will
be destroyed. So, it is easy to identify the bare land where vegetation is
damaged by landslides. However, the vegetation of the area above
3700m a.s.l. is sparse due to frost weathering and permanent snow.
Previous studies have shown that landslides above 3700m are rare in

the Jiuzhaigou area (Wu et al., 2018). Therefore, this study extracts
landslides in areas lower than 3,700m a.s.l.

In landslide identification studies, visual interpretation is the
most reliable method to identify landslides (Sun et al., 2020).
However, due to the large number of landslides induced by the
earthquake, the visual interpretation of landslides requires a large
number of human resources and consumes a lot of time, which
limits the landslide identification efficiency. We used a more
efficient method to identify landslides. Firstly, based on
Sentinel-2 and UAV remote sensing images, this study uses
SVM classification (Vapnik, 1998) which selects samples
manually and automatically classifies them by software with
high accuracy and efficiency to extract the bare land within
2055 km2 of the Jiuzhaigou area. It obtains the preliminary
classification results of the bare land. Then, visual interpretation
is used to verify the bare land represents the landslide results or not,
and eliminate the false detection areas. For key areas or uncertain
areas, field investigation is carried out to verify the results.

Change Detection
The accuracy of the image preprocessing results in Data
Preprocessing is verified before the change detection. This
study found that the error of the total area of landslide
changes obtained by change detection can be controlled within
10−3 when the registration accuracy is within 0.5 pixels. It can
meet the accuracy of change detection.

After obtaining the accurate landslides extraction results of
2017 and 2019, this study used the 2017 landslide area to erase the
2019 landslide area and used the 2019 landslide area to erase
the 2017 landslide area, obtaining the new landslide area and the
restored landslide area respectively, by the ArcGIS-Analysis-
Erase tool, as shown in Figure 2.

The change of the total landslide area is the net change which is
the sum of the new landslide area and the restored landslide area. The
net change is the result of the difference between the new landslide
area in 2019 and the restored landslide area in 2017. This study also
named it the net increase. When the net increase was positive, it
meant that the landslide area of 2019 increased; when the net increase
was negative, it meant that the landslide area of 2019 recovered. This
study assumes that the landslide area in 2019 is increased by “m” and
restored by “n”, compared with that in 2017. If the two images have
offset which is left even after the registration, the results will have an
error “i” which will be generated during the erasing operation. It
means that the area of landslides in 2019 increases “m + i” and
restores “n + i”, as shown in Figure 3. However, when the net
increase area is calculated by the difference between the increase
and the recovery, that is “(m + i) − (n + i)”, the net increase result is
still “m − n”, which is consistent with the result without error. In
other words, when the offset after registration is small, it hardly has
any effect on the result of change detection.

Influencing Factors Selection and Net
Increase Rate Calculation
Previous studies suggested that landslides related to earthquakes
are mainly affected by seismic factors, topographic factors, and
geological factors (Keefer, 2000; Huang and Li, 2008). The
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post-seismic landslide change is affected not only by seismic
factors, topographical factors, and geological factors but also by
external factors such as rainfall and the human’s engineering
treatments after earthquakes. However, the rainfall for the
susceptibility of post-seismic landslide change is a trigger factor,
not a background factor, and is difficult to predict in advance. So,
this study does not select rainfall and selects the other eight factors.
Seismic factors, topographic factors, and geological factors include
PGA, slope, aspect, altitude, strata, and distance to the fault.
Considering that landslide treatment work and human activities
mainly distribute on both sides of the roads and rivers, the distance
to the rivers and roads is also selected as an influencing factor.

In terms of slope, the slopes below 30° are divided by 10°

intervals, and the slopes above 30° with dense landslides are divided
by 5° interval; in terms of altitude, all the factors are divided by

200 m; in terms of aspect, it is divided by 45° interval, and the flat
area without downhill direction is divided into Flat; in terms of
strata, the strata are divided, according to stratigraphic age; in
terms of PGA, when PGA is lower than 0.24 g, it is divided by an
equal interval of 0.04 g, and when PGA is higher than 0.24 g, it is
divided by an equal interval of 0.02 g; in terms of fault, rivers, and
roads, as they are all linear elements, buffer zones with an equal
interval of 1 km are generated on both sides. The spatial
distribution histogram of landslides in 2017 was analyzed by GIS.

To conveniently display the landslide density under each
classification, this study calculates the relative probability of
landslide in the classification subsets of every factor, which is
called the landslide area density (Landslide area/Classification
area). Then this study normalizes it and colored it according to
the normalized index (Dai et al., 2017).

FIGURE 2 | Principle of change detection (A) Assumed range of landslides in 2017 and 2019 (B)Change detection of the new landslide and the restored landslide.

FIGURE 3 | Principle of change detection with offset (A) Dislocation in the two images (B) Change detection of landslide with image offset. The error of restored
landslide: The change detection error of the new landslide is caused by an image offset. The error of restored landslide: The change detection error of the restored
landslide is caused by an offset.
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In terms of post-seismic landslide change, this study defines a
net increase rate to measure the change range of landslide under
the classification subsets of every factor based on the net increase
area. Eq. 1 is listed as follows:

Ra � Na − Fa
Fa

× 100% (1)

Where Ra is the net increase rate of the landslide in category “a”,
Na is the area of current landslides in category “a”, and Fa is the
area of previous landslides in category “a”. When Ra > 0, it
means that the increase of landslide is greater than the
restoration of the landslide, and the larger Ra is, the greater
the increased range of landslide is; when Ra < 0, it means that the
increase of landslide is less than the restoration of the landslide,
and the smaller Ra is, the larger of landslide restoration is; when

Ra � 0, it indicates that the increase and restoration of landslide
reach a dynamic balance.

Susceptibility Calculation
The CF method is a probability function. It was first proposed by
Shortliffe and Buchanan (Shortliffe and Buchanan, 1987) to
analyze the susceptibility of various factors affecting the
occurrence of an event. Lan et al. applied the CF method to
the susceptibility analysis of regional landslides (Lan and Wu,
2002). Eq. 2 is listed as follows:

CF �
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pa − Ps

Ps(1 − Pa), Pa < Ps

Pa − Ps

Pa(1 − Ps), Pa ≥ Ps

(2)

FIGURE 4 | Inventory map of the landslide in 2017 (A) Landslide map (B) Landslide map of Jiuzhaitiantang (C) Landslide map of Panda Lake.
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Where Pa is the conditional probability of landslide occurrence in
category “a”, and Ps is the prior probability of landslide
occurrence in the whole study area. Pa represents the ratio of
the landslide area to the background area of the category “a”; Ps
represent the ratio of the total landslide area to the total area of
the study area. The range of CF is [−1, 1]. When CF > 0, the larger
CF is, the more likely the slope will slide; when CF < 0, the smaller
CF is, the less likely the slope will slide; when CF � 0, it indicates
that the probability of slope sliding may not be determined.

RESULTS

Inventories of Coseismic Landslide and
Post seismic Landslide Change
This study extracted the landslides in the Jiuzhaigou area within
2055 km2. This scope almost covers the whole Jiuzhaigou

landslide area. There were 4,456 landslides with an area of
13.7 km2 in September 2017 (Figure 4) and 4,076 landslides
with an area of 14.9 km2 in September 2019 (Figure 5). In terms
of post-seismic landslide change, the net increase area is 1.2 km2,
including the increased area of 3.6 km2 (Figure 6) and the
restored area of 2.4 km2 (Figure 7).

Spatial Distribution of Coseismic and
Post-seismic Landslides
The post-seismic landslide changes include the increased and
restoration of landslides. They are distributed in the whole
landslide area and are similar to the landslide distribution of
2017 and 2019. There are two gathering areas in space. One of the
gathering areas is the area of Jiuzhaitiantang which is outside the
scenic area, the other gathering area is the area of Panda Lake

FIGURE 5 | Inventory map of the landslide in 2019 (A) Landslide map (B) Landslide map of Jiuzhaitiantang (C) Landslide map of Panda Lake.
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which is in the scenic area. There are a small number of landslides
along Shuzheng Gully and Zechawa Gully (Figure 6, Figure 7).

The post-seismic landslide changes type contains the
expansion of coseismic landslide, the new post-seismic
landslide, the expansion of vegetation degradation, and the
landslide restoration. The expansion of coseismic landslide and
the new post-seismic landslide belong to the post-seismic
landslides which are mainly triggered by rainfall in the
Jiuzhaigou area. The expansion of vegetation degradation is
the result of vegetation damages caused by coseismic
landslides. The landslide restoration is caused by natural
succession or human treatments.

For the new landslide area, through remote sensing images and
field investigation, it is found that the increased area comes from the
expansion of coseismic landslide, the new post-seismic landslide,
and the expansion of vegetation degradation. The expansion of
coseismic landslide mostly occurs on the slopes with accumulated
landslide materials (Figure 8), and the area is the largest; the new
post-seismic landslides with significant changes are distributed in
the whole disaster area (Figure 9), and the area is less than the
expansion of the coseismic landslide area; the expansion of
vegetation degradation which is affected by landslides on the
slope is common (Figure 10), and the area is the smallest.

Through remote sensing images and field investigation, the
landslide restoration caused by natural succession is distributed
in all landslide areas and the landslide restoration caused by the

engineering treatments is mainly distributed around roads, scenic
spots, and residential areas, which is the most significant
(Figure 11).

The relationship between the distribution of coseismic
landslides, post-seismic landslide changes and seismic factors,
topographic factors, geological factors, and human activities is
shown in Figure 12.

Slope: Coseismic landslides are mainly distributed on the
slopes of 30°–55° (Figure 12A) which is consistent with
previous study results (Fan et al., 2018; Wang et al., 2018).
However, for post-seismic landslide change, the slopes of
0°–10° and 20°–30° are the areas of landslide increasing
significantly. On the slopes of 0°–10°, the net increase area is
0.0476 km2 and the net increase rate is 216%. On the slopes of
20–30°, the net increase area is 1.6522 km2 and the net increase
rate is 209%. The net increase area and the net increase rate are
both very large on the slope of 20–30°. The reason is that the post-
seismic increase of landslide area in the Jiuzhaigou area is mainly
caused by the expansion of coseismic landslide whose deposits
will expand to the area with gentle slope under the additional
force. This phenomenon also occurred in the process of post-
seismic landslide change after the 2008Ms 8.0 Wenchuan
earthquake (Li, et al., 2018). With the increase of the slope
and the landslide density, the net increase rate of landslide
decreases. When the slopes above 50° have high landslide
density, landslides hardly increase or even recover.

FIGURE 6 | Inventory map of new landslide area (A) New landslide map (B) New landslide map of Jiuzhaitiantang (C) New landslide map of Panda Lake.
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FIGURE 7 | Inventory map of the restored landslide area (A) Restored landslide map (B) Restored landslide map of Jiuzhaitiantang (C) Restored landslide map of
Panda Lake.

FIGURE 8 | Expansion of coseismic landslide (A) Coseismic landslide in 2017 (B) Expansion of coseismic landslide in 2020 (C) Field photo showing the expansion
of coseismic landslide.

FIGURE 9 | Post-seismic landslide (A) Slope in 2017 (B) Post-seismic landslide in 2020 (C) Field photo showing the post-seismic landslide.
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Altitude: Coseismic landslides are mainly distributed on the
slopes of 2,800–3,600 m a.s.l. (Figure 12B). However, for post-
seismic landslide change, there is a great difference between the
post-seismic landslide changes of 3,000–3,200 m a.s.l. and that of
3,200–3,400 m a.s.l. showing an opposite change pattern. The
landslides of 3,000–3,200 m a.s.l. with the highest density show a
significant recovery with a net increase rate of -20%. But, the
landslides of 3,200–3,400 m a.s.l. with low landslide density show
a significant increase with a net increase rate of nearly 60%.

Aspect: Coseismic landslides have a “back-slope effect” (Dai
et al., 2017; Xie et al., 2018). They are mainly concentrated in the
NE-S direction (Figure 12C). However, for post-seismic landslide
change, the increase of post-seismic landslides is mainly
concentrated on the slopes of SW, W, NW N, and NE which
have low landslide density. The net increase rates of NW, N, and
NE-facing slopes are high, with an average net increase rate of
about 55%. On the slopes of E-S with high landslide density, the
change of landslide shows a significant recovery. The landslides of
flat land also recover.

PGA: Coseismic landslides are mainly concentrated in the area
where the PGA is greater than 0.20 g (Figure 12D) (Yi et al., 2020).

However, for post-seismic landslide change, the net increase rate
of the landslide on the slopes of 0.2 g–0.26 g is not very high. The
net increase rate of the landslide is 88% at 0.08 g and 170% at
0.12 g. The increase rate is 3% at 0.26 g, which is close to the
constant state.

Fault: Coseismic landslides are mainly concentrated within
2 km away from the fault (Figure 12E) (Fan et al., 2018).With the
increase of distance, the area and density of landslides decrease.
However, for post-seismic landslide change, the net increase rate
of landslides within 2 km is not very high. The net increase rate of
landslides peaks at 67% in 9–10 km.

Strata: Coseismic landslides are mainly distributed in the area
of Carboniferous and Permian strata (Figure 12F). The main
lithology in the Carboniferous and Permian strata is limestone
and dolomite. For post-seismic landslide change, the net increase
rate of landslides in the strata of Carboniferous is 8% and in
Permian is −2%, while that in the strata of Devonian, Triassic, and
Quaternary with low landslide density are 17, 22, and 35%
respectively.

Rivers: Coseismic landslides are mainly concentrated within
2 km away from the rivers (Figure 12G). With the increase of

FIGURE 10 | Expansion of vegetation degradation (A) Coseismic landslides in 2017 (B) Hidden damage of landslide appears in 2020 (C) Field photo showing the
damage caused by coseismic landslides (D) Vegetation damaged by the coseismic landslides in 2017 (E) Vegetation degradation on landslides in 2020 (F) Field photo
showing the vegetation degradation caused by landslides.

FIGURE 11 | Landslide restoration after treatment (A)Coseismic landslides in 2017 (B) The landslides with vegetation in 2020 (C) Field photo showing the landslide
with vegetation.
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FIGURE 12 | Distribution of coseismic landslides and post-seismic landslide change (A) Slope (B) Altitude (C) Aspect (D) PGA (E) Distance to fault (F) Strata (G)
Distance to rivers (H) Distance to roads.
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FIGURE 13 | Susceptibility of coseismic landslides and post-seismic landslide change (A) Slope (B) Altitude (C) Aspect (D) PGA (E) Distance to fault (F) Strata (G)
Distance to rivers (H) Distance to roads.
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distance, the area and density of landslides decreases. However,
for post-seismic landslide change, the net increase rate of
landslides in 0–2 km is not very high. The net increase rate
peaks at 50% at 4–5 km.

Roads: Coseismic landslides are mainly concentrated within
2 km from the roads (Figure 12H). However, for post-seismic
landslide change, the net increase rate of landslides in 0–2 km is
close to the average net increase rate, which is not high. The net
increase rate peaks at 22% in the area from the roads about
4–5 km.

The Susceptibility of Coseismic Landslide
and Post-seismic Landslide Change
The susceptibilities of eight factors related to coseismic landslides
and post-seismic landslide change are shown in Figure 13.

Slope: For coseismic landslides, the range of CF values is from
−0.96−0.86. The CF values increase rapidly with the increase of
slope and peak on the slope of 55°–60° (Figure 13A). The steeper
the slope is, the more likely the landslide will slide. For post-
seismic landslide change, the trend of CF values is consistent with
that of coseismic landslides. However, the range of CF values is
from −0.67 to 0.81, which is smaller than that of coseismic
landslides. The CF values of post-seismic landslide change are
higher than that of coseismic landslides on the slope within 45°,
and the CF values of change landslides are less than that of
coseismic landslides on the slope above 45°. The susceptibility of
landslide varies widely and is significantly affected by the slope.

Altitude: For coseismic landslides, the range of CF values is
from −0.96 to 0.52 (Figure 13B). The CF values increase with the
increase of altitude when the altitude is lower than 3,000–3,200 m
a.s.l. and decreases with the increase of altitude when the altitude
is higher than 3,000–3,200 m a.s.l. The CF value peaks at
3,000–3,200 m a.s.l. indicating that the possibility of slope
sliding is the highest. For post-seismic landslide change, the
trend of CF values is consistent with that of coseismic
landslides. However, the range of CF values is from −0.88 to
0.25, which is smaller than that of coseismic landslides. Within
the altitude of 2,800 m a.s.l. coseismic landslides are not easy to
slide. The CF values of post-seismic landslide change is a little
higher than that of coseismic landslides in this area. Above
3,200 m a.s.l. the CF values have similar characteristics.

Aspect: For coseismic landslides, the range of CF values is
from −0.87 to 0.49 (Figure 13C). The CF values on E, SE, and
S-facing slopes are positive, which indicates that the slopes may
slide. The CF value peaks on SE-facing slopes, indicating that SE-
facing slopes have the highest possibility of sliding. They are
negative in other aspects and flat, which shows that these slopes
are not easy to slide. However, for post-seismic landslide change,
the range of CF value of landslides is smaller than that of
coseismic landslides, ranging from −0.94 to 0.31. In the slopes
where coseismic landslides are not easy to slide, post-seismic
landslides are more likely to slide. In the slopes where coseismic
landslides are easy to slide, post-seismic landslides are not easy to
slide. The CF values of N, NE, W, and NW-facing slopes are
positive, which indicates that the landslide may slide. The CF
value peaks on the N-facing slope, which indicates the sliding

probability is higher. The CF values of other slopes are negative or
close to 0, which indicates the sliding probability is low.

PGA: For coseismic landslides, the range of CF values is from
−0.98 to 0.75 (Figure 13D). The CF values increase with the
increase of PGA and peak at the maximum of PGA, indicating
that the larger the PGA is, the more likely the landslide will slide.
For post-seismic landslide change, the trend of CF values is
consistent with that of coseismic landslides. However, the
range of the CF values is from −0.89 to 0.61. It is smaller than
the CF values of coseismic landslides. The susceptibility of the
landslide is significantly affected by PGA.

Fault: For coseismic landslides, the range of CF values is from
−0.95 to 0.73 (Figure 13E). The CF values decrease with the increase
of the distance to the fault. It indicates that the closer the distance is
to the fault, the more likely the landslide will slide. For post-seismic
landslide change, the trend of CF values is consistent with that of
coseismic landslides. However, the range of CF values is from −0.91
to 0.64. It is smaller than the CF values of coseismic landslides.

Strata: For coseismic landslides, the range of CF values is from
−0.72 to 0.46 (Figure 13F). The CF values are high in the area of
Carboniferous and Permian strata, and they are 0.41 and 0.46
respectively. The CF values are −0.80, −0.69, −0.72 respectively in
areas of Devonian, Triassic, and Quaternary strata, which means
the possibilities of sliding in those areas are low. For post-seismic
landslide change, the trend of CF values is consistent with that of
coseismic landslides while the range of CF values which is from
−0.70 to 0.38 is a little smaller than that of coseismic landslides.

Rivers: For coseismic landslides, with the increase of the
distance to the rivers, the CF values vary slightly, ranging
from −0.53 to 0.19 (Figure 13G). Within 2 km away from the
rivers, the CF values are positive, which is beneficial to slide, but
the possibility is not too high. The CF values are negative over
2 km, which is not easy to slide. However, for post-seismic
landslide change, the CF values within 2 km or more than
4 km are positive. The maximum of CF values is only 0.19,
and the susceptibility is not very high. The CF values change
with the change of the distance to the fault is not significant. So,
there is no significant correlation between the susceptibility and
the distance to the rivers.

Roads: For coseismic landslides, the range of CF values is from
−0.66 to 0.27 (Figure 13H). The CF values increase with the
increase of the distance within 4 km away from the roads and
decrease with the increase of the distance over 5 km. It peaks at
0.66 when the range of distance is 4–5 km, indicating that the
possibility of landslide sliding is the highest. It is positive when
the distance is between 2 and 6 km, which shows that it is easy to
slide. For post-seismic landslide change, the trend of CF values is
consistent with that of coseismic landslides. However, the range
of CF values is a little bigger than that of coseismic landslides.

DISCUSSION

Integrity and Accuracy of the Coseismic
Landslide Database and Spatial Distribution
Incomplete landslide databases may mislead the studies of
landslide distribution and they may mislead the studies of
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susceptibility assessment (Xu and Xu, 2014). A complete
landslide database can provide accurate information for fault
studies or other studies, such as assisting in identifying the blind
fault on the unexposed surface of the Jiuzhaigou earthquake (Fan
et al., 2018). In the previous studies of Jiuzhaigou, their landslide
areas are not consistent. It indicates that their landslide databases
may be incomplete, which leads to inconsistencies in landslide
distribution studies, such as the studies of Tian et al. (2019), Dai
et al. (2017), Wu et al. (2018), and Liang et al. (2019). In these
studies, the results of the distribution are incompletely consistent,
especially the slope distribution.

Landslides are extracted from the satellite and erial remote
sensing images by the monitoring technology of integrated space-
air-ground. SVM classification is used to extract landslides.
Visual interpretation and field investigation are used to verify
the extracted result. This method can improve the speed and
accuracy of landslide interpretation. It avoids the problem that
visual interpretation needs the cooperation of many people with
different interpretation experience which is easy to get inaccurate
interpretation results. Therefore, the landslides extracted in this
study is more comprehensive and the distribution results are
more accurate.

Post-seismic Landslide Change
Causes of Post-seismic Landslide Change
The landslide area of Jiuzhaigou is larger in 2019 than that in
2017. A previous study on the landslides related to the 2008
Wenchuan earthquake shows that the frequency of the landslides
increased significantly within 5 years after the earthquake.
Compared with the pre-seismic records, the number of post-
seismic landslides is 2–5 times higher than that before the
earthquake (Huang and Li, 2014). Strong earthquakes not only
trigger a large number of coseismic landslides but also induce
relaxation and cracks in the rocks and soils which make these
rocks and soils vulnerable to instability during subsequent
aftershocks or rainfall events (Fu et al., 2020). Some cracks
can become the boundary of the post-seismic landslides and
the main permeable path for subsequent rainwater (Huang et al.,
2019). Moreover, coseismic landslides will also produce a large
number of loose deposits on the slope. The deposits on the slope
can remobilize and turn into debris flow during heavy rainy
seasons. Three heavy rainfall events occurred in September 2017,
August 2018, and August 2019 after the 2017 Jiuzhaigou
earthquake, all of which induced mass geological disasters
(Huang et al., 2020). When the speed of landslide occurrence
is faster than that of landslide recovery, the landslide area will
increase. Only 2 years after the 2017 Jiuzhaigou earthquake, the
post-seismic recovery needs a longer period. Therefore, the
landslide area will increase in recent and future times.

Rules and Causes of Spatial Distribution of
Post-seismic Landslide Change
In this study, the net increase rate is used to measure the post-
seismic landslide change. The spatial distribution pattern of post-
seismic landslide change and coseismic landslides is quite
different in the factors of earthquake, topography, geology,
and human activities. This study suggests that the areas with

high landslide density are most affected by the strong earthquake
shaking and the unstable slopes have already slipped during the
earthquake. Thus, there are almost no new landslides in these
areas within two years after the earthquake. In other areas, the
earthquakes did not trigger too many coseismic landslides. But
these slopes (Delgado et al., 2011) and their ecological
environment (Lu et al., 2012) have been weakened by the
earthquakes. The earthquakes induced relaxation and cracks
and produced deposits on them. Therefore, these slopes
become the main increase areas of landslides triggered by
other additional forces after the earthquake. There is a general
rule across the factors: the highest net increase rate of post-
seismic landslide change does not distribute on the regions with
the highest density of coseismic landslides; on the contrary, the
areas with the highest density of coseismic landslides show that
the net increase rates of landslides are close to 0. For slope and
PGA, the net increase rate is close to 0 in the area with the highest
density of coseismic landslides. For altitude and aspect, the net
increase rate is negative in the area with the highest density of
coseismic landslides. For faults, strata, and rivers, the net increase
rate in the areas with the highest density of coseismic landslides is
small and not more than 10%.

The increase areas of landslides can be divided into three cases
as described in Spatial Distribution of Coseismic and Post-seismic
Landslides: 1) Some landslides with deposits on the slope do not
reach the state of stress balance, which is conducive to expansion
under the trigger of additional driving forces, such as rainfall after
the earthquake. This case is the most common in the Jiuzhaigou
area, such as the landslide areas around Five Flower Lake
(Figure 8); 2) There is no landslide on the slope weakened by
the earthquake, but if the slope is affected by additional driving
forces, post-seismic landslides will happen in this area, which
changes most significantly, such as the post-seismic landslide at
Mirror Lake (Figure 9); 3) There has been small collapse or
displacement on the slopes due to the earthquake. But the damage
is not easy to be detected due to the shelter of the vegetation. So,
the impact is not significant in the early stage after the earthquake.
However, the change of slope will cause some disturbance to the
adjacent or overlying vegetation. The vegetation will degenerate
with time (Guo et al., 2020), and then landslides can be detected.
This case is also very common, but the area is not too big
(Figure 10).

Rules and Causes of Susceptibility of Post-seismic
Landslide Change
In this study, the susceptibilities of the coseismic landslides and
the post-seismic landslide change are calculated respectively. The
susceptibility of post-seismic landslide change changed
significantly with slope, altitude, aspect, PGA, fault, and strata
(Figure 13). Reasons for the susceptibility anomaly of post-
seismic landslide change are consistent with the spatial
distribution anomaly. From the distribution of susceptibility,
there are general rules across the factors: the susceptibility
peak value of the post-seismic landslide change is lower than
that of the coseismic landslide; the susceptibility of the post-
seismic landslide change is lower than that in the coseismic
landslide area with high susceptibility, which indicates that the
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landslide risk reduces; the susceptibility of the post-seismic
landslide change is higher than that in the coseismic landslide
area with low susceptibility, which indicates that the landslide risk
increases.

The potential landslides in the area with high landslide density
have already slipped in the earthquake, which results in that the
susceptibility decrease. In the original low susceptibility areas
which have been weakened by the earthquake events, new
landslides will occur due to the influence of additional driving
force after the earthquake, which results in that the susceptibility
increase.

In the process of post-seismic landslide change, rainfall is one
of the important forces that trigger the post-seismic landslide
change, especially the expansion of coseismic landslide. It will
remobilize the deposits on the slope which will expand to the area
with a more gentle slope and lower altitude and cause damage to
these areas. It results in the susceptibility of these areas with low
susceptibility increases. This dynamic situation will last for a long
time in the future.

Suggestions for the Investigation and
Mitigation of the Post-seismic Landslides
This study suggests that landslides are investigated by the
monitoring technology of integrated space-air-ground which
includes multi-source, multi-temporal, and multi-scale remote
sensing data and field study. The SVM classification, visual
interpretation, field investigation, and GIS technology are
employed in this study. They can create complete and accurate
landslide inventories and analyze the spatio-temporal
characteristics of landslides and their post-seismic changes.

According to the characteristics of spatial distribution and
susceptibility, this study proposes some opinions for the
treatments of landslides in the post-seismic change process.
For the coseismic landslides, the expansion is caused by the
remobilization of landslide deposits on slopes, accounting for
the largest proportion of the increase of landslide area. These
slopes should be reinforced and the landslide deposits should be
cleared. However, because of the huge amount of landslide
deposits, it is difficult to clear them in a short time. We
suggest that reasonable dredging and reuse treatments of
deposits should be implemented. For the small-scale coseismic
collapses or potential post-seismic landslides triggered by the
additional driving force, they are difficult to be found with the
shelter of the vegetation. But, vegetation anomalies can be used as
good indicators to identify them in the concealed unstable slopes.
Great attention should be paid to extract the potential landslides
by identifying the vegetation anomaly in the concealed unstable
slopes. These unstable slopes also should be reinforced to prevent
sliding.

CONCLUSION

(1) Coseismic landslides and post-seismic landslide change are
concentrated in the Jiuzhaitiantang-Panda Lake area. The

increased area of the landslide is 3.6 km2, the restored area is
2.4 km2, and the net increase area is 1.2 km2, compared with
the coseismic landslide, until September 27th, 2019. The
expansion includes the expansion of coseismic landslide,
the post-seismic landslide, and the expansion of vegetation
degradation. The area expansion of the coseismic and post-
seismic landslides is mainly related to the increase of debris
flow induced by the post-seismic torrential rainfalls. The
reduction contains the restoration caused by natural
succession or the engineering treatments.

(2) The susceptibility of post-seismic landslide change is greatly
influenced by slope, altitude, aspect, PGA, fault, and strata.
Due to the post-seismic changes of stress and slope stability,
the risk of post-seismic landslide change reduces in the high
susceptibility area of coseismic landslide and it increases in
the low susceptibility area of coseismic landslide.

(3) The slope with coseismic landslides should be reinforced and
the landslide deposits should be cleared, dredged, or reused.
The concealed unstable slope which may have potential
landslides should be paid great attention to identify the
potential landslides by extracting the vegetation anomaly
to prevent potential landslides.
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Investigation of the Effect of the
Dataset Size and Type in the
Earthquake-Triggered Landslides
Mapping: A Case Study for the 2018
Hokkaido Iburu Landslides
Resul Comert*

Department of Geomatics Engineering, Faculty of Engineering and Natural Sciences, Gumushane University, Gumushane, Turkey

Rapid mapping of landslides that occur after an earthquake is important for rapid crisis
management. In this study, experimental research was conducted on the size of the model
area and the data types used in developing classifiers for the supervised classification
approaches used in rapid landslide mapping. The Hokkaido Iburu earthquake zone that
occurred on September 6, 2018, was selected as the study area. PlanetScope pre-event
and post-event images and ALOS-PALSARDigital ElevationModel (DEM) were used in the
analysis processes. In this context, five model areas with different sizes and one test area
were determined. Object-based image analysis (OBIA) was used as a landslide mapping
approach. Random Forest classifier, which is a supervised classification algorithm, was
performed in the mapping of image objects produced by the segmentation stage of OBIA.
Two different data sets were created for landslide mapping: change-based dataset and
post-event dataset. The change-based dataset is generated from change data such as the
difference of normalized difference vegetation index (δNDVI), change detection Image
(CDI), princiable component analysis (PCA), and Independent component analysis (ICA)
which are used in change detection applications. The post-event dataset was created from
data generated from post-event image bands. When the obtained results were examined,
higher accuracy results were obtained with the post-event dataset. Increasing the size of
the model area, in other words, increasing the training data slightly increases the accuracy
of landslide mapping. However, a model area that represents the region to be mapped in
small sizes to make rapid decisions provides a 94% F-measure accuracy for earthquake-
triggered landslide detection.

Keywords: OBIA (object based image analysis), random forest, landslide mapping, hokkaido earthquake,
planetScope

INTRODUCTION

Earthquakes are natural events that cause great damage to nature, buildings, engineering structures,
and cause human death (Gorum and Carranza 2015). Moderate and severe magnitude earthquakes
trigger thousands of landslides, especially in rugged and high-slope mountainous regions (Gorum
et al., 2013; Tanyaş et al., 2017). For example, in the 2008 Wenchuan, China Mw 7.9 earthquake,
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there were about 200,000 landslides (Tian et al., 2019), about
5,000 landslides in the January 12, 2010 Mw 7.0 Haiti earthquake
(Gorum et al., 2013), more than 2,000 landslides in the 2015
Gorkha, Nepal Mw 7.8 earthquake, and about 6,000 landslides in
the 2018 Hokkaido Iburu Mw 6.7 earthquake (Yamagishi and
Yamazaki 2018). Landslides that appear as a secondary effect of
earthquakes cause human deaths and economic losses. Fatal
landslides occurred in 76 of the 196 earthquakes between 1811
and 2016. These fatalities correspond to 17.7% (213,913 people)
of deaths caused by earthquakes (Jessee et al., 2020). Earthquake-
triggered landslides accounted for 5.2% ($ 170 billion) of
economic damage from earthquakes between 1900 and 2016
(Daniell et al., 2017). Therefore, rapid mapping of landslides is
important for rapid response to disaster areas and crisis
management.

Active and passive remote sensing systems offer great
advantages in rapid landslide mapping (Aimaiti et al., 2019).
With remote sensing systems, Optical images (Zhao et al., 2017;
Shao et al., 2019), synthetic aperture radar (SAR) (Aimaiti et al.,
2019; Adriano et al., 2020), LIDAR systems (Liu et al., 2019),
Unmanned Aerial Vehicle (UAV) systems (Comert et al., 2019)
or synthesis of optical and SAR images (Shirvani et al., 2019) can
be used in the landslide mapping. The most common method
preferred in mapping landslides is visual image interpretation
(Guzzetti et al., 2012; Rosi et al., 2018). Although the image
interpretation provides high accuracy, it is a slow method that is
not suitable at the time of rapid intervention since the landslides
are mapped by the expert with image interpretation and manual
digitization (Guzzetti et al., 2012). Therefore, automatic landslide
mapping is an important factor for post-disaster crisis
management. Image classification approaches (Vamsee et al.,
2018) and change detection methods (Lu et al., 2019) are used
in automatic landslide mapping. Since change detection methods
require pre-event images, they present a disadvantage in mapping
the landslide events triggered by the earthquake. However, it is a
useful method in case of the pre-event image available (Yang and
Chen 2010; Lu et al., 2019). Classification methods are generally
carried out on post-event images (Stumpf and Kerle 2011; Dou
et al., 2015). The disadvantage of this method in making rapid
decisions is that it takes time to generate the training dataset.
However, when the classification model is developed over the
appropriate training dataset, the mapping process is shortened
(Danneels et al., 2007; Stumpf and Kerle 2011; Mondini et al.,
2011).

Image classification is used in landslide mapping in two
approaches, pixel-based image analysis (PBIA) (Danneels
et al., 2007) and object-based image analysis (OBIA)
(Martha et al., 2010; Stumpf and Kerle 2011; Hölbling et al.,
2015; Shirvani et al., 2019). After the landslide events, different
sizes of landslides can occur in the relevant area. High spatial
resolution images offer great advantages to detect landslides of
different sizes. OBIA has become more popular in landslide
mapping in the last decade since misclassified pixels have
emerged from the landslide mapping from high spatial
resolution images with PBIA (Guzzetti et al., 2012; Zhong
et al., 2020). OBIA is applied in two different ways in landslide
mapping: rule-based (Martha et al., 2010; Hölbling et al., 2012;

Comert et al., 2019) and supervised mapping (Stumpf and
Kerle 2011; Shirvani et al., 2019). In the landslide mapping
process, landslides should be separated from different land use
classes. A large number of object features must be used for this
process. Rule-based mapping is a slow method for complex
areas. since the object features and threshold values that
separate the classes must be determined by an expert
(Stumpf and Kerle, 2011). In supervised mapping
performed with a selected algorithm such as random forest,
the features used to separate the classes are automatically
determined, and rapid results are produced by the mapping
process made on the training data to be produced in the
appropriate size and number (Stumpf and Kerle 2011;
Shirvani et al., 2019; Shirvani, 2020). Therefore, supervised
mapping process will give rapid results in rapid intervention in
crisis management.

In this study, the success of the size of the model area selected
for training data, and the dataset type to be used in classification
in the rapid detection of earthquake-triggered landslides were
investigated. In particular, the following questions have been
addressed:

• How enlarging the model area selected for training data
affect earthquake-triggered landslide mapping accuracy?

• Which of the datasets used in the classification stage is more
useful?

• Which image object feature from the selected data sets is
important for landslide mapping?

For these purposes, the Hokkaido Iburu earthquake zone in
Japan was chosen as the study area. PlanetScope images and
ALOS-PALSAR Digital Elevation Model (DEM) were used as
analysis data. OBIA was preferred as the mapping approach and
the Random Forest (RF) algorithm was used as the classification
method in the OBIA. RF algorithm, which is a fast machine
learning classifier, was preferred in this study because it gives
successful results in many areas such as landslide susceptibility
mapping (Dou et al., 2019; Shirvani 2020), landslide mapping
(Stumpf and Kerle 2011; Chen et al., 2017; Shirvani et al., 2019;
Maxwell et al., 2020), burnt area mapping (Ramo and Chuvieco
2017).

STUDY AREA AND DATASET

Study Area
The study area is located in the southwest of the Hokkaido region
(Figure 1A). The dominant land cover of the study area consists
of forests and paddy fields and has a rugged, mountainous, and
high slope topography (Zhang et al., 2019; Adriano et al., 2020).
Hokkaido, which includes the study area, is a tectonically active
region in the world. The faults and active faults in the region
develop near the north-south strike (Zhang et al., 2019).

On September 6, 2018, an earthquake with a magnitude of
6.7 Mw and a depth of 37 km occurred in the Iburu subprefecture
of the southern Hokkaido province of Japan. With the powerful
ground motion of the event, structural damage in buildings,
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liquefaction on the ground, and thousands of landslides occurred
in areas close to the epicenter (42.691°N, 142.007°E) of the
earthquake. Due to the earthquake, 41 people died and 691
people were injured; 390 buildings were destroyed, 1061
buildings were damaged, approximately 6000 landslides
occurred (Yamagishi and Yamazaki 2018; Zhang et al., 2019).
The reason for the large number of landslides triggered by the
earthquake in the region is that the earthquake occurred one day
after the typhoon Jebi, which accumulated approximately
100 mm of precipitation in the region (Yamagishi and
Yamazaki 2018). The majority of the coseismic landslides in
the region consist of typical shallow debris landslides with a width
of approximately 250 m. The types of landslides are classified as
planar and spoon type landslides such as rainfall-induced
landslides (Yamagishi and Yamazaki 2018; Zhang et al., 2019).
The areas selected within the scope of this study are located in the
towns of Atsuma and Abira, where slope failures are densely
distributed (Figure 1B).

Data Sets
PlanetScope is a satellite constellation operated by Planet Labs
that contains 130+ CubeSats (size: 10 cm by 10 cm by 30 cm;
weight: 4 kg) that move in the sun-synchronous orbit. Using this

satellite constellation, images are collected in an area of 200 M
+ km2/day. PlanetScope images consist of 4 spectral bands with
3.7 m spatial, 16-bit radiometric, and 1-day temporal
resolution (Table 1) (Planet, 2017). In this study,
PlanetScope Level 3B multispectral surface reflectance
products were used to create the change-based dataset and
the post-event datasets. Level 3B surface reflectance products,
which are orthorectified, are geometrically corrected images
using Ground Control Points (GCPs) and fine Digital
Elevation Models (DEMs) (Wicaksono and Lazuardi 2018;
Planet, 2017). Also, the atmospheric corrections of these
products were made by Planet Labs using the 6S radiative
transfer model with ancillary data from MODIS (Cheng et al.,
2020). After atmospheric and geometric corrections, the
orthorectified images are presented to users by Planet Labs
at 3 m spatial resolution (Planet 2017). Within the scope of the
study, images belonging to two different dates as pre-event
(August 03, 2018) and post-event (September 21, 2018) were
used (Table 1). These images were selected as the dates closest
to each other, with no clouds on the study area. Also, ALOS-
PALSAR 30 m spatial resolution DEM data dated July 14, 2006
were used as auxiliary data to obtain the slope map of the
study area.

FIGURE 1 | The study area selected for analysis: (A) The location of the epicenter of the earthquake and the study area (red polygon) in Hokkaido, (B) Model
development and test areas determined for landslide mapping.
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Five different model areas have been created to develop
classifiers to be used in the mapping of landslides over the
area chosen as the study area (Figure 1B). The smallest of
these model areas (Model Area 1) is 3 × 3 km in size. While
determining this area, it has been taken into consideration that
the test area has similar land use characteristics such as water,
agricultural areas, roads, small settlements, landslides, and forest.
Other model areas were obtained by enlarging the edges of the
previous model area by 1.5 km. The largest model area (Model
Area 5) created in the area is 9 × 9 km in size.

METHODS

The methodology applied within the scope of the study is shown
in Figure 2. The landslide mapping process was carried out using
the OBIA approach. OBIA and PBIA are two different
approaches used in image classification. Spectral values of
pixels are used when classifying images with PBIA, while
spectral, geometric, textural, and spatial values of image
objects are used for classification with OBIA. OBIA was
preferred in this study because it reduces the problem of
misclassification error in high spatial resolution images
includes different image object metrics in addition to spectral
features and reduces the data size (Zhong et al., 2020).

Creating Auxiliary Data
Auxiliary data such as band indices and change detection indices
were generated to achieve change-based dataset and post-event
datasets. Normalized difference vegetation index (NDVI),

normalized difference water index (NDWI) and brightness
index (BI), principal component analysis (PCA), change
detection image (CDI), independent component analysis (ICA)
were additional data generated.

NDVI (Tucker 1979) is an effective index used in the
separation of green vegetation area from landslides. Therefore,
it is used both in landslide mapping with change detection (Lu
et al., 2019) and in landslide mapping from post-event images
(Martha et al., 2010). NDVIpost was used for the post-event
dataset, δNDVI was used for the change-based dataset. NDWI
(McFeeters 1996) was included in the post-event dataset to
distinguish the water areas from the landslides (Shirvani et al.,
2019).

NDVI � ρNIR − ρRed
ρNIR + ρRed

, (1)

δNDVI � NDVIpre − NDVIpost, (2)

NDWI � ρGreen − ρNIR
ρGreen + ρNIR

, (3)

where ρGreen, ρRed, and ρNIR are green, red, and near-infrared
(NIR) bands of images, respectively.

BI has been used in post-event landslide mapping from satellite
images in many studies. This index is obtained by dividing the sum
of the spectral values of the bands (ci(vis)) by the total number of
bands (nvis) (Stumpf and Kerle 2011). BI was calculated using the
four bands of PlanetScope post-event image bands.

BI � 1
nvis

∑
nvis

i�1
ci(vis). (4)

TABLE 1 | PlanetScope Leve 3 B product specification and image dates.

Band Band range (nm) Resolution Image dates

Pre-event Post-event

Blue 455–515 3 m spatial res August 3, 2018 September 21, 2018
Green 500–590 16-Bit radiometric res
Red 590–670 1-day revisit time
NIR 780–860

FIGURE 2 | The methodology applied for the rapid detection of earthquake-triggered landslides in the study.

Frontiers in Earth Science | www.frontiersin.org February 2021 | Volume 9 | Article 6336654

Comert Earthquake-Triggered Landslides Mapping

71

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


PCA, a linear transformationmethod, converts a set of correlated
numerical variables into non-correlated variables in a different
orthogonal coordinate system. When a data set with N bands is
given with PCA, the desired number of main components is
calculated. The first PCA component contains the largest
variance between the input bands, the second contains the
second major variance not defined in the first component, and so
on. In the calculation of the principal components, the
n-dimensional data set is defined by the XT � [X1 . . .Xn] matrix
and the C covariance matrix. With the first scaled eigenvectors (e1i)
calculated from the covariance matrix, the first principal
components (Y1) are calculated as in Eq. 5. The other desired
principal components are calculated similarly using the relevant
eigenvector (Mondini et al., 2011). In this study, two different PCA
data sets were produced. The first one is four main components
produced from post-event image bands to use in the post-event
dataset. The second one, for the change-based dataset, four main
components were generated by using the red and NIR bands of pre-
event and post-event images as Lu et al. (2019) stated in their articles.

Y1 � ∑
n

i�1
e1iXi. (5)

ICA is a geometric transformation that transforms variables
used as inputs into statistically independent components. ICA is
calculated by Eq. 6. Where A is the mixing matrix, s is the matrix
of independent components and X represents the vector of input
variables (Hyvärinen and Oja 2000).

X � sA � ∑
n

i�1
aisi. (6)

CVA is a method used for mapping landslides from pre-and
post-event images (Li et al., 2016; Lu et al., 2019). In this method,
a change detection image (CDI) is created by determining the
changes between multi-temporal image bands. The value of a
pixel in the CDI is calculated by Eq. 7. where, the pixel value at
pre-event t1 time is It1, the pixel value at post-event time t2 is lt2. b
represents the number of satellite images band being processed.

ρ(I) � ⎡⎣∑
n

b�1
(It1 − It2)2b⎤⎦

1/2.

(7)

Image Segmentation
Image segmentation is the first step of the OBIA process. At this
stage, it is aimed to produce meaningful image objects from the
layers subjected to segmentation. Multi-resolution segmentation
(MRS) is the most preferred segmentation method in OBIA. In
this method, the segmentation process starts at a pixel level, and the
merging process takes place according to the spatial and spectral
heterogeneity of the candidate selected image object with
neighboring image objects (Benz and Schreier 2001; Jensen 2005).
To create optimum image objects with the MRS method, the scale,
shape, compactness, and layer weights must be determined by the
user. The scale parameter controls the size or heterogeneity level of
the image objects to be formed. If the scale parameter is defined as a
large value, large image objects are produced, if a small value is

defined, small image objects are produced. The shape parameter,
which takes values between 0–1, is used to determine the weights of
spatial and spectral functions in the calculation of themerging factor.
The compactness parameter controls the compactness and
smoothness of the resulting image objects in the calculation of
the shape function. Layer weights are used to define the
importance of segmentation layers compared to other layers
(Baatz et al., 2000). MRS parameters can be determined by
automatic methods such as Estimation Scale Parameter-2 (ESP-2)
(Drăguţ et al., 2014), optimum scale parameter selector (OSPS)
(Vamsee et al., 2018), or by the trial and error method (Martha et al.,
2010; Hölbling et al., 2012; Shirvani et al., 2019) based on visual
analysis. In this study, the trial-error method was used to determine
the appropriate segmentation parameters.

