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Editorial on the Research Topic
Molecular Diagnostics of Pediatric Cancer

Pediatric tumors are defined as tumors arising from the complex physiological growth process of
embryonic stem cells (1). They differ from malignant adult tumors in cellular origin, epidemiology,
genetic complexity, driver mutations, and potential mutational processes, and they are generally
considered to be rare events (2). This Research Topic collects research related to molecular markers,
signaling pathways, drug development and treatment, and emerging molecular technologies of
pediatric tumors.

Chen et al. reviewed the progress of molecular epidemiology of hepatoblastoma (HB), focusing on
the studies of single nucleotide polymorphisms (SNPs) related to the risk of HB. As treatment
regimens for medulloblastoma (MB) are becoming subgroup-specific, methods are needed to
discriminate its subgroups. Gershanov et al. used the SARC algorithm that reduces the set of 22
genes to only 6 genes, which could distinguish four MB subgroups reliably. The gene set identified is
small enough to allow clinicians to easily obtain the qPCR-based classification of MB subtypes to
better determine treatment options. Wang et al. found that the sensitivity of the NB5method to detect
neuroblastoma (NB) with micrometastases in bone marrow (BM) and peripheral blood (PB) was
significantly higher than that of bone marrow biopsy (BMB). Liver and bone metastases are factors
that affect the sensitivity of NB5 detection in the bone marrow and peripheral blood. Zhanghuang
et al. illustrated that targeting the PI3K-AKT signaling pathway and microRNA-related proteins had
high potential values for treating malignant rhabdoid tumors of the kidney (MRTK). Poot et al.
described recent advances in the therapeutical development of pediatric cancer and illustrates how
this methodology affects diagnosis and provides additional treatment options for these patients. These
studies contribute to a better understanding, diagnosis, and treatment of pediatric cancer.

Pediatric cancers are characterized by high molecular heterogeneity. For instance, CTNNB1,
NFE2L2, AXIN1, APC,MYCN1, and IGF2may be potential biomarkers for the diagnosis of HB. Hu
et al. demonstrated that pediatric HB patients with causal genetic alterations had significantly lower
complete remission (CR) rates than patients with wide-type gene counterparts (P<0.05). Moreover,
regarding acute lymphoblastic leukemia (ALL), Liu et al. found that METTL3 gene polymorphism
was associated with an increased risk of ALL in children and suggested that METTL3 gene
polymorphism may be a potential biomarker for the selection of chemotherapy agents for pediatric
ALL. Cai et al. proved that Prp19 regulates the expression of YAP through YAP pre-mRNA splice, thus
October 2021 | Volume 11 | Article 77766215
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affecting the invasion, migration, and EMT of NB cells. It was the
first report to demonstrate that Prp19 is a potential therapeutic
target and prognostic biomarker in patients with NB. Shi et al.
showed that the high expression of CDC20 was involved in the
tumorigenesis of Wilms tumor (WT), and inhibition of CDC20
could suppress the proliferation and migration of WT cells and
arrest the cell cycle in the G2/M phase, suggesting that CDC20
could be a potential biomarker of WT. Liu et al. established a
multinomial predictive survival model and a survival-associated
ceRNA network, which provides a new potential biomarker for
improving prognosis and treatment of WT patients. Taken
together, these biomarkers may be able to predict clinical
outcomes and hold great promise in clinical application of
pediatric cancer.

The immune system is closely related to the occurrence and
development of pediatric cancer, and understanding the immune
microenvironment is helpful to the treatment of pediatric cancer (3).
Li et al. used single-cell RNAsequences to reveal the characteristics of
malignant cells and the immunemicroenvironment in subcutaneous
panniculitis-like T-cell lymphoma (SPTCL), providing a better
understanding of the transcriptional characteristics and immune
microenvironment of this rare tumor. Feng et al. explored the
immune microenvironment of Langerhans cell histiocytosis
(LCH). They found that serum levels of immune indicators are
somewhat representative of disease severity, and associated
laboratory tests can be used to improve risk stratification and
guide immunotherapy.

The rapid rise of gene sequencing and bioinformatics and the
opening of relevant tumor databases provide opportunities to
elucidate the molecular mechanisms of pediatric cancer and
precise drug target therapy of pediatric cancer. Feng et al.
applied artificial intelligence methods to improve the accuracy
of gene express-based survival prediction for neuroblastoma.
Ruan et al. showed that monitoring circulating tumor DNA
(ctDNA) with next-generation sequencing-based analysis could
provide more information about genetic mutations to guide the
precise treatment of acute myeloid leukemia (AML) in children.
Frontiers in Oncology | www.frontiersin.org 26
Sun et al. established a random forest classifier and identified 10
HB core genes. These findings may help in the diagnosis,
prediction, and targeted treatment of HB. Li et al. provided an
overview of the techniques currently available in vitro and in vivo
models of pediatric brain tumors and discussed the opportunities
presented by new techniques such as 3D culture and organic-like
compounds that can overcome the limitations of the simplicity
of single-layer culture and the complexity of living models
to accommodate greater precision in drug development for
pediatric brain tumors. Wang et al. reported the first case of
acute promyelocytic with FIP1L1/RARA identified by next-
generation sequencing (NGS). NGS analysis is recommended
as a routine test for patients with variant acute promyelocytic
leukemia (APL). Cimmino et al. found that 9 out of 11 patients
carried at least one pathogenic variant and developed a targeted
NGS approach to identify tumor-specific alterations in ctDNA in
NB patients. This information can be combined with clinical and
pathological data at NB diagnosis. The goal of these molecular
diagnostic studies for pediatric cancer is to translate them into
the clinic to achieve more accurate diagnosis, more accurate risk
stratification, and more effective and less toxic treatments.

In conclusion, the “Molecular Diagnostics of Pediatric
Cancer” Research Topic highlights the most recent advance of
diagnostic molecular biomarkers and novel therapeutic targets
for pediatric cancer.
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Guofeng Xu 3, Yeming Wu 1,2,4* and Zhixiang Wu 1,2,4*

1Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China,
2Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China, 3Department of Pediatric Urology,

Xinhua Hospital, National Key Clinical Specialty, Shanghai Top-Priority Clinical Center, School of Medicine, Shanghai Jiaotong

University, Shanghai, China, 4Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China

Pre-mRNA processing factor 19 (Prp19) was previously reported to be involved in tumor

progression. However, Prp19 expression and its functions remain elusive in

neuroblastoma. Here, we aim to identify the functions and mechanisms of Prp19 in

neuroblastoma. Neuroblastic tumor tissue microarrays and two independent validation

data sets indicate that Prp19 is associated with high-risk markers and bone marrow

metastasis and serves as a prognostic marker for worse clinical outcomes with

neuroblastoma. Gain- and loss-of-expression assays reveal that Prp19 promotes

invasion, migration, and epithelial–mesenchymal transition (EMT) of neuroblastoma cells

in vitro. Bioinformatics analysis of RNA-seq data shows that the expressions of YAP and

its downstream genes are significantly inhibited after downregulation of Prp19. Prp19

and YAP expression in metastatic lymph nodes is higher than in situ neuroblastoma

tissue. Further experiments show that Prp19 regulates YAP expression and consequently

affects cell invasion, migration, and EMT in neuroblastoma by pre-mRNA splicing of YAP.

In conclusion, our findings provide the first evidence that Prp19 is a potential therapeutic

target and prognostic biomarker for patients with neuroblastoma.

Keywords: Prp19, neuroblastoma, metastasis, YAP, RNA splicing

INTRODUCTION

Neuroblastoma, arising from neural crest progenitor cells of the sympathoadrenal lineage, is the
most common extracranial solid tumor in children, accounting for 7.5% of all childhood cancers
and 11–15% of all childhood cancer-related deaths (1, 2). The most prominent characteristic of
neuroblastoma is extreme heterogeneity, which ranges from spontaneous regression in infants to
metastasis and progression in older children despite intensive multimodality therapy. Children
with limited lesions usually have a good prognosis, and the 5-year event-free survival (EFS) rate
can reach 83% (3). However, the long-term prognosis for patients with distant metastasis is poor
with a 5-year EFS of 35%, which has not improved in the last decades (3–5). A better understanding
of the biological mechanism of metastatic neuroblastoma will likely refine treatment strategies and
further improve the prognosis of metastatic patients.
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Pre-mRNA processing factor 19 (Prp19)-associated complex
(Prp19C) is a highly conserved multiprotein complex (6).
As an important member of Prp19C (7), Prp19 has many
vital biological functions, such as splicing of pre-mRNA, cell
cycle regulation, DNA damage repair, protein degradation,
and metastasis (8–13). Because these intracellular events are
closely related to cell fate, aberrant Prp19 function may cause
serious diseases, for example, cancer. In fact, studies have found
Prp19 expression is higher in colon, larynx, and hepatocellular
carcinoma compared with paracancerous tissues and is positively
correlated with poor prognosis (13, 14). However, the function
of Prp19 in tumors and its association with poor prognosis
have not been well-demonstrated. Increasing evidence suggests
that abnormalities in splicing events may involve tumorigenesis
and development. For example, hnRNPK promotes gastric
tumorigenesis through regulating CD44E alternative splicing
(15). Alternative splicing of EZH2 pre-mRNA by SF3B3
contributes to the tumorigenic potential of renal cancer (16).
As an important splicing factor, Prp19 may also participate in
tumorigenesis and development by regulating alternative splicing
of some key molecules.

The Hippo-YAP pathway is a highly conserved signaling
pathway that functions in the regulation of organ size, cell
proliferation, invasion, and metastasis (17, 18). When the
Hippo-YAP signaling is off, YAP, the key factor in the Hippo
pathway, translocates into the nucleus to drive transcription
of downstream genes, promoting of cell proliferation,
migration, and tumor growth. When Hippo-YAP is on,
YAP is phosphorylated and retained in the cytoplasm, turning
off downstream target gene expression (17). In addition to the
classic Hippo-YAP signaling, YAP expression and stability can
be regulated by a variety of molecules, such as CD44, HER3,
and Fbxw7 (19–22). The mechanism governing YAP protein
expression by alterative splicing remains poorly understood.
This study presents a lot of overlap between the functions of
Prp19 and YAP. On account of this, whether there is a regulatory
effect between Prp19 and YAP is worth further exploration.

Our investigation into the expression and potential role
and mechanism of Prp19 in neuroblastoma reveals that
the expression of Prp19 is positively correlated with bone
marrow metastasis of neuroblastoma and that Prp19 promotes
neuroblastoma invasion and migration in vitro. Also, YAP is
identified as a candidate target of Prp19 because the mRNA
maturity of it is regulated by Prp19. In metastatic lymph nodes,
Prp19 and YAP show obvious higher expression than their paired
primary tumor. Taken together, these results indicate that Prp19
promotes neuroblastoma metastasis via increasing pre-mRNA
splicing to upregulate the level of YAP.

MATERIALS AND METHODS

Patients and Tissue Specimens
This study includes 62 pediatric patients with neuroblastoma
who were diagnosed and treated in Xinhua Hospital, a subsidiary
hospital of Shanghai Jiaotong University School of Medicine,
from September 2012 to February 2015. The patient group
includes 43 neuroblastoma/gneuroblastoma-N (NB/GNB-N)

and 19 gneuroblastoma-I (GNB-I) cases. A total of 4 pairs
of neuroblastoma in situ and their corresponding metastatic
lymph node tissues were collected. The clinical and prognosis
information of the patients was collected from recorded clinical
data and follow-up through phone calls; data include gender, age
at diagnosis, bone marrow metastasis, clinical stage, diagnostic
category, Shimada pathologic type, and risk classification. All
patients underwent surgery or biopsy in our hospital, and
each tumor specimen was stored in liquid nitrogen until tissue
microarray (TMA) analysis. The experimental protocols were
approved by the Ethics Committee of the Xinhua Hospital
affiliated to Shanghai Jiaotong University School of Medicine.

TMA Preparation and
Immunohistochemistry (IHC)
IHC was performed as previously described (23). IHC
staining was performed using a standard immunoperoxidase
staining procedure, and the primary antibody included Prp19
(1:200, Abcam, ab126776) and YAP (ab52771, 1:50, abcam).
Hematoxylin was used as a counterstain. The tissue sections
were viewed independently by two pathologists in a double-blind
fashion. IHC staining was graded on a specialized scale from
0 to 4, where 0 represents negative expression, 1 represents
weakly positive expression (0–10% positive cells), 2 represents
mildly positive expression (10–30% positive cells), 3 represents
moderately positive expression (30–50% positive cells), and 4
represents strongly positive expression (50–100% positive cells).
The scale was determined according to the average number of
positive cells in 10 random fields on one slide. IHC staining
grade 0–2 was defined as low expression, and IHC staining grade
3–4 was defined as high expression.

Cell Lines and Cell Culture
Human neuroblastoma cell lines SK-N-BE (2) and SK-N-AS
were obtained from ATCC (Manassas, USA). All cell lines were
cultured in a 1:1 mixture of Eagle’s minimum essential medium
and F12 medium (Gibco, USA) supplemented with 10% fetal
bovine serum (Gemini, USA) in humid air at 37◦C with 5% CO2.

Knockdown and Overexpression of Prp19
Cells were plated in 6-, 12-, or 24-well-plates the day before
transfection so that they achieved 30–50% confluence
at the time of transfection. Cells were transfected with
small interfering RNAs (siPrp19, siYAP, and negative
control siNC) using RNAiMAX (ThermoFisher, USA)
according to the manufacturer’s instructions. siRNAs were
synthetized by RiboBio (China); target sequences were
as follows: Prp19-1 5′-GCCACTATCAGGATTTGGT-3′,
Prp19-2 5′- GCCAAGTTCATCGCTTCAA-3′, and YAP 5′-
GTAGCCAGTTACCAACACT-3′. Cells were incubated for 24 to
48 h at 37◦C before harvesting cells for analyses.

A Prp19 overexpressing adenovirus with Flag and His tag was
purchased from Vigenebio (China). Prp19 overexpression cell
lines were constructed in SK-N-AS and SK-N-BE (2) cells.
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Cell Invasion Assay
Matrigel was added to the top chamber of Transwell chambers
before the chambers were placed in an incubator for 4 h. Then,
siRNA-treated cells or Prp19 overexpressing cells (1 × 105 cells),
having been washed with serum-free medium, were plated into
chambers. After 36 h in 37◦C, the cells were harvested and fixed
with 4% paraformaldehyde for 20min. Cells were then stained
with 0.1% crystal violet staining for 10min, and the Matrigel
was wiped off with a cotton swab. Samples were observed
under a microscope; 5–10 fields were randomly selected and
photographed in each chamber.

Wound-Healing Assay
SK-N-BE (2) and SK-N-AS cells were seeded into 6-well-plates;
after 24 h, the cells were transfected or infected with siNC,
siPrp19, siYAP, or Prp19 or control adenovirus. Forty-eight hours
later, the cells reached 100% confluence, and the cell monolayer
was scraped with a 200-µl pipette tip. The well was washed twice
with serum-free medium (50% MEM and 50% F12) and then
replenished with fresh serum-free medium. At 0 h and every 12 h
after incubation, images were captured with a light microscope
(LeicaCTR6000 microscope system) at x50 magnification and
analyzed quantitatively by ImageJ (X64, v. 2.1.4).

Protein Extraction and Western
Blotting (WB)
WB was performed as previously described (23). Primary
antibodies specific for Prp19 (ab126776, 1:1,000) and YAP
(ab52771, 1:1,000) were purchased from Abcam; Primary
antibodies specific for GAPDH (2118s, 1:2,000), cyclinD1 (2978s,
1:1,000), MMP9 (13667s, 1:1,000), E-cadherin (3195s, 1:1,000)
were purchased from Cell Signaling Technology (Beverly, USA).
A primary antibody specific for Actin was purchased fromYeasen
(30101ES10, 1:5,000). Primary antibodies specific for CTGF
(sc-101586, 1:200), FGF1 (sc-55520, 1:100) were purchased from
Santa Cruz Biotechnology (USA). The results were quantitatively
analyzed through Image J software (X64, v. 2.1.4).

Polymerase Chain Reaction (PCR) and
Quantitative Real Time PCR (qPCR)
Total RNA was isolated with TRIzol (Invitrogen, USA) and
subjected to DNase I treatment prior to reverse transcription
(Promega, USA). Reverse transcription reactions were performed
using the reverse transcription kit from TakaRa (Tokyo, Japan).
PCR was performed using the MAX PCR Master Mix (TakaRa,
Japan), and the PCR products were subjected to agarose
gel electrophoresis. qPCR was conducted to measure the
levels of mRNAs using SYBR Green reagent from Yeasen
(China). Primer sequences were as follows: Prp19 forward
5′-GTGCCAAGTTCCCAACCAAGTGTT-3′, reverse 5′-AG
CACAGTGGCTTTGTCTTGAAGC-3′; YAP-1: forward 5′-
CCCGACTCCTTCTTCAAGC-3′, reverse 5′-TGTCCCAGGAG
AAACAGCTC-3′; YAP-2: forward 5′-TTGTGCCAACTTGAT
TCAGC-3′, reverse 5′-TACATCCCGAGTGGGCTAAC-3′;YAP-
3: forward 5′-CCTGCGTAGCCAGTTACCAA-3′, reverse
5′-CCATCTCATCCACACTGTTC-3′; YAP-4: forward 5′-
TTGTCACCAAGCACAGAACC-3′, reverse 5′-TTCCTGTC

CTGCAATGTCTG-3′; GAPDH: forward 5′-TCGACAGTCAGC
CGCATCTTCTTT-3′, reverse 5′-GCCCAATACGACCAAA
TCCGTTGA-3′. The transcript levels were calculated and
analyzed by the 2−11CT method.

RNA Sequencing Assay and Data Analysis
siPrp19 and siNC small interference RNA were transfected to
SK-N-BE (2) and SK-N-AS cells for 48 h, and then 3 µg of
total RNA per sample (6 samples per cell line) were extracted
by TOIzol R© reagent (Thermo Fisher scientific, American).
Library preparation for transcriptome sequencing and clustering
and sequencing were performed by Novogene Bioinformatics
Technology Co., Ltd. (Beijing, China). Per sample, biological
replicates were performed three times. Differential expression
analysis of the two groups was performed using the DESeq2R
package (1.16.1), and genes with an adjusted P < 0.05 found
byDESeq2 were assigned as differentially expressed. Gene
ontology (GO) enrichment analysis of differentially expressed
genes was implemented by the cluster Profiler R package,
in which gene length bias was corrected. GO terms with
corrected value <0.05 were considered significantly enriched
by differentially expressed genes. KEGG is a database resource
for understanding high-level functions and utilities of the
biological system from molecular-level information, especially
large-scale molecular data sets generated by genome sequencing
and other high-throughput experimental technologies (http://
www.genome.jp/kegg/). We used the cluster Profiler R package
to test the statistical enrichment of differential expression genes
in KEGG pathways. Sequencing data have been deposited in the
Gene Expression Omnibus database, and the accession codes of
SK-N-BE (2) and SK-N-AS are GSE153398 and GSE153432.

Neuroblastoma Data Set Analysis
In order to validate the conclusion we got from our clinical
data, we analyzed the factors associated with the prognosis of
neuroblastoma by the R2 Genomics Analysis and Visualization
Platform (http://r2.amc.nl) using the following publicly available
data sets: SEQC (GEO: GSE49710) and NRC (GEO: GSE85047).
In addition, we also analyzed the differential expression of
Prp19 among clinical stage, risk classification, MYCN status,
and histology.

Statistical Analysis
Statistical analysis was performed using SPSS 20.0 software.
The Mann-Whitney U rank sum test was used for the non-
normally distributed variables. The different expression of Prp19
among genders, ages, bone marrow infiltration, clinical stage
(INSS), tumor pathological diagnosis, Shimada pathological
classification, and risk classification were analyzed by chi-
square test. Multivariate Cox regression analysis was performed
on the effects of Prp19, clinical stage, and age at diagnosis
on survival in children. Survival curves between different
expression groups of Prp19 were delineated using Kaplan–
Meier curves, and differential analysis of survival curves was
performed using log-rank test. Values of p< 0.05 were considered
statistically significant.
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FIGURE 1 | Expression and roles of Prp19 in neuroblastoma. (A) Representative images of different levels (0–4) of IHC staining of Prp19 and the proportions of five

levels. Scale bar: 100µm. (B) Prp19 expression between NB/GNB-N and GNB-I in TMA. The data were analyzed by Mann-Whitney U-test (n = 62). (C,D) Proteins of

7 NB/GNB-N and 7 GNB-I tumor tissue proteins extracted for immunoblotting to detect Prp19 expression, and Image J was used to quantify protein bands. The data

in (D) were analyzed by Mann-Whitney U-test (n = 14). *p < 0.05 and ***p < 0.001.

RESULTS

Differential Expression of Prp19 Is
Associated With Clinical Characteristics in
Neuroblastoma
We first performed IHC analysis of Prp19 expression on a
TMA consisting of 62 samples from patients diagnosed with
neuroblastoma, including 43 NB/GNB-N and 19 GNB-I cases.
Prp19 was mainly expressed in the cell nucleus and differentially
expressed in neuroblastoma patients with different pathological
types; the expression of Prp19 was as follows: grade 0 (10%),
grade 1 (21%), grade 2 (21%), grade 3 (21%), and grade 4 (27%)
(Figure 1A). Prp19 expression in patients with NB/GNB-N was
significantly higher than that in patients with GNB-I (p = 0.016;
Figure 1B). Western blot analysis of 14 frozen fresh samples
further confirmed that the expression of Prp19 was significantly
higher in patients with NB/GNB-N compared with patients with

GNB-I (p = 0.006; Figures 1C,D). This indicates that Prp19
shows differential expression in different pathological types
of neuroblastoma.

We next examined whether expression of Prp19 had clinical
implications in our cohort. As shown in Table 1, high expression
of Prp19 was significantly associated with bone marrow
metastasis, NB/GNB-N, unfavorable histologic and high risk

(p = 0.009, 0.021, 0.022, and 0.023, respectively); however, there
were no associations with age at diagnosis and clinical stage in our

TMA, possibly due to insufficient sample size. To further confirm
the clinical implications of Prp19 in human neuroblastoma,
we analyzed gene expression profiles from two cohorts of
neuroblastoma primary tumors with larger sample sizes (SEQC:
GSE62564 and NRC: GSE85047). The expression of Prp19 was
positively correlated with clinical stage (p < 0.001; Table 2),
and more interestingly, Prp19 expression increased with clinical
stage from stage I to stage IV, but significantly decreased in stage
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TABLE 1 | The association between Prp19 expression with clinical pathologic

characteristics in the TMA cohort.

Clinical and

pathological characteristics

Total Prp19 χ
2 P

High Low

Gender

Male 35 14 21 2.264 0.132

Female 27 16 11

Age at diagnosis

≥18 months 42 21 21 0.136 0.713

<18 months 20 9 11

Bone marrow

metastasis

Positive 21 15 6 6.751 0.009

Negative 41 15 26

Clinical stages

I–II IV–S 25 10 15 1.180 0.277

III–IV 37 20 17

Diagnostic category

NB and GNB-N 43 25 18 5.344 0.021

GNB-I 19 5 14

Shimada

pathologic type

FH 30 10 20 5.274 0.022

UFH 32 20 12

Risk classification

Low and

Intermediate 34 12 22 5.168 0.023

High 28 18 10

NB, neuroblastoma; GNB-N, ganglioneuroblastoma-nodular; GNB-I,

ganglioneuroblastoma-intermixed; FH, favorable histology; UFH, unfavorable histology.

IVs (Supplementary Figures 1A,C). Furthermore, Prp19 was
significantly overexpressed in children diagnosed at more than
18 months (p < 0.001) and high-risk cases (p < 0.001; Table 2
and Supplementary Table 1; Supplementary Figures 1B,D,E).
In addition, patients with MYCN amplification also tended
to have higher Prp19 expression (p < 0.001; Table 2 and
Supplementary Table 1; Supplementary Figures 1F,G).
Together, these results indicate that Prp19 shows differential
expression in neuroblastoma tissues and higher Prp19 expression
is associated with poor clinical characteristics in neuroblastoma.

High Expression of Prp19 Is a Potential
Poor Prognostic Factor in Children With
Neuroblastoma
We next investigated if Prp19 had an influence on the prognosis
of children with neuroblastoma. Out of the 62 patients from
the TMA cohort, 50 cases were successfully followed up with
a follow-up completion rate of 80.6%. The median follow-
up time was 34 months, and the longest and shortest follow-
up periods were 62 and 6 months, respectively. We examined
OS and EFS by Kaplan-Meier curves in the TMA cohort

TABLE 2 | Correlation analysis between clinical characteristics and expression of

Prp19 in the SEQC data set.

Covariates Total Prp19 χ
2 P

High Low

Age at diagnosis

≥18 months 198 94 104

<18 months 300 45 255 62.517 <0.001

Clinical stages

I–II IV–S 252 18 234

III–IV 246 121 125 109.362 <0.001

Risk

Low risk 322 33 289

High risk 176 106 70 498.000 <0.001

MYCN state

Amplification 92 50 42

Non-amplification 401 87 314 39.758 <0.001

and compared the survival curves by log-rank test. Patients
with low Prp19 expression had a better OS (p = 0.0040)
and EFS (p = 0.0275; Figures 2A,D). In addition, analyses
of the SEQC and NRC data sets revealed similar results,
and both the p-value of all OS and EFS rates were <0.0001
(Figures 2B,C,E,F). In the TMA cohort, univariate analysis
found that high expression of Prp19 was a risk factor both for
OS (p = 0.010; HR = 5.189) and EFS (p = 0.045; HR = 2.644)
in children with neuroblastoma (Table 3). Multivariate analysis
also found that patients with high Prp19 expression had a worse
OS (p = 0.027; HR = 4.118) although there was no statistically
significant difference in the EFS (p = 0.174; HR = 1.954).
Clinical stage, as a recognized prognostic risk factor, was also
associated with poor OS (p = 0.016; HR = 12.345) and EFS
(p = 0.003; HR = 9.267). However, age at diagnosis did not
show an effect on OS and EFS in children with neuroblastoma
(Table 4). Age at diagnosis is a known risk factor affecting
the prognosis of children with neuroblastoma (3). On account
of this, we doubted that the negative result from Table 4 was
limited by the number of the TMA cohort. To further validate
our results, we performed the analyses in the SEQC and NRC
databases. Univariate and multivariate analyses show that high
Prp19 expression, high clinical stage, and age over 18 months
at diagnosis are associated with poor OS and EFS in the SEQC
data set (Supplementary Tables 2, 3). In the NRC data set, OS
and EFS are associated with Prp19 expression and clinical stage,
but age at diagnosis, even with an impact on OS, has no
effect on EFS (Supplementary Tables 4, 5). Taken together, our
analyses indicate that Prp19 is a potential prognostic marker
in neuroblastoma.

Prp19 Promotes Neuroblastoma Cell
Invasion and Migration
Then, the function of Prp19 at the cellular level was explored.
First, the expression level of Prp19 in different neuroblastoma cell
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FIGURE 2 | Prp19’s prognostic value in TMA cohort and data sets. (A,D) Kaplan-Meier analysis of OS and EFS for the TMA cohort based on Prp19 expression with

the log-rank test P-value indicated (n = 50). (B,E) Kaplan-Meier analysis of OS and EFS for the SEQC data set based on Prp19 expression with the log-rank test p

value indicated (n = 498). (C,F) Kaplan-Meier analysis of OS and EFS for the NRC data set based on Prp19 expression with the log-rank test p-value

indicated (n = 275).

TABLE 3 | Univariate analyses in the TMA cohort.

Covariates OS EFS

HR (95%CI) P HR (95%CI) P

Prp19 expression 5.189 (1.487–18.109) 0.010 2.644 (1.023–6.836) 0.045

(high vs. low)

lines [SK-N-BE (2), SK-N-AS, SH-SY5Y, IMR32, and LAN1] was
assessed, and the silencing efficiency of siRNA targeting Prp19
was examined (Figures 3A,B). Two cell lines [SK-N-BE (2) and
SK-N-AS] with higher expression of Prp19 and the first siRNA
were selected for the following assays. We next explored whether
Prp19 influences migration or invasion of neuroblastoma
cells. After 48 h silencing of Prp19 in SK-N-BE (2) and SK-
N-AS cells, transwell assays were performed. As shown in
Figures 3C,D, knockdown of Prp19 impaired the invasive ability
of both SK-N-BE (2) and SK-N-AS cells, and upregulating
Prp19 enhanced the invasive capacity of two cell lines. In
addition, the wound-healing assay also showed increased or
decreased migratory ability in Prp19 overexpressing cells or
Prp19 silenced cells (Figures 3E,F). EMT-related molecules,
such as E-cadherin and matrix metalloproteinase 9 (MMP9),

TABLE 4 | Multivariable analyses in the TMA cohort.

Covariates OS EFS

HR (95%CI) P HR (95%CI) P

Prp19 expression

(high vs. low)

4.118 (1.171–14.480) 0.027 1.954 (0.744–5.136) 0.174

Clinical stages

(I–II IV–S vs. III–IV)

12.345 (1.613–94.489) 0.016 9.267 (2.114–40.624) 0.003

Age at diagnosis

(< >18 months)

0.980 (0.351–2.740) 0.969 1.755 (0.667–4.616) 0.255

were altered upon Prp19 expression; we observed increased E-
cadherin and decreased MMP9 after Prp19 downregulation with
opposite effects in Prp19 overexpression cells (Figures 3G,H).
These results demonstrate the role of Prp19 in neuroblastoma cell
invasion, migration, and EMT.

RNA-seq Identifies the Hippo/YAP Pathway
as a Candidate Regulatory Target of Prp19
Given the change of invasion and migration observed in Prp19
knockdown and overexpressed cells, we speculated that Prp19
may affect specific cellular functions through regulating specific
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FIGURE 3 | Effects of Prp19 on cell biological behavior of neuroblastoma cells. (A) WB detected the expression levels of Prp19 in neuroblastoma cell lines SK-N-BE

(2), SK-N-AS, SH-SY5Y, IMR-32, and LAN1, and two cell lines [SK-N-BE (2) and SK-N-AS] with higher expression of Prp19 were selected for subsequent experiments.

(B) Prp19 was knocked down in SK-N-BE (2) and SK-N-AS using siRNA. The first siRNA was selected for subsequent experiments according to knockdown efficiency

detected by WB. (C,D) Transwell array tested the invasive ability of SK-N-BE (2) and SK-N-AS between siPrp19 and siNC or between overexpression of Prp19 and

control, and the number of cells crossing the bottom of the chamber were analyzed by GraphPad Prism 5. Scale bar: 200µm p = 0.0022, respectively. (E,F) The cell

migration ability was estimated using a wound-healing assay. The images were captured at indicated time after wounding (magnification: 50×; scale bar: 250µm) p =

0.0022, respectively. (G,H) WB tested the expression of Prp19, E-cad, and MMP9 in Prp19 downregulation or overexpression cells. *p < 0.05 and **p < 0.01.

gene expression. To explore the mechanism by which Prp19
exerts its function in neuroblastoma, we performed RNA-seq
analysis using SK-N-BE (2) and SK-N-AS cells transfected
with siPrp19 compared with cells transfected with siNC.
More than 400 genes were significantly regulated upon Prp19
downregulation (|fold change| >1.5, FDR <0.05; Figure 4A

and Supplementary Figure 2A). Bioinformatic analysis shows
that most of the enriched disease ontology (DO) catalogs
and signaling pathways are suppressed upon Prp19 depletion.
DO semantic and enrichment analysis reveal that the most
highly enriched functional categories are related to cancer,
including central nervous system cancer, autonomic nervous
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FIGURE 4 | Bioinformatics analysis of RNA-seq data. SK-N-BE (2) cells were transfected with siPrp19 for 48 h, and then subjected to RNA sequencing. (A) Volcano

plot showing distribution of differential expression genes Prp19 downregulation (|Fold of changes| >1.5, FDR <0.05). (B) Disease ontology (DO) analysis enriched the

affected diseases after Prp19 knockdown, which were mainly concentrated in nervous system cancer. (C) KEGG enriched the affected pathways after Prp19

knockdown, indicating that the Hippo signaling pathway was suppressed. (D) PCR analyzed the YAP mRNA level after Prp19 knockdown in SK-N-BE (2) and

SK-N-AS. (E) RNA-seq analyzed the mRNA level of YAP and its downstream genes after Prp19 knockdown. It indicated that YAP and its downstream genes

decreased following Prp19 downregulation. (F) The protein level of YAP, cyclin D1, and CTGF after downregulation or overexpression of Prp19. *p < 0.05.
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system neoplasm, and even neuroblastoma (adj. p < 0.05;
Figure 4B and Supplementary Figure 2B). Results from KEGG
analysis identified the Hippo-YAP pathway (Figure 4C and
Supplementary Figure 2C), which has been shown to regulate
multiple biological processes in various cancers but has not

been indicated as downstream signaling pathway of Prp19.
YAP, the key component of the Hippo-YAP signaling pathway,
was significantly downregulated at both the mRNA and
protein levels in cells silenced for Prp19 (Figures 4D,F)
and was decreased in both the cytoplasm and nucleus

FIGURE 5 | Effects of YAP on cell biological behavior of neuroblastoma cells. (A) Transwell array tested the invasive ability of SK-N-BE (2) and SK-N-AS between

siYAP and siNC, and the number of cells crossing the bottom of the chamber were analyzed by GraphPad Prism 5. Scale bar: 100µm p = 0.0079, respectively. (B)

The cell migration ability was estimated using the wound-healing assay after YAP downregulation. The images were captured at the time shown on the graph after

wounding (magnification: 50×; scale bar: 250µm) p = 0.0022, respectively. (C) WB tested the expression of YAP, E-cad, and MMP9 after downregulation of YAP. (D)

WB tested the expression of YAP, CTGF, cyclin D1, FGF1, and Prp19 after downregulation of YAP. *p < 0.05 and **p < 0.01.
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(Supplementary Figure 3). Furthermore, the downstream genes
of the Hippo-YAP pathway, including CTGF and CCND1, were
also significantly decreased with Prp19 knockdown (Figure 4E
and Supplementary Figure 2D). In addition, the protein levels
of YAP, CTGF, and cyclin D1 were also decreased or increased
upon Prp19 downregulation or overexpression, respectively
(Figure 4F). Together these data, thus, suggest that Prp19 may
be involved in regulating the Hippo-YAP pathway by regulating
YAP level.

Effect of Deletion of YAP on Cell Invasion
and Migration
To examine whether Prp19 affects invasion and migration
of neuroblastoma cells via the Hippo-YAP pathway, we first
examined whether silencing YAP resulted in similar changes
of invasion and migration of neuroblastoma cells as with
Prp19 silencing. As a result, as we expected, invasion and
migration abilities were impaired in YAP downregulated cells
(Figures 5A,B). YAP knockdown was also accompanied with
upregulation of E-cadherin and downregulation of MMP9
(Figure 5C). Expressions of downstream target genes of
YAP were also downregulated after YAP knockdown, but
Prp19 expression was not affected (Figure 5D). These results
demonstrate that YAP knockdown causes almost same changes
as Prp19 knockdown, implying that Prp19 may affect cell
invasion and migration by regulating YAP expression.

Prp19 and YAP Are Involved in
Neuroblastoma Metastasis
Because the enhancement of invasion and migration ability is
closely related to metastasis, we speculated that Prp19 may play
a role in tumor metastasis. Four pairs of neuroblastoma in situ
tumor andmetastatic lymph node tissues for the IHC experiment
were collected. Among the 4 pairs of samples, Prp19 and YAP
expression in two lymph node samples were higher than their
corresponding tissues (Figure 6). The other 2 pairs of samples
had received chemotherapy before we obtained them, so they
did not show consistent results (data not shown). This result
demonstrated Prp19 and YAP participate in tumor metastasis.

Prp19 Is Required for Efficient RNA
Processing of YAP mRNA
Previous studies establish a critical role for Prp19 in regulating
pre-RNA splicing. Our results show that Prp19 affects YAP
gene levels, and we, therefore, examined the possibility that
downregulation of YAP expression after Prp19 knockdown
might be due to inefficient pre-mRNA splicing. To explore
this possibility, we designed a series of PCR primer pairs
targeting two neighboring constitutive exons or the interior
of a single intron of the YAP gene as shown in Figure 7A.
PCR agarose gel electrophoresis analyses found YAP intron
retention (YAP-2 and YAP-4) and mature mRNA reduction
(YAP-1 and YAP-3) in SK-N-BE (2) and SK-N-AS cells upon
Prp19 knockdown, and opposite changes were found in Prp19
overexpression cells in addition to YAP-4 (Figure 7B). We

verified the results with qPCR and obtained similar results.
The relative RNA levels of YAP-1 and YAP-3, representing
mature YAP RNA levels, decreased, and YAP-2 and YAP-
4, representing immature YAP RNA levels, increased in
Prp19 knockdown cells. In Prp19 overexpression cells, the
relative RNA levels of YAP-1 and YAP-3 increased, and
relative RNA levels of YAP-2 decreased while the relative
RNA level of YAP-4 was unaffected (Figure 7C). These results
demonstrated that Prp19 mediated YAP RNA splicing to regulate
YAP abundance.

DISCUSSION

The International Neuroblastoma Pathology Classification
(INPC) divides neuroblastoma into four subtypes:
neuroblastoma, ganglioneuroblastoma-nodular (GNB-
N), ganglioneuroblastoma-intermixed (GNB-I), and
ganglioneuroma (GN) (24). Both GNB-I and GN have favorable
clinical and biological characteristics, and the long-term survival
rate exceeds 90% while neuroblastoma and GNB-N have
relatively malignant clinical and biological characteristics with
a long-term survival rate <80% (25). A recent study even
indicated that GNB-I and GN patients only need regular follow-
up rather than surgery first (26). Furthermore, in the current risk
classification system, most GNB-I and GN are classified as low
risk, whereas most neuroblastoma and GNB-N are classified as
intermediate or high risk, which always accompany long-distance
metastasis (3). Therefore, there may exist a different biological
molecular distribution between neuroblastoma/GNB-N and
GNB-I/GN that drive neuroblastoma/GNB-N possessing
malignant biological behavior, for example, metastasis. In recent
years, several studies have pointed out that molecular markers,
for example, gene expression classification, can accurately affect
the biological behavior, predicting outcomes for children with
neuroblastoma (27–30). Revealing the molecular mechanisms
of high-risk neuroblastoma may provide clues for target
therapy, thereby improving the prognosis of children with
high-risk neuroblastoma.

Our study reveals differential expression of Prp19 in
different pathological types with higher Prp19 expression
in neuroblastoma and GNB-N compared with GNB-I. This
is consistent with several studies that show higher Prp19
expression in colon, laryngeal, and hepatocellular carcinoma
tissues compared with normal tissues (13). In the SEQC and
NRC databases, Prp19 expression was positively correlated with
bone marrow metastasis, histological type, Shimada pathologic
type and risk grade, age at diagnosis and clinical stage, and
overexpression of Prp19 had a worse OS and EFS, which was
also consistent with a previous study (13, 14). These data
suggest that Prp19 may be one of the factors that results
in differences in tumor biological behavior and prognosis in
neuroblastoma patients.

The malignant biological behavior of tumors usually includes
uncontrolled proliferation, metastasis, and multidrug resistance.
In our clinical data, we noticed that Prp19 expression was
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FIGURE 6 | Expression of Prp19 and YAP are higher in metastatic lymph nodes than primary sites. (A) The expression of Prp19 in metastatic lymph nodes of patients

1 and 2 is higher than that in primary tumor. (B) The expression of Prp19 in metastatic lymph nodes of patients 1 and 2 is higher than that in primary tumor. The

average intDen in each group was analyzed by Mann-Whitney U-test (n = 6 per group). *p < 0.05 and **p < 0.01.

positively correlated with bone marrow metastasis. Therefore,
metastasis may be one of the factors by which Prp19 causes
poor prognosis of neuroblastoma. EMT has been associated
with various tumor functions, including tumor initiation, tumor

stemness, tumor cell migration, intravasation to the blood,
metastasis, and resistance to therapy (31, 32). The characteristic
of EMT is the cell conversion from the epithelial-like profile
(marked with E-cadherin and β-catenin) to the mesenchymal
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FIGURE 7 | Prp19 is required for efficient intron removal of YAP. (A) A schematic diagram of exons and introns of the YAP gene and the primer sets designed for PCR

as well as the RT-PCR shown in (B,C). (B) PCR analysis using primer sets shown in (A) to compare splicing efficiencies of YAP introns splicing in Prp19

siRNA-transfected and Prp19 overexpression cells. (C) qPCR analysis using primer sets shown in (A) to compare splicing efficiencies of YAP introns splicing in Prp19

siRNA-transfected and Prp19 overexpression cells. *p < 0.05.
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phenotype (marked with N-cadherin and MMP9) concomitant
with the detachment of cells from intercellular adhesion and
enhanced motility (32). A few studies have examined the
involvement of Prp19 in EMT and metastasis of cancer. There is
only one study showing that Prp19 promotes invasion, migration,
and EMT in hepatocellular carcinoma cells (13). Here, we also
found that downregulation of Prp19 inhibited invasion and
migration of neuroblastoma cells and reversed EMT with an
upregulation of E-cadherin and downregulation of MMP9, and
overexpression of Prp19 had the opposite results. Abnormal
activation of EMT not only results in the increased invasion and
migration of cancer cells, but also triggers distant metastasis in
diverse cancers (33, 34). Collectively, our findings identify the
role of Prp19 in promoting cell invasion, migration, and EMT
in neuroblastoma, and this means that Prp19 has the potential to
promote tumor metastasis.

Given the pleiotropic changes observed in Prp19 knockdown
cells, we hypothesized that Prp19 might take part in the
regulation of certain genes, thereby regulating the expression
of multiple genes. In order to seek a downstream target
or pathway of Prp19, RNA-seq analysis was performed on
neuroblastoma cells transiently transfected with Prp19 siRNA.
Among the downregulated genes, it is noteworthy that the
YAP gene changed by more than 0.9-log2fold when Prp19
was lowered by 1.0-log2fold. To the best of our knowledge,
this is the first report suggesting that Prp19 may regulate the
Hippo-YAP pathway in neuroblastoma cells. The Hippo-YAP
pathway is a highly conserved signaling pathway regulating
the regulation of organ size, cell proliferation, invasion, and
apoptosis (17, 35). Many studies have shown that YAP, one of the
key downstream terminal effectors of the Hippo pathway (36),
promotes proliferation and metastasis of cancer cells (18, 37–39),
and can also be regulated by other protein (21). Further analysis
of changes in disease types and cellular pathways associated with
downregulation of Prp19 found that the most highly enriched
functional categories were related to cancer and that the Hippo-
YAP pathway was inhibited. Results also imply that many protein
and mRNA expressions were downregulated downstream of
YAP. In addition, silencing YAP led to decreased invasive and
migratory ability and reversal of EMT in neuroblastoma cells,
similar to the effects of siPrp19. These results indicate that
Prp19 might mediate tumor cell invasion and migration by
regulating YAP.

The above results suggest that both Prp19 and YAP have the
potential to promote tumor metastasis because they can promote
tumor migration, invasion, and EMT transformation. Recent
literature also has shown that YAP can promote tumor metastasis
to lymph nodes and is highly expressed in metastatic lymph
nodes (18). On this basis, our results reveal that the expression
of Prp19 and YAP in neuroblastoma metastatic lymph nodes is
significantly higher than that in in situ tumors. From the above
results, we can see that Prp19 can affect the expression of YAP,
but not the opposite. Therefore, it can be speculated that Prp19
promotes YAP expression and further promotes lymph node
metastasis of the tumor though further experiments need to be
done to verify.

The next point is how Prp19 regulates YAP expression. As
far as we know, the best-described function of Prp19 is its
role in splicing (40–42), a critical step in gene expression that
involves the removal of introns with specificity and precision.
As a pivotal step in eukaryotic gene regulation, splicing enables
excision of introns from pre-mRNA and the generation of
protein-coding transcripts, which takes place on the spliceosome,
a dynamic macromolecular complex. Prp19 associates with
the spliceosome concomitantly with or immediately after
dissociation of U4, finally leading to spliceosomal activation
and pre-mRNA splicing (8). We designed a series of PCR
primer pairs targeting two neighboring constitutive exons,
reflecting the mature mRNA, and the interior of a single
intron of the YAP gene, reflecting the immature pre-mRNA.
Results show that the mature mRNA of YAP is decreased
with the decrease of Prp19 and increased with the increase
of Prp19 except for YAP-4 in the Prp19 overexpression
group. As for the YAP-4 group, it may be hypothesized
that once Prp19 is overexpressed, the expression of YAP
increased dramatically, so there was also a higher immature pre-
mRNA of YAP. Taken together, these findings demonstrate that
Prp19 controls YAP abundance by coordinated regulation of
RNA splicing.

In conclusion, our study showed that Prp19 is
positively correlated with various adverse clinical
pathological parameters and could serve as a potential
prognostic marker indicating a poor clinical prognosis in
neuroblastoma. Moreover, Prp19 promotes metastasis of
neuroblastoma cells through controlling the level of YAP by
RNA splicing.
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In theranostics (i.e., therapy and diagnostics) radiopharmaceuticals are used for both
therapeutic and diagnostic purposes by targeting one specific tumor receptor. Biologically
relevant compounds, e.g., receptor ligands or drugs, are labeled with radionuclides to
form radiopharmaceuticals. The possible applications are multifold: visualization of
biological processes or tumor biology in vivo, diagnosis and tumor staging, therapy
planning, and treatment of specific tumors. Theranostics research is multidisciplinary and
allows for the rapid translation of potential tumor targets from preclinical research to “first-
in-man” clinical studies. In the last decade, the use of theranostics has seen an
unprecedented value for adult cancer patients. Several radiopharmaceuticals are
routinely used in clinical practice (e.g., [68Ga/177Lu]DOTATATE), and dozens are under
(pre)clinical development. In contrast to these successes in adult oncology, theranostics
have scarcely been developed to diagnose and treat pediatric cancers. To date, [123/131I]
meta-iodobenzylguanidine ([123/131I]mIBG) is the only available and approved theranostic
in pediatric oncology. mIBG targets the norepinephrine transporter, expressed by
neuroblastoma tumors. For most pediatric tumors, including neuroblastoma, there is a
clear need for novel and improved radiopharmaceuticals for imaging and therapy. The
strategy of theranostics for pediatric oncology can be divided in (1) the improvement of
existing theranostics, (2) the translation of theranostics developed in adult oncology for
pediatric purposes, and (3) the development of novel theranostics for pediatric tumor-
specific targets. Here, we describe the recent advances in theranostics development in
pediatric oncology and shed a light on how this methodology can affect diagnosis and
provide additional treatment options for these patients.

Keywords: theranostics, childhood cancer, radiopharmaceuticals, nuclear imaging (e.g. PET, SPECT),
nuclear therapy
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INTRODUCTION

Theranostics in nuclear medicine includes the use and
application of two identical or very closely related
radiopharmaceuticals for therapy and diagnosis. In oncology,
tumor-specific substrates, receptor ligands, or drugs can serve as
lead for theranostic development when labeled with specific
radionuclides for imaging or therapy (Figure 1A). As the
molecular structure of both the diagnostic and therapeutic
radiopharmaceuticals are identical, diagnostic images can
become predictive for therapeutic response because the
biological characteristics and binding potential of both are
similar, irrespective of the radionuclide (2–4).

For diagnosis, positron emission tomography (PET) is a
nuclear imaging technique that enables the visualization and
quantification of molecules equipped with positron emitting
radionuclides. The most used radionuclide for imaging is
Fluorine-18 (18F) in the form of [18F]FDG. [18F]FDG PET
visualizes increased carbohydrate uptake in tissue, e.g., tumor
tissue, and is important for diagnosis, staging and treatment
monitoring. For PET tracer development, any molecule that
Frontiers in Oncology | www.frontiersin.org 223
displays tumor-specific targeting can be used, including small
molecules, peptides or biologicals. Radionuclides used for PET
tracer development are, among others, Carbon-11 (11C) and
Fluorine-18 (18F) facilitating small molecule labeling, Gallium-68
(68Ga) for peptide radiolabeling, and Copper-64 (64Cu) or
Zirconium-89 (89Zr) for the labeling of monoclonal antibodies
(mAbs) and other biologicals. PET imaging enables studying the
distribution and kinetics of labeled molecules and the
biochemical and physiological processes. Molecular imaging by
means of PET can, thus, facilitate and guide cancer treatment in
many ways (5, 6). Currently, PET is the most sensitive technique
for nuclear imaging; it requires nanomolar amounts of the
radiopharmaceutical for imaging. These nanomolar amounts
will not induce pharmacological effects, hold minimal risks for
toxicity, and are described as the micro-dosing concept. Micro-
dosing allows for fast translation of novel PET tracers into
clinical trials in small “first-in-man” or phase 0 studies, when
produced under good manufacturing practice (GMP). Single
photon emission computed tomography (SPECT) is an
alternative nuclear imaging technique and enables the
visualization of g-emitting radionuclides and was the basis for
A

B C

FIGURE 1 | (A) Theranostics concept explained. A tumor-specific ligand can be used for both imaging and therapy, dependent on the nuclide of choice. PET
images before/after therapy in a prostate cancer patient diagnosed and treated with [68Ga/177Lu]PSMA. PET image adapted from SNMMI image of the year 2018 by
Hofman et al.; (B) left, [123I]mIBG SPECT image of a neuroblastoma patient with lesions indicated with black arrows; right, [18F]mFBG PET image of the same patient
showing greater contrast and additional lesions that were not observed with [123I]mIBG. Image adapted from Pandit-Taskar et al. (1); (C) left, [123I]mIBG SPECT
image of a neuroblastoma patient with only vague tumor uptake; right, [68Ga]DOTATOC PET image of the same patient showing SSTR-2A expression, greater
contrast and additional lesions. Patient is treated with [177Lu]DOTATATE with an additional survival of 24 months (unpublished data, UMC Utrecht).
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early theranostics development, where, among others, the
different radionuclides of iodine were used for imaging (e.g.,
Iodine-123 (123I) and Iodine-131 (131I)).

Therapeutic radiopharmaceuticals for treatment of cancer are
predominantly labeled with b-emitting radionuclides. The
radionuclide 131I, Lutetium-177 (177Lu) and Yttrium-90 (90Y)
are frequently used for this purpose. The emitted b-particles
travel 1–12 mm through tissue upon decay while losing energy
and causing cytotoxic damage to the cell to induce apoptosis.
Alternatively and more recently, a-emitting radionuclides, e.g.,
Astatine-211 (211At) or Actinium-225 (225Ac) were explored for
therapy (7–9). The high energy deposition and a limited range of
the a-particles in tissue (0.005–0.11 mm) result in very strong
cytotoxic and therapeutic effects. Nowadays, a-emitting
radionuclides become more widely available, research toward
the development of therapeutic radiopharmaceuticals with these
radionuclides is emerging, and first-in-man studies are expected
in the near future.

Successful theranostics have been developed for somatostatin
receptor positive neuroendocrine tumors with [68Ga/177Lu]
DOTATATE and prostate-specific membrane antigen (PSMA)
positive prostate cancer patients as prime examples (10–13).
Currently, for childhood cancers and more specifically
norepinephrine transporter (NET) positive neuroblastoma
tumors, [123/131I]meta-iodobenzylguanidine ([123/131I]mIBG) is
the only available theranostic to date (14–16). Despite the proven
value of theranostics in adult oncology, its potential was
minimally explored for childhood cancer and is still at its
infant stage. However, many opportunities and applications
present themselves. In this review, we discuss different
strategies for theranostics development for childhood cancer
and divided these into (1) the existing theranostics and
improvement thereof, (2) theranostics developed for adult
oncology and translation thereof for childhood cancer, and (3)
the development of novel theranostics for specific pediatric
tumor targets. By describing the recent advances in
theranostics research we discuss how it can affect diagnosis
and therapy for childhood cancer in the future.
CURRENT THERANOSTICS IN PEDIATRIC
ONCOLOGY

[123/131I]mIBG is the only theranostic currently available for
routine clinical use to image and treat neuroblastoma tumors
that express the norepinephrine transporter (NET). mIBG is a
structural analog of the neurotransmitter norepinephrine and is
actively transported into the tumor by NET. Inside the cell,
mIBG is stored in the cytoplasm, mitochondria, and in vesicular
monoamine transporter (VMAT)-coated and neurosecretory
vesicles (17–21). [123I]mIBG SPECT imaging is currently the
standard of care to diagnose primary tumors and distant
metastases in neuroblastoma and for staging and disease
response evaluation after treatment. In total, approximately
95% of neuroblastoma tumors are [123I]MIBG avid. The
remaining 5% of tumors are either well-differentiated
Frontiers in Oncology | www.frontiersin.org 324
ganglioblastoma or very undifferentiated neuroblastoma with
little or no NET transporter expression. Although [123I]mIBG
SPECT has a high specificity and sensitivity, it also has
disadvantages being poor image resolution, long scanning
times, and iodine-driven thyroid toxicity. Accompanied by
imaging, [131I]mIBG initially showed therapeutic effectiveness
in bulky tumors (22). Subsequently, it was shown that [131I]
mIBG was feasible and effective in the first treatment of high-risk
neuroblastoma patients (23). However, two systematic reviews
failed to show a survival advantage for [131I]mIBG treated
patients (24, 25). In two studies [131I]mIBG was combined
with busulfan and melphalan followed by autologous stem cell
rescue. For both, acceptable toxicity in highly pretreated patients
and encouraging responses were observed. This has led to the
implementation of this combination for ultra-high-risk patients
who failed to respond adequately during induction treatment
for high-risk neuroblastoma. The current European SIOPEN
VERITAS study explores the role of [131I]mIBG in combination
with topotecan and stem cell rescue followed by another high-
dose consolidation with Buslfan and Melphalan and a second
stem cell rescue. The aim is to increase the survival of these ultra-
high-risk patients. In conclusion, [131I]mIBG treatment is still
under investigation and its definitive role has not been
determined. In addition to the discussion on therapeutic
response, patients receiving [131I]mIBG also suffer from iodine
uptake in the thyroid and increased risk for long-term thyroid
dysfunction or secundary thyroid cancer. Last, after [131I]mIBG
administration, patients need to live in isolation for 5–7 days and
strict precepts for 2–3 weeks. Despite the value of [123/131I]mIBG
as a theranostic, both imaging and therapy have serious
disadvantages and limitations that steer the research toward
novel approaches.

An 18F-labeled analog of [123I]mIBG, [18F]meta-
fluorobenzylguanidine ([18F]mFBG]) has long been proposed
as a possible PET alternative for the imaging of NET-positive
neuroblastoma tumors (26). The radionuclide 18F is a cyclotron
produced b+-emitter with a short range in vivo, resulting in a
high image quality. Furthermore, PET-CT (or PET-MRI) images
can be analyzed quantitatively for tracer distribution. 18F-labeled
radiopharmaceuticals are, therefore, ideal for high-resolution
diagnosis, faster acquisition, and low radiation burden. Until
recently, however, the production of [18F]mFBG has been
challenging. It requires a nucleophilic aromatic substitution of
an electron-rich molecule (27, 28). Recent advances and novel
radiofluorination reactions now give access to the production
and clinical translation of [18F]mFBG (1, 29).

Pandit-Taskar et al. reported the first clinical results with
[18F]mFBG, described a biodistribution and dosimetry study
in neuroblastoma patients, and compared the results with
[123I]mIBG. In all five neuroblastoma patients, [18F]mFBG
scored better than [123I]mIBG with respect to lesion counts,
improved image quality, and the absence of any thyroid uptake
(Figure 1B). These encouraging results gave rise to additional
and more extensive clinical testing of [18F]mFBG as an
alternative to [123I]mIBG as the current gold standard (Table
1) (30, 31).
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In addition to improved imaging, research is now focused on
the development of an improved alternative for [131I]mIBG
therapy. 131I is a b–-emitter with a t1/2 of 8.04 days.
Furthermore, when [131I]mIBG is metabolized and 131I is
released, it will accumulate in the thyroid. Therefore, the
thyroid is blocked as a preventive action by administration of
excess iodine to avoid undesired effects. As an alternative for 131I,
211At has been explored. 211At is an a-emitter with a t1/2 of 7.2 h
and a range of 0.005–0.11 mm in tissue. These physical
properties cause very strong cytotoxic and therapeutic effects.
Furthermore, 211At does not accumulate in the thyroid and
potentially will not cause any undesired damage (32, 33), As
211At has benefits over 131I, [211At]meta-astatobenzylguanidine
([211At]mABG) was reported as an alternative for [131I]mIBG for
the treatment of NET positive tumors. To date, [211At]mABG
has only been evaluated in preclinical models on PC12
xenografted mice (Table 1). [211At]mABG showed a dose-
dependent tumor regression and increased survival compared
to the control animals. It should, however, be noted that a high
dose of [211At]mABG caused the death of the animals. Therefore,
the toxicity profile and maximum tolerated dose of [211At]
mABG needs to be assessed and compared to [131I]mIBG. An
important additional note is the availability of 211At to produce
[211At]mABG, which may become a practical concern. 211At can
only be produced by high-energy cyclotrons, of which a few are
installed worldwide, and thereby the access is limited (34).
FROM ADULT ONCOLOGY TO PEDIATRIC
ONCOLOGY

Theranostics available in routine clinical care are a rich source of
potential theranostic candidates in pediatric oncology.
Frontiers in Oncology | www.frontiersin.org 425
The somatostatin receptor (SSTR) family is one of the first
discovered and most successful targets identified for which
theranostics were developed. To date, 5 subtypes of SSTR (i.e.,
SSTR-1, 2A, 3, 4, and 5) are characterized. In particular, SSTR-2A is
important with high expression levels for neuroendocrine tumors. It
is involved in secretion, proliferation, and the induction of apoptosis
(35). For pediatric cancers, SSTR-2A expression was reported
for neuroblastoma tumors by Alexander et al. as well as for
neuro-oncological malignancies (e.g., glioblastomas and
medulloblastomas) (36–38). Analogs of somatostatin, the natural
ligand of SSTR-2A, have successfully been developed to inhibit
neuroendocrine tumor growth. Radiolabeling of these compounds
led to the development of [68Ga]DOTATATE as a PET tracer and
received FDA approval in 2016 (Table 1). In 2018, [177Lu]
DOTATATE (Lutathera, AAA/Novartis) was approved as a
therapeutic agent to treat SSTR-2A positive tumors. As
DOTATATE is an SSTR-2A agonist, it stimulates the receptors,
potentially causing undesired tumor growth. To circumvent these
agonistic effects, the theranostics pair [68Ga]OPS202/[177Lu]OPS201
(Ipsen) was developed as an SSTR-2A antagonist and is currently in
Phase I/II trials (Table 1) (10, 11, 39, 40). Because SSTR-2A
expression was also validated for neuroblastomas and neuro-
oncological malignancies and with several theranostics available, a
straightforward translation to pediatric oncology is feasible. Small-
scale experimental pilot studies were reported for these pediatric
cancers with [68Ga]DOTATATE, and results are encouraging (41).
This warrants further clinical studies on imaging and treating SSTR-
2A positive pediatric cancers with these theranostics in the near
future (Figure 1C) (42).

Another theranostic candidate target that was extensively
explored in adult oncology is the C-X-C chemokine receptor 4
(CXCR4). The expression levels of CXCR4 and its natural ligand,
CXCL12, are correlated to tumor development and metastasis
TABLE 1 | Theranostics under preclinical development and in clinical trials for pediatric cancers.

Molecular Target Pediatric Cancer Theranostic Development Phase Pediatric Clinical Trial Number Refs

Norepinephrine Neuroblastoma [123/131I]mIBG, Routine Care Multiple Trials (14–16, 22–25, 78),

Transporter [18F]mFBG, Phase I/II NCT02348749 (29, 30)

[211At]mABG Preclinical (34)
Somatostatin Neuroblastoma [68Ga]DOTATATE, Phase I/II NCT04040088 (39–42),

Receptor 2A [177Lu]DOTATATE, Phase I/II

[68Ga]OPS202, Phase I/II

[177Lu]OPS201, Phase I/II

C-X-C Chemokine Neuroblastoma [68Ga]Pentixafor, Early Phase I (48, 50),

Receptor 4 Rhabdomyosarcoma [177Lu]Pentixather Early Phase I

Glioblastoma

ALL &AML

Fibroblast Glioblastoma [68Ga]FAPI, Phase I/II (56, 57),

Activation Protein [177Lu]FAPI Preclinical

Ganglioside D2 Neuroblastoma [89Zr]Dinutuximab, Preclinical (68–70)

Osteosarcoma [68Ga]WHWRLPS Preclinical

Glioblastoma

B7-H3 (CD276) Pontine Glioma [124/131I]8H9 Phase I/II NCT03275402/ (75, 76),

Neuroblastoma (omburtamab) NCT01502917/

NCT04022213
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and were validated for breast cancer, prostate cancer, lung cancer,
colorectal cancer, and primary brain tumors (43). By
immunohistochemical staining, CXCR4 expression was also
demonstrated for neuroblastomas, rhabdomyosarcomas,
glioblastomas, and hematological malignancies (44–47). To date,
several CXCR4-targeting drugs are under (pre)clinical
development, e.g., Ulocuplumab, PRX177561, AMD3100, and
Plerixafor, which demonstrates that CXCR4 targeting is clinically
feasible and relevant. For theranostic development, the PET tracer
and cyclic-pentapeptide [68Ga]Pentixafor (Scintomics) is currently
the most advanced and under investigation in multiple Phase I
clinical trials (Table 1) (48). Labelingofpentixaforwith 177Luor 90Y
to obtain the therapeutic counterpart of the diagnostic led to a
stronglydecreased affinity for the target receptor.This affinity could
be restored after small molecular adaptations to the pentixafor
scaffold and resulted in the successful development of [177Lu]
Pentixather (Table 1) (43, 49, 50). [68Ga]Pentixafor and [177Lu]
Pentixather are candidates for clinical trials in pediatric patients as
well as CXCR4 is reported for these tumors.

A target that recently received much attention is the fibroblast
activation protein a (FAP) (51). FAP is a serine protease that is
selectively expressed in the stromal fibroblasts of the tumor,
which is often observed for breast cancer, colon cancer, and
pancreatic cancers (52). FAP expression is observed in
glioblastomas and can be a valuable theranostic target for
pediatric cancers. FAP-specific inhibitors (FAPI) have been
developed based on quinoline scaffolds. For diagnostic
purposes, promising results were obtain after radiolabeling
with 68Ga (53, 54). In particular, [68Ga]FAPI-04, -21, and -46
resulted in high-contrast images, and as a proof-of-concept, 28
different tumor types were visualized with [68Ga]FAPI-04 (55,
56). All FAPI compounds allow radiolabeling with 177Lu too to
obtain the corresponding therapeutic radiopharmaceutical.
Preclinical studies with [177Lu]FAPI-21 and -46 in tumor-
bearing mice gave promising results (Table 1) (57). As FAP is
also expressed by glioblastomas, these theranostics have potential
for the diagnosis and treatment of pediatric cancers.

Monoclonal antibodies (mAbs) and mAb-fragments had
unprecedented impact on the treatment of cancer patients.
However, clinical benefit is usually only achieved in a percentage
of the patient population. The application of 89Zr-labeled mAbs as
ImmunoPET tracers has become increasingly important to
visualize these compounds in vivo and assess the distribution,
kinetics, and the biochemical and physiological behaviour (4, 58).
Nowadays, more than 75 clinical trials are ongoing with 89Zr-
labeled mAbs and the radiolabeling can be achieved via generic
methods (59, 60). Despite the clinical impact of ImmunoPET with
[89Zr]mAbs for adult oncology and other indications, ImmunoPET
with available [89Zr]mAbs has barely been explored for pediatric
cancers. The only reported application of ImmunoPET was [89Zr]
bevacizumab in diffuse intrinsic pontine glioma to study vascular
endothelial growth factor (VEGF) excretion and the potential to
treat these patientswithbevacizumab (61).Though ImmunoPET in
pediatric cancer patients is not common, it should be anticipated
that this methodology can also have an impact for these patients in
the future.
Frontiers in Oncology | www.frontiersin.org 526
SPECIFIC THERANOSTIC TARGETS IN
PEDIATRIC ONCOLOGY

Pediatric cancers have a distinct biological profile with unique
molecular targets that are not expressed in adult cancers. These
targets embody unique opportunities for the diagnosis and
treatment of pediatric cancers, but due to small patient
populations, it remains a challenge to identify them and
develop theranostics against these targets.

A target of interest for theranostic development is ganglioside
D2 (GD2). GD2 is a glycosphingolipid and selective cellularmarker
that is expressed by neuroblastomas, osteosarcomas, and
glioblastomas (62, 63). Though its exact function is still not fully
understood, it is assumed that it plays a crucial role in cell adhesion,
migration, and tumormetastasis.Dinutuximab (Unituxin®, United
Therapeutics) is FDA approved, and Dinutuximab beta (Qarziba®,
EUSAPharma) isEMAapproved for the treatmentofGD2-positive
neuroblastoma tumors (64, 65). Despite increased survival rates
from 46% to 66%, for high-risk neuroblastoma patients, 30% of the
patients will relapse independent of the GD2 expression levels
(Table 1) (66). Several radiopharmaceuticals have been developed
to image GD2-positive tumors. 64Cu-labeled hu14.18K322A
showed clear accumulation and retention in preclinical
osteosarcoma models, and [89Zr]dinutuximab was mentioned as
a PET tracer in meeting abstracts (67–69). In addition to
radiolabeled mAbs, Müller et al. reported on the development of
[68Ga]DOTA- WHWRLPS heptapeptide and demonstrated its
accumulation in neuroblastoma xenografted mice (70). Though
encouraging, clinical translation of these radiopharmaceuticals has
yet to be achieved.

