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This study examines trends in the intensity and frequency of short-duration (5 min to
3 h) rainfall extremes in Hong Kong for the period of 1984 to 2010 and the drivers
for the trends using gauge observations and gridded reanalysis. Both the intensity and
frequency of rainfall extremes exhibit an upward trend, with the slope for the intensity
(frequency) trend increasing (decreasing) as duration lengthens from 5 min to 3 h. The
upward intensity (frequency) trends appear to be a manifestation of an abrupt change
around 1991/1992 (1992/1993) that separates a period of lower and fewer rainfall
extremes before from a period of higher and more extremes after. The increase in
Hong Kong’s extreme rainfall after the early 1990s is likely caused by a combination of
stronger rising motion along Southeast China Coasts and enhanced moisture transport
into South China Sea resulting from the strengthening and westward shift of the western
Pacific subtropical high associated with anomalous convective activities over the tropical
western Indian Ocean and a positive phase circumglobal teleconnection wavetrain.

Keywords: extreme rainfall, climate analysis, climate extremes, monsoon, climate of Hong Kong

INTRODUCTION

It has been widely recognized that heavy precipitation and the associated flooding events have
serious socioeconomical consequences. For example, the 1993 summer floods in the upper
Mississippi River Basin of the United States devastated many low-lying communities in the basin
and cost the economy nearly $20 billion (Kunkel et al., 1994). Most recently in winter 2019–2020,
extremely heavy rainfall associated with three powerful extra tropical cyclones caused widespread
flooding across the United Kingdom, resulting in loss of lives and at least €150 million property
damages. Understand the trends and variability as well as the drivers of these high impact extreme
precipitation events is, therefore, vital for economical and societal activities.

In recent decades, extreme precipitation events have been on the rise in some parts of the
world while decreasing in other parts, depending on various factors such as season, period, and
geographical location (Easterling et al., 2000; Ghosh et al., 2012). For example, several studies have
documented an upward trend of extreme precipitation events across much of the United States and
Canada (e.g., Karl et al., 1996; Kunkel et al., 1994; Easterling et al., 2000), Japan (Iwashima and
Yamamoto, 1993), Indian (Mukherjee et al., 2018), and Australia (Suppiah and Hennessy, 1998).
However, in the United Kingdom (UK) heavy rainfall events have been increasing in winter, but
decreasing in summer (Osborn et al., 1999) with substantial interannual variability (Jones et al.,
2013; Simpson and Jones, 2014; Brown, 2018). Decreases in extreme precipitation events have been
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documented for the Sahel region of Nigeria (Tarhule and Woo,
1998) and across most stations in Southeast Asia and the South
Pacific (Manton et al., 2001). In addition to changing frequency,
the intensity of extreme precipitation events have also been
changing and majority of observational evidence has suggested
an increasing trend in the intensity, but the slope of the increasing
trends vary substantially by region (Donat et al., 2016).

Previous studies have linked the changes in extreme
precipitation frequency and intensity to increases in temperature
and moisture under global warming caused by increases in
anthropogenic greenhouse gas emissions (Min et al., 2011;
Ghosh et al., 2012; Mishra et al., 2012; Mukherjee et al., 2018).
Atmospheric circulation anomalies also play an important role.
For example, the increase frequency of extreme precipitation
events in the United States has been linked to the Pacific
Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation
(AMO) (Yu et al., 2016). A review of the recent progress toward
understanding global observed long-term changes in extreme
precipitation is provided by Alexander (2016).

Extreme precipitation events occur on time scales of minutes,
days to weeks and among them short-duration (less than one
day) events, which are mostly responsible for occurrence of flash
floods, is most difficult to forecast in advance (Ahern et al., 2005).
Westra et al. (2014) noted that intensity and frequency of sub-
daily rainfall extremes have been increasing more rapidly than
daily rainfall extremes. The change in sub-daily rainfall extremes
have been attributed to local temperature change according
to the Clausius-Clapeyron (CC) relation (Pall et al., 2007)
and to large-scale atmosphere-ocean variability modes, such as
the El Niño–Southern Oscillation (ENSO) and the monsoon
systems (Blenkinsop et al., 2018). It is therefore necessary
to examine the changes in sub-daily extreme precipitation in
the context of internal (atmospheric circulation) and external
(e.g., anthropogenic) factors. To this end, the INTElligent
use of climate models for adaptation to non-Stationary
hydrological Extremes (INTENSE) project sought to understand
the past, present and future of sub-daily rainfall extremes using
observations and models (Blenkinsop et al., 2018).

The current study focuses on trends in short-duration
(≤3 h) extreme rainfall events in Hong Kong. Located in
China’s southeast coast surrounded by the South China Sea
by all sides except the north side, Hong Kong is subject to
extreme rainfall related to the East Asian summer monsoon.
The hilly and mountainous terrain makes rainfall patterns highly
heterogeneous across the main peninsula and the numerous
islands. As a global business and commercial center and one
of the most densely populated regions in the world, heavy
flooding caused by short-duration extreme precipitation can have
a profound socioeconomic impact (Peterson and Kwong, 1981;
Lam and Leung, 1994). Hence, understanding the trends and
interannual variability of short-duration extreme rainfall events
in Hong Kong is becoming increasingly important in the context
of global warming and local/regional atmospheric circulation
change noted above as potential drivers.

Previous studies have documented an increase in extreme
precipitation in Hong Kong in the past. For example, Ginn et al.
(2010) reported an increase in the annual number of days with

hourly rainfall greater than 30 mm from 1947 to 2008. Wong
et al. (2011) found an increase in the frequency of occurrence
of extreme 1-, 2-, and 3-hourly rainfall amounts from 1885 to
2008 and a shortened return period of hourly rainfall of more
than 100 mm from 37 years in 1900 to 18 years in 2000. Extreme
rainfall in Hong Kong in the 21st century is projected to become
more frequent. For example, Wu et al. (2006) indicated that the
number of days with hourly rainfall of greater than 30 mm will
increase from 5.6 days during 1961–1990 to 6.5 days for the
period of 2070–2099. However, the changes in the frequency
of future hourly extreme rainfall have been based primarily
on projections using General Circulation Models (GCMs) with
spatial resolutions too coarse to represent convection, the major
driver for sub-daily extreme precipitation events (Kendon et al.,
2014; Prein et al., 2015). As such, the changes between current
and future sub-daily extreme precipitation events projected by
coarse resolution models are associated with great uncertainty.

Although aforementioned studies have investigated the trends
in extreme rainfall in Hong Kong, few have, to our knowledge,
examined trends in and cause for short-duration extreme rainfall
events that last from a few minutes to several hours. The relative
role of atmospheric circulation and the increased greenhouse
gas emissions play in the trends of extreme rainfall needs to be
assessed further. The current study will examine trends in short-
duration (from 5 min to 3 h) rainfall extremes in Hong Kong with
a focus on their relationship to large-scale circulations.

The rest of the paper is organized as follows: the data sets
and methods used in the study are described in Section “Data
and Methods.” Section “Results” presents the trends of extreme
rainfall in Hong Kong and their potential drivers. A summary
of the results and discussion are presented in Section “Summary
and Discussion.”

DATA AND METHODS

The Geotechnical Engineering Office (GEO) of Civil Engineering
and Development Department in Hong Kong has been operating
a network of automated rain gauges to collect rainfall data at
5-min time interval since 1984. The number of gauges varied
with time, ranging from 42 gauges in the early half of 1984
to 111 gauges in 1999. The data were missing at some gauges
for December 30 and 31, 1984 and January 1-June 1, 1985.
This study selected 39 GEO rain gauges for the period of
1984 to 2010, when there were no missing data records from
these gauges. The locations of the 39 rain gauges are shown
in Figure 1 and their coordinates and elevations are given in
Table 1. Some quality control procedures were performed to
identify and remove suspiciously high rainfall values, determine
and remove erroneous values by comparing with other datasets
and supplement missing values according to spatial and temporal
continuity. More details on the data and quality control can be
found in Tang and Cheung (2011).

In this study, we focus on the annual maxima of sub-
daily rainfall extremes. Sub-daily rainfall accumulation is an
important factor for flood control. The calculation of annual
maxima is based on 5-min rainfall data for the 1984–2010
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FIGURE 1 | Locations of the 39 GEO rain gauges in Hong Kong. Refer to Table 1 for gauge latitude, longitude, and elevation.

period. Although the analysis period is only 27 (1984–2010) years
because of data availability, Evans and Yu (2001) recommended a
minimum of 20 years as an adequate length of data records for
examining extreme rainfall intensity. The durations of rainfall
accumulations considered in the present analysis include 5, 10,
and 30 min and 1, 2, and 3 h. Apart from intensity of annual
maximum precipitation accumulation over the 6 durations, the
frequency of extreme precipitation events defined using the 99th
percentile threshold of all data over all years for each gauge
is also examined.

We examine the trends and interannual variability of the
extreme precipitation in Hong Kong in the context of large-
scale atmospheric circulation and sea surface temperature (SST)
anomalies. Large-scale atmospheric circulations are described by
the anomalous fields of 500-hPa geopotential height and vertical
velocity, 850-hPa wind and 1000–700 hPa specific humidity,
all of which are derived from the U.S. National Centers for
Environmental Prediction (NCEP) and Department of Energy
(DOE) global reanalysis with a horizontal resolution of T62
(∼209 km) and 28 vertical levels and a temporal coverage of
four times per day (Kalnay et al., 1996; Kistler et al., 2001;
Kanamitsu et al., 2002). SST anomalies are described using the
US National Oceanic and Atmospheric Administration (NOAA)
Extended Reconstructed Sea Surface Temperature (Smith et al.,
2008). Finally, NOAA’s Outgoing Longwave Radiation (OLR)
(Liebmann and Smith, 1996) data are also analyzed as a proxy
for convection1.

1ftp://ftp.cdc.noaa.gov/Datasets/

Since more than half of Hong Kong’s annual maxima
rainfall occur in summer (June, July August), followed by
nearly one third in spring (March, April, and May), we focus
our analyses on the relations between summertime anomalous
large-scale circulation patterns and the changes in annual
maxima of extreme rainfall in Hong Kong using the composite
analysis method. Mann-Kendall (MK) test (Mann, 1945) is
utilized to detect significant trend and abrupt change point in
the time series.

RESULTS

The annual maxima of short-duration (5, 10, 30 min and 1,
2 3 h) rainfall extremes are estimated using 39 automated
rain gauges during the 27-year period from 1984 to 2010. The
values are then averaged over the 39 rain gauges to obtain
domain-averaged annual maxima of rainfall extremes for the
respective duration. The median of domain-averaged annual
maxima of rainfall extremes over the 27 year period for the 6
gradually increasing durations are 12.5, 22.0, 46.8, 68.4, 94.3, and
110.7 mm, respectively.

The time series and trends of domain-averaged annual
maxima of rainfall accumulations over the 6 durations are
shown in Figure 2. The 27-year time series is characterized
by a remarkable interdecadal variability and this is true for
all 6 accumulation durations. Based on the Mann-Kendall
(MK) (Mann, 1945) abrupt change test, an abrupt change
point occurred in 1991/1992 regardless of duration (Figure 3).
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TABLE 1 | Locations and elevations of the 39 GEO rain gauges.

No. Latitude (◦) Longitude (◦) Elevation (m)

H01 114.1219 22.27278 107

H02 114.1280 22.28060 95

H03 114.1334 22.26113 132

H04 114.1384 22.28309 123

H05 114.1589 22.25283 103

H06 114.1763 22.27330 88

H07 114.1869 22.27579 94

H08 114.1852 22.26408 129

H09 114.2009 22.28720 160

H10 114.1452 22.27552 530

H12 114.1478 22.28072 188

H14 114.2333 22.26277 141

H15 114.2158 22.21531 50

H16 114.1526 22.26755 439

H17 114.1641 22.27173 200

H18 114.2155 22.28177 77

H19 114.2291 22.27590 53

H20 114.1502 22.24462 104

H21 114.1943 22.23951 139

K01 114.1776 22.31471 91

K02 114.1789 22.34299 92

K03 114.2246 22.31861 91

K04 114.2251 22.33298 178

K05 114.2414 22.29726 117

K06 114.1600 22.34041 35

K07 114.2001 22.35117 197

K08 114.235 22.30637 77

N01 114.1292 22.37400 38

N02 114.1300 22.34530 73

N03 114.1412 22.49433 113

N04 114.1392 22.36377 96

N05 113.9664 22.39309 111

N06 114.2456 22.33943 106

N07 114.2124 22.41540 41

N08 114.0602 22.36858 256

N09 114.0937 22.33686 6

N12 114.0210 22.44615 79

N13 114.3385 22.37786 87

N14 114.1243 22.41093 944

Corresponding to this abrupt change, the domain-averaged
annual maxima are significantly smaller during 1984 – 1991 than
those from 1992 to 2010.

The systematic differences in the values before and after the
abrupt change point yields an upward trend in the domain-
averaged annual maxima of rainfall extremes. The slope of the
upward trend increases as the accumulation duration lengthens,
from 0.1, 0.2, and 0.5 mm yr−1 for 5-, 10-, and 30- min
durations, to 0.8, 1.2, and 1.3 mm yr−1 for the 1-, 2-, and 3-
h durations, respectively. The trends are statistically significant
(p ≤ 0.05) for all but the two longest (2- and 3-h) durations.
The increasing trends in extreme rainfall intensity are consistent
with the increasing trends in frequency of extreme rainfall in
Hong Kong (Ginn et al., 2010; Wong et al., 2011). The increasing

trend is mostly due to the abrupt change in 1991/1992. The 39
gauges are unevenly distributed with more than half located in
Hong Kong Island while none in Lanton Island. As a result,
the 39-gauge unweighted means may be skewed by those on
Hong Kong Island. Figure 2 shows considerable differences
among the values at different gauges, which suggests large spatial
variability in the annual maximum rainfall values. As expected,
the spatial standard deviations are proportional to the mean
values that increases with the length of accumulation duration.

To access the domain averaged results, Empirical Orthogonal
Function (EOF) analysis is performed and the results are
shown in Figure 4 for the 5-min accumulation duration. The
total variances explained by the first EOF mode (EOF1) range
from 32.8% for the 5-min accumulation to 55.0% for the 3-
h accumulation. Although the values are all positive across the
entire domain, there are several localized maxima and the largest
one is in the New Territories near gauge N14 (Figure 4A). An
abrupt change of the EOF1 time series also occurred in 1991/1992
(Figure 4B). As such, the above domain-averaged results can
reflect the common feature of annual maxima of rainfall at the
39 gauges. To further determine the abrupt change signal, we
examine the time series of annual maxima of 5-min accumulated
rainfall for each gauge. More than half (22) of the 39 gauges,
which are scattered in different regions, show a similar abrupt
change point in the early 1990s. Similar results from EOF analysis
and analysis of individual gauge data are found for other 5
durations. It is, therefore, certain that there exists an abrupt
change in the annual maxima of rainfall with accumulation
duration up to 3 h in Hong Kong. Although the analysis here is
limited to accumulation durations up to 3 h, it is highly likely that
this finding can be extended to longer durations.

While changes in the intensity of extreme precipitation
described by the annual maxima of rainfall accumulation over
the respective period is an important factor to consider for
flood control, changes in the frequency of extreme precipitation
is equally important for such application. Figure 5 shows the
time series of domain-averaged occurrence of extreme events
when rainfall amount accumulated over a given duration is
above the 99th percentile of all events for the given duration
over the 27-year period. The frequency time series (Figure 5)
are significantly correlated with their respective intensity time
series (Figure 2), with correlation coefficients varying in a narrow
range from 0.59 for the 2-h accumulation to 0.68 for the 10-
min accumulation (p ≤ 0.05). An abrupt change occurred in
1992/1993 based on the MK test (Not shown). Similar to the
intensity time series, the frequency time series also have upward
trends with slopes of 11.1, 6.1, 2.5 yr−1 for 5-, 10-, and 30-
min accumulations, and 1.4, 0.8, and 0.6 yr−1 for 1-, 2-, and
3-h accumulations, respectively. But different from the intensity
trends that are statistically significant for all but the two longest
durations (2 and 3 h), the frequency trends are significant for all
but the two shortest durations (5 and 10 min). An increasing
trend in the occurrence of extreme precipitation is also found
in previous studies (Ginn et al., 2010; Wong et al., 2011) that
only included 1-h accumulation. Similarly to the intensity trends,
the frequency trends also result from a manifestation of an
abrupt change point.
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FIGURE 2 | Time series (black lines) and trends (straight black lines) of domain-averaged annual maxima of rainfall accumulations over 5 min (A), 10 min (B), 30 min
(C), 1 h (D), 2 h (E), and 3 h (F) for the period of 1984 to 2010. The red and blue lines denote the 39-station mean value plus and minus one 39-station standard
deviation, respectively.

The aforementioned results indicate that an abrupt change in
both the intensity and frequency of occurrences of short-duration
(<3 h) extreme precipitation events in Hong Kong occurred
in the early 1990’s, with more frequent and stronger extreme
precipitation following the change.

Because annual rainfall in Hong Kong usually peaks in
summer, a composite analysis of summertime (JJA) atmospheric
variables is performed to explore the cause for the abrupt
change in the early 1990s. The 27 years in the study
period are separated into two groups, the years prior to
1992 and the years afterward, which correspond to weak
and less frequent extreme precipitation events and stronger
and more frequent extreme precipitation events, respectively.
At each grid point in the study domain, a mean value is
calculated for each of the two groups and the differences
between the means are examined. Similar composite analysis
method was also utilized to examine an inter-decadal change
of the East Asian summer monsoon (EASM) for which the

abrupt changing point is 1993/1994 (Zhang et al., 2017;
Zhu et al., 2018).

The western Pacific subtropical high (WPSH) is one important
component of the EASM system (Tao and Chen, 1987; Ding,
1994) and its intensity and location dominates the distribution
and strength of summer rainfall in southeast China (Tao and
Xu, 1962; Huang, 1963) including Hong Kong. A comparison
of the WPSH strengths between the two groups (Figure 6A)
shows that WPSH is stronger and extends more westwards for
1992–2010 than for 1984–1991 (Figure 6A). Consistent with the
westward extension of the summertime WPSH is an anomalous
850 hPa anticyclonic circulation over the western Pacific Ocean
and South China Sea (Figure 7A). The anomalous southwesterly
winds from the South China Sea brings moisture-laden air to
Hong Kong (Figure 6B), providing an environment favorable for
the occurrence of intense extreme rainfall.

In addition to ample moisture, strong dynamical lifting is
also necessary for extreme rainfall. The difference in the 500-hPa
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FIGURE 3 | The statistical lines of the Mann-Kendall (MK) (Mann, 1945) abrupt change test for the time series of domain-averaged annual maxima of rainfall with
5-min accumulation in Figure 2A. The black solid straight lines denote 95% confidence levels. The vertical axis is the statistical value calculated by the statistical
variables of UB (pink lines) and UF (blue lines) according to MK method.

FIGURE 4 | The spatial pattern (A) and normalized time series (B) of the first EOF mode for annual maxima of 5-min rainfall. The values in (A) (unit: decimeter) shows
the response of annual maxima for each station to the change of one standard variation of the normalized time series (B).

Frontiers in Environmental Science | www.frontiersin.org 6 September 2020 | Volume 8 | Article 58153610

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-581536 September 7, 2020 Time: 18:49 # 7

Yu et al. Trend in Extreme Rainfall

FIGURE 5 | Time series and trends of domain-averaged number of extreme rainfall accumulations over 5 min (A), 10 min (B), 30 min (C), 1 h (D), 2 h (E), and 3 h
(F) using the 99th percentile threshold for the period of 1984 to 2010.

FIGURE 6 | Locations of summertime mean 5870-gpm isoline at 500 hPa for the period of 1984–1991 (dash line) and 1992–2010 (solid line) (A), and the difference
of low-level (1000–700 hPa) specific humidity (g/kg) between 1992–2010 and 1984–1991 (B).
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FIGURE 7 | Differences between the 1992–2014 and 1984–1991 means of 850-hPa wind (A) and 500-hPa vertical velocity (Pa/s) (B). The shaded and dotted
regions indicate the regions with above 95% confidence level using the Student’ t-test.

omega field between the two groups are negative along Southeast
China coasts (Figure 7B), which indicates stronger rising motion
during 1992–2010 than during 1984–1991. The stronger lifting
of moisture-laden air contributes to the increase in the frequency
and intensity of extreme precipitation over Hong Kong. Over the
South China Sea and the Philippines, positive difference in the
omega field indicates stronger sinking motion associated with the
stronger WPSH in these regions.

The above results suggest that the changes in the intensity and
frequency of extreme precipitation in Hong Kong between the
earlier (1984–1991) and later (1992–2010) periods are consistent
with the changes in atmospheric conditions resulting from the
westward extension along with a slight intensification of the
summertime WPSH. Hu (1997) and Zhou et al. (2009) found
the westward extension of WPSH on an interdecadal time scale
may be related to the Indian Ocean-western Pacific warming.
Although positive SST differences occur over the tropical Indian
Ocean and tropical western Pacific Ocean (Figure 8A), there is
no significant negative OLR, a proxy for convection in tropical
and subtropical oceans, over the tropical eastern Indian Ocean
and western Pacific Ocean, indicating few convective activities
there (Figure 8B). The positive SST differences over the tropical
eastern Indian Ocean and western Pacific Ocean may result
from the changes in radiation related to significant downward
motion (Figure 7B) induced by the westward extension of
WPSH. Rodwell and Hoskins (2001) found that diabatic heating
related to the South-Asian-summer-monsoon rainfall could
increase the strength of the WPSH. The convective activities
over the tropical western Indian Ocean (Figure 8A) may
help westward extension of WPSH. In summer season, there
are three monsoon circulations: the transverse monsoon, the
lateral monsoon and the Walker circulation (Webster et al.,
1998). The transverse monsoon circulation over the Indian
Ocean is associated with a subsidence (ascent) over the western
(eastern) tropical Indian Ocean and East Africa (the Maritime
Continent). The increased (weakened) convective activities over
the western Indian Ocean (the eastern Indian Ocean and the

western Pacific Ocean) (Figures 7B, 8B) can decrease the
strength of the transverse circulation over the Indian Ocean,
thus leading to the positive WPSH anomalies (Wu and Zhou,
2008). In addition, the large negative OLR differences over
the southeastern China and northern South China Sea indicate
stronger convective development and positive rainfall there after
1991 than before 1991, which also help the occurrence of stronger
annual extreme rainfall.

Finally, putting the regional changes between the two periods
into the perspective of changes in large-scale circulations,
the differences in the 500-hPa geopotential height field are
characterized by a Rossby wavetrain with positive values over
Europe, northern China, western and eastern North Pacific
Ocean, southern and northeastern North America and southern
North Atlantic Ocean and negative anomalies over western Asia,
Japan, central North Pacific Ocean, central North America and
eastern North Atlantic Ocean (Figure 9). Similar pattern is
also found in the 200 hPa geopotential height difference map
(not shown). The wavetrain is similar to the positive phase of
the circumglobal teleconnection (CGT) pattern in the northern
hemisphere summer (Ding and Wang, 2005; Ding et al., 2011).
The positive height difference over the western Pacific Ocean
strengthens the WPSH. The negative height difference over
western India indicates more convective activities and monsoon
rainfall. Ding and Wang (2005) and Ding et al. (2011) related the
CGT pattern in summer to Indian monsoon rainfall anomalies.
As such, the positive phase of the CGT related to stronger
Indian monsoon also helps strengthen the WPSH and extend
it more westward.

SUMMARY AND DISCUSSION

Using data from a 39-gauge network across Hong Kong, we
examined the trends in both the intensity and frequency of short-
duration (5, 10, 30 min and 1, 2, 3 h) rainfall extremes over the
period 1984–2010.
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FIGURE 8 | Differences between the 1992–2014 and 1984–1991 means of sea surface temperature (SST) (◦C) (A) and Outgoing Longwave Radiation (OLR) (W/m2)
(B). The dotted regions indicate the regions with above 95% confidence level using the Student’ t-test.

FIGURE 9 | Differences between the 1992–2014 and 1984–1991 means of summertime 500-hPa geopotential height (gpm). The shaded regions indicate the
regions with above 95% confidence level using the Student’ t-test.

Averaging across the gauge network, the intensity and
frequency of precipitation extremes exhibit an upward trend.
The intensity trend is statistically significant for all but the
two longest durations (2 and 3 h) and the slope of the trend
increases as the duration increases. An opposite relation is seen
between the frequency trend and the length of the duration.

The upward trend over the 27-year period appears to be
a manifestation of an abrupt change near the beginning of
1990s that separates a period of lower and fewer precipitation
extremes before, from a period of higher and more extremes
after, which suggests that the use of linear trend analysis may
not be appropriate.
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The increases in the intensity and frequency of extreme
precipitation in Hong Kong after the early 1990s is linked,
through composite analyses, to strengthening and westward
shift of the western Pacific subtropical high and the associated
anticyclonic motion that enhances the transport of moisture-
laden air as well as rising motion over Hong Kong – the
two ingredients for strong convective activities responsible
for extreme precipitation. The westward shift of the western
Pacific subtropical high is related to the anomalous convective
activities over the tropical western Indian Ocean and a
positive phase circumglobal teleconnection 500 hPa wavetrain.
The inter-decadal variability of extreme precipitation in
Hong Kong is consistent with the inter-decadal change of
the East Asian summer monsoon (EASM) (Zhang et al.,
2017; Zhu et al., 2018), but the exact change point is
different. The abrupt change point for EASM is 1993/1994,
the same change point for the mean summer rainfall in
Hong Kong (not shown), but the changes in extreme
precipitation in Hong Kong occurred 2 years earlier round
1991/1992 for intensity and 1 year earlier around 1992/1993
for frequency. It is unclear what caused these small shifts
in the exact year of change, which can be a topic of
future investigation. Despite the small differences in the
exact change point, the similar inter-decadal variability
between the extreme precipitation and EASM suggests that
extreme precipitation in Hong Kong is strongly linked to
monsoon precipitation, not to typhoon precipitation that,
according to Chang et al. (2012), did not exhibit a similar
pattern of inter-decadal variability. Kajikawa and Wang
(2012) and Xiang and Wang (2013) documented an abrupt
change of South China Sea summer onset in 1993/1994.
The summertime rainfall in Hong Kong also performs an
abrupt change in 1993/1994 (not shown). The reason of the
difference between the two abrupt years also needs to be
further investigated.

Previous studies usually presumed the role of anthropogenic
global warming in increasing extreme precipitation. For example,
Wong et al. (2011) also noted the increasing trends in the
frequency of occurrence of extreme 1-, 2-, and 3-h rainfall
amounts from 1885 to 2008. They simply attributed the
increasing trends to global warming and did not consider

the impact from the natural factors. Our results suggest that
natural variability could potentially be a significant driver for
the increasing intensity and frequency of extreme precipitation
in recent decades. Another active debate is on the relative role
atmospheric thermodynamic and dynamic processes play in the
changes of extreme rainfall. Pfahl et al. (2017) noted that an
increase in atmospheric upward vertical motion, a dynamic
process, makes the most contribution to annual daily maximum
precipitation in the Asian monsoon region. Their results agree
with our conclusion, though they focused on daily rainfall
amount. Our conclusions offer some insights into processes that
could subsequently be used to develop a predictive tool for
occurrence of sub-daily extreme precipitation, especially those of
less than 3 h that are mostly responsible for flash floods.
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The Land Surface Air Temperature (LSAT) climatology during the period of 1961–1990
and the anomalies (relative to the 1961–1990 climatology) have been developed over
Pan-East Asian region at a (monthly) 0.5◦ × 0.5◦ resolution. The development of
these LSAT data sets are based on the recently released C-LSAT station datasets and
the high resolution Digital Elevation Model (DEM), and interpolated by the Thin Plate
Spline (TPS) method (through ANUSPLIN software) and the Adjusted Inverse Distance
Weighting (AIDW) method. Then they are combined into the high resolution gridded
LSAT datasets (including the monthly mean, maximum, and minimum temperature).
Considering the mean LSAT for example, the Cross Validation (CV) of the datasets
indicates that the regional average of the Root Mean Square Error (RMSE) for the
climatology is about 0.62◦C, and the average RMSE and Mean Absolute Error (MAE)
for the anomalies are between 0.47–0.90◦C and 0.32–0.63◦C during the study period.
The analysis also demonstrate that the gridded anomalies describe the spatial pattern
fairly well for the coldest (1912, 1969) and the warmest (1948, 2007) years during the
first and second half of the 20th century. Further analysis reveals that the high resolution
dataset also performs well in the estimation of long-term LSAT change trend. Thus it can
be concluded that this newly constructed datasets is a useful tool for regional climate
monitoring, climate change research as well as climate model verification.

Keywords: land surface air temperature (LSAT), thin plate spline (TPS), adjusted inverse distance weight (AIDW),
high resolution, gridded dataset

INTRODUCTION

Land Surface Air Temperature (LSAT) is considered one of the important indicators of the global
and regional climate change. Many studies have shown that the global LSAT change can greatly
impact on human being as well as the social and economic society (Köppen, 1931; Callendar,
1938, 1961; Hawkins and Jones, 2013). Major issues in studying the LSAT variations and change
are associated with the inconsistency in observing times, uneven spatial distribution of LSAT
stations, differences in statistical methods, and the quality of the observational data over global
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or continental regions at century scale. To resolve these issues,
scientists developed homogenized station datasets and converted
them into gridded datasets for the convenience of applications
(Hutchinson, 1991; Daly et al., 1994; Li and Li, 2007; Xu
et al., 2009). For global large-scale climate temperature trend
estimation using low-resolution datasets (normally in 5◦ × 5◦
resolution to avoid changes at small scales) (Jones and Briffa,
1992; Peterson and Vose, 1997; Hansen et al., 1999; Li et al., 2017;
Xu C. et al., 2018; Yun et al., 2019) can basically meet the accuracy
requirements. For example, a consistent outcome from available
low-resolution data sets is that the global land temperature trend
since 1880 has become more and more significant (Li et al., 2020).

In contrast, high-resolution datasets (both the climatology
and the anomaly time series) are widely and urgently needed
(Huang et al., 2020; Xu et al., 2020) for research in climate change
monitoring and climate model validation and development in
regional/local scales. However, it is not easy to develop a high-
resolution global and regional datasets due to the problems
such as the uneven distribution and difference in the length of
observation records. New et al. (1999a,b) used the Thin Plate
Spline (TPS) method and angular weighting method to develop
the first relatively high-resolution (0.5◦ × 0.5◦) global LSAT
climatology and anomaly dataset based on the CRU (Climatic
Research Unit) LSAT station dataset, and the Climate Research
Unit gridded Time series (CRU TS) has been produced and
shared openly to facilitate research and analysis in all areas related
to climate and climate change since the first version was released
in 2000. CRU TS Version 4 (CRU TS4) is the first major update
since version 3 was published in 2013 (Harris et al., 2020). The
US Berkeley Earth Program team developed LSAT climatology
and anomaly dataset at high-resolution (1.0◦ × 1.0◦) – Berkeley
Earth Surface Temperature (BEST) using Kriging and Inverse
Distance Weighting (IDW) methods (Rohde et al., 2013).
Besides, Hijmans et al. (2005) developed a global (excluding the
Antarctic) high resolution climatology datasets of 1 km × 1 km
resolution from 1950 to 2000, and they concluded that the
use of the digital elevation model (DEM) is necessary when
developing high-resolution grid data; and Fick and Hijmans
(2017) further updated the datasets from 1970 to 2000 in some
regions by using satellite observations and elevation data as
covariates, and upgraded a new high-resolution datasets (also
in 1 km × 1 km resolution). In addition, observational stations
are relatively sparse in some regions in Asia (Tibet Mountains),
South America, Africa, etc., and data before 1950 is relatively
limited. The records in these regions are very precious for global
climate change studies, while the sparse observations sometimes
resulted in deficiencies in describing regional climate and climate
change with the global high-resolution datasets (Li et al., 2007).
Therefore, with the continuous improvement of data collection
and data quality, it is inevitable to develop new high-quality
global climate datasets.

Various high-resolution climate datasets at the regional scale
have been developed in many countries in recent years. These
countries include China (Hong et al., 2005; Xie et al., 2007;
Yatagai et al., 2009; Wu and Gao, 2013; Peng et al., 2019;
Huang et al., 2020; Xu et al., 2020), India (Sinha et al., 2006),
Southeast Asia (Van den Besselaar et al., 2017), Europe (Nynke

et al., 2009), the United States (Price et al., 2004), Australia
(Hutchinson, 1991), etc., which provide good supports to climate
change research at regional scales. However, there exist some
obvious difference in accuracy due to the different station
number, data quality control and homogenization processing
in the basic dataset used by each developer. Moreover, the
high-resolution datasets are sometimes difficult to be developed
at the continental or global scales due to different processing
methods or parameterization schemes. Some high-resolution
datasets emphasized the improvement of the spatial distribution
of stations but did not make the necessary assessments for the
inhomogeneity due to the station number changes, which will
have problems in long-term climate change trend detection (Li
et al., 2007). Therefore, it is of vital importance to enhance the
collection of the station data and the in-depth evaluation of
the data accuracy in some regions with few observations, such
as South America, Antarctica and Africa for the existing global
dataset; and it is also important to develop new high quality,
global, high-resolution climate datasets.

The ultimate goal of this study is to develop a global high-
resolution gridded LSAT data set based on C-LSAT, a monthly
global LSAT dataset developed by Chinese scientists recently
(Xu W. et al., 2018; Li et al., 2020). However, C-LSAT is only
a 5◦ × 5◦ anomaly dataset used to determine the long-term
changes of large-scale land surface air temperature. It is necessary
to develop a new higher resolution (0.5◦ × 0.5◦) dataset, which
can describe the spatial details of LSAT change at smaller scales.
In this manuscript, we take the pan-East Asian region as the
research region, which has numerous stations and complex
terrains (including coasts, large plateaus, basins, plains and
undulating areas), to test our high-resolution gridding model, so
as to provide a basis for the subsequent high-resolution gridding
for global area.

The remainder of this paper is arranged as follows: Section
“Data Sources and Methods” introduces the main data sources,
interpolation methods and validation methods used to develop
high resolution gridded LSAT datasets in this paper. The
interpolation and validation results of climatology and anomaly
data are presented in Sections “Climatology Interpolation” and
“Interpolation and Validation of LSAT Anomaly,” respectively.
Section “Regional LSAT Warming Trends Analysis” discusses
the regional warming trend with the newly interpolated LSAT
anomaly data and the comparison with new CRU TS4 dataset.
Section “Conclusion” provides final discussion and conclusions.

DATA SOURCES AND METHODS

Data Sources
In this study, the observational station data is derived from
C-LSAT, a monthly global LSAT dataset developed by Chinese
scientists recently (Xu W. et al., 2018). This dataset has been
systematically homogenized and updated by Yun et al. (2019)
and Li et al. (2020). The advantage of this dataset is that
it has used more observational stations compared to other
similar global datasets, and the elements include monthly mean
2 m air temperature (Tavg), daily maximum (Tmax), and
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minimum (Tmin) temperature for the period from 1850 to 2019
(however, we only intercepts the data from 1901 to 2018 in this
paper for analysis).

A rectangular region (10–60◦N, 60–150◦E, see Figure 1 below)
was selected to test interpolation methods used in this paper. The
region encompasses the key areas affected by both the Indian
and East Asian monsoon. From the topographic perspective, the
region contains high-altitude areas of the Qinghai-Tibet Plateau,
low-altitude plain areas of the middle and lower reaches of the
Yangtze River, undulating terrain areas of southwest China and
central Asia, and ocean areas of western Pacific and Indian Ocean.
There are a total of about 2800 observational stations in this
region, and the distribution of the stations is very uneven with few
stations in some parts and dense coverage in others. The region
is referred to as “Pan-East Asia” henceforth for interpolation
experiments and validation.

Figure 1 shows the spatial distribution of the observational
stations in the C-LSAT2.0 dataset in Pan-East Asia regions, and
classifies the start year (SY) of the data series for each station.
Many weather stations were established in India, Japan and other
countries before 1930. The observation stations established in
China before 1930 were mainly located in the eastern parts of
the country, and most of them were built by meteorological
enthusiasts or foreign missionaries (Li et al., 2020). A large
number of basic and standard meteorological stations (currently
about 825 stations) were set up after 1949. The Indochina
peninsula has a relatively sparse density station network, and
the stations with long data series are mainly located in coastal
regions. Many stations have been built in Indochina peninsula
and Korean peninsula after 1960, and the record length is
relatively short.

Figure 2 shows the change of the station numbers in the
Pan-East Asia regions during the period from 1901 to 2018
for the monthly LSAT, maximum and minimum temperature.
Obviously, the station numbers of maximum and minimum
temperature were less than those of average LSAT, but the overall
change shape is similar.

Taking the average LSAT as an example, before the 1930s,
the number of stations in Pan-East Asia was less than 500.
From the 1930s to the 1960s, the number of stations gradually
increased, especially from less than 800 stations in the 1950s to
nearly 2,000 stations in the 1960s. The number of stations with
records reached the peak and remains stable during the 1960s–
1990s. In this period, the number of stations with observed data
is the greatest, and the number of stations that can calculate
the climatology and LSAT anomaly is also the greatest. This is
why we choose 1961–1990 as the base period for calculating the
climatology. Further decrease of the station number in recent
years may be related to the lagging of data collection and sharing.

Altitude has a significant influence on the LSAT distribution
at local scales, so the digital elevation model (DEM) is usually
one of the most important factors to be considered in the
interpolation of LSAT, especially climatological LSAT. Previous
comparison (Ma and Li, 2006) showed that although the Shuttle
Radar Topography Mission (SRTM) DEM30 (which is generally
recognized as having higher global average accuracy) (Farr et al.,
2007) has some advantages globally, there are a little more
missing areas of SRTM DEM30 based on the radar mapping
of the space shuttle in complex terrain areas such as the Tibet
Plateau, resulting in lower accuracy than GTOPO30 (a global
30 arc-second elevation data) in these areas; In addition, it
only includes the DEM between 60◦N and 60◦S. So in this

FIGURE 1 | Spatial distribution of the observational stations in the C-LSAT2.0 dataset in the Pan-East Asia regions. The different colored dots represent stations with
different starting years (SY) of observations.
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FIGURE 2 | The number of stations in gridding region over time.

paper, the GTOPO30 is still used for the interpolation of
the LSAT including average, maximum, and minimum LSATs
similar to Xu et al. (2020).

Interpolation Schemes and Methods
In the interpolation process, the spatial density and distribution
of the observational stations have great influence on the results.
Studies indicated that the direct use of absolute temperature data
for long term and large area interpolation are not desirable (Li
et al., 2007). A common method is first to interpolate climatology
and anomaly separately, and then to merge the interpolated
climatology and anomaly (New et al., 1999b; Haylock et al., 2008;
Rohde et al., 2013).

Based on the above procedure, the LSAT data are divided
into two parts: climatology (1961–1990 average) and anomaly.
A three-step procedure was adopted to grid the LSAT data:
(1) the effective station data are used for interpolation of the
LSAT climatology field; (2) the interpolation of LSAT anomaly
field using effective station anomaly series; and (3) the final
grid dataset by adding up the climatology and the anomaly
gridded dataset. This gridding approach is widely used by
many climate data research groups to build global and regional
dataset products. For example, the CRU TS1, TS2 and the
Berkeley earth surface temperature (Berkeley Earth) used a
similar approach to construct the LSAT grid datasets (New et al.,
1999b; Rohde et al., 2013). In this study, we calculated the
1961–1990 averages of the stations for climatology where the
effective data covers temporally no less than 20 years. Then the
anomalies for the whole period are computed relative to this
baseline period.

Thin-Plate Spline (TPS) Interpolation for Climatology
Using the stations during the climatological period, we
interpolated them onto 0.5◦ × 0.5◦ grids with the elevation
information data (GTOPO30) over Pan-East Asia as the
covariates. The ANUSPLIN software package version 4.4

(Hutchinson and Xu, 2013) is used to interpolate the climatology
in this paper. It is an efficient and useful tool for data transparent
analysis and interpolation of multivariate data using the TPS
method. It completes the process by providing comprehensive
statistical analysis, data diagnostics, and spatial distribution
standard errors, as well as support for multiple data inputs
and multiple fitting surface outputs. The TPS method used in
ANUSPLIN is a reliable way to develop the spatial interpolation
of climate elements, which is widely used around the world (New
et al., 1999a; Hijmans et al., 2005; Haylock et al., 2008). The
partial TPS method is the core algorithm of ANUSPLIN, which
was originally proposed by Wahba and Wendelberger (1980).
Hutchinson applied the partial TPS to the spatial interpolation
of the monthly mean climate variables (Hutchinson, 1991), and
its theoretical statistical model is given as follows:

Zi = f (xi)+ bTyi + ei(i = 1, ..., N) (1)

Where Zi is the dependent variable with N observed data
values; xi is the spline independent variable as a multi-
dimensional vector, and f is the unknown smooth function for
the xi; yi is the independent covariate as a multidimensional
vector, and b is the unknown coefficients for the yi. Each ei
is an independent, zero mean error term with variance wiσ

2,
where wi is termed the relative error variance and σ2 is the
error variance which is constant across all data points. It can
be seen from equation (1) that: when there is no covariate, the
second covariate item is ignored and the model turns back to an
ordinary TPS model; on the other hand, when f (xi) is absent,
the first independent item is removed and the model reduces
to a simple multivariate linear regression model. In fact, the
partial thin plate smoothing spline function can be understood
as a generalized standard multivariate linear regression model,
while its parameters are replaced by a suitable non-parameterized
smooth function (Hutchinson, 1991).
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The function f and the coefficient vector b are determined by
minimizing

N∑
i=1

(
zi − f (xi)− bTyi

wi

)2

+ ρJm(f ) (2)

Where Jm(f ) is a measure of the complexity of f, the
“roughness penalty” defined in terms of an integral of m’th
order partial derivatives of f, and the smoothing parameter ρ is
a positive number. As ρ approaches to zero, the fitted function
approaches an exact interpolation. As ρ approaches to infinity,
the function f approaches a least squares polynomial, with order
depending on the order m of the roughness penalty. The value of
the smoothing parameter is normally determined by minimizing
a measure of predictive error of the fitted surface given by the
generalized cross validation (GCV; Hutchinson, 1991). The GCV
is provided as a predictive error estimate of interpolation by
removing each data point and summing the square of deviation
between each omitted value and the corresponding interpolation
value (Xu et al., 2020). The Root Square of GCV (RGCV) is used
to determine the optimum parameters for ANUSPLIN.

The TPS method is very popular because of its high efficiency
and its ability to generate accurate predictions with a minimum
of guiding covariates (Hutchinson, 1991; New et al., 1999a; Price
et al., 2004; Hijmans et al., 2005; Hong et al., 2005; Xu et al., 2009).
It is observed from the comparison with other methods such as
Kriging (Rohde et al., 2013) and Prism (Daly et al., 2008) that TPS
is more suitable for the interpolation of the LSAT for the selected
region in and hence preferred for this study.

Interpolating Method for Anomaly
In this paper, a kind of Adjusted Inverse Distance Weighted
(AIDW) method was used to interpolate the anomaly data
of LSAT during the period of 1900–2018. Inverse Distance
Weighted (IDW) is a common and simple spatial interpolation
method, based on similarity principle which describes that if
two objects are nearer (farther), their properties will be similar
(different). IDW sets the distance between interpolation point
and sample point as the weight to achieve the weighted average.
In a specific application, a higher weight is given in the LSAT
interpolation when the observation station is more close to the
grid point. The principle of this method is simple and easy to
understand and operate. It is suitable for the case that there are
many observation stations in uniform distribution.

The general formula of the IDW is:

T =
n∑

i=1

wiTi (3)

wi =
d−α

i∑n
i=1 d−α

i
(4)

Where, T means the temperature of the grid point to be
estimated; n stands for the number of observation stations
participating in the interpolation for the finite region; Ti means
the temperature of each station; wi means the distance weighting
of each stations; di means the spatial distance from each stations

to the grid point to be estimated; α is a control parameter,
generally assumed to be 2. Importantly, after calculation we
found that the temperature anomaly field interpolated using the
equations above produces “bull eyes” (Duan et al., 2014), thus we
modified the formula (3) for the specific adjustment (AIDW) as
follows:

wi =
(edi/d0)−α∑n
i=1(edi/d0)−α

(5)

The cross validation indicate that the anomaly temperature
interpolation result is better when assuming α as 4 and
d0 as 1,200 km.

Validation Methods
Cross Validation (CV) is one of the most effective tool to evaluate
the performance of the interpolation method. First, the in situ
observations are the most precise data and are always used as the
baseline data for the validation of other data types. So it is very
difficult to find other different subsets of the data for validation
of the gridded dataset; second, the gridded data set is derived
from the in situ observations, so we cannot use the gridded
data to assess the errors of the gridded data directly, thus Cross
Validation (CV) is used. CV is widely used to validate the gridded
observations dataset. In our manuscript, Leave One Out CV is
used, which refers to taking out one station as the test station
each time, and then interpolating the estimated value from the
corresponding observed values of the other remaining stations.
The advantage of this method is (1) nearly all the samples will
be used to train the model in any round, thus the evaluation will
be more reliable; (2) no random factor affects the experimental
data, thus we make sure the experiment can be duplicated. Based
on the results of CV, we adopted the statistical indices of Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE)
to evaluate the interpolation errors between the estimated and
observational values. The calculation formulas of RMSE and
MAE are shown as follows:

RMSE =

√√√√ 1
n

n∑
i=1

(Xi − Yi)2 (6)

MAE =
1
n

n∑
i=1

|Xi − Yi| (7)

TABLE 1 | The annual average RGCV and RMSE of the six test experiments [Ax
(Bx) is the xth experiment for Group A (B)].

Experiments Model parameters Interpolation error

Independent
variables

Covariates Spline
order

RGCV(◦C) RMSE(◦C)

A1 Lon, Lat, Elev No 2 0.850 0.628

A2 Lon, Lat, Elev No 3 0.835 0.619

A3 Lon, Lat, Elev No 4 0.848 0.633

B1 Lon, Lat Elev 2 0.966 0.745

B2 Lon, Lat Elev 3 0.982 0.749

B3 Lon, Lat Elev 4 0.997 0.751
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Where, Xi, Y i are the estimated value and the original
observational value at each station, respectively, while n is the
sample number. RMSE reflects the random error between the
estimated value and the actual observed value. Moreover, it
estimates the degree of dispersion for the interpolation errors.
MAE reflects the systematic error and estimate the average
deviation between the interpolation results and the actual
observed values.

CLIMATOLOGY INTERPOLATION

Selection of Model Parameters
It is well known that ANUSPLIN can form different interpolation
models based on various input parameters such as independent
variables, covariates and spline orders. Many studies on
meteorological data interpolation treat longitude and latitude as
independent variables, and elevation as independent variables or

FIGURE 3 | Monthly RGCV (A) and RMSE (B) of the six test experiments (◦C).
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covariates in the model (Hutchinson and Xu, 2013). Different
interpolation model parameters may lead to different results.
For example, Hong et al. (2005) used the longitude and latitude
as independent variables and elevation as a covariate, while Xu
et al. (2020) argued toward use of elevation as an independent
variable rather than as covariate in TPS model because of its
better performance.

However, since the data used in the above studies are different
in terms of data volume and coverage, we first want to determine
which model parameter scheme is the most preferable one
according to our own data and actual situation. We use the

RGCV and RMSE to determine the proper model parameter
scheme. Based on the input treatment of elevation as independent
variables or covariate parameters, the test groups were divided
into two large groups: altitude as independent variable in group
A and as covariates parameter in group B. Then according to
the order of splines 2–4, both groups were subdivided again into
three experiments. Therefore, a total of six experiments were
taken to be tested (see Table 1). The statistical indices of RGCV
and RMSE are used to analyze the errors of 6 test experiments.

RGCV is one of the efficient measures of the interpolation
error of the fitted surfaces provided by the ANUSPLIN software.

FIGURE 4 | Gridded climatology (◦C) of LSAT over eastern Asia for (top to bottom) annual mean and different seasons (presented by January, April, July, and
October) of mean, maximum and minimum temperature (left to right).
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Figure 3A shows the RGCV of the six experiments. As seen
from the picture, seasonally, the RGCV in winter (December
to February) is much higher than that in other seasons, and
the RGCVs of group B are higher than those of group A,
especially in winter.

RMSE is another statistical measure to estimate the degree of
dispersion of interpolation errors. Figure 3B shows the RMSE of
the six experiments. As seen from the figure, the lowest RMSE
occurs in spring and autumn, slightly higher in summer, and
highest in winter.

Table 1 shows the annual average RGCV and RMSE for the six
test experiments. It is found that both the RGCV and RMSE are
lower in group A than that in group B, and the smallest RGCV
(0.835◦C) and RMSE (0.619◦C) appear in experiment A2.

After taking into account the above statistical indices, we
decided to take experiment A2 as the preferred scheme to

interpolate the climatology temperature, which means to treat
the longitude, latitude as well as the elevation as independent
variables, and the spline order as 3. It is worth noting that this
scheme is just applicable to the data in this study. There may
be other better schemes for data from different regions or scales,
which need to be analyzed according to the actual situation.

Climatology Interpolation
After the preparation for the input data and model parameter
setting, we adopted the ANUSPLIN software to interpolate the
gridded temperature climatology over Pan-East Asia. Figure 4
shows the gridded result of the LSAT climatology over the
region. The spatial distribution of LSAT climatology is obviously
affected by the terrain and latitude. Naturally, the climatological
temperature is higher at lower latitudes. The lowest temperature
was found at high latitudes in eastern Siberia while the

FIGURE 5 | The spatial distribution of the annual anomalies of mean (A–D), maximum (E–H) and minimum (I–L) LSAT (left to right) of the coldest (1912) and
warmest (1948) year before 1950s and the coldest (1969) and warmest (2007) year after 1950s.
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highest temperature was found at low latitudes in India and
Indochina. In addition, the temperature climatology decreases
with the increasing elevation. The climatological temperature
at high altitude areas, such as the Tibet plateau and Mount
Tianshan, is significantly lower than that at low altitude areas at
the same latitude.

INTERPOLATION AND VALIDATION OF
LSAT ANOMALY

Anomaly Interpolation
In this section, we used the AIDW method to interpolate
the monthly anomaly of LSAT over Pan-East Asia during
1900–2018. In order to demonstrate the interpolation effect,
four representative years are selected to display the spatial
distributions of temperature anomalies (Figure 5): the spatial
distribution of the LSAT anomalies of the coldest (1912) and
warmest (1948) year before 1950 and the coldest (1969) and
warmest (2007) year after 1950.

In the two coldest years (1912 and 1969), the temperature
anomalies (relative to 1961–1990 averages) in the high latitude
region north of 40◦N is generally lower than those in the
lower latitude region, and there is very little change before
and after 1950s. Differences exist in the detailed distribution
of the anomaly in warmest years, in the first half of the 20th

century, the LSAT anomaly was not so high (0.34◦C) relative
to 1961–1990 average even in the warmest year (1948), and
the warming center happened at higher latitude (55–60◦N). The
regional LSAT anomaly increased significantly after entering the
second half of the 20th century. It reaches the highest LSAT
anomaly (1.6◦C) in 2007, and the warming center moved to
the lower latitude and was significantly expanded. The annual
anomalies of maximum and minimum LSAT perform similarly
to those of mean LSAT.

Anomaly Validation
In this case, we used the leave-one-out CV to evaluate the
interpolation performance. The RMSE, MAE, and MBE have
been calculated to evaluate and analyze the interpolation errors
between the estimated and observational LSAT.

Figures 6A–D show the distribution of the RMSE of the
LSAT anomaly at each station in four seasons (presented by
January, April, July, and October) over Pan-East Asia from
1900 to 2018. Inset figures in the lower right corner is the
probability density distribution diagram of RMSE for all stations.
The stations with RMSE in the range of below 0.75◦C are
in the majority, accounting for 67.5, 88.5, 90.1, and 88.7% in
each month (January, April, July, and October), respectively.
Figures 6B–D show that the spatial distribution and the average
of the RMSE is mostly similar between spring, summer, and
autumn. The stations with lowest RMSE mainly located in

FIGURE 6 | RMSEs of the LSAT anomaly over Pan-East Asian from 1900 to 2018 at each station in 4 months [January (A), April (B), July (C), and October (D)]
calculated by leave-one-out cross validation.
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the regions with high station density in eastern China, Japan,
and South Korea. Those with higher RMSE are in regions of
relatively sparse station density in India, Indo-China Peninsula
and Mongolia. The stations with largest RMSE exist mainly in
high latitude mountain areas such as Mount Tianshan (around

40–45◦N, 75–80◦E). The RMSE over the Tibetan Plateau is hard
to determine due to the lack of observational station data. The
RMSE in winter is larger than those in other seasons, especially
on the Tibetan Plateau and regions north of 40◦N. The RMSE
in winter (January) is about 0.4◦C higher than that in other

FIGURE 7 | MAEs of the LSAT anomaly over Pan-East Asian from 1900 to 2018 at each station in 4 months [January (A), April (B), July (C), and October (D)]
calculated by leave-one-out cross validation.

FIGURE 8 | Mean RMSEs of the LSAT anomaly from 1900 to 2018 for 4 months (January, April, July, and October).
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seasons on average. In contrast, the RMSE in the plain regions
south of 40◦N is just about 0.08◦C higher in winter than in other
seasons on average. We suspect that this higher noise level may
be related to the circulation and front activities in high latitude
regions in winter.

Figures 7A–D show the MAEs of the anomaly of LSAT at each
station in 4 months (January, April, July, and October) over Pan-
East Asia from 1900 to 2018. The magnitude of MAE is smaller
than RMSE, but its spatial distribution is very similar to RMSE.
In addition, Figure 7 also shows that the MAE is relatively low
in general, which means that the systematic error of anomaly
temperature generated by the AIDW interpolation model used
in this paper is relatively small.

Figures 8, 9 show the changes of RMSE and MAE of LSAT
anomaly during 1900 to 2018 for the 4 months (January, April,
July, and October), respectively. Although the 4 months exhibit
short-term fluctuations, their long term variations are very
similar. Before the 1950s, both of RMSE and MAE are relatively
larger and gradually decrease with time. They decreased rapidly
and then rose slowly after 1950s (with the change of the stations
number), but basically remained lower than those before 1950s.
The evolution of RMSE and MAE is strongly related to the change
in the station numbers: more station observations correspond
to a denser station distribution and hence lower error RMSE
and MAE. Similarly, both of the RMSE and MAE in winter are
larger than those in other seasons. This also shows that we need
more stations in January to reduce the error to that of the other
times of the year.

REGIONAL LSAT WARMING TRENDS
ANALYSIS

In order to investigate the long-term climate change trend
reflected by the new interpolation high resolution dataset,
we calculated the long term regional C-LSAT high resolution

(C-LSAT HR) anomaly time series over the Pan-East Asia and
compared it with the newly released high resolution CRU TS4
(Harris et al., 2020) dataset. Table 2 shows the difference of the
high resolution gridded dataset between CRU TS and C-LSAT HR
over Pan East Asia.

Figure 10 shows the time series of the annual surface
air temperature anomaly over Pan-East Asia from the high-
resolution dataset obtained by AIDW (C-LSAT HR) and the
high-resolution estimation of CRU data (CRU TS) in the same
region, respectively. The linear trends with 5% significant range
are listed in Table 3.

From Table 3 and Figure 10, it is noticed that the variations
of the two annual mean LSAT anomalies are overall close
to each other, except for slight difference in the warming
trends between two datasets. The trend derived from the
C-LSAT HR (0.5 × 0.5) (0.155 ± 0.019◦C/10 years) is slightly
larger than that of CRU TS4 (0.126 ± 0.019◦C/10 years)
for the whole period of 1901–2018. It is similar for the
linear trends comparison during different periods. From the
early 20th century to the early 1960s, the trend of annual
average temperature is relatively low (0.076 ± 0.041◦C/10 years
for AIDW and 0.044 ± 0.041◦C/10 years for CRU TS4).
The linear trend of annual LSAT anomaly rose rapidly after
the mid-1960s (0.289 ± 0.054◦C/10 years for AIDW and
0.261 ± 0.052◦C/10 years for CRU TS4). Further comparison
indicates that this agrees well with the result calculated by the
arithmetic average trend of all the stations, which also shows the
interpolation process performs well.

Finally, from Table 3, no matter for C-LSAT or CRU TS
gridded datasets (both 0.5◦ × 0.5◦ and 5◦ × 5◦ resolution),
the trends calculated by low resolution datasets (5◦ × 5◦
resolution, Yun et al., 2019) are lower than those by higher
resolution datasets (0.5◦ × 0.5◦ resolution). This may be due
to the fact that the high-resolution data sets emphasize more
on the amplification effect of local warming in some areas
in high altitudes (Li et al., 2009; Pepin et al., 2015) or in

FIGURE 9 | Mean MAEs of the LSAT anomaly from 1900 to 2018 for 4 months (January, April, July, and October).
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TABLE 2 | The comparison of the high resolution gridded dataset derived from CRU TS and C-LSAT HR.

Station numbers in research region Methodology of gridding DEM

Climatology Anomaly

CRU TS

2179 TPS(thin-plate splines) ADW (angular-distance weighting) TBASE5-min lat-long global DEM

C-LSAT HR

2890 TPS(thin-plate splines) AIDW(adjusted inverse-distance weighting) GTOPO30

FIGURE 10 | The time series of the annual LAST anomaly in Pan-East Asian area from C-LSAT HR (blue) and CRU TS4 (red), including observed (dashed), and
estimated (solid) data.

TABLE 3 | Warming trends (◦C 10a−1) and their uncertainty at 95% confidence level of annual LSAT anomaly from observation and gridded datasets
over Pan-East Asian.

Dataset Forms 1901–2018 1901–1960 1961–2018

C-LSAT HR C-LSAT_obs 0.141 ± 0.017 0.075 ± 0.032 0.262 ± 0.052

C-LSAT (0.5◦ × 0.5◦) 0.155 ± 0.019 0.076 ± 0.041 0.289 ± 0.054

C-LSAT(5◦ × 5◦) 0.118 ± 0.016 0.041 ± 0.029 0.249 ± 0.041

CRUTEM CRU_obs 0.126 ± 0.017 0.059 ± 0.031 0.264 ± 0.047

CRU TS4 (0.5◦ × 0.5◦) 0.126 ± 0.019 0.045 ± 0.041 0.261 ± 0.052

CRUTEM4 (5◦ × 5◦) 0.105 ± 0.017 0.019 ± 0.029 0.255 ± 0.042

regions with severe drought (Huang et al., 2016) where there
are no actual observation stations especially when the stations
are relatively scarce (mostly in the Tibet Plateau and large desert
areas) before 1960.

CONCLUSION

In this paper, we first split the land surface air temperature
from C-LSAT2.0 into climatology and anomaly data,

and then interpolate them into a 0.5◦ × 0.5◦ grid
datasets, respectively. Finally they are combined into a
new monthly high-resolution LSAT grid data set for the
period of 1900–2018 over Pan-East Asia. The validation
of the dataset shows that the interpolated dataset is
of good accuracy in both climatology and the LSAT
anomaly variations.

The climatology data is interpolated by thin-plate splines
(TPS) method using station LSAT data from C-LSAT2.0 and
elevation information (DEM) from GTOPO30 as the input data
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to the ANUSPLIN software. We found that the interpolation
scheme performs best when the longitude, latitude and elevation
are all used as independent variables, and the spline order is set to
3. Under this situation, the lowest RGCV and RMSE are achieved.

The LSAT anomaly data is interpolated by an AIDW method.
The gridded LSAT anomaly data errors are evaluated by leave-
one-out CV. The spatial distribution characteristic of RMSE
and MAE are closely correlated with the station density in
both temporal and special perspective. The low RMSE mainly
occurs in the regions with high station density areas in
eastern China, Japan, and South Korea. The RMSE further
decreases with the increase of the station numbers during the
period of 1900–2018. In addition, the RMSE and MAE in
winter are much larger than those in other seasons, which
indicate a clear seasonal difference. This may be related to
the more active cold air activities in the high latitudes regions
in winter and the temperature anomalies in winter being
more controlled by advection when the winds are strong than
the other seasons.

In addition, we evaluated the long term LSAT change trend
during the period of 1901–2018, 1901–1960, and 1961–2018,
respectively with the newly interpolated high resolution dataset,
and compared the results with those derived from CRU TS4
dataset. The LSAT anomaly series during 1900–2018 derived in
this paper and from CRU TS4 are generally consistent with each
other, while the linear warming trends have slight differences. The
trend derived from newly dataset is a bit larger than those from
the latter dataset in different time periods of 1901–2018, 1901–
1960, and 1961–2018, respectively. Based on above analysis, the
dataset developed in this paper is proved to be a useful tool in the
regional climate and climate change detection, monitoring and
validation of model output.

The future plan is developing a global higher resolution LSAT
dataset based on the whole C-LSAT (C-LSAT HR). This is a
part of global dataset, we found it is relatively mature in pan
East Asia. We are going to apply this gridding and validation

method to other sub-regions over the world, and focus on the
gridded data integration of regions and the overall quality of
the global gridded dataset. Once the development of this global
high-resolution LSAT dataset is completed, the dataset will be
available to the public (for free) in near future. The gridding
and validation method used in this study is also helpful for
other similar research, such as gridding of precipitation, wind
speed or other meteorological elements in monthly, daily or even
higher temporal scale, which is also another part of our future
research direction.
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Evaluation of the Performance of
CMIP5 Models to Simulate Land
Surface Air Temperature Based on
Long-Range Correlation
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Shiquan Wan5 and Yundi Jiang1

1National Climate Center, China Meteorological Administration, Beijing, China, 2Collaborative Innovation Center on Forecast and
Evaluation of Meteorological Disasters, Nanjing University of Information Sciences and Technology, Nanjing, China, 3School of
Atmospheric Sciences, Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education,
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China, 4Chongqing Climate Center,
Chongqing Meteorological Bureau, Chongqing, China, 5Yangzhou Meteorological Office, Yangzhou, China

The daily average land surface air temperature (SAT) simulated by 8 CMIP5 models
historical experiments and that from NCEP data during 1960–2005, are used to evaluate
the performance of the CMIP5 model based on detrended fluctuation analysis (DFA)
method. The DFA results of NCEP data show that SAT in most regions of the world exhibit
long-range correlation. The scaling exponents of NCEP SAT show the zonal distribution
characteristics of larg in tropics while small in medium and high latitudes. The distribution
characteristics of the zonal average scaling exponents of CMCC-CMS, GFDL-ESM2G,
IPSL-CM5A-MR are similar to that of NCEP data. From the DFA errors of model-simulated
SAT, the performance of IPSL-CM5A-MR is the best among the 8 models throughout the
year, the performance of FGOALS-g2 is good in spring and summer, GFDL-ESM2G is the
best in autumn, CNRM-CM5 and CMCC-CMS is good in winter. The scaling exponents of
model-simulated SAT are closer to that of NCEP data in most areas of the mid-high latitude
on the northern hemisphere. However, simulations of SAT in East Asia and Central North
American are generally less effective. In spring, most models have better performance in
Siberian (SIB), Central Asia (CAS) and Tibetan (TIB). SAT in Northern Europe area are well
simulated by most models in summer. In autumn, areas with better performance of most
models are Mediterranean, SIB and TIB regions. In winter, SAT in Greenland, SIB and TIB
areas are well simulated by most models. Generally speaking, the performance of CMIP5
models for SAT on global continents varies in different seasons and different regions.