Creating Analysis Data
After the segmentation steps, image object attributes (features)
were calculated. Image object attributes are the features used in
classifying image objects. Textural, spectral, spatial, geometric,
and contextual metrics can be used in landslide mapping (Martha
et al., 2010; Shirvani et al., 2019). Two different data sets
containing image object features were created for the mapping
of landslides. These were change-based dataset and post-event
dataset. Layers produced from pre-event and post-event bands
were used in the creation of the change-based dataset, post-event
bands and layers produced from themwere used in the creation of
the post-event dataset. The features of both datasets used in
mapping landslides were selected using eCognition Developer 9.0
software. As a result of the literature review (Martha et al., 2010;
Shirvani et al., 2019) and visual analysis, 40 image object features
were selected for the change-based dataset (Table 2) and 43 for
the post-event dataset (Table 3). Since it does not provide any
discrimination in visual analysis, geometric features are not
included in the datasets.

Landslide Mapping
The random forest (RF) algorithm was used for the landslide
mapping. RF is an ensemble learning algorithm that generates
multiple decision trees using randomly selected variables and
subsets in a dataset. To generate the decision tree with the RF
classifier, the user must determine the number of variables (m)
used in each node and the number of randomly generated trees
(N) to determine the best split. For a dataset consisting of M
variables, the number of m variables to be randomly selected is
determined as a value equal to or close to the

��
M

√
. With the

determined parameters, trees with high variance and low bias are
created by the algorithm. The final classifier is decided according
to the voting for the power of decision trees to separate classes.
The tree with the most votes is used for the respective class
(Breiman 2001). While the classifier is developed with the RF
algorithm, 2/3 of the dataset is used as training data and 1/3 as test
data (Belgiu and Drăguţ 2016). This ratio can be chosen between
80 and 20% to increase the number of data in the training dataset
(Ramo and Chuvieco 2017). Another method used in model
training is k-fold cross-validation, which is used in cases where
there is limited validation data (Karlson et al., 2015). In the study,
in the selection of optimum parameters for the RF classifier for
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each model area, the data belonging to the model areas were used
as 80% training data and 20% test data. Classifier success to the
obtained optimum parameters has been tested on the test area.

Accuracy Assessment
The success of the created classifiers on the test area was
calculated according to the accuracy measures developed on
the confusion matrix used in two-class classification
applications (Eqs 8–11) (Sokolova and Lapalme 2009). The
correctly classified of LS and NLS image objects on the test
data of the developed models were achieved by using the
overall accuracy measures (Eq. 12) (Banko 1998).

RESULTS

In the segmentation stage, different combinations of post-event
image bands and layers produced for image difference were tried

to identify appropriate input bands to create image objects
representing landslides. As a result of the experiments, it was
seen that the landslide objects were best obtained from the post-
event R, G, B, NIR bands. Therefore, these layers were used as
input bands in the segmentation process for all data sets.
Different scale parameters (from 10 to 150 by 10), shape,
compactness, and layer weights were tested in determining the
optimum parameters for MRS. As a result of trial and error,
suitable parameters were determined as a scale: 110, shape: 0.3,
compactness: 0.7, layer weights as B � G � NIR � 1, R � 2. These
values have been applied to be the same for all data sets. These
values were used to create image objects for all data sets.
Landslides in the image objects obtained result of the
segmentation process consists of more than one image object.
When the scale parameter was set to more than 110, it has been
observed that especially small landslides mix with other land use
classes. Image objects created by segmentation for model and test
areas were labeled as Landslide (LS) and Non-Landslide (NLS)
using pre-event and post-event images. The data sets created for
the RF classifier and the numbers of image objects belonging to LS
and NLS included in them are shown in Table 4.

The RF classifier development process was carried out using
WEKA (Waikato Environment for Knowledge Analysis) data
mining software. The process of determining the optimum
number of trees and the minimum variable was carried out
separately for each model area. The number of random trees
was applied as different values from 100 to 1500. The number of
m variables was applied to the model data sets as 6, 7, 8, 9 values.
As a result of the experiments, the m value was determined as 8

TABLE 2 | Selected image object features used for the change-based dataset.

Type Features Num. of features

Spectral Mean of (ICA1, ICA2, ICA3, ICA4, CDI, δNDVI, PCA1change, PCA2change, PCA3change, PCA4change) 19
Std. Dev. of (ICA1, ICA2, ICA3, ICA4, δNDVI, PCA2change, PCA3change, PCA4change) and Max. Diff

Spatial Mean of slope 1
Textural GLCM all direction 20

Contrast of (PCA3change, PCA4change, ICA3)
Dissimilarity of (PCA4change, PCA3change, ICA3, CDI)
Entropy of (ICA1, ICA2, ICA3, ICA4, CDI, δNDVI, PCA1change, PCA2change, PCA3change, PCA4change)
Homogeneity of (ICA3, PCA3change, PCA4change)

CDI, change detection image; ICA, independent component analysis; Max. Diff., maximum difference; PCAchange, change based principal component analysis; Std. Dev., standard
deviation.

TABLE 3 | Selected image object features used for the post-event dataset.

Type Features Num. of features

Spectral Mean. of (R, G, B, NIR, NDVI, NDWI, BI, PCA1post, PCA2post, PCA3post, PCA4post), Max. Diff., std. Dev. of (R, G, B, NIR,
NDVI, BI, PCA1post, PCA2post, PCA3post, PCA4post)

22

Spatial Mean and std. dev. of slope 2
Textural GLCM all direction 19

Contrast of (R, NIR, NDWI, BI)
Dissimilarity of (NIR, R, BI, PCA2post, PCA4post)
Entropy of (R, NIR, NDVI, BI)
Homogeneity of (R, NIR, NDVI, BI, PCA2post, PCA4post)

B, blue; BI, brightness index; G, green; NDVI, normalized difference vegetation index; NDWI, normalized difference water index; NIR, near infrared; PCApost, post-event principal
component analysis; R, red.
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for all data sets. The number of trees was defined as 600 for model
areas 2 and model area 3 in the change-based dataset. The
number of trees in model area 4 was determined as 400 for
both the change-based dataset and the post-event dataset. The
number of trees was set as 500 for the remaining classifiers. The
success of the RF classifiers created for model areas according to
the determined parameters on the test area is shown in Table 5.
The overall accuracy success of RF classifiers on the test site for
separating LS and NLS areas has been achieved by over 95% with
all classifiers in both datasets (Table 5).

When the accuracy results were examined (Table 5), it was
seen that TP Rate increases in the post-event dataset when the
model area expands. With the classifier developed forModel Area
1, 92% of the image objects belonging to the LS in the test area
were successfully mapped. This ratio was obtained with 3% more
accuracy in the largest dataset. When the number of training data
is increased by expanding the model area, the FP rate, which

defines the mapping rate of NLS image objects as LS, slightly
increased. This change had reduced the precision rate of
classifiers. When the success of the developed classifiers for
landslide mapping was evaluated, it is observed that very close
F-measure values were obtained, but a little more success was
achieved in the largest dataset.

When the accuracies for the change-based datasets are
investigated, the TP ratio of LS image objects was obtained
approximately 90% for the smallest dataset. This ratio
decreased by 1 and 2% in model area 2 and model area 3,
respectively. In the largest dataset, very close results were
obtained with model area 1. When the size of the model
dataset was increased, it was seen that the sensitivity of the FP
ratio increased and the extraction of NLS objects as LS decreased.
This condition has increased the precision ratio and the
F-measure value of the developed classifiers.

Comparing the results obtained for the change-based dataset
and post-event dataset, landslides were obtained with a higher TP
Rate in all model areas where RF classifiers were developed.When
the FP Rate values were compared, it was seen that when the data
size was increased, the classification of NLS image objects as LS
with the change-based data set decreased, and the developed
classifiers map the NLS areas with higher accuracy. When the
overall success of the classifiers for two datasets was evaluated
according to F-measure, it was indicated that landslide mapping
with post-event dataset gave higher accuracy values.

In this study, 40 different features were used for the change-
based dataset and 43 different features for the post-event dataset.
When the feature importance of the variables was investigated, it
was observed that the same variables were effective in all model
areas. δNDVI in change-based RF classifiers and slope and NDVI
in post-event RF classifiers were the most effective features. In
Figure 3, the top ten features in the classifier created for the model
area 5 based on change-based datasets were shown according to the
mean decrease of accuracy andmean decrease of Gini index.When
Figure 3 is examined, it is seen that themost important parameters
in classification according to mean decrease accuracy were mean
values of δNDVI, slope, PCA3, and ICA2. The most important
variables that affect the purity of the classifier when extracted from
the dataset were mean values of δNDVI, ICA3, PCA3, and PCA4.
In Figure 4, the top ten features obtained forModel Area 5 with the
post-event dataset were given. The most important features for the
developed classifier were obtained as mean values of the slope,
NDVI, PCA4, PCA3, and Maximum Difference. The most
important parameters that increase the purity of the model
were NDVI, PCA2, NDWI, Max Difference, and Red

TABLE 4 | The number of Landslide (LS) and Non-Landslide (NLS) image objects labeled for the models and test datasets to be used in the analysis process.

Data sets Number of NLS image
objects

Number of LS image
objects

Total number of image
objects

Area (km2)

Model Set1 1669 458 2127 9.00
Model Set2 3521 1193 4714 20.25
Model Set3 6070 2156 8226 36.00
Model Set4 9259 3425 12684 56.25
Model Set5 12804 4802 17606 81.00
Test set 4869 1855 6724 31.64

TABLE 5 | Accuracy assessment on the test area with RF classifiers developed for
model areas.

Model
name

Post-event dataset
Recall (TP

rate)
FP
rate

Precision F-measure Overall
accuracy

Model
area 1

0.92 0.016 0.95 0.938 96.68

Model
area 2

0.932 0.017 0.955 0.943 96.94

Model
area 3

0.934 0.018 0.952 0.943 96.86

Model
area 4

0.934 0.020 0.947 0.941 97.22

Model
area 5

0.950 0.023 0.940 0.945 96.90

Model
name

Change-based dataset
Recall (TP

rate)
FP
rate

Precision F-measure Overall
accuracy

Model
area 1

0.896 0.021 0.942 0.919 95.44

Model
area 2

0.881 0.020 0.943 0.911 95.27

Model
area 3

0.871 0.011 0.967 0.917 95.62

Model
area 4

0.892 0.013 0.962 0.926 96.04

Model
area 5

0.890 0.009 0.973 0.930 96.28
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(Figure 4). When the importance of properties for different
datasets is evaluated, it is seen that spectral properties and
spatial properties are more effective in mapping landslides
according to textural properties.

DISCUSSION

In this study, the influence of model development area size and
dataset types in landslide mapping during the post-earthquake
crisis management phase was investigated. In this context, ten
landslide mapping models have been developed with OBIA-RF
classifier using two different datasets, namely change-based and
post-event dataset, at five model development areas with different
sizes. The success of the developed classifier models has been
investigated on a determined test area. When the obtained results
were examined, although landslide mapping results were obtained
with high accuracy from all developed models, higher accuracy
values were obtained in classifier models using post-event datasets
(Table 5). These results show that while pre-event and post-event
images are useful to create or update the landslide inventory maps
(Yang and Chen, 2010; Ðurić et al., 2017), post-event images

without the need for any archive images in crisis management are
sufficient in detecting the locations where the dense landslide
events occurred. In the comparison of dataset size in this study,
it was observed that increasing the dataset size slightly increased
the mapping accuracy (Table 5). Therefore, large model areas are
not required in the post-disaster decision-making phase. The
model development process, which is carried out on a small
area that best represents the area to be mapped, is useful for
rapid decision-making.

The RF algorithm for landslide mapping was applied to
datasets produced by using PlanetScope images and ALOS-
PALSAR DEM data in the study. The RF algorithm, which
gives successful results in extracting the desired feature in
datasets with large sizes and many variables in different
application areas (Stumpf and Kerle, 2011; Ramo and
Chuvieco, 2017; Shirvani et al., 2019; Maxwell et al., 2020;
Shirvani, 2020), has also produced high accuracy results from
the datasets used (Table 5). With this research, it has been
demonstrated that PlanetScope satellites, which offer daily
high spatial resolution images, provide successful results in the
detection of earthquake-triggered landslide areas with high
accuracy. To produce the slope map of the study area, 30 m

FIGURE 3 | The ten most important features for the classifier developed with change-based dataset in model area 5: (A) shows how selected features affect model
accuracy when removed from the dataset, (B) indicates how selected features affect model purity when removed from the dataset.

FIGURE 4 | The ten most important features for the classifier developed with post-event dataset in model area 5: (A) shows how selected features affect model
accuracy when removed from the dataset, (B) indicates how selected features affect model purity when removed from the dataset.
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resolution ALOS-PALSARDEMdata were used as elevation data.
Although this DEM is sufficient for this application in terms of
presenting the general slope characteristics of topographic
surfaces where landslides occur in the study area, it is
insufficient in terms of producing induvial landslide inventory
mapping. During the segmentation phase, landslides were
obtained as multiple image objects. By merging these image
objects, holistic landslides can be obtained (Figure 5).
However, these landslides were not individual. The main
reason for this is the high reflection of fresh landslides in
satellite bands. In the segmentation stage, adjacent landslides
with the same spectral value fall into the same image object. For
these landslides to be used in susceptibility and hazard maps, the
necessary ones should be converted into individual landslides.
For this process, post-event high-resolution DEM data of the area
is required (Marc and Hovius 2015).

While determining the object features in the datasets, firstly,
the visual evaluation of the image object features to be included in
the datasets on the image objects created as a result of the

segmentation stage was made. Since the landslide areas consist
of more than one image object, geometric features such as length/
width, size, shape were not added in the datasets because there
was no distinctive finding was observed on these features.
Variable importance analysis was performed for the image
object features used in datasets. The ten most important
features for the datasets were shown in Figures 3, 4. NDVI,
which is an effective feature in separating green vegetation areas
from landslides, is a frequently preferred feature in landslide
mapping with change detection (Mondini et al., 2011; Hölbling
et al., 2015; Lu et al., 2019) and classification method (Martha
et al., 2010; Shirvani et al., 2019). Since the application areas were
chosen in this study were covered with dense forest areas and
agricultural land, it has been revealed that NDVI and δNDVI
were important features in both the change-based dataset and the
post-event dataset (Figures 3, 4). The slope value is especially in
the separation of low-slope areas such as roads and bare soil
spectrally similar to landslides from landslides (Comert et al.,
2019). The slope feature was seen to be an important feature that
increases the accuracy of landslide mapping for both the change-
based dataset and post-event dataset in this study (Figures 3, 4).

PCA and ICA, which are non-parametric feature extraction
methods, are the preferred approaches in landslide mapping
with change detection (Mondini et al., 2011; Lu et al., 2019).
PCA4, ICA2, ICA3, and ICA4 components produced from
pre-event and post-event NIR and Red bands gave successful
results (Lu et al., 2019). In this study, PCA1change, PCA3change,
and PCA4change, which were among the PCA components
produced for the change-based dataset, were found to be
important features that increase the accuracy of the
classifiers and ensure the purity of the decision trees used
in landslide mapping (Figure 3). ICA3, one of the ICA
components produced for the change-based dataset, has
been seen to be the second most important component that
provides the homogeneity of decision trees used in the
separation of LS and NLS areas (Figure 3). Also, ICA2 was
the fourth feature that positively affects classifier accuracy
(Figure 3). In the study, four PCA components were generated
from post-event image bands and included in the post-event
dataset. Among these features, PCA2post, PCA3post, and
PCA4post were found to be important features that increase
classification accuracy and provide decision tree purity
(Figure 4). According to the variable important results, it
shows that the non-parametric components obtained by PCA
analysis can be used in landslide mapping studies based on the
post-event images.

When examining other features obtained by variable
important analysis, it was seen that the Max. Diff. the feature
was important in both classifier accuracy andmodel homogeneity
for the post-event dataset. Also, Red, Green Blue bands were
obtained as important properties in providing model purity for
the post-event dataset. CDI is used in landslide mapping with
change detection from multi-temporal images (Li et al., 2016; Lu
et al., 2019). In this study, it was seen that for the change-based
data set, it was an important parameter in terms of classifiers
model homogeneity, although not as much as, δNDVI, PCA, and
ICA components.

FIGURE 5 | Estimated landslides on the test area for model area 5 with
RF classifier: (A) post-event dataset result, (B) change-based dataset result.
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CONCLUSION

In this study, the success of different datasets and different data
sizes produced from remote sensing images in rapid earthquake-
triggered landslide mapping were investigated. In this context,
change-based and post-event datasets were created for five model
areas and one test area. When RF classifiers developed on model
areas were applied to the test area, high accuracies are obtained
for all model areas and datasets. However, slightly higher
accuracy results have been achieved with post-event datasets
compared to change-based dates. Similarly, slightly higher
accuracy was obtained when the model area size was
increased. When these results are evaluated, in rapid detection
of the location where earthquake-triggered landslides occur: 1)
models to be used in mapping landslides can be developed over a
small area that best represents the area to be mapped, 2) in the
landslide mapping process, landslides can be successfully detected
from the post-event images without the archive image of the
relevant area. In the study, the importance of image object
features used in datasets in the mapping process was
investigated. When the importance levels of the object features
are examined, it has been observed that the highly important
features are similar to the features used in the literature. Also,
PCA components generated from post-event images are included in
the post-event data. Since these components positively affect the
classification accuracies, they can be included in the post-event

datasets in future studies. The approach presented in this study is
an appropriate method for detecting large landslide areas that occur
after a natural disaster and to respond rapidly. The presented
method needs improvement to create landslide inventory
maps. In future studies, both crisis management and
inventory mapping research will be conducted from
platforms that offer higher spatial resolution images and
DEMs such as Unmanned Aerial Vehicle.
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A Historical Earthquake-Induced
Landslide Damming Event at the
Qiaojia Reach of the Jinsha River, SE
Tibetan Plateau: Implication for the
Seismic Hazard of the Xiaojiang Fault
Mengmeng Hu1,2, Zhonghai Wu1*, Klaus Reicherter3, Sajid Ali 3,4, Xiaolong Huang1 and
Jiameng Zuo1,5
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Hazards, RWTH Aachen University, Aachen, Germany, 4Department of Earth Sciences, COMSATS University Islamabad,
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In bedrock mountainous areas where active faults and deep river valleys interact,
earthquake-induced landslides can be used to explore local seismic hazards. The
intersection of the highly active Xiaojiang Fault and the Jinsha River and its main
tributaries in southwest China is a site of abundant earthquake-induced landslides. We
found some boulders inappropriately scattered on the east bank of the Qiaojia reach of the
Jinsha River, where the Qiaojia Segment of the Xiaojiang Fault passes through. We
investigated the lithology and topography nearby and confirmed its source area, as well as
the existence of a landslide damming event in the field. A high-resolution Digital Surface
Model (DSM) generated from Unmanned Aerial Vehicle (UAV) images was used to analyze
its characteristics and calculate its parameters. Optically Stimulated Luminescence (OSL)
and 14C dating methods on the related dammed lake sand shows the age of the landslide,
which is not later than 878 AD. The characteristics of large size with limited depositional
extent, spatial relevance between the landslide and Xiaojiang Fault, and temporal-
coincidence of the landslide with 624 AD earthquake support the seismic origin of this
landslide. Moreover, the 624 AD earthquake was reanalyzed for its magnitude and macro-
epicenter based on the coseismic displacement of the Heishui River floodplain. It was
calculated to be Mw7.7 or Ms7.9 and relocated to the Qiaojia area. No M ≥ 7 earthquakes
have occurred on the Qiaojia Segment for nearly 1,400 years since 624 AD. The elapsed
time is close to the average recurrence interval of large earthquakes on the Qiaojia
Segment. Therefore, the seismic hazard of the Qiaojia area should be considered in
the future.
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INTRODUCTION

Landslides are a widely distributed geological process, commonly
found inmountainous areas (Evans and Clague, 1994). Moreover,
large landslides usually develop along rivers, giving rise to
dammed lakes, which may eventually cause a subsequent
catastrophic breach-flood. Based on morphology, displaced
material type, mechanism of initiation, and other factors,
landslides have been classified into many types (Bolt et al.,
1977; Varnes, 1978; Highland and Bobrowsky, 2008), among
which earthquakes can trigger every type. Landslides here are
called earthquake-induced landslides. These landslides account
for a large number of deaths and high economic losses, damaging
engineering structures including settlements, dams, bridges, and
communication systems (Keefer, 1984).

Earthquake-induced landslides can be used as indirect
evidence to reconstruct the seismic history of a region without
surface ruptures or environmental effects of earthquakes and
should be implemented in hazard and risk studies (Jibson, 1996),
which primarily focus on the likelihood, potential magnitude, and
recurrence interval of large earthquakes in a region. Adams
(1981) proposed that the magnitudes of prehistoric
earthquakes could be estimated by comparing the extents of
landslide dams of recent earthquakes with those of landslide
dams in historical ones. Similarly, he has assessed the magnitude
of the historical or prehistorical earthquake by comparing
coseismal landslide distributions of prehistorical events with
well-documented recent earthquakes in New Zealand and
Central Asia (Adams, 1981). Practically, Zeng et al. (2020)
used the empirical equations of the total volume of all
paleolandslides triggered in an earthquake and the moment
magnitude (Keefer, 1984) to evaluate the earthquake
magnitude that triggered the Nixu rock avalanche event
(∼Mw7.0–7.2). Taking Soviet Central Asia as an example,
Nikonov (1988) had an understanding: large seismo-
gravitational dislocations, such as landslides, occur due to
earthquakes of magnitude 6–6.5 or more and are always
located within the highest isoseismal (about 10–25 km),
tending to be along its major axis. Moreover, the number, size,
and areal extent of the landslides are proportional to the size of an
earthquake (Solonenko, 1977). Tibaldi et al. (1995) reconstructed
the geometry of seismogenic faults by correlating the elongation
of the landslide distribution with the location and dimensions of
the faults. According to a statistical analysis of 40 historical
worldwide earthquakes, the relationship between landslide
distribution and seismic parameters was analyzed (Keefer,
1984). Later, the upper bound of the maximum distance to
landslides from the epicenter and fault rupture zone for
earthquakes of different magnitudes was determined (Jibson,
1996; Jibson, 2009; McCalpin, 2009). Meunier et al. (2007)
derived an expression for the spatial variation of landslide
density analogous with regional seismic attenuation laws,
based on the observation on landsliding associated with large
earthquakes on three thrust faults: the Northridge earthquake in
California, Chi-Chi earthquake in Taiwan, and two earthquakes
on the Ramu-Markham fault. Massey et al. (2018) investigated
the landslides accompanying with the 2014 November 2016

Mw7.8 Kaik�oura earthquake, and found: 1) seven of the
largest eight landslides (from 5 to 20 Mm3) occurred on faults
that ruptured to the surface during the earthquake; 2) the average
landslide density within 200 m of a mapped surface fault rupture
is three times than that at a distance of 2,500 m or more from a
mapped surface fault rupture.

The SE Tibetan Plateau, located between the Eastern
Himalayan Syntaxis and the Sichuan Basin, contains
numerous active faults, large relief, and a well-developed river
network. Three major rivers, the Jinsha, the Lancang, and the Nu,
flow from NW to SSE in parallel (Liu et al., 2009). A series of
landslide blocking events were found along the rivers previously.
Using the Interferometric synthetic aperture radar (InSAR)
method, 22 active landslides were identified and mapped over
more than 2,500 km2 in the reservoir of the Wudongde
hydropower station, Jinsha River (Zhao et al., 2018). The
ancient Zhaizicun landslide blocked the Jinsha River, and the
lacustrine sediments developed upstream of the landslide dam
(Xu et al., 2011; Zhang et al., 2012). The Chongjianghe landslide, a
giant landslide discovered by Zhang et al. (2013) in the
Chongjianghe Screw Bay Power Station, a branch of the Jinsha
River in northwestern Yunnan, is located in the step over of a
regional active fault.

We found some boulders inappropriately scattered on the east
bank of the Qiaojia reach of the Jinsha River in the field, where the
Qiaojia Segment of the Xiaojiang Fault passes through. Lithology
and surrounding topography indicate its source location,
implying a landslide damming event occurred before. A high-
resolution DSM generated from UAV images was used to analyze
the characteristics and calculate the parameters of this landslide.
Simultaneously, OSL and 14C dating methods were used to
determine its age. Moreover, we attempted to demonstrate its
seismic origin mechanism. Combined with the analysis of a
coseismic displacement on the Qiaojia Segment near this
landslide, we discussed the seismic hazard of the Qiaojia Segment.

REGIONAL SETTINGS

Geography
At the Qiaojia reach of the Jinsha River, the curve traces of three
major active faults (the northern segment of the Xiaojiang Fault
(Qiaojia Segment), Zemuhe Fault, and Daliangshan Fault)
intersect, forming the Qiaojia Pull-Apart Basin (Figure 1). The
Yaoshan Mountains and the Jinsha River, to the east and the west
respectively, bound the Qiaojia Basin, while Hulukou and
Xiaotianba restrict it in the north and south (Figure 2). The
overall shape of the basin is a 15 km long and 4 km wide narrow
wedge, having an N-S orientation and an average slope of about
7°. Significantly, the north-flowing Jinsha River conferred a ladder
terrain, including three terraces and a flood platform. These
terraces lie between 640 and 750 m elevation and the flood
platform exists between 750 and 1,000 m elevation from the
back-end of the terrace to the foot of the Yaoshan Mountains
(Figure 3). In addition, some incised valleys and terraces
developed across the platform. The west side of the Jinsha
River is divided by the Zhilu Gully, having the Wushenggong
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Ridge (up to an elevation of 1,060 m) to its north and the Low
Mountain, hilly landform with medium fluctuation to its south.
Close to the boulders, the topography of both sides of the Jinsha
River is significantly different (Figure 4). On the east side, a Q3

proluvial-alluvial fan originates from a mountain pass, with a low
slope angle (4.6°), spreading at least 2 km from the east bank to
the mountain foot. On the west side, the valley shoulder
(elevation 870 m, and 240 m above the river surface) of the

Wushenggong Ridge separates the gently sloping terrain above
it from the alternate terrain of the abrupt wall and the narrow
gentle slope below it. The comprehensive terrain slope under the
valley shoulder is about 42°. Separated from the Wushenggong
Ridge by a gully, the accumulational hill is 760 m high at most,
occupying an area of 0.13 km2. Moreover, the limestone bedrock
hill between Hulukou Town and the Heishui River locates at the
site where the width of the Jinsha River abruptly narrows from

FIGURE 1 | Principal active faults, historical earthquakes with magnitude ≥ 6.0, basins, rivers, and main towns in the study area mapped on a Digital Elevation
Model (ASTER GDEM res-30 m). KF � Karakoram Fault; ALF � Altyn Tagh Fault; EKF � East Kunlun Fault; XSHF � Xianshuihe Fault; ANHF � Anninghe Fault; ZMHF �
Zemuhe Fault; DLSF � Daliangshan Fault; XJF � Xiaojiang Fault; LMST � Longmenshan Thrust; QJS �Qiaojia Segmeny; DCS �Dongchuan Segment; SMS � Songming
Segment. For the active faults, AA, A, and B indicate their activity of extremely strong, strong, and medium. Dashed rectangle in the inset marks the location of the
study area. All vector data from Wu and Zhou (2018).
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200 to 120 m. Its top elevation is 866 m. The Qiaojia Segment
traces on its south side, forming a fault scarp.

The climate in the dry-hot valley of the Jinsha River is arid, and
the water and heat are extremely unbalanced. Located in the river
valley, Qiaojia Basin has an annual average temperature of more
than 20°C. The average temperature of the hottest month, July, is
27.4°C, and the average temperature of the coldest month,
January, is 12.2°C. According to the data of major climate
stations in the Qiaojia area, the annual precipitation varies

from 600 to 1,600 mm from Jinsha River Valley to the
mountains above 3,000 m.

Geology
The Qiaojia Basin is mainly controlled by the Qiaojia Segment
(Figure 2). About 80 km long, the Qiaojia Segment extends nearly
N-S with an almost upright dip angle from Daduo in the south
and north of Qiaojia in the north. The trace and location of this
segment in the Qiaojia Basin can only be identified from the offset

FIGURE 2 | Stratigraphic units of the Qiaojia Basin; the insert photos show two sets of lacustrine sediments with ages of Q2 and Q1.
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of several stream channels and the geoelectric soundings at
overlying thick Quaternary sediment sites. It changes trend
from nearly N-S to a NW direction, crossing the basin and

connecting to the Zemuhe Fault near Ningnan. The strike-slip
rate of the Qiaojia Segment was estimated at 7.0–10 mm/yr on a
multiple-temporal scale from Late Quaternary to the modern

FIGURE 3 |Cross-section of Qiaojia Basin, showing the three terraces of the Jinsha River and a flood platform behind them; from the drill data of Li et al. (2016); see
the location of the drills in Figure 1.

FIGURE 4 | DSM (res-0.6 m) of the topography around the landslide; red solid line and thick red dashed line indicate the current Qiaojia Segment trace, thin red
dashed line indicates the previous Qiaojia Segment trace; jagged white lines show the crown of the early landslides; yellow solid lines circle the source of the failed slope
collapse to be discussed in this paper, yellow dashed lines to the west of the Jinsha River indicate the near-source deposit, and the yellow dashed line to the east of the
Jinsha River circles the spatial distribution of boulders from this failed slope collapse. All terraces are outlined with black lines. Solid orange rectangle shows the
sample locations, as well as the locations in Figure 9.

Frontiers in Earth Science | www.frontiersin.org March 2021 | Volume 9 | Article 6495435

Hu et al. Qiaojia Earthquake-Induced Landslide

83

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


time (Wen et al., 2011; Wei et al., 2012; Zhao et al., 2015). Its
previous trace was located to the west of the modern trace, proven
to have ceased its activity by the latest dislocation strata dated
to Q2.

Under the dual role of the north-flowing Jinsha River and the
gullies from the eastern mountain, the Qiaojia Basin is
characterized by a large amount of Quaternary fluvial
sediments accumulated in the interior, including fluvial
terraces, proluvial-alluvial fans, and lacustrine sediments.
Among them, a large proportion of the lacustrine sediments
are remarkable, with a wide exhibition range (Figure 2).
Generally, we recognized two sets of lacustrine sediments
linking to two large landslide damming events, referring to Q1

l

and Q2
l according to the criterion of stratigraphic sedimentary

sequence, which is constrained by strata of known age. These
unconsolidated deposits are mainly sand and gravel and are more
than 300 m thick. The Qiaojia Segment at Qiaojia Basin
significantly fractured the bedrock on the west of the Jinsha

River, which would facilitate the occurrence of landslides.
Accordingly, it has been observed that some landslides take
place in some places downstream, damming the Jinsha River
or its main tributaries (Figure 4).

Earthquakes
Seven historical earthquakes with magnitude ≥ 6.0 from Xichang
to Dongchuan, mainly concentrated at the two end sites, with the
maximum one occurred at Dongchuan in 1733 (M 73/4)
(Department of Earthquake Damage Prevention, State
Seismological Bureau, 1995) (Figure 1). The earthquakes
recorded in the Qiaojia area were not as numerous as
expected due to its special tectonic location. The historical
earthquake catalog of the area indicates a seismic gap relative
to the whole Xiaojiang Fault (Wen et al., 2011; Xu et al., 2017).
Since 1500 AD, this area has been characterized by only one
strong earthquake event (Qiaojia M6 earthquake). Coseismic
surface ruptures correspond to this earthquake distribution,

FIGURE 5 | Earthquake-induced effects in different sedimentary units (see the locations in Figure 1). (A) Small faults in Q1
al; (B) the interpretation of (A), U1: gray

gravel layer; U2: light grayish-green gravel layer; U3: inter-bedding of gray gravel layer and brown gray fine silty sand bearing gravel; U4: yellow-brown sand layer bearing
gravel; U5: off-white calcareous consolidated gravel layer; U6: eolian brownish-red gravel layer (lower) and sand layer bearing gravel (upper); (C) Small faults and
disturbance layer in Q2

al brownish-yellow fluvial sand layer, the marker layer of a fault dislocation is an iron fine sand layer; the lime-green sand layer was disturbed;
(D) sandblasting tube in Q2

l medium-coarse lacustrine sand, the walls of the tube are calcareous cemented.
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TABLE 1 | Results of OSL dating on the lacustrine sand.

Sample number Material Burial depth/m Moisture content/% Ambient dose
rate/(Gy/ka)

Equivalent dose/Gy Age/ka

SQ3 Medium-fine sand 0.1 6 ± 3 2.82 ± 0.08 5.02 ± 0.16 1.78 ± 0.07
SQ4 Medium-fine sand 0.35 8 ± 4 3.20 ± 0.10 5.65 ± 0.26 1.77 ± 0.10

TABLE 2 | Results of 14C dating.

Laboratory number Sample code number Material Conventional radiocarbon age 2 sigma calendar
calibrated results

Beta-509563 SQ1 Calcium film 43,310 ± 620 years BP 46,122–43,422 cal BC
Beta-509564 SQ2 Snail shell 1,110 ± 30 years BP 878–1,013 cal AD

FIGURE 6 |Gravel statistical locations (see the location in Figure 3). (A) and (B) Photos note the sidewalls and gravels of the Q3 fan north and south of Lanyingpan,
respectively; the white rectangle in (A) indicates the gravel statistical location, the rose diagram shows the paleo-flow direction, and the two histograms show the
composition and size of gravels; (C) Photo of the gravel of the Jinsha River floodplain, with the gravel statistical location in the yellow rectangle.
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which preserves a non-rupture section around the Qiaojia area
(Wen et al., 2011). Paradoxically, a series of effects of earthquake-
induced landslides are well preserved in the strata pre-Holocene,
including small faults, disturbance layers, and sandblasting tubes
(Figure 5), indicating the long-term earthquake silence in this
area is abnormal.

DATA AND METHODS

Mapping the Landslide
In order to determine the characteristics and origin of this
landslide, a combination of field investigation, satellite images
from Google Earth, and a high-resolution DSM (res-0.6 m)
generated with Structure from Motion (SfM) processing of
UP30 Autopilot System photography were used. The SfM is
an emerging and widely used photogrammetric method for
reconstructing a 3-D structure using large sets of high-

resolution images with a high degree of overlap derived from
a moving sensor (Snavely et al., 2008; Westoby et al., 2012;
Lucieer et al., 2014). A detailed explanation of the SfM process
is described in Snavely et al. (2008). Our collected images were
processed using Agisoft Photoscan Pro software1 with processing
workflow procedures similar to that of Johnson et al. (2014).
Hillshade was created in Global Mapper2 from the high-
resolution DSM and further processed in Coreldraw X7 for
geomorphic mapping. To view and calculate the distribution
and parameters of the landslide, we used the “Acute3D
viewer” software3 to visualize the 3D demos generated from
ContextCapture4.

FIGURE 7 | Materials of the Wushenggong Ridge and its adjacent hills. (A) limestone bedrock of the Wushenggong Ridge; (B) terrace gravel layer overlying the
limestone bedrock, in the Wushenggong Ridge. The Qiaojia secondary segment can also be seen in this profile; (C) limestone bedrock of the hill north of Wushenggong
Ridge; (D)Mixed body of limestone boulders and gravels of the hill south ofWushenggong Ridge. All locations are illustrated in Figure 3. (E), (F) Field views of boulders at
north and south of Lanyingpan, respectively, and person/pencil-outlined for scale. Locations in Figure 7.

1www.agisoft.com
2https://www.bluemarblegeo.com/
3https://acute3d-viewer.software.informer.com/
4https://www.bentley.com/en/products/brands/contextcapture
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FIGURE 8 | Landslide morphology (A) Field panoramic photo of the failed slope collapse (location in Figure 3). Source area, deposit area, and boulders are
indicated with white solid lines, and white dashed line, respectively. Yellow jagged line shows the crown of the early landslides, as well as the gully and villages with a blue
dashed line and white/black solid circles. The Qiaojia Segment and the previous Qiaojia Segment are indicated with larger red arrows and smaller red arrows. (B)–(D) Air
photos show the details of the failed slope collapse at different sections. The elevations of the crown and the foot of the source area are marked. (E) Google Earth
Image of the rock fall located at the north side of Qiaojia Segment; the crown elevation of the source area and the maximum travel path of the deposit are indicated; the
dam, which is inside the range of the Jinsha River, is also circled with a white solid line. (F) Longitudinal profile of the failed slope collapse, and the location is in Figure 3.

TABLE 3 | Characteristics of the failed slope collapse at different sections.

Section Materials Crown Elevation (m) Drop (m) Cut Volume
(m3)

Fill Volume
(m3)

B Limestone bedrock 748 118 2,557,072.98 941,062.93
C Limestone bedrock 730 100 1,326,247.92 118,034.27
D Mixed body of limestone bedrock and gravels 736 106 717,513.26 627,118.52
E Limestone bedrock 810 180 2,837,946.70 854,919.42

Frontiers in Earth Science | www.frontiersin.org March 2021 | Volume 9 | Article 6495439

Hu et al. Qiaojia Earthquake-Induced Landslide

87

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Dating
In this study, two OSL samples and two 14C samples were dated.
They are summarized in Tables 1 and 2, respectively.

The OSL samples were collected using stainless steel tubes (20 cm
long and 5 cm diameter). The tubes were hammered into the
sediment, and after completely filling, both ends were
immediately sealed with aluminum foil and taped to prevent light
leakage and loss of water during transport and storage. The sand can
be easily sorted, and sizes of quartz particles in the range of
90–125 μm were chosen to date the sand. The whole dating
process was carried out at the OSL/TL Geochronology
Laboratory, Institute of Geology, China Seismological Bureau.
Detailed processing and analytical procedures are reported in a
previous study (Chen et al., 2013). The 14C dating method used on
the fossil snail shells buried in the sand precisely constrained the age
of the sand. The sample was carried out at Beta Analytic Testing
Laboratory, and the age was calibrated based on the INTCAL13
database on BetaCal3.21 software with 2σ (95% confidence limits).
All the ages referred to hereafter in this paper are calendar years
obtained from conventional radiocarbon ages.

RESULTS OF THE INVESTIGATION

Existence of a Landslide
At the north of Lanyingpan, the fan underlying the boulders was
dated to 44,782 ± 1,340 years BP using AMS-14C (Sample: SQ1,

Table 2). It is characterized by the inter-bedding of the coarse and
fine gravel layers, with the gravel-bearing coarse sand lens
occurring locally (Figure 6A). The gravel is mainly limestone,
accounting for 85%–90%, with the remaining 10–15% being
sandstone and basalt. The general flat-surface of the gravels
inclines to the SEE, indicating it origined from the east
mountain pass. The diameter of the gravels is predominantly
several centimeters with few over 1 m. At the south of
Lanyingpan, the gravels of the fan change in diameter to a
smaller level, and the composition is also different from the
above site, in which basalt is predominant, followed by limestone
and sandstone (Figure 6B).

The gravels in the floodplain of the Jinsha River are mainly
sub-angular and sub-circular in shape (Figure 6C). Their
diameter is mainly 2–20 cm, followed by 20–30 cm, and a few
20–50 cm. In composition, limestone accounts for 70%, followed
by basalt with 20–25%, and sandstone with 5–10%.

The Wushenggong Ridge mainly consists of limestone
bedrock, with sandstone and basalt developed locally, and a
thick gravel layer overlain (Figure 2). The presence of the
Qiaojia Segment has resulted in the limestone (340°∠53°) being
intensely fragmented, having a set of steep joints
(63°–71°∠77°–79°), which is consistent with the Qiaojia
Segment on the strike (Figure 7A). The existing structures
cause a reduction in the strength of the bedrock. Specifically,
they may initiate small amounts of movement in a sliding mass
and provide a path for potential water flow, which can cause

FIGURE 9 | (A) and (B) limestone boulders from the rock falls at sections (B) and (C); (C) Field view of the dam at the north side of Qiaojia Segment; (D) limestone
boulders scatter on the west bank of the Jinsha River from the rock fall at section (D). All locations in Figure 7.
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substantial engineering or construction difficulties, especially in
the valley or canyon area (Bolt et al., 1977). The gravel layer is
about 18–20 m thick and is characterized by alternating layers of
coarse and fine gravel layers, where the gravel is dominantly
extremely circular, with a maximum diameter above 50 cm and a
primary composition of sandstone, spreading from an elevation
of 770–1,060 m. It is cemented with calcareous material and
forms a set of terrace gravel from the Heishui River
(Figure 7B). The gravels are mainly sandstone with a
diameter of 10–40 cm, which is consistent with the one on the
Wushenggong Ridge. Moreover, the hill between Hulukou Town
and the Heishui River is a limestone bedrock hill with the
limestone extremely deformed (Figure 7C). The
accumulational hill south of the Wushenggong Ridge is
characterized by a mixed body of limestone boulders and sub-
round but poorly sorted gravels, without underlying limestone
bedrock (Figure 7D).

The boulders on the east bank of the river extend about 1.5 km
long from north to south, centrally scattering at two sites. At the
north of Lanyingpan, the boulders are even larger than a person
(≤3.5 m) (Figure 7E). Limestone is their main composition, with
a roundness of sub-angular to sub-circular. The farthest boulder

is 13 m above the river surface and is 100 and 287 m away from
the east and west edges, respectively. At the south of Lanyingpan,
the diameter of the boulders ranges from 0.8 to 1.4 m, with the
same roundness and different compositions, mainly including
limestone, followed by basalt breccia (Figure 7F).

Considering the coincidence of the composition and size
between the boulders and materials of the Wushenggong
Ridge and its adjacent hills, the source status of the ridge and
its adjacent hills appear to be linked with the boulders. In
addition, the steep topography on the west of Jinsha River, the
spatial-correspondence between the boulders distribution and the
range of the west slope, as well as the similar deposit on the foot of
the west slope, all support the uniqueness of this origin. The
Yaoshan Mountains east of Qiaojia Basin are exactly to land
sliding, with several reports and research attesting to this (Wang,
1996; Feng et al., 2019). However, the ancient huge landslide
occurred one hundred thousand years ago, and its stability has
been proved. Over 10 m thick younger sediments overlay the
frontal margin material of the landslide, as we introduced the
stratum of Qiaojia Basin according to the field investigation and
drill data. Thus, it is confirmed that a landslide originated from
the Wushenggong Ridge and its adjacent hills.

FIGURE 10 | Samples site. (A) Schematic profile of the sampling locations; (B) close-up photos of the sampling locations where one can see boulder sizes, sand,
and vegetation cover.
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Landslide Characteristics
The over 2 km long eastern flank of the Wushenggong Ridge, the
accumulational hill south of it, and the bedrock hill north of it were
observed as an entire failed slope (Figure 8A). It consists of several
individual simultaneous landslides of different scales, crown
elevations, materials, and slope angle (Table 3), complying with
the criteria of a rock fall cluster (Keefer, 1984). The volumes of the
total source area and the total deposit on the west bank are about 7 ×
106 and 2.5 × 106 m3 respectively (extracted from the “Acute 3D
Viewer” software). According to the classification of landslides on the
basis of theirmagnitude (Parkash, 2012), this failed slope collapse was
placed in an enormous category.

For the Wushenggong Ridge, two individual rock falls were
focused (Figures 8B,C). At section C, fragment limestone blocks
originated from an elevation of about 748 m, which is 118 m
higher than the river surface (Figure 8B). The cut volume is far
more than the fill volume, indicating a large amount of the
materials transported into the river. The deposit on the west
bank of the river is mainly composed of limestone boulders, with
diameters ranging from 0.5 to 5 m (Figures 9A,B). The rock fall
at section D shows similar features as the above one, with the
crown elevation somewhat lower (730 m) (Figure 8C).

The materials of the accumulational hill failed with a wide
range of collapse that occurred at a maximum elevation of 736 m
(Figure 8D). The scattered limestone boulders (1–8 m diameter)
on the west bank of the Jinsha River (Figure 9D) are products of
the rock fall at this site.

At the south side of the limestone bedrock hill, Qiaojia Segment
passes through, forming a fault scarp, which is prone to collapse. The
limestone bedrock hill started to collapse at an elevation of 810m.
From crown to foot, the longest travel path of the rock masses is
290m (Figure 8E). The accumulation of the limestone boulders
(0.5–8m diameter) stacked on the west bank of the Jinsha River is
fresh without fillings, indicating the young age of the rock fall here. It
even occupied half of the modern Jinsha River (Figure 9C) and was
considered as a dam resulting in the dammed lake.With the boulders
transported to the east bank of the Jinsha River, a dammed lake
formed, and gray medium-fine sand spread around those boulders.
This provides us an appropriate window to learn about the age limit
of the landslide, which is almost equal to the age of the dammed
lake sand.