More recently, B7-H3 (CD276) has become a validated pediatric
cancer target for immunotherapy in pontine gliomas and
neuroblastomas (71, 72). To date, two mAbs were developed,
Enoblituzumab (MacroGenics) and Omburtamab (Y-mAbs), to
treat B7-H3 positive tumors (73, 74) Based on these
immunotherapeutics, attempts at the development of theranostics
are reported. Especially with 8H9 (i.e., Omburtamab) multiple
clinical trials are ongoing. The theranostics pair [124/131I]8H9 is
investigated for B7-H3 positive pontine glioma tumors and a
modest survival benefit was reported (Table 1) (75, 76). As
specific brain tumors (e.g., gliomas) express B7-H3, it is
important that passage and delivery of the radiopharmaceutical
across the blood–brain barrier is achieved. As such, radiolabeled
[124/131I]Omburtamab is ideal to investigate drug targeting in these
patients. As B7-H3 is acknowledged as a pan-tumor target,
theranostics targeting B7-H3 might become of general importance
for childhood cancer.
CONSIDERATIONS AND REQUIREMENTS
FOR NUCLEAR MEDICINE IN CHILDHOOD
CANCER

The application of theranostics for the diagnosis and treatment
of childhood cancers is in its infancy. With the availability of
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radiopharmaceuticals and theranostics for the various adult
cancers, there is a lot of potential to translate and directly
apply these for childhood cancers. Clinically available SPECT/
PET tracers and therapeutic radiopharmaceuticals can directly
be applied for pediatric cancers when the target is present and
validated for the respective tumor type. Examples include SSTR-
2A, CXCR4, and FAP-positive tumors. As childhood cancers
have unique target expression profiles, with GD2 and B7-H3 as
examples, novel theranostics can be developed for these yet
unexplored targets. Unique target-finding programs are in
place to unveil novel childhood cancer-specific biological
features for which theranostics can be developed. A critical
note and challenge is that target expression of cancers in
general cannot always be directly correlated to positive imaging
and treatment results. Preclinical research programs are,
therefore, required to validate target expression and the
potential of the target against which to developed theranostics.

A successfully developed theranostic that shows potential in
preclinical studies warrants clinical translation. To achieve that,
the theranostic needs to be produced under GMP to guarantee
product quality and patient safety (77). Clinical translation of
developed theranostics is relatively straightforward as procedures
and GMP production facilities are widely available.
Frontiers in Oncology | www.frontiersin.org 627
CONCLUSION

Theranostics have unprecedented value to diagnose and treat
cancers. Many novel theranostics are under development and
expected to enter clinical trials and care in the near future. For
the diagnosis and treatment of childhood cancers, theranostics
research is still in its infancy, but following the path of adult
oncology, its value is promising. They are expected to become
additional and valuable tools to diagnose and treat
childhood cancers.
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Background: Liquid biopsies do not reflect the complete mutation profile of the tumor but
have the potential to identify actionable mutations when tumor biopsies are not available
as well as variants with low allele frequency. Most retrospective studies conducted in small
cohorts of pediatric cancers have illustrated that the technology yield substantial potential
in neuroblastoma.

Aim: The molecular landscape of neuroblastoma harbors potentially actionable genomic
alterations. We aimed to study the utility of liquid biopsy to characterize the mutational
landscape of primary neuroblastoma using a custom gene panel for ctDNA targeted
sequencing.

Methods: Targeted next-generation sequencing (NGS) was performed on ctDNA of 11
patients with primary neuroblastoma stage 4. To avoid the detection of false variants, we
used UMIs (unique molecular identifiers) for the library construction, increased the
sequencing depth and developed ad hoc bioinformatic analyses including the hard
filtering of the variant calls.

Results:We identified 9/11 (81.8%) patients who carry at least one pathogenic variation.
The most frequently mutated genes were KMT2C (five cases), NOTCH1/2 (four cases),
CREBBP (three cases), ARID1A/B (three cases), ALK (two cases), FGFR1 (two cases),
FAT4 (two cases) and CARD11 (two cases).

Conclusions: We developed a targeted NGS approach to identify tumor-specific
alterations in ctDNA of neuroblastoma patients. Our results show the reliability of our
approach to generate genomic information which can be integrated with clinical and
pathological data at diagnosis.

Keywords: genetic mutation, bioinformactics analysis, next generation sequencing, neuroblastoma, liquid biopsy
and circulating tumor DNA
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INTRODUCTION

Circulating tumor DNA (ctDNA), a subfraction of cell-free DNA
(cfDNA), is fragmented genomic DNA poured in the blood flow
and other biological fluids as the result of apoptosis and necrosis
of tumor cells (1, 2). The isolation and sequencing of ctDNA
from biological fluids is called Liquid Biopsy (LB). LB is a low-
cost and safe non-surgical procedure to access tumor’s genetic
information. It is a valid alternative for tumors that are not easy
to tissue biopsy and represents a complementary tool for more
accurate diagnoses. Furthermore, the ctDNA is representative of
intra-tumoral and metastasis heterogeneity. The analysis of
ctDNA can be useful for monitoring tumor clonal evolution
and for the detection of therapy-relevant novel mutations arising
during treatment (3, 4).

The development of ctDNA assays relies on the identification
and quantification of somatic mutations. A variety of technical
approaches have been optimized to detect diagnostic/prognostic/
therapeutic markers in ctDNA with great sensitivity, including
BEAMing technologies (5), panel sequencing of cancer-
associated genes (6, 7), targeted amplicon sequencing (8, 9) and
droplet digital PCR technologies (10). Currently, the FDA-
approved qPCR test to identify Epidermal Growth Factor
Receptor (EGFR) mutations, is a diagnostic test that replaces
the tissue biopsy in patients with metastatic non-small cell lung
cancer who would be eligible for treatment with EGFR-targeted
therapy (erlotinib) (11). Nevertheless, comprehensive genomic
analysis such as Whole Exome Sequencing (WES) or Whole
Genome Sequencing (WGS) of ctDNA, cannot be considered in
diagnostic routines because of the detection of large numbers of
variants with uncertain significance. This, makes it difficult to
interpret the data in a clinical setting and, in addition, often
requires the profiling of a tumor tissue biopsy as a reference.
However, ctDNA assays designed to target selected genes in
customized panels could map tumor heterogeneity and may
facilitate the identification of druggable mutations. Several
commercially available ctDNA sequencing panels, designed to
target specific exons or mutational hotspots, have shown their
validity in clinical settings in adult cancers as in lung cancers (12).

The completely different patterns of genetic mutations
between pediatric and adult cancers emphasize the need to
develop specific approaches for ctDNA profiling of pediatric
cancers. Recent comprehensive sequencing efforts show that only
45% of driver genes in pediatric cancers correspond to those
found in adults, as demonstrated through pan-cancer studies. In
children, these genes are mainly involved in biological processes
belonging to epigenetic/chromatin remodelling pathways (25%).
By contrast, the most relevant biological processes affected in
adult cancers belong to PIK3 pathway (31%) which is altered
only in the 3% of pediatric cancers (13, 14).

In the last year, feasibility of detecting, quantifying, and
profiling ctDNA has been established in patients with five of
the most common pediatric solid tumors: Ewing sarcoma,
osteosarcoma, alveolar rhabdomyosarcoma, Wilms tumor and
neuroblastoma (15, 16).

Clinical stages of neuroblastoma, according to the
International Neuroblastoma Staging System (INSS), have been
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divided as the following: localized stages 1, 2, or 3; disseminated
stage 4; and disseminated stage 4S occurring in patients younger
than 1 year of age. Moreover, the International Neuroblastoma
Risk Group classification system (INRG) classifies neuroblastoma
patients in four categories: high-, intermediate-, low- and very
low-risk (17). High-risk disease is usually diagnosed in children
older than 18 months and, despite multimodal treatment, half of
these patient’s relapses.MYCN genomic amplification is reported
in 40% of high-risk neuroblastomas. It is the strongest predictor
of poor prognosis and tumor progression although other
chromosomal alterations are reported as poor prognostic
features, namely the deletion of 1q (30%) and of the 11q (45%)
and unbalanced gain of the 17q (60%) (18). Children older than 6
years present unique structural variants with 19p loss and 1q gain
among those more recurrent (19). Recent whole genome
sequencing analysis in a large cohort of neuroblastoma patients
have identified a paucity of recurrent alterations with point
mutations in ALK (8–10%) and in ATRX, being the most
frequent (20, 21). The limited burden of mitochondrial DNA
mutations with potential pathogenic impact have also been
assessed (22). Nevertheless, a recent work has highlighted the
involvement of noncoding somatic variants, located in regulatory
DNA regions, in neuroblastoma development (23). Pathogenic
germline variants can also contribute to neuroblastoma onset
(24). Indeed, both common (25, 26) and rare germline (20, 21)
variants have been found to associate with neuroblastoma
development and progression.

Neuroblastoma shed high amounts of cfDNA in the blood
flow depending on the tumoral burden (mean: 1.034 ng/ml of
plasma; range: 13.53–26) at diagnosis and which increase with
disease progression and decrease after therapy and surgical
resection (27, 28). The documented high portion of ctDNA in
the cfDNA fraction (mean: 60%, range: 3–99%) in high-risk
diseases and metastatic cases further confirms an important
shredding of ctDNA into the bloodstream (29). The majority
of ctDNA studies in neuroblastoma are based on digital droplet
PCR or targeted sequencing that require prior characterization of
the biomarkers such asMYCN amplification and activating ALK
mutations (30). The diagnostic utility of high throughput
ctDNA sequencing in neuroblastoma has been published in
four studies. In all cases genomic alterations detected from
cfDNA were not detected from tissue biopsy. WES analysis
was successfully applied to cfDNA samples at diagnosis and
highlighted that ctDNA profiling performed better than primary
tissue profiling in capturing tumor heterogeneity and low
frequency variants. Particularly, WES analysis of primary
neuroblastoma biopsies and cfDNA identified an overlap of
only 41% for Single Nucleotide Variants (SNVs), whereas an
overlap of 93% was observed for Copy Number Alterations
(CNAs) (29). Longitudinal follow-up studies have been
performed in a limited number of patients. Accumulating
aberrations were found during the evolution of therapy
resistant clones and some of these were potentially targetable
(28, 31). Furthermore, shallow whole-genome sequencing of
ctDNA to assess copy number profiles has been proposed as a
valid and noninvasive genomic test alternative to the analysis of
often scarce or small biopsies (32).
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In this study, we report the development of a targeted Next
Generation Sequencing (NGS) gene panel for ctDNA sequencing
that is tailored to the genetic landscape of neuroblastoma. We
believe that the ctDNA detection and sequencing, through an ad
hoc designed gene panel, could complement or replace tissue
biopsies necessary for diagnosis of neuroblastoma. The
application of the suggested strategy for the diagnosis of
neuroblastoma, when optimized, may improve disease
stratification at diagnosis and provide useful information for
therapy decisions making.
METHODS

Patients
A total of 20 patients, with a diagnosis of neuroblastoma, were
recruited at the IRCCS Istituto Giannina Gaslini and Ospedale
Pediatrico Santobono-Pausilipon. Upon initial diagnosis, bone
marrow biopsies and/or aspirates were obtained for microscopic
examination and identification of neuroblastoma cells. Genetic
abnormalities (amplification of the MYCN gene and deletion of
the short arm of chromosome 1 [1p36]) were detected by
fluorescence in situ hybridization. As described below, only 11
ctDNA samples qualified for deep sequencing. Of these, nine
were from Stage 4 and two from Stage 2 patients. Informed
consent was obtained through Research Ethics Committee of
University of Naples Federico II. All experiments were
performed following relevant guidelines and regulations.

Samples Collection
Venous blood samples were collected into ethylenediaminetetraacetic
acid-coated tubes and centrifuged at 1,600×g for 10min. Supernatants
were transferred to fresh tubes and centrifuged at 16,000×g for 10min.
Plasma was removed and stored at − 80 °C until DNA extraction.

Development of Cancer Gene
Sequencing Panel
The genes included in the NGS panel were selected according to
these following criteria: first, we selected genes with high
relevance of mutations in neuroblastoma, as reported in the
Catalogue of Somatic Mutations in Cancer (COSMIC) database
and PubMed; then we select genes mutated in more than two
neuroblastoma samples. We included all the coding exons
extended of 10 bp of flanking introns of 68 neuroblastoma-
associated genes. The final length of our target was 0.5 Mb.

NGS Library Preparation and Sequencing
for Genomic Germline DNA
Genomic germline DNA was extracted from peripheral blood
leukocytes using the QIAamp DNA Blood Midi Kit (Qiagen; cat
#51183). A total amount of 1.0 mg genomic DNA per sample was
used as input material for the DNA library preparation.
Sequencing libraries were generated using Agilent SureSelect
Human All Exon kit (Agilent Technologies, CA, USA)
following manufacturer’s recommendations and index codes
were added to each sample. Briefly, fragmentation was carried
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out by hydrodynamic shearing system (Covaris, Massachusetts,
USA) to generate 180–280 bp fragments. Remaining overhangs
were converted into blunt ends via exonuclease/polymerase
activities and enzymes were removed. After adenylation of 3’
ends of DNA fragments, adapter oligonucleotides were ligated.
DNA fragments with ligated adapter molecules on both ends
were selectively enriched in a PCR reaction. After PCR reaction,
library hybridize with Liquid phase with biotin labeled probe,
after which streptomycin-coated magnetic beads are used to
capture the exons of genes. Captured libraries were enriched in a
PCR reaction to add index tags to prepare for hybridization.
Products were purified using AMPure XP system (Beckman
Coulter, Beverly, USA) and quantified using the Agilent high
sensitivity DNA assay on the Agilent Bioanalyzer 2100 system.

NGS Library Preparation and Sequencing
for cfDNA
cfDNA isolation from 20 liquid biopsy samples was done
according to the protocol (QIAamp Circulating Nucleic Acid
Kit). The cfDNA quantity was assessed with dsDNA HS assay kit
using Qubit Fluorometer 4.0 (Thermo Fisher Scientific). cfDNA
quality was assessed with the Agilent High Sensitivity D1000
ScreenTape System (Agilent Technologies). After ctDNA quality
control procedures, we excluded 9 samples due to low quality or
low quantity. Therefore, eleven qualified samples could be used
for sequencing. Next generation sequencing experiments on
liquid biopsy samples were performed by Genomix4life S.r.l.
(Baronissi, Salerno, Italy). Illumina TruSeq DNA indexed
libraries were prepared from 1.7 to 10 ng of cfDNA using
xGen Custom target capture Library Prep (IDT). This library
preparation method incorporates unique molecular identifiers
(UMIs). Libraries were quantified used Qubit Fluorometer 4.0
(Thermo Fisher Scientific) and pooled to an equimolar amount
of each index-tagged sample to a final concentration of 2 nM.
Pooled samples were subject to cluster generation and sequenced
on NextSeq platform (Illumina) in a 2 × 150 paired-end format.
The raw sequence files generated (fastq files) underwent quality
control analysis with FastQC.

Bioinformatic Pipeline
Germline DNA was sequenced by WES. Illumina paired-end
reads were mapped versus the reference genome (GRCh37/hg19)
using the BWA (Burrows-Wheeler Aligner; Version: 0.7.12) (33)
algorithm. PCR duplicated reads were removed with Samtools
(Version: 1.9) (34).

cfDNA was sequenced as described above. Sequencing reads
in the FASTQ files were processed by partially modifying the
IDT analysis guidelines (eu.idtdna.com) as described below.

First, we trimmed sequencing adapters. Then, we moved
molecular tags (UMIs) from the read sequence to the read
name (see below) with the Fastp tool (Version: 0.20.0) (35).
Then, we performed read mapping by using BWA. Then, we
used fgbio (Version: 0.8.1; Fulcrum genomics, http://
fulcrumgenomics.github.io/fgbio/) to manipulate BAM files
and extract consensus reads that were mapped again to the
reference genome. In brief, we first sorted and fixed mate
information. Then, we identified which reads came from the
December 2020 | Volume 10 | Article 596191
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same source molecule with fgbio’s GroupReadsByUmi tool.
GroupReadsByUmi was ran with the adjacency strategy (it
implements the directed adjacency graph method introduced
by (36) to account for sequencing errors when searching for
matching UMIs. Furthermore, we required a minimum mapping
quality of 30. Here, reads were aggressively filtered, only high
quality read pairs were taken forward, to prevent (i) the grouping
of reads that were really from different source molecules; and
(ii) the building of two groups from reads that were really
from the same molecule. With reads grouped by UMIs, we
combined each cluster of reads to generate consensus reads
using the CallMolecularConsensusReads tool of fgbio. This step
generated unmapped consensus reads in BAM format that
were further filtered with FilterConsensusReads tool. Here, we
required that a consensus read was supported by at least two
reads. Finally, we used Samtools to obtain the consensus reads in
FASTQ format and run a second step of alignment with BWA.
Duplicate reads marking, here was not be performed given that
each read represents a unique source molecule. After the two
alignment steps, we collected descriptive statistics as well as
coverage metrics of targeted regions, on BAM files, by using
SAMtools and Bedtools (Version: 2.29.2), respectively.

Somatic variants were called, within our targeted exons, with
the VarDict software (37). VarDict is a variant calling program
for SNVs, Multi Nucleotide Variants (MNVs), small Insertions
and Deletions (INDELs) and complex variants. We set a
minimum allele frequency of 0.01 for somatic variant calling
starting from the germline BAM and consensus BAM. We, then
annotated VCF files with ANNOVAR (Version: 2019-10-24).

Following the VarDict developer suggestions, we filtered
variant files as follows. In brief, we kept only variants marked as
“Strong Somatic” or “Likely Somatic” with a calling P value ≤0.05
(Fisher’s exact test based on read counts for variant and reference
alleles in the normal and tumor samples). We also required a mean
base quality of the variant in the tumor BAM > = 40. Then, we
filtered out synonymous SNVs and variants with allele frequencies
above 1% in European populations of 1,000 Genomes, ExAC and
GnomAD. Finally, the lists of variants were filtered from those
falling in ENCODE excludable regions of low mappability.

Somatic CNAs were called, within our targeted exons, with
the R-Biocondutor package “CNVPanelizer” (Version: 1.14.0)
installed on R (Version: 3.5.0). The tool allows reliable CNA
detection in targeted sequencing applications. Its approach uses a
non-parametric bootstrap subsampling of the available reference
samples to estimate the distribution of read counts from targeted
sequencing. We used this tool with 10,000 replicates for the
bootstrap and a significance level of 0.05.

All the somatic variants that passed the filtering steps, were
visually inspected by using the Integrated Genome Viewer
(IGV) software.
RESULTS

Patients Characteristics
Nine patients with Stage 4 and two with Stage 2 neuroblastoma
were recruited as described inMethods (Supplementary Table 1).
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The average age at diagnosis was 36.45 months (range: 7–96). At
diagnosis, three patients hadMYCN amplification and one patient
out of four tested, showed 1p36 deletion.

Sequencing and Mapping Yield
We designed a targeted sequencing panel to cover neuroblastoma
cancer driver genes and included genes with proven clinical value
according to COSMIC database. The full list of neuroblastoma
driver genes selected for sequencing is reported in Supplementary
Table 2.

We have developed an experimental and bioinformatic
pipeline to enable next generation sequencing and detection of
somatic mutations in cfDNA. Our aim was to develop a method
combining accurate sequencing technologies with rare allele
amplification strategies, which could potentially be used for
personalized medicine at the point of care.

The sequencing of DNA from leukocytes returned, on average
61,876 millions, of high-quality reads per sample that were
mapped versus the hg19 human reference genome with a
mapping rate of about 95.5%.

cfDNA sequencing yielded, on average, 45,915,594 raw reads
per sample with a mean read length of 140 bp (Supplementary
Figure 1A). Sequence duplication level was of 35.1%, on average
(Supplementary Figure 1B). The Q20 and Q30 metrics (the
percent of bases with phred-scaled quality scores greater than 20
or 30) were 89.2 and 82.1%, respectively (Supplementary Figure
1C). With the first mapping step, the mean depth of coverage of
our target regions was about 16,752×.

After the calling of consensus reads, by exploiting the
presence of molecular tags (UMIs), we obtained an average of
1,078,823 high-quality reads coming from distinct cfDNA
molecules (Supplementary Figure 1D). Sequence duplication
level was about the 0.15%, on average (Supplementary Figure
1E). The Q30 was 99% (Supplementary Figure 1F).

By aligning consensus reads, we obtained a mean mapping
rate of 99.9%. The mean read depth of the targeted bases was
462.6× (Supplementary Figure 2A). Overall, the 81.8 and the
62% of the target bases was covered by at least 50 and 100 reads,
respectively (Supplementary Figure 2B). The fraction of target
bases covered by consensus reads was, on average, 99.3%. Indeed,
only 10 exons out of 1,702 (with mean length of 112 bp range: 9–
532) were not covered by consensus reads. Globally, we obtained
an adequate coverage of the target genes (Supplementary Figure
2B–C) to perform a reliable variant calling.

Landscape of Somatic Variants Identified
in ctDNA
On average, we called about 1,268 raw variants per sample. Of
these, roughly the 19.3% were somatic mutations (Figure 1A).
The mean read depth and base quality of raw somatic variant
calls were 181.6 and 44.8, respectively (Figure 1B).

The bioinformatic analytic process was established to filter
out all germline events, based on the comparison of cfDNA with
the leukocyte’s DNA, and retaining only somatic alterations for
further analysis. With the strong filtering described in Methods,
we obtained a total of 101 somatic mutations, reported in
Supplementary Table 3, (mean per sample: 9.2; range: 1–41)
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with allele frequencies ranging from 1.3 to 100% (mean: 12.4%;
median: 6.9%). The filtered variants showed a mean read depth
and base quality of 285.4 and 44.8, respectively (Figure 1B).
Among the filtered somatic mutations, 74 were missense
(73.3%), 17 were truncating (16.8%; including nine frameshifts
and eight stop codon gains) and 10 (9.0%) non-frameshift
INDELs (Figure 1C).

In order to identify variants with high pathogenic effects, we
focused on those having a CADD (38) score above 20. We
obtained a total of 51 (50.5%) filtered somatic mutations,
Frontiers in Oncology | www.frontiersin.org 534
reported in Supplementary Table 3, (mean per sample: 5.6,
range: 1–24). Nine out of 11 cases (81.8%) harboured at least one
pathogenic mutation. Among the filtered somatic mutations, 44
were missense (86.3%) and seven were stop codon gains (13.7%).
Of these highly pathogenic mutations, some recurrently involved
KMT2C (five cases), NOTCH1/2 (four cases), CREBBP (three
cases), ARID1A/B (three cases), ALK (two cases), FGFR1 (two
cases), FAT4 (two cases) and CARD11 (two cases), as depicted in
Figure 2A and Supplementary Figure 3. For these mutations the
median variant allele frequency was 6.2% (mean: 10.3%; range:
A B

C

FIGURE 1 | Somatic single nucleotide variants and copy number alterations. (A) The bar plot shows the number of raw somatic variant calls. (B) Box plots showing
the mean Read Depth and the mean Base Quality for raw variant calls and for the filtered somatic variants. (C) Oncoprint reporting the somatically altered genes
along with their mutation frequency.
A B

C

FIGURE 2 | Highly pathogenic somatic mutations. (A) The lollipop plot shows the number of cases for genes having somatic mutations with pathogenicity scores
higher than 20 as determined by CADD tool. (B) The box plot reports the median variant allele frequency of the selected somatic mutations. (C) The data matrix
shows the pathways in which the mutated genes are involved (pathcards.genecards.org).
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1.3–59.6%) (Figure 2B). ERK signalling and Chromatin
organization were the mainly altered pathways (Figure 2C).

As shown in Supplementary Table 3, eight out of 11 patients
harboured somatic variants in genes that have been previously
observed in solid cancers in at least one case (as reported in the
COSMIC database). Interestingly, we found the hotspot mutation
F1174L in ALK, frequently observed in neuroblastoma tumors.

Landscape of Somatic Copy Number
Alterations Identified in ctDNA
We predicted CNAs by comparing ctDNA with its control DNA.
Significant CNAs are reported in Figure 1C and Supplementary
Table 4. Individual level Copy Number profiles for all the genes
in our panel are in Supplementary Figures 4–13. We knew, by
FISH assay, that three patients had the amplification of MYCN
locus. For all of these samples we were able to confirm their
MYCN amplification status. Furthermore, we found the
heterozygous deletion of H3F3A in five samples. H3F3A
mutants are drivers of tumorigenesis in pediatric cancers (39),
and H3F3A is also a susceptibility gene in pheochromocytomas
and paragangliomas (40). We also found deletions of HRAS in
four samples and amplification of KRAS in two samples. These
data should be treated with caution as HRAS is located at 11q5.5
that is a region of allelic imbalance and it can be difficult to
distinguish between deletion and amplification. KRAS
amplification has been reported in several solid cancers and is
associated to lack of sensitivity to MAPK inhibitors (41). In two
out of eleven samples we detected deletions of PHOX2B and
TP53 and amplifications of PLAG1. PHOX2B germline
mutations predispose to neuroblastoma (42) and somatic
variants can also occur in sporadic neuroblastoma. Although
somatic mutations of TP53 or other pathway members are rare in
primary neuroblastomas obtained at diagnosis (20), TP53
inactivation was observed in 50% of relapsed neuroblastoma
(43). PLAG1 amplifications or rearrangements have been
identified in several tumors (44, 45).
DISCUSSION

Cancer is the leading cause of disease-related death in children.
Two thirds of all survivors have late effects related to inadequate
therapeutic choices or adverse health-related outcomes.
Therefore, precision medicine in pediatric oncology is required
to further improve outcomes and decrease toxicity. As the field of
precision oncology grows, the application of ctDNA sequencing
could complement or substitute the analysis of tissue biopsies
and provide the means to explore the heterogeneity and the
evolution of tumors. The first randomized controlled trials for
pediatric cancers are currently ongoing. They will elucidate the
impact of LB and ctDNA analysis on clinical decision making
(NGSkids: NCT02546453 and MICCHADO: NCT03496402).

Most retrospective studies, conducted on small sample
cohorts, have illustrated the great potential of LB approach
in neuroblastoma. In this study, despite the limited number
of samples, we highlight the utility of LB approach to facilitate
Frontiers in Oncology | www.frontiersin.org 635
the detection of druggable genes/mutations in ctDNA of
neuroblastoma stage 4 patients. This could accelerate the
therapeutic choice or may provide clinicians useful disease
biomarkers at diagnosis.

We identified nine out of eleven (81.8%) patients who carried
at least one pathogenic variation. The high prevalence of
pathogenic variants in our cohort demonstrated the utility of a
targeted high-throughput sequencing analysis, which excels in
terms of the breadth of disease coverage when compared to
single-gene tests. Furthermore, the detection of tumor-specific
mutations in diagnostic ctDNA samples confirmed the
potentiality of our panel to identify druggable mutations. This
non-invasive method may address patients towards a
personalized therapy. Particularly, we identified ALK F1174L
hot spot mutation that was not previously evaluated in tissue
biopsies at diagnosis. The presence of ALK point mutations,
occurring in 8–10% of sporadic neuroblastoma, serve as
biomarker of therapeutic sensitivity to small-molecule kinase
inhibitors that are currently undergoing clinical assessment in
phase I and II trials.

Furthermore, detecting mutations in key cancer genes, that
are not actionable per se, could also benefit patient’s
management by improving diagnosis, prognosis and treatment
strategies setting (see (10, 12, 15, 45, 46)). In this context, we
observed mutations in KMT2C (5/11 cases), in CREBBP (3/11
cases) and in ARID1A/B (3/11 cases). All of these genes take part
in chromatin remodelling complexes and are frequently mutated
in cancer. KMT2C and KMT2D histone lysine methyltransferases
are among the most frequently mutated genes across a variety of
cancer types (46). It has been recently reported that KMT2C is
involved in DNA repair and genomic instability. This, opens up
the possibility that KMT2C-associated cancers may be targeted
by PARP1/2 inhibitors (47). Furthermore, loss of KMT2D results
in hyperactivation of RAS/MAPK pathways suggesting that these
tumors may be treated with MAPK pathway inhibitors (48).
CREBBP mutations often result in loss of tumor-suppressive
functions and are difficult to target therapeutically. In these
patients, the use of HDAC inhibitors may serve as an
additional therapeutic option (49). Moreover, tumors with
ARID1A mutations are sensitive to the treatment with EZH2
methyltransferase inhibitors (50). Interestingly, we observed
FGFR1 mutations in two out of eleven. FGFR1 gene was found
mutated in neuroblastoma both at diagnosis and at relapse (21,
51, 52). Targeting of FGFR1 signalling is currently used in adult
cancers and may represent an interesting application not yet
explored in neuroblastoma.

In our study, we observed a wide range of Minor Allele
Frequencies (MAFs) in the lists of somatic mutations for a given
sample. This can be mainly explained by clonal mutational
events (29). In the setting of treatment strategies, also low
MAF somatic mutations should be accounted to avoid the
spread of chemo-resistant clones. Indeed, given its potential,
we may suggest that our targeted sequencing panel for ctDNA
analysis could be also used to monitor treatment responsiveness.

MYCN amplification and 1p36 deletion are genetic alterations
routinely detected in diagnostic tissues and serve as important
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prognostic biomarkers associated with poor prognosis. We
confirmed MYCN amplification all of the patients. We could
not be able to detect 1p36 deletion in one patient because the
panel is not comprehensive of genes located in this region. Given
the targeted nature of our sequencing panel, we recognize that we
had limited capability in detecting large chromosomal
aberrations. However, our choice allowed us to detect exon-
level CNAs and drastically reduced both, sequencing costs and
analysis time.

Many variables do affect ctDNA concentration into the
bloodstream. These include tumor size and stage, metastasis,
inflammation and therapy status, among the others. In children,
additional variables such as age and tumor type should be
considered. Despite neuroblastoma shows higher levels of
ctDNA than other pediatric cancers (16), we are aware that
highly standardized protocols for LB will become necessary to
ensure reliable and reproducible results in routine clinical care.

In our study, we explored the usefulness of sequencing ctDNA
by the means of a targeted panel of genes involved in
neuroblastoma. By allowing the detection of somatic mutations
(including low MAF and druggable mutations) and somatic CNAs,
this approach could improve the clinical management of pediatric
cancers in a cost-effective manner. Moreover, it represents a
valuable alternative tool to avoid invasive tissue biopsies.

One limitation of this study is the relatively low number of
analyzed tumors even if our set of samples (n = 11) derived from
a careful selection among 20 tumors. Additional ctDNA
sequencing studies using larger samples sizes are needed to
validate the mutation frequencies we observed.

Our aim for the next future is to implement our custom NGS
panel for ctDNA analysis to improve patient stratification at
diagnosis. This may also lead to better targeted and timely
therapies and reduce ineffective/inappropriate choices.
Furthermore, the ctDNA analysis could be useful to monitor
patients for early signs of relapse or for early diagnosis in families
at high risk of developing neuroblastoma. Of course, well-
designed and large-scale validation studies integrated in
multicenter trials will be necessary to further delineate the
clinical utility and validity of the proposed gene panel for
ctDNA analysis.
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Wilms tumor (WT) commonly occurs in infants and children. We evaluated clinical factors
and the expression of multiple RNAs in WT samples in the TARGET database. Eight long
non-coding RNAs (lncRNAs; AC079310.1, MYCNOS, LINC00271, AL445228.3,
Z84485.1, AC091180.5, AP002518.2, and AC007879.3), two microRNAs (miRNAs;
hsa-mir-152 andhsa-mir-181a), and nine messenger RNAs (mRNAs; TCTEX1D4,
RNF133, VRK1, CCNE1, HEY1, C10orf71, SPRY1, SPAG11A, and MAGEB18) were
screened from differentially expressed RNAs and used to construct predictive survival
models. These models showed good prognostic ability and were highly correlated with
tumor stage and histological classification. Additionally, survival-related ceRNA network
was constructed using 35 RNAs (15 lncRNAs, eight miRNAs, and 12 mRNAs). KEGG
pathway analysis suggested the “Wnt signaling pathway” and “Cellular senescence” as
the main pathways. In conclusion, we established a multinomial predictive survival model
and a survival-related ceRNA network, which provide new potential biomarkers that may
improve the prognosis and treatment of WT patients.

Keywords: Wilms tumor, target, lncRNA, miRNA, mRNA, competing endogenous RNA/ceRNA
INTRODUCTION

Wilms tumor (WT), a renal malignancy originating from the metanephric blastema, is widespread
in infants and children (1). WT accounts for 7% of all pediatric malignancies and occurs in one out
of every 10,000 children (2). Fortunately, with the development of treatments, the survival rate of
children with WT has increased by nearly 60% (3). The International Society of Pediatric Oncology
stated that the combination of nephrectomy and chemotherapy significantly improved overall
survival (OS) by more than 90% (4). However, 25% of children still have a poor prognosis based on
the tumor stage (5). Therefore, clarifying the cellular process involved in WT development and
providing prognostic biomarkers are important steps to improving the survival of patients.

In recent years, several studies have suggested non-coding RNAs as key molecules involved in
tumorigenesis and tumor progression (6). microRNAs (miRNAs) are non-coding RNAs composed of
18–25 nucleotides that can negatively regulate gene expression (7). By contrast, long non-coding RNAs
(lncRNAs) are more than 200 nucleotides in length and they adjust the biological behavior of tumors
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through competing endogenous RNAs (ceRNAs) (8). It is suggested
that there is a complex regulatory network among lncRNAs,
miRNAs, and messenger RNAs (mRNAs). lncRNAs competitively
inhibit the function of miRNAs by acting as a sponge, thus
indirectly disrupting mRNA expression and ultimately affecting
gene expression (9). In general, the instability of a ceRNA network
may induce tumorigenesis (10, 11). Several studies have suggested
that a ceRNA network can be used as a prognostic biomarker for
WT, but did not actually describe the effect of a ceRNA network in
WT (12, 13). Therefore, the establishment of a ceRNA network
related to the survival of WT patients is of great significance for
judging the prognosis of patients. By understanding the role of
various RNAs in tumorigenesis, we can find potential targets to
improve the prognosis of WT.

In this study, we explored the ability of multiple RNAs to
prognosticate WT as a whole and established RNA models that
can be used to predict survival. In addition, we established a
survival-related ceRNA network and tried to understand its
molecular mechanism through functional enrichment. Finally,
we provided new potential biological biomarkers to improve the
prognosis and treatment of WT.
MATERIALS AND METHODS

Data Collection and Processing
Clinical and RNA sequencing data of all patients were obtained
from the Therapeutically Applicable Research to Generate
Effective Treatments (TARGET) database, which can be
downloaded from The Cancer Genome Atlas (TCGA) portal
(https://portal.gdc.cancer.gov/; Data Release 25.0; release time:
July 22, 2020). This study met the requirements for using TCGA
database and did not require the approval of an ethics
committee. We selected only the sequencing data from
primary solid tumors for analysis. The mRNA and lncRNA
sequencing data included 125 primary WT samples and six
normal samples. The miRNA sequencing data included 127
primary WT samples and six normal samples. The clinical data
of the 128 patients included in this study are shown in Table 1.

Identification of Differentially Expressed
RNAs
The edgeR package in the R 4.0.2 software was used to analyze
differentially expressed lncRNAs (DElncRNAs), differentially
expressed miRNAs (DEmiRNAs), and differentially expressed
mRNAs (DEmRNAs) between the WT and normal samples. The
cutoff value for differentially expressed RNAs (DERNAs) was |
log2 fold-change (FC)| >1 and false discovery rate (FDR) <0.05.
Visualization of DERNAs was performed using ggplot2 package
in R software.

Survival Analysis
dentification of survival-associated RNAs was performed via
univariate Cox regression analyses in the R software.
Significantly correlated survival-associated RNAs (P < 0.003)
were chosen for multivariate Cox regression analysis and to
Frontiers in Oncology | www.frontiersin.org 240
establish predictive survival models. Prognosis index (PI) =
(expressiongene1 × bgene1) + (expressiongene2 × bgene2) +… +
(expressiongenen × bgenen). Patients were divided into two
groups based on the median PI. Survival prognosis of the two
groups was compared by Kaplan–Meier analysis. The receiver
operating characteristic (ROC) curve for evaluating the predictive
ability of the model was depicted through R software.

Protein–Protein Interaction Network
Construction
The Search Tool for the Retrieval of Interacting Genes (STRING;
http://string-db.org) database was used to obtain PPI data of the
significant survival-associated mRNAs (P < 0.003). Establishment
of the PPI network was performed using the Cytoscape software.

Construction of the ceRNA Network
Survival-associated RNAs were used to construct ceRNA
networks. First, the potential miRNAs interacting with
lncRNAs were screened according to the miRcode (http://
www.mircode.org/) database. Targeted mRNAs were identified
using the miRTarBase (http://mirtarbase.cuhk.edu.cn/), miRDB
(http://www.mirdb.org/), and TargetScan (http://www.
targetscan.org/) databases. Finally, establishment of the
lncRNA-miRNA-mRNA interaction ceRNA network was
performed using the Cytoscape software.

Functional Enrichment Analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses of mRNAs in
the ceRNA network were conducted using KOBAS 3.0 (http://
kobas.cbi.pku.edu.cn/kobas3/). Visualization of the enrichment
analyses was conducted using the R software.

Statistical Analysis
The correlation of RNAs with clinical characteristics was analyzed
by rank sum test. Differences between survival curves were
TABLE 1 | Corresponding Clinical Features of 128 Patients With Wilms Tumor.

Items Patients, N = 128

N %

Age
<5 81 63.28125
≥5 47 36.71875

Gender
Male 54 42.1875
Female 74 57.8125

Race
White 95 74.21875
Non-White 33 25.78125

Tumor stage
Stage I/II 66 51.5625
Stage III/IV 62 48.4375

Histologic classification
FHWT 84 65.625
DAWT 44 34.375

Survival status
Alive 76 59.375
Dead 52 40.625
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analyzed by log-rank test. R 4.0.2, Cytoscape v3.7.2, and GraphPad
Prism 8 were used for plotting. SPSS 24 was used for statistical
analysis. P < 0.05 was considered statistically significant.
RESULTS

Identification of DElncRNAs, DEmiRNAs,
and DEmRNAs
We downloaded RNA sequencing data of 128 WT patients from
the database and screened multiple DERNAs separately. A total
of 10,585 DERNAs were screened, including 3,219 DElncRNAs
(1,664 upregulated and 1,555 downregulated), 236 DEmRNAs
(153 upregulated and 83 downregulated), and 7,130 DEmRNAs
(3,762 upregulated and 3,368 downregulated). Finally, we
visualized multiple DERNAs by heat and volcano maps
(Figure S1).

Identification of Survival-Associated RNAs
in WT
The relationship between DERNAs and survival was assessed by
univariate Cox regression analysis. RNAs with P <0.05 were
selected as survival-associated RNAs, yielding a total of 696
survival-associated RNAs (199 lncRNAs, 17 miRNAs, and 480
mRNAs). The top 15 survival-associated RNAs are shown in
Figure 1. The gene networks of strongly correlated survival-
associated mRNAs (P < 0.003) were constructed by STRING
(Figure 2). The hub genes, including XAB2, SNRPA, PRPF19,
and TP53, are shown in the PPI network.

Establishment of Predictive Survival
Models
RNAs with strong correlation were selected by univariate Cox
regression analysis (P < 0.003), and then multivariate Cox
regression analysis was used to analyze survival-associated
RNAs with strong correlation. Finally, a total of eight lncRNAs
(AC079310.1, MYCNOS, LINC00271, AL445228.3, Z84485.1,
AC091180.5, AP002518.2, and AC007879.3), two miRNAs
Frontiers in Oncology | www.frontiersin.org 341
(hsa-mir-152 and hsa-mir-181a), and nine mRNAs
(TCTEX1D4, RNF133, VRK1, CCNE1, HEY1, C10orf71,
SPRY1, SPAG11A, and MAGEB18) were identified.
Subsequently, the predictive survival models were built.
PIlncRNA = (0.76777 × AC079310.1 expression) + (0.28668 ×
MYCNOS expression) + (0.53416 × LINC00271 expression) +
(0.64448 × AL445228.3 expression) + (0.45112 × Z84485.1
expression) + (− −0.35751 × AC091180.5 expression) +
(0.53728 × AP002518.2 expression) + (0.14176 × AC007879.3
expression). PImiRNA = (−0.3952 × hsa-mir-152 expression) +
(−0.2490 × hsa-mir-181a expression). PImRNA = (0.52018 ×
TCTEX1D4 expression) + (0.24841 × RNF133 expression) +
(0.48661 × VRK1 expression) + (0.40846 × CCNE1 expression) +
(−0.43723 × HEY1 expression) + (−0.17615 × C10orf71
expression) + (-0.32992 × SPRY1 expression) + (−0.25891 ×
SPAG11A expression) + (0.29755 × MAGEB18 expression).

PI values were calculated for each patient and divided into
two groups. We found that among the three groups of RNAs, the
low-risk group had better survival as determined by Kaplan–
Meier analysis (Figures 3A–C). The ability of the models to
predict 3-year survival was evaluated by drawing the ROC curve.
The areas under the curves (AUCs) of the three groups were
0.818, 0.701, and 0.848, respectively (Figures 3D–F). These
results suggest that the three groups of modules have great
potential for predicting the clinical prognosis of WT. Figure 4
shows the risk scores, survival status, and RNA expression
profiles in each group.

The correlation of these RNAs with other clinical
characteristics was assessed by rank sum test. Clinical
characteristics included age (<5/≥5), gender (male/female), race
(white/non-white), tumor stage (I–II/III–IV), and pathological
classification (FHWT/DAWT). We found that the RNAs in the
models were significantly correlated with tumor stage and
histological classification (Figure 5). This implies that these
RNAs can be used as potential indicators to judge the degree
of WT tumor development. Next, we identified the relationship
between clinical characteristics and OS. Multivariate Cox
regression analysis suggested that tumor stage and risk level
directly affected tumor prognosis (Table 2).
A B C

FIGURE 1 | Forest plots of the hazard ratios (HR) of the survival-associated RNAs in WT. (A) HR of top 15 survival-associated lncRNAs. (B) HR of top 15 survival-
associated miRNAs. (C) HR of top 15 survival-associated mRNAs. HR <1 indicates the protective RNAs, and HR >1 indicates the risk RNAs.
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FIGURE 2 | PPI network of significant survival-associated mRNAs by Cytoscape. The brightness of the circle represents the degree of connection. The red circles
are hub genes in the networks.
A B
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FIGURE 3 | Kaplan–Meier (K–M) and ROC curves for PI in WT patients. (A) K–M survival curves between high-risk and low-risk groups based on lncRNA model.
(B) K–M survival curves between high-risk and low-risk groups based on miRNA model. (C) K–M survival curves between high-risk and low-risk groups based on
mRNA model. (D) Time-dependent ROC curves analysis for survival prediction by PIlncRNA. (E) Time-dependent ROC curves analysis for survival prediction by
PImiRNA. (F) Time-dependent ROC curves analysis for survival prediction by PImRNA.
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Construction of a Survival-Related ceRNA
Network in WT
Based on the survival-associated RNAs, 39 pairs of lncRNA–
miRNA and 13 pairs of miRNA–mRNAs were detected from the
databases. Subsequently, a ceRNA network containing 15
lncRNAs, eight miRNAs, and 12 mRNAs was constructed
(Figure 6). Many of these RNAs have been extensively studied
as cancer-related molecules, such as miR-181a, CCNE1, and
WIF1. Next, we further studied the molecular function of
mRNAs in the ceRNA network. A total of 99 functional
enrichment terms (68 biological processes, 13 cellular
components, and 18 molecular functions) from the GO
analysis and 15 KEGG pathways were observed. The biological
processes were mainly enriched in “cell surface receptor signaling
pathway involved in cell-cell signaling”; the cellular components
were mainly enriched in “nucleus”; and the molecular function
was mainly enriched in “binding”. The KEGG analysis suggested
Frontiers in Oncology | www.frontiersin.org 543
that the “Wnt signaling pathway” and “Cellular senescence” were
the main pathways (Figure 7).
DISCUSSION

WT is a common pediatric tumor and poor prognosis is the main
factor affecting long-term survival of patients (14). However, the
exact molecular mechanism of WT is still unclear. The
advancement in sequencing technology and the proposed ceRNA
hypothesis provide a new perspective for the study of tumorigenesis
and tumor progression (9). In the present study, we screened out
survival-associated RNAs in the TARGET database and studied
molecular events associated with WT. In particular, we proposed a
novel survival-related ceRNA network that provides a new
dimension for predicting the prognosis of WT patients.
A B

D E F
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FIGURE 4 | Prognostic classifier analyses in distinguishing patients into low-risk and high-risk groups. (A) The lncRNA-based risk score distribution of each patient.
(B) The miRNA-based risk score distribution of each patient. (C) The mRNA-based risk score distribution of each patient. (D) The lncRNA-based survival status of
each patient in two groups. (E) The miRNA-based survival status of each patient in two groups. (F) The mRNA-based survival status of each patient in two groups.
(G) Heatmap of lncRNAs expression between two groups. (H) Heatmap of miRNAs expression between two groups. (I) Heatmap of mRNAs expression between
two groups.
FIGURE 5 | Clinical significance of prognostic RNAs in WT. Correlations between prognostic RNAs and clinical factors. The numbers and brightness of each cell
indicate the P-value.
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TABLE 2 | Univariate and multivariate Cox regression analyses of overall survival.

Overall survival Univariate analysis Multivariate analysis

HR 95%CI P-value HR 95%CI P-value

Age (<5/≥5) 0.704 0.386–1.284 0.252
Gender (Male/Female) 0.591 0.343–1.019 0.058
Race (White/Non-white) 1.122 0.607–2.071 0.714
Tumor stage (I-II/III-IV) 0.999 1.792–5.840 0.998
lncRNA cohort 3.504 1.882–6.524 <0.001
miRNA cohort 3.105 1.717–5.615 <0.001
mRNA cohort 2.454 1.307–4.608 0.005
Histologic classification (FHWT/DAWT) 1.196 0.714–2.209 0.529
LncRNA signature (Low group/High group) 4.502 2.346–8.637 <0.001 4.822 2.472–9.403 <0.001
miRNA signature (Low group/High group) 2.673 1.495–4.777 0.001 2.498 1.394–4.474 0.002
mRNA signature (Low group/High group) 6.380 3.173–12.830 <0.001 4.883 2.381–10.011 <0.001
Frontiers in Oncology | www.frontiersin.org
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FIGURE 6 | Survival-related ceRNA network in WT. The red diamonds indicate upregulated lncRNAs, and blue diamonds indicate downregulated lncRNAs. The red
rectangles indicate upregulated miRNAs, and blue rectangles indicate downregulated miRNAs. The red circles diamonds indicate upregulated mRNAs, and blue
circles diamonds indicate downregulated mRNAs.
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Among all the DERNAs, we screened a total of 696 survival-
related RNAs, including 199 lncRNAs, 14 miRNAs, and 480
mRNAs. mRNAs are key to the realization of molecular
functions. PPI network analysis was carried out to identify the
hub genes. We found that XAB2, SNRPA, PRPF19, and TP53
had a higher degree of connection among all genes. It is well-
known that p53 is a tumor suppressor gene, and some studies
have confirmed that TP53 gene mutation worsens the prognosis
of WT (15). The other hub genes also affect the progress of other
tumors (16, 17), suggesting that these hub genes may also affect
the development of WT.

Most recent studies on WT have focused on the search for a
single RNA that may influence prognosis. Zong et al. (18) found
that miR-30d expression in WT tissues was significantly lower than
that in normal tissues. Further animal experiments showed that
miR-30d mimic significantly inhibited tumor growth. In addition,
overexpression of SOX4 could reverse the effect of mir-30d on WT
cells. Bao et al. (19) found that the expression of mirna-203a was
low in WT tumor tissues, and that its expression level was directly
related to the prognosis of WT. Knockout of miR-203a significantly
enhanced the invasiveness of WT cells. Luciferase analysis
Frontiers in Oncology | www.frontiersin.org 745
confirmed that miR-203a targeted JAG1 to exert biological
functions. Wang et al. (20) found that overexpression of miR-613
inhibited the G0/G1 phase transition of WT cells and hindered the
expansion ability of WT cells. There is also a subset of studies
evaluating the relationship between single RNA and OS. Tang et al.
(12) predicted 32 DERNAs to be possibly associated with OS inWT
patients through Kaplan-Meier analysis, and Zhang et al. (13)
predicted 61 DERNAs to be possibly associated with OS by
Kaplan-Meier analysis.

However, the development ofWT is influenced by multifactorial
causes, indicating that we should analyze prognostic markers at a
broader level. We established a multinomial predictive survival
model based on survival-associated RNAs by multivariate Cox
analysis, which could suggest prognostic survival of WT patients.
An AUC value >0.70 denotes excellent model performance. The
AUCvalues of the threemodels were all greater than 0.7 in our study
(0.818, 0.701, and 0.848). Gong et al. (21) established a 5-miRNA
model for the prognosis of WT patients. The AUC value of their
modelwas 0.767, whichwas higher than that of themiRNAmodel in
this experiment, but smaller than those of the other two models in
this experiment. In addition, compared with other experiments, this
A B

DC

FIGURE 7 | GO and KEGG pathway enrichment analyses of genes included in the ceRNA network. (A) Biological process. (B) Cellular component. (C) Molecular
function. (D) KEGG pathways.
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experiment only selected the sequencing data of primary tumor
tissues rather than the sequencing data of all tumors including
metastatic tumors. Further, we divided the patients into high-risk
and low-risk groups according to PI value, and Kaplan–Meier
analysis showed that there was a significant difference in survival
between the two groups. Visualizing the relationship among survival
time, PI score, and grouping intuitively showed the poor survival of
high-risk patients. These results indicate that these three RNA
models have good specificity and sensitivity in predicting the
survival of WT patients. Notably, we found that these predictive
RNAswere significantly associatedwith tumor stage and histological
classification, which means that PI may have great value in the
prognosis of WT patients. Multivariate Cox regression analysis also
suggested that risk level can predict the prognosis of WT patients.

According to the establishment of the predictive survival
models, we found some biomarkers that may have important
clinical significance. lncRNAs participate in multiple cellular
activities and have been shown to regulate tumorigenesis and
metastasis (22, 23). miRNAs, as a bridge between lncRNAs and
mRNAs, participate in tumor development. MYCNOS promotes
the invasion and metastasis of neuroblastoma and
rhabdomyosarcoma by regulating MYCN protein (24, 25) and
may participate in the development of WT (26). miR-152
targeting DNMT1 inhibits the development of endometrial
cancer (27), glioblastoma (28), and lymphomas (29). miR-181a
mediates the Wnt/b-catenin pathway to accelerate the
progression of colorectal cancer (30), oral squamous cell
carcinoma (31), and acute lymphoblastic leukemia (32). The
expression of VRK1 directly affects the proliferation of breast
cancer and liver cancer (33). CircAGFG1 promotes triple-
negative breast cancer progression through the circAGFG1/
miR-195/CCNE1 pathway (34). Precancerous lesions in
squamous cell carcinoma depend on upregulation of the
NOTCH4-HEY1 pathway (35). The HGF-mediated c-Met/
FRA1/HEY1 cascade may be the key to inducing the transition
from cirrhosis to hepatocellular carcinoma (36). miRNA-21
promotes proliferation of human glioma cells through the
PI3K/AKT/SPRY1 pathway (37). The expression of MAGEB18
affects cell proliferation and apoptosis in melanoma (38).
However, the effects of the aforementioned RNAs on WT
progression have not been reported at present. In addition, it
remains unknown whether AC079310.1, LINC00271,
AL445228.3, Z84485.1, AC091180.5, AP002518.2, AC007879.3,
TCTEX1D4, RNF133, CCNE1, C10orf71, and SPAG11A can
influence the development of tumors. These RNAs provide a
potential direction for future investigations on WT.

The ceRNA hypothesis explains the complicated RNA
molecular regulation mechanisms via construction of a
lncRNA–miRNA–mRNA network (9). Most studies on the
molecular regulation mechanism of WT constructed a network
based on DERNAs (12, 13). We proposed a novel survival-
related ceRNA network that provided a new dimension for
predicting the prognosis of patients with WT. Many cancer-
related molecules are included in this network, such as miR-
181a, CCNE1, and WIF1. Recent studies have determined that
some RNAs in the ceRNA network affect the prognosis of WT
Frontiers in Oncology | www.frontiersin.org 846
patients. For example, miR-15a targeted by SNHG6 (39), cyclin
CCNE1 regulated by tumor suppressor gene WWOX (40), and
Wnt signaling pathway inhibited by WIF1 (41) all affect tumor
prognosis. In view of the fact that mRNA is the executor of
ceRNA network function, GO and KEGG analyses were
conducted to gain insight into molecular mechanisms. The GO
analysis suggested that the cell surface receptor signaling
pathway is the main mechanism by which the ceRNA network
affects the prognosis of WT patients. KEGG analysis suggested
that the “Wnt signaling pathway” and “Cellular senescence” were
the main enrichment pathways. Recently, the Wnt/b-catenin
signaling pathway was demonstrated to regulate the occurrence
and development of WT, and Wnt-targeted agents may have
great potential in the treatment of WT (42, 43).

Our study had several limitations. First, due to the scarcity of
patients, we only obtained RNA sequencing data from the
TARGET database; thus, we could not perform multicenter
validation. Second, all the data in this study are from the same
pathological tissue and lacked certain accuracy for highly
heterogeneous WT. In the future, we will use single-cell
sequencing to detect the expression RNAs in multiple WT
samples from the same patient to improve the accuracy of the
results. Finally, some new RNAs that may be involved in WT
progression need further study.

To conclude, we established a multinomial predictive survival
model, which has a good application prospect in future clinical
practice. It is expected to improve the long-term prognosis of
WT patients by screening high-risk patients through sequencing
results and strengthening the personalized treatment.
Meanwhile, we describe a survival-related ceRNA network,
which provides some new potential prognostic indicators and
therapeutic targets for improving the prognosis of WT patients.
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Background: Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is a malignant
primary T-cell lymphoma that is challenging to distinguish from autoimmune disorders and
reactive panniculitides. Delay in diagnosis and a high misdiagnosis rate affect the
prognosis and survival of patients. The difficulty of diagnosis is mainly due to an
incomplete understanding of disease pathogenesis.

Methods: We performed single-cell RNA sequencing of matched subcutaneous lesion
tissue, peripheral blood, and bone marrow from a patient with SPTCL, as well as
peripheral blood, bone marrow, lymph node, and lung tissue samples from healthy
donors as normal controls. We conducted cell clustering, gene expression program
identification, gene differential expression analysis, and cell-cell interaction analysis to
investigate the ecosystem of SPTCL.

Results: Based on gene expression profiles in a single-cell resolution, we identified and
characterized the malignant cells and immune subsets from a patient with SPTCL. Our
analysis showed that SPTCL malignant cells expressed a distinct gene signature, including
chemokines families, cytotoxic proteins, T cell immune checkpoint molecules, and the
immunoglobulin family. By comparing with normal T cells, we identified potential novel
markers for SPTCL (e.g., CYTOR, CXCL13, VCAM1, and TIMD4) specifically differentially
expressed in the malignant cells. We also found that macrophages and fibroblasts
dominated the cell-cell communication landscape with the SPTCL malignant cells.
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Conclusions: This work offers insight into the heterogeneity of subcutaneous
panniculitis-like T-cell lymphoma, providing a better understanding of the transcription
characteristics and immune microenvironment of this rare tumor.
Keywords: single-cell RNA-seq (scRNA-seq), T cell malignancies, pediatric oncology, molecular diagnoses,
subcutaneous panniculitis- like T-cell lymphoma
INTRODUCTION

Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is a
rare primary cutaneous lymphoma of mature cytotoxic T cells
arising primarily in the skin without the evidence of
extracutaneous involvement. According to the 2016 World
Health Organization (WHO) and 2018 World Health
Organization-European Organization for Research and
Treatment of Cancer (WHO-EORTC) classification, SPTCL is
defined as subcutaneous lymphomas with an a/b T cell
phenotype and neoplastic T cells expressing CD3, CD8, and
cytotoxic proteins (GZMB, TIA-1, perforin) (1, 2). Both children
(3) and adults can be affected, with a median age at diagnosis of
36 years and female gender bias (4). In a cohort of pediatric
patients (3), the median age at diagnosis was 8 years (5 months to
21 years) with a male to female ratio of 1:1.7. The disease
response to therapy is usually favorable, with a 5-year survival
of more than 80% (5).

However, the clinical manifestations and pathological
features of SPTCL are similar to those of benign panniculitis,
lupus erythematosus profundus (LEP), and various autoimmune
disorders, thus SPTCL is frequently misdiagnosed at the early
stage (6). The long diagnosis period and high misdiagnosis rate
may affect the prognosis and survival of patients. Although
recent studies have provided insight into pathways that may be
important to the pathogenesis of this disease (5, 7–11), additional
investigations are required to better understand the profile and
ecosystem of SPTCL.

Here, we conducted single-cell RNA sequencing (scRNA-seq)
to decipher SPTCL at an unprecedented transcriptomic
resolution for matched subcutaneous lesion tissue, peripheral
blood, and bone marrow from a patient with SPTCL, as well as
peripheral blood, bone marrow, lymph node, and lung tissue
samples from healthy donors as normal controls. Using this
dataset, we investigated the ecosystem of SPTCL and identified
novel markers of SPTCL that may advance the detection and
diagnosis of this disease.
METHODS

Patient
A male patient diagnosed with SPTCL was recruited from the
Children’s Hospital of Fudan University in the Department of
Hematology and Oncology. At the time of sample collection, the
patient was 22 months old with SPTCL.

This study was approved by the Medical Ethics Committee of
the Children’s Hospital of Fudan University institutional review
250
board and conducted under the Declaration of Helsinki
principles (approval reference: No (2020). 307). Informed
written consent was obtained from the parents before inclusion
in the study.

Healthy Donors
Healthy donors’ datasets were downloaded from the Gene
Expression Omnibus (GEO, accession number: GSE126030)
(12). The samples were obtained from deceased, brain-dead
donors at the time of organ acquisition for clinical
transplantation. Donors were free of chronic disease, cancer,
and chronic infections such as Hepatitis B, C, and HIV. The
mononuclear cells were isolated from human lungs (LG), lymph
nodes (LN), bone marrow (BM), and blood, and the untouched
CD3+ T cells were enriched from single-cell suspensions of all
tissues and blood using magnetic negative selection (MojoSort
Human CD3+ T cell Isolation Kit; BioLegend) (12).

Single-Cell RNA Sequencing
Experimental procedures followed established techniques using
the Chromium Single Cell 3’ Library V3 kit (10x Genomics).
Briefly, mononuclear cells from enzymatically digested
subcutaneous lesion biopsies and bone marrow, as well as
peripheral blood by density gradient centrifugation using
Lymphocyte Separation Medium, were loaded into the
Chromium instrument (10X Genomics), and the resulting
barcoded cDNAs were used to construct libraries. RNA-seq
was performed on each sample (approximately 200 million
reads/sample). Raw sequence data were converted into
FASTQs using the Illumina bcl2fastq software. FASTQ files
were aligned to the human genome (GRCh38) using the
CellRanger v3.0.1 (10x Genomics) pipeline according to the
manufacturer’s instructions.

Single-Cell Data Processing and Analysis
Initial data processing of scRNA-seq for peripheral blood (n =
6,463), bone marrow (n = 11,027), and subcutaneous lesion
tissue (n = 19,247) from the patient were performed using
Python 3.6 and the Single Cell Analysis in Python (Scanpy)
(v1.4.6) (13) unless otherwise stated. Healthy donors’ scRNA-seq
data were also processed in the same way. Individual cells were
filtered based on the total number of genes expressed and the
percentage of mitochondrial reads. The cells were included with
genes greater than 200 but less than 6,000, and the percentage of
mitochondrial reads less than 10%. Genes detected in fewer than
three cells were filtered out. Read counts of qualified cells were
normalized using the deconvolution method implemented in the
R package Scran (v3.11) (14) and in-transformed.
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Single-Sample Analysis
For visualization, a UMAP was calculated by computing the
single-cell neighborhood graph (kNN-graph) on the specific
principal components using 15 neighbors. The number of
principal components utilized in the neighborhood graph was
based on the standard deviations of the top 30 principal
components. The Leiden graph-clustering method was used to
cluster the neighborhood graph of cells.

Cell types were manually assigned to the clusters from the
Leiden graph-clustering by comparing the mean expression of
known markers across cells in a cluster. Markers used to type
cells included CD19, MS4A1, CD79A (B cells), CD2, CD3, CD4,
CD8 (T cells), CCR7, IL7R, LEF1, SELL (naive T cells), CD44,
CXCR3 (memory T cells), IL2RA, FOXP3, IKZF2 (Tregs),
CXCR5, BCL6, KLRB1, CCR4, TBX21, GATA3 (Th cells),
NCAM1, NKG7 (NK cells), CD14, FCGR3A, ITGAM, CD68,
ITGB2, ADGRE1, LYZ (macrophages), IRF8, CLEC4C (dendritic
cells), DPP4, TAGLN, COL1A1, PDGFRA (fibroblasts), and
CD34 (progenitor).

A consensus non-negative matrix factorization (cNMF)
algorithm (15) was employed to identified gene expression
programs (GEPs) following the protocol on Github https://
github.com/dylkot/cNMF. The GEPs obtained were subjected
to Gene Ontology (GO) and KEGG analysis using the R package
clusterProfiler (v3.11) (16).
Integration Sample Analysis
We combined the data generated from isolated cells with CD3
and CD8 positive from peripheral blood (n= 1,812), bone
marrow (n=1,143), and subcutaneous lesion tissue (n=5,956) of
the patient, and healthy donors (n=13,494) to conduct
integration analysis. The Scanorama algorithm (17) was
applied to correct the combined dataset for technical batch
effects. All reduced dimensions were the same as that in the
single-sample analysis. Partition-based graph abstraction
(PAGA) was calculated by Scanpy.

The top 100 correlated genes were defined as a GEP, and their
average relative expression was calculated as a GEP cell score
(18). The reference set was randomly sampled from the gene
pool for each binned expression value. The number of reference
genes to be sampled from each bin was 100.

The Wilcoxon rank-sum test was used to estimate and
identify differentially expressed genes. The novel markers
utilized a default threshold of 2 for average fold change and a
filter for the minimum delta percent of cells ([X (percentage of
cluster1) – X (percentage of cluster2)]/X (percentage of cluster1)
* 100) greater than 90%.
InferCNV Analysis
Raw gene expression data were extracted from the Scanpy object
as recommended in the “Using 10x data” section (inferCNV of
the Trinity CTAT Project, https://github.com/broadinstitute/
inferCNV). Normal reference cells were identified from
annotated Leiden clusters as naïve T cells. Tumor cells were
identified as malignant-like cells in Leiden clusters. The
Frontiers in Oncology | www.frontiersin.org 351
inferCNV analysis was performed following the tutorial
(https://github.com/broadinstitute/inferCNV/wiki) with
parameters including default settings.
Cell-Cell Ligand-Receptor Interactions
Cell-cell ligand-receptor interactions were inferred using the
CellPhoneDB (v2.0.0) method in Python (19). The lower cutoff
for the expression proportion of any ligand or receptor in a given
cell type was set to 10%, and the number of permutations was set
to 1000.
Whole-Exome Sequencing and Analysis
DNA was extracted from paraffin-embedded (FFPE) SPTCL
tissue for whole-exome sequencing (WES). The Agilent
SureSelect Human All Exon V6 kit was used for exome capture
and library preparation. Paired-end sequencing (2 x 150 bp read
length) was performed using the Illumina NovaSeq platform.
Reads were mapped to the human genome (GRCh37) reference
sequence by the Burrows-Wheeler aligner (bwa mem) algorithm
(version 0.7.17) (20). The data processing, including indel
realignment, marking duplicates, and recalibrating base quality
scores, were performed according to the GATK best practices
using GATK (version 3.7) (21) and Picard tools (version 2.18.25,
http://broadinstitute.github.io/picard). Variants in the HAVCR2
gene were manually checked using the Integrative Genomics
Viewer (IGV) with the bam file (22).
H&E and Immunohistochemistry Staining
The formalin-fixed and paraffin-embedded tissue was cut into 4-mm
thick sections and affixed onto the slides. The slides were subjected
to H&E staining and immunohistochemistry. After being
deparaffinized and rehydrated, the antigens were retrieved in
boiled Tris-EDTA (pH 9.0) buffer for 15min, cooled off for 1 h in
the fume hood, and then blocked according to the protocol of the
DAB polymer detection kit (Gene Tech, Shanghai, China) for
10min. The slides were incubated with primary antibody in 1%
bovine serum albumin (BSA)/tris-base solution buffer at 4°C
overnight. The next day, the slides were incubated with the
secondary antibody and developed with DAB reagent according
to the protocol of the DAB polymer detection kit (Gene Tech).
Finally, the slides were counterstained with hematoxylin. Anti-CD3
antibody (Catalog Number : AR0042, Talent Biomedical, 1:500),
anti-CD4 antibody (Catalog Number : AR0273, Talent Biomedical,
1:500), anti-CD8 antibody (Catalog Number : AM0063, Talent
Biomedical, 1:500), anti-TIA-1 antibody (Catalog Number :
AM0226, Talent Biomedical, 1:500), anti-Granzyme B antibody
(Catalog Number : AM0308, Talent Biomedical, 1:500), anti-
Perforin antibody (Catalog Number : AM0311, Talent
Biomedical, 1:500), anti-Ki67 antibody (Catalog Number :
AR0248, Talent Biomedical, 1:500), anti-CXCL13 (Catalog
Number:10927-1-AP, Proteintech, 1:500), anti-TIMD4 (Catalog
Number:12008-1-AP, Proteintech, 1:500), and anti-VCAM1
(Catalog Number:11444-1-AP, Proteintech, 1:400) were used.
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RESULTS

Clinical Characteristics of the Studied
Patient With SPTCL
The clinical manifestations of the studied patient with SPTCL are
summarized in Table 1. The initial disease onset of this male
patient was at six months old, diagnosed with a small hard
nodule (diameter: 1 cm) in the left clavicle and enlarged lymph
nodes in the groin. When he was 12 months old after a measles
vaccination, the initial nodule was significantly enlarged
(diameter: 6 cm) with enlarged lymph nodes in the head of the
pancreas and did not decrease significantly after antibiotic
treatment, puncture, and drainage. At the age of 18 months,
the disease progressed with multiple lesions at the root of the
patient’s right thigh (diameter: 5 cm) accompanied by fever and
then at the left hip (diameter: 3 cm) after anti-inflammatory
treatment for controlling body temperature. Four months later
(22 months old), the patient progressed with a new single lesion
at the right shoulder (diameter: 2 cm) with no fever but enlarged
lymph nodes in the neck, underarms, mediastinum, and groin.
Subcutaneous lesions were more common in the extremities and
partly in the trunk. The lesions varied from 1 cm to 6 cm in
diameter, with redness and swelling. No ulcerated plaque was
observed. Multiple lymphadenopathies were proven by
computerized tomography (CT) scans without hepatomegaly.
The patient did not receive any chemotherapy but was followed
up according to his parents’ decision.