Keywords: detrended fluctuation analysis, long-range correlation, CMIP5, model intercomparision, surface air
temperature

INTRODUCTION

Climate system models are important tools for simulating climate systems and projecting future
climate change (Phillips and Gleckler, 2006; Zhou and Yu, 2006; Flato et al., 2013). Assessment of
model simulation performance can help us understand the advantages and disadvantages of the
models, so as to provide a basis for users to choose models suitable for different purposes, and
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provide a scientific reference for model community to improve
the performance of the models (Watterson et al., 2014). Coupled
Model Intercomparison Project-Phase 5 (CMIP5) provides the
dataset produced by multiple climate system models or earth
system models (Taylor et al., 2012), which promotes the
development of models themselves and the evaluation
methods for model performance. The evaluation methods for
model performance concentrate more on quantitative assessment
than before, and emphasize the model evaluation criteria (Kharin
et al., 2013; Elguindi et al., 2014; Sillmann et al., 2014). Most of
these methods evaluate the outputs of multi-models on variant
timescales, focusing on the climate states, climate change, or
variations of indexes computed by meteorological elements
(Sillmann et al., 2013; Yin et al., 2013; Jiang et al., 2016; Li
et al., 2017), and provide the quantitative results of the differences
between the model simulations and observations. However, the
performance of models on simulating the intrinsic dynamical
characteristics of climate system is rarely evaluated.

Climate systems are characterized by long-range correlation
(LRC), which represents the self-similarity of climate evolution on
different time scales (Bunde and Havlin., 2002; Bunde et al., 2005;
Yuan et al., 2015; Fu et al., 2016a, 2016b; He et al., 2016). LRC has
been found in meteorological observations, such precipitation
(Kantelhardt et al., 2006) and as daily air temperature
(Koscielny-Bunde, et al., 1996; Talkner and Weber, 2000; Gan
et al., 2007; Jiang et al., 2015). LRC can be characterized by the
power law of an autocorrelation coefficient (Beran, 1994). Some
research pointed out that scaling exponents for daily air
temperature were about universal over the continent (Koscielny-
Bunde et al., 1998; Eichner et al., 2003). Weber and Talkner (2001)
found LRC of daily air temperature depends on the altitude of the
meteorological station. Király and Jánosi (2005) found that the
scaling exponents of daily temperature over Australia were related
with the geographic latitude, which exhibit a decrease tendency
with increasing distance from the equator.

Detrended fluctuation analysis (DFA) is a well-knownmethod
to detect LRC in time series (Peng et al., 1994; Bunde and Havlin,
2002), and has been used to assess the capability of climate system
models (Blender and Fraedrich, 2003; Kumar et al., 2013; Zhao
and He, 2015; He and Zhao, 2018). Govindan et al. (2004) found
that seven atmosphere-ocean general circulation models failed to
reproduce the LRC of daily maximum temperature. Rybski et al.
(2008) analyzed the LRC of daily temperature from historical
simulation of global coupled general circulation model, and
found that scaling exponents over most continent sites ranges
from 0.6 to 0.8. By comparing the LRC with daily observational
data over China, the performance of Beijing Climate Center
Climate System Model 1.1(m) is systematically evaluated by
using DFA methods (Zhao and He, 2014; Zhao and He, 2015).
Therefore, it is a very well way to quantitatively evaluate the
performance of climate model based on LRC of climate systems.

Because the spatial coverage of meteorological observation
data is limited and varies with time, it is crucial to carry out
homogenization and quality control of observational data.
Reanalysis data can provide a set of meteorological data that
is homogeneous in time and space (Marques et al., 2010). The
National Centers for Environmental Prediction (NCEP)

reanalysis data (Kalnay, 1996; Kanamitsu et al., 2002) is
commonly used in climate research (Ma et al., 2008; Mooney
et al., 2011). The quality of NCEP reanalysis datasets has been
assessed on global and regional scales (Poccard et al., 2000;
Josey, 2001; Mooney et al., 2011). He et al. (2018) showed that
the daily average temperature from NCEP-2 and CFSR data
exhibit LRC characteristics in China, which are similar to the
results of observations, especially in central and eastern
Northwest China, most of central and eastern China.
Furthermore, the credibility of NCEP-2 and CFSR seasonal
temperature were evaluated by DFA in China (Zhao et al.,
2017). Based on this, we quantitatively evaluate the
performance of CMIP5 models in simulating LRC of global
daily land surface air temperature (SAT) by means of comparing
the difference with LRC of NCEP-2 data in this study.

In this paper, DFA was used to evaluate the performance of
CMIP5 models in simulating the global daily land SAT on a
seasonal scale. The remainder of the present paper is organized as
follows. Methods and Data briefly introduces the NCEP-2 data
and the CMIP5models used in this study, and then, the algorithm
of the DFA is provided. In LRC of Daily Average SAT Simulated
by Multi-Models, the LRC of the output datasets for all four
seasons from CMIP5 models is analyzed by using DFA.
Comparisons of the spatial differences of LRC between
simulations and reanalysis data are also presented in this
section. Conclusion summarizes the main results and
conclusions of the present study with a brief discussion.

METHODS AND DATA

Data
The global daily average land SAT from 1960 to 2005 is available
fromNCEP reanalysis dataset. The simulated global daily average
land SAT is from the present-day historical simulations
performed by the 8 CMIP5 climate models. The basic
information about the 8 global climate models (GCM) is
provided in Table 1. The term “historical” (HIST) refers to
coupled climate model simulations forced by observed
concentrations of greenhouse gases, solar forcing, aerosols,
ozone, and land-use change over the 1850–2005 period
(Taylor et al., 2012). The qualities of the past 46 years
(1960–2005) data from the selected CMIP5 models were
evaluated. To facilitate the intercomparison of the selected
models and evaluation of the performance of 8 models against
the NCEP data, the daily fields of GCM temperature were
remapped onto T62 Gaussian grid from their original spatial
resolution based on Ordinary Kriging (Mueller et al., 2004),
which is the same as the spatial resolution of the reanalysis
data, 2.5° × 2.5 ° resolution horizontal grid.

To disclose the geographical heterogeneity of DFA for the
daily air temperature in the continents, we divided the
continents into 22 sub-continental land regions (Table 2
and Figure 1), which are defined based on the literatures
(Giorgi, 2002; Sillmann et al., 2013; Chan and Wu, 2015).
The regions vary from a few thousand to several thousand km
in each direction and cover global land areas with simple
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shape. The selection of specific regions was intended to
represent climatic regimes and physiograhic settings
(Giorgi, 2002). We calculated the area-averaged scaling
exponents in each region for the daily SAT of NCEP and
CMIP5 models, respectively. And then the differences of the
area-averaged scaling exponents between the NCEP and model
outputs were compared.

Method
The DFA method can quantify LRC as an index, namely, scaling
exponent (Peng et al., 1994). Consider a record of daily average
temperature {Ti, i � 1, 2, . . ., N}, the multi-year mean daily
average temperature Ti is calculated by averaging Ti over all years
on the same calendar date i. The variations ΔTi is departure of Ti
from Ti. The profile y(k) of cumulative of the time series ΔTi is
calculated.

y(k) � ∑k
i�1

ΔTi, k � 1, 2, . . . ,N. (1)

Then y(k) is divided into n � Int (N/s) non-overlapping
segments of equal length s. Usually, s is assumed not to be
larger than N/4. In each segment, a pth-order polynomial
function, ys(k), is used to fit the profile. The fluctuation
function Fp(s) is obtained by calculating the root mean square
of the fluctuations in all segments.

Fp(s) �
�����������������
1
ns

∑ns
k�1

[y(k) − ys(k)]2
√√

. (2)

Typically, Fp(s)will increase with the segment length s and can
be characterized by a scaling exponent α.

Fp(s) ∼ sα. (3)

If 1 > α > 0.5, the time series {Ti, i � 1, 2, . . ., N} is LRC. If α �
0.5, the time series is uncorrelated. If 0 < α < 0.5, the series {Ti} has
anti-persistent correlation. When p � 2, a 2nd-order polynomial
function is used to fit the profile y(k). DFA2 has been widely used

in many researches. In this study, the DFA2 method is used to
estimate the scaling exponent in a time series.

To estimate the uncertainties of the DFA2 method, we
conducted six sets of independent tests for five given scaling
exponents according to the reference (Zhao and He, 2015). In
each test, 20,000 artificial time series were produced by
Fourier-filtering method (Peng et al., 1991) with given
scaling exponents varying from 0.6 to 1.0. Table 3
demonstrates the 2.5th and 97.5th percentiles for the
DFA2’s estimated errors for each scaling exponent.
Therefore, if the difference of LRC between the reanalysis
data and the models is bigger than the estimated error of
DFA2, the difference is statistically significant at a significance
level of alpha � 0.05.

TABLE 1 | Information about the eight CMIP5 climate models.

Modeling
Center

Nation Institution Model information

Model name Atmosphere
resolution

CMCC Italy Centro euro-mediterraneo per I cambiamenti climatici CMCC-CMS T63 (∼1.875° ×
1.865°) L95

CNRM-
CERFACS

Center national de recherches meteorologiques/Center europeen de recherche et
formation avancees en calcul scientifique

CNRM-CM5 TL127 (∼1.4° ×
1.4°) L31

LASG China Institue of atmospheric physics Chinese academy of sciences FGOALS-g2 (∼2.81° × 1.66°) L26
GFDL USA NOAA geophysical fluid dynamics laboratory GFDL-ESM2G M45 (∼2° × 2.5°) L24
INM Russia Institute for numerical mathematics INM-CM4 (∼1.5° × 2.0°) L21
IPSL France Institute pierre-simon laplace IPSL-

CM5A-MR
LMDZ4 (∼1.2587°

× 2.5°)
MOHC United Kingdom Met office hadley center HadGEM2-AO T63 (∼1.875° ×

1.865°) L38
MPI-M Germany Max planck institute for meteorology MPI-ESM-MR T63 (∼1.875° ×

1.865°) L47

TABLE 2 | Names and coordinates for the 22 regions in the continents.

Region name Abbreviation Coordinates

Longitude Latitude

Northern South America NSA 80°–35°W 20°S–10°N
Southern South America SSA 75°–40°W 60°–20°S
Southern Africa SAF 10°–40°E 35°–10°S
Eastern Africa EAF 20°–50°E 10°S–20°N
North Africa NAF 20°W–65°E 20°–30°N
Western Africa WAF 20°W–20°E 10°S–20°N
Australia AUS 110°–155°E 40°–10°S
Mexio MEX 115°–80°W 10°–30°N
Central North America CNA 105°–85°W 30°–50°N
Eastern North America ENA 85°–60°W 20°–50°N
Western North America WNA 130°–105°W 30°–60°N
Alaska ALA 170°–105°W 60°–70°N
Greenland GRL 105°–10°W 50°–80°N
Mediterranean MED 10°W–40°E 30°–50°N
Central asia CAS 40°–75°E 30°–50°N
Tibetan TIB 75°–100°E 30°–50°N
East asia EAS 100°–145°E 20°–50°N
South asia SAS 65°–100°E 5°–30°N
Southeast asia SEA 90°–155°E 10°S–20°N
Siberian SIB 40°E–180°E 50°–70°N
Northern europe NEU 10°W–40°E 50°–75°N
Antarctic ANT 0°E–180°W 90°–60°S
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LRC OF DAILY AVERAGE SAT SIMULATED
BY MULTI-MODELS

Characteristics of Daily Average SAT
As an example, one grid point (110°E, 23°N) located in the
eastern part of Eurasia was randomly selected to show the LRC
of SAT. The scaling exponent of NCEP SAT at this point is 0.6,
which indicates a LRC. The scaling exponents of SAT at this
point simulated by 8 CMIP5 models range from 0.52 to 0.74,
which are quite different from the long-term correlation of the
NCEP SAT (Figure 2A). Except for INM-CM4, the scaling
exponents of SAT simulated by the models are bigger than those
of NCEP SAT (Figure 3). As far as scaling exponents of SAT at
the selected point are concerned, the differences between the
most of CMIP5 simulations and NCEP data are greater than the
uncertainties of the DFA2 calculation at a significance level of
alpha � 0.05, except for IPSL-CM5A-MR. This means that only
IPSL-CM5A-MR can relatively reliably reproduce the LRC of
SAT of the selected point. In spring, scaling exponent of NCEP
SAT at the grid point is 0.61, which is smaller than the scaling
exponents of the model-simulated SAT, varying from 0.64 to
0.74 (Figure 2B). Except FGOALS-g2 and INM-CM4, the biases
of scaling exponent of model-simulated SAT in spring are
statistically significant at a significance level of alpha � 0.05

(Figure 3). In summer, LRC of NCEP SAT at this point becomes
stronger with the scaling exponent of 0.65. There is a systematic
overestimation of LRCs by CMIP5 models which are all
significantly greater than that of NCEP SAT at a significance
level of alpha � 0.05 (Figure 3). The logarithms of the
fluctuation functions of the model-simulated SAT in summer
are all bigger than that of NCEP SAT, which indicates that the
variances of the model-simulated SAT are also bigger than those
of NCEP SAT (Figure 2C). Scaling exponent of NCEP SAT at
the point in autumn is the same as that in summer. The biases of
scaling exponents of the model-simulated SAT are significant
except IPSL-CM5A-MR (Figures 2D, 3). In winter, scaling
exponent of NCEP SAT at the point is 0.64, which is also
systematic overestimated by the CMIP5 models. The biases of
FGOALS-g2, INM-CM4 and IPSL-CM5A-MR are insignificant
at a significance level of alpha � 0.05, which means these three
models perform well at this point in winter (Figures 2E, 3).

Scaling exponent of NCEP SAT throughout the year is less
than those of all four seasons at the point, which is also true for
most of the model-simulated SAT, except for GFDL-ESM2G
(Figure 3). Scaling exponent of NCEP SAT at the point in spring
is the smallest among four seasons, while those in summer and
autumn are much bigger. The seasonal variations of scaling
exponents of most model-simulated SAT are similar to that of
NCEP SAT, except for HadGEM2-AO and CMCC-CMS. In
general, the difference between the scaling exponent of
model-simulated SAT and NCEP data is bigger in summer
than that in other seasons.

Figure 4 shows box charts of scaling exponents of NCEP SAT
and the biases of scaling exponents of model-simulated SAT on
global continents for year and four seasons. The boxes indicate
the interquartile distribution (range between the 25th and 75th
quantiles). The hollowmarked within the boxes show themedian,
and the short horizontal lines outside the boxes indicate the total

FIGURE 1 | Divisions of the continents on earth.

TABLE 3 | The values in the 2.5th and 97.5th percentiles for DFA2’s estimated
errors.

Scaling exponents 0.6 0.7 0.8 0.9 1

Estimated errors (year) –0.06 –0.06 –0.07 –0.07 –0.07
0.05 0.05 0.06 0.06 0.06

Estimated errors (season) –0.06 –0.07 –0.08 –0.08 –0.09
0.06 0.06 0.06 0.07 0.07
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inter-model range. The whiskers show the 5% and 95% ranking
values. The scaling exponents of SAT throughout the year range
from 0.56 to 1.1, and the median value is 0.69 (Figure 4A).
Scaling exponents in four seasons vary from 0.52 to 1.14. The

median value of the scaling exponents in winter is 0.77, which is
bigger than those in other seasons. The median values of the
scaling exponent’s biases of SAT throughout the year for CNRM-
CM5, GFDL-ESM2G, HadGEM2-AO are close to zero

FIGURE 2 | The DFA2 results of SAT from NCEP and CMIP5 models at the point of (110°E, 23°N) for (A) year, (B) spring, (C) summer, (D) autumn, and (E) winter.
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(Figure 4B). The scaling exponents of SAT simulated by
FGOALS-g2 and INM-CM4 in most part of world are less
than those of NCEP SAT, which means SAT simulated by
these two models have weaker LRCs. The scaling exponents of
SAT fromCMCC-CMS, IPSL-CM5A-MR andMPI-ESM-MR are

much bigger than those of NCEP SAT, which shows stronger
LRCs in the most part of global continents.

In boreal spring, the median value of simulation’s errors of
GFDL-ESM2G is close to zero, while that ofMPI-ESM-MR is 0.06
(Figure 4C). Scaling exponents of SAT simulated by CMCC-
CMS, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-MR and MPI-
ESM-MR are bigger than those of NCEP SAT in most part of
global continents, while those of FGOALS-g2 and INM-CM4 are
smaller in most areas of global continents. The median values of
the simulation’s error of FGOALS-g2 and HadGEM2-AO are
close to zero, while those of CMCC-CMS and IPSL-CM5A-MR
are up to 0.06 in boreal summer (Figure 4D). The scaling
exponents of SAT simulated by INM-CM4 are smaller than
those of NCEP SAT in most part of global continents. In boreal
autumn, the median value of the simulation’s errors of LRC in
FGOALS-g2 is close to zero, however, themean value of simulation’s
error in IPSL-CM5A-MR is up to 0.07 which is the biggest in all the
models (Figure 4E). The scaling exponents of SAT simulated by
INM-CM4 are less than those of NCEP SAT in most part of global
continent, while the scaling exponents of other models are bigger.
The median value of the simulation’s error of LRC of FGOALS-g2 is
the smallest, while those ofHadGEM2-AOand IPSL-CM5A-MR are
bigger than 0.04 in boreal winter (Figure 4F). The scaling exponents
of SAT simulated by INM-CM4 are smaller than those of NCEP
SAT in most part of global continents, while those of other six
models except FGOALS-g2 are much bigger, especially for CMCC-
CMS, IPSL-CM5A-MR and MPI-ESM-MR.

FIGURE 3 | The scaling exponents of SAT from NCEP and CMIP5
models at the point of (110°E, 23°N) for year and all four seasons.

FIGURE 4 | Box charts of scaling exponents of NCEP SAT on global continents (A) and the simulation’s errors of LRC of model-simulated SAT for (B) year, (C)
spring, (D) summer, (E) autumn, (F) winter.
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The Zonal Distribution Characteristics of
Global LRC of SAT
Scaling exponents of NCEP SAT are larger in the tropics than
those in middle and high latitude, which shows pronounced
latitude dependence (Figure 5A). The zonal mean scaling
exponents decrease from equator to middle latitude rapidly.
The zonal mean scaling exponents range from 0.7 to 1.0 in
tropical areas. From middle latitude to high latitude, the
decrement of zonal mean LRC is relatively small. Although
the zonal mean of scaling exponents of SAT simulated by 8
CMIP5 models show similar distribution characteristics, there
is a great difference among the models. The zonal mean
scaling exponents of the model-simulated SAT are close to
those of NCEP SAT in the tropics except INM-CM4 and
FGOALS-g2. In middle and high latitudes, most of the zonal
mean model-simulated scaling exponents are close to those of
NCEP SAT except that of HadGEM2-AO. The correlations of
zonal mean scaling exponents of model-simulated SAT and
those of NCEP SAT all exceed 0.65, which are significant at a
significance level of 0.05. The maximum correlation
coefficient is 0.89 for CMCC-CMS, while the minimum is
0.66 for MPI-ESM-MR (Table 4).

In boreal spring, the zonalmean scaling exponent of NCEP SAT
is close to 1 at the equator (Figure 5B). It means that NCEP SAT
has strong LRC at the equator, and SAT in this area is unstable and
very sensitive to small external disturbances. In other words, small

disturbances in this area can propagate to other regions through
the inner interaction of atmospheric system. From extratropical
areas to high latitudes in the northern hemisphere, the zonal mean
scaling exponents increase first and then decrease, and the
maximum value is about 0.8 near 60°N. In the southern
hemisphere, the zonal mean scaling exponents decrease to 0.6 at
40°S, and then increase to about 0.7 in the high latitude. The zonal
mean scaling exponents of INM-CM4 and FGOAL-g2 in the
tropics are much smaller than those of NCEP SAT, while those
of GFDL-ESM2G in the southern tropics are much bigger than
those of NCEP SAT. Most of the zonal mean scaling exponents of
the model-simulated SAT are bigger than those of NCEP SAT in
the high latitudes. The maximum correlation coefficient between

A B C

D

FIGURE 5 | Zonal distribution of scaling exponents of NCEP and the 8 model-simulated SAT throughout (A) whole year; (B) spring; (C) summer; (D)autumn; (E)
winter.

TABLE 4 | Correlation coefficients between zonal mean scaling exponents of
NCEP and the model-simulated SAT.

Year Spring Summer Autumn Winter

CMCC-CMS 0.89 0.88 0.77 0.7 0.7
CNRM-CM5 0.81 0.78 0.58 0.72 0.79
FGOALS-g2 0.78 0.52 0.3 0.52 0.58
GFDL-EMS2G 0.82 0.8 0.62 0.64 0.83
HadGEM2-AO 0.83 0.68 0.24 0.69 0.34
INM-CM4 0.71 0.66 0.59 0.61 0.73
IPSL-CM5A-MR 0.8 0.87 0.74 0.77 0.44
MPI-ESM-MR 0.66 0.55 0.56 0.59 0.5
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zonal mean scaling exponents of the model-simulated SAT and
those of NCEP SAT is 0.88 for CMCC-CMS, while theminimum is
0.52 for FGOALS-g2.

In boreal summer, the zonal mean scaling exponents of NCEP
SAT are bigger in the northern hemisphere than those inmost of the
southern hemisphere, and the maximum value is located at about
10°N (Figure 5C). In the northern hemisphere, there are two sub-
peak values at 30°N and 60°N, respectively, while theminimumvalue
is about 0.7 at 40°N. In the southern hemisphere, the zonal mean
scaling exponents decrease from tropics to the middle-latitude and
reach the minimum near 30°S, and then increase in the high
latitudes. The differences between zonal mean scaling exponents
ofNCEP and themodel-simulated SAT are bigger in the tropics than
those in other areas. The correlation between the zonal mean scaling
exponents of NCEP and the model-simulated SAT in summer is
significantly reduced compared with that in spring. The maximum
correlation coefficient is 0.77 for CMCC-CMS, while the minimum
is only 0.24 for HadGEM2-AO.

In boreal autumn, the peak value of zonal mean scaling exponent
is close to 0.9 near the equator, and then the zonal mean scaling
exponent decreases to about 0.7 near the 40°N and 0.6 near 35°S
(Figure 5D). Compared with the zonal mean scaling exponents of
NCEP SAT, both INM-CM4 and FGOALS-g2 underestimated LRCs
in the tropics, while GFDL-ESM2G significantly overestimates LRCs

in northern tropics. The correlations between the zonal mean scaling
exponents of themodel-simulated SAT and theNCEP data all exceed
0.5. The maximum correlation coefficient is 0.77 for IPSL-CM5A-
MR, while the minimum is 0.52 for FGOALS-g2.

In boreal winter, the maximum zonal mean scaling exponent
of NCEP SAT is greater than 0.9 near the equator. The zonal
mean scaling exponents in the middle and high latitudes of the
northern hemisphere are between 0.7 and 0.8, which have
smaller variations than those in the southern hemisphere.
The zonal mean scaling exponents reach the minimum near
40°S, and then increase to 0.8 in the Antarctic region
(Figure 5E). In the tropics, the zonal mean scaling exponents
of SAT simulated by FGOALS-g2 are obviously smaller than
those of NCEP SAT, while those of GFDL-ESM2G are larger.
The zonal mean scaling exponents of HadGEM2-AO are larger
than those of NCEP SAT in the middle and high latitudes in the
northern hemisphere. The differences between the zonal mean
scaling exponents of NCEP and most of the model-simulated
SAT are relatively larger in the middle and high latitudes of the
southern hemisphere than those in other areas. The correlation
between zonal mean scaling exponents of the model-simulated
SAT and those of NCEP SAT has large variations with the
maximum coefficient of 0.84 for GFDL-ESM2G and the
minimum of 0.34 for HadGEM2-AO.

FIGURE 6 | Scaling exponents of NCEPSAT (A) and difference betweenNCEPand those of SAT simulated by (B)CMCC-CMS, (C)CNRM-CM5, (D) FGOALS-g2, (E)
GFDL-ESM2G, (F) HadGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I) MPI-ESM-MR. (Black dot represents the difference is significant at a significance level of 0.05).
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In general, the zonal mean scaling exponents of NCEP SAT are
big in the tropics and small in the middle and high latitudes,
which also exhibit obvious seasonal variation. The zonal
distributions of scaling exponents in boreal spring are similar
with those in winter, with bigger scaling exponents in the
northern hemisphere than the southern hemisphere. The zonal
distributions of scaling exponents in summer and autumn are
also similar, with two sub-peaks in the northern hemisphere and
increasing trend from middle to high latitudes. In the tropics, the
zonal mean scaling exponents of INM-CM4 and FGOALS-g2 are
both smaller than those of NCEP SAT, while those of GFDL-
ESM2G are bigger. In a word, the performance of CMIP5 models
to LRC has seasonal variation.

Evaluation of Performance of the
Model-Simulated SAT Based on the Spatial
Distribution Characteristics of LRC
NCEP SAT has LRC characteristics in most parts of the global
continents. The scaling exponents are bigger in the tropics than
those in other regions. Scaling exponents range from 0.75 to 0.95 in
Central Africa and South Asia, and exceed 0.95 in North South
America (Figure 6A). Compared with the scaling exponents of

NCEP SAT,more than 60% of theDFA differences of CMCC-CMS,
CNRM-CM5, GFDL-ESM2G, IPSL-CM5A-MR and MPI-ESM-
MR are not significant at a significance level of 0.05, which
means the performance is good in most of global continents.
The performance of IPSL-CM5A-MR is the best among all
models with 69.1% of global continents where the simulation’s
errors are not significant, especially in the northern part of Eurasia,
South America and Australia (Figure 6H). CMCC-CMS, CNRM-
CM5, HadGEM2-AO and MPI-ESM-MR overestimate the LRC of
SAT in most parts of the tropics (Figures 6B,C,F,I), while both
FGOALS-g2 and INM-CM4underestimate the LRC of SAT inmost
parts of the global continents (Figures 6D,G). The performance of
INM-CM4, FGOALS-g2 and HadGEM2-AO is relatively poor.

To explore the performance of individual models in different
regions, we calculated the percentage of grids with insignificant
errors in each region. If the percentage of good performance grids in
one region exceeds 50%, it’s considered that the model performance
is good in this region. Based on this, the performance ofmost CMIP5
models is good in SIB, NEU, CAS and GRL regions, while relatively
poor in EAS, SAS, SEA and CNA. Both IPSL-CM5A-MR and
FGOALS-g2 have five regions with the best performance among
the 8 CMIP5 models. However, HadGEM2-AO has six regions of
the poorest performance among the 8 models.

FIGURE 7 | Scaling exponents of NCEP SAT (A) and difference between NCEP and those of SAT simulated by (B) CMCC-CMS, (C)CNRM-CM5, (D) FGOALS-g2, (E)
GFDL-ESM2G, (F)HadGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I)MPI-ESM-MR in spring. (Black dot represents the difference is significant at a significance level of 0.05).
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In boreal spring, the scaling exponents of NCEP SAT in most
parts of the global continents are greater than 0.6. The scaling
exponents are between 0.6 and 0.7 in eastern China, northern
Africa, northwestern North America, South America, eastern
Australia and Antarctic, and exceed 0.9 in northern South
America (Figure 7A). Compared with the scaling exponents of
NCEP data, those of model-simulated SAT are smaller in
northern South America, and those of SAT from CNRM-
CM5, FGOALS-g2 and INM-CM4 are smaller in the tropics
(Figures 7B,D,G). The percentage of insignificant simulation’s
errors of LRC is less than 60% for CMCC-CMS, GFDL-ESM2G
and MPI-ESM-MR. SAT of GFDL-ESM2G has stronger LRC
thanNCEP SAT in Australia, southern Africa and southern South
America (Figure 7E), while those of GFDL-ESM2G and INM-
CM4 have weaker LRC in Antarctica (Figures 7E,G). The
performance of FGOALS-g2 is the best with 71.9% of global
continents where the simulation’s errors of LRC are insignificant,
while the performance of MPI-ESM-MR is the poorest among all
eight models with 50.3% of global continents.

The performance of CMIP5 models is good in SIB, CAS and
TIB, while poor in WAF, AUS and SEA. The percentage of good
performance grids of 8 CMIP5 models exceeds 60% in SIB, while
less than 50% in AUS. INM-CM4 has five regions of the best
performance among 8 models. Followed by FGOALS-g2 and

GFDL-ESM2G, both of them have four regions. However,
CNRM-CM5 has six regions of the poorest performance,
especially in CAN. Next, both GFDL-ESM2G and MPI-ESM-
MR have four regions of the worst performance.

In boreal summer, the scaling exponents of NCEP SAT are
bigger than those in spring in most of global continents except in
the middle of Eurasia and northern South America. The scaling
exponents in the tropical region are greater than 0.8 (Figure 8A).
Compared with the scaling exponents of NCEP SAT, CNRM-
CM5, FGOALS-g2 and INM-CM4 have relatively better
capabilities in simulating SAT than the other five models, with
more than 60% of global continents where the simulation’s errors
of LRC are insignificant. The LRCs of SAT from CMCC-CMS,
IPSL-CM5A-MR and MPI-ESM-MR are weaker than those of
NCEP SAT in local areas of North American (Figures 8B,H,I).
Scaling exponents of FGOALS-g2 are bigger in eastern Eurasia,
Australia and Greenland (Figure 8D). GFDL-ESM2G and
HadGEM2-AO have smaller scaling exponents in the high
latitudes (Figures 8E,F). INM-CM4 has smaller scaling
exponents in most parts of the global continents (Figure 8G).

The percentage of good performance girds in NEU exceeds 62%
for most models except INM-CM4. In EAF, GRL, SAF, MED and
SEA, the performance ofmostmodels is poor. In EAF andGRL, the
percentage of good performance grids for all models is less than

FIGURE 8 | Scaling exponents of NCEP SAT (A) and difference between NCEP and those of SAT simulated by (B) CMCC-CMS, (C) CNRM-CM5, (D) FGOALS-g2, (E)
GFDL-ESM2G, (F)HadGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I)MPI-ESM-MR in summer. (Black dot represents the difference is significant at a significance level of 0.05).
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50%. FGOALS-g2 has seven best-performance regions, while
GFDL-ESM2G has seven regions of the poorest performance.

In boreal autumn, the distributions of scaling exponents of
NCEP SAT are similar to those in summer, with smaller values in
most part of Eurasia than those in other regions. The scaling
exponents of NCEP SAT are generally between 0.6 and 0.7 in the
middle and high latitudes of the southern hemisphere, central and
southern North America, and eastern Asia, while greater than
0.85 in northern South America, central and northern Africa,
South Asia and North America (Figure 9A). Compared with the
scaling exponents of NCEP SAT, those of CMCC-CMS, IPSL-
CM5A-MR and MPI-ESM-MR are bigger in the southern
hemisphere and North America, while smaller in northern
Africa and northeastern North America (Figures 9B,H,I). The
scaling exponents of CNRM-CM5 are close to those of NCEP in
most parts of the global continents, except in the northern and
southern parts of Eurasia, northern Africa, northeastern North
America, and northern South America (Figure 9C). Scaling
exponents of FGOALS-g2 are smaller in northern Eurasia,
central and North Africa, North America, northeastern North
America, and most parts of South America (Figure 9D). LRCs of
DTA simulated by GFDL-ESM2G are stronger in parts of Africa,
South Asia, eastern Australia, South America and North America,

while weaker in the middle of Eurasia, the northeastern part of
North America (Figure 9E). Scaling exponents of HadGEM2-AO
are close to those of NCEP SAT in most regions of the southern
hemisphere, while greater in most part of the northern
hemisphere (Figure 9F). INM-CM4 has weaker LRC in parts
of Africa, northern South America, eastern Australia, northern
Eurasia, northeastern North America, and Antarctica
(Figure 9G).

All the 8 CMIP5models performwell in SIB. InMED and TIB,
most of the models except HadGEM2-AO have good
performance. The performance of most models is poor in
NSA, MEX, CNA and SAF. In CNA, the percentage of good
performance grids for CMCC-CMS, CNRM-CM5, FGOALS-g2
and HadGEM2-AO is less than 10%. INM-CM4 has six regions of
the best performance among the 8 models. CMCC-CMS has four
regions of the best performance. However, HadGEM2-AO has
five regions of the poorest performance, and CMCC-CMS has
four regions.

In boreal winter, the distributions of scaling exponents of
NCEP SAT are similar to those in spring, with bigger values in
Eurasia, northern South American and middle and southern
South African than those in other areas. The scaling
exponents are between 0.6 and 0.7 only in eastern China,

FIGURE 9 | Scaling exponents of NCEP SAT (A) and difference between NCEP and those of SAT simulated by (B)CMCC-CMS, (C)CNRM-CM5, (D) FGOALS-g2,
(E)GFDL-ESM2G, (F) HadGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I)MPI-ESM-MR in autumn. (Black dot represents the difference is significant at a significance
level of 0.05).
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southwestern Australia, south South America and south central
North America. In the rest of the global continents, the scaling
exponents are generally above 0.75, and exceed 0.9 in North
America and Central Africa (Figure 10A).

Compared with scaling exponents of NCEP SAT, those of
CMCC-CMS, IPSL-CM5A-MR and MPI-ESM-MR are greater in
South Eurasia, northern South America, Antarctic, and parts of
Australia, while smaller in middle and southern Africa,
Greenland, northern South America (Figures 10B,H,I). Those
of CNRM-CM5 are smaller in equator, Central Europe, northern
South America, while greater in central Australia as well as
middle and northern North America (Figure 10C). The
scaling exponents of FGOALS-g2 and INM-CM4 are smaller
in Greenland, northern South America, southeastern North
America, central and southern African and Antarctic, while
greater in southern North America, northern Australia
(Figures 10D,G). LRCs of SAT simulated by GFDL-ESM2G
are stronger in the tropics while weaker in Antarctic, north-
eastern North America and central Eurasia (Figure 10E). LRCs of
SAT simulated by HadGEM2-AO are weaker in the tropics, while
stronger in other areas (Figure 10F). Scaling exponents of INM-
CM4 are smaller in most part of the global continents except in
the mid-latitude regions (Figure 10G).

All the 8 models perform well in SIB and GRL region. In TIB,
most of the models except HadGEM2-AO have good
performance. The performance of most models is poor in
CNA and SEA. In CAN, all the 8 models have poor
performance. CMCC-CMS has the best performance in six
regions, and CNRM-CM5 has five best-performance regions.
However, HadGEM2-AO has seven regions in which the
performance is the poorest. Both CMCC-CMS and CNRM-
CM5 have five regions of the poorest performance.

CONCLUSION

Based on the LRCs of daily average SAT, the performance of 8
CMIP5 models in global continents is quantitatively evaluated
using DFAmethod. The DFA results of NCEP SAT show that the
SAT has a long-range correlation in most regions of the global
continents. The scaling exponents of NCEP SAT show zonal
distribution characteristics, which are bigger in tropics than that
in middle and high latitudes. The zonal distribution of SAT from
CMCC-CMS is the most similar to that of NCEP data in spring,
summer and throughout the year. The zonal distributions of
scaling exponents of IPSL-CM5A-MR and GFDL-ESM2G are the

FIGURE 10 | Scaling exponents of NCEP SAT (A) and difference between NCEP and those of SAT simulated by (B) CMCC-CMS, (C) CNRM-CM5, (D) FGOALS-
g2, (E) GFDL-ESM2G, (F) HadGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I) MPI-ESM-MR in winter. (Black dot represents the difference is significant at a
significance level of 0.05).
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most similar to those of NCEP data in autumn and
winter,respectively. Compared with the zonal distribution of
NCEP SAT, that of FGOALS-g2 has the greatest bias in spring
and autumn. HadGEM2-AO has the greatest bias in summer, and
HadGEM2-AO has the greatest bias in winter.

Although the performance of models varies in different seasons,
there is still something in common. Scaling exponents of SAT
simulated by CMCC-CMS, IPSL-CM5A-MR as well as MPI-ESM-
MR are smaller in North American while greater in other regions
than those of NCEP SAT in all four seasons. This means LRCs of
the simulated SAT are stronger than those of NCEP in most areas
except North American. Scaling exponents of SAT simulated by
FGOALS-g2 and INM-CM4 are less than those of NCEP SAT in
most areas, especially in northern South American, most part of
African and parts of Eurasia. Scaling exponents of SAT from
GFDL-ESM2G are greater in most part of middle latitude of
southern hemisphere. Scaling exponents of SAT from CNRM-
CM5 and HadGEM2-AO are greater in North American in all four
seasons.

The performance of the 8 models also varies in different
regions. The scaling exponents of most model-simulated SAT
are close to those of NCEP data at middle and high latitudes of the
Northern Hemisphere, such as SIB, NEU, GRL and CAS regions,
which means the dynamical characteristics of climate systems in
these areas are well simulated by the models. However, the DFA
errors are big in East Asia and CAN regions. In spring, the
performance of most models is good in SIB, CAS and TIB,
especially in SIB, but poor in WAF, AUS and SEA. In
summer, the performance of most models is good in NEU
area, but poor in EAF, SAF, GRL, MED and SEA area. Kumar
et al. (2014) showed that some CMIP5 models had warm bias in
boreal summer and the performance of the models was poor over
EAF, SAF and SEA. In autumn, most models have good
performance in SIB, MED and TIB areas, but poor
performance in NSA, MEX, CAN and SAF areas. In winter,
most models have good performance in SIB, GRL and TIB areas,
but poor performance in CAN and SEA areas.

The performance of IPSL-CM5A-MR is the best among the 8
models while that of HadGEM2-AO is the poorest throughout
the year. Liu et al. (2014) also pointed out that HadGEM2-AO
had poor performance on SAT over China, while INM-CM4 had
good performance. The performance of models varies greatly
with seasons. FGOALS-g2 has good performance in spring and
summer. GFDL-ESM2G has good performance in autumn.

CNRM-CM5 and CMCC-CMS has good performance in
winter. However, MPI-ESM-MR has the poorest performance
in spring. The performance of CMCC-CMS and GFDL-EMS2G is
poor in summer. HadGEM2-AO has poor performance in
autumn and winter.

Generally speaking, the comparison of individual models for
certain regions and seasons reveals that the most of models can
reasonably simulate the dynamical characteristics of climate
systems in most regions, while there are inter-model
differences in various regions and seasons. These differences
maybe induced by the processes of climate models, which
needs a further examination in the future. Therefore,
appropriate models should be selected according to the
research regions and seasons.
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Resilience of Grain Yield in China
Under Climate Change Scenarios
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As global warming issues become increasingly serious, grain yield and socioeconomic
development have been seriously threatened. The key to ensuring grain yield is to
recognize the risks caused by climate change. In this paper, the trends of temperature
and precipitation over the next thirty years in China are analysed using CMIP6 under the
SSP1–2.6, SSP2–4.5 and SSP 5–8.5 climate scenarios. The resilience indicators of grain
yield are proposed for the first time. We find that the higher the emission concentration is,
the greater the temperature increase will be and further northward the precipitation belt will
move. Meanwhile, the resilience varies across different climate zones. The temperate
monsoon climate zone has a stronger resilience to adapt to climate change compared to
that of other areas. The resilience of the temperate continental and plateau alpine climate
zones are moderate. However, the resilience of the subtropical and tropical monsoon
climates zones are poor.

Keywords: global warming, grain yield, resilience index, risk, adoption

INTRODUCTION

Grain security is the foundation for the overall sustainable development of the economy. Climate
change poses significant risks and uncertainties for the sustainable development of grain production
in all countries. The Intergovernmental Panel on Climate Change (IPCC) notes that significant
impacts from climate change have become widespread and widely sensed across different regions and
areas of the world (IPCC et al., 2014; CMACCC, 2018). Among them, agriculture is the industry that
is most directly affected by and sensitive to climate change, mainly because climate change can cause
high-temperature heat waves, droughts and floods as well as increasingly severe and frequent
extreme weather and climate events, resulting in fluctuations in grain yield. Climate change is the
most important natural factor affecting grain yield (Holst et al., 2013; Tao et al., 2014; Belyaeva and
Bokusheva, 2018; Osman et al., 2020). Climate change presents significant risks and uncertainties to
the global grain yield.

Identifying the resilience of grain yield under climate change and determining the temporal and
spatial scales of their impacts are key factors in coping with climate change and promoting the
sustainable development of grain production. Many theoretical and numerical models have
attempted to reveal the connection between changes in grain yield and global warming. There
are two primary research methods in this field. First, statistical modelling methods use multiple
regressions, first-order differences, deep neural networks and other methods to establish statistical
models for grain to forecast the influence of climate change on grain output (Crane-Droesch, 2018;
Lu et al., 2019; Wang et al., 2019). The reliability of this method can be assessed through statistical
testing, but it is difficult to detect a clear intensity change trend in the observation results. The second
is the crop model simulation method. By inputting parameters describing soil, sunlight, temperature,
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precipitation and other conditions required for crop growth, crop
growth conditions under future climate change conditions can be
simulated (Abraha and Savage, 2006; Devkota et al., 2013; Mishra
et al., 2013; Masud et al., 2019). However, the crop model
simulation does not include socioeconomic factors such as
policy, management, economy, technology, etc., so the results
may have more uncertainty than the actual situation.

Grain yield is the result of the interaction between climatic
factors and socioeconomic factors; therefore, comprehensive
multidisciplinary and multidomain cross-analysis is required
(Chou et al., 2004). With continuous changes in the global
climate, the risks of climate change are increasing, which
seriously affects the safety and sustainable development of
China’s grain yield. The importance of improving the
resilience of China’s grain yield has become a consensus in
response to climate change. There are different types of
resilience in the context of climate. Holling, an ecologist, first
proposed resilience. He defined resilience as the ability of a
system to absorb disturbances and continue to exist (Holling,
1973). Later, scholars in various fields, such as engineering,
society, and economics, continued to enrich the connotation
of resilience. In the field of climate change, the IPCC defines
resilience as the ability of a system to adapt to the adverse effects
of climate change and recover and resist. The National Research
Council (NRC) of the United States defines resilience as the
ability to prepare, plan, absorb, recover and more successfully
adapt to adverse events. In this definition, resilience is composed
to capability, process, and goal (Cutter et al., 2013). Based on the
theory of resilience, this article innovatively constructs an
evaluation index for the resilience of grain yield under the
background of climate change. This article defines "resilience"
as the ability to achieve sustainable and stable production through
policy, economy, and technology in the face of increasingly severe
climate conditions. The lower the resilience of an area is, the
higher the risk of climate change; the higher the resilience is, the
lower the risk of climate change. This article takes China as an
example to carry out an analysis of a grain yield and resilience
assessment under different climate scenarios.

In addition, this article considers that the influence of
precipitation and temperature on grain yield is a significant
nonlinear relationship. To solve this problem, a
comprehensive climate factor was constructed to reflect the
influence of grain yield under global climate change. This
article chiefly applies the economy-climate model as a
bridge to connect the analysis of natural science and
humanities with socioeconomic analyses. Duzheng Ye and
Jieming Chou and Du, 2006 proposed an economic-climate
model based on the traditional production function model
(C-D) (Chou and Ye, 2006). This model was used to build an
input-output model of grain yield that systematically reveals
the changing trends in the future pattern of grain yield under
different emissions situations; it also identifies areas of higher
resilience to determine key production areas and generate
breakthroughs in future grain security work. This study
provides a scientific basis and policy recommendations for
promoting the realization of sustainable development goals
(SDGs).

MATERIALS AND METHODS

Previous studies on China’s grain yield have mostly examined
changes in grain output on the basis of subregions such as the
north and south regions (Chou et al., 2019), the three major
zones, and the eight major grain-producing regions (Xu and Zhu,
2015). The North and South regions are divided with the Qinling
Huai River acting as the boundary. The three major zones include
the eastern coastal zone (Liaoning, Hebei, Tianjin, Beijing,
Shandong, Jiangsu, Shanghai, Zhejiang, Fujian, Guangdong,
Guangxi and Hainan), the central zone (Heilongjiang, Jilin,
Inner Mongolia, Shanxi, Anhui, Jiangxi, Henan, Hubei and
Hunan) and the western zone (Shaanxi, Gansu, Ningxia,
Qinghai, Xinjiang, Sichuan, Yunnan, Guizhou and Tibet). The
eight major grain-producing regions in China are the Sanjiang
Plain, Songnen Plain, Jianghuai Area, Taihu Plain, Jianghan
Plain, Poyang Lake Plain, Dongting Lake Plain and Chengdu
Plain.

It is difficult to fully reflect the natural geographical future of
all of China. As shown in Figure 1, China’s north-south latitude is
wide, and it is located within five major climate regions. The
amount of heat received from the sun varies from place to place.
Within the same climate zone, the basic characteristics of the
climate are similar. This article divides the grain production areas
in China into five regions by climate zone (see Table 1) and
discusses the changes in temperature and precipitation in the
different climate regions under SSP1–2.6, SSP2–4.5, and
SSP5–8.5. It also analyses the influence of climate change on
grain yield in the different climate regions and proposes a
resilience evaluation for grain yield under global climate change.

DATA AND METHODS

Data
Data Sources
The historical data used in this article are climate and economic
data from twenty nine provinces and autonomous regions in
China from 1981 to 2018. The climate data include the monthly
precipitation and average temperature of each province during
the growing period (April to September), which were obtained
from the National Meteorological Information Center (http://
data.cma.cn). The economic data include the annual data on rural
labour, grain sown area, agricultural fertilizer, grain yield and
population. The data were obtained from the China National
Statistical Center (http://www.bjstats.gov.cn) and the China
Statistical Yearbook.

Future climate data include the monthly average of the
2020–2050 growth period (April-September) output by the
BCC-CSM2-MR, which is newly developed by the National
Climate Center. It is a mode resolution model participating in
the sixth phase of the Coupled Model Intercomparison Project
(CMIP6). The ability of the BCC-CSM2-MR climate model to
simulate the climate mean state and global warming trend, quasi-
biennial oscillation (QBO), tropical intraseasonal oscillation
(MJO) and diurnal variation in precipitation in the 20th
century has significantly improved. (Wu et al., 2019). CMIP6
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designed a series of new scenario prediction experiments based
on the possible anthropogenic emissions and land use changes
caused by the energy structure in different shared socioeconomic
paths. This paper mainly focuses on the three radiative forcing
scenarios shown in Table 2 (Pu et al., 2020). These three different
radiative forcing scenarios represent three future emissions levels,
e.g., low, moderate and high, and provide a theoretical basis for
studying the impacts of different climate changes on grain yield.

Method
Economy-Climate and Grey System Model
Grain yield is affected not only by the input of socioeconomic
elements such as rural labour, grain cultivation area, and
agricultural fertilizer but also by meteorological elements,
including climatic elements. This article is based on the Cobb-
Douglas, which can map the relationship between input and
output under certain technical conditions. Chou et al. presented a

FIGURE 1 | Distribution of five climatic regions for grain yield in China

TABLE 1 | The division of five climatic regions for grain yield in China.

Climate type Province Location

Temperate monsoon
climate

Heilongjiang, Jilin, Liaoning, Hebei, Beijing, Tianjin, Henan, Shandong, Shanxi, Shaanxi Approximately 35°～55°N, 108°～
138°E,

Subtropical monsoon
climate

Chongqing, Hubei, Hunan, Anhui, Jiangsu, Shanghai, Guizhou, Yunnan, Zhejiang, Jiangxi, Fujian,
Guangdong, Guangxi, Sichuan

Approximately 25°～35°N 98°～
120°E

Temperate continental
climate

Gansu, Ningxia, Xinjiang Approximately 35°～50°N 90°～
105°N,

Plateau alpine climate Qinghai Approximately 26°～40°N 74°～
104°E

Tropical monsoon climate Hainan Approximately 15°～25°N 108°～
112°N,

TABLE 2 | CMIP scenario experimental design.

Scenario prediction test Test description

SSP1–2.6 In the low forcing scenario, resulting in the radiation forcing level of 2.6 W/m2 in 2100.
SSP2–4.5 In the moderate forcing scenario, resulting in the radiation forcing level of 4.5 W/m2 in 2100.
SSP5–8.5 In the high forcing scenario, resulting in the radiation forcing level of 8.5 W/m2 in 2100.
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novel approach by introducing the comprehensive climatic factor
into the Cobb-Douglas model. It is called the economy-climate
model (C-D-C model) (Chou and Ye, 2006). Then, we use grey
system model GM(1,1) to predict the future socioeconomic data.
GM(1,1) establishes a grey differential prediction model through
a small amount of incomplete information to make long-term
fuzzy information. It is of higher adaptability and accuracy (Yin,
2013). We use economy-climate and grey system models to
construct a comprehensive model to predict the future grain
yield using the following equations:

Yit � μpxβ11 x
β2
2 x

β3
3 C

c (1)

Its logarithmic function is as follows:

lnY � β1 ln x1 + β2 ln x2 + β3 ln x3 + c lnC + ln μ (2)

where Yit represents grain yield; X1, X2, and X3 represent the rural
labour, the grain cultivation area, and the agricultural fertilizer in
each province, respectively; β1, β2, β3, and c are the coefficients of
each element; and µ represents the other elements.

Construct Comprehensive Climate Factor C by
Principal Component Analysis
Principal component analysis (PCA) is probably the most
commonly used dimensionality reduction method. To
ensure that the original information is not missing or is
missing as little data as possible, this method uses a few
unrelated comprehensive indexes to express the majority of
interrelated indexes (Brunetti et al., 2006). Let the original
index temperature and precipitation be X1 and X2 and the main
components be F1 and F2.

{ F1 � a11X1 + a12X2

F2 � a21X1 + a22X2
(3)

First, a sample matrix was constructed. Suppose a provincial
administrative region in China has a sample size of monthly
mean temperature precipitation from 1981 to 2018, and the
observed climate indicator is temperature and precipitation.

X � (X1,X2)T
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ x11 x12

x21 x22
« « «
xn1 xn2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4)

Second, the principal component was determined. MATLAB
was used to normalize the original climate data and calculate the
relevant coefficient matrix r, principal component correlation
coefficient eij and eigenvalues of the matrix λj

θj � λj∑ λ
(5)

According to Eq. 5, the variance contribution rate θj was
obtained. Then, the correlation coefficient aij of the i–th index in
the j–th principal component was calculated according to Eq. 6.

aij � eij/ ��
λj

√
(6)

Finally, the index weight was calculated, and the coefficient of
each index was calculated according to Eq. 7.

Fj � ∑p
j�1

aijXi (7)

The weight vector was constructed, and Eq. 8 was used to
calculate the weight of each index of the original data matrix.

q � λ1F1 + λ2F2 +/ + λjFj∑p
i�1

λi

(8)

PCA was used to determine the weight of the comprehensive
climatic factor C (Chou et al., 2019). It can represent the relative
importance of a certain indicator. If the weight is greater, it means
that it has a greater influence overall.

C � q1X1 + q2X2 (9)

where X1 and X2 are the temperature and precipitation,
respectively, q1 and q2 are the weights obtained by PCA
calculation. Although the comprehensive climate factors of the
different provinces were calculated in the same way, their weights
in the principal component analysis were differed due to various
factors, such as terrain and climate, that lead to differences in the
comprehensive climate factors of each province.

Resilience Indicators
Resilience in physics refers to the ability of an object to resist the
deformation of external forces and spring back into shape.
Ecologically, resilience is defined as the stability of an
ecosystem. In the field of disaster science, Patton defined
resilience as the ability of the system to maintain its regular
function, as well as its ability to cope with alterations and
adjustments under extraneous conflict (Paton and Johnston,
2001). Bruneau believes that resilience focuses on the ability to
quickly recover from disasters (Bruneau et al., 2003). Cai believes
that resilience is the unique capability of an ecosystem to preserve
the operation of its main functions when the system resolves a
crisis (Cai et al., 2012). The United Nations defines resilience as
the ability of a city to confront risks to withstand, maintain and
cope with the influence of risk in a prompt and effective way.
Climate change poses significant risks and uncertainties for the
sustainable development of grain yield in all countries. As one of
the important means of identifying grain yield status in grain
yield areas, the assessment of grain yield has attracted the
attention of many scholars, and there has been a lot of
theoretical, methodological and applied research on this topic
(Xu et al., 2013; Ji et al., 2014; Davenport et al., 2015). To
quantitatively assess the resilience of future grain yield in
China, this paper innovatively proposes climate change
resilience indicators for grain yield. "Resilience" is used to
indicate the ability of grain-producing areas to recover from
the disturbance of climate change and realize stable grain
production. Due to the obvious spatial heterogeneity of grain
yield affected by climate change, the resilience of grain yield varies
across different climate regions. Considering the negative
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correlation between grain yield resilience and climate change risk,
previous research has developed grain yield risk indicators under
global climate change (Wu et al., 2017; Sun et al., 2020). The
article quantitatively assesses the sustainability of grain yield
using two factors: grain output per person and grain unit yield.

We define the resilience index of grain output per person as
the ratio of the 2000–2018 average annual grain output per
person to the 2020–2050 grain output per person under global
climate change. The index is calculated as follows:

Hm � 1
n
∑
j

Fjm, Fjm � Gjm/Pjm, j � 2000 − 2018, n � 19 (10)

F′
wm � Gwm/Pwm,w � 2020 − 2050 (11)

Swm � Hm/F′
wm (12)

where Gjm is the grain yield of province m in year j, Pjm is the
population of province m in year j, Fjm is the grain output per
person of pmrovince in year j, andHm is the average annual grain
output of province m. F’wm is the grain output per person of
province m in year w, Gwm is the grain yield of province m in year
w, Pwm is the population of province m in year w, and Swm is the
grain output per person resilience index of province m in year w.

We define the resilience index of grain unit yield as the ratio of
the 2000–2018 average grain unit yield to the 2020–2050 grain
unit yield under global climate change. The index is calculated as
follows:

Nm � 1
n
∑
j

Mjm,Mjm � Gjm/Ajm, j � 2000 − 2018, n � 19 (13)

M′
wm � Gwm/Awm,w � 2020 − 2050 (14)

Rwm � Nm/M′
wm (15)

where Gjm is the grain yield of province m in year j, Ajm is the
grain sown area of province m in year j, Mjm is the grain unit
yield of province m in year j, and Nm is the average annual
grain unit yield of province m. M′wm is the grain unit yield of
province m in year w, Gyi is the grain yield of province m in
year w, Awm is the planting area of province m in year w, and

Rwm is the grain unit yield resilience index of province m in
year w.

Based on socioeconomic and climatic data, this paper forecasts
the grain yield for SSP1–2.6, SSP2–4.5, and SSP5–8.5. Figure 2 is
the flow chart of China’s grain yield resilience under global
climate change.

RESULTS AND DISCUSSION

Temperature and precipitation differences under different
scenarios in China.

Due to the complexity and variability of climate systems,
climate models have become a powerful tool for studying
future climate systems and climate change. CMIP6 simulation
results are an important basis for climate predictions and climate
change risk assessments. However, due to the differences in their
mechanisms, structural principles, climate forcing parameters,
resolutions and emissions scenario designs, different climate
models predict different impacts from climate change. The
simulation performance of climate change models is also quite
variable. The prediction of temperature change trends in China in
the 21st century show good consistency among models, but there
are large differences in predictions between precipitation
simulations. We selected the BCC-CSM2-MR model, which
belongs to a medium resolution model. This model was
developed by the National Climate Center of China. This
model is closer to the actual distribution of precipitation in
China and is more realistic. Therefore, the BCC-CSM2-MR
model in CMIP6 was selected for this paper. The ability of the
BCC-CSM2-MR climate systemmodel to simulate quasi-biennial
oscillation (QBO), tropical intraseasonal oscillation (MJO) and
diurnal variation in precipitation in the 20th century has been
significantly improved. (Wu et al., 2019).

Figure 3 shows the BCC-CSM2-MR model simulated the
situations in temperature and precipitation differently between
2050 and 2015 under different scenarios. The temperature and
precipitation in 2050 are the average values from 2046 to 2055.
Compared with the historical climate data of 2015, the annual

FIGURE 2 | Flow chart of China’s grain yield resilience under global climate change.
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mean temperature for SSP5–8.5 is significantly higher than that
for SSP2–4.5 and SSP1–2.6. In other words, the temperature
changes are larger for higher emission scenarios. The areas with
faster warming rates in the future are mainly concentrated in the
central subtropical and northern temperate monsoon
climate zones.

The precipitation values in each climate region in China
presents a fluctuating trend from 2015 to 2050. In the low
emission scenario SSP1–2.6, the precipitation centers are
mainly concentrated in the south of the temperate monsoon
region; in the medium emission scenario SSP2–4.5, the
precipitation center area is further expanded; in the high
emission scenario SSP5–8.5, the precipitation center moves
further toward the north. The driving force of the northward
movement of the rain belt in China is the summer monsoon. The
strength of the summer wind power depends on the thermal
difference between the terrace and ocean, which is located
between the Eurasian continent and Pacific Ocean. Global
warming will increase the thermal difference between the
terrace and ocean, which is located between Eurasia and the
Pacific Ocean, strengthening the summer monsoon and moving
the rain belt northward faster and wider.

Discussion and Analysis of the Future Grain
Yield in China
In the process of agricultural planting development, grain yield is
tightly related to diverse aspects of the external environment,
such as the sowing area and temperature. They are
comprehensive actions of socioeconomic elements and climate
elements. The report of the 19th National Congress of the

Communist Party of China points out that from 2020 to 2035,
China will be built into a powerful socialist country. Therefore, we
will take 2035 as our boundary. Figure 4 shows the future grain
yield of provinces in China in the next fifteen years (2021–2035)
and in 2036–2050 under the different emissions scenarios.

Generally, China’s grain yield is mainly concentrated in the
zone of the monsoon climate (temperate and subtropical
monsoon climates). The monsoon climate is a comprehensive
phenomenon under the combined influence of three factors,
including the thermal effects of the land-sea distribution,
seasonal variations in atmospheric circulations and specific
topographies. During the period of rainfall and heat in the
monsoon area, water is provided at times when crops grow
vigorously, i.e., when they need it most, which is very
beneficial to agricultural development. The provinces with the
highest future grain yield are mainly concentrated in the
temperate continental climate zone to the north of the Qinling
Mountains, and Heilongjiang Province is the largest producer of
grain in China. In addition, Heilongjiang’s grain production is
most affected by global warming; it has the highest grain yield
under SSP1–2.6. This is because as emissions increase, the
temperature will gradually increase; thus, the crop growth
period will lengthen, and the cultivation system will also
change accordingly. In addition, the cold damage that affects
crops will also be significantly reduced or disappear. As the
climate warms, more food will be harvested at high latitudes.
For subtropical and tropical monsoon climate regions at middle-
low latitudes, the difference in grain yield under the different
emissions scenarios is relatively small. The grain yield in the high-
emissions scenario, SSP5–8.5, is slightly lower than that in the
moderate-emissions scenario, SSP2–4.5, and low-emissions

FIGURE 3 | Temperature and precipitation difference between 2050 and 2015 under different scenarios; (A) SSP1–2.6 temperature, (B) SSP2–4.5 temperature,
(C) SSP5–8.5 temperature, (D) SSP1–2.6 precipitation, (E) SSP2–4.5 precipitation, and (F) SSP5–8.5 precipitation.
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scenario, SSP1–2.6. Temperature warming has a negative effect
on grain yield at middle and low latitudes. For the plateau alpine
and the temperate continental climate regions, there is no
significant difference under the different scenarios.

Resilience Assessment of Grain Yield in
China From 2020 to 2050
Climate change presents great risks and uncertainties to the
sustainable development of grain yield worldwide. In
assessments of grain yield systems, the stability of grain
production is an important focus. In this paper, "resilience" is
used to indicate the ability of grain-producing areas to recover
from the disturbance of climate change and realize stable grain
production. This paper discusses the resilience from the aspects of
grain output per person and grain unit yield to characterize the
influence of climate change on China’s grain yield.

Resilience Assessment for Grain Output per Person in
China From 2020 to 2050
This article analyses the resilience of grain output per person
from the perspective of the grain supply balance, i.e., grain yield
and grain consumption. Considering the negative correlation
between grain yield resilience and climate change risk,
previous research has developed grain yield risk indexes (Wu
et al., 2017; Sun et al., 2020). This paper defines the resilience
index of grain output per person as the ratio of the 2000–2018
average grain output per person to the 2020–2050 grain output
per person under different scenarios. According to the principle
of dividing by the grain production risk index, the risk index for
grain output per person is as follows: if the risk index value is
greater than 1.20, there is no risk, and a value under 1.20 is risky.
If the risk index value is higher than 1.00, there is a low risk to
grain production; if the value is below 0.90, there is high risk; and
values between the two indicate moderate risk (Sun et al., 2020).

FIGURE 4 | China’s total grain yield in 2020–2050 under different emissions scenarios (A) SSP1–2.6, (B) SSP2–4.5, (C) SSP5–8.5.
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Therefore, "resilience" here is inversely proportional to the risk
indicator, i.e., the reciprocal of the risk indicator. In this paper, we
define a resilience index of grain yield per capita value of less than
0.83 as a high resilience; other values indicate fragile conditions. A
value of less than one indicates moderate resilience; a value of
higher than 1.11 indicates poor resilience; and values between
them indicate low resilience.

In Figure 5, the regions with poor resilience for grain output per
person in China are mainly concentrated in the regions of the
subtropical monsoon climate and the tropical monsoon climate. At
the same time, under SSP1–2.6, SSP2-4.5, and SSP5-8.5, with increased
emissions, the resilience of grain output per person in the regions of the

subtropical monsoon climate and the tropical monsoon climate
worsens. The gradual increase in temperature exceeds the
appropriate temperature required for grain yield, resulting in a
reduction in grain yield. Therefore, in subtropical monsoon climate
regions and tropical monsoon climate regions, energy-savingmeasures
and emission reductions are important measures for maintaining and
stabilizing local grain yield. The grain output per persondepends on the
grain demand and grain supply. The eastern coastal provinces are
located in the tropical monsoon climate region. The cities include
Jiangsu, Zhejiang, Fujian, and Guangdong. Due to reform and
opening-up policies, the spatial pattern of China’s grain-producing
areas has changed significantly, the regional differences between grain

FIGURE 5 | Resilience assessment for grain output per person under different scenarios; (A) 2035 SSP1–2.6, (B) 2050 SSP1–2.6, (C) 2035 SSP2–4.5, (D) 2050
SSP2–4.5, (E) 2035 SSP5–8.5, (F) 2050 SSP5–8.5.
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yield and population flow have gradually increased, and the population
has gradually flowed to areas with higher urbanization levels. In the
eastern coastal provinces, industrialization, urbanization and
internationalization activities are much higher than those in other
provinces and cities, which lead to a poor resilience. However, the
resilience of grain output per person in the temperatemonsoon climate
region remained high under the different scenarios; at the same time,
with the increase in the emissions intensity under SSP1–2.6, SSP2–4.5,
and SSP5–8.5, the resilience of grain output per person improved. The
resilience of grain output per person in temperate continental climate
regions and plateau alpine climate regions did not change significantly
under SSP1–2.6, SSP2–4.5, and SSP5–8.5, and the resilience of grain
output per person was maintained in these regions.

Resilience Assessment for Grain Unit Yield in China
From 2020 to 2050
Grain security is not only based on grain supply and demand but
rather grain yield also reflects the land production capacity, and the
agricultural production level is also an important factor in determining
grain security. Considering the negative correlation between grain yield
resilience and climate change risk, previous research has developed
grain yield risk indexes (Wu et al., 2017; Sun et al., 2020). This paper
defines the resilience index of the grain unit yield as the ratio of the
2000–2018 average grain unit yield to the 2020–2050 grain unit yield
under SSP1–2.6, SSP2–4.5, and SSP5–8.5. According to the principle
of dividing by the grain production risk index, the risk index for grain
unit yield is as follows: if the risk index value is greater than 1.75, there

FIGURE 6 |Resilience assessment for grain unit yield under different scenarios; (A) 2035 SSP1–2.6, (B) 2050 SSP1–2.6, (C) 2035 SSP2–4.5, (D) 2050 SSP2–4.5,
(E) 2035 SSP5–8.5, and (F) 2050 SSP5–8.5.
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is no risk; however, a value under 1.75 is risky. If the risk index value is
higher than 1.50, there is a low risk to grain production; if the value is
below 1.25, there is high risk; and values between the two indicate
moderate risk (Sun et al., 2020). Therefore, "resilience" here is inversely
proportional to the risk indicator, i.e., the reciprocal of the risk
indicator. In this paper, we define a resilience index of grain unit
yield value of less than 0.57 as a high resilience; other values indicate
fragile conditions. A value of less than 0.67 indicates a moderate
resilience; a value of higher than 0.8 indicates a poor resilience; and
values in between indicate a low resilience.