Landslide Age
The 10–35 cm thick gray gravel-bearing medium-fine dammed
lake sand layer begins to appear around the boulders 55 m away
from the east edge of the river, spreading eastward to the end of

the boulders. We sampled with the profile perpendicular to the
Jinsha River direction, where the boulders were exposed
(Figure 10). The two dates from OSL samples (Samples: SQ3,
SQ4) aged from 1770 to 1780 years BP (∼240 AD) are older than
the age of the 14C sample (Sample: SQ2, 878–1013 AD).
According to the Timing principle of the OSL dating method,
it determines the age of the last sunlight exposure event of the
sample, thus more reliable result needs high degree of sunlight
exposure and low residual OSL signals for the sample. However,
as researched before (Zhang et al., 2015), when this method is
applied with fluvial-lacustrine facies sand, the result could be used
as a reference rather than accurate result, in the presence of other
more reliable dating methods. In addition, the sand layer we
sampled has experienced a rapid and transient sedimentary
process, meaning an incomplete sunlight exposure. Thus, it is
believed that the dammed lake formed before 878 AD.

DISCUSSION

Seismic Origin of the Landslide
A landslide occurs when the downslope component of the forces
acting on the earth or rock mass exceeds the strength or shearing
resistance of the material. The transition from a stable hillside to an
active slide implies that either the acting force or the soil or rock
resistance has changed for some reasons (Bolt et al., 1977). Several
contributory causes were proposed, mostly including rainfall,
earthquake, human activity, and so on (Cornforth, 2005). The
annual precipitation of Qiaojia Basin is placed in the regionally
low level and is the less rainy area. Considering the cluster
characteristics of the landslide in a range of 2 km long, which
cannot be realized with rainfall as a triggering factor, it is
suggested that rainfall should be ruled out as a possible trigger of
such a wide range of slope collapse. As a remote mountainous area,
Qiaojia County is not a densely populated area historically, so human
activity should also be excluded.

Uniqueness of the cause of landslide will be correlated with
earthquake when some characteristics of the landslide possess.
Spatial-relevance between landslides and active fault indicates that
the landslides are seismically triggered (Burrows, 1975). Crozier
(1992) proposes six criteria to support a seismic origin generally:
1) ongoing seismicity in the region, which has triggered landslides, 2)
coincidence of landslide distribution with an active fault or seismic
zone, 3) geotechnical slope-stability analyses showing that earthquake
shaking would have been required to induce slope failure, 4) large size
of landslides, 5) presence of liquefaction features associated with

TABLE 4 | Historical earthquakes before 878 AD in Xichang-Dongchuan area.

Date Epicenter Magnitude
(Ms)

MMI Description

Latitude,
longitude

References
location

624/
08/15

27.9°, 102.2° Xichang area >6 Ⅷ Mountains shook, rivers were blocked with the dam

814/
04/02

27.9°, 102.2° Xichang area 7 Ⅸ The aftershock lasted for 80 days, more than 100 people were crushed to death, and
compression occurred within 15 km
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landslides, and 6) landslide distribution that cannot be explained
solely on the basis of geological or geomorphic conditions. Obviously,
the more of these criteria that are satisfied, the stronger the case for
seismic origin (Jibson, 1996). Keefer (1994) also mentions that in
active seismic regions landslides with huge energy releases, large
volumes and long runout distances have much higher probability of
seismic origin than non-seismic origin. In addition, spatio-temporally
correlating landslides with known or assumed earthquakes can
increase the certainty of landslide seismic origin (Pánek, 2015).
The landslide here meets several criteria of them.

Large Size With Limited Depositional Extent
A characteristic of the earthquake-induced landslide is its rapid
occurrence, within a few minutes after the termination of the
earthquake. The corresponding result of the rapid process of the
landslide is its more limited depositional extent, which is different
from that of the landslides that occur in intense rainfall
conditions, characterized by more fluidity and a tendency to
spread out farther across a depositional area (Perrin and Hancox,
1992). As mentioned above, this failed slope collapse is enormous
in magnitude, with a characteristic of cluster. The boulders on the
east bank distributed 1.5 km long in an N-S direction. We
concluded that the general extent of the deposit did not

exceed the range of the source area (2 km long) transversely.
The long horizontal distance against the small drop supports the
effect of an earthquake. Further considering the blocky
appearance of the deposits, we roughly confirm the seismic
origin of this landslide.

Spatial Relevance Between the Landslide and
Xiaojiang Active Fault
Zhang et al. (2018) recognized 94 landslides in the Qiaojia to
Dongchuan area along the middle and northern segments of the
Xiaojiang Fault based on GIS. The banded distribution of these
landslides shows an obvious control by the fault, which
corresponds with the surface rupture zone of strong
earthquakes. Thus, it is believed that the Xiaojiang Fault
controls the occurrence of landslides. Song et al. (2012)
researched the deformation of the left bank of the Jinsha River
around Baihetan Hydropower, about 40 km downstream of the
Qiaojia Basin. He pointed out that the gently dipping faulted
bedding belt and the NW trending fault are the main controlling
factors of the deformation. For the left bank in the Qiaojia Basin,
i.e., Wushenggong Ridge, a set of steep joints (63°–71°∠77°–79°) is
consistent with the previous Qiaojia Segment on the strike. The
small faults in the strata before the Holocene (Figure 5A) indicate

FIGURE 11 | The sketch process of the 624 AD failed slope collapse.
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the existence of the non-active previous Qiaojia Segment, which is
suggested to be the early location of the current Qiaojia Segment.
The joints in the limestone of theWushenggong Ridge are located
within the fault of the previous segment and present the rock
fragmentation effect of its activity. Under such unstable slope
conditions, the Wushenggong Ridge is prone to collapse. After
migrating to the Basin-Mountain margin east of Qiaojia County,
the Qiaojia Segment has been acting in the extreme, having the
potential to initiate earthquakes. As Jibson (2015) mentioned:
landslides triggered in the immediate vicinity of active faults
commonly are seismically triggered. The landslide in this paper
straddles the Qiaojia Segment, indicating the possibility of being
triggered by an earthquake event relevant to the activity of
the fault.

Temporal-Coincidence of the Landslide With 624 AD
Earthquake
Two earthquakes that occurred earlier than 878 AD in the study
area are the 624 AD earthquake and the 814 AD earthquake (Lou,
1996). The former triggered landslides, resulting in river
damming, whereas the latter was mainly characterized by
ground compression (Table 4). Seismically induced permanent
ground deformation is defined as any earthquake-generated
process that leads to deformations within a soil medium,
which, in turn, results in permanent horizontal or vertical
displacements of the ground surface (Stewart and Wren,
2005). It includes the following modes: Surface fault rupture,
liquefaction, seismically induced land sliding, and seismic
compression. The requisite conditions for land sliding are the
presence of sloping ground and the presence of combined static
and dynamic shear stresses that exceed material strengths,
whereas seismic compression needs relatively strong shaking
and unsaturated soil of a flat site. These two modes
correspond to the effects of the 624 AD earthquake and the
814 AD earthquake respectively, according to their descriptions.
This means that the 814 AD earthquake probably occurred in a
flat area such as Xichang Basin, while the 624 AD earthquake was
more likely to have occurred in valley areas between Xichang and
Qiaojia. And as mentioned before (Nikonov, 1988), large
landslides, which are triggered by earthquakes of magnitude

6–6.5 or more, are always located within the highest isoseismal
(about 10–25 km), tending to be along its major axis. Thereby, we
confirmed the macro-epicenter of the 624 AD earthquake at
somewhere of the Heishui valley, not far 25 km away from this
landslide. Considering the remoteness of the ancient
Xichang–Qiaojia area and the larger population in Xichang
than in Qiaojia, it is understandable to arrange the Xichang as
the macro-epicenter of the 624 AD earthquake in the historical
catalog. The description of the 624 AD earthquake and its spatial
proximity to the studied landslide support its greater plausibility
as the trigger of this landslide than the 814 AD earthquake.

Accordingly, the seismic origin of this landslide is basically
determined, termed as a coseismic event of the 624 AD
earthquake.

Process of the Landslide
Long-term activities of the Qiaojia Segment have led to the
fragmentation of rock masses on both sides of the fault.
Weakened erosion resistance and reduced stability of the rock
mass laid a foundation for the large-scale instability of the
marginal slope. Under this condition, the eastern flank of the
Wushenggong Ridge is prone to have slope failures, and it is
ascertained by a deposit body of limestone boulders and gravels
overlying the limestone bedrock (Figure 11A).

In 624 AD, a strong earthquake caused the entire eastern slope
of the Wushenggong Ridge to collapse, including the above
deposit body and a hill north of the ridge. This earthquake
caused an over 2 km long slope collapse with a total volume
exceeding 7 × 106 m3 failing. The boulders spread from the
frontal edge of the source area to the east bank of the Jinsha
River, with a maximum horizontal distance of 550 m. Most of the
boulders fell into the Jinsha River, and a small amount of them lie
on both banks of the river in a limited range. At the point where
the Jinsha River narrowed, a large number of boulders blocked
the river, forming a dam and a temporary lake. In a relatively still
water environment, a set of lacustrine sand was preserved in a
limited area (Figure 11B).

The dammed lake had not existed long from the evidence of
the thin lacustrine sand layer (10–35 cm thick). As researched
previously, landslide dammed lakes may last from several

FIGURE 12 | (A) Air photo of the displacement of the Heishui River floodplain (see the location in Figure 3); (B) field view of the displacement of the Heishui River
floodplain.
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minutes to several thousand years, depending on factors such as
volume, size, geometry, sorting of blockage materials, rates of
seepage through the blockage, and rates of sediments and water
that flow into the newly formed lake (Costa and Schuster, 1988;
Peng and Zhang, 2011). Combined with cases in southwest China
(Peng and Zhang, 2011), where the longevity of landslide dams is
a few hours or more than 10 h, here we suppose several that
several hours later, the dam broke and the river reopened its flow
(Figure 11C). The boulders in the water were either swept away
by the current or settled on the bottom of the riverbed. The
remaining boulders even affected the terrain of the riverbed
(Figure 4). The boulders on the east bank have experienced a
free movement without friction among boulders, which resulted
in the boulders having better roundness. With the later influence
of artificial reconstruction, the boulders became fewer in number.

Seismic Hazard Assessment of Qiaojia
Segment
About 1.3 km NW of the landslide, the floodplain of Heishui River
shows a left-lateral displacement of 13m, which was measured in the
field with the laser rangefinder and was considered surface coseismic
displacement of one or several earthquakes (Figure 12). Chen and
Zhao (1988) found that the Jinsha River and its main tributaries all
havemore than six terraces. The depositional age of the terraces of the
Jinsha River and its first tributaries, such as Nu, Nanpan, Niulan, and
Xiao Rivers were obtained (Ji et al., 2000). It is indicated that the T1
terrace of the first tributaries was deposited in 4,500–11,000 years BP,
which is later than that of the Jinsha River (9,000–17,000 years BP).
The stream trenching rate of the Jinsha River near Qiaojia was also
taken into account to constrain the forming age of the Heishui River
floodplain. Huang et al. (2010) calculated the stream trenching rate
on the Baihetan reach of the Jinsha River for the construction needs of
the Baihetan Hydropower station. The results show the average
trenching rate is about 1.2 mm/yr since 25 ka, showing an
increasing trend since 100 ka. Ding et al. (2017) later took the
climate factor into account and gave a 1.17mm/yr trenching rate
since 23.5 ka at Qiaojia. In combination with our field measurement

of the 2m height of the floodplain, we believe that the lower limit of
the age of the floodplain is no earlier than 1700 years BP. As recorded,
the earliest earthquake recorded in the Xichang area is the Xichang
111 BC earthquake (XichangCity Chronicle CompilationCommittee
of Sichuan Province, 1996). In the absence of omissions, there is only
one earthquake with amagnitude ofM ≥ 6 since then, that is, the 624
AD earthquake. Apparently, the 624 AD earthquake alone bore the
13m displacement of the Heishui River floodplain. In addition, it is
further confirmed that the macro-epicenter of this earthquake is at
this coseismic displacement location. Furthermore, according to the
functional relationship between the maximum coseismic
displacement and the moment magnitude of Wells and
Coppersmith (1994),

Mw � 6.81 + 0.78plog(MD) (1)

Where the MD refers to maximum displacement (m); the
moment magnitude of the 624 AD earthquake is calculated to
be about 7.7.

Similarly, the functional relationship between the maximum
coseismic displacement and the surface wave magnitude of
Bonilla et al. (1984),

Ms � 7 + 0.78plog(MD) (2)

Where the MD also refers to maximum displacement (m), giving
a result of Ms7.9. As we discussed above, the 624 AD earthquake
should have occurred in valley areas south of Xichang, and near
Qiaojia. This transforms the Qiaojia area from a historical seismic
gap to a potential seismic area.

For the eastern margin of the Tibetan Plateau, M6.5 may
represent the magnitude threshold of the surface rupture along
the active faults in the region (Xu et al., 2017). Earthquakes with
a magnitude less than this threshold generally do not have
surface ruptures, and occasionally have secondary surface
fractures (Wells and Coppersmith, 1994). Earthquakes with
a magnitude greater than or equal to this threshold can form
several kilometers to one hundred kilometers of coseismic
surface rupture and several meters of coseismic
displacement, which directly controls the spatial distribution

TABLE 5 | Parameters of earthquakes with intensity ≥ Ⅸ from Xichang to Dongchuan.

No Date Magnitude Macroscopic
epicenter

Epicentral
intensity

Epicentral region Seismogenic fault Data
sources(Major axis, minor

axis) km
Trend

1 624/8/18 7.9 Qiaojia Ⅹ (158,33)** N31°W Qiaojia Fault a
2 814/4/6 7 Xichang Ⅸ — — Anninghe Fault b
3 1489/

1/15
63/4 Xichang and Yuexi Ⅸ (39,18)* N6°W Zemuhe Fault c

4 1732/
1/29

63/4 Xichang Ⅸ (50,21)* N23°W Zemuhe Fault b

5 1733/8/2 73/4 Dongchuan Ⅹ (152,42)* N11°W Qiaojia fault and dongchuan
Fault

b

6 1850/
9/12

71/2 Xichang-puge Ⅹ (116,29)* N25°W Zemuhe Fault b

7 1966/2/5 61/2 Dongchuan Ⅸ (97,53)* N44°W Songming Fault b

Annotation: * from documented data; ** calculated according to the formula (3) in the text; - no data; a. This paper; b. Department of Earthquake Damage Prevention (1995); c. Wen, 2000.
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of the serious earthquake disaster zone in the Meizoseismal
area. Therefore, the distribution of seismic gaps on a fault can
be seen directly by statistical analysis of the historical
earthquakes with magnitudes ≥ 6.5 and delineation of their
rupture areas with intensity ≥ IX. Based on this, the authors
reorganized the historical earthquakes with intensity ≥ IX from
Xichang to Dongchuan that involves the Anninghe Fault, the
Zemuhe Fault, and the Xiaojiang Fault, from north to south
(Table 5). Apart from the 624 AD and 814 AD earthquakes, the
rupture areas of other historical earthquakes are all referred to
in historical data or previous studies. It should be noted that the

rupture area of the 1489 AD earthquake is the same as the focal
area of the 63/4-magnitude earthquake (Wen, 2000), and theⅧ
area was adopted as the rupture area of the 1952 earthquake.
Furthermore, according to the regression of surface rupture
length and displacement (Wells and Coppersmith, 1994),

Log(SRL) � 1.49 + 0.64plog(MD) (3)

The long axis of the rupture area of the 624 AD earthquake was
calculated to be158 km based on the 13 m displacement of the
Heishui River floodplain (Figure 13).

FIGURE 13 | Rupture areas with intensity ≥ Ⅸ for the historical earthquakes from Xichang to Dongchuan. The dashed circle indicates the area not verified in the
field. For the active faults, AA, A, and B indicate their activity of extremely strong, strong, and medium.
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NoM ≥ 7 earthquakes have occurred on Qiaojia Segment for the
nearly 1,400 years since 624 AD. Such a long elapsed time is close to
the average recurrence interval of large earthquakes on the segment
around Dongchuan (1,447 ± 822 years) as estimated by Shen et al.
(1998). In addition, the late Quaternary strike-slip rate of the Qiaojia
Segment is 8.5 ± 1.5 mm/yr, therefore, the strain accumulated since
about 1,400 yrs could occur an earthquake with a comparable
magnitude. Apparently, the seismic hazard of the Qiaojia area
should be considered in the future.

CONCLUSION

Based on the field investigation, the use of high-resolution
topographic data, and the OSL and 14C methods, we can
conclude:

In 624AD, a nearly 2 km long failed slope collapse occurred on the
west bank of the Qiaojia reach of the Jinsha River, resulting in a
temporary dammed lake. This failed slope collapse is suspected to be
seismic origin, with several evidences support, including: The landslide
is located in the seismic region, its large size with cluster form, the
instability of the source area, the limited distribution of landslidemass,
and the temporal-coincidence with 624 AD earthquake.

The macro epicenter of the 624 AD earthquake was relocated to
Qiaojia, and its magnitude was recalculated to be Mw7.7 or Ms7.9
according to the coseismic displacement of the Heishui River
floodplain. Further combining with the rupture regions of other
historical earthquakes in the Xichang-Dongchuan area, it is
considered that the 624 AD earthquake filled the seismic gap in
the Qiaojia area. However, the nearly 1,400 a long-time elapsed time
is close to the average recurrence interval of large earthquakes on the
Qiaojia Segment. Therefore, the seismic hazard of the Qiaojia area
should be considered in the future.
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A One-Class-Classifier-Based
Negative Data Generation Method for
Rapid Earthquake-Induced Landslide
Susceptibility Mapping
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1School of Geoscience and Info-Physics, Central South University, Changsha, China, 2Department of Land Surveying and Geo-
Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 3School of Traffic and Transportation Engineering,
Changsha University of Science and Technology, Changsha, China

Machine learning with extensively labeled training samples (e.g., positive and negative
data) has received much attention in terms of addressing earthquake-induced landslide
susceptibility mapping (LSM). However, the extensive amount of labeled training data
required by machine learning, particularly the precise negative data (i.e., non-landslide
area), cannot be easily and efficiently collected. To address this issue, this study presents a
one-class-classifier-based negative data generation method for rapid earthquake-induced
LSM. First, an incomplete landslide inventory (i.e., positive data) was produced with the aid
of change detection using before-and-after satellite images and the Geographic
Information System (GIS). Second, a one-class classifier was utilized to compute the
probability of landslide occurrence based on the incomplete landslide inventory followed
by the negative data generation from the low landslide susceptibility areas. Third, the
positive data as well as the generated negative data (i.e., non-landslide) were compounded
to train a traditional binary classifier to produce the final LSM. Experimental results suggest
that the proposed method is capable of achieving a result that is comparable to methods
using the complete landslide inventory, and it displays good correspondence with recent
landslide events, making it a suitable method for rapid earthquake-induced LSM. The
findings in this study would be useful in regional disaster planning and risk reduction.

Keywords: earthquake-induced landslide, landslide susceptibility mapping, one class classifier, incomplete
landslide inventory, negative data

1 INTRODUCTION

Many mountainous areas in the world, such as southwest China, are prone to seismic events and,
consequently, landslides (Fan et al., 2018; Cao et al., 2019). Seismic landslides are widely
distributed and of large scales, and the damage they cause is often great. In addition, large
earthquakes may change the local geological structure and create unstable slopes that may slide
in the future (Huang and Li, 2014; Yunus et al., 2020). For instance, after the Wenchuan Mw 7.9
earthquake and Jiuzhaigou Mw 6.5 earthquake, many landslides occurred and brought about
extensive damages to southwest China (Gorum et al., 2011; Fan et al., 2018). Therefore, timely
monitoring of landslide susceptibility after the earthquake is very critical for post-earthquake
rehabilitation and reconstruction as well as early disaster monitoring and prevention (Guzzetti
et al., 2006).
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Multiple methods have been designed for landslide
susceptibility mapping (LSM). Field surveys are utilized with
great frequency due to their high accuracy and robustness. This
method, however, depends heavily on expert experience and is
time-consuming and labor-intensive, so it is not suitable for
regional/global LSM (Keefer, 2002). Furthermore, it is
challenging for field surveys to map landslide susceptibility at
full spatial coverage, particularly for some inaccessible areas. In
recent years, automated and/or semi-automated LSM has been
developed based on remote sensing technology and the
Geographic Information System (GIS), and the methods
include the heuristic method (Ruff and Czurda, 2008),
deterministic method (Jibson, 1993; Jibson et al., 2000; Tsai
et al., 2019), and machine learning method (Reichenbach
et al., 2018). By use of the heuristic method, investigators rank
and weigh the causative factors based on their importance in
causing landslides. The result depends on the investigator’s
understanding of the real causative factors, which may lead to
subjective LSM results (Mandal and Mandal, 2018). The
deterministic method employs the simplified and physically-
based landslide modeling schemes to analyze the stability
using simple limit equilibrium models (e.g., the Newmark
model) or more sophisticated approaches. The accuracy of this
method depends on the reliability of the geotechnical and
hydrological input data (Dreyfus et al., 2013). The machine
learning method comprehensively considers the correlation
between landslide distribution and regional geological
environment and thus obtains reliable landslide susceptibility
map (Reichenbach et al., 2018). It also has the widest application
in LSM among the three methods (Pourghasemi et al., 2018).

A complete and accurate coseismic landslide inventory map
(LIM) is an important prerequisite for landslide susceptibility
analysis. An ideal coseismic LIM would cover the entire
earthquake-affected area, accurately locate all the landslides
triggered by the earthquake, and depict the true shapes of
landslides in the form of a vector polygon (Harp et al., 2011).
The landslide distribution information from such inventories can
then be used for the seismic landslide susceptibility analysis and
other quantitative analyses (Tanyaş et al., 2017). However, it is
difficult or even impossible to obtain a detailed and complete
landslide inventory after an earthquake. On the one hand, due to
the cloudy and rainy weather, the available optical images are
limited and do not have sufficient spatial coverage for the whole
earthquake area. On the other hand, a large earthquake often
induces many landslides, which are widely distributed and often
deeply seated. Existing technology thus faces challenges to
mapping all these landslides quickly in the short time
following the earthquake.

Besides the detailed LIM, massive labeled training data are also
important for the machine learning methods. Most statistical
learning methods for predicting landslide-prone distribution
depend on data sets with both positive (landslide presence) and
negative (landslide absence) data (Conoscenti et al., 2016). The
positive data are relatively fixed and are mainly selected from the
landslide body cells in the inventory. The negative data are usually
uncertain and are randomly selected as individual pixels outside of
the landslide body. Then, the LSM can be established using the

machine learning models trained on both positive and negative
data. To improve the LSM reliability, efforts have been made to
optimize the selection strategy of negative data. First, we randomly
select negative data from the non-landslide area or the area with a
certain distance from the landslide body (Su et al., 2017). This is the
most commonly used method for generating negative data, but it
requires a complete LIM that covers all landslides. Besides, the
earthquake changes the local geological structure, resulting in a lot
of shatter mountains or unstable slopes, which still belong to the
non-landslide area in LIM but are unsuitable to serve as the
negative data. Secondly, we convert positive data into negative
data by changing the feature space attribute information. The most
representativemethod of this type is the target space exteriorization
sampling (TSES) (Xiao et al., 2010). Since the negative data
constructed by this method are from the feature space and the
corresponding location cannot be found in the real world, it is
difficult to conduct field verification. In addition, this method also
requires a complete LIM. Lastly, generate the negative data by
clustering analysis. This method clusters the data sets into multiple
categories based on feature similarities and automatically generates
negative data in the category that contains the fewest landslides.
The commonly used clustering methods include the self-
organizing map (SOM) (Huang et al., 2017) and similarity-
based sampling (SBS) Zhu et al. (2019). Since this method is
based on feature similarity, a complete LIM is still required to
reflect the true feature space of seismic landslides.

All these negative data generation methods require a complete
LIM, which is very difficult to obtain in a short time. It is easy to
establish an incomplete LIM using remote sensing and GIS
technologies. Thus, if the incomplete LIM can be used for
generating reliable negative data, rapid LSM after the
earthquake is possible. However, there are only a few studies
on the LSM based on incomplete LIM, and this is due to the
uncertainty in the generation of negative data (Chen et al., 2020).
Therefore, efforts should be made on the generation of negative
data based on incomplete LIM.

Based on the aforementioned analysis, this study presents a one-
class-classifier-based negative data generation method for
earthquake-induced LSM. Using the proposed method, we
calculate the landslide susceptibility based on the incomplete
LIM, and then automatically generate pseudo labeling of negative
data from areas with low landslide susceptibility. After that, the
generated negative data and the positive data (i.e., the incomplete
LIM) are applied to train the traditional binary classifier to produce
the final landslide susceptibility map. Figure 1 shows the flowchart
of the presented method. The left of this study is organized as
follows. Section 2 presents the study area and materials used in this
study. Section 3 introduces the proposed one-class-classifier-based
negative data generation method for earthquake-induced LSM.
Section 4 presents the experimental results and discussions, and
Section 5 draws some conclusions.

2 STUDY AREA AND MATERIALS

Wenchuan, situated in Sichuan province, southwest China, has
complex terrains and is the site of much intense neotectonic
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activity. The region features high ridges, lofty mountains, and
crisscrossing gorges and valleys. The elevation fluctuates greatly
from 782 m to 5,896 m. The neotectonic activities in this area are
intense, and the Longmenshan thrust belt, which is composed of
three main faults, namely, the Yingxiu-Beichuan fault, Guanxian-
Anxian fault, and Mao-wen fault, runs across the whole of
Wenchuan. Among them, the Yingxiu-Beichuan fault is
inferred as the main structure of the 2008 earthquake (Li

et al., 2008). The complex terrain and intense structure make
this region a area prone to seismic and geological disasters (Wu
et al., 2020). For instance, the 2008Wenchuan Mw7.9 earthquake
occurred in this region and induced a large number of coseismic
landslides, see Figure 2.

The data sources used in this study include pre- and post-
earthquake Landsat 7 satellite images (acquisition dates: April 22,
2008, and May 25, 2008), a digital elevation model (DEM), river,

FIGURE 1 | Flowchart of the presented method.
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FIGURE 2 | Distribution of coseismic landslides induced by the 2008 Wenchuan earthquake.
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lithology, land use, soil, peak ground acceleration (PGA), and the
complete LIM (see Table 1). The slope and aspect were derived
from the DEM. The complete LIM was produced by the
integration of field survey and rigorous analysis of very-high-
resolution satellite images acquired bymultiple platforms/sensors
(e.g., aerial photo, IKONOS, andQuickBird) (Xu et al., 2014). The
post-earthquake images used for the complete landslide
inventory ranged from May 23, 2008, to June 13, 2008. The
acquisition date of images used for two landslide inventories have
a substantial overlap, which compresses the influence of the area
and spatial distribution differences of landslides caused by time.

3 METHODOLOGY

3.1 Data Preparation
3.1.1 Acquisition of the Incomplete LIM Through
Change Detection
This study compares satellite images before and after the
earthquake to extract the landslides by change detection. To
reduce the influence of terrain, atmosphere, and sensors, these
images are preprocessed through radiation correction,
atmospheric correction, orthographic correction, image
registration, and a cloud mask. As the landslides will cause
surface damage, especially vegetation damage, the normalized
difference vegetation index (NDVI) (Ramos-Bernal et al., 2018),
sensitive to vegetation change, is adopted as the main feature for
change detection. Finally, the change area is separated from the
background by the image difference method (Fung, 1990) in
which the threshold is determined by Eq. 3 (Lv et al., 2018).

NDVI � (NIR − R)
(NIR + R) (1)

Idiff �
∣∣∣∣NDVIpost − NDVIpre

∣∣∣∣ (2)

XIdiff � {
landslide if Idiff >m + kpσ
background n � x + 2y

(3)

where m and σ are the mean value and standard deviation
corresponding to Idiff , respectively. k is an adjustable
parameter, and we determine the value of k in this study by
trial-and-error method and get k � 1.5. After we remove the
interference of pseudo-change information by morphology
operation and manual interaction, the co-seismic LIM is
finally obtained.

Figure 3 shows the coseismic LIM obtained from multi-
temporal Landsat images. This inventory contains most
medium-large landslides but fails to detect landslides in
cloudy areas. Besides, limited by the image resolution, this
inventory does not include small landslides with an area less
than 5,000m2. A complete LIM (Xu et al., 2014) was taken as
the ground truth to validate the extracted LIM. The
completeness of the landslide extraction results is
determined by the ratio of the area of the correctly
extracted landslides to that of the real coseismic landslides.
Specifically, the correctly extracted landslide in this study is
159.46 km2, and the real coseismic landslide is 359.6 km2, so
the completeness of the result is 49%, which is far less than the
real coseismic landslide. Therefore, the established landslide
inventory is an incomplete LIM.

3.1.2 Slope Unit Generation
Mapping units, fundamental to LSM (Van Den Eeckhaut et al.,
2009; Erener and Düzgün, 2012), include the pixel unit, slope unit
(SU), watershed, unique condition unit, and terrain unit
(Reichenbach et al., 2018). The pixel unit and slope unit are
more widely used than the other three types. The pixel unit is a
regular raster unit and capable of processing the resolution
differences of data sources using very simple operations.
Despite its popularity, the pixel unit is difficult to work with
in complex terrain and struggles to distinguish landslide sources
from accumulation areas, impacting the performance of LSM. SU
represents a slope or a part of a slope. Landslides are geological
hazards that develop on slopes; the number of landslides that
occur on a slope reflects the slope stability (Sun et al., 2020). Also,
SU suppresses the bias introduced by the incomplete LIM
(Reichenbach et al., 2018). Based on its advantages, we chose
SU as the mapping unit.

This study applies the hydrological analysis of DEM to extract
SUs, including the acquisition of positive and negative DEM,
extraction of flow direction and accumulated flow, generation of
the river network and watershed, and SU generation (Wang et al.,
2017). In this process, the accumulative flow threshold
corresponding to the river network is the key to obtaining
satisfactory SUs. This study sets the optimal accumulative flow
threshold through trial and error. To further improve the
accuracy of SUs, we use GIS editing tools to manually adjust
the boundaries of SUs and eliminate unqualified SUs. Finally, we
get 1,351 SUs, see Figure 4.

TABLE 1 | Data sources used in this study.

Data Resolution Application Data source

Landsat 7 Panchromatic: 15 m; Multispectral: 30 m Co-seismic landslide https://earthexplorer.usgs.gov/
DEM 30 m Causative factor https://gdex.cr.usgs.gov/gdex/
River Vector Causative factor https://www.webmap.cn/
Lithology 1:200,000 Causative factor http://geocloud.cgs.gov.cn/
Land use 30 m Causative factor http://www.resdc.cn/data.aspx/
Soil 30 m Causative factor http://www.resdc.cn/data.aspx/
PGA Vector Inducing factor https://earthexplorer.usgs.gov/
Complete LIM Vector Evaluation https://earthquake.usgs.gov/earthquakes/
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3.1.3 Selection of Causative Factors
A landslide is controlled by a series of causative factors (Pradhan
and Lee, 2010), and thus accurately identifying the causative
factors is critical for reliable LSM. Through analysis of the
publication from 2005 to 2016 (Pourghasemi et al., 2018), this
study selected the seven most widely used causative factors for
earthquake-induced LSM inWenchuan: slope angle, slope aspect,
distance to river, lithology, soil, land use, and peak ground
acceleration (PGA).

3.1.3.1 Slope Angle
Slope angle is a key factor that determines the failure of a
landslide. Generally, slope angles between 30° and 40°are
considered to be prone to landslides (Xu et al., 2014), as slope
angles in this interval can enhance the shear force and surface
water penetration, which provide favorable conditions for
landslide occurrence. The slope information of the study area
is obtained based on the digital elevation model (DEM), and the
spatial analysis tool of ArcGIS is used to calculate the ratio of the
maximum elevation difference between adjacent grids to the
horizontal distance, which is the slope information of this

grid. In this paper, the extracted slope information in the
study area was divided into nine categories at an interval of
10°: 1) <10°; 2) 10–20°; 3) 20–30°; 4) 30–40°; 5) 40–50°; 6) 50–60°;
7) 60–70°; 8) 70–80°; and 9) >80°, see Figure 5A.

3.1.3.2 Slope Aspect
The slope aspect also affects the distribution of coseismic
landslides, as slopes with different aspects carry different
seismic effects (Zhou et al., 2016). In addition, there are
differences in sunshine and rock weathering in different slope
aspects, which leads to obvious differences in coseismic landslides
in different slope aspects. For example, the spatial distribution of
coseismic landslides in Wenchuan shows that the east, southeast,
and south are the dominant slope aspects of seismic landslides
[1]. Based on the DEM, this paper uses the spatial analysis tool of
GIS to identify the downhill direction with the largest change rate
from the current grid to the upper value of its adjacent grid
direction, namely, the slope aspect, and divides the slope aspect
into nine groups: 1) Flat (-1); 2) N (North, 0–22.5°and
337.5–360°); 3) NE (Northeast, 22.5–67.5°); 4) E (East,
67.5–112.5°); 5) SE (Southeast, 112.5–157.5°); 6) S (South,

FIGURE 3 | The incomplete LIM extracted from multi-temporal Landsat images.
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157.5–202.5°); 7) SW (Southwest, 202.5–247.5°); 8) W (West,
247.5–292.5°); and 9) NW (Northwest, 292.5–337.5°); see
Figure 5B.

3.1.3.3 Distance to Rivers
The river controls the seismic landslide distribution through the
action of groundwater and the erosion of water flow (Kamp et al.,
2008). This study considers the distance between slopes and rivers
and creates buffers around rivers to analyze the correlation
between seismic landslides and their distance to rivers.
According to the basic geographic information provided by
the National Geographic Information System (NGIS), the
initial river network in the study area was extracted. To
guarantee the river network quality, we overlayed the initial
river network on a cloud-free Landsat-5 mosaic in 2007 of the

study area. We deleted parts of the initial river network that did
not exhibit rivers on our Landsat mosaic images. Rivers exhibited
on Landsat mosaic image but not on the initial river network were
added to the initial river network. Finally, we divide the distance
to rivers into 10 groups with a step of 2.5 km: 1) 0–2.5 km; 2)
2.5–5 km; 3) 5–7.5 km; 4) 7.5–10 km; 5) 10–12.5 km; 6)
12.5–15 km; 7) 15–17.5 km; (8)17.5–20 km; 9) 20–22.5 km, and
(10) >22.5 km see Figure 5C.

3.1.3.4 Lithology
The lithology is considered to be another important factor in
dealing with landslide susceptibility assessment and hazards
(Reichenbach et al., 2018). Lithology influences the
topographic character of the landscape and how seismic
energy is transmitted, particularly through elastic and

FIGURE 4 | Slope units of the study area.
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brittle/elastic properties of the rock, chemical weathering and
its control of erosion and slope, fracture development and
fault displacement, and seismic wave interactions with
topography and lithological structures (Kargel et al., 2016).
Using rock mass rating containing lithologic factors to
conduct landslide hazard assessment is reasonable but, due
to lack of enough field and laboratory data, cannot be applied
to a large area (Tang et al., 2011). To determine the relative
influence of bedrock lithology on the occurrence of landslides
in a large area, the sensitivity index of the landslide
occurrence of each rock type is calculated by comparing
the landslide density in the area occupied by each rock
type. In this paper, the relative influence of rock mass is
determined by referring to the existing studies on Wenchuan
earthquake landslides. The lithology data in the study area
was generated by digitizing the hard copies of the 1:200,000
geological maps released by the China Geological Bureau.
After that, the digitized lithology data were re-projected to
WGS-84 coordinates and rasterized at 30 m resolution. Based
on lithological similarities, the rock types were grouped into
six classes, including 1) shale; 2) phyllite; 3) sandstone; 4)
glutenite; 5) magmatic rock; and 6) carbonate rock, as shown
in Figure 5D. The existing studies showed that the seismic

landslides in hard rock layers, including magmatic rock,
carbonate rock, and glutenite, were the most developed
and that the development density of shale, phyllite, and
sandstone were the second (Huang and Li, 2009; Li et al.,
2013).

3.1.3.5 Soil
The composition of the soil determines the permeability of the
soil, the better the permeability of the soil, the more conducive
it is to flood discharge; generally, sand particles are coarser, as
they do not as easily produce runoff or small flow. The
permeability of clay is poor; it is easy to erode, and
geological disasters are occur with relative ease. For
instance, granular, nonplastic, and low plasticity soils are
more susceptible than fine soils (Maharaj, 1993). The soil
data were generated from 1:1,000,000 soil distribution data
in China provided by the data processing center of the Chinese
Academy of Sciences. Similar to the vectorization process of
the lithology data, the digitized data of soil was re-projected to
WGS-84 and re-sampled to 30 m. The study area mainly
contains six soil types, including 1) semi-leached soil, 2)
leached soil, 3) primary soil, 4) alpine soil, 5) ferralsol, and
6) rock, see Figure 5E.

FIGURE 5 | The landslide causative factors used in this study. (A) Slope, (B) Aspect, (C) Distance to river, (D) Lithology, (E) Soil, (F) Land use, (G) PGA.
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3.1.3.6 Land Use
Human activities have changed the land surface and caused
great damage to the natural environment, making it easier for
landslides to form alongside earthquake disturbances. Studies
have shown that there is a strong correlation between the
distribution of landslides and land use. However, obtaining
land use data at a specific time is exceedingly difficult. Based on
the land use map of 2005 collected from the data processing
center of the Chinese Academy of Sciences, the initial land use
map of 2007 before the Wenchuan earthquake was obtained by
combining supervised classification and visual interpretation
with a cloud-free Landsat-5 mosaic image acquired in 2007.
Supervised classification consists of three steps: 1) to select
training samples for five land-use types by visual
interpretation, 2) to train the support vector machine using
the training samples and classify the whole Landsat-5 mosaic
image, and 3) to repeat the classification steps five times and
select the land-use map with the highest accuracy. We compare
the classified land use map and the initial land use map to
produce the most reliable land use map. The study area mainly
includes five land-use types: 1) residential area; 2) cultivated
land; 3) grassland; 4) the forest land; and 5) water, see
Figure 5F.

3.1.3.7 PGA
The strong ground motion that causes short-lived disturbances in
the balance of forces within hill slopes is the main reason for slope
failure (Li et al., 2013). Strong ground motion directly induces
coseismic landslides. PGA is simply the maximum peak
acceleration on the acceleration time history curve recorded at
a site in the earthquake. It is often used as a parameter to describe
strong ground motion (Ma and Xu, 2019). Previous studies have
shown that there is a positive correlation between PGA and
seismic landslide, and the greater the PGA value, the easier it is to
trigger a landslide (Xu et al., 2014). After the Wenchuan
earthquake, according to the ground motion peak recorded by
the seismic sensor, the United States Geological Survey (USGS)
established the PGA map of Wenchuan by interpolation method,
field amplification correction, and ground motion attenuation
model. In this paper, the latest PGA was download from USGS
website, and the study area was divided into six groups, including:
1) <0.2 g, 2) 0.2–0.4 g, 3) 0.4–0.6 g, 4) 0.6–0.8 g, 5) 0.8–1 g, and 6)
>1 g, see Figure 5G.

3.1.4 Multi-Collinearity Analysis of Landslide
Causative Factors
Landslide causative factors have intra-correlations, which
increases the data dimension and affects the model reliability.
To separate the influence of causative factors, we employ the
tolerance and variance inflation factor (VIF) (Chen et al., 2019) to
conduct a multicollinearity test. Tolerance and VIF are expressed
as follows:

Tolerance � 1 − R2
j (4)

VIF � [
1

Tolerance
] (5)

where R2
j is the regression determination coefficient of landslide

causative factors. If the VIF is high, the multi-collinearity
influence is serious. This study sets VIF < 10 and tolerance >
0.1 (Chen et al., 2019) as the multi-collinearity threshold. Table 2
presents the tolerance and VIF values of the seven landslide
causative factors. The largest VIF and smallest tolerance are 1.385
and 0.722, respectively. The results suggest that there is no multi-
collinearity relationship among the seven landslide causative
factors, and thus all these factors are used for LSM.

3.2 Negative Data Generation
Traditionally, negative data are randomly selected from the areas
outside the LIM. However, non-landslide areas often contain a
large number of unstable slopes, which are not identified in the
LIM. Besides, there are also many unrecognized landslides in
non-landslide areas. The unstable slopes and unrecognized
landslides cannot be used to select negative data. To overcome
these shortcomings, this study presents a one-class support vector
machine (OCSVM) (Schölkopf et al., 2000) based negative data
generation method. The OCSVM maps the samples from low
dimension to high dimension space through the kernel function
and finds the optimal hyperplane between the origin and the high
dimension space. Specifically, the distance between the sample
and the hyperplane indicates the correlation between the sample
and a specific class. The decision function is defined as the
following:

f (x) � sign((ω.Φ(x)) − ρ) (6)

where Φ(x) represents the mapping function, weight ω, and
threshold ρ of the support vector are obtained by solving the
quadratic programming problem.

min
1
2
‖ω‖2 + 1

vN
∑
i�1

N

ξ i − ρ (7)

s.t.(ω.Φ(xi))Pρ − ξi ξ i ≫ 0

where ξi is the relaxation variable, and v ∈ (0, 1) controls the
proportion of support vectors in the training samples. By
introducing the kernel function k(x), the above optimization
problem is transformed into a dual form:

min
a

1
2
∑
i�1

N

∑
j�1

N

aiajk(xi, xj) (8)

TABLE 2 | Multicollinearity analysis for the landslide causative factors.

Causative factors Collinearity statistics

Tolerance VIF

Soil 0.907 1.102
Slope 0.913 1.096
Lithology 0.974 1.027
Land-use 0.787 1.27
Aspect 0.979 1.021
Distance to river 0.821 1.218
PGA 0.722 1.385
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s.t.0#ai#
1
vN

∑
i�1

N

ai � 1

where ρ � ∑ N
i�1aiK(xi, xj) denotes the threshold value, and

weight ω determines the optimal hyperplane. The Gaussian
kernel is selected as the kernel function to construct OCSVM
that is run with the LIBSVM software package (Chang and Lin,
2011). The optimal hyper-parameters are obtained through five-
fold cross-validation.

Selecting negative data from non-landslide areas is a commonly
usedmethod for LSM, but its feasibility relies on a complete LIM. By
contrast, this study uses an incomplete LIM obtained by change
detection to generate negative data. Suppose S represent the data sets
of the study area. Li and Lc represent landslides in the incomplete
LIM and in the complete LIM, respectively. Ni � Li∩ S and Nc �
Lc∩  S represent non-landslides in the incomplete LIM and in the
complete LIM, respectively.Np � Li∩  Lc represents the pseudo non-
landslide, andNOCSVM denotes the extremely low susceptibility areas
in the LSM produced by OCSVM.

To analyze the influence of different negative data generation
strategies on LSM, we designed four negative data generation
strategies:

1. Negative data Tc are randomly selected from
Nc (i.e., Tc ∈ Nc)

2. Negative data Tp are randomly selected from
Np i.e., Tp ∈ Np)

3. Negative data Ti are randomly selected from
Ni (i.e., Ti ∈ Ni)

4. Negative data TOCSVM are randomly selected from
NOCSVM (i.e., TOCSVM ∈ NOCSVM)

3.3 LSM
The aforementioned steps produce training samples to train a
statistical learning algorithm. The support vector machine (SVM)
is a commonmachine learning algorithm that is capable to build a
stable and reliable statistical model with a small number of
samples (Suykens and Vandewalle, 1999). Therefore, this study
selects SVM to compute the landslide susceptibility values for
SUs. The decision function is expressed as follows:

y � ∑
n

i�1
ωixi + b (9)

where ω is the support vector weight and b the intercept. To
suppress the noise influence, the relaxation variables ξ is
introduced, and the corresponding convex quadratic
programming of SVM is expressed as follows:

min
ω,b

1
2
ω2 + C∑

i�1

n

ξ i (10)

s.t.yi(ω · xi + b)P1 − ξ i
i � 1, 2, 3, . . . n

where C represents the penalty coefficient. The optimal
hyperplane can be obtained by converting the appeal planning
problem into a dual problem that is expressed as follows:

min
a

1
2
∑
i�1

n

∑
j�1

n

aiajyiyj(xi · xj) −∑
i�1

n

ai (11)

s.t.∑
i�1

n

aiyi � 0

0#ai#C, i � 1, 2, 3, . . . n

where (xi · xj) represents the kernel function that projects
samples to high dimensional space to handle complex
nonlinear problems. This study chooses the Gaussian kernel as
the kernel function, and the optimal hyper-parameters are
obtained by the five-cross validation (Hong et al., 2017). This
study implements SVM by the LIBSVM package (Chang and Lin,
2011).

3.4 Model Evaluation
The reliability of LSM is mainly determined by the accuracy of
the model. But there is no uniform standard to assess the
model accuracy. The common method is to use a set of
independent data sets for accuracy assessment. Test sets
reserved in the early data preparation phase are widely used
for model evaluation (Irigaray et al., 2007; Dou et al., 2019).
Considering that the data set used in this study is the
incomplete LIM, and the actual complete LIM does not
participate in the model construction, the complete LIM is
taken as the test set for model evaluation.