Histopathological, immunophenotypical, and molecular
features of the patient samples are also summarized in Table 1.
All skin biopsy specimens demonstrated a dense lymphoid
infiltrate located in the subcutaneous tissue, with the overlying
epidermis and dermis involved. Atypical lymphocytes were
pleomorphic small to medium-sized to diffusely large T cells
with irregular hyperchromatic nuclei and were admixed with
small lymphocytes and histiocytes, which were found in both
biopsy specimens at 18 and 22 months old. Areas of karyokinesis
and karyorrhexis were seen. These atypical lymphocytes showed
a CD3+, CD4–, CD8+, Granzyme B+, Perforin+, and TIA1+

phenotype (Figure 1) with a high proliferation rate. Epstein-
Barr virus (EBV) detection by EBV-encoded RNA (EBER) in
situ hybridization was negative. Clonal rearrangement of the
TCR beta gene was found in the biopsy at 22 months old. In all
episodes, bone marrow examination showed no evidence
of lymphoma.
The SPTCL-Specific Ecosystem at
Single-Cell Resolution
We used scRNA-seq to profile gene expression in cells obtained
from the enzymatically digested subcutaneous lesion tissue of the
biopsy before any treatment at 22 months old. Transcriptomic
data were obtained from a total of 17,598 cells, with a median of
1,672 genes detected per cell. Cells were grouped according to
their expression profiles by principal component analysis (PCA)
and Uniform Manifold Approximation and Projection (UMAP)
dimensional reduction. Unsupervised graph-based Leiden
clustering by Scanpy identified 17 clusters of cells that were
Frontiers in Oncology | www.frontiersin.org 452
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annotated and assigned with a cell type based on the expression
of genes described in known canonical markers and published
transcriptome data (see Methods for details) (Figures 2A, B and
Supplementary Figure S1). These included one naïve T cell
Frontiers in Oncology | www.frontiersin.org 553
cluster, one Treg cell cluster, two CD8+ T cell clusters, two NK
cell clusters, one naïve B cell cluster, six macrophage clusters, one
dendritic cell cluster, two fibroblast clusters, and one progenitor
cell cluster. Macrophages were the most abundant immune cells
A B

C D

E F

G H

FIGURE 1 | Histopathological (A) and histochemical (B–H) results of the lesion. (A) Sections at low power stained with hematoxylin and eosin showing a heavy
lymphocytic infiltrate predominantly in the subcutis (x40). (B) CD3 positive (x40). (C) CD4 in approximately 5% of cells (x40). (D) CD8 positive (x40). (E) Granzyme B
positive (x40). (F) Tia1 positive (x40). (G) Perforin positive (x40). (H) Ki-67 positive (x40).
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in our study, with a low proportion of B cells. Malignant-like T
cells were identified based on conventional SPTCL markers (i.e.,
MKI67, PRF1, TIA1, and GZMB; Figure 2C), which were highly
expressed in these two CD8+ T cell clusters. However, we cannot
rule out the possibility that there were a few normal CD8+ T cells
in these two clusters since some markers such as GZMB and
PRF1 were also expressed to a certain extent in normal CD8+ T
cells. To validate the identification of malignant-like T cells, we
further distinguished malignant from non-malignant T cells by
inferring large-scale chromosomal copy-number variations
(CNVs) based on transcriptomes (Figure 2D). As expected,
Frontiers in Oncology | www.frontiersin.org 654
almost all the identified malignant-like cells (>99%) showed
clear evidence of a gain of 6p, 12p, and 14p compared with
normal reference cells, supporting that most of them were real
malignant cells.

Next, we use cNMF (15) to infer potential GEPs underlying
the expression profiles and which cells expressed the GEPs. We
identified 23 distinct programs in this dataset, which were
further divided into identity programs (n=19) and activity
programs (n=4) based on the criterion that the former
represents a unique cell type while the latter can occur in
multiple diverse cell types (Supplementary Table S1;
A

B

C D

FIGURE 2 | Subcutaneous panniculitis-like T-cell lymphoma ecosystem at single-cell resolution. Cells from the patient’s subcutaneous lesion tissue were clustered
using the Leiden community detection algorithm to identify groups of cells with similar expression patterns. (A) Single-cell expression of the subcutaneous lesions’
cells in UMAP space (first two dimensions). Cells are color-coded according to the clusters generated by the Leiden algorithm. (B) Heatmap summarizes the mean
expression (normalized and log-transformed) of selected canonical markers in each cluster. The gene expression value has been scaled for visualization. The
covariate bar on the top side indicates the component associated with each gene, and red boxes highlight the prominent expression of genes for the known
subtypes. (C) UMAP plots of malignant markers (MKI67, PRF1, TIA1, GZMB) expression in subcutaneous lesions’ cells. (D) Chromosomal landscape of inferred
large-scale copy number variations (CNVs) distinguishes malignant from non-malignant cells. Amplifications (red) or deletions (blue) were inferred by averaging
expression over 100-gene stretches on the respective chromosomes.
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Supplementary Figure S2A). Most cells had only one GEP,
which represents their identity program. In addition to the 17
primary cell-type clusters initially generated by Scanpy and
refined by the identity GEPs, we also identified epithelial cells,
endothelial cells, and mast cells in this SPTCL-specific ecosystem
(Supplementary Figure S2A). We noticed that the identified
malignant T cells expressed one identity GEP that was
significantly enriched for genes involved in cell killing and T
cells activation (Supplementary Figures S2A, B), including the
chemokines family (i.e., CCL5, CCR5, CXCR3, CXCR6), cytotoxic
proteins (i.e., NKG7, GZMA, GZMB, GZMH, GZMK, GNLY,
PRF1), and immune checkpoint genes (i.e., LAG3, CD27, TIGIT,
HAVCR2, PDCD1, CTLA4) (Supplementary Figure S2C;
Supplementary Table S1). Some malignant T cells also
expressed an activity GEP named Proliferation, which was
strongly enriched for genes associated with cell cycle (e.g.,
Mitotic Nuclear Division; Supplementary Figures S2A, B).
Moreover, parts of malignant T cells expressed an activity GEP
named Act.T, which was also expressed in naïve T cells and NK
cells (Supplementary Figure S2A).
Comparison of Malignant and Normal
T Cells by Expression Profiling
To investigate the difference between malignant and normal T
cells, we paired isolated T cells from the subcutaneous lesion
tissue of the patient with normal T cells from donors’ peripheral
blood, bone marrow, lung tissues, and lymph nodes. We applied
Scanorama to correct the potential batch effects between two
datasets and merged the neighbor sets via the UMAP algorithm
as a combined dataset. Based on the cell-type clusters in SPTCL,
we found that the naïve T cells from the patient overlapped with
normal T cells from donors, while malignant T cells were
obviously separated from them (Supplementary Figure S3).
Using the Leiden clustering algorithm, we identified nine
UMAP clusters presenting the normal versus malignant
classification clearly (Figure 3A), actively supporting the
separation within the UMAP. The graph-like maps of cells
generated by the partition-based graph abstraction (PAGA)
also confirmed these two distinct populations without secure
connections (Figure 3B).

As reported by Gayden et al. (8), germline HAVCR2
mutations altering TIM-3 were significantly overrepresented in
SPTCL pat i en t s , e spec i a l l y w i th hemophagocy t i c
lymphohistiocytosis (HLH). They also observed elevated serum
levels of IFN-g-induced CXCL10, inflammasome-activated
interleukin-18 (IL-18), and soluble CD25 in a HAVCR2
mutant SPTCL patient at the time of active disease, and
increased amounts of tumor necrosis factor-a (TNF- a) and
IL-2 produced in vitro by T lymphoblasts from HAVCR2mutant
patients with SPTCL. Thus, we checked the genotype of
HAVCR2 by examining the whole-exome sequencing (WES)
data of the patient’s SPTCL tissue and did not observe any
coding mutation in the HAVCR2 gene (Supplementary Figure
S4). We also checked the expression of genes (HAVCR2, TNF,
IL2, CXCL10, IL18, and IL2RA/CD25) in our scRNA-seq data for
Frontiers in Oncology | www.frontiersin.org 755
malignant and normal T cells and found regular expression of
HAVCR2 and CXCL10 and low expression of TNF, IL2, IL18, and
IL2RA(CD25) in the SPTCL malignant cells (Supplementary
Figure S5) compared with normal T cells, suggesting the
difference between HAVCR2-wild-type and mutant
SPTCL patients.

It has previously been proposed that regulatory T
lymphocytes (Treg) could play an essential role in SPTCL
pathogenesis, especially in the skin (8, 23). In particular,
Gayden et al. identified a drastic decrease in FOXP3+CD4+ T
cells in TIM-3 mutants compared with TIM-3 wild-type SPTCL
(8). For comparison, we isolated FOXP3+CD4+ T cells in our
SPTCL scRNA-seq data and found that the proportion (21.97%)
of FOXP3+CD4+ T cells in CD4+ T cells in our patient was
similar to that in TIM-3 wild-type SPTCLs and higher than that
in TIM-3 mutants in the reported cohort, consistent with their
finding (Supplementary Figure S6).

Next, we used the conventional SPTCL markers to examine
the separation of normal and malignant cells above. As expected,
we found that the classical SPTCL marker MKI67 was very
specifically observed in malignant cells but mostly not seen in
normal cells, while the markers GZMB and PRF1 were not only
expressed in the tumor T cells but also in part of normal CD8+ T
cells (Supplementary Figure S7). Then we scored each cell by
their gene expression correlation to malignant GEPs, including
the previously identified malignant identity GEP (Int.SPTCL)
and activity GEPs (Proliferation and Act.T). There were
significant differences in malignant and normal T cells scored
with all these GEPs (P< 0.001) (Figure 3C).

Meanwhile, we also paired the isolated T cells from the
subcutaneous lesion tissue with T cells from the peripheral
blood and bone marrow of the patient using the same process.
Interestingly, there were a small amount of CD8+ T cells from
peripheral blood and bone marrow in proximity to malignant T
cells, and PAGA analysis also showed connections between them
(Supplementary Figures S8A, B). Furthermore, we also found
that the malignant T cells and the proximate T cells from
matched peripheral blood and bone marrow were scored
significantly higher than others with GEPs named Int.SPTCL
and Proliferation (Supplementary Figure S9), suggesting that
malignant-like or pre-malignant cells may exist in the circulation
of the patient resulting in malignant recurrence.

To identify potential novel markers and/or therapeutic targets
of SPTCL, we performed differential gene analysis by comparing
the malignant cells to normal T cells. In total, we identified 45
significantly overexpressed genes in the malignant cells as
potential markers for SPTCL (Padj < 0.05 and average fold
change >2). As expected, the top upregulated genes in the
malignant cells were GNLY and the granzyme subfamily (e.g.,
GZMA, GZMK) (Supplementary Figure S10). We further
identified potential novel markers for SPTCL including
CYTOR, CXCL13, VCAM1 , and TIMD4 , which were
specifically differentially expressed in the SPTCL cells as
defined by average fold change > 2 and delta percentage > 90%
in malignant T cells versus normal T cells (Figure 3D).
Moreover, we also examined previously reported SPTCL-
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Single-Cell RNA-seq of SPTCL
related genes (10) and found a group of genes significantly
differentially expressed in the SPTCL cells (i.e., APOBEC3G,
CCL4, CCL5, CXCL10, CXCR3, FASLG, GBP5, IFNG, IKZF3,
KLRD1, PRF1, and TNFRSF9 (Padj < 1 x 10-10; Supplementary
Figure S11). The complete results for differential expression
analysis are included in Supplementary Table S2.

Next, we focused on three of these potential novel markers,
CXCL13, VCAM1, and TIMD4, which are protein-coding genes
and presented no or shallow expression in normal lymphocytes.
Their expression was examined by immunohistochemistry in the
patient’s subcutaneous lesion and additional samples from
patients with panniculitis (PA) (Supplementary Figure S12).
Results showed that PA lesions were negative or weakly positive
for the expression of these markers, while SPTCL lesions
exhibited high numbers of positive cells for all three markers.
Frontiers in Oncology | www.frontiersin.org 856
Single-Cell Expression Patterns of Novel
SPTCL-Specific Immune Subsets
To further characterize immune cells in the tumor environment
of SPTCL, we annotated and dissected macrophages and
fibroblasts based on the expression of genes described in
known canonical markers (Figure 4A). We found that most of
the macrophages were of the M1-type (classically activated
macrophage) and M2-type (a l ternat ive ly act ivated
macrophage) with similar proportions (48.9% vs. 41.1%). The
other two clusters of macrophages were not in polarized
activation states; thus, they may be in M0 resting states.
Intriguingly, we also identified a group of cancer-associated
fibroblasts (CAFs), a type of perpetually activated fibroblasts,
based on the “CAF markers”, suggesting that these cells could
emerge as players in immune regulation.
A B

C

D

FIGURE 3 | Transcriptomic comparison of malignant versus normal CD8+ T cells. (A) UMAP projection of cells from healthy donors and the patient’s subcutaneous
lesion tissue with normal CD8+ T cells outlined in grey and malignant CD8+ T cells in orange. (B) Results of partition-based graph abstraction (PAGA). Each node
represents a cluster, and edges show the connectivity between clusters. The size of nodes indicates the number of cells in each cluster, and the edge thickness
shows the connection strength. (C) Results of GEP-program cell scoring in UMAP space (first two dimensions). (D) Potential novel markers of SPTCL cells with a D
percentage of cells expressed greater than 90% and Padj < 1e-100. CPM, counts per million.
March 2021 | Volume 11 | Article 611580

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Single-Cell RNA-seq of SPTCL
A B

C

D

FIGURE 4 | Characteristics of SPTCL-specific immune subsets. (A) Heatmap summarizing mean expression (normalized and log-transformed) of M1, M2, CAF, and
MYF markers in each cluster (above). Bar plot showing the cell fraction of subsets of macrophages and fibroblasts (below). M1, classically activated macrophage;
M2, alternatively activated macrophage; CAF, cancer-associated fibroblasts; MYF, myofibroblasts. (B) Heatmap depicting the log number of all possible interactions
between the clusters analyzed. (C) Violin plots showing expression of ligands CXCR3, CCL5, TNFRSF1B, and VCAM1 and cognate receptors CXCL9, CCR1, GRN,
and IGTB1 on respective stromal populations. (D) Dot plot depicting selected tumor-immune interactions enriched in the microenvironments.
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Next, we sought to elucidate the interactions of the malignant
T cells with the immune populations by examining the cross-talk
between them. We systematically predicted cell-cell
communication networks based on CellPhoneDB (19), a
manually curated repository of ligands, receptors, and their
interactions integrated with a statistical framework to infer
ce l l -ce l l communicat ion networks from single-ce l l
transcriptomic data. We found that the interactions of
malignant T cells occurred more frequently with macrophages,
fibroblasts, and dendritic cells, compared with naïve T cells, Treg,
NK cells, and B cells (Figures 4B, C). Notably, macrophages and
fibroblasts dominated the cell-cell communication landscape in
this microenvironment, suggesting they might play the primary
role in tumor-immune interactions of SPTCL. There was no
significant difference between M1 and M2 macrophages in
tumor-immune interactions. We identified multiple tumor-
immune interactions, for example between CXCR3, CCL5,
TNFRSF1B, and VCAM1-expressing malignant T cells and
macrophages/fibroblasts positive for CXCL9, CCR1, GRN, and
IGTB1, respectively (Figure 4C). Interestingly, we found that the
recruited macrophages might promote the inflammatory activity
of malignant T cells via suppressing the PDCD1 and CTLA4 axis
(Figure 4D), because the PDCD1(PD-1)-CD274(PD-L1) and
CTL4-CD80/86 interactions can inhibit activation, expansion,
and acquisition of effector functions of CD8+ T cells (24).
DISCUSSION

SPTCL is a rare disease facing significant diagnostic challenges.
The clinical manifestations of SPTCL are complex with only a
few consistent characteristics. Subcutaneous tissue infiltration
and/or infiltration by CD3+CD8+ cells expressing cytotoxic
proteins (GZMB, TIA-1, perforin) is the typical pathological
change of SPTCL (25). However, this change can also occur in
benign panniculitis and lupus erythematosus profundus caused
by autoimmune attacks (26, 27). The patient in this study
experienced multiple subcutaneous mass in 16 months, and the
results of the biopsy have shown that the mass evolved from
benign to malignant. Because no standardized therapeutic
approach has been established for SPTCL, the patient received
two surgeries to remove the tumor without chemotherapy or
radiotherapy. Interestingly, after the final operation, the patient
has been followed up for more than one year and has not suffered
a relapse. Thus, if there are proper approaches to effectively
diagnose the disease and specific markers to distinguish
malignant cells of SPTCL, timely surgical resection could
be an effective therapy.

Here, we used scRNA-seq profiling of the malignant and
normal cells from the SPTCL patient and normal cells from
healthy donors to characterize the molecular events of SPTCL.
To our knowledge, this is the first study exploring gene
expression signatures, summarizing the tumor microenvironment
of SPTCL in single-cell resolution.We identified a unique GEP that
was expressed significantly higher in SPTCL cells than in normal T
cells, which could be a characteristic of SPTCL. We found four
Frontiers in Oncology | www.frontiersin.org 1058
genes (i.e., CYTOR, CXCL13, VCAM1, and TIMD4) explicitly
expressed in malignant T cells, which may be potential novel
markers for SPTCL. We also investigated interplays between
different stromal populations and malignant T cells and found
the leading role of macrophages and fibroblasts (especially CAFs)
in the SPTCL microenvironment, suggesting their contribution to
malignant T cell dysfunction. More specifically, the recruited
macrophages might suppress the PDCD1 and CTLA4 axis to
enhance the inflammatory activity of malignant cells, consistent
with the clinical manifestation of SPTCL.

CYTOR (or Linc00152) is a long non-coding RNA that is
overexpressed in multiple cancer cells, and it can promote cell
proliferation and epithelial-mesenchymal transition (28). Given
its crucial role in the pathogenesis of cancers, CYTOR (average
fold change = 3.40, D percentage =95%) may play a role in
SPTCL development.

CXCL13, initially identified as a B-cell chemoattractant, exerts
essential functions in lymphoid neogenesis and has been widely
implicated in the pathogenesis of several autoimmune diseases
and inflammatory conditions, as well as in lymphoproliferative
disorders (29). This chemokine has been proposed as a marker
for certain lymphomas, such as angioimmunoblastic T-cell
lymphoma (AITL), an aggressive nodal T-cell lymphoma
derived from TFH cells (2, 30). The SPTCL malignant cells
highly expressed CXCL13, suggesting that its role in SPTCL
is intriguing and worth exploring.

Vascular adhesion molecule-1 (VCAM1), a member of the
immunoglobulin family of cell-cell adhesion receptors, is
expressed aberrantly in some tumor cells, such as renal, breast,
or gastric carcinomas (31–33). Clustering of VCAM-1 on the cell
surface, acting through Ezrin, triggers Akt activation and
protects cancer cells from proapoptotic cytokines such as the
TNF-related apoptosis-inducing ligand (TRAIL) (32, 34).
VCAM-1 can tether macrophages to cancer cells via counter-
receptor a4b1-integrins, and we found that macrophages and
fibroblasts in the SPTCL microenvironment highly expressed
ITGA4 and ITGB1, which constitute a4b1-integrins. The
interaction between malignant T cells and immune cells may
possess similar effects like VCAM1-mediated mechanisms in
breast cancer cells (32, 34).

TIMD4, a member of the TIM family of immunoregulatory
proteins, is overexpressed in multiple tumor tissues, which has
been proven to promote tumor cell growth and proliferation
both in vitro and in vivo in lung cancer (35). As reported in
recent studies, TIMD4 is expressed in professional antigen-
presenting cells (APCs), pro-B cells (36), and NKT cells (37)
but not in normal CD8+ T cells. Its role of aberrant expression in
SPTCL cells needs to be explored further in the future.

Single-cell methods allow researchers to characterize the
tumor transcriptome and microenvironment in an
unprecedented resolution. Our study offered a new insight into
the heterogeneity of subcutaneous panniculitis-like T-cell
lymphoma, providing a better understanding of the
transcription characteristics and immune microenvironment of
this rare tumor. This new level of data provided an opportunity
for clinically meaningful advances in SPTCL.
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Background:Malignant rhabdoid tumor of the kidney (MRTK) is a rare type of tumor that
lacks typical clinical manifestations. Herein, we presented clinical data of 2 children with
MRTK. In addition, we used a high-throughput RNA-sequencing (RNA-seq), GO analysis,
and KEGG signaling pathway analysis to examine gene expression differences at the
transcripts level between 2 patients with MRTK and 3 patients with non-tumor diseases
without other symptoms.

Case report: Preoperative B-scan ultrasonography and computed tomography (CT)
examination in 2 cases suggested nephroblastoma. Both patients were treated with radical
nephrectomy. After the operation, MRTK was confirmed by pathological examination. Child 1
and Child 2 then received 7 courses and 12 courses of regular chemotherapy, respectively.
Child 1 was followed up for 2 years, and Child 2 for 3.1 years without showing symptoms.
RNA-seq results showed 2203 differential genes (DEGs) in the kidney tissue of children with
MRTK compared to normal tissue (p <0.01). GO analysis suggested that most DEGs
participate in protein binding. KEGG results showed that the DEGs were mainly involved in
the PI3K-Akt signaling pathway and microRNA-related proteins.

Conclusion: The PI3K-Akt signaling pathway and microRNA-related proteins as targets
have extremely high potential value for the diagnosis and treatment of MRTK.

Keywords: malignant rhabdoid tumor of kidney, RNA-sequencing, KEGG, GO, child preschool, BioSystems
INTRODUCTION

Malignant rhabdoid tumor of the kidney (MRTK), a rare type of malignant rhabdoid tumor (MRT), is
a highly aggressive tumor that occurs in infants and young children. The tumor has a poor prognosis,
and the incidence rate in men is slightly higher than in women (1.5:1) (1). The overall 3-year survival
rate in patients with MRTK ranges from 12% to 38.4%; it is the highest in children aged 24 months or
older and the lowest in those between 0 and 5 months of age (1, 2). In China, a recent study reported
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that within a 5-year follow-up, out of 35 cases, one survived (3). In
addition, in children younger than 6 months, this condition is
often accompanied by distant metastases, including metastases to
the brain (4). Surgery plus postoperative radiotherapy and
chemotherapy is the main approach to treat patients with
MRTK. Yet, so far, there is still no uniform standard for the
treatment of MRTK.

The disease was first reported in 1978 by Beckwith et al. (5)
and Haas et al. (6). MRTK has the same characteristics as all
MRTs. Patients with MRTK have an abnormal expression of the
tumor suppressor gene SMARCB1/INI-1 (7–9). Moreover, the
detection of SMARCB1 gene mutation has been associated with a
worse prognosis (1). At the same time, cytogenetic studies have
also found that most MRTK patients have chromosome 22
monomer deletion or 22q111.2 hSNF/INI1 gene mutation
inactivation. This, in turn, leads to loss of INI-1 protein
expression in the nucleus (10), which is of great significance as
it can be differentiated from renal rhabdomyosarcoma.

MRTK lacks typical clinical manifestations. Most children
develop abdominal masses, hematuria, or abdominal pain as the
first symptoms. The tumor is often misdiagnosed as a Wilms
tumor. B-scan ultrasonography can be used as a preliminary
screening test, but it lacks specificity. Recent studies have found
that CT and magnetic resonance imaging (MRI) can be useful for
detecting early small tumors with subrenal hematoma/effusion
(4, 11). Agrons et al. found that two-thirds of MRTK patients
have dark crescent-shaped areas; the MRTK is unilateral and
single, while Wilms Cell tumors can be bilateral or multiple (12).
Preoperative imaging examination can be performed to
distinguish Wilms tumor from renal blastocytoma. The final
diagnosis needs to be confirmed by SMARCB1 gene detection or
immunohistochemical INI-1 negative.

There are various signs, which indicate that the occurrence
and development of MRTK are closely related to epigenetics (13).
In this study, we used RNA-seq technology to investigate the
transcription level of children with MRTK. The current report on
MRTK mainly focused on the study of related proteins of
traditional hSNF/INI1 and other genes, ignoring other
information at the whole RNA level. The aim of this study was
to screen new possible targets related to the occurrence and
development of MRTK through global detection of RNA level,
which can provide new ideas and theoretical basis for the
prevention, diagnosis, and treatment of MRTK.
MATERIALS AND METHODS

Intraoperative Pathological Sample
Acquisition
Intraoperative pathological tissues from 2 MRTK patients and 3
patients with non-tumor diseases without other symptoms were
collected and analyzed after their family signed the informed
consent. After identification by the pathology department, the
normal tissue area in the intraoperative pathological tissue of
children with non-tumor diseases without other symptoms was
taken as a control. The central area of the tumor taken by MRTK
Frontiers in Oncology | www.frontiersin.org 262
children was used as the pathological sample of MRTK. After
collection, save the sample in the RNA storage solution.

High-Throughput RNA-Sequencing
(RNA-Seq) Analysis
The total RNA was extracted using TRIzol reagent. RNA-Seq was
conducted according to a previously reported method (14).
Briefly, after quality control and purification, the total RNA
from each sample was used to enrich mRNA. The mRNA was
fragmented and reverse-transcribed to cDNA. The cDNA was
then purified, linked with the adaptor, size selected, and PCR
amplified to obtain the cDNA library. After the quality check,
libraries were sequenced through the Illumina platform.

Clean reads were obtained by using the preprocessing tool
Trimmomatic (v0.36) to remove adapters and low-quality reads
from the raw sequencing reads. Clean reads were mapped to
Ensembl GRCh38 reference genome using the alignment
program TOPHAT2. The mapped data were assembled into
transcripts and quantified to obtain a matrix of expression values
in FPKMusing StringTie v1.3.1c. Differentially expressed genes
(DEGs) were screened out according to the logarithmic value of
gene expression fold change (FC) between the PBS-treated cells
and the OxLDL-treated cells. If logFC>1 or <1, and there was a
significant statistical difference, it was judged as aDEGs. The
distribution of the volcanic map of the DEGs was obtained by R
software, and functional annotations were performed using
Ensembl GRCh38 annotation files. Sequencing data have been
uploaded from the GO database (https://www.ncbi.nlm.nih.gov/
GO/query/acc.cgi?acc=GSE167547).

Gene Ontology (GO) Construction
and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Pathway Analysis
To explore the potential interactions between all genes at the
protein level, online retrieval tool GO (https://GO.org/) was
used. The KEGG pathway analysis was performed using online
biotool KEGG Mapper 83.0 (http://www.kegg.jp/kegg/
mapper.html).

Statistical Analysis
The experimental data were analyzed using the R toolkit.
A P-value <0.05 was considered to be statistically significant.
RESULTS

1. Case Description
Review of the Course of 2 Renal
Malignant Rhabdoid Tumors
The study was approved by the Ethics Committee of Kunming
Children’s Hospital.

Case 1
Child 1 was a 1.8-year-old girl who was admitted to the hospital
due to painless naked hematuria that lasted 5 days. The family of
the child reported the presence of dark brown urine that lasted
March 2021 | Volume 11 | Article 659709
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for 5 days. The child had no frequent urination and no
abdominal pain. On November 28, 2018, a urine routine
examination at the first people’s Hospital of Xundian City
indicated increased red blood cells in the urine, after which the
patient was transferred to our hospital. B-scan ultrasonography
suggested the left lower kidney solid mass sonogram
(considering nephroblastoma). Since the onset of hematuria
(November 29, 2018), the patient had a normal stool, a slight
increase in urine, and no significant body weight change.

Blood and fecal routine, biochemistry testing, coagulation
function, and tumor markers were negative, including human
chorionic gonadotropin (HCG), alpha-fetoprotein (AFP), and
carcinoembryonic antigen (CEA). Urine red blood cells were
40355.9/UL, the cortisol (for measuring adrenal function) was
1262 nmol/L, and the adrenocorticotropic hormone was 305.6 pg/
ml. Enhanced CT scan of the head, chest, and abdomen (Figure
1A) suggested a round-soft tissue density in the middle and lower
part of the left kidney, CT about 40 HU, size of approx. 4.4 cm×3.9
cm×4.8 cm with a clear border. The enhancement scan showed
Frontiers in Oncology | www.frontiersin.org 363
mild to moderate uneven enhancement. There was no obvious
abnormality in the head and lungs. The bilateral hip joint and
sacrococcygeal X line were both normal.

Radical resection of the left renal tumor was performed under
general anesthesia on December 7, 2018. The size of the renal
region was about 7.5 cm×5.0 cm×4.5 cm cystic mass. The
boundary between tumor and residual renal tissue was clear.
There were adhesions between the tumor and the ipsilateral
adrenal gland, peritoneum and inferior vena cava, and a varicose
artery’s nutritional tumor tissues in the renal hilum. The
operation was successful, the operation time was 130 min, and
the intraoperative bleeding was 60 ml without blood transfusion.

Under histological examination (Figure 2), the tumor cells
showed patchy diffuse distribution. The tumor cells were round
in shape, short fusiform, with a big nucleus and bubbles.
Eosinophilic vitreous inclusion bodies were found in some
cytoplasm. Nuclear fission and multiple necroses were also
observed. No tumor components were found in 4 lymph nodes
of the ureteric stump, perirenal fat, perirenal, and
A

B

FIGURE 1 | (A) Enhancement of skull, chest, whole abdomen CT plain scan before the operation (December 03, 2018). (B) Enhancement of skull, chest, whole
abdomen CT plain scan after the operation (August 04, 2020).
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retroperitoneal. Immunohistochemistry results were the
following: INI-1(-), CyclinD1(+), CK(+), EMA(+), S-100(+),
Ki-67 hot spot 80%(+), Vimentin(+), Desmin(-), CD10(-),
Myogenin(-), MyoD1(-), TFE3(-). The pathological results were:
(left renal tumor) combined with immunohistochemical results.
Thus, MRTK was confirmed. No tumor components were found
in ureteral stumps, perirenal fat, and lymph nodes. According to
the National Wilms Tumor Study of the American Association for
the Study of Nephroblastoma NWTS Standards, it was considered
as clinical stage II. The child recovered and was discharged 7 days
after the operation. She received further treatment in Shanghai
Fudan Children’s Hospital: carboplatin 16.7”.mg/(kg·d) on Day1
and Day2, etoposide [vp163.3 mg/(kg·d) on Day1-3, and
cyclophosphamide [CTX14.7 mg/(kg·d) on Day1-5” regimen
chemotherapy once a day. She received 7 rounds of
chemotherapy in total. The treatment was completed on June
27, 2019. The most recent follow-up (August 4, 2020) suggested no
metastasis (Figure 1B). At present, 2 years and 1 month after
surgery, the patient continues to be asymptomatic.

Case 2
Child 2 was a 2.1 years old girl who was admitted to the hospital
on November 29, 2017, due to painless naked hematuria that
lasted for more than 10 days. B-scan ultrasonography suggested
left renal mass; thus, nephroblastoma was suspected. The child’s
mental health, diet, sleep, and body weight were normal. No
relevant physical examination and family history were reported.
CT showed a large irregular mixed density (approx. 7.0 cm×8.6
Frontiers in Oncology | www.frontiersin.org 464
cm×8.0 cm) in the left abdomen, which was further suggestive of
nephroblastoma (Figure 3A).

The patient underwent radical resection of the left kidney on
December 6, 2017. The left renal area was enlarged with solid
mass (size:7.0 cm×8.6 cm×8.0 cm). The exposed part was
smooth. The envelope was purplish-red and grayish-white;
varicose veins were seen in the capsule; there was no obvious
normal kidney tissue. Part of the macula adhered to the renal
hilum and peritoneum, and varicose vein nutritional tumor
tissue was visible. Along with the perirenal serosal space, the
renal tumors and the upper ureter were isolated layer by layer
and released the tumor body along this gap. The release included
a total, complete resection of tumor tissue and ureteral stump, as
well as perirenal fascia resection, abdominal para-aortic lymph
node dissection. The operation was successful; intraoperative
bleeding was 30 ml, and blood transfusion of 1U red blood cells
was required. Operation time was 145 min.

Postoperative pathology indicated the following: the tumor
cells were epithelioid, with some dense areas. The cytoplasm
was vacuolated, nesting, and lamellar; dendritic blood
vessels could be seen. No tumor invasion was found in the
lymph nodes. Immunohistochemistry indicated FLI-1(+),
CD99(+), Vimentin(+), CyclinD1(+), WT-1(+), EMA(+),
Bcl2(-), Ki-67(+) 60%, CD56(-), CK(-), CD34(-), Desmin(-),
and SMA(-), which suggested that renal clear cell sarcoma
may not rule out renal cell carcinoma. The pathological
sections were then sent to Beijing Children’s Hospital for re-
examination, which indicated the following: INI-1(-),
A B C

D E F

FIGURE 2 | Pathological findings. (A) EMA (x200); (B) S-100 (x100); (C) INI-1 (x100); (D) Ki-67 (x200); (E) Vim (x40); (F) CK (x100).
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CyclinD1 (+), CK (+), EMA(+), and S-100 (+). The final
diagnosis was MRTK.

The patient received the following treatment: Programme I
“vincristine [VCR0.5mg/(kg·d) on day 1] + cyclophosphamide
[CTX100 mg/(kg·d) on day 1-2] + actinomycin D [Act-D150mg/
(kg· d) on day 1-5] + epirubicin [E-ADM10mg/(kg·d) on day 3-4]”.
Programme II “VCR0.5mg/(kg·d) on day 1] + carboplatin
[Carbopla-tin16.7 mg/(kg·d) on day 2-3] + etoposide [vp16
30 mg/(kg·d) on day 1-5]”Alternate use of the two schemes, once
a day. Chemotherapy began on December 20, 2017. On December
11, 2018, the head, chest, and abdomen were examined by MRI; the
hip X line did not appear abnormal on April 21, 2018 (Figure 3B).
During the most recent follow-up on December 7, 2020, MRI
suggested no metastases of the head, chest, and total abdominal and
pelvic (Figure 3C). Currently, 3 years after surgery, the patient
continues to be asymptomatic.
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2. Effect of the Gene Expression at the
Transcript Level in Patients With MRTK
Differential Gene (DEGs) Screening and Analysis
The PCA analysis results (Figure 4A) showed that the overall
expression of the transcriptome of MRTK pathological tissues was
different compared with normal tissues. A total of 2203 DEGs were
found (p-value <0.01); 1080 were up-regulated genes, and 1123 were
down-regulated genes (Figures 4B, D). Heat map cluster analysis
showed a big difference in gene expression between the normal
tissues and MRTK pathological tissues. The INI1 protein
corresponding gene SMARCB1 showed a significant downward
trend, which is consistent with the pathology report.

GO Function Analysis
GO function analysis (Figures 4E, F) indicated that 5665 genes
were involved in the biological process, 812 genes in cellular
A

B

C

FIGURE 3 | (A) Enhancement of CT plain scan of chest and abdomen before the operation (December 29, 2017). (B) Bilateral hip joint X tablets after the operation
(April 21,2020). (C) MRI scan of the head, chest, abdomen, and pelvis after the operation (December 07, 2020).
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A B

C D

E F

G H

FIGURE 4 | Differential gene screening and analysis. (A) PCA Analysis; (B) Differential Regulation Genes. a: Tumor tissue, B: Normal tissues; (C) Heat map. A1, A2:
Tumor tissue (Child 1 and Child 2), B1, B2, B3: Normal tissues; (D) Volcano Plot. Blur: Down regulation DEGs. Red: Up regulation DEGs; (E, F) GO Analysis,
(G) Statistics of Pathway Enrichment; (H) PI3K-AKT signaling pathway (From: http://www.kegg.jp/kegg/mapper.html).
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components, and 1565 genes in molecular functions. The genes
involved in the protein binding function represented the highest
group (1227 genes).

KEGG Signal Pathway Analysis
KEGG signaling pathway analysis results showed that DEGs
involved in the PI3K-Akt signaling pathway (Figure 4G) were
the most abundant, with 62 (Figure 4H), indicating that the
PI3K-Akt signaling pathway has an important role in the
occurrence and development of MRTK and microRNAs are
also listed in the same position in cancer. The top 20 suggest
that MicroRNA also has an irreplaceable role in the development
of MRTK.
DISCUSSION

We believe that the above two points can be used to identify
Wilms tumor during non-invasive preoperative examination.
In patient 1, the tumor was 4.0 cm×3.5 cm in size. CT showed
that the mass was homogeneous, which was consistent with
the appearance of early small tumor foci. Also, no cyst-solid
alternate dark areas characteristic of Wilms tumor were seen,
which are the two main features found in postoperative
pathological reports of children with renal clear cell
sarcoma. The diagnosis was confirmed after consultation
with the pathology department of Beijing Children ’s
Hospital, thus suggesting that it is difficult to distinguish the
disease only from the CCSK in pathology. Experienced
pathologists need to be consulted to achieve an accurate
diagnosis purpose of symptomatic treatment. In addition,
the most common cause of death due to MRTK is tumor
metastasis. In patients with MRTK, the most common
metastatic sites are the lungs and brain, followed by
abdominal organs such as the liver, sacrum, and hip joints
(1). The two patients’ preoperative CT showed no tumors in
the lungs, brain, and liver. Moreover, X-rays of the hip and
sacrococcyx showed no abnormalities. Considering that
there was no metastasis, the patients were treated with
radical nephrectomy.

Complete tumor resection is considered as the prerequisite
and basis for long-term survival after surgery (15). It has been
reported that the prognosis of children undergoing surgery after
chemotherapy is worse than that of primary surgery (16). Thus,
surgery should be performed as soon as possible after the
discovery of MRTK. As long as the clinical metastasis is not
confirmed, one or more operations should be performed as far as
possible to remove all tumor tissues. If the tumor cannot be
completely removed, high-dose chemotherapy and local gamma
knife treatment can also improve the prognosis (17).
Chemotherapy is also an important part of MRTK treatment.
At present, the alternative chemotherapy regimen, including
vincristine, adriamycin, cyclophosphamide, etoposide, and
ifosfamide have been universally recognized by experts at
home and abroad and have been suggested as a treatment for
MRTK (18–20).
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In this study, the two patients were 1.8 years old and 2.1 years
old. No metastasis was found in the preoperative imaging
examination. Both patients were treated by complete tumor
resection directly. It is worth noting that patient 2 did not
complete the entire chemotherapy. Radiotherapy was not added
during the process, and the patient continues to be asymptomatic.

Standard chemotherapy is effective for children after MRTK.
The aforementioned alternative chemotherapy regimens and doses
can provide references for postoperative treatment of MRTK. Yet, it
remains unclear whether there are individual differences in doses
and whether chemotherapy supplemented with radiotherapy is
effective for the prognosis of children with MRTK.

Compared with the normal tissue parts of children’s kidneys
removed from other non-tumor diseases, RNA-seq analysis
showed that children with MRTK have 2203 differential genes
(DEG); 1080 DEGs were up-regulated, and 1123 DEGs were
down-regulated. Moreover, the GO analysis results showed that
most DEGs were involved in protein binding (up to 1227 genes)
(Figures 4B, D). This result suggests that many proteins
involved in protein binding are included in the development of
MRTK. Many DEGs were also involved in membrane
composition, thus suggesting that cell membrane constituent
proteins may be used as new therapeutic targets when treating
patients with MRTK. These data suggested that the MRTK
pathogenic genes and cancer-causing genes were down-
regulated, which further proved the correctness of the previous
diagnosis of the patient’s condition, and also suggested that our
subsequent research and analysis are true and reliable (Table 1).

Through the analysis of the KEGG signaling pathway, we
found that up to 62 genes were involved in the PI3K-AKT
signaling pathway (Figure 4G), which suggested that the PI3K-
AKT signaling pathway has a vital role in the occurrence and
development of MRTK (Figure 4H). More importantly, this is
the first time that the signal pathway has been involved in
MRTK. Various growth factors/ligands specific to fibroblast
growth factors of different receptor tyrosine kinases (RTKs)
can activate PI3-kinase (21). Growth factors mediate PI3K
activation by stimulating RTK. Akt is the main mediator of the
PI3K pathway. It interacts with PDK1 (phosphoinositide-
dependent kinase 1) to cause Akt phosphorylation at breast
cancer to play a role (22). A number of studies have shown that
the PI3K/Akt pathway in human cancers, especially the
expression of the two important genes PIK3CA and PTEN,
usually significantly changes in human cancers, which have
been found in more than 70% of tumor types (23, 24).

PI3K-Akt has a certain role in cell proliferation, apoptosis,
migration, and other physiological activities. Its activity level is
one of the key factors affecting the physiological activities of
cancer cells. At present, more than 20 PI3K and Akt inhibitors
have entered the stage of clinical trials (25). Further in-depth
studies of the PI3K-Akt signaling pathway mechanism are
necessary to gain a more comprehensive understanding of the
formation and evolution of tumors to treat cancer diseases.

Among the other top 20 high-abundance signal pathways
shown by KEGG, most of them are very common tumor signal
pathways, such as cell cycle, calcium signal pathway, etc. (26–28).
March 2021 | Volume 11 | Article 659709

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


TABLE 1 | MRTK pathogenic genes and cancer-causing genes.
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However, so far, no study has examined the changes in
microRNA in MRTK cells. The KEGG results in this study
suggest that many microRNA-related genes (up to 33) have
changed in MRTK. Although most of them have been reported
in other diseases, these microRNAs have never been deeply
investigated in MRTK. Interestingly, these genes have been
proven to be extremely safe and effective new targets with
considerable potential in other tumors (29–31).

Although this study provides many new diagnostic and
therapeutic targets with greater feasibility, further in-depth
experimental research is still needed. We plan to further
explore the new targets’ feasibility and safety in subsequent
clinical treatment and basic research.

Because children’s MRTK accumulates throughout the whole
kidney, it is difficult to obtain satisfactory paracancerous tissues.
Therefore, it is possible to select the normal tissue part of the
pathological kidney tissue in non-tumor patients with no other
symptoms to replace the adjacent or normal kidney tissue only
through pathology identification.
CONCLUSION

Our data suggest that the PI3K-Akt signaling pathway and
microRNA-related proteins as targets have extremely high
potential value for the diagnosis and treatment of MRTK.
LIMITATIONS AND STRENGTHS

This study has a few limitations. The sample size is too small to
identify key genes in this signaling pathway associated with
MRTK disease.

The research was done through high-throughput RNA
sequence analysis, and the results and information were
complete with high-quality. With the improvement of high-
throughput sequencing, its higher recognition accuracy and
sensitivity greatly reduced the error caused by too few
experimental samples. Therefore, the evaluation of signal
pathways in this study is representative.
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After leukemia, tumors of the brain and spine are the second most common form of
cancer in children. Despite advances in treatment, brain tumors remain a leading cause of
death in pediatric cancer patients and survivors often suffer from life-long consequences
of side effects of therapy. The 5-year survival rates, however, vary widely by tumor type,
ranging from over 90% in more benign tumors to as low as 20% in the most aggressive
forms such as glioblastoma. Even within historically defined tumor types such as
medulloblastoma, molecular analysis identified biologically heterogeneous subgroups
each with different genetic alterations, age of onset and prognosis. Besides molecularly
driven patient stratification to tailor disease risk to therapy intensity, such a diversity
demonstrates the need for more precise and disease-relevant pediatric brain cancer
models for research and drug development. Here we give an overview of currently
available in vitro and in vivo pediatric brain tumor models and discuss the opportunities
that new technologies such as 3D cultures and organoids that can bridge limitations
posed by the simplicity of monolayer cultures and the complexity of in vivo models, bring
to accommodate better precision in drug development for pediatric brain tumors.

Keywords: medulloblastoma, glioma, pediatrics, preclinical models, in vivo models, in vitro models, cancer
INTRODUCTION

Brain tumors are the most common solid tumors and the leading cause of cancer-related death in
children. The incidence and mortality rate of primary brain and other central nervous system tumors
have not changed significantly in recent years, with an average incidence rate of 5.65 per 100,000
population and an average mortality rate of 0.72 per 100,000 population for the 0 to 14 years age
group from 2011 to 2015 in the United States (1). In the past, the diagnosis and classification of brain
tumors had largely relied on histological characteristics derived from hematoxylin and eosin-staining,
and immunohistochemical detection of lineage-associated proteins. However, more and more
evidence shows that histologically similar brain tumors sometimes have distinct molecular features;
they respond differently to the treatment and have various prognosis as well. In addition, some
histologically ambiguous tumors may largely rely on their molecular characterization for their
diagnosis and treatment plan. In 2016, the World Health Organization (WHO) updated classification
of central nervous system tumors by incorporating molecular features into traditional histological
characteristics for more accurate diagnosis, prognosis predictions, and treatments (2–6). With the
overall success rate of new anticancer drugs remaining low (7, 8), we will need to switch from “one
size fits all” treatments to more specific individualized strategies, to increase treatment efficacy, to
reduce complications due to treatment, and to improve the translation rate of anti-cancer drugs. Brain
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tumor models that can mimic tumor initiation and progression,
and predict a tumor’s response to treatments in vivo are
fundamental to achieve this goal. In this review, we provide an
overview of the most common pediatric brain tumors and
currently available well-annotated in vitro and in vivo tumor
models. We also discuss the advantages and limitations of each
model, which need to be considered when choosing an
appropriate tumor model that best suits the experimental purpose.

Common Pediatric Brain Tumors and
Molecular Subgrouping
Gliomas
Glioma is the most common pediatric primary brain tumor,
representing approximately 47% of brain tumor cases in the age
group of 0-19 years. Glioma can originate from all glia cell types
and 75% of these glial tumors are astrocytoma (1). Glioma are
highly heterogeneous tumors, ranging from low-grade glioma
(LGG) to high-grade glioma (HGG) depending on the tumor
malignant status.

LGG is the most common glioma, which is typically
nonmalignant and slow growing. Histologically, LGGs include
pilocytic astrocytoma (PA), pilomyxoid astrocytoma (PMA),
oligoastrocytoma, subependymal giant cell astrocytoma (SEGA),
pleomorphic xanthoastrocytomas (PXA), oligodendroglioma,
ganglioglioma, dysembryoplastic neuroepithelial tumors, etc.,
among which pilocytic astrocytoma is the most common form.
The aberrant Ras-mitogen activated protein kinase (MAPK)
signaling pathway is mainly reported in LGG. The mutations
usually occur at BRAF in this pathway, including the KIAA1549-
BRAF fusion and BRAF V600E mutant, which lead to constitutive
activation of the MAPK pathway. Furthermore, kRAS, FGFR1,
MYB/MYBL1, NTRK2, NF1, TSC1/2 and other genetic alteration
have also been identified in pediatric LGG. Unlike adult LGG,
IDHmutations are almost absent in children (3–6, 9–11). In some
cases, the molecular alteration is associated with a specific tumor
type. For example, KIAA1549- BRAF fusion is mostly found in
pilocytic astrocytoma (PA), while BRAF V600E is frequently
detected in pleomorphic xanthoastrocytoma (PMA) and
gangliogliomas (12).

HGG is relatively uncommon in pediatric glioma, accounting
for around 20% of cases. However, HGGs are diffusely
infiltrating malignant tumors and they are usually aggressive
with an overall very poor prognosis; some patients succumb to
the tumor within one year after diagnosis. Based on distinct
histological and radiological features, HGG is subclassified into
anaplastic astrocytoma, diffuse intrinsic pontine glioma (DIPG)
and glioblastoma multiforme (GBM). Mutations in histone genes
were first discovered in pediatric HGGs, and now serve as a
hallmark of this glioma type. Histone mutations often vary
according to HGG locations. In tumors arising from the
midline and pons, K27M mutations in H3F3A (encoding
histone H3.3) or HIST1H3B/C (encoding histone H3.1) are
very common, which lead to a global decrease of H3 K27
trimethylation by inhibiting polycomb repressive complex 2
(PRC2) activity through sequestration of its catalytic subunit
EZH2; while G34R (or rarely G34V) mutations in H3F3A
(encoding histone H3.3) are mostly reported in hemispheric
Frontiers in Oncology | www.frontiersin.org 273
HGGs. In addition, the RTK/RAS/PI3K pathway (e.g., PDGFRA,
PIK3CA, PIK3R1, or PTEN) and the p53/Rb pathway (e.g.,
TP53, CDKN2A, CDK4/6, CCND1-3) are also dysregulated in
pediatric HGG (3, 4, 9–11, 13–15). Recent studies discovered
some overlap in molecular profiling between LGG and HGG.
BRAF V600E and FGFR1 mutations are found both in LGG and
HGG (9, 10), which suggests that LGG and HGG might share a
similar biological mechanism of tumor pathogenesis.

Ependymal Tumors
Ependymomas represent 5.5% of all pediatric primary brain
tumor cases in the age group of 0 to 14 (1). Ependymomas are
thought to originate from radial glia cells of the ependymal lining
of the ventricles and the central canal. Histologically,
ependymomas are classified into 4 groups: subependymoma,
myxopapillary ependymoma, classic ependymoma, and
anaplastic ependymoma, of which classic and anaplastic
ependymoma are the most common subtypes in children.
Classic ependymoma is further subclassified into 3 subtypes:
papillary, clear cell, and tanycytic ependymoma based on their
histological features (4, 5).

The molecular characteristics of ependymoma is usually
associated with its location. Over 90% of pediatric
ependymomas arise in the infratentorial and supratentorial
regions. The infratentorial posterior fossa (PF) ependymomas
are generally subclassified into Group A (PF-EPN-A) and Group
B (PF-EPN-B) based on their DNA methylation profiling. PF-
EPN-A tumors are hypermethylated, and mostly found in infants
and young children, who have a poorer outcome compared to
those with PF-EPN-B tumors, which are typically seen in
adolescents and adults. Supratentorial (ST) ependymomas in
children have two major subgroups: RELA fusion-positive (ST-
EPN-RELA) ependymoma and YAP1 fusion-positive (ST-EPN-
YAP1) ependymoma. ST-EPN-RELA usually harbors the fusion
protein of C11orf95 and RELA, which constitutively activates the
NF-kB pathway by enriching a RELA-encoded transcription
factor p65. In ST-EPN-YAP1 ependymoma, transcriptional
coactivator YAP1 fuses with other genes such as MAMLD1
and FAM118B and can upregulate Notch signaling. Compared
to ST-EPN-YAP1, ST-EPN-RELA is more frequently observed in
children and has worse prognosis. The major treatment plan for
ependymoma is surgical resection plus adjuvant radiological
therapies. Benefits of chemotherapy have not been reported,
yet (3–6, 16–18).

Medulloblastoma
Medulloblastoma is the most common pediatric embryonal tumor
originating from precursor cells in the cerebellum or dorsal
brainstem. Like other embryonal tumors, medulloblastoma is
highly proliferative and predisposed to metastasis. Histologically,
medulloblastoma is classified into four different types: classic,
desmoplastic/nodular, extensive nodularity and large cell/
anaplastic. Medulloblastoma is one of the most heterogeneous
brain tumors and currently has the best characterized molecular
features. There are four distinct subgroups: wingless/integrated
(WNT), sonic hedgehog (SHH), Group 3, and Group 4, which
have different genetic alterations, phenotypes and prognostics.
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The WNT subgroup accounts for around 10% of
medulloblastoma; it mostly occurs in older children. The most
common mutation in this subgroup is in the CTNNB1 gene,
which encodes b-catenin, a major player in cell cycle control and
embryogenesis. The overexpression of nuclear b-catenin is often
used as a diagnostic indicator in this subgroup. Monosomy
chromosome 6 is another hallmark of the WNT subgroup,
occurring in ~80-85% of patients, usually in conjunction with
CTNNB1 mutations. DDX3X, SMARCA4, and TP53 mutations
also have been reported in WNT-activated medulloblastomas
(3–6, 19).

The SHH subgroup represents approximately 30% of
medulloblastoma. SHH-activated medulloblastoma is highly
heterogeneous and many key molecules in the SHH signaling
pathway such as SUFU, smoothened (SMO), PTCH1, GLI1 and
GLI2 have been dysregulated in this subgroup. Besides those,
other genetic aberrations, like MYCN amplification or TP53
mutation, are also involved in SHH-activated medulloblastoma
formation (19, 20). The outcome varies in SHH-activated
medulloblastoma and although metastasis is not common, if a
patient has a metastatic tumor, the outcome is usually worse.
Moreover, patients with TP53 mutations or MYCN amplification
usually have a poorer prognosis. The ongoing therapies using
small molecule inhibitors target almost all affected molecules in
the SHH pathway (3–6, 13, 19).

Group 3 composes around 25% of medulloblastoma. It is the
most aggressive form and metastasis is very common in this
subgroup. Unlike WNT- and SHH-activated medulloblastoma,
the Group 3 tumors are less defined; some studies showed MYC
amplification leading to tumor formation in this subgroup. Other
possible pathways, such as TNFb, have been found in around 20%
of Group 3medulloblastoma. The prognosis is overall poor for this
subgroup, especially for patients with MYC amplification (4–6).

Group 4 is the most prevalent subgroup, comprising
approximately 35% of medulloblastoma. Like Group 3, it has
not been biologically characterized. The loss of chromosome 8,
11 and 17p or gain of chromosome 7 and 17q have been
identified in this subgroup. In addition, amplification of CDK6,
MYCN and SNCAP1 as well as aberrant ERBB4-SRC signaling
and nuclear factor kappa B (NF-kB) have also been observed in
Group 4 medulloblastoma (3–6, 19, 21, 22).

In Vivo Brain Tumor Models
Most animals rarely develop spontaneous brain tumors (23) and
they can be used to generate experimental models for brain
tumor studies (24). A good animal model should have high
inc idence ra te , can recap i tu la t e or ig ina l tumor ’ s
histopathological and molecular features, and can manifest the
human response to drug treatment. Numerous animal brain
tumor models have been developed so far. These models can be
used to investigate biological mechanisms of brain tumors and
their microenvironment and for preclinical testing of novel,
promising therapeutic regimens. To date, most animal models
are generated with rodents, and in this review we will focus on rat
and mouse models of brain tumors and discuss zebrafish brain
tumor models. There are three major methods to generate
animal models in brain tumor research: carcinogen induced
Frontiers in Oncology | www.frontiersin.org 374
animal models, xenograft animal models and genetically
engineered animal models (23–26).

Carcinogen-Induced Brain Tumor Models
Rats are widely used when generating a carcinogen-induced brain
tumor model, since the tumor induction in rat strains is much
more effective than in mice (23). The most common carcinogens
used to generate animal brain tumors are chemical carcinogens
and viruses. N-nitrosourea and its derivatives have been reported
to induce most common gliomas in rats, including astrocytoma,
oligodendroglioma, and ependymal tumors. The embryos are
much more susceptible to the chemical carcinogens, and
transplacental injection is often used to administer the chemical
compounds to pregnant animals (24). Inject ion of
ethylnitrosourea to pregnant rats at gestational day 20 induced
brain tumors in all of 25 pups born (27). Chemical carcinogens
can also be applied to rodents through oral, intravenous or local
exposure after they are born, but repeated administration might be
necessary to increase induction efficacy, especially when working
with older animals (23–26). The cell lines established from these
chemical induced glioma models include C6, 9L, T9, F98, RG2,
BT4C and CNS-1 and have been widely used in brain tumor
studies (28–31). In addition to chemical carcinogens, oncogenic
viruses may also be used to induce brain tumors. Both RNA
viruses, such as Rous sarcoma virus-1 (RSV-1) and DNA viruses,
such as adenovirus can induce brain tumors. Intracerebral
injection of RSV caused malignant brain tumors in newborn
pups (32). Different injection sites caused distinct tumor types
(33). It has also been reported that injection of human adenovirus
12 virus (AD12) into mouse brain induced medulloblastoma or
glioblastoma (34). These chemical carcinogens and oncogenic
viruses are prevalent in the human environment; thus, this
model can imitate natural tumorigenesis especially when
animals are exposed in early development. The induced tumors
can be continuously passed in animals and retain relatively stable
biological characteristics. However, carcinogen induced tumor
models lack consistency in tumor types, locations and biological
characteristics. Moreover, the induced brain tumors are
histologically and biologically different from human tumors.

Xenograft Models of Human Brain Tumors
Xenograft models are usually made by transplanting established
cancer cell lines or brain tumor tissues derived from patients
(patient-derived xenograft, PDX) or animal models into host
animals. The established cancer cell lines grow very fast in vitro
with well-defined biological characteristics, which makes them
applicable to generate xenograft models. The cell lines generated
from carcinogen-induced rodent tumors or from transgenic mice
can be cultured and transplanted into syngeneic hosts with
competent immune system (35). However, the cancer cell lines
are a homogenous population lacking tumor heterogeneity and
the induced tumors are rarely infiltrative. Moreover, cancer cell
lines will gradually lose the original tumor phenotypes and
genetic features during in vitro culture. Patient tissues can also
be dissociated and cultured in neurobasal serum-free medium.
This selects highly tumorigenic subpopulations with stem cell-
like characteristics that can be grown as neurospheres before
April 2021 | Volume 11 | Article 620831
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implantation into host mice (23, 24, 35, 36). In addition, the
tumor tissues derived from patients can be directly transplanted
into recipient animals without in vitro culture. Engraftments
grown in these animals include tumor tissues as well as their
surrounding stroma in early passage. They retain histological
and molecular characteristic of original tumors, interaction
between tumor and host, and a tumor’s responses to drug
treatment. With this they are a more representative and
reliable in vivo brain tumor model than those generated from
cultured cells (23, 25).

In most cases to generate PDX, host animals are
immunodeficient mice. The early xenografts were transplanted
into nude mice, which are the first generation of immunodeficient
mice. Nude mice not only lack body fur but also have no thymus.
Thus, these mice have a defective adaptive immune response as
they do not have T lymphocytes. Nevertheless, they still have
functional B and NK cells, and an intact innate immune response
causes a low engraftment rate in these mice. Later, the severe
combined immunodeficient (SCID) mice that lack both functional
T and B lymphocytes were generated. The engraftment efficacy has
improved on SCID mice, but these mice still have remnant NK
cells, hindering the engraftment rate. To eliminate the effect of NK
cells, SCID mice were crossbred with Beige mice to establish
SCID/Beige mice that have severely impaired NK cells and
macrophages, and no mature T and B lymphocytes. SCID/Beige
mice display a better engraftment rate, leading to more feasible
PDXmodels. Since then, more immunodeficient mice strains have
been established to improve engraftment and increase the success
rate of PDX, such as non-obese diabetic (NOD)/SCIDmice and its
derivative mice (NOG, NSG and NOJ), and BALB/c background
immunocompromised mice (BRG and BRJ) (37, 38). Different
immunocompromised mouse strains have various sensitivity to
chemotherapy or radiation, which needs to be considered when
choosing an appropriate animal model. For example, BALB/c mice
are very sensitive to radiation and SCID mice are sensitive to g-
irradiation and thus are not useful for radiotherapy related studies
(39). Immunodeficient mice can also be modified by receiving
human bone marrow to reconstitute a human immune response.
These humanized mice provide an opportunity to even more
closely recapitulate human brain tumors, to study the effect of the
immune system on brain tumor pathogenesis, and to evaluate
immunotherapies (24, 38, 39).

Xenografts can be administrated in two different ways:
heterotopic xenograft and orthotopic xenograft. Heterotopic
xenografts, which most typically are achieved through
subcutaneous injection, are a popular method in cancer
research. They are simple and convenient to observe and
monitor tumors and to evaluate drug efficacies by measuring
the tumor volume. However, the microenvironment of tumors
induced in this way is different from the original tumor and it
cannot faithfully recapitulate the original tumor initiation and
progression. In addition, there is no blood brain barrier around
these subcutaneous tumors, so this model cannot accurately
reflect the anti-cancer drug efficacies. Orthotopic xenografts
usually apply tumor cells/or tissues to the location where the
original tumor is found in patients. Orthotopic xenografts can
Frontiers in Oncology | www.frontiersin.org 475
better mimic the original tumor pathogenesis, retain histological
and molecular characteristics of original tumors as well as tumor
host interactions (23, 25, 38, 39). However, even orthotopic
xenografts may not completely maintain the histological
characteristics of human tumors. Some intracranial
glioblastoma xenograft models lack necrotic features and fail to
show endothelial proliferation (40). To date, most available
pediatric brain tumor PDX models represent glioblastoma,
diffuse midline glioma, ependymoma, and medulloblastoma.
The establishment of PDX models for less aggressive brain
tumors, such as pilocytic astrocytoma, has been less successful
due to a very low tumor engraftment rate (39).

The development of pediatric brain tumor PDX models
emerged over thirty years ago (24, 38). In recent years, with the
raised interest in some pediatric brain tumor types and increased
availability of tumor tissues, more and more PDX models have
been generated. In 2018, a brain tumor biology study sponsored by
the Children’s Oncology Group led to generation of 30 orthotopic
pediatric brain tumor PDX models, including medulloblastoma,
high grade glioma and ependymoma. These PDX models are
valuable tools to investigate subtype specific pediatric brain
tumors, since they preserve the original tumors’ histological and
molecular features and remain relatively stable when being
passaged in mice (41). The scientists from St. Jude Children’s
Research Hospital also successfully generated 37 novel orthotopic
PDX models derived from pediatric brain tumor patients
including 22 medulloblastomas and 5 ependymomas, which also
maintain original tumors’ histological features and are genetically
faithful to corresponding patient tumors (42). The Mayo Clinic
Brain Tumor Patient-Derived Xenograft (PDX)National Resource
has also established a repository of glioblastoma PDXmodels with
highly characterized molecular subtype and phenotype. Another
study collected DIPG samples from patient autopsies and biopsies
at 8 different international institutions and generated 22 in vivo
xenograft models, covering the main molecular subtypes including
H3.3 K27M and H3.1 K27M mutations (43, 44).

With the advance in gene editing technology, neural stem cells
(NSC) can be genetically engineered to acquire tumorigenic capability
and used to generate xenograft models (35). Transplantation of NSCs
that overexpressedmyc alone, or with oncogene gfi1 or gfi1b into the
cerebella of immunocompromised mice induced Group 3
medulloblastoma (45–48). Funato et al. successfully transformed
neural progenitor cells derived human embryonic stem cells with
a constitutively active form of the PDGFRA, a small hairpin RNA
(shRNA) against p53 and H3.3K27M to model pediatric DIPG
with H3.3K27M mutation (49). In addition, NSCs co-expressing
PDGFRB and H3.3K27M were injected into the pons of SCID
mice and induced tumors similar to human H3K27MDIPGs (50).
The first mouse model of ependymoma was generated by
implanting embryonic cerebral Ink4a/Arf−/− NSCs
overexpressing Ephb2 into the cerebrum of immunocompromised
mice (51). More recently, induced pluripotent stem (iPS) cells are also
being used to generate brain tumor xenograft models. iPS-derived
neural stem cells generated from Gorlin syndrome patients, who are
carrying a germline mutation in PTCH1 and are predisposed to
medulloblastoma, were transplanted into mouse cerebellum. These
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cells formed tumors that mimic SHH-driven medulloblastoma
(52, 53).

Xenograft models are a valuable tool in cancer research and
drug screening. The National Cancer Institute recently decided
to use PDX models to replace a panel of 60 human cancer cell
lines (NCI-60) as a model for drug screening (54). However,
there are some limitations of xenograft models. First, the
generation of some xenograft models is challenging, but the
success rate is increased with more aggressive and highly
malignant tumors. Second, xenografts usually require many
cells at a time, which is not naturally occurring in patients.
Third, the transplantation procedure can disrupt the blood brain
barrier, which is a key factor when evaluating drug efficacy.
Fourth, the host animal for xenografts are usually
immunodeficient mice, which cannot be used to discover the
contribution of immune system in tumor initiation and
development. Fifth, the engrafted human tumor stroma
structure will be lost over time, replaced by the host mice’s
own microenvironment. Sixth, genetic and phenotypic drifts
gradually occur as the xenograft tumors are propagated
through mice. Last, maintenance of PDX models is costly and
labor intensive (22–25, 35, 38, 39, 55).

Mouse Models With Genetic Engineering of
Brain Tumors
In recent years, with rapid advances in gene editing techniques,
genetically engineered mouse models (GEMMs) have gained
popularity in brain tumor research. Unlike PDXs, GEMMs can
recapitulate tumor initiation and development in animals with
native immune system and intact blood brain barrier and
undisrupted microenvironment. This makes GEMMs more
attractive as models for tumor mechanism and drug discovery
studies (23, 24, 26, 56). Moreover, other genetically engineered
animal models, such as mice expressing enhanced green
fluorescent protein (EGFP) or humanized mice carrying
human functional biological system are valuable tools in brain
tumor research, especially in studies about tumor host
interactions and human-specific pathogenesis and therapies
(57, 58).

GEMMs for cancer research can be generated by introduction
of oncogenes or disruption of tumor suppressor genes in
embryonic stem (ES) cells or zygotes (25) and include both
transgenic mice and knockout mice. In addition to oncogenes
and tumor suppressor genes, key molecules in tumor signaling
pathways can also be utilized to develop GEMMs (Table 1). The
conventional knockout models alter target gene expression in all
tissues throughout the whole mouse. These constitutive changes
often lead to more severe phenotypes with contribution by the
brain tumor itself as well as other conditions. This makes data
analysis and interpretation more difficult and less accurate. In
some cases, this global knockout can even be lethal in animals.
To overcome this issue, conditional or inducible conditional
knockout has been developed, in which the target gene can be
edited in a tissue specific and/or time-dependent way. The most
common tool to make conditional knockout mice is the Cre-loxP
system. Cre is a recombinase and its expression can be driven
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under the control of a tissue-specific promoter. When Cre is
induced, it can recognize the loxP sites and catalyze the
recombination, so the target gene flanked with two loxP sites
in the same orientation will be excised. To achieve precise
temporal specificity in the Cre-loxP system, Cre can be fused
with a hormone responsive element, and induced by the
exogenous inducers tamoxifen or tetracycline (35, 106).