Figure 6 shows that, in general, the resilience of grain unit yield in
China’s temperate monsoon climate regions is higher than that in the
other climate zones in China. This is mainly due to the rapid growth of
grain yield in temperate monsoon regions; on one hand, it is due to the
development and upgrading of the industry; on the other hand, it
benefits from global warming, which has led to an increase in the
multiple cropping index and an increase in land production capacity.
The increase in grain unit yield in the high-latitude area (Heilongjiang)
is obvious. Due to the quick industrialization of subtropical and tropical
monsoon climate regions, the loss of cultivated land in these regions is
severe. In the process of balancing occupied and available cultivated
land, the difference in the quality of occupied and available field land
causes a decline in terms of grain production, resulting in a lower grain
yield sustainability. In addition, the average temperatures in the
subtropical and tropical monsoon climate zones are higher during
the grain growth period than that in other climate zones. In the high-
emissions scenario, SSP5–8.5, the higher the emissions intensity is, the
greater the temperature increase. This increase would exceed the
appropriate temperature for crop growth, weakening the land
production capacity, which is also a key factor causing the low
resilience of grain unit yield. In the SSP5–8.5 scenario, the resilience
of grain unit yield in the monsoon region will gradually decrease from
north to south. In the future, the resilience of grain unit yield in
temperate continental climate regions and plateau alpine climate
regions will not change substantially. Because the temperate
continental climate zone is located inland, rainwater is not sufficient
for crop growth; the increase in water discharge leads to temperature
increases that further aggravatewater shortages (Liu andLin, 2007). The
results show that the increase in temperature in the plateau alpine
climate region aggravates themelting of ice and sown, increases the area
of ice lakes, and increases the risk of glacier debris flows and ice lake
breaks (Cui et al., 2014). However, the change in grain yield in these
areas mainly depends on improving production efficiency, increasing
investments in science and technology, strengthening farmland
infrastructure conditions, increasing the promotion of water-saving
irrigation technology, and adjusting the regional layout and variety
structure of grains to a achieve sustainable and stable grain unit yield.

CONCLUSION AND DISCUSSION

Based on the economy-climate and grey system models, we find
that forecasts of the grain yield show obvious regional differences
under different emissions scenarios (SSP1–2.6, SSP2–4.5, and
SSP5–8.5). To quantify the impact of climate change on grain
yield, we propose a resilience index of grain yield. Main
contributions of this work are as follows:

(1) The higher the emission concentration is the greater the
temperature increase will be, and the more northward the
precipitation belt moves in the future.

(2) In the future (2020–2050), China’s grain yield will be mainly
concentrated in the temperate and subtropical monsoon
climate zones. China’s grain yield in the temperate
monsoon climate zone will maintain rapid growth, while
that in the subtropical monsoon climate zone will grow
slowly. Grain transportation from north to south will be
further intensified.

(3) The resilience of grain output per person and grain unit yield
in temperate monsoon climate regions is relatively high and
positively affected by climate change. The high latitudes of the
temperate monsoon climate region will significantly reduce or
eliminate cold damage to crops.

(4) The resilience of grain output per person and grain unit yield
in the regions with subtropical and tropical monsoon climates
is poor. These areas are located at middle and low latitudes.
Climate change will have negative impacts in these zones.

(5) The resilience of grain output per person and grain unit yield in
temperate continental and plateau alpine climate regions is fair.

Overall, this paper uses a multidisciplinary approach to assess
the sustainability of China’s grain yield under the impacts of
climate change and creatively defines a resilience index for grain
yield. Future research should consider the potential effects of
climate change more carefully by viewing, for example, the
impact of extreme weather on grain yield. Due to space
limitations, this study only used the BCC-CSM2-MR model,
and the aggregate average of multiple models still needs to be
further studied.
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Study of Four Rainstorm Design
Methods in Chongqing
Daiqiang Liao1, Qiang Zhang2*, Ying Wang1, Haonan Zhu1 and Jia Sun1

1Chongqing Climate Center, Chongqing, China, 2National Climate Center, Beijing, China

Based on minute-by-minute precipitation data from 1961 to 2016 obtained from the
National Basic Weather Station of Shapingba, Chongqing, China, the Chicago rainstorm
method, the Pilgrim & Cordery (P&C) method, the Common-frequency method and the
natural rainstorm moving regularity (NRMR) method were used to design short-duration
(1–3 h) and long-duration (24 h) rainstorm hyetographs. Then, a standardization method
for test samples was designed to ensure that each test sample was standardized and
underwent an actual precipitation process. The designed rainstorm hyetographs and test
samples were compared and analyzed, and the results show that the hyetographs for the
1, 3, and 24-h durations obtained with the NRMR method best represented the actual
corresponding precipitation processes. The hyetograph for the 2-h duration obtained with
the Chicago rainstorm method was best for the actual 2-h precipitation process. The
design results of the Common-frequency method were generally good, but not
outstanding. Finally, the P&C method showed a relatively poor performance for each
duration.

Keywords: standardization of test samples, Pilgrim & Cordery method, Chicago rainstorm method, common-
frequency method, NRMR method

INTRODUCTION

Chongqing, an important city in central China, is an economic center in the upper reaches of the
Yangtze River, an important junction between “the Belt and Road” and an inland opening highland.
In particular, since the area came under the jurisdiction of the People’s Government in 1997 and due
to its continuous urbanization, the impervious surface area in Chongqing has increased significantly.
This increase has led to waterlogging disasters (especially on July 17, 2007 and July 16 and 17, 2020),
which have caused considerable loss of life for urban residents and negative socioeconomic impacts.
At present, the low design standard for urban underground water distribution networks in China is
one of the important causes of urban flood and waterlogging disasters. Rainstorm hyetograph design
is an important factor for drainage design standards and is the basis for scientifically and reasonably
planning and designing urban drainage systems (Pochwat et al., 2017). Therefore, a reasonably
designed rainstorm hyetograph is particularly important.

The intensity-duration-frequency (IDF) relationship of rainfall extremes is usually summarized in
the evaluation process and widely used as a convenient tool for understanding the characteristics of
extreme rainfall events at given locations (Ben-Zvi, 2009). Wang presented an effective approach for
assessing the impacts of climate change on both the intensity and frequency of extreme rainfall events
by integrating regional climate modeling and IDF curves into a general framework (Wang et al.,
2014). The classic methods that are currently used are described as follows: Keifer and Chu (1957)
proposed a method that is based on an intensity-duration-frequency (IDF) curve and a rainstorm
intensity formula. This method is known as the Chicago rainstorm method. Pilgrim and Cordery
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(1975) developed an order-average hyetograph based on the
principle of statistics (referred to as the P&C method). Yen
and Chow (1980) proposed a triangular-shaped hyetograph. In
addition to the abovementioned classic methods, other methods
for deriving hyetographs have been developed more recently;
please refer to Lin and Wu (2007), Lee and Ho (2008), Powell
et al. (2008), Yin et al. (2014), Kottegoda et al. (2014), NRMR
(Liao et al., 2019b) for detailed descriptions (Wang et al., 2018).
Furthermore, there are advantages and disadvantages among the
different rainstorm hyetograph design methods. Cen (1993), Cen
et al. (1998), Cen (1999) compared four methods for designing
rainstorm hyetographs, including the methods of Keifer and Chu
(1957), Huff (1967), Pilgrim and Cordery (1975), Yen and Chow
(1980), and the results showed that the flood peak discharges
obtained by the different rainstorm hyetograph design methods
were significantly different, and the sensitivities of the different
methods to the duration of precipitation events and to
precipitation data varied.

The purpose of designing a rainstorm hyetograph is to allow
the designed results to represent the natural precipitation process
in an actual local rainstorm. However, scholars in China and
abroad have rarely conducted comparative studies to determine if
rainstorm hyetograph designs represent local conditions. To
address this situation, minute-by-minute precipitation data
from 1961 to 2016 were obtained from the National Basic
Weather Station of Shapingba, Chongqing, China, and the
Chicago rainstorm method, the P&C method, the Common-
frequency method and the natural rainstorm moving regularity
(NRMR) method were used to design short-duration (1–3 h) and
long-duration (24 h) rainstorm hyetographs. Then, the rainstorm
hyetograph designs were compared with samples from actual
precipitation processes that led to waterlogging from 1961 to
2016 (these samples were not used for the rainstorm hyetograph
designs). These methods were compared to determine the
method that had the optimal design results.

DATA AND SAMPLING METHODS

The data used in this study are minute-by-minute precipitation
data from 1961 to 2016 from the National Basic Weather Station
of Shapingba in Chongqing, China, and these data were provided
by the Chongqing Municipal Center of Weather Information and
Technology Support. The precipitation data from 1961 to 2008
are the self-recording minute-by-minute paper records, and the
data from 2009 to 2016 are the observation data of automatic
stations. Using the color scanning digitizing processing system of
the precipitation autographic record paper (Wang et al., 2004)
provided by the China Meteorological Administration (CMA),
the precipitation autographic record papers were subjected to
scanning, inspection, and extraction of minute-by-minute
precipitation data. However, the 6-year (1968, 1971, 1975,
2000, 2001, 2005) record papers cannot be digitized since they
are not well preserved; thus, these data were excluded. The
remaining 50 years of data were used. The sampling method
used in this paper was the natural rainfall moving sampling
method for heavy precipitation (Liao et al., 2019a). The two

largest samples of each year were selected, in which the largest
sample was used for the rainstorm hyetograph design, and the
second largest sample was used as the test sample (a total of 47
samples were used in this paper). When the samples were selected
by the natural rainfall moving sampling method for heavy
precipitation, the 3-year (2008, 1980, 1987) samples with less
than 50 mm of rainfall were excluded).

RESULTS OF DIFFERENT RAINSTORM
HYETOGRAPH DESIGN METHODS

Four methods commonly used in China were used for the
rainstorm hyetograph design, including the Chicago rainstorm
method, P&C method, Common-frequency method and NRMR
method.

Chicago Rainstorm Method
The Chicago rainstorm method is based on the storm intensity
formula, and the rainstorm peak position is determined by
rainstorm statistics (Dai et al., 2017). By introducing the
position coefficient r of the rainstorm peak to describe the
time when the rainstorm peak occurs, the time series of
rainfall duration is divided into two parts of prepeak and
postpeak.

The duration of a rainstorm process is t0, the instantaneous
rainfall intensity before the peak is Ia, the corresponding duration
is ta, the cumulative rainfall is Ha, the instantaneous rainfall
intensity after the peak is Ib, the corresponding duration is tb, the
cumulative rainfall isHb and the total rainfall isHT �Ha +Hb. Let
t0 � 1 and the intensity peak position r be between 0 and 1, then
t0 � ta/r � tb/(1 − r). The rainstorm intensity formula is
i � A/(T + b)n, the rainstorm peak time is set as 0 and the
average intensities before and after the peak are ia and ib,
respectively:

When 0 ≤ t ≤ ta, ia � A
(t/r+b)n � rnA

(t+rb)n
When 0 ≤ t ≤ tb, ib � A

(t/1−r+b)n � (1−r)nA
[t+b(1− r)]n

Therefore, the instantaneous rainfall intensity before and after
the peak (Ia and Ib) is obtained as follows:

When 0 ≤ t ≤ ta,

Ia � d
dt

( rnA

(t + rb)n t) � (1 − n)rnA
(t + rb)n + nbrn+1A

(t + rb)n+1

When 0 ≤ t ≤ tb,

Ib � d
dt

( (1 − r)nA
[t + (1 − r)b]n t)

� (1 − n)(1 − r)nA
[t + (1 − r)b]n + nb(1 − r)n+1A

[t + (1 − r)b]n+1

Based on the two equations above, the cumulative rainfall
hyetograph is calculated as follows:

When 0 ≤ t ≤ rT,

H � ∫t

0
Iadt � HT{r − (r − t

T
)[1 − t

r(T + b)]− n}
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When rT ≤ t ≤ T,

H � rHT + ∫T

rT
Ibdt � HT{r + ( t

T
− r)[1 + t − T

(1 − r)(T + b)]− n}
Figure 1 shows the short-duration design rainstorm

hyetographs according to the above steps. Since the maximum
sampling time of this method is only 180 min, it was not used for
the design rainstorm hyetograph for the 24-h duration.

P&C Method
The P&Cmethod places the rainstorm peak period at the position
with the highest possibility of occurrence, the percentage of
precipitation in the peak period in each rainstorm is taken to
calculate the average percentage of precipitation and the positions
and percentages of other periods are calculated in the same way
(Jiang, 2015). The specific steps are described as follows:

(1) The rainstorm samples with a certain duration are selected.
Multiple rainfall events with the largest amounts of
precipitation are selected, and the more rainfall events
there are, the greater the statistical significance.

(2) The duration is divided into several periods. The length of the
period is determined by the desired time unit for the time
distribution, and generally, the smaller this value is, the
better. For example, if a 5-min unit is used for a 180-min

rainstorm hyetograph design, the 180-min duration selected
in step 1 is divided into 36 periods.

(3) For every rainfall event selected, according to the rainfall of
each period, the time series number of each period is
determined from largest to smallest, and the period with
large rainfall corresponds to the small time series number.
The time series number of each corresponding period is
averaged, and the average time series number from smallest
to largest corresponds to rainfall intensities from largest to
smallest.

(4) The percentage of rainfall in each period compared with the
total rainfall is calculated, and the average percentage of each
period is taken.

(5) A rainfall hyetograph is formed by arranging periods
according to the time series with the maximum possibility
determined in step 3 and the distribution percentage
determined in step 4.

Figure 2 shows the designed rainstorm hyetographs of all
durations according to the above steps.

Common-Frequency Method
The Common-frequency method, also known as the “long-
duration including short-duration,” provides a long-duration
hyetograph that includes a short-duration hyetograph. This
method determines the time series using the situation with the

FIGURE 1 | The designed rainstorm hyetographs for 1, 2, and 3-h durations obtained with the Chicago rainstorm method.
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most occurrences (namely, the mode value) and uses the average
situation (namely, the mean value) to define the rainfall in each
period (Li et al., 2018). The 1,440-min rainstorm hyetograph
design with a 5-min unit is used as an example. The specific steps
are described as follows:

(1) Based on the rainfall standard, multiple rainstorms with a
duration of 1,440 min are selected, the starting position of
H720, which is the maximum rainfall in a 720-min window in
each rainstorm, is determined by using time-based sliding
windows, and the starting time of H720 in the rainstorm
hyetograph design is determined by the position of the
mode value.

(2) The main peaks of the selected typical rainstorm samples with a
duration of 1,440min are superimposed, and the percentage of
precipitation in each period (H720–H1440) compared with the
total rainfall in each rainstorm sample is calculated. Then, the
average precipitation percentage of each period (H720–H1440) in
multiple rainstorm samples is calculated, i.e., the precipitation
distribution percentage of each period (H720–H1440).

(3) In the same way, according to steps (1) and (2), multiple
rainstorms with a duration of 720 min are selected based

on the rainfall standard. Using the method in step 1 for
H720, the starting position of H360, which is the maximum
rainfall in a 360-min window in each rainstorm, is
determined using time-based sliding windows, and the
starting time of H360 in the rainstorm hyetograph design
is determined by the position of the mode value. The main
peaks are aligned and superimposed to calculate the
percentage of precipitation in each period (H360–H720)
compared with the total rainfall in each rainstorm sample,
and the average precipitation percentage of each period
(H360–H720) in multiple rainstorm samples is calculated,
i.e., the precipitation distribution percentage of each
period (H360–H720).

(4) The precipitation distribution percentages of H240–H360,
H180–H240, H150–H180, H120–H150, H90–H120, H60–H90,
H45–H60, H30–H45, H15–H30, and H5–H15 corresponding
to 360, 240, 180, 150, 120, 90, 60, 45, 30, and 15 min,
respectively, are calculated. Finally, the percentage of the
maximum 5-min precipitation is 100%.

(5) In summary, the distribution results of the rainstorm
hyetograph design with a duration of 1,440 min and a 5-
min unit are obtained.

FIGURE 2 | The rainstorm hyetograph design of four durations obtained with the P&C method.
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In this paper, according to the idea of the Common-frequency
method, the peak position is determined using the average position,
the peak intensity is the average maximum 5-min intensity, and the
distribution percentages of remaining periods are determined based
on the averages. Figure 3 shows the designed rainstorm hyetographs
of all durations according to the above steps.

NRMR Method
After sampling with the natural rainfall moving sampling method
for heavy precipitation, the rain hyetograph is calculated using
Eq. 1, which is the NRMR method (Liao et al., 2019a).

Pk �
∑k×5

j�(k−1)×5+1
Xj

∑n
i�1

Xi

(1)

X represents a minute-based precipitation series for
a given duration (there are multiple durations), n is

the total number of minutes for a given duration, k
represents the index of a 5-min period in the series, P
represents the percentage of the precipitation during a
5-min period and Pk is the percentage of the
precipitation during the kth 5-min period in the current
precipitation series.

Figure 4 shows the rainstorm hyetograph designs with
different durations according to the above steps.

DETERMINATION OF TEST SAMPLES

Standardization of Test Samples
The second largest sample of each year from 1961 to 2016 selected by
the natural rainfall moving sampling method for heavy precipitation
was taken, and all of them were used as the test samples. Because the
peak positions of selected test sampleswere different, it was difficult to
use them for verification. To this end, standardization was conducted
for the selected test samples. First, the peak position of each sample

FIGURE 3 | The rainstorm hyetograph designs for four durations obtained with the Common-frequency method.
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was determined. This position was determined using the designed
rainstorm hyetograph method, and different methods provided
different peak positions. The purpose of moving the peak position
in the second time is for the convenience of inspection. Then, the
peak position of each sample was moved to the determined peak
position. To ensure that the test sample was still a true natural
precipitation process, the vacant precipitations caused by the left-
right movement in the test sample were supplemented with the
original precipitations. The specific process is shown in Figure 5.
Figure 5A shows the standardization process of a 3 h-duration test
sample from 2003 by the NRMRmethod, in which the gray parts are
the sample time intervals before moving, and the oblique line marks
the peak position of the sample the moving, i.e., the 28th 5-min
interval of the sample. The gray parts in Figure 5B are the sample
time intervals after moving, i.e., the 28th 5-min interval is moved
forward by 15 intervals and aligned with the 13th interval (the
determined peak position of the test sample). The front 15
intervals are removed due to moving, therefore, 15 intervals from
the original sample are used, which ensures that the sample is still a
natural precipitation process. The test samples of the other durations

and other rainstorm hyetograph design methods were standardized
in the same way.

Determination of Peak Positions in Test
Samples
The peak positions of the test samples were determined based on
the results of the designed rainstorm hyetographs. The peak
positions of the test samples varied with different methods.
Table 1 shows the peak positions for different durations by
the four methods.

Table 1 shows that for the 1 and 2-h durations, the differences
in the peak positions obtained by the different rainstorm
hyetograph design methods are relatively small; however, the
differences between the peak positions at the 3 and 24-h durations
are considerable. Especially for the 3-h duration, the peak
position by the P&C method was five to seven units (intervals)
away from the results of other methods. For the peak position of
3-h duration, the P&Cmethod moved the peak position in all test
samples to the sixth interval, the Chicago rainstorm method

FIGURE 4 | Four durations of rainstorm hyetograph designs obtained with the NRMR method.
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moved it to the 11th interval, and the Common-frequency
method and the NRMR method moved it to the 13th interval,
as did the other durations.

Representativeness of Standardized
Samples
The standardization of the test samples may result in changes in
the precipitation of the test samples. Therefore, it is necessary to
test and analyze the standardized test samples. Table 2 shows the

variations in precipitation in each test sample before and after
standardization (the 1,579.6 mm in the table is the sum of
the 47 1 h precipitation samples before standardization, which
is the same for other methods). Table 2 shows that the difference in
the total rainfall between the periods before and after standardization
is not large, and the variation is basically within 9% (only the variation
in the total rainfall for the 3-h duration by the P&Cmethod is 12.7%).
Therefore, the standardized test samples can basically represent the
original samples. Meanwhile, this finding indicates that the
standardization is reasonable.

FIGURE 5 | The gray parts in (A) are the samples selected before moving, and the gray parts in (B) are the selected samples after moving. Abscissa: time (5 min),
ordinate: precipitation (mm).

TABLE 1 | Peak positions for different durations determined by the four rainstorm hyetograph design methods.

Duration (h) P&C method Chicago rainstorm method Common-frequency method NRMR method

1 7 6 5 6
2 8 9 10 10
3 6 11 13 13
24 164 — 125 125

TABLE 2 | Comparison of total rainfall in test samples with different durations before and after the natural moving process.

Method Total precipitation
of samples

1 h 2 h 3 h 24 h

— Before standardization (mm) 1,579.6 1946.5 2,205.2 3,343.0
P&C method After standardization (mm) 1,424.6 1778.1 1925.9 3,063.6

Before standardization/after standardization (%) 90.2 91.4 87.3 91.6
Chicago rainstorm method After standardization (mm) 1,445.9 1788.1 2024.4 —

Before standardization/after standardization (%) 91.5 91.9 91.8 —

Common-frequency method After standardization (mm) 1,449.3 1787.9 2033.4 3,101.3
Before standardization/after standardization (%) 91.8 91.9 92.2 92.8

NRMR method After standardization (mm) 1,445.9 1787.9 2033.4 3,101.3
Before standardization/after standardization (%) 91.5 91.9 92.2 92.8
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VALIDATION AND ANALYSIS OF THE
RESULTS OF THE RAINSTORM
HYETOGRAPH DESIGNS
The results of the rainstorm hyetograph designs are represented by
the distribution diagram of rainfall with time. The continuous
percentage data can be obtained by dividing the precipitation of
each period by the total precipitation (hereinafter referred to as fixed
samples). The standardized test samples can be transformed into
continuous multiple percentage data so that all test samples can be
used for correlation analysis with fixed samples. The greater the
correlation coefficient between the fixed samples (the rainstorm
hyetographs designed by the different design methods) and the
test samples (the second heaviest rainstorm of every year) is, the
closer the fixed samples are to the real precipitation process, and vice
versa. A correlation analysis (Spearman’s Rank correlation, 5%
significance level) was performed on the test samples for the
different methods with different durations and the corresponding
fixed samples, and a significance test was also conducted on the
correlations. Table 3 lists the detailed results.

Table 3 shows that the P&C method had the smallest average
correlation coefficient for each duration, indicating that the
rainstorm hyetograph designs obtained with the P&C method
were the least representative of the actual precipitation processes.
For the P&C method, the percentages of samples that were
significant at the 1 and 3-h durations were the smallest. For the
P&C method, although the correlation coefficient between the
designed rainstorm hyetograph and the test sample for the 24-h
duration was significant, the average correlation coefficient was
significantly lower than that of both the Common-frequency
method and the NRMR method. Therefore, using the P&C
method to design rainstorm hyetographs in Chongqing was the
least effective. For the rainstorm hyetograph design obtained with
the Chicago rainstorm method, both the average correlation
coefficient and the percentage of samples that were significant
were the highest among all the methods for the 2-h duration,
indicating that the rainstorm hyetograph design for the 2-h
duration obtained with the Chicago rainstorm method can best
represent the actual 2 h precipitation process, but for other
durations, the performance of the Chicago rainstorm method was
relatively poor. The performance of the design rainstorm
hyetographs for the four durations obtained with the Common-
frequencymethod wasmoderate and stable but not outstanding. For
the rainstorm hyetograph designs obtained with the NRMRmethod,

in addition to the one for the 2-h duration, the average correlation
coefficient and the percentage of samples that were significant for the
other durations were the highest among all the methods, indicating
that the rainstorm hyetograph designs obtained with the NRMR
method for these three durations can best represent the actual
precipitation processes in Chongqing.

SUMMARY AND DISCUSSION

Based on minute-by-minute precipitation data from 1961 to 2016
obtained from the National Basic Weather Station of Shapingba,
Chongqing, China, the Chicago rainstorm method, the P&C
method, the Common-frequency method and the NRMR
method were used to design short-duration (1–3 h) and long-
duration (24 h) rainstorm hyetographs. The second largest
sample in each year during 1961–2016 was taken as a test
sample, and all them were used to verify the design results of
different methods. The following conclusions were obtained:

(1) The results of the rainstorm hyetograph designs obtained
with the Chicago rainstorm method, the P&C method, the
Common-frequency method and the NRMR method show
that the differences in the peak intensity (the percentage of
the maximum 5 min precipitation compared with the total
precipitation) were small, the differences between the peak
positions at the 1 and 2-h durations were not large, and the
peak positions at the 3 and 24-h durations were far apart.

(2) The test sample standardization method designed in this
study can make the peak position of the test sample the same
as the peak position determined by the rainstorm hyetograph
design method; in addition, there were no significant changes
in the precipitation before and after standardization for all
the test samples, and the variations were all within 9%. This
finding indicates that the standardization was reasonable,
and it ensured that the test sample was still a true natural
precipitation process.

(3) The analysis and verification of the results of the four methods
showed that the designed rainstorm hyetographs for the 1, 3, and
24-h durations obtained with the NRMRmethod were the most
representative of the actual precipitation processes; the rainstorm
hyetograph for the 2-h duration obtained with the Chicago
rainstormmethodwas themost prominent; and the results of the
Common-frequency method were generally good but not

TABLE 3 | Correlations between the results of the different rainstorm hyetograph designs and the test samples.

Method Correlation
characteristics

1 h 2 h 3 h 24 h

P&C method The average correlation coefficient 0.322 0.507 0.531 0.122
Percentage of samples that are significant at the 5% level (%) 23.4 76.6 83.0 78.7

Chicago rainstorm method The average correlation coefficient 0.576 0.569 0.526 —

Percentage of samples that are significant at the 5% level (%) 55.3 80.9 80.9 —

Common-frequency method The average correlation coefficient 0.509 0.518 0.463 0.449
Percentage of samples that are significant at the 5% level (%) 42.6 68.1 80.9 91.5

NRMR method The average correlation coefficient 0.620 0.483 0.520 0.471
Percentage of samples that are significant at the 5% level (%) 63.8 63.8 83.0 93.6
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outstanding; additionally, the performance of the P&C
method was relatively poor. Therefore, this paper
recommends the NRMR method for rainstorm
hyetographs with durations of 1, 3, and 24 h and the
Chicago rainstorm method for rainstorm hyetographs
with a duration of 2 h. The test method for rainstorm
hyetograph design and the recommendations proposed in
this paper need to be verified in more areas. We hope that
this test method can be used to provide a better basis for
urban drainage network design and to achieve the goal of
reducing urban waterlogging disasters and flood disasters.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

DL put forward the idea. QZ is the instructor of the manuscript. YW,
HZ, and JS analyzed the data. All authors revised the manuscript.

FUNDING

Financial support for this research was provided by the National Key
Research and Development Plan of China (No. 2017YFC1502701).

ACKNOWLEDGMENTS

We thank Xiaochun Liu for translating some of the documents.
We are particularly grateful to the Chongqing Meteorological
Information and Technology Support Center for providing the
minute-by-minute precipitation data from the National Basic
Weather Station of Shapingba from 1961 to 2016.

REFERENCES

Ben-Zvi, A. (2009). Rainfall intensity-duration-frequency relationships derived
from large partial duration series. J. Hydrol. 367, 104–114. doi:10.1016/j.jhydrol.
2009.01.007

Cen, G. P. (1993). A comparison of design storm patterns for calculating the
volume of detention ponding. Water Res. Water Eng. 4 (2), 30–35.

Cen, G. P. (1999). Sample selection and statistical method of rainstorm data.Water
Wastewater Eng. 25 (4), 1–4.

Cen, G. P., Jin, S., and Fan, R. S. (1998). Research on rainfall pattern of urban design
storm. Adv. Water Sci. 9 (1), 42–46.

Huff, F. A. (1967). Time distribution of rainfall in heavy storms.Water Resour. Res.
3 (4), 1007–1019. doi:10.1029/wr003i004p01007

Dai, Y. X., Wang, Z. H., Dai, L. D., Wang, Q. L., and Cao, T. (2017). Application of
Chicago hyetograph method in design duration rainstorm pattern. J. Arid
Meteorl. 35 (6), 1061–1069. doi:10.11755/j.issn.1006-7639(2017)-06-1061

Jiang, M. (2015). Study of Shanghai design rainstorm profile under the new
rainstorm situation. J. Hunan Inst. Sci. Technol. Nat. Sci. 28 (2), 69–80.
doi:10.3969/j.issn.1672-5298.2015.02.015

Kottegoda, N. T., Natale, L., and Raiteri, E. (2014). Monte Carlo simulation of
rainfall hyetographs for analysis and design. J. Hydrol. 519, 1–11. doi:10.1016/j.
jhydrol.2014.06.041

Keifer, C. J., and Chu, H. H. (1957). Synthetic storm pattern for drainage design.
J. Hydraul. Div. 83 (4), 1–25. doi:10.1061/jyceaj.0000104

Lee, K. T., and Ho, J.-Y. (2008). Design hyetograph for typhoon rainstorms in
Taiwan. J. Hydrol. Eng. 13, 647–651. doi:10.1061/(asce)1084-0699(2008)13:7(647)

Liao, D. Q., Zhu, H. N., Zhou, J., Sun, J., and Wang, Y. (2019a). Research on storm
intensity formula and design rain pattern sampling method. Meteor. Mon. 45
(10), 1375–1181.

Liao, D. Q., Zhu, H. N., Zhou, J., Wang, Y., and Sun, J. (2019b). Study of the natural
rainstorm moving regularity method for hyetograph design. Theor. Appl.
Climatol. 138 (4), 1311–1321. doi:10.1007/s00704-019-02890-0

Li, Z. Y., Huang, X. J., and He, Y. Y. (2018). Research on derivation method of
design rainstorm pattern. Water Supply Drain. Eng. 36 (1), 141–144.

Lin, G.-F., and Wu, M.-C. (2007). A SOM-based approach to estimating design
hyetographs of ungauged sites. Journal of Hydrology 339, 216–226. doi:10.1016/
j.jhydrol.2007.03.016

Pilgrim, D. H., and Cordery, I. (1975). Rainfall temporal patterns for design floods.
J. Hydr. Div. 101 (1), 81–95. doi:10.1061/jyceaj.0004197

Powell, D. N., Khan, A. A., and Aziz, N. M. (2008). Impact of new rainfall patterns
on detention pond design. J. Irrig. Drain Eng. 134, 197–201. doi:10.1061/(asce)
0733-9437(2008)134:2(197)
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Floods in the middle reaches of the Yangtze River threaten thousands of million people,
causing casualties and economic loss. Yet, the prediction of floods in this region is
still challenging. To better understand the floods in this region, we investigate the
interdecadal-interannual rainfall variation of the flood season (April–September) in Hunan
province. The relationship between the rainfall and the Pacific decadal oscillation (PDO),
Atlantic Multidecadal Oscillation (AMO), and El Niño-Southern Oscillation (ENSO) are
also analyzed. The results show that the precipitation in the flood seasons shows an
interdecadal oscillation with a period of about 20 years, which is caused by the joint
effect of the PDO and AMO. When the PDO and AMO are in the same phase, the
corresponding flood season is characterized by more precipitation, and conversely, it is
less precipitation. Further analyses show that in the year after El Niño, when the PDO
and AMO are both in the positive phase, it is favorable for the west Pacific subtropical
high (WPSH) to be stronger and more southward than normal. Such circulation anomaly
is conducive to the water vapor transport to the southern China, and as a result there
is more precipitation in Hunan. When the PDO and AMO are both in the negative
phase, the WPSH is weaker than normal, but the India-Burma trough is obviously
stronger, which is also favorable for the southwesterly water vapor transport to the
southern China. However, in the next year of the La Niña year, regardless of the phase
combination of the PDO and AMO, the southern coast of China are controlled by a
negative geopotential height anomaly and the WPSH retreats to the sea, which is not
conducive to the northward transport of water vapor, and the precipitation in Hunan
is less than normal. But if only the cold SST background in the previous stage is
considered (without reaching the standard of a La Niña event),is more precipitation in
most of the Hunan Province. Therefore, at the interannual scale, the PDO and AMO
also have a modulating effect on the precipitation signal. However, the interannual-scale
ENSO signal has a greater influence on the precipitation in Hunan flood seasons. Our
results will give implications for the predications of floods in Hunan.

Keywords: Hunan province, precipitation in the flood seasons, Pacific decadal oscillation, Atlantic Multidecadal
Oscillation, El Niño-Southern Oscillation
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INTRODUCTION

Hunan Province is located in the central China, downstream
of the Tibetan Plateau and south of the middle reaches of the
Yangtze River. Hunan is surrounded by mountains on three
sides, and belongs to the subtropical monsoon climate zone. The
precipitation distribution is uneven and has large interannual
variation. April to September is the flood season in Hunan
Province, accounting for about 70% of the annual precipitation
(Duan et al., 1999). The ENSO is the strongest interannual
variability signal of the coupled tropical sea-air system, and is also
the main modulator of the precipitation interannual variability
in China during the flood season (e.g., Fu and Teng, 1988; Ye,
1990; Jin and Tao, 1999; Gao and Wang, 2007; Zong et al., 2010).
Both the PDO and the AMO could significantly modulate the
precipitation impact from the interannual variability of ENSO.

The PDO is a long-lived El Niño-like pattern of Pacific climate
variability, and the characteristics and roles of the PDO are
summarized by Mantua and Hare (2002). The PDO can affect
the interdecadal variability of the summer precipitation in the
eastern China by influencing the atmospheric circulations in
East Asia.Moreover, the PDO can significantly influence the
interdecadal north-south movement of the main summer rainfall
belt in eastern China. When the PDO is in a positive phase,
a wave train from the Sea of Japan to the East China Sea
(Pacific-Japan teleconnection pattern, also called the P-J wave
train) will be excited off the coast of East Asia, which will affect
the precipitation in the southern China, making the summer
precipitation less in northern China and more in the middle-
lower reaches of the Yangtze River (Zhang et al., 2007). When
the PDO is in a negative phase, the response of the circulation is
generally opposite to that during the positive phase, making the
East Asian subtropical westerly jet weaken, and thereby resulting
in more summer precipitation in the Huanghuai area and less
summer precipitation in the middle-lower reaches of the Yangtze
River (Zhu et al., 2015). Besides, if the PDO is in a positive phase,
East Asia is dominated by the anomalous western North Pacific
anticyclone and the cyclonic circulation near Japan in El Niño
decaying summers, and the average precipitation anomaly in
China shows a tripolar distribution, i.e., more precipitation in the
central region and less precipitation in the north and south. But,
if the PDO is in a negative phase East Asia is mainly influenced
by the anomalous western North Pacific anticyclone circulation
in El Niño decaying summers, and the precipitation anomaly is
in a dipolar distribution with significant intra-seasonal variability
(Feng et al., 2015). Dong (2016) distinguished the similarities and
differences between the PDO and ENSO effects on the East Asian
summer monsoon. They also found that after excluding the effect
of ENSO, the anomalous characteristics of the East Asian summer
monsoon during different PDO phases are similar to those with
the effect of the ENSO.

The AMO is the most significant interdecadal characteristic
of the North Atlantic sea surface temperature (SST) (Sutton and
Hodson, 2007), and its phase variations are closely related to
the Atlantic meridional overturning circulation. The warming of
most of Eurasia during the warm AMO phase enhances the sea-
land thermal difference between Eurasia and the Pacific Ocean

in summer, resulting in enhanced East Asian summer monsoon
(Lu et al., 2006; Wang et al., 2009). Also, the warm AMO phase
can excite the wave train of the Eurasian teleconnection pattern
at middle and high latitudes and the teleconnection wave train
propagating along the East Asian subtropical westerly jet at
middle latitudes during the boreal summer, and the wave trains
can lead to cyclonic anomalies over the Huanghuai area and
anticyclonic anomalies over the Yangtze River, thereby causing
more precipitation in the Huanghuai area and less precipitation
in the middle-lower reaches of the Yangtze River (Si and Ding,
2016). The AMO can also affect the interdecadal variability
of SST in the tropical western Pacific through atmospheric
teleconnection, further influencing the interdecadal variability
of the summer monsoon circulation in East Asia and summer
precipitation in the eastern China (Sun et al., 2017). Zhang and
Delworth (2010) also found that the changes in precipitation
patterns in the east-central China in the early 1990s were closely
associated with the AMO changes.

However, any single factor could not determine the
precipitation variability, and the interannual and interdecadal
variabilities of precipitation are the results of multiple factors
(Li et al., 2018). The above previous studies have shown that
the ENSO, PDO, and AMO all have relatively good correlations
with summer precipitation in the eastern China. However,
the interrelationships among them on interdecadal scales and
the synergistic effects on the precipitation in the Hunan flood
seasons need to be further investigated. The remainder of this
article is organized as follows. Data and methods are given in
section “Data and Methods.” Section “Results” presents the main
results of this study. The cause analysis is performed in section
“Circulation Analysis.” Finally, the conclusions and discussion
are given in section “Conclusions and Discussion.”

DATA AND METHODS

Data
The data used in this article includes the 1910–2019 monthly
homogenized precipitation data in Hunan, the PDO, AMO,
and SST data, the daily precipitation observation data and the
reanalysis data.

Previous studies on the interdecadal variability of
precipitation are mostly based on reanalysis data. However,
Peng et al. (2017) got a 100-year long precipitation dataset of
Hunan’s flooding season based on station data. This dataset fills
in the missing values of some Hunan stations before 1950 by
univariate linear regression. The dataset is already examined and
corrected by a two-phase regression model, metadata of station
location history, and the standard normal homogeneity test. The
homogenized precipitation data in Hunan would better explain
the regional characteristics of long-term precipitation changes,
particularly given that the precipitation data before 1950 are
incomplete due to war and other reasons in this region and the
inhomogeneity problems of the precipitation data in China,it fill
in the missing data of each station with a regression model based
on the adjacent stations’ data.
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FIGURE 1 | Time series of (A) the precipitation anomaly percentage, (B) PDO index, and (C) AMO index in Hunan flood seasons during 1910–2019 (the red line is
the exponential sequence and the black line is the anomaly accumulation value).

The SST data is from the Extended Reconstructed SST version
4 from the National Oceanic and Atmospheric Administration,
with a spatial resolution of 2.0◦ × 2.0◦, and this dataset starts
from January 1854 (Smith et al., 2008). Moreover, the daily
precipitation observation data is from 97 meteorological stations
in Hunan, and the time length from January 1, 1961 to August
31, 2020. The data is strictly processed for quality control. The
geopotential height data is provided by the National Centers
for Environmental Prediction/National Center for Atmospheric
Research, with a spatial resolution of 2.5◦ × 2.5◦(Kalnay, 1996).
In addition, the data has 17 vertical levels from 1000 hPa to 10
hPa, and the main level used is 500 hPa. The start time of the
reanalysis data is January 1948. Note that the climatic averages
of each meteorological element used in the article are averaged
between 1981 and 2010.

The PDO index quantifies the strength of SST oscillations
and is defined as the time coefficient from the first mode of
the empirical orthogonal function analysis for monthly average
SST anomalies in the north of 20◦N in the North Pacific (Hare
and Mantua, 2000). The AMO is a quasi-periodic warm-cool
anomaly of the SST in the North Atlantic region, with a basin-
wide scale and a multidecadal scale (Kerr, 2000). The AMO index
is defined as the regional average SST value in the North Atlantic
of 0◦N–60◦N, 0◦W–80◦W.

Methods
In this article, the Nino 3.4 zone (170◦W–120◦W, 5◦S–5◦N) is
used as the monitoring zone for the El Niño (La Niña) events.
The 3-month moving average of the NINO3.4 index is calculated
(one decimal is retained, same below), if the value is greater than
or equal to 0.5◦C (less than or equal to−0.5◦C) and maintains for
at least 5 months, then an El Niño (La Niña) event is determined.

To obtain the interdecadal scale components of
meteorological elements, we use the Lanczos filter method
to perform an 11-year low-pass filter (Duchon, 1979). In the
low-pass filter the low-frequency signals can pass, while high-
frequency signals above a defined threshold are blocked or
attenuated. However, the amplitude of blocking and attenuation
varies according to the signals’ frequency and the filter purpose.

Wavelet analysis can analyze the one-dimensional signal in
terms of both time and frequency, and can finely characterize
the local features of the climate system and the oscillations
near arbitrary points. It also can distinguish local singularities.
Moreover, it can analyze the perturbation characteristics at
different scales according to the periodic evolution with different
scales over time, and determine the significant cycles of the
climate series (Hudgins and Huang, 1996).

RESULTS

Temporal Variations of the Precipitation,
PDO, and AMO in Hunan Flood Seasons
From 1910 to 2019, there is no significant change of precipitation
during Hunan flood seasons (April–September, same below),
with overall more precipitation in the 1910s, 1930s, 1950s, 1970s,
1990s and 2010s and overall less precipitation in the 1920s, 1940s,
1960s, 1980s and 2000s (Figure 1A). The variations are almost
the same as the precipitation trends in southern China (e.g., Ding
et al., 2008; Huang et al., 2011; Zhu et al., 2011; Xu et al., 2015).
The wavelet transform shows that the precipitation in Hunan
flood seasons has an interdecadal fluctuation on an about 20-
year scale, with a short period of 2–3 years in the 1930s, 1950s,
1970s and 21st century (Figure 2). The correlation coefficient of
the precipitation in Hunan flood seasons with the PDO index is
quite small, and the correlation coefficient with the AMO is only
0.12 without passing the significance test at 90% confidence level.

For the variations of the PDO and AMO, the PDO (Figure 1B)
is mainly in a negative phase before the 1920s and then turns into
a positive phase after the 1920s. In the 1940s, the PDO turns back
to the negative phase and maintains until the mid-1970s, and after
that the PDO is mainly in a positive phase except around 2010.
The AMO (Figure 1C) is mostly in a negative phase until the
mid-1920s, and then changes into a positive phase until the early
1960s. Then, the AMO is in a negative phase from the 1960s to
the late 20th century. In the 21st century the AMO changes into
a positive phase.

Frontiers in Earth Science | www.frontiersin.org 3 April 2021 | Volume 9 | Article 65659467

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-09-656594 March 29, 2021 Time: 16:0 # 4

Zeng et al. Precipitation Variations Association With Indices

FIGURE 2 | Wavelet analyses for the precipitation anomaly percentage in Hunan flood seasons during 1910–2019. The shaded areas pass the significance test at
95% confidence level.

FIGURE 3 | Temporal variations of the AMO index, the PDO index, the precipitation and the precipitation anomaly percentage in Hunan flood seasons during
1910–2019.

Relationships Between the Precipitation
Interdecadal Variations in Hunan Flood
Seasons and the PDO and AMO
Temporal Variations of Precipitation, the Pacific
Decadal Oscillation and the Atlantic Multidecadal
Oscillation
Figure 3 shows the time series of the PDO, AMO and the
precipitation after low-pass filtering, as well as the precipitation
anomaly percentage during Hunan flood seasons. As can be
seen, the PDO and AMO are in the same phase in 53 years, of
which there are more precipitation in 32 years, accounting for
60.4% (32/53, Table 1). While the PDO and AMO are in the
opposite phase in 57 years, of which there are less precipitation
in 38 years, accounting for 66.7% (38/57, Table 1), i.e., Hunan
flood seasons are dominated by less precipitation. This situation
is especially obvious from the 1960s, i.e., when the PDO and
AMO are in the same phase 81.8% (18/22) of the years are

with more precipitation, and when the PDO and AMO are
in the opposite phase 64.9% (24/37) of the years are with less
precipitation. Therefore, the following analysis of precipitation
anomalies began in 1961.

Spatial Variations of the Precipitation in Hunan Flood
Seasons
As can be seen in Figure 4 (The frequency of positive
precipitation anomaly is the proportion of the years with
positive precipitation anomaly. In the following, the analysis of
precipitation is based on its positive anomaly frequency), when
the PDO and AMO are in the same phase, the precipitation in
Hunan flood seasons is more than normal in most of the regions.
Moreover, the excess precipitation is more significant in the years
with the same positive phase than in the years with the same
negative phase except in southeast Hunan. In the years with
both negative phase, the precipitation in east Hunan is locally
less than normal. In the years with a positive PDO phase and a
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TABLE 1 | The periods of different PDO and AMO phases, the corresponding
average precipitation in the flood season, and the years with excess precipitation
during 1910–2019.

Phases Periods Precipitation
anomaly/mm

Years with excess
precipitation/Total years

PDO + AMO + 1928–1944,
1997–1998,
2014–2019

29.7 16/25

PDO- AMO- 1910–1923 and
1964–1977

10 16/28

PDO + AMO- 1924–1927 and
1978–1996

−36.3 8/23

PDO- AMO + 1945–1963 and
1999–2013

−6.6 11/34

negative AMO phase, the precipitation during flood seasons is
less than normal in most of the regions, except the northwest
Hunan. In the years with a negative PDO phase and a positive
AMO phase the precipitation is only slightly more than normal
in the southeast Hunan. If the results processed by the low-
pass filtering are similar, i.e., the precipitation is mainly more

than normal in the years with the same PDO and AMO phase
and less than normal in the years with the opposite phase,but
the excess precipitation is more extensive and more frequent
(figure omitted).

Impacts of ENSO Events on Interannual
Precipitation Fluctuations
Impacts of El Niño Events
In the next years of the El Niño events after 1961, when the PDO
and AMO are in the same phase, the precipitation in Hunan flood
season is mainly more than normal, accounting for 80% (8/10,
Table 2). When the PDO and AMO are in the opposite phase, the
years with the precipitation less than normal account for 46.2%
of the total (6/13, Table 2).

The precipitation series in the next years of El Niño events
the results are shown in Figure 5. It can be found that when the
PDO and AMO are in the same phase, the precipitation is more
than normal in most of the regions in Hunan, except for local
areas of southeast Hunan. Moreover, when the PDO and AMO
are both in a positive phase, the positive precipitation anomaly
is larger and distribute more wide. However, less precipitation

FIGURE 4 | Composition graph of the frequency of positive precipitation anomaly during Hunan flood seasons corresponding to different PDO and AMO phases
from 1961 to 2019.

TABLE 2 | Statistics of the precipitation in Hunan flood seasons in the next years of the El Niño events during 1910–2019.

Years with excess precipitation/
Total years

PDO and AMO
same phase

Precipitation
anomaly/mm

PDO and AMO
opposite phase

Precipitation
anomaly/mm

April to September 18/32 12/17 55.8 6/15 −10.2

April to June 21/32 12/17 78.2 9/15 −23.3

June to August 17/32 12/17 66.1 5/15 −56.8

July to September 13/32 8/17 22.3 5/15 −62.3

TABLE 3 | Statistics of the precipitation in Hunan flood seasons in the next years of the La Niña events during 1910–2019.

Years with less precipitation/
Total years

PDO and AMO
same phase

Precipitation
anomaly/mm

PDO and AMO
opposite phase

Precipitation
anomaly/mm

April to September 23/32 7/13 −30.7 16/19 −57.7

April to June 21/32 8/13 −36.3 13/19 −46.5

June to August 23/32 8/13 −67 15/19 −81.9

July to September 20/32 7/13 −21.4 13/19 −76.3
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FIGURE 5 | The same as Figure 4, but for the next years of El Niño events.

FIGURE 6 | The same as Figure 4, but for the next years of La Niña events and the precipitation series is processed by the low-pass filtering.

FIGURE 7 | The same as Figure 4, but for the next years of La Niña events.

occurs in most of Hunan in the years with the positive PDO phase
and negative AMO phase, except for the northern Hunan. Under
the negative PDO phase and positive AMO phase, the results are
slightly different, with less precipitation in most areas except for
the northwest and southeast Hunan. Compared with the results
in Figure 4, it can be found that the frequency of positive or
negative anomaly of precipitation is higher under the impacts of
ENSO than without the impacts of ENSO. If the time series of
precipitation is also processed by the low-pass filtering, the results

are similar to Figure 5. When the AMO and PDO are in the
positive phase, the precipitation is more than normal. However,
the range of less precipitation is significantly enlarged when both
PDO and AMO are in the negative phase (figure omitted).

Impacts of La Niña Events
In the next years of La Niña events, when the PDO and AMO
are in the same phase, the precipitation in Hunan flood seasons is
less than normal at a percentage of 66.7% (4/6). When the PDO
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FIGURE 8 | Composition of precipitation anomaly percentage in flood season of Hunan Province for the cold SST background in the previous stage (without
reaching the standard of a La Niña event).

FIGURE 9 | The composite 500 hPa geopotential height in the next years of El Niño events during 1961–2019 under different PDO and AMO phases. The punctate
areas pass the significance test at 90% confidence level.The red lines denote 588 dagpm of climatology and shaded area denotes 500 hPa anomalies (the same
below).
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FIGURE 10 | The same as Figure 8, but for the next years of La Niña events.

and AMO are in the opposite phase, the Hunan flood season
is also dominated by less precipitation, and the years with less
precipitation accounts for 75% (9/12, Table 3). In a word, the
overall precipitation in Hunan flood seasons is mainly less than
normal in the next years of La Niña events, and the years with
less precipitation account for 72.2% (13/18, Table 3) of the total.

The precipitation series in the next years of La Niña events is
processed by the low-pass filtering, and the results are shown in
Figure 6. The previous studies have shown that in the next years
of La Niña events, the precipitation is mainly less than normal
during the flood seasons in the middle and lower Yangtze River.
However, for the precipitation in Hunan flood seasons (Figure 6),
when the PDO and AMO are in the same phase, the precipitation
in Hunan in the flood season is more than normal. Note that only
in 2018 the PDO and AMO are both in the positive phase. In the
years when the PDO and AMO are both in the negative phase, the
precipitation in southeastern Hunan is mainly more than normal.
Under the positive PDO phase and the negative AMO phase the
precipitation in flood season is consistently less than normal in

the whole province, and the degree of less precipitation is also
more significant than that in the next years of El Niño events.
In addition, the precipitation distribution in Hunan flood season
is more in the north and less in the south under the negative
PDO phase and the positive AMO phase. Note that without the
low-pass filtering for the precipitation series, the precipitation is
mainly less than normal regardless of the combination of PDO
and AMO phases (Figure 7).

If only the cold SST background in the previous stage is
considered (without reaching the standard of a La Niña event)
and the precipitation series is not processed by the low pass
filtering, the results are shown in Figure 8. When the PDO
and AMO are in the same phase, the precipitation in flood
seasons is mainly more in south-central Hunan and less in the
northern Hunan. However, the precipitation is less than normal
in most areas when the PDO and AMO are in the opposite phase.
Therefore, on the interdecadal scale the precipitation in Hunan
flood seasons is mainly affected by the joint effect of the PDO
and AMO. Besides, the PDO and AMO also have a modulating
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FIGURE 11 | The same as Figure 9, but for the results after the low-pass filtering.

effect on the precipitation on the interannual scale. However, the
ENSO signal has more influence on the anomalous precipitation
in Hunan flood seasons on the interannual scale.

CIRCULATION ANALYSIS

The above analyses have shown that regardless of the PDO and
AMO phases, the precipitation anomaly in the next years of
ENSO events is more significant than in normal years. Thus,
the following cause analysis focuses on the precipitation and
circulations in the next years of ENSO events.

As shown in Figure 9, in the next years of El Niño events, when
the PDO and AMO are both in the positive phase the 500 hPa
height field is the opposite to that when the PDO and AMO are
both in the negative phase, but the influence on the precipitation
in Hunan flood seasons is generally the same (Figure 9). Under
the positive phase of the PDO and AMO, the area near Lake
Baikal is in a low-pressure trough and is controlled by the
negative geopotential height anomaly, so the circulation situation

is favorable for the cold air to advance southward and affect
southern China from the westward path. In addition, the middle
and low latitudes are controlled by the positive geopotential
height anomaly. However, the west Pacific subtropical high
(WPSH, black lines of 5880) is obviously stronger and more
southward than normal (red lines of 5880), favoring the water
vapor transport to southern China. Therefore, precipitation in
most Hunan is more than normal. Under the negative phase of
the PDO and AMO, the significantly weaker East Asian trough is
conducive to the southward movement of cold air. In addition,
the WPSH is weaker than normal, but the India-Burma trough
is significantly stronger, also contributing to the southwesterly
water vapor transport to Hunan, and thereby resulting in more
precipitation. However, the temperature is lower than that in
the positive phase of the PDO and AMO (figure omitted).
Under the positive PDO phase and the negative AMO phase,
the middle latitudes are controlled by the negative geopotential
height anomaly, and the southward cold air is strong. Meanwhile,
the WPSH is on the sea and far from the mainland, and the
India-Burma trough is weak, which is not conducive to the
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water vapor transport, resulting in less precipitation in Hunan.
Under the negative PDO phase and the positive AMO phase, the
middle latitudes are controlled by the positive geopotential height
anomaly. Moreover, the weak cold air in the north is favorable
for water vapor transport to the farther north. This circulation
situation results in less precipitation in Hunan.

As shown in Figure 10, in the next years of La Niña events,
the eastern coast of China presents a positive-negative-positive
anomalous distribution of the East Asia/Pacific teleconnection
under the positive phase of the PDO and AMO (the samples
are only for 2018). The WPSH retreats back to the sea and the
positive geopotential height anomaly controls southern China,
which is not conducive to water vapor transport, easily causing
high temperature and less precipitation in Hunan. Under the
negative phase of the PDO and AMO, the WPSH is anomalously
weak and the negative geopotential height anomaly controls the
whole low latitudes, leading to the weak water vapor transport
and less precipitation in Hunan. The results under the opposite
phase of the PDO and AMO are similar to those under the
same negative phase.

As shown in section “Impacts of La Niña Events,” after the
low pass filtering the precipitation in Hunan flood seasons is
mainly more than normal in the south-central parts under the
same phase of the PDO and AMO in the next years of La Niña
events. Therefore, we also perform the low pass filtering on the
500 hPa geopotential height in the next years of La Niña events.
Note that when the PDO and AMO are in the same positive
phase, only 2018 is the next year of the La Niña event, And the
results in shown in Figure 11. As can be seen, under the same
positive phase of the PDO and AMO the 500 hPa circulation
situation in the middle and low latitudes in the next years of
La Niña events is similar to that in the next years of El Niño
events. At this time, the WPSH is obviously stronger and more
southward than normal, favoring the water vapor transport to
southern China, so the precipitation in most of Hunan is more
than normal. Under the same negative phase of the PDO and
AMO, the significantly weaker East Asian trough is conducive to
the southward movement of cold air. Meanwhile, the WPSH is
weaker than normal, but the India-Burma trough is significantly
stronger, contributing to the southwesterly water vapor transport
to southern China, and thereby resulting in more precipitation
in Hunan. While under the two kinds of the opposite phase,
the circulation situation is generally the same. The WPSH is
anomalously weak and the negative geopotential height anomaly
controls the whole low latitudes, leading to the weak water vapor
transport and less precipitation in Hunan.

CONCLUSION AND DISCUSSION

Based on the above analyses, the following conclusions
can be obtained.

Since 1910, the precipitation in Hunan flood seasons has an
obvious 20-year variation cycle. The PDO index has an obvious
period of 5–6 years from the early 1920s to the early 1960s
and in 1990s. In the 21st century, the period is about eight
years. The AMO index is a multidecadal climatic factor, and its

interannual cycle is not significant. Since the 1960s, in 81.8%
of the years the precipitation in Hunan flood seasons is mainly
more than normal in the years when the PDO and AMO are in
the same phase. Conversely, the precipitation in Hunan flood
seasons is mainly less than normal, accounting for 64.9% of
the total years.

Since 1961, the precipitation in flood seasons is mainly more
than normal in most Hunan under the same positive phase of
the PDO and AMO, except for the northwest Hunan and parts of
southeast Hunan, especially in summer. Under the same negative
phase of the PDO and AMO, the precipitation during the first
rainy season is more than normal in northern Hunan, and the
precipitation during the later flood season is more than normal in
southern Hunan. Overall, the summer precipitation is more than
normal in most areas. Under the positive PDO phase and negative
AMO phase, the precipitation in flood seasons is less than normal
in most regions of Hunan, especially in the first rainy season. The
precipitation in summer and in the later flood season is more
in the west and less in the east. Under the negative PDO phase
and positive AMO phase, the precipitation is more than normal
in most of the regions in the first rainy season, and in other
time the precipitation is less than normal in Hunan, especially
in northern Hunan.

In the next years of El Niño events since 1961, the precipitation
in Hunan flood season is more than normal in most areas of
Hunan under the same phase of the PDO and AMO, except for
parts of southeastern Hunan. Under the positive PDO phase and
the negative AMO phase, the precipitation is less than normal
in most areas, except for northern Hunan. Under the negative
PDO phase and the positive AMO phase, the precipitation
is less than normal except in northwest Hunan and parts of
southeast Hunan. The main reason is that under the same
positive PDO and AMO phase, the WPSH is stronger and more
southward than normal, favoring the water vapor transport to
southern China, and thereby resulting in more precipitation
in most Hunan. When the PDO and AMO are in the same
negative phase, the significantly weaker East Asian trough is
conducive to the southward movement of cold air. Meanwhile,
the WPSH is weaker than normal, but the India-Burma trough
is significantly stronger, contributing to the southwesterly water
vapor transport to southern China, and thereby resulting in more
precipitation in Hunan. Under the positive PDO phase and the
negative AMO phase, the WPSH is on the sea and far from
the mainland, and the India-Burma trough is weak, which is
not conducive to the water vapor transport, resulting in less
precipitation in Hunan. Under the negative PDO phase and
the positive AMO phase, the middle latitudes are controlled by
the positive geopotential height anomaly. Moreover, the weak
cold air in the north is favorable for water vapor transport to
the farther north, and this circulation situation results in less
precipitation in Hunan.

In the next years of La Niña events since 1961, after the low
pass filtering the precipitation in Hunan flood seasons is mainly
more than normal under the same phase of the PDO and AMO
on the interdecadal scale, and the precipitation in southeastern
Hunan is mainly more than normal when the PDO and AMO
are in the opposite phase. Under the positive PDO phase and
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the negative AMO phase, the precipitation is consistently less
than normal in the whole province, and the anomaly of less
precipitation is more significant than that in the next years
of El Niño events. Moreover, under the negative PDO phase
and the positive AMO phase, the precipitation in Hunan flood
seasons is more in the north and less in the south. Note that
the circulation situation in the next years of La Niña events is
similar to those in the next years of El Niño events, indicating
that the critical climatic systems causing the more precipitation
in Hunan are the same.

It is worth noting that this study only explains the differences
of the precipitation in Hunan flood seasons under different
phases of the PDO and AMO from the statistic method. So, the
related physical mechanisms need to be further analyzed in future
work. At the same time, this study only analyzes one province,
Hunan. Further research is needed to study the decadal variability
over the whole Yangtze River reaches. In addition, how PDO
and AMO affect the subtropical high and surrounding circulation
needs further investigations.
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Under the background of global warming, the summer land-sea thermal contrasts at
the upper troposphere exists great discrepancies in radiosonde data (IUK, RICH, and
RAOBCORE), reanalysis data (JRA-55, NCEP/DOE, and ERA5) and CMIP6 models
results (MPI, FGOALS, and CESM2) for the period of 1979-2014. It can be found that the
descriptive statistical indicators (i.e., maximum, minimum, and skewness) of the summer
land-sea thermal contrasts index (TTI) between the Tibetan Plateau (TP) and the Tropical
Indian Ocean (TIO) vary greatly. The ERA5 and JRA-55 data have the best correlation
with radiosonde data. The linear trend and running linear trend (RTL) of the radiosonde
data are significantly correlated with the reanalysis data, and both show that the land-
sea thermal contrast rapidly increasing are in 1990s and the late 2000s, and the period
of rapid weakening was early 2000s. This interannual variation may modulated by the
decadal signals such as Pacific Decadal Oscillation (PDO). Except for the NCEP/DOE
and IUK, other data show that the most significant warming in the TP-TIO region is
at the upper troposphere, and the vertical profiles of the summer temperature trend
are quite different in different data, and CMIP6 shows an obvious warm bias in the
upper troposphere.

Keywords: summer thermal contrast, Tibetan Plateau, tropical Indian Ocean, upper troposphere, discrepancies

INTRODUCTION

The Asian monsoon onset that results from the land–sea thermal contrast between Eurasia and the
tropical ocean (Webster et al., 1998) is characterized by changes in the prevailing wind direction and
the appearance of severe precipitation (Wu et al., 2013). Several studies have been carried out on
the relationship between the meridional land–sea thermal contrast (Li and Yanai, 1996; Sun et al.,
2010; Zhang et al., 2017; Luo et al., 2021), or the zonal land–sea thermal contrast (Qian et al., 2004;
Qi et al., 2007; Si et al., 2019), and the Asian monsoon. He et al. (2003) revealed that the reversal
time of the meridional temperature gradient in upper troposphere is concurrent with (one pentad
earlier than) the onset time of the summer monsoon. Dai et al. (2013) showed that the summer
thermal structure and winds over Asia produce a larger land–sea thermal gradient in the upper
than in the lower troposphere, and identified the greater role of the upper troposphere in driving
the Asian summer monsoon circulation.
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The South Asian summer monsoon (SASM) is the strongest
among the three members of the Asian monsoon system (Wang
et al., 2017), and its onset and intensity are regulated by the
meridional thermal contrast in the upper troposphere (Dai et al.,
2013; Luo et al., 2021). The obvious features during summer in
the upper troposphere of the Asian monsoon region are the warm
center and the South Asian high located on the southern side of
the TP (Boos and Kuang, 2010). The thermal condition of the
Tibetan Plateau (TP) and tropical Indian Ocean (TIO) are the two
key impact factors and the interactive system to modulate SASM.
In summer, the thermal contrast between the TP and TIO reaches
the strongest, and the SASM region is accompanied by strong
baroclinicity (Luo et al., 2021). A reduced (increased) meridional
upper-tropospheric thermal contrast will lead to a weakened
(strengthened) SASM circulation in climate models (Sun et al.,
2010) and reanalysis data (Luo et al., 2021). The physical
explanation is the thermal wind relationship (Holton, 2004).

Since the rapid warming period after the 1970s (IPCC, 2014),
the degree of warming has varied greatly in the radiosonde and
satellite data for the mid-troposphere (Thorne et al., 2011; Guo
et al., 2020a), and there are also many uncertainties in the trend
of the upper tropospheric temperature (Seidel et al., 2004). The
upper troposphere above the TP and TIO is warming (Zhao
et al., 2015; Ming et al., 2019; Shangguan et al., 2019), and there
are uncertainties in the interannual variation of the meridional
land–sea thermal contrast (Dai et al., 2013; Guo et al., 2017).
Due to the strong positive relationship between the summer
thermal contrast between TP-TIO with SASM, and the it is
necessary to discussed the discrepancies of upper troposphere
summer thermal contrast between TP and TIO in multiple data,
especially the discrepancies of the trends. This work can provide
a foundation for our further research on the relationship between
the TP-TIO thermal contrasts and the SASM in interannual
and interdecadal scale. The article is organized as follows. In
section “Data and Methods,” we describe the data and the
procedure. We then introduce two SASM indices (SASMIs)
and the definition of the meridional land–sea thermal contrast
index (TTI). Section “Results” presents the results and section
“Summary and Discussion” provides a summary and discussion.

DATA AND METHODS

Data
The data used in this article are listed in Table 1, and the
details are as follows.