Receiver operating characteristics (ROC) is an important tool
for model evaluation (Swets, 1988). It calculates the true positive
rate and false positive rate of the model according to different
discriminant standards and draws a curve with the true positive
rate and the false positive rate as the x-axis and the y-axis,
respectively. The area under the curve (AUC), generally
between 0.5-1, is often used to reflect the model performance.
The greater the AUC value, the better the model performance
will be.

TruePositiveRate � Sensitivity � TP
TP + FN

(12)

TrueNegativeRate � Specificity � TN
TN + FP

(13)

FalsePositiveRate � 1 − Specificity � FP
TN + FP

(14)

where TN, TP, FP, and FN represent true negative, true positive,
false positive, and false negative, respectively.

As LSM reflects the landslide occurrence possibility in the
earthquake-affected region (Guzzetti et al., 2006), this study
counts the number of new landslides that occurred in the
hazardous areas to further verify the model performance. To
this end, this study collected 11 landslide events that occurred in
the study area after 2008 from the website of the China Geological
Survey (referred to as new landslides hereafter). The higher
number of new landslides in hazardous areas of LSM, the
better the model performance will be. In this study, the
hazardous areas include areas with extremely high
susceptibility, high susceptibility, and moderate susceptibility
levels.
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4 EXPERIMENTAL RESULTS

4.1 Evaluation of the Reliability of the
Negative Data GenerationMethod Based on
OCSVM
Figure 6 shows the LSM derived from OCSVM. It can be seen
that 88.02% of the landslides fall into the hazard area (e.g.,
extremely high susceptibility, high susceptibility, and moderate
susceptibility areas). This suggests that OCSVM can obtain a
reliable landslide susceptibility map using positive data only.
Meanwhile, extremely low susceptibility areas cover 13.53% of
the study area and share 3.73% landslides. In other words,
landslides rarely occur in extremely low susceptibility areas
derived from OCSVM, which in turn guarantees the quality of
the generated labeled negative data sets.

4.2 Accuracy Assessment of LSMs Derived
From Different Strategies
Figure 7 shows the landslide susceptibility maps produced by
SVM based on different training sample sets. The hazard area
percentages of four methods ranges from 46.70% to 60.39%. The
generated LSM maps show apparent differences in the spatial
distribution of susceptibility area. As both the machine learning
algorithm and the positive data are fixed, this difference comes

from negative data generation strategies. This indicates that
negative data generation strategy and the LSM performance
have a close relationship. To quantitatively evaluate the model
performance, Figure 8 presents ROC curves for four methods.
The AUC values derived from ROC curves are 0.8164, 0.7673,
0.7928, and 0.8100, respectively. Among four methods, SVM
based on Tc achieves the highest AUC value (i.e., 0.8164), while
SVM based on Tp achieved the lowest AUC value (i.e., 0.7673).
The AUC value of the presented method is 0.81, which is close to
the best performance achieved by Tc. The AUC difference
between the presented method and Tc is marginal, suggesting
that the presented method based on the incomplete LIM is
capable of achieving a comparable performance to that of the
traditional method based on the complete LIM. Therefore, the
presented method is suitable for rapid earthquake-triggered
landslide susceptibility mapping when only the incomplete
landslide inventory is efficient and timely in terms of
obtaining data after the occurrence of an earthquake.

This study applies the natural break classification to divide the
landslide susceptibility into five levels: extremely high, high,
moderate, low, and extremely low susceptibility. By overlaying
the actual coseismic landslide distribution (i.e., the complete
LIM), the areas of different landslide susceptibility levels and
corresponding coseismic landslide areas were computed. Table 3
shows that the evaluation results corresponding to different
negative data sets are quite different, and thus the negative

FIGURE 6 | Landslide susceptibility map generated by OCSVM.
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FIGURE 7 | Landslide susceptibility map obtained based on the SVM using different negative data: (A) Tc, (B) Tp, (C) Ti , and (D).TOCSVM
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FIGURE 8 | ROC curves of four negative data generation strategies.

TABLE 3 | Landslide susceptibility levels and density of landslides in the study area.

Susceptibility level Area (km2) Percent of
area

Area of
landslide (km2)

Percent of
landslide

Density

Tc
Extremely low 536.28 0.13 6.88 0.02 0.01
Low 1,344.24 0.33 18.19 0.05 0.01
Moderate 519.34 0.13 27.66 0.08 0.05
High 429.85 0.11 36.23 0.1 0.08
Extremely high 1,201.32 0.3 267.48 0.75 0.22

Tp
Extremely low 958.07 0.24 58.03 0.16 0.06
Low 638.49 0.16 14.14 0.04 0.02
Moderate 1,077.06 0.27 18.86 0.05 0.02
High 434.34 0.11 35.81 0.1 0.08
Extremely high 923.08 0.23 229.61 0.64 0.25

Ti
Extremely low 1,461.92 0.36 31.85 0.09 0.02
Low 686.22 0.17 14.01 0.04 0.02
Moderate 483.12 0.12 27.33 0.08 0.06
High 329.85 0.08 28.27 0.08 0.09
Extremely high 1,069.93 0.27 254.98 0.72 0.24

TOCSVM
Extremely low 783.83 0.19 8.33 0.02 0.01
Low 998.04 0.25 22.29 0.06 0.02
Moderate 698.86 0.17 34.14 0.1 0.05
High 962.21 0.24 158.87 0.45 0.17
Extremely high 588.1 0.15 132.82 0.37 0.23
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data generation strategy has an essential influence on the
performance of LSM. Specifically, for negative data Tc, 93% of
the coseismic landslide exists in 54% of the hazardous areas of
LSM, which is consistent with the coseismic landslide
distribution. However, for negative data Tp, only 80% of the
coseismic landslides occurred in 61% of the hazardous area of
LSM. This indicates that the model does not evaluate the landslide
susceptibility well. The main reason is that the negative data are
from the pseudo-stability area, that is, the negative data belong to
the unstable area of the study area. Negative data Ti has
considerable uncertainty, due to the incomplete LIM and high
concealment of potentially unstable slopes, resulting in significant
fluctuations in the results. In this study, 87% of the coseismic
landslides are distributed in 47% of the hazardous area of LSM.
OCSVM can effectively obtain the stable area of the study area, so
the influence of the potentially unstable slopes and the incomplete
LIM can be well eliminated. Finally, 92% of coseismic landslides
occurred in 56% of the hazardous area of LSM, which is higher
than that of other negative data sources generated based on
incomplete LIM.

To analyze the site scale accuracy of the LSMs generated from
different negative data, we took towns and villages as the subarea
unit. We calculated the ratio of coseismic landslide to the
hazardous areas in each subarea. Table 4 shows the
percentage of the coseismic landslide distributed in the
hazardous areas in each subarea. The landslide susceptibility
maps show remarkable differences in towns and villages,
especially the unrecognized landslide area in the incomplete
LIM. Specifically, for the results of Tc, the percentage of the
coseismic landslides in the hazardous area of several towns is less
than 60%. Especially in Longxi Town, the coseismic landslide
distributed in the detected hazardous area is as low as 38%. The
results indicate that although the negative data are from the ideal
non-landslide area, there are some unstable slopes affecting the
accuracy of LSM. For negative data Tp, the distribution of the
landslide susceptibility area is inconsistent with that of a
coseismic landslide, especially in Longxi Town, where the
percentage of a coseismic landslide is only 3%. For Ti, the

percentage of coseismic landslides in the detected hazardous
areas is less than 60%. In Longxi Town, only 35% of the
coseismic landslide are distributed in the detected hazardous
areas, and the landslide susceptibility of this area was also not
well evaluated. Finally, for the negative data TOCSVM , the model
estimated results are consistent with the coseismic landslide
distribution for most towns. Only the percentages of two
towns are less than 60%. Longxi Town is not covered by the
incomplete LIM, but 98% of the coseismic landslides that
occurred here are in the detected hazardous area. Table 4 also
shows that Tc, Ti, and TOCSVM achieved the best performance in
five, two, and seven administrative districts, respectively. Tp

delivered the poorest performance among all subareas,
suggesting that Tp is not suitable to train statistical learning
algorithms for LSM. The third interesting finding is that
TOCSVM achieved a comparable or even better performance to
that of Tc in most cases. However, in two subareas (i.e., Keku and
Longxi), TOCSVM achieved a substantial improvement compared
to Tc. Thus, TOCSVM shows a great advantage in areas with a low
percent of coseismic landslides.

We also applied 11 new landslides that occurred after 2008 to
further verify the performance of LSM. Figure 7 shows the
superposition of new landslides over the landslide
susceptibility maps. We counted the number of new landslides
that occurred in the hazardous areas to assess the LSM reliability.
Table 5 shows that 9, 7, 9, and 10 new landslides occurred in the
hazardous areas produced by Tc, Tp, Ti, and TOCSVM , respectively.
Among four negative data generation strategies, TOCSVM achieves
the highest match rate with new landslides while Tp the lowest
match rate with new landslides. Therefore, the presented negative
data generation strategy can effectively assess the landslide
susceptibility in earthquake-affected areas.

4.3 The Influence of One-Class Classifier
Selection
To test the influence of one-class classifier (OCC) selection on the
performance of LSM, another two benchmark OCCs, including
SOM and TSES, are selected to compare with OCSVM. SOM is a
kind of autonomic learning neural network without tutors. Its
hierarchy consists of an input layer and competition layer (Huang
et al., 2017). The input layer accepts external input variables, and
the competition layer realizes clustering by analyzing and
comparing the input variables. The data of one class have
similar features, so the negative data can be generated by
cluster analysis. In this study, five classes were selected as the
final clustering results. TSES directly generates pseudo negative
data based on positive data in feature space (Xiao et al., 2010). It
exteriorizes positive data to become negative by replacing the
value of one of its features with a new one outside the value range
of this feature of all positive data.

We produced LSMs using the SVM based on different negative
data sets generated by OCSVM, SOM, and TSES, respectively.
The results are referred to as LSM-OCSVM, LSM-SOM, and
LSM-TSES, see Figure 9. LSM-OCSVM is consistent with the
distribution of coseismic landslides, suggesting the proposed
OCSVM method gets high accuracy landslide susceptibility in

TABLE 4 | The percentage of coseismic landslides in the hazardous areas of
towns and villages detected by the LSM using different negative data.

Subarea unit Percent of coseismic
landslide (%)

Coseismic landslides
distribution

Tc Tp Ti TOCSVM

Yinxing 24.85 1.00 0.99 0.98 1.00
Gengda 14.90 0.90 0.73 0.81 0.87
Miansi 14.13 0.96 0.92 0.96 0.97
Caopo 9.12 0.84 0.75 0.8 0.93
Yingxiu 8.24 0.95 0.89 0.94 0.93
Sanjiang 6.56 0.58 0.48 0.39 0.70
Yanmen 6.50 0.96 0.67 0.71 0.87
Weizhou 4.35 0.88 0.66 0.75 0.95
Wolong 4.24 0.45 0.41 0.55 0.44
Xuankou 3.66 0.85 0.75 0.93 0.83
Keku 1.47 0.59 0.25 0.58 0.98
Shuimo 1.18 0.57 0.45 0.50 0.36
Longxi 0.80 0.38 0.03 0.35 0.98
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the post-earthquake area. Most of the LSM-SOM is consistent
with the coseismic landslide distribution. However, the results are
quite different from the actual situation at the junction of Miansi
Town and Yingxiu Town. The TSES-based method
underestimates the degree of earthquake disturbance, so many
coseismic landslides are in the low susceptibility area.

To quantitatively evaluate the accuracy of the LSM obtained
from different negative data generation strategies, we used the
complete LIM to draw the ROC curves and calculate the
corresponding AUC values. Figure 10 shows that AUC
values of OCSVM, SOM, and TSES are 0.8100, 0.7909, and
0.7641, respectively. Among three OCCs, OCSVM achieves the
highest AUC value and TSES the lowest value. This result
suggests that the selection of OCC has an influence on the
performance of LSM, and thus the OCC should be carefully
selected. Table 6 shows the area percentage of coseismic
landslides that occurred in the hazardous areas. The
proposed OCSVM method has the highest value with a
percentage of 92%, and this was followed by the TSES

method at 86% and the SOM method at 84%. Specifically,
10 of 11 new landslides occurred in the hazardous area of the
landslide susceptibility map obtained by the OCSVM negative
data generation method. In contrast, the results based on SOM
and TSES correspond to eight and six new landslide events,
respectively. The main reasons for this result are as follows.
Firstly, the result of the negative data generation method based
on cluster analysis depends on two aspects. The clustering
analysis in this study was carried out based on the frequency
ratio of each causative factor, which depends on the LIM in the
study area. Therefore, the clustering analysis is also affected by
the incomplete LIM. Besides, as the clustering analysis needs
to determine the category in advance. To compare this with the
method presented in this study, the data sets in the study area
were also divided into five categories, and the categories with
fewer coseismic landslides were selected as the negative data
source. Similarly, there are still a small number of coseismic
landslides in the selected category, which affects the evaluation
results of the model. Secondly, TSES transforms positive data

TABLE 5 | LSM and new landslide events.

New landslides Lon Lat Tc Tp Ti TOCSVM

2009.7.25 (Chediguan bridge) 103.48 31.21 Extremely high Extremely high Extremely high Extremely high
2010.5.30 (Suoqiao village) 103.64 31.49 Moderate Extremely low Moderate Moderate
2010.6.12 (Jinbo village) 103.41 31.22 Extremely high Extremely high Extremely high High
2011.7.3 (Dongjienao village) 103.50 31.12 Extremely high High High High
2011.7.3(Fengxiangshu village) 103.50 31.06 High Extremely high Extremely high Moderate
2011.7.3 (Maojiawang) 103.50 31.17 Extremely high Extremely high Extremely high Extremely high
2013.7.22 (Zuwang village) 103.44 31.29 Extremely high High Extremely high Extremely high
2018.4.8 (Aer village) 103.54 31.67 Low Low Extremely low Extremely low
2018.7.26 (Minjiang bridge) 103.57 31.45 High High High Moderate
2019.8.20 (Longtan village) 103.3 31.12 Moderate Low Extremely high High
2020.6.20 (Kuapo village) 103.54 31.59 Extremely low Extremely low Extremely low Moderate

FIGURE 9 | Landslide susceptibility maps produced by: (A) OCSVM-based method, (B) SOM-based method, and (C) TSES-based method.
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into negative data by replacing the value of a randomly
selected causative factor with a value outside the range.
This method is also affected by two factors. The LIM
represents the landslide-affected area. On the other hand,
the SUs used in this study are small-scale units that cannot
accurately reflect the spatial differences of the feature
corresponding to coseismic landslides. Therefore, there is
still considerable uncertainty in the negative data
generation based on inaccurate feature space information.
In addition, TSES assumes that the weight of each causative
factor is equal, while the existing research shows that the
impact of the seismic landslide causative factor is different.
Therefore, simply replacing the attribute value of a causative
factor cannot generate a reliable negative data set. In summary,
the method proposed in this study can effectively obtain the
negative data, which has little dependence on the complete
LIM and can quickly obtain the landslide susceptibility map
after the earthquake.

4.4 DISCUSSION

A reliable and complete LIM is an important data source for rapid
assessment of earthquake-induced landslides (Van Westen et al.,
2008; Harp et al., 2011). As stated in the introduction, most
statistical learning methods for predicting the distribution of
landslide-prone areas depend on data sets with both positive
(landslide presence) and negative (landslide absence) data (Hong
et al., 2019). However, the complete LIM is difficult or impossible
to obtain, which hampers the rapid LSM and hazard analysis after
an earthquake (Reichenbach et al., 2018). By contrast, incomplete
LIM is easy to obtain and is a potential data source for rapid LSM
after an earthquake (Xu et al., 2013; Monsieurs et al., 2018; Chen
et al., 2020; Du et al., 2020). The results of this paper show that
satisfactory results of earthquake-induced LSM can also be
obtained based on incomplete LIM provided that the negative
data provided by the incomplete LIM is properly processed.
Compared with earthquake-induced LSM based on the
complete LIM, the approach by using incomplete LIM,
proposed in this paper, has the advantages of high efficiency
and low economic cost.

This study also finds that the one-class classifier can generate
reliable negative data based on incomplete LIM. In this study, a
comparative experiment is carried out for the uncertainty of negative
data come from incomplete LIM. Compared with using complete
LIM, the landslide susceptibility model has higher uncertainty when
the negative data come from incomplete LIM, which is basically
consistent with the existing research (Huang and Zhao, 2018; Dou

FIGURE 10 | ROC curves of the presented method based on three OCCs.

TABLE 6 | The co-seismic landslide and new landslide events in the hazardous
area of LSM with different negative data generation methods.

Methods Hazardous area of LSM

Co-seismic landslide (%) New landslides

SVM-OCSVM 0.92 10
SVM-SOM 0.84 8
SVM-TSES 0.86 6
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et al., 2020b). However, the negative data generation method based
on the one-class classifier can effectively reduce the uncertainty of
the negative data and obtain a more stable and reliable model.
Incomplete LIM provides negative data that may stem from
unrecognized landslides, and false-negative data will reduce the
reliability of the landslide susceptibility model. Even within the
negative data obtained from complete LIM, there are inevitably
unstable areas (Huang et al., 2017;Hong et al., 2019; Zhu et al., 2019),
that is, the potential landslide areas in the deformation process. The
data for such areas are between the negative data and the positive
data, and simply taking them as negative data also increases the
uncertainty of the samples. To overcome these challenges, the one-
class classifier can construct a screening negative data model based
on single class samples, which can eliminate the influence of
unrecognized landslide area and potential landslide area and
obtain more reliable negative data. Compared with other one-
class classifiers, OCSVM can deal with complex nonlinear
problems based on small sample data (Schölkopf et al., 2000),
which can precisely represent the complex nonlinear relationship
between seismic landslides and causative factors.

The performance of machine learning algorithms (e.g., SVM
and OCSVM, which are used in this study) varies in accordance
with topographic variables, suggesting that the patterns in
causative factors are highly complex and variable for the
different facets of causative factor attributes (e.g., spatial scale)
(Chang et al., 2019). Thus, finding a general approach suitable for
all regions and/or topographic variables is unlikely. And instead,
evaluation of multiple machine learning algorithms (Merghadi
et al., 2020; Wang et al., 2020) and/or ensemble of different
machine learning algorithms (Dou et al., 2020a; Pham et al., 2020)
should be standard procedure in developing satisfactory LSMs
with highly complex landslide causative factors.

Focusing on overcoming the uncertainty of negative data that
comes from an incomplete LIM, the method presented in this paper
can quickly carry out seismic LSM under data-scarce environments
conditions. Inevitably, some open problems require further study.
First, wemustfind out howwe can best define an incomplete LIMand
explore the relationship between the completeness level of LIM and
LSM performance, as these are not discussed in detail in this paper. In
addition, the method presented in this paper is mainly based on
incomplete LIM and is still a data-driven method. The quality of the
results still depends on source data quality (Broeckx et al., 2018).With
the rapid development of Synthetic Aperture Radar, 3D deformation
information of earthquake-affected area can be obtained quickly after
an earthquake, which can be effectively used to identify the hidden
landslide area (Xie et al., 2020). More reliable negative data may be
obtained by integrating the stable area in 3D deformation and the
non-landslide area in LIM. More accurate LSM may be achieved by
extending the proposed method based on OCSVM to incorporate
such negative data with higher quality.

5 CONCLUSION

This study proposed a negative data generation method based on
one class classifier, which can effectively make use of incomplete

LIM. Based on the binary classifier established by the generated
negative data, we performed LSM for the landslides of the 2008
Wenchuan earthquake. The reliability of the result was analyzed
and verified using the coseismic landslides and new landslide
events in the study area. The results show the following: 1) the
two-class support vector machine is susceptible to the negative
data, especially in the absence of complete LIM, and the landslide
susceptibility model/mapping obtained from different negative
data are quite different; 2) an incomplete LIM is easy to obtain,
which is important data for rapid evaluation of landslide
susceptibility; 3) the method presented in this study can
effectively reduce the uncertainty of negative data and can
significantly improve the performance of the landslide
susceptibility model even without complete LIM. To sum up,
the method in this study can be used to evaluate the landslide
susceptibility quickly after the earthquake and provide an
important reference for emergency rescue and land planning
in post-earthquake regions.
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The impacts of destructive earthquakes on rainfall thresholds for triggering the debris flows
have not yet been well investigated, due to lacks of data. In this study, we have collected
the debris-flow records from the Wenchuan, Lushan, and Jiuzhaigou earthquake-affected
areas in Sichuan Province, China. By using a meteorological dataset with 3 h and 0.1°

resolutions, the dimensionless effective rainfall and rainfall intensity-duration relationships
were calculated as the possible thresholds for triggering the debris flows. The pre- and
post-seismic thresholds were compared to evaluate the impacts of the various intensities
of earthquakes. Our results indicate that the post-quake thresholds are much smaller than
the pre-seismic ones. The dimensionless effective rainfall shows the impacts of the
Wenchuan, Lushan, and Jiuzhaigou earthquakes to be ca. 26, 27, and 16%,
respectively. The Wenchuan earthquake has the most significant effect on lowering the
rainfall intensity-duration curve. Rainfall threshold changes related to the moment
magnitude and focal depth are discussed as well. Generally, this work may lead to an
improved post-quake debris-flow warning strategy especially in sparsely instrumented
regions.

Keywords: debris flows, seismic effects, regional rainfall threshold, early warning, disaster prevention

INTRODUCTION

Massive earthquake-induced loose deposits on slopes or channels can be mobilized by heavy rainfalls
and evolve into debris flows. The increased unconsolidated sediment reduces the rainfall threshold
for the debris-flow occurrence and significantly augments the magnitude of post-quake debris flows
(Chen and Petley, 2005; Ma et al., 2013). The post-quake hazards can remain highly frequent for
5–10 years, even longer as 20 years (Cui et al., 2011). Quantifying the impact of strong earthquakes
on the rainfall threshold is essential for post-quake debris-flow early warning (Zhang and Zhang,
2017).

Numerous studies have reported the rainfall threshold variation after strong earthquakes. As an
example, the mean value of the accumulated rainfall decreased from 867 mm for 67 debris flows in
1996 to 146 mm for 197 debris flows in 2001 in the intensive-ground-motion areas of the 1999 Chi-
Chi earthquake in Taiwan (Liu et al., 2008). Similarly, the maximum effective cumulative
precipitation decreased from 950 to 200 mm in the Mt. Ninety-Nine area of Taiwan during the
first year after the earthquake (Shieh et al., 2009). After the 2008 Wenchuan earthquake, the
accumulated rainfall threshold decreased by 15–22% while the critical value for the hourly rainfall
intensity decreased by 25–32% (Tang et al., 2009). Likewise, a sudden drop in the rainfall threshold
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was found in the Gaochuan River basin near the Wenchuan
earthquake’s epicenter (Li et al., 2016). The rainfall intensity-
duration (I-D) thresholds normalized by the mean annual
maximum hourly rainfall, indicate a reduction of at least 30%
compared to the pre-quake level (Ma et al., 2017). Yu et al. (2014)
found that the ratio of the thresholds before and after the
earthquake decreased with increasing peak ground
acceleration. However, due to data limitation, the impacts of
destructive earthquakes on rainfall thresholds have not been well
investigated quantitatively.

The recent three severe earthquakes occurred in Sichuan
Province, Southwest China, namely the Wenchuan earthquake
in 2008, the Lushan earthquake in 2013 and the Jiuzhaigou
earthquake in 2017 have different magnitudes (Figure 1),
which provides valuable cases to quantitatively examine the
influence of the earthquake magnitude on the rainfall
thresholds. We have collected debris-flow records in the
Wenchuan earthquake-affected area (WEA), Lushan
earthquake-affected area (LEA), and Jiuzhaigou earthquake-
affected area (JEA) to examine how much an earthquake can
affect the rainfall threshold for triggering debris flows. Two kinds

of rainfall thresholds, including the dimensionless effective
rainfall and the rainfall I-D curve, were calculated based on
the China Meteorological Forcing Dataset from National
Tibetan Plateau Data Center to show the seismic effects.

MATERIALS AND METHODS

Study Area
The study area is located at the eastern edge of the Tibetan
Plateau, which has been affected by the three earthquakes
(Figure 1). The Mw 7.9 Wenchuan earthquake (the “5.12”
earthquake) ruptured along the Longmenshan thrust belt on
May 12, 2008 (Xu et al., 2009). The shock-induced collapses
and landslides produced approximately 2.6 × 109 m3 of loose
material (Parker et al., 2011), indicating that debris flows may
occur frequently following the earthquake (Cui et al., 2011).
Huang and Li (2009) found that there were 8,627 geo-
hazards, including 3,627 landslides, 2,383 slope collapses,
and 837 debris flows in the 42 earthquake-hit regions of
Sichuan Province. The Mw 6.6 Lushan earthquake

FIGURE 1 | Location of study areas in Sichuan Province, China. The ranges, elevations, main faults, debris-flow records (filled dot), epicenters (pentagram),
moment magnitude (Mw), andmean annual rainfall (contour with 100 mm interval) are shown for theWEA (Chinese seismic intensity ≥ VIII), LEA (Chinese seismic intensity
≥ VI), and JEA (Chinese seismic intensity ≥ VI), respectively. The location of the Chi-Chi earthquake in Taiwan Province is also marked in the subplot.
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occurred in the Longmen Shan fold-and-thrust belt, Sichuan
Province, China, on April 20, 2013, causing 196 deaths and
13,484 injuries (Li et al., 2014). The earthquake has reduced
hillslope stability and moderately increased the possibility of
debris flows occurrence (Cui et al., 2014). On August 8, 2017,
the Mw 6.5 earthquake with a focal depth of 20 km hit the
Jiuzhaigou World Natural and Cultural Heritage site and its
surroundings (Hong et al., 2018). The epicenter was at 33.2°

N, 103.82° E, approximately 5 km west of the Jiuzhaigou core
scenic area (Hu et al., 2019). 1883 earthquake-induced
geological hazards were identified by remote sensing
within the 840 km2 area affected by the earthquake (Fan
et al., 2018).

Considering the sufficient earthquake intensity and available
debris-flow records for comparisons, we choose the WEA with
the Chinese seismic intensity ≥ VIII, the LEA with the intensity
≥ VI, and the JEA with the intensity ≥ VI as regions of interest.
The moist monsoon dominates the regional climate, providing
water conditions for debris flows (Cui et al., 2014). In addition,
the Mw 7.6 Chi-Chi Earthquake in Taiwan is also used for
discussion.

Data Sources
Collection of Debris-Flow Data
The debris flows mentioned in this study limit to the torrential
flow of a mixture of water, mud, and debris in the gully or
channel of a small catchment, even on a hill slope. The time span
of the collected debris-flow events to the earthquakes does not
exceed 15 years. Data of some debris-flow events when near-
zero rainfall was recorded from a gridded rainfall dataset are
excluded (more details in 2.2.2). Then, 267 debris-flow records
for 2000–2010 in the WEA, 109 for 2000–2017 in the LEA, and
70 for 2010–2018 in JEA were collected through field survey and
data gathering from Sichuan Provincial Natural Resources
Department (Figure 1; Table 1). In the WEA, the debris
flows that happened on the same day with the earthquake
are classified as post-earthquake events, which can be used to
show extremely post-seismic impacts on the rainfall conditions.
Unlike debris flows in the WEA, we collected no co-seismic
debris-flow records in the LEA and JEA.

Gridded Rainfall Data
The gridded near-surface meteorological dataset was developed for
evaluating land surface processes in China (He et al., 2020). The
dataset was made through the fusion of remote sensing products
(e.g., Tropical Rainfall Measuring Mission 3B42 v7), a reanalysis
dataset (e.g., Global Land Data Assimilation System and Modern-
Era Retrospective Analysis), and in-situ observations at weather
stations (e.g., daily data from approximately 700 stations of China

Meteorological Administration and sub-daily data from the
National Oceanic and Atmospheric Administration’s National
Centers for Environmental Information). The time of the data
ranges from January 1979 up to December 2018 with a temporal
resolution of 3 h and a spatial resolution of 0.1°. For each 0.1° grid
cell, a rainfall recordwith GreenwichMeanTime (GMT) stands for
a mean value of rainfall intensities (mm/h) taken every three hours.
So, each grid cell represents 8 records on each day. The data have
been adjusted to match the Beijing time, i.e., 8 h ahead of the GMT.

Based on the data, the mean annual rainfall of 1979–2018 is ca.
950, 1,360, and 660 mm for the WEA, the LEA, and the JEA,
respectively. According to the time ranges in Table 1, the mean
annual rainfall of 937 mm after 2008 in the WEA is 7% higher
than before 2008. However, the number of debris flows per year
has increased ca. 30 times compared with the period before the
Wenchuan earthquake. The decrease in the number of debris
flows in both the LEA and the JEA cannot be directly linked with
the change in the mean annual rainfall, suggesting that more
short-term rainfall conditions should be discussed.

Regional Rainfall Threshold
Dimensionless Effective Rainfall
Effective rainfall is considered as a function of the regressive
rainfall index (Li et al., 2011; Zhuang et al., 2015).We use the ratio
of effective rainfall to annual rainfall as the dimensionless
effective rainfall (DER) to eliminate the impacts of different
annual climate. The equation for calculating DER can be
written as:

DER �
∑
n

i�1
KiPi + P0

Pannual
(1)

where P0 is the total rainfall on the day of debris-flow occurrence;
Pi is the accumulative daily rainfall (mm) on the ith day before the
occurrence; Ki indicating K to the power of i is the decay factor of
precipitation on the ith day before the occurrence; and Pannual is
the total rainfall for each year. The study areas belong to the
Hengduan Mountains in the southwest region of China,
therefore, the K is empirically set to 0.84 (Liu et al., 2020). n
is set to 3, 7, 11, and 15, respectively, for comparison. The median
of DER in each earthquake-affected area is regarded as a proxy of
regional rainfall threshold.

Rainfall Intensity-Duration Relationship
The so-called rainfall intensity-duration (I-D) relationship was
proposed firstly by Caine (1980). It is a fairly common type of
debris-flow threshold (Guzzetti et al., 2007). The original
expression of the relationship is of discrepant dimension as
the following:

TABLE 1 | Debris-flow numbers and the time range in each area.

WEA LEA JEA

Period Count Period Count Period Count

Pre-seismic 2000–2007 21 2000–2012 88 2010–2016 58
Post-seismic 2008–2010 246 2013–2017 21 2017–2018 12
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I � αD−β (2)

where the term I denotes the mean hourly rainfall intensity
(mm/h) of a continuous rainfall process that triggers a debris-
flow event; D is the rainfall duration (h) for triggering a
debris-flow event; and α and β are coefficients. Then, when
the curve is drawn in a double logarithmic coordinate system,
the α can reflect the intercept, while β can reflect the slope of
the straight line. The rainfall conditions above the curve are
more likely to trigger debris flows. Although some studies
emphasize the physical interpretation of parameters in I-D
curve, it is now restricted to some specific kind of debris flows
such as runoff-generated debris flows with enough in-situ
observations (Berti et al., 2020).

To eliminate the impacts of different annual climates before
and after an earthquake, the ratio (Inew, h

−1) of mean hourly
rainfall intensity (mm/h) to annual rainfall (mm) is used to
replace the term I in the Eq. 2 as follows:

Inew � αnewD
−βnew 2a

where αnew and βnew are new coefficients. It is noteworthy that
only the “day” information of debris-flow occurrence is available.
It is assumed that a continue rainfall process begins if when

averaged hourly rainfall intensity of grid cells covering the debris-
flow gully is greater than 0.05 mm/h. Thus, the Inew andD of such
rainfall event were used to describe the rainfall process for
triggering debris flows.

Impacts of the Earthquake on the Thresholds
The impact of each earthquake on the thresholds is determined by
the following equation:

Impact � (Threpre − Threpost)

Threpre
× 100% (3)

where Threpre denotes the median DER or the parameters of I-D
curve before the earthquake; and Threpost indicates those after the
earthquake. For the DER, the positive value of Impact indicates
the decrease of the regional rainfall threshold. For the parameters
of I-D curve, the positive impact on α indicates a decrease of the
scaling constant after an earthquake, αnew of Inew at D � 1 in the
power-law relationship indicates that post-earthquake rainfall
intensity is smaller or greater than the pre-earthquake
intensity. The positive impact on βnew indicates a decrease of
the shape slope, which should be combined with αnew change for
threshold analysis.

FIGURE 2 | Boxplots of DER for Wenchuan (A, B), Lushan (C), and Jiuzhaigou (D) earthquakes. Subplot (A) excludes the debris flows occurring onMay 12, 2008,
while subplot (B) includes those events. n denotes effective antecedent rainy days. The first quartile marks the bottom of the box, and the third quartile marks the other
end of the box. The backline in the box denotes the median.
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RESULTS AND DISCUSSION

Seismic Impacts on Dimensionless
Effective Rainfall Thresholds
In the WEA, the regional rainfall thresholds are ca. 4.2, 5.8, 6.5,
and 7.1% of the annual rainfall for effective antecedent rainy-day
settings of 3, 7, 11, and 15, respectively, (Figure 2A). After the
Wenchuan earthquake, the threshold decreased. When excluding
the debris-flow samples on the day when the earthquake
occurred, the thresholds are ca. 4.0, 5.1, 5.8, and 5.9% of the
annual rainfall. When considering the debris-flow records on that
day, the thresholds dropped more significantly (Figure 2B). The
mean reduction of ca. 18% represent the most serious impact of
Wenchuan earthquake on the rainfall condition. It suggests that
once such earthquake happens, the short-term rainfall threshold
could be much lower than that obtained from data in the
following several years.

Before the Lushan earthquake, the thresholds are ca. 4.5, 5.4,
6.3, and 7.4% of the annual rainfall. Then, they reduce to 2.4, 3.8,
4.9, and 5.3% after the quake (Figure 2C). Similarly, the
thresholds in the JEA are ca. 4.5, 6.0, 6.4, and 7.0% before the
earthquake (Figure 2D). After the shock, they decrease to ca. 4.0,
4.8, and 6.3% for antecedent rainy-day settings of 3, 7, and 11,
respectively. However, the threshold unexpectedly increases
slightly when the number of antecedent rainy days is set to 15.

In most cases, the earthquake lowered the DER thresholds
(Figure 3). The regional impacts show a significant variation
when n is set to 3. However, when n is set to other values rather
than 3, the impacts only show lower variations. Based on the
results with n � 7, 11, and 15, the mean impacts (mean level of
seismic effects with different n settings) of the Wenchuan
(including co-seismic events) and Lushan earthquakes are ca.
26 and 27%, respectively. When excluding the co-seismic samples

(“5.12” events), the mean impact of Wenchuan is ca. 13%. When
n is set to 11 and 15, the impacts are not significant in the JEA.
Maybe the drier climate of Jiuzhaigou in the northern Sichuan
province leads to fewer days of DER.When n is equal to 3 or 7, the
mean impact of the Jiuzhaigou earthquakes is ca. 16%.

Seismic Impacts on Rainfall
Intensity–Duration Relationships
All post-seismic I-D curves are lower than the pre-seismic ones,
indicating that triggering post-quake debris flows needs smaller
rainfall intensity or shorter duration (Figure 4). When drawing
the “5.12” events for theWenchuan earthquake in the picture (the
purple crosses in Figure 4A), the triggering rainfall level becomes
much lower than the post-seismic mean status, indicating
extremely low rainfall threshold for co-seismic debris flows.
For the WEA, there are more scattered debris-flow records for
a shorter duration than a longer duration. Data shows more
discrete records after Wenchuan earthquake than before the
quake (Figure 4A). It may indicate more randomness on the
rainfall intensity to trigger debris flows, which is consistent with
the random effect of an earthquake on reducing the stability of the
surface material (Zhao et al., 2020). Similar results occur at 3 and
9 h durations in both LEA and JLA (Figure 4B,C).

According to the Eq. 3, impacts of earthquakes on the
parameter αnew are ca. 45, 24, and 3% in the WEA, the LEA,
and the JEA, respectively (Figure 5). Impact of the Wenchuan
earthquake on the parameter βnew is ca. 12%, while those of the
Lushan and Jiuzhaigou earthquakes are ca. −34 and ca. −46%. It
indicates that, though the impacts of the Lushan and Jiuzhaigou
earthquakes on αnew are smaller, the increased slopes also made
the threshold lower (Figure 4B,C and Figure 5). However, it
should be noted that a little change of βnew may not be important

FIGURE 3 | Impacts of each earthquake on rainfall thresholds with different n settings. n is effective antecedent rainy days. The positive value indicates the decrease
of the regional rainfall threshold.
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due to the limited rainfall duration indicated by the observations.
Under these circumstances, the changes of the αnew could be
considered as the more important aspect affected by the
earthquakes.

Discussion
Rainfall Threshold Change
The impact of the Wenchuan earthquake is reported to be ca.
20–30% (Tang et al., 2009; Ma et al., 2017). Compared with these
studies, debris-flow records from more timely and detailed
investigations after earthquakes have been collected, especially
for the Wenchuan earthquake, meaning more debris flows with
smaller rainfall have been included for statistical analysis. In
addition, we supplemented the data analysis on the Lushan
earthquake in 2013 and the recent Jiuzhaigou earthquake in
2017, and further explored the impacts of the earthquake on
regional rainfall threshold. The impacts of the Lushan and
Jiuzhaigou earthquakes on I-D rainfall thresholds are smaller,
which may be due to the fact that moderate magnitude
earthquakes (Mw 6–7) produce less landslide-associated loose
materials (Stoffel et al., 2014).

Lin et al. (2004) concludes that the triggering thresholds such
as cumulative antecedent rainfall and hourly rainfall intensity
significantly decreased by 33% after the Chi-Chi Earthquake
compared to the values before the earthquake. Shieh et al.
(2009) surveyed the Wushihkeng watershed and the Mt.
Ninety-Nine watershed in the Chi-Chi earthquake area. The
maximum effective cumulative rainfall threshold was about
50% of that before the earthquake. Similar outcomes can be
found in the Chen-Yu-Lan watershed (Chen, 2011). The 30–50%
change caused by the Chi-Chi earthquake is indeed similar to that
by the Wenchuan earthquake.

Implication for Post-quake Debris-Flow Warning
As shown in Table 2, the moment magnitude of the Wenchuan
earthquake reached 7.9, much higher than the others. Although
the change in the median DER is close to that influenced by the
Lushan earthquake, the αnew of the I-D curve in the WEA has
been changed by 45%, which is nearly double in the LEA. With a
similar moment magnitude, different focal depths affect the
results. The change in the median DER in the LEA with a
13 km focal depth is 11% larger than the JEA with 20 km
focal depth.

A warning strategy, including the DER and I-D curves can be
considered by using similar settings of methods and data as in this
study. The DER threshold should be the initial focus. The
antecedent rainfall can be obtained from up-to-date
meteorological data, such as near-real-time precipitation
produced by the land data assimilation system (CLDAS) from
the China Meteorological Data Service Center (http://data.cma.
cn/), satellite data, and in-situ observation. The daily rainfall data
is obtained from the weather forecast. When the earthquake
magnitude is ca. 6.5 and the focal depth is ca. 20 km, the change
in the rainfall threshold condition can be estimated by referring to
ca. 15% in the JEA. When the magnitude is greater than 6.5, but
focal depth is less than 15 km, we can refer to a threshold change
of 26% in the LEA andWEA. When the DER exceeds the median
DER, we may think the rainfall can reach a warning level at the
first stage. However, earthquake-affected areas responded
differently to the statistical approaches (Table 2), which may
be attributed to the heterogeneity of rainfall for triggering debris
flows under different surface conditions. Thus, the hourly I-D

FIGURE 4 | I-D curves for debris flows. The blue and red lines indicate
I-D curves for debris flows before and after theWenchuan (A), Lushan (B), and
Jiuzhaigou (C) earthquakes. In the WEA, the pre-quake I-D curve is fitted with
21 debris-flow events from 2000 to 2007, while post-quake one is fitted
with 183 events from 2008 to 2010 when excluding the samples on the day of
“5.12” earthquake. The red circle denotes debris flows occurring after May 12,
2008, while the purple cross represents the debris flows occurring on that
day. All sample points and fitted curves are drawn in the double logarithmic
coordinate system.
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curve can be used. The degree of I-D curve lowering after a strong
shock are referred in Table 2. When the mean hourly rainfall
intensity is above the curve, a regional warning should be issued.

Due to the lack of meteorological in-situ observations,
advanced satellite-based rainfall data can be used as an
effective alternative for near real-time analysis, which is widely
adopted for disaster research (Jia et al., 2020). The Global
Precipitation Measurement (GPM) mission, led by the
National Aeronautics and Space Administration and the
Japanese Aerospace Exploration Agency has been the latest
generation of rainfall products since March 2014 (Hou et al.,
2013). With the resolution of 0.1° and 0.5 h, the up-to-date GPM
products may be suitable for near real-time analysis based on
long-term historical records, which have been expanded back to
start-ups (in 2000) by calibration (Huffman et al., 2019). We use
the gridded rainfall dataset to check the reliability of the new
GPM data for future application in debris-flow monitoring and
warning. Correlation coefficients of 0.67, 0.53, and 0.56 are
obtained for Jiuzhaigou, Wenchuan, and Lushan areas,
respectively, (Figure 6), which indicates that the reliability
needs to be further improved, as also confirmed by Liu et al.
(2019). Though any satellite-based method will cause inevitable
uncertainties (Carr et al., 2015), a combination with the methods
used in this study could be an important supplement for debris-
flow warning in ungauged areas with earthquakes.

Uncertainty and Limitation
The 40 years gridded rainfall data can provide enough
information for this study, but the 3 h resolution and GMT
format could cause uncertainty for determining the accurate time
of debris-flow occurrence. Furthermore, even if eliminating the
effects of fluctuant annual rainfall, the rainfall thresholds cannot
avoid abnormal distribution of rainfall within certain year. The
statistics in small regions (specified high earthquake-intensity
areas) depend on the local information and temporal variability
(Nikolopoulos et al., 2017; Gariano et al., 2020). However, most
debris-flow disasters always occur in places where there is
insufficient or ineffective instrumental observation.

FIGURE 5 | Impacts of each earthquake on the I-D curve parameters for debris flows. The positive impact on αnew indicates the decrease of the scaling constant.
The positive impact on βnew means the decrease of the shape slope.

TABLE 2 | Earthquake attributes and their impacts on regional rainfall thresholds.

Earthquake Mw Focal depth (km) Impacts

Median of DER (%) αnew (%)

Wenchuan 7.9 14 26.05 45.00
Lushan 6.6 13 26.74 24.00
Jiuzhaigou 6.5 20 15.56 2.86

FIGURE 6 | Comparison between GPM daily rainfall data and gridded
observations.
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Figure 4 shows that effects of the Lushan and Jiuzhaigou
earthquake in the curves are not very obvious as that of
Wenchuan earthquake. I-D scatters obtained by other study also
support the point (Guo et al., 2021). Guo et al. (2021) pointed that
debris flows after Lushan earthquake are triggered by shorter-duration
rainfall than in most other regions, including the Wenchuan
earthquake area, which may magnify the uncertainty from the
rainfall data. In addition, some regional I-D threshold is difficult to
be obtained, due to the limited data which cannot meet demand for a
rigorous fitting. That is why we emphasize more on the change in the
I-D relationships rather than the accurate threshold.

Van Asch et al. (2014) made a link between the rainfall
thresholds and sediment material delivered by seismic
landslides retained in gullies. Thousands of landslides triggered
by the Lushan earthquake have become the material source of
debris flows (Tang et al., 2015). But the erosion of channel
deposits by overland runoff after Lushan earthquake was the
dominant mechanism of debris-flow formation in the LEA (Guo
et al., 2021). Compared with the WEA, the debris-flow volume in
the LEA is smaller, which may be due to the smaller earthquake
magnitude and the wetter climate for vegetation recovery. In
addition, free placement of wastes produced in post-quake
reconstruction can be initiated more easily to form debris
flows. The complex spatial heterogeneity of natural and
anthropogenic factors makes great differences of critical
rainfall conditions for debris flows in different regions. Even
so, it is still difficult to isolate any other factors for discussing the
earthquake effects on rainfall for triggering the debris flows.

CONCLUSION

We collected the debris-flow records in the Wenchuan, Lushan, and
Jiuzhaigou earthquake-affected areas in Sichuan Province, China.
Based on the gridded meteorological dataset with 3 h and 0.1°

resolutions, the DER and I-D thresholds were calculated. Then,
comparison of the pre and post-seismic rainfall thresholds shows
the impacts of the earthquakes with different magnitudes on the
rainfall thresholds. Our results demonstrate that the post-quake
thresholds are much smaller than the pre-seismic thresholds. The
mean impacts of theWenchuan, Lushan, and Jiuzhaigou earthquakes
are ca. 26, 27, and 16%, respectively, with respect to the DER. For the
Wenchuan earthquake we found a significantly lowered I-D curve.