The generation of germline GEMMs usually needs an
extensive breeding scheme, which is time-consuming and
expensive. Thus, virus mediated gene transfer is introduced to
deliver Cre recombinase to somatic cells to establish non-
germline GEMMs, which retains the ability of spatial and
temporal gene regulation, at the same time also reduces the cost
and time by bypassing complicated breeding (25). Replication-
competent avian sarcoma-leukosis virus long terminal repeat with
splice acceptor/tumor virus A (RCAS/TVA) is a commonly used
system. RCAS is a retrovirus that enters specific cells via binding
to its specific cell surface receptor TVA. TVA is only expressed in
avian cells, but mammalian cells can gain the expression through
genetic engineering (107). RACS/TVA based GEMMs have some
advantages over Cre-loxP based models. The virus transduction
rate is quite low, so only a small fraction of cells can acquire the
expression of target genes. This makes the model close to natural
tumorigenesis, since studies have shown that only small amounts
of cancer stem cells are key players in tumor initiation (35).
Moreover, genetically-engineered mammalian cells can get
multiple RACS infection simultaneously or sequentially, which
makes this model suitable to study the effect of multiple genes on
tumorigenesis (107).

Recently, short palindromic clustered regularly interspaced
repeats/CRISPR associated protein 9 (CRISPR/Cas9) technology
has become a powerful tool to generate GEMMs. The CRISPR/
Cas9 system is a groundbreaking gene editing technique; it
consists of two necessary components: single strand guide
RNA, which can recognize the target genomic DNA sequence,
and endonuclease cas9, which can break the double-stranded
DNA at the target sequence site. Then random or targeted gene
editing can be achieved by DNA repair through error-prone
non-homologous end joining (NHEJ) and high-fidelity
homology directed repair (HDR) pathways. CRISPR/Cas9 can
efficiently introduce gene modification on virtually any genetic
background, both in germline and somatic cells. It turns
conventionally tedious and expensive genetic engineering into
a simple, fast and affordable procedure and dramatically
broadens the application of GEMMs in tumor research (35, 108).

In 2019, MADR (mosaic analysis by dual recombinase-
mediated cassette exchange) was introduced as a simpler,
higher-throughput method to generate stable, defined copy
number somatic transgenic animals. MADR was designed to
overcome limitations of some of the previously described
methods to generate mouse models (98). This includes the
limited payloads and possible immune reactions when using
viruses, the unpredictable genomic integration patterns,
epigenetic transgenic silencing, transgene copy number
variability, and overexpression artifacts such as cytotoxicity
and transcriptional squelching when using viruses or
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TABLE 1 | The common GEMMs of pediatric brain tumors.

Tumor type Molecular subtypes Mouse model name References

Medulloblastoma WNT Blbp-Cre+/−: Ctnnb1+/lox(ex3); Tp53flx/flx (59)
Blbp-Cre+/−; Ctnnb1+/lox(ex3); Tp53+/flx; Pik3caloxE545K/loxE545K (60)

SHH Ptch1+/- (61)
Ptch1+/−; Math1-Cre (62)
Ptch1+/−; hGFAP-Cre (62)
Ptch1+/−; Math1-CreER (63)
Ptc1+/−; p53−/− (64)
Ptc1+/-; Ink4c-/- (65)
Ptc1+/−; Kip1−/− (66)
Ptch1+/−; Hic1+/− (67)
Ptch1+/-; Ptch2-/- (68)
NeuroD2-SmoA1 (W539L) (69)
Smo/smo (homozygous smoA1) (70)
NeuroD2-SmoA2 (S537N) (71)
CAGGS-CreER; R26-SmoM2 (72)
p53-/-; Sufu+/- (73)
Trp53−/−; PTEN−/− (74)
Trp53−/−; Parp−/− (75)
Nestin-tv-a mice infected with RCAS-Shh + N-Myc (76)
Nestin-tv-a mice infected with RCAS-Shh + N-Myc (T50A) (76)
Nestin-tv-a mice infected with RCAS-Shh + Bcl2 (77)

Group3 Gtl1-tTA : TRE-MYCN/luciferase (GTML) (78)
GTML; Trp53-/- (79)
Mll4-/-; Nestin-Cre (80)
Nestin-tv-a; Trp53-/- mice infected with RCAS-Myc (81)
Nestin-tv-a mice infected with RCAS-Myc + Bcl2 (81)
Co-electroporation of Myc and trp53DN into embryonic cerebellar progenitor cells (82)

Group4 Co-electroporation of SRC-CA and DNp53 into E13.5 developing cerebella (83)
Gliomas Nf1+/-; p53+/- (84)

p53−/−;NF1flox/flox;hGFAP-cre+ (85)
cisp53+/−;NF1+/flox;hGFAP-cre+ (85)
cisp53+/−;NF1+/flox; Ptenf/+;hGFAP-cre+ (86)
TgGFAPT121 (87)
GFAP-V12Ha-ras (88)
GFAP-V12Ha-ras;GFAP-EGFRvIII (89)
GFAP-V12Ha-ras;Ptenf/f; hGFAP-Cre (90)
S100b-v-erbB (91)
S100b-v-erbB; Ink4a/Arf-/- (91)
S100b-v-erbB; p53 +/- (91)
Nestin-tv-a mice infected with RCAS K-ras and Akt (92)
Nestin-tv-a; PtenloxP/loxP mice infected with RCAS KRAS and RCAS cre (93)
Nestin-tv-a mice infected with RCAS–PDGF-B (94)
GFAP-tv-a mice infected with RCAS–PDGF-B (94)
Nestin-tv- a mice infected with RCAS-PDGFB (95)
Nestin-tv-a; Ink4a-arf−/− mice infected with RCAS-PDGFB (95)
Nestin-tv-a; p53fl/fl mice infected with RCAS-PDGF-B and RCAS-Cre (96)
GFAP tv-a; p53fl/fl mice infected with RCAS-PDGFB + RCAS Cre (97)
Nestin tv-a; p53fl/fl mice infected with RCAS-PDGFB+RCAS-Cre (97)
Pdgfra (D842V); Trp53 (R270H); H3f3a (G34R) (MDRA mice) (98)
Pdgfra (D842V); Trp53 (R270H); H3f3a (K27M) (MDRA mice) (98)
Erbb2-V664E; PiggyBac transposon (99)
Hras-G12V; PiggyBac transposon (99)
Kras-G12V; PiggyBac transposon (99)
Pdgfra-D842V; PiggyBac transposon (99)
PBCAG-Ngn2/PBCAG-HRasV12/Akt; in utero Piggy Bac transposon in different cell lineages * (100)
PBCAG-NeuroD1/PBCAG-HRasV12/Akt; in utero Piggy Bac transposon in different cell lineages * (100)
PTEN; NF1; P53 PiggyBac transposon-CRISPR/Cas9* (101)

Ependymoma ST-EPN-RELA Nestin-tv- a mice infected with RCAS-RELAFUS1 (102)
ST-EPN-RELA GFAP-tv- a mice infected with RCAS-RELAFUS1 (102)
ST-EPN-RELA BLBP-tv- a mice infected with RCAS-RELAFUS1 (102)
ST-EPN-YAP1 YAP1-MAMLD1 (103)
ST-EPN-YAP1 LATS1f/f LATs2f/f: NEXCre/+ (104, 105)
ST-EPN-YAP1 nlsYAP5SA/+: NEXCre/+ (104, 105)
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transposons, or the variability and unintended off-target
genomic alterations of CRISPR/Cas9 systems (98).

To date, the majority of pediatric brain tumor GEMMs are
SHH-activated medulloblastoma (Table 1), which are generated
by modifying SHH signaling genes, such as PTCH, SMO, or
SUFU (22, 24). The first mouse model of medulloblastoma was
established by disrupting ptch1 (61). Thereafter, the combination
of a ptch mutation with inactivation of tumor suppressors,
including TP53 or cyclin D-dependent kinase inhibitor
p18Ink4c, was used to generate different SHH driven
medulloblastoma models with shorter latency and higher
penetrance (22, 55, 109). SHH medulloblastoma models were
also developed by overexpressing Shh, alone or in combination
with mycn or bcl2 with the RACS-TVA system (76, 77). Most
WNT activated medulloblastoma models were generated by
targeting the gene ctnnb1 in progenitor cells of the dorsal
brainstem. However, ctnnb1 aberration alone was not sufficient
to form medulloblastoma and the combination with TP53
mutation was needed to drive tumor initiation (59). Co-
occurrence of pik3ca mutation significantly accelerated the
formation of WNT medulloblastoma and dramatically
increased tumor penetrance in mice (60). Most GEMMs of
Group 3 medulloblastoma were developed by targeting myc.
Newborn mice with myc overexpression in the cerebellum
through the RCAS/TVA system induced Group 3
medulloblastoma, but tumor formation required tp53 loss or
bcl-2 overexpression (81). Conditional enforced co-expression
of myc and a dominant-negative form of Trp53 (Trp53DN) in
embryonic cerebellar progenitor cells by in utero electroporation
also induced Group 3 medulloblastoma in mice (82). The first
mouse model of Group 4 medulloblastoma was recently
developed by overexpression of an activated SRC combined
with p53 inactivation in the developing cerebellum (83). It is
worthy of note that in some animal models induced tumors
simultaneously possess multiple molecular characteristics. For
example, the GTML (Glt1-tTA/TRE-MYCN-Luc) model in
which MYCN aberration is driven by the glutamate transporter
1 (Glt1) promoter expressed in hindbrain progenitors develops
tumors that closely resemble Group 3, but also shows the features
of WNT, SHH, and Group 4 medulloblastoma (24).

Various medulloblastoma mouse models have been used to
dissect mechanisms, including those influenced by the tumor
microenvironment, that regulate the progression from
precancerous lesions to medulloblastoma tumors (110). In
general, tumors not only consist of the heterogenous tumor
cell population but also of the extracellular matrix (ECM)
surrounding the cells, resident and infiltrating cells such as
tumor-associated fibroblasts, endothelial cells, pericytes,
adipocytes, and immune cells including lymphocytes and
macrophages as well as soluble factors, including cytokines,
chemokines, growth factors, matrix remodeling enzymes and
inflammatory enzymes (111, 112). The tumor microenvironment
is known to contribute to tumor progression, metastasis
formation and therapeutic response (113–122). In brain
tumors, macrophages are the most abundant type of immune
cells and are particularly high in Shh-driven medulloblastoma.
Frontiers in Oncology | www.frontiersin.org 778
In humans, decreased macrophage numbers are correlated with
significant poorer outcome and indeed, a recent study in
NeuroD2:SmoA1 mice and derivative mouse lines was able to
demonstrate that tumor-associated macrophages have properties
tha t k i l l tumor ce l l s (123) . The NeuroD2 :SmoA1
medulloblastoma model was also used to show that blocking
TGF-b signaling promoted memory T cell development thereby
conferring antitumor immunity (124) and in Atoh1-Cre;Ptch1fl/fl

mice, tumor astrocyte-derived Shh induced the proliferation of
medulloblastoma tumor cells (125). Cancer stem cells reside in
specialized, anatomically distinct niches within the tumor
microenvironment (126) and medulloblastoma stem cells
(Nestin+, Prominin+) are closely associated with capillaries in
the perivascular niche. Using mice infected with RCAS-Shh
RCAS-SHH in combination with RCAS-N-myc-T50A or
RCAS-AKT-Myr D11–60 of Ntv-a wild-type p53 and Ntv-a
p53-null background, Hambardzumyan et al. showed that
similar to human medulloblastomas, nestin-expressing
perivascular stem cells survive radiation, activate PI3K/Akt
signaling, undergo PTEN/p53-dependent cell cycle arrest and
shortly thereafter re-enter the cell cycle (127). Medulloblastoma
mouse models have also been used to elucidate pathways
involved in tumor angiogenesis, in medulloblastoma
metastasis, and in cell senescence and reprogramming (110).

Most mouse models of glioma are generated by altering key
signaling pathways disrupted in human gliomas, including Ras,
EGFR, Akt, Rb, Pten, Nf1 and platelet-derived growth factor
(PDGF) (Table 1). GFAP-V12Ha-ras mice were generated by
overexpressing oncogenic V12Ha-ras in astrocytes, and 95% of
these mice died from low- and high-grade astrocytoma within 2-
6 months (88). Further expressing a mutant EGFRVIII or
inactivating PTEN in GFAP-V12Ha-ras mice demonstrated
earlier tumor onset, higher tumor grade and a dramatic
reduction in survival (89, 90). Introduction of activated Ras
(KRas) into neural progenitors with the RCAS/TVA system,
combined with activated Akt or PTEN loss induced high-grade
gliomas in mice that resembled human GBMs (92, 93). Further
deleting ink4a/arf increased tumor incidence and grades in these
mice (128). Silencing of Bcl6 in neuronal precursor cells
suppressed, but did not abolish, the formation of tumors in a
somatic KrasG12V-driven glioma mouse model (99, 129).
Transgenic S100b-v-erbB mice in which a transforming allele
of EGFR, v-erbB, is expressed under the control of murine S100b
promotor developed low-grade oligodendroglioma, and further
deleting ink4a/arf or p53 increased tumor grade and penetrance
(91). An Nf1+/-; p53+/- mouse model shows a range of
astrocytoma stages, from low-grade astrocytoma to
glioblastoma multiforme (84). Conditionally deleting NF1 in
glial progenitors and astrocytes of p53 null mice dramatically
increased the penetrance of induced astrocytoma and the
incidence of non-CNS neoplasms (85). Further loss of Pten in
glial progenitors and astrocytes of this mouse model significantly
accelerated tumor growth and animal mortality (86).
TgGFAPT121 mice generated by a truncated SV40 T antigen
(T121) to inactivate the Rb pathway in astrocytes develop high
grade astrocytoma and die perinatally (87). PDGF B-chain
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(PDGF-B) is another common target used to generate glioma
models. PDGF-B delivered to nestin-positive neural progenitors
or GFAP positive astrocytes induced low grade glioma in mice.
Loss of Ink4a–Arf dramatically shortened tumor latency and
enhanced malignancy of gliomas. p53 loss can also enhance
PDGF-B driven glioma in mouse models (94–96). A more recent
DIPG model was developed by overexpressing PDGF-B and
H3.3K27M together with p53 loss in nestin-positive neural
progenitors. The induced tumors in the brainstem of these
mice demonstrated DIPG-like features that recapitulate the
histopathological and molecular characteristic of human DIPG
(96, 130). The MADR method was used to generate pediatric
glioma mice modeling simultaneous H3f3a, Pdgfra, and Trp53
mutations with two missense mutation variants G34R or K27M
that recapitulated human tumor heterogeneity and
developmental hierarchy (98). Other recent pediatric brain
tumor models have also been successful in capturing tumor
heterogeneity and spatiotemporal characteristics of pediatric
gliomas. PiggyBac transposon systems not only can circumvent
the loss or inactivation of episomal plasmids delivered to glial
cells via in utero electroporation but also allow for expression of
multiple oncogenes in selected cell populations at different times
in brain development (131). Using in utero electroporation of
piggyBac transposons, Chen and colleagues generated rat tumor
models by directing HRasV12 and AKT to different cell
populations. Using the same transgene under the control of
different promoters resulted in tumors ranging from
glioblastoma multiforme to anaplastic oligoastrocytomas and
atypical teratoid/rhabdoid-like tumors that could be
distinguished at the cellular and the molecular level (100, 131).
Moreover, targeting different genes, PTEN or NF1, in the same
lineage resulted in distinct neuropathologies and when PTEN,
NF1 and P53 were targeted simultaneously caused the formation
of GBM (101).

The generation of ependymoma GEMMS began recently.
RELAFUS1 fusion gene expressed in nestin, GFAP, or BLBP
positive cells in the mouse brain induced tumors which
recapitulate the histology and transcriptome panel of human
ST-EPN-RELA ependymomas (102). The YAP1-MAMLD1
fusion gene delivered to mice by in utero electroporation drove
tumor formation and tumors share histological and molecular
characteristics of human ST-EPN-YAP1 (103). Recently, Eder
and colleagues reported that ectopic expression of active nuclear
YAP1 (nlsYAP5SA) or conditional deletion of YAP1’s negative
regulators LATS1 and LATS2 kinases in neural progenitor cells
in ventricular zone also induced tumors which display molecular
and ultrastructural characteristics of human ependymoma
(104, 105).

Zebrafish Brain Tumor Models
Zebrafish are an alternative model to study human cancer as they
can develop tumors that are histologically and genetically similar
to those in humans (132). Zebrafish models are also amenable to
high-throughput screening for drug discovery as well as
transplantation of primary patient tumors. This makes
zebrafish a cost- and time-effective alternative to other in vivo
tumor models such as rodents. In recent years, several pediatric
Frontiers in Oncology | www.frontiersin.org 879
brain tumor models have been developed in zebrafish and have
been used to identify molecular mechanisms driving tumor
formation. This includes the analysis of unique and shared
molecular pathways driving pediatric HGG within and outside
the brainstem (133) and to identify three molecular subgroups of
DIPG (134). Ependymoma, glioma and choroid plexus
carcinoma cells from mouse models of pediatric brain tumors
were conditioned to grow at 34°C and used for orthotopic
xenografts in zebrafish. These cells not only readily formed
tumors but also spinal metastasis. The tumors retained the
histological characteristics of the corresponding mouse tumor
and formed tumor vasculature by recruiting fish endothelial cells
(135). Lin et al. used zebrafish to experimentally validate
subgroup-specific enhancers in medulloblastoma (13),
Modzelewska et al. used tumors grown in zebrafish to
demonstrate that MEK inhibitors can reverse the growth of
embryonal brain tumors derived from oligoneural precursor
cells (14) and Idilli et al. used them to study telomere
maintenance mechanisms in pediatric brain tumors (136).
With protocols for developing zebrafish tumor models
evolving, long-term orthotopic transplantation of tumor cells is
now possible (137). This allows for the long-term in vivo studies
of tumor cell behaviors including tumor invasion and
dissemination as well as testing for more durable response of
tumors to novel anticancer therapeutics and the development of
cancer drug resistance. Overall, zebrafish may provide an
opportunity to develop pediatric brain tumor models in a
timely and affordable manner for preclinical drug discovery in
a model system with intact blood-brain barrier.

In Vitro Brain Tumor Models
Cancer Cell Lines
Cancer cell lines play an important role in brain tumor research.
The cells lines can be established directly from patients’ samples
or from animal models. These cells often retain original tumor
features, are easy to grow and propagate, and can be stored for a
long time. They are well-suited models to explore a tumors’
molecular features in vitro and predict the tumors’ response to
therapeutic regimens. Cancer cell lines are particularly useful in
high-throughput drug screening to identify and evaluate
potential targets for chemotherapies. Most established pediatric
brain tumor cell lines are medulloblastoma cell lines. Less than
half of these cell lines have been molecularly defined, among
which the majority represent the SHH or Group 3 subtypes; only
a few are for WNT or Group 4 tumors (Table 2). In addition,
around half SHH medulloblastoma cell lines have mutations in
TP53, and almost all Group 3 cell lines bear MYC amplification,
while only a small part of SHH and Group 3 medulloblastoma
patients typically have these mutations (24, 55, 145, 150). This
discrepancy might be because the medulloblastomas with TP53
mutation and MYC amplification are more aggressive with
poorer prognosis, and more aggressive cells are easier to grow
in vitro. Similarly, although gliomas are the most common brain
tumors in children, most gliomas are low grade gliomas with less
malignancy and more favorable prognosis. Moreover, some high
grade gliomas, such as DIPG, have a limited tissue availability
due to tumor locations and established glioma cell lines are fewer
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than medulloblastoma (150). In recent years, however, with the
refinement of surgical skills and advances in DIPG biology,
biopsy becomes more feasible in DIPG patients and new
patient derived DIPG cell lines are becoming available (Table 2).

Cell culture in vitro has intrinsic drawbacks. Most cell lines
are maintained as a monolayer culture in serum containing
media, and a genetic and phenotypic drift from original
tumors will gradually occur with passage (156). The cell lines
are homogenous populations that cannot fully recapitulate the
heterogeneity of tumors, and are not suitable to study tumor host
interactions during tumor development. In monolayer culture,
all cells receive the same level of nutrition and oxygen, which is
different from tumor growth in vivo. Moreover, tumor cell lines
are typically grown on borosilicate glass or clear plastics in vitro,
which are much more rigid compared to extracellular matrix on
which cells are naturally grown in vivo (157).

The advent of neurosphere cultures addressed some
limitations of traditional cell cultures. Neurospheres are
typically cultured in serum-free medium and can maintain
tumor heterogeneity and preserve the phenotype and genotype
of primary tumors (158). Some pediatric brain tumors, including
DIPG, have been successfully cultured in neurospheres and used
to generate xenografts that recapitulate the histological features
and infiltrative growth of original patient tumors (24, 130, 152,
159). Neurosphere formation also can independently predict
clinical outcome in malignant glioma (160). Therefore,
neurospheres are a more representative and reliable cell model
compared to traditional cell lines (36). However, neurosphere
culture has some limitations, too. For example, the lack of a
tumor microenvironment highly enriches glioma stem cell
(GSC)-like cells, which only represent a relatively small
subpopulation in native tumors (158, 161).

Three-Dimensional Culture
3D culture such as spheroids and scaffold-based cultures are
other techniques that have been developed to overcome the
limitations with traditional monolayer culture. In scaffold-
based 3D cultures, extracellular matrix can be synthesized to
simulate a tumor’s natural microenvironment and a gradient of
oxygen and nutrient level can be constituted to mimic a tumor’s
hypoxic core in vivo. Moreover, gene expression panels in 3D
culture more closely resemble human tumors in vivo (157, 162,
163). To date, there are two major types of 3D culture:
anchorage-dependent and anchorage-independent 3D models.

Anchorage-Independent 3D Models
Anchorage-independent 3D models are achieved mainly by self-
assembly of cells grown in special tissue culture plates, such as
hanging drop microplates and low attachment plates; they do not
need any scaffold to facilitate the culture. The hanging drop
culture is a well-known 3D culture technology. Typically, there is
a micro-hole at the top of wells, which allows the medium to pass
through and form a small droplet. Since there is no surface
available for the cells in the droplet to attach, these cells tend to
form spheroids. Spheroids can also be generated when they are
grown in ultra-low attachment plates. Ependymoma cell lines
cultured in ultra-low attachment plates better recapitulated the
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histological and transcriptional features of the primary tumors
when compared to a monolayer (164). In addition, magnetic
levitation is a newly developed method for spheroid formation.
In this method, cells coated with magnetic nanoparticles are
cultured in a magnetic field and the cells are floated toward the
air/liquid interface within a low adhesion plate to form spheroids
(162, 163, 165). Larger tumor spheroids formed by anchorage-
independent models may consist of a peripheral layer with
proliferating cells, an intermediate layer with quiescent cells
and an inner necrotic core, which may closer reproduce
human tumor architecture in vivo (165, 166). In recent years,
with the refinement of technologies on spheroid culture,
anchorage-independent 3D models have become common
methods for cancer drug discovery, even applicable for high-
throughput drug screening. Spheroids can be established with a
few different types of cells and are especially suitable for studies
about cell-cell interactions during brain tumor development
(167). However, there is typically no extracellular matrix
(ECM) in spheroids, and thus they are unsuitable for studying
cell-host interactions which is a key game player in
tumor pathologies.

Anchorage-Dependent 3D Models
The cells inside the body are usually surrounded by ECM, a
network of extracellular molecules, which not only provides the
structural scaffold for the surrounding cells, but also plays an
important role in cell proliferation, differentiation, migration,
survival and adhesion (168). The composition of ECM is highly
heterogeneous and tissue-specific. The brain ECM ingredients
include proteoglycans, hyaluronic acids, tenascins, collagen,
fibronectin, vitronectin and laminin (162, 169). In anchorage-
dependent 3D models, cells are encapsulated into scaffold
materials, which can mimic the composition and key physical
properties of ECM. Hydrogels are the most commonly used
scaffolds for anchorage-dependent 3D models. Hydrogels are
water-swollen networks of polymers and can mimic salient
components of ECM. The highly hydrated and porous nature
of hydrogel make them ideal to encapsulate cells and render
ECM-like functions, such as supporting cell survival, growth,
differentiation and modulating the response to chemotherapy,
immunotherapy and radiation therapy (161).

Hydrogels may come from natural sources or can be
synthetic. The widely used natural hydrogels for neural cell
culture are collagen I and Matrigel. Matrigel is extracted from
the Engelbreth-Holm-Swarm (EHS) mouse sarcoma, a tumor
rich in ECM components, such as laminin, collagen,
heparan sulfate proteoglycans, entactin/nidogen, and several
growth factors. Matrigel is minimally processed and it can
better mimic in vivo ECM (170). However, two major
components of Matrigel are laminin and collagen, which are in
low concentration in the brain ECM (158). Thus, collagen and
Matrigel are not ideal choices as in vivo-like 3D scaffolds for
brain tumor cells. In addition, collagen and Matrigel are derived
from natural sources, they are heterogenous and not well defined,
and exhibit considerable batch-to-batch variability. Moreover,
collagen and Matrigel are available in liquid form and require
handling at cold temperatures (below 10°C) to avoid premature
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gelation. The need for handling these hydrogels at low
temperatures makes them poorly suited for common liquid
handling equipment used for high-throughput screens in drug
discovery (158, 162). Some of these limitations might be
overcome by synthetic hydrogels. Synthetic hydrogels are
derived from polymeric materials, such as polyethylene glycol
(PEG), polylactic acid (PA) and polyglycolic acid (PGA). These
hydrogels can simulate the composition and function of ECM;
they often have engineered tunable properties to achieve desired
stiffness and porosity, to enhance cell proliferation and
differentiation by encapsulating bioactive molecules, such as
Frontiers in Oncology | www.frontiersin.org 1081
growth factors or hormones. However, these polymers are
biological inert, so they must be modified by addition of cell
adhesion ligands or mixing with other natural ECM components
to acquire the properties of cell adhesion (158, 162, 163). To date,
PEG is a widely used synthetic hydrogel in neural cell 3D culture.
A PEG-based hydrogel has been successfully used to grow GBM
cell lines. In this system, the PEG-based hydrogel was modified
with CRGDS and a MMP-cleavable peptide to facilitate cell
proliferation, migration; hyaluronic acid (HA) was also added
to mimic brain extracellular matrix (171). A synthetic MAX8 b-
hairpin hydrogel was successfully used to culture pediatric
TABLE 2 | Established pediatric brain tumor cell lines with defined molecular characteristics.

Tumor Type Molecular subtype Cell line name Mutations Sources References

Medulloblastoma WNT MED5R b-catenin (138)
SHH DAOY CDKN2A

NF1
TP53

ATCC (139)

ONS76 JCRB (139)
UW228 TP53 (139, 140)
UW426 (139)

Group 3 D341 Med myc amplification ATCC (141, 142)
D384 MED myc amplification (143)
D425 MED myc amplification

p53
Millipore Sigma (144)

D458 Myc amplification (145)
D283 Med myc amplification ATCC (144, 146)
MED8A myc amplification (147)
HD-MB03 myc amplification DSMZ (148)
MB002 myc amplification (149)
Med-114FHTC myc amplification BTRL https://www.btrl.org/product/med-114fhtc/
Med-411FHTC myc amplification

Isochromosome 17
BTRL https://www.btrl.org/product/med-411fhtc/

Med-2112FHTC myc
Isochromosome17

BTRL https://www.btrl.org/product/med-2112fhtc/

Group 4 CHLA-01-MED Myc amplification ATCC (150)
CHLA-01R-MED Myc amplification ATCC (150)

High grade glioma MYCN PBT-04FHTC mycn, id2, nras BTRL (41)
PBT-05FHTC mycn, id2, egfr amplification BTRL (41)

pedRTK1 GBM-511FHTC cdkn2 BTRL (41)
pedRTK2 GBM-110FHTC cdkn2, braf BTRL (41)
Myc CHLA-200 myc COGcell.org (151)

DIPG H3.3 K27M SF7761 Histone Millipore
Sigma

(152, 153)

SF8628 Histone Millipore
Sigma

(153)

PED8 Histone (130)
PED17 Histone (130)
PED36 histone (130)
HSJD-DIPG-007 histone (50)
HSJD-DIPG012 histone (50)
HSJD-DIPG017 histone (50)
SU-DIPG-VI histone (154)
SU-DIPG-XIII histone (154)
VUMC-DIPG-A histone (154)
JHH-DIPG-1 histone (154)

H3.1 K27M VUMC-DIPG-B histone (154)
SU-DIPG-IV histone (154)
HSJD-DIPG018 histone (50)

GBM H3.3 G34R GBM002 histone (50)
H3K27M GBM003 histone (50)

Ependymoma PF-EPN-A EPD-210FHTC 1q gain BTRL (41)
EPN-811 1q gain (155)
EPN-928 1q gain (155)
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medul lob las toma ce l l l ines in a h igh- throughput
screening setting (172, 173). Hydrogel-based models are not
suitable for long-term culture since they degrade fast. Solid
porous scaffolds can be adapted to bypass this issue. Solid
porous scaffolds are prepared from natural or synthetic
polymers with mechanical stability and pore interconnectivity.
The cells can be directly added to these solid porous scaffolds and
maintain their 3D properties with continuous supply of
nutrients. A recently developed tunable 3D brain tissue model
integrated the porous scaffold with hydrogels. In this model, the
donut shaped silk fibroin protein scaffold was infused with ECM
hydrogels and brain tumor cells can grow into spheroids within
the stiff silk scaffold, or migrate toward the central hydrogel.
Thus, the outer-ring scaffold can be used to anchor neuronal
cells, and the central soft hydrogel allows axonal penetration and
connectivity (174, 175). A pediatric anaplastic ependymoma has
been successfully cultured by this model (176). In addition,
culturing glioblastoma tumor-initiating cells (TICs) in
microscale alginate hydrogel tubes (AlgTubes) has been
reported. This culture system allows for long-term and scalable
production of glioblastoma cells for drug discovery (177). Self-
assembling peptide (SAP) hydrogels are an evolving field for
neural cell culture. These synthetic peptides can self-assemble
under physiological conditions and support neural cell
attachment, differentiation and synapse formation. SAP
hydrogels are highly versatile, their material properties can be
modulated by substituting amino acids, extending or shortening
the peptide sequence, or by the addition of functional epitopes. A
widely used peptide hydrogel is RADA16. However, peptide-
based hydrogels may have poor mechanical properties, and some
exhibit impaired cell viability caused by low pH, making it
difficult to culture sensitive brain tumor cells (163).

Brain Organoids
Organoids are an emerging technology to study pediatric brain
tumors. Organoids are typically generated with embryonic stem
cells (ESC) or induced pluripotent stem cells (iPSC) and have the
potential to grow into a 3D architecture in a way similar to in
vivo tissue development by virtue of their capacity to self-renew
and differentiate. Early organoid models were typically
heterogeneous and lacked reproducibility since it was difficult
to control the differentiation pattern of stem cells. However, with
technical advances on directed differentiation, stems cells can
now be differentiated into virtually any specific lineages. This has
significantly moved forward the application of organoid models
including in biomarker and drug discovery (163). Significant
effort is being made in developing neural-based spheroids with
cerebral organoids being one of the early ones (178). Cerebral
organoids can be used as platforms for human brain tumor cells,
or tumors can be initiated in cerebral organoids by introducing
oncogenes and/or disrupting tumor repressor genes using gene
editing technologies. Human cerebellar organoids derived from
iPS cells electroporated with Otx2/c-MYC induced Group 3
medulloblastoma (179). Injecting cancer stem cells derived
from GBM patients into cerebral organoids or genetic
engineering of cerebral organoids by introducing HRasG12V

and disrupting p53 initiated tumorigenesis that closely
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recapitulated patient GBMs (180, 181). Organoids can also be
established from patient brain tumors. Hubert et al. generated
GBM organoids directly from patient samples that present
hypoxic gradients and regional tumor heterogeneity (182).
Organoids can theoretically resemble any in vivo brain niche
with preserved cell distribution, can retain genetic and
phenotypic stabilities, and are capable of long term culture;
this makes them a valuable model to discover tumor initiation
and progression, and a more accurate tool to predict the
responses to tumor treatments. However, organoid cultures
typically lack blood vessels and immune cells, which makes
them unsuitable for testing tumor treatments targeting
angiogenesis, or studying the contribution of immune system
on tumorigenesis and relevant therapies. In addition, although
organoids have proper cell composition and functions, they
typically lack correct anatomical organization (162, 183).
Another drawback of organoids and also found in spheroid
models is that they often have a necrotic core, which sets a
limit on the culture size and longevity. To overcome this
limitation, microfluidic devices can be incorporated into 3D
models. Microfluidic devices are designed for cell cultures
under perfusion and allow for steady supplies of oxygen and
nutrients while at the same time removing waste (163).
CONCLUSIONS

A precise in vivo pediatric brain tumor model is the one, which
can faithfully recapitulate tumor’s histopathological and
molecular features ; exhibit tumor ’s spat iotemporal
characterization; demonstrate a tumor’s microenvironment;
predict patients’ response to treatments; show high rate of
incidence and short latency; and is reproducible, timesaving
and cost-effective (184). Such accuracy in tumor models can
best be achieved when genetic insults match the cell of origin and
are introduced at developmental stages that are critical to tumor
development. For effective in vitro drug discovery of novel cancer
therapeutics, in vitro brain tumor models should not only
recapitulate tumor biology but culture methods should also be
suitable for high-throughput screening (HTS). New technologies
and with it the possibilities of more complex screening platforms
may be integrated to optimize the model systems for pediatric
brain tumors. For example, the recently developed brain cancer-
on-a-chip models incorporate multiple tissue types in 3D
cultures into microphysiological system (MPS) and provide
precise control of a cellular microenvironment and real-time
monitoring on cell behavior and response. Nevertheless, while
brain cancer-on-a-chip models can better mimic the
physiological function of brain, challenges remain. Brain
tumors demonstrate profound inter- and intra-tumoral
heterogeneity and cellular plasticity to adapt their phenotypes
to the surrounding. With more accurate in vitro and in vivo
tumor models, however, it is possible to improve the current low
approval rate of anticancer drugs, to offer more treatment
options for pediatric brain tumor patients.

Although pediatric brain tumor models have been expanded
immensely in the past decades, there is no single model that
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meets all criteria and thus, experimental design and purpose will
need to guide the choice of the brain tumor model (22, 24). The
rapid advancement of genomic characterization of pediatric
brain tumors and with it new genomic signatures of tumor
subgroups add to the complexity of developing precise pediatric
brain tumor models. Moreover, in recent years the genome
landscape of pediatric brain tumors, both somatic and
epigenetic, has been complemented by the analysis of tumor
transcriptomes. Despite the plethora of data generated through
such approaches, the finding that impaired differentiation of
specific neural progenitors is a common mechanism underlying
pediatric cancers (185) provides hope that a rational approach
towards developing in vitro and in vivo pediatric brain tumor
models can achieve a manageable library of research platforms
for the development of impactful therapeutic interventions for
pediatric brain cancers.
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Background: This study aimed to systematically investigate gene signatures for
hepatoblastoma (HB) and identify potential biomarkers for its diagnosis and treatment.

Materials and Methods: GSE131329 and GSE81928 were obtained from the Gene
Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between
hepatoblastoma and normal samples were identified using the Limma package in R.
Then, the similarity of network traits between two sets of genes was analyzed by
weighted gene correlation network analysis (WGCNA). Cytoscape was used to visualize
and select hub genes. PPI network of hub genes was construed by Cytoscape. GO
enrichment and KEGG pathway analyses of hub genes were carried out using ClueGO.
The random forest classifier was constructed based on the hub genes using the
GSE131329 dataset as the training set, and its reliability was validated using the
GSE81928 dataset. The resulting core hub genes were combined with the InnateDB
database to identify the innate core genes.

Results: A total of 4244 DEGs in HB were identified. WGCNA identified four modules that
were significantly correlated with the disease status. A total of 114 hub genes were
obtained within the top 20 genes of each node rank. 6982 relation pairs and 3700 nodes
were contained in the PPI network of 114 hub genes. GO enrichment and KEGG pathway
analyses of hub genes were focused on MAPK, cell cycle, p53, and other crucial
pathways involved in HB. A random forest classifier was constructed using the 114 hub
genes as feature genes, resulting in a 95.5% true positive rate when classifying HB and
normal samples. A total of 35 core hub genes were obtained through the mean decrease
in accuracy and mean decrease Gini of the random forest model. The classification
efficiency of the random forest model was 81.4%. Finally, CDK1, TOP2A, ADRA1A,
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FANCI, XRCC1, TPX2, CCNB2, CDK4, GLYATL1, and CFHR3 were identified by cross-
comparison with the InnateDB database.

Conclusion: Our study established a random forest classifier that identified 10 core
genes in HB. These findings may be beneficial for the diagnosis, prediction, and targeted
therapy of HB.
Keywords: hepatoblastoma, gene expression omnibus, random forest classifier, nomogram, diagnosis
INTRODUCTION

Hepatoblastoma (HB) is the most common pediatric liver tumor,
affecting mainly children under 4 years of age (1). Although its
incidence has increased markedly over the last few decades, HB is
a rare pediatric malignancy with an annual incidence of 1.5 cases
per million (2). Complete surgical resection and chemotherapy
have contributed to improving the survival rate of up to 80% in
all diagnosed patients (3). However, the prognosis for patients
with clinically advanced HB remains relatively low. Furthermore,
surviving patients can suffer severe and lifelong side effects due to
chemotherapy and immunosuppression (4). Lacking of an
effective means of early diagnosis is the main reason
contributed to the relative worse prognosis for patients with
HB. At present, clinicians rely primarily on clinical symptoms,
imaging, and alpha-fetoprotein levels to diagnose the disease.
Among these methods, no novel biomarker had been showed
except the conventional AFP levels. However, the sensitivity and
specificity were not satisfied due to the various sources of AFP
from different patients.In the previous study of Liu et al, it
claimed there were 5 patients with a normal AFP level were
diagnosed as HB (5). Consequently, novel biomarkers must be
identified to develop efficient diagnostic methods and
therapeutic strategies for patients affected with HB.

Recent studies have demonstrated that some RNAs are
aberrantly expressed in HB thanks to the advancements in
gene chips and high-throughput sequencing. A recent study
reported by Liu et al. revealed that the increase of N6-
Methyladenosine modification is an oncogenic mechanism in
HB (6). Multiple studies have also shown that different genes,
including genes encoding for long non-coding RNAs, are
involved in the proliferation, apoptosis, and glutaminolysis of
HB, such as zinc finger antisense 1 (7), 3-hydroxy-3-
methylglutaryl-CoA synthase 1 (8), and TUG1 (9). Since the
analysis pipeline, experimental methods, and sample size of each
research are different, the conclusions have been controversial.
Thus, a further bioinformatics exploration of data published in
public databases could consolidate data and reveal novel
additional genes associated with HB.

In this study, we investigated two HB datasets obtained from
the Gene Expression Omnibus (GEO) database to identify
reliable differentially expressed genes (DEGs) in HB. Through
deep and comprehensive bioinformatics analysis, we identified
hub genes, which we used to construct a diagnosis classification
for HB. Moreover, we identified the core genes using our
classification and cross-comparing it with the congenital
289
immune-related genes present in the InnateDB database. The
identification of a list of core genes may provide new diagnostic,
prognostic, and potential therapeutic biomarkers for HB.
MATERIALS AND METHODS

Acquisition of Microarray Profiles
The flow chart for the study was showed in Figure 1. Microarrays
that met the following criteria were collected: (1) studies including
at least 20 samples and (2) examination expression of both
cancerous tissue and adjacent noncancerous tissue from HB
patients. Microarrays without useful data for analysis were
excluded. Finally, 2 independent microarrays data, GSE131329
and GSE81928 databases, were obtained from the GEO database
(http://www.ncbi.nlm.nih.gov/geo). The characteristics of the 2
datasets were presented in Table 1. Probes were converted into the
corresponding gene symbols according to the annotation
information in the dataset.

Since GSE131329 is chip data and GSE81928 is sequencing
data, we used different procedures to deal with 2 datasets. For the
GSE131329 dataset, platform annotation files were used to match
probes to the gene symbol. If multiple probes matched a single
gene, the median ranking value was used as the expression value.
Then, the disease and normal gene expression spectrum of
GSE131329 was constructed. For the GSE81928 dataset, we
excluded from the analysis genes whose expression value was 0
in 80% of the samples. We analyzed a total of 17920 genes from
the two data sets , which were then used for the
subsequent analyses.

Identification of Differentially Expressed
Genes (DEGs)
The Limma package in R was used to identify DEGs between HB
and non-tumor samples. The cutoff value was set to |Log2FC
(fold-change)| > 0.58 in both datasets to obtain more DEGS for
further analysis in accordance with protocols of previous studies
(11, 12). Because the experimental assay and platform of the 2
datasets were different, the P value was < 0.05 for GSE131329,
and was < 0.01 for GSE81928 to obtain more significant DEGs,
which was used the previous researches as reference (13, 14).

Weighted Gene Correlation Network
Analysis (WGCNA)
WGCNA is a systematic biological method used to describe gene
association patterns among different samples (15). It can be used
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to identify highly collaborative gene sets and to identify
candidate biomarker genes or therapeutic targets based on
gene set interconnection and the correlation between gene sets
and phenotypes. Using the GSE131329 dataset as reference, the
potential DEGs expression profile of HB was constructed. Then,
we identified the related modules of HB, and analyzed the
relationship between those modules and either HB or normal
samples, using the WGCNA package in R. The identified
network of HB modules was visualized using Cytoscape v.
3.8.0 (https://cytoscape.org/) to identify the hub genes in
each module.
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Protein-Protein Interaction (PPI) Network
Construction of Hub Genes
In order to analyze the role of 114 hub genes in the global human
biological network, we constructed a PPI network of modular
genes. We downloaded and integrated human interaction
protein data from the following database: HPRD release9
(http://www.hprd.org/), IntAct (http://www.ebi.ac.uk/intact/),
MINT (http://mint.bio.uniroma2.it/mint/Welcome.do),
BioGRID Release 3.4.132 (http://thebiogrid.org/), DIP (http://
dip.doe-mbi.ucla.edu/dip/Main.cgi), String (https://string-db.
org). We extracted 114 protein interaction pairs of hub genes
TABLE 1 | The characteristics of the 2 datasets in the study.

Datesets Country Researchers/
References

Experiment type Tumor site Sample size
(normal/tumor)

Platform

GSE131329 Japan Contributed by
Hiyama E, et al.

Expression profiling by array hepatoblastoma 67 (14/53) GPL6244 [HuGene-1_0-st] Affymetrix
Human Gene 1.0 ST Array

GSE81928 USA (10) Expression profiling by high
throughput sequencing

hepatoblastoma 26 (3/23) GPL16791 Illumina HiSeq 2500
FIGURE 1 | Flowchart showing the protocol of the study. DEGs, differentially expressed genes; WGCNA, Weighted gene correlation network analysis; PPI, protein-
protein interaction.
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from the integrated human interaction protein pairs. Even if
there was only one protein interacting with one of the 114
module genes, it would be extracted. The PPI network of these
114 modules was visualized by Cytoscape. In the network, 114
hub genes were marked with the color of their modules. Network
analyzer, a Cytoscape tool, was used to calculate network
topology properties.

Bioinformatic Analysis of Hub Genes
Gene ontology (GO) analysis was used to identify potential
biological processes, cellular components, and molecular
functions associated with DEGs. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) is a collection of databases for the
systematic analysis of gene functions that link genomic
information with higher-order functional information (16). GO
enrichment and KEGG pathway analysis of the top 20 DEGs in
HB were revealed using the ClueGO software. ClueGO software
is a Cytoscape App that extracts representative functional
biological information from a large list of genes or proteins
(17). P < 0.05 was regarded as the cut-off criterion with
statistic difference.

Construction and Validation
of the HB Classifier
Random forest is a classification method that uses multiple trees
to train and predict samples and is characterized by high
accuracy (18). Therefore, we constructed a random forest
model for HB, using GSE131329 as the training set, the top 20
genes in the module as the classification feature, and disease and
normal samples as the variables. Then, we validated the model
using the GSE81928 dataset as an independent validator. The
model feature files of training set (Supplementary Table 1) and
verification set (Supplementary Table 2) were shown in
the Supplementary.

Cross-Comparison of Biological Markers
of HB in InnateDB
InnateDB (http://www.innatedb.com) is a publicly available
database of genes, proteins, and experimentally verified
interacttions and signaling pathways involved in innate
immunity (19). We intersected hub genes related to immunity
in HB as revealed by our bioinformatics analysis with genes
present in the InnateDB database.
RESULTS

Identification of DEGs
In total, 4244 DEGs (2839 in GSE131329 and 1863 in GSE81928)
were identified between tumor and normal t issues
(Supplementary Table 3), of which in GSE131329, 1368 were
downregulated and 1471 were upregulated (Supplementary
Table 4), while in GSE81928, 28 were downregulated and 1835
were upregulated (Supplementary Table 5). There were 453
overlapping DEGs of 2 datasets. The Venn diagrams (Available
online: http://bioinformatics.psb.ugent.be/webtools/Venn/) was
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showed in Figure 2. The heat map and Volcano plot of the two
datasets were showed in Figures 3–D.

WGCNA
Using the GSE131329 dataset and the WGCNA package in R to
analyze the co-expression with default parameters, we
constructed the expression spectrum of the 4244 DEGs. We
obtained six different modules (indicated in blue, brown, green,
turquoise and yellow) (Figure 4). The blue, brown, green, and
turquoise modules were significantly correlated with HB and
normal samples (Figure 4). The blue and brown modules were
negatively correlated with HB disease, whereas the green and
turquoise modules were positively correlated with HB disease.
The modules contained 408 genes (blue), 188 genes (brown), 123
genes (green), and 666 genes (turquoise). Sample clustering is
shown in Figure 4. The red component represents HB samples,
while green represents the non-tumor samples.

Modules Network Construction and Hub
Genes Identification
The network of HB-related modules (blue, brown, green, and
turquoise modules) is shown in Figures 5A–D. Then, we
analyzed the network using Cytoscape, selecting the top 20
genes of each module as the HB hub genes (genes with the
same degree were taken out at the same time). Degree refers to
the number of connections between one point and other points
in the network. We identified a total of 114 hub genes
(Supplementary Table 6). The larger the point is, the greater
the degree of the representative node.

PPI Network Construction of Hub Genes
We constructed the PPI network of 114 hub genes. Finally, the
network was consisted of 6982 relation pairs and 3700 nodes
(Figure 6). For the topological properties of nodes, we arranged
them in descending order according to the interaction degrees,
and selected the top 20 genes to display, including RPS2,
PPP2R1A, CDK1, FBL, PLK1, TRIM28, CDK4, PRMT1,
SF3A2, ITCH, ANLN, USP15, CCNB1, EHMT2, CCNA2,
USP9X, HCFC1, KIF11, TOP2A, as shown in Table 2. These
genes play an important role in the global biological network.
FIGURE 2 | Total of 4,244 DEGs identified from 2 datasets (2839 in
GSE131329 and 1863 in GSE81928). DEGs, differentially expressed genes.
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Bioinformatic Analysis of Hub Genes
We performed the GO enrichment and KEGG pathway analysis
of the top 20 genes using ClueGO. Of the 114 hub genes
identified, 21 were from the blue module, 24 from the brown
module, 46 from the green module, and 23 from the turquoise
Frontiers in Oncology | www.frontiersin.org 592
module. GO function enrichment results are shown in Figure 7.
Hub genes were enriched in multiple biological functions,
including regulation of DNA demethylation, nuclear
chromosome isolation, protein targeting to the peroxisomes,
negative regulation of stress-activated MAPK cascade, signal
A B

C D

FIGURE 3 | Heat map of differentially expressed genes (DEGs) and volcano plot of genes in the two datasets. Upregulated DEGs are shown in red; downregulated
DEGs are shown in green; non-DEGs are shown in black. (A, B) GSE131329 dataset; (C, D) GSE81928 dataset.
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A B

C

FIGURE 4 | Gene modules identified by WGCNA. (A) Cluster dendrogram of the coexpression network modules; (B) Gene relation between hepatoblastoma and
normal samples; (C) Cluster tree of hepatoblastoma and normal samples.
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transduction by p53 class mediator resulting in cell cycle arrest,
toroid dehydrogenase activity with the CH-OH group acting as
donors and NAD or NADP as acceptors et al. (Supplementary
Table 7). The KEGG pathway analysis results showed that these
hub genes also participated in the P53 signaling pathway, cell
aging, cell cycle, meiotic maturation process of oocytes,
progesterone-mediated oocyte maturation, steroid biosynthesis,
Frontiers in Oncology | www.frontiersin.org 794
retinol metabolism, chemical carcinogenesis, and other
biological pathways (Figure 7) (Supplementary Table 8).

Construction and Validation of the HB
Classification Method
The random forest method can calculate the importance of a
single feature and screen the feature against the selected dataset.
A B

C D

FIGURE 5 | Gene symbols and gene interaction in the four modules, as determined by ClueGO. (A) Blue module; (B) Brown module; (C) Green module;
(D) Turquoise module.
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Therefore, we used the 114 hub genes as the feature, HB and
normal as the variables, and the GSE131329 dataset as the
training set to construct the model. The receiving operator
curve (ROC) of the GES131329 training set is shown in
Figure 8. The area under the curve was 0.955. The mean
Frontiers in Oncology | www.frontiersin.org 895
decrease accuracy (MDA) of the random forest model was
positively correlated with the predictive variable, and the mean
decrease Gini (MDG) is positively correlated with the most
important variable (20). Therefore, 30 hub genes were
established using MDA and MDG (Figure 8). Furthermore, a
FIGURE 6 | The protein-protein interaction (PPI) network of the 114 hub genes.
TABLE 2 | Network topological characteristic of top 20 nodes in PPI network.

Gene label Degree Average
ShortestPath

Length

BetweennessCentrality ClosenessCentrality ClusteringCoefficient Stress TopologicalCoefficient

RPS2 Turquoise 304 2.796578 0.088088 0.35758 0.002084 35651276 0.011482
PPP2R1A Turquoise 285 2.733026 0.10859 0.365895 0.001112 32731778 0.008927
CDK1 Green 277 2.606464 0.086532 0.383662 0.007953 23033244 0.008038
FBL Turquoise 272 2.764259 0.083119 0.361761 0.003337 26783624 0.009266
PLK1 Turquoise 271 2.749593 0.087714 0.36369 0.002952 24705604 0.009257
TRIM28 Turquoise 251 2.847094 0.07047 0.351235 0.000829 35607200 0.02181
CDK4 Turquoise 215 2.763987 0.064648 0.361796 0.002478 17600494 0.009869
PRMT1 Turquoise 174 2.833786 0.051374 0.352885 0.003654 15009342 0.013589
SF3A2 Brown 156 2.933188 0.048426 0.340926 0 11812770 0.028122
ITCH Brown 155 2.893808 0.049782 0.345565 0.000922 10898838 0.016011
ANLN Green 149 2.937534 0.055011 0.340422 0.000998 7721342 0.020761
USP15 Brown 146 2.891092 0.04818 0.34589 0.001606 9324218 0.015811
CCNB1 Green 144 2.747691 0.02827 0.363942 0.019814 5878754 0.013833
EHMT2 Turquoise 132 2.939164 0.038808 0.340233 0 8115194 0.02823
CCNA2 Green 126 2.771863 0.026821 0.360768 0.01981 4666808 0.015196
USP9X Brown 125 2.898968 0.034266 0.34495 0.001419 9220858 0.020271
HCFC1 Brown 120 2.885117 0.032388 0.346606 0.003641 7730212 0.018792
KIF11 Green 118 2.847366 0.039087 0.351202 0.001883 5902744 0.013225
TOP2A Green 106 2.892178 0.020279 0.34576 0.004672 7719634 0.024587
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total of 35 core genes of HB were obtained by cross-comparison
with InnateDB database (Supplementary Table 9). The random
forest model was then validated using the independent
GSE81928 dataset, which was also contained the 114 hub
genes. The area under the ROC curve was 0.814 (Figure 8).

Validation of HB Biological Markers
Through InnateDB Cross-Comparison
We selected the immune-related hub gene, containing 35 genes,
as the HB innate immune core genes and compared it with the
immune-related genes present in the InnateDB database. We
obtained 10 core genes: CDK1, TOP2A, ADRA1A, FANCI,
XRCC1, TPX2, CCNB2, CDK4, GLYATL1, and CFHR3. For
nine genes at least one molecular interaction was annotated in
the InnateDB database, except GLYATL1. These interactions
were mainly protein-protein and DNA-protein, as shown in
Supplementary Figures 1–9.
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DISCUSSION

In this study, we established for the first time a diagnosis
classifier model based on the random tree method for HB
using 114 hub genes. We also validated the classification
efficiency of this model using an independent dataset.
Consequently, this model may contribute to improving the
diagnosis of HB. We also performed GO and KEGG analyses,
revealing that the identified hub genes were mainly involved in
the p53 pathway and cell cycle. We also identified 10 core genes
by cross-referencing our analysis with the InnateDB database.
Among the 10 core genes, the molecular interactions for 9 genes
were annotated, which may provide new therapeutic targets.

Among the 10 identified core genes, CDK1 and CDK4 were
previously reported to be associated with HB (21, 22). CDK1 and
CDK4 both belong to the family of cyclin-dependent kinases
(CDKs). CDK complexes are critical regulatory enzymes that
A

B

FIGURE 7 | (A) GO analysis of the 114 hub genes. (B) KEGG pathway of the 114 hub genes, GO.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Sun et al. Identification of Novel Hepatoblastoma Markers
A C

B

FIGURE 8 | (A) ROC curve for the GSE131329 dataset; (B) 30 hub genes from the random forest classifier extracted through MDA and MDG; (C) ROC curve for
the GSE81928 dataset. AUC, area under the curve; ROC, receiver operating characteristic; MDA, mean decrease accuracy; MDG, mean decrease Gini.
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drive the transition of different phases of the cell cycle and ensure
successful cell division through their activity (23). Almost all
malignant cells exhibit some features that derange the normal
controls over the cell cycle (24). Therefore, various drugs
targeting different CDKs have been developed and have been
applied in the clinic over the past decades. CDK1 can bind to
different cyclins and regulate all the steps required for cell
division (25). For this reason, CDK1 is essential for
mammalian cell proliferation (21) and is the only CDK that
can initiate mitosis (26). CDK1 is a key determinant of mitotic
progression and thus it is also a pivotal tumorigenic event. It has
been reported that treatment with a CDK1 inhibitor could
decrease tumor growth of HB and prolong the survival rate in
an HB murine model (21). Therefore, CDK1 is considered an
ideal target for HB treatment. CDK4 can mediate the transition
from the G0 or G1 phase into the S phase of the cell cycle (27).
The activity of CDK4 is primarily controlled by its association
with D-type cyclins, with cyclin D1 being the best characterized.
Kim et al. revealed that CDK4 and cyclin D1 were significantly
overexpressed in HB tissues compared with normal tissues (22).
They also suggested that CDK4 may be correlated with
tumorigenesis, tumor recurrence, and metastasis of HB.
Although there is still no available CDK4 inhibitor for HB,
multiple selective CDK4 inhibitors targeting other types of
cancer have been used in the clinic. The progression-free
survival rate of patients with estrogen receptor-positive breast
cancer can improve when CDK4/6 inhibitors are added to
antiestrogen therapy (28). Therefore, the role of CDK4 in HB
progression and treatment requires further studies.

The role of the other 8 core genes in HB has never been
reported before. Among them, 6 genes have been reported to be
associated with hepatocellular carcinoma (HCC). TOP2A was
one of the top 20 genes with the highest degree of interaction in
the PPI network complex. TOP2A encodes a DNA
topoisomerase that controls and alters the topologic states of
intertwined DNA during anaphase. Therefore, TOP2A is
involved in chromosome condensation and chromatid
separation (29). Overexpression of TOP2A is correlated with a
more aggressive tumor phenotype, microvascular invasion, and
early age onset of HCC (30). Moreover, TOP2A has also been a
valuable prognostic marker for tumor advancements,
recurrences, and predictors of poor survival in a variety of
cancers, such as breast, ovarian, colon, and small cell lung
cancer (29). ADRA1A encodes the alpha-1 adrenergic receptor
subtype with catecholamines ligands (31), which is located on
chromosome 8p (32). ADRA1A can stimulate the sympathetic
nervous system to compete with some functions (33). It was
reported by Chen et al. that the mean methylation level of the
ADRA1A promoter region was significantly increased in HCC
tissues compared with the normal tissues (32). They also
demonstrated that the mean methylation levels of the
ADRA1A gene in HCC samples were not only associated with
clinical characteristics but could also discriminate between HCC
tissues and adjacent normal tissues, thus being suitable as a
diagnostic marker. XRCC1 is a DNA repair gene that plays a
crucial role in maintaining genomic integrity and stability and in
Frontiers in Oncology | www.frontiersin.org 1198
the pathogenesis and carcinogenesis of various type of cancer
(34). XRCC1 is significantly correlated with the number of
tumors, tumor size, and location, and is also an independent
risk factor for the poor prognosis of HCC (34, 35). TPX2, a
nuclear proliferation microtubule-associated protein, is essential
for spindle formation and stabilizes spindle microtubules (36).
The overexpression of TPX2 induces abnormal centrosome
amplification and aneuploidy formation, leading to malignant
transformation of cells (37). Multiple studies have shown that the
expression levels of TPX2 were significantly upregulated in HCC
tissues compared with the adjacent normal tissues (36–38). They
also confirmed that TPX2may improve the viability of HCC cells
and inhibit cell apoptosis. However, knockdown of TPX2
expression or TPX2 inhibition could reduce the migration and
invasion ability of HCC cells. CCNB2 was one of the top 20 genes
with the highest degree of interaction in the PPI network
complex. CCNB2 belongs to the B-type cyclin family and
regulates the activity of CDKs by binding to them during the
cell cycle (23). The overexpression of CCNB2 was positively
correlated with tumor number, tumor size, tumor thrombus, and
metastasis of HCC, which may contribute to the poor prognosis
of HCC patients (39–41). However, CCNB2 knockdown could
slow cell growth and promote apoptosis of HCC cells, indicating
that CCNB2 may be a novel treatment marker (41). CFHR3, a
member of the human factor H protein family, is a negative
complement activation regulator, which is an essential
component of the innate immune system (42). The expression
level of CFHR3 in HCC tissues was lower than that in normal
tissues (43). In addition, the expression level of the CFHR3 gene
was the highest in the liver than in other organs (44). CFHR3 is
correlated to the HCC stage. In addition, the overall survival of
patients affected with HCC was significantly better when CFHR3
was highly expressed than when its expression was low (43, 44).
Therefore, CFHR3 may be a novel prognostic biomarker for
HCC. Although these 6 genes were never reported in the context
of HB, our bioinformatics analysis suggests that they deserve
further attention as potential targets in HB.

FANCI and GLYATL1 have never been reported in either HB
or HCC. However, their abnormal expression has been found in
other tumor types. FANCI has a key role in the Fanconi anemia
DNA repair pathway, where it forms a heterodimer with
FANCD2 and recruits DNA repair proteins to promote the
interstrand cross-link DNA damage repair (45). Moreover,
FANCI may promote cellular metabolism when it is not
needed for DNA repair, according to a recent study (46).
FANCI mRNA and protein were both found to be
overexpressed in lung adenocarcinoma tumor tissues compared
with adjacent normal tissues (47). It was demonstrated that the
expression level of FANCI was positively associated with
lymphatic metastasis and distant metastasis of lung
adenocarcinoma tumor, whereas knockdown of FANCI
decreased lung adenocarcinoma tumor cell proliferation and
invasion in vitro. FANCI has also been reported to regulate
breast cancer survival (48). These findings suggest that FANCI
has a novel oncogenic role and may be useful as a prognostic
biomarker and/or therapeutic target for different tumors.
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GLYATL1 belongs to the glycine-N-acyltransferase gene family
and is normally expressed in the liver and kidney (49). GLYATL1
encodes an enzyme with phenylacetyl-CoA glutamine N-
acyltransferase activity, which regulates mitochondrial ATP
production, glycine availability, CoASH availability, and the
detoxification of various organic acids (50). In a previous
study, the expression of GLYATL1 was higher in localized
prostate cancers than in benign prostatic tissue and metastatic
prostate cancer (49, 51). This study also demonstrated that
GLYATL1 may be associated with the grade of prostate cancer
since the expression of GLYATL1 was significantly high in low-
grade tumors. Therefore, GLYATL1 could be a potential early-
stage biomarker. In addition, GLYATL was also found to be
overexpressed in ER-negative compared to ER-positive breast
cancer (52).

We also conducted GO enrichment and KEGG pathway
analysis to identify pathways correlated with the hub genes.
KEGG pathway analysis revealed that the largest number of
genes were enriched in the cell cycle, including 13 hub genes.
Most of them, including CDK1 (21), CDK4 (27), BUB1 (53),
BUB1B (54), CCNA2 (55), CCNB1 (56), CCNB2 (39), CDC6 (57),
MAD2L1 (58), MCM6 (59), and PLK1 (60) have been already
reported to be associated with cell cycle-related proliferation and
tumor differentiation. GO analysis further showed that hub genes
are involved in different cell cycle-related processes, including
mitotic nuclear division, cell division, chromosome separation,
sister chromatid cohesion, microtubule cytoskeleton
organization involved in mitosis, and DNA integrity
checkpoint. Furthermore, GO enrichment and KEGG pathway
analysis also demonstrated that the hub genes were associated
with the p53 signaling pathway, a tumor suppression pathway
through a variety of responses, including cell-cycle arrest,
apoptosis, senescence, and DNA repair (61, 62), suggesting
that the p53 signaling pathway is also involved in the cell
cycle. It was reported that p53 gene mutations may contribute
to the development of sporadic HB (63). Moreover, hepatic p53
expression could cause lysis of implanted hepatoblastoma cells in
a chimeric mouse (64). Although p53 may play a crucial role in
HB development, the specific mechanism needs further studies.
Taken together, based on the GO and KEGG analyses, we suggest
that targeting the cell cycle could be a potential strategy for HB
therapy. Compared with the traditional clinical manifestations,
imaging, AFP and other diagnostic methods, our study
considered the underlying genetic dysregulations. Genes are
more objective and stable; thus, they may not be beneficial for
early diagnosis.
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CONCLUSION

In the present study, we established a 114 genes random forest
classifier for HB and identified 10 core genes. These 10 core genes
are closely related to the progression and prognosis of cancers
and thus are also potential therapeutic targets. Our classifier
model and the identified core genes may give novel insight into
the diagnosis and development of therapeutic options for HB.
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In this study, the immune microenvironment in Langerhans cell histiocytosis (LCH) was
characterized to determine if immune indices are predictive of severity. Serum samples
from 54 treatment-naïve patients were analyzed quantitatively for inflammatory cytokines
and immunoglobulins before and after the induction of chemotherapy. The initial serum
sIL-2R, TNF-a, and IL-10 of untreated LCH patients with risk organ involvement (RO+)
were significantly higher than those with single-system (SS) involvement. LCH patients
with hematologic involvement exhibited a significantly higher sIL-2R, TNF-a, IL-10, and IL-
1b expression, as compared to the group without involvement. sIL-2R, TNF-a, and IL-10
were increased in patients with liver or spleen involvement. Th cells have decreased in the
liver+ and spleen+ group, and Ts cells were significantly decreased in non-response
group after induction chemotherapy. The serum level of immune indices represents, to
some extent, the severity of the disease. Pertinent laboratory inspections can be used to
improve risk stratification and guide immunotherapy.

Keywords: Langerhans cell histiocytosis, tumor immunology, children, cytokines, inflammation
INTRODUCTION

Langerhans cell histiocytosis (LCH) is a histiocytic disorder arising from the mononuclear phagocyte
system, which results in the abnormal accumulation and proliferation of LCH cells. LCH is more
common in children than in adults, with the clinical manifestations varying from isolated osseous,
mucocutaneous, and pulmonary involvement to multi-system (MS) involvement, such as lymph
node, bone marrow, liver, spleen, gastrointestinal tract, thymus, endocrine gland, and central nervous
system involvement, causing hyperplasia, fibrosis, necrosis and other pathological changes,
eventually leading to organ dysfunction (1). In 2010, Badalian-very found 57% of BRAF V600E
gene positive-mutation in 61 LCH patients (2). The disease is an inflammatory myeloid neoplasia
with the characteristics of both an abnormal reactive process and a neoplastic process. Subsequent
studies showed that the mutation rate of BRAF gene in LCH cases was 45% to 65%, suggesting that
the BRAF V600E gene was closely related to LCH incidence (3–11). De Graaf et al. found a variety of
cytokines expressed in LCH lesions, such as IL-1, TGF-a, TGF-b, TNF-a, and TFN-g (11).
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Kannourakis et al. extracted and cultured monocytes from
eosinophilic granulomatous tissues in patients with LCH, and
found that such monocytes could highly express IL-1, TNF-a,
GM-CSF, IL-8, and LIF-21 (12). In addition to the “cytokine
storm” of local lesions, the apparent level of some inflammatory
cytokines in the serum of LCH patients increased, suggesting that
cytokines may be associated with the pathogenesis of LCH. At
present, the etiology and pathogenesis of LCH remains
speculative, bringing about uneven curative effect and lacking
effective prognosis indicator. In the present study, the immune
function of LCH children admitted to our hospital in the past 7
years was reviewed before and after induction treatment.
Clarifying the immune status of LCH children will help provide
insights into LCH prognosis and, ultimately, optimize and
personalize therapy.
METHODS

Patients
This study was performed at the Sun Yat-sen Memorial Hospital
(Guangzhou, China) between March 2013 and September 2020. A
total of 54 children (37 males and 17 females; median age, 3.6
years; age range, 2.0 months to 12.0 years) were enrolled in this
study. All patients fulfilled accepted diagnostic criteria established
by the Histiocyte Society in 2009. Evaluation after the induction
chemotherapy of JLSG-96/02 or Chinese Children’s Histiocytic
Group (CCHG)-LCH-2019 regimens was performed based on the
following criteria (13): i) non active disease (NAD), no evidence of
disease, Resolution of all signs or symptoms; ii) active disease-
better (AD-B), regression of signs or symptoms, no new lesions;
iii) active disease-mixed (AD-I), new lesions in one site, regression
in another site; iv) active disease-stable (AD-S), persistence of
signs or symptoms, no new lesions; vi) worse, progression of signs
or symptoms and/or appearance of new lesions. In isolated bone
disease progression is defined as appearance of new bone lesions
or lesions in other organs. Risk organs include the hematologic
system, the spleen and the liver. All methods were carried out in
accordance with relevant guidelines and regulations. All peripheral
blood samples were obtained with written informed consent from
the legal guardian of patients. The study was approved by the
ethics committee at Sun Yat-sen Memorial Hospital.