Radiosonde Data
The Iterative Universal Kriging (IUK) radiosonde dataset
since 1959 from 527 radiosonde stations was developed
by Sherwood et al. (2008) using a statistical model to
simultaneously identify artificial shifts and natural atmospheric
fluctuations. Haimberger (2007) and Haimberger et al. (2008,
2012) carried out homogeneity adjustments of the Radiosonde
Observation Correction using reanalysis (RAOBCORE) and
Radiosonde Innovation Composite Homogenization (RICH)
for the upper air temperatures from the global radiosonde

TABLE 1 | Data used in this study.

Center and location Data set

Radiosonde Climate Change Research Centre,
University of New South Wales
Sydney (Australia)

IUK

University of Vienna (Austria) RICH

University of Vienna (Austria) RAOBCORE

Reanalyses Japan Meteorological Agency
(Japan)

JRA-55

National Centers for Environmental
Prediction Department of Energy
(United States)

NCEP/DOE

European Centre for Medium
Range Weather Forecasts (Europe)

ERA5

CMIP6 Max Planck Institute for
Meteorology (Germany)

MPI-ESM1.2 LR_historical

Chinese Academy of Sciences
(China)

FGOALS-f3 L_historical

National Center for Atmospheric
Research (United States)

CESM2_historical

network. The resulting datasets include the RAOBCORE and
RICH data. The former was calculated from the mean of
the radiosonde minus the reference time series before and
after breakpoints. The latter is based on the breakpoint
detection method of RAOBCORE, but it also considers
neighbor station time series as a reference (Pattantyús-
Ábrahám and Steinbrecht, 2015). The RAOBCORE and RICH
10◦ × 5◦ gridded data were averaged over 108 latitude
bands, while the IUK is the station data averaged by
latitude band without gridding (Free, 2011). According to
the area of the TP (75◦E –103◦E, 28◦N–38◦N) and TIO
(60◦E- 100◦E, 15◦S–5◦N), we choose 3 stations (station
number: 61967,48657,48698) represent the TIO, and 5 stations
(42027,42101,42182,51828,51848) represent the TP, and then
defined the thermal contrast for IUK data.

Reanalysis Data
The JRA-55, which is the second Japanese global atmospheric
reanalysis based on TL319, is the first comprehensive reanalysis
to apply four-dimensional variational analysis up to the present
(Kobayashi et al., 2015). The NCEP–Department of Energy
(DOE) reanalysis is an updated version of the NCEP–NCAR
reanalysis (Kanamitsu et al., 2002). It has good applicability
in describing precipitation and temperature (Chen et al., 2014;
Harada et al., 2016). ERA5 is the fifth-generation ECMWF
(European Centre for Medium-Range Weather Forecasts) global
atmospheric reanalysis from 1950 to the present, based on
the Integrated Forecasting System (IFS) Cy41r2, which started
operation in 2016. Compared with the 80 km horizontal
resolution of the ERA Interim reanalysis data, ERA5 has a
horizontal resolution of 31 km, which performs better in
describing temperature, wind, precipitation, and weather systems
(Hersbach et al., 2020). The present study used temperature at
1000–200hPa from 1979 to 2014 for ERA5 (1◦ ×1◦), JRA-55
(1.25◦ ×1.25◦) and NCEP/DOE (2.5◦ ×2.5◦).
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Model Data
The Max Planck Institute for Meteorology Earth System Model
version 1.2 (MPI-ESM1.2, hereafter MPI) is the update of
MPI-ESM1.1 and includes improvements in all its components
(Mauritsen et al., 2019). The MPI-ESM1.2 LR is the low-
resolution version. The low-resolution version of the Chinese
Academy of Sciences (CAS) Flexible Global Ocean–Atmosphere–
Land System model finite-volume version 3 (FGOALS-f3-L,
hereafter FGOALS) climate system model was developed at the
State Key Laboratory of Numerical Modeling for Atmospheric
Sciences and Geophysical Fluid Dynamics (LASG) which has
six tiles and is irregular in the horizonal direction (He et al.,
2019). The Community Earth System Model Version 2 (CESM2)
has improved historical simulations compared with CESM1
and available observations (Danabasoglu et al., 2020). In this
study, we used the simulated historical temperatures of three
models from Phase 6 of the Coupled Model Intercomparison
Project (CMIP6). The CMIP6 includes the latest generation of
comprehensive Earth Systems, driven by historical greenhouse
gas concentrations, and followed by different future greenhouse
gas and aerosol concentrations according to the Shared
Socioeconomic Pathways (SSP) scenarios (Tokarska et al., 2020).
The historical forcings of CMIP6 are based as far as possible on
observations and cover the period from 1850 to 2014 (Eyring
et al., 2016). The present study used temperatures at 1000–200hPa
from the above three historical simulation results of CMIP6 for
the period from 1979 to 2014.

Method
Thermal Contrast Index (TTI)
The thermal contrast between the TP and the TIO reaches
the maximum in summer (Luo et al., 2021), while the vertical
fall in TP-TIO is reached at about 5000 m. Dai et al. (2013)
found that the land–sea thermal contrast in the mid-upper
troposphere contributes about three times more than the thermal
contrast in the mid-lower troposphere in determining the Asian
summer monsoon circulation. Therefore, this study applies the
thermal contrast index (TTI), which is the meridional gradient
of the 400-200 hPa average summer temperature in the TP-TIO
region [formula (1)] to represents the summer thermal contrast
between land and sea. The larger (smaller) the positive TTI, the
stronger (weaker) the meridional thermal contrast in the upper
troposphere. In formula (1), T represents the area-averaged of
monthly temperature anomaly in summer at 400–200hPa.

TTI

= TTP(75◦E−103◦E, 28◦N−38◦N) − TTIO(60◦E−100◦E, 15◦S−5◦N)

(1)

South Asian Summer Monsoon Indices (SASMIs)
There are several SASMIs to describe the different features of
the monsoon (Webster and Yang, 1992; Wang and Fan, 1999;
Li and Zeng, 2002, 2003). This study used two SASMIs, one of
which is the Webster and Yang (1992) index, here named MI-
2, and the other is MI-1. The atmospheric kinetic energy of the

vertical mean flow and the shear flow can be referred to as the
barotropic and baroclinic component, respectively. MI-1 is based
on the atmospheric baroclinic component over the region (0◦–
20◦N, 60◦–100◦E) due to the strong baroclinicity in the SASM
region (Xu and Chan, 2002). For the specific definition of MI-1,
please refer to our previous publication (Luo et al., 2021). MI-
2 is defined by the zonal wind difference between 850 and 200
hPa over the region (0◦–20◦N, 40◦–110◦E), which can reflect the
variability of the broad-scale SASM (Wang and Fan, 1999). MI-1
and MI-2 have a significant positive correlation (Luo et al., 2021).

Trend Calculation
The trend is computed using linear least squares fitting (Wei,
2007) and running linear least square fitting (Zhao et al., 2013).
The running linear least square fitting is used to estimate
the thermal contrast trends with a moving 10-year temporal
window that can describe the variations of the trend with time.
The t-statistic is used to test for a significant linear regression
relationship and correlation coefficient relationship (Wei, 2007).
The significance level is set to be 0.05.

In addition, because RAOBCORE and RICH are anomaly
monthly data based on 1981-2010, in order to maintain
consistency, the rest data in our study also used this basis to
calculate anomalies.

RESULTS

There are great differences in the different data describing the
basic characteristics of the thermal contrasts (Figure 1 and
Table 2). The maximum TTI varied from 0.94◦C (JRA-55) to
1.59◦C (FGOALS), and the minimum TTI changed from –
2.87◦C (IUK) to –1.08◦C (CESM2). The IUK data were relatively
scattered (range value = 4.3◦C) and had the largest standard
deviation (σ = 1.02), while the ERA5 was the most concentrated
(range value = 2.28◦C) with the smallest standard deviation
(σ = 0.49). The reason for this is that the IUK data consist
of 460 radiosonde stations (Sherwood et al., 2008), while the
RAOBCORE and RICH are assimilated from more than 1000
daily radiosonde stations (Haimberger et al., 2008). The ERA5
provides a detailed record of the global atmosphere, land surface
and ocean waves from 1950 onward with a horizontal resolution
of up to 0.28◦ (Hersbach et al., 2020). It also assimilates
the RAOBCORE and RICH. In addition, NCEP/DOE in the
reanalysis data and the FGOALS in the models are also relatively
scattered. According to the skewness coefficient, the results are
left-biased, except for NCEP/DOE, CESM2, and MPI. The models
and NCEP/DOE have insufficient kurtosis distribution, whereas
the others have excessive kurtosis distribution.

The reanalysis data have significant correlation with the
radiosonde data, and the results of JRA-55 and ERA5 are the
most significant. This indicates that reanalysis data, especially
ERA5 and JRA-55, can reproduce the summer land–sea thermal
contrasts in the upper troposphere of the TP-TIO region. Because
the model simulation were not designed to match the temporal
evolution of observed climate, or the raw climate variables at
interannual or decadal time scale, our research wasn’t analyze
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FIGURE 1 | Boxplot of the summer land–sea thermal contrasts (TTI) (◦C).

the correlation between the simulation results and other data.
The standard deviation of IUK is the largest, and the standard
deviation of RICH and RAOBCORE is relatively small (Table 3),
resulting in the ratios of the standard deviation in Figure 2 are
different from each other. In addition, the standard deviation of
the reanalyses are smaller than the value of the radiosonde data.

The maximum and minimum values of the TTI are
inconsistent with their corresponding years (Figure 3), but the
interannual fluctuations of summer land–sea thermal contrast
in the reanalysis and radiosonde data are more consistent
(Figures 3A,B). The TTI is relatively strong in 1981, 2000, and

TABLE 2 | The statistics of the summer thermal contrasts (TTI) for the different
data.

Min Max Range Std Skewness Kurtosis

(◦C) (◦C) value(◦C)

Radiosondes IUK −2.87 1.43 4.30 1.02 −0.87 1.02

RICH −1.69 1.27 2.96 0.64 −0.59 0.71

RAOBCORE −1.83 1.45 3.28 0.67 −0.60 1.10

Reanalyses JRA-55 −1.37 0.94 2.31 0.51 −0.47 0.60

NCEP/DOE −1.24 1.25 2.49 0.60 0.09 −0.11

ERA5 −1.30 0.98 2.28 0.49 −0.54 1.00

CMIP6 MPI −1.05 1.01 2.06 0.53 0.012 −0.47

FGOALS −2.06 1.59 3.65 0.87 −0.49 −0.04

CESM2 −1.08 1.26 2.34 0.67 0.17 −0.96

TABLE 3 | Correlation coefficients of TTI between radiosonde and the reanalysis
data (bold indicates a correlation coefficient above 0.32, representing the
significance test at the 95% confidence level).

IUK RICH RAOBCORE

Reanalyses JRA-55 0.641 0.875 0.882

NCEP/DOE 0.341 0.773 0.699

ERA5 0.628 0.888 0.876

2013 and weak in 1983, 1987, 1992, and 2011. Radiosonde data
show an obvious increasing trend of summer thermal contrast
(0.4 ◦C/dec), the reanalysis data have a slight increasing trend
(0.1◦C/dec), and models show no clear trend. The increasing
trends of IUK, RICH, and RAOBCORE are 0.62◦C/dec,
0.15◦C/dec and 0.28◦C/dec, respectively (Figure 4B), and the
trends of JRA-55 (0.13◦C/dec) and ERA5 (0.08◦C/dec) are
positive, while the NCEP/DOE (−0.07◦C/dec) is negative. There
is also a decreasing trend in the 1980s and an increasing trend in
the 2000s in the reanalysis data. ERA5 shows improved quality
compared with ERA-Interim and performs the best agreement
with the Global Positioning System radio occultation (GPS RO)
data for the 2002-2017 trends of upper troposphere and lower
stratosphere (0.2–0.3◦C/dec) (Shangguan et al., 2019). In our
research we found that the ERAI trends are all stronger than
the ERA. The upper troposphere in TP and TIO have warming
trends in ERA5 and ERA-I, and the trend of the land-sea thermal
contrasts of TTI are 0.08◦C/dec and 0.15◦C/dec, respectively
(Figure omitted). After 1999, the warming bias of ERAI was
obvious until 2006 due to the variation of data assimilation
(Simmons et al., 2014).

All data show a warming trend in the summer temperature of
the upper troposphere in the TP (Figure 4A), and in the TIO,
except for the IUK data (Figures 4A,C). The warming of the
summer temperature over the TP and the TIO has been noted
in many previous studies (Zhao et al., 2015; Ming et al., 2019).
Comparing the trend of the TP and TIO for radiosonde data,
the thermal contrast is dominated by the TP heating. Under
the background of global warming, the tropospheric temperature
of the TP in summer increases faster than the TIO, which
leads to the increasing land–sea thermal contrast. However,
the simulation results of CESM2 and FGOALS show that the
increasing temperature trend of the TIO was stronger than that
of the TP, which led to the weakening of the thermal contrast.
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FIGURE 2 | Taylor plot of the reanalysis data and model results with radiosonde data.

The running linear trends (RLTs) of the thermal contrast
of TTI show a similar fluctuation, especially after 1995, for
reanalysis and radiosonde data (Figures 5A,B). Furthermore, the
correlations of the RLTs all passed the significance test (Table 4),
which further illustrates the similarity between the reanalysis
and the radiosonde data in describing the land–sea thermal
contrast. Figure 5 shows that the RLTs are positive, negative, and
positive from approximately 1995–1999, 2003–2005, and 2006–
2010, respectively, indicating that the land–sea thermal contrasts
between the TP and the TIO increased in the 1990s and the late
2000s, and weakened in the early 2000s. The most rapid period of
land–sea thermal contrast strengthening occurred in the 1990s.
This is because the maximum of the RLT was in 1997, which
indicates that from 1992 to 2001, especially from 1997 to 2000, the

summer TP-TIO thermal contrast increased rapidly. The model
results are very different from the reanalysis and radiosonde data
(Figure 5), including the RLT after the 2000s.

The land-sea thermal contrast is significantly positive
correlation with SASM, and the interannual variations of the
SASM indices (MI-1 and MI-2) and the land-sea thermal contrast
index (TTI) are basically the same (Figure omitted). The RLTs of
TTI is also consistent with the change of the SASMI (Figure 6).
The RLTs calculated by the JRA-55, ERA5, IUK, and RAOBCORE
have a strong positive correlation with MI-1 and MI-2, indicating
that when the summer land–sea thermal contrast increased
rapidly, the intensity of the SASM and the atmospheric baroclinic
component also increased rapidly in the monsoon region, and
vice versa. For example, from 1997 to 2000, the thermal contrasts
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FIGURE 3 | The interannual variations of the thermal contrasts TTI in Radiosondes (A) and Reanalyses (B) (solid lines represent 10-year running averaged of three
datasets in each panel, and the shading represents the ensemble of the three datasets).

FIGURE 4 | The trends for the (B) TTI and (A,C) the summer temperature at 400–200 hPa in the troposphere for TP and TIO, respectively (◦C/dec).

in the TP-TIO region increased rapidly, accompanied by a rapid
increasing intensity of the SASM. This was the time period when
the El Niño–Southern Oscillation (ENSO) event changed from
the strong warm phase to the strong cold phase. Figure 6 shows
that the TTI weakened rapidly in the early 2000s (at about 2002–
2006), and increased rapidly in the late 2000s (after 2007) with the
rapid weakening and strengthening of the SASM. This is due to
the fact that the RLTs of upper troposphere summer temperature

in the TIO is greater than that in the TP in early 2000s, and
smaller in the late 2000s (Figure omitted). We speculate that
this interannual transition is likely to be related to the Pacific
Decadal Oscillation (PDO). In the first period, the summer PDO
index is a small positive value, while in the second period, the
PDO index is a larger negative value. During positive PDO
phases, the transport of moisture from the Bay of Bengal and the
South China Sea to Eurasia is inhibited (Lyu, 2019), and Indian
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FIGURE 5 | The RLTs of TTI (◦C/dec) in Reanalyses (A), Radiosonde (B), and CMIP6 (C).

TABLE 4 | Correlation of the RLTs of TTI between reanalysis data and radiosonde data the SASMIs (bold indicate a correlation coefficient above 0.37, representing a
significance test at the 95% confidence level).

IUK RICH RAOBCORE JRA-55 NCEP/DOE ERA5 MI-1 MI-2

Radiosondes Reanalyses SASMI IUK 1 0.640 0.682 0.400 0.440 0.473 0.687 0.682

RICH 1 0.986 0.776 0.668 0.776 0.376 0.240

RAOBCORE 1 0.828 0.685 0.833 0.494 0.367

JRA-55 1 0.748 0.984 0.532 0.454

NCEP/DOE 1 0.783 0.289 0.199

ERA5 1 0.578 0.512

MI-1 1 0.958

MI-2 1

rainfall decrease with weaker SASM (Krishnan and Sugi, 2003),
which accompanied by the weak thermal contrast in the TP-TIO
(Luo et al., 2021). During positive PDO phases, the situation is
almost opposite.

The vertical profiles of the summer temperature trend are
quite different in the TP-TIO region (Figure 7). Radiosonde data,
reanalysis data (except NCEP/DOE and IUK) and the model
results all show that the temperature in the upper troposphere
are increasing significantly in the TP-TIO region. In climate
models, with increasing greenhouse gas concentrations, the
surface and troposphere are consistently projected to warm,

with an enhancement of that warming in the tropical upper
troposphere (Thorne et al., 2011). Allen and Sherwood (2008)
analyzed thermal winds and suggested a warming maximum
in the tropical upper troposphere. The TP has a stronger
warming trend in the upper troposphere than the TIO area
for the radiosonde and reanalysis data (except for NCEP/DOE),
while the model results generally display a significant warming,
which is consistent with Figure 4C. The clear warm bias in
CMIP6 in the troposphere has received a lot of attention (Li
et al., 2020; McKitrick and Christy, 2020; Mitchell et al., 2020).
Figure 7 also shows a warm bias in the upper troposphere. In
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FIGURE 6 | The RLTs of the (TTI, ◦C/dec) and SAMIs (MI1-1, MI-2) based on
ERA5.

the troposphere, the observed warming trends are located in the
upper troposphere, which are correctly captured by FGOALS
(Guo et al., 2020b). The CMIP6 historical simulations aim to
evaluate the ability of models to reproduce the climate on various
time scales (Guo et al., 2020b), and serve as important tools to
determine consistency of climate model forcing and sensitivity
with the observational record (Eyring et al., 2016; Srivastava
et al., 2020). However, observational data are scarce in the upper
troposphere, and the satellite data (Mears and Wentz, 2009) is
inconsistent with the altitude selected in our research. In the
absence of numerical simulation experiments, it is necessary to
use the CMIP6 historical simulations for research. Of course,
there are also some studies that have used models simulations
to study interannual issues (Zhao et al., 2013, 2015). Therefore,
we still use CMIP6 historical simulations for interannual scale
analysis in this study.

SUMMARY AND DISCUSSION

With the accelerated global warming over the past 100 years
(Xu et al., 2018), research of the land–sea thermal contrast
has received much more attention (Li and Yanai, 1996; Sun
et al., 2010; Dai et al., 2013). The present study used a summer
meridional land–sea thermal contrast index (TTI) to study the
discrepancies in nine datasets in the summer thermal contrasts of
the TP-TIO region for the upper troposphere. We also analyzed
the relationship between the interannual variations of TTI with
the two SASMIs. The results are as follows.

(1) There are great differences in the reanalysis data (JRA-
55, NCEP/DOE, ERA5), radiosonde data (IUK, RICH,
and RAOBCORE) and CMIP6 model results (MPI,
FGOALS, CESM2) describing the basic characteristics (e.g.,
maximum, minimum, and standard deviation) of the
thermal contrasts in the TP-TIO region. The maximum
and minimum of the TTI varied from one dataset to
another. The IUK data were relatively scattered, while
the ERA5 were the most concentrated. The IUK results
were significantly different from RAOBCORE and RICH

due to the different homogenization methods applied.
The reanalysis data were significantly correlated with
the radiosonde data, with JRA-55 and ERA5 data the
most significant.

(2) The radiosonde data showed a clear increasing trend in
the summer thermal contrast, and the reanalysis data had
a slight increasing trend, whereas the models showed no
obvious trend. The TP-TIO region showed a warming
trend in the upper troposphere in most of the data. The
intensity of the thermal contrast was dominated by the
TP heating in the radiosonde data, while CESM2 and
FGOALS showed that the increasing temperature trend of
the TIO was stronger than that of the TP, which led to the
weakening of the thermal contrast.

(3) The RLTs of TTI shows a similar fluctuation, especially
after 1995 for reanalysis and radiosonde data. In the
1990s and the late 2000s, the land–sea thermal contrasts
increased, while they weakened in the early 2000s. This
interannual variation may modulated by the decadal
signals such as Pacific Decadal Oscillation (PDO). The
most rapid strengthening period in the land–sea thermal
contrast occurred in the 1990s.

(4) For the reanalysis and radiosonde data, the TTI was
significantly positively correlated with the intensity of the
SASM, as well as the RLTs. This suggests that if the
meridional thermal contrast between the TP and the TIO
increases rapidly, the intensity of the SASM also increases
abruptly. The vertical profiles of the summer temperature
trend are quite different in the TP-TIO region, and CMIP6
shows a warm bias in the upper troposphere

There is a strong correlation between the intensity of the
SASM and the meridional land–sea thermal contrasts in the
TP-TIO region, while the value of the TTI varies greatly
between different datasets. The reanalysis and radiosonde data
are inconsistent in describing the interannual variations of the
TTI. The radiosonde observations have been used to create
long-term global upper-air temperature datasets, which figure
prominently in studies of large-scale climate variability and
change (Seidel et al., 2004). However, the radiosonde stations are
sparse, especially over the oceans of the southern hemisphere
(Thorne et al., 2011), resulting in the deviations in the TTI
calculations. Many studies have therefore used a variety of tools
to detect and adjust the non-climatic artifacts in the radiosonde
data (Allen and Sherwood, 2008; Zhou et al., 2020). The possible
reason for the large differences in the results of the CMIP model
simulation and reanalysis is that the climate models have a strong
warm bias in the upper troposphere (Zhao et al., 2016). The
overestimation of both the climate feedbacks and the aerosol
forcing can result in a historical warming to the present day that
is similar to the observations, but has a poor temporal agreement
with the observations. Another key point is that the relative
contribution of the TP and TIO to the land–sea thermal contrasts
is not clear and, like in the present study, the contribution of
the TP or the TIO to the TTI changes with the data. In future
work, we plan to collect multiple data (Guo et al., 2020a) to
solve this problem.
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FIGURE 7 | The vertical profile of the summer temperature trend at 80◦E–100◦E (◦C/dec).
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Scientific prediction of critical time points of the global temperature increases and
assessment of the associated changes in extreme climate events can provide essential
guidance for agricultural production, regional governance, and disaster mitigation.
Using daily temperature and precipitation model outputs from the Coupled Model
Intercomparison Project Phase 6 (CMIP6), the time points of the temperature that will
increase by 1.5 and 2.0◦C were assessed under three different scenarios (SSP126,
SSP245, and SSP585). To characterize the change of extreme climate events in the
rice-growing regions in China, six indices were designed, and a time slice method was
used. An analysis from an ensemble of CMIP6 models showed that under SSP245,
the global mean temperature will rise by 1.5◦C/2.0◦C by approximately 2030/2049.
A global warming of 2.0◦C does not occur under SSP126. The time for a 1.5◦C/2.0◦C
warming all becomes earlier under SSP585. Under 1.5◦C of global warming, the number
of warm days (TX90p), rice heat damage index (Ha), consecutive dry days (CDD), 5-
day maximum precipitation (Rx5day), and number of annual total extreme precipitation
events (R99pTOT) will clearly increase, while the number of cold damage (Cd) events
will decrease. All the indices show a strong variability regionally. For example, the CDD
increased significantly in the Central China and South China rice-growing regions. The
monthly maximum consecutive 5-day precipitation increased by as much as 6.8 mm in
the Southwest China rice-growing region.

Keywords: global warming, 15◦C and 2◦C warming target, extreme climate events, rice growing regions, risk

INTRODUCTION

Affected by human activities, the global climate is undergoing changes characterized by warming.
A 1.5◦C special report of the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment
Report estimated that human-induced warming has caused a temperature rise of approximately
1.0[0.8–1.2]◦C above the preindustrial level. If the current rate of temperature rise continues, then
the global temperature will increase by 1.5◦C between 2030 and 2052 (IPCC, 2018). A range of
studies has shown that warming temperatures will lead to an increase in the frequency and intensity
of extreme climate events (Tian-Yun et al., 2018; Almazroui et al., 2020; Wu et al., 2020). In order
to cope with the adverse effects of climate change on society, nearly 200 parties under the United
Nations Framework Convention on Climate Change (UNFCCC) reached an agreement to adopt
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the Paris Agreement in December 2015. The agreement clearly
states that the global warming should be controlled within 2◦C
above the industrialized level, and efforts should be made to
control the warming within 1.5◦C. Many studies have shown that
it is necessary to limit the global warming to a level below a 1.5◦C
increase (Li et al., 2018; Nangombe et al., 2018; Zhang et al.,
2018). IPCC reports (IPCC, 2018) have pointed out that under
the background of global warming, the frequency and intensity
of extreme weather events have increased significantly in the
past few decades. With increasing temperature, the frequency
of extreme weather will continue to increase. Focusing on the
change in and risk of extreme events controlled by 2 and 1.5◦C
of global warming, some research (Knutti et al., 2016) has found
that changes in precipitation increased linearly with the increase
in temperature, and the frequency of heavy precipitation also
increased significantly. As the temperature continues to rise, the
number of days of high-temperature heat waves over a certain
threshold will increase nonlinearly with increasing temperature.

Many studies in China and in the world have used global and
regional climate models to assess the change in extreme climate
events and possible societal impacts as global warming continues
(Xuejie et al., 2002; Haylock et al., 2006; Xu et al., 2006; Hu et al.,
2007; Li et al., 2010; Ren et al., 2010; Dosio, 2016). Advances in
climate models provide strong support for future climate change
risk assessment. At present, a large amount of output from the
Coupled Model Intercomparison Project Phase 6 (CMIP6) is
available for analysis. Extensive dedicated studies have evaluated
the performance of the CMIP6 models. The CMIP6 models have
been shown to be significantly improved in comparison to the
CMIP5 models. The simulation of extreme climate events has
also improved (Dan et al., 2002; Feng et al., 2014; Yang et al.,
2014; Chen et al., 2020; Ukkola et al., 2020; Zhou et al., 2020;
Zhu et al., 2020).

Climate change due to global warming has a significant
impact on the economy (Chou et al., 2016). Agriculture is
vulnerable to climate change. Although warming temperatures
could be conducive to crop growth in some particular regions,
continuously warming temperatures, changing precipitation
patterns, and increasing extreme climate events in terms of
number and intensity have a dramatic negative impact on food
security (Gaupp et al., 2019). Recent studies have assessed the
direct impact of climate change on food production (Ju et al.,
2013; Wheeler and von Braun, 2013; Xiong et al., 2016; Chou
et al., 2019a). China is the most populous country in the
world. Rice is the most important food source in China. The
rice-growing region in China is approximately 3 × 107hm2,
which accounts for 27% of the farmland in the country.
The total rice output accounts for 42% of the total grain
production (Chen et al., 2017). Thus, assessing the change
in extreme climate events on rice production in China is
uniquely important.

Research is greatly needed on how global warming changes
Chinese rice production. The existing research has been based
on economic-climate models, production function models, and
crop models (Wang et al., 2016; Chou et al., 2019b). No dedicated
studies on the impact of changes in extreme climate events arising
from global warming on rice production exist. There are studies

on the impact of extreme climate events (Sun and Huang, 2011),
but they are based on historical data. These studies also cover only
a certain area. Quantitative and scientific assessments of changes
in extreme climate events and their impact on rice production
are necessary to provide a scientific basis for rice planting layout,
transformation, adjustment, and adaptation to climate change.

This study uses outputs from an ensemble of CMIP6 models
to assess when 1.5 and 2.0◦C global warming will occur under
different scenarios. Based on the time of the moderate emission
scenario (SSP245), the change in extreme climate events in
the rice-growing regions in China under different scenarios
is characterized. This study will help to further understand
the climate change trend and risk in Chinese rice-growing
regions. This study will also help provide information for
early warning and forecasting of extreme disaster events and
preventing and mitigating disasters, as well as for rationally
laying out rice production and responding to risks to rice
production, which have important scientific significance and
practical value.

TABLE 1 | Basic information and atmospheric resolution of eight CMIP6
global climate models.

Model name Group Resolution

AWI-CM-1-1-MR AWI/Germany 0.93◦ × 0.9375◦

BCC-CSM2-MR BCC/China 1.112◦ × 1.125◦

ACCESS-ESM1-5 ACCESS/Australia 1.25◦ × 1.875◦

NESM3 NESM3/China 1.85◦ × 1.875◦

INM-CM4-8 INM/Russia 1.5◦ × 2◦

MPI-ESM1-2-HR MPI/Germany 0.93◦ × 0.9375◦

MRI-ESM2-0 MRI/Japan 1.1◦× 1.1◦

NorESM2-MM NCC/Norway 0.94◦ × 1.25◦

FIGURE 1 | China rice-growing regions. I, Northeast China rice-growing
region (NEC); II, North China rice-growing region (NC); III, Central China
rice-growing region (CC); IV, Southwest China rice-growing region (SWC); and
V, South China rice-growing region (SC).
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TABLE 2 | Definitions of six extreme climate indices.

Acronym Indicator Definitions Units

TX90p Warm days Days when Tmax >90th percentile days

CDD Consecutive dry days Maximum number of consecutive days with precipitation <1 mm days

Rx5day 5-day maximum precipitation Monthly maximum consecutive 5-day precipitation mm

R99pTOT Annual total extreme precipitation Annual total precipitation when RR > 99p mm

Ha Rice heat damage index High-temperature damage intensity of rice during the booting and flowering and filling stages ◦C/day

Cd Rice cold damage index Low-temperature damage times of rice during the booting and flowering and filling stages Times

FIGURE 2 | Flow chart of changes in extreme climate events in rice-growing regions under different warming scenarios in China.

MATERIALS AND METHODS

Reanalysis Data and CMIP6 Data
The historical reanalysis data were from ERA5. ERA5 is the
latest generation of reanalysis data created by the European
Centre for Medium-Range Weather Forecasts (ECMWF). The
data cover the historical period from 1950 to the present. In
comparison with reanalysis data, ERA5 data incorporate more
historical observational data, especially satellite data, into its
data assimilation system to improve the accuracy of atmospheric
condition estimations. In addition, in comparison with previous
versions, ERA5 has a higher spatial and temporal resolution,
with a temporal resolution of 1 h and a spatial resolution of
0.25◦ × 0.25◦.

The future climate scenario data were obtained from the
climate model data from CMIP61. The data used in this
study were daily near-surface air temperature, daily maximum
near-surface air temperature, daily minimum near-surface
air temperature, daily precipitation, monthly near-surface air
temperature, and monthly precipitation. The selected scenarios
were SSP126, SSP245, and SSP585. The data selection time period
was 1950–2100. The fundamental information on the selected
models is listed in Table 1.

Research Area and Index Selection
Combining the rice-cropping system and growing environment,
the entire study area was divided into five rice-growing regions
(Luo et al., 2020). The five rice-growing regions were as follows
(Figure 1): (I) Northeast China rice-growing region (NEC), (II)

1https://esgf-node.llnl.gov/projects/cmip6/

North China rice-growing region (NC), (III) Central China rice-
growing region (CC), (IV) Southwest China rice-growing region
(SWC), and (V) South China rice-growing region (SC).

The selection of extreme climate event indicators was
mainly based on 27 typical climate indexes defined by the
Expert Team on Climate Change Detection and Indices
(ETCCDI) jointly established by organizations such as the
World Meteorological Organization (WMO). The ETCCDI

FIGURE 3 | Taylor diagram of annual mean Tas and Pr between the CMIP6
data and reanalysis data in China.
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include 16 temperature indices and 11 precipitation indices.
In this study, we selected warm days (TX90p), consecutive
dry days (CDD), 5-day maximum precipitation (Rx5day),
and annual total extreme precipitation (R99pTOT). These
four indices provided substantial information on the extreme

climate events that will affect rice. The rice heat damage
index (Ha) and rice cold damage index (Cd) are stipulated in
“meteorological grade of hot damage to rice” and “grade of
chilling damage for rice and maize,” respectively. Information
on the selected indexes is described in Table 2. And Figure 2

FIGURE 4 | Global warming under different scenarios [SSP126 (A), SSP245 (B), and SSP585 (C)].

FIGURE 5 | Distribution of consecutive dry days (CDD) at 1.5 and 2◦C. (A–C) Global warming at 1.5◦C under SSP126, SSP245, and SSP585, respectively. (D–F)
Global warming at 2◦C under SSP126, SSP245, and SSP585, respectively. (G–I) The differences between global warming at 1.5 and 2◦C.
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is the flow chart of changes in extreme climate events
in rice-growing regions under different warming scenarios
in China.

FIGURE 6 | Regional average of consecutive dry days (CDD) at the historical
temperature and 1.5 and 2◦C temperature increases. The rice-growing
regions are the Chinese rice-growing region (ALL), Northeast China
rice-growing region (NEC), North China rice-growing region (NC), Central
China rice-growing region (CC), Southwest China rice-growing region (SWC),
and South China rice-growing region (SC).

Methods
Evaluation Model Simulation Results
First, we used Taylor diagrams (Taylor et al., 2001) to briefly
evaluate the reliability of the CMIP6 model data. The spatial
correlation coefficient, standard deviation, and root mean square
error between the historical period (1986–2005) data simulated
by the CMIP6 model and the ERA5 reanalysis data were analyzed.
The root mean square error is defined in formula (1).

RMSE =
√

1
n

∑n

i =1

(
Xsim,i − Xobs,i

)2 (1)

According to formula (1), RMSE is the root mean square error
of the grid, Xsim,i is the simulated value of the grid in year i, and
Xobs,i is the corresponding reanalysis data.

Time of a 1.5◦C/2◦C Temperature Increase and
Extreme Weather Indices
According to the IPCC AR5, the global temperature from 1986
to 2005 was 0.61◦C warmer than that before industrialization
(IPCC, 2013). Therefore, we defined 0.89◦C higher than the
temperature in 1986–2005 as 1.5◦C warmer than the temperature
before industrialization and 1.39◦C higher than the temperature

FIGURE 7 | Distribution of 5-day maximum precipitation (Rx5day) at 1.5 and 2◦C. (A–C) Global warming at 1.5◦C under SSP126, SSP245, and SSP585,
respectively. (D–F) Global warming at 2◦C under SSP126, SSP245, and SSP585, respectively. (G–I) The differences between global warming at 1.5 and 2◦C.
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in 1986–2005 as 2◦C warmer than that before industrialization.
The bilinear interpolation method was used to uniformly
interpolate the data to a 0.5◦ × 0.5◦ Gaussian grid, and the
multimode ensemble method was used to obtain a data set.
The time points of when 1.5 and 2◦C increases in temperature
would occur under the three social scenarios (SSP) were

FIGURE 8 | The same as Figure 6 but for the changes in 5-day maximum
precipitation (Rx5day) (mm).

calculated. Finally, the time slice method (Guo et al., 2017)
was used to explore the changes in extreme climate events
in the rice-producing areas under global temperature increases
of 1.5 and 2◦C. Taking the time points when 1.5 and 2◦C
temperature increases would occur under the SSP245 scenario as
the benchmark, ten years before and after this time point (totally
20 years) were regarded as the research period. According to
the calculation results, the time periods when the temperature
would increase 1.5 and 2◦C in this paper were 2019–2038 and
2039–2058, respectively. In addition, we selected 1986–2005 as
the historical reference period. The method of calculating the rice
heat damage index is shown in formulas (2) and (3).

Ha =
∑m

j =1

∑nj

i =1
f(Tij

h) (2)

f
(
Tij
h

)
=

{
Tij

h − 35.0 35.0 ≤ Tij
h< 40.0

3 ×
(

Tij
h−40

)
+5 Tij

h ≥ 40.0
(3)

where Ha is the rice heat damage index. m is the total number
of rice heat damage processes. j is the sequence number of
the multiple heat damage processes of rice. i is the different
grids. f

(
Tij
h

)
is the accumulated heat per day.

FIGURE 9 | Distribution of annual total extreme precipitation (R99pTOT) at 1.5 and 2◦C. (A–C) Global warming at 1.5◦C under SSP126, SSP245, and SSP585,
respectively. (D–F) Global warming at 2◦C under SSP126, SSP245, and SSP585, respectively. (G–I) The differences between global warming at 1.5 and 2◦C.
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RESULTS AND DISCUSSION

Comparison of CMIP6 Data and
Reanalysis Data
Figure 3 is a Taylor diagram that shows the difference between
the CMIP6 global model data and the ERA5 reanalysis data. The

FIGURE 10 | The same as Figure 6 but for the changes in annual total
extreme precipitation (R99pTOT) (mm).

spatial correlation coefficient of surface temperature was 0.8–
0.9, while the spatial correlation coefficient of precipitation was
0.6–0.7. The CMIP6 data reproduced the historical temperature
and precipitation to a certain extent, but the simulation ability
of the data for precipitation was obviously lower than that for
temperature. At the same time, the results also showed that
in comparison with the reanalysis data, multimode ensemble
data can better reproduce history. Therefore, the multimode
ensemble data were used to analyze the changes in extreme
climate events in China.

Time Point When Global Temperature
Increases by 1.5◦C/2◦C
As shown in Figure 4, under different social scenarios, there
were large differences in the increases in global temperature.
Under the SSP126 scenario, most models showed a temperature
peak in approximately 2,065, and global temperature showed
a downward trend after reaching the peak. Under the SSP245
scenario, the global temperature showed a more dramatic
increase than that under the SSP126 scenario, but the rate
of increase gradually decreased, reaching its peak by 2,100.
Under the SSP585 scenario, global warming was intense and
the rate of temperature rise gradually increased. Although the

FIGURE 11 | Distribution of warm days (TX90p) at 1.5 and 2◦C. (A–C) Global warming at 1.5◦C under SSP126, SSP245, and SSP585, respectively. (D–F) Global
warming at 2◦C under SSP126, SSP245, and SSP585, respectively. (G–I) The differences between global warming at 1.5 and 2◦C.
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simulation results of each model showed a similar trend in
general, the time it took for the temperature to increase by
1.5 and 2◦C in the different models was quite different. This
difference was related to the internal variability of the model and
climate sensitivity.

Due to the large differences between the various modes, a
multimode method was adopted to determine the time at which
the temperature will increase. From the results of multimode
ensemble averaging, the times when 1.5◦C warming occurred
under the SSP126, SSP245, and SSP585 scenarios were 2030,
2029, and 2026, respectively. The times when 2◦C warming
occurred under the SSP245 and SSP585 scenarios were 2,049
and 2,039, respectively. The SSP126 scenario did not result in
2◦C warming.

Compared with the results of existing research (Li et al., 2018;
Nangombe et al., 2018; Zhang et al., 2018), the results of this
study showed that the times when the global temperature will
reach 1.5 and 2.0◦C warming were similar. The results showed
that the time it would take to reach 1.5◦C warming were 1–
2 years earlier and that the time it would take to reach 2◦C

warming was 2–3 years later than the results in other studies.
These differences are acceptable due to the different calculation
methods of global temperature and the different results from
different climate models.

Changes in the Extreme Climate Indices
Consecutive Dry Days
Under 1.5◦C of global warming, the CDD in the rice-growing
regions were generally consistent under the different scenarios
(Figure 5). Taking the SSP245 scenario as an example, the
number of CDD in the NC, CC, and SC was significantly higher
than those in the other rice-growing regions, reaching 13.6,
14.1, and 14.4 days, respectively (Figure 6). Compared with the
historical reference period, the number of CDD in the NEC
decreased by approximately 1.0 days. In comparison with those
in the historical period, the number of CDD in the NC, CC, and
SC increased significantly with the number of CDD increasing by
0.6, 1.3, and 1.9 days, respectively.

Under 2◦C of global warming, the distribution of CDD in the
rice-growing regions was similar to that under 1.5◦C of global

FIGURE 12 | Distribution of rice heat damage index (Ha) at 1.5 and 2◦C. (A–C) Global warming at 1.5◦C under SSP126, SSP245, and SSP585, respectively.
(D–F) Global warming at 2◦C under SSP126, SSP245, and SSP585, respectively. (G–I) The differences between global warming at 1.5 and 2◦C.
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warming. The high-value areas of CDD were still located in
the NC, CC, and SC.

Under the scenario of an additional 0.5◦C increase in global
temperature from to 2◦C, the number of CDD in the rice-growing
regions showed a decreasing trend. However, in the NC, the
SSP126 and SSP585 scenarios showed that the number of CDD
will increase by 0.9 and 0.2 days, respectively, and those under
the SSP585 scenario will decrease by 0.6 days.

Five-Day Maximum Precipitation
Under a 1.5◦C increase in global warming, the Rx5day values in
the rice-growing regions under different scenarios were generally
consistent, showing a distribution pattern of more precipitation
in the south and less precipitation in the north (Figure 7). Taking
the SSP245 scenario as an example, the Rx5day in the NEC, NC,
CC, SWC, and SC reached 53.0, 53.5, 75.8, 75.0, and 89.4 mm,
respectively. Compared with the historical reference period, the
increase was up to 4.9, 2.8, 2.5, 4.2, and 4.4 mm, respectively
(Figure 8). However, at the junction of the CC and SC, this
variable slightly decreased.

Under 2◦C of global warming, the distribution of the Rx5day
in the rice-growing regions was similar to that under 1.5◦C of
global warming. Taking the SSP245 scenario as an example, the
Rx5day in the NEC, NC, CC, SWC, and SC reached 52.3, 56.2,
77.9, 77.6, and 92.3 mm, respectively.

Under the scenario of an additional 0.5◦C increase in global
temperature from 1.5 to 2◦C, the Rx5day showed an increase
of approximately 2.5 mm in almost every rice-growing region.
However, there were large differences under different scenarios
in the NC. Under the SSP126 scenario and SSP585 scenario, the
Rx5day showed increases of 3.2 and 3.1 mm, respectively, but
under the SSP585 scenario, it showed a decrease of 0.6 mm.

Annual Total Extreme Precipitation
Under a 1.5◦C of global warming, the R99pTOT in the rice-
growing regions under the different scenarios mainly showed a
gradually decreasing distribution from south to north (Figure 9).
Taking the SSP245 scenario as an example, the R99pTOT in the
NEC, NC, CC, SWC, and SC reached 38.9, 42.2, 54.2, 49.8, and
60.8 mm, respectively (Figure 10).

FIGURE 13 | Distribution of rice cold damage index (Cd) at 1.5 and 2◦C. (A–C) Global warming at 1.5◦C under SSP126, SSP245, and SSP585, respectively.
(D–F) Global warming at 2◦C under SSP126, SSP245, and SSP585, respectively. (G–I) The differences between global warming at 1.5 and 2◦C.
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Under 2◦C of global warming, the distribution of R99pTOT
in the rice-growing regions was similar to that under global
warming of 1.5◦C. Taking the SSP245 scenario as an example,
the R99pTOT in the CC, SWC, and SC reached 58.0, 52.2, and
63.0 mm, respectively.

Under the scenario of an additional 0.5◦C increase in
global temperature from 1.5 to 2◦C, the R99pTOT showed
an increasing trend in rice-growing regions. The R99pTOT
increased significantly, especially in the SWC. Under the
SSP245 scenario, the R99pTOT increased by as much as
3.8 mm. However, under the different scenarios, there were large
differences in the NC. Under the SSP126 scenario and SSP585
scenario, the R99pTOT increased by 2.5 and 2.9 mm, respectively,
but under the SSP585 scenario, it decreased by 0.2 mm.

Warm Days
The TX90p were calculated based on the historical time period.
Under 1.5◦C of global warming, the TX90p in the CC and
SC were significantly higher than those in the other rice-
growing regions. There were large differences among the different
scenarios. The number of Tx90p increased significantly under the
high emission pathway, especially in the NEC and NC.

Under the scenario of an additional 0.5◦C increase in global
temperature from 1.5 to 2◦C, the number of Tx90p showed
an increasing trend in the rice-growing regions (Figure 11).
Under the same amount of temperature rise, the increase in
the number of Tx90p under the high-emission scenario was
significantly greater than that under the low-emission scenario.
Under the SSP245 scenario, the number of Tx90p in the NEC,
NC, CC, SWC, and SC was increased by 12.1, 11.0, 14.4,
12.6, and 13.7 days, respectively, and the increase under the
SSP585 scenario was as high as 16.2, 18.5, 22.2, 22.0, and
25.1 days, respectively.

Rice Heat Damage Index
Based on the rice booting-flowering period and rice filling period
in the different regions, the Ha of each region was calculated.
Future heat damage to rice mainly occurred in the NC and
CC (Figure 12).

Under the scenario of an additional 0.5◦C increase in global
temperature from 1.5 to 2◦C, the area and intensity of heat
damage in the NC and CC increased significantly, and the
increase was more significant under the high-emission scenario
than under the low-emission scenario. Taking the SSP245
scenario as an example, the Ha in the NC and CC increased
by 3.4 and 4.3◦C/day under different temperature rise scenarios,
respectively, and the amount of heat damage increased 0.4- and
0.6-fold, respectively.

Rice Cold Damage Index
timesFigure 13 shows that the Cd mainly occurred in
the NEC and SWC.

Under the scenario of an additional 0.5◦C increase in the
global temperature from 1.5 to 2◦C, the Cd in the NEC and SWC
decreased. Moreover, different scenarios were consistent. Taking
the SSP245 scenario as an example, the Cd in the NEC decreased
by 0.33 compared with that in the historical period. Under a 2◦C

temperature increase, the Cd was 0.14 times less than that under
a 1.5◦C temperature increase.

CONCLUSION AND DISCUSSION

This article is mainly based on CMIP6 data, and it explores the
time points when the global temperature is projected to increase
by 1.5 and 2.0◦C under different social scenarios. Based on the
time period in the moderate emission scenario (SSP245) when
the global temperature will increase by 1.5 and 2.0◦C, the risk
of extreme climate events in rice-growing regions was explored.
Then, we analyzed the changes in extreme climate events in the
rice-growing regions in the future under different temperature
increase targets. The main conclusions obtained are as
follows:

(1) The years when global temperature was projected to increase
by 1.5 and 2.0◦C were different under the different scenarios.
The years when 1.5◦C of warming occurred in the SSP126,
SSP245, and SSP585 scenarios were 2,030, 2,029, and 2,026,
respectively. The years when 2◦C of global warming occurred
in the SSP245 and SSP585 scenarios were 2049 and 2039,
respectively. Under the high emission scenarios, the global
temperature easily increased by 2◦C. To control global
warming and ensure an increase of 1.5◦C, more stringent
emission reduction measures need to be implemented.

(2) The risk of extreme climate events occurring in the rice-
growing regions of China at a temperature increase of
2.0◦C was significantly higher than the risk at a temperature
increase of 1.5◦C. The number of TX90p, Ha, Rx5day and
R99pTOT in the rice-growing regions of China increased. In
contrast, the CDD and Cd decreased. However, the changes
in the different rice-growing regions were relatively different.
The R99pTOT and the Rx5day increased significantly in the
CC and the SWC. The CDD decreased significantly in the
NC and SC. The Ha of the NC and the CC increased by 3.4
and 4.3, respectively. The rice cold damage index in the NEC
decreased by 0.33.

(3) Under the different socio-scenarios of SSP126, SSP245 and
SSP585, the CDD, the Rx5day, the R99pTOT, the number
of Tx90p, and the Ha increased, and the Cd decreased. The
increase in extreme climate events under the high emission
scenario was more obvious. However, there were differences
in the results under the different social scenarios for the
CDD, the Rx5day, and the R99pTOT in the NEC.

(4) In general, the risk of extreme high-temperature events
occurring in the rice-growing regions of China will increase
in the future, and the risk of extreme low-temperature
events occurring will decrease. In particular, the NC and CC
will experience a significant increase in the risk of extreme
heat disasters. The risk of low-temperature disasters in the
NEC will be reduced. In addition, in the future, the risk
of extreme precipitation events in the rice-producing areas
will increase, especially in the SWC and the SC. The risk
of extreme precipitation events in the NEC in the future is
highly uncertain.
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(5) This study helps to understand the climate change trend and
risk situation in Chinese rice-production areas. The risk of
extreme high-temperature events and extreme precipitation
events occurring in the rice-producing areas will increase.
In addition, this study also provides information that will
help with early warning and forecasting of extreme disaster
events, preventing disasters and mitigating disasters, as well
as with rationally laying out rice production and responding
to risk, which are important scientifically and practically.
This study is mainly based on CMIP6 model data. Although
in comparison to other models, the CMIP6 model can better
simulate changes in historical periods, future climate changes
will be affected by various natural and human factors and
other uncertain factors. In addition, there are uncertainties
within global climate models such as those related to the
simulation of future temperature and precipitation. This
article only studied the overall trend in the changes in future
extreme climate events in the five main rice producing areas
of China, but for specific small areas, there is a lack of more
refined research. In future work, dynamic downscaling of the
climate model could be used to improve the resolution of
the model and to conduct a more refined study of changes
in future extreme climate events in the rice-growing regions.
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(2016). Calibration-induced uncertainty of the EPIC model to estimate climate
change impact on global maize yield. J. Adv. Model. Earth Syst. 8, 1358–1375.
doi: 10.1002/2016MS000625

Xu, Y., Zhang, Y., Lin, Y., Lin, E., Lin, W., and Dong, W. (2006). Analysis of
regional climate change response in China under SRES B2 scenario using
PRECIS (in Chinese). Chin. Sci. Bull. 17, 2068–2074. doi: 10.1360/csb2006-15-
17-2068

Xuejie, G., Zongci, Z., and Giorgi, F. (2002). Changes of extreme events in regional
climate simulations over East Asia. Adv. Atmos. Sci. 19, 927–942. doi: 10.1007/
s00376-002-0056-2

Yang, S., Feng, J., Dong, W., and Chou, J. (2014). Analyses of extreme climate events
over China based on CMIP5 historical and future simulations. Adv. Atmos. Sci.
31, 1209–1220. doi: 10.1007/s00376-014-3119-2

Zhang, W., Zhou, T., and Zou, L. (2018). Reduced exposure to
extreme precipitation from 0.5◦C less warming in global land
monsoon regions. Nat. Commun. 9:3153. doi: 10.1038/s41467-018-
05633-3

Zhou, T., Chen, Z., Zou, L., and Chen, X. (2020). Development of climate and earth
system models in China: past achievements and new CMIP6 results. J. Meteorol.
Res. 34, 1–19. doi: 10.1007/s13351-020-9164-0

Zhu, H., Jiang, Z., and Li, J. (2020). Does CMIP6 inspire more confidence in
simulating climate extremes over China? Adv. Atmos. Sci. 37, 1119–1132. doi:
10.1007/s00376-020-9289-1

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Chou, Zhao, Li, Xu, Yang, Sun and Li. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Earth Science | www.frontiersin.org 12 April 2021 | Volume 9 | Article 65512899

https://doi.org/10.1016/j.agrformet.2011.04.009
https://doi.org/10.1016/j.agrformet.2011.04.009
https://doi.org/10.1029/2020GL087820
https://doi.org/10.1007/s10584-015-1545-5
https://doi.org/10.1126/science.1239402
https://doi.org/10.1029/2019JD031057
https://doi.org/10.1002/2016MS000625
https://doi.org/10.1360/csb2006-15-17-2068
https://doi.org/10.1360/csb2006-15-17-2068
https://doi.org/10.1007/s00376-002-0056-2
https://doi.org/10.1007/s00376-002-0056-2
https://doi.org/10.1007/s00376-014-3119-2
https://doi.org/10.1038/s41467-018-05633-3
https://doi.org/10.1038/s41467-018-05633-3
https://doi.org/10.1007/s13351-020-9164-0
https://doi.org/10.1007/s00376-020-9289-1
https://doi.org/10.1007/s00376-020-9289-1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


fenvs-09-665394 April 22, 2021 Time: 14:53 # 1

ORIGINAL RESEARCH
published: 28 April 2021

doi: 10.3389/fenvs.2021.665394

Edited by:
Boyin Huang,

National Centers for Environmental
Information, National Oceanic

and Atmospheric Administration,
United States

Reviewed by:
Hailong Liu,

Shanghai Jiao Tong University, China
Shaobo Qiao,

Sun Yat-sen University, China

*Correspondence:
Zhi-Qiang Gong

gongzq@cma.gov.cn

Specialty section:
This article was submitted to

Interdisciplinary Climate Studies,
a section of the journal

Frontiers in Environmental Science

Received: 08 February 2021
Accepted: 29 March 2021

Published: 28 April 2021

Citation:
Fang Y-H, Zhang M-M, Zhao C-Y,

Gong Z-Q, Zhou X-Y and Zhang W-Q
(2021) The Characteristics

of Northeast China Cold Vortex With
Different Active Paths in June

and Their Relationship With
Precipitation and Pre-SST.

Front. Environ. Sci. 9:665394.
doi: 10.3389/fenvs.2021.665394

The Characteristics of Northeast
China Cold Vortex With Different
Active Paths in June and Their
Relationship With Precipitation and
Pre-SST
Yi-He Fang1,2,3, Meng-Meng Zhang4, Chun-Yu Zhao1,3, Zhi-Qiang Gong5,6* ,
Xiao-Yu Zhou1 and Wei-Qi Zhang7

1 Regional Climate Center of Shenyang, Shenyang, China, 2 The Institute of Atmospheric Environment, China Meteorological
Administration, Shenyang, China, 3 Key Opening Laboratory for Northeast China Cold Vortex Research, China
Meteorological Administration, Shenyang, China, 4 Liaoning Provincial Meteorological Service Center, Shenyang, China,
5 College of Physics and Electronic Engineering, Changshu Institute of Technology, Jiangsu, China, 6 Laboratory for Climate
Studies, National Climate Research Center, China Meteorological Administration, Beijing, China, 7 Sujiatun District Bureau
of Meteorology, Shenyang, China

In this study, a K-means clustering (KMC) method was used to identify the paths
of the Northeast China (NEC) Cold Vortex (NCCV). The NCCV was divided into four
types according to the identified active paths: (1) Eastward movement type (EM);
(2) Southeastward long-distance movement type (SLM); (3) Eastward short-distance
movement type (ESM); and (4) Southward short-distance movement type (SSM).
The characteristics of the four types of the NCCV, along with their impacts on the
precipitation during early summer in NEC, were studied. The results showed that
the KMC method can effectively divide the NCCV events into four different types.
The maintaining days of these four types of the NCCV were found to have obvious
interannual and interdecadal variation features. For example, the maintaining days of the
EM and ESM types were mainly characterized by interannual variability, while the SLM
and SSM types have the obvious 10–13a interdecadal variation along with interannual
variability. In terms of the spatial distributions and impacts on precipitation, the EM type
was found to appear in the majority of the areas located in NEC, the SLM type mainly
occurred in the northwestern region of NEC and the highest rain center was located in
the south-central portion, while the ESM type and SSM type were observed precipitation
only appear in a small portion of the northeastern region. In addition, it is also observed
the distribution of the sea-surface temperature (SST) anomalies had close relationship
with the formation of these four types of the NCCV. The tripole distributions of the SST
anomalies in the Atlantic Ocean corresponded to the EM type of the NCCV, the positive
anomalies of SST in the eastern equatorial Pacific Ocean and negative anomalies in
the western equatorial Pacific corresponded to the SLM type, the positive SSTs in the
Northwest Pacific correspond to the ESM type, while negative anomalies SST in the
western equatorial Pacific Ocean corresponded to the SSM type of the NCCV.

Keywords: Northeastern China, NCCV, early summer months, precipitation levels, interannual variations
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INTRODUCTION

Northeast China (NEC) located in the middle and high latitude
areas of Northeast Asia, which includes Heilongjiang Province,
Jilin Province, Liaoning Province, and the eastern portion of
the Inner Mongolia Autonomous Region. The total area of
NEC accounts for 13% of the entire country. The region is
characterized by mountains and water bodies, as well as vast
expanses of fertile land. NEC is considered to be an important
commodity grain base, animal husbandry base, forestry base,
and heavy industry base in China. The Northeastern China
Cold Vortex (NCCV) is a special and important weather system
which impacts the region. As an important cutoff low-pressure
system affecting NEC, its activities are also key factors involved
in the flood, drought, and low-temperature damages which may
occur (Sun and An, 2001; Sun et al., 2002; Wang et al., 2007).
The NCCV not only has major impacts on the weather and
climate conditions in NEC, but its peripheral activities are also
of major significance for the weather and climate conditions in
eastern China and even Eastern Asia (Sun, 1997; Liu et al., 2002;
Lian et al., 2016).

The NCCV can potentially appear during any season, and the
activities of the NCCV change significantly among the seasons.
Generally speaking, the NCCV system is more active during
the summer months, with the most frequent activities of the
NCCV occurring in June. Its activities are characterized by mass
occurrences and persistence (Zhang and Li, 2009; Shen et al.,
2011). The statistical data collected by Liu et al. (2015) revealed
that from May to August, the NCCV activities have obvious
spatial distribution characteristics, and the main active areas
tend to be concentrated in the region of 121 to 131◦E, 48 to
53◦N. In addition, the previous research results have indicated
that under the control of the persistent NCCV in local regions
of NEC, the localized precipitation tend to be high in the
spring and summer seasons (Hu et al., 2011). In addition, Ding
et al. (2019) pointed out that the weak NCCV is one of the
reasons for the unusually high summer temperature in China
in 2018. Lian et al. (2010) and Liu et al. (2017) proposed that
NCCV precipitation has also has significant “cumulative effects,”
which are generally reflected in the distribution characteristics
of the precipitation anomalies in NEC during the early summer
months. In addition, there has been found to be a significant
positive correlation between the intensity levels of the NCCV
during the summer and the precipitation levels in the Huaihe
River Basin during the same periods (Li et al., 2015). Combined
with the close relationship between the NCCV and precipitation
in China, meteorologists have also carried out extended research
and development of summer climate prediction methods (Feng
et al., 2001; Fan and Wang, 2010; Gong et al., 2014; Liu and
Ren, 2015; Ren et al., 2019). Zhao et al. (2015) found that the
dynamical-statistical combining principle can more accurately
grasp the summer NCCV trend, providing a strong diagnosis
basis for precipitation prediction.

Liang et al. (2009) found through statistical examinations
that the spatial distributions of the NCCV are quite different
during different seasons. For example, during the early spring
(April), the NCCV concentration areas are generally in the north

portion of the NEC, which is located at approximately 52◦N.
However, at the end of the spring season and the beginning of
the summer season, the high-frequency areas of NCCV activities
will potentially reach the southernmost point of the region, or
at approximately 43◦N. Fang et al. (2020) found that there is
a significant relationship between the interannual anomalies of
the south-north positions of the NCCV and the Sea Surface
Temperatures (SSTs) During the Early Summer Periods. Liu et al.
(2015) found through in-depth analysis of the NCCV activities
that there were obvious spatial distribution characteristics for
the NCCV from May to August. The concentration areas of
longitude circle activity ranged between 121 and 131◦E, and the
concentration areas of parallel circle activity ranged between 48
and 53◦N. Xie and Bueh (2015) got meaningful conclusions on
the research of the classification of circulation patterns. From the
perspective of research progress to date, there has few studies on
the effective classification of the activity range of the NCCV, and
the relevant research on its influencing effects and mechanism
require further investigation.

The previous studies have generally focused on the climate
impacts of all the NCCV processes (Yang et al., 2012; Xie and
Buhe, 2016). However, due to the obvious differences in the
causes and variation characteristics of the NCCV, as well as its
different impacts on climatic conditions in different regions of
NEC during early summer, this study considered that the current
findings were not enough to meet the urgent need for refined
climate predictions in NEC if the NCCV was studied only as a
whole. Therefore, this study carried out a classified study based
on the characteristics of the activity paths of the NCCV, and then
analyzed the climatologic characteristics of the different paths
of the NCCV and their impacts on the precipitation in NEC
during early summer. The goal of this study was to further the
understanding of the causes of the NCCV, as well as potentially
providing important references for the cause diagnoses and
refined predictions of the NCCV anomalies.

DATA AND METHOD

This study’s investigations were mainly based on (1) The daily
precipitation observation data of 245 stations in NEC from
June of 1979 to June of 2018, which were provided by the
National Meteorological Information Center. (2) NCEP/NCAR
reanalysis dataset, variables are monthly mean wind field and
geopotential height, the grid resolution is 2.5◦ × 2.5◦. (3) Sea
surface temperature (SST) data from Hadley Centre, the grid
resolution is 1◦ × 1◦, This study classified the NCCV activity
paths during the early summer months in NEC by adopting a
K-means clustering method (K-Means, KM) (Fang et al., 2020).
We use wavelet analysis, correlation analysis and significance
testing in this study. The timeframe of study selected in this
investigation ranged from June of 1979 to June of 2018.

K-Means Clustering Method (K-Means,
KM)
K-means clustering originated from the field of signal processing
and belongs to the category of unsupervised clustering in
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machine learning clustering analysis methods. The Euclidean
distance is used to measure the similarity between samples, and
data clustering is performed according to the degree of similarity.
These methods are widely used in many fields due to their
intuitive and fast characteristics (Fang et al., 2021).

The definition of the NCCV index: The absolute values of the
field anomaly calculations of the lowest potential height fields in
the inner circles of the NCCV occurrence days from June of 1979
to June of 2018. The adopted index calculation method was not
only able to accurately reflect the number of cold vortex days, but
also represented the intensities of cold vortex centers. At the same
time, the cold vortex weather processes within the NEC region
were transformed into a climate time scale.

Screening of the NCCV Parameters
The objective identification data of the NCCV processes during
the early summer months in the study area were collected,
including the duration times, longitudes, latitudes, geopotential
heights of the NCCV centers, NCCV radii, and so on. The NCCV
processes were screened by the factors of the occurrence times
and durations of the NCCV. In the present study, the occurrence
time condition of the NCCV was that the process contained
at least one record in June, and the duration condition of the
NCCV was that the total duration of the process was 72 h in
length. The screened NCCV processes were then used as the
research samples.

Calculations of the Path Description Parameters of
the NCCV Samples
The longitudes and latitudes (source information), radial
variances, zonal variances, meridional mean values, latitudinal
mean values, diagonal variances (moving directions and distances
of the NCCV), and the longitude and latitude of the
NCCV process tracks within the geographical range of NEC
(relationships between tracks and the geographical locations
of NEC) were calculated, respectively. The aforementioned
parameters were preliminarily used to describe the activity paths

of the NCCV. In addition, other parameters which could be
utilized to characterize the properties of the NCCV were also
added according to the actual needs of the investigation. The
formula was as follows:

X =
∑n

i=1 xi
n

(1)

Y =
∑n

i=1 yi
n

(2)

Var(x) =
∑n

i=1(xi − X)2

n
(3)

Var(y) =
∑n

i=1(yi − Y)2

n
(4)

Var(xy) =
∑n

i=1(xi − X)(yi − Y)

n
(5)

Where xi and yi represent the longitude and latitude at time i
on the NCCV paths, and n indicates the times of the positioning.