The impacts of the Wenchuan and Chi-Chi earthquakes are
comparable. In general, this work is useful for calibrating and
improving the rainfall thresholds of post-quake debris-flow warning.
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Earthquake-induced landslide has various spatial characteristics that can be effectively
described with the frequency–area curve. Nevertheless, the widely used power-law
curve does not reflect well the spatial features of the distribution, and the power
exponent does not show the association with the background factors. There is a lack
of standards for building the relationship, and its implication on the spatial distribution of
landslides has never been analyzed. In this study, we propose a new form of frequency
distribution and explore the parameters in the typical watersheds along the highway from
Dujiangyan to Wenchuan in the Wenchuan earthquake region. The obtained parameters
are related to the landslide density and proportions of the large-scale landslides.
Furthermore, a hot spot analysis of landslides in the watersheds is conducted to assess
the relationship between the parameters and the spatial cluster patterns of landslides.
The hot spots highlight the size and distance of landslide areas that cluster together,
whereas the distribution parameters reflect the density and proportions of landslides.
This research introduces a new method to analyze the distribution of landslides and their
association with the spatial features, which can be applied to the landslide distribution
in relation to other influential factors.

Keywords: earthquake landslide, hot spot analysis, frequency curve, scaling distribution, spatial pattern

INTRODUCTION

Earthquake-induced landslides have different spatial distribution characteristics, which depend on
the tectonic features of the earthquake and the geomorphological conditions of landslides. For
example, the 2002 Alaska earthquake is a surface rupture earthquake with the induced landslides
that were obviously distributed along the long axis in the NW–SE direction of the seismic Denali
fault (Gorum et al., 2011). The 2013 Lushan earthquake occurred in a hidden fault and resulted in
the relatively scattered landslides with distribution over the affected area (Xu et al., 2015).

Studies have observed that landslides follow the power-law frequency–area relationship
(Malamud et al., 2004; Chong et al., 2013; Xu et al., 2014; Tanyaş et al., 2017), yet there is
no standard criterion for determining the power-law exponent. Cumulative and noncumulative
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frequency–area curves are used for the research and creation of
the landslide inventories that have rainfall or earthquake origin
(Fujii, 1969; Hovius et al., 1997, 2000). Landslide inventories in
different regions seem to have different exponents, yet without
comparability in relation to the landslide backgrounds. The
landslide frequency–area curve is generally used to show the
completeness of the landslide inventory. According to some
researchers, the phenomenon that the tail of the frequency–
area curve obeys the power law cannot be attributed to the
incompleteness of data. The overall variables of landforms,
especially the different forms of the slope, control the two parts
of the frequency–area curve. The frequency–area distribution
is the combined result of the distance to slope and the actual
terrain constraints of landslide (Pelletier et al., 1997; Hovius et al.,
2000; Guthrie and Evans, 2004). Some scholars have quantified
the spatial distribution characteristics of the earthquake-induced
landslides (Harp and Jibson, 1996; Cardinali et al., 2000;
Bucknam et al., 2001; Stark and Hovius, 2001; Guzzetti et al.,
2002; Brardinoni and Church, 2004; Guthrie and Evans, 2004;
Malamud et al., 2004; Korup, 2005; Van Den Eeckhaut et al.,
2007; Corominas and Moya, 2008; Guan, 2018). In some cases,
the special probability distributions (e.g., the three-parameter
inverse-gamma distribution) fit the landslide area distribution
well (Malamud et al., 2004), yet no physical implications are
found in the parameters. Moreover, the landslide distribution
varies with time (Fan et al., 2018), but there are still no specific
associations with the utilized distribution parameters.

In summary, previous studies have used the power-law
distribution for the entire landslide inventory in an earthquake
area, often confusing landslides with different seismic and
landform conditions or even including landslides from different
historical events. Therefore, the power-law exponents have
no relationship with any of the specific influential factors.
Furthermore, it is frequently noticed that the landslides in the
subregions of the earthquake-affected area do not follow the
power-law distribution at large scales. This requires a more
effective method to describe the size distribution and spatial
patterns of landslides in an earthquake area.

This study investigates landslides in several watersheds in
the Wenchuan earthquake area based on the latest complete
inventory of seismic landslides (Xu et al., 2014). A new
distribution form of landslide area is proposed, and then the
distribution parameters in relation to the spatial characteristics
of the landslides are discussed. This method is expected to be
applicable for the landslide distribution characteristics under
other influencing factors.

DISTRIBUTION OF LANDSLIDES
INDUCED BY THE WENCHUAN
EARTHQUAKE

Data Source and the Frequency–Area
Curve
The landslide inventory used in the study was published in
2014 (Xu et al., 2014). It is based on 86 high-resolution

images with pre- and post-earthquake interpretations, including
aerial photographs with 1-, 2-, 2. 4-, and 5-m resolutions,
SPOT 5 with a 2.5-m resolution, CBERS02B with a 19.5-m
resolution, IKONOS with a 1-m resolution, ASTER with a 15-
m resolution, IRS-P5 with a 2.5-m resolution, QuickBird with
0.6- and 2.4-m resolutions, and ALOS with a 2.5-m resolution.
The inventory contains 197,481 landslides with a total area of
1,160 km2, and individual landslide areas range from 0.00003 to
6.972824 km2, covering an area of 110,000 km2 (Figure 1). This
inventory provides more detailed landslide data and is referenced
according to Harp’s earthquake landslide distribution cataloging
and mapping rule. Accordingly, more small-scale landslides were
identified, and the result is more complete and closer to the
actual situation of the Wenchuan earthquake landslide (Harp and
Jibson, 1996; Xu et al., 2014).

In the process of obtaining the frequency–area curve, binning
is used to divide landslide areas, and both equivalent and
inequivalent bin widths are used. The inequivalent bin width
increased with the increase of landslide area, so the bin widths are
approximately equal in logarithmic coordinates (Malamud et al.,
2004). Each bin includes the proportion of the area occurrence,
and both cumulative and noncumulative proportions are used. It
is generally observed that the frequency–area curve has a straight
line for medium and large landslides, which implies that the
distribution satisfies the power law:

P(> A) = cA−α (1)

where A is the landslide area, P(>A) is the cumulative proportion
of landslides with areas greater than A, and c and α are
parameters. Similarly, the noncumulative curve also applies to the
distribution in many cases:

p(A) = c′A−β (2)

where p(A) is the noncumulative proportion of landslides, and
c′ and β are parameters.

For the present case, we put forward the cumulative
frequency–area curve of the entire landslides (Figure 2),
which shows the power-law range from 0.1 to 1 km2, with
c = 1.234× 10−5, α = 2.46741, and R2 = 0.9976.

This differs remarkably in the power exponent compared
with the result of Xu et al. (2014), who used the same data
and obtained c = 13, α = 2.0745, and R2 = 0.9931, ranging
from 0.01 to 1 km2. It illustrates that the power-law curve
strongly depends on the processing method and that the same
data may result in different exponents. Moreover, even if the
power-law curve holds, it covers only a very small portion of
the landslide (about less than 10 or 1%). There is no detailed
study on the power-law parameters, partly because in the process
of obtaining the landslide frequency–area relationship, some
researchers used an equivalent bin width, whereas others used
inequivalent, some used cumulative frequency–area, whereas
others used noncumulative (Fujii, 1969; Hovius et al., 1997,
2000). There is no uniform standard for the bin width and
proportion of area, and the valid range of fitting line is greatly
influenced by subjective factors, which has greatly influenced the
distribution of parameters. Therefore, it is difficult to analyze
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FIGURE 1 | Spatial distribution of landslides in the Wenchuan earthquake region.

these parameters and to use them for the analysis of the spatial
characteristics of landslides.

Study Area
The power-law curve is usually applied to the entire inventory
of earthquake-induced landslides. This inevitably confuses
landslides with different geological and geomorphological
conditions and makes the power exponent meaningless in
relation to the influencing factors. Therefore, it is necessary to
consider landslides in certain control conditions. For example,
we can consider landslides in watersheds under similar seismic
and geological conditions, and it should reflect the landslide
distribution under geomorphological conditions. Watershed is
taken as a unit area because it is a natural site where landslides
occur, and all influential factors can be conveniently determined
in an individual watershed.

The suitable area for this study should have the following
characteristics: (i) different landslide density distributions, (ii)
different topographies, and (iii) greatly affected by earthquakes,
namely with a similar background but local differences. Thus, for
the study area, we selected the region along the highway from
Dujiangyan to Wenchuan (DW) in the Wenchuan county in the
Sichuan province. The study area is approximately 1,200 km2.

The Wenchuan earthquake created 1 × 109 m3 of landslides
along the highway, damaged 80% of the road, more than 10 km
was completely covered by the collapsed material, more than 50
bridges were damaged, and traffic was disrupted, causing great
difficulties for disaster relief (Zhuang et al., 2010). The epicenter
is near the region and lies in its middle and lower part, with
the Longmenshan (LMS) fault passing through the region from
southwest to northeast. The fault broke from the epicenter to the
northeast, so landslides were more severe in the northeast from
the epicenter than in the southwest (Figure 1).

The distance to the fault in the study area is from 3 to 18 km,
and the peak ground acceleration is from 0.56 to 1.32 g in the
Wenchuan earthquake. Mountains and steep gorges characterize
this region, the high terrain is in the northwest, and the low
terrain is in the southeast, the elevation is from 1,014 to 4,450 m,
and the average slope angle is from 30 to 35◦. Lithologies are
mainly granitoid and intermediate with coal seam, pyroxene,
and other sedimentary rocks. Belonging to the mountainous
subtropical humid monsoon climate zone, it is one of the
rainfall centers in the western Sichuan province, where heavy
rain often occurs.

In this study, a digital elevation model with a resolution of
30 m was adopted, and a SWAT modular of ArcGIS was used
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FIGURE 2 | Double logarithm chart of the cumulative frequency–area of the landslides.

to divide the study area into watersheds. This study included 11
watersheds along the DW highway and a total of 11,631 landslides
with an area of 66.82 km2. The watersheds are the Longtan
(LT) watershed, the Xingfu (XF) watershed, the Taiping (TP)
watershed, the Yeniu (YN) watershed, the Chediguan (CDG)
watershed, the Luoquanwan (LQW) watershed, the Dayin (DY)
watershed, the Huanglian (HL) watershed, the Xiaogou (XG)
watershed, the Zhuanjinglou (ZJL) watershed, and the Qicenglou
(QL) watershed. Among them, the XG watershed has the largest
total number of landslides (TNl) (2,441), whereas the smallest
number of landslides (166) is in the ZJL watershed. The largest
total landslide area (TAl) (11.11021 km2) is in the XG watershed,
whereas the smallest is in the ZJL watershed (0.421146 km2), as
shown in Figure 3 and Table 1.

LANDSLIDE DISTRIBUTION IN
WATERSHEDS

Scaling Distribution
Considering the characteristics of landslide distribution in the
study area, we used the equivalent bin width. The bin interval was
set at 0.0001 km2, and by using the cumulative curves, we found

that the curves do not follow the power-law form even on the tails
(Figure 4). Rather, we found that the landslides of all scales are
subject to a scaling distribution (Eq. 3) that combines the power-
law with the exponential distribution (Yong et al., 2013, 2017):

P(> A) = CA−ρexp (−A/Ac) (3)

where, C, ρ, and Ac are the parameters listed in Table 2.
We found that C and ρ are related by a logarithmic

relation (Figure 5), which means C is not independent, and
the distribution is determined by the parameters ρ and Ac. It
is expected to be derived from some underlying probability
distributions. Accordingly, the distribution is reduced to the pair
ρ and Ac.

We found that ρ can well reflect the density of the landslide
area (Dl), and Ac coincides with Pl, the proportion of large
landslides, with a lower limit of 0.01 km2 as determined by
Ac (Figure 6).

As for ρ and Ac, we found that they are linearly related in six
watersheds and show a discrepancy in the other five watersheds.
Two points (CDG watershed, LQW watershed) have deviated
from the fitting line and are located on the left and above the
line, whereas three of them (TP watershed, XG watershed, LT
watershed) are on the right and below the line, meaning that
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FIGURE 3 | Landslides within 11 watersheds along the highway from Dujiangyan to Wenchuan (DW).

TABLE 1 | Attributes of Watersheds.

Watershed Elevation (m) Df (km) PGA (g) TAw (km2) TNl Tal (km2) Nl Dl Pl Ml

LT 1,617–4,450 18 0.56–0.88 55.0178 892 2.7234 45 0.0495 0.0504 0.0454

XF 1,666–3,291 11 0.92–1 32.4855 830 4.2417 84 0.1306 0.1012 0.1169

TP 1,014–3,478 4 1.08–1.24 25.3097 1116 6.5060 139 0.2571 0.1246 0.1882

YN 1,117–3,689 10 0.84–0.96 23.2927 1409 8.8280 221 0.3790 0.1568 0.1521

CDG 1,072–2,984 15 0.8–0.84 16.8441 627 5.2091 135 0.3093 0.2153 0.1181

LQW 1,317–3,433 8 0.88–1.12 28.2474 967 8.2407 215 0.2917 0.2223 0.2340

DY 1,625–3,975 8 0.96–1.12 23.4656 1390 10.1355 237 0.4319 0.1705 0.2694

HL 1,236–3,775 3 1.16–1.28 24.6464 1233 7.0097 183 0.2844 0.1484 0.1159

XG 1,030–3,460 5 0.88–1.16 40.1529 2441 11.1102 255 0.2767 0.1045 0.2135

ZJL 2,053–2,956 14 0.84–1.04 27.8276 166 0.4211 5 0.0151 0.0301 0.0179

QL 1,549–3,734 10 0.96–1.08 21.0836 560 2.3943 45 0.1136 0.0804 0.0550

Distance to fault (Df); Total area of watershed (TAw); Total number of landslides (TNl); Total area of landslides (TAl); Number of large-scale landslides (Nl); Density of
landslide area (Dl); Proportion of large-scale landslides (Pl); Maximum landslide area (Ml); Peak ground acceleration (PGA). A large-scale landslide has a landslide area
greater than 0.01 km2.

Ac of the CDG watershed and the LQW watershed are higher
than ρ, whereas Ac of the TP watershed, the XG watershed, and
the LT watershed are lower than ρ (Figure 7). Accordingly, we
considered that the number of large-scale landslides is more than
small-scale landslides in the CDG and LQW watersheds, but the

small-scale landslides have a major part within the TP watershed
and the XG watershed.

The tail landslide distribution within watersheds did not
satisfy the power law. Landslides of all scales are subject to the
scaling distribution and not just the tail of the distribution. ρ and
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FIGURE 4 | Scaling distribution of landslides within 11 watersheds.

Ac can reflect the density of the landslide area and the proportion
of the large landslides, respectively.

Spatial Analysis
After the analysis discussed earlier, we examine the spatial
distribution characteristics of landslides within the watersheds.
We have noticed that landslides inside the watersheds can be
clarified in three categories, as shown in Figure 8. The first type
includes the watersheds ZJL, QL, LT, and XF. Their ρ values
are negative, their landslide densities and areas are small, and
distributions are dispersed (Figure 8A). The second type includes
the watersheds HL, CDG, LQW, and XG. Their ρ values are from

TABLE 2 | Landslide distribution parameters in watersheds.

Watershed C ρ Ac R2

LT 1.2889 −0.0161 0.0022 0.9915

XF 1.0721 −0.0036 0.0037 0.9926

TP 0.4832 0.0817 0.0044 0.9785

YN 0.4117 0.0971 0.0065 0.9874

CDG 0.6144 0.0468 0.0081 0.9933

LQW 0.6046 0.0538 0.0075 0.9891

DY 0.3207 0.1191 0.0079 0.9851

HL 0.6578 0.0455 0.0051 0.9895

XG 0.5545 0.0642 0.0043 0.9898

ZJL 2.0410 −0.0699 0.0017 0.9948

QL 1.3378 −0.0249 0.0032 0.9938

0.0455 to 0.0642, and their landslide densities and the degree of
concentration are higher than in the four watersheds mentioned
before (Figure 8B). The third type includes the watersheds
TP, YN, and DY. Their ρ values (from 0.0817 to 0.1191) and
densities are the highest among the three types of watersheds
(Figure 8C). From the analysis discussed earlier, it can be seen

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

-0.10

-0.05

0.00

0.05

0.10

0.15

ρ=0.00188-0.0988ln(C-0.01994)

R2=0.99643

C

ρ

FIGURE 5 | C–ρ relationship of the distribution.
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FIGURE 6 | (A) ρ–Dl and (B) Ac–Pl relationship for landslides in the study
watersheds.

that ρ value could reflect the landslide density. We then analyzed
the relationship between Ac and the spatial distribution of
landslides. The proportions of the large-scale landslides are small
within the watersheds ZJL, LT, QL, and XF, and their Ac values are
the smallest and range from 0.0017 to 0.0037 (Figure 9A). Higher
proportions of the large-scale landslides are noticed within the
watersheds XG, TP, HL, and YN, and their Ac values range from
0.0043 to 0.0065 (Figure 9B). The number and the degree of
concentration of the large-scale landslides within the watersheds
LQW, DY, and CDG are higher, and theirAc values are the highest
and range from 0.0075 to 0.0081 (Figure 9C).

In addition, we found that the watersheds with the lowest
Ac values are also those with the lowest ρ values, such as the
watersheds ZJL, LT, QL, and XF (Figures 8A, 9A). However,
the medium and large values of the two parameters are not
consistent. For example, the CDG watershed and the LQW
watershed have medium ρ values and large Ac values. We then
assessed their spatial distribution characteristics and found that

the CDG watershed and the LQW watershed have more large-
scale landslides than other watersheds. These landslides are
concentrated together, and despite their medium densities, their
Ac values are large, and ρ values are medium (Figures 8, 9). In
contrast, more medium- and small-scale landslides are dispersed
within the TP watershed despite large densities in the watershed;
their Ac values are medium, and ρ values are large (Figures 8, 9).
This characteristic may well prove our conclusion that the
proportion of the large-scale landslides is higher than the small-
scale landslides within the CDG and LQW watersheds, but
within the TP watershed is the opposite. We found that the
CDG watershed has the highest Ac value, and the landslide
concentrate degree of this watershed is one of the greatest.
Thus, we conjectured that Ac could reflect the concentration
degree of large landslides, which is expected to be confirmed by
sufficient data.

HOT SPOT ANALYSIS

Z-Scores for the Watersheds
To analyze the concentrated degree of landslides within the
watersheds, we performed a hot spot analysis using the Getis-
Ord Gi∗ tool of ArcGIS, which provides a value related to the
clustering of landslides. Taking the landslide area as weight,
this tool works by looking at each landslide in the context of a
neighboring landslide to calculate which features with either high
or low values are spatially clustered. In our research, high and low
values correspond to large and small landslide areas, respectively.
A landslide with a large area surrounded by landslides with a
large area will be defined as a statistically significant hot spot. The
local sum for one landslide and its neighbors is proportionally
compared with the sum of all landslides in the region. When
the local sum is very different from the expected local sum and
when that difference is too large to result from a random chance,
a statistically significant Z-score will be generated (Eq. 4). The
larger the value of the statistically significant positive Z-scores,
the more intensive is the clustering of high values (hot spot). For
statistically significant negative Z-scores, the smaller the Z-score,
the more intensive the clustering of low values (cold spot). There
is no obvious spatial clustering if the Z-score is close to zero (not
significant) [Copyright(C) 1995–2013 Esri]:

Z =

∑n
j =1 ωi,jxj − X̄

∑n
j =1 ωi,j

S

√
[n

∑n
j =1 ω2

i,j−(
∑n

j =1 ωi,j)2

n−1

(4)

where xj is the area of jth landslide, ωi,j is the weight of the
distance between ith landslide and landslide jth, and n is the total
number of landslides:

X̄ =

∑n
j =1 xj
n

(5)

S =

√∑n
j =1 x

2
j

n
− (X̄)2 (6)
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FIGURE 7 | ρ–Ac relationship for landslides in 11 watersheds.

FIGURE 8 | Classified ρ and corresponding spatial distribution of landslides within watersheds.
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FIGURE 9 | Classified Ac and corresponding spatial distribution of landslides within watersheds.

To analyze the clustering degrees within the watersheds, we
calculated the Z-score sum for hot spots (Zsh), the number
of hotspots (Nh), the average Z-score for hot spots (Zah), the
number of cold spots (Nc), the Z-score sum for cold spots (Zsc),
and the average Z-score for cold spots (Zac), as shown in Table 3.

Distribution Parameters and Z-Scores
The sum of the Z-scores for hot spots (Zsh) and the sum of the
Z-scores for cold spots (Zsc) have corresponding relations with
ρ, as shown in Figures 10A,B. However, the Z-scores have no
linear relationship with Ac, as shown in Figures 10C,D. (Notes:
The ZJL watershed does not have a cold spot, and there are only
10 watersheds for Zsc-ρ and Zsc-Ac.)

Although the CDG watershed has the highest Ac, the sum
of the Zsh is not the highest in this watershed, but it is the
highest in the XG watershed, as shown in Tables 2, 3. We then
observed the hot spots distribution of landslides with the two
watersheds (Figure 11) and found that the CDG watershed has
many concentrated landslides, but their areas are not as large
as the landslides inside the XG watershed. As the Z-score is
affected by the landslide area, the larger area leads to a higher
Z-score. That is why the Z-score for hot spots of the CDG
watershed is lower than the XG watershed. In addition, despite
the total number of landslides within the CDG watershed is
smaller than in the XG watershed, the proportion of the large-
scale landslides with the CDG watershed is greater than within
the XG watershed, so Ac of the CDG watershed is greater.
We then analyzed the watersheds with small-scale landslides
to determine whether they conform to this rule. The XF

watershed and the QL watershed have low landslide density,
low Ac and ρ values, low sums of Zsh, but the sum of the
Zsc are high because of small-scale landslides within the two
watersheds are in the majority (Table 3 and Figure 11). We
consider that Ac of the total landslide within the watershed
could not reflect the local spatial clustering degree of landslides.
Because the hot spots analysis is more focused on the size
and distance of landslides that are clustered together, Ac is
more focused on the proportion of the large-area landslides
within the watershed.

TABLE 3 | Z-scores of watersheds.

Watershed Zsh Nh Zah Nc Zsc Zac

LT 414.5329 143 2.8988 172 −339.0281 −1.9711

XF 282.9456 92 3.0755 19 −33.8098 −1.7795

TP 448.2614 100 4.4826 283 −604.0893 −2.1346

YN 586.8547 195 3.0095 350 −820.0218 −2.3429

CDG 311.6820 128 2.4350 75 −163.3526 −2.1780

LQW 383.3916 131 2.9720 161 −320.6247 −1.9915

DY 550.4717 191 2.8821 549 −1716.4727 −3.1265

HL 399.0793 129 3.1178 173 −358.7550 −2.0737

XG 854.9474 281 3.0425 433 −962.4430 −2.2227

ZJL 80.3711 29 2.7714 0 – –

QL 169.6324 64 2.6505 45 −86.8006 −1.9289

ZJL watershed does not have a cold spot because the distance between landslides
with a small area in this watershed is too far to meet the clustering conditions.
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FIGURE 10 | Distribution parameters in relation to hot spot (A) Zsh–ρ a, (B) Zsc–ρ, (C) Zsh–Ac, (D) Zsc–Ac relationship.

FIGURE 11 | Distribution of hot spots and cold spots within watersheds.
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In addition, by analyzing the hot spots, we found that
the large-scale landslides are located in the lower part of the
watersheds and concentrated near the outlets of the watersheds
or the sub-watersheds; the small-scale landslides are located in
the middle or upper part of the watersheds and were always far
from the outlets, as shown in Figure 11.

DISCUSSION AND CONCLUSION

Research generally considers that the tail of the landslide
frequency–area relationship fits the power law, but the
relationship between parameters and the spatial distributions
has never been analyzed. There is no standard for building the
frequency–area, and the range of fitting with power-law is greatly
influenced by subjective factors. Therefore, it is difficult to relate
the power exponent to the spatial distribution of landslides.
We considered landslides in typical watersheds and found that
the cumulative frequency satisfies the scaling distribution. The
watershed with low density, small area of landslides, and low
proportion of the large-scale landslides and clustering degree
has small ρ, Ac, and Z-score values. If Ac is greater than ρ,
then the large-scale landslides are more frequent than the small-
scale landslides, whereas when ρ is greater than Ac, the landslide
distribution characteristics are the opposite. Watershed can have
a high Z-score and high density of landslides, yet not necessarily
high Ac because the Z-score is affected by the landslide area. On
the contrary, a watershed with a large proportion of large-scale
landslides and high Ac yet the small landslides area will reduce
the Z-score.

In our research, the cumulative frequency–area of landslides
within several watersheds satisfies a scaling distribution that
derives two parameters: the exponent ρ and the characteristic
area Ac. It was found that the two parameters reflect the
landslide density and the proportion of the large-scale landslides,
respectively, and that the relationships are determined by the
data. We then performed a hot spot analysis to investigate the
relationship between the parameters and the spatial clustering
degree of landslides. From the analysis, we consider that the hot
spot analysis emphasizes the size and distance of landslide area,

which clusters together. Ac emphasizes the proportion of the
large-area landslide within the watershed, whereas ρ emphasizes
the density of the landslides.

In addition, considering the watershed as a spatial cell rather
than a grid is more in line with the natural characteristics
of the landslide and can provide more details on the
spatial distribution of landslides within a watershed. In
this research, the watershed is considered as a factor of
landslide division; it is expected that the same method
can be easily used for landslide distribution under other
influential factors.
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Evaluation of Remote Mapping
Techniques for Earthquake-Triggered
Landslide Inventories in an Urban
Subarctic Environment: A Case Study
of the 2018 Anchorage, Alaska
Earthquake
S. N. Martinez*, L. N. Schaefer†, K. E. Allstadt and E. M. Thompson

U.S. Geological Survey, Geologic Hazards Science Center, Golden, CO, United States

Earthquake-induced landslide inventories can be generated using field observations but
doing so can be challenging if the affected landscape is large or inaccessible after an
earthquake. Remote sensing data can be used to help overcome these limitations. The
effectiveness of remotely sensed data to produce landslide inventories, however, is
dependent on a variety of factors, such as the extent of coverage, timing, and data
quality, as well as environmental factors such as atmospheric interference (e.g., clouds,
water vapor) or snow and vegetation cover. With these challenges in mind, we use a
combination of field observations and remote sensing data from multispectral, light
detection and ranging (lidar), and synthetic aperture radar (SAR) sensors to produce a
ground failure inventory for the urban areas affected by the 2018 magnitude (Mw) 7.1
Anchorage, Alaska earthquake. The earthquake occurred during late November at high
latitude (∼61°N), and the lack of sunlight, persistent cloud cover, and snow cover that
occurred after the earthquake made remote mapping challenging for this event. Despite
these challenges, 43 landslides were manually mapped and classified using a combination
of the datasets mentioned previously. Using this manually compiled inventory, we
investigate the individual performance and reliability of three remote sensing techniques
in this environment not typically hospitable to remotely sensed mapping. We found that
differencing pre- and post-event normalized difference vegetation index maps and lidar
worked best for identifying soil slumps and rapid soil flows, but not as well for small soil
slides, soil block slides and rock falls. The SAR-based methods did not work well for
identifying any landslide types because of high noise levels likely related to snow. Some
landslides, especially those that resulted in minor surface displacement, were identifiable
only from the field observations. This work highlights the importance of the rapid collection
of field observations and provides guidance for future mappers on which techniques, or
combination of techniques, will be most effective at remotely mapping landslides in a
subarctic and urban environment.
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INTRODUCTION

The November 30, 2018 magnitude (Mw) 7.1 Anchorage, Alaska
earthquake, triggered substantial ground failure throughout
Anchorage and surrounding areas (Grant et al., 2020b; Jibson
et al., 2020). The earthquake was an intraslab event with a focal
depth of about 47 km and an epicenter about 16 km north of the
city of Anchorage. Most of the landslides triggered by the
earthquake were small (<15,000 m2), and shallow, attributed to
the relatively short duration of ground motion (1 min) and deep
source, which resulted in widespread shaking but without high
peak ground accelerations (Grant et al., 2020b; Jibson et al., 2020).
Peak ground accelerations reached ∼30% g. Despite the relatively
subdued ground failure, geotechnical damage to buildings and
structures was widespread (Franke et al., 2019). The last major
earthquake to significantly damage Anchorage was the 1964 M
9.2 Great Alaska earthquake, a subduction zone earthquake that
shook the city at similar levels to the 2018 earthquake but for
4–7 min and caused extensive landslide damage, including large
translational landslides in developed areas of the city (Hansen,
1965).

The 2018 earthquake is an important ground failure event to
document thoroughly not only because of the region’s history of
earthquake-triggered ground failure, but also as a key dataset
needed to improve hazard characterization in other geologically
and climatically similar regions in the world. Documenting events
with subdued ground failure is important because these events are
underrepresented in existing inventories. Field-based
observations, photos, and ground failure features recorded by
U.S. Geological Survey (USGS) scientists during the 10 days
immediately following the earthquake are summarized in
Grant et al. (2020a) and Jibson et al. (2020). However, around
the time of the earthquake, Anchorage was experiencing
approximately 6 h of daylight between 09:45 and 15:50, which
limited field observations. A cumulative total of 0.109 m of
snowfall occurred in Anchorage the 10 days following the
earthquake (NOAA/NWS Interactive Snow Information
https://www.nohrsc.noaa.gov/interactive), which also obscured
overflight observations, particularly at higher elevations (Grant
et al., 2020b; Jibson et al., 2020). Partial or complete snow
coverage persisted until late March (NOAA/NWS Interactive
Snow Information). Grant et al. (2020b) and Jibson et al.
(2020) note that their observations are generally incomplete
due to these adverse conditions experienced while collecting data.

Our long-term goal is to produce a complete and high-quality
landslide inventory associated with this event. The data collected
in the field, however, were not sufficient to build such an
inventory. The adverse conditions experienced indicate that an
inventory built solely on these data would be incomplete because
some landslide features may have been obscured by snowfall or
simply not documented (i.e., those landslides in areas not easily
accessible). Thus, we built an inventory by using both the field
observation data and remotely sensed data as they supplement

one another. To assemble our inventory, we first identified the
location of landslide features by comparing the field observation
data (photos) to high-resolution satellite imagery (WorldView-2,
WorldView-3, GeoEye-1). Once the location of the landslide was
determined, we used a variety of remote sensing methods to
locate the head scarp of the landslide feature and to also delineate
the landslide where possible. In creating our inventory, we found
that the effectiveness of remote sensing data to identify and
delineate landslides in this environment varied. In our study
area, some field-verified landslides could be identified and
delineated using multiple methods while others could not be
identified at all. Our inventory allowed us to determine the
capabilities and limitations of remotely sensed data to map
landslides in an environment such as Anchorage. This
knowledge can be used to guide remote mapping beyond the
field area and help us achieve our goal of eventually creating a
complete landslide inventory.

We use the landslide inventory to retroactively evaluate the
effectiveness of the three remote sensing methods used: 1) light
detection and ranging (lidar) elevation differencing, 2)
normalized difference vegetation index (NDVI) differencing,
and 3) synthetic aperture radar (SAR) amplitude change
detection (ACD). We compare these methods against the
inventory data in a subarea of Anchorage for which data for
all three methods are available. For clarity, we refer to this subarea
as the study area. We describe the effectiveness of each method to
identify certain landslide types and why some methods may have
outperformed others. Additionally, we identify environmental
and data-type specific challenges. While such an analysis will help
in our efforts to build a complete inventory beyond the study area,
this work can aid others in remote mapping as well.

BACKGROUND

The location, size, and spatial distribution of landslides can help
define regional landslide trends, reveal geologic and structural
patterns of a given environment, and inform landslide hazard and
susceptibility models (e.g., Keefer, 1984; Mirus et al., 2020).
Landslide inventories have long provided the foundation for a
wide variety of landslide research, such as updating and
improving landslide susceptibility models (Stanley and
Kirschbaum, 2017; Nowicki Jessee et al., 2018), optimizing
empirical and deterministic criteria for landslide early warning
systems (Baum et al., 2010; Mirus et al., 2018), or understanding
the role of hillslope erosion in landscape evolution (Larsen and
Montgomery, 2012). Thus, compiling landslide inventories after
triggering events (e.g., earthquake, rainfall) is highly beneficial for
landslide hazard assessment and risk reduction efforts.

Recent studies have emphasized the importance of landslide
inventory quality across a variety of triggering scenarios,
landscapes, and climates for landslide studies and model
development (Tanyaş et al., 2017; Mirus et al., 2020; Tanyaş
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and Lombardo, 2020). The accuracy and completeness of
landslide inventories vary due to data quality, accessibility, and
availability, as well as event-specific field conditions and
accessibility. Limitations in data resolution or field
observations also result in infrequent documentation of the
smallest landslides triggered by a seismic or rainfall event
(Guzzetti et al., 2012). Additionally, the end goals and purpose
for creating landslide inventories differ between authors and
across organizations, resulting in varying levels of detail and
data inclusion (e.g., Mirus et al., 2020).

Many advancements in landslide mapping and inventory
quality can be linked to the increasing availability and
attainability of remotely sensed imagery that aid in large scale
mapping (Guzzetti et al., 2012), complementing traditional field
observations. Manual image interpretation or automatic
detection methods can be used with a variety of aerial and
satellite data products, such as optical (visual) images,
multispectral images, laser scanning, and radar sensors to
develop inventories (Booth et al., 2009; Martha et al., 2011;
Harp et al., 2016; Mondini et al., 2019). The quality of
inventories developed using each approach varies, however,

and is dependent on a few variables. For example, manual
interpretation of imagery can be limited by the resolution of
data and experience of the mapper and can be time intensive
depending on the level of detail desired (Galli et al., 2008).
Automatic methods tend to increase the speed at which
inventories can be generated but have been shown to
overestimate the landslide-affected area resulting in a high
false positive rate (Li et al., 2014). Additionally, each data
product has inherent advantages and disadvantages. For
example, optical images can be hampered by poor weather
conditions, poor lighting, clouds, or snow. Active radar
methods typically avoid some barriers associated with optical
imaging; radar satellites emit their own energy and thus can
collect images at night, and the longer wavelengths used allow
imaging through clouds and other adverse weather conditions.
However, radar methods are still limited by geometric distortions
(e.g., layover, foreshortening, or shadowing), ground moisture,
dense vegetation or heavy snowfall, and atmospheric noise
(Colesanti and Wasowski, 2006; Rott and Nagler, 2006).
Imagery-based landslide mapping can be enhanced with the
continued improvement of image filtering, clustering,

FIGURE 1 | Location of the study area within Anchorage, AK. The extent of the lidar differenced area is shown in gray. Landslides are shown as orange squares
whereas he approximate location of field observations are shown as blue circles. The field observations consist of multiple photos of all types of ground failure (including
ground failure as a result of liquefaction) taken from various vantage points (ground, helicopter). Orange squares are locations that are included in the landslide inventory
for this study, which also have corresponding field observations in most cases.

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 6731373

Martinez et al. Evaluation of Remote Mapping Techniques

139

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


classification, change detection, multi-data integration, or other
techniques (Guzzetti et al., 2012 and references therein). Thus,
carefully examining the performance of these methods under
various circumstances can help improve the overall efficacy of
landslide mapping for others.

DATA AND METHODS

In this study, we constrain our study area to the extent covered by
the post-earthquake lidar (lidar differenced area, Figure 1)
because it is relatively well characterized by field observations
(Grant et al., 2020a). In addition to this, all other data we examine
(optical and SAR imagery) have coverage in this area (details of all
data used can be found in Table 1). We first used a combination
of field observations (Grant et al., 2020a), manual inspection of
optical imagery, and three different remote sensing methods
(lidar differencing, NDVI differencing, and SAR amplitude
change detection), to produce a landslide inventory in the
study area. We describe each method and the accompanying
datasets in detail in the following subsections. For each landslide,
we identify the approximate center of the head scarp as a point
and delineate the shape of the landslide if possible. Delineation of
each landslide involved creating a polygon of the landslide
affected area. The landslide-affected area includes both the
landslide scar and deposit. We classify each landslide
according to Keefer (1984) and note whether the landslide is
new or reactivated.

Using this manually compiled inventory, we then
retrospectively evaluate the effectiveness of the three remote
sensing methods to identify and delineate the different types
of mapped landslides individually without the benefit of manual
analysis and combined data sources. We do this by comparing the
probability distribution of landslide pixels and the non-landslide
pixels for each method. The intention of this exercise is to explore
how well these methods might work for automated mapping. Our
evaluation methods are detailed in Evaluation of Method
Effectiveness.

Field Observations and Optical Imagery
For this study, we used the 1,301 geotagged photos from the
ground and helicopter reconnaissance collected by Grant et al.
(2020a) within the study area to help map and delineate 43
landslides (Figure 1). Because of the differences in vantage points
and cameras used, the accuracy of coordinates associated with
each photo varies, thus this field observation database is used
primarily with comparisons against high-resolution optical

satellite imagery (WorldView-2, WorldView-3, GeoEye-1). We
use the high-resolution optical imagery to determine a
more accurate location for the manifestations of ground failure
in the field photos by matching geographic features seen in the
photos to those in the optical imagery (i.e., houses, structures,
roads).

Elevation Differencing
Elevation differencing determines the change in elevation
between two time periods using digital elevation models
(DEMs). The difference in elevation is determined at the pixel
scale by subtracting the change in elevation between two aligned
pixels (James et al., 2012). This method has proven effective for
mapping landslides in a variety of environments and climates
(e.g., Bull et al., 2010; Ventura et al., 2011; Prokešová et al., 2014;
Mora et al., 2018). The extent of the effectiveness of this method
for landslide mapping, however, is dependent on the spatial and
temporal resolution of the DEMs, quality of the data, and the
extent of coverage.

This study uses 1-m pre- and post-earthquake DEMs derived
from lidar data acquired by the state of Alaska andmade available
via the Alaska Division of Geological and Geophysical Surveys
(DGGS) elevation portal (DGGS Staff, 2013). The pre-event data
were collected in May 2015 while the post-event data were
acquired in December 2018, the week following the
earthquake. The reported vertical accuracy for the 2015 DEM
is 9.25 cm. Vertical accuracy of the 2018 DEM has not yet been
reported by the acquisition team. More information and
metadata for these datasets can be downloaded via the DGGS
elevation portal (DGGS Staff, 2013). The 2015 DEMwas provided
in feet, so this raster was converted to meters to remove a vertical
offset between the DEMs. The DEMs were aligned by first
clipping each to the area of which they both overlap. Then,
using the “raster align” tool in QGIS (3.10; https://www.qgis.org/),
the clipped DEMs were aligned to one another. Aligning the
DEMs involves rescaling and reprojecting the DEMs as needed
to ensure that the individual pixels in each image are aligned to
one another. After alignment, the DEMs are differenced using
the raster calculator in QGIS. The elevation differenced map is
computed as

ElevationDifference � DEMPost − DEMPre (1)

in which DEMPost refers to the 2018 DEM while DEMPre refers to
the 2015 DEM.

After creating the elevation differenced map, landslides were
identified by examining areas within the differenced map that
suggested there had been a significant increase or decrease in

TABLE 1 | The spatial resolution, wavelength, revisit time, and coverage offered by the sensors whose data were used in this study.

Data source Spatial resolution Wavelength Revisit time Global coverage

Sentinel-1 imagery ∼14 m C-band (5.6 cm) 12 days Yes
Sentinel-2 imagery 10 m NA 5 days Yes
DGGS (2015) lidar 1 m NA NA No
DGGS (2018) lidar 1 m NA NA No
ALOS-2 ∼10 m L-band (22.9 cm) 14 days Yes
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elevation (relative to surrounding landscape) since the DEMPre

was acquired (2015). The landslides are visually easy to identify,
as most of the study area experienced very little change in
elevation. Despite this, a majority of the areas that experienced
dramatic changes in elevation since 2015 were related to
development and mining activity. Thus, it is necessary to
differentiate elevation change that is solely due to landsliding
from these other events. To do so, we used high-resolution optical
imagery (WorldView-2, WorldView-3, GeoEye-1) to rule out the
changes that were the result of development or mining activity.

Normalized Difference Vegetation Index
Differencing
NDVI is used to map the relative distribution of vegetation in
landscapes. This can be useful for landslide mapping because
slope failure often results in damage to vegetation. NDVI maps
are generated using the near-infrared (NIR) and red (R) image
bands contained within a multispectral image (Deering and Haas,
1980):

NDVI � NIR − R
NIR + R

(2)

Because vegetation absorbs visible light and reflects near-
infrared light, this index gives an indication of the health of
existing vegetation at the pixel scale. It also maps the relative
distribution of vegetation in a landscape because non-vegetated
areas are classified with a lower NDVI value. Thus, NDVI
differencing maps can reveal areas where vegetation has been
damaged or stripped away from the landscape (i.e., due to
landslides). Differencing maps can be generated by subtracting
the pre-event NDVI pixels from the post-event NDVI pixels.
Then, within the change detection image, those pixels that
correspond to large changes in NDVI can be further assessed
visually to determine whether the change corresponds to a
landslide. As previously mentioned, we use optical imagery
(WorldView-2, WorldView-3, GeoEye-1) to determine if the
NDVI change corresponds to other phenomena such as urban
development and/or mining activity.

The lack of sunlight and presence of snow prohibited the
creation of accurate NDVI maps in the days immediately
preceding and following the event, so we instead used summer
NDVI composites from 2018 to 2019 to generate a NDVI
differencing map spanning the time of the earthquake. The
summer composites were produced using Google Earth Engine
(Gorelick et al., 2017) using satellite imagery from the European
Space Agency’s Sentinel-2 multispectral satellite. The 10 m
resolution composites are generated by taking the median
value of each pixel within an image collection after filtering
out pixels containing clouds. The composites are then used to
produce NDVI maps for the summers preceding and following
the earthquake and then differenced to isolate areas where
landslides triggered by the earthquake may have caused
damage to the normal vegetative cover. The NDVI differenced
map is computed as

NDVIDifference � NDVICompPre −NDVICompPost (3)

in which NDVIComppost refers to the summer 2019 NDVI
composite and NDVICompPre refers to the summer 2018
NDVI composite.

Synthetic Aperture Radar Amplitude
Change Detection
Synthetic aperture radar (SAR) amplitude images measure the
proportion of microwave backscattered from that area on the
ground, which depends on a variety of factors such as the type,
size, shape, orientation, roughness, moisture content, and
dielectric constant of reflectors within a given pixel. SAR
amplitude change detection (ACD) compares the amplitude
intensities between two dates to detect changes in amplitude
intensity that may indicate surface changes (e.g., floods, mass
movements, or liquefaction events).

Three sets of images are used for change detection before and
after the earthquake from the Sentinel-1 and ALOS-2 satellites
(Supplementary Table S1). Scene pairs include ascending
Sentinel-1 on November 17, 2018 and January 26, 2019,
descending Sentinel-1 data on November 22, 2018 and
December 4, 2018, and ascending ALOS-2 data on November
17, 2018 and January 26, 2018. Images were processed using
SNAP 7.0 software (SNAP - ESA Sentinel Application Platform
v7.10, http://step.esa.int). Both Sentinel and ALOS-2 products
were radiometrically calibrated to radar reflectivity per unit area,
filtered for speckle using a Lee filter operating as a 3 × 3 pixel
moving window, corrected for geometric/terrain distortions
using a range doppler orthorectification, and composited to
determine amplitude changes between the pre-event and post-
event image. Pixel intensity was converted to the backscattering
coefficient measured in decibel (dB) units that ranges from c.
+10 dB for very bright objects to −40 dB for very dark surfaces.
Differencing these data that are converted to decibel units is
equivalent to the log-ratio method used in other studies (Mondini
et al., 2019; Jung and Yun, 2020; Lin et al., 2021) to determine the
change in amplitude between SAR scenes. These studies compute
the log-ratio value as

Aratio � log10(
Apre

Apost
) (4)

in which the Apre and Apost values correspond to the radar
brightness coefficient values (Mondini et al., 2019; Jung and
Yun, 2020; Lin et al., 2021). Once we converted our data to
dB units, the images were then simply differenced as

AmplitudeDifference � AmpPre − AmpPost (5)

Additionally, an amplitude change detection time series of
Sentinel-1 images between 2015/11/29 and 2020/11/01 was
generated using Google Earth Engine (see Data Availability
Statement). This approach produces pre- and post-event time
series maps utilizing Sentinel-1 ground range detected (GRD)
products. GRD products are processed to remove thermal noise
and are radiometrically and terrain calibrated. The processed data
are also provided in dB units, so the composited time-series maps
are differenced as
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AmplitudeDifference � AmpCompPre − AmpCompPost (6)

In the workflow, image composites are generated for time
periods preceding and following the event of interest utilizing VH
(vertical transmit, horizontal receive) polarization images. The
method utilizes both ascending and descending data to generate
the composites. Different polarizations and seasonal composites
(i.e., summer months only) did not impact the results. List of the
SAR scenes used can be found in the Supplementary Data
Sheet S1.