Cytokine, Immunoglobulin, and
Lymphocyte Subset Measurement
Prior to treatment, and 2 weeks after the initial induction of
chemotherapy, the serum levels of the cytokines IL-8, IL-6, IL-10,
IL-1b, and sIL-2R were measured using the IMMULITE-1000
Immunoassay System (Siemens Healthineers, Erlangen, Germany)
while the immunoglobulins IgA, IgG, IgM and IgE were detected
by the BN II system (Siemens Healthineers). Lymphocyte subsets
in the peripheral blood, including T, B, natural killer, cytokine-
induced killer, T helper (Th), suppressor T (Ts), Th/Ts, and
regulatory T cells (Treg) were tested using a FACSCanto™ II
flow cytometer (Beckman Coulter, Inc., Brea, CA, USA), using a
BD Multitest™ 6‐color TBNK kit and DIVA software.
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Statistical Analysis
Data were statistically analyzed using SPSS software (version 21.0).
The continuous variables were expressed as the mean ± standard
deviation and the count variables were expressed in frequency/rate.
Original data of inflammatory factors IL-10 and IL-1b
were expressed as <5 pg/ml, which were transformed into
qualitative variables in the correlation analysis. The non-paired t
and Kruskal-Wallis H tests were used to assess the statistical
significance between the groups. To compare qualitative data we
used the Fisher’s exact test. P<0.05 was considered to indicate a
statistically significant difference.
RESULTS

Patient Characteristics (Table 1).

Analysis of Immune Indices and
Clinical Types
A total of 17 patients had multifocal single system disease (SS),
15 patients had multiple system disease without risk organ
involvement (RO-), and the remaining 22 patients had risk
organ involvement (RO+). Among the inflammatory cytokines,
as shown in Figure 1, significantly higher serum levels of sIL-2R
(2244.2 ± 2790.9 vs 595.4 ± 366.7 m/ml), TNF-a (31.0 ± 24.0 vs
11.8 ± 4.6 pg/ml), and IL-10 were observed in the RO+ group, as
compared to the SS group. The percentages of T cells in
peripheral blood were obviously lower in the RO+ group than
RO-, while B cells obviously increased (Figure 2). No statistical
significance was identified in immunoglobulin (Table 2).

Next, patients were divided into the groups depending on the
type of organ involvement. As shown in Figure 3, patients with
hematologic involvement exhibited a significantly higher sIL-2R,
TNF-a, IL-10, and IL-1b expression, as compared to the group
without involvement. sIL-2R, TNF-a, and IL-10 were increased
TABLE 1 | Clinical characteristics of 54 children with LCH.

No. of patients

Gender Gender
Male 37
Female 17

Age at diagnosis (yrs)
Median 3.6

Disease classification
Multifocal single system (SS) 17
Multiple system without risk organ involvement (MS-RO-) 15
Multiple system with risk organ involvement (MS-RO+) 22

Risk organ involvement
Liver 18
Spleen 6
Hematologic 3

Response at week 6
NAD 9
AD-B 33
AD-I 1
AD-S 8
Worse 3
May 2021 | Volume 11
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in patients with liver or spleen involvement. The percentage of T
and Th cells were significantly lower in the spleen+ group, but B
cells subset increased by contrast. Similarly, the percentage of Th
cells and Th/Ts ratio has decreased in the liver+ group (Table 3).

Analysis of Immune Indices Before and
After Induction Chemotherapy
In order to clarify whether the change in immune indices can be
used as a marker of efficacy, serum levels of cytokines,
Frontiers in Oncology | www.frontiersin.org 3104
immunoglobulins and lymphocyte subsets were measured prior to
treatment. All cases underwent initial chemotherapy of the JLSG-96/
02 or CCHG-LCH-2019 regimen, based on disease status. Following
the induction of chemotherapy, Ts cells were significantly decreased
in non-response group. However, no significant changes were
observed in cytokine and immunoglobulin between the response
(NAD+AD-B+AD-I) and non-response (AD-S+Worse) groups
(Table 4). Similarly, no significant changes were observed when
we further divided the data into SS, MS, RO- and RO+ sets.
FIGURE 1 | The serum level of inflammatory cytokines in disease classification.
FIGURE 2 | The lymphocyte subset in disease classification.
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DISCUSSION

LCH is a heterogeneous disease and it can affect from single,
localized lesions to multiple systems/organs, including risk organs.
The prognosis of different subtypes of LCH is highly variable.
Partial cases with a solitary bone lesion can be cured by curettage,
and children with skin-isolated LCH usually require no specific
therapy, as spontaneous healing may occur. MS-LCH with risk
organ involvement, such as liver and hematopoietic system, has a
Frontiers in Oncology | www.frontiersin.org 4105
poor response to therapy, resulting in a particularly dismal
prognosis (14). To date, the pathogenesis of LCH remains
unclear. In recent years, it was found that the MAPK pathway is
involved in the pathogenesis of LCH, with the mutation of more
than half of BRAF, 20% of MAP2K1 and rare ARAF, MAP3K1 (2,
15). However, studies have shown that cytokines are essential for
local infiltration and metastasis of LCH cells (16, 17). De Graaf
et al. found a variety of cytokines in LCH lesions, such as IL-1,
TGF-a, TGF-b, GM-CSF, TNF-a, and TFN-g (11). Kannourakis
TABLE 2 | Immunoglobulin in different disease classification.

Immune indices Disease classification

SS MS-RO- MS-RO+ P-value

IgA(g/l) 2.0 ± 1.0 1.2 ± 0.7 1.4 ± 1.0 0.052
IgG(g/l) 12.5 ± 2.9 10.3 ± 3.6 10.6 ± 3.5 0.178
IgM(g/l) 1.5 ± 0.5 1.3 ± 0.5 1.4 ± 0.7 0.729
IgE(IU/ml) 543.4 ± 1275.1 166.3 ± 284.0 152.6 ± 226.8 0.466
May 2021 | Volume 11 | Article
FIGURE 3 | Analysis of inflammatory cytokines and affected organs.
TABLE 3 | Lymphocyte subset in different affected organs.

Affected organs

Liver+ Liver- P-value Spleen+ Spleen- P-value hematologic+ hematologic- P-value

T cells (%) 57.3 ± 10.6 66.9 ± 6.9 0.001* 56.7 ± 7.7 64.4 ± 9.3 0.058 60.2 ± 14.2 64.3 ± 8.6 0.259
B cells (%) 28.8 ± 12.8 20.0 ± 8.9 0.018* 27.7 ± 10.0 22.6 ± 11.2 0.341 25.4 ± 15.8 22.7 ± 10.4 0.389
Th cells (%) 27.0 ± 7.6 32.5 ± 6.2 0.005* 22.9 ± 3.0 31.5 ± 6.9 0.010* 27.7 ± 8.3 31.2 ± 6.9 0.395
Ts cells (%) 23.0 ± 6.9 26.1 ± 7.7 0.241 27.6 ± 5.0 24.9 ± 7.7 0.333 27.6 ± 12.2 24.8 ± 6.8 0.927
Th/Ts 1.3 ± 0.7 1.4 ± 0.7 0.579 0.9 ± 0.2 1.4 ± 0.7 0.024* 1.2 ± 0.6 1.4 ± 0.7 0.446
CD20+ cells (%) 10.5 ± 10.0 10.6 ± 14.8 0.943 13.8 ± 15.7 10.1 ± 11.3 0.454 19.5 ± 16.9 9.3 ± 10.6 0.165
*Statistical difference between the affected organs groups (P < 0.05).
Th, T helper; Ts, suppressor T.
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et al. extracted and cultured monocytes from eosinophilic
granulomatous tissues in patients with LCH, and found that
such monocytes could produce a large number of IL-1, TNF-a,
GM-CSF, IL-8, and LIF-21 (12). Pathologically, one of the cardinal
manifestations of LCH is the accumulation of pathologic LCH
cells in target tissues, surrounding by the varying degrees of
lymphocyte infiltration, such as T cells, macrophages,
eosinophils, and B cells, as well as multinucleated giant cells.
Egeler used immunohistochemical techniques to detect LCH and
T cells, macrophages and eosinophils in 14 children with LCH; it
was found that cytokines mainly originated from LCH and T cells
(18). On the other hand, LCH is seen as a result of a misguided
differentiation of myeloid dendritic cell (DC) precursors
originating from multiple hematopoietic stem cells, whose
differentiation, maturation and migration are regulated by
diverse cytokines (19). For example, Cumberbatch found that
DCs were significantly concentrated in the lymph nodes of mice
following a subcutaneous injection of TNF-a. However, this
phenomenon did not occur after injecting the same dose of
TNF-a directly into the lymph nodes, suggesting that TNF-a
may contribute to the migration of DC/LC lineage cells (20).

In 1994, Kannourakis reported elevated peripheral blood levels
of GM-CSF and IL-3 in MS-LCH patients, recognizing that
cytokines in LCH lesions were likely to be released to the
circulation (12). Our results demonstrated that the serum levels
of sIL-2R, TNF-a, and IL-10 in the MS-LCH patients with RO+
were significantly higher than SS-LCH patients. In particular, sIL-
2R, TNF-a, and IL-10 were noticeably increased in patients with
liver spleen and hematologic involvement. This indicated that
serum levels of sIL-2R, TNF-a, and IL-10 may reflect the severity
of the disease in LCH to a certain extent. Morimoto’s study, which
found the serum levels of 9 humoral factors, including IL-2R, IL-8,
IL-18, and M-CSF, substantially higher in patients with MS-LCH
than in those with SS-LCH (21). sIL-2R consists of three chains; a
(also termed IL-2Ra, CD25, or Tac antigen), b (also termed IL-
2Rb or CD122), and g (also termed IL-2Rg or CD132). The
principal functions of IL-2Ra are to bind with IL-2 and
Frontiers in Oncology | www.frontiersin.org 5106
promote optimal IL-2 signaling through its association with the
IL-2Rb and IL-2Rg chains, while inhibiting the clonal proliferation
of activated T cells. IL-2, IL-2Rb, and IL-2Rg are rapidly degraded,
but IL-2Ra is recycled to the cell surface. Thus, the available
concentration of the soluble form of IL-2R (sIL2Ra) determines
the tempo, magnitude and extent of T cell immune responses.
TNF-a is mainly produced by activated macrophages with a wide
range of biological functions, including the induction of
inflammation, anti-tumor effect, activation of T cells, and
mediated immune response. IL-2R and TNF-a have been
reported to play an important role in inducing the generation
and maturation of LCs in vitro (22). It has also been found that
serum sIL-2R and TNF-a are significantly elevated in LCH
patients (23, 24). IL‐10 could bind with IL‐10 receptors on
tumor cells to activate STAT3, which thus promotes the
proliferation of tumor cells via the activation of cell cycle‐related
proteins (25, 26). It has been hypothesized that IL-10 may play a
role in the assessment of LCH, since a study reported an increased
expression of IL-10 in LCH lesions (27).

Cytokine elevation indicates a disturbance in cellular
immunity. The number of T cells in an active state in LCH
lesions was second only to the number of LCH cells (27). Treg cells
were also found to be increased in the peripheral blood of LCH
patients (28, 29). Our findings have shown that the percentage of
Th cells and Th/Ts ratio in the peripheral blood of LCH patients
with liver or spleen involvement was lower than those without
involvement. After that, the level of Ts cell dropped during the
induction treatment in non-response group. Suppressor T cell
(Ts), also call regulatory cells (Tregs), were the second most
common type of infiltrating immune cell in LCH tissue (30). Ts
could inhibit immune responses against LCH cells, which lead to
increasing survival of LCH cells, granuloma maintenance, and
dissemination (28). It seems to reflect that the abnormal
regulation of T lymphocyte may affect the disease progression.

The present study failed to reflect the effects of the changes in
immune indicators on the assessment of efficacy. Some clinical
observation showed that the ratio of serum TNF-a (23), IL-2R,
TABLE 4 | Comparison of immune indices before and after induction chemotherapy.

Immune index rangeability (After-before) Response Non-response P-value

DsIL-2R (µ/ml) 50.9 ± 609.6 13.3 ± 879.0 0.870
DIL-6 (pg/ml) −2.4 ± 18.4 4.3 ± 20.2 0.299
DTNF-a (pg/ml) 18.6 ± 66.2 2.9 ± 12.8 0.438
DIL-8 (pg/ml) −0.2 ± 101.0 −31.8 ± 134.4 0.389
DIgA (g/l) 0.2 ± 0.7 0.2 ± 0.3 0.963
DIgG (g/l) 1.8 ± 4.3 1.3 ± 2.4 0.677
DIgM (g/l) 0.3 ± 0.8 0.5 ± 0.3 0.471
DIgE (IU/ml) −13.0 ± 473.2 77.3 ± 158.3 0.539
DT cell (%) −3.4 ± 23.3 −20.4 ± 17.1 0.036*
DB cell (%) 2.1 ± 17.5 9.0 ± 11.7 0.150
DNK cell (%) −0.9 ± 8.2 0.9 ± 8.2 0.531
DTh cell (%) −1.7 ± 13.4 −5.9 ± 17.6 0.384
DTs cell (%) −0.2 ± 12.8 −9.6 ± 12.3 0.035*
DTh/Ts 0.5 ± 3.3 −0.03 ± 1.0 0.347
DCD20+ cell (%) 2.7 ± 16.9 13.2 ± 10.5 0.153
May 2021 | Volume 11 | Article
Th, T helper; Ts, suppressor T.
*Statistical difference between the Affected organs groups (P < 0.05).
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RANKL, OPG, and SRANKL/OPG (24) significantly decreased
following chemotherapy. Patients with IL-18 serum levels of
>500 pg/ml were insensitive to JLSG treatment (21). To date,
there have been a number of studies with similar results, at home
and abroad, but it is necessary to explore and confirm the
underlying mechanisms by a large-scale, multicenter trial.
Therefore, changes in serum cytokines may be used as a
marker of the curative effect of clinical treatment, but whether
it is a sensitive and specific marker requires further research.

Children with LCH often present with MS damage at onset
and frequently involved risk organs. These cases are characterized
by a long disease course, low cure rate and easy recurrence.
Increased understanding of the pathogenesis and pathological
changes of different clinical types of LCH will help optimize and
personalize therapy, which can, in turn, improve the curative
effect. Initial reports have indicated that immunocyte and
cytokine immunoregulatory disorders might be linked to the
occurrence, and development of LCH. Pertinent laboratory
inspections can be used as prognostic indices for children with
LCH, to improve risk-stratification and guide immunotherapy.
Besides, the short assessment time, the change of the clinical
classification and complications, such as infections during
treatment may also affect the results. It may be possible to
collect immune indicators of patients during the 12 weeks of
induction and maintenance treatment in a follow-up study.
Frontiers in Oncology | www.frontiersin.org 6107
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Purpose: The NB5 assay was performed in bone marrow (BM) and peripheral blood (PB)
to detect neuroblastomas (NBs) with micrometastases. The sensitivity and factors
influencing the NB5 assay were preliminarily evaluated.

Methods: The NB5 assay uses RT-PCR to detect the co-expression of five mRNAs from
the neuroblastoma-associated genes, CHGA, DCX, DDC, PHOX2B, and TH. We enrolled
180 cases of neuroblastoma and 65 cases of non-neuroblastoma. Bone marrow and
peripheral blood were collected from every patient. The gold standard for the diagnosis of
NB was pathological evaluation of solid tumor specimens or bone marrow biopsies
(BMBs) from hematological tumors. STATA version 15 and SPSS version 17 software
were used for analysis.

Results: We found that 17 patients were BMB (+), and they were diagnosed as the
International Neuroblastoma Staging System (INSS) stage IV and the high-risk group. All
17 patients were BM (+), while 15 patients were PB (+) (15/17, 88.2%). Among the 163
children who were BMB (−), 56 were BM (+), 40 were PB (+), and 36 were BM (+) and
PB (+). The sensitivity of the NB5 assay in BM (40.5%) and PB (30.5%) was significantly
higher than the sensitivity of BMB (9.4%, P = 0.000). In the non-NB group, four cases were
BM (+) and one case was PB (+). The specificity of the NB5 assay in BM and PBwas 93.8%
and 98.5%, respectively. The sensitivity of the NB5 assay in both BM and PB in INSS stage
IV patients was significantly higher than that in INSS stage I–II patients (P <0.05). The
sensitivity of the NB5 assay in both BM and PB in the high-risk group was significantly higher
than that in the middle-low-risk groups (P = 0.0001). Logistic regression analyses indicated
that liver metastases and bone metastases were the primary factors influencing the
sensitivity of the NB5 assay in BM and PB (P <0.05).

Conclusions: The NB5 assay had significantly higher sensitivity than the pathological
analysis of BMB in detecting NB with micrometastases. The NB5 assay had higher
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sensitivity in INSS stage IV or the high-risk group. Liver metastases and bone metastases
were the primary factors that affected the sensitivity of the NB5 assay.
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INTRODUCTION

Neuroblastoma(NB) is themost commonextracranial solid tumor in
children and accounts for 15% of all pediatricmalignancy deaths (1).
Although NB has a heterogeneous clinical course and may regress
spontaneously, most patients with NB experience early onset and
progress rapidly. Approximately 45% of patients have distant
metastatic lesions when diagnosed during infancy (2). NB with
micrometastases are known as the minimal residual disease (MRD)
and contribute to relapse, but are difficult to detect (3). The
persistence of MRD is also predictive of worse patient survival and
poorer outcomes (4). Bone marrow biopsies (BMBs) are routinely
used for thediagnosis of bonemarrow (BM)metastasis by cytological
and histological examinations, which exhibit an analytical sensitivity
of less than 1 × 10−3. Thus, such sensitivities could severely
underestimate the prevalence of bone marrow involvement (1, 2, 5,
6). Immunocytological investigations or flow cytometry had an
analytical sensitivity of up to (1 × 10−4) − (1 × 10−5) for MRD in
NB (5). With well-defined reverse transcriptase polymerase chain
reaction (RT-PCR) markers that could provide a sensitivity of MRD
of 1 × 10−6, oneNB cell among 106 normal cells could be detected for
the early diagnosis of NB.

Several MRD diagnostic methods based on the expression of
multiple gene markers have been reported (7–11). As a novel
diagnostic method for NB, the mRNAs of five neuroblastoma
markers (NB5 assay), including chromogranin A (CHGA),
doublecortin (DCX), dopadecarboxylase (DDC), paired-like
homeobox 2b (PHOX2B), and tyrosine hydroxylase (TH) were
detected in the BM and peripheral blood (PB) from patients using
RT-PCR (8). The NB5 assay was developed at the Children’s
Hospital of Los Angeles and is very sensitive in detecting MRD in
BM and PB. Shanghai Bokang Biotechnology Co. LTD performed
the detection services for MRD in NB using the NB5 assay.

The current consensus is that MRD remains in a dormant state,
until “awakened” to progress towards overt metastases (12). MRD
existing in the blood and bone marrow could contain tumor-
initiating cells that generate tumors through abnormal
proliferation and differentiation (13). A good MRD detection
marker should be exclusively expressed in NB cells and not in
non-NB cells; however, no clinical studies evaluated the sensitivity
and effectiveness of these methods with NBmarkers. In this study,
the NB5 assay was performed to assist in the clinical diagnosis of
NB, and its sensitivity and specificity were preliminarily evaluated.
METHODS

Patients
Patients were regarded as having micrometastases when the
expression of three or more genes was detected. Between
August 2015 and May 2019, we enrolled 180 NB cases and 65
2110
non-NB cases from the Children’s Hospital of Fudan University.
This study received approval from the local Research Ethics
Committee of our hospital and was performed in accordance
with the approved guidelines. Written informed consent was
obtained from the guardians of each patient. The gold standard
for the diagnosis of NB was based on pathological evaluations of
solid tumor specimens or the BMBs of hematologic tumors.

Sample Processing and NB5 Assay
BM (2 ml) and PB (2 ml) were collected from each patient with a
solid tumor or hematologic tumor, respectively. Peripheral blood
mononuclear cells (PBMCs) were isolated from heparinized
blood and bone marrow by density separation with Ficoll–
Hypaque (14). Total RNA was prepared using the TRIzol®

reagent (Invitrogen) and processed with the RNeasy® Mini Kit
(QIAGEN). The RNA Integrity Number (RIN) was obtained
using the Agilent Bioanalyzer, and only specimens with RIN >5.5
were tested. Reverse transcription of 2,500 ng of total RNA in
20 ml was carried out with M-MLV Reverse Transcriptase (Life
technologies). The NB5 assay quantified the expression of the
neuroblastoma-associated genes, CHGA, DCX, DDC, PHOX2B,
and TH, as well as the housekeeping gene, beta-2-microglobulin
(B2M). Predesigned and preoptimized probes and primer sets
(Supplementary Table S1) were included with 2,500 ng of cDNA
and amplified using standard cycling conditions using the 7900HT
Fast Real-Time PCR System (Applied Biosystems). The DCt was
chosen instead of Ct alone as DCt accounts for the RNA quality of
the samples obtained.Note thatDCt valuesmay be equivalentwhen
one specimen has no detectable NBmRNA, and other specimen is
mildly positive. The detection service of NB5 assay was supplied by
Shanghai Bokang Biotechnology Co. LTD.

Statistical Methods and Software
The sensitivity and specificity of the NB5 assay were determined
using STATA version 15 software. The chi-square test and logistic
regression analyses were carried out using SPSS version 17
software. P-values <0.05 were considered statistically significant.
RESULTS

Patient Demographics
TheNBgroupincluded101malesand79femalesagedfrom1monthto
10 years. Patient characteristics, International Neuroblastoma Staging
System (INSS) stage, risk group, and clinical data are listed in Table 1.
The non-NB group contained 65 diverse hematological tumors and
solid tumors, including nephroblastoma (n = 12), pancreatoblastoma
(n = 4), retinoblastoma (n = 4), pheochromocytoma (n = 1),
adrenocortical carcinoma (n = 1), rhabdomyosarcoma (n = 5),
teratoma (n = 5), lymphoma (n = 10), lymphocytic leukemia
(n = 16), hepatoblastoma (n = 5), primitive neuroectodermal tumor
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(n=1), and an endodermal sinus tumor (n=1). The clinical features of
metastasis in the non-NB group are listed in supplementary Table S2.

The Sensitivity and Specificity
of the NB5 Assay
We identified NB cells in 17 patients based on the evaluation of
BMBs. All such individuals were clinically diagnosed as the INSS
stage 4, high-risk group. All 17 patients were BM (+), while 15
patients were PB (+) (15/17, 88.2%). Among the 163 children
who were BMB (–), 56 were BM (+), 40 were PB (+), and 36 were
BM (+) and PB (+). The sensitivity of the NB5 assay in BM
(40.6%) was significantly higher than that of BMBs (9.4%, P =
0.000). Similarly, the sensitivity of the NB5 assay in PB (30.5%)
was significantly higher than that of BMBs (9.4%, P = 0.000).
However, there was no significant difference between the
sensitivity of the NB5 assay in BM and PB (P = 0.103).

In the non-NB group, four cases were BM (+), including those
with retinoblastoma (n = 2), nephroblastoma (n = 1), and teratoma
(n=1).One casewas PB (+),whichwas an endodermal sinus tumor
(n = 1).

The sensitivity and specificity of the NB5 assay in BM were
40.5% (95%CI, 33.3–48.1%) and 93.8% (95%CI, 85–98.3%),
respectively. The likelihood ratio (−), the likelihood ratio (+),
the negative predictive value, and the positive predictive value are
shown in Table 2.
Frontiers in Oncology | www.frontiersin.org 3111
The sensitivity and specificity of the NB5 assay in BM were
30.6% (95%CI, 23.9–37.8%) and 98.5% (95%CI, 92–100%),
respectively. The likelihood ratio (−), the likelihood ratio (+),
the negative predictive value, and the positive predictive value are
shown in Table 3. The receiver operating characteristic (ROC)
curves of the sensitivity of the NB5 assay and BMB indicated that
the NB5 assay in PB and BM samples exhibited significantly
higher sensitivity than BMB (Figure 1).

Analyses of the Sensitivity of the
NB5 Assay
The sensitivity of the NB5 assay in BM and PB was compared to
BMBs from different INSS stages (Table 4). The results revealed
significant differences between the NB5 assay and BMBs in INSS
stage III and IV samples. The sensitivity of theNB5 assay inBMand
PB from INSS stage IV sampleswas significantly higher than that in
INSS stage I–II samples (P < 0.05). The sensitivity of the NB5 assay
inBMandPB in samples from the high-risk groupwas significantly
higher than that in samples from the middle-low-risk groups (P =
0.000). The sensitivity of the NB5 assay between samples from
different INSS stages are shown in Table 5.

The Factors Influencing the Analysis
of the NB5 Assay
We carried out logistic regression analyses of liver metastases,
bone metastases, lymph node metastases, tumor size >10 cm,
neuron-specific enolase (NSE) ≥370 ng/ml, and MYCN with the
NB5 assay. The results revealed that liver metastases (P = 0.028)
and bone metastases (P = 0.002) affected the sensitivity of the
NB5 assay in BM. Three factors had significant differences in the
NB5 assay in PB, including liver metastases (P = 0.0001), bone
TABLE 2 | Sensitivity and specificity of the NB5 assay in BM.

[95% Confidence
Interval]

Sensitivity Pr(+|A) 40.60% 33.30–48.10%
Specificity Pr(−|N) 93.80% 85–98.30%
ROC area (Sens. + Spec.)/2 0.672 0.626–0.718
Likelihood ratio (+) Pr(+|A)/Pr(+|N) 6.59 2.51–17.3
Likelihood ratio (-) Pr(-|A)/Pr(−|N) 0.633 0.553–0.726
Odds ratio LR(+)/LR(−) 10.4 3.77–28.6
Positive predictive value Pr(A|+) 94.80% 87.20–98.60%
Negative predictive value Pr(N|−) 36.30% 29–44.10%
May 202
1 | Volume
TABLE 1 | Clinical characteristics of NB patients.

Total cases N (%)

Age (mo)
<12 43 23.89%
≥12 137 76.11%
Sex
Female 79 43.89%
Male 101 56.11%
Primary site
Abdomen 162 90.00%
Thorax and other 18 10.00%
Tumor size
>10 cm 65 36.11%
≤10 cm 115 63.89%
Tumor stage
I 37 20.56%
II 17 9.44%
III 21 11.67%
IV 89 49.44%
Ivs 16 8.89%
Risk group
Low risk group 97 53.89%
medium risk group 42 23.33%
high-risk group 41 22.78%
MYCN gene
Amplification 27 15.00%
Nonamplification 153 85.00%
NSE (ng/mL)
<370 131 72.78%
≥370 49 27.22%
Metastatic site
Bone 35 19.44%
Bone marrow 17 9.44%
Lymph node 97 53.89%
Liver 23 12.78%
TABLE 3 | Sensitivity and specificity of the NB5 assay in PB.

[95% Confidence
Interval]

Sensitivity Pr(+|A) 30.60% 23.90–37.80%
Specificity Pr(−|N) 98.50% 92–100.00%
ROC area (Sens. + Spec.)/2 0.645 0.608–0.682
Likelihood ratio (+) Pr(+|A)/Pr(+|N) 19.9 2.81–141
Likelihood ratio (-) Pr(−|A)/Pr(−|N) 0.705 0.637–0.781
Odds ratio LR(+)/LR(−) 28.2 4.8–0
Positive predictive value Pr(A|+) 98.20% 90.40–100.00%
Negative predictive value Pr(N|−) 33.90% 27–41.10%
Pr, proportion; Sens, sensitivity; Spec, specificity; LR, likelihood ratio; +, positive;
−, negative; A, Abnormal; N, Normal.
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metastases (P = 0.018), and NSE (P = 0.035). No other factors
were significantly different (P > 0.05) (Table 6).

DISCUSSION

Previously, CHGA, DCX, DDC, PHOX2B, and TH were
suggested as indicators of micrometastases in NB by single
mRNA or combinations (9, 11). Several studies suggested that
the analysis of multiple genes was more informative than the
analysis of a single gene in detecting NB cells (15–18). In fact, the
combination of all five genes is more sensitive in detecting NB
micrometastases (8).
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PHOX2B encodes a homeodomain transcription factor
involved in the differentiation and development of several major
noradrenergic neural cells (19). PHOX2B is highly expressed inNB
and has been reported as a specificmarker forMRD inNB (17, 20).
DCX is specifically expressed in migrating neurons of the central
and peripheral nervous systems, and regulates the microtubule
cytoskeleton by signaling pathway (21).CHGA is a neuroendocrine
marker that participates in coding for neurosecretory granules that
promote the differentiation of NB cells (22). TH encodes the first
enzyme involved in the catecholamine synthesis pathway, which
serves a functional role in thedetectionofNBwithmicrometastases,
as catecholamines are mainly produced by NB cells (3). Similar to
TH, DDC is a key enzyme involved in catecholamine synthesis and
has been claimed to be a sensitive marker for NB (23).

The present study focused on assessing the sensitivity and
specificity of the NB5 assay in clinical applications (8) and
explored the factors influencing the assay. The sensitivity
and specificity of the assay in BM were 40.5% and 93.8%, while
theywere 30.6% and 98.5%, respectively, for PB samples.We found
that the sensitivity of the NB5 assay in BM and PBwas significantly
higher than that of BMB; however, there was no significant
difference between the assay sensitivity in BM and PB (P = 0.103).
The sensitivity of the NB5 assay in BM and PB samples from INSS
stage IV sampleswas significantly higher than that in INSS stages I–
II samples,while the sensitivity inBMandPB in thehigh-risk group
was significantly higher than that in the middle-low-risk groups.
Logistic regression analyses indicated that livermetastases andbone
metastaseswere theprimary factors influencing the sensitivityof the
NB5 assay in BMandPB. Liver and bonemetastases are transferred
through the blood, and thus, there is a significant correlation with
the detection efficiency of the NB5 assay. Lymph nodes are
transferred through the lymphatic system, and therefore, have
little impact on the NB5 assay in BM and PB. The NB5 assay
results were not associated with tumor size, but may be associated
with tumor biology. NSE >370 ng/ml was the factor influencing the
NB5 assay in PB (P = 0.035), while MYCN was a possible
influencing factor in BM (P = 0.069).

Except as diagnostic methods, Virginie et al. suggested that the
mRNA levels of PHOX2B, TH, and DCX in BM could be used as
predictors of event-free survival (EFS) andoverall survival (OS) and
also to monitor the statuses of patients throughout their course of
treatment for NB (16). Janine et al. found that the expression of
these mRNAs varied greatly during the treatment of NB or during
relapse, which rendered them excellent markers (24). However,
Alexander et al. found that flow cytometric analysis for NB cells in
BMwasmuch stronger thanmRNAdetection in prognostic impact
(25). Thus, based on this study, the prediction of the NB5 assay in
the relapse and prognosis of NB warranted further evaluation,
especially compared with flow cytometric analyses.
FIGURE 1 | ROC curves indicating the sensitivity of the NB5 assay in BM
[area, 0.672 (95% CI 0.625–0.718)]; PB [area, 0.645 (95% CI 0.608–0.682)];
and BMB [area, 0.547 (95% CI 0.525–0.568)].
TABLE 4 | Sensitivity of the NB5 Assay between BM, PB, and BMBs from
different INSS stages.

N BM BMB p value

BM vs BMB PB vs BMB

I 37 4 0 0.071 0.135
II 17 2 0 0.271 0.514
III 21 7 0 0.014 0.024
IV 89 55 17 0.0001 0.004
IVs 16 5 0 0.047 0.082
Total 180 73 17 0.0001 0.0001
Bold value means p < 0.05 which showed significant difference.
TABLE 5 | Sensitivity of the NB5 assay in BM and PB from different INSS stages.

BM PB

II III IV IVs II III IV IVs
I 0.626 0.087 0.00001 0.135 0.635 0.087 0.01 0.159
II 0.197 0.012 0.248 0.137 0.015 0.205
III 0.131 0.597 0.236 0.574
IV 0.149 0.219
Bold value means p < 0.05 which showed significant difference.
TABLE 6 | Factors influencing the analysis of the BN5 assay in BM and PB.

P value Liver Lymph node Bone Tumor
size>10 cm

NSE>370 MYCN

BM 0.028 0.332 0.002 0.391 0.261 0.069
PB 0.018 0.445 0.0001 0.153 0.035 0.284
May
 2021 | Volume
 11 | Article
Bold value means p < 0.05 which showed significant difference.
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Illegitimate expressions were investigated in the non-NB group,
including in retinoblastoma (n = 2), nephroblastoma (n = 1), and
teratoma samples (n = 1) in BM (+) cases, and in an endodermal
sinus tumor sample (n = 1) in a PB (+) case. However, most of such
samples were weakly positive in the NB5 assay. Among the five
genes evaluated for mRNA expression, PHOX2B was a more
specific biomarker for NB than TH, DDC, CHGA, or DCX. The
mRNA expression of TH, DDC and DCX was observed in
hematopoietic cells and PB from healthy donors, while PHOX2B
expression was limited to only NB samples (7, 9, 26). Despite the
small number of false positives and false negatives in the NB5 assay,
we will now conduct a larger multicenter study, combined with
clinical characteristics and multiple other tests for further
verification of NB. To maximize the sensitivity and specificity of
the NB5 assay, we will optimize the assay to improve its accuracy
of diagnosis.
CONCLUSION

In summary, the NB5 assay had significantly higher sensitivity in
detecting NB with micrometastases in BM and PB than BMB.
The NB5 assay had higher sensitivity in patients with INSS stage
IV or in the high-risk group. Liver metastases and bone
metastases were the factors that affected the sensitivity of the
NB5 assay in BM and PB samples. In the future, we will analyze
the relationship between the NB5 assay and prognosis and
explore the relationship between tumor relapse and PHOX2B,
TH, DDC, CHGA, and DCX expression.
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As treatment protocols for medulloblastoma (MB) are becoming subgroup-specific,
means for reliably distinguishing between its subgroups are a timely need. Currently
available methods include immunohistochemical stains, which are subjective and often
inconclusive, and molecular techniques—e.g., NanoString, microarrays, or DNA
methylation assays—which are time-consuming, expensive and not widely available.
Quantitative PCR (qPCR) provides a good alternative for these methods, but the current
NanoString panel which includes 22 genes is impractical for qPCR. Here, we applied
machine-learning–based classifiers to extract reliable, concise gene sets for distinguishing
between the four MB subgroups, and we compared the accuracy of these gene sets to
that of the known NanoString 22-gene set. We validated our results using an independent
microarray-based dataset of 92 samples of all four subgroups. In addition, we performed
a qPCR validation on a cohort of 18 patients diagnosed with SHH, Group 3 and Group 4
MB. We found that the 22-gene set can be reduced to only six genes (IMPG2, NPR3,
KHDRBS2, RBM24, WIF1, and EMX2) without compromising accuracy. The identified
gene set is sufficiently small to make a qPCR-based MB subgroup classification easily
accessible to clinicians, even in developing, poorly equipped countries.

Keywords: medulloblastoma, subgroup classification, biomarkers, machine learning, gene expression
INTRODUCTION

Medulloblastoma (MB)—the most common malignant brain tumor in children—demonstrates
extremely high biological and clinical heterogeneity (1). Accordingly, it is divided into four
subgroups, each representing distinct clinical, biological, and genetic profiles and involves a distinct
activation pathway (2–7): WNT (or Group 1) involves Wingless pathway signaling (3); SHH (or
Group 2) involves sonic hedgehog pathway signaling (4); GroupC (or Group 3) involves photoreceptor
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and GABAergic pathway signaling; and Group D (or Group 4)
involves neuronal and glutamatergic signaling (6). Importantly,
although the histological presentation of the different subgroups
is often similar, their response to treatment and the clinical
outcomes are subgroup-specific (8); therefore, the World Health
Organizationhas recently recommended thatmolecularmarkers be
integrated as part of MB tumor diagnostic criteria (9). This
recommendation is currently limited to distinguishing between
the WNT and SHH subgroups, but means for distinguishing
between Group 3 and Group 4 are already clinically required.

Transcriptomic analyses have shown promising potential for
distinguishing between the four MB subgroups. Most notably,
Northcott et al. (10) employed the NanoString technology that is
based on a directmolecular barcoding of targetmolecules, followed
by digital detection of their expression, to identify a set of 22 genes
that can distinguish between the fourMB subgroups (11); this set is
currently used in many clinical laboratories worldwide. However,
NanoString has two important limitations vis-à-vis its clinical use
for MB subgroup classification: first, it is expensive and currently
unavailable in most medical institutes, especially in developing
countries; and second, it is not sufficiently reliable and shows
relatively high rates of MB misdiagnosis and subgroup
misclassification, especially between groups C and D (12). DNA
methylation ismore reliable inMB subgroup classification (13), but
it is even more costly than NanoString and is unavailable in most
medical institutes. Thus, there is a need to develop a reliable—yet
simple and cost-effective—means of MB subgroup classification,
which could be utilized through readily available technologies, such
asqPCR. Indeed,Kunder et al. (14) used a quantitativePCR(qPCR)
analysis, based on 21 biomarkers (including 12 protein-coding
genes and nine microRNA expression profiles), but this number
of genes is still high, hence impractical for qPCR test in the clinic.

To meet this need, this study aimed to identify sets of genes
that comprise the minimal number of genes required for reliably
differentiating between all four MB subgroups. To achieve this
goal, we fed published data from microarray studies of MB,
which comprehensively characterized the expression pattern of
thousands of genes simultaneously, as input for machine-
learning-based classifiers for cancer classification (15–17). Such
classifiers were previously applied to discriminate anaplastic
from non-anaplastic MB image regions (18) and to predict
subtypes of the four MB subgroups (19), but, to the best of our
knowledge, they have not been used to extract sets of potential
biomarkers from microarray data. Indeed, this approach has
enabled us to identify both protein-coding genes and non-coding
RNAs as potential biomarkers for MB subgroup classification.
These biomarkers could reliably be used in MB-related diagnosis,
prognosis, and clinical decision-making, and they could later be
used to identify potential drug targets.
METHODS

Public Datasets
To identify minimal gene sets for MB subgroup classification, we
used the dataset GSE85217 (19) to train and test the algorithms,
Frontiers in Oncology | www.frontiersin.org 2116
and the datasets GSE37418 (20) and GSE41842 (21) for
validation. All datasets are publicly available, quality-
controlled, mRNA expression matrixes that were generated
using Affymetrix microarrays. The datasets were downloaded
from the gene expression omnibus (GEO) (22) database, which
contains data on subjects diagnosed with any of the four MB
subgroups. Specifically, the GSE85217 dataset comprises 763
samples (70 WNT samples, 223 SHH samples, 144 Group 3
samples, and 326 Group 4 samples), which were molecularly
classified by inferring the expression levels of 22 MB signature
genes, using the NanoString technology. The GSE37418 dataset
comprises 73 samples (14 WNT samples, 13 SHH samples, 18
Group 3 samples, and 47 Group 4 samples), which were
segregated into four MB subgroups using mRNA expression
profiling and immunohistochemistry. The GSE41842 dataset
comprises 19 samples (six WNT samples, three SHH samples,
two Group 3 samples, and eight Group 4 samples), which were
molecularly classified using unsupervised hierarchical clustering
with the 1000 most differentially expressed genes. All samples
included in these datasets were collected from fresh frozen tissue
samples. Demographic and clinical data available for the above
datasets is provided in Supplementary File 1 - Public Datasets.

Public Dataset Normalization
For the datasets GSE85217 and GSE41842, we downloaded the
robust multi-array average normalized matrixes. For the
GSE37418 dataset, we normalized the gene expression data by
using the MAS 5.0 algorithm; therefore, we downloaded the raw
CEL files and performed a robust multi-array average
normalization by using the affy R package (23).

Microarray Gene Annotation
To identify and match gene symbols to the probe ID of molecules
in the two Affymetrix microarray datasets mentioned above, we
used the biomaRt R package (24).

Machine Learning Algorithms for
Classification
We used the Waikato environment for knowledge analysis
(WEKA) workbench software (25)—a Java-based machine
learning algorithm collection—for all classification analyses.
We initially employed four well-known algorithms: C4.5
Decision Tree (DT) (algorithm J48) (26); Decision Rules
(RIPPER Rule Induction algorithm JRip) (27); Random Forest
(28); and Support Vector Machines (SVM) using Sequential
Minimal Optimization (SMO) (29–31). We chose the default
parameters for all algorithms and used a 10-fold cross-validation
to prevent overfitting. A detailed description of the methodology
is provided in the Supplementary Information section.

In addition to the four well-established algorithms mentioned
above, we designed and developed a novel algorithm that we
termed SVM Attribute Ranking and Combinations (SARC).
The main steps of the algorithm included: 1. building six
pairwise models for the four MB subgroups, using the SVM
classification model with a linear kernel; 2. for each binary
classifier, ranking the attributes according to their squared
weight; 3. for each subgroup, performing an aggregation of
June 2021 | Volume 11 | Article 637482
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attribute ranks by summarizing each attribute rank to produce
final ranks, leading to a list of top attributes; 4. using a
combination of 0–12 top attributes (Supplementary Table S1)
of each subgroup as the de-facto feature-selection method for the
final classifier; and 5. producing an SVM classifier based on the
134 combinations, eventually choosing the smallest, best-
performing combinations for each accuracy level. When using
the NanoString 22-gene set to build the classification model, we
used combinations of all 22 attributes. A more detailed
description is provided in the Supplementary Information
section (Supplementary Tables S2–S5 and Supplementary
Figure S1). We used the top nine reduced gene sets output by
the SARC classifier (Supplementary Table S3) as input for the
independent public dataset validation.

Visualization
We generated clustering plots by using t-SNE, a non-linear
dimensionality-reduction algorithm, with the Rtsne (32, 33) R
package, version 0.15. Each plot was made with 1,000 iterations
and the perplexity set to 30.

Patient Cohort and Tumor Collection
for Validation
An independent cohort of pediatric and young adult patients
diagnosed with MB was collected at the Pediatric Hematology &
OncologyDepartment at the Schneider Children’sMedical Center,
Israel, and from the Pathology Department at the Rabin Medical
Center, Israel. Since 2013, the standard of care has been to assign
MB subgroup by using the NanoString nCounter Technology
(NanoString Technologies, Seattle, WA), as described previously
(10). We selected only the patients with MBs whose tumor
subgroup had been classified by NanoString for clinical purposes
and who had remaining RNA for real time PCR validation. Group-
A MB (WNT) samples were not available to us, hence only SHH,
Group 3 and Group 4 were included in qPCR analysis. The RNA
wasobtained fromprimary tumors for the initial clinical standardof
care test at the time of diagnosis before any treatment; we did not
extract any new RNA for this study. Altogether, the cohort used for
validation comprised 18 children and young adults (8 males, 10
females;mean age at diagnosis: 6.53±4.5 years),whowere classified
by NanoString as either SHH, Group 3, Group 4, or non-WNT/
SHH (i.e., either Group 3 or Group 4) MBs (n = 5, 3, 8, and 2
respectively; Supplementary Table S6). Of the 18 patients, 11 were
diagnosed with a localized disease and six were diagnosed with a
metastatic disease (fourM1 and twoM2); data were unavailable for
one patient (SHH4). All patients were treated with chemotherapy,
eight patients underwent autologous bonemarrow transplantation,
and 14 patients received radiation therapy in addition to
chemotherapy. Four patients did not receive radiation therapy
due to their young age (<3 y). Disease recurrence was recorded in
threepatients. Fourpatientsdiedaltogether, includingonewhodied
from disease progression and three who died from other causes:
patient SHH5 died as a result of secondary AML, patient C2 died of
secondary diffuse intrinsic pontine glioma (DIPG) despite not
receiving radiation, and patient D7 died from post-operative
complications prior to therapy. All tissue samples, were from
Frontiers in Oncology | www.frontiersin.org 3117
freshly frozen (FF) tissues. The study design adhered to the tenets
of the Declaration of Helsinki and was approved by the local IRB
and the National Review Board of the Israel Ministry of Health.

Reverse-Transcription (RT) and qPCR
The cDNA synthesis was performed using the cDNA Reverse
Transcription Kit (ABI High Capacity cDNA reverse-
transcription kit, Cat No. 4368813) and was followed by a
quantitative expression analysis using the SYBR Green qPCR
Kit (PowerUP SYBR green master mix ABI, Cat No. A25776)
according to the manufacturer’s instructions. The expression
levels of each gene were normalized to those of GAPDH. Data
and melting curves were analyzed by using the QuantStudio3
real-time instrument (Applied Biosystems, Waltham,
Massachusetts(and associated software. Primer sequences are
provided in Supplementary Table S7.

qPCR Expression Level Analysis
The expression level of each protein-coding gene was normalized
to that of GAPDH, as determined by the delta cycle threshold
(dCt) method. Since we did not have a control (non-MB)
cerebellum sample, we used dCt for unsupervised hierarchical
clustering, generated using the pvclust (34) R package, version
2.0-0. Euclidean was used as the distance measure and ward.D2
was used as the linkage method. For each cluster in the
dendrogram, p-values were calculated by multiscale bootstrap
resampling (nboot = 1000).
RESULTS

Applying Machine-Learning Algorithms for
MB Subgroup Classification
To detect the minimal set of genes that accurately distinguishes
between MB subgroups, we employed four well-known machine-
learning algorithms, including Decision Tree, Decision Rules,
Random Forest, and Support Vector Machines (SVM-SMO).
The different algorithms were run in two modes. In the first, all
21,641 attributes (defined as Probe ID, Supplementary File 2)
were used as input to the algorithm; in the second, the algorithms
were fed with the known NanoString 22-gene set. The attributes
selected by each algorithm for classification in either mode, as
well as the classification accuracy, are indicated in Table 1. All
four algorithms were highly accurate, as compared with the
known 22-gene set of the NanoString panel. The Decision Tree
and Decision Rules models resulted in a reduced gene sets (9 and
10 genes, respectively) with a similar or a slightly higher accuracy
than that of the 22-gene signature set, while Random Forest and
SVM-SMO used all input attributes and demonstrated the
highest accuracy (Table 1).

The SVM Attribute Ranking and
Combinations (SARC) Classifier Displays
the Highest Accuracy
Despite the high accuracy of the Random Forest and SVM-SMO
algorithms, they did not enable us to derive a gene-set output
June 2021 | Volume 11 | Article 637482
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because they are non-interpretative regarding the attributes
being used during the classification process. Therefore, we
developed a novel algorithm—the SVM Attribute Ranking and
Combinations (SARC)—in an attempt to obtain accuracy levels
that are comparable to or higher than those of the Random
Forest and SVM-SMO algorithms, while allowing a tailored
feature selection.

When we introduced all genes as input, the SARC classifier
provided a list of gene sets (between four and 32 biomarkers in
each set; Figure 1A and Supplementary Table S2), of which the
top 14 sets demonstrated accuracy levels between 92.4% and
98.56%. In most sets, the lowest number of genes necessary for
classification was in the WNT and SHH group, while the highest
number necessary was in Group 4. When we introduced the
NanoString 22-gene set as input, the SARC classifier provided
nine gene sets (Figure 1B and Supplementary Table S3) that
comprised between three and 15 biomarkers and demonstrated
an accuracy between 92.01% for the smallest set (three genes)
and 98.3% for the largest set (15 genes). Table 2 indicates the
gene sets that demonstrated the highest accuracy levels; these
include a set of 32 genes obtained when all genes were introduced
to the SARC classifier as input, and a set of 15 genes obtained
when the NanoString 22-gene set was introduced as input.
Indeed, the SARC algorithm demonstrated the highest
accuracy of all five tested algorithms.
Frontiers in Oncology | www.frontiersin.org 4118
The SARC Classifier Reduces the Number
of Biomarkers Required for Accurate
Classification to Only Six Genes –
Validation in an Independent Dataset
The best-performing sets used by the SARC algorithm for
classification comprised either 32 or 15 attributes. This number of
biomarkers is too large to be practically used for qPCR in the clinic.
The performances of the various reduced sets of genes
(Supplementary Tables S2, S3) suggested that the number of
biomarkers can be reduced to only six genes (IMPG2, NPR3,
KHDRBS2, RBM24, WIF1, and EMX2) without compromising
accuracy (Supplementary Table S3 and Supplementary Figure
S2). To validate this assumption, we tested the classification
accuracy of these nine reduced sets (listed in Supplementary Table
S3) in two independent public datasets, GSE37418 (20) and
GSE41842 (21), which, together, contain 92 samples (73 and 19
samples, respectively) of all four MB subgroups. The classification
accuracy of the six-gene set was 93.48%, which is higher than the
accuracy observed when all 22 NanoString genes were introduced to
themodel (Table3) accuracy, sensitivity, andspecificity is specified in
Supplementary File 3 – Confusion Matrix.

Next, we created t-SNE plots (Figure 2) to visualize the
performance of the full NanoString and the reduced gene sets
on the validation dataset (n = 92 samples). Both gene sets
performed well in separating the MB groups, with a slightly
TABLE 1 | The accuracies of the sets of attributes selected for classification by each algorithm, based on the GSE85217 dataset (n = 763 MB samples).

Algorithm Input1 Accuracy
(%)

Attributes required for classification (output)2 Number of attributes
required for classification

Decision tree3 All attributes 95.5 OTX2, TMEM51, AIF1L, RASSF4, DYNC1I1, TRAK2, RPL3, C1orf112, RABGAP1 9
22 genes 94.5 ATOH1, WIF1, RBM24, PDLIM3, NRL, TNC, GABRA5, KHDRBS2, SFRP1, IMPG2 10

Decision rules3 All attributes 94.2 PDLIM4, NPR3, PDE10A, PDK2, RALGPS2, SHD, BSG, ARNTL2, USP2, FBXL21 10
22 genes 94 GAD1, PDLIM3, WIF1, EYA1, NPR3, EYS, RBM24, GABRA5, EOMES, EMX2, KCNA1,

ATOH1, IMPG2
13

Random forest All attributes 97.8 All attributes 21,641
22 genes 97.1 All attributes 22

SVM-SMO All attributes 98.4 All attributes 21,641
22 genes 97.8 All attributes 22
June 2021 |
1Attribute sets that were used as inputs for the algorithm.
2Attributes chosen by each algorithm for classification.
3Detailed results obtained from these algorithms can be found in Supplementary Figure S1 and Supplementary Table S5.
A B

FIGURE 1 | Accuracy of the smallest best-performing gene sets output by the SARC classifier, applied on the GSE85217 dataset (n = 763 samples), (A) when
introducing all 21,641 attributes as input, and (B) when introducing the Nanostring 22-gene set as input.
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better separation observed by the 12-gene set, whose performance
was similar to that of the full 22-gene set. Not surprisingly,
the WNT and SHH groups are presented as clearly separated
clusters, while the separation between Group 3 and Group 4 is
less pronounced.

Classifying MB Subgroups in an
Independent Clinical Cohort Based on the
SARC Reduced Gene Set, Using qPCR
As a proof-of-concept that the suggested gene sets can be used to
classify MB subgroups in patients by using gene expression levels
generated by qPCR, we validated our results on an independent
cohort of 18 patients, whoseMB subgroup was previously classified
by NanoString. The cohort included five patients with SHH MB,
three patients with Group 3 MB, eight patients with Group 4 MB,
and two patients who were classified as non-WNT/SHH MB, i.e.,
Frontiers in Oncology | www.frontiersin.org 5119
with either Group 3 or Group 4MB (Figure 3 and Supplementary
Table S6). At the time of completion of this study, we did not have
samples from patients with a WNT MB; hence, this subgroup was
not included in the validation.

The unsupervised hierarchical clustering was performed
using the expression levels (namely, dCt) of the reduced six-
gene set (IMPG2, NPR3, KHDRBS2, RBM24, WIF1, and EMX2).

The reduced gene set performed well in classifying the
patients to their diagnosed MB subgroups (Figure 4A and
Supplementary Figure S3A). Adding the two patients whose
subgroup was undefined resulted in the clustering of patient
GrpC.D14 with patients from Group 3, and of patient GrpC.D15
with patients from Group 4 (Figure 4B and Supplementary
Figure S3B). Hence, our data demonstrate the potential of using
this small set of genes for an easy and accessible qPCR-based MB
subgroup classification.
TABLE 3 | Classification accuracy of the reduced genes sets (12 genes or fewer), as compared with the full, 22-gene NanoString set, used on the independent
validation datasets GSE37418 and GSE41842 (n = 92 MB samples altogether).

Number of attri-
butes

Accuracy
(%)

Input set for validation1

22 91.30 EYS, TNC, IMPG2, OAS1, EYA1, SFRP1, KCNA1, RBM24, KHDRBS2, NPR3, GAD1, NRL, PDLIM3, DKK2, WIF1, UNC5D, EOMES,
HHIP, EMX2, ATOH1, MAB21L2, GABRA5

12 96.74 IMPG2, NPR3, EMX2, RBM24, SFRP1, NRL, TNC, PDLIM3, KHDRBS2, UNC5D, ATOH1, WIF1
8 90.22 IMPG2, KHDRBS2, RBM24, EMX2, PDLIM3, NPR3, UNC5D, WIF1
7 93.48 IMPG2, KHDRBS2, RBM24, EMX2, PDLIM3, NPR3, WIF1
6 93.48 IMPG2, NPR3, KHDRBS2, RBM24, WIF1, EMX2
5 82.61 IMPG2, NPR3, KHDRBS2, RBM24, WIF1
4 81.52 IMPG2, KHDRBS2, RBM24, WIF1
1Attribute sets that were used as input for the validation based on the SARC classifier output, chosen from the GSE85217 dataset (Supplementary Table S3).
A B C

FIGURE 2 | Validation of the predicted classification set outputs created by the SARC classifier. Expression t-SNE of the independent datasets GSE37418 and
GSE41842 (n = 92) based on (A) a 22-gene NanoString panel set, (B) 12 genes out of the 22 Nanostring panel, and (C) six genes out of the 22 Nanostring panel.
TABLE 2 | The accuracies of the top set of attributes selected for classification by the SARC algorithm for each input, based on the GSE85217 dataset (n = 763 MB samples).

Input1 Accuracy (%) Attributes required for classification (output)2 Number of attributes
required for classification

All attributes 98.6 AL513318.2, NPR3, LMX1A, BARHL1, SIX6, GRM8, NID2, CA4, ZIC2,
RBM24, ZIC5, DDX31, SNCAIP, NEUROG1, ATOH1, KCNA5, PEX5L,
GLRA1, NDP, ZFHX4, RPGRIP1, PAX3, WIF1, TMEM51, ADGRL3, DLX3,
TMEM51-AS1, TMEM132C, PGM5, PDE11A, NKD1, FZD10

32

22 genes 98.3 KHDRBS2, RBM24, EMX2, PDLIM3, NPR3, UNC5D, IMPG2, TNC,
GABRA5, GAD1, OAS1, ATOH1, EYA1, EOMES, SFRP1

15
June 2021 |
1Attribute that were used as inputs for the algorithm.
2Attributes chosen by the algorithm for classification.
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DISCUSSION

Using feature selection and machine learning classification, we
were able to identify potential gene sets with fewer attributes and a
more accurate subgroup classification of MB tumors, as compared
with the NanoString 22-gene set currently used in several clinical
institutions. More specifically, our SARC algorithm was able to
reduce the 22-gene set to only six genes that reliably differentiated
between the four MB subgroups. The reduced gene set includes
WIF1 and EMX2 which are known activated Wingless pathway
signaling in WNT subgroup. Widely accepted biomarkers
IMPG2, and NPR3 identity Group 3, as well as KHDRBS2, and
RBM24 recognise Group 4 MB tumors (10). Notably, none of
these genes are classical biomarkers of SHH subgroup, and
probably the combination of these genes’ expression contributes
to accurate SHH group classification.
Frontiers in Oncology | www.frontiersin.org 6120
All genes in this set are known and have commercially
available primers, which should enable most clinical
laboratories to accurately classify MB subgroups at a
reasonable price and within a reasonable timeframe, to the
benefit of both patients and clinicians alike.

The tumor subgroups in the GSE85217 dataset that we used to
construct the model were originally determined according to the
expression levels of the 22 genes by the NanoString technology.
Hence, it was not surprising that the accuracy levels of all tested
algorithmswere very highwhen theywere basedon this 22-gene set.
However, in the independent validation datasets, the subgroups
were classified by using a different approach: in the GSE41842, the
subgroups were classified according to unsupervised hierarchical
clustering using the 1000 most differentially expressed genes, while
in GSE37418, the subgroups were classified using the mRNA
expression of 2,750 probes with the highest median absolute
FIGURE 3 | Demographic and clinical data of the patient cohort used for qPCR validation (n = 18). BMT, bone marrow transplantation; YA, young adult; N/A, not
available. 1At first diagnosis. 2As of the completion of this study. More detailed information in Supplementary Table S6.
A B

FIGURE 4 | qPCR-based classification of an independent cohort, using reduced six-gene setout of the 22-gene NanoString set (IMPG2, NPR3, KHDRBS2, RBM24, WIF1,
and EMX2). An unsupervised hierarchical clustering of gene expression levels was generated by using qPCR (dCt) values. (A) A cohort of 16 patients who were classified by
NanoString as having either SHH, Group 3, or Group 4 MBs (n = 5, 3, and 8, respectively; see Figure 3 and Supplementary Table S6). (B) The same cohort, but with the
addition of two patients who were classified as having a non-WNT/SHH MB. The Height (y axis) is a measure of closeness of either individual data points or clusters.
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difference (MAD) score and with immunohistochemistry to
provide an additional assessment for WNT and SHH subgroups
(20, 21).Therefore, thehigh accuracy obtained at the validation step
demonstrates the promising potential of using fewer biomarkers,
such as 12 or six genes having higher accuracy (96.74% and 93.48%
respectively) than the 22-gene set (91.3%). This potential was
further demonstrated by the qPCR-based classification that we
obtained by using the reduced six-gene set in the cohort of 22
pediatricpatients.We included in this qPCRvalidation twopatients
whose subgroup was defined as “non-SHH/WNT”, one clustered
with patients from Group 3, and one clustered with patients from
Group 4.Methylationmay help to determine the subgroup of these
patients, to check if the reduced gene set model classified them
correctly. Unfortunately, methylation was unavailable at the
Schneider Children’s Medical Center as it is in most clinical
centers. Future studies on larger cohorts are required to test the
effectiveness of the reduced six-gene set in decreasing MB
misclassification, in general, and in accurately distinguishing
between Group 3 and Group 4 MBs, in particular.

Our study has several limitations; first, due to a lack of WNT
samples, we were unable to add this subgroup to the qPCR
validation step. Nevertheless WNT subgroup is easily identifiable
by other currently available methods, e.g. using a combination of
immunohistochemistry for nucleopositive beta-catenin, and FISH
for monosomy of chromosome 6 (35). Future studies should use
qPCRto test the reducedgene setof allMBsubgroups. Second, since
both ourmodeling and validation stepswere performedonprimary
tumors, we cannot comment on the performance of the reduce set
on metastasis, relapse, or progression disease samples. Third, our
models do not distinguish between the different subtypes of each
subgroup; instead, the algorithmwas trained to classify the different
subgroups regardless of their molecular states, especially since the
current clinical recommendations focus only on the main
subgroups and do not consider the different subtypes. Future
studies should take intertumoral heterogeneity within MB
subgroups into consideration. Finally, the current study focused
on theminimal setof genes required forMBsubgroupclassification,
but implementation in a clinical setting requires that the suggested
gene set is adapted to an individual patient setting. Such a setting
should include a cut-off of the detection of expression level for each
gene, a definitionof the reference that shouldbeused, a statement of
the type of normalization that should be employed, etc.
CONCLUSIONS

Since personalized treatment in oncology assumes that each
tumor harbors a unique variation of the human genome and
should be treated accordingly, it is crucial to correctly classify the
Frontiers in Oncology | www.frontiersin.org 7121
molecular subgroup of the tumor. Indeed, as treatment (e.g.,
radiation and chemotherapy) protocols are becoming subgroup-
specific and usually commence within 28 days of operation, our
machine-learning approach, which yielded concise and reliable
gene sets, provides a significant clinical advantage over available
MB subgroup classification methods.
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Background: Acute promyelocytic leukemia (APL) is characterized by the presence of
coagulopathy at onset and translocation t (15; 17) (q22; 21), meanwhile, other
translocation variants of APL have also been reported. The FIP1L1–RARA fusion gene
has recently been reported as a novel RARA-associated fusion gene.

Objectives:We report a case of de novomyeloid sarcoma (MS) type of APL with FIP1L1–
RARA found by next-generation sequencing (NGS) that was not detected by conventional
analyze analysis for RARA translocations.

Methods: We performed typical morphological, magnetic resonance imaging (MRI),
conventional tests for PML–RARA dual-fusion translocation probe, high-through
sequencing and NGS. Meanwhile, bioinformatics analyses were done by using public
repositories, including ONCOMINE, COSMIC, and GeneMANIA analysis.

Results: A 28-month-old girl with a complex karyotype that includes 46,XX,t(4;17)(q12;
q22)[9]/46,idem,del(16)(q22)[3]/45,idem,-x,-4,-9,-15,del(16)(q22),+marl,+mar2,+mar3
[7]/46,xx[3], c.38G>A (p.Gly13Asp) in the KRAS gene, and a cryptic insertion of RARA
gene into the FIP1L1 gene was diagnosed with APL complicated by the de novo MS.

Conclusion:We report a FIP1L1–RARA fusion in a child with APL who presented with an
extramedullary tumor in the skull without the classic karyotype using NGS, whom we
treated with good results. NGS analysis should be considered for APL variant cases.
Further experimental studies to the association between the mutation in KRAS gene and
FIP1L1–RARA fusion on the clinical phenotype and progression of APL are needed to
identify more effective therapeutic targets for APL.

Keywords: acute promyelocytic leukemia, myeloid sarcoma, FIP1L1–RARA fusion, next-generation sequencing,
KRAS gene, bioinformatic analyses
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Wang et al. APL With RARA–FIP1L1
INTRODUCTION

Acute promyelocytic leukemia (APL) is a subtype of acute
myeloid leukemia (AML) that is cytogenetically characterized
by the t (15;17) (q24;q21) translocation and gene fusion between
the promyelocytic leukemia (PML) and the retinoic acid receptor
alpha (RARA). Additionally, fewer than 5% of APL patients have
other fusion gene between NPM1, NUMA1, STAT5B, BCOR,
FIP1L1, IRF2BP2, FNDC3B, PRKAR1A, OBCF2A, GTF2I and
RARA, respectively (1). In 2007, the FIP1L1/RARA fusion gene
was first reported as a novel RARA-associated fusion gene in a
patient with juvenile myelomonocytic leukemia (JMML) (2). In
addition, it was found in patients with APL in 2008 (3) and 2011
(4). Their fusion gene reported was generated rearrange exon 3
of RARA with exon 15 or 13 of FIP1L1, respectively.

Myeloid sarcoma (MS) in APL is a rare condition and is mainly
associated with cases of relapse. Herein, we report a primary MS
typing case with FIP1L1/RARA that was not detected by
conventional tests for RARA-associated translocation.
MATERIALS AND METHODS

Patients and DNA Samples
DNA samples extracted from bone marrow of the patient with
APL were sent to the Nanjing Key Laboratory of Pediatrics at the
Children’s Hospital of Nanjing Medical University in Nanjing,
China, for genetic analysis. These works were approved by the
ethics committee of Children’s Hospital of Nanjing Medical
University. The patients/participants provided their written
informed consent to participate in this study.

Morphology, Flow Cytometry,
and FISH Studies
Cytogenetic analysis at diagnosis was carried out according to a
standard procedure on a BM sample processed after short-term
culture (24 h). G-banded chromosome was determined
according to International System for Human Cytogenetic
Nomenclature . FISH analysis was performed using
commercially available PML/RARa dual color dual fusion
DNA probe (Abbott Molecular, Des Plaines, IL).

Molecular Analysis
KRAS mutation, FIP1L1/RARA and the RARA/FIP1L1 fusion
transcripts monitoring were performed by NGS. The size and
quality of the pre- and post-captured libraries were evaluated
using a 2100 BioAnalyzer (Agilent). The HiSeq X PE 2*150
method was used for sequencing, and each sample was
sequenced with 15G PF data.
Abbreviations: AML, acute myeloid leukemia; APL, acute promyelocytic
leukemia; MS, Myeloid sarcoma; JMML, juvenile myelomonocytic leukemia;
WBC, white blood cell; ATO, arsenictrioxide; ATRA, all-trans retinoic acid; CR,
complete remission; FISH, fluorescence in situ hybridization; NGS, next-
generation sequencing, MRI, magnetic resonance imaging, PML, promyelocytic
leukemia protein; RARA, retinoic acid receptor alpha; COSMIC, Catalog of
Somatic Mutations in Cancer; CT, computed tomography; SNP, single
nucleotide polymorphisms.
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Public Database
The summary of the distribution of different types of mutations
for KRAS mutations in hematopoietic neoplasm was performed
using the Catalog of Somatic Mutations in Cancer (COSMIC,
release v92, 27th August 2020) database (http://www.sanger.ac.
uk/cosmic/) and visualized in the bar chart. All data were
extracted on Dec. 2, 2020. ONCOMINE (https://www.
ONCOMINE.org) was used to analyze the messenger RNA
levels of KRAS, RARA, and FIP1L1 in different cancer tissues
compared with that in normal control with the significance was
generated using Students t-test. Statistically significant values
and fold change: P value <1E−4 and fold change >2. The
comparison heatmap and boxplot of KRAS, RARA, and FIP1L1
expression value across different cancers was generated.