Objective Classifications of the NCCV Paths
Prior to using the KMC method to classify the NCCV activity
paths, the values of the number of classifications K were first
determined. Then, taking the path parameters obtained in Step
2 as the data set, combined with relevant research findings
and expert opinions, the 2–7 initial classification numbers were
preliminarily determined in this study in order to calculate the
silhouette coefficients corresponding to 2–7 initial classification
numbers, respectively. It was found that the closer the silhouette
coefficient was to 1, the more reasonable the classification
number. Therefore, the optimal classification numbers could be
determined. This study’s flow chart of KMC method was as
Figure 1:

Since KMC clustering methods cannot determine the number
of classifications independently, this study set the number of

1979-2018 NCCV data

Project research sample

NCCV occurrence time

NCCV duration

Dimension mean

Mean of longitude

Dimension variance

Longitude variance

Diagonal variance

Number of classifications
Calculation of

silhouette

coefficient

NCCV classification data

K-Means clustering algorithm

FIGURE 1 | Flow chart of the K-means clustering method for the NCCV path classifications.
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clusters as integers between 2 and 9, and then compared the
Silhouette Coefficients of the different clustering results. The
Silhouette Coefficient is calculated by the dissimilarity degree
between inside and outside of the cluster, and its value is between
−1 and 1. The closer the value is to 1, the better the classification
result is. Because it can show the cohesion and separation
of clustering results, the Silhouette Coefficients are important
parameters used to measure the clustering effects. The larger
the Silhouette Coefficient, the better the classification effects
(Wang et al., 2018).

Wavelet Analysis
Wavelet analysis is an important tool for periodic analysis
processes (Lau and Weng, 1995; Torrence and Compo, 1998).
The most commonly used methods in Morlet wavelet analysis
processes are non-orthogonal wavelet methods. The general
mathematical form of that method is as follows:

ϕ(t) = e−jω0te
1
2 t2

(6)

Where ω0 represents the center frequency of a wavelet. Its
Fourier Transform can be written as follows:

φ(ω) =
√

2πe
−

1
2 (ω−ω0)

2
(7)

Morlet wavelets are a type of single frequency complex
sinusoidal modulated Gaussian wave, and are also considered

to be common complex valued wavelets. Their time-frequency
domains have good locality.

STATISTICAL ANALYSIS OF THE
CLIMATIC CHARACTERISTICS OF
VARIOUS TYPES OF NCCV IN NEC

Activity Characteristics of Various NCCV
Types in NEC
It was found that from the early summer months of 1979 to the
early summer months of 2018, there were 97 NCCV processes
which had effects in NEC. A total of 588 NCCV occurrence
days were identified, with an average duration of 5.8 days. In the
present study, based on a KMC method, the aforesaid 97 NCCV
processes were divided into four categories according to the
similarities and differences of their main evolution paths (Fang
et al., 2021). Figure 2 shows the spatial distributions of the activity
path classifications of the NCCV in early summer. Among those,
as can be seen in the figure, the Eastward movement type (EM)
mainly occurred in the west, at the borders between eastern
Inner Mongolia and Mongolia and Russia. The majority then
disappeared near the Japanese Sea, with an activity scope covering
the entire northeastern region. The southeastward long-distance
movement type (SLM) mainly occurred in Baikal Lake area
and its northwestern region, with the majority disappearing
into the eastern part of Inner Mongolia and dying out. The

FIGURE 2 | Spatial distributions of the NCCV with four types of paths: (A) EM type; (B) SLM type; (C) ESM type; (D) SSM type.
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activity range was found to be concentrated in the eastern
section of Inner Mongolia and northeastern Mongolia. The
eastward short-distance movement type (ESM) was found to be
mainly generated in the northeastern section of Mongolia, and
then disappeared into the northern region of the northwestern
and northeastern Mongolia, with an activity scope covering
the northwestern section of the study region. The southward
short-distance movement type (SSM) mainly generated and
disappeared in the northeastern section of the study area, with
the activity range was found to be limited to the northeastern
portion of the region. In the present study, from the perspective
of the influencing effects of the NCCV, it was believed that
the EM type may have affected the entirety of NEC. The SLM
type had potentially mainly affected the central and northern
areas of NEC, as well as the northwestern areas in particular.
The ESM and SSM type were found to have little influence in
NEC, with affects observed only in some parts of the northern
areas of the NEC.

The activity characteristics of the four types of the
NCCV are detailed in Table 1. The EM type NCCV was
found to have the highest frequency of occurrence, as
well as the longest duration times. It was identified for a
total 23 occurrences, which accounted for 31.6% of the
total frequency of occurrences during the early summer
seasons. The average duration was 9.8 days. The SLM
type NCCV had the lowest frequency of occurrence,
accounting for 19.2% of the total frequency during the
early summer months in the study area. In addition, the
SSM type NCCV had the shortest duration, with an average
duration of 5.8 days.

It was found that according to the wavelet analysis spectrum
for the durations of the four types of NCCV from June of 1979
to June of 2018 (Figure 3), the number of days of the EM type
NCCV mainly averaged 4 to 8a prior to 2010, and a significant
power spectrum was concentrated in 3 to 5a frequency band after
2010. In addition to the significant 2 to 3a period before and
after the 2010s, there was also a significant interdecadal variation
period observed for the SLM type NCCV. The interdecadal
variation characteristics were 8 to 12a before 2000 and 10 to 14a
after 2000. Then, after 2010, the ESM type NCCV displayed the
interannual variation characteristics of 2 to 3a periods. The SSM
type NCCV had interannual variations of 4 to 6a periods prior
to 2000 and 10 to 14a interdecadal variations after 2000, with 2
to 3a significant periods observed around 2010. Therefore, the

TABLE 1 | Statistical characteristics of the four types of NCCV activities for the
period ranging from June of 1979 to June of 2018.

Type of NCCV Frequency Number of
NCCV days

Average
duration of

NCCV/(days)

Proportion of
frequency (%)

All types 73 558 7.6 100

EM type 23 225 9.8 31.5

SLM type 14 112 8.0 19.2

ESM type 17 110 6.1 23.3

SSM type 19 111 5.8 26.0

number of process days of the EM and ESM type NCCV were
also characterized by the interdecadal variations of 10 to 13a as
well as interannual periods.

Spatial Distributions of Duration Days of
NCCV
Figure 4 details the spatial distributions of the number of
occurrence days of the northeastern NCCV during the period
ranging from June of 1979 to June of 2018. The EM type NCCV
was observed to appear in the majority of the areas in NEC,
and the high value areas of the number of duration days were
mainly distributed in the central and southern sections of the
region. The number of duration days reached the highest value
at the junction of Liaoning and Jilin. Fang et al. (2020) found
that when the SLM type NCCV occurred, the consistent results
were that the temperature levels in NEC were relatively low. The
high value areas of the number of duration days of the SLM and
ESM type NCCV were consistently located in the northwestern
sections of the region. It was found that when compared with
the SLM type NCCV, the ESM type NCCV had a smaller scope
of activity. In addition, the latter type only appeared in a small
scope in NEC. The high value areas of the number of duration
days of the SSM type NCCV were generally more eastward
and northward than those of the other types. Therefore, the
distributions of the number of duration days of the NCCV with
different paths further indicated the activity scopes of the four
types of NCCV, as well as the differences and relationships among
the activity intensities.

INFLUENCING EFFECTS OF THE NCCV
ON THE PRECIPITATION IN THE STUDY
AREA

Distribution Patterns of the Precipitation
The influencing factors of terrestrial precipitation are numerous
(Li, 2020). The main influencing factors of the precipitation
during the early summer months (May to June) in NEC have
been determined to be the effects of the NCCV (Shen et al.,
2011). Gao and Gao (2018) analyzed the influencing effects of
the NCCV on the summer precipitation levels in NEC in 2013
and pointed out that the NCCV played a major role in the
abnormally high precipitation levels during that period of time.
It has been found that from the perspective of interdecadal
differences, some studies have theorized that the interdecadal
variations of the NCCV could be considered as being closely
related to the interdecadal variations of the summer precipitation
patterns in NEC (Han et al., 2015).

In the present study, by synthesizing the precipitation data
during the maintenance period (June of 1979 to June of 2018)
of the various types of NCCV, it could be concluded that
the overall precipitation pattern of the NCCV displayed the
distribution characteristics of “more in the east and less in the
west.” The characteristics of the precipitation during the process
of the eastward moving NCCV were found to be similar to the
distribution characteristics of the overall NCCV precipitation, in
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FIGURE 3 | The wavelet analysis spectrogram of the four types of NCCV during 1979–2018: (A) EM type; (B) SLM type; (C) ESM type; (D) SSM type.

that they also displayed the distribution characteristics of “more
in the east and less in the west.” However, the characteristics
of the precipitation during the process of the SLM type NCCV
revealed the meridional distribution characteristics of “more in
the center and less in the east and west.” In addition, it was
found that the characteristics of the precipitation during the
eastward short-range NCCV type process showed the meridional
distribution characteristics of “more in the north and less in the
south.” These findings were observed to be consistent with the
synthetic analysis results of Fang et al. (2020).

In the present research investigation, in order to further
analyze the impacts of the NCCV with four types of paths on
the precipitation patterns in NEC, the correlations between the
four types of the NCCV indexes and the precipitation patterns
during the maintenance period of various types of NCCV in
early summer months from 1979 to 2018 were calculated. Due
to the short length of data, the correlation results are mainly
reflect interannual characteristics. The results are presented in
Figure 5. It can be seen in the figure that there were significant
differences in the influence ranges of the four types of the NCCV
on the precipitation patterns in NEC. For example, when the
EM type NCCV occurred, the range of the NCCV activity was
mainly distributed in the central to southern areas of NEC.
Overall, the central to the eastern sections of the NEC had more
precipitation, as well as the rainy central areas located in the
eastern portion of the region. It was observed that when the
SLM type NCCV occurred, the high value areas of the number

of the NCCV days were located in the northwestern section
of NEC. Meanwhile, the central part of the region had more
precipitation, and the rainy central area was located in the center
of the southern section of the region. This was found to be
consistent with the precipitation synthesis results of the four
types of the NCCV. In addition, when the ESM type NCCV
occurred, the activity scope of the NCCV was small in NEC,
and there was a weak correlation observed between the NCCV
indexes and the precipitation patterns of the region. However,
when the SSM NCCV type occurred, the activity scope of the
NCCV was found to be mainly in the northeastern section of
the region, with more precipitation occurring in the south. From
the above-mentioned data, it was concluded that the precipitation
in NEC was obviously greater during the maintenance period of
the four types of the NCCV, and there were consistent differences
in the ranges of the precipitation. These distribution differences
were found to have good corresponding relationships with the
precipitation synthesis distributions and the activity ranges of the
different types of NCCV.

Interannual Variation Characteristics of
the Number of Precipitation Days
The days with daily precipitation of 0.1 mm and above were
defined as the effective precipitation days. Figure 6 shows the
interannual variation sequences of the number of days in which
rainstorms (daily precipitation greater than or equal to 50 mm);
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FIGURE 4 | Spatial distributions of duration days of the NCCV during 1979–2018 (unit: day): (A) EM type; (B) SLM type; (C) ESM type; (D) SSM type.

heavy rain (daily precipitation of 25 to 50 mm); moderate rain
(daily precipitation of 10 to 25 mm); and light rain (daily
precipitation of 0.1 to 10 mm) occurred during the maintenance
period of the NCCV types (1 to 4) in the early summer months
of the period ranging from 1979 to 2018. In order to filter
out the interdecadal characteristics of more than 8 years, a 9-
year moving average was determined for the sequences of the
number of precipitation days at various orders of magnitude
during the maintenance period of the four NCCV types. The
filtered data were observed to exhibit many typical interannual
variability characteristics. For example, it could be seen that
there were significant interannual variation characteristics in
the sequences of the number of precipitation days at various
orders of magnitude during the maintenance period of the
four NCCV types, and the interannual variation trends of the
number of precipitation days at various orders of magnitude were
found to be generally consistent. Among those, the number of
precipitation days at various orders of magnitude was found to be
the highest during the maintenance period of the EM type NCCV.
This was followed by the number of precipitation days during
the maintenance period of the SLM type NCCV. In addition,
it was determined that the number of precipitation days at the
various orders of magnitude was the least during the maintenance
period of the EM type NCCV. Also, there were observed to
be good correspondence relationships between the number of
precipitation days corresponding to the four NCCV types and
their corresponding activity ranges. That is to say, the EM type

NCCV had the widest activity range in NEC and had caused
the highest number of precipitation days at the various orders
of magnitude. Meanwhile, only a small portion of the ESM type
NCCV had passed through the northern part of the NEC, which
resulted in the least number of precipitation days at the various
orders of magnitude in NEC.

During the maintenance period of the EM and southeast
long-distance movement NCCV types, the interannual growth
trends of the number of precipitation days at the various orders
of magnitude were not obvious. It was found that during the
maintenance period of the ESM type NCCV, the precipitation at
the various orders of magnitude had displayed a certain growth
trend. In particular, a growth trend of light rain days was the
most obvious, while the growth trend of heavy rain days had
been the weakest. During the maintenance period of the SSM
type NCCV, there was a certain decreasing trend observed in the
precipitation at various orders of magnitude, with the exception
of the occurrences of heavy rain events. A decreasing trend in the
light rain days was the most obvious, and the decreasing trend of
rainstorm days was observed to be the weakest.

Spatial Distributions of the Precipitation
Occurrence Days
The distributions of the number of precipitation days at
various orders of magnitude generated by the NCCV types with
different paths were also found to differ. Figures 7–9 show the
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FIGURE 5 | Distribution of the correlation coefficients between the NCCV index and precipitation anomalies in NEC during all the NCCV maintaining days ranging
from 1978 to 2018: (A) EM type; (B) SLM type; (C) ESM type; (D) SSM type. In the figure, the dotted areas indicate the areas passed the 95% significance test.

distributions of the number of precipitation days at various
orders of magnitude during the maintenance period of the four
NCCV types for the period ranging from June of 1979 to June of
2018. It can be seen in the figures that the main differences in the
precipitation of four NCCV types were reflected in the number
of light rain days and moderate rain days. It was determined
that during the maintenance period of the EM type NCCV,
the number of light rain and moderate rain days was higher
in the southeast section of the NEC. In addition, during the
maintenance period of the SLM type NCCV, the number of days
in which light rain and moderate rain occurred was consistent in
the majority of the areas of NEC, and especially in northwestern
China. During the maintenance period of the ESM type NCCV,
the days in which light rain and moderate rain had occurred
were greater in the northwestern and eastern sections of the
NEC. During the maintenance period of the SSM type NCCV,
the number of days of light rain and moderate rain were greater

in the northeastern area of the region. These findings were
found to correspond well with the activity paths of the four
types of the NCCV.

RELATIONSHIPS BETWEEN THE FOUR
NCCV TYPES AND THE SST

Fang et al. (2021) completed a great deal of relevant research
regarding the analysis of the circulation characteristics
corresponding to the four types of the NCCV. It was found
that there were obvious differences in the atmospheric
circulation configurations of the NCCV with four types of
paths when the origins of the generations were considered.
For example, it was found that they were consistent
with the activity paths of the NCCV. The circulation
configurations of the total days, as well as the peak value
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FIGURE 6 | Interannual variation sequences of the precipitation anomalies at various magnitude levels for these four types of NCCV events ranging from 1979 to
2018 (unit: mm): (A,E,I,M) Rainstorms; (B,F,J,M) Heavy rain; (C,G,K,O) Moderate rain; (D,H,L,P) Light rain.

days, of the NCCV processes with four types of paths
were also observed to match well with the NCCV activity
paths. This study focused on the analysis of the correlation
relationships between the four types of NCCV processes and
the previous SSTs.

Figure 8 shows the distributions of correlation coefficients
between the NCCV indexes from 1979 to the early summer
of 2018, along with the SST anomalies during the early period
(March to May). It can be seen in the figure that there were
major differences in the distribution patterns of SST anomalies

during the early period which corresponded to the four types
of NCCV. For example, when there were abnormally more EM
and SSM type NCCV during the early summer months, the SSTs
in the Equatorial Central Pacific Ocean had also been higher
during the early spring months, which were reflected by the CP
type ENSO SST distribution characteristics. However, when there
were abnormally more SLM type NCCV during the early summer
months, it was observed that the SSTs in the Equatorial Pacific
Ocean during the early spring months had displayed the EP type
ENSO sea surface distribution characteristics of “higher in the

Frontiers in Environmental Science | www.frontiersin.org 9 April 2021 | Volume 9 | Article 665394108

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-09-665394 April 22, 2021 Time: 14:53 # 10

Fang et al. Northeast China Cold Vortex

FIGURE 7 | Spatial distribution of the raining days corresponding to various precipitation levels during the NCCV maintaining days ranging from 1979 to 2018 (unit:
day): (A,E,I,M) Rainstorms; (B,F,J,M) Heavy rain; (C,G,K,O) Moderate rain; (D,H,L,P) Light rain.

east and lower in the west,” and the positive anomaly center was
located in the Equatorial Eastern Pacific Ocean.

There were also significant differences observed in the SSTs
over the Atlantic Ocean region. For example, when there were
abnormally more EM, ESM, and SSM type NCCV observed, the
North Atlantic Ocean had presented a negative-positive-negative
distribution characteristics of a “tri-pole” during the early spring
months. Meanwhile, the SST anomalies in the North Atlantic
Ocean during the early spring months were not significant when
there was more SSM type NCCV.

This study found that the SSTs of the Indian Ocean showed the
distribution characteristics of “positive in the west and negative
in the east” of the Indian Ocean positive dipole when the EM
type NCCV occurred. However, when the SLM and SSM type

NCCV occurred, it was found that the Indian Ocean had large-
scaled positive SST anomalies. In particular, the anomalies were
more obvious when the SLM type NCCV occurred. Also, when
the ESM type NCCV occurred, the Indian Ocean was found to
have large-scaled negative SST anomalies.

Fang et al. (2018) carried out diagnostic analysis and
numerical simulation processes in order to determine the causes
of the precipitation anomalies in NEC during early summer
months. It was pointed out that the anomalies in the SST tri-
pole of the North Atlantic Ocean, along with the SSTs of the
Kuroshio area, had resulted in anomalies of the high pressure
circulation system due to the blocking of the upstream and
downstream NCCV. It was theorized that this blockage affected
the NCCV precipitation during the early summer months in
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FIGURE 8 | Spatial distribution of the correlation coefficients between the summer NCCV indexes and the proceeding spring SST anomalies during 1979–2018.
(A) EM type; (B) SLM type; (C) ESM type; (D) SSM type. Dotted areas indicate the 99% confidence level.

FIGURE 9 | Spatial distribution of regression coefficients of early winter 500 hPa height (contour) and 850 hPa wind (vectors) anomalies against the key area SST
indices corresponding to the four types of the NCCV during 1979–2018. (A) EM type; (B) SLM type; (C) ESM type (D) SSM type. Dotted areas and bold arrows
indicate the 99% significance level.

NEC. It was found that the sensitivity tests of numerical models
could be used to verify the effects of the SSTs during the
earlier periods on the atmospheric circulation processes of
the early summer months. Buhe and Xie (2013) summarized
the deep dynamic causes for the formation and maintenance
of the various types of NCCV and found that the Western
Pacific (WP) teleconnection patterns were the downstream
background circulation patterns of the NCCV activities, and
the negative phases were conducive to the generation and
maintenance of the NCCV.

In the present study, in order to further clarify the differences
in the influencing effects of different types of SST areas on

four types of the NCCV, the characteristic indexes of the
early SST anomalies corresponding to the four types of the
NCCV were first calculated. These included the Pacific CP
type ENSO SST index (the mean SST values of the region
[165◦E−160◦W; 15◦S−10◦N]); the Pacific EP type ENSO
SST index (the mean SST values of the region [80−150◦W;
20◦S−10◦N]); Western Pacific SST positive anomaly index
(the mean SST values of the region [150◦W−160◦E;
20◦S−10◦N]); Atlantic tri-pole index (the differences in
the mean SST values between the region [25◦−60◦W;
30◦−40◦N] and the region [15◦−60◦W; 0◦−20◦N] and
[35◦−70◦W; 40◦−50◦N]); and the Indian Ocean positive dipole
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index (the differences in the mean SST values between the region
[40◦−80◦E; 0◦−30◦S] and the region [80◦−120◦E; 0◦−30◦S]).
The results of the regression analysis of the aforementioned
indices with the circulation fields of June which corresponded
to the four types of the NCCV revealed that the circulation
fields of the SST regression in the following four key areas
corresponded well to the NCCV circulation situations, which
had certain physical significance. Therefore, this study selected
the SST of the following four key areas. The tri-pole type
SST of the Atlantic Ocean was taken as the characteristic SST
region corresponding to the EM type NCCV. In other words,
the differences in the mean SST values between the region
[25◦−60◦W; 30◦−40◦N] and the region [15◦−60◦W; 0◦−20◦N]
and [35◦−70◦W; 40◦−50◦N] (red box area in Figure 8A) from
March to May were defined as the SST index N1. Similarly, the
mean SST values of the eastern Equatorial Pacific Ocean region
[80◦−150◦W; 20◦S−10◦N] (red box area in Figure 8B) from
March to May were selected and defined as the characteristic SST
index N2 of the SLM type NCCV. Subsequently, the differences in
the mean SST values between the Equatorial Northwestern Pacific
Ocean region [120◦E−170◦W; 10◦−40◦N] and the Equatorial
Western Pacific Ocean region [150◦E−160◦W; 20◦S−10◦N] (red
box region in Figure 8C; red box area in Figure 8B) from
March to May were defined as the characteristic SST index N3
of the ESM type NCCV. Finally, the mean SST values of the
Equatorial Pacific Ocean region [165◦E−160◦W; 15◦S−10◦N]
(red box area in Figure 8D) from March to May were defined
as the characteristic SST index N4 of the SLM type NCCV.

The atmospheric circulation configurations of the four types
of NCCV are quite different (Fang et al., 2021). The four types
NCCV corresponded to the following circulation configurations:
The interaction type between the Okhotsk Sea blockage and the
eastern low vortex of the Mongolian Plateau (EM); the interaction
type between the Yenisei River blockage and the low vortex
of the upper reaches of the Lena River (SLM); the interaction
type between the Obi River blockage and Okhotsk Sea-Japan
Sea blockage and the low vortex of Baikal Lake (ESM); and
the interaction type between the Central Siberia-East Siberia
blockage and southern low vortex in East Siberia (SSM). Then,
the circulation fields of the four types of NCCV in the month
of June from 1979 to 2018 were regressed to the four types of
SST indexes, as detailed in Figure 9. It can be seen in the figure
that the EM type NCCV corresponded to the abnormally high
SSTs in the North Pacific Ocean during the early summer months,
resulting in an anticyclonic circulation pattern near Lake Baikal
in the early summer and a cyclonic circulation pattern in NEC
and its southwestern portion. The generated wind fields were
conducive to the NCCV moving from its source to the southwest.
These findings were in good agreement with the moving path
of the EM type NCCV. During the early stages of the SLM type
NCCV, the SSTs in the Equatorial Eastern Pacific Ocean region
were abnormally high, which caused the easterly airflow of the
source location (upstream of the Lena River) in the northern
section of the cyclonic circulation. Therefore, the conditions
were not conducive to the movement of the NCCV to the
southeast. Furthermore, during the early stages of the ESM type
NCCV, it was observed that the SSTs in the Equatorial Western

Pacific Ocean region were abnormally low, which caused the
NCCV source location (near Lake Baikal) to be controlled by the
cyclonic circulation. As a result, the southwestern airflow into
the southeast of the circulation assisted the NCCV to move to
the northeast, which was consistent with the moving path of the
ESM type NCCV. In addition, during the early stages of the SSM
type NCCV, the abnormally high SSTs in the Equatorial Western
Pacific Ocean region caused the Mongolia area to be controlled by
the anticyclone circulation processes. Therefore, since the source
location of the NCCV (south of East Siberia) had been affected
by the northwest airflow, the conditions were conducive to the
NCCV moving to the southeast. These findings were consistent
with the moving paths of the SSM type NCCV.

CONCLUSION AND DISCUSSION

In this study, we try to classify the NCCV into different types
according to their active path by using the KMC method (Fang
et al., 2020). The climatic characteristics of these types of NCCV
and their impacts on the precipitation over NEC were analyzed.
It is also revealed the distribution of the sea-surface temperature
(SST) anomalies had close relationship with the formation of
these four types of the NCCV. Main conclusion are listed as
follows:

(1) The KMC method can effectively divide the NCCV events
into four different types according to the identified active
paths and durations: (i) Eastward movement type (EM);
(ii) Southeastward long-distance movement type (SLM);
(iii) Eastward short-distance movement type (ESM); and
(iv) Southward short-distance movement type (SSM). The
characteristics of the four types of the NCCV, along with
their impacts on the precipitation during early summer
in NEC, were studied. The maintaining days of these four
types of the NCCV were found to have obvious interannual
and interdecadal variation features. For example, the
maintaining days of the EM and ESM types were mainly
characterized by interannual variability, while the SLM and
SSM types have the obvious 10–13a interdecadal variation
along with interannual variability.

(2) Climatic features of four types of the NCCV events
exist significant differences and their impacts on the
precipitation anomalies in NEC also present obvious
differences. The activity range of the EM type covered
the entire NEC. This type was found to have the
highest occurrence frequency and longest maintenance
days with the high value area mainly distributed in
the central-south area of NEC. The activity range of
the SLM type was concentrated in the eastern Inner
Mongolia and northeastern Mongolia. This type had the
lowest occurrence frequency. The ESM type was found
to only have a small activity range concentrated in the
northwestern region of NEC with the high value area of
maintenance days located near Arxan??? The activity range
of the SSM type was found to be limited to the northeastern
region of Heilongjiang Province. This type had the least
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number of maintenance days with large value distributed
in the northern Heilongjiang.

(3) Four types of NCCV events had different impacts on
the precipitation patterns in NEC. For example, when
the EM type occurred, the rainy center mainly located
in the eastern part of NEC. The SLM type bring more
precipitation in the central part of the NEC. When the
ESM type NCCV occurred, it was observed that there
was a weak correlation between the NCCV index and the
precipitation in NEC. In addition, when the SSM type
NCCV occurred, there was generally more precipitation
in the northern area of the region. Therefore, this study
revealed that the EM and SLM (especially the former type)
should be mainly considered when analyzing the impacts
of the NCCV events on precipitation patterns in NEC.

(4) Four types of NCCV events were found to have different
impacts on precipitation days at various magnitude levels
in NEC. The interannual growth trends of precipitation
days were not found to be obvious during the maintenance
duration of the EM and SLM types. During the
maintenance period of the ESM type, the precipitation
days displayed a certain growth trend at various magnitude
levels, while the SSM type displayed a certain weakening
trend. The main differences of precipitation feature among
these four types of NCCV events mainly existed in the light
rain and moderate rain levels.

(5) The distributions of the SST anomalies which had
significant correlation with the four NCCV types were also
observed to be quite different from each other. It was
found close relationships existed between the circulation
fields and the moving paths of the four NCCV types under
different SST backgrounds. For example, the Atlantic
Ocean tripole distribution of the SSTs corresponded well
with the EM type NCCV. The rises of the SSTs in the
Equatorial Eastern Pacific Ocean correspond well with
the SLM type. Besides, the abnormally low SSTs in the
Equatorial Western Pacific Ocean and high SSTs in the
Northwestern Pacific Ocean had significant correlation
with the ESM type NCCV. Similarly, the abnormally low
SSTs in the Equatorial Western Pacific Ocean present the
close relationship with the SSM type of NCCV events.

Based on previous similar studies, the Atlantic SST anomalies
can induce atmospheric diabatic heating, which stimulates
quasi-barotropic mid- to high-latitude Rossby wave trains
to the downstream along a parallel circle through the sea-
air interactions, which caused the formation of circulation
configuration as high resistance on the northwest and southeast
sides of Lake Baikal high with NCCV coordination circulation.
It is beneficial to the occurrence and development of the NCCV.
For The cold vortexes affected by the Pacific SST, by blocking the
upstream circulation, atmospheric circulation anomalies such as
the EU teleconnection are formed, which causes the anomaly of
NCCV in early summer.

This paper only analyze the influence of SST, but in fact, both
sea ice and land may affect atmospheric circulation and thus
affect the NCCV.
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Development and Assessment of the
Monthly Grid Precipitation Datasets in
China
Jiadong Peng1,2, Lijie Duan1, Wenhui Xu3 and Qingxiang Li4*†
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Based on the high-quality homogenized precipitation data from all 2,419 national weather
stations in China, the climatology and anomaly percentage fields are derived, and then the
digital elevation model (DEM) is employed to reduce the influence of elevation on the spatial
interpolation accuracy of precipitation due to the unique topography in China. Then, the
gradient plus inverse distance squared (GIDS) method and the inverse distance squared
(IDS) method are used to grid the climatology field and the anomaly percentage field,
respectively, and the 0.5 × 0.5° gridded datasets during 1961–2018 in China are obtained
by combining them together. The evaluation shows that the mean absolute error (MAE)
between the analysis value and the observation is 15.8 mm/month. The MAE in South
China is generally higher than that in North China, and the MAE is obviously larger in
summer than in other seasons. Specifically, 94.6, 54.4, 4.6, and 53.8% of the MAE are
below 10mm/month in winter (DJF), spring (MAM), summer (JJA), and autumn (SON),
respectively, and 99.5, 79.9, 22.8, and 82.1% of them are less than 20mm/month. The
MAE over China in four seasons is 3.8, 13.2, 33.5, and 12.7 mm/month, respectively. This
dataset has the potential of broad application prospects in the evaluations of weather and
climate models and satellite products.

Keywords: China, precipitation, GIDS, IDS, gridded dataset, accuracy evaluation

INTRODUCTION

In the study of global or regional large-scale climate change, it is necessary to grid the climate series to
effectively reduce or avoid spatial sampling errors (Shen et al., 2010; Wu and Gao, 2013; Zhao et al.,
2014; Zhao and Zhu, 2015; Cheng et al., 2020). Precipitation is one of the most important
meteorological elements. High-resolution gridded precipitation data are important input
parameters for atmospheric, climatic, hydrological, and ecological models, and they are
necessary for the evaluations of numerical forecast products. However, due to the geographical
conditions and the shortage of meteorological observations, it may be difficult to obtain the accurate
regional area precipitation amount in certain areas. Despite the difficulties, several daily or monthly
precipitation series have been developed on regional scales in China in the past 30–100 years (Xie
et al., 2007; Shen et al., 2010; Li et al., 2012;Wu and Gao, 2013; Zhao et al., 2014). However, a series of
problems, such as the low density of stations, the uneven distribution of stations, the quality of raw
data, and the inadequacy of interpolation methods, lead to the systematic evaluation on the gridded
precipitation datasets still being open to discussion, especially using higher quality observation and
more state-of-the-art interpolation methods.
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Generally speaking, the accuracy of spatial gridded
precipitation data depends not only on the interpolation
methods but also on the observation station density, the
geographical location, the climatic characteristics, and the
impact systems of precipitation, and varies with seasons (Dai
et al., 1997; Xie et al., 2007; Yatagai et al., 2009; Peng et al., 2019).
Most of the gridded precipitation datasets over China used only
hundreds of stations in total due to the data access limits, which
will make it difficult to further reduce the accuracy of
precipitation gridding (Chen et al., 2002; Hong et al., 2005).
The other high-resolution datasets emphasized the improvement
of the spatial distribution of stations but did not consider the
inhomogeneity due to inconsistent observational schedules in
different years, relocations of stations, etc., which will cause
problems in long-term climate change trend detection (Shen
et al., 2010; Wu and Gao, 2013; Zhao et al., 2014). In
addition, topography, geomorphology, and underlying surface
characteristics are also important factors that affect the accuracy
of gridded data (Daly et al., 1994; Xiong et al., 2011). Due to the
large spatial variability of precipitation, the error of direct
interpolation is relatively large. Therefore, a climatology field
with spatial continuity and with the influences of topography and
geomorphology taken into consideration is usually constructed.
Furthermore, a new element, such as precipitation difference
Chen et al. (2002) or ratio Daly et al. (1994), is defined based on
the climatology field for the spatial interpolation. Thereby, the
interpolation error caused by the spatial discontinuity of
precipitation can be reduced. It has been revealed that higher
interpolation accuracy can be obtained by defining a ratio (Xie
et al., 2007).

Therefore, based on the precipitation observation network in
the currently highest density in Mainland China, the
interpolation method through defining the anomaly percentage
of monthly precipitation based on the climatology field is adopted
in this study to generate a new monthly gridded precipitation
dataset, and the systematic and random data errors of the gridded
data are assessed with the cross-validation method. The
remainder of this article is arranged as follows: Data and
Methods introduces the main data sources, interpolation
methods, and validation methods used to develop high-
resolution gridded precipitation datasets in this study. The
interpolation errors and validation results of climatology and
anomaly data are presented in Gridding Error Analysis.
Conclusion and Discussion provides final discussion and
conclusions.

DATA AND METHODS

Data
The monthly precipitation data from the period of January 1961
to December 2018 from the 2,419 national meteorological
stations in China (excluding Hong Kong, Macao, and Taiwan)
are used in this study. This dataset has been systematically
homogenized and updated by Chinese scientists Li et al.
(2012), Yang and Li (2014), and the 30-year (1981–2010)
climatology dataset is derived. The digital elevation model

(DEM) of GTOPO30 is used for the interpolation of
precipitation.

Gridding Method for Precipitation Data
There are various gridding methods for the meteorological data,
with advantages and disadvantages in each one (Gyalistras 2003;
Qiang et al., 2016). In the gridding of the climatology
precipitation dataset, the accuracy of the spatial distribution of
precipitation on various timescales (monthly and annual) should
be ensured. More importantly, the interannual trend and inter-
decadal changes of precipitation in each region should be
maintained. That is, the gridded series should have “climate
quality” and be uniform. Therefore, the climatic mean
(i.e., multiyear average value and climatic background field)
and the anomalies (i.e., deviations from the climatic mean)
should be gridded separately. The gridding of climatic mean is
relatively more complicated, since multiple factors such as
topography must be taken into account. However, the
gridding of anomalies is usually simpler, in which only the
relative changes of precipitation at different moments (years
and months) should be accurately described. Thus, the
technical methods adopted are relatively simple.

In this study, the gridding of monthly precipitation data
includes the following three steps. First, the gridded climatic
background field of monthly precipitation is created. Then, the
monthly precipitation ratio at each station is calculated and
interpolated into the gridded field. The ratio is a new
element defined based on the climatic background field,
namely, the monthly precipitation anomaly percentage.
Finally, the gridded monthly precipitation is generated by
multiplying the gridded monthly precipitation anomaly
percentage with the corresponding climatic background field.

Establishment of the Climatic Background Field
Precipitation is discontinuously distributed, but its climatic mean
demonstrates spatial continuity. The analysis errors caused by
spatial discontinuity can be reduced or eliminated by
constructing a gridded precipitation field based on the climatic
background field; thus, the spatial interpolation accuracy can be
significantly improved. In addition, the influence of topography
on precipitation cannot be ignored. However, there is no effective
method to amend the topographic effect on precipitation in the
world. In this study, the gradient plus inverse distance squared
(GIDS) method is adopted to grid the climatic mean field (Nalder
and Wein, 1998; Price et al., 2000; Li et al., 2019). The advantage
of this method over the IDS method is the consideration of
gradients of meteorological elements with elevation, longitude,
and latitude. Eq. 1 is as follows:

v(x) �
[ ∑n

i�1
vi+(X−Xi)×Cx+(Y−Yi)×Cy+(Z−Zi)×Cz

d2i
]

( ∑n
i�1

1
d2i
) , (1)

where N is the number of samples used in the calculation, with
the maximum value of 9 in this study. The distances between all
the stations and the prediction point S are calculated, and the
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stations with distance from S beyond 4° are excluded. Then, the
stations nearest to S (9 stations at most) are selected for
calculation. X, Y, and Z are the coordinate values (longitude,
latitude, and elevation) of the prediction point, and Xi, Yi, and Zi
are the coordinate values of the meteorological station i. Cx, Cy,
and Cz are the regression coefficients between the meteorological
element values and X, Y, and elevation Z, respectively. The
regression coefficients are calculated by using X, Y, or
elevation Z at all the stations and the corresponding
meteorological element values through the multiple regression
equation. di is the distance from the interpolation point to the
station i, and 2 is the power of the distance. The calculations of
gradients with elevation, longitude, and latitude are added in this
formula based on the IDS method.

Precipitation varies significantly with elevation, and the
gridded data with higher resolution are more favorable for
amending the topographic effect. Therefore, the 0.05 × 0.05°

DEM data in China are generated by resampling GTOPO30 data
(30″ × 30″ resolution). At the same time, for better terrain
correction, the climatic background field is first interpolated to
the grid point of 0.05 × 0.05° to obtain more accurate and high-
resolution gridded values by fully using the elevation information,
and then the area average method is used to obtain the final
required 0.5 × 0.5° data, similar to Cheng et al. (2020).

Generation of Precipitation Anomaly Percentage
Gridded Field
To reduce the interpolation error caused by the spatial
discontinuity of precipitation, the monthly precipitation
anomaly percentage defined based on the climatology value is
gridded using the IDS method, instead of direct interpolation of
the precipitation data. The IDS method is a deterministic
interpolation method based on the principle of close similarity;
that is, the closer two objects are, the more similar their values are,
and vice versa (Dai et al., 1997). Eq. 2 of IDS is as follows:

v(s) �
( ∑n

i�1
vi
d2i
)

( ∑n
i�1

1
d2i
) (2)

,

where V (s) is the predicted value at the location s, N is the
number of samples used in the interpolation (i.e., the number of
stations), Vi is the value at the station i (i.e., the value of
meteorological elements such as temperature and precipitation),
di is the distance from the interpolation point to the station i, and 2
is the power of the distance.

The resolution of 0.5 × 0.5° is adopted for the precipitation
anomaly gridding and for the final precipitation dataset.

Generation of Gridded Precipitation Data
The gridded precipitation data for a certain month are the
product of the gridded precipitation anomaly percentage and
the corresponding climatic background field, with a spatial
resolution of 0.5 × 0.5°. Finally, a gridded dataset of monthly
precipitation from 1961 to 2018 is constructed.

Validation Method for the Dataset
Since the value of gridded data is averaged over the grid, it is
difficult to directly observe the true value. Therefore, there is no
widely recognized estimation method for the gridded data error.
The cross-validation method is being widely used at present, in
which the error is estimated by analyzing various cross-validation
statistics. It should be noted that the commonly used cross-
validation method does not apply all the observed data to
estimate the error, and as a result, the error is overestimated
in some degree. On the other hand, a high correlation between the
observation data and the gridded data may lead to
underestimation of error. Even so, cross-validation is still the
primary method used to analyze the gridded data error at present
(Xiong et al., 2011).

Two cross-validation methods for the dataset are adopted in
this study. In the first method, about 10% of the stations are
removed randomly, similar to Jones et al. (2009). Then, the GIDS
method is used to grid the climatology precipitation value, and
the gridded value is interpolated to the removed 10% of the
stations with the same method. The interpolated values are
compared with the actual climatology values at these stations
to obtain the errors. The same routine is repeated ten times with
different stations removed each time, and the cross-validation
errors at all the stations are obtained. Since only 90% of the data
are used for grid interpolation, the accuracy of grid data is
underestimated to a certain extent. However, the computation
of interpolation with high spatial–temporal resolution, especially
the cross-validation considering elevation, is very large. The
method of keeping 10% of the station data for cross-validation
is to limit the number of grid data calculations to 10 times in the
process of the test, so as to keep the amount of calculation within
a reasonable range. In the second method, a certain station is first
removed, and then, the precipitation anomaly percentage is
interpolated from the surrounding stations to this station with
the IDS method. The interpolated value is compared with the
actual value to obtain the errors and the correlation coefficients.
The precipitation value at each station is derived by compositing
the climatology value and the anomaly percentage obtained
through the first method and the second method, and the
cross-validation errors of precipitation are obtained by
comparing the composited value with the actual value. The
methods for assessment of cross-validation errors include
mean absolute error (MAE) and root mean square error (RMSE).

The topography in China is complex, with obvious climatic
contrast among different regions. To investigate the cross-
validation errors of the gridding method described above in
different climatic regions in China, the entire continent of
China is divided into eight climatic regions. The distribution
of meteorological stations and elevation in different regions is
shown in Figure 1, and the climatological monthly precipitation
of each region is shown in Figure 2. The precipitation in South
China, East China, Southwest China, and Central China is the
most, followed by Northeast and North China, and the
precipitation in the Qinghai-Tibet Plateau and Northwest
China is the least. The precipitation in JJA is the largest in a
year for each region.
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GRIDDING ERROR ANALYSIS

Gridding Error Analysis of Climatology
Precipitation Value
Tables 1,2 show the MAE and RMSE of cross-validation for the
climatology precipitation value, respectively. It is indicated
that the large errors are mainly distributed in South China
and Southwest China, while the errors in Northeast China,
North China, and Northwest China are relatively small (black
marks in Tables 1,2). This is closely related to the abundance
degree of precipitation in different regions, especially in
South China and Southwest China, and the large
undulation of topography in Southwest China. However,
the precipitation amount in the Qinghai–Tibet region is
low, but the error is relatively large, which can be
attributed to the sparse meteorological stations in this

region. According to the temporal distribution, the errors
in each region from June to August are significantly higher
than those in other months (black marks in Tables 1,2),
which is closely related to the concentrated rainfall in this
period.

Figure 3 shows the spatial distributions of the MAE in each
season. It can be seen that the MAE in southern regions is
generally higher than that in northern regions in each season;
79.8, 55.7, 23.6, and 54.9% of the MAE are below 3 mm/
month in DJF, MAM, JJA, and SON, respectively, and 96.6,
85.4, 59.8, and 86.3% of them are less than 10 mm/month.
The MAE is 2.0, 5.6, 13.2, and 5.4 mm/month in DJF, MAM,
JJA, and SON, respectively, with the error being largest in
JJA. Throughout the whole year, the MAE for 53.5 and 82.0%
of the samples is lower than 3 and 10 mm/month,
respectively (Figure 4).

FIGURE 1 | Distribution of meteorological stations and elevation in different regions of China.

FIGURE 2 | Climatological monthly precipitation of each region in China.
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TABLE 1 | MAE of cross-validation for the climatology value (unit: mm).

Month 1 2 3 4 5 6 7 8 9 10 11 12

Region

Northeast China 0.8 1.2 1.9 2.7 3.4 5.5 11.4 8.9 4.8 2.8 1.7 1.2
North China 0.5 0.6 1.0 1.3 2.4 4.4 8.8 8.1 3.5 1.6 1.0 0.5
East China 3.5 3.8 5.0 5.0 7.5 12.7 14.2 15.4 10.5 4.5 3.6 2.5
South China 4.1 5.8 8.8 13.5 25.6 31.2 27.6 21.4 14.8 10.8 6.6 3.4
Central China 2.9 3.5 4.6 5.6 8.7 11.4 14.1 12.2 6.5 5.2 3.0 2.0
Qinghai–Tibet Plateau 1.8 2.9 5.9 6.6 9.4 13.8 12.4 11.7 10.8 5.9 1.6 1.2
Northwest China 1.2 1.3 2.5 3.8 5.4 5.9 7.4 7.3 4.7 3.5 2.2 1.4
Southwest China 2.9 3.3 4.8 6.2 11.9 20.3 24.1 22.0 14.5 9.7 4.4 2.6

Bold value shows : According to the temporal distribution, the errors in each region from June to August are significantly higher than those in other months, which is closely related to the
concentrated rainfall in this period.

TABLE 2 | RMSE of cross-validation for the climatology value (unit: mm).

Month 1 2 3 4 5 6 7 8 9 10 11 12

Region

Northeast China 1.2 2.6 3.5 4.2 5.5 7.5 16.6 13.0 7.2 4.8 2.6 1.9
North China 0.7 0.9 1.4 1.9 3.3 6.0 14.4 12.2 4.8 2.3 1.9 0.8
East China 5.8 7.1 7.8 7.4 11.2 19.0 19.7 26.1 18.4 7.3 6.3 4.1
South China 6.8 8.8 14.8 19.3 36.3 42.9 38.2 31.3 20.8 21.1 12.1 6.0
Central China 4.4 5.5 7.3 9.4 14.5 20.9 22.3 17.1 9.9 8.8 4.5 3.3
Qinghai–Tibet Plateau 5.2 7.7 12.4 11.9 13.3 20.3 18.3 18.7 17.3 10.7 2.7 3.7
Northwest China 2.2 2.2 4.2 7.1 9.8 10.3 13.4 12.5 7.4 5.5 4.3 2.8
Southwest China 4.3 5.6 9.1 10.9 17.4 29.6 35.3 31.9 20.8 14.1 6.2 3.8

Bold value shows : According to the temporal distribution, the errors in each region from June to August are significantly higher than those in other months, which is closely related to the
concentrated rainfall in this period.

FIGURE 3 | Spatial distributions of the MAE for the climatology values (unit: mm/month) in (A) DJF, (B) MAM, (C) JJA, and (D) SON.
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Gridding Error Analysis of Precipitation
Anomaly Percentage
Tables 3,4 show the MAE and the RMSE for the cross-
validation of precipitation anomaly percentage, respectively.
They show that the large errors are mainly distributed in
Qinghai–Tibet and Northwest China, while the errors in
other areas are relatively small. This distribution is
associated with the sparse stations in the above two regions,
which leads to the increased interpolation errors. In addition,
the small climatology value of precipitation and the large
spatial difference of precipitation anomaly percentage can
also result in large errors in these regions. The temporal
distribution indicates that the monthly errors in the rainy
season are higher than those in the non-rainy season in North
China, Central China, and East China, which is due to the

relatively intense rainfall in this period. However, in the other
regions, the errors in the non-rainy months are significantly
higher than those in the rainy months, which is attributed to
the small climatology value of precipitation in these regions,
resulting in the large spatial difference of precipitation
anomaly percentage. In general, the cross-interpolated
precipitation anomaly percentage sequence is well
correlated with the actual one, with the correlation
coefficients generally being above 0.7 (Table 5) and the
minimum value being in July and August, basically (black
marks in Table 5).

Figure 5 shows the spatial distributions of correlation
coefficients for the cross-validation of precipitation anomaly
percentage in January, April, July, and October. It is shown
that the correlation coefficient in the eastern regions is
generally higher than that in the western regions. This is due
to the small climatology value of precipitation and the large
spatial difference of precipitation anomaly percentage, and also
the sparse stations in the western regions. The correlation
coefficients at 76.8, 64.1, 19.3, and 69.5% of the stations are
above 0.9 in January, April, July, and October, respectively, and
those at 94.9, 96.3, 90.2, and 96.8% of the stations are above 0.7 in
these four months. The mean correlation coefficients are 0.915,
0.894, 0.823, and 0.913, with the smallest value being in July. This
is closely related to the abundance degree of precipitation and
high frequency of convectional precipitation in this particular
month. Throughout the whole year, the correlation coefficients
for 55.4 and 94.8% of the samples are above 0.9 and 0.7,
respectively (Figure 6).

FIGURE 4 | Frequency distribution of the MAE for the climatology values.

TABLE 3 | MAE for cross-validation of the precipitation anomaly percentage (unit: %).

Month 1 2 3 4 5 6 7 8 9 10 11 12

Region

Northeast China 28.9 35.5 24.1 20.7 20.9 23.7 22.0 22.7 27.5 22.7 26.6 26.6
North China 25.6 25.3 18.5 21.6 18.9 24.5 23.9 23.8 21.5 18.5 23.2 25.2
East China 9.7 9.8 9.6 13.7 15.6 16.7 21.3 24.4 25.1 19.1 13.9 12.3
South China 20.0 16.9 20.7 23.2 22.3 21.6 21.9 22.9 26.1 34.2 28.6 22.9
Central China 14.6 14.1 13.2 16.4 16.1 18.6 21.5 24.5 22.0 14.7 15.6 15.6
Qinghai–Tibet Plateau 62.1 62.9 49.0 38.8 26.5 23.8 20.9 23.1 22.3 35.7 63.5 60.9
Northwest China 38.1 40.0 34.5 35.7 29.5 31.5 32.8 33.4 29.2 31.0 45.5 39.6
Southwest China 27.8 24.6 22.5 22.0 19.4 19.4 19.9 21.7 22.3 20.2 22.6 30.5

TABLE 4 | RMSE for cross-validation of precipitation anomaly percentage (unit: %).

Month 1 2 3 4 5 6 7 8 9 10 11 12

Region

Northeast China 43.5 55.4 34.4 28.5 28.6 31.3 28.7 30.2 38.1 31.7 39.6 41.2
North China 42.9 40.0 27.8 32.0 26.8 33.4 31.7 31.9 30.7 27.5 38.0 41.8
East China 13.9 13.7 13.3 18.9 21.3 22.4 28.2 32.1 34.8 28.9 20.8 18.5
South China 31.0 25.7 30.7 31.8 29.3 28.5 29.0 29.7 34.6 51.4 45.5 35.7
Central China 21.3 19.8 18.0 22.8 21.7 25.0 28.6 32.7 30.6 20.7 22.6 23.1
Qinghai–Tibet Plateau 100.9 96.5 72.5 53.8 35.4 31.0 27.1 30.7 29.1 51.5 104.5 107.1
Northwest China 60.3 65.7 56.6 55.3 43.0 45.3 45.8 48.2 43.5 49.8 78.5 66.3
Southwest China 41.7 35.7 32 30.1 25.9 25.5 25.7 27.8 29.7 27.2 32.3 46.5
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Gridding Error Analysis of Precipitation
Tables 6,7 show the MAE and the RMSE for the precipitation
cross-validation, respectively. It is indicated that the temporal
and spatial distribution of errors for the precipitation are
similar to those of climatology value, which in areas or
months with high precipitation are greater than those in
areas or months with low precipitation, especially South
China and Southwest China in space and JJA in time (black
marks in Tables 6,7).

Figure 7 demonstrates the spatial distributions of the MAE for
the precipitation in each season. The MAE in southern regions is
generally higher than that in northern regions in each season,
which is closely related to the abundance degree of precipitation

TABLE 5 | Correlation coefficients for the cross-validation of precipitation anomaly percentage.

Month 1 2 3 4 5 6 7 8 9 10 11 12

Region

Northeast China 0.899 0.901 0.904 0.916 0.897 0.803 0.803 0.839 0.853 0.905 0.915 0.901
North China 0.939 0.942 0.943 0.937 0.906 0.846 0.834 0.855 0.901 0.949 0.960 0.938
East China 0.981 0.975 0.967 0.938 0.913 0.913 0.877 0.848 0.881 0.951 0.972 0.982
South China 0.956 0.940 0.903 0.864 0.790 0.815 0.833 0.831 0.831 0.898 0.917 0.947
Central China 0.952 0.951 0.939 0.914 0.876 0.875 0.863 0.849 0.906 0.956 0.961 0.961
Qinghai–Tibet Plateau 0.635 0.627 0.635 0.723 0.773 0.727 0.729 0.749 0.770 0.802 0.724 0.699
Northwest China 0.845 0.815 0.835 0.828 0.834 0.778 0.771 0.792 0.837 0.837 0.847 0.841
Southwest China 0.863 0.885 0.889 0.846 0.836 0.799 0.768 0.786 0.795 0.864 0.899 0.877

Bold value shows : In general, the cross-interpolated precipitation anomaly percentage sequence is well correlated with the actual one, with the correlation coefficients generally being
above 0.7 and the minimum value being in July and August, basically.

FIGURE 5 |Spatial distributions of correlation coefficients for the cross-validation of precipitation anomaly percentage in (A) January, (B)April, (C) July, and (D)October.

FIGURE 6 | Frequency distribution of correlation coefficients for the
cross-validation of precipitation anomaly percentage.
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in southern regions compared to that in northern regions. The
MAE for 94.6, 54.4, 4.6, and 53.8% of the samples in China is
below 10 mm/month in DJF, MAM, JJA, and SON, respectively,
and 99.5, 79.9, 22.8, and 82.1% of the samples show the MAE
below 20 mm/month. The MAE is 3.8, 13.2, 33.5, and 12.7 mm/
month, with the largest value being in JJA, which is also closely
related to the concentrated rainfall in this period. Over the whole
year, the MAE for 51.8 and 71.1% of the samples is less than 10
and 20 mm/month, respectively (Figure 8).

CONCLUSION AND DISCUSSION

Based on the high-quality precipitation data from 2,419
meteorological stations in China, the climatic mean field and
the anomaly percentage field are derived and gridded with the
GIDS and IDS methods, respectively. The DEM data are
employed to reduce the influence of elevation on the spatial
interpolation accuracy of precipitation due to the unique
topography in China. The 0.5 × 0.5° surface gridded dataset
during 1961–2018 in China is obtained, and the accuracy
evaluation is carried out. The main conclusions are as follows.

The cross-validation for the climatic precipitation shows that
79.8, 55.7, 23.6, and 54.9% of the MAE are below 3 mm/month in
DJF, MAM, JJA, and SON, respectively, and 96.6, 85.4, 59.8, and
86.3% of them are below 10 mm/month. The MAE in the four
seasons is 2.0, 5.6, 13.2, and 5.4 mm/month, respectively. The

spatial distribution shows that the MAE in southern regions is
generally higher than that in northern regions in each season,
which is closely related to the abundance degree of precipitation
in southern regions compared to that in northern regions. Among
the four seasons, the MAE in JJA is the largest, which is closely
related to the concentrated rainfall in this period.

The cross-validation for the precipitation anomaly percentage
indicates that the correlation coefficients at 76.8, 64.1, 19.3, and
69.5% of the stations are above 0.9 in January, April, July, and
October, respectively, and the correlation coefficients at 94.9,
96.3, 90.2, and 96.8% of the stations are above 0.7. The national
mean correlation coefficients in the four months are 0.915, 0.894,
0.823, and 0.913, respectively. In the spatial distribution, the
correlation coefficient in the eastern regions is generally higher
than that in the western regions, which is associated with the
small climatology value of precipitation and the large spatial
difference of precipitation anomaly percentage, and also the
sparse stations in the western regions. In terms of temporal
distribution, the correlation coefficient in July is the smallest,
which is closely related to the abundance degree of precipitation
and high frequency of convectional precipitation in this
particular month.

Regarding the cross-validation for the precipitation, the MAE
for 94.6, 54.4, 4.6, and 53.8% of the samples is less than 10 mm/
month in DJF, MAM, JJA, and SON, respectively, and 99.5, 79.9,
22.8, and 82.1% of the samples show the MAE below 20 mm/
month. The MAE in the four seasons is 3.8, 13.2, 33.5, and

TABLE 6 | MAE for the cross-validation of precipitation (unit: mm).

Region 1 2 3 4 5 6 7 8 9 10 11 12

Month

Northeast China 1.3 1.8 3.0 5.8 9.5 19.8 33.6 28.2 13.2 6.5 3.1 1.9
North China 0.9 1.4 2.3 4.6 8.1 16.1 31.8 28.8 11.7 4.9 2.4 1.0
East China 5.4 7.2 11.0 16.1 23.0 34.4 39.5 39.9 26.4 11.4 7.4 4.6
South China 7.7 10.0 16.6 33.9 56.5 66.9 57.5 58.3 43.5 28.2 14.1 7.4
Central China 4.8 6.5 9.7 16.7 23.8 30.6 37.9 34.2 18.5 11.4 7.3 4.2
Qinghai–Tibet Plateau 1.8 2.9 6.7 9.3 13.9 19.5 22.7 21.2 16.4 8.8 2.5 1.4
Northwest China 1.7 2.0 3.8 6.4 9.3 11.4 16.4 15.5 9.6 5.8 3.3 1.8
Southwest China 4.2 5.1 7.8 14.1 25.1 38.3 48.3 44.6 30.8 18.2 8.4 4.2

Bold value shows : It is indicated that the temporal and spatial distribution of errors for the precipitation are similar to those of climatology value, which in areas or months with high
precipitation are greater than those in areas or months with low precipitation, especially South China and Southwest China in space and JJA in time.

TABLE 7 | RMSE for the cross-validation of precipitation (unit: mm).

Month 1 2 3 4 5 6 7 8 9 10 11 12

Region

Northeast China 2.0 2.6 4.1 7.8 12.7 26.2 43.5 37.4 18.0 8.9 4.4 2.7
North China 1.5 2.1 3.5 6.8 11.6 22.1 42.0 38.6 16.7 7.2 3.8 1.6
East China 7.4 9.6 14.7 21.5 30.5 45.2 52.3 52.0 36.4 17.1 10.8 6.8
South China 11.3 14.8 23.2 46.2 74.0 87.2 75.2 74.7 57.9 41.7 22.3 11.4
Central China 6.5 8.8 12.7 22.2 31.5 40.4 50.1 45.5 25.6 16.0 10.5 5.9
Qinghai–Tibet Plateau 3.0 4.4 9.2 11.9 17.7 24.6 28.6 26.9 20.8 12.0 3.9 2.4
Northwest China 2.4 2.9 5.4 9.0 12.6 15.5 21.7 21.0 13.0 8.0 4.7 2.5
Southwest China 5.7 6.9 10.4 18.7 32.7 49.0 60.8 56.2 40.2 23.9 11.5 5.9

Bold value shows : It is indicated that the temporal and spatial distribution of errors for the precipitation are similar to those of climatology value, which in areas or months with high
precipitation are greater than those in areas or months with low precipitation, especially South China and Southwest China in space and JJA in time.
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12.7 mm/month, respectively. Spatially, the MAE in southern
regions is generally higher than that in northern regions in each
season, which is closely related to the abundance degree of
precipitation in southern regions compared to that in northern
regions. The temporal distribution presents the largest MAE in
JJA, which is also closely related to the concentrated rainfall in
this period.

Compared with the other research in China, our precipitation
grid product has a similar accuracy. For example, Zhao et al.
(2014) established the monthly grid precipitation datasets in
China by using the TPS (thin plate spline) method, and the

MAE for 51.5 and 75.2% of the samples was less than 5 mm/
month and 15 mm/month for the whole year, respectively.
However, their calculation of the MAE did not involve a
cross-validation method, and that may lead to underestimation
of error. Xiong et al. (2011) constructed the daily grid
precipitation datasets in China by using the Barnes method,
and the MAE was 1.3 mm/day for the whole year, and 0.25,
1.03, 3.06, and 0.85 mm/day in DJF, MAM, JJA, and SON,
respectively.

The primary purpose of this study is to meet the urgent need in
agriculture, hydrological modeling, and other fields. However, it
should be pointed out that the gridding of station observation
data is a very complex work. Taking this study as an example,
there is still a lot to be improved. These include the following:

(1) More observation data should be collected. In addition
to the stations used in this study, there are a large
number of rainfall stations with a relatively poor
observation quality in China. In the future, we can
consider using these observations in interpolation after
quality control by appropriate methods and fusion of
satellite and radar data, which will greatly improve the
accuracy of the final grid data, especially in the regions
with scarcity in observations, such as the
Qinghai–Tibet Plateau.

(2) More methods or parameterization schemes should
be applied to the development and assessment of grid

FIGURE 7 | Spatial distributions of the MAE for the precipitation (unit: mm/month) in (A) DJF, (B) MAM, (C) JJA, and (D) SON.

FIGURE 8 | Frequency distribution of the MAE for the cross-validation of
precipitation.
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products, similar to Cheng et al. (2020), Newlands
et al. (2011). In this way, we can choose the best
method or scheme to improve the accuracy of
the grid.

Due to the scarcity of stations in western China, especially on
the Tibetan Plateau, with few observations in present, it is difficult
to evaluate the gridded precipitation dataset qualitatively and
quantitatively. The users are suggested to be cautious when using
the data from these regions in scientific research.
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A New Method for Correcting
Urbanization-Induced Bias in Surface
Air Temperature Observations:
Insights From Comparative
Site-Relocation Data
Tao Shi 1,2, Yong Huang3, Dabing Sun1, Gaopeng Lu2 and Yuanjian Yang4*

1Wuhu Meteorological Bureau, Wuhu, China, 2School of Earth and Space Sciences, University of Science and Technology of
China, Hefei, China, 3Key Laboratory of Atmospheric Sciences and Satellite Remote Sensing of Anhui Province, Anhui Institute of
Meteorological Sciences, Hefei, China, 4Collaborative Innovation Centre on Forecast and Evaluation of Meteorological Disasters,
School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, China

The effect of urbanization on surface air temperature (SAT) is one of the most important
systematic biases in SAT series of urban stations. Correcting this so-called urbanization
bias has the potential to provide accurate basic data for long-term climate change
monitoring and research. In the western region of the Yangtze River Delta, 42
meteorological stations with site-relocation history from 2009 to 2018 were selected to
analyze the statistical characteristics of the differences in comparative site-relocation daily
average SAT. The annual average differences in comparative site-relocation SAT series
between the old and the new stations (SATDON) were used to characterize the impact of
urbanization bias on the air temperature observation series. Using remote sensing
technology, spatial datasets of land-use, landscape, and geometric parameters of the
underlying surface in the 5-km buffer zone around the station were established as the
observed environmental factors of the site, and the differences in these observed
environmental factors (DOEFs) between the old and the new stations were calculated
to indicate the change induced by urbanization. Next, multiple linear regression models of
SATDON and DOEFs were constructed, showing that the error range of the model for
simulated SATDON was 3.66–18.21%, and the average error was 10.09%. Finally, this new
correction method (NCM) and conventional correction method (CCM) were applied to the
correction of the urbanization bias of SAT series at Hefei station. After comparison, it is
found that the NCM could reveal clear contributions of the rapid and slow stages of the
urbanization process and resultant environmental changes around the stations to the
observed SAT. In summary, the NCM based on remote sensing technology can more
reasonably and effectively correct the urbanization bias caused by local human activities,
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as well as reduce the error caused by the selection of reference stations via the
conventional correction method.

Keywords: surface air temperature series, urbanization bias, remote sensing technology, relocation, correction
method

INTRODUCTION

Urbanization directly affects the types of land use/cover and
anthropogenic heat emissions around meteorological stations,
leading to major changes in the observation environment (Gallo
et al., 1996; Peterson, 2006; Trusilova et al., 2008; Chen et al.,
2020), which in turn has an important impact on the accuracy,
representativeness, and homogeneity of meteorological observation
data (Davey and Sr, 2005; Vose, 2005). The contribution of the so-
called urbanization bias (the effect of urbanization on surface air
temperature (SAT), the list of abbreviations used in this article and
their expanded names can be found inAppendix A) tometeorological
observation data usually stems from changes in the observation
environment against the background of urbanized areas (Ren et al.,
2017). The urbanization bias is the largest systematic bias in SAT
observation records in China and correcting this bias has the potential
to provide accurate basic data for large-scale climate change
monitoring and research (Wen et al., 2019b).

Urbanization bias has received a great deal of attention in the
literature (Hansen et al., 2001; Fujibe, 2009; Zhang, 2009; Zhang,
2014; Wen et al., 2019a). Zhang (2009) used the method of
subtracting the warming trend of rural stations from the warming
trend of urban stations to correct the regional average SAT series
of urban stations and obtained the regional average SAT series
after removing the urbanization bias. Fujibe (2009) divided the
meteorological stations in Japan into six categories in terms of the
population density within a certain radius around the city station
and corrected the urbanization bias in the third–sixth-category
sites using the first and second types of stations as reference
stations. Hansen et al. (2001) corrected the urbanization bias of
one typical station by utilizing the two-stage linear trend based on
the assumption that the SAT increased linearly in two periods.
Zhou et al. (2019) pointed occurrence probability of the heatwave
events in summer over the Yangtze River Delta is closely related
to the contribution of urbanization effect. These imply that the
correction method of urbanization bias is very crucial to explore
accurately the regional climate change.