Evaluation of Method Effectiveness
Manual mappers visually look for discontinuities in remote
sensing products that correspond to landslides. They typically
use knowledge of where landslides are more likely to occur (e.g.,
steep coastal bluffs, riverbanks) to guide their efforts. Automatic
mapping relies on a similar approach and can be implemented
using either pixel-based or object-based image analysis methods.
Pixel-based methods are those that classify imagery at the pixel
scale and do not take into consideration neighboring pixels
(Scaioni et al., 2014). Object-based image analysis typically
involves the use of thresholding and segmentation techniques
(Martha et al., 2011). Thresholding typically entails removing or
masking the areas within target images where landslides are least
likely to occur, similar to the way in which a manual mapper uses
their knowledge of landslide susceptibility to guide their efforts.
Segmentation groups the portions of the image into objects
comprising similar pixels (Hölbling et al., 2015) working the
same way as a human would to identify continuous sets of pixels
that may correspond to a landslide. A set of rules, which can be
prescribed by the mapper or determined using machine learning
algorithms, can be applied to the target image to determine which
of the objects or pixel clusters correspond to landslides.
Automatic methods tend to struggle with differentiating
similar objects from one another, resulting in a large number
of false positives (Li et al., 2014). Because of this, automatic
methods tend to be more successful when those landslide pixels
and subsequently the objects to which they correspond are
markedly different from the surrounding pixels (Rosin and
Hervas, 2005).

With these concepts in mind, the performance of each of the
three remote sensing methods is compared using the probability
distributions of landslide pixels versus landscape pixels for each
method. This is done in order to determine whichmethods would
be more useful at delineating landslides of different types in this
environment using both manual and automatic mapping
methods without prior knowledge of the exact location of the
landslides. Those landslide pixels that are markedly different
from the remaining pixels in the target image would have a
probability distribution that differs from the general landscape
distribution and thus, likely be more easily identifiable using both
manual and automatic approaches.

To generate the probability distributions for each method, we
sampled the landslide pixels and landscape pixels of each
corresponding raster. We sampled the values at all landslide
pixels and then randomly sampled an equal number of pixels
from the landscape (non-landslide areas). We then plotted the

probability distributions of the sampled landslide and landscape
pixels for each method to facilitate comparison. To determine the
effect of noise removal on the distributions and to smooth all layers
to roughly the same resolution for more direct comparison, the
elevation and NDVI differenced raster images were smoothed using
a Gaussian filter with a standard deviation of ∼15 m. The results of
this smoothing on the distributions can be seen in Supplementary
Figure S2. Noise removal did not significantly impact the results, so
we do not filter the final data. We show the percentage of observed
landslide pixels as a point over each bin in the probability
distributions for each method. This displays, for each method,
the range of values where landslides are likely to be found.

LANDSLIDE DETECTION AND METHOD
EFFECTIVENESS

Landslide Inventory
Within the study area, we were able to successfully document the
location of 43 landslides using the combined methodologies,
including three soil block slides, nine soil slumps, 20 soil slides,
nine rapid soil flows, and two rock falls (those landslides that were
not classified by those who gathered field observations were
classified using the field photos and remote sensing data). Of
these landslides, we were able to delineate 39 (90%) as they were
easy to identify visually using the remotely sensed data; the
remaining 4 (9%) were mapped with a point at the
approximate location that was determined using field
observations. Field photos of these undelineated landslides (two
soil slides and two incipient soil slumps) can be seen in Figure 2. Of
the 43 landslide events, 38 (88%) were identifiable using the
elevation differenced map and 21 landslides (48%) were
identifiable using the NDVI differenced map. No landslides
could be delineated using the ACD methods. Remote mapping
methods failed to aid in the identification and delineation of four
landslides identified in the field, and five landslides not observed in
the field were mapped using remote mapping methods. A visual
representation of each method is presented in Figure 3. Because
the data we used have varying degrees of spatial and temporal
resolution, the accuracy of each mapped landslide varies. Accuracy
refers to the location of the landslide, the existence of the landslide
(i.e., whether it can be confidently attributed to the earthquake) and
the delineation. Mapping uncertainty associated with each feature
can be found in Supplementary Table S3.

Method Performance Summary
As previously mentioned, elevation and NDVI differencing were
able to aid in the identification and delineation of most landslides
whereas ACD methods were largely ineffective. This statement is
supported by Figures 4A,B, where the probability distributions of
the landslide pixels in the elevation and NDVI change maps differ
greatly from those of the remaining landscape in comparison to
results from the amplitude-based methods (Figures 4C–F) which
are essentially indistinguishable. The distributions of the
landscape and landslide pixels for the ACD methods are
similar, which suggest that the data are generally too noisy to
identify and delineate landslides.
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For the elevation differenced map, the probability distribution
for the landslide pixels is negatively skewed. Because a negative
change in elevation corresponds to erosion, this suggests that the
landslides mapped are mostly erosional (i.e., soil slides, rapid soil
flows). The NDVI change distribution is positively skewed,
suggesting that the mapped landslides are those that are severe
because they remove vegetation and leave a significant scar on the
landscape. The minimum landslide area mapped using elevation
differencing was 26 m2 while the minimum area mapped by the
NDVI differencing method was 355 m2. SAR ACD methods
were ineffective primarily due to noise (possibly caused by
atmospheric interference, snowfall, moisture, and dense
vegetation) hindering the delineation and identification of
landslides. Additionally, the amplitude values of the resulting
landslide scar or deposit were similar to the original landscape
(i.e., soil slide occurring in areas of unvegetated, exposed soil),
preventing the utility of this method. Geometric distortion also
prevented any delineation of landslides along coastal bluffs using
the SAR ACD methods. Because of these issues with SAR ACD
methods, we will only discuss the effectiveness of elevation and
NDVI differencing to delineate landslide types in subsequent
sections.

Elevation Differencing
The probability distributions for the soil slumps, soil slides, and
rapid soil flows suggest that elevation differencing was more
effective at delineating these landslide types than the others (soil
block slides and rock falls) in our study area (Figures 5C, E, G).
This is based on the fact that the distribution of landslide pixels
for these landslide types differs from the general landscape
distribution and also because, over a certain range of elevation

change values, a relatively high percentage of landslide pixels is
observed. Landslide pixels associated with soil block slides and
rock falls (Figures 5A,I) are too similar to the remaining
landscape distribution to state that elevation differencing can
be effective at delineating those landslide types automatically.
Despite this, the field observations allowed us to identify and
delineate the soil block slides using the elevation differenced map.
So, in regard to manual mapping, the differencing was helpful to
delineate these types of landslides but only with prior knowledge
of likely landslide locations. This suggests that automatic methods
may not be able to systematically map soil block slides using
elevation differencing. Rock falls, in our study area, were not able
to be delineated using the lidar differenced map. Even with
knowledge that they occurred and the general vicinity in
which they occurred, delineation was challenging. This could
be attributed to their deposits being thin and the time difference
between the lidar datasets producing noise that corresponds to
non-earthquake related changes. Only two rock falls were
mapped in the study area, which limits our observations of
these features.

Normalized Difference Vegetation Index Differencing
The probability distributions for the soil slumps and rapid soil
flows suggest that NDVI differencing was more effective at
delineating these landslide types than the others (Figures
5D,H). This is based on the fact that the distribution of
landslide pixels for these landslide types differs from the
general landscape distribution and also because, over a certain
range of NDVI change values a relatively high percentage of
landslide pixels is observed. Soil block slides, soil slides, and rock
falls (Figures 5B, F, J) are too similar to the remaining landscape

FIGURE 2 | The map on the left (A) shows the location of landslides by type as well as the location of those landslides that could not be delineated using remote
sensing mapping methods (labeled B–E on the map). Corresponding photos of those landslides can be seen to the right of the map. The top center photo shows a (B)
soil slide with a person for scale. The top right (C) and bottom center (D) show incipient soil slumps and the bottom right (E) shows a soil slide. (Photo Credits: USGS).
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distribution to state that NDVI differencing is effective at
delineating these landslide types.

DISCUSSION

In this study, lidar elevation differencing and NDVI differencing are
proven to be more effective at identifying and delineating landslides
in an urban subarctic environment than SAR ACD methods.
Elevation differencing proved useful to identify and delineate soil
slumps, soil slides and rapid soil flows, while NDVI differencing is
more effective at capturing soil slumps and rapid soil flows. The
success of the elevation differencing method at delineating soil
slumps, soil slides and rapid soil flows can be attributed to the
fact that they have distinct erosional or depositional signatures which
increases the extent of the landslide affected area. Because soil slumps
tend to result in a large, semi-coherent landslide deposit left in the

landscape, the probability distribution for this landslide type is
positively skewed and thus, these landslides are easy to delineate
using elevation differenced data. Soil slides and rapid soil flows have
an elongated erosional signature with small and thin deposits, which
result in a negatively skewed probability distribution.

The success of the NDVI differencing method at delineating soil
slumps and rapid soil flows can be attributed to their severity and size,
with the major limiting factor being that landslides need to occur in
vegetated areas in order for NDVI methods to be useful. Because soil
slumps and rapid soil flows are disruptive to the overlying vegetation,
they have the potential to have a lasting impact on the landslide
affected area. Even though the images used in our study are a year
apart, these landslides are still able to be delineated due to their
severity and ability to leave a lasting scar on the landscape. Thus, in
scenarios where these landslide types are known to have been
triggered, the methods presented here could prove useful at
identifying those landslides and delineating them.

FIGURE 3 | An example of the performance of each method at detecting rapid soil flows (outlined in red). Panel (A) shows the performance of elevation differencing
and (B) shows the performance of NDVI differencing. PanelsC–E display the performance of the remaining SAR ACD methods. An aerial photo of these rapid soil flows
can be seen in panel (F) (Photo Credit: USGS).
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Although the earthquake occurred in late fall with winter
conditions, seasonal NDVI composites preceding and following
the earthquake were shown to be effective at identifying and
delineating landslides. Because the NDVI composites were
generated using widely available Sentinel-2 data, the method
can be easily implemented in future studies. The resolution of
this data (10 m resolution), however, may fail to map smaller
landslides. In this study, for instance, the minimum landslide area
that could be mapped using the NDVI differenced data was
355 m2. While not widely available, higher resolution imagery
containing NIR bands, such as from theWorldView sensors, may
be able to generate higher resolution NDVI differencing maps.

Challenges to Overcome
While we were able to effectively identify and delineate landslides
observed in the field using the remote sensing methods, and delineate
an additional five that were not identified in the field, we also faced
many challenges that prevented us frommapping all landslides in our
study area. Snow accumulation and lack of sunlight were the primary
challenges associated with landslide mapping using field and

multispectral data, but the expression of the landslides due to the
nature of the ground motion also played a crucial role. Despite the
November 30 earthquake being the largest earthquake since theM 9.2
Great Alaska earthquake to affect the Anchorage area, the landslides
triggered were generally small, shallow, and limited in number (Jibson
et al., 2020).Many slope failures consisted ofminor slope cracking and
deformation (e.g., Figure 2) that may result in costly damage to
structures but are too subtle to identify via the remote sensing
methods. In addition, many of these geotechnical failures were
repaired prior to the date of the post-event imagery used in this
study (we had to wait until the Spring or Summer for post-event
images to be of sufficient quality for mapping). To summarize,
producing a complete and high-quality landslide inventory is
challenging for this particular earthquake due to the environmental
conditions as well as the subdued surface expression of the landslides.

Within our study area, we failed to delineate soil slides and soil
slumps that were identified in the field with remotely sensed data.
This is primarily attributed to the resolution of the NDVI (∼10 m)
and elevation data (1 m) because these failures were small. This
may also result in a failure to effectively map rock falls as well.

FIGURE 4 | Probability distributions comparing landslide pixels to landscape pixels for each method. Panel (A) and (B) display the distributions for the elevation and NDVI
differencing, respectively. Panels (C–F) display the distributions of the remaining SARACDmethods. Confidence interval for each point shown as gray line (significance level 0.05).
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FIGURE 5 | Probability distributions comparing landslide pixels to landscape pixels by landslide type for the elevation and NDVI differencing methods. Panels (A)
and (B) display the distributions that correspond to soil block slides for the elevation and NDVI differencing methods, respectively. Similarly, panels (C) and (D)
correspond to soil slumps, panels (E) and (F) correspond to soil slides, (G)and (H) correspond to rapid soil flows and (I) and (J) correspond to rock falls. Confidence
interval for each point shown as gray line (significance level 0.05).
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However, there were only two rock falls in our study area so with
this small sample size it is difficult to definitively say if rock falls are
generally challenging to map using the methods presented here.
Additionally, NDVImay have failed to capture some landslides due
to the composites being produced from images taken several
months before and after the earthquake event, if vegetation
disruption was minor, the vegetative cover could have fully
recovered in that time. While we were able to successfully use
NDVI differencing to map other landslides in our study area, this
method is unfortunately not applicable above tree line in arid or
semi-arid environments due to a lack of vegetation and thus lack of
changes in vegetation due to landslide scouring. Though outside
the study area, there were some rock falls above tree line in the
mountainous areas east of Anchorage (Grant et al., 2020b; Jibson
et al., 2020). Elevation differencing can solve these issues, however
there are limitations related to data availability as well as the spatial
and temporal resolution of the data. Here, ourmapping was limited
by the extent of the 1-m DEM data and the 3-year time difference
between the pre- and post-DEMs. One way to overcome this may
be to use the DEMs available as part of the ArcticDEM project
(Porter et al., 2018). The ArcticDEM data are derived from stereo
satellite imagery and made available for a large portion of the
northern latitudes at 2 m resolution. The data are periodically
released, however, and at the time of publication the latest release
did not include any post-earthquake DEMs. Depending on data
access and computer processing power, one could also generate
these DEMs using stereo satellite imagery and the NASA AMES
stereo pipeline (Beyer et al., 2018). One limitation, however, is that
unlike lidar methods, the ArcticDEM project produces a digital
surface model (DSM) that does not remove vegetation. This
emphasizes the importance of collecting regular “pre-event”
baseline data to facilitate rapid and reliable mapping.

Despite the many advantages of using SAR sensors for mapping
surface changes, SAR ACDmethods were not effective at mapping
landslides in this study due to several geomorphologic, radiometric,
and image processing factors (see Mondini et al., 2021 for a recent
review). During image pre-processing, both horizontal-horizontal
(HH) and horizontal-vertical (HV) polarization scenes were
considered. HV scenes typically had lower (darker) backscatter
and did not improve landslide detection, therefore only HH scene
results are shown herein. Additionally, we found that a Lee filter
operating as a 3 × 3 pixel moving window sufficiently reduced
speckle, as determined visually and by comparing the variance in
the intensity image before and after filtering.

Multiple platforms with different SAR bands and look
directions were used to optimize landslide detection. A direct
comparison of C-band (Sentinel-1) versus L-band (ALOS-2)
performance is challenging due to the different temporal and
spatial resolutions of the scenes. While the L-band scene
contained less speckle than the C-band scenes, it did not
result in an improvement in landslide detection. Landslide
events must cause surface changes of a significant magnitude
to be recognizable in the SAR imagery, thus changes in the
amplitude were not sufficiently higher than the noise or
speckle effect to identify surface changes. One of the most
significant limiting factors for landslide detection in this study
was illumination issues caused by the side-looking geometry of

the SAR system, which results in geometric distortions in steep
terrain, such as layover (top of a backscattering object is recorded
closer to the radar than the lower parts of the objects) and radar
shadows (lack of radar illumination). While both ascending and
descending scenes were considered, steep, south-facing slopes
where many of the landslides occurred still experienced
significant geometric distortions, preventing landslide detection.

SAR can penetrate clouds and image during the day or a night,
providing a potential workaround for mapping in the dark in
subarctic and arctic regions. However, the snow coverage may
have resulted in the large amount of noise present in our SAR
scenes. Thus, the main question arising from this work is what other
methods can we further develop to help with landslide mapping in
dark, snow covered environments? A second questions is: what
methods will help to map small and subdued landslides? The
motivation for the first question is due to the need for mapping
in subarctic regions, the second question arises from the fact that in
many instances’ landslide inventories are produced for events that
are extreme and leave an easily discernible mark on the landscape
(Tanyaş et al., 2018). Thus, the landslide inventories that are
generally used for modeling efforts tend to rely on information
from these dramatic events and not events that result in smaller
landslides. This situation results in subsequent models relying on
these inventories to be biased. The answer to both questions can be
obtained by further testing and developing methods in such an
environment (where visibility is limited due to snow and lack of
sunlight) and under similar conditions (limited surface expression of
landslide damage).

Our work indicates the value of closely analyzing and further
developing remote mapping methods in environments such as
Anchorage, AK, and for events that result in minor surface
deformation. A similar earthquake event occurred on March 31,
2020, in Stanley, Idaho. After the Mw 6.5 earthquake, USGS field
reconnaissance efforts were restricted due to the ongoing COVID-
19 pandemic. In addition, local response was stymied due to
avalanche risk and late season snow limiting ground visibility via
aircraft (Idaho Geological Survey, 2020). The Idaho event is just one
example that highlights the utility of remote mapping in an
environment such as Anchorage, AK. Anthropogenic climate
change has also been shown to alter the characterization and
frequency of landslides occurring in subarctic conditions (Coe
et al., 2018; Coe, 2020) suggesting that developing such methods
will be of high importance into the future. Here, we suggest that
exploring remote mapping methods systematically can lead to a
better understanding of landslide mapping in such an environment.
Such development in the field could then greatly improve
earthquake-triggered landslide susceptibility and hazard models.

The challenges left to overcome relate mainly to the resolution
and quality of the data available. ArcticDEM data could potentially
be used to map landslides in subarctic environments. Additionally,
higher resolution satellite imagery could be used to generate NDVI
maps. Digital image correlation (DIC) of high-resolution satellite
imagery may be more effective at capturing coherent landslides such
as soil block slides (Bickel et al., 2018). Despite the ineffectiveness of
the SAR ACD methods, InSAR (Interferometric Synthetic Aperture
Radar) could be used to map coherent deformation, such as lateral
spreading, as well (Saroli et al., 2005). TheNASA-ISRO SARmission
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(NISAR) with a projected launch date of 2022, will have a long
(L-band) wavelength, 3–10m resolution, temporal resolution of
12 days, and will be freely available and open to the public. Since
L-band radar can penetrate the tree canopy at greater depths than
C-band, these new data may be useful in detecting landslides in
forested areas (Rosen et al., 2017).

CONCLUSION

In our study, we provide evidence that remote mapping can
augment field-based inventories by aiding in the discovery of
previously unobserved landslides and also help to better delineate
the landslide-affected area. Simultaneously, we also highlight the
importance of rapid post-earthquake field observations in
environments such as Anchorage, AK, as these allowed us to
build an adequate inventory and also developmethods to map the
remaining area affected by the earthquake.

Broadly, we demonstrate a gap in our knowledge of earthquake-
triggered ground failure in arctic and subarctic environments in
winter conditions because of difficulties in remote mapping under
such circumstances. With many earthquake-prone areas subject to
such circumstances (northern Japan, Alaska, Canada, Iceland) and
many other regions prone to similar geologic conditions andwinter
weather, there is merit in determining an effective way to map
landslides in such an environment. To date, few earthquake-
induced landslide inventories are located in these subarctic
environments despite the relatively high amount of seismic
activity (Tanyaş et al., 2018). Many of the identified challenges
are not unique to Alaska; thus, the observations and mapping
methods described in this study can provide the foundation for
others to develop workflows for mapping landslides in subarctic
and urban regions and improve response and landslide inventory
efforts in these challenging environments.
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New Insight into Post-seismic
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Earthquakes do not only trigger landslides in co-seismic phases but also elevate post-
seismic landslide susceptibility either by causing a strength reduction in hillslope materials
or by producing co-seismic landslide deposits, which are prone to further remobilization
under the external forces generated by subsequent rainfall events. However, we still have
limited observations regarding the post-seismic landslide processes. And, the examined
cases are rarely representative of tropical conditions where the precipitation regime is
strong and persistent. Therefore, in this study, we introduce three new sets of multi-
temporal landslide inventories associated with subsets of the areas affected by 1) 2016
Reuleuet (Indonesia, Mw � 6.5), 2) 2018 Porgera (Papua New Guinea, Mw � 7.5) and 3)
2012 Sulawesi (Indonesia, Mw � 6.3), 2017 Kasiguncu (Indonesia, Mw � 6.6) and 2018 Palu
(Indonesia, Mw � 7.5) earthquakes. Overall, our findings show that the landslide
susceptibility level associated with the occurrences of new landslides return to pre-
seismic conditions in less than a year in the study areas under consideration. We
stress that these observations might not be representative of the entire area affected
by these earthquakes but the areal boundaries of our study areas.

Keywords: landslide, earthquake, precipitation, landslide recovery, post-seismic landslides

INTRODUCTION

Based on the number of casualties, earthquakes and precipitation are the most common
landslide triggers (Petley, 2012) and near-real-time global landslide susceptibility assessment
methods are separately available for both earthquake- (e.g., Nowicki Jessee et al., 2018; Tanyaş
et al., 2019) and rainfall-triggered (Kirschbaum and Stanley, 2018) landslides. However, none of
these statistically based methods are capable of accounting for the coupled effect of earthquakes
and precipitation. Nevertheless, characterizing these interactions is critical to advance effective
landslide susceptibility assessment because various studies show that the combined effect of
earthquakes and rainfall could increase landslide susceptibility (e.g., Sassa et al., 2007;
Sæmundsson et al., 2018; Wistuba et al., 2018; Bontemps et al., 2020; Chen et al., 2020a).
Specifically, earthquakes are recognized as an important predisposing factor increasing post-
seismic landslide susceptibility either by disturbing the strength and/or geometry of hill slope
materials or by producing co-seismic landslide deposits, which are prone to instabilities mostly
due to subsequent rainfall events (e.g., Lin et al., 2004; Parker et al., 2015; Tanyaş et al., 2021).
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h.tanyas@utwente.nl

†ORCID:
Hakan Tanyaş
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Either way, the seismic effect can cause a reduction in rainfall
thresholds in post-seismic periods (e.g., Liu et al., 2008, Liu
et al., 2021; Tanyaş et al., 2021).

To capture the preconditioning effect of seismic shaking for a
rainfall-triggered landslide susceptibility assessment, we first need
to understand the evolution of landslides in post-seismic periods.

In the geoscientific literature, the post-seismic landslide
evolution is examined on the basis of the temporal variation of
several parameters such as landslide rate (km2/year, in Barth et al.,
2020), landslide density (m2/km2, in Marc et al., 2019), climate
normalized landslide rate (Marc et al., 2015), number of landslides
(Saba et al., 2010), total landslide area (Shafique, 2020) and
cumulative landslide area/volume (Fan et al., 2018). The
timespan of the post-seismic period required to restore a given
area to pre-seismic landslide susceptibility levels is called landslide
recovery time (e.g., Marc et al., 2015; Kincey et al., 2021). And, it is
mostly identified using one of the parameters listed above.

Various factors can be interchangeably and/or simultaneously
used to explain the mechanisms behind landslide recovery time.
Positive correlations between landslide recovery time and various
factors such as the amount of co-seismic landslide deposits (e.g.,
Chen et al., 2020b; Tian et al., 2020; Yunus et al., 2020), the
intensity of seismicity in terms of both mainshocks and
aftershocks (Fan et al., 2018; Tian et al., 2020) or revegetation
rate (e.g., Chen et al., 2020; Xiong et al., 2020; Yunus et al., 2020)
are emphasized in the literature. However, there is no agreement
in the geoscientific community on the actual meaning of the term
landslide recovery. On one hand, some geoscientists define the

recovery as a mechanical healing process where the strength of
hill slope material is restored (e.g., Marc et al., 2015). On the other
hand, others argue that healing on strength of hill slope materials
is not possible through natural processes under low pressure and
temperature conditions (e.g., Parker et al., 2015).

Regardless of the landslide recovery definition, our knowledge
regarding the post-seismic mass wasting processes mostly, if not
entirely, depends on landslide inventories. In particular, multi-
temporal landslide inventories are vital to understand the spatial
and temporal evolution of landslides in post-seismic periods.
However, cloud-free aerial images required to create multi-
temporal landslide inventories especially for large areas are
rarely available and therefore, multi-temporal inventories are
not common (Guzzetti et al., 2012). To date, only nine
earthquakes in the literature have been associated with post-
seismic landslides recorded in a multi-temporal scheme (see
Figure 1). These earthquakes correspond to: 1) 1993 Finisterre
(Papua New Guinea, Mw � 6.9) (Marc et al., 2015), 2) 1999 Chi-
Chi (Taiwan, Mw � 7.7) (e.g., Shou et al., 2011; Marc et al., 2015),
3) 2004 Niigata (Japan, Mw � 6.6) (Marc et al., 2015), 4) 2005
Kashmir (India-Pakistan, Mw � 7.6) (Saba et al., 2010; Shafique,
2020), 5) 2008 Iwate (Japan, Mw � 6.9) (Marc et al., 2015), 6) 2008
Wenchuan (China, Mw � 7.9) (e.g., Tang et al., 2016; Zhang et al.,
2016; Yang et al., 2017; Fan et al., 2018; Chen et al., 2020b), 7)
2012 Haida Gwaii (Canada, Mw � 7.8) (Barth et al., 2020) and 9)
2015 Gorkha (Nepal, Mw � 7.8) (Marc et al., 2019; Kincey et al.,
2021). Based on the analyses executed on these events, there is a
general agreement that earthquakes elevate the landslide

FIGURE 1 | World map of the Köppen-Geiger climate classification (Kriticos et al., 2012) overlaid by the spatial distribution of cases (blue points) in which post-
seismic landslide evolution processes were examined viamulti-temporal landslide inventories. Red points indicate the sites where wemappedmulti-temporal inventories
for this study.
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susceptibility in post-seismic periods and the landscape returns to
pre-seismic susceptibility level over time.

Nevertheless, the agreement reported above within the
geoscientific community leaves room for an equal amount of
disagreements on the duration of the recovery. In fact, even for
the same earthquake, there are different observations regarding
the time through which the elevated landslide susceptibility
persists in post-seismic periods. For instance, Shafique (2020)
examines a subset of the area affected by the 2005 Kashmir
earthquake from 2004 to 2018 using multi-temporal landslide
inventories and indicates that 13 years after the earthquake the
level of landslide susceptibility is still larger than the level estimated
in pre-seismic conditions. Conversely, Khan et al. (2013) monitored a
sample of the hill slopes that failed during theKashmir earthquake and
suggested that the landscape returned to pre-seismic susceptibility
level within five years after the earthquake.

In the same way as above, different timespans of elevated landslide
susceptibility have also been suggested for other large earthquakes such
as Chi-Chi (e.g., Shou et al., 2011; Marc et al., 2015), Wenchuan (e.g.,
Fan et al., 2018; Chen et al., 2020b) andGorkha (e.g., Marc et al., 2019;
Kincey et al., 2021) earthquakes. Notably, the inconsistency between
different observations could be related to the boundaries of examined
areas (e.g., Shafique, 2020; Yunus et al., 2020) because the ground
shaking level spatially varies, hence its effect varies as well. In other
words, the damage produced by ground motion is not homogeneous
throughout the area affected by an earthquake. Kincey et al. (2021)
elaborate on this issue and refer to both methodological and
conceptual issues. They note that the method used to map
landslides and, in particular, the data used for the mapping may
play a role. They also indicate that post-seismic landslide evolution
could be assessed bymonitoring new landslides or both new landslides
and reactivated co-seismic landslides. In turn, based on the target post-
seismic landsliding processes, different conclusions regarding the post-
seismic evolution of landslides could arise.

Taking aside these uncertainties, the actual landslide recovery
time could also be different in each earthquake-affected area
because of the diversity in environmental conditions (e.g., Kincey et al.,
2021). For instance, landslide recovery time could be longer in areas
affected by stronger earthquakes (e.g., Fan et al., 2018) and/or stronger
and more numerous earthquake aftershocks (Tian et al., 2020). Also,
the amount of co-seismic landslide deposits and precipitation patterns
could influence the landslide recovery time (e.g., Tian et al., 2020). This
shows that different seismic and climatic conditions could shape the
general characteristics of post-seismic landslide evolution processes. In
this context, new cases reflecting different environmental conditions
are essential to better understand the post-seismic processes.

Specifically, new cases from the high-relief mountainous
environments where the precipitation rate is high and persistent
could provide valuable information regarding landslide recovery
time because such conditions could trigger more landslides and
allow us to create high-resolution, multi-temporal landslide
inventories. However, the literature summarized above shows that
post-seismic landslide evolution is rarely examined for fully humid,
tropical conditions (Figure 1). The only case belonging to this climate
zone is the 1993 Finisterre earthquake (Marc et al., 2015). Therefore, in
this paper, we aim to contribute to the current literature by introducing
three new sets of multi-temporal landslide inventories (two sites from

Indonesia and one from Papua New Guinea) where the post-seismic
periods are governed by strong and persistent precipitation regimes.

MATERIALS AND METHODS

We examined the post-seismic landslide evolution associated
with five earthquakes (Figure 1): 1) August 18, 2012 Sulawesi
(Indonesia, Mw � 6.3), 2) May 29, 2017 Kasiguncu (Indonesia,
Mw � 6.6), 3) September 28, 2018 Palu (Indonesia, Mw � 7.5), 4)
December 6, 2016 Reuleuet (Indonesia, Mw � 6.5) and 5)
February 25, 2018 Porgera (Papua New Guinea, Mw � 7.5). In
each case, we investigated subsets of areas affected by co-seismic
landslides and created multi-temporal inventories by only
mapping new landslides (Table 1).

The area affected by the Reuleuet earthquake is the first site we
examined (Figure 2). The second area is affected by the Porgera
earthquake (Figure 3). The third site is affected by three earthquakes:
the Sulawesi, Kasiguncu and Palu earthquakes (Figure 4). We should
note that the aggregated version of the inventoriesmapped for the first
and the third sites were also examined by Tanyaş et al. (2021) to
investigate the legacy of earthquakes as a predisposing factor in
susceptibility assessments run for rainfall-induced landslides in
post-seismic periods. Specifically, the authors run statistically based
multivariate analyses to monitor the contribution of Peak Ground
Acceleration (PGA) through time from co-seismic to post-seismic
periods. However, landslide recovery time was not elaborated by
Tanyaş et al. (2021) as we focus on in this contribution.

Tomapmultitemporal inventories we used PlanetScope (3–5m),
Rapid Eye (5m) images acquired from Planet Labs (Planet Team,
2018) and high-resolution Google Earth scenes. The details of the
satellite images we used are presented in Supplementary Tables S1,
S2 and S3 (see Supplementary Material). We systematically
examined the satellite images through visual observation, which is
the ideal mapping technique reported in the literature (e.g., Xu 2015;
Tanyaş et al., 2021). We did not differentiate source and depositional
areas of landslides and delineated them as a part of the same polygon.

For each earthquake-affected area, we initially examined all
available remotely sensed scenes and choose the largest available
cloud-free regions. In turn, all the multitemporal images we used
for mapping convey the real landslide distribution over time
during pre- and post-seismic periods. Notably, we could not
follow a fixed temporal resolution to create the inventories. We
mapped as many inventories as the imagery availability allowed
(Table 1). In each inventory, we eliminated landslides that have
previously occurred and only include new failures.

The 2012 Reuleuet earthquake occurred along a strike-slip fault
and it triggered only 60 co-seismic landslides over a scanned area of
1356 km2 (Figure 2). We created one landslide inventory associated
with pre-seismic conditions, a co-seismic landslide inventory and
three post-seismic ones (Table 1). Intermediate, basic volcanic and
mixed sedimentary rocks are the dominant lithologic units (Sayre
et al., 2014) in which landslides are triggered. Based on our
interpretation, the co-seismic failures are primarily characterized
by shallow translational slides (60 landslides, 0.4 km2 landslide
area). The percentage of post-seismic landslides that interact with
previously occurred failures is negligible (<1% of the post-seismic
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landslide population) and no remobilization was observed in the post-
seismic period. In other words, most post-seismic failures are
characterized by new landslides.

As for the 2018 Porgera earthquake, which occurred on a thrust fault,
we examined a 491 km2 window and mapped a co-seismic landslide
inventory including 1,168 landslides with a total surface of 9.8 km2

(Figure 3). Landslides were triggered in basic volcanic and carbonate
sedimentary rocks (Sayre et al., 2014). Rock/debris avalanches and
translational landslides are observed as part of the co-seismic landslide
inventory. We also mapped two pre-seismic and three post-seismic
landslide inventories (Table 1). Despite the relatively large deposits of co-
seismic landslides, we did not observe any connection between post-
seismic landslides and those within previously occurred deposits or
sliding surfaces. In other words, we mapped only new landslides.

The areas affected by the 2012 Sulawesi (strike-slip), 2017
Kasiguncu (normal fault) and 2018 Palu (strike-slip)

earthquakes overlap (Figure 4). We mapped the landslides
associated with the three earthquakes over an area of
1078 km2. The co-seismic landslide inventories we created for
the overlapping area contained 520 (1.2 km2), 386 (0.5 km2) and
725 landslides (2.3 km2), respectively. We also mapped five, seven
and three post-seismic landslide inventories for Sulawesi, Kasiguncu
and Palu earthquakes, respectively (Table 1). In each case, we interpret
the majority of landslides as shallow slides which were triggered in
metamorphic and acid plutonic rocks (Sayre et al., 2014). Also, in each
case, post-seismic landslides appeared as new failures regardless of the
locations of co-seismic landslides and their deposits. The percentage of
the post-seismic landslides that appeared to have interacted with
previous failures is less than 5%.

Once the multi-temporal inventories were compiled, we
examined the temporal evolution of land sliding based on the
changes in both the number of landslides and landslide rates. We

TABLE 1 | Details of the multi-temporal landslide inventories.

Reuleut earthquake

Acquisition date of # Of landslides Total landslide area (m2)
Pre-images Post-images

Pre-seismic 12-Jul-15 27-Jul-16 65 514,396
Co-seismic (6-12-2016) 27-Jul-16 14-Dec-16 60 373,600
Post-seismic1 14-Dec-16 25-Mar-17 742 839,696
Post-seismic2 25-Mar-17 12-Feb-18 105 509,187
Post-seismic3 12-Feb-18 5-Jan-19 162 689,646

Porgera earthquake

Acquisition date of # Of landslides Total landslide area (m2)
Pre-images Post-images

Pre-seismic1 11-Jul-16 30-Sep-17 67 126,458
Pre-seismic2 30-Sep-17 4-Feb-18 66 227,392
Co-seismic (25-2-2018) 4-Feb-18 25-Mar-18 1177 10,402,050
Post-seismic1 25-Mar-18 7-May-18 5 14,715
Post-seismic2 7-May-18 16-Feb-19 35 142,476
Post-seismic3 16-Feb-19 19-Oct-19 14 53,256

Sulawesi, Kasiguncu and Palu earthquakes

Acquisition date of # Of landslides Total landslide area (m2)
Pre-images Post-images

Co-seismic-A (18-8-2012) 17-Aug-12 20-Aug-13 520 1,248,485 Sulawesi
Post-seismic-A1 20-Aug-13 6-Feb-14 15 26,647
Post-seismic-A2 6-Feb-14 5-Jul-15 40 111,938
Post-seismic-A3 5-Jul-15 19-Oct-15 62 146,584
Post-seismic-A4 19-Oct-15 16-Feb-16 21 28,999
Post-seismic-A5 16-Feb-16 25-Apr-17 20 28,375

Co-seismic-B (29 5-2017) 25-Apr-17 7-Jun-17 386 494,619 Kasiguncu
Post-seismic-B1 7-Jun-17 7-Aug-17 76 67,193
Post-seismic-B2 7-Aug-17 27-Sep-17 55 50,840
Post-seismic-B3 27-Sep-17 8-Mar-18 38 45,389
Post-seismic-B4 8-Mar-18 10-Jun-18 29 35,118
Post-seismic-B5 10-Jun-18 14-Jul-18 2 2,054
Post-seismic-B6 14-Jul-18 1-Aug-18 3 2,252
Post-seismic-B7 1-Aug-18 26-Sep-18 1 682

Co-seismic-C (2-11-2018) 26-Sep-18 2-Oct-18 725 2,494,215 Palu
Post-seismic-C1 2-Oct-18 22-Oct-18 29 41,595
Post-seismic-C2 22-Oct-18 17-Mar-19 83 147,493
Post-seismic-C3 17-Mar-19 9-Sep-19 197 312,380
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calculated the landslide rates as the total landslide area divided by
the length of the scanned time window (m2/year).

We also analyzed the variation in the precipitation regime to
evaluate the role of rainfall. We used the IntegratedMulti-Satellite
Retrievals (IMERG) Final Run product (Huffman et al., 2015),
which is available through Giovanni (v.4.32) (Acker and
Leptoukh, 2007) online data system. Using this product, we
first calculated the mean and standard deviation of daily
accumulated precipitation from a 20-years (from January 1,
2000 to March 31, 2020) time series and compared it with
variation in landslide occurrences. Second, we created boxplots

of daily accumulated precipitation for each time window that we
mapped a landslide inventory and again compared it with
variation in landslide occurrences.

RESULTS

For the area affected by the Reuleuet (December 6, 2016)
earthquake, we compiled one landslide inventory associated
with pre-earthquake conditions, a co-seismic landslide
inventory and three post-seismic ones (Table 1). We observed

FIGURE 2 |Maps showing (A) areal extent of multi-temporal inventories we mapped for the 2017 Reuleut earthquake, (B) spatial distribution of mapped landslides
and (C) Google Earth scene as a sample view of multi-temporal landslide inventories for a subset of the area. In Panel A cyan contour lines show PGA values are
acquired from the USGS ShakeMap system (Worden and Wald, 2016).
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the peak landslide rate in our first post-seismic inventory that we
created comparing the imageries acquired on December 14, 2016
and March 25, 2017. After the first post-seismic inventory, a
strong decline in landslide rates arises toward pre-seismic
conditions (Table 1 and Figure 5).

We created the second post-seismic landslide inventory
comparing the imageries acquired on March 25, 2017 and
February 12, 2018. Precipitation amounts show that during the
period that we mapped the second post-seismic inventory, the

study area was exposed to more intense rainfall events compared
to the pre-seismic period we examined (Figure 5). Also, the time
window we scanned to create both pre-seismic and second post-
seismic landslide inventories have approximately the same length,
which is one year. However, the landslide rates and the number of
landslides triggered by rainfall are still at the same level in both
phases. This shows that landslide rates that we calculated for the
occurrences of new landslides return to pre-seismic levels by
February 12, 2018 (Figure 5). This case shows that the elevated

FIGURE 3 |Maps showing (A) areal extent of multi-temporal inventories wemapped for the 2018 Porgera earthquake, (B) spatial distribution of mapped landslides
and (C) Google Earth scene as a sample view of multi-temporal landslide inventories for a subset of the area. In Panel A cyan contour lines show PGA values are
acquired from the USGS ShakeMap system (Worden and Wald, 2016).
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landslide susceptibility is only valid until March 25, 2017. Also,
we note that the highest daily accumulated precipitation for this
four-month time window (i.e., between the Reuleut earthquake
and March 25, 2017) is observed soon after the earthquake on
January 4, 2017. However, due to the lack of availability of more
frequent imagery, we could not create a landslide event inventory
for that specific rainfall event.

It is worth noting that the landslide rate of landslides triggered
by the Reuleut earthquake provided a rare observation where the
co-seismic landslide rate is smaller than their post-seismic
counterpart (Tanyaş et al., 2021). The peak landslide rate is
mostly introduced by co-seismic landslide events in the
literature (e.g., Saba et al., 2010; Fan et al., 2018). However, in
this case, the earthquake does not trigger widespread co-seismic

FIGURE 4 |Maps showing areal extent of the examined area and spatial distribution of landslides wemapped for (A–B) 2012 Sulawesi (C–D) 2017 Kasiguncu and
(E–F) 2018 Palu earthquakes. In Panels A, C and E blue contour lines show PGA values are acquired from the USGS ShakeMap system (Worden and Wald, 2016).
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landslides although it most likely disturbs hill slope materials and
makes them more susceptible. As a result, the subsequent rainfall
event causes a higher landslide rate compared to the co-seismic
phase (Tanyaş et al., 2021).

Regarding the Porgera (February 25, 2018) earthquake, we
created two landslide inventories for pre-earthquake conditions, a
co-seismic one and three additional post-seismic inventories
(Table 1). We compared two sets of images from February 4,
2018 and March 25, 2018 to map the co-seismic landslides. We
observed the peak landslide rate in the co-seismic phase and then
all post-seismic inventories gave rates in the same range with pre-
seismic observations (Table 1 and Figure 6). This shows that
landslide rates that we calculated for the occurrences of new
landslides return to pre-seismic levels by March 25, 2018
(Figure 6). Within the 50-days gap between the two sets of
images we used to create our co-seismic landslide inventory, we
noticed two peaks in daily accumulated precipitation on March
12th and 21st. Therefore, those rainfall events may have already
triggered some of the post-seismic landslides and our co-seismic
inventory may also include post-seismic landslides. However, we
do not have landslide inventories capturing those specific rainfall
events.

In the third site, affected by three earthquakes (2012 Sulawesi,
2017 Kasiguncu and 2018 Palu earthquakes), we separately
compiled co-seismic landslide inventories for each case.
Furthermore, we mapped five inventories between the 2012

Sulawesi and 2017 Kasiguncu earthquakes. Similarly, we
digitized seven inventories to monitor landslide rates between
the 2017 Kasiguncu and 2018 Palu earthquakes. Ultimately, we
compiled three additional inventories describing post-seismic
conditions with reference to the last (Palu) earthquake
(Table 1). Below, we present each earthquake and associated
pre-, co- and post-seismic landslide inventories separately.

The inventory featuring the co-seismic landslides triggered by
the Sulawesi earthquake (August 18, 2012) lacked the support of
pre-earthquake imageries. Moreover, we could not find cloud-
free images showing the situation through the entire area until the
August 20, 2013. However, we acquired some scenes, (e.g., 17th
and August 21, 2012, September 4, 2012 and February 4, 2013)
which allowed us to partly but consistently observe pre- and co-
seismic conditions in a fraction of the study area. Therefore, the
peak landslide rate we observed in the first post-seismic inventory
(August 20, 2013) likely reflects the presence of some pre- and
post-seismic landslides in addition to the co-seismic ones
(Figure 7). Nevertheless, the six intra-seismic inventories
mapped between the August 20, 2013 and the April 25, 2017
showed significantly lower landslide rates compared to the first
post-seismic one. As a result, we can still assume that the August
20, 2013 inventory mostly encompasses co-seismic landslides.

For the Kasiguncu (May 29, 2017) earthquake, we observed
another co-seismic landslide peak (Figure 7). We compiled this
inventory using images acquired on seventh, 10th and June 26,

FIGURE 5 | Landslide rates, number of landslides and daily precipitation regarding the examined time windows for the 2016 Reuleuet earthquakes. Yellow stars
show the date of the earthquake. Vertical dashed black lines indicate the dates of the satellite imagery used for mapping. In Panel A, the mean and standard deviation of
daily accumulated precipitation of the respective time windows are calculated from a 20-years time series are shown by black and gray lines, respectively. In Panel B,
boxplots show minimum, median and maximum precipitation amounts as well as first, third quartiles and outliers.
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2017. Therefore, we can confidently argue that co-seismic
landslides cause this peak. We also mapped seven intra-
seismic landslide inventories before the occurrence of the Palu
earthquake. The first two intra-seismic inventories showed
relatively higher landslide rates than the rest (Figure 7). These
relatively high rates can be linked to extreme precipitation
discharged after the Kasiguncu earthquake (please note six
rainfall peaks in Figure 7C), although these rates are still in
range or lower than the ones before the Kasiguncu earthquake
(Figure 7). Notably, the third post-Kasiguncu inventory (March
8, 2018) highlights a regular or pre-seismic landslide regime
which implies that landslide rates that we calculated for the
occurrences of new landslides return to pre-seismic levels by
March 8, 2018 (Figure 7).

For the Palu (September 28, 2018) earthquake (Mw � 7.5), we
also compiled a co-seismic landslide inventory using scenes
acquired on second and October 5, 2018. In this case, the
associated landslide rate is significantly higher due to the
strong shaking with respect to the previous two earthquakes
(2012 Sulawesi, Mw � 6.3 and 2017 Kasiguncu, Mw � 6.6), which
took place in the same area (Figure 4). The three post-seismic
inventories highlight a rapid decline in landslide rates, although it
should be noted that these rates did not align along with the low
to very low-rate trends shown in pre-Palu conditions (Figures
7A,B). Nevertheless, we do not have an adequate series of
observations as we have for the Kasiguncu case and because of

this, it is not clear whether these low landslide rates imply a return
to pre-seismic levels.