Statistical Analysis
GraphPad Prism software (version 6, GraphPad Software Inc., La
Jolla, CA, USA) and R statistical software (RStudio) were used
for statistical analyses. Student’s t-test (two-tailed) was used to
compare the means between two groups, mRNA expression data
are presented as fold change, and a statistically significant
difference was considered at the level of P <0.05.

Case Report
The 28-month-old girl was presented with pain in her right
upper limb. Initial laboratory evaluation presented a high white
blood cell (WBC) level of 20 × 109 with 65.2% of abnormal
promyelocyte cells, hemoglobin of 9.5g/dl, and a platelet level of
101 × 109/L. Her coagulation function and thromboela-stogram
were normal, while lactate dehydrogenase was 740 U/L. The BM
aspirate showed 74.5% promyelocytes that had numerous hyper-
granularity with Auer bundle; the rate of positive peroxidase
staining was 100%, suggestive of APL (Figure 1A). The immuno-
phenotype was positive for CD4, CD2, MPO, CD33, CD13,
CD11b, CD64, CD15, CD71, CD9 and CD65, and negative for
CD34, HLA-DR and TDT. Fluorescence in situ hybridization
(FISH) analysis with the PML–RARA dual-fusion translocation
probe identified no dual fusion signal but the presence of
increased signals of RARA gene (73%; Figure 1B). Besides,
cytogenetics revealed a complex karyotype in 19 metaphase
cells with the following formula: 46,XX,t(4;17)(q12;q22)[9]/46,
idem,del(16)(q22)[3]/45,idem,-x,-4,-9,-15,del(16)(q22),+marl,
+mar2,+mar3[7]/46,xx[3] according to ISCN2016 (Figure 1C).
Mutational analysis of myelogenous leukemia related genes using
a high-through sequencing technique showed a KRAS mutation
[c.38G >A; p.Gly13Asp with 11.9% variant allele frequency
(VAF)] and 28 single nucleotide polymorphisms (SNP) which
considered to be no pathogenic significant related to myeloid
hematological tumors. To further characterize, we arranged a
NGS strategy for hematopoietic malignancies. Sequencing of this
sample confirmed FIP1L1/RARA and the RARA/FIP1L1 fusion
transcripts. Besides, the fusion gene FIP1L1–RARA was
generated between exon 12 of FIP1L1 and exon 3 of RARA,
while the fusion gene RARA–FIP1L1 was generated between
intron 2 of RARA and exon 14 of FIP1L1 (Figure 1D). This
patient was diagnosed with microgranular variant (M3v) of
June 2021 | Volume 11 | Article 688203
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APL according to bone marrow morphology, immunophenotype,
cytogenetics, and the transcriptome sequencing.

What’s more, an urgent cerebral computed tomography (CT)
scan revealed the presence of high-density shadows in the right
posterior fossa with partial skull changes. Then, head and spine
MRI showed intracranial mas formation in the right posterior
fossa which is considered as MS with extensive infiltrative lesions
involving the bilateral mandible, the antrum maxillae, the skull
base, and partial vertebra (Figure 1E).

After a treatment combining all-trans retinoic acid (ATRA,
20 mg/d, divided twice a day) with DA regimen (daunorubicin
[20 mg/d for 5 days] and cytarabine [40 mg/day for 8 days]) as
induction chemotherapy, the patient had pain in her eyes on the
14th day of treatment, which was considered to be differentiation
syndrome. A second BM smear showed 1.5% blasts, and a second
Frontiers in Oncology | www.frontiersin.org 3125
head MR showed that the chloroma had disappeared, indicating
that the patient had achieved initial complete remission by day
30. However, FIP1L1/RARA was still positive after the second
course. Since November 11, 2020, the patient has received three
cycles of ATRA and idarubicin [10 mg/d for 3 days] in the
following consolidation treatment. She received continual
therapy with ATRA and chemotherapy as previously described
and kept leukemia-free after a 5-month follow-up.

Bioinformatics Analysis of Genetic Mutations
in the KRAS
First, we searched for the mutants of KRAS using the COSMIC
database (http://cancer.sanger.ac.uk/cosmic): there were mutations
in 11 of 1,713 (0.6%) patients in hematopoietic neoplasm,
and c.35G >A is the most frequent mutation (Figure 2A).
A B

D

E

C

FIGURE 1 | The clinical information of the APL patient. (A) Bone marrow morphology at initial diagnosis. ×400; (B) FISH using the PML/RARA dual-color, dual-
fusion translocation probe indicated the absence of the normal PML/RARA: (a) nuc ish(D5S23/D5S721,CSF1R)×2[400], (b) nuc ish (D7Z1/D7S486)×2[400], (c) nuc
ish (MLL×2) [400], (d) nuc ish (PML×2, RARA×3)[292/400]; (C) G-banded karyotype of the patient; (D) Sequencing analysis of FIP1L1–RARA fusion transcripts
atonset. Diagrammatic representation and sequencing information of FIP1L1–RARA fusion transcripts. FIP1L1 transcripts consisting of exon 12 joined to RARA intron
3 (variant form). (E) Intracranial tumor: (a, b) CT detects mass with some skull changes in the right posterior fossa, (c–e) MR image: infiltrative lesion involving the right
posterior fossa, bilateral mandible, antrum maxillae, skull base, and partial vertebra, (f) complete resolution of the intracranial mass after the treatment.
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We compared the mRNA levels of KRAS, RARA, and FIP1L1
among samples of different cancers by using ONCOMINE
databases (https://www.ONCOMINE.org). For RARA, more
datasets showed an increased trend in leukemia patients
(Figure 2B). For detailed analysis in ONCOMINE datasets, we
further searched their expression in APL patients. GeneMANIA
wasused to analyze associations in termsof co-expression, physical
interactions, shared protein domains, predicted, pathway and
co-localization among KRAS, RARA, and FIP1L1 (Figure 2C).

DISCUSSION
APL is a subtype of AML and is commonly characterized by the
expression of the oncogenic PML–RARa fusion protein (more
than 95% of APL cases). The incidence of APL in infants is very
rare (median age of pediatric APL is 9–12 years) (5). The typical
feature of APL is a life-threatening coagulopathy which can lead
the patients to death (6). Early deaths (occur in the first 30 days
after diagnosis) were associated with a high WBC count (7). The
classical diagnosis of APL is represented by the morphology and
the flow-cytometry analysis on bone marrow aspirate and
confirmed by FISH probes for cytogenetic translocation t (15;
17) or other molecular biology techniques such as reverse
transcription PCR for PML–RARA fusion transcript.
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Although PML–RARA was failed to be identified by FISH in
our case, her abnormal promyelocytes in morphology and
immunophenotype were fully consistent with APL, suggesting
that her disease may be caused by other X-RARA fusions. In this
situation, we use NGS as a tool to discover her fusion gene called
FIP1L1–RARA. To date, several other partner genes including
ZBTB16, BCOR, NPM1, NABP1, Stat5B, PRKAR1A, etc. have
been reported (8). Only three cases with cryptic FIP1L1–RARA
have been reported, one was a 20-month-old boy with JMML (2),
one was a 90 year-old woman diagnosed with APL (3), and the
last one was a 77-year old female APL patient (4). Both of the two
APL patients were old with no DIC. Their fusion gene was
respectively generated between exon 15 or 13 of FIP1L1 and exon
3 of RARA, while the reason for two different phenotypes of
leukemia caused by FIP1L1–RARA is still unknown. Meanwhile,
Kondo (3) put forward the reciprocal RARA–FIP1L1 has none
functional role in leukemogenesis. Genetic involvement in APL
has clinical value for the choice of the therapy and evaluating
prognosis (9). Thus, it is important to combine NGS with
karyotype analysis, FISH, and RT-PCR for accurate diagnosis,
especially when RARA rearrangements are failed to be identified
by conventional methods.

The mutational spectrum of APL differs from other AML
subtypes. The molecular feature of somatic mutations in newly
A B

C

FIGURE 2 | Bioinformatic analyses of KRAS, RARA, and FIP1L1 genes. (A) An overview of the mutations in KRAS in the samples from patients with hematopoietic
malignancies, according to the COSMIC database. (B) The number of datasets that had mRNA overexpression (red) or down-regulated expression (blue) of the
KRAS, RARA, and FIP1L1 gene in ONCOMINE. The threshold was designed with the following parameters: p-value of 1E−4 and fold change of 2. (C) Network of
KRAS, RARA, and FIP1L1 and their 20 related genes was analyzed by GeneMANIA.
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diagnosed and relapsed APL is defined by frequent alterations of
FLT3, NRAS, KRAS, and ARID1A/B genes, and the lack of
mutations in non-M3 AML genes (e.g. DNMT3A, NPM1, IDH1/
2, and ASXL1) (10). PML–RARA acts as the main driver mutation
in each APL exome. TCGA consortium showed that the expected
recurrent somatic mutations in patient with APL were almost twice
lower than those in patients with other AML subtypes. Additionally,
the number of somatic mutations in leukemia patients was three to
seven times lower than in patients with solid tumors (11). Previous
studies have reported that the numerous genes involved in APL had
similar cell functions, but lacked recurrence and consistency. The
impairment of these genes on APL is weaker than the interaction of
mutated genes with different functionally related categories (12).
Next, it was found that RARA gene and KRAS were co-expressed
through PPI network analysis by GeneMANIA. However, the
impairment of c.38G >A (p.Gly13Asp) in the KRAS gene and the
co-expressed FIP1L1–RARA fusion APL is not completely clear,
further studies have to be performed in the future.

MS is a relatively rare disease lacks specificity in morphology.
Our patient with lesions in the head lack of tissue biopsy is one of
the important limits. Considering her clinical history, the mass
by MRI and CT imaging is very likely extending from the right
mandibular region to the skull and the posterior cranial fossa. It
needs to be clinically differentiated from hamartomas, abscesses,
meningioma, primitive neuroectodermal tumors, Langerhans
cell histiocytosis, and so on. Although the bony destruction
persisted in the first repeat MRI, there was complete resolution
of the Intracranial mass. The initial MRI findings (combined
with APL and significant radiological improvement after
treatment) confirmed the diagnosis of MS. however, as the
tissue biopsy was not performed, residual disease could not be
completely ruled out. In addition, the clinical features of MS in
our case occur in the absence of coagulation abnormalities that
may differ from extramedullary diseases in advanced APL.

MS in APL occurs rarely but frequently at the time of relapse,
that involves the skin, lymph nodes, and central nervous system. It
has been suggested that MS may be associated with a direct effect
of ATRA on adhesion molecules, a consequence of the prolonged
survival, a high WBC (>10 × 109/L) at presentation, and the
presence of bcr3 PML/RARA fusion transcripts (13). Typically, MS
may develop de novo or concurrently in AML with 2.5–9.11%
occurrence (14). Furthermore, MS in AML was enriched with
mutations of the RTK-RAS pathway genes (KRAS, NRAS, BRAF,
PTPN11, and CBL) (15), while KRAS andNRASmutations occupy
70% (16). The pathogenesis of extramedullary AML tumor is
related to the abnormal cellular adhesion molecules and RAS-
MAPK/ERK signaling (17). Presently, there are relatively few data
for the prevalence of different mutations and mechanisms of
extramedullary APL. What’s more, there might be some
connection(s) that APL patient with combined FIP1L1–RARA
and KRAS mutations had a predilection to develop MS.

To the best of our knowledge, there is no consensus on MS
treatment (18). Generally, AML-type therapy is effective for de
novoMS (19). As our patient has APL combined with intracranial
MS, we considered the combination of ATRA with conventional
chemotherapy (14). In our case, despite the short follow-up, the
Frontiers in Oncology | www.frontiersin.org 5127
patient got CR after 1 month course of treatment without
recurrence, which emphasized the efficacy of the combination
ATRA–chemotherapy therapy on MS. Therapeutic function of
ATRA in APL includes activating the gene transcription in
myeloid lineage differentiation and degrading the PML–RARa
oncoprotein, while arsenictrioxide (ATO) degrades all PML
containing molecules and promotes apoptosis. Interestingly, the
reported variety of X-RARA fusions including PLZF, NuMA,
NPM, STAT5b, FIP1L1, PRKAR1A, ZBTB16, OBFC2A, TBLR1,
GTF2I, IRF2BP2, and FNDC3B may cause the resistance to ATO
treatment due to the lack of ATO binding sites (20).

In conclusion, patients with APL presenting with the fusion
gene FIP1L1/RARA are rare but have been reported in the
literature (4). We found the first case of APL with FIP1L1/
RARA by using NGS and concurrent MS, while there is no clear
treatment guideline so far. The presented patient had achieved
complete remission following systemic chemotherapy. Molecular
analysis of APL variants is insufficient only through routine
analysis, because variant APL has many partners with RARA.
We should consider NGS analysis as a conventional method for
patients with variant APL. Lastly, further studies are needed to
address the cooperation with FIP1L1–RARA and KRAS in the
MS formation of APL.
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Background: Neuroblastoma is one of the most devastating forms of childhood cancer.
Despite large amounts of attempts in precise survival prediction in neuroblastoma, the
prediction efficacy remains to be improved.

Methods: Here, we applied a deep-learning (DL) model with the attention mechanism to
predict survivals in neuroblastoma. We utilized 2 groups of features separated from 172
genes, to train 2 deep neural networks and combined them by the attention mechanism.

Results: This classifier could accurately predict survivals, with areas under the curve of
receiver operating characteristic (ROC) curves and time-dependent ROC reaching 0.968
and 0.974 in the training set respectively. The accuracy of the model was further
confirmed in a validation cohort. Importantly, the two feature groups were mapped to
two groups of patients, which were prognostic in Kaplan-Meier curves. Biological
analyses showed that they exhibited diverse molecular backgrounds which could be
linked to the prognosis of the patients.

Conclusions: In this study, we applied artificial intelligencemethods to improve the accuracy
of neuroblastoma survival prediction based on gene expression and provide explanations for
better understanding of the molecular mechanisms underlying neuroblastoma.

Keywords: neuroblastoma, survival, deep-learning (DL), individual therapy, transcriptome
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INTRODUCTION

Neuroblastoma, arising from the developing sympathetic nervous
system, is the most common form of malignancy in children (1).
Although diverse treatments have been developed for different stages
of neuroblastoma, survival rates only improved in low and
intermediate risk patients (2, 3). Whole genome sequencing
and RNA sequencing (RNA-seq) delineated the genomic and
transcriptomic traits of neuroblastoma, in which MYCN
amplification, ALK mutations, PHOX2B mutations, TERT
rearrangements, abnormally expressed microRNAs (miRNA) such
asMir17-92a, etc., occurmostly (4–6). Utilizing these data, a number
of previous studies attempted to quantitatively predict outcomes for
neuroblastoma patients. For instance, chromosomal gain or loss
status were used to construct a cox regressionmodel in one attempt,
whereas most studies implemented gene expression data into
multivariable score models (7, 8).

In recent years, machine-learning (ML) has been widely
applied in medical sciences, especially in radiography,
healthcare monitoring and genomics (9–12). ML was adopted
to predict the outcomes and survival time by different
approaches, such as Artificial Neural Network, Supported
Vector Machine, Decision Tree and so on in many types of
cancer (13–15), a vast majority of which outperformed the
traditional cox regression models.

Deep-learning (DL) is a subdiscipline of ML that allows
computers to transform raw data through multiple levels of
representations. DL-based image detection has been widely
studied in the diagnosis of diabetes and cancers (16, 17). In
genomics, a multilayer perceptron could predict survival in an
unsupervised or supervised way and was extended in lung cancer
and hepatocellular carcinoma (18–20). DL-models were also
utilized to predict stages and clinical outcomes in neuroblastoma
(21, 22). However, reports examining the accuracy of DL-model
with survival time are lacking.

Here, we developed a DL-based model to predict outcomes
using gene expression matrices. First, 172 features were selected
by the chi-square test between gene expression levels and patient
survival outcomes in the training cohort. K-means clustering
method was used to divide these gene features into two groups. A
two-layer neural network decoder was then used to predict
survival probabilities and status. F-score, accuracy, sensitivity
and specificity were calculated to demonstrate that our model
could precisely classify patients. To examine the robustness of
our approach, we applied the same procedure in the validation
cohort. Indeed, the area under the curve (AUC) of our model was
0.974 in the 5-year-survival receiver operating characteristic
(ROC) curve, outperforming existing prognostic models.
Furthermore, we partitioned the patients into two subgroups
according to their feature expression levels. These two subgroups
diverged in survival by log-rank test in Kaplan-Meier (KM) curve
with p < 0.001. Gene Ontology (GO) enrichment analysis showed
that the gene feature group 1 was enriched in the JAK-STAT
pathway, while genes involved in bone morphogenesis were
enriched in group 2. Therefore, this DL-based approach could
rigorously predict neuroblastoma survivals and shine lights over
the molecular mechanisms underlying neuroblastoma.
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MATERIALS AND METHODS

Data Acquisition
A total of 721 microarray samples, including two datasets named
GSE49710 and E-MTAB-8248 (for short, GSE49710 and
EMTAB), both detected on Agilent-020382 Human Custom
Microarray 44k, were retrieved from NCBI Gene Expression
Omnibus and ArrayExpress. The GSE49710 cohort, part of the
SEQC project, portrayed Chinese neuroblastoma atlas, while
EMTAB displayed German characteristics. Gene expression
matrices accompanying clinical information were downloaded
directly for the following analyses. F-score, accuracy, sensitivity
and specificity were calculated on the whole GSE49710 cohort.
Besides, GSE49711, the RNA-seq result of the same samples
from GSE49710, was also fetched for lncRNA-related analysis.

Data Preprocessing
To reduce the biases between the two datasets, we normalized the
expression levels by equation (1) since the data should be better
limited in 0 to 1 in the neural network.

fi0 =
fi −min (fi)

max (fi) −min (fi)
(1)

fi here indicates the expression of each RNA. fi0 is designated
for the transformed level.

Feature Selection
After data normalizing, significant gene expression features were
selected by chi-square test which is implemented by ‘chi2’ function
in the python package sklearn (https://scikit-learn.org/). Genes
whose FDR in the chi-square test was less than 0.05 were filtered.
Following this principle, only 172 differentially expressed genes
were chosen.

Another common feature selection approach, the Principal
Component Analysis (PCA), was used to transfer gene
expression matrix into principal components. The cox
proportional regression was used to filter the components. We
then compared the results of the PCA method with the chi-
square method.

Feature Classification
After feature selection, a classifier was built to classify genes into
different subgroups. Genes with similar biological functions were
clustered into the same group. The K-means model in sklearn
divided the selected genes into two clusters.

Model Construction
Then a supervised classification model based on deep neural
networks was built. Both of two feature groups were used as
inputs of our classification. The output of this neural network
was a patient’s probability which ranged between 0 and 1. 0
would indicate that the patient is likely to be alive and 1 would
indicate that the patient would probably be dead.

The structure of this classifier can be seen in Figure 1. It
consisted of two parts, the encoder and the decoder. For the
encoder part, we encoded two different groups of features into
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FIGURE 1 | The overall workflow of our pipeline. Gene expression data from GSE49710 was retrieved and performed a chi-square test to filter 172 features. The K-
means clustering method partitioned patients and genes into two groups. We trained two neural networks for two groups of features and combined them by the
attention mechanism to predict survivals. Further, we analyzed biological effects between two groups and did clinical-relevant analysis.
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two 10 dimensional features by two different two-layer networks.

g 01 = f (w12f (w11fg1 + b11) + b12) (2)

g 02 = f (w22f (w21fg2 + b21) + b22) (3)

g 01g 02 are encoded features. wij are weights of the networks. fg1
and fg2 are transformed expressions using formula (1) and bij are
biases of the networks. The function f indicates the activation
function which is a nonlinear part of the encoder. Here, we used
the ReLU as this nonlinear function:

f (x) = x x > 0 
0 x ≤ 0

n
(4)

To combine these two different encoded features together, we
applied the attention mechanism to this model (23). With the
difference of simply concatenating different features, this
attention mechanism can learn the relationship between them.

G = sig g 02
� �

∗ g 01, sig g 01
� �

∗ g 02
� �

(5)

This step is illustrated in equation 5. G refers to combined
features. sig is a nonlinear function.

sig(x) =
e−x

1 + e−x
(6)

After seizing combined features, we input them into the
decoder part. The decoder part is also a two-layer neural
network.

y ′ = sig(w32f (w31G + b31) + b32) (7)

y' is the output of this classifier.
To train this network, we defined the loss function as

equation 8.

L =
−a(1 − y ′ )g logy ′ y = 1

− (1 − a)y ′  g log (1 − y ′ ) y = 0

(
(8)

a and g are parameters. In this system we set a to 0.2 and g to
2. y is the true label of each patient. The patients of each group
were uneven, so we used Equation 8, which is called the focal loss
and was designed to solve this problem instead of cross entropy
loss function (24). To avoid over-fitting, we drop 20% neurons in
each layer by the dropout method. GSE49710 was chosen to train
the network and EMTAB was to validate our model. For
GSE49710, 70% of samples were used to train and the rest
were to test.

All of the algorithms mentioned in this subsection were
realized by tensorflow 2.2 (https://tensorflow.google.cn/). To
optimize this neural network, we applied Adam optimizer and
set the learning rate to 0.01 (25). The weights of networks were
initialized by glorot uniform distribution (26).

Model Appraisal
To further evaluate our model, we calculated the accuracy,
sensitivity, specificity as well as F-score of our model in two
cohorts (27).
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Accuracy =
TP + TN
Total

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

F1 = 2 ∗
Precision ∗Recall
Precision + Recall

ROC curves and AUCs were estimated by pROC package in R
to assess the performance of the classifier (28). The time-
dependent ROC (tROC) curve and its AUC were estimated by
survivalROC R package to introduce survival time into our
classifier (29). The curves were plotted by ggplot2 R package
(30). Besides, traditional cox regression models, devised by
Zhong et al. (31) and De Preter et al. (32), were compared
with ours.

Patients Clustering
In order to correspond patients to those two groups of gene
features, we performed K-means clustering on patients.
ConsensusClusterPlus was used to determine the best k with
parameters (cluster algorithmml: km, distance: Euclidean,
replicate time: 1000) (33). The CDF plot and the consensus
matrix instructed us to cluster patients into 2 groups. A heatmap
showing expression levels of features across samples were made
by complexHeatmap R package (34). Survival rates between these
two subgroups were measured by the log-rank test in KM curves.
R packages survival and survminer were used to fit KM equation
and plot the curves (35, 36).

Clinical-Relevance Analyses
In order to test whether our model was independent of other
clinical factors and beneficial for clinicians to identify patients’
conditions, we first applied univariable cox regression on the age,
MYCN status, gender, tumor stage, INSS-Risk and our
probability score. A multivariable cox regression determined
whether a covariate involved was decisive. Forest plots were
plotted by forestplot package (https://CRAN.R-project.org/
package=forestplot). Decision curve analysis was done by
ggDCA (https://cran.r-project.org/web/packages/ggDCA/index.
html). The construction and plot of the nomogram which can
help clinicians to predict survival were done by rms (https://
CRAN.R-project.org/package=rms) and regplot (https://CRAN.
R-project.org/package=regplot) R package. Finally, an alluvial
diagram was used to visualize the characteristics and disease
progressions of each patient. This was achieved by the ggalluvial
R package (37).

Biological Function Prediction
All biological analyses were done on GSE49710. We executed GO
enrichment analysis on the two groups of features by clusterprofiler
R package respectively (38). Gene Set Enrichment Analysis (GSEA)
was done by GSEA software (Broad Institute, Inc., version 4.0.3)
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with gene set ‘c5.all.v7.1.symbols.gmt’ and default parameters. String
(https://string-db.org/) was used to identify protein-protein
interactions (PPI) between the 172 features and Cytoscape
software was used to visualize the interaction networks.
CytoHubba, a module inside Cytoscape, was carried out to
identify the hub genes with 12 algorithms (39, 40). For lncRNAs
searching, we extracted 250 lncRNA expressions by sorting lncRNA
names in gencode.v34.long_noncoding_RNAs.gtf, a collection of
known lncRNAs downloaded from GENCODE (https://www.
gencodegenes.org/). Only lncRNAs that owned a standard error >
0.2 could be enrolled in the correlation test between the 18 mRNAs.
The cut-off values were: p < 0.05 and |coefficient|>0.5. TarBase v.8
and LncBase Predicted v.2 were used to query for mRNA-miRNA
and lncRNA-miRNA pairs respectively (41, 42). TarBase v.8 gave 78
CCNB1-binding miRNAs with filters (Species: Homo Sapiens,
Method Type: High-throughput, Regulation Type: DOWN,
Validation Type: Direct). LncBase Predicted v.2 provided
predicted lncRNA-miRNA pairs with cut-off 0.7. Finally, a
competing endogenous RNA (ceRNA) network was constructed
using Cytoscape.

Immune Microenvironment Estimation
Inferred abundances of immune cells and normal tissue cells
were calculated by single-sample gene set enrichment analysis
(ssGSEA) using GSVA R package (43). Gene sets, also known as
the markers of each cell, were collected by Charoentong et al.
(44). Univariable cox proportional regression tests were exerted
on all cells to reveal prognostic immune cells.

Statistical Analysis
For categorical and continuous data with normal distribution, we
applied chi-square tests and student t tests to distinguish the
differences between groups. When continuous data was not
normal distributed, Wilcoxon sum rank tests and ANOVA
were utilized. The Pearson correlation test was used to find
linear connections between two groups of observations. A p-
value<0.05 was considered statistically significant except for
emphasis. To account for multiple-testing, the p-values were
adjusted using the Benjamini-Hochberg FDR correction. All
statistical analyses were two-tailed and done by Python
(Python Software Foundation, version 3.8.2) and R (R
Foundation, version 3.7.0).
RESULTS

Neuroblastoma Genomic Atlas Was
Depicted by 172 Features
The overall workflow is shown in Figure 1. After implementing
the chi-square test into each feature and the survival in
GSE49710, 172 features were selected (Figure 2A). The
consensus clustering method determined the best k value as 2
to partition the features based on the expression matrix
(Supplementary Figure 1). After that, K-means method was
used to cluster the features and patients into 2 groups. Fifty genes
were the markers of subgroup 1 of 336 patients (for short, S1),
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whereas the other 122 genes were the markers of subgroup 2 of
162 patients(S2). Basic characteristics were distributed diversely
between the two subgroups except for gender (Supplementary
Table 1). It is noteworthy that no MYCN amplification was
detected in S1 and 92 were detected in S2 in the GSE49710 cohort
while only 1 such case was detected in S1 and 45 in S2 in the
EMTAB cohort, suggesting that these 172 features and the
corresponding subgroups were MYCN-relevant (chi-square test
p < 0.001, Supplementary Table 1). Also, these subgroups
exhibited significant differences in overall survival and event-
free survival (both log-rank test p < 0.001, Figures 2B, C and
Supplementary Figure 2).

To understand the potential biological functions of the genes in
each group, we performed GO-enrichment analyses. Notably, many
features in group 1 (F1) are related to the JAK-STAT signaling while
features in group 2 (F2) aggregated in the cell migration, bone
morphogenesis and ubiquitin-protein transferase activities
(Figures 2D, E). The JAK-STAT pathway promotes tumor cell
proliferation, invasion and immunosuppression through a
membrane-nucleus cascade (45). A Previous study has shown
that the JAK1/2 inhibitor, AZD1480, could abate neuroblastoma
tumor cells growth and extend survivals, suggesting that S1 patients
not only maintained better survivals with neuroblastoma, but also
might potentially respond to drugs such as AZD1480 to recover
(46). Next, the GSEA analysis revealed that S1 showed a higher level
of metabolism compared to S2 and S2 developed an intensive
immune response (Supplementary Figure 3). This might be
attributed to the mild symptoms in S1 where patients kept a
normal or slightly elevated metabolism. However, accompanying
the progression of tumors in S2, the patients started a fierce
immune reaction and finally exhausted. These findings suggest
that the subgrouping method could help to understand the
molecular pathology underlying the differences in prognoses of
neuroblastoma patients.

The Neural Network Model Manifested
Great Performance in Classifying
Neuroblastoma
An encoder-decoder model was then trained on the GSE49710
dataset to predict survivals (Figure 1). Since F1 and F2
contributed unequally to the body responses and outcomes,
two neural networks were created for them separately in the
encoder. In this encoder, a widely used activation function, the
ReLU function in the hidden layer; and a binary classification
function, the sigmoid function (or say logistic function), in the
output layer were employed. The attention mechanism, inspired
by human physiology that people would only concentrate on
tasks at hand to improve the efficacy of the encoder-decoder
framework with rich information, was used to combine the two
encoder parts into the decoder (47). The sigmoid function was
also used in the final layer, which outputted survival
probabilities. If the probability is less than 0.5, we predicted
this patient as alive and vice versa (Supplementary Table 2).

To assess the prediction quality of the overall survival status,
we calculated the accuracy, sensitivity, specificity and F-score of
our model, which reflected the proportion of correct predictions
July 2021 | Volume 11 | Article 653863
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in all samples, true positives in all positives, true negatives in all
negatives and the harmonic mean of precision and recall. In the
training set, the accuracy (0.918), sensitivity (0.913) and
specificity (0.944) were all greater than 0.9, suggesting that it
could efficiently forecast whether a patient would be alive or dead
using 172 features. Moreover, a descent efficacy was achieved in
the test set (accuracy: 0.852, sensitivity: 0.911, specificity: 0.605),
however, F1 score was slightly higher (GSE49710: 0.881,
EMTAB: 0.886), indicating that the model was suitable for
cohorts of various genetic background. The ROC and tROC
Frontiers in Oncology | www.frontiersin.org 6134
curves were then generated which further demonstrate the
eminence of the neural network (Figures 3A–C and Table 1).
The AUCs of the training set and the test set achieved 0.968 and
0.891 respectively (Figure 3A), alluding the robustness of our
neural network prediction model. Adding survival time into
ROC curves, we found that the 5-year-survival AUCs could be
boosted to 0.974 in GSE49710 (Figure 3B) and 0.896 in EMTAB
(Figure 3C), which validated that our neural network could
classify patients with high precision. Twenty times of 10-fold
cross validation showed the stability and robustness of our neural
A

B

D E

C

FIGURE 2 | The genomic atlas of neuroblastoma was characterized by 172 genes. After implementing the chi-square test between gene expressions and survival
status, a total of 172 genes were selected for following investigations. Patients were clustered into two groups, named subgroup 1 (S1) and subgroup 2 (S2), which
owned 50 and 122 markers respectively. (A) The heatmap portraited the neuroblastoma genomic landscape in GSE49710. Gene expressions were normalized
among samples. The higher expressions reached red while lower reached white. Corresponding clinical information, including age, stage, vital status, survival time,
MYCN amplification, gender, INSS risk and subgroups, was attached on the top of the heatmap. (B, C) Kaplan-Meier (KM) curves showed distinct survivals between
S1 (coralline line) and S2 (atroceruleous line) in overall survival (OS) (B) and event-free survival (EFS) (C) (log rank test p < 0.001 for each). (D, E) GO-enrichment
analysis for feature 1 (F1) and feature 2 (F2) showed that S1 was up-regulated in the JAK-STAT pathway (D) and S2 was up-regulated in bone morphogenesis (E).
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network architecture, suggesting that our attempts of the
attention mechanism would be extended into more datasets.

Performance Comparison With
Alternative Methods
Next, we compared the performance of alternative methods
which varied in either feature selection or model construction
with our model. To demonstrate that our feature selection was
more closely related to prognoses, a broadly used dimension
Frontiers in Oncology | www.frontiersin.org 7135
reduction and feature selection method, PCA, was utilized to
select features on GSE49710. Kaiser-Harris Criterion suggests
that those principal components whose eigenvalue were more
than 1 would be retained. In our study, all components had an
eigenvalue greater than 1. Variances explained in each
component were similar (Supplementary Figure 4). The top
200 principal components were chosen with cumulative variance
percent at 89.532% for further analyses. Since the survival data
has not been utilized, a univariable cox regression model was
implemented to principal components, resulting in 17
components being selected with p < 0.05. The Consensus
cluster determined the best k=value as 3 using K-means
clustering (Supplementary Figure 5). However, the 3
subgroups were not significantly different in OS (Figure 4A,
log-rank test p = 0.088) but in EFS (Figure 4B, log-rank test p =
0.029), which indicated that our chi-square-based feature
selection could highlight the hub genes in neuroblastoma and
partitioned patients into high and low risk groups.

We then compared the performance of our model with
several existing models. In order to reduce the biases between
the cohorts used in this study and in the literatures, the
expression data was normalized before calculating risk scores.
We selected two previously published models as well as the ‘gold
standard’,MYCN status, and then performed survival prediction
in the GSE49710 and EMTAB cohorts (Supplementary Table 2)
(31, 32). Our DL-model generated the highest AUC in 5-year
tROC curves in both GSE49710 and EMTAB cohorts
(Figures 4C, D), indicating that our model outperformed the
existing model in survival prediction.

DL-Model Probabilities Were of
Clinical Significance
To test whether the DL-based prediction model is widely useful
for patients of various background conditions, we implemented
the univariable cox regressions among the age, MYCN status,
gender, diagnostic stage, risk and our output probability. All
variables were converted to binaries in this test (Supplementary
Figure 6). Only gender failed in this test as p > 0.05, which was
discarded in the multivariable regression. In the multivariable
cox model, the probability risk was still significant (Figure 5A),
indicating that our DL-based model had a broad prognostic
ability regardless of clinical covariates.

We further used the decision curve analysis (DCA) to evaluate
the net benefit of different models (48). We constructed 3 models:
only DL-probabilities, only clinical covariates in multivariable cox
analysis as well as a combined model. The combined model
achieved the highest net benefit no matter how risk threshold was
set (Supplementary Figure 7). The data implied that combining
DL-model and clinical information could be profitable for clinicians
to diagnose and to predict survivals. Therefore, we build up a
nomogram which could help clinicians to predict the potential
outcomes of the patients beforehand the medical treatments
(Figure 5B and Supplementary Table 3). A C-index 0.889 of the
nomogram along with the calibration curve predicted 5-year-
survival, demonstrated that this scoring system would be handy
and practical in the first-line diagnosis (Figure 5C).
A

B

C

FIGURE 3 | Receiver operating characteristic (ROC) curves demonstrated
the superiority of our model. X-axis represented false positive rate (1-specificity)
and y axis represented true positive rate. (A) The ROC curves of the EMTAB
(coralline line) and GSE46960 (atroceruleous line) cohort. (B, C) 3-year, 5-year
and 10-year time-dependent ROC curves of the GSE46960 (B) and EMTAB
(C) cohort.
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TABLE 1 | AUCs of ROCs, 3-year-ROC, 5-year-ROC and 10-year-ROC with 20 times 10-fold cross validation.

Dataset AUC AUC of 3-year-ROC AUC of 5-year-ROC AUC of 10-year-ROC

Train 0.996 ± 0.009 0.963 ± 0.009 0.991 ± 0.006 0.993 ± 0.007
Test 0.878 ± 0.024 0.879 ± 0.028 0.907 ± 0.021 0.904 ± 0.030
Validation 0.862 ± 0.088 0.867 ± 0.076 0.895 ± 0.066 0.910 ± 0.095
EMTAB 0.865 ± 0.017 0.838 ± 0.022 0.863 ± 0.021 0.853 ± 0.032
Frontiers in Oncology | www
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The GSE49710 cohort was split at 7:3 into train and test cohort to perform 20 times 10-fold cross validations. In each calculation, 10% of the train cohort was randomly chosen into the
validation group. The best model with the most AUCwas further validated in EMTAB cohort. The probabilities of patients from the output layer were used in time-dependent ROC analyses.
If the probabilities were less than 0.5, we predicted corresponding patients would be alive and if were greater than 0.5, they would be dead. These binary predictions would be compared
with true labels in ROC analyses. All AUCs were expressed as mean ± standard deviation.
A B

D

C

FIGURE 4 | The Deep-learning-model (DL-model) outperformed alternatives in two aspects. (A, B) We employed the Principal component analysis (PCA) method to
cut features down to 200. Using 200 PCA dimensions, we distributed patients into 3 groups, which was determined by the consensus clustering method. These
groups did not show prognostic value in overall survival (OS) (A, log-rank test p = 0.088, n = 498) but event-free survival (EFS) (B, log-rank test p = 0.029, n = 498).
(C, D) Compare with other models (MYCN status, 4-gene-signature by Zhong et al. and 42-gene-signature by De Preter et al.), our DL-model received the highest
AUCs of 5-year-survival ROC curves in GSE49710 (C) and EMTAB (D) cohorts.
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The alluvial diagram summarized the samples in our study
(Figure 5D). 69.07% (67/97) ofMYCN-amplified patients would
be at stage 4 and this tendency was notable (chi-square test: p <
0.001). Only 21 patients diagnosed INSS low risk were classified
into S2 and 35 with high risk into S1, showing that our
prognostic subgroups were highly clinical-relevant (chi-square
Frontiers in Oncology | www.frontiersin.org 9137
test p < 0.001). Subgroups and probabilities were also correlated
(chi-square test p < 0.001). In the alluvial diagram, we observed
that if patients had MYCN amplified, whether they were old or
young, male or female, most of them would be at stage 4, INSS
high risk, Subgroup 2. Whereas MYCN was not amplified, an
antithetical conclusion would be drawn.
A

B

D

C

FIGURE 5 | The DL-model was independent of clinical covariates and could aid to diagnose. (A) The DL output probability was significant in the multivariable cox
regression with clinical covariates (p < 0.001). (B) A nomogram could be beneficial for survival time prediction. (C) The calibration curve of the nomogram with a
C-index: 0.889. (D) The alluvial diagram visualized the general conditions of patients. Coralline lines represented patients without MYCN amplified and atroceruleous
lines represented those with MYCN amplified.
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A CCNB1-Associated ceRNA Network Is
Related to the Survivals of Neuroblastoma
Patients
In order to isolate the hub genes of these 172 features, we first
retrieved their PPI on the String website (Figure 6A). We then
input them into Cytoscape software, and used the cytoHubba
module to uncover hub genes by using 12 different algorithms.
We summed up the top 5 genes in each algorithm and finally
selected 18 genes as pivotal molecules in the network.

Next, we aimed to identify lncRNAs that could participate in
the regulation of hub genes. GSE49711 is the RNA-seq of the
Frontiers in Oncology | www.frontiersin.org 10138
same sample with GSE49710 and was used to uncover potential
lncRNA-mRNA pairs. Subsequently, 5 mRNAs (FBXO17,
GNG11, CCNB1, KLF2 and CD9) were highly connected with
17 lncRNAs (Figure 6B and Supplementary Table 4). We
noticed that both CCNB1 and CD9 could interact with 4
lncRNAs (MYCNOS, TERC, SNHG1, MIR17HG), along with
positive coefficients between CCNB1 and lncRNAs and
opposite trends on CD9. CCNB1, an oncogene that controls
the cell cycle at G2/M, had been found to be overexpressed in
hepatocellular carcinoma and pancreatic cancer (49, 50). CD9 is
a tetraspanin involved in cell adhesion, metastasis and
A

B

DC

FIGURE 6 | Underlying hub genes and associated interactions in neuroblastoma. (A) The protein-protein-interaction (PPI) network was constructed by String
website. (B) Mutual correlations among 18 hub genes filtered by cytoHubba module in Cytoscape software. The dots are colored red when Pearson correlation
coefficients approach 1 and dots are colored blue when coefficients reach -1. (C, D) KM curves for CCNB1 and CD9 (D). Expressions were cut by median levels.
(both log-rank test p < 0.0001, n = 498).
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inflammation in cancer (51, 52). CCNB1 curtailed and CD9
increased survivals in GSE49710 and R2 (https://hgserver1.
amc.nl/cgi-bin/r2/main.cgi), which were consistent with
previous reports (both p < 0.001, Figures 6C, D) (49–52).

The ceRNA theory proposed that lncRNAs and mRNAs
competed to interact with shared miRNAs, up-regulating
downstream RNAs by impairing miRNA activities (53). We
created a CCNB1-associated ceRNA network as described in
Methods. (Supplementary Figure 8, Supplementary Table 5).
Of note, the mir-302 family (hsa-mir-302-a, -b, -c and -d) which
was highly expressed in embryonic stem cells, was associated
with CCNB1 and MIR17HG. This indicated that mir-302 might
reduce the proliferation of neuroblastoma as it did in other
cancers (54, 55).

Inhibitory Cells and Cytokines
Increased in S2
Since distinct immune response patterns were observed between
the two subgroups in GO-enrichment analysis and GSEA
(Supplementary Figure 3), we further analyzed the immune
microenvironment in neuroblastoma. The ESTIMATE
algorithm was used to infer the purity of the microenvironment
by scoring immune and stromal cells (56). Two groups did differ
in stromal scores but not in immune scores, suggesting that S1
might preserve more normal stromal cells (Supplementary
Figure 9). We used the ssGSEA algorithm to convert gene
expression data into relative cell proportions (Supplementary
Figure 10A). The numbers of the T regulatory cells (Tregs),
Natural Killer (NK) cells, Monocytes, MDSCs, Eosinophils and
central memory CD4 T cells were up-regulated in S2 compared to
S1, while the Memory B cells, Macrophages, Gamma Delta T cells
and central memory CD8 T cells exhibited opposite trends.
Despite a rich amount of innate cytotoxic NK cells in S2,
inhibitory immune cells like Tregs and MDSCs might
contribute to deficient cytolytic activities. Since GZMA*PRF1
could represent tumor microenvironment cytolytic activities
(57), these data indicated that S1 may possess superior cytolytic
activities which might eliminate tumor cells conspicuously
(Supplementary Figure 11A). In addition, only activated CD8+
T cells were connected with survival events in two subgroups at
p < 0.05, however, they anticipated contradicting outcomes
(Supplementary Figure 10B, Supplementary Table 6). This
implied that CD8+ T cells might play dual roles in
neuroblastoma patients, i.e., CD8+ T cells functioned as a
normal beneficial factor in malignant tumors in S2, however,
impeding patients of S1 from recovering.

Then, we examined the intrinsic immune escape mechanism
in neuroblastoma. Down-regulations of interferon signals and
droppings of two g-IFN receptors were observed in S2
(Supplementary Figures 3, 11B), whereas IL-2 was increased
in S1 which might stimulate T cell differentiation. A loss of HLA-
class I/II can aid tumor cells to escape from immune monitoring.
HLA-A and HLA-C were lower in S2, making the tumors prone
to survive (Supplementary Figure 11C) (58, 59). The expression
levels of PDCD1, PDL1 and CTLA4, which are critical immune
checkpoint genes, were also affected in S2 (60). Overall, these
Frontiers in Oncology | www.frontiersin.org 11139
data suggest that disturbance of the immune system may be
underneath the poor outcomes of the patients in S2.
DISCUSSION

One of the cruxes for neuroblastoma treatments is the
heterogeneity. MYCN amplification and INSS risk classification
have improved the efficacy to herald survivals, which many
studies have unraveled genetic polymorphisms among.
However, the current staging and grading systems are mainly
based on clinical phenotypes, while it is steadily accepted that
patients should be categorized by genetic associations.

Machine-learning and deep-learning methods have been used
in medicine for many years. Generally, a deep-learning model
receives multi-omics data and predicts outcomes by one or more
neural networks. Chaudhary et al. used RNA-seq, miRNA-seq
and DNA methylation data to train an autoencoder and partition
patients into two prognostic groups (20). Chabon et al. sequenced
SNV and CNV data of cell-free DNA in patients with lung
cancers and controls. They established a ‘Lung-CLip’ machine-
learning model to score each patient and determined whether a
patient got lung cancer by the relative score (19). In this study, we
used a DL-based classifier to significantly improve the prediction
of neuroblastoma outcomes. We fed 172 genes expression data to
the neural network and enrolled the attention mechanism into the
survival classifier. The output probability could tell whether a
patient could be dead or alive. Moreover, the 172 features selected
for survival prediction could help characterize the genetic
heterogeneities among the neuroblastoma patients.

A special attention mechanism was employed to combine two
different parts of RNAs together (23). The attention mechanism
is firstly presented by Vaswani et al. and widely used in computer
vision and natural language processing (61), which is helpful to
find interactions among different features, such as importance,
relationship and so on. The attention mechanism can help the
network learn how these two different groups of genes interact
with each other. Information learned by the network can help it
achieve a better performance. Indeed, our model outperformed
traditional cox models, gaining a 5-year-survival AUC 0.974 and
0.896 in GSE49710 and EMTAB cohorts respectively. Besides,
the PCA method failed to partition patients into appropriate
prognostic groups, suggesting the superiority of our methods.
Finally, we ran the gamut from all the samples in two cohorts,
showing the robustness of our DL-based model.

For a long period, lncRNAs have been thought fruitless until
recent advances that they might participate in chromosome
stabilization, transcriptional initiation, localization, etc., thus
broadening the cancer epigenetic network and making it
possible for new drugs (62–64). Here, we identified four critical
lncRNAs: MYCNOS, TERC, SNHG1 and MIR17HG. MYCNOS,
the antisense of MYCN, functions as the regulator of upstream
MYCN promotor to enhance MYCN expressions. TERC, the
telomerase RNA component, part of the telomerase, could
proliferate prostate cancer cells (65, 66). SNHG1 up-regulates
in colorectal, liver, prostate and gastric cancers, which is the
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biomarker for decreased survivals (67). Also it contributes to the
neuroinflammation in Parkinson’s disease (68). MIR17HG
promotes colorectal as well as gastric cancer progression and
up-regulates PD-L1 expression, which could be inhibited by
g-IFN (69, 70). Investigations about those lncRNAs indicated
that they could be engaged in the oncogenesis of neuroblastoma.

Our DL-based approach evinced a pathbreaking conjecture
for survivals of neuroblastoma patients, still, there are some
caveats should be aware of. First, neural networks are thought to
be uninterpreted for now. We tried to exploit an attention
mechanism to decipher underlying juxtapositions of genes
involved in neuroblastoma, however, we could not declare how
these neural networks work explicitly. Second, we only applied
our model into two datasets that provided high-quality
sequencing results as well as unequivocal labels and clinical
annotations for each patient. We expected to test the reliability
in more large cohorts. Last but not the least, we exerted neural
networks on 172 features, which would be an obstacle for
massive use in clinical examination due to its costs.

In summary, a DL-based model was constructed using 172
gene expressions to forecast survival status of neuroblastoma.
Patients were split into two groups, which presented distinct
microenvironments and clinical denouements. Our work paved
the way for applications of artificial intelligence in medicine, not
only in survival prediction, but also biological interpretations
and associated accurate medicine.
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Supplementary Figure 1 | Consensus clustering results for GSE49710.
(A) Cumulative density functions (CDF) for k=2 to 8. (B) Relative changes in CDF
curves. (C–F) Consensus matrices for k=2 to 5.

Supplementary Figure 2 | KM curves of the EMTAB cohort for OS (A) and EFS
(B). S1 (coralline line) and S2 (atroceruleous line) were determined by the same
procedure as GSE49710 (both log-rank test p < 0.0001).

Supplementary Figure 3 | GSEA plots showed that S1 exhibited higher
biochemical activities (A–E) while S2 owned immune responses (F–I).

Supplementary Figure 4 | Explained variances of each top 10 PCA dimensions.

Supplementary Figure 5 | Consensus clustering results for GSE49710 using
PCA dimensions. (A) Cumulative density functions (CDF) for k=2 to 8. (B) Relative
changes in CDF curves. (C–F) Consensus matrices for k=2 to 5.

Supplementary Figure 6 | The univariable cox regression result of age, MYCN
status, gender, stage, INSS-risk and DL-probability.

Supplementary Figure 7 | Decision curve analysis for 3 models: DL-model (red),
clinical covariates (palm green) and combined model (green).

Supplementary Figure 8 | The ceRNA network associated with CCNB1, CD9,
MYCNOS, TERC, SNHG1 and MIR17HG.

Supplementary Figure 9 | ESTIMATE scores for samples in GSE49710. (A) The
total ESTIMATE scores. (B) Immune socres. (C) Stromal scores.

Supplementary Figure 10 | The immune microenvironment in neuroblastoma.
(A) Relative proportions of cell types in S1 and S2. Wilcoxon rank sum tests were
used to detect differences between two subgroups (n=498). ns, not significant;
*:0.05, **:0.01, ***:0.001, ****:0.0001 (B) Cox regressions for individual cell types in
S1, S2 and the whole cohort. Dots are colored red when hazard ratios are higher
than 1 and are colored blue when hazard ratios are less than 1. Also, a larger circle
means a lower p-value.

Supplementary Figure 11 | Immune microenvironment molecules. Differences
between groups were examined by Wilcoxon rank sum tests. ns: not significant,
*:0.05, **:0.01, ***:0.001, ****:0.0001 (A) S1 owned higher cytolytic activities, which
were calculated by GZMA*PRF1 (Wilcoxon rank sum tests: p < 0.001).
(B) Cytokines in S1 and S2. (C) HLA molecules in S1 and S2. (D) Immune
checkpoint molecules in S1 and S2.
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Hepatoblastoma is the most common malignant liver cancer in childhood. The etiology of
hepatoblastoma remains obscure. Hepatoblastoma is closely related to genetic
syndromes, hinting that hepatoblastoma is a genetic predisposition disease. However,
no precise exposures or genetic events are reported to hepatoblastoma occurrence.
During the past decade, significant advances have been made in the understanding of
etiology leading to hepatoblastoma, and several important genetic events that appear to
be important for the development and progression of this tumor have been identified.
Advances in our understanding of the genetic changes that underlie hepatoblastoma may
translate into better patient outcomes. Single nucleotide polymorphisms (SNPs) have
been generally applied in the research of etiology’s exploration, disease treatment, and
prognosis assessment. Here, we reviewed and discussed the molecular epidemiology,
especially SNPs progresses in hepatoblastoma, to provide references for future studies
and promote the study of hepatoblastoma’s etiology.

Keywords: hepatoblastoma, etiology, genetics, single nucleotide polymorphism, epidemiology
INTRODUCTION

Hepatoblastoma arising from the hepatocyte precursor is the most common malignant liver tumor
among children (1). The typical clinical symptoms of hepatoblastoma are alpha-fetoprotein (AFP)
rising and abdominal mass (2). Due to the rarity of hepatoblastoma, diagnosis and treatment are
facing challenges. With medical-technical development such as adjuvant chemotherapy and
hepatectomy in decades, the 5-year survival rate is greater than 70% nowadays (3, 4). Despite the
improved survival rate, numerous survivors suffer treatment-related side effects, such as hearing loss
or cardiomyopathy (5). In addition, the prognosis of advanced stage hepatoblastoma patients with
unresectable tumors remains poor (6).

Unlike the hepatocellular carcinoma which has clear pathogenesis (HCC), the etiology of
hepatoblastoma has no connection with hepatitis B virus or cirrhosis (7). The first study of genetic-
molecular changes in hepatoblastoma was conducted in the late 1980s (8). However, the etiology of
hepatoblastoma remains unclear by far. In this review, we aimed at giving a brief overview of the
molecular epidemiology for hepatoblastoma, focusing on the SNPs that influence hepatoblastoma
risk. We further discussed the clinical challenges for elucidating the etiology of hepatoblastoma and
provided theoretical basis for future prevention, diagnosis, and therapeutic approaches
for hepatoblastoma.
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EPIDEMIOLOGY

Because of the rarity of hepatoblastoma, the hepatoblastoma’s
epidemiology has not been investigated comprehensively.
Majority of hepatoblastoma are sporadic and are commonly
found in children in their first 5 years, with a predominance in
boys (9). The incidence of hepatoblastoma remains at a lower
level worldwide comparing with other solid tumors in children,
including neuroblastoma and Wilms tumor (10–12). Employing
the Surveillance, Epidemiology and End Results (SEER)
database, the incidence of hepatoblastoma in the United States
was 1.5–1.9 per million with an upward tendency (5, 13). It is
similar to the incidence rate of roughly 1.1 per million in China
and 1.7 per million in the Nordic countries (14, 15). There is little
difference of hepatoblastoma’s incidence in diverse countries, but
these data were not collected from the same period. The
difference in ethnicity is also correlated to the incidence rate. It
was reported that the incidence rate in blacks was relative lower
(16). A population-based analysis conducted in the United States
revealed that the higher the maternal education, the lower the
incidence rate is of hepatoblastoma (17).

GENETIC SYNDROMES

Althoughmost hepatoblastomas are sporadic (18), hepatoblastoma
was reported to be closely related to genetic syndromes, including
familial adenomatous polyposis (FAP), Beckwith-Wiedemann
syndrome (BWS), and trisomy 18 (19–21).

The association between FAP and hepatoblastoma was
originally perceived in 1983 (22). Mutation of the APC was
detected in hepatoblastoma patients with a family history of FAP
(23). APC mutation was also found in other cancers, including
gastric and colorectal cancer (24, 25). However, in subsequent
research, Harvey et al. demonstrated that no APC mutation was
found in sporadic hepatoblastoma (26). BWS, an overgrowth
syndrome associated with alteration of genomic imprinting on
chromosome 11p15.5, is characterized by macroglossia, high birth
weight, overgrowth of abdominal organs, and neonatal
hypoglycemia (27, 28). Comparing with children without BWS,
the relative rate of hepatoblastoma among children with BWS was
2,280 (95% CI: 928–11,656) (29). Trisomy 18, regarded as a fatal
disease, affects approximately 1 per 6,000 newborns (30). The
correlation between trisomy 18 and hepatoblastoma has been
reported in several previous studies (21, 31–33). Tomlinson et al.
raised an interesting point that the hepatoblastoma cases with
trisomy 18 almost were females, and this situation was contrary
tohepatoblastomawithhigherprevalence inmales (34). In addition
to the syndromes mentioned above, some genetic syndromes have
been reported, including Prader-Willi syndrome, and Simpson-
Golabi-Behmel syndrome (35–37) (Table 1). However, these cases
are too rare to consider as a close risk factor for hepatoblastoma.

RISK FACTORS

Although the etiology of hepatoblastoma remains unclear, some
risk factors have been identified (Table 2). The United Kingdom
Childhood Cancer Study (UKCCS) reported that parental
Frontiers in Oncology | www.frontiersin.org 2144
smoking is a risk factor for hepatoblastoma (OR = 4.74, 95%
CI:1.68–13.35), although only 28 hepatoblastoma patients were
recruited in this study (39). The result of subsequent studies from
the United States and China also supported this conclusion (40,
41). In 2009, parental smoking has been declared as the
significant high-risk factor for hepatoblastoma by the
International Agency for Research on Cancer (47).

As mentioned above, overgrowth syndrome is firmly correlated
with hepatoblastoma; not only that, premature birth and very low
birth weight (VLBW, <1,500 g) is closely associated with
hepatoblastoma. The data analyzation, which was from California’s
population-based cancer registry, indicated that hepatoblastoma risk
is remarkably increase in VLBW children (OR=50.57, 95%CI: 6.59–
387.97) (42). Although the ORs were diverse in different regions,
wholeORswere greater than one and provedVLBWwas an obvious
risk factor for hepatoblastoma (15, 40, 43).

Janitz et al. had confirmed that maternal and paternal
occupational exposures to paints were etiologically relevant to
hepatoblastoma (44). Other studies indicated that parental
occupational exposures to wood dust, metal fumes, and
petroleum products also could be the risk factors (45, 46). On
account of the rarity of hepatoblastoma, the investigations of risk
factors are relatively limited.
SINGLE NUCLEOTIDE POLYMORPHISMS
WITH HEPATOBLASTOMA

In the late 1990s, research showed that the existence of mutation
of CTNNB1 (b-catenin gene) might lead to b-catenin
July 2021 | Volume 11 | Article 690641
TABLE 1 | Genetic syndromes of hepatoblastoma.

Syndrome Chromosome Correlated gene Relative risk Reference

FAP 5q21 APC 750–7,500 (38)
BWS 11p15.5 IGF2-H19 2280 (29)
Trisomy 18 18 / Unknown (21)
SGBS Xq26 GPC3 Unknown (37)
PWS 46XY del (15)

(q11, q13)
/ Unknown (36)
FAP, familial adenomatous polyposis; BWS, Beckwith-Wiedemann syndrome; SGBS,
Simpson-Golabi-Behmel syndrome; PWS, Prader-Willi syndrome.
TABLE 2 | Risk factors of hepatoblastoma.

Risk factors Location/
category

OR 95% CI Reference

Parental smoking UK 4.74 1.68–13.35 (39)
China 2.9 1.1–4.2 (40)
US 2.69 1.18–6.13 (41)

VLBW US 50.57 6.59–387.97 (42)
China 26.0 14.0–65.7 (40)
Japan 15.6 7.6–31.1 (43)
Nordic countries 9.5 2.3–38.2 (15)

Parental
occupational exposure

Paints 1.71 1.04–2.81 (44)

Wood dust 2.41 0.99–5.88 (45)
Metal fumes 8.0 1.5–148.4 (46)
Petroleum 2.3 1.2–4.6 (46)
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accumulation, resulting in the development of hepatoblastoma
(48). Some pathways related to hepatoblastoma molecular
mechanisms were detected, including the well-studied Wnt/b-
catenin and MYC pathways (49). However, research on the
molecular basis in hepatoblastoma was limited. It is urgent to
identify early diagnostic molecular-genetic markers for timely
and valid therapeutic choices.

Single nucleotide polymorphisms (SNPs), comparing with
rare gene mutation, were identified to abundantly exist in human
genome by Human Genome Project (50). The susceptibilities
and pathogenesis of disease and genetic heterogeneity are tightly
correlated with SNPs (51–54). When present in non-coding
regions, SNPs are regarded as critical genetic markers and can
regulate protein expression (55). SNPs have been generally
applied in the research of etiology’s exploration, treatment of
disease, and prognosis assessment. Comparing to other solid
tumors in children, studies of the association between
hepatoblastoma and gene polymorphism are relatively few.
Here we summarized the significant hepatoblastoma
susceptibility SNPs in Table 3.

Cancer-Related Genes
Pakakasama et al. addressed the association between
myeloperoxidase (MPO) promotor gene polymorphism located
on chromosome 17q23 and hepatoblastoma in 2003 (56). They
demonstrated that MPO-463 G>A was associated with the
reduced susceptibility of hepatoblastoma. Their study
represents the first case-control study regarding genetic
polymorphism and hepatoblastoma risk, although the cases
were only less than 100. The significant roles of MPO-463
G>A polymorphism were also reported in other cancers,
including cervical, lung, breast, and bladder cancer (63–66).
MPO is an oxidative enzyme located in neutrophils and
monocytes. It can catalyze an oxidation reaction to generate
hypochlorous acid (HOCl), which is involved in DNA damage
and inhibition of DNA repair (67). Carrying G/A or A/A
genotype affects the expression of MPO and reduces the
generation of oxygen radicals to decrease the risk of cancer.

In the following year, Pakakasama et al. conducted another
study to elaborate that CCND1 gene rs9344 G>A polymorphism
affecting gene splicing was associated with the age of onset of
Frontiers in Oncology | www.frontiersin.org 3145
hepatoblastoma (57). CCND1 was identified as the core gene in
the b -ca ten in/LEF pathway , which i s re l evant to
hepatoblastoma’s development (68, 69). The same as the study
mentioned above, the cases of these two studies were less than
100, which limited the reliability of the statistical result in the
subgroups. In order to affirm these conclusions, study subjects
are supposed to enlarge in a future study.

RAS Gene
More than a decade after that, the progression of studies about
SNPs and hepatoblastoma was stagnant. In 2019, the third study,
a relatively large-scale case-control study that recruited 213 cases
in Chinese children, was conducted by our research group (70).
As a famous oncogenic role, the RAS gene (KRAS, NRAS, and
HRAS) is commonly mutated in human cancers (71–73).
However, in this study, we regrettably identified that one
NRAS polymorphism and three KRAS polymorphisms do not
correlate with hepatoblastoma susceptibility.

Long Non-coding RNAs (lncRNAs)
LncRNAs, with over 200 nucleotides in length and involved in
diverse gene regulation, account for a large number of ncRNAs
(74). Various studies have verified that lncRNAs play a vital role
in transcription processes, regulation of cellular contexts,
assembly of protein, tumor suppressor dysregulation, and other
crucial biological function (75–80). LINC00673, located on
chromosome 17q24.3, has been reported as an oncogene in
diverse cancers (81–83). Childs et al. performed a genome-
wide association study (GWAS) to confirm that LINC00673
rs11655237 polymorphism is associated with pancreatic cancer
susceptibility (84). Considering the involvement of LINC00673
in the occurrence and development of diverse cancers while there
were no previous studies linking LINC00673 to hepatoblastoma,
our research group conducted a case-control study selecting this
polymorphism and confirmed that the LINC00673 rs11655237
C>T polymorphism may be correlated with hepatoblastoma
susceptibility. In the stratified analysis, significant result was
also found in the subgroup of clinical stages III+IV (58). The
patients carrying this SNP seemed to tend to suffer severe
hepatoblastoma. The conjecture based on the statistical result
needs further validation.
TABLE 3 | Summary of hepatoblastoma susceptibility SNPs.

Chromosome Variant Candidate gene Alternate allele Effect Reference

17q23 G-463-A MPO G>A Protective factor (56)
11q13 rs9344 CCND1 G>A Risk factor (57)
17q24.3 rs11655237 LINC00673 C>T Risk factor (58)
12q15 rs968697 HMGA2 T>C Risk factor (52)
11p15.5 rs2839698 H19 G>A Risk factor (59)
11p15.5 rs3024270 H19 C>G Risk factor (59)
11p15.5 rs217727 H19 G>A Protective factor (59)
20q13 rs6090311 YTHDF1 A>G Protective factor (60)
6q21 rs9404590 LIN28B T>G Risk factor (61)
6q21 rs314276 LIN28B C>A Risk factor (61)
6q25 rs7766006 WTAP G>T Protective factor (62)
3p25.3 rs23795 hOGG1 A>G Risk factor
July 2021 | Volume 11 | Art
icle 690641
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LncRNAH19 gene, a maternally imprinted gene, is located on
chromosome 11p5.5 and highly expressed during the stage of
embryonic development (85, 86). H19 plays a vital role in
tumorigenesis and the development of malignant tumors via
regulation of transcription (87). Tan et al. identified that
rs2839698 G>A and rs3024270 C>G, which decreased long
non-coding RNA MRPL23 antisense RNA 1 (MRPL23-AS1)
expression, were significantly correlated with increased
hepatoblastoma risk. In contrast, rs217727 G>A increased
MRPL23-AS1 expression to reduced hepatoblastoma risk in
the Han population (59). Carrying GGG and AGG haplotypes
(order rs2839698, rs3024270, rs217727), children have a
tendency to suffer hepatoblastoma. These three polymorphisms
were reported to affect the folding structures of H19mRNA (88).
These results revealed that even though SNPs are in the same
gene, their effects of hepatoblastoma may be different. These
SNPs are expected to be the biomarkers of early diagnosis of
hepatoblastoma. However, the functions of H19 polymorphism
in hepatoblastoma still need to be further validated.

LIN28
LIN28A and LIN28B are two paralogs of LIN28, located in
chromosome 1p36.11 and 6q21, respectively (89). They can bind
to the target RNAs, involved separately or jointly in human
development and metabolism, to affect cancer occurrence via
inhibition of let-7 miRNA (90). Yang et al. enrolled 275
hepatoblastoma cases and 1,018 healthy controls to prove LIN28B
SNPs (rs94904590 T>G and rs314276 C>A) could increase the risk
of hepatoblastoma (61). The LIN28A SNP (rs3811464 G>A) in
hepatoblastoma affected hepatoblastoma in a low-penetrating
manner because the significant result was only found in the
stratified analysis (91). Four LIN28A SNPs (rs3811464 G>A,
rs3811463 T>C, rs34787247 G>A, and rs11247957 G>A) were
analyzed in hepatoblastoma, neuroblastoma, and Wilms tumor.
Nevertheless, the association between the same SNPs with different
malignant tumors is diverse (91–93). Interestingly, these findings
suggested that the effects ofLIN28Apolymorphismswere specific in
a specific cancer.

HMGA2
HMGA2, a member of the high mobility group (HMG) proteins
family, carries a typical functional sequencemotif namedAT-hooks
(94). HMGA2 regulates gene transcription in a modification of
chromatin construction way (95). Moreover, it is mainly expressed
in embryonic stem cells during embryogenesis rather than in adult
tissue cells (96). Many studies identified that aberrant HMGA2
expression is associated with diverse cancer (94). Li et al. detected
that HMGA2 rs968697 T>C polymorphism was related to
hepatoblastoma susceptibility in Chinese children (52).

Base Excision Repair Pathway Genes
DNA damage is common in humans, and DNA repair systems
maintain the stability and integrity of DNA. If the damaged DNA
is not repaired, genomic instability may eventually evolve into
tumorigenesis (97). The base excision repair (BER) pathway is a
critical part of DNA repair systems (98). Zhuo et al. conducted a
case-control study exploring the relationship between six BER
Frontiers in Oncology | www.frontiersin.org 4146
pathway genes (PARP1, hOGG1, FEN1, APEX1, LIG3, and
XRCC1) and hepatoblastoma. hOGG1 gene rs293795 A>G was
significantly correlated with hepatoblastoma risk (99).