However, the conventional correction method (CCM) of
urbanization bias still has some shortcomings as follows: 1)
many studies have utilized the population density or city size
as the criteria for classifying meteorological stations. For example,
Bai and Ren (2006) chose meteorological stations with a
population of more than 100,000 as urban stations, but Liu
(2006) divided the stations with a population of more than
40,000 and the stations that were not described as “rural” into
urban stations. However, there have also been some studies that
have utilized satellite remote sensing data to select reference
stations, such as Zhang. (2014), who visually selected the
stations outside the closed contour as reference stations in the
temperature field retrieved from remote sensing data. Thus, it can

be seen that there is no unified standard for the selection of
reference stations, and it is difficult to find a pure reference station
near the urban station as reference stations are inevitably affected
by urbanization, so the urbanization bias in the SAT series is the
minimum estimate (Zhang, 2014). 2) Previous studies corrected
the SAT series based on the assumption that the urbanization bias
presents a linear increase trend (Hansen et al., 2001; Zhang,
2009). However, in reality, the urbanization processes at different
times and in different regions are variable, so it is impossible to
subdivide the specific degree of contribution of the urbanization
bias to the SAT series on temporal and spatial scales. In addition,
there are considerable differences in the mechanisms and
magnitudes of the impact of urbanization on different
temperature elements (Li et al., 2014), despite the possibly
limited contribution to regional warming (Chao et al., 2020),
while its impact on extreme temperatures are huge (Li and
Huang, 2013; Li et al., 2014; Zhou et al., 2019).

In order to improve the representativeness of the observation
environment of meteorological stations, many stations with
severely damaged observation environments have been
relocated. Taking 2015 as an example, 92 meteorological
observation stations across the country were relocated in this
year alone (Meteorological Observation Centre of CMA, 2013;
Comprehensive Observation Department of China
Meteorological Administration, 2015). According to the
requirements of “the criterion of surface meteorological
observation,” “protection methods for meteorological
exploration environment and facilities,” and other documents
formulated and issued by China Meteorological Administration,
site selection has a series of strict restrictions on factors such as
altitude, distance, and obstacles. The area around the relocated
station should be dominated by open vegetation, and the
representativeness of the meteorological observation
environment must have been greatly improved. Meteorological
observation series can represent the climate background of the
region (Yang et al., 2013; Yang et al., 2017), so relocated stations
can be used as relatively pure reference stations. In addition, “the
criterion of surface meteorological observation” stipulates that
the relocation of meteorological stations must involve the
carrying out of at least one year of comparative observations
between the new site and the old site, and the difference in
comparative site-relocation annual average SAT between the old
and the new stations (SATDON) provides high-quality data for us
to study the impact of urbanization bias on the SAT series.
Therefore, SATDON can reduce the error caused by the
selection of reference stations via the traditional urban–rural
comparison method.

The meteorological observation environment refers to the
environmental space constituted by the minimum distance
necessary to avoid various interferences and ensures that the
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facilities of the meteorological observation station accurately obtain
the meteorological observation information. With the rapid
development of remote sensing technology, the use of satellite
data to study changes in the meteorological environment has
become an emerging method (Yang et al., 2013; Li et al., 2015;
Shi et al., 2015). Yang et al. (2013) evaluated the observation
environment by using land use/cover and normalized difference
vegetation index (NDVI) in the buffer zone around the
meteorological station. Li et al. (2015) quantitatively studied the
relationship between land use/cover change (LUCC) and the
thermal environment in the buffer zone and subdivided the
stations into three types by the contribution index of the
thermal environment. The above researches show that it is
feasible to utilize satellite data to investigate and study the
observation environment, and it has the advantages of
visualization and remodeling. However, existing remote sensing
research on the observation environment only uses indicators such
as LUCC and NDVI and does not fully consider the impact of the
spatial pattern and configuration of different land-use types on the
observation environment. Consequently, this study uses remote
sensing technology to establish land-use parameters, landscape
parameters, geometric parameters, and other spatial datasets
around meteorological stations to characterize the differences in
observation environment factors (DOEFs) between the old and the
new stations and analyzes and discusses the physical mechanisms
by which urbanization bias influences the SAT series.

The Yangtze River Delta (YRD) urban agglomeration is one of
the most highly urbanized areas in China for the past 30 years
(National Bureau of Statistics, 2019). However, the development of
Anhui in the western region of the YRD has been relatively slow,
having not developed rapidly until the past 10 years. Therefore, the
observation environments of national meteorological stations in
Anhui Province have been seriously damaged in the past 10 years,
and a large number of stations have been forced to relocate on a
frequent basis (Meteorological Observation Centre of CMA, 2013;
Comprehensive Observation Department of China Meteorological
Administration, 2015), and this provides us with an opportunity to
study the process of urbanization and station relocation. In
summary, taking Anhui Province as the research area,
meteorological stations with site-relocation history were selected
in this study, and the SATDON results between the old and the new
stations were used to characterize the impact of urbanization bias
on the SAT series. Landscape parameters, geometric parameters,
and other spatial datasets in the 5 km buffer zone around the
stations were established to characterize the DOEFs between the
old and the new stations, and statistical models of the SATDON and
DOEFs were constructed. This paper corrected the urbanization
bias of the SAT series at a typical station by the newmethod and the
conventional method, respectively, and the advantages of the new
method were discussed finally.

DATA AND METHODS

Data
1) Ground observation data. The SAT data mainly include

national reference climatological stations, which observe

8 times a day (once every 3 h); national basic
meteorological station, which observes four times a day
[02:00, 08:00, 14:00, and 20:00 BT (Beijing time)]; national
general meteorological stations, which observe three times
a day (08:00, 14:00, and 20:00 BT) and obtain the daily-
averaged SAT by calculating the arithmetic mean of the
temperature values observed for each time per day.

2) Satellite remote sensing data. The remote sensing data
used in this study were Landsat data from the
United States’ EOS (Earth Observation System) for the
detection of earth resources and the environment.
Specifically, this study uses the remote sensing images
of the Landsat-7/ETM+ (Yao et al., 2010) and Landsat-8/
OLI (Saputra et al., 2017) sensors to study the changes in
the observation environment of the stations relocated
before 2013 and after 2013, respectively. A comparison
of the band information of the above two remote sensing
images is given in Table 1.

Methods
Selecting Samples for Relocated Stations
For this study, we selected meteorological stations with site-
relocation history as the research samples from 2009 to 2018,
according to the historical evolution data and comparative
observation data of the relocated stations, surveys and
evaluation reports of the observation environment of the
national ground meteorological stations, and high-resolution
satellite remote sensing images. The selection criteria were as
follows: 1) the main reason for the relocation was that the
observation environment of the station had been seriously
damaged; 2) in order to minimize the influence of the
difference of regional and local climate background, the
difference in altitude between the sites (before and after
relocation) was less than 50 m, and a horizontal distance
between the sites of 20 km was selected according to previous
studies (Wen et al., 2019; Shi et al., 2011); 3) there was no
significant difference in topography; and 4) the type of
observation instrument, the frequency of daily observations,
and daily mean methods of temperature series did not change
before and after station relocation. Based on the above criteria, 42
samples of relocated stations were selected, as shown in Figure 1.
The relocated station samples include 25 urban stations and 17
reference stations, according to the meteorological station
classification method of Ren et al. (Ren et al., 2010), and the
samples were evenly distributed throughout northern Anhui, the
Yangtze–Huaihe region, Yangtze River area, southern Anhui, and
other regions. Therefore, the samples in this study can represent
the impact of the urbanization development level of different
regions in Anhui Province on different types of stations.

Determining the Research Range of the Station Buffer
Zone
Studies (Cai, 2008; Yang et al., 2013; Shi et al., 2015; Yang et al.,
2020a) have shown that since the observation height of the
thermometer shelter in the observation field is 1.5 m, the
maximum impact of urbanization on the observation data
usually does not exceed 5 km under advection and turbulence

Frontiers in Environmental Science | www.frontiersin.org April 2021 | Volume 9 | Article 6254183

Shi et al. Correcting Urbanization-Induced Bias

126

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


transport conditions. Therefore, for this study, we selected a station
buffer zone with a center radius of 5 km to quantitatively study the
impact of environmental changes on the SAT series.

Establishing a Dataset of Characterization Parameters
of the Observation Environment in the Buffer Zone
Land-use parameters (Carolina et al., 2013) reflect the results of
various land resource utilization activities produced by human
beings, which are an important part of urban environmental
change research. This study uses the supervised classification
method to classify land use in ENVI software and establishes four
parameter indicators: built-up area ratio (ARBT), water area ratio
(ARW), vegetation area ratio (ARV), and bare land area
ratio (ARB).

The landscape parameters mainly include the largest patch index
(LPI) (Wu, 2000) and the mean fractal dimension (FRAC_MN)
(Wu, 2000) of the land type. The LPI represents the dominant land

type in the study area. The larger the LPI value, themore obvious the
advantage of this type of patch in the overall landscape. The
FRAC_MN represents the index of the patch shape. The larger
the FRAC_MN, the more complex the shape of the patch and the
more discrete the patch distribution. For this study, eight parameter
indicators were calculated in the landscape index software Fragstats,
including the built-up largest patch index (LPIBT), water largest
patch index (LPIW), vegetation largest patch index (LPIV), bare land
largest patch index (LPIB), built-up mean fractal dimension
(FRAC_MNBT), water mean fractal dimension (FRAC_MNW),
vegetation mean fractal dimension (FRAC_MNV), and bare land
mean fractal dimension (FRAC_MNB).

The geometric parameters mainly include the distance
between the stations and the gravity centers of different
land types in the buffer zone, and the distance between the
station and the city center (Liu et al., 2014). For this study, we
used ArcGIS software to extract the land types of “built-up,”

TABLE 1 | Comparison of band information between the Landsat-7/ETM+ and Landsat-8/OLI sensors.

Band no Landsat-7/ETM + sensor Landsat-8/OLI sensor

Wavelength (μm) Spatial resolution (m) Wavelength (μm) Spatial resolution (m)

1 0.45–0.515 30 0.433–0.453 30
2 0.525–0.605 30 0.450–0.515 30
3 0.63–0.690 30 0.525–0.600 30
4 0.75–0.90 30 0.630–0.680 30
5 1.55–1.75 30 0.845–0.885 30
6 10.40–12.50 60 1.560–1.660 30
7 2.09–2.35 30 2.100–2.300 30
8 0.52–0.90 15 0.500–0.680 15
9 1.360–1.390 30
10 10.60–11.19 100
11 11.50–12.51 100

FIGURE 1 | (A) Location of Anhui in the western region of the YRD in China. (B) Land use/cover maps and the spatial distribution of the relocated station samples in
Anhui Province from 2009 to 2018.
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“water,” “vegetation,” and “bare land” in the station buffer
zone, then used the “Calculate Geometry” function to obtain
the gravity centers of the different land types, and finally, the
“Point Distance” function could then be used to calculate four
parameter indicators, including the distance between the
station and the gravity center of built-up land (DISBT),
water (DISW), vegetation (DISV), and bare land (DISB). In
the same way, the parameter indicator of the distance
between the station and the city center (DISC) could be
obtained in the ArcGIS software.

The current urbanization bias correction scheme still has
deficiencies, mainly due to the limited assessment indicators for
local observation environment around meteorological stations.
Landscape ecological morphology (Figure 2) can be used to
explore the relationship between the spatial pattern of urban land
use and urban local microclimate (Zhou et al., 2011; Estoque et al.,
2017). Landscape composition can distinguish land-use types, and
landscape configuration can fully consider the respective geographic
characteristics of different land-use types. In addition to the
conventional land-use assessment indicators, therefore, our
present work employs landscape ecological indicators and
geometric indicators to assess observation environment around
station. Finally, based on correlation analysis, six indicators, that
is, ARBT, ARW, LPIBT, LPIW, DISBT, and DISW, were finally selected.

Simulation and Correction Method for the
Urbanization Bias in the SAT Series
This article starts with the physical causes of the impact of
urbanization bias on the observation environment and
simulates the degree of impact of the urbanization bias on the
SAT series by constructing statistical models of SATDON and
DOEFs. Multiple linear regression is a statistical analysis method
to determine the quantitative relationship between a dependent
variable and multiple independent variables (Lynn, 2007; Li,
2020). Assuming there is a linear correlation between the
dependent variable Y and the k independent variables X1,
X2,..., Xk, then the functional relationship between Y and X
can be expressed as:

Y � β + β1X1 + β2X2 +/ + βkXk + ε, (1)

where β is the regression constant; β1, β2, . . ., βk are the
regression coefficients; and ε is the regression residual.

After substituting the land-use, landscape, and geometric
parameters in the buffer zone around the station into Eq. 1,
the simulated values of the changes in the SAT series could be
obtained, and then the urbanization bias could be corrected by
the simulated values:

T ′ i � Ti − ΔTi. (2)

Here, i is the year number from the earliest year of recording to
the latest year of correcting, T′i is the annual average SAT after
correction in the ith year (°C), and ΔTi is the change in the annual
average SAT series caused by urbanization bias in the ith year
compared with the earliest observation year (°C).

RESULTS

Case Analysis of a Typical Station
Hefei National Meteorological Observation Station had been
completely surrounded by built-up land before relocation
because of the process of urbanization in recent years
(Figure 3); the observational environment score of Hefei
station was only 63.2. After relocation, Hefei station moved
30.2 km to the northwest of the old site, with an altitude
difference of 6.0 m, and the observation environment of the
station greatly improved, with the score increased to 99.3.

Table 2 shows the DOEFs between the old and the new
stations in the 5-km buffer zone. ARBT decreased from 42.17
to 4.23% after relocation, indicating that the area of built-up land
around the station was greatly reduced; the FRAC_MNBT

declined to a certain extent, indicating that the distribution of
built-up patches around the station was more concentrated than
before relocation; and DISBT increased from 0.53 to 3.13km,
indicating that the built-up land type had weakened the
urbanization impact of the station after relocation. The
parameters of water, vegetation, and bare land also improved
to varying degrees. In addition, the SATDON in 2018 showed that
the annual average SAT of the new station (Figure 3B) was 0.83°C
lower than the old station (Figure 3C) and the decline reached
4.8%. In summary, the representativeness of the observation
environment at Hefei station improved after relocation, and
the SATDON could represent the degree of the impact of the
urbanization bias on the SAT series.

FIGURE 2 | Schematic diagram of the landscape pattern around the station.
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Analyzing the Statistical Characteristics of
the Samples’ Daily Average Differences
For this section, daily-averaged SATDON series were close to a
normal distribution and fluctuated in the range of −2.3–4.4°C
(Figure 4). The sample size, mean, and standard deviation were
15,347, 0.572, and 0.568°C (Table 3), respectively. The above

statistics showed that the sample had a large variation range, but
the data distribution was mainly concentrated near the mean
value, and the overall sample volatility was relatively small. The
kurtosis value of the sample was 2.057, the number of samples
with a daily-averaged SATDON of 0.4°C was the largest, reaching
1,515, and the number of samples with a daily-averaged SATDON

at 0.2–0.8°C reached 9,193, accounting for 59.6% of the total
number of samples, indicating that the daily-averaged SATDON

series was steeper than the normal distribution. The sample
skewness value was 0.673, and the number of daily-averaged
SATDON values greater than the mean was 8,226, accounting for
53.6% of the total sample and indicating that there were more
points on the right-hand side of the data distribution, close to
the mean.

In addition, there were 828 negative values in the sample,
accounting for 5.39% of the total number of samples, which
means that the SAT series of the old stations were lower than the
new sites (Figure 4). The influence of the meteorological station
observation environment on the SAT series was more
complicated. Buildings cause the wind speed to decay
downwind and reduce air circulation in the observatory,
thereby enhancing the locality of temperature observation.
However, under unstable stratification conditions during the
daytime, the shadowing effect of solar radiation caused by
buildings and aerosol cooling effects might make the SAT
observed by the stations surrounded by buildings lower than
the stations with open terrain (Li et al., 2011; Zheng et al., 2018;
Zheng et al., 2020; Yang et al., 2020b).

FIGURE 3 | (A) Location of Hefei station relative to Hefei city before and after relocation. (B) LUCC in the 5-km buffer zone of Hefei station after relocation. (C) LUCC
in the 5-km buffer zone of Hefei station before relocation.

TABLE 2 | DOEFs in the 5-km buffer zone of Hefei station after and before
relocation.

Parameter After relocation Before relocation

Land-use parameters ARBT (%) 4.23 42.17
ARW (%) 3.11 1.01
ARV (%) 91.09 56.04
ARV (%) 0.57 0.78

Landscape parameters LPIBT 5.97 24.73
LPIW 1.13 0.30
LPIV 60.18 38.88
LPIB 0.73 0.91
FRAC_MNBT 1.04 1.14
FRAC_MNW 1.18 1.09
FRAC_MNV 1.11 1.17
FRAC_MNB 1.09 1.14

Geometric parameters DISBT (km) 3.13 0.53
DISW(km) 1.73 3.69
DISV(km) 0.02 0.87
DISB(km) 1.28 1.01
DISC(km) 2.1 8.3
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Correlation Analysis of SATDON and DOEFs
A total of 37 samples were selected from the relocation samples to
analyze the correlation between SATDON and DOEFs, and
existing buffer parameters were filtered in order to establish a
revised model of urbanization deviation in the next step. Figure 5
presents the statistical significance test results and correlation
coefficient histogram between the SATDON and DOEFs, in which
the solid bars represent the significance level of the correlation
reaching 0.05, while the hollow bars represent the opposite.

SATDON had a significant positive correlation with ARBT after
relocation, and the correlation coefficient reached 0.7843, which
passed the significance level of 0.05. SATDON and ARW showed a
significant negative correlation, with a correlation coefficient of
−0.4819, which also passed the significance level of 0.05. This
showed that with the continuous increase in built-up land
around the meteorological station, the decrease in heat capacity
of the underlying surface and the increase in anthropogenic heat in
the buffer zone led to warming in the SAT series. The heat capacity
of water bodies is relatively large, meaning heat in the buffer zone of
a station could be taken away as water evaporates, which would lead
to a drop in the SAT series (Zeng et al., 2010). In addition, the
SATDON also had a high correlation with LPIBT, LPIW, DISBT, and
DISW after relocation, which showed that the more obvious the
advantages in the buffer landscape and the closer the distance of the
station to the built-up center of gravity, the greater the SATDON,
while for water this was opposite. Accordingly, this article uses six
indicators (ARBT, ARW, LPIBT, LPIW, DISBT, and DISW) to study
the response SATDON to the change in the DOEF in the buffer zone.

Simulation and Accuracy Evaluation of
Urbanization Bias in the Annual Average
SAT Series
The parameter indicators in the buffer zone have undergone great
changes after relocation. As shown in Figure 6, the change values
in the proportion of built-up area (ΔARBT) of all the relocation
samples were positive, which shows that the area of built-up land
around the relocated stations was reduced and 92.18% of the
ΔARBT values were concentrated in the range of 0–50%. The

FIGURE 4 | Probability density distribution of the DCSSATda of samples.

TABLE 3 | Statistics of the DCSSATda of samples.

Data series Sample size Median (°C) Mean (°C) Standard deviation (°C) Kurtosis Skewness

ΔTavg 15,347 0.500 0.572 0.568 2.057 0.673

FIGURE 5 | Statistical significance test results and correlation coefficient
histogram between SATDON and DOEFs.
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number of stations with a negative change value in water area ratio
(ΔARw) reached 22, which showed that the water area of most
stations increased after relocation. The change values of the built-up
LPI (ΔLPIBT) of all the relocation samples were positive, and 92.18%
of the ΔLPIBT values were concentrated in the range of 0–20. The
number of stations with a negative change value of water LPI
(ΔLPIW) also reached 22, which showed that the water advantage
of most stations increased after relocation. All the change values of
the distance between the station and the built-up center of gravity
(ΔDISBT) were negative, which showed that all samples of relocated
stations were far away from the center of gravity of built-up patches.
The change value of the distance between the station and the built-
up center of gravity (ΔDISBT) was negative, revealing that all samples
of relocated stations were far away from the center of gravity of built-
up patches. The number of stations with a positive change value of
the distance between the station and the water center of gravity
(ΔDISw) reached 24, which showed that most samples of relocated
stations were close to the center of gravity of built-up patches.

For this part of the study, we used statistics to analyze the
response relationship between the SATDON and DOEFs and
simulate the impact of the urbanization bias on the SAT
series. The sample was subjected to colinearity diagnosis in
SPSS; the statistical models of SATDON and DOEFs were
constructed finally:

ΔTavg � 2.085 × ΔARBT − 1.515 × ΔARw − 0.017 × ΔLPIw
− 0.039 × ΔDISBT + 0.133 × ΔDISw. (3)

Here, ΔTavg is the annual averaged SATDON of meteorological
stations. Table 4 shows coefficient of determination (R2) for
stepwise regression of the fitted model. With the increase of
independent variable, the R2 of the model increases. The R2 of the
fitting model finally reached 0.953, which passed the 0.05
significance test, indicating that the above five influencing
factors have a crucial impact on SATDON.

According to Eq. 3, the change values of the annual average
SAT of the remaining five relocated stations in the sample were
simulated to compare with the real change value of the sample. As
shown in Table 5, the difference between the simulated and real
value fluctuates in the range of 0.014–0.108°C. The simulation
error range is 3.66–18.21%, and the average error is 10.09%.

DISCUSSION

The conventional correction method (Zhang, 2009; Zhang, 2014;
Wen et al., 2019a) involves gradually decreasing the annual
average urbanization impact from the earliest year of the
target station series. The corrected series represents the

FIGURE 6 | DOEFs between the old and the new stations in the 5-km buffer zone: (A) ΔARBT; (B) ΔARW; (C) ΔLPIBT; (D) ΔLPIW; (E) ΔDISBT; and (F) ΔDISW.

TABLE 4 | Coefficient of determination (R2) for stepwise regression of the
fitting model.

Model R2 Standard deviation of
the estimation

1 0.927 0.265
2 0.931 0.237
3 0.939 0.222
4 0.943 0.214
5 0.953 0.209

TABLE 5 | Accuracy evaluation of urbanization bias in the average SAT series.

Station no ΔTavg Simulation value Simulation error (%)

58,122 0.941 0.993 5.52
58,214 0.593 0.701 18.21
58,338 0.602 0.692 14.95
58,109 0.852 0.921 8.10
58,220 0.383 0.397 3.66
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regional annual average SAT series in which the urbanization bias
has been removed:

T ′i � Ti − (ΔTu−r/10) × (i − 1). (4)

Here, i is serial number from the earliest year of recording to
the latest year of correcting, T′i is the annual average SAT after
correction in the ith year (°C), Ti is the annual average SAT before
correction in the ith year (°C), and ΔTu-r is the difference in the
SAT warming rate between the urban and reference station
(°Cdecade−1). It should be noted that Eq. 4 has an assumption
that the urbanization bias shows a linear growth trend.

For this part of the study, we take the annual average SAT
series of Hefei station from 1953 to 2018 (homogenization
correction was carried out to remove discontinuities or
jumping points caused by the relocation) as an example to
discuss the correction of the urbanization bias. The ΔTu-r of
Hefei station was 0.065°Cdecade−1 with Shouxian station selected
as the reference station (see Figure 1).

Because remote sensing images before the 1950s are not easy
to obtain, and the observation environments of meteorological
stations were basically unaffected by urbanization, we set the
initial value of the various parameters in the station buffer zone in
the earliest record year to be 0.

We used the new correction method based on remote sensing
to correct the urbanization bias of Hefei station. According to the
development process of Hefei’s urbanization, the remote sensing
image of six times (1979, 1987, 1998, 2004, 2009, and 2018)
covering the Hefei area was selected (Figure 7). The five

parameters of ARBT, ARW, LPIW, DISBT, and DISW were
interpreted and substituted into Eq. 3 to obtain the change
values of the annual average SAT series, and then the
urbanization bias was corrected using Eq. 2. In addition, we
also used the CCM to correct the urbanization bias of Hefei
station in the above the remote sensing image of six times, and the
results obtained by the CCM and NCM methods were compared
and analyzed.

The correction results obtained by the CCM were higher than
those of the NCM (Table 6). The CCM did not take into account
the impact of the urbanization bias on the reference station, and
therefore, the urbanization bias obtained from the reference
station was the minimum estimate.

The rate of urban development in Hefei was relatively slow
before 2004. From 2004 to 2018, the total GDP of Hefei increased
by ￥723.321 billion, with an annual average growth rate of
81.77%, and its economic growth rate ranked first in the YRD
region (National Bureau of Statistics, 2019). The warming rate in
the SAT series caused by the urbanization bias should change
with economic development, but the warming rate at Hefei
station obtained by the CCM was a fixed value
(0.065°Cdecade−1), and this assumption that the impact of
urbanization increases linearly year by year over time is
questionable (Zhang, 2009). The results of the NCM show that
the urbanization bias of Hefei station increased gradually from
0.233 to 0.457°C from 1979 to 1998. Due to the relocation of Hefei
station in 2004, the observation environment improved
significantly, and the NCM-based urbanization bias between
2004 and 2009 did not increase much, but the CCM-based

FIGURE 7 | Land use of Hefei city in the 20-km buffer zone and the location of Hefei station: (A) 1979; (B) 1987; (C) 1998; (D) 2004; (E) 2009; and (F) 2018.
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urbanization bias was increasing over time because station
relocation was not taken into account. The urbanization bias
of Hefei station increased quickly from 0.436 to 0.851°C as the city
experienced rapid development from 2009 to 2018. The NCM
constructed in this study produces results that are dynamically
consistent with the observation environment of the station and
the development of the city. In summary, the present work study
mainly focused on the sample application exploration of our new
urbanization bias correction method, which can make up for the
shortcomings of the conventional linear method. We will find
more relocation stations in the whole Yangtze River Delta region
to extend our new method application in the future.

Based on the R2 of the fitted results (Table 4), it is clear that all
the selected parameters can explain more than 90% of the
urbanization bias. In addition, urbanization is not only
reflected by the two-dimensional horizontal urban expansion
but also by the vertical morphology of the three-dimensional
urban spatial structure. Previous studies suggested that the
vertical geometry of urban canopy building also had an impact
on local microclimate (Oke, 2004; Bonacquisti et al., 2006; Chen
et al., 2020). In the future, we will expand three-dimensional
indicators to supply the indicators of urbanization bias
correction.

CONCLUSION

In this study, we selected 42 meteorological stations with site-
relocation history in the western region of the YRD from 2009 to
2018 as research example samples and then utilized annual
SATDON series between the old and the new stations to
characterize the impact of the urbanization bias on SAT series.
We proposed a new method for correcting urbanization-induced
bias in surface air temperature observations based on
comparative site-relocation data. The main conclusions are as
follows.

Spatial land-use, landscape, and geometric parameters of
the underlying surface in the 5-km buffer zone around the
station were good to be as the DOEFs of the site. The
comparative analysis revealed that parameters such as
ARBT, ARW, LPIBT, LPIW, DISBT, and DISW in DOEFs had
the highest correlation with SATDON, with absolute values of
correlation coefficients exceeding 0.4, passing the 0.05
significance test. After colinearity diagnosis, a new linear
regression model between five parameters (ARBT, ARW,
LPIW, DISBT, and DISW) and SATDON was finally

constructed to correct urbanization bias, which clearly
reflected the effects of rapid and slow phases of
urbanization and environmental changes around the site on
the observed SAT. The CCM did not take into account that the
reference station was affected by the urbanization, which may
underestimate urbanization bias. In addition, CCM cannot
consider the station relocation situation, which may
overestimate urban bias when the station relocated. In
contrast, the NCM constructed in this study can make up
these shortcomings to correct the urbanization bias caused by
local human activities more reasonably and effectively and can
also reduce the error caused by the selection of reference
stations in the traditional urban–rural comparison method.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, and further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

TS: methodology, formal analysis, results and discussion, and
writing—original draft preparation; DS, discussion, and writing
reviewing and editing; YH, discussion, and writing reviewing and
editing; GL, discussion, and writing reviewing and editing; YY:
conceptualization, data curation, methodology, results and
discussion, and writing—reviewing and editing.

ACKNOWLEDGMENTS

This study was supported by the National Key R and D Program
of China (Fund No: 2018YFC1506502), NSFC-DFG
(42061134009) and the Beijing Natural Science Foundation
(8202022 and 8171002). The data that support the findings of
this study are openly available. The Meteorological Information
Center of the China Meteorological Administration provided the
meteorological data (http://data.cma.cn/site/index.html); and the
remote sensing data used in this study were Landsat data from the
United States’ EOS (Earth Observation System) refined by
Department of Earth System Science/Institute for Global
Change Studies Tsinghua University (http://data.ess.tsinghua.
edu.cn/).

TABLE 6 | Comparison of results between the CCM and NCW at Hefei station.

Year Observation (°C) Urban bias
(°C) (CCM)

After correction
(°C) (CCM)

Urban bias
(°C) (NCM)

After correction
(°C) (NCM)

GDP

1979 16.124 0.169 15.954 0.233 15.891 -
1987 15.796 0.221 15.575 0.314 15.482 -
1998 17.129 0.293 16.836 0.457 16.672 270.47
2004 16.633 0.332 16.301 0.248 16.385 589.70
2009 16.720 0.364 16.356 0.436 16.284 2,102.12
2018 17.062 0.423 16.639 0.851 16.211 7,822.91

Frontiers in Environmental Science | www.frontiersin.org April 2021 | Volume 9 | Article 62541810

Shi et al. Correcting Urbanization-Induced Bias

133

http://data.cma.cn/site/index.html
http://data.ess.tsinghua.edu.cn/
http://data.ess.tsinghua.edu.cn/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


REFERENCES

Bai, Z. H., and Ren, G. Y. (2006). The effect urban heat island on change of regional
mean temperature in Gansu Province, China. Plateau Meteorol. 25 (1), 91–94.
doi:10.1016/S1003-6326(06)60040-X

Bonacquisti, V., Casale, G. R., Palmieri, S., and Siani, A. M. (2006). A canopy layer
model and its application to Rome. Sci. Total Environ. 364 (4), 1–13. doi:10.
1016/j.scitotenv.2005.09.097

Cai, X. H. (2008). Footprint analysis in micrometeorology and its extended
applications. Chin. J. Atmos. Sci. 32, 123–132. doi:10.3878/j.issn.1006-9895.
2008.01.11

Carolina, A., Tatiana, P., and Ferreira, R. (2013). The conservation success over
time: evaluating the land use and cover change in a protected area under a long
re-categorization process. Land Use Policy 30 (1), 177–185. doi:10.1016/j.
landusepol.2012.03.004

Chao, L., Huang, B., Yuanjian, Y., Jones, P., Cheng, J., Yang, Y., et al. (2020). A new
evaluation of the role of urbanization to warming at various spatial scales:
evidence from the Guangdong-Hong Kong-Macau region, China. Geophys. Res.
Lett. 47 (20), e2020GL089152. doi:10.1029/2020GL089152

Chen, G., Wang, D., Wang, Q., Li, Y., Wang, X., Hang, J., et al. (2020). Scaled
outdoor experimental studies of urban thermal environment in street canyon
models with various aspect ratios and thermal storage. Sci. Total Environ. 726,
138147. doi:10.1016/j.scitotenv.2020.138147

Comprehensive Observation Department of China Meteorological Administration
(2015). Basic information change table of national surface meteorological
observation station. Beijing, China: China Meterological Administration.

Davey, C. A., and Sr, A. P. (2005). Microclimate exposures of surface-based weather
stations: implication for the assessment of long-term temperature trends. Bull
Amer. Meteorol. Soc. 86 (4), 497–504. doi:10.1175/BAMS-86-4-497

Estoque, R. C., Murayama, Y., and Myint, S. W. (2017). Effects of landscape
composition and pattern on land surface temperature: an urban heat island
study in the megacities of Southeast Asia. Sci. Total Environ. 577, 349–359.
doi:10.1016/j.scitotenv.2016.10.195

Fujibe, F. (2009). Detection of urban warming in recent temperature trends in
Japan. Int. J. Climatol. 29 (12), 1811–1822. doi:10.1002/joc.1822

Gallo, K. P., Easterling, D. R., and Peterson, T. C. (1996). The influence of land use/
land cover on climatological values of the diurnal temperature range. J. Clim. 9
(11), 2941–2944. doi:10.1175/1520-0442(1996)009<2941:tioluc>2.0.co;2

Hansen, J., Ruedy, R., Sato, M., Imhoff, M., Lawrence, W., Easterling, D., et al.
(2001). A closer look at United States and global surface temperature change.
J. Geophys. Res. 106 (D20), 23947–23963. doi:10.1029/2001JD000354

Li, Q., and Huang, J. (2013). Effects of urbanization on extreme warmest night
temperatures during summer near Bohai. Acta Meteorol. Sin 27 (6), 808–818.
doi:10.1007/s13351-013-0602-0

Li, Q., Huang, J., Jiang, Z., Zhou, L., Chu, P., and Hu, K. (2014). Detection of
urbanization signals in extreme winter minimum temperature changes over
northern China. Clim. Change 122, 595–608. doi:10.1007/s10584-013-1013-z

Li, Q. (2020). Statistical modeling experiment of land precipitation variations since
the start of the 20th century with external forcing factors. Chin. Sci. Bull. 65
(21), 2266–2278. doi:10.1360/TB-2020-0305

Li, X., Guo, J. X., and Jin, L. J. (2011). The effect of meso-scale environment on
temperature in Huang-Huai-Hai plain area. J. Appl. Meteorol. Sci. 22 (6),
740–746. doi:10.1016/B978-0-444-53599-3.10005-8

Li, Y.-B., Shi, T., Yang, Y.-J., Wu, B.-W., Wang, L.-B., Shi, C.-E., et al. (2015).
Satellite-based investigation and evaluation of the observational environment of
meteorological stations in Anhui Province, China. Pure Appl. Geophys. 172 (6),
1735–1749. doi:10.1007/s00024-014-1011-8

Liu, J., Kuang, W., Zhang, Z., Xu, X., Qin, Y., Ning, J., et al. (2014). Spatiotemporal
characteristics, patterns, and causes of land-use changes in China since the late
1980s. J. Geogr. Sci. 24 (1), 195–210. doi:10.1007/s11442-014-1082-6

Liu, Y. L. (2006). A preliminary analysis of the influence of urbanization on
precipitation change trend in north China. Lanzhou, China: Lanzhou University.

Liu, Y. L., Ren, G. Y., Zhang, G. Y., and Yu, H. (2018). Response of surface air
temperature to micro-environmental change: results from mohe parallel
observation experiment. Meteorol. Sci. Tech. 46 (2), 215–223. doi:10.19517/j.
1671-6345.20170200

Lynn, E. E. (2007). Multiple linear regression. Methods Mol. Biol. 404, 165–187.
doi:10.1007/978-1-59745-530-5_9

Meteorological Observation Centre of CMA (2013). Investigation and evaluation
report on detection environment of national surface meteorological observation
station and aerological station. Beijing, China: China Meterological
Administration.

National Bureau of Statistic (2019). China statistical yearbook. Beijing, China:
China Statistics Press, 107–153.

Oke, T. R. (2004). Initial guidance to 0btain representative meteorological
observations at urban sites. Geneva, Switzerland: World Meteorological
Organization..

Peterson, T. C. (2006). Examination of potential biases in air temperature caused by
poor station locations. Bull. Amer. Meteorol. Soc. 87, 1073–1080. doi:10.1175/
BAMS-87-8-1073

Ren, G., Ding, Y., and Tang, G. (2017). An overview of mainland China
temperature change research. J. Meteorol. Res. 31 (1), 3–16. doi:10.1007/
s13351-017-6195-2

Ren, G., Li, J., Ren, Y., Chu, Z., Zhang, A., Zhou, Y., et al. (2015). An integrated
procedure to determine a reference station network for evaluating and adjusting
urban bias in surface air temperature data. J. Appl. Meteorol. Climatol. 54 (6),
1248–1266. doi:10.1175/JAMC-D-14-0295.1

Ren, G. Y., Zhang, A. Y., Chu, Z. Y., et al. (2010). Principles and procedures for
selecting reference surface air temperature stations in China. Meteorol. Sci.
Tech. 38 (1), 78–85. doi:10.3969/j.issn.1671-6345.2010.01.015

Saputra, A. N., Danoedoro, P., and Kamal, M. (2017). Application of Landsat 8 OLI
image and empirical model for water trophic status identification of riam kanan
reservoir, banjar, south kalimantan. IOP Conf. Ser. Earth Environ. Sci. 98 (1),
012020. doi:10.1088/1755-1315/98/1/012020

Shi, T., Huang, Y., Wang, H., Shi, C.-E., and Yang, Y.-J. (2015). Influence of
urbanization on the thermal environment of meteorological station: satellite-
observed evidence. Adv. Clim. Change Res. 6, 7–15. doi:10.1016/j.accre.2015.
07.001

Shi, T., Yang, Y. J., and Jiang, Y. L. (2011). Impact of the variation of urban heat
island intensity on temperature series in Anhui Province. Climatic Environ. Res.
16 (6), 779–788. doi:10.3878/j.issn.1006-9585.2011.06.13

Trusilova, K., Jung, M., Churkina, G., Karstens, U., Heimann, M., and Claussen, M.
(2008). Urbanization impacts on the climate in europe: numerical experiments
by the PSU-NCARmesoscale model (MM5). J. Appl. Meteorol. Climatol. 47 (5),
1442–1455. doi:10.1175/2007JAMC1624.1

Vose, R. S. (2005). Reference station networks for monitoring climatic change in
the conterminous United States. J. Clim. 18 (24), 5390–5395. doi:10.1175/
JCLI3600.1

Wen, K. M., Ren, G.-Y., Li, J.., and Ren, Y. (2019a). Adjustment of urbanization
bias in surface air temperature over the mainland of China. Prog. Geogr. 38 (4),
600–611. doi:10.18306/dlkxjz.2019.04.012

Wen, K., Ren, G., Li, J., Zhang, A., Ren, Y., Sun, X., et al. (2019b). Recent surface air
temperature change over mainland China based on an urbanization-bias
adjusted dataset. J. Clim. 32 (10), 2691–2705. doi:10.1175/JCLI-D-18-0395.1

Wu, J. G. (2000). Landscape ecology, pattern, process, scale and grade. Beijing,
China: Higher Education Press, 107–115.

Yang, Y., Zhang, M., Li, Q., Chen, B., Gao, Z., Ning, G., et al. (2020a).
Modulations of surface thermal environment and agricultural activity on
intraseasonal variations of summer diurnal temperature range in the Yangtze
River Delta of China. Sci. Total Environ. 736, 139445. doi:10.1016/j.scitotenv.
2020.139445

Yang, Y., Zheng, Z., Yim, S. H. L., Roth, M., Ren, G., Gao, Z., et al. (2020b). PM2.5
Pollution Modulates Wintertime Urban-Heat-Island Intensity in the Beijing-
Tianjin-Hebei Megalopolis, China. Geophys. Res. Lett. 47 (1). doi:10.1029/
2019gl084288

Yang, Y.-J., Wu, B.-W., Shi, C.-E., Zhang, J.-H., Li, Y.-B., Tang, W.-A., et al. (2013).
Impacts of urbanization and station-relocation on surface air temperature series
in Anhui Province, China. Pure Appl. Geophys. 170 (11), 1969–1983. doi:10.
1007/s00024-012-0619-9

Yang, Y. j., Wang, L. B., and Huang, Y. (2017). Impact of urbanization on
meteorological observation and its environment representativeness: a case
study of shouxian national climate station. Meteorol. Sci. Tech. 45 (1), 7–13.
doi:10.19517/j.1671-6345.20160062

Frontiers in Environmental Science | www.frontiersin.org April 2021 | Volume 9 | Article 62541811

Shi et al. Correcting Urbanization-Induced Bias

134

https://doi.org/10.1016/S1003-6326(06)60040-X
https://doi.org/10.1016/j.scitotenv.2005.09.097
https://doi.org/10.1016/j.scitotenv.2005.09.097
https://doi.org/10.3878/j.issn.1006-9895.2008.01.11
https://doi.org/10.3878/j.issn.1006-9895.2008.01.11
https://doi.org/10.1016/j.landusepol.2012.03.004
https://doi.org/10.1016/j.landusepol.2012.03.004
https://doi.org/10.1029/2020GL089152
https://doi.org/10.1016/j.scitotenv.2020.138147
https://doi.org/10.1175/BAMS-86-4-497
https://doi.org/10.1016/j.scitotenv.2016.10.195
https://doi.org/10.1002/joc.1822
https://doi.org/10.1175/1520-0442(1996)009<2941:tioluc>2.0.co;2
https://doi.org/10.1029/2001JD000354
https://doi.org/10.1007/s13351-013-0602-0
https://doi.org/10.1007/s10584-013-1013-z
https://doi.org/10.1360/TB-2020-0305
https://doi.org/10.1016/B978-0-444-53599-3.10005-8
https://doi.org/10.1007/s00024-014-1011-8
https://doi.org/10.1007/s11442-014-1082-6
https://doi.org/10.19517/j.1671-6345.20170200
https://doi.org/10.19517/j.1671-6345.20170200
https://doi.org/10.1007/978-1-59745-530-5_9
https://doi.org/10.1175/BAMS-87-8-1073
https://doi.org/10.1175/BAMS-87-8-1073
https://doi.org/10.1007/s13351-017-6195-2
https://doi.org/10.1007/s13351-017-6195-2
https://doi.org/10.1175/JAMC-D-14-0295.1
https://doi.org/10.3969/j.issn.1671-6345.2010.01.015
https://doi.org/10.1088/1755-1315/98/1/012020
https://doi.org/10.1016/j.accre.2015.07.001
https://doi.org/10.1016/j.accre.2015.07.001
https://doi.org/10.3878/j.issn.1006-9585.2011.06.13
https://doi.org/10.1175/2007JAMC1624.1
https://doi.org/10.1175/JCLI3600.1
https://doi.org/10.1175/JCLI3600.1
https://doi.org/10.18306/dlkxjz.2019.04.012
https://doi.org/10.1175/JCLI-D-18-0395.1
https://doi.org/10.1016/j.scitotenv.2020.139445
https://doi.org/10.1016/j.scitotenv.2020.139445
https://doi.org/10.1029/2019gl084288
https://doi.org/10.1029/2019gl084288
https://doi.org/10.1007/s00024-012-0619-9
https://doi.org/10.1007/s00024-012-0619-9
https://doi.org/10.19517/j.1671-6345.20160062
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Yao, W., Han, M., and Xu, S. (2010). Estimating the regional evapotranspiration in
zhalong wetland with the two-source energy balance (TSEB)model and Landsat7/
ETM+ images. Ecol. Inform. 5 (5), 348–358. doi:10.1016/j.ecoinf.2010.06.002

Zeng, Y. N., Zhang, S. J., and Zhang, H. H. (2010). Study on urban heat island
effects and its associated surface indicators. Remote Sensing Tech. Appl. 25 (1),
1–7. doi:10.3724/SP.J.1087.2010.02819

Zhang, A. Y. (2009). Identifying and correcting urban bias for surface air
temperature series. Beijing, China: China Academy of Meteorological Sciences.

Zhang, Y. (2014). Assessment and correction of urban bias in surface air
temperature series of eastern China over time period 1913-2012. Beijing,
China: China Academy of Meteorological Sciences.

Zheng, Z. F., Ren, G. Y., Wang, H., Dou, J. X., Gao, Z. Q., Duan, C. F., et al. (2018).
Relationship between Fine Particle Pollution and the Urban Heat Island in
Beijing, China: Observational Evidence. Bound. Layer Meteorol. 169 (1),
93–113. doi:10.1007/s10546-018-0362-6

Zheng, Z., Zhao, C., Lolli, S., Wang, X., Wang, Y., Ma, X., et al. (2020). Diurnal
Variation of Summer Precipitation Modulated by Air Pollution: Observational
Evidences in the Beijing Metropolitan Area. Environ. Res. Lett. 15 (9). doi:10.
1088/1748-9326/ab99fc

Zhou, C., Wang, K., Qi, D., and Tan, J. (2019). Attribution of a record-breaking
heatwave event in summer 2017 over the Yangtze River Delta. Bull. Am. Meteorol.
Soc. 100, S97–S103. doi:10.1175/bams-d-18-0134.1

Zhou, W., Huang, G., and Cadenasso, M. L. (2011). Does spatial configuration
matter? Understanding the effects of land cover pattern on land surface
temperature in urban landscapes. Landscape Urban Plann. 102, 54–63.
doi:10.1016/j.landurbplan.2011.03.009

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Shi, Huang, Sun, Lu and Yang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Environmental Science | www.frontiersin.org April 2021 | Volume 9 | Article 62541812

Shi et al. Correcting Urbanization-Induced Bias

135

https://doi.org/10.1016/j.ecoinf.2010.06.002
https://doi.org/10.3724/SP.J.1087.2010.02819
https://doi.org/10.1007/s10546-018-0362-6
https://doi.org/10.1088/1748-9326/ab99fc
https://doi.org/10.1088/1748-9326/ab99fc
https://doi.org/10.1175/bams-d-18-0134.1
https://doi.org/10.1016/j.landurbplan.2011.03.009
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Temporal and Spatial Variations of Soil
Moisture Over Xinjiang Based on
Multiple GLDAS Datasets
Zengyun Hu1,2,3, Xi Chen1,2,3*, Yaoming Li1,2,3, Qiming Zhou4 and Gang Yin5

1State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences,
Beijing, China, 2Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Ürümqi, Xinjiang,
China, 3College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China, 4Department of
Geography, Hong Kong Baptist University, Kowloon, China, 5College of Resource and Envrionment Sciences, Xinjiang University,
Urumqi, Xinjiang, China

Under the global warming, as the typical arid region of Central Asia, the Xinjiang Uygur
Autonomous Region (Xinjiang) has been experienced the remarkable warming and
increased precipitation based on large previous studies. The arid and semiarid
ecosystem of Xinjiang is very sensitive and vulnerable to climate change and water
resource variations. However, the sparse and highly unevenly distributed in-situ
stations in this region provide limited data for understanding of the soil moisture
variations. In this study, the spatial and temporal changes and variations of soil
moisture were explored at annual and seasonal time scales during the period of
2000–2017. The soil moisture data are from the Global Land Data Assimilation System
(GLDAS) models, including four GLDAS 1 models: CLM, Mosaic, VIC and Noah 2.7 and
one GLDAS 2.1 model: Noah 3.3. Major results show that 1) Noah 3.3 and VIC have the
significant positive trends of annual soil moisture with the values of 2.64°mm/a and
0.98°mm/a. The trend of CLM is significant negative. The other two models Mosaic
and Noah 2.7 have the weak positive trends. The temporal variations of seasonal soil
moisutre are similar the annual soil moisture for each of the model. 2) For the spatial
characteristics of the soil mositure variations, CLM displays the negative trends over large
part of Xinjiang. Mosaic and VIC have the similar spatial characteristics of the linear trends.
Noah 3.3 has the significant positive trends over almost Xinjiang which is different with
Noah 2.7. All the five models have the positive trends over KLM. Our results have a better
understanding of the soil moisture variations across Xinjiang, and they also enhance the
reconginzing of the complex hydrological circulation in the arid regions.

Keywords: linear trend, soil moisture, spatial and temporal variation, GLDAS product, Xinjiang

INTRODUCTION

As one of the key hydrological variables, soil moisture plays a fundamental role in the complex
physical processes, such as infiltration, rainfall-evapotranspiration-runoff circulation,
photosynthesis, and groundwater recharge (Ford et al., 2015; Amani et al., 2017; Orth and
Seneviratne, 2017; Dari et al., 2019; Gu et al., 2019a). It is known that soil moisture has
remarkable impacts on the exchanges of water, energy and carbon fluxes between land surface,
vegetation, and atmosphere (Western et al., 2004; Fischer et al., 2007; Trenberth et al., 2007; Qiu et al.,
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2016; Gu et al., 2019a; Hu et al., 2021). Moreover, it is used to
quantify the irrigation water consumption (Jalilvand et al., 2019)
and to monitor the drounght variation (Dai et al., 2004; Li et al.,
2017; Hu et al., 2019a; Xu et al., 2020). Therefore, the accurate
representation and estimation of soil moisture in hydrological
models will control the performances of simulations and
predications of the hydrological cycle, such as the estimation
of groundwater (Scanlon et al., 2018). It is very important to
understand the soil moisture changes and variations which is
essential to improve the scientific recognizing of regional and
global hydrological processes, especially over the arid and
semiarid regions.

Because of the importance of soil moisture on the mass and
energy balance between the land surface and the atmosphere, lots
of techniques have been developed to measure and to monitor its
changes and variations. The in-situ measurement stations can
describe the true changes of soil moisture in the successive years
with high temporal resolution (e.g. in second or minute time
scale), although some system errors and measurement errors are
resulted from the instruments and the surrounding environments
(Holgate et al., 2016). But it is difficult to install the instruments in
high-density observation net-works for the poor regions over the
world, such as Africa and northwest of China, because of the
expensive measurements (Gu et al., 2019a). Satellite soil moisture
products and model-based soil moisture products are sourced as
the soil moisture data which are widely used to detect the
temporal variaitons and spatial patterns of the soil moisture
(Fan and Dool, 2004; Yao et al., 2004; Zhou et al., 2010; Beck
et al., 2020). Compared with the in-situ measurements, model
output of soil moisture has the advantages with the high spatial
and temporal resolutions which have been widely employed in
regional and global researches to explore different climate and
hydrological processes, such as analyzing the historical and future
variations of moisture (Cheng et al., 2015; Chen et al., 2016),
monitoring the dry and wet changes (Robinson et al., 2016; Hu
et al., 2019a), improving the hydrological model simulations (He
et al., 2017), and explaining the dynamics of land-atmosphere
interactions (Gerken et al., 2015; May et al., 2015).

Several types of soil moisture datasets as the model output are
used in previous studies (Qin et al., 2009; Chen et al., 2016), such
as Global Land Data Assimilation System (GLDAS; Rodell et al.,
2004), Coupled Model Intercomparison Project phase 5 (CMIP5;
Berg et al., 2017; Feng et al., 2017), and various reanalysis data sets
(e.g. ERA-Interim and MERRA V2) (Modanesi et al., 2020;
Spennemann et al., 2020; Zhou et al., 2020). In GLDAS, Land
Surface Models (LSMs) and hydrological models were driven by
meteorological forcing to simulate soil moisture of multilayers
with different depths (Bi et al., 2016; Yuan and Quiring, 2017).
Recent study (Gu et al., 2019b) pointed that the soil moisture data
of GLDAS 2.1 is better than CMIP 5 when are compared with the
satellite datasets.

Xinjiang is the typical arid and semiarid regions over Central
Asia. The soil mositure plays a key role for the complex
hydrological process, especially in the desert regions. However,
there are only few in-situ measurements and they are very
difficult employed. Therefore, four GLDAS 1 models: CLM,
Mosaic, VIC and Noah 2.7 and one GLDAS 2.1: Noah 3.3 are

employed to explore the soil moisture variations. In this study, we
aim to 1) detect the temporal changes of soil moisture at different
time scales since the 21st century: during the period of
2000–2017; 2) to analyze the spatial patterns of the soil
moisture varaitions. The paper is organized as follows. In
Study Area, Dataset and Methodology, the study area, dataset
and methodology are introduced. In Result and Discussion, the
major results and discussion are displayed. In the last section, a
conclusion is provided.

STUDY AREA, DATASET AND
METHODOLOGY

Study Area
The study area is located in Northwest China covering more than
1.6 million km2 of 73°40´∼96°23′E and 34°25´∼49°10′N
(Figure 1). Its complex topography characterizes with
mountainous, plain and basin areas. There are three mountain
ranges in Xinjiang, namely, the Altai Mountains (ATM) in the
north, Tianshan Mountains (TSM; the “Water Tower” of Central
Asia) in the middle, and the Kunlun Mountains (KLM) in the
south. The Junggar Basin (JGB) and Tarim Basin (TRB) are
situated between the three mountain ranges from north to south.
Most of the irrigated areas are distributed in the piedmont plains
and the edges of basins (Figure 1).

Xinjiang is dominated by an arid and semi-arid climate with
very low precipitation and strong evaporation. The average of
annual precipitation is 157 mm which only accounts for 24.2% of
averaged precipitation (i.e. 650 mm) across China (Chen et al.,
2012). In addition, precipitation in this region varies with high
spatial difference and large inner-annual variation (e.g. more

FIGURE 1 | Study area: Xinjiang (XJ) and the locations of the five sub-
regions, i.e. Altain Mountainous (ATM), Junggar Basin (JGB), Tianshan
Mountainous (TSM), Tarim Basin (TRB) and Kunlun Mountainous (KLM). The
black line denotes the boundary of the sub-regions. The blue represents
the area of irrigation from groundwater which are extracted from the Global
Map of Irrigation Areas (GMIA) V5.0 of the Food and Agriculture Organization
of the United Nations, AEIGW: area equipped for irrigation with groundwater.
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precipitation in mountainous areas than in plain areas; more
precipitation in spring and summer than in autumn and winter)
(Hu et al., 2016a; Chen et al., 2018). In the past three decades,
Xinjiang experienced a significant warm-wet trend (Hu et al.,
2014; Hu et al., 2017; Hu et al., 2018). Although the Xinjiang’s
climate transited from warm-dry to a warm-wet in the 1980s (Shi,
et al., 2007; Hu et al., 2016b), water resources are still limited and
hardly meet the increasing water demand for economy
development and population growth in Xinjiang. As an
important and irreplaceable water source for Xinjiang,
groundwater plays a key role for domestic water supplies and
agricultural irrigation in oasis (Hu et al., 2019b).

Dataset and Methodology
Global Land Data Assimilation System (GLDAS) aims to
consolidate satellite- and ground based observational data
products to generate optimal fields of land surface states and
fluxes by using advanced land surface modeling and data
assimilation techniques (Rodell et al., 2004). At present,
GLDAS consists of simulations of four Land Surface Models
(LSMs): Noah, Catchment, the Community Land Model (CLM),
and the Variable Infiltration Capacity (VIC). At present, GLDAS
drives six land surface models (LSMs): Noah, Catchment, Mosaic,
the Common Land Model (CLM), the Community Land Surface
Model (CLSM), and the Variable Infiltration Capacity (VIC). The
GLDAS datasets [GLDAS Version 1 (GLDAA-1), GLDAS
Version 2.0 (GLDAS-2.0) and GLDAS Version 2.1 (GLDAA-
2.1)] have the five temporal resolutions from 1 h to 1 month
and the eight spatial resolutions from 0.1 ×0.1 –1.25 ×1.25
(https://disc.sci.gsfc.nasa.gov/datasets?keywords�GLDAS). GLDAS-
1 forcing datasets include: bias-corrected European Center for
Medium-Range Weather Forecasts (ECMWF) Reanalysis data
for 1979–1993, bias-corrected National Center for Atmospheric
Research (NCAR) Reanalysis data for 1994–1999 (Berg et al.,
2003); National Oceanic and Atmospheric Administration (NOAA)/
Global Data Assimilation System (GDAS) atmospheric analysis
fields for 2000 (Derber et al., 1991), and a combination of
NOAA/GDAS atmospheric analysis fields, spatially and
temporally disaggregated NOAA Climate Prediction Center
Merged Analysis of Precipitation (CMAP) (Xie and Arkin,
1996) fields, and observation-based downward shortwave and
longwave radiation fields from the Air Force Weather Agency
(AFWA) for 2001-present. GLDAS-2.1 forcing datasets (2001-
present) include a combination of NOAA/GDAS atmospheric
analysis fields (Derber et al., 1991), temporally disaggregated
Global Precipitation Climatology Project (GPCP) precipitation
fields (Adler et al., 2003), and the Air Force Weather Agency’s
Agricultural Meteorological modeling system (AGRMET)
radiation fields (March 2001 onwards) (https://disc.gsfc.nasa.
gov/information/documents/5a70903bca6d24bac24118eb/gldas-
lsm-description).

Because GLDAS datasets provide high spatiotemporal
resolutions variables which makes it is an effective resource to
study the water cycle based on these datasets, they have been
widely used in many previous studies (Scanlon, et al., 2012;
Mukheriee and Ramachandran, 2018; Kong et al., 2019; Chen
and Yuan, 2020; Hoffmann et al., 2020; Niu, et al., 2020; Solander

et al., 2020; Hu et al., 2021). To match the temporal (monthly)
and spatial resolution (1.0 × 1.0) of the GRACE datasets, the
GLDAS LSMs datasets examined in this study are those included
in GLDAS V1 VIC and Mosaic with the period of 1979-present,
and GLDAS V2.1 Noah V3.3 with the period of 2000-present.

The soil moisture from the GLDAS V1 (i.e. CLM, Mosaic, VIC
and Noah 2.7) with the period of 1979-present and the spatial
resolution of 1.0 × 1.0 and the GLDAS V2.1 (Noah 3.3) with the
period of 2000-present and the spatial resolution of 1.0 × 1.0 are
used in this study to estimate the changes in soil moisture. The
soil moisture in this study is the summation of all the layers for
each model, such as three layers for VIC, and four layers for Noah
and Mosaic.

VIC was originally developed by Liang et al. (1994), Liang et al.
(1996) at the University of Washington in early 90’s. The model
focuses on runoff processes that are represented by the variable
infiltration curve, a parameterization of sub-grid variability in soil
moisture holding capacity, and nonlinear baseflow. VIC is a
stand-alone, 1-D column model that is run uncoupled. Various
simulation models are available including water balance, energy
balance, frozen soil, and other special cases. As a macroscale
hydrological model, VIC models sub-grid variability in the soil
moisture storage capacity and bas flow as a nonlinear recession. In
GLDAS-1, VICmodel includes three soil layers (0–10, 10–160, and
160–190 cm) and was simulated in water balance mode with
computing energy fluxes (Cherkauer and Lettenmaier, 2003).
Therefore, the VIC data includes water budget components and
forcing fields but without energy budget components.

Noah is a National Centers for Environmental Prediction/
Oregon State University/Air Force/Hydrologic Research Lab
(Noah) Model. The community Noah LSM was developed in
1993 through a collaboration of investigators from public and
private institutions, spearheaded by the National Centers for
Environmental Prediction. Current development efforts are
consistent with the land surface scheme in Weather Research
Forecast (WRF) system, under the Unified Noah LSM (Chen
et al., 1996; Chen et al., 1997; Koren et al., 1999; Chen and
Dudhia, 2001; Ek et al., 2003). Noah is a stand-alone, 1-D column
model which can be executed in either coupled or uncoupled
mode. The model applies finite-difference spatial discretization
methods and a Crank-Nicholson time-integration scheme to
numerically integrate the governing equations of the physical
processes of the soil-vegetation-snowpack medium. It includes
four soil layers (0–10, 10–40, 40–100, and 100–200 cm), single
layer snowpack, and frozen soil physics. Canopy, snow, and soil
moisture storage are included in Noah.

Mosaic (Koster and Suarez, 1996) is a well-established and
theoretically sound LSM, as demonstrated by its performance in
the Project for Intercomparison of Land-surface Parameterization
Schemes (PILPS) and Global Soil Wetness Project (GSWP)
experiments. Mosaic’s physics and surface flux calculations are
similar to the SiB (simple biosphere model) LSM (Sellers et al.,
1986). It is a stand-alone, 1-D column model that can be run both
uncoupled and coupled to the atmospheric column.Mosaic divides
each model grid cell into a Mosaic of tiles based on the distribution
of vegetation types within the cell. It has four soil layers: 0–2,
2–150, and 150–350 cm.
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Because GLDAS datasets provide hydrological variables in
high spatial and temporal resolutions, they have been widely used
in many previous studies in the field of hydrology (Kong et al.,
2019; Chen and Yuan, 2020; Hoffmann et al., 2020; Niu, et al.,
2020; Solander et al., 2020). The soil moisture from the GLDAS
V1 (i.e. CLM, Mosaic, VIC and Noah 2.7) and the latest GLDAS
dataset (Noah 3.3) with the spatial resolution of 1.0 × 1.0 are used
in this study to estimate the changes in soil moisture. The soil
moisture in this study is the summation of the different layers for
each model.

The soil moisture analysis is carried out at multiple time scales
from monthly, seasonal to annual. The four seasons are spring
[March-May (MAM)], summer [June-August (JJA)], autumn
[September–November (SON)] and winter [December-
February (DJF)]. The changes of the soil moisture is quantified
by the linear trend which is computed by the linear least square
method, and the significant of the linear trend is detected by the
Student’s test at the 95% or 99% confidence level (p < 0.05 or
p < 0.01).

RESULT AND DISCUSSION

Temporal Variations of Soil Moisture During
2000–2017
The temporal variations and changes of soil moisture of the five
GLDAS models: CLM, Mosaic, VIC, Noah 2.7 and Noah 3.3 over

TABLE 1 | Linear trends (mm/a) of the soil moisture of the five models at annual
and seasonal scales during the period of 2000–2017.

model Annual MAM JJA SON DJF

CLM −0.42** −0.37** −0.46** −0.47** −0.46**
Mosaic 0.67 0.98 0.76 0.26 0.10
VIC 0.98** 1.21** 0.93** 0.78** 0.6*
Noah 2.7 0.05 0.10 0.07 -0.01 −0.13
Noah 3.3 2.64** 2.51** 2.85** 2.78** 2.22**

** denotes the trend is significant at the 95% or 99% significance level.

FIGURE 2 | Anomaly of annual soil moisture of the five different models:
CLM, Mosaic, VIC, Noah 2.7 and Noah 3.3 over Xinjiang during the period of
2000–2017.

FIGURE 3 | Anomaly of seasonal soil moisture of the five different
models: CLM, Mosaic, VIC, Noah 2.7 and Noah 3.3 over Xinjiang during the
period of 2000–2017, (A) MAM, (B) JJA, (C) SON and (D) DJF.
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Xinjiang are explored using the linear trends at annual and seasonal
time scales (Table 1; Figures 2, 3). For annual soil moisture, CLM
displays the significant negative linear trend with the rate of
−0.42 mm/a at a 99% confidence level (p < 0.01) which indicates
the decreasing soil moisture in Xinjiang (Table 1 and Figure 2). For
the other four models, Noah 3.3 has the largest positive trend
(2.64 mm/a), and followed by VIC with the rate of 0.98mm/a.
Moreover, the trends of Noah 3.3 and VIC are significant at 99%
confidence level (p < 0.01). The positive trends of Mosaic and Noah
2.7 are not significant at 95% confidence level. Furthermore, all the
five models show an obvious increasing during the period of
2000–2011 except CLM from Figure 2.

For the seasonal soil moisture, these models display the
different variations. For the changes of the MAM soil
moisture, CLM also has the negative trend with the value of

−0.37 mm/a which is significant at the 99% confidence level (p <
0.01) (Table 1, Figure 3A). Noah 3.3 has the largest positive trend
of MAM soil moisture among the five models with the value of
2.51 mm/a (p < 0.01) (Table 1) which displays the obvious
variations in Figure 3A. VIC has the second largest positive
trend (1.21 mm/a) which is also significant at the 99% confidence
level (p < 0.01) (Table 1 and Figure 3A). The trends of MAM soil
moisture of Mosaic and Noah 2.7 are 0.98 mm/a and 0.1 mm/a,
respectively (Table 1).

For JJA, Noah 3.3, VIC, Mosaic and Noah 2.7 have the positive
trends with the values of 2.85, 0.93, 0.76, and 0.07 mm/a,
respectively (Table 1). The trends of Noah 3.3 and VIC are
also significant at the 99% confidence level. The significant
negative trend of soil moisture is still obtained in CLM with
the value of −0.46 mm/a (p < 0.01) (Table 1, Figure 3B).

FIGURE 4 | Spatial distributions of the linear trends (mm/month) of the annual soil moisture for five models during 2000–2017, (A) CLM, (B) Mosaic, (C) VIC, (D)
Noah 2.7 and (E) Noah 3.3. The cross signs denote the trends are significant at the 95% significance level.
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As the other seasons, CLM still has the significant negative
trends in both SON and DJF with the values −0.47 and
−0.46 mm/a (p < 0.01) (Table 1). The weak negative trends
are obtained for SON and DJF soil moisture in Noah 2.7
which are different from annual, MAM and JJA. Significant
positive trends of VIC and Noah 3.3 are observed for SON
and DJF soil moisture with the values of 0.78 and 0.6 mm/a
for VIC, and 2.78 and 2.22 mm/a for Noah 3.3 (p < 0.01) (Table 1,
Figures 3C,D). The positive trends of Mosaic are 0.26 and
0.1 mm/a for SON and DJF over Xinjiang during the period of
2000–2017.