DISCUSSION

As noted earlier in the text, in this study we focused on sites where
post-seismic landslide processes are mostly governed by
occurrences of new landslides in tropics where precipitation is
high and persistent. We examined five earthquakes in total and
mapped multi-temporal landslide inventories for each of them
from pre-to post-seismic phases. Between five earthquakes, the
landslide time series we created for Sulawesi and Palu
earthquakes, on one hand, did not provide adequate
information to cover the entire process of landslide evolution.
In the Sulawesi case, we could not map a pre-seismic landslide
inventory, whereas in the Palu earthquake our inventories did not
cover a period long enough to monitor the entire post-seismic
landslide evolution. On the other hand, for three of the examined
cases (2012 Reuleut, 2017 Kasiguncu and 2018 Porgera), our
multi-temporal inventories showed that after the earthquake the
elevated landslide susceptibility levels return to pre-seismic
conditions in less than a year.

We stress that these observations may not be representative of
the entire area affected by these earthquakes but the areal
boundaries of our study areas. This means that for the whole

FIGURE 6 | Landslide rates, number of landslides and daily precipitation regarding the examined time windows for the 2018 Porgera earthquakes. Yellow stars
show the date of the earthquake. Vertical dashed black lines indicate the dates of the satellite imagery used for mapping. In Panel A, the mean and standard deviation of
daily accumulated precipitation of the respective time windows are calculated from a 20-years time series are shown by black and gray lines, respectively. In Panel B,
boxplots show minimum, median and maximum precipitation amounts as well as first, third quartiles and outliers.
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areas affected by these earthquakes these observations may not
valid. However, compared to the similar works in the literature
suggesting at least a few years for returning to the pre-seismic
susceptibility levels (e.g., Marc et al., 2015; Fan et al., 2018; Kincey
et al., 2021), our findings still point out a relatively short period.

Among the examined cases, the 2016 Reuleut earthquake is a
clear example to discuss the possible factors controlling this
relatively short period to return to pre-seismic landslide rates.

The Reuleut earthquake triggered only 60 shallow landslides in
the examined area although, within 110 days from the
earthquake, we observed 742 new landslides in the same site
(Table 1 and Figure 5). This later series of landslides is larger
than the common landslide rate in the area. However, from this
time onward, the landslide rate recovers to its pre-earthquake
pattern (Figure 5). The limited number of shallow co-seismic
landslides implies that there is not much material deposited on

FIGURE 7 | Landslide rates, number of landslides and daily precipitation regarding (A–B) the largest time-window where we examined the landslides associated
with three earthquakes (2012 Sulawesi, 2017 Kasiguncu and 2018 Palu earthquakes) and (C) a zoomed-in view plotted for pre-, co- and post-seismic landslides
associated with the 2017 Kasiguncu earthquake. Yellow stars show the date of the earthquakes. Vertical dashed black lines indicate the dates of the satellite imagery
used for mapping. In Panels A and C, the mean and standard deviation of daily accumulated precipitation is calculated from a 20-years time series are shown by
black and gray lines, respectively. In Panel B, boxplots show minimum, median and maximum precipitation amounts as well as first, third quartiles and outliers.
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Tanyaş et al. Post-seismic Landslide Evolution Processes

159

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


hill slopes and the remobilization processes through, for instance,
debris flows are negligible. This shows that the post-seismic
process is governed by occurrences of new landslides and
therefore, returning to pre-seismic landslide rates could be
relatively quick (e.g., Tian et al., 2020).

By discarding the contribution of deposit availability, the most
likely explanation for the high landslide susceptibility following
the earthquake can be associated with strength reduction in
hillslope regolith and/or bedrock caused by ground shaking
(e.g., Parker et al., 2015; Fan et al., 2019). In such cases, the
post-seismic landsliding processes may be controlled by two
mechanisms already postulated in the literature (e.g., Saba
et al., 2010; Marc et al., 2015): 1) healing of soil and/or rock
mass strength parameters and/or 2) the environmental stress due
to the subsequent rainfall discharge.

The healing of soil strength parameters is a proven process
under certain circumstances (Lawrence et al., 2009; Fan et al.,
2015; Bontemps et al., 2020). Specifically, in tropical landscapes,
we can expect relatively fast recovery rates in the vegetation cover,
which may play a large role in lateral root reinforcement for
shallow landslide mitigation (e.g., Schwarz et al., 2010). However,
vegetation recovery is a gradually occurring process and it may
take three years even for the fast-growing tree species in the
tropics (Dislich and Huth, 2012). For instance, Yunus et al. (2020)
examined the relationship between vegetation recovery and
landslide rates via Normalized Difference Vegetation Index
(NDVI) values and concluded that just based on the
established NDVI trend, pre-seismic landslide rates can be
obtained within 18 years. Moreover, considering the persistent
external stress caused by the precipitation regime in Reuleut,
Indonesia (i.e., in the absence of dry season), in such a short post-
seismic period (i.e., 110 days), healing in soil strength parameters
is not likely to take place.

The second alternative refers to the intensity and duration of
the post-earthquake rainfall regime. Precipitation may negatively
affect disturbed hillslopes that the earthquake has brought to a
Factor of Safety (FoS) close to one. However, the rainfall may not
be enough to bring the FoS to the brink of actual instability and failure.
As a result, regardless of the abovementioned healing processes, post-
seismic landslide ratesmight decrease gradually through time ormight
decline rapidly based on the climatic conditions, particularly based on
intensity and persistence of precipitation.

We can further discuss the intensity of landslide triggers, for
instance, considering post-seismic landslides following the 2005
Kashmir earthquake. After the first monsoon season following
the Kashmir earthquake, Saba et al. (2010) observed only a few
landslides despite the heavy precipitation. Our interpretation is in
line with theirs, stating that the rainfall intensity might not be
enough to trigger further landslides. On the other hand, they also
note that another possible reason for the lack of landslides is that
all unstable slopes might have already failed by that moment.
However, the unstable slope is a relative term and a failure can
occur on any slope if there is an access amount of external forces
disturbing the stability conditions.

In this context, our newly developed landslide dataset allows
us to elaborate on the relativity of the term “unstable slope” and to
make a simplified comparison between the intensity of rainfall

and earthquake events as triggering agents that exacerbate slope
stability conditions. The area affected by three earthquakes (2012
Sulawesi, 2017 Kasiguncu and 2018 Palu) shows that even
relatively low-intensity ground shaking might be more
effective than intense precipitation at triggering landslides.
After the Sulawesi earthquake, the post-seismic landslide rates
remain low until the 2017 Kasiguncu earthquake, although
several intense rainfall events occurred between 2014 and 2017
(Figure 7). However, the high landslide rate associated with the
2017 Kasiguncu earthquake occurs despite the relatively weak
ground shaking estimates reported by the U.S. Geological Survey,
ShakeMap system for the examined area (PGA≈0.08–0.10 g)
(Worden and Wald, 2016) (Figure 8A). This implies that
having a limited number of landslides related to rainfall events
may not be due to the removal of all unstable slopes or healing on
hill slope materials but because of a lack of triggers with sufficient
intensity to cause failures on hill slopes, even when some of them
have been previously damaged.

This research also provides some findings regarding the
argument that the legacy of the previous earthquakes can be
valid years after an earthquake occurs (Parker et al., 2015). The
Indonesia case where we mapped three co-seismic landslide
inventories for the same site shows that there is an increasing
trend in the co-seismic landslide rates over time (Figure 8B).
With co-seismic landslides, the intensity of ground shaking is
naturally the main factor controlling the landslide rates. In fact,
the 2018 Palu earthquake (Mw � 7.5) caused one of the biggest
landslide events observed in this region, though the site was hit by
several large earthquakes previously (Watkinson and Hall, 2019).
The Palu earthquake created strong ground motions within our
study area with PGA values ranging from 0.20 to 0.68 g
(Figure 8A). Therefore, the peak landslide rate related to the
Palu earthquake is a natural consequence of such a large
earthquake. On the other hand, within the same study area,
the severity of ground shaking related to the 2017 Kasiguncu
earthquake (PGA≈0.08–0.10 g) was relatively lower than the 2012
Sulawesi earthquake (PGA≈0.08–0.26 g). The level of ground
shaking caused by the Kasiguncu earthquake is out of the
zone in which the large majority of landslides (90% of the
total landslide population) are located in most of the
earthquake-induced landslide inventories in the literature.
Specifically, Tanyaş and Lombardo (2019) identify the 0.12 g
contour as the areal boundary of the zone containing at least 90%
of the landslides. They also identify 0.05 g as the minimum PGA
value triggering landslides. This means that our study area is
located in a zone where we do not expect so many failures caused
by the Kasiguncu earthquake. However, the Kasiguncu
earthquake triggered 382 landslides and the post-seismic
landslide rates of Kasiguncu earthquake is relatively higher
than the Sulawesi earthquake (Figure 8B), although there is
no significant change in the precipitation regime (Figure 7).
The relatively high landslide rates, in this case, might be explained
by various factors such as frequency and/or duration of ground
shaking (Jibson et al., 2004, 2019; Jibson and Tanyaş, 2020) and
detailed analyses are required to better understand these
controlling factors. Yet, among various possible explanations,
we can also count the legacy of the Sulawesi earthquake as a factor
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dictating the higher landslide rate concerning the Kasiguncu
earthquake.

The variation in the mean (and standard deviation) of
landslide rates for these three sets of post-seismic landslide
inventories (see gray dots in Figure 8B) also suggests a similar
conclusion that the legacy of the previous earthquakes might play
a role in the trend of increasing post-seismic landslide rates
through time. The accumulated disturbance on hill slope
materials might cause a small increase in the average landslide
rate of a site. As a result, the background level for the landslide
susceptibility might be higher after each earthquake compared to
previous earthquakes.

CONCLUSION

In this work, we examined the temporal evolution of landslides
during post-seismic periods in which the combined effect of
earthquakes and rainfall causes a particularly elevated landside
susceptibility. Specifically, we examined some cases where
rainfall acts as the main landslide trigger and seismicity
plays the role of a predisposing factor. We focused on
earthquakes that occurred in fully humid, tropical conditions
because of two reasons. First, post-seismic landslide processes
have been rarely investigated in these settings. Therefore,
providing a new dataset belonging to rarely examined
conditions could provide valuable information to better
understand the post-seismic processes, which are mainly
governed by site-specific environmental factors (e.g.,
seismicity, climate, etc.) (e.g., Tian et al., 2020). The second

reason is due to the high and persistent precipitation regimes
typical of tropical environments. In fact, these settings provide
the perfect conditions for continuous genesis of slope failures,
making it possible to obtain high spatial and temporal
resolution time series of landslide inventories. The average
temporal resolutions of our inventories are approximately
eight, seven and five months for the areas affected by
Reuleut, Porgera and Palu earthquakes, respectively (Table 1).

We observed that landslide susceptibility levels associated with
the occurrences of new landslides return to pre-seismic conditions
in less than a year, for the environmental settings under
consideration. This implies that the elevated landslide
susceptibility could disappear rapidly if the area is exposed to
strong and persistent rainfall discharges. However, this does not
mean that prolonged and strong precipitation regimes always bring
a rapid decline in elevated landslide susceptibility. Site-specific
characteristics of a study area such as seismotectonic, morphologic,
geologic and climatic conditions, as well as sediment budget
associated with co-seismic landslide events, govern the evolution
of post-seismic periods. In this context, the possible roles of these
factors need to be examined by further analyses.
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FIGURE 8 | Plot showing (A) central tendencies and ranges of PGA for Sulawesi, Kasiguncu and Palu earthquakes and (B) the evolution of landslide rates in time
for both co-seismic and post-seismic (intra-seismic) landslides. The error bars are given for the first standard deviation of landslide rates for each examined and post-
seismic (intra-seismic) set of landslides.
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Rapid Terrain Assessment for
Earthquake-Triggered Landslide
Susceptibility With High-Resolution
DEM and Critical Acceleration
Season Maharjan1, Kaushal Raj Gnyawali 1,2*, Dwayne D. Tannant2, Chong Xu3 and
Pascal Lacroix4

1Natural Hazards Section, Himalayan Risk Research Institute (HRI), Kathmandu, Nepal, 2School of Engineering, The University of
British Columbia, Kelowna, BC, Canada, 3National Institute of Natural Hazards, Ministry of Emergency Management of China,
Beijing, China, 4ISTerre, Université Grenoble Alpes, IRD, CNRS, Grenoble, France

Earthquake ground motion often triggers landslides in mountainous areas. A simple,
robust method to quickly evaluate the terrain’s susceptibility of specific locations to
earthquake-triggered landslides is important for planning field reconnaissance and
rescues after earthquakes. Different approaches have been used to estimate
coseismic landslide susceptibility using Newmark’s sliding block model. This model
requires an estimate of the landslide depth or thickness, which is a difficult parameter
to estimate. We illustrate the use of Newmark sliding block’s critical acceleration for a
glaciated valley affected by the 2015 Gorkha earthquake in Nepal. The landslide data came
from comparing high-resolution pre- and post-earthquake digital elevation models (DEMs)
derived from Spot 6/7 images. The areas where changes were detected provided an
inventory of all the landslides triggered by the earthquake. The landslide susceptibility was
modeled in a GIS environment using as inputs the pre-earthquake terrain and slope angles,
the peak ground acceleration from the 2015 Gorkha earthquake, and a geological map.
We exploit the depth information for the landslides (obtained by DEM difference) to apply
the critical acceleration model. The spatial distribution of the predicted earthquake-
triggered landslides matched the actual landslides when the assumed landslide
thickness in the model is close to the median value of the actual landslide thickness
(2.6 m in this case). The landslide predictions generated a map of landslide locations close
to those observed and demonstrated the applicability of critical acceleration for rapidly
creating a map of earthquake-triggered landslides.

Keywords: rapid terrain assessment, earthquake-triggered landslides, critical acceleration, 2015 Gorkha
earthquake, high resolution DEM, Newmark’s sliding block, Langtang valley, landslide thickness

INTRODUCTION

Earthquake ground motion is one of the main triggering agents for catastrophic landslides
worldwide. According to Keefer (1984), earthquake magnitudes greater than 6.0 Moment
Magnitude (Mw) can trigger landslides over areas extending up to 500,000 square kilometers.
The 1994 Northridge earthquake (Mw � 6.7) in California triggered more than 11,000 landslides over
an area of ∼10,000 km2 (Harp and Jibson, 1996). The 2002 Denali Fault earthquake (Mw � 7.8) in
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Alaska triggered more than 1,580 landslides in a glaciated area of
7,150 km2 (Gorum et al., 2014). The 2008 Wenchuan earthquake
(Mw � 7.9) in China caused 197,481 landslides in ∼110,000 km2

(Xu et al., 2014). In Nepal, the 2015 Gorkha earthquake (Mw �
7.8) triggered more than 25,000 landslides covering 61.5 km2 in
an area of 20,500 km2 (Gnyawali and Adhikari, 2017; Roback
et al., 2018; Tian et al., 2020).

Rapid assessment of earthquake-triggered landslide hazards is
vital for planning response and recovery operations, in the
immediate aftermath of an earthquake. Such landslides are
widespread, so usually, the reconnaissance is carried out by
flying helicopters in pre-defined priority tracks to identify the
landslide hotspots, valley blocking slides, and damaged
infrastructure locations. E.g., In the 2016 central Italy
earthquake sequence by Stewart et al. (2018) and Lanzo et al.
(2018); in the 2015 Gorkha earthquake sequence by Collins and
Jibson (2015); and in the 2016 Kaikoura earthquake by Jibson
et al. (2018). To efficiently plan the reconnaissance operation, as
well as pre-planning of the earthquake-triggered landslide (ETL)
hazards, a model to predict widespread landslide locations is
pivotal for disaster management.

Newmark (1965) proposed a method for analyzing the
deformation of embankments and dams caused by
earthquake shaking, assuming the dam moves as a single
rigid block. Although Newmark (1965) first developed this
method for embankments and dams,Wilson and Keefer (1983)
applied it for assessing the stability of natural slopes under
earthquake shaking. Permanent displacement of the landslide
occurs when the seismic acceleration exceeds a critical value
(Newmark, 1965). When the seismic acceleration exceeds the
critical acceleration, the block moves relative to the slope and
stops when the earthquake acceleration drops below the
critical acceleration. Newmark’s method considers only
rigid block movements with no internal deformations. Shear
deformation is assumed at the base of the block (Newmark,
1965). The method has been found suitable for shallow
landslides during earthquakes (Keefer, 1994; Keefer, 2002).
The Newmark sliding block method has been used to assess
earthquake-triggered landslides (ETL) in Los Angeles,
California (Jibson et al., 2000), Greece (Chousianitis et al.,
2014), Wenchuan, China (Chen et al., 2014), Longmenshan,
China (Yuan et al., 2016) and Lushan, China (Jin et al., 2019).

The Newmark method has been tested for evaluating slope
stability for several earthquakes. Two different approaches for
using the Newmark method are popular: a) evaluate the yield
displacement (Newmark’s displacement) of a sliding block or b)
evaluate the critical acceleration required to move a sliding block.
The displacement method uses a threshold displacement as a
sliding block criterion. The landslide displacement is calculated
by double integrating the recorded acceleration-time record of
the earthquake (Newmark, 1965) or using empirical formulae
(Jibson et al., 2000; Jibson, 2007). For the acceleration method or
simplified Newmark block method, the critical acceleration
needed to cause a block to slide is compared with the
measured peak ground acceleration (PGA). When PGA
exceeds the critical acceleration, the landslide is triggered. Both
approaches have been implemented to study ETL susceptibility.

Newmark’s displacement method was used to study areas
affected by the Chi-Chi earthquake in Taiwan and showed a
good prediction of shallow landslides compared with the
observed landslides (Wang and Lin, 2010). Similarly, Jin et al.
(2019) used a modified Newmark’s method and found that the
predicted landslide map agreed well with the actual distribution
of the landslides triggered by the Lushan earthquake, China.
Newmark’s displacement method was used to model ETL from
the 2015 Gorkha earthquake (Gallen et al., 2016). Although the
model results had similarities with the general landslide pattern,
the detailed distribution of landslides was not captured by the
Newmark model (Gallen et al., 2016). The model shortcomings
were attributed to large cell sizes in the digital elevation model
(90 m), aspects of the ground motion spectra that PGA does not
capture, and lack of spatial variability in surface material strength.
Other studies have used critical acceleration, instead of
Newmark’s displacement, to analyze the terrain’s susceptibility
to ETL (Chen et al., 2014; Xiaoli and Chunguo, 2019; Chen et al.,
2020). Chen et al. (2014) compared the landslide distribution
triggered by the 2008 Wenchuan earthquake with a critical
acceleration map and found good correspondence with the
actual landslide locations. An ETL susceptibility map can be
easily prepared from a probable PGA map using the critical
acceleration concept (Xiaoli and Chunguo, 2019). But to prepare
a map using Newmark’s displacement method, earthquake
acceleration-time records are needed, which are often not
available at the location of landslide-affected areas, and even
less so before an earthquake disaster. These studies indicate that
the critical acceleration method can help predict ETL locations
via comparison with an independent estimate of the peak ground
acceleration. Furthermore, when earthquake data are limited,
critical acceleration is a better approach than Newmark’s
displacement for rapid assessment of the terrain’s susceptibility
to ETL locations.

The evaluation of the method presented here to predict ETL
locations method requires a detailed inventory of actual ETL
locations and an estimate of the landslide depths, which can be
converted into thicknesses. Erial photographs or satellite images
are commonly used to delineate landslide areas (as polygons)
after an earthquake. These polygons can be used to validate the
prediction results from the critical acceleration model (Wang and
Lin, 2010; Chen et al., 2014; Shinoda and Miyata, 2017). These
landslide inventories capture the areal information but typically
lack the landslide depth data. Researchers have adopted different
approaches to estimate the landslide depth. Wang and Lin (2010)
estimated the depth using an empirical slope-depth relationship.
Shinoda andMiyata (2017) assumed a 2 m landslide depth for the
Niigata earthquake, based on a field study conducted by Kieffer
et al. (2006). Ma and Xu (2019) set the landslide depth as 3 m
based on field observation and previous research (Jibson et al.,
2000; Dreyfus et al., 2013). Landslide depths derived from these
approaches may not provide a reasonable estimate of the actual
depths because they are based on regional studies or estimates
from a few local field observations. Here, we determine the
landslide areas and depth information by subtracting a high-
resolution post-earthquake digital elevation model (DEM) from a
pre-earthquake DEM. The availability of landslide depth
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information from the DEMs enables the calibration of the critical
acceleration model and allows exploration of the relationship
between observed landslide thicknesses and the thickness used in
the model.

STUDY AREA

Here, we focus on the Langtang area in Nepal, affected by the
2015 Gorkha earthquake (Mw7.8), to evaluate the critical
acceleration method for ETL susceptibility assessment. This
area is a glaciated valley and a popular tourist destination. It
also had the largest and most destructive landslide triggered by
the 2015 Gorkha earthquake, a rock avalanche that killed more
than 350 people and buried the Langtang village (Kargel et al.,
2015). An air blast created by the rock avalanche uprooted trees
and flattened the forest on the opposite valley wall (Kargel et al.,
2015; Lacroix, 2016). Aside from this rock avalanche, three
different studies mapped between 160 and 205 landslides in
the study area (Lacroix 2016; Gnyawali and Adhikari, 2017;
Roback et al., 2018). The landslides varied in size from
rockfalls to very large landslides, and many landslides had
long-runout zones because of the steep terrain.

The valley lies approximately 60 km north of Kathmandu
(Figure 1A). Nearly half of the Langtang valley (46% or
166 km2) is covered by glaciers (Immerzeel et al., 2012).
Langtang Khola is the main river draining the valley
westwards to the Bhote Koshi River at Syabru Besi. The
Langtang valley has a U-shape (Immerzeel et al., 2012) and is

surrounded by high mountains with the highest peak, Langtang
Lirung, 7,227 m above sea level (masl) (Lacroix, 2016). The study
area is a part of the Langtang valley (91.4 km2) and has a length
and width of approximately 15 and 6 km (Figure 1B). The valley
has steep slopes prone to landslides (Lacroix, 2016).

The Gorkha earthquake epicenter was located approximately
70 km west of the study area. The 2015 Gorkha earthquake was
followed by numerous aftershocks, including five greater than 6.0
Mw between April 25 and June 10, 2015 (Kargel et al., 2015). The
peak ground acceleration measured at the closest seismic station
(KTP) was 2.41 m/s2 in the east-west direction. This station was
near Kathmandu, approximately 60 km south of the study area
(Takai et al., 2016). The 2015 Gorkha earthquake triggered more
than 25,000 landslides in Central Nepal (Gnyawali and Adhikari,
2017; Roback et al., 2018; Tian et al., 2020).

Most landslides in the study area had shallow depths (<5 m),
and many occurred in surficial glacial and post-glacial soils over
the bedrock (Figure 2). The bedrock geology is dominated by
gneiss in the valley, which likely resulted in glacial soils
dominated by sand and gravel particle sizes. Figure 1 shows
the bedrock units as U-1 to U-3, adapted from Jones et al. (2020).
The Syaprubesi formation (U-1) consists of gneiss dominated by
muscovite, biotite, and quartz, with subordinate plagioclase and
garnet. Likewise, the Bamboo formation (U-2) is gneiss
dominated by muscovite, biotite, and quartz, with subordinate
tourmaline. The Langtang formation (U-3) consists of
leucogranite, dominated by muscovite, tourmaline, epidote,
and occasionally garnet. These previously glaciated areas are
covered by various thicknesses of glacial materials such as

FIGURE 1 | Map of Langtang valley. (A) Study area lies approximately 60 km north of Kathmandu. The red star shows the epicenter of the 2015 Gorkha
earthquake. (B) Langtang valley topography indicated by yellow elevation contours. The blue lines are boundaries of geological units (Jones et al., 2020), U-1 (Syaprubesi
formation), U-2 (Bamboo formation), and U-3 (Langtang formation). U-4 is above the permanent snowline at 5,000 masl and consists of glacier ice and snow. The black
dashed line shows the catastrophic Langtang avalanche boundary that originated above 5,000masl and descended onto Langtang village at ∼3,400masl. The red
polygons are the avalanche’s entrainment areas (Gnyawali et al., 2020). The blue hatched polygon is the air-blast impact area on the opposite slope of the valley.
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glacial tills and glaciofluvial sediments, as well as more recent
colluvium and debris flow deposits. Terraces of glacial soils exist
near the valley bottom. Permanent snow occurs above the altitude
of 5,000 masl in the valley (Fujita et al., 2017), and the U-4 area is
covered by glacier ice and snow. During the 2015 Gorkha
earthquake, the catastrophic Langtang avalanche originated
from multiple high-altitude source areas in U-4 and involved
snow, ice, and rock fragments (Lacroix, 2016; Gnyawali et al.,
2020). As separate rock avalanches descended, they entrained
debris before merging into one large rock avalanche that traveled
to the valley bottom and burying the village of Langtang
(Figure 1B).

DATA AND METHODS

The critical acceleration method is used to map ETL
susceptibility. This method compares the critical acceleration

of a slope section with the expected PGA at this location to
assess slope stability. The critical acceleration is calculated using
topography and geology parameters. The slope angle is obtained
from a high-resolution pre-earthquake DEM (Lacroix, 2016).
The geotechnical parameters (cohesion, friction angle, and unit
weight landslide materials) are estimated from a geology map of
the Langtang valley (Jones et al., 2020). Table 1 summarizes
the different types of data used in this study. In addition, an
estimate of the landslide thickness is needed to calculate the
factor of safety. The landslide thickness is unknown before
an earthquake, but the model can be run using various
landslide thicknesses. For the Langtang Valley case history,
different thicknesses were used to create predicted landslide
distribution maps. The map found to best match the actual
landslide distribution map was used to determine the most
suitable landslide thickness. This thickness was compared to
actual landslide thicknesses found from analysis of the pre-and
post-earthquake DEMs.

FIGURE 2 | Photos of earthquake-triggered landslides in the Langtang valley extracted from video recordings (Collins, 2015). The camera locations for each
photograph (A–D) are shown in Figure 3. The yellow dot in panels (A) and (B) corresponds to the same landslide. US � upstream and DS � downstream.

TABLE 1 | Different types of data used in this study.

Data Date Description Application Source

Geological map 2019 Based on fieldwork Lithological classification Jones et al. (2020)
Pre-earthquake DEM 21-04-2014 4 m cell size Determine local slope angle and aspect Lacroix (2016)
Post-earthquake DEM 10-05-2015 4 m cell size Create the landslide inventory Lacroix (2016)
Gorkha earthquake ground motion 14-01-2016 On-line ground motion map Determine peak ground accelerations USGS ShakeMap
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The slope angle, geotechnical parameters, and landslide
thickness were used to calculate the factor of safety and
critical acceleration using Eqs 3, 4, respectively. The PGA
values for the 2015 Gorkha earthquake came from the USGS
ShakeMap for the Langtang valley (Figure 3). The calculated
critical acceleration for each slope section (cell) was compared
with the PGA from the Gorkha earthquake. If the PGA exceeds
the critical acceleration, the cell is classified as unstable. The
analysis yields an ETL susceptibility map using the critical
acceleration of many slope cells. The entire model takes
∼10 min (7 min to produce six landslide susceptibility maps
and 3 min to assess accuracy) on home desktop (Intel® Core™
i5-9300H; quad-core; 8 GB RAM) to calibrate landslide thickness.
The detailed methodology is described in the following sections
and summarized in Figure 4.

Digital Elevation Model Generation
A pre-earthquake (April 2014) and a post-earthquake (March
2015) DEM at a 4 m cell size were obtained from tri-stereo SPOT
6/7 images of the Langtang valley over 100 km2 area. The DEMs
were taken from Lacroix (2016). Some voids existed in the pre-
earthquake (2014) DEM created from the Spot 6/7 stereo images.
These voids were filled by interpolation from neighboring cells in
QGIS. The DEMs were computed using the NASA open-source
software Ames Stereo Pipeline (Broxton and Edwards, 2008). The

reliability of the ground elevations in the DEM varies as a
function of slope gradient. The ground elevation variability,
calculated through the standard deviation of the difference of
the 2014 and 2015 DEMs in stable areas, ranged from 0.5 m on
flat terrain up to 12 m on slopes of 80° (Lacroix, 2016).

Preparation of the Landslide Map
An initial map of landslide locationswas prepared by subtracting the
post-earthquake (2015) DEM from the pre-earthquake (2014) DEM.
However, the inherent uncertainty in the DEMs, created from errors
in the stereo pair image processing, makes this step complicated. To
increase confidence in the landslide map, a DEM error map was
subtracted from the DEM difference map. Only cells with positive
values in a range between 1 and 75m were used as the map of
landslide locations. The negative values indicated possible deposition
areas and were eliminated from further analysis.

When the catastrophic Langtang avalanche descended into the
Langtang village, it created an air blast that flattened the forest
canopy on the opposite face of the valley wall. This phenomenon
caused a positive elevation difference in DEM subtraction,
thereby falsely classifying cells as a landslide. This air-blast
zone (∼2 km2) was removed from the landslide map.
Furthermore, some slope area materials were entrained during
the avalanche descent, causing considerable depth variation
(Gnyawali et al., 2020). These sites, which covered an area of

FIGURE 3 | Landslide source area cells computed from pre- and post-earthquake DEM differences and adjusted for DEM elevation accuracies, modified after
Lacroix (2016). (A–D) are camera locations corresponding to Figure 2. The difference between the 2 DEMs encompasses both the landslide depth and the removal of
trees over the landslide. USGS Shakemap contours of the peak ground acceleration (PGA) ranging from 0.52 g (at U-4) to 0.62 g (at U-2) are shown in shades of green
to blue.
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approximately 0.25 km2, were eliminated from the map. Figure 3
shows the resulting final map for the source areas of earthquake-
triggered landslides. Landslide locations involved approximately
5.2 km2 of the study area.

2015 Gorkha Earthquake Ground Motions
The measured ground motions caused by the Gorkha earthquake
were important input for estimating ETL locations. The peak
ground acceleration (PGA) closely correlates with landslide
occurrence as a triggering factor (Keefer 1984; Kieffer et al.,
2006; Qi et al., 2010; Dai et al., 2011; Tiwari and Ajmera,
2017). A benefit of using PGA is that probabilistic PGA maps
are readily available for Nepal (Ram and Wang, 2013; Rahman
and Bai, 2018). Jibson (2007) developed an empirical relationship
to determine Newmark’s displacement using critical acceleration
and Arias intensity (Arias, 1970). Arias intensity depends upon
the recorded earthquake acceleration-time history. However,
earthquake acceleration-time data are not available for the
study area, which makes the use of PGA attractive given the
availability of USGS ShakeMap estimates of PGA around
the epicentre of the Gorkha earthquake. ShakeMap provides

near-real-time maps of PGA and other ground motion
parameters (peak ground velocity, pseudo-spectral acceleration,
intensity) following significant earthquakes, and this source for
PGA was used in the critical acceleration model. ShakeMap
simulates PGA by combining information from individual
stations, site amplification characteristics, and ground motion
prediction equations (GMPEs) for the distance to the hypocentre
(Worden et al., 2010; Worden et al., 2020). We adopted PGA
values from ShakeMap for this model. The PGA ranges from
0.52 g (northern part, U-4) to 0.62 g (southern part, U-2) in the
study area. The PGA contours from the USGS Shakemap for the
Gorkha earthquake are shown in Figure 3.

Critical Acceleration Method
The ETL locations are assessed in the critical acceleration method
by comparing each slope section’s critical acceleration and the
PGA from an earthquake. If the earthquake ground acceleration
surpasses a critical acceleration, the slope may fail during shaking
(Chen et al., 2020). In the context of Newmark’s method, the
dynamic stability of a slope is related to its static stability. Before
an earthquake, a block’s stability is affected by its weight and the

FIGURE 4 | Flowchart for creating ETL maps using DEM, critical acceleration, and earthquake PGA.
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friction angle and cohesion acting along a potential sliding
surface, as illustrated in Figure 5. The forces acting parallel to
the slip surface from adjacent blocks above and below the block
shown are assumed to cancel each other. The factor of safety FS of
the sliding block, as shown in Figure 5, can be expressed as:

Fs � cA +W cos α · tan ϕ
W sin α

(1)

WhereW is the weight of the block, ϕ and c are the friction angle
and cohesion along the sliding surface, α is the slope angle of the
slip surface, which is assumed equal to the ground surface, andA
is the area of the sliding surface. The groundwater table was
likely below the landslide slip surface at most locations because
the 2015 Gorkha earthquake occurred during the dry season and
the typical landslide depths were less than 3 m (Gallen et al.,
2016). Therefore, the groundwater pressures are not included in
Eq. 1. The critical acceleration method was applied to each cell
in the pre-earthquake DEM. Figure 5 shows a unit thick section
of a block on the slope. The DEM cell size is based on a
horizontal grid. Using the DEM cell size as the smallest
block size in the critical acceleration analysis, Eq. 1 can be
re-written as:

FS � cA
W sin α

+W cos α · tan ϕ
W sin α

FS � cA
c. A.T .sin α

+ tan ϕ
tan α

The above equation can be simplified as Eq. 2, which shows that the
factor of safety is influenced by topographical, geological parameters,
and landslide thickness and is independent of DEM cell size.

FS � c
cT · sin α + tan ϕ

tan α
(2)

Where c is the unit weight of the landslide material, and T is the
thickness of the sliding block. The thickness of the sliding block is
D · cos α, where the landslide depth, D, is observed from
differences in DEM elevations.

In GIS implementation, cohesion raster, friction angle raster,
and unit weight raster are obtained from the geology map.
Similarly, slope raster is calculated from pre-earthquake DEM
and block thickness is the assumed landslide thickness whose
value varies in the model. Eq. 3. Demonstrates the use of Eq. 2 in
a GIS environment.

FS � (cohesion raster)
(Unit weight raster) × block thickness × sin(slope raster)

+ tan(friction angle raster)
tan (slope raster)

(3)

Newmark (1965) showed that the critical acceleration ac for a
potential landslide block is a simple function of the static factor of
safety Fs and the slope angle.

ac � (Fs − 1) · sin α · g (4)

In Eq. 4, g is the gravitational acceleration.
Chen et al. (2014) investigated landslide areas associated with

critical accelerations to determine PGA for the 2008 Wenchuan
earthquake in China and showed that critical acceleration is a
reliable criterion for assessing slope stability. Xiaoli and Chunguo
(2019) analyzed the slope stability for the 2014 Ludian earthquake
in China and showed that Newmark’s critical acceleration and

FIGURE 5 | Schematic diagram illustrating the forces acting on a block resting on an inclined plane for static (pre-earthquake) conditions on a GIS environment.
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PGA could be used to estimate accurate ETL locations. Similarly,
Chen et al. (2020) concluded that it is possible to quickly evaluate
ETL by comparing critical acceleration and PGA.

Predicting Landslide Source Areas Using
Critical Acceleration Method
Input parameters for the landslide predictions include estimates
of the shear strength and unit weight of the landslide materials
or ice/snow, slope angles extracted from the pre-earthquake
DEM (Lacroix, 2016), and PGA data obtained from USGS
shakemap, Table 2. The values of cohesion, friction angle,
and bulk density used in the analysis were adopted from
published literature. Field observations of the ETLs indicated
that these often occurred on steep slopes covered with a layer of
colluvium. The sliding surface may have been within colluvium
or slightly deeper within weathered and fractured bedrock. The
assumed shear strength parameters for the sliding surface are
listed in Table 2. The estimated friction angle and cohesion were
based on published values for colluvium and increased to
account for field evidence that most shallow landslides
involved fractured bedrock, which likely has higher shear
strength than colluvium. The bulk density for the sliding
block was based on a combination of typical colluvium and
fractured gneiss densities. For U-1 to U-3, the selected values
were guided by values presented by Irfan and Tang (1992). The
geotechnical properties for the glacier snow-ice (U-4) were
obtained from Gnyawali et al. (2020).

Critical acceleration values were calculated for each cell. The
DEMwas resampled to generate different cell sizes, and a range of
landslide thicknesses was assumed to calculate the critical
accelerations for each cell using Eq. 5. The calculated critical
acceleration at each site was compared with the PGA at each site
to determine if the cell was stable or could slide during the
earthquake. All cells determined to be unstable (PGA > ac) were
used to produce a predicted distribution or map of earthquake-
triggered landslides. Different maps were created for different
assumed landslide thicknesses and cell sizes. Finally, the predicted
landslide maps were compared to those observed from DEM
differencing.

An estimate of the landslide thickness was required to
calculate the static factor of safety. The landslide thickness was
varied until the resulting prediction of landslide locations

appeared to match the landslide map obtained from DEM
subtraction.

Accuracy Assessment
A quantitative assessment of the match between predicted and
observed landslide locations were obtained using a confusion
matrix, which is a method for assessing the accuracy of a binary
classification, in this case, for cells classified as either stable or
unstable. The landslide map extracted fromDEM subtraction was
considered as the reference map, and the critical acceleration
method provided prediction maps. A correctly predicted cell
consists of two classes: i) an unstable cell occurs in both maps
(true positive), TP, and ii) a stable cell occurs in both maps (true
negative), TN. Similarly, incorrectly predicted cells include two
classes: i) an unstable cell in the reference map but a stable cell in
the predicted map (false negative), FN; and ii) a stable cell in the
reference map but an unstable cell in the predicted map (false
positive), FP.

The Matthews correlation coefficient (MCC) is used as a
measure of the quality of the classification. MCC accounts for
true and false positives and negatives and is generally regarded as
a balanced measure that can be used even if the classes are of very
different sizes (Chicco and Jurman, 2020; Chicco et al., 2021). The
MCC is a correlation coefficient between the observed and
predicted binary classifications; it returns a value between −1
and +1. The MCC is calculated as:

MCC � TP × TN − FP × FN
�����������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (5)

The value of MCC ranges from −1 to +1, where +1 represents a
perfect prediction, 0 represents a random prediction, and −1
represents a total disagreement between prediction and
observation. MCC was used to evaluate the cells in the ETL
prediction maps relative to the reference landslide map.

Several studies (Rong et al., 2020; Wang et al., 2020; Meena
et al., 2021) have adopted MCC to evaluate landslide
susceptibility maps. Rong et al. (2020) obtained MCC � 0.44
for a hazard map of rainfall-induced landslides in Shuicheng,
China. Wang and Lin, 2010 compared four different landslide
susceptibility mappingmethods and found thatMCC varied from
0.4 to 0.5. In this study, the highest MCC value was 0.13, which
indicates a modest positive relationship with the reference
landslide map obtained from DEM differencing.

Cell Size
Previous DEM-based investigations of ETL were performed with
relatively large DEM cell sizes (greater than 10–90 m) compared
to that available for the Langtang Valley. For example, Chen et al.
(2014), Gallen et al. (2016), and Allstadt et al. (2018) used 90 m
cell sizes. Wang and Lin (2010) used 40 m cells, and Dreyfus et al.
(2013), Shinoda and Miyata (2017), and Ma and Xu (2019) used
10 m cells. An assessment of cell size on the predicted spatial
distribution of unstable and stable cells was performed to assess
the influence of size. The DEM cells were resampled in QGIS
from 4 to 40 m cell size, using bilinear interpolation. For each
resampled DEM, a series of analyses were done with varying
landslide thicknesses. The landslide thickness was varied from 2

TABLE 2 |Parameters used in the critical accelerationmodel and their uncertainty.

Geological unit Parameter Unit Value Uncertainty

U-1, Syaprubesi formation Cohesion, c kPa 47 High
U-2, Bamboo formation Friction angle, ϕ degree 35 Low
U-3, Langtang formation Unit weight, γ kN/m3 1800 Low

U-4, snow and ice Cohesion, c kPa 27 High
Friction angle, ϕ degree 11.5a Low
Unit weight, γ kN/m3 850a Low

aGnyawali et al. (2020).
cohesion (c) and friction angle (ϕ) are for the sliding base of a block of fractured bedrock or
colluvium; the bulk density (ρb) is for the equivalent of a block of fractured bedrock
covered with a layer of colluvium.
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to 4.2 m with a 0.2 m increment. The critical accelerations for the
various assumed landslide thicknesses were obtained. The critical
accelerations were then used to create maps of predicted ETL for
each assumed landslide thickness. These maps were compared
with the DEM-derived landslide map.

RESULTS AND DISCUSSION

Spatial Distribution of Landslides -
DEM-Derived Versus Satellite Imagery
Landslide inventories for the Langtang area were obtained from
previously mapped landslide scars visually identified in satellite
imagery (Gnyawali and Adhikari, 2017; Roback et al., 2018). As
an alternative method for determining the landslide locations, the
elevation differences between pre- and post-earthquake DEMs of
the Langtang valley (Lacroix, 2016) were used. These maps
provide a reference for comparison with predicted landslide
locations obtained by applying the critical acceleration and
PGA estimates.

The spatial distribution of landslide source areas obtained by
DEM differencing in the Langtang valley is shown in Figure 3.
The spatial distribution shows a cluster of landslides near the
valley bottom and in the snow-covered region. As expected, the
landslide map shows a high concentration of landslide source
areas where the large Langtang avalanche occurred and in areas
with steep slopes.

A visual comparison of the landslide sources detected using
DEM differencing and existing landslide inventories (Lacroix,
2016; Gnyawali and Adhikari, 2017; Roback et al., 2018)
shows some consistency. However, exceptions occurred in
snow-covered regions and along the Langtang river banks,
where landslides were captured in the DEM-derived map but
were not found by visual interpretation of satellite imagery.
Previously published maps of landslides in the Langtang
Valley consisted of a relatively small number of locations
compared to what was found by DEM differencing. In the
snow-covered area (U-4), none of the visually prepared
inventories had landslide source areas. However, the main
Langtang avalanche originated from this area (Lacroix, 2016).
Visual interpretation of satellite imagery for landslide
mapping is a challenge if no contrast is seen between pre-
and post-earthquake imagery (as in snow-covered areas) or
terrain deformations do not result in long runout scars. The
detection of landslide areas based on satellite image
interpretation is sensitive to the image quality and the
interpretation of those images. This results in landslide
inventories that may miss landslides (Roback et al., 2018).
However, it is important to note that DEM differencing
derived landslide inventories are also subject to errors. For
example, shadows, occlusions, and poor correlation can result
in data gaps and residual artifacts in each of the cross-track
stereo DEMs. Thus, interpretation requires caution and
expert judgment. Ideally, visually prepared landslide
inventories from satellite images and DEM differencing
derived landslide cells should be used as complementary to
each other.

The DEM differencing technique has been applied in
numerous studies (Tsutsui et al., 2007; Martha et al., 2010;
James et al., 2012) to study geomorphological changes,
including detection of shallow landslides. Tsutsui et al. (2007)
used this technique to detect landslides triggered by earthquakes
in Japan and cyclones in Taiwan. They concluded that this
technique delineated the large-scale landslides with an
accuracy >70% for slopes under 40° and accuracy <40% for
slopes over 40°. Kim et al. (2020) showed that DEM
differencing could detect landslides in hilly and densely
vegetated areas if the DEM uncertainty is constrained.

In this study, the DEM differencing technique was the desired
approach for checking the result of the critical acceleration
method because the ultimate goal is to use existing pre-
earthquake DEMs and post-earthquake ShakeMap PGA to
quickly generate maps of likely ETL locations to help plan
field reconnaissance and rescues immediately after an
earthquake. In an emergency situation, there may not be
sufficient time to acquire and map many landslides using
satellite imagery. Furthermore, to obtain a reliable estimate of
the landslide depths for many landslides over a wide area, DEM
differencing provided the best approach.

Landslide Thickness
The 2015 Gorkha earthquake triggered mostly shallow landslides.
The landslide depth is measured vertically, while the landslide
thickness is measured normal to the slope (Figure 5). The median
landslide depth for all areas observed fromDEM differencing was
4.8 m for cells that were 4 m in size. The median landslide depths
were 3.8 m for U-1, 4.5 m for U-2, 3.6 m for U-3, and 6.7 m for
U-4. U-4 was the source area of the largest rock-ice avalanche in

FIGURE 6 | Matthews correlation coefficient for various DEM cell sizes
(4–40 m) and assumed landslide thicknesses.
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the valley, which deposited 7 × 106 m3 on the valley floor
(Lacroix, 2016). The calculated depths from DEMs in
vegetated areas can be exaggerated by vegetation loss when a
shallow landslide occurs (Lacroix, 2016). The thickness

(measured perpendicular to the slope) of the material that
failed was calculated using the slope at each cell. The median
landslide thicknesses in each area were 2.4, 2.5, 1.9, and 3.3 m for
U-1 to U-4, respectively.

The sliding block’s thickness is an important parameter when
using the critical acceleration method with a sliding surface that
has cohesion. Ma and Xu (2019) used an average landslide
thickness of 3 m based on a field investigation for the 2013
Lushan earthquake in China. Shinoda and Miyata (2017)
studied regional landslides using Newmark’s method and
found that a 2 m landslide thickness worked well for the Mid
Niigata earthquake. The thickness ranged from 0.8 to 4.6 m for
landslides triggered by the 2016 Kumamoto earthquake (Mw 7.1)
(Saito et al., 2018). Shinoda et al. (2019) used a 3 m landslide
thickness based on a JSEG (2017) report of regional landslide
susceptibility for the 2016 Kumamoto earthquake. The median
landslide thicknesses in the Langtang region caused by the 2015
Gorkha earthquake are similar to these other studies, and most
landslides are shallow, except for a few much larger landslides.