Other Genes
As a tumor suppressor gene studied widely, TP53 is located on
human chromosome 17p13.1 and plays a vital role in apoptosis
and tumorigenesis (100). Among genes, TP53 has the highest
pertinence with human tumors. Aberrant expression and
dysfunction of TP53 have been detected in various human
tumor cases. The TP53 rs1042522 C>G polymorphism leads to
an amino acid alteration (Arg to Pro) and therefore influences
the susceptibility of various malignant tumors (101–103). Our
research group conducted two studies to explore the association
betweenTP53 rs1042522C>Gpolymorphismandhepatoblastoma.
The significant result could not be found in the first study, which
enrolled 213 hepatoblastoma cases and 958 cancer-free controls
(104). After enlarging the study subjects to 313 cases and 1,446
controls and adding the analysis of rs4938723 T>C of miR-34b/c,
Liu et al. didnot observe any significant result either (105).CMYC is
also a critical oncogene and reported that the expression of c-Myc
increased in hepatoblastoma tissue (106). However, Yang et al.
conducted a study in Chinese children and the result showed that
CMYC rs4645943 and rs2070583 polymorphisms were not
correlated with hepatoblastoma risk (107).

N6-Methyladenosine (m6A)
Modification Genes
Mainly occurring on the N6-position of adenosine, m6A as an
invertible epigeneticmodification is prevalent in various eucaryotes
(108). m6A prefers appearing in 3’untranslated regions (3’UTRs),
around termination codons, and within long internal exons (109).
Althoughm6Amodificationdoes not disturb baseparingor coding,
it was reported that it is involved in various RNA metabolism,
including RNA expression, alternative splicing, and export, and
therefore plays a critical role in tumor occurrence and development
(110). Cui et al. demonstrated that the majority of m6A-related
genes were overexpressed in hepatoblastoma tissues (111).
However, at present, the research about m6A-related gene
polymorphism in hepatoblastoma is few.

m6A proteins can be divided into three categories, namely,
“writers”, “erasers”, and “readers”, which have the function of
adding, removing, and recognizing, respectively (112).
Methyltransferase-like 3 (METTL3) is a catalytic enzyme that,
combined with methyltransferase-like 14 (METTL14), becomes a
heterocomplex; andWilms’ tumor1–associatedprotein (WTAP)as
an assistant protein interacts with this heterocomplex (113).
METTL3 was localized at nuclear speckles and was involved in
mRNA splicing to regulate mRNA metabolism (110). Liu et al.
demonstrated that high expression ofMETTL3 is themain factor of
the aberration of m6A and thereby promotes hepatoblastoma
growth via the Wnt/b-catenin pathway (114). Downregulation of
METTL14 was demonstrated to correlate with the prognosis of
hepatocellular carcinoma (47). In contrast, the expressionofWTAP
was significantly upregulated in hepatocellular carcinoma (115).
m6A demethylases, known as “erasers”, include obesity-associated
protein (FTO) and alkylation repair homolog protein 5 (ALKBH5).
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FTO and ALKBH5 are a-ketoglutarate (a-KG) and Fe (II)-
dependent demethylases that remove the RNA m6A modification
(116). There are many kinds of “readers” enzymes including YTH
domain-containing family (YTHDF1-3 and YTHDC1-2),
HNRNPA2BFHU1, Mrb1, ELAVL1, IGF2BPs, and eIFs. “Writers”,
as binding proteins with the function of specific recognition, impact
the gene expression after RNA transcription (117).

To our knowledge, only our research group investigated the
relationship between m6A modification core gene polymorphisms
and hepatoblastoma risk. Several research results have been
published. Enrolled 313 cases and 1,446 controls, a Chinese seven-
center case-control studywasconducted.TheWTAP rs7766006G>T
was significantly correlated with reduced hepatoblastoma risk.
Preliminary annotation revealed that WTAP mRNA levels were
upregulated in the liver in those who carried the rs7766006 T
genotype (62). The YTHDF1 rs6090311 G allele was identified as a
protective factor of hepatoblastoma, and expression quantitative trait
loci (eQTL) analyses showed that rs6090311 A>G might affect the
mRNA level (60). Similar studies detected the association between
YTHDC1 and ALKBH5 polymorphism and hepatoblastoma.
However, significant relationships between YTHDC1 rs2293596
T>C and ALKBH5 rs8400 G>A polymorphism and
hepatoblastoma risk were observed in the subgroup of clinical stage
III+IV in stratification analysis (118, 119), requiring further study to
identify whether these SNPs correlate to the prognosis of
hepatoblastoma. Results indicated that the m6A gene SNPs might
affect the m6A modification and thereby influence the
hepatoblastoma growth (Figure 1). Our research group has also
conducted the study ofMETTL3 andMETTL14polymorphisms and
hepatoblastoma risk, and these results await to be published.

Considering the importance of m6A modification in
malignant tumors, the studies of m6A modification core gene
Frontiers in Oncology | www.frontiersin.org 5147
polymorphisms and hepatoblastoma risk are still inadequate.
Besides, the number of SNPs included in the research is not
enough, and more SNPs are urging to be enrolled to analyze.
DISCUSSION AND FUTURE DIRECTIONS

The treatment approaches of hepatoblastoma mainly include
chemotherapy, surgical resection, and liver transplantation. In order
to avoid overtreatments and improve the efficiency of treatment,
individualized approaches are needed to provide to patients with
different conditions. According to the recommendation of
International Childhood Liver Tumor Strategy Group (SIOPEL),
patients with high risk are suggested to be given dose-dense cisplatin
weekly (120). Up to now, only alpha-fetoprotein (AFP) is used as a
biomarker in clinics (121). If more biomarkers are applied in clinical
practice for early diagnosis, the survival rate could be vastly improved.
We reviewed the development of molecular epidemiology of
hepatoblastoma. Advances in genotyping technologies facilitate the
measuring of polymorphisms in a mass of samples. The sample sizes
are finite in previous studies. However, the sample sizes have been
distinctly enlarged with the launching of multicenter studies.

There some limitations of the research that actually need to be
addressed. In recent years, the study subjectsmentioned above are all
from the Han population. Therefore, the results could not be
generalized to other ethnicities. The precise functional role of SNPs
inhepatoblastoma still awaits to be explored. Besides, there are plenty
of cancer-related gene polymorphisms waiting to be detected.

In the past decades, genome-wide association study (GWAS),
which is a method of conducting high-throughput sequencing
technologies to measure plenty of polymorphisms, has
discovered abundant significant cancer-related loci to improve
FIGURE 1 | N6-methyladenosine (m6A) modification core gene polymorphisms and hepatoblastoma risk.
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the methods of genetic research (122, 123). This technology was
applied in other childhood solid tumors such as neuroblastoma
and has determined multiple disease-related loci (124, 125).
GWAS needs a larger sample to apply in multistages and
multicenters to ensure the reliability of the results. Based on
the result that abundant SNPs were detected by GWAS, it is
challenging to seek out the actual cancer-related loci and explain
their biological function in hepatoblastoma. Identifying SNPs
with important functionalities could be applied in prenatal
screening to diminish birth defects. There is no doubt that the
application of GWAS in hepatoblastoma is necessary. It will
contribute to figuring out the biomarkers of hepatoblastoma and
guiding people to understand hepatoblastoma’s etiology to
improve the prevention and treatment of hepatoblastoma.
Frontiers in Oncology | www.frontiersin.org 6148
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Background: The aim of the study was to validate the diagnostic role of circulating tumor
DNA (ctDNA) in genetics aberration on the basis of next-generation sequencing (NGS) in
pediatric acute myeloid leukemia (AML).

Methods: Bone marrow (BM) and peripheral blood (PB) were collected from 20 AML
children at the time of initial diagnosis, and a ctDNA sample was isolated from PB.
Detection of mutation was performed on ctDNA, BM, and peripheral blood mononuclear
cell (PBMC) by NGS based on a 185-gene panel.

Results: Among 185 genes sequenced by the NGS platform, a total of 82 abnormal
genes were identified in 20 patients. Among them, 61 genes (74.39%) were detected in
ctDNA, PBMC, and BM samples, while 11 (13.41%) genes were found only in ctDNA and
4 (4.88%) were detected only in the BM sample, and 2 (2.44%) were detected only in
PBMC. A total of 239 mutations were detected in three samples, while 209 in ctDNA, 180
in bone marrow, and 184 in PBMC. One hundred sixty-four mutations in ctDNA were
shared by matched BM samples, and the median variant allelic frequency (VAF) of these
mutations was 41.34% (range, 0.55% to 99.96%) and 44.36% (range, 0.56% to 99.98%)
in bone marrow and ctDNA. It was found that 65.79% (75/114) of mutations with clinical
significance were detected in three samples, with 9 mutations detected both in ctDNA and
BM, and 2 mutations detected both in PBMC and BM. The consistency of mutations with
clinical significance between ctDNA and BM was 77.06% (84/109). Among the 84
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https://www.frontiersin.org/articles/10.3389/fonc.2021.666470/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.666470/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.666470/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.666470/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.666470/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:xfzhu@ihcams.ac.cn
https://doi.org/10.3389/fonc.2021.666470
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.666470
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.666470&domain=pdf&date_stamp=2021-07-29


Ruan et al. ctDNA in Pediatric AML

Frontiers in Oncology | www.frontiersin.org
mutations with clinical significance detected in both sources, the concordance of VAF
assessment by both methods was high (R2 = 0.895).

Conclusion: This study demonstrates that ctDNA was a reliable sample in pediatric AML
and can be used for mutation detection. Consistency analysis showed that ctDNA can
mirror the genomic information from BM. In addition, a subset of mutations was
exclusively detected in ctDNA. These data support the fact that monitoring ctDNA with
next-generation sequencing-based assays can provide more information about gene
mutations to guide precision treatment in pediatric AML.
Keywords: acute myeloid leukemia, targeted next-generation sequencing, circulating tumor DNA, mutation
(genetics), pediatric
INTRODUCTION

Acute myeloid leukemia (AML), which accounts for 25% of
childhood acute leukemia, is a rapidly progressing hematopoietic
malignancy characterized by the differentiation block and
aberrant proliferation of leukemic blasts (1). In pediatric AML
patients, the achieved 5-year overall survival (OS) is 60–70%,
while the event-free survival (EFS) is 50% (2). With the
development of molecular biology technology, the molecular
landscape of pediatric AML becomes clearer (3, 4). Mutations
in FLT3, TP53, NPM1, CEBPA, RUNX1, and ASXL1, which are
common in AML children, have received more and more
attention. And the clinical significance of new mutations, such
as STAG2, RAD21, SRSF2, and U2AF1, have been gradually
clarified. These diverse genomic molecular markers reflect the
heterogeneity of AML, and accurate molecular profiling in AML
is important for risk stratification and selection of targeted
therapies (5).

Circulating tumor DNA (ctDNA), which is contained in
circulating-free cell DNA (cfDNA) and released by necrosis or
apoptosis tumor cell, allows for noninvasive peripheral blood
sampling of cancer-associated mutations (6–9). When compared
with other samples, ctDNA is more like a genomic library of
different tumor cells and can mirror the heterogeneity of AML;
moreover, ctDNA has a relatively short half-life, which may
better reflect the latest status of the disease (10–12).

Nowadays, noninvasive detection of mutations by ctDNA was
widely used in various solid tumors, but its role in hematological
malignancies is still not clear. The current “gold standard” for
molecular testing in pediatric AML is from bone marrow (BM)
aspirate DNA. However, BM aspiration is an invasive procedure,
which severely limited its application in clinical research. To
date, there are very limited studies on the potential role of
ctDNA, as a relatively non-invasive source, in monitoring
leukemia-associated mutations and providing prognostic
information in patients with hematologic malignancies (13,
14). Furthermore, it is still unknown whether ctDNA can fully
supplant BM assessment for molecular profi l ing in
pediatric AML.

Therefore, we aim to validate the diagnostic role of ctDNA in
molecular profiles in pediatric AML patients, when compared
2153
with hybrid capture-targeted next-generation sequencing of BM,
peripheral blood mononuclear cell (PBMC).
MATERIALS AND METHODS

Patients and Patient Specimens
For this prospective analysis, the source population included 20
children (age < 18 years) with AML at the Division of Pediatric
Blood Diseases Center in Institute of Hematology and Blood
Diseases Hospital, Chinese Academy of Medical Sciences &
Peking Union Medical College. BM and PBMC were collected for
diagnostic purposes from all enrolled patients (excluding Down
syndrome or acute promyelocytic leukemia, secondary AML), while
ctDNA was isolated from the PB samples. The data collected
included information regarding age, sex, peripheral blood white
blood cell counts (WBC), blast percentages in BM and PBMC,
chromosome karyotypes, and gene mutation signatures.

The study design and methods complied with the Declaration
of Helsinki and were approved by the Ethics Committee and
Institutional Review Board of Institute of Hematology and Blood
Diseases Hospital, Chinese Academy of Medical Sciences &
Peking Union Medical College. Informed consent was obtained
from all subjects. The raw sequence data reported in this paper
have been deposited in the Genome Sequence Archive
(Genomics, Proteomics & Bioinformatics 2017) in National
Genomics Data Center (Nucleic Acids Res 2021), China
National Center for Bioinformation/Beijing Institute of
Genomics, Chinese Academy of Sciences, under accession
number HRA000912, which are publicly accessible at https://
ngdc.cncb.ac.cn/gsa-human.
Next-Generation Sequencing and
Mutation Analysis
cfDNAs were extracted by a customized QIAamp Circulating
Nucleic Acid kit (Qiagen GmbH) from 20 patient’s PB samples at
diagnosis, while DNA were extracted by a customized Genomic
DNA kit (Qiagen GmbH) from the patient’s BM and PBMC
samples. Gene library amplification was based on a KAPA Hyper
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Prep Kit. The gene panel from Acornmed Biotechnology was
used to capture the target region. Detailed sequencing
information is provided in Table S1.

Multiplexed libraries were sequenced with Illumina Novaseq
and then analyzed for data including Sequencing mapping,
coverage and quality assessment, Insertion/Deletion detection,
annotation for sequence mutations: Average raw sequencing
depth on target per sample ≥10000x(ctDNA)≥1000x (DNA),
Allele mutation frequency ≥0.5% for single Nucleotide variation
and insertion or deletion, respectively. All reads were filtered by
high Mapping quality (≥30) and Base quality (≥30). The mutant
reads were supported by positive and negative strands. Reads
were aligned to the human genome using the Burrows-Wheeler
Alignment tool (BWA, version 0.7.12). PCR duplicates were
marked by the MarkDuplicates tool in Picard. IndelRealigner
and BaseRecalibrator on Genome Analysis Toolkit (GATK;
version 3.8) were used for the realignment and recalibration of
the BWA alignment results, respectively. Mutect2 was used for
identifying SNV and INDEL. We obtained candidate variations
through background database filtering of normal samples. Pindel
was used for detecting FLT3-ITD. FLT3-ITD quantitative
analysis was performed by in-house tools based on machine
learning development. All the variants were annotated by the
ANNOVAR software using some resources, including 1000G
projects, COSMIC, SIFT, and Polyphen. Our gene panel was
mainly from NCCN guidelines, EMSO guidelines, authoritative
databases, and literature reports of hematologic tumors.
Statistical Analysis
Patient characteristics were summarized using median (range) for
continuous variables and frequencies (percentages) for categorical
variables. The Fisher exact test was used to test the association
between two categorical variables. Concordance of BM and ctDNA
and PBMC results were assessed using Pearson correlation analysis.
P values<0.05 were considered significant. All statistical tests were
performed using SPSS 24.0 (IBM Corporation).
RESULTS

Baseline Characteristics
Twenty patients with newly diagnosed AML were evaluated. The
baseline characteristics of the study cohort are shown in Table 1.
Four patients (20%) had absolute PB blast count<1×109/L, and
one patient had no peripheral blood circulating blasts. ctDNA,
PBMC, and BM targeted sequencing were performed in all 20
patients at diagnosis simultaneously.
Detection of Molecular Profiles
by Three Methods
The molecular profiles of all patients were detected by target-Next-
generation Sequencing (t-NGS) (Acornmed Biotechnology Co.,
Ltd.), which covers the most frequent mutations in 137 genes in
AML patients, via ctDNA, BM, and PBMC samples (Table S1).
Frontiers in Oncology | www.frontiersin.org 3154
The sequencing depths of the three samples were all greater than
2000 X, namely 3460X (1837X-4270X) in ctDNA, 2530X (1633X-
2862X) in BM, and 2324X (1208X-3720X) in PBMC.

A total of 82 abnormal genes were identified in 20 included
patients. Among them, 61 genes (74.39%) were detected in
ctDNA, PBMC, and BM samples, while 11 (13.41%) genes
were found only in ctDNA, 4 (4.88%) were detected only in
BM sample, and 2 (2.44%) were detected only in PBMC. There
were 18 genes with mutation frequency ≥10% in this study, and
38.89% (7/18) of them were identified by both methods. Eleven
genes, namely NRAS (8, 10 and 11), KIT (9, 9 and 10), KRAS (6,
5 and 6), ASXL2 (4, 4 and 4), CEBPA (4, 4 and 4), CSF3R (3, 3
and 3), GATA2 (2, 2 and 3), FLT3-ITD (3, 2 and 2), FBXW7 (2, 2
and 2), EP300 (2, 2 and 2), and TET2 (2, 2 and 2), were with
mutation frequency ≥10% of BM, PBMC, and ctDNA
sequencing (Figure 1).

What’s more, a total of 239 mutation forms in 80 abnormal
genes were detected in three samples; among all mutations, there
were 180 in BM, 203 in ctDNA, and 184 in PBMC. Variant allelic
frequencies (VAFs) of 180 mutations in BM were from 0.52% to
99.96% (median 37.97%), including 131 single nucleotide
variations (SNVs) and 49 indels. For each patient, the median
number of mutation is 9 (3-14); specifically, the number of SNVs
was 6.5 (3 to 12) and that of indels was 2.0 (0-12). When
compared with the BM sample, more mutations were found in
ctDNA with VAFs from 0.50% to 99.98% (median 34.49%),
including 150 SNVs and 53 indels. For each patient, the median
number of the mutation was 10 (3 to 20), and 7.0 (3 to 20) SNVs
and 3.0 (0 to 11) indels were identified. A total of 184 mutations
were detected in PBMC with VAFs from 0.51% to 100.00%
(median 34.72%), including 140 SNVs and 44 indels. For each
patient, the number of mutations ranged from 3 to 20 (median:
8.5), and the median number of SNVs was 6.5 (3 to 12) and that
of indels was 2.0 (0 to 8).
TABLE 1 | Baseline characteristics of the study population.

Characteristic Median [range] or n (%)

Sex
Male 7 (35)
Female 13 (65)

Age, years 11 (1-15)
White blood cells, ×109/L 25.82 (1.54-182.5)
Peripheral blood blasts, ×109/L 12.41 (0-124.1)
Peripheral blood blasts, % 36 (0-98.0)
Bone marrow blasts, % 66.5 (21.0-90.0)
Cytogenetics
t (8;21) 6 (30)
inv (16) 1 (5)
t (6;11) 1 (5)
+8 2 (10)
-7 1 (5)
Complex karyotype 1 (5)
Normal karyotype 8 (40)

FAB type
M1 2 (10)
M2 8 (40)
M4 6 (30)
M5 3 (15)
M7 1 (5)
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Concordance of Mutation Detection in
ctDNA and BM
A total of 219 mutations were identified in BM and ctDNA, while
164 mutations (74.88%) were detected both in ctDNA and BM
(Figure 2), including 121 SNVs (75.63%) and 43 indels (72.88%).
Five patients (UPN3, UPN7, UPN14, UPN15, and UPN16) were
with the same mutation sites according to BM and ctDNA
sequencing (Figure S1). The median absolute blast count in
PB of these patients was 19.33 ×10 9/L (0.89 to 43.80 ×10 9/L),
which was higher than other patients. There was only one patient
(UPN6) with more mutation sites detected in BM than ctDNA
(Figure S1), and the absolute blast count in PB was 1.23 ×10 9/L.
There were 11 patients with more mutation sites detected in
ctDNA than BM (Figure S1); the median absolute blast count of PB
in these patients was 11.51 ×10 9/L, which was similar to others.
Frontiers in Oncology | www.frontiersin.org 4155
Although the number of mutations was similar in three patients
(UPN9, UPN10, and UPN13) on the basis of BM and ctDNA, all
sites of mutation were completely different (Figure S1). For each
patient, 8 (2 to 14) mutations were detected in both samples, with
high concordance of the number of mutation assessment by both
methods (R2 = 0.816, P <0.0001; Figure 3).

The median VAF of the 164 individual mutations detected by
both assays was 41.34% (range, 0.55% to 99.96%) and 44.36%
(range, 0.56% to 99.98%), and the concordance was high in all
mutations (R2 = 0.945; P<0.0001, Figure 4), both in SNVs (R2 =
0.948; P<0.0001, Figure S2A) and indels (R2 = 0.934; P<0.0001,
Figure S2B). The median VAFs of 16 mutations only detected by
BM was 1.22% (0.52% to 14.63%), while it was 0.93% (0.50% to
21.14%) in 39 mutations tested by ctDNA only, and the VAFs
were <1% in most of these mutations (Figure S3). In view of this,
small subclonal populations with lower VAFs<1% were more
likely to be missed. A total of 37 mutated genes with clinical
significance were detected in all patients, involving 109 mutation
sites (93 in BM and 100 in ctDNA). A total of 84 (77.06%)
FIGURE 2 | The concordance of the number of mutation detected in BM
and ctDNA.
FIGURE 3 | The correlation of the number of mutations in a separate patient
detected in BM and ctDNA.
FIGURE 1 | Frequency of AML-related mutated genes as detected by targeted sequencing of bone marrow (BM), peripheral blood mononuclear cell (PBMC), and
circulating tumor DNA (ctDNA) samples.
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mutations were detected in both samples with high concordance
of VAF assessment (R2 = 0.895, P<0.0001; Figure 5).

Concordance of Mutation Detection in BM
and PBMC
Mutations were detected in PBMC samples of all patients at
diagnosis in comparison to BM. A total of 155 mutations (74.16%)
were found both in PBMC and BM (Figure 6), with high
concordance of VAF assessment (R2 = 0.953, P<0.0001; Figure 7).

Analysis of Mutations With Clinical
Significance Detected in BM, ctDNA,
and PBMC
It was found that 65.79% (75/114) of mutations with clinical
significance were detected in three samples, with 9 mutations
detected both in ctDNA and BM, and 2 mutations detected both
in PBMC and BM (Figure 8). The same mutated genes with
clinical significance were detected in three samples in five
patients (UPN4, UPN7, UPN12, UPN16, UPN20) with high
Frontiers in Oncology | www.frontiersin.org 5156
concordance of VAF assessment (Figure S4). In addition to three
sample co-detecting mutations, the remaining mutations were
mostly detected in BM or ctDNA (Figure S5). These results
suggested that PBMC cannot accurately reflect the mutations of
bone marrow.

Comparison of Bone Marrow and ctDNA in
Minimal Residual Disease Assessment in
AML Patients
To assess whether the dynamic change of ctDNA could reflect
the status of MRD in AML patients, we investigated the
concordance between the BM sample and ctDNA statuses of 5
out of 20 ctDNA-positive children at diagnosis (Figure 9). Of
these five patients, one patient experienced relapse on the basis of
the BM sample while four patient were relapse-free during the
following surveillance. Notably, the results of serial plasma
samples showed that four patients under the condition of
FIGURE 5 | The correlation of the VAFs in the same mutation site detected
in BM and ctDNA among the 84 mutations with clinical significance detected
by both assays.
FIGURE 7 | The correlation of the VAFs in the same mutation site detected in
BM and PBMC among the 155 individual mutations detected by both assays.
FIGURE 4 | The correlation of the variant allelic frequencies (VAFs) in the
same mutation site detected in BM and ctDNA among the 164 individual
mutations detected by both assays.
FIGURE 6 | The concordance of the number of mutation detected in BM
and PBMC.
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relapse-free were with complete ctDNA clearance after
chemotherapy and remained negative at the last follow-up. As
for one patient who experienced relapse, ctDNA positivity
regained after a temporary ctDNA clearance by chemotherapy,
and recurrence of these cytogenetic abnormalities in ctDNA was
observed nearly 2 months earlier than BM relapse. These results
showed that ctDNA was basically consistent with the results
from BM samples, and the shifting level of ctDNA may be a
useful tool for MRD monitoring in children with AML.
Frontiers in Oncology | www.frontiersin.org 6157
DISCUSSION

In this study, we aim to evaluate the potential value of MRD
based on positive ctDNA status in patients with AML, and the
result reported that surveillance of matched serum ctDNA in
residual driver mutation persistence may be regarded as an
independent sample of MRD testing, which was comparable
and with high concordance with sequencing of BM samples for
the diagnosis of gene alterations in the AML children.

AML is a highly heterogeneous disease, and its diagnosis
and treatment require a comprehensive analysis of
morphology, immunology, genetics, and molecular biology.
NGS, as a new molecular biological technology, has the
advantages of high throughput, high sensitivity, and low cost
and is an important means to explore the molecular
pathogenesis of blood tumors and guide clinical diagnosis
and treatment. Previously, detection of gene mutation by BM
was the standard method to identify DNA aberration in AML
patients. However, acquisition of the BM sample is traumatic,
and it is usually difficult to collect specimens in succession for
the close monitoring of MRD, which greatly limits its
application in clinical practices. Moreover, the sensitivity of
MRD monitoring from PB was much lower than that from BM
(15, 16). This is true even under the circumstances of highly
sensitive real-time PCR-based methods targeting leukemia-
related gene alterations.

In 1948, Mandel and Metais firstly advanced the presence of
cfDNA in human blood (17). Subsequently, Koffler et al. (18)
found the higher concentration of cfDNA in the circulation of
patients with cancer when compared with healthy people,
indicating that the presence of the cancer patients may be
simply screened through a test of PB. In 1994, cfDNA was
regarded as an independent sample in distinguishing RAS
mutations in patients with hematological oncology (19, 20).
FIGURE 9 | The clinical courses together with ctDNA statuses of five AML children who received chemotherapy.
FIGURE 8 | The concordance of the number of mutation detected in BM,
ctDNA, and PBMC with clinical significance detected by all assays.
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The recent introduction of NGS-based molecular approaches has
further refined such MRD measurements with regard to broader
applicability. ctDNA was a kind of noninvasive method that
showed its great potential in identifying the gene mutation, and
specifically for patients for whom no conventional genetic
marker for MRD testing was available or conventional MRD
approaches such as flow cytometry or cytogenetics were negative
in AML children in recent years (21–24).

To date, data on the utility of ctDNA from PB in AML
children are relatively sparse; moreover, the results regarding the
diagnostic value in this population were still unspecified. In this
study, it is the first time that ctDNA was used for the detection of
genetics aberration in pediatric AML, and consistent results were
found in this sample when compared with BM and PBMC
samples on the distribution of targeted sites. Moreover, the
absolute blast count in PB did not affect the result of ctDNA in
identifying gene mutations. It was found that ctDNA has good
consistency with BM in the analysis of mutation frequency, and
ctDNA may identify some potential mutations that cannot be
detected by NGS in the BM and PBMC sample.

MRD monitoring has been used as a vital tool for early
prediction of the efficacy of chemotherapy in AML children.
For MRD evaluation, the sample of choice is BM, although
peripheral blood is easy to obtain and lacks immature normal
populations of cells that may interfere with the analysis. ctDNA
has the potential to capture intratumor heterogeneity that may
be missed by BM analysis. In addition, ctDNA has an advantage
of faster turn-around time as well as an acceptable running cost
for serial monitoring of MRD. The current practice for the
assessment of MRD for response assessments relies on BM
sampling, whereas dynamic ctDNA monitoring may be
adequate for reflecting the remission status in some AML
cases. In view of this, these findings potentially introduce the
utility of this noninvasive means at the time of diagnosis.

In summary, our results confirm that ctDNAmay be used as a
complementary method in reflecting the mutation spectrum and
MRD monitoring of AML children, which may be particularly
relevant in the context of subclonal mutations with lower VAF.
However, these findings warranted a larger, prospective study to
investigate the prognostic stratification and MRD monitoring in
pediatric AML.
Frontiers in Oncology | www.frontiersin.org 7158
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Background: Hepatoblastoma (HB) is the most common malignant embryonic liver
tumor type in children under 3 years of age. In the present study, the next generation
sequencing (NGS) method was used to detect the genotype characteristics of HB and
summarize the correlation between the common mutation genotypes noted in this
disease and the clinical treatment and prognosis. The results may aid clinical prognosis
and the successful application of targeted drugs.

Methods: Initially, DNA was extracted from tumor tissue specimens and peripheral blood
derived from 19 pediatric patients with HB. Subsequently, DNA panel and NGS methods
were used to detect tumor diagnosis and the expression levels of treatment-associated
genes, followed by the summary of genotype characteristics. In addition, in order to further
assess the application of immunotherapy in HB, immunohistochemical detection of
programmed cell death 1 ligand 1 (PDL1) was performed in combination with tumor
mutation burden (TMB) and DNAmismatch repair status analysis. Furthermore, the clinical
treatment effect and prognosis of the pediatric patients were statistically analyzed
according to the characteristics of the genotype. Overall prognosis and prognostic
analyses in different groups were performed by Kaplan-Meier and log-rank tests,
respectively. Finally, expression validation and diagnostic analysis of commonly
reported genes were performed in the GSE75271 dataset, which was obtained from
the Gene Expression Omnibus (GEO) database.

Results: In the present study, certain mutated genes, including nuclear factor erythroid 2-
related factor 2 (NFE2L2), catenin b1 (CTNNB1), MYCN, tumor protein p53, axis inhibition
protein 1 (AXIN1) and adenomatous polyposis coli (APC) were associated with the
pathogenesis of HB. During TMB and DNA mismatch repair status analyses, pediatric
patients had a low TMB. All of them did not present with microsatellite instability. The
immunohistochemical results indicated lower expression levels of PDL1 in HB. The
complete remission (CR) rate of pediatric patients in the gene abnormality group was
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lower than that of the non-reported disease-associated gene abnormality group. The
2-year overall survival rate and disease-free survival rate of 19 pediatric patients with HB
were 72.1% and 42.4%, respectively. Receiver operating characteristic (ROC) analysis
demonstrated that CTNNB1, NFE2L2, AXIN1, APC, MYCN and insulin growth factor 2
(IGF2) may be potential biomarkers that could be used for the diagnosis of HB.

Conclusion: The genotype changes in HB were more common and the CR rate of the
pediatric patients with an altered genotype was lower than that of pediatric patients
without an altered genotype. In addition, pediatric patients with HB exhibited lower TMB
compared with adult patients. Moreover, the data indicated that CTNNB1, NFE2L2,
AXIN1, APC, MYCN and IGF2 may be potential biomarkers that can be used for the
diagnosis of HB.
Keywords: hepatoblastoma, CTNNB1, next generation sequencing, tumor mutation burden, PDL1
INTRODUCTION

Hepatoblastoma (HB) is the most common malignant
embryonic tumor of the liver in children (most common under
3 years of age), accounting for approximately 79% of all pediatric
malignant liver tumors, with an average annual incidence of 1.5
per million population (1–3). Abdominal masses are major
clinical manifestations of HB (4). Clinically, the treatment of
HB mainly includes surgery and chemotherapy (2, 5). The cause
of HB remains unclear. However, previous studies have shown
that the incidence of HB in premature infants with very low birth
weight is high (6). In addition, children with very low birth
weight exhibit a higher risk of HB than those with normal weight
(7). The incidence of HB in pediatric patients with Beckwith-
Wiedemann syndrome has recently increased 10-fold (from
1,000 to 10,000) (8, 9).

HB is a disease mainly caused by the activation of the WNT
pathway, which involves the activating mutation/deletion of
exon 3 of the catenin b1 (CTNNB1) gene (10). Certain rare
gene mutations lead to the activation of the WNT pathway, such
as those occurring in the genes axis inhibition protein 1 (AXIN1),
axis inhibition protein 2 (AXIN2) and adenomatous polyposis coli
(APC) (can only be observed in cases associated with familial
adenomatous polyposis) (11). Previous studies reported that the
mutation frequency of CTNNB1 and nuclear factor, erythroid 2
like 2 (NFE2L2) was 80% and 13%, respectively (12). An
additional study demonstrated that the mutation frequency of
NFE2L2 was approximately 10% (10). To date, a high number of
studies have been performed on the genotype of patients with
HB. However, a lower number of reports have been conducted
on the correlation between genotype and HB prognosis. In the
present study, statistical methods were used to analyze the
genotype characteristics of 19 pediatric patients with HB.
Subsequently, the clinical data, clinical efficacy and prognosis
of these patients were analyzed. Finally, the correlations between
genotype and clinical phenotype and between genotype and
clinical efficacy of HB were summarized. The present study
may provide a basis for the application of targeted drugs for
the treatment of HB.
2161
MATERIALS AND METHODS

Patients
A total of 19 Han nationality pediatric patients with HB were
selected who were hospitalized in our hospital between
November 1, 2018 and March 31, 2020. These patients
included 17 patients with recurrence or metastasis and 2
patients with unsatisfactory decrease in the levels of alpha-
fetoprotein (AFP) prior to surgery. The tumor and plasma
samples were collected for genetic testing in Rendong
Medical Laboratory.

The parents of the pediatric patients with HB signed the
informed consent form for their participation in the study
protocol, which included examination and treatment. The
present study was approved by the Medical Ethics Committee
of the Beijing Tongren Hospital, Capital Medical University
(approval no. TRECKY2019-033).

Sample Source and Processing
The plasma samples were centrifuged at 1,600 x g and 16,000 x g
for 10 min. A Blood Genomic DNA Mini kit (CW Biotech) was
used to extract genomic DNA (gDNA) from white blood cells.
The gDNA was used as a reference genome. A QIAamp DNA
FFPE Tissue kit (Qiagen, Inc.) was used to extract tumor DNA
from 5-10 formalin fixed paraffin-embedded (FFPE) sections (5-
mm thick). Qubit detection was performed on the extracted
DNA. In case the total amount of DNA was >3 µg and the A260/
280 ratio was within the range of 1.8-2.0, the quality of DNA was
determined to meet the requirements for subsequent experiments.

Genetic Testing
The NimbleGen SeqCap EZ capture panel was used to capture
the coding regions of the genes. In each sample, 200-500 ng FFPE
DNA or 500 ng gDNA were used for library preparation and
quantification using KAPA Hyper Prep protocols. Briefly,
the DNA samples were fragmented by nebulization and the
fragmented DNA was repaired. An ‘A’ was ligated to the
3′ end. Subsequently, Illumina adapters were ligated to
the fragments and the samples were size selected aiming for a
August 2021 | Volume 11 | Article 628531
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350-400 base pair product. The size selected product was PCR
amplified and the concentration of the final product was
determined using the QubitDsDNHS Assay kit. Nimblegen/
IDT was used for 16-h hybridization capture of 4-6 libraries at
47/65°C. Washing, recovery and amplification were carried out
in sequence according to the standard procedures of the
NimbleGen SeqCap EZ and IDT panels. The AMPure XP
(Beckman Coulter, Inc.) and Qubit™ dsDNA HS Assay kits
(Thermo Fisher Scientific, Inc.) were used for library purification
and quantification, respectively. LuminaNextseq500 (pe75)
sequencer was used for library sequencing.

Data Processing and Bioinformatics
Analysis
The original data (13), bioinformatics and mutation (14–16)
analyses were performed according to the methods reported in
the literature. Initially, the processed data were compared
with the reference genome to delete duplicate readings.
Subsequently, the data sequence that aligned to a single mode
of the genome was also aligned to the exome region. Finally,
associated mutations were annotated and analyzed. The depth
distribution and coverage uniformity of single bases was assessed
in the target region. The sources of the mutation databases
included the following: Catalogue Of Somatic Mutations In
Cancer, Oncology Knowledge Base, MD Anderson, China
Kadoorie Biobank, 1000 Genomes Project, Single Nucleotide
Polymorphism Database, ClinVar, NHLBI GO Exome
Sequencing Project, Exome Aggregation Consortium, Ensembl,
Human Gene Mutation Database and University of California
Santa Cruz.

Diagnosis, Staging and Grouping of HB
The stage of HB was based on the pretreatment extent of disease
(PRETEXT) stage and Children’s Oncology Group (COG) Evans
stage system. The risk group was based on the risk factors that
affected the prognosis (12). The detailed inclusion criteria for the
patients with HB were as follows (12): Pediatric patients younger
than 14 years and a clear diagnosis of HB. In addition, the
pediatric patients who met one of the following conditions were
considered as high-risk cases: (1) Concentration of serum
AFP <100 ng/ml; (2) patients were PRETEXT IV stage prior to
operation; (3) postoperative patients with COG IV stage; (4)
patients who had invasion of portal vein (P+), inferior vena cava
or hepatic vein (V+). The patients who did not receive regular
treatment and follow-up were excluded.

Clinical Treatment
According to the Chinese Guidelines for the Diagnosis and
Treatment of Childhood HB, the main therapeutic drugs used
were platinum and anthracycline. However, in order to reduce
the cardiotoxicity of anthracyclines, different chemotherapeutic
regimens were used for pediatric patients with different stage HB
in China. The pediatric patients in the low-risk group were
mainly treated with the “cisplatin + 5-fluorouracil + vincristine”
combination, whereas the pediatric patients in the medium-risk
group were mainly treated with the “cisplatin + 5-fluroracil +
vincristine + doxorubicin” combination. In addition, the
Frontiers in Oncology | www.frontiersin.org 3162
pediatric patients in high-risk group were mainly treated with
“cisplatin + adriamycin”, “carboplatin + adriamycin” and
“ifosfamide + carboplatin + etoposide”. VIT is a second-line
solution. If the treatment regimen recommended by the
guidelines was ineffective, “vincristine + lrinotecan +
temozolomide” or “vincristine + lrinotecan + cisplatin +
cyclophosphamide” and other regimens were applied at a later
stage and the relevant results were further explained.

Analysis of DNA Mismatch Repair Status
and Tumor Mutation Burden (TMB)
Deficient mismatch repair results in a strong mutator phenotype
known as microsatellite instability (MSI) (17). In the present
study, NGS method was used to evaluate the length distribution
of 309 microsatellite loci to determine the MSI status (18). More
than 20% of unstable microsatellite sites are unstable. MSI was
considered when the unstable loci accounted for more than 20%
of total loci. TMB was defined as the number of somatic, coding,
base substitution, and indel mutations per megabase of
genome examined.

Efficacy Assessment and Prognosis
According to the Chinese Guidelines for the Diagnosis and
Treatment of Childhood HB, the efficacy assessment and
prognostic criteria of HB were as follows: Complete tumor
disappearance upon physical examination and computed
tomography or magnetic resonance imaging and normal
concentration of AFP for >4 weeks. These criteria were
considered necessary for complete remission (CR). Tumor
shrinkage ≥50% in the absence of any evidence of new lesions
or disease progression was regarded as the partial response (PR).
Tumor shrinkage <50% in the absence of any evidence of new
lesions or tumor growth was defined as stable disease. Tumor
enlargement ≥25%, development of a new tumor or increased
AFP levels were considered disease progression (PD). Biopsy
confirmation, clear imaging evidence and 3 increase in the serum
AFP levels within 4 weeks was considered disease recurrence.

In the present study, the deadline for the follow-up period was
May 31, 2020 or the time of death due to cancer progression. Survival
analysis was performed. CR and PR represented effective treatment
and PD and time of death represented ineffective treatment.

Diagnostic Analysis and Expression
Verification in the GSE75271 Dataset
Expression validation and diagnostic analyses of commonly
reported genes were performed in the GSE75271 dataset
(involving 50 HB samples and five normal controls), which
was obtained from the Gene Expression Omnibus (GEO)
database (19). Receiver operating characteristic (ROC) analysis
was also performed using pROC package in R language. The
sensitivity and specificity at the cut-offs was calculated as
determined in a previous report (20). The diagnostic ability
was evaluated by the area under curve (AUC) values in the
ROC curve. In the expression verification, the Wilcoxon signed-
rank test was used to analyze the statistical difference between the
normal control and the HB groups.
August 2021 | Volume 11 | Article 628531
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Statistical Analysis
In the present study, all statistical analyses were performed using
SPSS21 (IBM Corp.). Normally distributed and skewed
distribution data were presented as the mean ± standard
deviation and median (or quartile), respectively. The Fisher
exact probability test analysis of the chi-squared test was used
for the analysis of the comparison of count data in different
groups. The overall prognosis analysis was analyzed by the
Kaplan-Meier method. The prognostic analysis in the different
groups was analyzed using the log-rank test. Expression
verification was performed using the Wilcoxon signed-rank
test in order to analyze significant differences. P<0.05 was
considered to indicate a statistically significant difference.
RESULTS

Clinical Features of 19 Pediatric Patients
With HB
The “pwr” package in R was used for power analysis, which was
analyzed by the chi-squared power calculation. The effect value
(w)=0.5060481, sample size (n)=19, degree of freedom=1 and
significance threshold (sig. level)=0.05 were initially input
followed by the output power level (power)=0.5971157. The
closer the power to 1, the more accurate fit of the sample size
on the experiment. In the present study, the power was estimated
to 0.5971157, indicating that the sample size was medium but not
optimal. In total, 9 males and 10 females were enrolled as
pediatric patients with HB. The age of onset range and the
median age of onset were 11-120 months and 33 months,
respectively. No family history of familial adenomatous
polyposis and Beckwith-Wiedemann syndrome was noted in
all cases. The specific clinical characteristics of 19 pediatric
patients with HB are shown in Table 1.

Genotypic Characteristics of
Next-Generation Sequencing
In the present study, 642 genes with coding regions were
captured. The genes with mutation abundance ≥5% are shown
in Table 2. In total, 7 out of 19 pediatric (36.84%) patients with
HB exhibited CTNNB1 gene alterations, among which, 5 patients
had single nucleotide variants and two gene indel deletion
alterations. In the present study, no CTNNB1 gene deletions
were detected, which may be associated with the small sample
size of the population or ethnic differences. There was 1 patient
who exhibited both single nucleotide variation of tumor protein
p53 (TP53, also known as p53) gene and point mutation of the
CTNNB1 gene. The MYCN proto-oncogene and the basic helix-
loop-helix transcription factor gene were amplified in 1 patient.
Moreover, 2 patients exhibited single nucleotide variation of the
NFE2L2 gene. Indel deletion alterations of the AXIN1 gene were
noted in 1 patient with chronic hepatitis B. It is interesting to
note that 1 patient presented with single nucleotide variations of
APC, insulin like growth factor 2 (IGF2), dicer 1, ribonuclease III
(DICER1), notch receptor 1 (NOTCH1) and phosphatidylinositol-
4-phosphate 3-kinase catalytic subunit type 2 beta (PIK3C2B)
Frontiers in Oncology | www.frontiersin.org 4163
genes. In addition, 1 patient exhibited a single nucleotide variant
of the B cell lymphoma 6 (BCL6) gene.

The tumor mutation burden (TMB) was assessed in 17
pediatric patients with HB. The range and median of TMB was
0-22 mut/Mb and 2.25 mut/Mb, respectively. The TMB in only 1
patient reached 22 mut/Mb. Moreover, the patient exhibited a
partially missing base of the AXIN1 gene. The DNA mismatch
repair status analysis indicated that all patients with HB did not
exhibit microsatellite instability (Table 2).

Immunohistochemical Analysis
Due to the infrequent use of immunotherapy for pediatric solid
tumors, only 8 patients were tested for the expression of
programmed cell death 1 ligand 1 (PDL1). In order to further
TABLE 1 | Clinical features of 19 pediatric patients with HB.

Feature Number of cases Proportion (%)

Initial symptom
Abdominal mass and liver space are
occupied

9 47.37%

Abdominal pain and bloating 9 47.37%
Fever, fatigue and wasting 1 5.26%

AFP value at onset (ng/mL)
726-2170000, median: 31877
<100 0 0
≥100 19 100%

PRETEXT staging
PRETEXT II 5 26.32%
PRETEXT III 11 57.89%
PRETEXT IV 3 15.79%

Intrahepatic lesion at onset
Single lesion 13 68.42%
Many lesions 6 31.58%

COG staging
COG II 4 21.05%
COG III 6 31.58%
COG IV 9 47.37%

Pulmonary metastatic disease 7 36.84%
Single lung metastasis 2 10.53%
Double lung metastasis 5 26.32%

Other distant metastases
Osseous metastasis 1 5.26%
Brain metastases 1 5.26%

Other high risk factors affecting prognosis
V+ 2 10.53%
P+ 2 10.53%
E+ 2 10.53%
H+ 1 5.26%
N+ 2 10.53%

Pathological type
Epithelium type 12 63.16%

Fetal type 2 10.53%
Embryonal 1 5.26%
Fetal and embryonic mixed type 7 36.84%
Giant beam type 1 5.26%
Embryo and giant beam mixed type 1 5.26%

Epithelium and lobus intermedius mixed
type

7 36.84%
Augus
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HB, hepatoblastoma; AFP, alpha-fetoprotein; PRETEXT, pretreatment extent of disease;
COG, children’s oncology group; V+, invade inferior vena cava or hepatic vein; P+,
invasion of the portal vein; E+, extra-hepatic and intra-abdominal disease; H+, rupture of
tumor or intraperitoneal hemorrhage; N+, lymph node invasion.
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investigate the application of immunotherapy in HB,
immunohistochemical detection of PDL1 was performed in 8
pediatric patients with HB. The percentage of tumor cells was
measured that indicated partial or complete membrane staining
at any intensity. The results further indicated that the percentage
of all of PDL1 staining in the tumor cells was ≤2% (Table 2),
which demonstrated the lower positive expression of PDL1 in
HB. Immunohistochemical analysis of PDL1 is shown in
Figure 1. Immunohistochemical detection of b-catenin was
performed in 19 pediatric patients with HB (Table 2). The
degree of cell staining accounted for >1/4 of the total cells,
which were considered positive. Among them, only case 15 was
negative and exhibited a splice point deletion mutation of the
CTNNB1 gene (c.53_241+117del306). In addition, case 7 was
focally positive and exhibited an amplification mutation of the
MYCN gene. The remaining immunohistochemical results of
b-catenin included positive to strong positive cases.

Genotype and Efficacy Analysis
A total of 17 out of 19 pediatric patients with HB relapsed and
were accompanied by distant metastasis. CR was achieved in 2
patients without recurrence or metastasis (Table 2). These
patients were divided into the gene abnormality group and the
non-reported disease-associated gene abnormality group based
the presence of the commonly reported genes was associated
with the pathogenesis of childhood HB (CTNNB1, NFE2L2,
AXIN1, TP53, APC, IGF2). A total of 12 patients were
identified in the gene abnormality group, among whom 11
patients, exhibited recurrence and metastasis. In total, 7
patients (6 patients exhibited recurrence and metastasis) were
present in the non-reported disease-related gene abnormality
group. Non-significant differences were noted with regards to
recurrence and metastasis between the two groups (P=0.614).
The prognosis of the two groups was compared. Among 12
patients in the gene abnormality group, 4 cases did not survive, 1
developed PD, 3 exhibited PR and 4 CR. Moreover, 7 and 5 cases
were noted with effective and ineffective treatment, respectively.
Among the 7 patients in the non-reported disease-associated
gene abnormality group, 1 case of PR and 6 cases of CR were
present, whereas all the cases received effective treatment. There
were 4 cases of CR (33.33%, 4/12) in the gene abnormality group.
There were 6 cases of CR (85.71%, 6/7) in the gene abnormality
group. There was a statistical difference between the two groups
in view of CR rate (P=0.027).

Overall Prognostic Analysis
The follow-up time range of 19 pediatric patients with HB was
9-50 months (4 cases died), with a median follow-up time of 21
months. The 2-year overall survival rate of 19 pediatric patients
with HB was 72.1% and their survival time was 37.7 ± 5.99
months. The survival curve of these pediatric patients with HB is
shown in Figure 2A. Among the 19 patients, 10 cases exhibited a
CR. The 2-year disease-free survival rate was 42.4%. The disease-
free survival time was 29.71 ± 3.92 months. The disease-free
survival curve of 19 pediatric patients with HB is shown
in Figure 2B.
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Genotype and Prognosis Analysis
The prognostic analysis between the gene abnormality group and
the non-reported disease-associated gene abnormality group
demonstrated that the 2-year overall survival rates of the two
groups were 64.3% and 100%, respectively (Figure 3A). The
difference was not statistically significant (chi-squared=0.536,
P=0.464). According to the TMB, the patients were divided into
TMB ≥5 mut/Mb group and TMB <5 mut/Mb group. The 2-year
overall survival rates of the two groups were 100% and 57.1%,
respectively (Figure 3B). No significant differences were noted
between the two groups (chi-squared=2.616, P=0.106).

Diagnostic Analysis and Expression
Verification
The GSE75271 dataset was used to investigate commonly
reported genes. ROC analysis and expression verification were
performed. CTNNB1, NFE2L2, AXIN1, APC,MYCN, IGF2, TP53
and BCL6 were selected for diagnostic analysis (Figure 4). ROC
analysis demonstrated that with the exception of TP53 and BCL6,
the AUC of other genes was >0.7. The data indicated that the
CTNNB1, NFE2L2, AXIN1, APC,MYCN and IGF2 genes may be
potential biomarkers for the diagnosis of HB. Simultaneously,
expression verification of these genes was performed. With the
exception of TP53 and BCL6, the expression levels of other genes
were significantly different between case and control groups
(P<0.05) (Supplementary Figure 1). This suggested that
CTNNB1, NFE2L2, AXIN1, APC, MYCN and IGF2 may play an
important regulatory role in the pathological mechanism of HB. In
addition, the expression trends of specific genes, such asMYCN and
BCL6, were inconsistent with those reported in the literature, which
maybeassociatedwith the small numberofnormal control samples
in theGSE75271dataset. Unfortunately, the prognostic data forHB
were not available in public databases. Therefore, prognostic
analysis of these genes could not be performed.
DISCUSSION

The two main primary liver malignancies derived from
hepatocytes in children are HB and hepatocellular carcinoma
(HCC), among which HB is more common than HCC (21). HB
is the most common hepatic tumor noted in children, which
accounts for 43% of liver tumors or two-thirds of liver
malignancies in children (22). Several unique genetic features
have been found in HB and HCC, including germline mutations
of certain genes, hallmark cytogenetic changes and repeated
mutations in the main somatic cells described in these tumors
(21). In addition, the present study performed a comprehensive
genetic analysis of HB and HCC using NGS, which not only
confirmed the previously discovered frequent mutations of
CTNNB1 and p53 genes in HB and HCC, but also identified
new genetic changes in tumor-associated genes, including AXIN,
APC, cyclin-dependent kinase inhibitor 2a (CDKN2A), inverted
formin 2 (INF2) and AT-rich interactive domain 2 (ARID2) (21).

Previous studies have shown that changes in the expression
levels of the p53 gene are associated with poor prognosis of HCC
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TABLE 2 | Specific genotypes of 19 clinical pediatric patients with HB. HB, hepatoblastoma.

b-
catenin

Recurrence
or

metastasis

Survival time Prognosis

Positive Metastasis 9 PR

Positive Recurrence 17 CR

Positive Recurrence 29 CR

Positive Recurrence 21 CR

Positive Recurrence 23 PR

Positive No 12 CR

Focal
positive

Recurrence 22 Dead

Positive Recurrence 15 PR

Positive Recurrence 30 Dead

Positive Metastasis 21 CR

Positive Recurrence
or metastasis

17 PD

Positive No 20 CR

Positive Recurrence
after PD

50 Dead

Positive Recurrence
or metastasis

40 PR

(Continued)
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Medical
record
No

Genetic changes associated
with HB paroxysm

Abundance /
Amplification

multiple

Unknown genetic change Abundance /
Amplification

multiple

MSI TMB PDL1 Pathological type

1 NFE2L2 c.230A>G p.D77G 48.30% KMT2D c.5467G>T p.G1823X 11.70% MSS 3.9 <1% Epithelium and
lobus intermedius
mixed type

NUP210L c.4475G>A
p.G1492E

20.00%

ARID1A c. 2714C>G p.A905G 18.50%
TRIM23 c.868G>T p.A290S 16.80%
PTPRB c.5432A>G p.K1811R 11.90%
AURKA amplification 1.51

2 MSS 0 <1% Epithelium and
lobus intermedius
mixed type

3 ARID1A 37.20% MSS 1.69 1.00% Fetal and
embryonic mixed
type

c.4764-4770delT p.A1589fs

4 NFE2L2 c.92G>C p.G31A 22.00% EP300 c.3244_3245delinsTT
p.Q1082L

48.70% MSS 1.69 <1% Fetal type

PARP1 c.2680G>T p.G894N 29.00%
5 CTNNB1 c.101G>T p.G34V 11.60% MSS 3.18 Epithelium and

lobus intermedius
mixed type

6 MSS 0 Fetal and
embryonic mixed
type

7 MYCN amplification 1.5 TCF7L2 c.1258C>T p.R420W 26.00% MSS 2.25 1-2% Epithelium and
lobus intermedius
mixed type

MED12 c.5382G>T p.Q1794H 24.70%

8 USP9X c.1916C>T p.P639L 37.90% MSS 3.93 2.00% Embryo and giant
trabecular mixed
type

NOTCH3 c.3991C>G
p.P1331A

10.20%

9 CTNNB1 c.1003A>C p.K335Q 45.50% MSS 1.69 Fetal and
embryonic mixed
type

10 BCL6 c.959A>G p.N320S 12.70% MSS 2.25 Fetal type
HIST1H3F c.148C>G p.R50G 11.90%

11 CTNNB1 c.94G>A p.D32N 23.00% INPP4A c.959A>G p.N320S 14.80% MSS Fetal and
embryonic mixed
type

TP53 c.743G>A p.R248Q 47.30% RFWD2 c.173C>G p.S58W 13.90%

12 CTNNB1 c.121A>G p.T41A 27.50% MSS Fetal and
embryonic mixed
type

13 AXIN1 13.11% EPHA7 c.1909C>T p.R637C 7.16% MSS 22 giant beam type
c.516_537del
CATGAAGCAGCTGATCGATCCT
p.I172Mfs*63

NRAS c.182A>G p.Q61R 6.26%

14 APC c.5465T>A p.V1822D 11.20% PIK3C2B c.533C>T p.P178L 36.50% MSS 5 0 Fetal type
IGF2 31.61%
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TABLE 2 | Continued

change Abundance /
Amplification

multiple

MSI TMB PDL1 Pathological type b-
catenin

Recurrence
or

metastasis

Survival time Prognosis

TCCACC

p.C607F
28.96%

25.40%
25.06%

MSS 0 Epithelium and
lobus intermedius
mixed type

negative PD 25 Dead

41.40% MSS 1.34 1-2% Epithelium and
lobus intermedius
mixed type

Positive Recurrence
or metastasis

24 CR
.A914G 38.30%
525L 28.60%
901V 8.14% MSS 9 Epithelium and

lobus intermedius
mixed type

Positive Recurrence 9 CR
.S827G 5.60%
VG 6.40%

MSS 4.8 Fetal and
embryonic mixed
type

Positive Recurrence 15 CR

MSS 1.11 Fetal and
embryonic mixed
type

Positive Recurrence 23 CR

S, microsatellite stability; TMB, tumor mutation burden; CR, complete remission; PR, partial response; PD, disease progression.
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166
Medical
record
No

Genetic changes associated
with HB paroxysm

Abundance /
Amplification

multiple

Unknown genetic

c.517_538dup
ACACCTGGAAGCAG
p.Q180Rfs*78
NORCH1 c.1820G>T
DICER1
c.4082A>G p.K1361R
c.4064A>G p.N1355S

15 CTNNB1 c.53_241+117del306 47.50%

16 CTNNB1 21.20% NUP93 c.180-2A>T
c.66_95del p.His24_Ser33del PREX2 c.2741C>G p

PAK7 c.1573T>C p.F
17 ATRX c.2701C>G p.I

PTCH1 c.2479A>G p
MPL c.173C>T p.A58

18 CTNNB1 c.94G>A p.D32N 14.14%

19

Only genetic changes with mutation abundance ≥5% are listed; MSI, microsatellite instability; MS
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(23, 24). The results of all-exon detection noted in 15 cases with
HB indicated that the CTNNB1 and NFE2L2 mutations were
present in 12 and 2 cases, respectively (12). In addition, it was
found that the repeated mutations of CTNNB1 and the activation
of the NFE2L2/kelch-like ECH-associated protein 1 pathway
played an important role in the occurrence of HB, which
confirmed the stability loss of the genome and the deletions of
the telomerase reverse transcriptase promoter as prominent
characteristics of aggressive HB with HCC features (12). A
previous report examined 27 patients with HB and
demonstrated that CTNNB1 (point mutations and deletion
Frontiers in Oncology | www.frontiersin.org 8167
mutations) and AXIN1 (point mutations) gene mutations
accounted for 70.4% and 7.4% of the cases, respectively. This
confirmed that the WNT signaling pathway played an important
role in the pathogenesis of HB (25). In addition, hepatitis B virus
(HBV)-associated HCC ismore likely to indicate high frequency of
p53 orAXIN1mutations that cause chromosomal instability, while
the most common CTNNB1 gene mutation in HCC is not
associated with chronic HBV infection (26, 27). It has been
reported that APC gene mutations play an important role in
sporadic HB and WNT pathway activation (11, 28). In the
present study, 7 patients (36.84%) with CTNNB1 gene alteration
A B

DC

FIGURE 1 | PDL1 immunohistochemical analysis. (A, B) Immunohistochemical analysis of PDL1. The percentage of positive-stained cells was 1% (X200);
(C) Positive control image of immunohistochemical analysis of PDL1 (X200). (D) Negative control imaging of immunohistochemical analysis of PDL1 (X200).
PDL1, programmed cell death ligand 1.
A B

FIGURE 2 | Analysis of overall prognosis by survival curve. (A) Survival curve of 19 pediatric patients with HB; (B) Disease-free survival curve of 19 pediatric patients
with HB. Group-censoring represents the cases that did not survive. HB, hepatoblastoma.
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A B

FIGURE 3 | Analysis of prognostic survival curves corresponding to different patient groups. (A) Survival curves between the gene abnormality group and the non-
reported disease-related gene abnormality group; (B) Survival curves of different groups of TMB. The group-censoring represents the cases that did not survive.
TMB, tumor mutation burden.
A B

D E F

G H

C

FIGURE 4 | Diagnostic analysis of (A) CTNNB1, (B) NFE2L2, (C) AXIN1, (D) APC, (E) MYCN, (F) IGF2, (G) TP53 and (H) BCL6. CTNNB1, catenin b1; NFE2L2,
factor erythroid 2-related factor 2; AXIN1, axis inhibition protein 1; APC, adenomatous polyposis coli; IGF2, insulin growth factor 2; BCL6, B cell lymphoma 6; AUC,
area under curve.
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were noted, which suggested a lower percentage than that reported
in the literature (10, 21, 25). Single nucleotide variation and gene
insertion or deletion of CTNNB1 was found in 5 and 2 patients,
respectively. In addition, 1 patient with TP53 gene alteration
presented with CTNNB1 gene point mutations. Concomitantly,
bothAPCandAXIN1 exhibitedonegenetic alteration.Although the
proportion of patients with various genetic changes was low, the
positiveb-catenin expressionwaspresent in18 cases. This indicated
that the activation of theWNTpathwayplayed an important role in
the occurrence of HB. It is interesting to note that the CTNNB1
genotype (c.53_241+117del306) of case 15, the CTNNB1 genotype
(c.66_95del p.His24_Ser33del) of case 16 and the AXIN1 genotype
( c . 5 1 6_537d e l CATGAAGCAGCTGATCGATCCT
p.I172Mfs*63) of case 13 have not been previously reported in the
relevant literature. This provides an additional direction for
subsequent research.

The BCL6 gene is closely associated with the pathogenesis of
B-cell lymphoma (29). The expression or activity of BCL6 is
decreased in glioblastoma tumor specimens and cell lines,
whereas induction of cell apoptosis is increased and
proliferation is reduced (30). In addition, BCL6 can also
increase the sensitivity of glioma to targeted therapy (30). The
MYCN gene is a member of the MYC family of proto-oncogenes,
which participates in the development of human and animal
cancers by regulating cell proliferation and cell death (31, 32). In
neuroblastoma, MYCN expansion was associated with poor
prognosis and treatment failure (31–33). Previous studies have
not examined MYCN gene amplification in HB (34, 35).
However, previous studies in recent years demonstrated that
MYCN expression was significantly increased in HB, whereas
MYCN knockdown inhibited the proliferation of HB cells (36,
37). This indicated that BCL6 andMYCNmay have an important
regulatory role in the development of HB.

The prognosis of HB is associated with several factors, such as
initial AFP level, age, co-morbidity and pathological subtype
(38). At present, the research on the genotypes of HB-associated
disease is mostly associated with the research of targeted therapy
(39, 40). In the present study, the CR rate of the gene abnormality
group was lower than that of the non-reported disease-associated
gene abnormality group. No significant differences were noted
(P=0.013). Notably, the patients with TP53 gene mutation
presented with MYCN gene amplification and AXIN1 gene
deletion and demonstrated a poor prognosis. In addition, the
2-year overall survival rates of patients in the gene abnormality
group and the non-reported disease-associated gene abnormality
group were 64.3% and 100%, respectively. Although no
significant differences were noted between the two groups (chi-
squared=0.536, P=0.464), the survival rate of the patients in the
gene abnormality group was lower than that of the non-reported
disease-associated gene abnormality group. This further
suggested that changes in the genotype of different genes can
be used to predict the prognosis of patients with HB.

In the present study,TMBwas assessed in 17patients. The range
and median of TMB were 0-22 mut/Mb and 2.25 mut/Mb,
respectively. TMB was present in only 1 patient with HB, who
reached 22mut/Mb. Themicrosatellite state analysis indicated that
Frontiers in Oncology | www.frontiersin.org 10169
all of the 19 patients did not exhibit microsatellite instability. This
result is consistent with a previous study, which demonstrated that
recurrent and metastatic HB exhibited a lower TMB (5). The
interaction of PDL1 with its receptor programmed cell death 1
(PD1) inhibited T cell activity (41). Various types of cancer express
high levels of the PDL1 protein. The PDL1/PD1 signaling pathway
is activated to evade T-cell immunity (42). Inhibition of the PDL1/
PD1 pathway can enhance T cell response and mediate antitumor
activity (43). The expression of the PDL1 protein can be used as a
biomarker for predicting which patients are more likely to respond
to immunotherapy (44). Immunohistochemical detection of PDL1
in 8 patients with HB demonstrated low percentage of PDL1
positive expression (≤2%), which was consistent with previously
reported results (45). In addition, the expression levels of PD-L1 in
common solid tumors of pediatric patients are generally deficient
(46). Although immunohistochemical analysis of PD-L1 can be
used to predict the treatment response of patients receiving
anti-PD1 or anti-PDL1 therapy, certain patients who present with
negative PD-L1 expression may also benefit from immunotherapy
(47). In the present study, immunohistochemical detectionofPDL1
expression in patients withHB indicated a low percentage of PDL1,
which may be caused by the small sample size. Additional
verification in larger sample-size studies is required. In addition, a
limited number of studies have been performed on the
immunohistochemical detection of PDL1 expression in patients
with HB. Whether immunotherapy is effective in the treatment of
HB remains to be further confirmed.

The present study contains certain limitations. Firstly, the sample
size was small, which led to a certain degree of error. Additional
patients are required to expand the sample size. Secondly, the follow-
up timeof each groupwas inconsistent and the follow-up timeperiod
had to be adjusted for further confirmation. Thirdly, the molecular
mechanismsof the identifiedmutantgenes inHBremainunclear and
should be further studied.