On the whole, CLM has the significant negative trends of soil
moisture at annual and seasonal scales. Mosaic, VIC and Noah
3.3 have the positive trends for annual and seasonal soil moisture.
The annual and seasonal soil moisture trends of Noah 2.7 are
weak which indicate the weak variations of soil moisture.
Moreover, Noah 3.3 has the largest positive trends among the
five models.

Spatial Distributions of Linear Trends of
Annual Soil Moisture
For the spatial distributions of linear trends of annual soil
moisture, the five models display the different spatial patterns
(Figure 4). Specifically, for CLM, 18% areas have the significant
positive trends with the distribution over mountainous areas,
such as TSM and KLM (Figures 4A, 5A). More than half areas
have the significant negative trends mainly over JGB and TRB
(63%, Figures 4A, 5B). ForMosaic, 27% areas have the significant
positive trends over part of ATM, TSM, TRB and KLM (Figures
4B, 5A). For the areas with negative trends, they account for 34%
over Xinjiang (Figures 4B, 5B). VIC has the similar spatial
patterns as Mosaic with the 29% significant positive areas and
36% significant negative areas (Figures 4C, 5). The significant
positive trends are distributed over 22% areas (e.g. eastern of
KLM) and 51% areas have the significant negative trends for
Noah 2.7 (Figures 4D, 5). For Noah 3.3, largely areas show the
positive trends with the significant positive trends over more than

FIGURE 5 | Percentage of areas with significant positive (A) and negative (B) trends of the five different models at annual and seasonal scales.
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60% areas, and the significant negative trends only account for
less than 8% areas (Figure 4E).

Overall, all the models show the positive trends over KLM.
Mosaic and VIC has the similar distributions. Noah 2.7 and Noah
3.3 have the opposite linear trends. These differences among the
five models may be caused by their different input datasets and
different model structures.

Spatial Distributions of Linear Trends of
MAM and JJA Soil Moisture
For the spring soil moisture (i.e. MAM soil moisture), the five
models have the similar spatial distributions of the linear trends
as the ANN soil moisture (Figure 6). In small areas (16%), CLM
has the significant positive trends, and less than 60% areas have
the significant negative trends (Figures 5, 6A). For Mosaic, the
significant positive areas account for 20% and the 29% areas have
the significant negative linear trends (Figure 5). Moreover, the
center of the positive trend areas is mainly in KLM (Figure 6B).
In terms of VIC model, the areas with significant positive trends

and significant negative trends are 26% and 32%, respectively
(Figure 5). The large positive trends are distributed over south of
TRB and KLM (Figure 6C). For Noah 2.7 and Noah 3.3, the
spatial patterns are similar as the annual soil mositure (Figures
6D,E). the areas with the significant negative trends of Noah 2.7
are 51% and the significant positive areas of Noah 3.3 are 63%
(Figure 5).

For JJA soil moisture, each of the five models have the similar
distributions as annual and MAM (Figure 7). The significant
positive areas of CLM, Mosaic, VIC, Noah 2.7 and Noah 3.3 are
14, 25, 31, 23, and 62%, respectively (Figure 5A). For the
significant positive trends, CLM still has the largest areas
(62%) among the five models, and followed by Noah 2.7 and
VIC (Figure 5B).

Spatial Distributions of Linear Trends of
SON and DJF Soil Moisture
For SON, CLM has the large significant negative trends over 61%
areas, and 14% areas have the significant positive trends

FIGURE 6 | Same as Figure 4, but for MAM soil moisture.
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distributed over eastern KLM (Figures 5, 8A). For Mosaic, large
parts of areas have the positive trends of annual with 26% areas
significant at 95% confidence level, and these areas are distributed
over part of ATM, most of TRB and KLM (Figures 5, 8B). The
significant negative trends of soil moisture are fragmentally
distributed over Xinjiang with the percentage of 29%. For VIC
model, the significant negative trends account for 35% areas over
Xinjiang, and are mainly distributed over ATM, JGB and part of
TRB (Figures 5, 8C). The areas with significant positive trends of
soil moisture account for 30% which are also distributed over
most of TRB and KLM. For the model of Noah 2.7, most of the
negative trends have the values smaller than −2 mm/a, and the
areas with the significant negative trends account for 49%
(Figures 5B, 8D). Almost all the positive trends have the
values larger than 2 mm/a with the 21% significant areas. In
terms of Noah 3.3, except the negative trends over the small parts
of TRB, the other regions have the significant positive trends
accounting for 62% areas over Xinjiang (Figure 8E).

Figure 9 displays the spatial distributions of DJF soil moisture
linear trends based on the five models. The distributions of the
five models are similar as the annual soil moisture and the other

three seasons. For CLM, the significant increase trends and
significant decrease trends account for 13% and 58% areas,
respectively (Figure 5). Mosaic and VIC also have the same
spatial patterns of the DJF soil moisture linear trends, and the
significant positive trends account for 25 and 26% areas,
respectively (Figures 5A, 9B,C). For Noah 2.7 and Noah 3.3,
the percentages of the positive areas are 21% and 62%
(Figures 5, 9).

DISCUSSION

Due to the lake of the in-situ observations, the accuracy of soil
moisture from the five GLDAS models is not evaluated in this
study.We only explored the temporal and spatial variations of the
soil moisture over Xinjiang using multiple GLDAS datasets. In
recent study (Supplementary Figure S3 in Hu et al., 2019b), it was
proved that Noah, VIC, Mosaic had the positive linear trends of
soil moisture in Xinjiang except the CLMmodel which are similar
with the result of this study. Moreover, Gu et al. (2019a)
concluded that GLDAS Noah soil moisture is in agreement

FIGURE 7 | Same as Figure 4, but for JJA soil moisture.
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with the observation in China. Therefore, the positive linear trend
results from Noah 3.3 and VIC are more credible than CLM in
Xinjiang.

For the spatial distrubutions of the annual soil moisture,
the five different datasets have the spatial heterogeneity. In
particularly, Mosaic, VIC, and Noah 3.3 have the positive
linear trends over the same regions (Figures 4B,C,E), except
the most negative trends of CLM (Figure 4A), which are
agreement with the Supplementary Figure S3 in Hu et al.
(2019b). These spatial differences of the annual soil moisture
trends are mainly caused by the spatial distributions of the
precipitation linear trends (Hu et al., 2019b). The accuracy
and difference between the different GLDAS models are
mainly caused by their different input data and different
model sturctures which are comprehensively discussed in
the Supplementary Text S2 of Hu et al. (2019b). For the
long-term period of 1950–2015, the positive linear trends of
the soil moisture are observed over nearly the whole Xinjiang
which is similar with the spatial patterns of the positive
precipitation in Figures 6B,D in Hu et al. (2019a). Other
climate factors, such as temperature and evapotranspiration

also impact on the soil moisture variations. We will discuss it
in our future study.

The soil moisture also can moinitor the drought variations
(Wang et al., 2011; Li et al., 2017; Hu et al., 2019a). The
1997–2003 drought was also pervasive in terms of both
severity and spatial extent. It was also found that soil moisture
in north central and northeastern China had significant
downward trends, whereas most of Xinjiang (Wang et al.,
2011). For the spatial distributions, most of the mountainous
areas are wet regions and the plain areas are drought region based
on the MODIS soil moisture information in Xinjiang (Li et al.,
2017). For Central Asia, the spatial distributions of the soil
moisture linear trends are same as the distributions of the
PDSI linear trends in 1950–2015 (Hu et al., 2019a). The
climate transformation (from a warm-dry to a warm-wet) in
Bayanbuluk grassland of Xinjiang appears in the 1980s (Hu et al.,
2016b) which agreed with the warm-dry to warm-wet shift over
the northwest of China (Shi et al., 2007). While a recent work
(Yao et al., 2021) proposed that a wet-to-dry shift over Xinjiang
was detected in 1997 based on the temperature and precipitation.
Therefore, the warming and wetting signal in soil moisture

FIGURE 8 | Same as Figure 4, but for SON soil moisture.
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changes should be explored in different time period by different
climate factors.

CONCLUSION

In this study, the distrubutions and dynamics of the soil moisture
over Xinjiang have been explored using four GLDAS 1 models:
CLM, Mosaic, VIC and Noah 2.7 and one GLDAS 2.1 model:
Noah 3.3 during the period of 2000–2017. The annual soil
moisture and seasonal soil moisture (i.e. MAM, JJA, SON, and
DJF) are analyzed from the linear trend perspective. The
conclusions are obtained as follows:

1) Noah 3.3 andVIChave the significant positive trends of annual
soilmoisturewith the values of 2.64mm/a and 0.98mm/a. The
trend of CLM is significant negative. The other two models
Mosaic and Noah 2.7 have the weak positive trends.

2) For the seasonal soil moisture changes, Noah 3.3 and VIC
also have the significant positive trends which indicates
that the seasonal soil moisture is increased over Xinjiang

during the period of 2000–2017. The significant negative
trends are observed based on the CLM dataset.

3) Annual and seasonal soil moisture have the similar spatial
distributions of the linear trends for each of the five
models. CLM displays the negative trends over large
part of Xinjiang. Mosaic and VIC have the similar
spatial characteristics of the linear trends. Noah 3.3 has
the significant positive trends over almost Xinjiang which
is different with Noah 2.7. All the five models have the
positive trends over KLM.

More in situmeasurements, satellite remote-sensingmissions, and
reanalysis datasets will be essential for the continued assessment of the
variations of soil moisture. Relationships between climate factors (e.g.
temperature, precipitation and potential evapotranspiration) and soil
moisture can help us to have a better understanding of the complex
hydrological process in the arid regions. The impacts of soil moisture
on the ecological system, such as vegetation and argriculture will
provide important information for reaching a balance between the
SDG (sustainable development goal) water resource and environment
and human society over Xinjiang.

FIGURE 9 | Same as Figure 4, but for DJF soil moisture.
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A Comparison of Global Surface Air
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Between CMIP5 Models and NCEP
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By utilizing eight CMIP5 model outputs in historical experiment that simulated daily mean
sea surface temperature (SST) and NCEP reanalysis data over 12 ocean basins around the
world from 1960 to 2005, this paper evaluates the performance of CMIP5 models based
on the detrended fluctuation analysis (DFA) method. The results of National Centers for
Environmental Prediction (NCEP) data showed that the SST in most ocean basins of the
world had long-range correlation (LRC) characteristics. The DFA values of the SST over
ocean basins are large in the tropics and small in high latitudes. In spring and autumn, the
zonal average DFA of SST are basically distributed symmetrically in the Northern and
Southern Hemispheres. In summer, the zonal average values of DFA in the Northern
Hemisphere are larger than those in the southern hemisphere, and vice versa in winter. The
performance of HadGEM2-AO, CNRM-CM5, and IPSL-CM5A-MR are all relative well
among the eight models in simulating SST over most regions of the global ocean.

Keywords: detrended fluctuation analysis, long-range correlation, CMIP5, NCEP, SST

INTRODUCTION

Climate models and Earth system models that consider complex geo-bio-chemical processes are
important tools for projecting future climate change (Zeng et al., 2008; IPCC, 2013; Prinn, 2012).
Currently, the climatemodels commonly usedworldwide are the Earth systemmodels from the phase 5
of the Coupled Model Intercomparison Project (CMIP5), and the results of which have also been
adopted by the IPCC fifth assessment report (Taylor et al., 2012). Based on these, large number of global
and regional climate change simulations and projections under different historical and future
greenhouse gas emission scenarios have been carried out using the results of the CMIP5 models
(Tebaldi et al., 2005; Jiang and Tian, 2013;Wei andQiao, 2016;Wang et al., 2017). However, before the
Earth systemmodels are applied to project future climate change, its performance needs to be evaluated
(Grose et al., 2020).

To quantitatively evaluate model performance, a lot of research has been carried out, and some
new progresses have been made in model evaluation methods. At present, the evaluation objects of
model performance have changed from the evaluation of climate state to the climate extremes,
climate trends, climate phenomena, etc. Model evaluation methods have developed from qualitative
evaluation to quantitative evaluation, such as quantitative calculation of the reliability and
uncertainty of the model simulation (Zhao et al., 2013). Many studies on the evaluation of
CMIP5 model simulation capabilities (Alexander et al., 2006; Alexander and Arblaster,2009;
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Rusticucci, 2012; Kharin et al., 2013; Kruger and Sekele, 2013; Zhou
et al., 2016; Zhu et al., 2017; Gusain et al., 2019) and the application
of these models to project future climate change (Tebaldi et al.,
2006; Kharin et al., 2007; Sillmann et al., 2013; Zhou et al., 2014; Ji
and Kang, 2015) have been carried out internationally. A great
number of studies have confirmed that the current CMIP5 models
have good ability to simulate global climate, and the results of these
models can be used to project the characteristics of future global
climate change. However, these evaluation methods mainly
consider the statistical differences between the model
simulations and the observation, but lack the comparison of the
observation data and the simulation data in the sense of dynamic
characteristics. Therefore, themethod to quantitatively evaluate the
dynamic characteristics of climate systems has been developed
(Zhao, 2014).

Long-range correlation (LRC) is an important dynamic
characteristic of climate system (Bunde and Havlin., 2002).
Detrended fluctuation analysis (DFA) can effectively
distinguish LRCs of time series from trend under the influence
of non-stationarities. DFA and wavelet techniques have been used
to analyze temporal correlations in the atmospheric variability
(Koscielny-Bunde et al., 1996, Koscielny-Bunde et al., 1998).
Some studies have analyzed the simulation results of the
HadCM3 and ECHAM4/OPYC global models using the DFA
method, and showed that the models can reproduce the scale
features of the global surface temperature comparing with the
reanalysis data of the National Centers for Environment
Prediction (Blender and Fraedric, 2003). Some researchers also
evaluated the result of Beijing Climate Center Climate System
Model (BCC_CSM) in simulating daily temperature over China
based the DFA method, and found that the model can simulate
the LRCs of temperature in most part of China well (Zhao, 2014).

At present, the studies on evaluation of global climate models
using DFAmethod mainly focus on the climate elements over land,
while researches on the climate elements over ocean have seldom

been carried out. Based on theDFAmethod, this paper evaluates the
performance of eight CMIP5 coupled models on the daily mean sea
surface temperature (SST) over ocean, indicating the shortcomings
of themodels on SST, and the similarities and differences among the
models. The results can provide basis for model improvements and
application for future predictions. Chapter 2 introduces the data and
methods; Chapter 3 introduces the evaluation results of CMIP5
models on SST over ocean based on DFA method; Chapter 4 is the
main conclusions and discussions.

DATA AND METHOD

Data
The observed DAT during 1960–2005 is from The National
Centers for Environmental Prediction (NCEP) reanalysis data
(Kalnay et al., 1996; Kanamitsu et al., 2002). The simulated SST of
eight CMIP5 climate models is available from the IPCC Data
Distribution Center (https://esgf-node.llnl.gov/search/cmip5/).
Table 1 provides basic information about the eight global
climate models (GCM). The selected models include physical
climate models as well as ESMs. The present-day historical
simulations performed by the eight models in the CMIP5 are
used in this study. The term “historical” (HIST) refers to coupled
climate model simulations forced by observed concentrations of
greenhouse gases, solar forcing, erosols, ozone, and land-use
change over the 1850–2005 period (Taylor et al. 2012). CMIP5
provided the results of Earth System models (ESMs), which
include carbon cycle models, and in some cases interactive
prognostic erosol, chemistry, and dynamical vegetation
components. The last 46 years (1960–2005) was analyzed to
compare CMIP5 models with the observations. The GCM
output used here are the daily sea surface temperature. To
facilitate GCM intercomparison and validation against the gauge
observations, both the daily fields of GCM temperature and the

TABLE 1 | Information about the CMIP5 climate models.

Modeling
center

Nation Institution Model
name

Atmosphere
resolution

Model information

Atmosphere
component

Ocean
component

CMCC Italy Centro euro-mediterraneo per I CambiamentiClimatici CMCC-
CMS

T63(∼1.875° ×
1.865°)L95

ECHAM5 OPA

CNRM-
CERFACS

France Centre national de RecherchesMeteorologiques
/Centre europeen de recherche et formation avancees
en CalculScientifique

CNRM-CM5 TL127 (∼1.4° ×
1.4°)L31

ARPEGE-climat NEMO

LASG China Institue of atmospheric physics Chinese academy of
sciences

FGOALS-g2 (∼2.81° ×
1.66°) L26

GAMIL2 LICOM2

GFDL United States NOAA geophysical fluid dynamics laboratory GFDL-
ESM2G

M45 (∼2° ×
2.5°)L24

AM2 GOLD

INM Russia Institute for numerical mathematics INM-CM4 (∼1.5° × 2.0°)L21 INM-CM4
atmospheric
component

INM-CM4 ocean
component

IPSL France Institute pierre-simon laplace IPSL-
CM5A-MR

LMDZ4 (∼1.2587°

× 2.5°)
LMDZ4 NEMO

MOHC United Kingdom Met office hadley centre HadGEM2-
AO

T63 (∼1.875° ×
1.865°)L38

Global atmosphere Global land

MPI-M Germany Max planck institute for meteorology MPI-
ESM-MR

T63 (∼1.875° ×
1.865°)L47

ECHAM6 MPIOM
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gauged data were interpolated to 1.0° × 1.0°grids using the inverse
distance weighting approach. For all models and experiments, the
results of the first ensemblemember (r1i1p1) were used in this study.

To uncover the geographical heterogeneity of DFA for SST in
the oceans, we divided the oceans into 12 ocean basins (Table 2
and Figure 1). The 12 ocean basins are modified based on Chan
et al (2015).We calculated the area-averaged DFA indexes in each
ocean basin for NCEP and model output daily temperatures, then
the area-averaged DFA indexes were compared to show the
differences between the NCEP and model outputs.

METHOD

The DFA method can quantify LRC as index of power law
exponent, namely, scaling exponent (Peng et al, 1994; Bunde
et al., 2002, Bunde et al., 2005). DFA has been widely applied to
study LRC in climate variabilities (Talkner and Weber, 2000;
Kantelhardt et al., 2006; Gan et al., 2007; Jiang et al., 2013). For a

giving time series, {Xi, i � 1, 2, . . ., N}, the departures xi of Xi is
calculated and cumulated to get the profile y(k).

y(k) � ∑k
i�1

xi, k � 1, 2, . . . , Ν (1)

Then profile y(k) is divided into n � Int (N/τ) non-overlapping
segments of equal length τ. In each segment, a polynomial
function is used to fit the local trend. If l-order polynomial
function is used for the fitting, the order of DFA is l (DFA1 if
l � 1, DFA2 if l � 2, etc.). Next, the local trend yτ(k) is subtracted
from profile y(k) in each segment, and the fluctuation function (F
(τ)) of each segment is calculated by

F(τ) �
������������������
1
nτ

Σnτ
k�1[y(k) − yτ(k)]2√

(2)

A linear relationship on a log-log plot indicates the presence of
the power law. In this case, fluctuations functions can be
characterized by a scaling exponent α.

F(τ) ∼ τα (3)

If α > 0.5, the time series {Xi, i � 1, 2, . . ., N} is positive long range
correlation. If α � 0.5, the time series is uncorrelated. If α < 0.5, the
time series has anti-persistent correlation. In this study, the DFA2
method is used to estimate the scaling exponent in a time series.

LONG-RANGE CORRELATIONS OF DAILY
MEAN SST OVER OCEAN SIMULATED BY
CMIP5 MODELS

Characteristics of Daily mean SST Over
Ocean
The equatorial Pacific Ocean (185°E, 0°) was selected as an
example to study the long-range correlation characteristics of

TABLE 2 | Names and coordinates for 12 ocean basins.

Region name Abbreviation Coordinates

Longitude Latitude

Tropical west pacific TWP 110°–170°E 20°S–20°N
Tropical central pacific TCP 170°E–125°W 20°S–20°N
Tropical eastern pacific TEP 125°W–75°W 20°S–20°N
North pacific ocean NPO 120°E–120°W 20°–70°N
South pacific ocean SPO 140°E–70°W 60°–20°S
Tropical indian ocean TIO 40°–120°E 20°S–20°N
South indian ocean SIO 15°–140°E 60°–20°S
South atlantic ocean SAO 65°W–15°E 60°–20°S
Tropical atlantic ocean TAO 70°W–10°E 20°S–20°N
North atlantic ocean NAO 90°W–0° 20°–60°N
Southern ocean SO 0°E–180°W 80°–60°S
Arctic ocean AO 0°E–180°W 60°–90°N

FIGURE 1 | Divisions of the oceans.
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temperature over ocean. In the equatorial Pacific Ocean, the DFA
value of NCEP daily temperature is 1.36, and the DFA values of
the daily temperature simulated by the eight models vary between
0.91 and 1.41 (Figure 2A). In spring, the DFA value of NCEP’s
daily temperature is 1.25. Except for FGOALS-G2, DFA values of
the daily temperature simulated by the other seven models are all
greater than 1.0, and that of GFDL-ESM2G is the largest, reaching
1.44 (Figure 2B). In summer, the DFA value of NCEP’s daily
temperature is 1.23, slightly lower than that in spring. Except for
FGOALS-G2 and INM-CM4, the DFA values of the other six
models are all between one and 1.36 (Figure 2C). In autumn, the
DFA value of NCEP’s daily temperature is larger than these in
spring and summer, reaching 1.31. Among the results of each
model, the DFA value of daily temperature of GFDL-ESM2 is the
smallest, reaching 0.72, and the largest is IPSL-CM5A-MR,
reaching 1.41 (Figure 2D). In winter, the DFA value of

NCEP’s daily temperature is 1.35. Except for INM-CM4, the
DFA values of the remaining seven models are all greater than 1,
in which the maximum is1.47 of GFDL-ESM2G (Figure 2E).

Figure 3 shows that the DFA value of the daily temperature in
this area over the years is larger than that of the four seasons, and
the seasonal variation of the DFA value is not large, but the DFA
value is smaller in spring and summer than that in autumn and
winter. Except for GFDL-ESM2G, INM-CM4, and HadGEM2-
AO, the seasonal changes of DFA values of the other models are
close to NCEP data.

On the annual time scale, the median performance errors
between the DFA values of the global daily mean SST simulated
by CMCC-CMS, CNRM-CM5, HadGEM2-AO, and MPI-ESM-
MR and those of the NCEP do not exceed ±0.01, while the median
performance errors of INM-CM4 and FGOALS-g2 exceed −0.05
(Figure 4A). From the 5–95% error range of each model, the

FIGURE 2 | The DFA2 results of daily mean SST from NCEP and CMIP5 models at the point of (185°E, 0°) for (A) year, (B) spring, (C) summer, (D) autumn, and (E)
winter.
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error margins of CMCC-CMS, GFDL-ESM2G, HadGEM2-AO
and IPSL-CM5A-MR are less than 0.3, while those of the
remaining four models are above 0.3, in which the maximum
is 0.47 of INM-CM4. In spring, the median performance errors of
CMCC-CMS, GFDL-ESM2G, IPSL-CM5A-MR and MPI-ESM-
MR do not exceed ±0.01, and that of INM-CM4 exceeds −0.08
(Figure 4B). From the 5–95% error range of eachmodel, the error
margins of GFDL-ESM2G and HadGEM2-AO are the minimum,
reaching 0.28, while the maximum is 0.37 of MPI-ESM-MR, and
those of the other models are between 0.31 and 0.36. In summer,
the median performance errors of CMCC-CMS, GFDL-ESM2G
and MPI-ESM-MR are no more than ±0.01, that of INM-CM4 is
-0.07, and those of the rest models are between ±0.01 and 0.06
(Figure 4C). From the 5–95% error range, the error margins of
CNRM-CM5, GFDL-ESM2G, HadGEM2-AO and IPSL-CM5A-
MR are the minimum, reaching 0.31, while the maximum is 0.45
of FGOALS-g2, and those of the rest are between 0.32 and 0.38. In
autumn, the median performance errors of IPSL-CM5A-MR and
MPI-ESM-MR are less than ±0.01, while that of INM-CM4
exceeds −0.07, and those of other models are between ±0.01
and 0.03 (Figure 4D). From the 5–95% error range, the minimum
error margin is 0.25 of IPSL-CM5A-MR, while the maximum is
0.46 of INM-CM4, and those of the rest are between 0.26 and 0.4.
In winter, the median performance errors of CMCC-CMS and
GFDL-ESM2G are less than ±0.01, while that of FGOALS-g2 is
−0.05, and those of the rest models are between ±0.01 and 0.04
(Figure 4E). From the 5–95% error range, the minimum error
margin is 0.3 of IPSL-CM5A-MR, while the maximum is 0.46 of
MPI-ESM-MR, and those of the rest are between 0.33 and 0.45.

Long-Range Correlation Characteristics of
Daily Mean SST in Various Regions of the
Ocean
The zonal average value of the NCEP daily mean SST DFA index
over the years shows that the DFA value is small in mid-high

latitudes and large in tropical areas (Figure 5A), which decreases
rapidly from the equator to the north and south direction. The
zonal average DFA index exceeds 1.1 near the equator and
decreases to 0.6 near the high latitudes of the southern and
northern hemispheres. The DFA index of daily mean SST
simulated by the eight models also shows similar
characteristics of variation with the latitude, but the DFA
values of the models in tropical regions are all smaller than
the NCEP values, with large differences between the models. The
zonal changes of DFA index in INM-CM4, MPI-ESM-MR and
FGOALS-g2 models are smaller than NCEP. The minimum
correlation coefficient between the INM-CM4 zonal average
DFA value and the NCEP value is 0.78, and those of the other
models are all above 0.9, in which the maximum correlation
coefficient is 0.98 of IPSL-CM5A-MR.

In spring of the northern hemisphere, the zonal average value
of the DFA index for NCEP daily mean SST is symmetrically
distributed in the northern and southern hemispheres. DFA
index of the tropical area is above 0.9, of which the equatorial
area exceeds 1.1, and the mid-high latitude of the northern
hemisphere is generally between 0.8 and 0.9, while that of the
mid-high latitudes of the southern hemisphere is between 0.7 and
0.8 (Figure 5B). In the extratropical areas of the northern
hemisphere, the zonal average DFA index changes slightly
with latitudes, while that of the extratropical areas of the
southern hemisphere increases slightly around 60°S, and then
continues to decrease. The meridional changes of DFA index of
INM-CM4, MPI-ESM-MR and FGOALS-g2 models are small.
The zonal average DFA value of HadGEM2-AO has two peaks in
the area outside the equator. The DFA values of GFDL-ESM2G
and IPSL-CM5A-MR near the equator are larger than the NCEP
values. The minimum correlation coefficient between the zonal
average DFA index of INM-CM4 and MPI-ESM-MR and NCEP
is 0.76, while those of the rest models are above 0.8, in which the
maximum correlation coefficient is 0.97 of GFDL-ESM2G.

In summer of the northern hemisphere, the zonal average
value of the NCEP daily temperature DFA index is still the largest
near the equator, but the DFA value in the northern hemisphere is
obviously larger than that in the southern hemisphere
(Figure 5C). The zonal average DFA value displays a peak
around 60°N in the northern hemisphere, reaching about 1.1,
and then decreases toward higher latitudes rapidly. In the
southern hemisphere, the zonal average DFA index rapidly
decreases from the equator to around 40°S to a minimum of
0.7, and then goes up with the increase of latitudes. The zonal
average DFA values of the eight models can all reflect the
characteristic that the DFA value of the northern hemisphere
is larger than that of the southern hemisphere. The zonal average
DFA values of INM-CM4 and FGOALS-g2 do not reach a peak
near the equator. The minimum correlation coefficient is 0.78
between the zonal average DFA index of FGOALS-g2 and NCEP,
while those of the rest models are above 0.88, in which the
maximum correlation coefficient is 0.96 of HadGEM2-AO.

In autumn of the northern hemisphere, the zonal average
value of the DFA index for NCEP daily mean SST is
symmetrically distributed in the northern and southern
hemispheres, reaching a peak close to 1.2 near the equator,

FIGURE 3 | The DFA2 indexes of daily mean SST from NCEP and
CMIP5 models at the point of (185°E, 0°) for year and all four seasons.
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two small peaks near 50°N and 70°N in the northern hemisphere,
and a smaller peak in 60°S in the southern hemisphere and then
decreases towards higher latitudes (Figure 5D). The eight models
can all reflect the characteristics that the zonal average DFA value
is the largest near the equator, and the distribution in the
northern and southern hemispheres is relatively symmetric.
The zonal average DFA indices of INM-CM4, FGOALS-g2,
and CMCC-CMS models vary little with latitudes and are
significantly smaller than the NCEP value in tropical regions.
The DFA value of HadGEM2-AO has a large peak near 20°N in
the northern hemisphere. The minimum correlation coefficient
between the zonal average DFA value of INM-CM4 and the
NCEP value is 0.64, while those of the other models are all above
0.81, among which the correlation coefficients of GFDL-ESM2G
and IPSL-CM5A-MR are up to 0.97.

In winter of the northern hemisphere, the zonal average value
of the DFA index for NCEP daily mean SST is greater in the

southern hemisphere than that in the northern hemisphere, and
the peak still appears near the equator, reaching about 1.2. The
DFA index of the northern hemisphere drops sharply to 0.8 from
the equator to 30°N, then slowly decreases towards mid-high
latitudes, and to about 0.7 near the north pole. The DFA index of
the southern hemisphere decreases rapidly to about 0.7 from the
equator to high latitudes (Figure 5E). The zonal average DFA
index of the INM-CM4 and FGOALS-g2 models varies slightly
with latitudes and is smaller than the NCEP value in tropical
regions. Except that the correlation coefficient of zonal average
DFA value and the NCEP value of HadGEM2-aO and IPSL-
CM5A-MR exceeds 0.9, the correlation coefficients of the rest
models are all less than 0.9, in which the minimum value is 0.72 of
INM-CM4.

In general, the zonal average value of the DFA index for NCEP
daily mean SST is the largest near the equator and smaller at mid-
high latitudes, with obvious seasonal changing pattern. The

FIGURE 4 | Box charts of the errors of DFA values from CMIP5 models for (A) year, (B) spring, (C) summer, (D) autumn, and (E) winter.
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variation range of the zonal average DFA value of INM-CM4 and
FGOALS-g2 is smaller than the NCEP value, and the correlation
coefficient with NCEP is relatively lower, while that of IPSL-
CM5A-MR and HadGEM2-AO is closer to the NCEP value, with
similar variation characteristics with latitudes.

Judging from the DFA value for daily mean SST of each
region, the difference between the models and the DFA value of
the NCEP is large in tropical regions. Among them, the tropical
Central and Eastern Pacific has the largest difference, while that
in middle and high latitudes is relatively small, generally less
than ±0.1 (Figure 6A). In the North Atlantic (NAO), the
simulated DFA values of the eight models have an error of
less than ±0.05; in the Southern Ocean and the South Atlantic
(SO and SAO), one model has an error of more than ±0.05. The
errors of INM-CM4 and FGOALS-g2 are larger than those of
other models.

In spring, the difference between the simulated daily mean SST
DFA value and NCEP is still large in tropical regions, but the
error in the mid-high latitudes of the northern hemisphere is
significantly smaller than that in other parts of the world
(Figure 6B). In the North Pacific (NPO) and North Atlantic
(NAO), there is one model whose error is greater than ±0.05. In
the Arctic Ocean (AO) and Southern Ocean (SO), there are two
models whose errors exceed ±0.05. For Tropical Eastern Pacific
(TEP), only HadGEM2-AO and IPSL-CM5A-MR have errors of
less than ±0.05. The errors of INM-CM4, FGOALS-g2, and MPI-
ESM-MR are larger than those of other models.

In summer, the difference between the DFA and NCEP values
of most models is still larger in the tropics and smaller in the
southern hemisphere (Figure 6C). The errors of all models in the
South Indian Ocean (SIO) are all within ±0.05, and only one
model has an error exceeding ±0.05 in the South Pacific (SPO).
For the Arctic Ocean (AO), South Atlantic (SAO) and Southern
Ocean (SO), only two models have an error exceeding ±0.05. In
the tropical western Pacific (TWP), only HadGEM2-AO and
IPSL-CM5A-MR have an error less than ±0.05.

In autumn, the error between the models’ DFA values and the
NCEP values is larger in tropical regions, but smaller in mid-high
latitudes in the northern and southern hemispheres (Figure 6D). In
theNorthAtlantic (NAO), SouthAtlantic (SAO) and SouthernOcean
(SO), the simulation error of only onemodel does not exceed±0.05. In
the North Pacific (NPO), Tropical Indian Ocean (TIO), South Indian
Ocean (SIO) and South Pacific (SPO), there are two models with an
error ofmore than ±0.05. In the tropical Atlantic, only GFDL-ESM2G
and IPSL-CM5A-MRhave an error less than ±0.05.

In winter, the difference between the models’ DFA values and
NCEP values is larger in the tropics, but smaller in the mid-high
latitudes of the northern hemisphere (Figure 6E). In the North
Atlantic Ocean (NAO), the simulation errors of all models are less
than ±0.05. In the North Pacific (NPO), only INM-CM4 has a
simulation error greater than ±0.05. In the South Indian Ocean
(SIO), only HadGEM2-AO and INM-CM4 have an error greater
than ±0.05. In the Tropical Atlantic (TAO) and South Pacific
(SPO), only two models have simulation errors less than ±0.05.

FIGURE 5 | The zonal average distribution of the DFA index of NCEP and eight models of daily mean SST (A) year, (B) spring, (C) summer, (D) autumn, (E)winter.
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Long-Range Correlation Assessment of
Daily Mean SST Over Ocean in Multiple
Models
The NCEP global daily mean SST has long-range correlation
characteristics in most parts of the world. The DFA value over the
tropical ocean is generally between 0.9 and 1.3. TheDTA value of daily
mean SST over the tropical Central and Eastern Pacific is above 1.3,
and that of themid-high latitudes is relatively small, inwhich that in the
high latitudes of the northern hemisphere is below 0.7 (Figure 7A).
Compared with the NCEP values, the DFA values of CMCC-CMS,
CNRM-CM5, HadGEM2-AO and MPI-ESM-MR are smaller in the
tropics, while the NCEP values are close to or larger than those in the
tropics (Figure 7B,C,F,I). The DFA values of FGOALS-g2 and INM-
CM4 are relatively small in most regions of the world except in the
Arctic Ocean (Figure 7D,G). The DFA values of GFDL-ESM2G and
IPSL-CM5A-MRare larger in someparts of the tropicalwestern Pacific
and mid-high latitudes in the southern hemisphere, while those in the
rest of theworld are close to or smaller thanNCEP values (Figure 7H).

In spring, the DFA index for NCEP daily mean SST over the
global ocean is generally above 0.7, and the DFA value in tropical

area is generally between 0.9 and 1.2, while that over the equatorial
Central and Eastern Pacific is above 1.2 (Figure 8A). Compared
with the NCEP data, the DFA values for daily mean SST of CMCC-
CMS and MPI-ESM-MR are mainly smaller near the equator,
larger outside the tropics, and close to the NCEP value in the high
latitudes of the northern hemisphere (Figure 8B,I). The DFA value
of CNRM-CM5 is only small near the equator, large in the Arctic
Ocean, and close to the NCEP value in the rest of the world
(Figure 8C). The DFA value of FGOALS-g2 is close to or smaller
than the NCEP value in most parts of the world, especially near the
equator (Figure 8D). The DFA value of GFDL-ESM2G is larger in
most parts of the tropical Pacific, tropical Indian Ocean and South
Atlantic, and is close to or smaller than the NCEP value in the rest
of the world (Figure 8E). For HadGEM2-AO, except that the DFA
value is relatively small in the equatorial Central and Eastern
Pacific, the value is close to or relatively larger than the NCEP
value inmost of the rest of the world (Figure 8F). TheDFA value of
INM-CM4 is smaller in most of the areas except the Arctic Ocean
(Figure 8G). The DFA value of IPSL-CM5A-MR is smaller in the
Arctic Ocean and the North Pacific, and is close to or larger than
the NCEP value in the rest of the world (Figure 8H).

FIGURE 6 | Differences between the DFA index of daily mean SST and the NCEP value in each region simulated by eight models, (A) throughout the year, (B)
spring, (C) summer, (D) autumn, (E) winter.
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FIGURE 7 | The DFA index for NCEP daily mean SST over the years (A) and the difference between the DFA index for daily mean SST simulated in the eight models
and NCEP value (B) CMCC-CMS, (C) CNRM-CM5, (D) FGOALS-g2, (E) GFDL-ESM2G, (F) HadGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I) MPI-ESM-MR.

FIGURE 8 | The DFA index for NCEP spring daily mean SST (A) and the difference between the DFA index for daily mean SST simulated in the eight models and
NCEP value (B) CMCC-CMS, (C) CNRM-CM5, (D) FGOALS-g2, (E) GFDL-ESM2G, (F) HadGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I) MPI-ESM-MR.
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In summer, the DFA value of NCEP daily mean SST is generally
below 0.9 at mid-high latitudes in the southern hemisphere and the
Arctic Ocean, generally between 0.9 and 1.3 in tropical oceans and
mid-high latitudes in the northern hemisphere, and above 1.3 in
the equatorial Central and Eastern Pacific (Figure 9A). Compared
with NCEP data, the DFA values for daily mean SST of the CMCC-
CMS andMPI-ESM-MRmodels are smaller in the tropical Pacific,
North Pacific, tropical Atlantic and North Atlantic, but close to or
larger than the NCEP value in the rest of the world (Figure 9B,I).
The DFA value of CNRM-CM5 is larger in parts of the Arctic
Ocean and Southern Ocean, smaller in the equatorial ocean and
close to the NCEP value in the rest of the world (Figure 9C). For
FGOALS-g2 and INM-CM4, except that the DFA values are larger
in the Arctic Ocean, the values are close to or smaller than the
NCEP value in the rest areas, especially notably smaller in tropical
regions (Figure 9D,G). For GFDL-ESM2G and HadGEM2-AO,
the DFA values are larger over the tropical ocean, and close to or
smaller than the NCEP value in the rest of the world (Figure 9E,F).
The DFA value of IPSL-CM5A-MR is larger in the tropical Pacific
andArctic Ocean, and is close to or smaller than theNCEP value in
the rest of the world (Figure 9H).

In autumn, the DFA index for NCEP daily mean SST greater than
0.9 is mainly concentrated in tropical areas, while that in the Arctic
Ocean and the southern hemisphere mid-high latitudes areas is
generally below 0.7 (Figure 10A). Compared with the NCEP data,
the DFA values of CMCC-CMS, FGOALS-g2 and MPI-ESM-MR
models are larger over tropical oceans, but close to or smaller than the

NCEP value inmost other regions of the world (Figure 10B,D,I). The
DFA values of CNRM-CM5 and GFDL-ESM2G are smaller in the
equatorial Pacific, equatorial Atlantic, and parts of the South Indian
Ocean, larger in parts of the Arctic Ocean and Southern Ocean, and
close to the NCEP value in most parts of the world (Figure 10C,E).
The DFA value of HadGEM2-AO is larger in the equatorial Pacific,
thewestern andnorthern parts of the tropical IndianOcean, and some
parts of the Southern Ocean, and close to or larger than the NCEP
value in the rest of the world, and is especially notably larger in the
tropical North Pacific, the tropical North Atlantic and the Arctic
Ocean (Figure 10F). TheDFA value of INM-CM4 is only larger in the
Arctic Ocean, but smaller in most parts of the world (Figure 10G).
The DFA value of IPSL-CM5A-MR is smaller in parts of the South
Indian Ocean, the tropical eastern Pacific, the South Atlantic, and the
SouthernOcean, and is close to or larger than theNCEP value inmost
of the rest of the world (Figure 10I).

In winter, the DFA index for NCEP daily mean SST is
generally between 0.9 and 1.3 in tropical regions and the
Southern Ocean, and that in the tropical Central and Eastern
Pacific is generally above 1.3 (Figure 11A). Compared with the
NCEP data, the DFA values of CMCC-CMS, FGOALS-g2, IPSL-
CM5A-MR and MPI-ESM-MR models are smaller in tropical
regions and parts of the Southern Ocean, but close to or larger
than the NCEP value in the rest of the world (Figure 11B,D,H,I).
The DFA value of CNRM-CM5 is smaller in the equatorial
region, but larger in parts of the Arctic Ocean and Southern
Ocean, and close to the NCEP value in most other parts of the

FIGURE 9 | The DFA index for NCEP summer daily mean SST (A) and the difference between the DFA index for daily mean SST simulated in the eight models and
NCEP value (B) CMCC-CMS, (C) CNRM-CM5, (D) FGOALS-g2, (E) GFDL-ESM2G, (F) HADGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I) MPI-ESM-MR.
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FIGURE 10 | The DFA index for NCEP daily mean SST in autumn (A) and the difference between the DFA index for daily mean SST simulated in the eight models
and NCEP value (B) CMCC-CMS, (C) CNRM-CM5, (D) FGOALS-g2, (E) GFDL-ESM2G, (F) HadGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I) MPI-ESM-MR.

FIGURE 11 | The DFA index for NCEP winter daily mean SST (A) and the difference between the DFA index for daily mean SST simulated in the eight models and
NCEP value (B) CMCC-CMS, (C) CNRM-CM5, (D) FGOALS-g2, (E) GFDL-ESM2G, (F) HadGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I) MPI-ESM-MR.
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world (Figure 11C). The DFA value of GFDL-ESM2G is close to
or smaller than the NCEP value in the northern hemisphere,
while close to or larger than the NCEP value in most parts of the
southern hemisphere except the south Indian Ocean
(Figure 11E). The DFA value of HadGEM2-AO is only
smaller in parts of the tropical Pacific and North Pacific, and
close to or larger than the NCEP value in most other parts of the
world, of which the value in South Pacific and Southern Ocean is
significantly larger (Figure 11F). The DFA value of INM-CM4
value is larger in the Arctic Ocean and smaller in most other parts
of the world (Figure 11G).

DISCUSSION AND CONCLUSION

Based on NCEP data, the simulations of daily mean SST by eight
CMIP5 models during 1960–2005 are evaluated using DFA
method. The results of NCEP data showed that the daily mean
SST in most regions of the ocean has long-range correlation
characteristics. The DFA values of daily mean SST over ocean
basins are large in the tropics while small in mid-high latitudes.
The zonal average DFA values of IPSL-CM5A-MR and
HadGEM2-AO had a meridional variation characteristic,
which was close to NCEP. The regional average of the DFA
values of eight models are all close to those of the NCEP data in
North Atlantic, Southern Ocean, and North Pacific.

The DFA value of daily mean SST over the years showed that
the DFA values of DAT is relatively large in tropical regions,
especially in the equatorial Central and Eastern Pacific. In the
view of the DFA bias of different models, there were fewer areas
where the DFA bias exceeds ±0.05 for CNRM-CM5, HadGEM2-
AO and ISPL-CM5A-MR. In spring, the DFA value of the NCEP
DAT was generally above 0.7 over the global ocean, between 0.9
and 1.2 in tropical areas, and above 1.2 over the equatorial Central
and Eastern Pacific. In the view of DFA bias, the performance of
CNRM-CM5, GFDL-ESM2G, HadGEM2-AO and IPSL-CM5A-
MR was better than other models. In summer, the DFA values of
NCEP DAT was larger in the northern hemisphere than those in
the southern hemisphere. The DFA values of CNRM-CM5,
GFDL-ESM2G, HadGEM2-AO and ISPL-CM5A-MR are close
to those of NCEP in most parts of the global ocean, indicating
good performance. In autumn, the DFA values of NCEP DAT
were generally above 0.9 in tropical regions and above 1.3 in the
equatorial Central and Eastern Pacific. The DFA bias of CNRM-
CM5, GFDL-ESM2G, and IPSL-CM5A-MR were relatively small
in most regions of the global ocean. In winter, the DFA values of
NCEP DAT were generally above 1.0 in tropical regions, while
below 0.8 only in the Arctic Ocean and the North Atlantic. The
performance of CNRM-CM5, FGAOLS-g2, and IPSL-CM5A-MR
were good in most parts of the global ocean.

The LRC method has been widely used to verify the
performance of climate models for the climate simulation
(Zhao et al., 2017; He and Zhao, 2018). However, most of
previous studies focus on the land surface air temperature,
little research on sea surface temperature has been conducted.
Therefore, some significant conclusions in this paper have been
shown for the revelation of sea surface temperature simulation by
climate models using LRC method. Although, it is important to
make sure that the different sources of uncertainty are identified
when using CMIP models to conduct climate projection. Future
emissions, internal variability of the climate system and model
response uncertainty are the three main sources of uncertainty in
CMIP MME. Different responses to the same forcing can emerge
due to different processes and feedbacks as well as due to the
parametrization used in the different models (Zelinka et al.,
2020). There are uncertainties exiting in the interpolation for
outputs from CMIP models and the gauged data to 1.0° ×
1.0°grids using the inverse distance weighting approach.
Hence, the model weighting scheme for MME and dynamic
downscaling method with more complete physical and
dynamic processes will be adopted to conduct the region
climate simulation and projection based on CMIP5/6 model
output in the future, and it will significantly improve the
reliability of simulations and projections. These will be the
topic of our research in future.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

SZ and WH conceived of the presented idea. XZ and TD carried
out the implementation. XZ performed the calculations. All
authors discussed the results and contributed to the final
manuscript.

FUNDING

This work was funded by National Key R&D Program of China
(2016YFA0602703), the National Natural Science Foundation of
China (Grant No. 41775092, 41875120, and 41605069), the China
Postdoctoral Science Foundation (Grant No. 2020M672942), the
Fundamental Research Funds for the Central Universities from
Sun Yat-Sen University (Grant No. 20lgzd06 and 19lgpy31).

REFERENCES

Alexander, L. V., and Arblaster, J. M. (2009). Assessing Trends in Observed and
Modelled Climate Extremes over Australia in Relation to Future Projections.
Int. J. Climatol. 29, 417–435. doi:10.1002/joc.1730

Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A.
M. G., et al. (2006). Global Observed Changes in Daily Climate Extremes of
Temperature and Precipitation. J. Geophys. Res. 111, D05109. doi:10.1029/
2005JD006290

Blender, R., and Fraedrich, K. (2003). Long Time Memory in Global Warming
Simulations. Geophys. Res. Lett. 30 (14), 1769. doi:10.1029/2003gl017666

Frontiers in Environmental Science | www.frontiersin.org May 2021 | Volume 9 | Article 65677912

Zhu et al. Evaluate SST Simulation Using LRC

160

https://doi.org/10.1002/joc.1730
https://doi.org/10.1029/2005JD006290
https://doi.org/10.1029/2005JD006290
https://doi.org/10.1029/2003gl017666
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Bunde, A., Eichner, J. F., Kantelhardt, J. F., and Havlin, S. (2005). Long-Term
Memory: A Natural Mechanism for the Clustering of Extreme Events and
Anomalous Residual Times in Climate Records. Phys. Rev. Lett. 94, 048701.
doi:10.1103/physrevlett.94.048701

Bunde, A., and Havlin, S. (2002). Power-law Persistence in the Atmosphere and in
the Oceans. Physica A: Stat. Mech. its Appl. 314, 15–24. doi:10.1016/s0378-
4371(02)01050-6

Chan, D., and Wu, Q. (2015). Attributing Observed SST Trends and
Subcontinental Land Warming to Anthropogenic Forcing during 1979-2005.
J. Clim. 28, 3152–3170. doi:10.1175/jcli-d-14-00253.1

Gan, Z., Yan, Y., and Qi, Y. (2007). Scaling Analysis of the Sea Surface Temperature
Anomaly in the South China Sea. J. Atmos. Ocean. Tech. 24, 681–687. doi:10.
1175/jtech1981.1

Grose, M. R., Narseym, S., Delage, F., Dowdy, A. J., Bador, M., Boschat, G., et al.
(2020). Insights from CMIP6 for Australia’s Future Climate. Earth’s Future 8
(5), e2019EF001469. doi:10.1029/2019EF001469

Gusain, A., Ghosh, S., and Karmakar, S. (2020). Added Value of CMIP6 over
CMIP5 Models in Simulating Indian Summer Monsoon Rainfall. Atmos. Res.
232, 104680. doi:10.1016/j.atmosres.2019.104680

He, W. P., and Zhao, S. S. (2018). Assessment of the Quality of NCEP-2 and CFSR
Reanalysis Daily Temperature in China Based on Long-Range Correlation.
Clim. Dyn. 50, 493–505. doi:10.1007/s00382-017-3622-0

IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change. Cambridge, UK, and New York, NY: Cambridge University
Press.

Ji, Z., and Kang, S. (2015). Evaluation of Extreme Climate Events Using a Regional
Climate Model for China. Int. J. Climatol. 35, 888–902. doi:10.1002/joc.4024

Jiang, D., and Tian, Z. (2013). East Asian Monsoon Change for the 21st century:
Results of CMIP3 and CMIP5 Models. Chin. Sci. Bull. 58, 1427–1435. doi:10.
1007/s11434-012-5533-0

Jiang, L., Zhao, X., Li, N., Li, F., and Guo, Z. (2013). Different Multifractal Scaling of
the 0 Cm Average Ground Surface Temperature of Four Representative
Weather Stations over China. Adv. Meteorology 2013, 1–8. doi:10.1155/
2013/341934

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al.
(1996). The NCEP/NCAR 40-year Reanalysis Project. Bull. Amer. Meteorol. Soc.
77, 437–471. doi:10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2

Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M.,
et al. (2002). NCEP-DOE AMIP-II Reanalysis (R-2). Bull Amer. Meteorol. Soc.
83, 1631–1643. doi:10.1175/bams-83-11-1631(2002)083<1631:nar>2.3.co;2

Kantelhardt, J. W., Koscielny-Bunde, E., Rybski, D., Braun, P., Bunde, A., and
Havlin, S. (2006). Long-term Persistence and Multifractality of Precipitation
and River Runoff Records. J. Geophys. Res. 111. doi:10.1029/2005JD005881

Kharin, V. V., Zwiers, F. W., Zhang, X., and Hegerl, G. C. (2007). Changes in
Temperature and Precipitation Extremes in the IPCC Ensemble of Global
Coupled Model Simulations. J. Clim. 20, 1419–1444. doi:10.1175/jcli4066.1

Kharin, V. V., Zwiers, F. W., Zhang, X., and Wehner, M. (2013). Changes in
Temperature and Precipitation Extremes in the CMIP5 Ensemble. Climatic
Change 119 (2), 345–357. doi:10.1007/s10584-013-0705-8

Koscielny-Bunde, E., Roman, H. E., Bunde, A., Havlin, S., and Schellnhuber, H. J.
(1998). Long-range Power-Law Correlations in Local Daily Temperature
Fluctuation. Philosophical Mag. B 77 (5), 1331–1340.

Koscielny-Bunde, E., Bunde, A., Havlin, S., and Goldreich, Y. (1996). Analysis of
Daily Temperature Fluctuations. Physica A: Stat. Mech. its Appl. 231 (4),
393–396. doi:10.1016/0378-4371(96)00187-2

Kruger, A. C., and Sekele, S. S. (2013). Trends in Extreme Temperature Indices in
South Africa: 1962-2009. Int. J. Climatol. 33, 661–676. doi:10.1002/joc.3455

Peng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., and Goldberger,
A. L. (1994). Mosaic Organization of DNA Nucleotides. Phys. Rev. E 49,
1685–1689. doi:10.1103/physreve.49.1685

Prinn, R. G. (2012). Development and Application of Earth System Models,Proc.
Natl. Acad. Sci. 110. (Supplement_1): 3673–3680. doi:10.1073/pnas.
1107470109pnas.1107470109

Rusticucci, M. (2012). Observed and Simulated Variability of Extreme
Temperature Events over South America. Atmos. Res. 106, 1–17. doi:10.
1016/j.atmosres.2011.11.001

Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., and Bronaugh, D. (2013).
Climate Extremes Indices in the CMIP5 Multimodel Ensemble: Part 2. Future
Climate Projections. J. Geophys. Res. Atmos. 118, 2473–2493. doi:10.1002/jgrd.
50188

Talkner, P., and Weber, R. O. (2000). Power Spectrum and Detrended Fluctuation
Analysis: Application to Daily Temperatures. Phys. Rev. E 62 (1), 150–160.
doi:10.1103/physreve.62.150

Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An Overview of CMIP5 and
the experiment Design. Bull. Amer. Meteorol. Soc. 93, 485–498. doi:10.1175/
bams-d-11-00094.1

Tebaldi, C., Smith, R. L., Nychka, D., and Mearns, L. O. (2005). Quantifying
Uncertainty in Projections of Regional Climate Change: a Bayesian Approach
to the Analysis of Multimodel Ensembles. J. Clim. 18, 1524–1540. doi:10.1175/
jcli3363.1

Wang, Y., Zhou, B., Qin, D., Wu, J., Gao, R., and Song, L. (2017). Changes in Mean
and Extreme Temperature and Precipitation over the Arid Region of
Northwestern China: Observation and Projection. Adv. Atmos. Sci. 34 (3),
287–305. doi:10.1007/s00376-016-6160-5

Wei, M., and Qiao, F. (2016). Attribution Analysis for the Failure of CMIP5
Climate Models to Simulate the Recent Global Warming Hiatus. Sci. China
Earth Sci. 60 (2), 397–408. doi:10.1007/s11430-015-5465-y

Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi,
P., et al. (2020). Causes of Higher Climate Sensitivity in CMIP6 Models.
Geophys. Res. Lett. 47, 1–12.Z. doi:10.1029/2019gl085782

Zeng, Q. C., Zhou, G. Q., Pu, Y. F., Chen, W., Li, R. F., Liao, H., et al. (2008).
Research on the Earth System Dynamic Model and Some Related Numerical
Simulations. Chin. J. Atmos. Sci. 32 (4), 653–690. doi:10.3724/SP.J.1148.2008.
00288

Zhao, S. S., and He, W. P. (2014). Performance Evaluation of Chinese Air
Temperature Simulated by Beijing Climate Center Climate System Model
on the Basis of the Long-Range Correlation. Acta Physica Sinica 63 (20),
209201

Zhao, S. S., He, W. P., and Jiang, Y. (2017). Evaluation of NCEP-2 and CFSR
Reanalysis Seasonal Temperature Data in China Using Detrended Fluctuation
Analysis. Int. J. Climatol 38, 252–263. doi:10.1002/joc.5173

Zhao, Z. C., Luo, Y., and Huang, J. B. (2013). A Review on Evaluation Methods of
Climate Modeling[J]. Progressus Inquisitiones de Mutatione Climatis 9 (1), 1–8.

Zhou, B., Wen, Q. H., Xu, Y., Song, L., and Zhang, X. (2014). Projected Changes in
Temperature and Precipitation Extremes in china by the Cmip5 Multimodel
Ensembles. J. Clim. 27, 6591–6611. doi:10.1175/jcli-d-13-00761.1

Zhu, X., Dong, W., Wei, Z., Guo, Y., Gao, X., Wen, X., et al. (2017). Multi-decadal
Evolution Characteristics of Global Surface Temperature Anomaly Data Shown
byObservation and CMIP5Models. Int. J. Climatol 38, 1533–1542. doi:10.1002/
joc.5264

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Zhu, Dong, Zhao and He. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Environmental Science | www.frontiersin.org May 2021 | Volume 9 | Article 65677913

Zhu et al. Evaluate SST Simulation Using LRC

161

https://doi.org/10.1103/physrevlett.94.048701
https://doi.org/10.1016/s0378-4371(02)01050-6
https://doi.org/10.1016/s0378-4371(02)01050-6
https://doi.org/10.1175/jcli-d-14-00253.1
https://doi.org/10.1175/jtech1981.1
https://doi.org/10.1175/jtech1981.1
https://doi.org/10.1029/2019EF001469
https://doi.org/10.1016/j.atmosres.2019.104680
https://doi.org/10.1007/s00382-017-3622-0
https://doi.org/10.1002/joc.4024
https://doi.org/10.1007/s11434-012-5533-0
https://doi.org/10.1007/s11434-012-5533-0
https://doi.org/10.1155/2013/341934
https://doi.org/10.1155/2013/341934
https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2
https://doi.org/10.1175/bams-83-11-1631(2002)083<1631:nar>2.3.co;2
https://doi.org/10.1029/2005JD005881
https://doi.org/10.1175/jcli4066.1
https://doi.org/10.1007/s10584-013-0705-8
https://doi.org/10.1016/0378-4371(96)00187-2
https://doi.org/10.1002/joc.3455
https://doi.org/10.1103/physreve.49.1685
https://doi.org/10.1073/pnas.1107470109
https://doi.org/10.1073/pnas.1107470109
https://doi.org/10.1016/j.atmosres.2011.11.001
https://doi.org/10.1016/j.atmosres.2011.11.001
https://doi.org/10.1002/jgrd.50188
https://doi.org/10.1002/jgrd.50188
https://doi.org/10.1103/physreve.62.150
https://doi.org/10.1175/bams-d-11-00094.1
https://doi.org/10.1175/bams-d-11-00094.1
https://doi.org/10.1175/jcli3363.1
https://doi.org/10.1175/jcli3363.1
https://doi.org/10.1007/s00376-016-6160-5
https://doi.org/10.1007/s11430-015-5465-y
https://doi.org/10.1029/2019gl085782
https://doi.org/10.3724/SP.J.1148.2008.00288
https://doi.org/10.3724/SP.J.1148.2008.00288
https://doi.org/10.1002/joc.5173
https://doi.org/10.1175/jcli-d-13-00761.1
https://doi.org/10.1002/joc.5264
https://doi.org/10.1002/joc.5264
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Article Title Variations in Growing
Season NDVI and Its Sensitivity to
Climate Change Responses to Green
Development in Mountainous Areas
Ming Zhu1, Jingjing Zhang1,2 and Lianqi Zhu1*

1College of Environment and Planning, Henan University, Kaifeng, China, 2College of Geography and Tourism, Zhengzhou Normal
University, Zhengzhou, China

The Normalized Difference Vegetation Index (NDVI) is sensitive to changes in surface
vegetation cover. Research into how climate change impacts surface vegetation cover is
essential to manage ecological systems and promote green development. The Western
Henan Mountains, located in the transitional zone between the northern subtropical and
warm temperate zones of China, is an ideal location to study the impacts of climate change
on surface vegetation cover. Combining a digital elevation model (DEM) with temperature
and precipitation data; and MODIS-NDVI imagery (2000∼2017) for the Western Henan
Mountains, this study explores variations in the growing season NDVI and its response to
climate change. Results show that there are significant changes with fluctuations in NDVI
values from 2000 to 2017. NDVI increased at a growth rate of 0.027 per decade (p < 0.05)
overall, indicating vegetation conditions have gradually improved. Although the NDVI value
showed an overall increasing trend, 19.12% of the areas showed a decreasing trend,
interspersing and intersecting spatially, showing significant spatial differences. NDVI
increased initially, but then decreased as a function of elevation, which was shown to
be proportional to slope and independent of aspect. Variables including elevation and
slope gradient are shown to provide high explanation of NDVI variability, whilst temperature
is shown to have a more significant impact on NDVI than precipitation. However,
vegetation responses to temperature and precipitation covaried with both slope and
aspect. Positive NDVI trends were strongest at low elevations (i.e., <1,100 masl), which we
attribute to vegetation restoration activities. Lower NDVI values characterized gentle slopes
(<5°), whilst higher values were, in contrast, associated with steeper slopes (5∼10°). This
study highlights the complex mechanisms and their relations governing vegetation
response to climate change and should form an instructive basis for both future
modeling studies investigating the response of vegetation to future global warming.
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INTRODUCTION

Vegetation comprises a critical component of ecosystems
connecting the atmospheric, hydrological and pedological
systems (Yang et al., 2010; Piao et al., 2011). The sensitivity of
vegetation cover to climate change has become a major research
focus considering the unprecedented rates and impacts of
anthropogenic global warming on the biosphere.

The Normalized Difference Vegetation Index (NDVI) is
commonly used to indicate changes to vegetation cover in
response to climate variability (Nemani et al., 2003). Several
studies have investigated the relationships between NDVI and
climate factors (e.g., temperature and precipitation at global (Ichii
et al., 2002; Liu et al., 2016) and regional (Herrmann et al., 2005;
Du et al., 2016; Yin et al., 2016) scales via correlation analysis
(Tong, 2014), factor analysis and regression analysis(Zhang et al.,
2017).

Notably, 67% of China’s total land area is mountainous, of
concern, given the high sensitivity of mountain ecosystems to
climate change. Therefore, understanding the elevation-
dependent composition of vegetation within different
mountain environments is crucial for understanding the varied
impacts of climate on these environments (Zhu and Li, 2017;
Zhang et al., 2018). Mountain vegetation provides vital ecosystem
services, but is highly sensitive to environmental change and is
influenced by numerous factors (Pepin et al., 2015).
Understanding the driving mechanisms controlling mountain
vegetation is essential to project future spatial patterns of
vegetation change in response to global warming in these
regions, and as such constitutes a pressing issue for climate
change research. Extensive research has been conducted on
mountain ecosystems in the European Alps, Kilimanjaro in
Africa, Cordillera in North America, and the Andes in South
America (Habeck, 1987; Hemp, 2006; Gehrig-Fasel et al., 2007;
Erschbamer et al., 2009; Asam et al., 2018). Some progress has
also been made in the study of mountain vegetation changes in
China, specifically the Sanjiangyuan area of Tibet Plateau,
Hengduan Mountains, Tianshan Mountains, Changbai
Mountains, Qilian Mountains and Qinling Mountains (Kessler,
2000; Long, 2003; Zhang et al., 2004; Yao et al., 2010). The
Western HenanMountains are in the transition zone between the
northern subtropical and warm temperate zones of China. The
region also represents a topographical transition zone between
the second and third steps, displaying diverse topographic
characteristics (Zhang et al., 2019).

Research on mountain vegetation growth relies heavily on the
NDVI, which is an important indicator for assessing the status of
mountain vegetation growth, particularly during the growing
season (Geng et al., 2019). In particular NDVI has been used
to investigate dynamic changes in the horizontal structure of
mountain vegetation. In China, nine vertical vegetation zones in
the West Kunlun Mountains were identified using SPOT-VGT
NDVI and digital elevation model (DEM) data. Several studies
have investigated the drivers of vegetation changes in mountain
regions. For example, studies of dynamic vegetation cover
changes in the European Alps found that climate change was
less significant compared to anthropogenic activities

(Erschbamer et al., 2009). Furthermore, trends in NDVI
variations and regional responses along different elevation
gradients were analyzed in the Qinling Mountains. The results
indicated that the vegetation in high-elevation areas was mainly
controlled by temperature changes (Geng et al., 2019).
Disentangling the relative impacts of climate changes and
geographic factors such as slope, altitude and aspect is needed
to more fully assess the controls on vegetation within different
mountain regions (Song, 1994; Lunetta et al., 2006; Eastman et al.,
2013). The Western Henan mountains represent a key gap in the
field of mountain vegetation research and therefore is investigated
in the present study.

In this study, the Savitsky-Golay (S-G) filtering algorithm was
applied to the 2000∼2017 MODIS-NDVI time series data.
Combined with DEM, temperature, and precipitation data,
and using trend- and correlation analyses, this study discusses
the multi-dimensional change of vegetation and its climate
response accounting for terrain factors such as altitude, slope,
and aspect. The characteristics of NDVI change and the response
of vegetation on both the northern and southern slopes of the
Western Henan mountains were investigated to characterize the
vegetation dynamics and their responses to climate change. The
value of this study lies in the fact it can provide a crucial basis for
decision-making in terms of vegetation protection measures and
green development for different ecological units within mountain
ecosystems under different global warming scenarios.