Cell Size and MCC
Figure 6 illustrates the influence of the DEM cell size on
predicting stable and unstable cells. As the DEM cell size
increases, the predictive accuracy as measured by MCC
decreases. This suggests that a small (4 m) cell size is best
when using the analysis approach presented here. Although
doubling the cell size to 8 m gives a similar prediction
accuracy while reducing the amount of data to be processed
and stored in the GIS. The landslide thickness used in the critical
acceleration model that best matches the spatial distribution of
DEM-derived stable and unstable cell locations is approximately
2.6 m, as seen by the peak in theMCC curve for the 4 m cell size in
Figure 6. When larger DEM cells are used, a thicker landslide
gives the best match with the observed ETLs. Note that when the
landslide thickness was less than 1 m, almost all cells were
predicted to be stable (not shown in the figure).

Wang et al. (2020) studied the influence of DEM cell size on ETL
hazard assessment using Newmark’s sliding blockmethod and found
that a 30m size gave a similar prediction to a 10m cell size. In
contrast, this study shows that a smaller cell size gives better results.

The influence of the landslide thickness on the predictions of
landslide locations was explored. The results using a DEM cell
size of 4 m with an assumption of a constant landslide thickness
of 1, 2, 2.4, and 2.8 m are shown in Figure 7. Pixels with a brown
color represent unstable cells predicted using the critical
acceleration method. This figure clearly shows how sensitive
the number and locations of predicted ETLs are to the
assumed landslide thickness. When the thickness is less than
2.4 m, the critical acceleration model incorrectly classifies too
many cells as stable, whereas when the thickness is 2.8 m, too
many cells are predicted as unstable.

Critical Acceleration Model Predictions
Versus DEM-Derived Map
An assumed landslide thickness of 2.6 m was used to determine
the predicted ETL locations using the critical acceleration

FIGURE 7 | Predicted earthquake-triggered landslide maps for different
assumed landslide thicknesses (A–D) with a DEM cell size of 4 m.
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method. Figure 8 shows a comparison between the DEM-
derived ETL locations and those predicted using the critical
acceleration method. Cells predicted to be stable often
correspond to locations where no elevation changes occurred
in the DEM, which is a good match. However, cells predicted to
be unstable in region U-4 are more scattered than those
observed from DEM differencing.

Immediately after an earthquake occurs, the resulting
thickness for ETLs is typically unknown. Gallen et al. (2016)
used an aggregate strength parameter to account for the unknown
landslide thickness. The aggregate strength parameter is the ratio
of soil cohesion and landslide thickness. They used a range of
aggregate strength parameters varying from 5 to 15 kPa m−1 and
concluded that the lower and upper bound of the aggregate
strength parameter is 10 kPa m−1 and 15 kPa m−1. This study
took advantage of the post-earthquake DEM to measure the
thickness for many landslides, which gave a median value of
2.6 m. Using this value gives an aggregate strength parameter
equal to 10.4 and 18 kPa m−1 in U-4 (glacier snow-ice) and U-1 to
U-3, respectively. These values are similar to the values found by
Gallen et al. (2016).

While the predicted landslide map has many similarities to the
DEM-derived landslide distribution, there are differences. The
prediction map is missing patches of landslides near the river in
geological units U-1 and U-2. River erosion through colluvium
and debris flow deposits near the valley bottom created over-
steepened slopes prone to failure during the earthquake. Thus,
many ETLs are observed along river banks (Tian et al., 2019). But
the effect of slope undercutting or toe erosion by the river is often
not captured in the DEM despite its small cell size. Thus, when
running the critical acceleration model, it misses small steep
slopes. Furthermore, these landslides often occur at the edges of
terraces with top slopes <25°, which have a high factor of safety
(Eq. 3). So, these cells were often classified as stable in the map
showing predicted ETL. The critical acceleration method is a

reliable technique for assessing earthquake-triggered landslides.
However, cohesion plays an important role; thus, calibration of
cohesion is critical to assessing slope stability.

Slopes
The predicted landslide distribution was examined in terms of
slope angle, slope aspect, and bedrock geology. Most unstable
cells (46.5%) in the study area faced southerly (SE to SW). 50 per
cent of the cells in U-1 with a slope angle >78° were classified as

FIGURE 8 |Comparison of ETL locations from (A) DEM subtraction and the (B) critical acceleration model with an assumed landslide thickness of 2.6 m and a 4 m
cell size.

FIGURE 9 | DEM uncertainty plot. (A) Mean DEM error as a function of
slope angle, (B) Distribution of landslides in different slope ranges.
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unstable during the earthquake. Similarly, 42% of cells with a
slope angle >79° and 36% of cells with a slope angle >80° were
unstable in U-2 and U-3, respectively. While slopes with angles
between 70 and 80° had a high proportion of unstable cells, more
than 45% of the unstable cells occurred for slope angles between
40 and 60°. The median slope for unstable cells in U-1, U-2, U-3,
and U-4 are 41, 50, 49, and 51°, respectively.

Uncertainty in Input Parameters
Primary input parameters for the critical acceleration method are
topography data, geology data, and ground motion data. The
topography is obtained from a pre-earthquake DEM (Lacroix,
2016). The reliability of the ground elevations in the DEM varies
as a function of slope gradient (Figure 9). The ground elevation
variability, calculated through the standard deviation of the
difference of the 2014 and 2015 DEMs in stable areas, ranged
from 0.5 m on flat terrain up to 12 m on slopes of 80° (Lacroix,
2016).

The landslide distribution is more continuous in the predicted
map than in the landslide inventory derived from the DEM
difference. This is perhaps due to the DEM error, uncertainty
in geotechnical parameters, and PGA estimates from ShakeMap.
The local variation in soil strength can affect the landslide
distribution. The shear strength parameters were fixed over a
large area due to no knowledge of their potential variations. This
simplification affects the results from the critical acceleration
model. Table 2 list the relative uncertainty in geotechnical
parameters for the study area. Moreover, the absence of
unstable cells near the river might be caused by ignoring
potential groundwater pressures in the analysis.

USGS ShakeMap (map version 1, 2020-06-03) was used to
generate an ETL susceptibility map in the Langtang valley.
Two uncertainties linked with ShakeMap are (1) spatial
variability of PGA near stations and (2) uncertainty in the
ground-motion estimation relationships used to fill gaps
between stations (Wald et al., 2008). The ShakeMap of the
2015 Gorkha earthquake has an uncertainty grade “C” (USGS,
2021a), which corresponds to a moderate quality ShakeMap
(Wald et al., 2008). A middle range (“C”) grade corresponds
to a moderate magnitude earthquake suitably represented with
a point source location (Wald et al., 2008). A description of
the USGS ShakeMap for the Gorkha earthquake is given in
Table 3.

CONCLUSION

The purpose of this paper was to demonstrate the use of a DEM
and the critical acceleration method to quickly predict landslide
locations after an earthquake as an aid to rapid landslide
assessment and recovery after a devastating earthquake. The
methodology was assessed by comparing predictions of
unstable and stable cell locations with previously published
ETL inventories, as well as a map of landslide locations
obtained from the elevation difference between pre- and post-
earthquake cells in the DEMs.

A DEM for most places on the earth is now available (e.g.,
Shuttle Radar Topography Mission), and DEMs are expected to
improve quality over time with new satellite technologies. Thus, a
critical input needed to predict the ETL locations is readily
available.

Estimates of cohesion, friction angle, and unit weight of the
landslide materials needed for the analysis can be inferred
from geology maps (Hartmann and Moosdorf, 2012; USGS,
2021b) of the area of interest. For the case study presented
here, the geological information was very limited, and the
analysis only used two sets of values. However, in regions
where better geological mapping is available, the shear
strength parameters and bulk unit weight can vary
according to the geological maps, which would help fine-
tune the prediction of ETL locations.

For large earthquakes, PGA estimates are created by USGS
ShakeMap soon after their occurrence. The landslide
prediction method relies on comparing the critical
acceleration within a GIS environment with estimates PGA
for the raster cells over the area of interest. The PGA estimates
from ShakeMap will likely improve as this tool becomes better
calibrated, and this will contribute to better estimates of ETL
locations.

The critical acceleration model is sensitive to the assumed
landslide thickness when cohesion is present along the slip
surface. Furthermore, it appears that the landslide thicknesses
yielding the best match to observed stable and unstable cell
locations can be influenced by the DEM cell size. Further
research is needed to optimize the choice of a landslide
thickness for conducting a regional analysis to predict ETL
locations. This value will likely depend on the terrain and the
soil and bedrock geology in the area of interest. However, as a
starting point, evidence from past ETLs indicates that the typical
landslide thickness is often in the range of 2–4 m.

ETL susceptibility mapping can be achieved in earthquake-
prone mountainous regions because the basic input parameters
needed for a Newmark model analysis (e.g., terrain, geology, and
a probable PGA) are typically available. Therefore, applying a
critical acceleration model in a GIS environment can assist with
timely planning for disaster response after an earthquake. As
expected, the results will be subject to error due to the simplifying
assumptions used in the method. However, the results should still
provide a fast way to prioritize the investigation of potential
landslide areas after an earthquake. Furthermore, this approach
has potential use in early planning for ETL by mapping the

TABLE 3 | Metadata of USGS ShakeMap for the 2015 Gorkha earthquake.

Description Remarks

Map version 1
Date 2020-06-03 05:35:56 (UTCa)
Mean of map uncertainty 1.003
Empirical ShakeMap grade C
Flagged seismic station 4
Flagged DYFIb stations 26
Site correction applied GMPE native

aUniversal Time Coordinated.
bDid You Feel It.
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terrain susceptibility using readily available probabilistic
PGA maps.
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Detecting the Vegetation Change
Related to the Creep of 2018 Baige
Landslide in Jinsha River, SE Tibet
Using SPOT Data
Xinyi Guo1,2, Qing Guo1* and Zhongkui Feng1

1Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China, 2University of Chinese Academy of
Sciences, Beijing, China

It is vital to monitor the post-seismic landslides economically and effectively in high-
mountain regions for the long term. The landslide creep could cause a
subtle change of the overlying vegetation after the earthquake, which will lead to
the change of vegetation spectral characteristics in optical remote sensing data.
The optical remote sensing technique can be used to monitor the landslide
creep areas with dense vegetation in a large range at a low cost because it is
easy to obtain multi-temporal, multiple-scale, and multi-spectral information. We
identified and extracted the vegetation change area before the 2018 Baige landslide
by the high-resolution optical remote sensing data. Firstly, the image fusion method was
used to improve the accuracy of change detection. Then, vegetation coverage before
the landslide was calculated. The vegetation change was identified, and qualitative and
quantitative methods were used to analyze the spatio-temporal changes of vegetation
coverage. Our results indicate that the creep distance of the landslide is about 50 m
and the vegetation in the back scarp area and the main sliding area display a
significant downward trend with time closing to the landslide comparing with that
in the reference area. The vegetation change in the remote sensing image has
an excellent spatio-temporal correlation with the landslide creep. This study
provides a possible way and perspective for monitoring post-seismic landslide
disasters.

Keywords: post-seismic landslides, vegetation change, landslide creep, high-mountain regions, optical remote
sensing technique

HIGHLIGHTS

1. The changes in environmental conditions caused by the landslide creep have an impact on
vegetation growth;

2. The vegetation change has an evident spatio-temporal correlation with the landslide creep;
3. The high-resolution optical remote sensing technology can be used to identify the vegetation

change. For potential landslides in large-scale high-mountain areas, this method can be used for
preliminary investigations economically and effectively.
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INTRODUCTION

The effect of earthquakes on landslides is not only in the seismic
stage but also in several years after the earthquake. The slope
formed some cracks during the earthquake and did not slide
immediately but formed potential landslides. Previous studies
have found that these potential landslides will be in an unstable
state for a long time (years to hundreds of years) after the
earthquake (Khattak et al., 2010). Moreover, due to the seismic
topographical amplification effect (the seismic whiplash effect) (Xu
et al., 2017), cracks mainly formed in the upper part of the slope,
which is hard to be reached by the field investigation. When these
areas are affected by rainfall, the shear strength of the mass will
reduce, and the stability of the slope will decrease. Finally, the slope
becomes unstable and forms a large and destructive landslide (such
as the Xinmo village landslide in 2017). Southwest China is an
earthquake-prone area characterized by high and steep topography
and dense vegetation. So, it is challenging to monitor the potential
landslides in high-risk areas after the earthquake, especially in
remote or poor accessible regions. It is vital to monitor high-risk
areas economically and effectively in the long-term change process
after the earthquake.

Field displacement measurement is the main method for
monitoring landslides. Moreover, the common non-contact
displacement monitoring methods include the global positioning
system (GPS) monitoring method Wang (2011) and the synthetic
aperture radar (SAR) monitoring method (Bianchini et al., 2018).
But the range of GPS monitoring is limited; the monitoring network
of GPS needs to be established in advance; the instruments of GPS
must avoid being sheltered by vegetation during the monitoring
period. The complex environment in the mountain areas will
increase the difficulty of network layout and increase the cost of
operation (Fan et al., 2006). The GPS monitoring method, which
uses the point as the monitoring unit, is difficult to reflect the
continuous change information of the land. For the interferometric
synthetic aperture radar (InSAR) monitoring method, the phase
unwrapping is difficult. Complex terrain and dense vegetation will
cause phase decorrelation of radar data. Therefore, some slopes are
difficult to be photographed (Wang et al., 2010). InSAR monitoring
is not suitable formonitoring landslides in themountain and canyon
areas. The intensity tracking method of offset tracking technology
which is insensitive to the coherence of SAR images is suitable for the
low coherence area with significant characteristics (Yang et al., 2017).
This method has been used in monitoring landslides. It matches
images based on the feature information, also known as feature
matching. This method generally needs bright targets (e.g., buildings
and bare rocks), providing accurate and reliable estimations (Jia
et al., 2020). However, it will be difficult to find buildings and bare
rocks when the slopes are covered by dense vegetation.

The optical remote sensing technique, with the characteristics
of non-contact, large-scale, periodic observation, multiple
archived data, and rich spectral information, is an essential
mean of landslide monitoring. The landslide deformation
monitored by optical remote sensing mainly focuses on
identifying the deformation of the slope or the cracks and bare
land caused by the deformation. Sub-pixel phase correlation of
optical remote sensing images can be used to obtain deformation.

The deformation can be obtained by calculating the offset
between two optical remote sensing images, reflecting the
position deviation of points in the two images. It has been
used in some earthquake cases (Michel and Avouac, 2002;
Dominguez et al., 2003; Binet and Bollinger, 2005). However,
when the deformation, cracks, and bare land are hidden by
vegetation, the method will be helpless.

Vegetation is the first layer of Earth observation. The weak
information of vegetation change can reflect the geological
activities, which has been applied in the investigation of mine
and the identification of the fault (Zhao, 2013). Many slopes have
a slow creep stage before the landslide. Sometimes cracks and
small landslides will form on the creep slopes. The deformation in
this stage will change the rock, soil, water, and other things in the
surrounding areas, influencing the overlying vegetation (Ding
et al., 2013; Du et al., 2013). Finally, it will lead to the change of
vegetation spectral characteristics in optical remote sensing data.
These vegetation change phenomena are common in geological
investigations.

When the landslide deformation is hidden by vegetation, the
vegetation can be considered the monitoring object. The spectral
characteristics of vegetation can be used to indicate landslide
creep. The image fusion can enhance the weak information of
vegetation variations and explore the relationship between the
vegetation change and the landslide in the remote sensing data
before the landslide (Guo et al., 2020). The vegetation spectral
change in optical remote sensing data can be used to identify the
deformation of the land effectively. It can delineate the potential
geological hazards and study the dynamic evolution process and
characteristics of disaster deformation by the multi-temporal
remote sensing data, which is helpful to determine the risk
degree of hidden danger. This monitoring method can make
up for the deficiency of the existing monitoring technique in the
dense vegetation and high-mountain areas and assist in
monitoring the landslide in the long-term change process after
the earthquake. This method can be used to preliminary
investigations of potential landslides economically and
effectively in large-scale areas. Then it can combine with visual
interpretation, SAR, and other techniques for further
confirmation in the key areas. This study focuses on the Baige
landslide in the Jinsha River, SE Tibet, to monitor the landslide
after the earthquake through the vegetation change.

STUDY AREA AND DATA

Study Area
The Baige landslide with a source volume of 23 million m3 on
October 11, 2018, occurred on the western bank of Jinsha River, a
junction of Baiyu County (Ganzi Prefecture, Sichuan Province)
and Jiangda County (Changdu City, Tibet Autonomous Region)
(Figure 1). A second slide occurred at the same location on
November 3, 2018. The second landslide volume was about 3.5
millionm3, and the entrainment volume was about 8.5 millionm3

(Fan et al., 2020). The landslide blocked the trunk stream of the
Jinsha River and formed a barrier lake, which endangered Baiyu
County, Batang County, and Delong County.
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The Baige landslide is located in the Southeastern Tibetan
Plateau, which has steep topography, fierce landform incision,
and broken rocks. Several structures are striking in the NW
direction; significant among them are the Bolou-Muxie, Zhuying-
Gonda, Xuenqing-Longgang faults, and the Shandong-Baba
Anticline. The landslide is located on the edge of the
BolouMuxie fault. The strata outcropping in the landslide area
mainly consist of gneiss (Ptxn

a), granite (γδ52), limestone (T3jn),
and serpentinite (φω4) (An et al., 2021). The landslide headscarp
developed within the serpentinite from Variscan orogeny. The
landslide body is mainly composed of gneiss and serpentinite.
The borehole data show that the rock masses are extremely
broken in the study area. The water in Bogong Gully has
infiltrated the landslide body for a long time (Zhong et al.,
2021). Zhang et al. (2020) think that serpentine in the Baige
landslide was altered into clay minerals, such as montmorillonite
or illite. Clayey altered rock is a weak interlayer, which
significantly reduces the shear strength of the potential slip
zone. It is rich in clay minerals and has good water
absorption. The engineering properties of the altered soft rock,
which shrink/swell with drying and wetting, are weak under the
influence of water (Zhang et al., 2011). It will further deteriorate
the slope rock structure. Finally, the serpentine strata gradually
transformed into a creep zone (Fan et al., 2019).

In history, several strong earthquakes occurred around the Baige
area, such as the 1842Mw7.3 Zongguo earthquake, the 1870Mw7.2
Batang earthquake, and the 1989Mw6.5 earthquake (SSB, 1995;
Ambraseys and Douglas, 2004). In recent years, earthquakes
occurred around this area, including the 2013 Ms6.1 Changdu
earthquake. The Changdu earthquake induced 37 new potential
hazards in Jiangda county and 57 new potential hazards in Baiyu

County (Wang et al., 2019). These earthquakes intensified the
deformation of some potential landslides and promoted the
occurrence of the Baige landslide. Finally, under the rainfall and
the long-term gravity, the Baige landslide loses stability.

Data Description
In this study, the images used for vegetation change detection
need to be of good quality, from the same period each year, and
without clouds. SPOT images have Ortho-Level images, which
have been done ortho-rectification with few geometric
distortion and good quality. According to the geographic
conditions of the Baige landslide and the limited free image
data available, a minimum number of SPOT-6 and SPOT-7
Ortho-Level images were selected. Panchromatic (PAN) band
and multispectral (MS) bands (B, G, R, NIR) of SPOT-6 and
SPOT-7 images were both used in this study. These images
without clouds can provide reliable data sources for acquiring
vegetation growth information before the landslide. These
images come from the same period of 3 years (2014–2017),
which reduces the interferences of the season (including
rainfall, temperature, and other factors) to vegetation
change. The information on remote sensing data is shown in
Table 1.

FIGURE 1 | Topographic and geologic maps of Baige landslide (A) Topographic map (The insert shows the location of the study area in China). (B)Geological map
(modified from Fan et al., 2019). F1: Xuenqing-Longgang Fault; F2: Zhuying-Gonda Fault; F3: Zeba-Xietang Fault; F4: Boluo-Muxie Fault; F5: Gangda-Dizhong Fault; M1:
Shandong-Baba Anticline; T3jn: Upper Triassic Jingu Formation; T3x

2: Upper Segment of Upper Triassic Xianisongduo Formation; T3x
1: Lower Segment of Upper

Triassic Xianisongduo Formation; C2sh: Upper Carboniferous Shengpa Formation; Ptxn
a: Upper Proterozoic Xiongsong Group Gneiss Formation; φω4: Late

Paleozoic Variscan Jinshajiang ultramafic belt and serpentinite; ηγ52: Yanshanian Gepo superunit fine grained monzonitic granite; γδ52: Yanshanian Zeba superunit
Muzha fine-grained granodiorite and quartz diorite.

TABLE 1 | Remote sensing data covering the Baige landslide.

Image source Time of acquisition Spatial resolution/m

SPOT-6 2014/05/18 PAN-1.5, MS (B, G, R, NIR)-6
SPOT-7 2015/05/30 PAN-1.5, MS (B, G, R, NIR)-6
SPOT-7 2017/05/08 PAN-1.5, MS (B, G, R, NIR)-6
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METHODS

The steps to detect vegetation change are listed as follows
(Figure 2): 1) Acquire remote sensing images and interference
factors; 2) select appropriate fusion method; 3) divide Baige
landslide and calculate vegetation coverage; and 4) analyze
vegetation anomaly.

Selection of Image Fusion Method
The recognition ability of vegetation change in remote sensing
images should be enhanced before the landslides. It is necessary to
improve the spatial and spectral resolutions and then integrate
them as much as possible. The remote sensing image fusion
method can integrate the spatial and spectral information of
multiple images, which can provide more abundant and complete
information than that of any single image. It is an important step

in remote sensing image processing, such as information
extraction, change detection, and target recognition. However,
different image fusion methods have different results. Some
results may interfere with vegetation change detection. We try
to guarantee the detected vegetation anomaly caused by the
landslide creep rather than the fusion method. So, we chose
five fusion algorithms for comparative experiments to select the
fusion method with the least interference, including high pass
filtering (HPF) (Ranchin andWald, 2000), principal components
analysis (PCA) (María et al., 2004), Gram-Schmidt (GS)
(Clayton, 1971), Pansharpening (Zhang and Mishra, 2012) and
nearest-neighbor diffusion-based pan-sharpening algorithm
(NND) (Sun et al., 2014).

The Pansharpening method has been used in the SPOT
fusion-level products. So, the SPOT fusion-level product can
be used as the fused result of the Pansharpening method. But
the SPOT fusion-level products are not processed by the
atmospheric correction. Referring to the processing flow of
the SPOT fusion-level products, we do not implement the
atmospheric correction for the experimental images to ensure
the consistency of the image processing flow. The panchromatic
(PAN) and multispectral (MS) images of SPOT were directly
calibrated to the reflectance image. Then, the five fusion methods
were used to fuse the image.

Finally, we evaluated the results of image fusion and chose the
appropriate fusion method. In this study, vegetation and bare land
were the key objects that can reflect vegetation growth on the
surface. Owing to the spectral fidelity of remote sensing data
relating to the monitoring results of vegetation, the quality of
the fused image is evaluated from the visual effect evaluation,
spectral curves of vegetation and bare land, and distributions of
normalized difference vegetation index (NDVI). We select the best
image fusion method which is suitable for monitoring vegetation.

Division of the Baige Landslide
This paper aims to study the vegetation change caused by landslide
creep. Besides, human activities and other factors will also interfere
with vegetation. So, it is necessary to control the environment
variables and obtain a single environment variable zone. The
zoning excludes unrelated factors such as human activities to
ensure the consistency of vegetation growth conditions within
the same physical geographical units. Therefore, we combined the
interpretation of high-resolution remote sensing data to divide the
slope into different units before the Baige landslide.

Firstly, the main sliding area at the back part of the Baige
landslide, with dense vegetation, was identified. In previous
studies, the visual interpretation of historical satellite images
shows that the site has experienced creep deformation in the
last 50 years. Cracks and slight surface disruption had shown in
1966. The slope might have been already deforming and prone to
failure. In this study, the interpretation results of Google Earth’s
high-resolution remote sensing data (Figure 3A) show that the
vegetation area had slipped and formed the back scarp of
the landslide before 2011 (Fan et al., 2019). Since 2011, the
displacement of vegetation area at the back part of the
landslide increased rapidly, and the shear fractures on both
sides formed. The road in the vegetation area was significantly

FIGURE 2 | Procedural flow chart of this study.
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dislocated at the shear crack. As time went by, the road was
abandoned, and the sliding distance of the road increased
(Figure 3B). Therefore, the vegetation area at the back part of
the landslide was determined as the main sliding area, and the
area shown in the red box (Figure 3A) was determined as the
focus area.

Then, according to the interpretation result of human activities,
this study made a detailed division. In the selected red box area, the
landslide edge was taken as the boundary to divide this area into two
parts: the landslide area (area ①) and the external area of the
landslide. In the external area of the landslide, there were many
communities on the left side, as shown in Figures 3C–E. They may
interfere with the vegetation. However, there were no communities
near the right side. Since the road was abandoned, the right side of
the landslide had few human activities, especially the area drawn by
the white box hardly was disturbed by human activities, as shown in
Figure 3B. This area was on the same slope as the landslide, which
had the same natural conditions as the landslide. It was helpful to
verify the effect of the landslide creeps on vegetation. So, the area in
the white box was regarded as the reference area (area ②).

Vegetation Coverage Information
Acquisition
Vegetation coverage can directly show the surface vegetation
situation and is often used as an evaluation factor in geological
hazard assessment, prevention, and mitigation. We used the
dimidiate pixel model to calculate the vegetation coverage maps.

The dimidiate pixel method assumes that the land in a pixel is
composed of vegetation area and non-vegetation area (soil or bare
land). The spectral information of this land observed by remote
sensing sensor is also composed of these two elements by linear
weighting. The weight of each element is the proportion of their
respective area in the pixel. The vegetation coverage can be

regarded as the weight of vegetation (Leprieur et al., 1994;
Chen et al., 2001; Zribi et al., 2003).

NDVI is also a kind of quantitative value that reflects the
growth of vegetation on the land. It is calculated from the spectral
information of land objects received by remote sensing sensors, as
shown in Eq. 1. Since the atmospheric correction was not
conducted in this study, NDVI can partly eliminate the
atmospheric influence to reduce the atmospheric disturbance
as much as possible. According to the dimidiate pixel model,
the NDVI value of a pixel can be expressed as the information of
NDVIveg contributed by vegetation and the information of
NDVIsoil contributed by non-vegetation (soil or bare land).
Moreover, it is shown that different indicators used to
calculate vegetation coverage have different characteristics,
among which NDVI is the most widely used in previous
studies (Li, 2003). Therefore, the vegetation coverage can be
expressed by the following formulas:

NDVI � ρNIR − ρR
ρNIR + ρR

(1)

where ρNIR is the reflectance of the near-infrared band; ρR. is the
reflectance of the red band.

Fc �
⎧⎪⎨
⎪⎩

0, NDVI ≤NDVIsoil
(NDVI − NDVIsoil)/(NDVIveg − NDVIsoil),NDVIsoil ≤NDVI ≤NDVIveg
1, NDVI ≥NDVIveg

(2)

where Fc is the vegetation coverage value; NDVIsoil is theNDVI of
the area entirely covered by soil; NDVIveg is the NDVI of the area
entirely covered by vegetation.

In theory, NDVIsoil and NDVIveg should be determined by the
field investigation. However, due to the Baige landslide has
already happened, we can not verify NDVIsoil and NDVIveg by
the field investigation. Previous studies usually use the statistics of

FIGURE 3 | The Baige landslide (A) Interpretation map of Baige landslide (modified from State Key Laboratory of Geohazard Prevention and Geoenvironment
Protection, 2018 (http://www.sklgp.cdut.edu.cn/info/1018/2247.htm)) (B) Deformation map of the road (C) Community-1 (D) Community-2 (E) Community-3.
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NDVI to get the cumulative percentage of eachNDVI and then set
the confidence interval of the cumulative percentage to determine
the NDVIsoil and NDVIveg (Li et al., 2014). Therefore, we count
the cumulative percentage of each NDVI value in the remote
sensing image at first. Secondly, we use the visual interpretation of
remote sensing images to determine the vegetation area and the
bare land area. Then, we use different confidence intervals to
obtain the vegetation area and the bare land area. Finally, we
compare the area obtained by different confidence intervals with
the area obtained by visual interpretation to determine the
suitable confidence interval. However, this method relies too
much on visual interpretation. Sometimes there may be a
slight deviation in the confidence interval of the best matching
state obtained by visual interpretation of images in different
phases. To obtain the consistent and best consistent vegetation
coverage, we unify the confidence intervals of the three phases,
getting 2%–98% as the confidence interval.

According to the confidence interval, this study determined
the NDVIsoil and NDVIveg. The NDVI, whose accumulated
percentage was 2% in the Baige landslide, was defined as
NDVIsoil (i.e., The pixel’s NDVI, which was less than
NDVIsoil, was entirely covered by soil). The NDVI, whose
accumulated percentage was 98% in the Baige landslide, was
defined as NDVIveg (i.e., The pixel’s NDVI, which was more
than NDVIveg, was entirely covered by vegetation). Finally, the
vegetation coverage of the Baige landslide was calculated
according to Eq. 2. Besides, the vegetation coverage from
high to low was transformed into the corresponding color
from red to purple by the pseudo-color density segmentation.
The calculation of vegetation coverage and pseudo-color

enhancement can highlight the subtle vegetation changes
related to landslide creep.

RESULTS

Effect of Image Fusion
In the comparative experiment, the originalMS reflectance imagewas
taken as the reference image. The fused images obtained by different
fusion methods were compared. The results of the fused images are
shown in Figure 4. Owing to the PAN and MS images in the fusion
experiment gotten from the same sensor in the same phase, the color
differences of most fused images were inconspicuous. They can
effectively improve image clarity and visual effect.

The spectral fidelity of vegetation and bare land was analyzed
from the shape and scope of the reflectance spectrum curve in
different fused images, as shown in Figure 5 and Figure 6. In
Figure 5, the spectral reflectance curve of the vegetation in the
NND fused image is the most consistent with that in the MS
image, and the fidelity of the NND fused image is the best.
Although the shapes of these spectral reflectance curves of
Pansharpening, HPF, GS, and PCA fused images are not
significantly different from that of the MS image, these
reflectance values of fused images are high and spectral fidelity
is poor. In Figure 6, the spectral reflectance curves of the bare
land in the NND and PCA fused image have the same trend and
good fidelity as that of the MS image. The curve trend of the HPF
fused image is inconsistent with the MS image. Although the
shapes of these spectral reflectance curves of Pansharpening and
GS fused images are not significantly different from that of the

FIGURE 4 | Visual effects of different fusion methods (A)MS image (B) Pansharpening fused image (C)HPF fused image (D)GS fused image (E) PCA fused image
(F) NND fused image.

Frontiers in Earth Science | www.frontiersin.org August 2021 | Volume 9 | Article 7069986

Guo et al. Detecting Vegetation Change Relating Landslide

183

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


spectral reflectance curve of MS image, these reflectance values of
fused images are high, and their spectral fidelity is poor.

This study calculated the NDVI values of the MS image and
fused images. The main objects in the selected study area are
mainly bare land and vegetation, without clouds, water, and
snow. So, the NDVI distribution values range from 0 to 1. The
distributions of NDVI from these images are shown in Figure 7.

The NDVI of the MS image was regarded as the actual value to
compare with otherNDVI values of the fused images (Table 2): 1)
The maximum and minimum values of each NDVI result were
counted. NDVI values are mainly distributed between 0.25 and
0.45 in the MS image. The distribution of NDVI values obtained
by PCA fusion is mainly distributed between 0.25 and 0.5. In the
MS image,NDVI appears most frequently around 0.4. In GS fused

FIGURE 5 | The spectral reflectance curves of vegetation with different image fusion methods (A)MS image (B) Pansharpening fused image (C) HPF fused image
(D) GS fused image (E) PCA fused image (F) NND fused image.

FIGURE 6 | The spectral reflectance curves of bare land with different image fusion methods (A)MS image (B) Pansharpening fused image (C) HPF fused image
(D) GS fused image (E) PCA fused image (F) NND fused image.
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image, NDVI appears most frequently around 0.3. 2) In the
mean NDVI, the approximation ratio of the mean NDVI was
calculated. The approximation ratios of the mean NDVI
obtained by these fused images and the MS image can almost
reach 100%, except HPF fused image. 3) In the distribution of
NDVI, we calculated the root mean squared error (RMSE) of the
NDVI to measure the deviation between the NDVI values of the
fused images and the actual NDVI value. This study compared
the NDVI distribution of the fused images with that of the MS
image. We found that the NDVI distribution of the fused images
is similar to that of the MS image when RMSE is within 50. So,
this study used RMSE as the criteria. The NDVI distribution of
the NND and Pansharpening fused images are the most similar
to the actual distribution.

According to the visual effect, the spectral curve of
vegetation and bare land, and the distribution of NDVI, we

found that the NND fusion method is superior to the other
four fusion methods for this study. It can keep the actual
spectrum of bare land and vegetation and keep the actual
distribution of NDVI. So, it is the best method for bare land
and vegetation and selected as the fusion algorithm of this
study. Moreover, the experiment also proves that calculating
NDVI by suitable fused remote sensing images to monitor the
vegetation is reasonable.

Vegetation Change Related to the Creep
The study obtained the fused remote sensing image (Figures
8A–C), the maps of vegetation coverage (Figures 8D–F), and the
maps of vegetation change (Figures 8G–I) of the Baige landslide.
We can judge whether the landslide is sliding or not through the
visual interpretation of fusion image, qualitative and quantitative
study of vegetation coverage. For landslides with a long creep
distance, we can outline the boundary of the landslide according
to the change of vegetation coverage and judge the creep distance
of the landslide.

The range of bare land and the landslide boundary can be
identified from the remote sensing image. The solid black line in
Figure 3 is the landslide boundary, which is consistent with the
first landslide boundary of the Baige landslide designated by the
State Key Laboratory of Geohazard Prevention and
Geoenvironment Protection (2018) (http://www.sklgp.cdut.edu.
cn/info/1018/2247.htm). Moreover, the creep history can be

FIGURE 7 | NDVI distribution of different fused images (A) MS image (B) Pansharpening fused image (C) HPF fused image (D) GS fused image (E) PCA fused
image (F) NND fused image.

TABLE 2 | NDVI of the fused image.

NDVI MS image Pansharpening HPF GS PCA NND

Mean 0.305 0.305 0.306 0.305 0.305 0.305
Max 0.668 0.645 0.630 0.687 0.724 0.647
Min 0.015 0.014 0.026 0.006 −0.028 0.017
RMSE — 30.474 58.569 65.924 82.298 32.810
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determined according to the road displacement within the
landslide (as shown in Figure 3).

The vegetation coverage change in the study area with time has
significant spatial heterogeneity. It indicates that the vegetation in
the study area is disturbed by the uneven distribution of
influencing factors. We think that the main influencing factor
may be landslide creep, according to the displacement of the road
in Figures 8A–C. Therefore, the vegetation anomaly area at the
middle part of the study area is the landslide-prone area that
needs to be paid attention to. The change of vegetation coverage
on both sides of the study area is complex. Therefore, we further
divided the study area according to Figures 8A–C. The study area
was divided into four zones: A-D. Area A is the back scarp of the
landslide, where the bedrock is exposed because of the previous
sliding. Area B is the main sliding area of the landslide, where the

vegetation is still preserved. There is a significant boundary
between area A and area B. It can be used as a marker for
monitoring the creep distance of the landslide. Area C and area D
are located out of the first landslide area and may be disturbed by
the main landslide area. Area C had been creeping since 2014, and
it slid in the second landslide. There are significant cracks on the
left side of area D caused by the earlier sliding. After that, area D
tends to be stable. There is still no sliding in the second landslide,
which can be used as a reference area for the study of area C.

The change of vegetation coverage can be used to monitor the
landslide creep. As the reference, the vegetation coverage in the
reference area (area②), which is unlikely to slide, decreased from
2014 to 2015 and then increased from 2015 to 2017. It is regarded
as the background value of the vegetation coverage change. Before
the first landslide, the vegetation coverage of area B decreased

FIGURE 8 | Remote sensing data and vegetation coverage map of Baige landslide (A) SPOT-6 image of May 18, 2014 (B) SPOT-7 image of May 30, 2015 (C)
SPOT-7 image of May 8, 2017 (D) Vegetation coverage map of May 18, 2014 (E) Vegetation coverage map of May 30, 2015 (F) Vegetation coverage map of May 8,
2017 (G) Vegetation coverage change map of 2014–2015 (H) Vegetation coverage change map of 2015–2017 (I) Vegetation coverage change map of 2014–2017.
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significantly, and the creep of the landslide can be identified. The
scope of area A gradually expanded with time. It means that area
A and area B, which compose area ① (landslide area), are
dangerous. The vegetation coverage of area C has decreased
before the first landslide. According to the displacement of
roads in area C, this area has crept from 2014. It means that
area C is also dangerous. Then this area slid in the second
landslide. Vegetation coverage change of area D is not
significant before the first landslide, which means the danger
of area D is not high. Area D did not slide in the first and second
landslides (Ouyang et al., 2019).

It is not intuitive to show the creep of landslides only through the
change of vegetation coverage. So, we calculated the vegetation
coverage difference in 2014–2017. The negative value indicates
the increase of vegetation coverage, and the positive value
indicates the decrease of vegetation coverage. According to the
vegetation coverage change in the area ② (reference area), we
think that the vegetation coverage change at 0–0.2 is normal and
reasonable in 2014–2017. Because the area② is in the natural state
and unlikely to be disturbed by landslides, human activities, and
other interference factors, we use a 0.2 reduction of vegetation as the
threshold of the vegetation coverage change in 2014–2017.When the
difference of vegetation coverage is between−1 and 0.2, it means that
the vegetation is in the natural state or vegetation coverage is
increasing. The difference map of vegetation coverage was
counted, and the results are shown in Table 3. As time goes on,
the proportion of vegetation coverage differences between−1 and 0.2
decreases by more than 10%; the proportion of vegetation coverage
difference between 0.2 and 0.8 increased rapidly. In this study, the
difference map was colored with pseudo color at an interval of 0.2.
The areas in the natural state or with increasing vegetation coverage
or are set as colorless. We obtained maps of vegetation coverage
difference in 2014–2015 (Figure 8G), 2015–2017 (Figure 8H), and
2014–2017 (Figure 8I). The vegetation coverage of areas not affected
by landslides increases or remains unchanged (e.g. area ②), while
the vegetation coverage of the landslide area decreases significantly
(e.g. areas A, B, C).

The road construction caused the abnormal decrease of
vegetation coverage in the upper part of the study area
(Figure 8I). Moreover, according to the scope of vegetation
coverage reduction area, the shape of the creeping landslide
can be roughly outlined (Figure 8I). Although area D has bare
land and its vegetation coverage is low (Figures 8D–F), the
vegetation coverage change is similar to that of the

background value, which contrasts with that of area C
(Figure 8I). Area C and D did not slide in the first landslide,
but area C slid in the second landslide. The decrease of vegetation
coverage in 2014–2015 is far smaller than that in 2015–2017.
Therefore, the creep distance of the landslide in 2014–2015 is far
less than that in 2015–2017. At the same time, there are three
significant strips α, β, and γ in the region, respectively
corresponding to the exposed area of the back scarp of the
landslide mass. According to the width of strips α, β, and γ in
the east direction, we estimate that the creep distance of the three
strips is roughly the same, about 50 m.

DISCUSSION

Validation of Vegetation Coverage Change
Related to the Creep
In this study, the displacement of the landslide caused the
vegetation coverage change. With the increase of the
displacement, the vegetation coverage change became more
and more significant. Vegetation coverage change in the
remote sensing data had a spatio-temporal correlation with
the landslide creep before the landslide occurred (Figure 8).

This study is compared with other studies employing multiple
methods for validation. In the Baige landslide, Ding et al. (2021)
identified the active landslide region with a mass advancing
motion from west to east (i.e., from up to down). It is
consistent with the local topography. The spatial heterogeneity
in the displacement velocity field is significant. So, the main
landslide body can divide into several blocks. Area B, where the
vegetation coverage change is significant, is the dominant
deformation area. The State Key Laboratory of Geohazard
Prevention and Geoenvironment Protection (2018) (Figure 6)
also found that the landslide slid intermittently in blocks and
grades since 2011 (http://www.sklgp.cdut.edu.cn/info/1018/2247.
htm). Liu et al. (2020) found that the cumulative deformations of
area B in the satellite line of sight direction and the azimuth
direction reached −60.2 and 12.6 m, respectively. Xiong et al.
(2020) found that area B has the maximum average displacement
velocity, and its largest horizontal deformation rate exceeds 5.
8 m/yr. The sliding speed became faster after January 15, 2017. It
shows that the result of this study is consistent with other studies.
The change of vegetation coverage can be used to identify
potential landslides in the area with dense vegetation.

TABLE 3 | Statistics of vegetation coverage difference.

Vegetation coverage difference Percentage of vegetation coverage difference area/(%)

2014–2015 2015–2017 2014–2017

−1–0.2 93.88 88.00 83.87
0.2–0.4 4.10 9.35 10.92
0.4–0.6 1.82 2.23 4.21
0.6–0.8 0.19 0.42 0.92
0.8–1.0 0.01 0.00 0.08

Note: The positive number means “vegetation coverage decrease”; the negative number means “vegetation coverage increase.“
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Common Vegetation Change in the
Landslide Area
The phenomenons of vegetation change before landslides are
common in the mountainous area of southwest China, such as
the Xinmo village landslide. The Xinmo village landslide is a ridge-
top landslide on June 24, 2017 inMaoxian county, Sichuan Province
(Yin et al., 2017). This area has dense vegetation coverage and may
be affected by the Diexi earthquake in 1933, the Pingwu-Songpan
earthquake in 1976, and the Wenchuan earthquake in 2008. A
previous study found that the vegetation change also exited before
the Xinmo village landslide (Guo et al., 2020).

In the previous study, the inherent relationship between the
vegetation change and the creep of the Xinmo village landslide
was detected by high-resolution optical remote sensing images. In
the upper landslide area, the vegetation coverage affected by the
creep of landslide declined from 2014 to 2016. With the distance
from the bare land edge of Xinmo village landslide increasing, the
smaller the effect of landslide creep is, the better the status of
vegetation gradually becomes. As time goes on, the more
significant the impact of landslide creep is, the worse the
vegetation becomes. In the middle potential impact area, the
vegetation coverage around the springs and gullies declines with
the more significant effect of landslide creep as the landslide time
approaches. The vegetation change of the upper landslide area
and the middle potential impact area has an evident spatio-
temporal correlation with the landslide creep.

It proves that the phenomenon of vegetation change in the
landslide creep stage is universal and can be detected by high-
resolution optical remote sensing images. For potential landslides
in large-scale earthquake-affected areas, this monitoring method
is robust and can be used for preliminary investigations. Then it
can combine with visual interpretation, SAR, and other
techniques for further confirmation in the key areas.

Application Conditions and Potential
The method is mainly used in large-scale surveys after earthquakes,
especially in poor accessible high-mountain areas. The field
investigation and GPS data may not be effectively used in poorly
accessible areas, and even SARdata cannot be obtained in these areas
with dense vegetation. It monitors landslide-prone areas
economically and effectively in the long-term natural evolution,
which applies to the case without significant environmental change,
such as no earthquake event or no rare heavy rain event. This
method will be used in a large range and at a low cost as a valuable
supplement to the GPS and SAR. If there are earthquakes and rare
heavy rain in natural evolution or this is a key area, we will consider
combining it with GPS, SAR, and other methods. The fusion
technology of optical remote sensing images and SAR images can
be used to improve the method.

In the future, Sentinel-2A/B remote sensing images widely
used in the study of landslides (Guo et al., 2021) can also be used
as a new data source. It has the advantages of free access, short
revisit cycle, high spatial resolution, and red edge band, which
usually be used to monitor vegetation. Sentinel-2A/B remote
sensing images have great potential for the application of this
method. Moreover, this method can detect changes over time-

series images in a larger range and a longer time, combined with
the machine learning method.

CONCLUSION

This study can validate the indicative effect of vegetation change
in the landslide creep stage. The changes in environmental
conditions caused by the creep of landslides impact the
vegetation growth, which can be identified by the optical
image fusion of multi-temporal remote sensing data. The
change of vegetation coverage can reflect the landslide creep.

The vegetation coverage in the back scarp area and the main
sliding area of the Baige landslide significantly decreased
compared to that in the normal area. The extent of vegetation
coverage reduction can reflect the degree of creep, and the
reduced area can show the outline of the potential landslide
area. The vegetation change has an evident spatio-temporal
correlation with the landslide creep in the Baige landslide.

This study can provide a new light to monitor potential
landslides in high-mountain regions after the earthquake. For
potential landslides in large-scale high-mountain areas, this
method can be used to preliminary investigations
economically and effectively. Then for the key areas, it can
combine with visual interpretation, SAR, and other techniques
for further confirmation.
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