In the present study, statistical methods were used to analyze
the genotype characteristics, clinical data, clinical efficacy and
prognosis of 19 pediatric patients with HB. The results of the
present study demonstrated that different genotypes may play an
important regulatory role in the physiology and pathology of HB,
which is helpful for the assessment of the clinical prognosis and
the application of targeted drugs and immunotherapy. In
addition, the data indicated that CTNNB1, NFE2L2, AXIN1,
APC, MYCN and IGF2 may be potential biomarkers that can be
used for the diagnosis of HB.
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Oncogene Amplification and Expression in Pediatric Solid Tumors.
Neoplasma (1998) 45:123–7. doi: 10.1021/cr9500747

36. Shin E, Lee KB, Park SY, Kim SH, Ryu HS, Park YN, et al. Gene Expression
Profiling of Human Hepatoblastoma Using Archived Formalin-Fixed and
Paraffin-Embedded Tissues. Virchows Arch (2011) 458:453–65. doi: 10.1007/
s00428-011-1043-8

37. Eberherr C, Beck A, Vokuhl C, Becker K, Häberle B, Von Schweinitz D, et al.
Targeting Excessive MYCN Expression Using MLN8237 and JQ1 Impairs the
Growth of Hepatoblastoma Cells. Int J Oncol (2019) 54:1853–63. doi: 10.3892/
ijo.2019.4741

38. Czauderna P, Haeberle B, Hiyama E, Rangaswami A, Krailo M, Maibach R,
et al. The Children’s Hepatic Tumors International Collaboration (CHIC):
Novel Global Rare Tumor Database Yields New Prognostic Factors in
Hepatoblastoma and Becomes a Research Model. Eur J Cancer (2016)
52:92–101. doi: 10.1016/j.ejca.2015.09.023

39. Rokita JL, Rathi KS, Cardenas MF, Upton KA, Jayaseelan J, Cross KL, et al.
Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to
Enable Rational Clinical Trial Design. Cell Rep (2019) 29:1675–1689.e1679.
doi: 10.1016/j.celrep.2019.09.071

40. Khater F, Vairy S, Langlois S, Dumoucel S, Sontag T, St-Onge P, et al.
Molecular Profiling of Hard-To-Treat Childhood and Adolescent Cancers.
Frontiers in Oncology | www.frontiersin.org 12171
JAMA Netw Open (2019) 2:e192906. doi: 10.1001/jamanetworkopen.
2019.2906

41. Daassi D, Mahoney KM. The Importance of Exosomal PDL1 In Tumour
Immune Evasion. Nat Rev Immunol (2020) 20:209–15. doi: 10.1038/s41577-
019-0264-y

42. Cha JH, Chan LC, Li CW, Hsu JL, Hung MC. Mechanisms Controlling PD-L1
Expression in Cancer. Mol Cell (2019) 76:359–70. doi: 10.1016/
j.molcel.2019.09.030

43. Dermani FK, Samadi P, Rahmani G, Kohlan AK, Najafi R. PD-1/PD-L1
Immune Checkpoint: Potential Target for Cancer Therapy. J Cell Physiol
(2019) 234:1313–25. doi: 10.1002/jcp.27172

44. Yu H, Boyle TA, Zhou C, Rimm DL, Hirsch FR. PD-L1 Expression in Lung
Cancer. J Thorac Oncol (2016) 11:964–75. doi: 10.1016/j.jtho.2016.04.014

45. Aoki T, Hino M, Koh K, Kyushiki M, Kishimoto H, Arakawa Y, et al. Low
Frequency of Programmed Death Ligand 1 Expression in Pediatric Cancers.
Pediatr Blood Cancer (2016) 63:1461–4. doi: 10.1002/pbc.26018

46. Davis KL, Fox E, Merchant MS, Reid JM, Kudgus RA, Liu X, et al.
Nivolumab in Children and Young Adults With Relapsed or Refractory
Solid Tumours or Lymphoma (ADVL1412): A Multicentre, Open-Label,
Single-Arm, Phase 1-2 Trial. Lancet Oncol (2020) 21:541–50. doi: 10.1016/
S1470-2045(20)30023-1

47. Ancevski Hunter K, Socinski MA, Villaruz LC. PD-L1 Testing in Guiding
Patient Selection for PD-1/PD-L1 Inhibitor Therapy in Lung Cancer. Mol
Diagn Ther (2018) 22:1–10. doi: 10.1007/s40291-017-0308-6

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Hu, Zhang, Zhi, Li, Wen, Li, Mei and Huang. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
August 2021 | Volume 11 | Article 628531

https://doi.org/10.1002/pbc.26892
https://doi.org/10.1002/pbc.26892
https://doi.org/10.3389/fcell.2019.00272
https://doi.org/10.3389/fcell.2019.00272
https://doi.org/10.1371/journal.pone.0231470
https://doi.org/10.1016/S0304-3835(03)00454-3
https://doi.org/10.3390/genes8040113
https://doi.org/10.3109/08880019409140536
https://doi.org/10.1084/jem.168.3.1205
https://doi.org/10.1021/cr9500747
https://doi.org/10.1007/s00428-011-1043-8
https://doi.org/10.1007/s00428-011-1043-8
https://doi.org/10.3892/ijo.2019.4741
https://doi.org/10.3892/ijo.2019.4741
https://doi.org/10.1016/j.ejca.2015.09.023
https://doi.org/10.1016/j.celrep.2019.09.071
https://doi.org/10.1001/jamanetworkopen.2019.2906
https://doi.org/10.1001/jamanetworkopen.2019.2906
https://doi.org/10.1038/s41577-019-0264-y
https://doi.org/10.1038/s41577-019-0264-y
https://doi.org/10.1016/j.molcel.2019.09.030
https://doi.org/10.1016/j.molcel.2019.09.030
https://doi.org/10.1002/jcp.27172
https://doi.org/10.1016/j.jtho.2016.04.014
https://doi.org/10.1002/pbc.26018
https://doi.org/10.1016/S1470-2045(20)30023-1
https://doi.org/10.1016/S1470-2045(20)30023-1
https://doi.org/10.1007/s40291-017-0308-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


ORIGINAL RESEARCH
published: 26 August 2021

doi: 10.3389/fped.2021.663054

Frontiers in Pediatrics | www.frontiersin.org 1 August 2021 | Volume 9 | Article 663054

Edited by:

Jing He,

Guangzhou Medical University, China

Reviewed by:

Fang Chen,

Shanghai Children’s Hospital, China

Daniel Green,

Kite Pharma, United States

*Correspondence:

Dawei He

400116@hospital.cqmu.edu.cn

Guanghui Wei

u806806@cqmu.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Pediatric Oncology,

a section of the journal

Frontiers in Pediatrics

Received: 02 February 2021

Accepted: 24 June 2021

Published: 26 August 2021

Citation:

Shi Q, Tang B, Li Y, Li Y, Lin T, He D

and Wei G (2021) Identification of

CDC20 as a Novel Biomarker in

Diagnosis and Treatment of Wilms

Tumor. Front. Pediatr. 9:663054.

doi: 10.3389/fped.2021.663054

Identification of CDC20 as a Novel
Biomarker in Diagnosis and
Treatment of Wilms Tumor
Qinlin Shi 1,2†, Bo Tang 1,2†, Yanping Li 1,2, Yonglin Li 1,2, Tao Lin 1,2, Dawei He 1,2* and

Guanghui Wei 1,2*

1Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics,

Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and

Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children’s Hospital

of Chongqing Medical University, Chongqing, China, 2Department of Pediatric Urology Surgery, Children’s Hospital of

Chongqing Medical University, Chongqing, China

Objective: Wilms tumor (WT) is a common malignant solid tumor in children. Many

tumor biomarkers have been reported; however, there are poorly targetable molecular

mechanisms which have been defined in WT. This study aimed to identify the oncogene

in WT and explore the potential mechanisms.

Methods: Differentially expressed genes (DEGs) in three independent RNA-seq

datasets were downloaded from The Cancer Genome Atlas data portal and the Gene

Expression Omnibus database (GSE66405 and GSE73209). The common DEGs were

then subjected to Gene Ontology enrichment analysis, protein–protein interaction (PPI)

network analysis, and gene set enrichment analysis. The protein expression levels of the

hub gene were analyzed by immunohistochemical analysis and Western blotting in a

60 WT sample. The univariate Kaplan–Meier analysis for overall survival was performed,

and the log-rank test was utilized. A small interfering RNA targeting cell division cycle 20

(CDC20) was transfected into G401 and SK-NEP-1 cell lines. The Cell Counting Kit-8

assay and wound healing assay were used to observe the changes in cell proliferation

and migration after transfection. Flow cytometry was used to detect the effect on the cell

cycle. Western blot was conducted to study the changes of related functional proteins.

Results: We commonly identified 44 upregulation and 272 downregulation differentially

expressed genes in three independent RNA-seq datasets. Gene and pathway

enrichment analyses of the regulatory networks involving hub genes suggested that

cell cycle changes are crucial in WT. The top 15 highly connected genes were

found by PPI network analysis. Furthermore, we demonstrated that one candidate

biomarker, CDC20, for the diagnosis of WT was detected, and its high expression

predicted poor prognosis of WT patients. Moreover, the area under the curve value

obtained by receiver operating characteristic curve analysis from paired WT samples

was 0.9181. Finally, we found that the suppression of CDC20 inhibited proliferation

and migration and resulted in G2/M phase arrest in WT cells. The mechanism

may be involved in increasing the protein level of securin, cyclin B1, and cyclin A
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Conclusion: Our results suggest that CDC20 could serve as a candidate diagnostic and

prognostic biomarker for WT, and suppression of CDC20 may be a potential approach

for the prevention and treatment of WT.

Keywords: Wilms tumor, biomarkers, cell division cycle 20, diagnosis, cell proliferation

INTRODUCTION

Wilms tumor (WT) is a common pediatric solid retroperitoneal
tumor. The incidence of WT was ∼6 per 100,000 to 7 per
100,000 for children younger than 15 years (1, 2). Thanks
to the continuous efforts by the Children’s Oncology Group
and the National Wilms Tumor Society (NWTS), the overall
survival rate of WT has improved from 30 to 90% in the last
30 years (3). However, some cases still result in poor outcomes,
which is associated with metastasis, recurrence, anaplastic WT,
and chemoradiotherapy resistance (4). Moreover, chronic health
conditions secondary to treatment impact nearly one quarter
of survivors of WT and include renal failure, infertility, cardiac
toxicity, restrictive pulmonary disease, and the development of
subsequent malignancies (5, 6). Hence, finding a novel strategy
for the diagnosis and treatment of WT has become a hotspot
in recent years. Most research on WT biomarkers has focused
on the genetic components of WT development including WT1,
WTX,MYCN, CTNNB1, SIX1/SIX2, TP53, loss of heterozygosity
11p15, 16q, and 1p and 1q gain of function (7–9). A recent
whole-exome study has identified that DROSHA and DICER1
mutations impair expression of tumor-suppressing miRNAs
(10). Unfortunately, the frequency of alterations in genes is
similarly uncommon, and there is no clear gene for clinical
application (11).

The Gene Expression Omnibus (GEO) is an international
public repository that archives and freely distributes microarray,
next-generation sequencing, and The Cancer Genome Atlas
(TCGA) is a large-scale cancer genome project that provides
researchers with multidimensional maps of the key genomic
changes (12, 13). Both GEO and TCGA have significantly
increased our understanding of cancer. Therefore, in this
study, we first identified the common differentially expressed
genes (DEGs) from multiple microarrays and TCGA WT
RNA-sequence dataset. The upregulation DEGs were then
subjected to Gene Ontology (GO) enrichment analysis, protein–
protein interaction (PPI) network analysis, and gene set
enrichment analysis (GSEA). According the bioinformatics
results, one candidate biomarker, cell cycle 20 (CDC20)
(cell division cycle 20 homolog, also called Fizzy), was
performed to detect the expression level in 60 paired WT
samples. Receiver operating characteristic (ROC) analysis and
Kaplan–Meier (KM) analysis were performed to identify
diagnostic and prognosis markers for WT. In addition, we
predicted and verified the effect of knockdown of CDC20
on WT cell lines. CDC20 small interfering RNA (siRNA)
can knock down CDC20 expression at protein levels and
thereby lead to cell cycle arrest in the G2/M phase in
WT cells. Taken together, the present findings provide more

valuable strategies for the diagnosis and treatment of patients
with WT.

MATERIALS AND METHODS

Study Population
RNA-sequence data for WT patients were downloaded from the
TCGA data portal (https://tcga-data.nci.nih.gov/tcga/) and the
GEO database (GSE66405 and GSE73209, http://www.ncbi.nlm.
nih.gov/geo), which contains 184 WT tissues and 12 adjacent
non-tumor tissues. The TCGA Target-WT sample clinic data
were downloaded using package ‘TCGAbiolinks’ in R.

DEG Analysis
GEO database (GSE66405 and GSE73209) and TCGA database
analyses of DEGs betweenWT and their non-tumor counterparts
were performed using package “DESeq2” in R. The DEGs were
screened using p < 0.05 and |logFC| > 1.5 as the thresholds.
Next, heatmaps and volcano plots based on the upregulated
and downregulated genes in each dataset were plotted using
the “pheatmap” and “ggplots” package of R software. Then, the
downregulated and upregulated genes on the three databases
were intersected using the “gridBase” and “VennDiagram”
package of R software.

GO Enrichment Analysis
GO enrichment analysis was performed using Database for
Annotation, Visualization, and Integrated Discovery (DAVID;
http://david.abcc.ncifcrf.gov/). The DAVID tool was used for
obtaining the enriched GO terms of differentially expressed
mRNA genes based on the hypergeometric distribution to
compute values, which was described in a previous study (14).
The enriched biological processes (BPs), cellular component
(CC), and molecular function (MF) were obtained to analyze the
common DEGs at the functional level. p < 0.05 was set as the
threshold value.

PPI Network Construction and Pathway
Analysis
STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins, http://string-db.org/) is a biological database
and Web resource of known and predicted PPIs. Based on the
STRING database, PPIs of DEGs were selected with a score
(median confidence) of >0.7, and the PPI network was then
visualized by Cytoscape (http://www.cytoscape.org/). The hub
protein was selected based on its association with other proteins.
The DEGs with more association with other DEGs indicate
important roles in the PPI network. In addition, the CDC20
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single GSEA was performed using the “clusterProfiler,” “ggplots”
R package of R software.

Patient Tissue
We obtained WT tissues and adjacent kidney tissues from 60
patients who underwent surgery for WT at the Department
of Urology Surgery of the Children’s Hospital of Chongqing
Medical University from January 2015 to January 2020. All
specimens were histopathologically identified as WT, and all WT
tissues were classified according to the American National Wilms
Tumor Study 5 (NWTS-5) typing and TNM staging system by
pathologists at the Children’s Hospital of Chongqing Medical
University who were blinded to the results. After the specimens
were extracted, they were placed immediately in liquid nitrogen
and for further examination by immunohistochemical (IHC)
analysis and Western blotting (WB) experiments.

Cell Lines and Cell Culture
The human Wilms cell lines (G401 and SK-NEP-1) were
purchased from the American Type Culture Collection. Both SK-
NEP-1 and G401 cells were maintained in McCoy 5A medium
(Sigma-Aldrich, Shanghai, China) and supplemented with 15%
fetal bovine serum (FBS) and 1% penicillin/streptomycin (Gibco,
NY, USA); the cells were cultured at 37◦C in a humidified
atmosphere with 5% CO2.

siRNA Transfection
Three segments of CDC20 siRNA and a negative control
(NC) were synthesized and purified by Guangzhou RuiBo
Company (Guangzhou, China). Target sequences for siRNAs
were ACCAACCCAUCACCUCAGU tt ACUGAGGUGAUGGG
UUGGU tt (CDC20 si1), GGAGCUCAUCUCAGGC-CAU tt
AUGGCCUGAGAUGAGCUCC tt (CDC20 si2), and CAAGA
AGGAA-CAUCAGAAA tt UUUCUGAUGUUCCUUCUUG tt
(CDC20 si). The G401 and SK-NEP-1 cells were plated
onto 6- or 12-well plates and transiently transfected using
LipofectamineTM RNAiMAX (Invitrogen, USA) according to the
manufacturer’s protocol.

Cell Proliferation and Migration
Cell Counting Kit-8 (CCK-8) assays (Dojindo, Japan) were
performed to determine cell proliferation. Approximately 1 ×

104 G401 or SK-NEP-1 cells were seeded into 96-well plates and
transfected with si-CDC20-1, si-CDC20-2, si-CDC20-3, or NC
oligonucleotides. At the indicated time points (hours 0, 24, 48,
and 72), the culture medium was removed, and 100 µL of CCK-
8 medium was added to each well. The cells were incubated
for an additional 4 h, and the optical density was measured at
an absorbance wavelength of 450 nm on a microplate reader
(Bio-Rad, USA).

Wound healing assays were used to evaluate cell migration.
Briefly, G401 cells were seeded in 6-well plates and incubated for
24 h, followed by transfection with an si-CDC20-1, si-CDC20-
2, si-CDC20-3, or NC oligonucleotides. Then, scratching was
performed with 10-µL pipette tips when the cell confluence
reached 100%. Next, the cells were washed several times with
phosphate-buffered saline (PBS) to remove the floating cells, and

the medium was replaced with fresh cell culture medium without
FBS. Images were taken of non-overlapping fields in each well
at 0, 24, and 48 h after the scratching step using ImageJ software
(http://imagej.en.softonic.com).

Cell Cycle Analysis
The transfected cells were detached by EDTA-free trypsin (Gibco,
NY, USA), washed with precooled PBS, and fixed in 75% ethanol
at 4◦C overnight. The cells were resuspended in 0.2mL of
PI/RNase Staining Buffer (BD Biosciences, Shanghai, China) and
incubated in the dark for 30min. The cells were analyzed using a
flow cytometer (BD Biosciences).

Immunohistochemistry
Imunohistochemistry studies were performed on formalin-
fixed, paraffin-embedded WT and adjacent tissue sections
obtained from untreated patients with WT according to
standard procedures. Briefly, 4-µm-thick paraffin sections
were deparaffinized and rehydrated, and antigen retrieval was
performed. Then, the sections were incubated with 3%H2O2 and
0.5% bull serum albumin (BSA). The primary antibodies used
were a CDC20 rabbit antibody (1:200, Absin, Shanghai, China).
Histochemistry score [H score =

∑
(PI × I) = (percentage of

cells of weak intensity × 1) + (percentage of cells of moderate
intensity× 2)+ (percentage of cells of strong intensity× 3)] (15)
was obtained with Quant Center Analysis tool.

Western Blot
Total protein was extracted from tissues and transfected cells
using radioimmunoprecipitation assay lysis buffer (Beyotime,
China) supplemented with phenylmethanesulfonyl fluoride, and
the concentrations were determined by bicinchoninic acid
assay. Following protein extraction, sodium dodecyl sulfate–
polyacrylamide gel electrophoresis was performed. Then, the
electrophoretic bands were transferred to polyvinylidene fluoride
membranes (Millipore, USA). Next, the membranes were
incubated in 5% BSA (ZSGB-BIO, Beijing, China)–Tris-buffered
saline with Tween 20 for 1 h. We used a CDC20 rabbit antibody
(1:1,000, Absin, China), securin (1:5,000, Abcam, Shanghai,
China), cyclin B1 (1:3,000, Abcam, USA), and cyclin A (1:2,000,
Abcam, USA) and GAPDH mouse antibody (1:800, ZSGB-BIO,
China) as primary antibodies. After incubating the membranes
with primary antibodies and the corresponding secondary
antibodies, we detected positive bands with a chemiluminescent
reaction. Image collection and densitometry analysis were
executed with Quantity One (Bio-Rad, Shanghai, China).

Statistical Analysis
The KM analysis for overall survival proceeded based on the
gene’s expression level, the cutoff level of which was set at the
median value with the aid of GraphPad Prism 7 software and the
log-rank test was utilized. One-way analysis of variance and two-
tailed Student t-tests were used for expression data comparisons
by using GraphPad Prism 7 software. Each experiment was
repeated three times ormore, and all data were presented asmean
± standard deviation (SD). Statistical significance was described
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FIGURE 1 | Differentially expressed genes in three independent datasets. Heatmaps of the DEGs in the WT gene expression datasets GSE66405, GSE73209, and

TCGA-WT, respectively (A–C). Volcano plots of genes that are significantly different between WT tissues and normal controls in datasets GSE66405, GSE73209, and

TCGA-WT, respectively (D–F). X axis indicates the fold change (log-scaled), whereas the Y axis shows the p-values (log-scaled). Each symbol represents a different

gene, and the red color of the symbols categorizes the upregulated/downregulated genes falling under different criteria (p value and fold-change threshold). p < 0.05

is considered as statistically significant, whereas fold change = 1.5 is set as the threshold (D–F). The common differentially expressed genes among GSE66405,

GSE73209, and TCGA (G,H).
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FIGURE 2 | Bioinformatics analysis of different genes. Gene ontology analyses of the common up-regulation DEGs according to biological process, cellular

component and molecular function (A–D). PPI network of the common DEGs identified from GSE66405, GSE73029, and TCGA was constructed (E). The

sub-networks were identified by Cytoscape MCODE plugin (F). Gene set enrichment analysis of CDC20 related genes from TCGA datasets (G,H).
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as follows: #p > 0.05, not significant; ∗p ≤ 0.05; ∗∗p ≤ 0.01; ∗∗∗p
≤ 0.001; ∗∗∗∗p ≤ 0.0001.

RESULTS

The DEGs Among GSE66405, GSE73209,
and TCGA
To determine the different mRNA expression profiles in WT,
our study performed three mRNA microarray analyses of 184
WT tissues and 12 non-tumor adjacent tissues (Figures 1A–C).
As the volcano plots illustrated, gene expression profiles from
GSE66405 identified 5,462 DEGs with 839 genes upregulated and

4,623 genes downregulated in WT samples compared with the
non-tumor adjacent tissues (Figure 1D). From GSE73209 data,
we recognized 1,237 DEGs, of which 339 genes were upregulated
and 898 genes were downregulated in WT (Figure 1E). We
identified 3,940 differentially expressed mRNAs, including 2,118
upregulated mRNAs and 1,822 upregulated mRNAs from TCGA
database (Figure 1F). We identified 44 commonly upregulated
genes and 272 downregulated genes in the above datasets via
Venn diagram (Figures 1G,H).

GO and Pathway Enrichment Analysis
DAVID was used to analyze the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway and GO analysis of 44 common

FIGURE 3 | CDC20 expression is upregulated in clinical WT samples. Representative images of IHC staining for CDC20 in adjacent tissues and different histologic

grades of WT tissues (A). The protein levels of CDC20 in six pairs of WT tissues and adjacent non-tumor tissues measured by Western blot (C). Quantification of

CDC20 IHC staining and Western blot in paired WT and adjacent tissues, respectively (B,D). Receiver operating characteristic curve from IHC staining shows CDC20

is a marker to distinguish WT tissues from adjacent tissues (E). Kaplan–Meier analysis of overall survival was performed to indicate that higher expression of CDC20

was correlated with poor survival of WT patients (F,G). p-values were obtained from the log-rank test. ****p ≤ 0.0001 were obtained by Student t-test. All data are

represented by mean ± SD.
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upregulation genes. The KEGG disease enrichment analysis
demonstrated that targets were associated with the cell cycle,
HTLV-I infection, oocyte meiosis, phagosome, gap junction,
ubiquitin-mediated proteolysis, and viral carcinogenesis
(Figure 2A). The GO analysis showed that, for BPs, genes
significantly enriched in cell cycle, cell division, positive
regulation of transcription, DNA template, homologous
chromosome segregation, DNA unwinding involved in DNA
replication, DNA repair, anaphase-promoting complex-
dependent catabolic process, chromosome organization, and
cellular response to interleukin 4 (Figure 2B). For MF, genes
were primarily enriched in drug-binding ubiquitin–protein
transferase activity, ubiquitin protein ligase binding, structural
constituent of cytoskeleton, peptidase inhibitor activity, GTPase
activity, and drug binding (Figure 2C). For CC, genes were
particularly enriched in the cytoplasm, anaphase-promoting
complex, cytoplasmic ribonucleoprotein granule, myelin sheath,
and cytoplasmic microtubule (Figure 2D).

Key Candidate Genes Identification With
DEG PPI Network
The PPI network of DEGs was constructed by using the STRING
online database and Cytoscape (Figure 2E). MCODE plugin was
used for module analysis of the PPI network, and the most
significant modules were chosen for further pathway analyses
based on the degree of importance. Then, the central node genes
(more than 10 connections/interactions) were identified, and
the top 15 highly connected genes were TOP2A, PTTG1, SKP2,
TUBB, TUBA1A, UHRF1, TUBA1B, UBE2C, CDC20, CCND2,
BARD1, MCM6, CKAP5, LMNB2, and PRC1 (Figure 2F). The
genes in the module were mainly associated with increased cell
cycle, cell division, cell cycle process, regulation of cell cycle,
mitotic cell cycle process, and G2/M transition of mitotic cell
cycle. As previously reported, CDC20 is an oncogene that plays
a crucial role in cell cycle, cell division, and cell process (16,
17). Hence, we further investigated the role of CDC20 in WT.
Furthermore, we applied single GSEA on the TCGA dataset
and found that CDC20 was mainly regulated by MYC, Mir-
345, Mir-449, Mir-1423P, Mir-199A/B, Mir-522, Mir-9, and Mir-
206 (Figure 2G). Moreover, MYC is significantly correlated with
CDC20 (Figures 2G,H).

Expression of CDC20 Was Higher in WT
Tissues Compared With Adjacent Normal
Tissues
In order to verify the results of the above bioinformatics analysis,
WB (quantitative) and imunohistochemistry (semiquantitative
and localization) methods were used for examination expression
of CDC20 in WT clinic samples. The protein expression of
CDC20 was detected by WB and CDC20 staining, and the
results were similar to the IHC result in WT tissues. In IHC
staining, H score revealed that CDC20 was significantly highly
expressed in WT tissues compared with paired adjacent normal
kidney tissues (p < 0.0001, Figures 3A,B). WB results, which
were similar to IHC results, revealed high expression in WT
tissues compared with paired adjacent normal kidney tissues

(p < 0.0001, Figures 3C,D). In order to sequence the CDC20
diagnostic sensitivity, the area under the curve value obtained
by ROC curve analysis from paired WT samples was 0.9181,
which held statistical significance to support the diagnostic
value of CDC20 for WT (Figure 3E). Furthermore, to detect
the relationship between high expression of CDC20 and clinical
prognosis, we used the KM survival analysis and log-rank test.
Interestingly, we found that the high expression of CDC20
(median value) had a markedly lower overall survival rate. The
results were similar in our clinical samples and in the TCGA
database (log-rank p < 0.05, Figures 3F,G). Altogether, these
data implied the potential oncogenic role of CDC20 in WT, and
high expression of CDC20 may influence the survival rate of
WT patients.

CDC20 Promotes WT Cell Proliferation and
Migration and Controls Cell Cycle
Progression in vitro
As in the results mentioned previously, CDC20 may be involved
in the tumorigenesis of WT. However, the potential mechanism
is unknown. To explore whether CDC20 can be used as a
new strategy for the treatment of WT, three silenced RNA
segments were used for CDC20 in G401 and SK-NEP-1 WT cell
lines. We performed CCK-8 assays to examine the proliferation
effect of si-CDC20 WT cells. As determined by the CCK-
8 assay, si-CDC20-1 and si-CDC20-3 significantly slowed cell
proliferation in a time-dependent manner in G401and SK-NEP-
1 cells compared with the cells transfected with NC siRNA and
siCDC20-2 (p < 0.001, Figures 4A,B). These results indicate
that si-CDC20 could decrease WT cell proliferation. In addition,
we used wound healing assays to examine the migration ability
after downregulation of CDC20. Compared with the si-NC,
the si-CDC20-1 and CDC20-3 could significantly impair the
migration of G401 cells lines in 24 and 48 h (p < 0.05 and
p < 0.001, respectively; Figures 4C,D). Next, the cell cycle
distribution was altered by the si-CDC20-1 in SK-NEP-1 and
G401 cell lines. Compared with the si-NC, the proportion of
G0/G1 phase cells was significantly decreased in SK-NEP-1 and
G401 (p < 0.05, Figures 4E,F). On the contrary, the proportion
of G2/M phase cells was reduced by si-CDC20 in SK-NEP-1 and
G401 cell lines (p < 0.01, Figures 4E,F). Based on these data,
we hypothesized that downregulation of CDC20 may inhibit
proliferation and migration by inducing cell cycle arrest in
G2/M phase.

Cell Cycle–Related Proteins Levels Were
Suppressed by Inhibition of CDC20 in WT
Cells
It has been previously reported that CDC20 plays an important
role during the metaphase-to-anaphase transition by targeting
critical cell cycle regulators including securin and cyclin B1
and cyclin A for ubiquitination-mediated destruction (18–20).
In addition, in human malignant tumors, inhibition of CDC20
in growing cells leads to G2 arrest with a consequent decrease
of cyclin B1, securin, and cyclin A (21). In the study, the
WB results showed that protein expression level of CDC20
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FIGURE 4 | CDC20 controls cell proliferation, migration, and cell cycle in vitro. CDC20 siRNA suppression of proliferation of G401 and SK-NEP-1, respectively, in vitro

(A,B). Wound healing assays were performed to determine the migration rate of G401 cells at 24 and 48 h after transfection of siRNA (C,D). The G0/G1, S, and G2/M

phase proportions of G401 and SK-NEP-1 cells transfected with siCDC20 or NC (E,F). Results are shown as the mean ± SD. For comparisons, the Student t-test

was performed. *p < 0.05, **p < 0.01, ***p < 0.001, #p > 0.05.

could be significantly inhibited by si-CDC20 in SK-NEP-1
and G401 cell lines (Figures 5A,B). Meanwhile, compared with
the si-NC group, the expression levels of securin and cyclin
B1 and cyclin A were markedly decreased in the si-CDC20
group (Figures 5A,B), supporting the results of the cell cycle
analysis. Taken together, the aforementioned findings suggest
that silence of CDC20 arrests the cell in G2/M phase of
WT cell.

DISCUSSION

The carcinogenesis of WT involves many factors that lead the
cells to undergo uncontrolled proliferation (22). However, the
underlying molecular mechanisms remain unclear. A recent
study showed eight genes (EGF, CDK1, ENDRA, NGFR,
OIP5, NUF2, and CDCA8) are predicted to be involved in
carcinogenesis pathways (23). But, the study involved only TCGA
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FIGURE 5 | Western blot analyses of proteins that regulate G2-to-M transition in WT cells lines inhibiting CDC20. Suppression of CDC20 protein expression by siRNA

in SK-NEP-1 and G401 cells. Western blot analysis of CDC20, securin, cyclin B1, and cyclin A protein levels of the siCDC20 group compared with the NC group in

SK-NEP-1 and G401 cells (A). Quantification of CDC20, securin, cyclin B1, and cyclin A Western bolt in SK-NEP-1 and G401 cell lines, respectively (B). Analysis was

performed by Western blotting 72 h after the siRNA transfection. Results are shown as the mean ± SD. For comparison, the Student t-test was performed. *p < 0.05,

**p < 0.01, ***p < 0.001, ****p < 0.0001.

dataset which did not represent a generalization. Moreover,
the study did not exclude 6 metastatic specimens according to
TCGA nomenclature principles. More importantly, TARGET
dataset included only unfavorable histology WT cases that
relapsed and anaplastic WT cases, indicating that this dataset
is not a representative random sampling of WT but rather a
highly selected set. In this study, we have further identified
common significant DEGs from three independent studies. The
PPI network of DEGs revealed the top 15 highly connected
genes, and CDC20 plays a crucial role in WT as the node
connecting core. Functional analyses demonstrated that these
DEGs are mainly associated with the cell division and cell cycle
process. Meanwhile, many studies showed that CDC20 plays
an oncogenic role in human tumorigenesis. Overexpression of
CDC20 was observed in a variety of human tumors including
pancreatic cancer, breast cancer, prostate cancer, lung cancer,
colorectal cancer, hepatocellular carcinoma, glioblastoma, gastric
cancer, and other types of human cancer (24–27). Therefore,
CDC20 is usually identified as an oncogene (16). A recent study
identified that nine key genes including CDC20 were potential
diagnosis genes in clear cell renal cell carcinoma (28). Meanwhile,
the study by Gayyed et al. showed that high expression of CDC20
was associated with high tumor grade in RCC (29). However,

there are no further studies on the relationship of high expression
of CDC20 between WT and RCC. Although both WT and RCC
occur in the kidney, the difference is that WT originates in
embryonic cells, and more than 95% of WTs occur in children.
Moreover, an early study showed that CDC20 expression in RCC
may be involved in cytochrome P450 1B1 (CYP1B1) (30).

In this study, we assessed the expression level of CDC20 in 60
paired WT tissues and corresponding non-tumor samples. The
results indicated that the protein level of CDC20 inWilms tumor
tissues was much higher than that in matched nontumor tissues.
Immunohistochemistry was used to investigate the subcellular
location of CDC20 and its relationship with clinical pathological
parameters of WT patients. By ROC analysis, we found that
the high expression of CDC20 may provide diagnostic value in
paired WT samples. In addition, by KM analysis and log-rank
test, we found that higher CDC20 protein expression level was
associated with poor survival rate. To investigate the potential
biological function and molecular mechanism of CDC20 in
WT, we designed a double-stranded, siRNA targeting CDC20 to
interfere with its expression level in the WT cell lines.

By cellular proliferation assay, migrate assay, and
fluorescence-activated cell sorting test, we found that cells
transfected with siCDC20 oligonucleotides showed decreased
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growth speed, a reduced rate of migration, and an increased
proportion of cells in the G2/M stage. The specific knockdown
of CDC20 by siRNA showed a suppressed effect against WT
cell proliferation and migration in vitro, which indicated that
the overexpression of CDC20 might be expected to accelerate
cell proliferation and promote tumor initiation and progression
of WT. The WT cells with suppressed CDC20 expression were
induced to accumulate in the G2/M phase, which may be
responsible for the inhibition of cell growth. Taken together,
the overexpression of CDC20 might be expected to lead to
accelerated proliferation of cells, and the specific knockdown of
CDC20 by siRNA did, in fact, show an inhibitory effect against
cell growth in vitro.

The accurate transition from the S phase to the G2/M phase
is crucial for the control of eukaryotic cell proliferation (31).
It was previously reported that in metaphase to anaphase,
APC/C-Cdc20 mediates the ubiquitination of securin and cyclin
B1, allowing the activation of separase and the onset of
anaphase and mitotic exit (18). CDC20 plays an indispensable
role during the metaphase-to-anaphase transition by targeting
critical cell cycle regulators including securin and cyclin B1
for ubiquitination-mediated destruction (19, 32, 33). Cyclin
A was essential for the control of the cell cycle at the
G1/S and the G2/M transitions (20, 34). In mitosis, it
may contribute to the control of cyclin B1 stability (35).
In this study, we found that the securin, cyclin B1, and
securin protein levels were regulated by high expression
of CDC20.

In conclusion, our study demonstrated the high expression
of CDC20 involvement in tumorigenesis in WT. Functional
experiments verified that suppression of CDC20 could inhibit
WT cell proliferation, migration, and arrested cell cycle in
G2/M phase. However, more underlying molecular mechanisms
upstream of CDC20 still need further research. What is more,
our study has limitations on the WT cell model such that
G401 and SK-NEP-1 cells were formerly classified as WT cell

lines, but they have since had more correct classifications (36).
Overall, this finding provides a new focus that CDC20 may be
a clinically relevant indicator and a promising therapeutic target

of WT.
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Guangzhou, China, 2 Pediatrics Department, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China,
3 Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China, 4 Pediatric Center of
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Guangzhou Medical University, Guangzhou, China, 7 Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen
University, Guangzhou, China

Objective: To reveal the contributing role of METTL3 gene SNPs in pediatric ALL risk.

Patients and Methods: A total of 808 pediatric ALL cases and 1,340 cancer-free
controls from five hospitals in South China were recruited. A case-control study by
genotyping three SNPs in the METTL3 gene was conducted. Genomic DNA was
abstracted from peripheral blood. Three SNPs (rs1263801 C>G, rs1139130 A>G, and
rs1061027 A>C) in the METTL3 gene were chosen to be detected by taqman real-time
polymerase chain reaction assay.

Results: That rs1263801 C>G, rs1139130 A>G, and rs1061027 A>C polymorphisms
were significantly associated with increased pediatric ALL risk was identified. In
stratification analyses, it was discovered that rs1263801 CC, rs1061027 AA, and
rs1139130 GG carriers were more likely to develop ALL in subgroups of common
B-ALL, MLL gene fusion. Rs1263801 CC and rs10610257 AA carriers were more
possible to increase the risk of ALL in subgroups of low hyperdiploid, and all of these
three SNPs exhibited a trend toward the risk of ALL. All of these three polymorphisms
were associated with the primitive/naïve lymphocytes and MRD in marrow after
chemotherapy in ALL children. Rs1263801 CC and rs1139130 AA alleles provided a
protective effect on MRD ≥0.01% among CCCG-treated children. As for rs1139130, AA
alleles provided a protective effect on MRD in marrow ≥0.01% on 33 days and 12 weeks
among CCCG-treated children, but provided a risk effect on MRD in the marrow ≥0.01%
among SCCLG-treated children. As for rs1263801 CC and rs1139130 AA, these
two alleles provided a protective effect on MRD in the marrow ≥0.01% among CCCG-
treated children.
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Conclusion: In this study, we revealed that METTL3 gene polymorphisms were
associated with increased pediatric ALL risk and indicated that METTL3 gene
polymorphisms might be a potential biomarker for choosing ALL chemotherapeutics.
Keywords: methyltransferase-like 3, acute lymphoid leukemia, polymorphism, pediatric, susceptibility
INTRODUCTION

Acute lymphoblastic leukemia (ALL) is the most common type of
pediatric cancer in the world; in China, it accounts for 70–80% of
pediatric leukemia (1). ALL can be classified by immune cell
phenotype as B-cell ALL and T-cell ALL. B-cell ALL is the most
common ALL; T-cell ALL is typically more aggressive (2). As
traditional chemotherapy combined with novel therapies makes
great progress, higher survival rates and reduced morbidities have
been achieved in ALL. Recently, the 5-year overall survival rate of
ALL children younger than 14 years has been achieved >90% (3).
However, recurrence occurs in 15–20% of ALL children, and 15%
pediatric ALL patients were therapeutic failures, which resulted in
early age mortality (4). ALL is characterized by multiple genetic
alterations (5).

Heritable variations in genes are risk factors for ALL and play
a strong role in the development of pediatric ALL (6).
Populations with different races are well distinguished by
genetic polymorphisms. Genome-wide association studies
(GWAS) have identified a number of loci, and single
nucleotide polymorphism (SNP) associations in several genes
are associated with the risk of ALL. Genetic alterations in
pediatric ALL are found to be very different from those in
adult ALL (7).

N6-methyladenosine (m6A) is the most abundant internal
modification of messenger RNAs (mRNAs) in eukaryotic
organisms. Methylation at the sixth N atom on adenine base
is m6A. M6A regulates mRNA expression posttranscriptionally
in a dynamic and reversible manner (8). M6A modification
is regulated by several key regulators, including writers [RNA
methyltransferase complex methyltransferase-like 3 (METTL3)/
methyltransferase-like 14 (METTL14)/Wilms’ tumor 1-
associating protein (WTAP)], erasers [demethylases fat mass
and obesity-associated protein (FTO) and AlkB homolog 5
(ALKBH5)], and readers (YTHD family proteins) (9). It was
reported that dysregulation of m6A is associated with multiple
tumors including acute myeloid leukemia (AML) (10). M6A
methylation writer METTL3 was discovered playing an
oncogenic role in carcinogenesis, such as colorectal carcinoma
(11), bladder cancer (12), breast cancer (13), etc. METTL3
mRNA and protein are expressed abundantly in AML cells,
and their depletion induces cell differentiation and apoptosis and
delays leukemia progression (14). Some genetic variations in
m6A-related gene regions may affect m6A methylation,
subsequently regulating mRNA expression (15). Studies
identified that m6A-associated SNPs were potential functional
variants for periodontitis (16) and coronary artery disease (17).
Genetic alterations in the m6A demethyltransferase FTO gene
were shown to be associated with ALL and AML risk, and there is
2184
evidence that indicates dysregulation of m6A methyltransferase
METTL3 in AML (18, 19). However the relationship between
genetic variations of the METTL3 gene and ALL is still unclear.

In the present study, a total of three SNPs were selected to
assess the relationship between METTL3 polymorphisms and
pediatric ALL. The current study was a case-control study
that was performed using samples from five hospitals in
South China.
MATERIALS AND METHODS

Study Subjects
A Southern Chinese population that included 808 pediatric ALL
patients and 1,340 age-matched, gender-matched, and ethnicity-
matched healthy controls is summarized in Table S1. ALL cases
were collected from Guangzhou Women and Children’s Medical
Center (GWCMC), Guangzhou Medical University (n=582),
The First Affiliated Hospital, Sun Yat-sen University (n=74),
Sun Yat-sen Memorial Hospital, Sun Yat-sen University (n=26),
Nanfang Hospital, Southern Medical University (SMU) (n=100),
and Zhujiang Hospital, Southern Medical University (n=26),
from January 2017 to May 2019. All children were diagnosed
with ALL by at least two hematologists. The control subjects were
free from any type of hematological diseases or any other
malignancy or autoimmune disorder and were recruited from
the same hospital.

The major clinical and biological characteristics of the ALL
children, including age, gender, immunophenotype, gene fusion
type, risk level, karyotype, clinical manifestations, rate of
primitive/naive lymphocytes in the marrow, and minimal
residual disease on 19 days, 33 days, and 12 weeks after
chemotherapy and chemotherapy regimen were collected. The
information is summarized in Table S1.

The study was approved by the institutional ethics committee
of every participating hospital, and written informed consent was
acquired from all participants in accordance with the Declaration
of Helsinki.
METTL3 SNPs Selection and Genotyping
The included potentially functional candidate SNPs were
selected as follows: located in the 5’ untranslated region, 3’
untranslated region, 5’ flanking region, and exon of the
METTL3 gene. The NCBI dbSNP database (http://www.ncbi.
nlm.nih.gov/projects/SNP) and the SNPinfo (https://snpinfo.
niehs.nih.gov/snpinfo/snpfunc.html) online software were used
to perform the above selection. Three SNPs (rs1263801 C>G,
September 2021 | Volume 11 | Article 635251
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rs1139130 G>A, and rs1061027 A>C) in theMETTL3 gene were
chosen. Genomic DNAwas extracted from peripheral blood. The
reaction system and condition of the Taqman RT-PCR assay was
according to the published reference (20, 21). To ensure the
accuracy of these genotyping results, 10% of the samples were
randomly selected to be genotyped by a DNA sequencing
method. A concordance rate of 100% for the quality control
samples was obtained (21).

Statistical Analysis
The goodness-of-fit c2 test was performed to assess if the selected
METTL3 SNPs deviated from Hardy–Weinberg equilibrium
among controls. The two-sided c2 test was used to compare
demographic variables and genotype frequencies of the cases and
controls. ORs and their corresponding 95% CIs were computed
by unconditional logistic regression analyses with or without
adjustment for age and gender. The SAS statistical package
(version 9.1; SAS Institute, Cary, NC) was used to perform all
statistical analyses. All reported p values were two sided, and a p
value < 0.05 was considered statistically significant.
RESULTS

Population Characteristics
The demographic and clinical characteristics data of ALL cases
and cancer-free controls are summarized in Table S1. No
significant differences were observed between cases and controls
for the Southern Chinese children regarding age (p=0.082)
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and gender (p=0.059). Among ALL cases, 28.22% (228 cases)
were pro B cell ALL, 35.27% (285 cases) were common B cell ALL,
20.67% (167 cases) were pre-B cell ALL, 0.67% (3 cases) were
mature B ALL, 8.54% (69 cases) were T cell ALL, and 6.93% (56
cases) were undefined immunophenotype. Regarding the gene
fusion type, 3.34% (27 cases) had BCR-ABL gene fusion, 16.83%
(136 cases) had TEL-AML, 2.97% (24 cases) had E2A-PBX, 0.99%
(8 cases) had SIL-TAL, 1.98% (16 cases) had MLL, 3.09% (25
cases) had other gene fusions, 68.19% (551 cases) were normal,
and 21 were undefined. A total of 258 patients (33.73%) were
with low risk, 360 cases (47.06%) were with medium risk, 77 cases
(10.07%) were with high risk, and 70 cases (9.15%) were
undefined. Regarding the karyotype, 64.40% (517 cases)
were normal diploid, 5.25% (45 cases) were abnormal
diploid, 2.69% (22 cases) were hypodiploid, 3.46% (27 cases)
were low hyperdiploid, and 7.81% (61 cases) were
high hyperdiploid.

Correlation of METTL3 Gene
Polymorphisms With ALL Risk
The genotype frequencies of METTL3 associated with ALL risk
are shown in Table 1. In the single-locus analysis, carriers of
rs1263801 (CC vs. GG: adjusted OR= 4.18, 95% CI=3.21–5.43,
p<0.001) and rs1061027 (CA vs. CC: adjusted OR=2.42, 95%
CI=2.00–2.94, p<0.001; AA vs. CC: adjusted OR=6.21, 95%
CI=4.38–8.81, p<0.001) variant alleles showed significant
enhanced risk of pediatric ALL. On the contrary, rs1139130
(GA vs. GG: adjusted OR=1.41, 95% CI=1.15–1.73, p=0.001; AA
vs. GG: adjusted OR=1.52, 95% CI=1.81–3.06, p<0.001) variant
alleles contribute to decreased risk of pediatric ALL.
TABLE 1 | Logistic regression analysis of associations between METTL3 polymorphisms and ALL susceptibility.

Genotype Cases (N = 808) Controls (N = 1340) Pa Crude OR (95% CI) P Adjusted OR (95% CI) b Pb

rs1263801 (HWE=0.0971)
GG 269 (33.50) 600 (44.88) 1.00 1.00
GC 304 (37.86) 611 (45.70) 1.11 (0.91-1.35) 0.305 1.12 (0.92-1.37) 0.254
CC 230 (28.64) 126 (9.42) 4.07 (3.14-5.28) 0.001 4.18 (3.21-5.43) 0.001

Additive 0.001 1.82 (1.61-2.07) 0.001 1.84 (1.63-2.09) 0.001
Dominant 534 (66.50) 737 (55.12) 0.001 1.62 (1.35-1.94) 0.001 1.64 (1.37-1.97) 0.001
Recessive 573 (71.36) 1211 (90.58) 0.001 3.86 (3.04-4.90) 0.001 3.93 (3.09-5.00) 0.001

rs1139130 (HWE=0.3401)
GG 220 (28.17) 511 (38.51) 1.00 1.00
GA 383 (49.04) 638 (48.08) 1.39 (1.14-1.71) 0.002 1.41 (1.15-1.73) 0.001
AA 178 (22.79) 178 (13.41) 2.32 (1.79-3.02) 0.001 2.36 (1.81-3.06) 0.001

Additive 0.001 1.51 (1.32-1.71) 0.001 1.52 (1.33-1.73) 0.001
Dominant 561 (71.83) 816 (61.49) 0.001 1.60 (1.32-1.93) 0.001 1.62 (1.34-1.96) 0.001
Recessive 603 (77.21) 1149 (86.59) 0.001 1.90 (1.51-2.40) 0.001 1.92 (1.52-2.42) 0.001

rs1061027 (HWE=0.6433)
CC 319 (39.78) 859 (64.73) 1.00 1.00
CA 364 (45.39) 414 (31.20) 2.37 (1.96-2.87) 0.001 2.42 (2.00-2.94) 0.001
AA 119 (14.84) 54(4.07) 5.93 (4.20-8.39) 0.001 6.21 (4.38-8.81) 0.001

Additive 0.001 2.41 (2.09-2.78) 0.001 2.46 (2.13-2.84) 0.001
Dominant 483 (60.33) 468 (35.27) 0.001 2.78 (2.32-3.33) 0.001 2.85 (2.38-3.42) 0.001
Recessive 683 (85.16) 1273 (95.93) 0.001 4.11 (2.94-5.74) 0.001 4.23 (3.02-5.93) 0.001
Septem
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ac2 test for genotype distributions between ALL cases and cancer-free controls.
bAdjusted for age and gender.
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TABLE 2 | Stratification analysis of METTL3 polymorphisms with ALL susceptibility.

1061027 (cases/controls) Adjusted ORa Pa

CC/CA AA (95% CI)

610/1149 94/48 3.64 (2.53-5.22) 0.001
73/124 25/6 7.10 (2.78-18.1) 0.001

268/462 53/20 4.84 (2.83-8.28) 0.001
415/811 64/34 3.82 (2.47-5.92) 0.001

214/1273 13/54 1.51 (0.80-2.83) 0.201
199/1273 82/54 9.72 (6.67-14.2) 0.001
158/1273 8/54 1.25 (0.58-2.68) 0.570
3/1273 0/54 0.001(0.00-999) 0.982
61/1273 8/54 2.88 (1.29-6.42) 0.010
48/1273 8/54 3.82 (1.71-8.53) 0.002

20/1273 7/54 6.15 (2.32-16.3) 0.001
114/1273 21/54 4.61 (2.67-7.94) 0.001
23/1273 1/54 1.05 (0.14-7.93) 0.965
7/1273 1/54 3.27 (0.39-27.2) 0.274
10/1273 6/54 14.8 (5.15-42.6) 0.001
16/1273 9/54 13.2 (5.56-31.3) 0.001
474/1273 72/54 3.63 (2.50-5.25) 0.001

20/1273 2/54 2.29 (0.52-10.1) 0.274
434/1273 80/54 4.44 (3.08-6.39) 0.001
40/1273 5/54 2.87 (1.09-7.58) 0.034
20/1273 7/54 7.83 (3.17-19.5) 0.001
57/1273 4/54 1.81 (0.63-5.22) 0.271

441/1273 55/54 3.07 (2.07-4.56) 0.001
55/1273 14/54 5.69 (2.96-10.9) 0.001

30/1273 17/54 13.1 (6.80-25.3) 0.001
378/1273 79/54 5.18 (3.58-7.49) 0.001

460/1273 51/54 2.72 (1.82-4.05) 0.001
30/1273 2/54 1.61 (0.37-6.95) 0.523

262/1273 30/54 2.83 (1.77-4.52) 0.001
209/1273 26/54 3.02 (1.84-4.92) 0.001

312/1273 23/54 1.90 (1.14-3.16) 0.014
13/1273 0/54 0.001 (0.00-999) 0.980

299/1273 19/54 1.67 (0.97-2.88) 0.066
25/1273 1/54 0.95 (0.13-7.16) 0.962
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Variables rs1263801 (cases/controls) Adjusted ORa Pa rs1139130 (cases/controls) Adjusted ORa Pa rs

GG/GC CC (95% CI) GG/GA AA (95% CI)

Age, month
<120 513/1095 192/110 3.69 (2.85-4.77) 0.001 534/1036 154/159 1.87 (1.46-2.40) 0.001
≥120 60/116 38/16 4.65 (2.39-9.05) 0.001 69/113 24/19 2.07 (1.06-4.05) 0.034

Gender
Females 227/435 96/50 3.72 (2.55-5.44) 0.001 226/426 85/60 2.62 (1.81-3.78) 0.001
Males 346/776 134/76 4.06 (2.97-5.54) 0.001 377/723 93/118 1.53 (1.13-2.06) 0.005

Immunophenotyping
Pro B 198/1211 29/126 1.47 (0.95-2.28) 0.083 181/1149 41/178 1.51 (1.04-2.21) 0.032
Common B 149/1211 133/126 8.59 (6.37-11.6) 0.001 177/1149 98/178 3.58 (2.67-4.81) 0.001
Pre B 136/1211 30/126 2.22 (1.43-3.44) 0.001 140/1149 22/178 1.04 (0.65-1.68) 0.863
Mature B 3/1211 0/126 0.001 (0.00-999) 0.973 3/1149 0/178 0.001 (0.00-999) 0.968
T ALL 49/1211 20/126 3.78 (2.15-6.63) 0.001 58/1149 8/178 0.86 (0.40-1.83) 0.688
Mix 38/1211 18/126 4.41 (2.43-7.99) 0.001 44/1149 9/178 1.31 (0.63-2.73) 0.474

Gene fusion type
BCR-ABL 15/1211 12/126 6.05 (2.66-13.7) 0.001 20/1149 6/178 1.63 (0.62-4.26) 0.319
TEL-AML 96/1211 39/126 4.08 (2.68-6.21) 0.001 103/1149 30/178 1.89 (1.22-2.93) 0.004
E2A-PBX 21/1211 3/126 1.40 (0.41-4.79) 0.588 21/1149 2/178 0.65 (0.15-2.80) 0.562
SIL-TAL 7/1211 1/126 1.31 (0.16-10.9) 0.797 7/1149 0/178 0.001 (0.00-999) 0.961
MLL 7/1211 9/126 13.1 (4.77-35.9) 0.001 10/1149 6/178 3.95 (1.41-11.0) 0.009
Others 10/1211 15/126 14.2 (6.22-32.3) 0.001 13/1149 11/178 5.53 (2.44-12.6) 0.001
Normal 405/1211 142/126 3.41 (2.61-4.45) 0.001 413/1149 118/178 1.86 (1.43-2.41) 0.001

Karyotype
Hypo-diploid 17/1211 5/126 2.83 (1.02-7.85) 0.046 15/1149 5/178 1.84 (0.67-5.07) 0.236
Normal diploid 371/1211 144/126 3.78 (2.89-4.95) 0.001 389/1149 113/178 1.88 (1.45-2.45) 0.001
Abnormal diploid 34/1211 11/126 2.99 (1.47-6.06) 0.002 35/1149 7/178 1.28 (0.56-2.93) 0.562
Low hyperdiploid 16/1211 11/126 6.16 (2.78-13.7) 0.001 20/1149 5/178 1.58 (0.58-4.27) 0.372
High hyperdiploid 45/1211 16/126 3.66 (1.99-6.71) 0.001 49/1149 12/178 1.67 (0.87-3.22) 0.126

Primitive/naive lymphocytes in marrow(%, 19d)
<5 362/1211 134/126 3.66 (2.79-4.82) 0.001 377/1149 104/178 1.80 (1.38-2.36) 0.001
≥5 45/1211 24/126 4.83 (2.86-8.24) 0.001 50/1149 18/178 2.27 (1.29-4.00) 0.004

MRD in marrow(%, 19d)
<0.01 22/1211 25/126 10.6 (5.81-19.5) 0.001 26/1149 19/178 4.66 (2.52-8.60) 0.001
≥0.01 298/1211 159/126 5.27 (4.03-6.89) 0.001 337/1149 108/178 2.09 (1.60-2.73) 0.001

Primitive/naïve lymphocytes in marrow(%, 33d)
<5 367/1211 144/126 3.90 (2.98-5.10) 0.001 396/1149 104/178 1.72 (1.32-2.26) 0.001
≥5 27/1211 5/126 1.83 (0.69-4.87) 0.223 23/1149 6/178 1.80 (0.72-4.50) 0.211

MRD in marrow(%, 33d)
<0.01 242/1211 50/126 2.06 (1.44-2.95) 0.001 231/1149 48/178 1.36 (0.96-1.94) 0.082
≥0.01 149/1211 86/126 5.64 (4.07-7.80) 0.001 175/1149 59/178 2.19 (1.56-3.06) 0.001

Primitive/naïve lymphocytes in marrow(%, 12w)
<5 288/1211 47/126 1.65 (1.15-2.36) 0.007 269/1149 52/178 1.29 (0.92-1.81) 0.139
≥5 12/1211 1/126 0.88 (0.11-6.92) 0.907 10/1149 3/178 2.14 (0.58-7.96) 0.257

MRD in marrow(%, 12w)
<0.01 282/1211 36/126 1.31 (0.88-1.94) 0.187 262/1149 43/178 1.10 (0.77-1.58) 0.600
≥0.01 20/1211 6/126 2.89 (1.14-7.35) 0.026 18/1149 8/178 2.91 (1.24-6.81) 0.014

aAdjusted for age and gender.
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Stratification Analysis of Identified SNPs
We further analyzed whether the selected METTL3
polymorphisms (rs1263801 C>G, rs1139130 A>G, and
rs1061027 A>C) preferentially predispose to any specific
subtype of ALL (Table 2). A stronger risk effect of rs1263801
was found among children older than 10 years (adjusted OR=
4.65, 95% CI=2.39–9.05, p<0.001), male (adjusted OR= 4.06, 95%
CI=2.97–5.54, p=0.001), common B subtype ALL (adjusted OR=
8.59, 95% CI=6.37–11.6, p<0.001), MLL gene fusion type
(adjusted OR= 13.1, 95% CI=4.77–35.9, p<0.001), low
hyperdiploid (adjusted OR= 6.16, 95% CI=2.78–13.7, p<0.001),
primitive/naive lymphocytes in marrow ≥ 5% on 19 days
(adjusted OR=4.83, 95% CI=2.86–8.24, p<0.001) after
chemotherapy, primitive/naive lymphocytes in marrow < 5%
on 33 days (adjusted OR= 3.90, 95% CI=2.98–5.10, p<0.001) and
12 weeks (adjusted OR=1.65, 95% CI=1.15–2.36, p=0.007) after
chemotherapy, MRD in marrow < 0.01% on 19 days (adjusted
OR=10.6, 95% CI=5.81–19.5, p<0.001), MRD ≥ 0.01% on 33
days (adjusted OR=5.64, 95% CI=4.07–7.80–8.24, p<0.001),
and ≥0.01% on 12 weeks (adjusted OR=2.89, 95% CI=1.14–
7.35, p=0.026). As for the rs1139130 polymorphism, a more
significant risk association was identified with those children age
≥10 years (adjusted OR=2.07, 95% CI= 1.06–4.05, p=0.034),
female (adjusted OR=2.62, 95% CI= 18.1–3.78, p<0.001),
common B subtype (adjusted OR=3.58, 95% CI= 2.67–4.81,
p<0.001), MLL gene fusion type (adjusted OR=3.95, 95%
CI=1.41–11.0, p=0.009), normal diploid (adjusted OR=1.88,
95% CI=1.45–2.45, p<0.001), primitive/naive lymphocytes in
marrow ≥ 5% on 19 days (adjusted OR= 2.27, 95% CI=1.29–
4.00, p<0.001) and <5% on 33 days (adjusted OR=1.72, 95%
CI=1.32–2.26, p<0.001) after chemotherapy, MRD in marrow
<0.01% on 19 days (adjusted OR= 4.66, 95% CI=2.52–8.60,
p<0.001), MRD ≥ 0.01% on 33 days (adjusted OR= 2.19, 95%
CI=1.56–3.06, p<0.001), and ≥0.01% on 12 weeks (adjusted OR=
2.91, 95% CI=1.24–6.81, p=0.014). As for the rs1061027
polymorphism, a stronger risk association was revealed with
those children age ≥10 years (adjusted OR=7.10, 95% CI= 2.78–
18.1, p<0.001), female (adjusted OR=4.84, 95% CI= 2.83–8.28,
p<0.001), common B subtype (adjusted OR=9.72, 95% CI= 6.67–
14.2, p<0.001), MLL gene fusion type (adjusted OR=14.8, 95%
CI= 5.15–42.6, p<0.001), low hyperdiploid (adjusted OR=7.83,
95% CI= 3.17–19.5, p<0.001), primitive/naive lymphocytes in
marrow ≥5% on 19 days (adjusted OR= 5.69, 95% CI=2.96–10.9,
p<0.001) and <5% on 33 days (adjusted OR=2.72, 95% CI= 1.82–
4.05, p<0.001) after chemotherapy, MRD in marrow <0.01% on
19 days (adjusted OR= 13.1, 95% CI=6.80–25.3, p<0.001), and
MRD ≥0.01% on 33 days (adjusted OR= 3.02, 95% CI=1.84–4.92,
p<0.001). No correlation was found between the rs1061027
polymorphism and MRD on 12 weeks.
Association of METTL3 Polymorphisms
With Chemotherapeutics in Southern
Chinese Pediatric ALL Patients
All patients were treated with Chinese Children Cancer Group
chemotherapeutics (CCCG) or South China Children Leukemia
Group chemotherapeutics (SCCLG). We compared the MRD in
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the marrow of patients with different alleles after being treated
with CCCG and SCCLG (Table 3). As for rs1263801, CC alleles
provided a protective effect on MRD in the marrow ≥0.01% on
33 days (adjusted OR= 0.17, 95% CI= 0.10–0.30, p<0.001) and 12
weeks (adjusted OR= 0.30, 95% CI= 0.10–0.90, p=0.030) among
CCCG-treated children. As for rs1139130, AA alleles provided a
protective effect on MRD in marrow ≥0.01% on 33 days
(adjusted OR= 0.50, 95% CI= 0.29–0.83, p=0.008) and 12
weeks (adjusted OR= 0.32, 95% CI= 0.12–0.87, p=0.030)
among CCCG-treated children but provided a risk effect on
MRD in marrow ≥0.01% among SCCLG-treated children
(adjusted OR=5.70, 95% CI=1.37–23.7, p=0.017). As for
rs1061.27, AA alleles provided a risk effect on MRD in the
marrow ≥0.01% among CCCG-treated children (adjusted
OR=8.63, 95% CI=2.31–32.3, p=0.002). These results indicated
that SCCLG chemotherapeutics is more suitable for rs1263801
CC and rs1139130 AA carriers; CCCG chemotherapeutics is
more efficient for rs1061027 AA carriers.
DISCUSSION

In the current case-control study with 808 pediatric ALL case
and 1,340 healthy controls from Southern Chinese populations,
we explored the potential association between METTL3 gene
polymorphisms and pediatric ALL risk. We certificated that
three polymorphisms, namely rs1263801 C>G, rs1139130
A>G, and rs1061027 A>C, were associated with an increased
susceptibility of pediatric ALL. To our knowledge, this study is
the first to identify the association between METTL3
polymorphisms and pediatric ALL susceptibility.

Epigenetic alterations, including DNA methylation, histone
modifications, and noncoding RNAs, have been reported to
contribute to ALL progression (22). In recent years, another
epigenetic modification, RNA methylation, is considered to play
an important role in carcinogenesis (11). M6A is the most
common modification of RNA on the posttranscriptional level,
mainly in mRNA and long noncoding RNA (lncRNA) (23). The
complex composed of METTL3, METTL14, and WTAP induces
m6A-methylation of mRNA or lncRNA. METTL3 is the essential
component of the complex. Dysregulation of METTL3 was
identified to be a key role in the progression of multiple
malignant tumors, such as endometrial cancer (24), bladder
cancer (25), pancreatic cancer (26), etc. A number of articles
infer that METTL3 can promote tumor progression through
multiple mechanisms. METTL3 can promote growth, survival,
and invasion by interacting with the translation initiation element
to enhance mRNA translation in lung adenocarcinoma (27). Lin
et al. (28) revealed that deletion of METTL3 could impair the
epithelial-mesenchymal transition (EMT). In breast cancer,
METTL3 is upregulated by HBXIP and promotes the cancer
progression by suppressing let-7g (29). METTL3 promotes self-
renewal of glioblastoma stem cells to induce tumorigenesis (30).
METTL3 can directly interact with the eukaryotic translation
initiation factor e subunit h (eIF3h). The interaction between
METTL3 and eIF3h is essential for translation and oncogenic
Frontiers in Oncology | www.frontiersin.org 6188
transformation in lung cancer (31). Promoter-bound METTL3
promotes m6A modification within the coding region of mRNA
transcript and enhances translation by inhibiting ribosome
stalling. METTL3 regulates mRNA expression in this way to
facilitate the progression of acute myeloid leukemia (32).
However, the function of METTL3 in ALL is still unknown.

Here in , we invest igated whether METTL3 gene
polymorphisms could influence the susceptibility of ALL in
South China children for the first time. With regard to the
remaining threeMETTL3 gene polymorphisms (rs1263801 C>G,
rs1139130 A>G, and rs1061027 A>C), we identified the
association between these three SNPs and pediatric ALL
susceptibility. The location and predicted function was
analyzed using the online software SNPinfo. The rs1263801
C>G polymorphism was located in intron 1 of the METTL3
gene and was predicted to be the transcriptional factor binding
site. The rs1139130 A>G located in the exon 5 of the METTL3
gene was predicted to affect splicing and protein function. The
rs1061027 A>C polymorphism located in intron 8 was predicted
to be associated with miRNA function. In 2018, Bertero et al.
reported that the interactome of transcriptional factors SMAD2/
3 promoted another transcriptional factor TGFb to control the
METTL3/METTL14/WTAP complex mediated m6A mRNA
methylation in human pluripotent stem cells (33). Xia et al.
reported that Zmettl3 mutation disrupts gamete maturation
and reduces fertility in zebrafish (34). Other studies identified
that METTL3 mRNA could be targeted by miR-600 (35) and
miR-33a (36). However, there was no evidence certifying
that genetic variations of METTL3 could affect the
transcriptional factor or miRNAs binding to METLL3 and the
coding of METTL3 mRNA. Our results suggested that the
rs1263801 CC phenotype, rs1139130 GG phenotypes, and
rs1061027 CA/CC phenotypes are associated with an increased
risk of pediatric ALL in South China. Lin et al. reported that the
combination of rs1139130, rs1263801, rs1061026, and rs1061027
reduced the risk of Wilms tumor in Chinese children (37). Bian
et al. (38) identified that these four polymorphisms were
associated with an increased risk of neuroblastoma. It
suggested that METTL3 polymorphisms function diversely in
different tumors.

We next examined whether the METTL3 SNP genotype
preferentially predisposes to any pediatric ALL subtype,
including immunophenotype, gene fusion type, karyotype,
primitive/naïve lymphocytes, and MRD in the marrow after
chemotherapy. The METTL3 rs1263801 CC phenotype and the
rs1061027 AA phenotype were considered to increase the risk of
ALL in the B-ALL, mature B ALL, and T-ALL subtype. In BCR-
ABL, TEL-AML, and MLL gene fusion types, rs1263801 CC
phenotype and rs1061027 AA phenotype carriers showed a
higher risk for ALL. The rs1139130 GG carriers were revealed
to have a higher risk for ALL in B-ALL, mature B ALL subtype,
and medium risk level subtype. We failed to identify the
association between the FAB subtype and these three
METTL3 polymorphisms.

In stratification analysis, we tried to reveal the relationship
between clinical characteristic, response to different
September 2021 | Volume 11 | Article 635251
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chemotherapeutics, and METTL3 polymorphisms. The results
showed that rs1263801 C>G, rs1139130 A>G, and rs1061027
A>C could remarkably increase the risk of the common B type
and MLL fusion type ALL in Southern Chinese children. All
these three selected polymorphisms were more strongly
associated with the primitive/naïve lymphocytes over 5% and
MRD less than 0.01% on the 19th day, and also with the
primitive/naïve lymphocytes less than 5% and MRD more than
0.01% on the 33rd day after chemotherapy. After chemotherapy
treatment of 12 weeks, rs1263801 C>G and rs1061027 A>C were
identified to increase susceptibility to primitive/naïve
lymphocytes less than 5%; rs1263801 C>G and rs1139130 A>G
may increase susceptibility to MRD more than 0.01% in ALL
patients. And we also identified that SCCLG chemotherapeutics
was more suitable for rs1263801 CC and rs1139130 AA carriers;
CCCG chemotherapeutics was more efficient for rs1061027
AA carriers.

Several limitations should be noted in the current study. First,
the sample size was not large enough. Second, this was a
retrospective study; information bias and selection bias were
inevitable. We have reduced these biases by frequency-matching
of cases and controls by age and gender, and recruiting subjects
from six hospitals in South China. Third, our study focused on
the analysis of genetic factors in pediatric ALL risk. However,
other important information such as environment and dietary
intake was not available for analysis. Finally, the association
between METTL3 gene polymorphisms and prognosis of
pediatric ALL was not analyzed in the current study.

In summary, our results suggest that polymorphisms
rs1263801 C>G, rs1139130 A>G, and rs1061027 A>C in the
METTL3 gene were significantly associated with increased
pediatric ALL risk, and SCCLG chemotherapeutics is more
suitable for rs1263801 CC and rs1139130 AA carriers; CCCG
chemotherapeutics is more efficient for rs1061027 AA carriers in
the Southern Chinese ALL children. Further studies are
necessary to elucidate the biological function of METTL3 gene
risk SNPs in the etiology of pediatric ALL.
CONCLUSION

METTL3 gene polymorphisms were associated with increased
pediatric ALL risk. These three polymorphisms (rs1263801 C>G,
rs1139130 A>G, and rs1061027 A>C) were likely to contribute
to the sensitivity of different chemotherapies in pediatric ALL.
The results indicated that METTL3 gene polymorphisms might
be a potential biomarker for ALL susceptibility and when
choosing chemotherapeutics.
Frontiers in Oncology | www.frontiersin.org 7189
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