MATERIALS AND METHODS

Study Area
The western mountainous area of Henan Province belongs to the
Qinling Mountains (110°20′∼113°40′ E, 32°40′∼35°10′ N). The
region includes the Xiaoqinling and Songshan Mountains from
east to west; the Xiaoshan, Xiong’er, and Waifang Mountains
from east to north; and Funiu Mountain from east to south in
total covering an area of ∼4,300 km2 (Figure 1). The research area
is located in a transitional zone between the northern subtropical
and warm temperate zones of China. The annual average
temperature in this area is 13∼15°C, the annual average
precipitation is 600∼1,200 mm and the average annual
sunshine hours are generally 2,000–2,600 h. The elevation of
the region ranges from 75 to 2,384 m above sea level (masl
herein), decreasing gradually from west to east.

Data Resources and Pre-Processing
This NDVI data used in this study was obtained from a NASA
250 m resolution MOD13Q1 (https://ladsweb.modaps.eosdis.
nasa.gov/) product which was synthesized every 16 days from
the years 2000∼2017. The DEM data was derived from the
ASTER Global Digital Elevation Model (ASTGTM2; http://
www.gscloud.cn/) at a spatial resolution of 30 m and was
interpolated to a 250 m resolution by mosaic processing,
cropping and re-sampling in ArcGIS. Temperature and
precipitation data were obtained from monthly data records of
27 meteorological stations (2000∼2017) of the Henan
Meteorological Service (Figure 1).
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NDVI Reconstruction and Extraction
MODIS Reprojection Tools (MRT) was used to splice, project,
and cut the MODIS-NDVI data. The Savitsky-Golay (SG) filter
algorithm of the TIMESAT tool was adopted to reconstruct
NDVI data to eliminate mutation points and decrease
systematic errors from clouds, aerosols, angle of view and
solar height (Tucker et al., 2005).

Vegetation in the Western Henan Mountains is dormant
during winter and sometimes covered by snow. We therefore
only analyzed NDVI in the growing season. Using TIMESAT to
extract phenological information from pixels coupled with data
on the spatiotemporal distribution of long leaves and withered
vegetation, the growing season for the region was determined to
be fromMay to September. Thus, the ninth and eighteenth phases
of the annual image represent the beginning and end of the
growing season, respectively. Then, the mean value of NDVI
under annual and multi-year growth seasons can be calculated
(Jarlan et al., 2008; Peng et al., 2012).

Meteorological Data Processing
Meteorological station data were interpolated onto a 250 m
resolution grid. The DEM was used as a covariant whilst thin
plate spline smoothing algorithms (ANUSPLIN) and Kriging
were used to interpolate annual temperature and precipitation
respectively (Jarlan et al., 2008; Zhang et al., 2016). Annual
average air temperature and precipitation were also estimated
using ArcGIS 10.4 software.

Permission to Reuse and Copyright
Elevation, slope and aspect were extracted from the DEM using
ArcGIS 10.4. With reference to the distribution characteristics of
the vertical vegetation types (as reported in the Scientific survey of
the Funiu Nature Reserve) (Song, 1994), the study area was
divided into five vertical zones: <800, 800∼1,100, 1,100∼1,700,
1,700∼2,000, and >2,000 masl, accounting for 70.3, 16.6, 12.3, 5.3,
and 0.5% of the total area, respectively.

The slope was divided into <5°, 5∼10°, 10∼20°, 20∼30°, 30∼40°,
and > 40°, accounting for 17.6, 22.0, 29.2, 19.2, 9.4, and 2.6% of
the total area, respectively. Slopes between 5 and 20° were the
most common (51.2%). Furthermore, slope direction was divided
into the slope-free direction (−1), north (0∼22.5°, 337.5∼360°),
northeast (22.5∼67.5°), east (67.5∼112.5°) southeast
(112.5∼157.5°), south (157.5∼202.5°), southwest (202.5∼247.5°),
west (247.5∼292.5°) and northwest (292.5∼337.5°); accounting for
0.5, 11.3, 13.5, 12.9, 12.4, 13.3, 11.8, and 11.6% of the total area,
respectively. This classification was necessary because complex
terrain features meant that the distribution of the slope directions
was highly fragmented.

The classified layers of elevation, slope, and aspect were extracted
by the Attribute Extraction Tool in ArcGIS 10.4. Then, the spatial
distribution of mean NDVI, annual air temperature, and annual
precipitation in the growing season were superimposed using mask
extraction. Finally the spatiotemporal distribution of NDVI,
temperature and precipitation for different elevations, slopes, and
aspects was analyzed.

Methods
Trend Analysis
To analyze the spatiotemporal changes of NDVI at each grid unit,
a simple linear slope analysis model was employed in MATLAB
4.1 (Tucker et al., 2005; Lunetta et al., 2006; Jarlan et al., 2008;
Peng et al., 2012; Eastman et al., 2013; Tong et al., 2016; Zhang
et al., 2016).

The software SPSS 21.0 was used for correlation analysis and
significance testing between NDVI at different elevations, slopes,
and aspects and annual temperature and precipitation. Then, the
response of vegetation to temperature and precipitation over
complex mountain topography was obtained.

Correlation Analysis
Changes in the NDVI are affected by multiple factors. In order to
better analyze the relationship between NDVI and a given variable,

FIGURE 1 | The location and elevation of the study area. Note the positions of the meteorological stations used in this study are shown on the left.
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the influence of other variables needs to be eliminated. Therefore, a
partial correlation analysis method based on pixels is used to
determine the relationship between annual NDVI, precipitation
and temperature. This yields a coefficient with which to explore the
relationship between annual NDVI and climate factors.

In addition, the significance of partial correlation coefficients
between NDVI, precipitation, and temperature was determined
using a t-test.

To assess the degree of autocorrelation between climate and
terrain factors and the resultant impacts on NDVI, correlation
analysis and statistical tests for significance were carried out in
SPSS 21.0 on: (i) NDVI, (ii) annual average temperature; and (iii)
annual precipitation for different altitudes and slopes in the
western Henan Mountains. From these data, we demonstrate
the response of vegetation dynamics to both temperature and
precipitation in the study area.

RESULTS

NDVI Changes
Trends in NDVI Variability
An analysis of growing season NDVI values from 2000 to 2017
reveals significant changes in NDVI values with large fluctuations
(Figure 2). Overall, NDVI increased at a growth rate of 0.027 per
decade (p < 0.05), indicating a gradual increase in vegetation.
Minimum (0.598) and maximum (0.696) NDVI values occurred
in 2001 and 2015, respectively (Figure 2).

Spatial NDVI Changes
Figure 3 indicates the spatial distribution of the mean annual
NDVI and the annual trends of change within each grid for the
years 2000–2017. Mean annual NDVI values between 0.364 and
0.999 occupied most of the area across the whole region. Low
NDVI values (i.e., 0∼0.537) were always distributed along the
northern and southern margins. Grids with high NDVI values
(i.e., 0.752∼0.999) were mainly distributed in the central areas
and parts of the northwest (Figure 3A). It can be seen from

Figure 2 that the NDVI value generally showed an increasing
trend from 2000 to 2017. Grids under an increasing trend overall
and were widely distributed across the whole region, indicating
that the vegetation in the study area has gradually improved.
Although the NDVI value showed an overall increasing trend,
19.12% of the areas showed a decreasing trend, which were
mainly distributed in the central areas, part of the
northeastern and southeastern areas, interspersing and
intersecting spatially, showing significant spatial differences
(Figure 3B).

Influence of Terrain Factors on NDVI
We selected the variables of elevation, slope, and aspect to explore
the effect of terrain on NDVI. Figure 4A shows that after an
initial increase, NDVI values decreased with elevation. The
minimum NDVI value (0.606) occurred below 800 masl. The
maximum NDVI value (0.822) occurred at 1,700∼2,000 masl in
areas undisturbed by human activities, thus promoting vegetation
growth. In areas above 2,000 masl the NDVI exhibited a
downward trend. Figure 4B shows a positive correlation
between NDVI and slope gradient. Maximum NDVI values
(0.797) occurred on slopes ranging from 30 to 40°, above
which NDVI declined. Minimum NDVI were attained (0.569)
for slope gradients of <5°. Figure 4C shows that the aspect had no
significant impact on NDVI values. The NDVI of the southern
slope was low (0.636) relative to the northwestern slope (0.685).
This difference can be explained by the fact that the southern
slopes are dominated by cultivated lands, while forests dominate
the northwestern slopes.

Comparison of NDVI Trends for Different
Terrain Factors
Figure 5 shows the variations in NDVI trends as a function of
elevation, slope and aspect. The variation in NDVI trends at
elevation zones from 800 to 2,000 masl was 0.029 (p < 0.05), 0.028
(p < 0.05), 0.020, 0.009, and 0.004 per decade. Trends in NDVI
variability were significant on slopes at elevations less than
1,700 masl (Figure 5A). In general, NDVI growth rates
decreased as elevation increased. The NDVI growth trend in
areas with the slope between 0 and 5°and above 40°was increased
at first and then decreased, then increased slightly. NDVI growth
was the highest (0.038 per decade, p < 0.05) in areas with the slope
of 5∼10° and the lowest in areas with the slope of 30∼40°,
indicating that vegetation improvement was less apparent as
the slope increased (Figure 5B). The effect of aspect on NDVI
growth trends was relatively consistent (approximately 0.028 per
decade). NDVI growth rates on shady slopes (0.029 per decade)
were slightly higher compared to sunny slopes (0.026 per decade)
(Figure 5C).

The spatial distribution of NDVI trends in different vegetation
change areas is shown in Figure 6A. 40% of the area exhibited
improved vegetation cover, 56.68% remained stable, whilst 3.35%
exhibited a decline. Vegetation recovery decreased with
increasing elevation, whilst the largest improvements
(i.e., 42%) to vegetation recovery were observed on slopes at
elevations ranging from 800 to 1,100 masl (Figure 6B). The

FIGURE 2 | Normalized difference vegetation index (NDVI) trends during
the growing season.
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maximum ratio of stable vegetation (approximately 93%)
occurred on slopes at elevations ranging from 1,100 to
2,000 masl. Areas of degraded vegetation were most common
under 800 masl (4.38%), followed by areas over
2,000 masl (1.8%).

Figure 6C indicates an initial increase in the ratio of
improved vegetation which then decreased as a function of
slope gradient. Improved vegetation was most common
(52.77%) on slopes of 5∼10°. Farmland at this slope

gradient was the focus of the Grain for Green Project;
hence, the forested area was increased, resulting in
vegetation recovery. Degraded vegetation mostly occurred
(6.07%) on slopes of 0∼5° partly resulting from the impact of
urbanization in recent years. Slope aspect did not markedly
influence vegetation state (Figure 6D). Areas of improved,
stable, and degraded vegetation accounted for 38∼42, 55∼58,
and 2.5∼4% of the land surface under different aspects,
respectively.

FIGURE 4 | NDVI variations with elevation (A), slope (B), and aspect (C).

FIGURE 3 | Spatial distribution of the annual mean NDVI (A) and trends of changing NDVI values (B).
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FIGURE 5 | Variations in NDVI trends with (A) elevation, (B) slope, and (C) aspect.

FIGURE 6 | The spatial distribution of vegetation classifications (A) and their occurrence at different elevations (B), slopes (C), and aspects (D).
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NDVI Responses to Temperature and
Precipitation
The spatial distribution of annual average temperature and
precipitation for each grid is shown in Figure 7. Mean annual
temperature values from 2000 to 2017 ranged from 6.35 to
16.91°C. Most grids in the northwest fell under a low range of
values (6.35∼12.05°C). Grids with temperature values ranging
from 13.42 to 16.91°C were mainly concentrated in the southern
and northeastern parts of the region (Figure 7A). Mean annual
precipitation values from 2000 to 2017 ranged from 341.92 to
1125.17 mm across the entire study area, whilst grids with
precipitation values ranging from 517.69 to 900.07 mm
occupied most of the region. Grids with high precipitation
values ranging from 900.07 to 1125.17 mm were mainly
distributed on the southern slope of Funiu Mountain. Low
precipitation values were always located in the northern and
southern most areas (Figure 7B).

Figure 8 indicates temperature and precipitation anomalies
during the study period. Temperature anomalies showed an
upward trend of 0.236°C per decade (p < 0.05). The highest
(lowest) annual average temperature was 14.02°C (13.27°C) in
2006 (2001) (Figure 8A). Conversely, precipitation anomalies
showed a downward trend of −61.255 mm per decade (p > 0.05).

The highest (lowest) annual average precipitation was 983.3 mm
(486.9 mm) in 2003 (2013) (Figure 8B).

The spatial distribution pattern of the partial correlation
coefficient between NDVI, annual temperature and precipitation
is shown in Figure 9. The partial correlation coefficient between
NDVI and temperature is -0.52∼0.47 and the regional mean is
-0.03. NDVI is shown to be negatively correlated with temperature
primarily in the northwestern, northeastern, and southern regions.
Themost significant negative correlation (p < 0.1) was found in the
southwestern and northeastern parts of the study area. The area
which exhibited a positive correlation between NDVI and
temperature was relatively small (0.9%, p < 0.1), and was
restricted to the northwest. The partial correlation coefficient
between NDVI and precipitation is -0.53∼0.51 (mean: 0.05).
The northeastern, southwestern and eastern parts of the study
area are shown to exhibit a negative correlation. Conversely, a
positive correlation between NDVI and precipitation is evident
around the northwestern, southeastern and northeastern parts of
the study area.

NDVI Response to Terrain Factors
Table 1 indicates the relationship between NDVI, temperature
and precipitation for different elevations, slopes and aspects. As

FIGURE 7 | Spatial patterns of annual average temperature (A), annual average precipitation (B) from 2000 to 2017.

FIGURE 8 | Temperature (A) and precipitation (B) anomalies with trends over time.

Frontiers in Environmental Science | www.frontiersin.org May 2021 | Volume 9 | Article 6784507

Zhu et al. Variations in Growing Season NDVI

168

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


elevation increased, the correlation between NDVI and
temperature gradually adjusted from negative to positive. The
correlation between NDVI and precipitation was generally
positive, but notably the correlation was stronger at lower
elevations where vegetation has been enhanced by cultivation.

For all measured slope gradients, there was a negative correlation
between NDVI and temperature. The correlation decreased as
slope gradient increased at first and then strengthened slightly.
Overall, there was a positive correlation between NDVI and
precipitation with slope. The relationship was found to be

FIGURE 9 | Partial correlation coefficients between NDVI and temperature (A), precipitation (C); and statistical significance of the correlations between NDVI and
temperature (B), precipitation (D).

TABLE 1 | Correlation coefficients for NDVI with temperature and precipitation at different elevations, slopes, and aspects.

Index Grade NDVI and temperature NDVI and precipitation

Elevation (masl) <800 −0.341 0.185
800–1,100 −0.101 0.120
1,100–1,700 −0.023 0.093
1,700–2,000 0.254 0.058

>2,000 0.147 0.095
Slope (°) 0–5° −0.416* 0.288

5–10° −0.170 0.115
10–20° −0.111 0.003
20–30° −0.111 0.059
30–40° −0.112 0.007
>40° −0.177 0.275

Aspect N −0.246 0.173
NE −0.256 0.155
E −0.273 0.150
SE −0.293 0.163
S −0.309 0.191
SW −0.308 0.181
W −0.278 0.181
NW −0.245 0.175

Note: Values marked with an * are significant (p < 1).
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weakest for slope gradients of 10∼40° where precipitation peaked.
This then strengthened when the slope exceeded 40°. In terms of
aspect, the correlations between NDVI, temperature and
precipitation were negative and positive, respectively. No
variations in the response of NDVI to slope aspects were
observed.

DISCUSSION

This study has presented a detailed investigation of the response
of vegetation cover to temperature and precipitation changes in
the western Henan region from 2000 to 2017. As such, our results
are instructive for informing governmental policy concerning
green development planning.

Existing literature on the dynamic changes of mountain
vegetation in western Henan primarily use the Maximum
Value Composite (MVC) method to process MODIS-NDVI
data. However, this fails to completely remove the noise points
in the time series data, which can distort otherwise noise-free
pixel values. In this study, the S-G filtering algorithm in
TIMESAT 3.2 was used to: (i) perform time-series
reconstruction on MODIS-NDVI data; (ii) remove noise
points; and (iii) extract the phenological information from the
pixels to ensure the reliability of the growing season NDVI and
justify its application to characterize extent of surface vegetation
cover. NDVI is thus an important indicator of the status of a
landscape (i.e., degraded, or stable) in mountainous areas. This
study demonstrated that the NDVI trends between 2000 and 2017
exhibited large fluctuations. Vegetation growth is closely related
to prevailing hydroclimatic conditions which are then reflected in
changes in NDVI. The eco-environment in the region has
improved significantly since the implementation of the
Returning Farmland to Forest Program from 2000, yielding a
greening trend comparable with that observed in Eurasia and
Northern China (Sun et al., 2015; Zhu et al., 2019). In addition,
human activities sometimes have negative effects on vegetation
change, such as periodic logging of economic forest and timber
forest, which may also be an important reason for the large
interannual fluctuation of NDVI.

Vegetation growth is highly dependent on terrain via its effects
on temperature, precipitation, soil and nutrient availability etc.
(Pei et al., 2019). The minimum NDVI value (0.606) which
occurred below 800 m can be attributed to human activities
such as urban construction, mining, road and water
infrastructure development. In areas above 2,000 m NDVI
showed a downward trend due to declining temperature.
NDVI exhibited an increasing trend with slope up to 20°,
above which poor soil conditions unfavorable to vegetation
growth resulted in lower NDVI values. The different trends in
NDVI between the southern and northwestern slopes can be
attributed to the fact that the southern slopes are mainly
dominated by cultivated lands, while forests are mainly located
on the northwestern slopes. The changing NDVI trends were
significant for slopes at elevations less than 1,700 masl due to the
influence of human activities. Policies including the Returning
Farmland to Forest Program and grassland and afforestation

subsidies improved vegetation coverage below 1,700 masl.
Conversely, the small changes in NDVI trends observed at
higher elevations (>1,700 masl) can thus be mainly attributed
to climate change.

A large number of studies have shown that climatic factors are
important mechanisms responsible for driving vegetation growth
and change (Hou et al., 2015; Wang et al., 2015). Temperature
and precipitation are the most important factors affecting
vegetation changes. Precipitation mainly affects the source of
water for plant growth (Buitenwerf et al., 2015; Xu et al., 2019).
The NDVI for the entire western Henan area was related to
extreme climate and human activities. Correlation analysis shows
that the response of NDVI to changes in temperature is more
significant than for precipitation in general, though NDVI is still
positively correlated with precipitation. Moderate precipitation is
optimal to promote vegetation growth, but excessive precipitation
would create an anaerobic environment in the root zone (Yang
et al., 2015; Fu et al., 2016) causing a reduction in available soil
nutrients (Schuur et al., 2001) inimical to vegetation growth.

Changes in vegetation cover are affected by both climate and
human activities. Implementation of national ecological
protection construction projects (e.g., the Three North
Shelterbelt and Returning Farmland to Forests) has led to
increased regional vegetation coverage which has yielded a
range of ecosystem services (Gao and Yang, 2015; Zhao et al.,
2017). However, some studies have suggested that there may be
disadvantages associated with afforestation. This negative impact
may be one of the important reasons for the sharp decline in
vegetation coverage in the Loess Plateau at the beginning of the
21st century. Excessive dependence on afforestation and large-
scale ecological planning in arid and semi-arid areas also entails
certain risks. Therefore, future research on vegetation growth and
climate changemust also consider the impacts of human activities
on vegetation growth, and quantitatively distinguish these from
the impacts of climate change driving changes to
vegetation cover.

Some uncertainties remain in this study. First, the temperature
and precipitation data were interpolated from meteorological
stations. Due to the scarcity of stations in high altitude areas
(though the effect of altitude is taken into consideration) the
accuracy of interpolation is still not as high as that of NDVI
obtained directly via remote sensing. Second, the quantitative
grading of the NDVI change trend in this study is based on the
characteristics of the mountain vegetation in western Henan.
There is also no unified classification standard in the existing
literature against which to assess the grading of the NDVI change.
Future research should explore the impact of the terrane,
microclimate, and human activities on mountain NDVI, in
order to guide ecological engineering and mountain vegetation
restoration efforts.

CONCLUSION

In this study, we explored the response of vegetation changes to
climate change and the effect of terrain factors (elevation, slope
and aspect) on NDVI in the Western Henan Mountain region of
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China. The results of this study provide an instructive basis for
guiding policymaking and legislation pertaining to the protection
and restoration of mountain vegetation. In summary:

1) From 2000 to 2017 NDVI changed significantly, exhibiting
large fluctuations. NDVI increased at a growth rate of 0.027
per decade (p < 0.05) overall, indicating vegetation conditions
have gradually improved. NDVI increased initially, but then
decreased as a function of elevation, which was shown to be
proportional to slope and independent of aspect. Although the
NDVI value showed an overall increasing trend, 19.12% of the
areas showed a decreasing trend, interspersing and
intersecting spatially, showing significant spatial differences.

2) The positive trend in NDVI gradually decreased as elevation
increased and NDVI in the high elevation areas remained stable,
which was attributed to vegetation restoration activities below
1,100m. NDVI positive trends exhibited an initial increase but
then decreased as a function of increasing slope. The most
significant improvements to vegetation occurred on slopes of
5∼10°, while vegetation degradation peaked on slopes less than 5°.
The impact of slope aspect on NDVI trends was not apparent.

3) Temperature and precipitation both have significant effects on
NDVI, but the response of NDVI to temperature is more
significant. The response of vegetation to climate change at
different elevations, slopes, and aspects differed. Increased
precipitation at lower elevations was beneficial to vegetation,
while higher temperatures promoted vegetation growth at
higher elevations. When the slope gradient was low (0∼5°), the
negative correlation between NDVI and temperature and the

positive correlation between NDVI and precipitation peaked.
The response of NDVI to temperature and precipitation for
different slope aspects was not apparent.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

MZ proposed the method, performed analysis and wrote the
paper; JZ analyzed the data; LZ conceived the study. All authors
read and approved the final manuscript.

FUNDING

This research was funded by the Natural Science Foundation of
China (41671090).

ACKNOWLEDGMENTS

This is a short text to acknowledge the contributions of specific
colleagues, institutions, or agencies that aided the efforts of the
authors.

REFERENCES

Asam, S., Callegari, M., Matiu, M., and Fiore, G. (2018). Relationship between
Spatiotemporal Variations of Climate, Snow Cover and Plant Phenology over
the Alps-An Earth Observation-Based Analysis. Remote Sensing 10 (11), 1757.
doi:10.3390/rs10111757

Buitenwerf, R., Rose, L., and Higgins, S. I. (2015). Three Decades of Multi-
Dimensional Change in Global Leaf Phenology. Nat. Clim Change 5 (4),
364–368. doi:10.1038/nclimate2533

Du, J. Q., Ahati, J., ChenXi, Z., ShiFeng, F., WeiLing, L., JunQi, Y., et al. (2016).
Analysis of Vegetation Dynamics Using GIMMS NDVI3g in the Three-Rivers
Headwater Region from 1982 to 2012. Acta Prataculturae Sinica 25 (1), 1–12.
doi:10.11686/cyxb2015111

Eastman, J., Sangermano, F., Machado, E., Rogan, J., and Anyamba, A. (2013).
Global Trends in Seasonality of Normalized Difference Vegetation Index
(NDVI), 1982-2011. Remote Sensing 5 (10), 4799–4818. doi:10.3390/
rs5104799

Erschbamer, B., Kiebacher, T., Mallaun, M., and Unterluggauer, P. (2009). Short-
term Signals of Climate Change along an Altitudinal Gradient in the South
Alps. Plant Ecol. 202 (1), 79–89. doi:10.1007/s11258-008-9556-1

Fu, G., Li, S.-W., Sun, W., and Shen, Z.-X. (2016). Relationships between
Vegetation Carbon Use Efficiency and Climatic Factors on the Tibetan
Plateau. Can. J. Remote Sensing 42 (1), 16–26. doi:10.1080/07038992.2016.
1131115

Gao, J. X., and Yang, Z. P. (2015). Restoration of Ecological Functions: Goal and
Orientation of Ecological Restoration in China. J. Ecol. Rural Environ. 33 (1), 1–6.
doi:10.11934/j.issn.1673-4831.2015.01.001

Gehrig-Fasel, J., Guisan, A., and Zimmermann, N. E. (2007). Tree Line Shifts in the
Swiss Alps: Climate Change or Land Abandonment? J. Vegetation Sci. 18 (4),
571–582. doi:10.1111/j.1654-1103.2007.tb02571.x

Geng, L., Wang, X., and Wang, H. (2019). Detecting Spatiotemporal Changes in
Vegetation with the BFASTModel in the Qilian Mountain Region during 2000-
2017. Remote Sensing 11 (2), 103. doi:10.3390/rs11020103

Habeck, J. R. (1987). Present-day Vegetation in the Northern Rocky Mountains.
Ann. Mo. Bot. Garden 74, 804–840. doi:10.2307/2399451

Hemp, A. (2006). Continuum or Zonation? Altitudinal Gradients in the forest
Vegetation of Mt. Kilimanjaro. Plant Ecol. 184 (1), 27–42. doi:10.1007/s11258-
005-9049-4

Herrmann, S. M., Anyamba, A., and Tucker, C. J. (2005). Recent Trends in
Vegetation Dynamics in the African Sahel and Their Relationship to Climate.
Glob. Environ. Change 15 (4), 394–404. doi:10.1016/j.gloenvcha.2005.08.004

Hou, W., Gao, J., Wu, S., and Dai, E. (2015). Interannual Variations in Growing-
Season NDVI and its Correlation with Climate Variables in the Southwestern
Karst Region of China. Remote Sensing 7 (9), 11105–11124. doi:10.3390/
rs70911105

Ichii, K., Kawabata, A., and Yamaguchi, Y. (2002). Global Correlation Analysis for
NDVI and Climatic Variables and NDVI Trends: 1982-1990. Int. J. Remote
Sensing 23 (18), 3873–3878. doi:10.1080/01431160110119416

Jarlan, L., Mangiarotti, S., Mougin, E., Mazzega, P., Hiernaux, P., and Ledantec, V.
(2008). Assimilation of SPOT/VEGETATION NDVI Data into a Sahelian
Vegetation Dynamics Model. Remote Sensing Environ. 112 (4), 1381–1394.
doi:10.1016/j.rse.2007.02.041

Kessler, M. (2000). Altitudinal Zonation of Andean Cryptogam Communities.
J. Biogeogr. 27 (2), 275–282. doi:10.1046/j.1365-2699.2000.00399.x

Liu, Y., Wang, Y., Du, Y., Zhao, M., and Peng, J. (2016). The Application of
Polynomial Analyses to Detect Global Vegetation Dynamics during 1982-
2012. Int. J. Remote Sensing 37 (7), 1568–1584. doi:10.1080/01431161.2016.
1142688

Long, J. N. (2003). Diversity, Complexity and Interactions: An Overview of Rocky
Mountain forest Ecosystems. Tree Physiol. 23 (16), 1091–1099. doi:10.1093/
treephys/23.16.1091

Frontiers in Environmental Science | www.frontiersin.org May 2021 | Volume 9 | Article 67845010

Zhu et al. Variations in Growing Season NDVI

171

https://doi.org/10.3390/rs10111757
https://doi.org/10.1038/nclimate2533
https://doi.org/10.11686/cyxb2015111
https://doi.org/10.3390/rs5104799
https://doi.org/10.3390/rs5104799
https://doi.org/10.1007/s11258-008-9556-1
https://doi.org/10.1080/07038992.2016.1131115
https://doi.org/10.1080/07038992.2016.1131115
https://doi.org/10.11934/j.issn.1673-4831.2015.01.001
https://doi.org/10.1111/j.1654-1103.2007.tb02571.x
https://doi.org/10.3390/rs11020103
https://doi.org/10.2307/2399451
https://doi.org/10.1007/s11258-005-9049-4
https://doi.org/10.1007/s11258-005-9049-4
https://doi.org/10.1016/j.gloenvcha.2005.08.004
https://doi.org/10.3390/rs70911105
https://doi.org/10.3390/rs70911105
https://doi.org/10.1080/01431160110119416
https://doi.org/10.1016/j.rse.2007.02.041
https://doi.org/10.1046/j.1365-2699.2000.00399.x
https://doi.org/10.1080/01431161.2016.1142688
https://doi.org/10.1080/01431161.2016.1142688
https://doi.org/10.1093/treephys/23.16.1091
https://doi.org/10.1093/treephys/23.16.1091
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Lunetta, R. S., Knight, J. F., Ediriwickrema, J., Lyon, J. G., and Worthy, L. D.
(2006). Land-cover Change Detection Using Multi-Temporal MODIS
NDVI Data. Remote sensing Environ. 105 (2), 142–154. doi:10.1016/j.rse.
2006.06.018

Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C.
J., et al. (2003). Climate-driven Increases in Global Terrestrial Net Primary
Production from 1982 to 1999. Science 300 (5625), 1560–1563. doi:10.1126/
science.1082750

Pei, Z., Fang, S., Yang, W., Wang, L., Wu, M., Zhang, Q., et al. (2019). The
Relationship between NDVI and Climate Factors at Different Monthly
Time Scales: A Case Study of Grasslands in Inner Mongolia, China (1982-
2015). Sustainability 11 (24), 7243. doi:10.3390/su11247243

Peng, D., Zhang, B., Liu, L., Fang, H., Chen, D., Hu, Y., et al. (2012).
Characteristics and Drivers of Global NDVI-Based FPAR from 1982 to
2006. Glob. Biogeochem. Cycles 26 (3), 1–15. doi:10.1029/2011gb004060

Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., et al.
(2015). Elevation-dependentWarming inMountain Regions of theWorld.Nat.
Clim. Change 5 (5), 424–430. doi:10.1038/nclimate2563

Piao, S., Wang, X., Ciais, P., Zhu, B., Wang, T., and Liu, J. (2011). Changes in
Satellite-Derived Vegetation Growth Trend in Temperate and Boreal Eurasia
from 1982 to 2006. Glob. Change Biol. 17 (10), 3228–3239. doi:10.1111/j.1365-
2486.2011.02419.x

Schuur, E. A. G., Chadwick, O. A., and Matson, P. A. (2001). Carbon Cycling and
Soil Carbon Storage in Mesic to Wet Hawaiian Montane Forests. Ecology 82
(11), 3182–3196. doi:10.1890/0012-9658(2001)082[3182:ccascs]2.0.co;2

Song, C. (1994). Scientific Survey of the Funiu-Mountain Nature reserve. Beijing:
China Forestry Publishing House, 10–11.

Sun, W., Song, X., Mu, X., Gao, P., Wang, F., and Zhao, G. (2015). Spatiotemporal
Vegetation Cover Variations Associated with Climate Change and Ecological
Restoration in the Loess Plateau. Agric. For. Meteorology 209-210, 87–99.
doi:10.1016/j.agrformet.2015.05.002

Tong, X., Wang, K., Brandt, M., Yue, Y., Liao, C., Fensholt, R., et al. (2016).
Assessing Future Vegetation Trends and Restoration Prospects in the Karst
Regions of Southwest China. Remote Sensing 8 (5), 357. doi:10.3390/
rs8050357

Tong, X. (2014). Trends in Vegetation and Their Responses to Climate and
Topography in Northwest Guangxi. Shengtai Xuebao/Acta Ecologica Sinica
34 (12), 3425–3434. doi:10.5846/stxb201310162503

Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W., Mahoney, R.,
et al. (2005). An Extended AVHRR 8-km NDVI Dataset Compatible with
MODIS and SPOT Vegetation NDVI Data. Int. J. Remote Sensing 26 (20),
4485–4498. doi:10.1080/01431160500168686

Wang, J., Wang, K., Zhang, M., and Zhang, C. (2015). Impacts of Climate Change
and Human Activities on Vegetation Cover in Hilly Southern China. Ecol. Eng.
81, 451–461. doi:10.1016/j.ecoleng.2015.04.022

Xu, X., Du, H., Fan, W., Hu, J., Mao, F., and Dong, H. (2019). Long-term Trend in
Vegetation Gross Primary Production, Phenology and Their Relationships
Inferred from the FLUXNET Data. J. Environ. Manage. 246, 605–616.
doi:10.1016/j.jenvman.2019.06.023

Yang, Y., Guan, H., Shen, M., Liang, W., and Jiang, L. (2015). Changes in Autumn
Vegetation Dormancy Onset Date and the Climate Controls across Temperate

Ecosystems in China from 1982 to 2010. Glob. Change Biol. 21 (2), 652–665.
doi:10.1111/gcb.12778

Yang, Z.-p., Ou, Y. H., Xu, X.-l., Zhao, L., Song, M.-h., and Zhou, C.-p. (2010).
Effects of Permafrost Degradation on Ecosystems. Acta Ecologica Sinica 30 (1),
33–39. doi:10.1016/j.chnaes.2009.12.006

Yao, Y., Zhang, B., Han, F., and Pang, Y. (2010). Diversity and Geographical
Pattern of Altitudinal Belts in the Hengduan Mountains in China. J. Mt. Sci. 7
(2), 123–132. doi:10.1007/s11629-010-1011-9

Yin, G., Hu, Z., Chen, X., and Tiyip, T. (2016). Vegetation Dynamics and its
Response to Climate Change in Central Asia. J. Arid Land 8 (3), 375–388.
doi:10.1007/s40333-016-0043-6

Zhang, B. P., Tan, Y., and Mo, S. G. (2004). Digital Spectrum and Analysis of
Altitudinal Belts in the Tianshan Mountains. J. Mountain Res. 2, 184–192.
doi:10.3969/j.issn.1008-2786.2004.02.009

Zhang, J., Zhu, W., Zhao, F., Zhu, L., Li, M., Zhu, M., et al. (2018). Spatial
Variations of Terrain and Their Impacts on Landscape Patterns in the
Transition Zone from Mountains to plains-A Case Study of Qihe River
Basin in the Taihang Mountains. Sci. China Earth Sci. 61 (4), 450–461.
doi:10.1007/s11430-016-9158-2

Zhang, J., Zhu,W., Zhu, L., Cui, Y., He, S., and Ren, H. (2019). Topographical Relief
Characteristics and its Impact on Population and Economy: A Case Study of the
Mountainous Area in Western Henan, China. J. Geogr. Sci. 29 (4), 598–612.
doi:10.1007/s11442-019-1617-y

Zhang, R., Ouyang, Z. T., Xie, X., Guo, H. Q., Tan, D. Y., Xiao, X. M., et al. (2016).
Impact of Climate Change on Vegetation Growth in Arid Northwest of China
from 1982 to 2011. Remote Sensing 8 (5), 364. doi:10.3390/rs8050364

Zhang, X. M., Kelin, W., Yuemin, Y., and Xiaowei, T. (2017). Factors Impacting on
Vegetation Dynamics and Spatial Non-stationary Relationships in Karst
Regions of Southwest China. Shengtai Xuebao/Acta Ecologica Sinica 37 (12),
4008–4018. doi:10.1016/j.chnaes.2016.12.008

Zhao, A., Zhang, A., Lu, C., Wang, D., Wang, H., and Liu, H. (2017).
Spatiotemporal Variation of Vegetation Coverage before and after
Implementation of Grain for Green Program in Loess Plateau, China. Ecol.
Eng. 104, 13–22. doi:10.1016/j.ecoleng.2017.03.013

Zhu, W., and Li, S. (2017). The Dynamic Response of forest Vegetation to
Hydrothermal Conditions in the Funiu Mountains of Western Henan
Province. J. Geogr. Sci. 27 (5), 565–578. doi:10.1007/s11442-017-1393-5

Zhu, Y., Zhang, J., Zhang, Y., Qin, S., Shao, Y., and Gao, Y. (2019). Responses of
Vegetation to Climatic Variations in the Desert Region of Northern China.
Catena 175, 27–36. doi:10.1016/j.catena.2018.12.007

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Zhu, Zhang and Zhu. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Environmental Science | www.frontiersin.org May 2021 | Volume 9 | Article 67845011

Zhu et al. Variations in Growing Season NDVI

172

https://doi.org/10.1016/j.rse.2006.06.018
https://doi.org/10.1016/j.rse.2006.06.018
https://doi.org/10.1126/science.1082750
https://doi.org/10.1126/science.1082750
https://doi.org/10.3390/su11247243
https://doi.org/10.1029/2011gb004060
https://doi.org/10.1038/nclimate2563
https://doi.org/10.1111/j.1365-2486.2011.02419.x
https://doi.org/10.1111/j.1365-2486.2011.02419.x
https://doi.org/10.1890/0012-9658(2001)082[3182:ccascs]2.0.co;2
https://doi.org/10.1016/j.agrformet.2015.05.002
https://doi.org/10.3390/rs8050357
https://doi.org/10.3390/rs8050357
https://doi.org/10.5846/stxb201310162503
https://doi.org/10.1080/01431160500168686
https://doi.org/10.1016/j.ecoleng.2015.04.022
https://doi.org/10.1016/j.jenvman.2019.06.023
https://doi.org/10.1111/gcb.12778
https://doi.org/10.1016/j.chnaes.2009.12.006
https://doi.org/10.1007/s11629-010-1011-9
https://doi.org/10.1007/s40333-016-0043-6
https://doi.org/10.3969/j.issn.1008-2786.2004.02.009
https://doi.org/10.1007/s11430-016-9158-2
https://doi.org/10.1007/s11442-019-1617-y
https://doi.org/10.3390/rs8050364
https://doi.org/10.1016/j.chnaes.2016.12.008
https://doi.org/10.1016/j.ecoleng.2017.03.013
https://doi.org/10.1007/s11442-017-1393-5
https://doi.org/10.1016/j.catena.2018.12.007
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Changes in Flood Regime of the Upper
Yangtze River
Yu Zhang1, Guohua Fang1*, Zhengyang Tang2,3, Xin Wen1, Hairong Zhang2,3, Ziyu Ding1,
Xin Li 1, Xinsheng Bian4 and Zengyun Hu5

1College ofWater Conservancy and Hydropower Engineering, Hohai University, Nanjing, China, 2Department of Water Resources
Management, China Yangtze Power Co., Ltd., Yichang, China, 3Hubei Key Laboratory of Intelligent Yangtze and Hydroelectric
Science, Yichang, China, 4The Eastern Route of South-to-NorthWater Diversion Project JiangsuWater Source Co., Ltd., Nanjing,
China, 5State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of
Sciences, Urumqi, China

River flooding affects more people worldwide than other natural hazards. Thus, analysis of
the changes in flood regime caused by global warming and increasing anthropogenic
activities will help us make adaptive plans for future flood management. The nonstationary
flood behavior in the upper Yangtze River was examined comprehensively in terms of
trend, change point, and periodicity with co-usage of different methods. Results show that
there are decreasing tendencies in the corresponding series of annual maximum flood
peak flow and flood volume in four out of six control stations, except Pingshan andWulong
stations in the Jinsha River and the Wu River, respectively, and the flood peak occurrence
time appears earlier mostly. The uniformity of flood process increases in four main
tributaries, while it decreases in mainstream of the Yangtze River (Yichang and
Pingshan stations). The rates of both rising limb and recession limb of all the typical
flood process flowing through the six stations were analyzed. 77.8% of the rates of rising
limb decrease, while 61.1% of the rates of recession limb increase, which is almost
consistent with the variation reflected by the uniformity. The change points of most
evaluation indicators happened in 1970s–1990s. The first main periodicity of evaluation
indicators in Yichang is about 45 years, while that of other stations is about 20 years.
Invalidity of stationarity in the flood series can be attributed to the intensified construction
on major water conservancy projects, changes of underlying surface, and influences of
climatic variables. The contributions of both climatic control and the Three Gorges Dam
(TGD) to the variation of the annual flood peak in Yichang station were further quantitatively
evaluated, which has verified that the construction of the TGD has played a positive role in
peak-flood clipping.

Keywords: flood regime, evaluation indicators, temporal trend, change point, periodicity, the upper Yangtze River

INTRODUCTION

With the influence of changing climate, land cover, channel morphology, and other human activities,
the spatial–temporal distribution of water resources and the characteristics of runoff generation and
flow concentration in the basin have changed, resulting in the shifts in the mechanisms that generate
inundations (Fang et al., 2012; Guo et al., 2018; Akbari and Reddy, 2020). River flood risks are
expected to rise as climate change intensifies the global hydrological cycle and more people live in
floodplains (Field et al., 2012), which may be revealed by changes in the flood regime, including
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annual maximum flood peak flow, volume, flood peak occurrence
time, rates of rising and recession limbs, and uniformity (Li et al.,
2012; Bloschl et al., 2017; Slater and Wilby, 2017). Therefore,
understanding the characteristics of changes in flood regime and
further analyzing the reasons of these changes are important for
flood management.

The Yangtze River Basin is home to 33% of China’s
population and plays an important role in China’s economic
development. The occurrence of flood in this basin is closely
related to precipitation, while the spatial and temporal
variability of precipitation in the basin is associated with
monsoon activities that transport a huge amount of
atmospheric moisture from the East and the South China Sea
to the basin (Gao et al., 2012). In addition, the temporal
distributions of precipitation are highly uneven, and over
60% of the annual precipitation occurs in summer, resulting
in frequent floods. Historically, the Yangtze River catchment has
been known for its frequent huge floods that halted the social
advancement of the basin to a large degree.

The upstream of the Yichang hydrometric station is called
the upper Yangtze River and has a drainage area of
approximately 1.0 million km2. The upper Yangtze River is
abundant in hydropower potential, with a suite of large
reservoirs having been constructed in the past five decades.
With the large-scale development of hydropower, the
hydrological regimes in the basin, especially the
spatial–temporal distribution of runoff at the outlet control
hydrometric station, have presented a new situation, which also
changes the flood regimes, therefore negatively affecting the
efficiency of the planning and design of water conservancy
projects and flood prevention management (Yao et al., 2006).
There have been a lot of research results on the change
characteristics of runoff and their attribution analysis in the
Yangtze River (Jiang et al., 2007; Chen et al., 2014; Wei et al.,
2014; Yang et al., 2015). However, research about the all-round
change characteristics of flood regime is relatively few, and how
to quantitatively evaluate the Three Gorges Dam’s (TGD) effect
on peak-flood clipping is worthy of discussion. Specifically, it
has been proven that the river engineering has amplified the
flood hazard in the Mississippi River (Munoz et al., 2018).

Here, 12 evaluation indicators, including annual flood peak
discharge, flood volume, flood timing, and uniformity, are used to
comprehensively detect the flood regime change characteristics of
the six control hydrometric stations in the upper Yangtze River
from three perspectives of trend, change point, and periodicity,
and the contributions of both climatic control and the TGD to the
variation of the annual flood peak in Yichang station were further
quantitatively evaluated. The main objectives of this study have
been to: 1) detect the flood regime change, including the flood
peak discharge, flood volume, time of flood peak occurrence, and
uniformity of the upper Yangtze River; and 2) discuss how the
annual maximum flood peak discharge is related to the TGD and
the climatic control factors. This study will provide a better
understanding on the all-round changes in flood regime of the
upper Yangtze River, and how the dam-building activities and
climate change affect the annual flood peak discharge in a long-
term perspective.

Study Area
The upper Yangtze River (UYR) is located in southwest
China, spanning 21°8ʹ–34°20ʹN and 97°22ʹ–110°11ʹE. The
UYR has a drainage area of 1.054 million km2, accounting
for 59% of the total drainage area of the Yangtze River. It is
composed of five river systems, that is, the Jinsha River, the
Mintuo River, the Jialing River, the Wu River, and the trunk
stream. The Jinsha River system is the main source of
sediment in the Yangtze River, the Min River is the
tributary with the largest water in UYR, the Jialing River is
the tributary with the biggest drainage area in the UYR and
the Wu River is the largest tributary on the right bank of the
UYR. The flood in the Qing River always meets the flood in
the trunk stream of the Yangtze River, which increases the
threat to the Jingjiang embankment. The sketch map of the
river systems and the digital elevation model (DEM) in the
UYR are shown in Figure 1. The six key hydrometric stations
and the TGD have been marked with asterisks and triangle
symbol, respectively.

Data
The controlling hydrometric stations located at the outlets of the
trunk stream, the Qing River, the Jialing River, the Wu River, the
Min River, and the Jinsha River are Yichang, Changyang, Beibei,
Wulong, Gaochang, and Pingshan, respectively. According to the
multiyear daily runoff data of the six key hydrometric stations
provided by the Hydrological Office, Yangtze Water Resources
Committee, the typical flood events including the annual
maximum peak discharge are selected to analyze the flood
regime changes in the UYR. Due to the limitation of data
availability, the length of data used in the six hydrometric
stations is 139, 59, 61, 50, 55, and 71 years, respectively (see
Table 1.

The climatic control factor data including the sunspot
numbers (SSNs) and the North Atlantic Oscillation (NAO) are
available at the websites https://psl.noaa.gov/gcos_wgsp/
Timeseries/SUNSPOT/ and https://psl.noaa.gov/gcos_wgsp/
Timeseries/NAO/, respectively.

Methods and Evaluation Indicators
On the basis of the measured daily runoff at six controlling
hydrometric stations, namely, YC, CY, BB, WL, GC, PS, and the
trend, abrupt change and periodicity analyses of 12 evaluation
indicator time series extracted from the annual typical flood event
are performed in each station. Therefore, the corresponding
annual series derived from the daily data were actually
analyzed in this study.

Methods
Recent evidences of the impact of regional climate variability,
coupled with the intensification of human activities, have led
hydrologists to study flood regime and test the hypothesis of
stationarity (Bormann et al., 2011). In view of the magnitude and
ubiquity of the human disturbances and hydro-climatic change,
the stationarity of flood no long holds true because substantial
anthropogenic and natural changes of climate are altering the
means and extremes of precipitation, evapotranspiration, and

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 6508822

Zhang et al. Flood changes in Yangtze River

174

https://psl.noaa.gov/gcos_wgsp/Timeseries/SUNSPOT/
https://psl.noaa.gov/gcos_wgsp/Timeseries/SUNSPOT/
https://psl.noaa.gov/gcos_wgsp/Timeseries/NAO/
https://psl.noaa.gov/gcos_wgsp/Timeseries/NAO/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


rivers’ discharge rates (Milly et al., 2008). Salas once pointed out
that there were no trends, shifts, or periodicity (cyclicity) in a
consistent hydrological time series (Salas et al., 1980), so the non-
stationarity was mainly manifested as the trend, abrupt change,
and periodicity.

Most standard statistical techniques, including the
Mann–Kendall test (Mann, 1945; Kendall, 1975), require
the assumption that the analyzed series are the realizations
of the independent random variables. However, most of the
hydrological or climatological series are somehow correlated
in time, which will make it easier for the trend test to obtain a
conclusion that the trend is significant at a presetting level,
even if the original series have no trend (Storch, 1995). An

iterative pre-whitening process which was originally
proposed by Zhang et al. (2000) and later refined by Wang
and Swail (2001) can effectively diminish the impact of the
series correlation on trend estimate and the trend test. This
algorithm has been widely used (Alexander et al., 2006) and
can be easily performed through an open R package zyp
(Bronaugh and Werner, 2019). Periodic fluctuation is a
common form of hydrologic process evolution and an
important manifestation of hydrologic variation. The
wavelet analysis (Kumar and Foufoula-Georgiou, 1993;
Venugopal and Foufoula-Georgiou, 1996) is the commonly
used periodicity identification analysis methods. The Morlet
and Mexican Hat wavelet transforms are two kinds of the

FIGURE 1 | River systems and DEM of the upper Yangtze River.

TABLE 1 | Detailed information about the data used.

The controlling hydrometric
station at the basin outlet

Abbreviation River Length of data used
(period)

Yichang YC Trunk stream 139 (1882–2020)
Changyang CY Qing river 59 (1951–2009)
Beibei BB Jialing river 61 (1950–2010)
Wulong WL Wu river 50 (1952–2001)
Gaochang GC Min river 55 (1956–2010)
Pingshan PS Jinsha river 71 (1940–2010)
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most popularly used continuous wavelet transforms (CWT)
in revealing period properties of meteorological and
hydrological signals (Mallat, 1989; Daubechies and Bates,
1993; Torrence and Compo, 1998).

In this study, a Theil–Sen slope estimator (Sen, 1968), and the
pre-whitening approaches of Zhang et al. (2000), Wang and Swail
(2001), and Yue et al. (2002) were used for trend analysis; the
penalized maximal F test was used to detect the abrupt change
point since there are no reference series (Wang, 2003; Wang,
2008a; Wang, 2008b); the Morlet wavelet transform was used to
recognize the main period (Zhang et al., 2006; Zhang et al., 2010;
Yu et al., 2012).

Evaluation Indicators
Each typical flood process is defined by the flows at n moments.
The typical flood process of a given year (i) can be described as
Eq. 1.

Xi � (xi1, xi2,/, xin), i � (1, 2,/, s). (1)

The initial time of the selected typical flood process is defined
as the occurrence time of the first trough before the annual
maximum peak discharge. According to the book “the Heavy
Flood in China—a Brief Description of Disastrous Floods”
(Luo and Le, 1996), the duration of the flood process is
intercepted to make it as long as 30 days, namely, n � 30,
which can also determine the end time. Therefore, the
annual typical flood processes of the six hydrological
stations were selected.

The 12 evaluation indicators are concluded in Table 2, most
of which have a clear meaning, except the rates of rising and
recession limbs and the uniformity. Fm represents the
annual maximum peak discharge when calculating
k1, k2,/, k6. More descriptions about the uniformity are
given below. The uniformity model of flood process is
established by using information entropy due to its
advantage in the characterization of uniformity (Chen
et al., 2015). The calculation procedure of the uniformity
is shown as follows:

(1) The flood duration is divided, and the corresponding
flood volume is calculated as Qj(j � 1, 2,/, n).

(2) The percentage of the flood volume in the total flood
volume is calculated as Eq. 2.

Pj � Qj/W(j � 1, 2,/, n),W � ∑n
j�1

Qj. (2)

(3) The information entropy of the typical flood process is
calculated as Eq. 3.

H � −∑n
j�1
(Pj ln Pj). (3)

(4) The uniformity of the typical flood process is defined as
the ratio of the actual entropy value to the maximum
entropy value, as is shown in Eq. 4.

J � −∑n
j�1
(Pj ln Pj)/ln n. (4)

The uniformity of the flood process can be represented by
entropy. The higher the entropy value, the more dispersed the
distribution of flood volume, which further indicates that the
difference of flood volume in different time periods is smaller and
that the flood process is more uniform. The absolute uniform
state of the flood process means that the flood volume in each
period is the same, when P1 � P2 � / � Pn � 1/n, and the
entropy value reaches the maximum valueln n. As the same
with entropy, the larger the uniformity, the smaller the
variation of the distribution of flood volume in each period.

RESULTS

The Yichang hydrometric station located at the outlet of the
upper Yangtze basin was selected to visualize the results for

TABLE 2 | Meanings of evaluation indicators extracted from the annual typical flood event.

Evaluation indicator Meaning Unit

Flood peak discharge Annual maximum peak discharge m3/s
Flood peak occurrence time The time when the annual maximum discharge occurs day
3-day flood volume Annual maximum flood volume for three consecutive days m3

5-day flood volume Annual maximum flood volume for five consecutive days m3

7-day flood volume Annual maximum flood volume for seven consecutive days m3

Rate of rising limb (I) k1 � 0.5Fm−0.25Fm
ΔT1 —

Rate of rising limb (II) k2 � 0.75Fm−0.5Fm
ΔT2 —

Rate of rising limb (III) k3 � Fm−0.75Fm
ΔT3 —

Rate of recession limb (I) k4 � 0.75Fm−Fm
ΔT4 —

Rate of recession limb (II) k5 � 0.5Fm−0.75Fm
ΔT5 —

Rate of recession limb (III) k6 � 0.25Fm−0.5Fm
ΔT6 —

Uniformity J � − ∑N
i�1
(Pi lnPi)/lnN —
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analyzing the flood regime changes because of the availability
of long-term daily discharge data from 1882 to 2020, which
can provide sufficient information as far back from present to
obtain the range of flood regime variation. The YC
hydrometric station is merely 44 km downstream of the
TGD, and the flood regime changes at this station provide
a direct measurement of the impacts of the TGD. The analysis
of the annual maximum flood peak discharge in YC is taken
as an example. The non-stationarity analysis is carried out
from three perspectives, that is, the trend, abrupt change, and
periodicity.

Trend Analysis
The Theil–Sen slope estimator, wavelet decomposition, and the
pre-whitening approaches of Zhang et al. (2000), Wang and Swail
(2001), and Yue et al. (2002) were used to determine trends of the
corresponding time series of the evaluation indicators. The
Theil–Sen slope estimator is −57.02 with the intercept of
161,682.46. The trend results obtained by the pre-whitening
approaches are listed in Table 3 (refer to the package “zyp”
written by Bronaugh andWerner, (2019)) for the meanings of the
parameters. And the trend calculated by the pre-whitening
approach of Yue et al. (2002) is consistent with the Theil–Sen

TABLE 3 | The trend analysis results by the pre-whitening approaches.

Parameter
method

Lbound Trend Trendp Ubound Tau Sig Nruns Autocor Valid-
frac

Linear Intercept

Zhang −109.83 −60.86 −8460.22 −12.90 −0.14* 0.01 3.00 0.17 1.00 −55.84 55,601.87
Yuepilon −100.00 −57.02 −7925.44 −16.67 −0.14* 0.01 1.00 0.17 1.00 −55.84 54,432.46

Note: Asterisk indicates the significant trend at the 0.05 level.

FIGURE 2 | Curve of annual maximum flood peak discharge in YC.

FIGURE 3 | Curve of Morlet wavelet decomposition (A3) of the annual maximum flood peak discharge in YC.
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slope estimator. It is concluded that the annual maximum peak
discharge in the Yichang station presents a significant decreasing
trend at the 0.05 level from the Table 3 and the Theil–Sen slope
estimator value.

The linear fitting line and curve of Morlet wavelet
decomposition are shown in Figures 2, 3, respectively. The
trend analyses of all the evaluation indicators time series at
the six control hydrometric stations in the UYR are presented
in Tables 4, 5.

Figure 2 shows the linear fitting line, the line of the
multiyear mean, and the 10-year moving average curve of
the annual maximum peak discharge in YC. The decreasing
trend and fluctuation are detected from the linear fitting line
and the 10-year moving average curve, respectively. The
multiyear mean of annual flood peak discharge is
50,264.91 m3/s. The maximum flood peak flow during the
period from 1882 to 2011 occurred in 1896, with the value
of 71,100 m3/s, while the minimum flood peak flow occurred in
1942, with the value of 29,800 m3/s. The linear fitting curve and
the line of the multiyear mean intersected in the year of 1951,
which means the multiyear average before 1951 was higher
than 50,264.91 m3/s, while the multiyear average after 1951
was lower than 50,264.91 m3/s.

Figure 3 shows the wavelet decomposition (A3) graph of the
time series of the annual maximum flood peak flow. There was a
steep rise in 1889, and a steep fall in 1897, then a relatively flat
change during 1900–1940, and a drastic change during

1940–1980. After 1980, there were two clear phases with a
decreasing trend, namely, 1980–2000 and 2000–2020.

From Tables 4, 5, it can be seen that the annual maximum
flood peak flow and flood volume in YC, CY, BB, and GC showed
a decreasing trend, with a significant decrease in flood volume of
YC and GC, while those in WL and PS showed an increasing
trend. The flood peak occurrence time showed an insignificant
forward (decreasing) trend, except for that in GC and WL. The
uniformity of typical flood processes in YC and PS had an
insignificant decreasing trend, while that of other stations in
the four tributaries had an increasing trend, and a significant
increasing trend in CY and GC at the significance level of 5%.
There are 18 evaluation indicators of the rate of rising limb for
typical flood processes in the six stations: 77.8% of which showed
a decreasing trend, while 61.1% of evaluation indicators of rates of
recession limb showed an increasing trend. It reflects that the
flood events in the UYR are getting gradually uniform from the
perspective of local fluctuation of the typical flood processes.

Change Point Analysis
The penalizedmaximal F test allows the time series being tested to
have a linear trend throughout the whole period of data record,
with the annual cycle, linear trend, and lag-1 autocorrelation of
the base series being estimated in tandem through iterative
procedures, while accounting for all the identified mean shifts.
No reference series will be used in functions including the FindU
and Stepsize of PMF, according to Wang and Feng (2013). As for

TABLE 4 | The Theil–Sen slope estimator of evaluation indicators at the six stations in the UYR.

Indicators
stations

Flood
peak
flow

Flood volume Time
of flood
peak

occurrence

Unifor-
mity

Rate of rising limb Rate of recession limb

3-day 5-day 7-day I II III I II III

Yichang (YC) −57.0200 −153.4000 −230.4000 −294.4000 −0.0333 0.0000 −9.0740 −1.3280 −0.4939 10.9600 1.1710 −0.1780
Changyang
(CY)

−19.2500 −45.0800 −67.2600 −79.1900 −0.1915 0.0033 −4.6790 −1.4710 −1.0120 2.0000 3.3650 1.4610

Beibei (BB) −59.4900 −147.5000 −201.1000 −389.6000 −0.0698 0.0006 −15.7300 −12.0000 −5.5120 6.8760 7.7780 8.5370
Wulong (WL) 31.5800 67.7800 82.4100 114.5000 0.0000 0.0000 −1.6670 12.1500 0.8763 −16.3800 −6.0940 −2.8120
Gaochang
(GC)

−57.6900 −213.8000 −291.0000 −332.9000 0.0938 0.0006 5.3570 −3.3330 −5.2500 3.3520 5.2880 2.8920

Pingshan
(PS)

12.5000 35.9000 44.4400 76.4700 −0.1000 0.0000 −0.6211 3.2860 0.3272 −0.4922 −0.8631 0.2081

TABLE 5 | Kendall’ tau statistic of evaluation indicators at the six stations in the UYR by zyp.zhang.

Indicators
stations

Flood
peak
flow

Flood volume Time
of flood
peak

occurrence

Unifor-mity Rate of rising limb Rate of recession limb

3-day 5-day 7-day I II III I II III

Yichang (YC) −0.1408* −0.1292* −0.1270* −0.1232* −0.0398 −0.0091 −0.1000 −0.0298 −0.0585 0.1679* 0.0348 −0.0361
Changyang (CY) −0.0575 −0.0865 −0.0913 −0.0938 −0.0734 0.2005* −0.0248 −0.0321 −0.0146 0.0175 0.0660 0.0427
Beibei (BB) −0.1040 −0.0881 −0.0915 −0.1435 −0.0285 0.0579 −0.0893 −0.0749 −0.0576 0.0629 0.0618 0.0798
Wulong (WL) 0.0680 0.0612 0.0510 0.0476 0.0025 0.0008 −0.0139 0.1156 −0.0340 −0.1650 −0.1497 −0.0539
Gaochang (GC) −0.1321 −0.2746* −0.2495* −0.2676* 0.0105 0.1879* 0.0273 −0.0182 −0.0524 0.0277 −0.0161 0.1388
Pingshan (PS) 0.0448 0.0407 0.0346 0.0330 −0.0435 −0.0128 −0.0185 0.1348 0.0994 −0.0097 −0.0612 0.0277

Note: Asterisk indicates the significant trend at the 0.05 level.
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TABLE 6 | List of abrupt change points of evaluation indicators at the six stations in the UYR by PMF.

Indicators
stations

Flood
peak
flow

Flood volume Time
of flood
peak

occurrence

Unifor-
mity

Rate of rising limb Rate of recession limb

A 5-
day

7-
day

I II III I II III

Yichang (YC) 1994 1978 1970 1971 — 1983 — 1991 1962 — 1994 —

Changyang (CY) — — — — — — — 1966;
1995

— — — 1968;1993

Beibei (BB) 1989 1989 1989 1989 — — 1991 1989 — — 1992 1959; 1972; 1999
Wulong (WL) — 1990 1990 — 1961 1983 — — 1968 1968; 1984 — —

Gaochang (GC) — — — — — 1970 1996 1997 — 1988 1993 —

Pingshan (PS) 1974 1974 1974 1974 — 1952 — 1974 1969 — — —

Note: Bold values indicate the change points confirmed by the causes of dam-building activities.

TABLE 7 | The commencement and completion time of key water conservancy projects in the upper Yangtze River.

River Control hydrometric station Key water conservancy project Commencement time Completion time

Mainstream of the Yangtze river Yichang (YC) Gezhouba 1971 1988
Three Gorges dam 1994 2009

Pingshan (PS) Xiangjiaba 2006 2014
Xiluodu 2007 2014
Baihetan 2013 2022 (expected)
Wudongde 2015 2021

Min river Gaochang (GC) Zipingpu 2001 2005
Jialing river Beibei (BB) Tingzikou 2009 2014
Wu river Wulong (WL) Wujiangdu 1970 1983

Goupitan 2003 2009
Qing river Changyang (CY) Geheyan 1987 1995

Gaobazhou 1995 2000
Yalong river Xiaodeshi Jinping I 2005 2014

Jinping II 2007 2014
Guandi 2010 2013
Ertan 1991 2000

Note: Bold values indicate the change points consistent with the commencement or completion time of dam-building activities.

FIGURE 4 | The general graph of the key water conservancy project location in the upper Yangtze River.
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the annual maximum peak discharge time series of Yichang
station, there are no Type-1 change points when the FindU
function was called. From Table 6, we can know that the
change points of the annual flood peak flow time series in BB
and PS happened in 1989 and 1974, respectively, while no change
points exist in other four stations; all the change points of flood
volume (3-day; 5-day; and 7-day) time series in the six stations
happened in 1970s–1990s; the change points of uniformity
happened in 1980s–1990s, except for that in GC and PS; and
the most change points of rates of rising and recession limb
happened in 1960s–1990s.

The upper reaches of the Yangtze River are the most highly
developed water system in China. Numerous large- and medium-
sized reservoirs have been constructed along the upper reaches of
the Yangtze River since 1970, forming the world’s largest
reservoir group with the Three Gorges reservoir at its core.
Here, we list the commencement and completion time of 16
key water conservancy projects closely related to the six control
hydrometric stations in the mainstream of the Yangtze River and
other five tributaries, as described in Table 7, and we draw the
general graph of the location of these projects, as shown in
Figure 4. All the documented changes in Table 7 that could
cause a mean shift to be added in the file named
Example_mCs.txt if they are not already here according to
procedure 5) and procedure 7) of Trend Analysis and F5 of
Periodicity Analysis in the RHtestsV4_UserManual. We found
that 1994 (commencement time of the TGD) for flood peak flow
in the Yichang station, and 1983 (completion time ofWujiangdu)
for uniformity in Wulong station are the potential Type-0 change
points which are statistically significant, and these two change
points have been added in Table 6.

These reservoirs realize comprehensive utilization benefits by
changing the spatial and temporal distribution characteristics of
the natural streamflow, and transform flood regimes directly. For
example, the construction of the TGD and the Gezhouba
hydropower station in mainstream of the Yangtze River
caused the abrupt change of the 5-day and 7-day flood
volume, and the rate of recession limb (II) of Yichang station;
the construction of Gaobazhou hydropower station in the Qing
River caused the abrupt change of the rate of rising limb (II) of
Changyang station, and the construction of Wujiangdu
hydropower station corresponding to the change of rate of
recession (I) in the Wulong station. In conclusion, the change
points of flood peak discharge, 3-day flood volume, 7-day flood
volume, uniformity, the rate of rising limb (II) and the rate of
recession limb (II) in YC, the rate of rising limb (II) and the rate of
recession limb (III) in CY, and 3-day flood volume, 5-day flood
volume, uniformity, and the rate of recession limb (I) in WL are
confirmed by the causes of dam-building activities listed in
Table 7, which happened during or after the construction of
corresponding water conservancy project; and the change points
of the flood peak discharge, 7-day flood volume, the rate of
recession limb (II) in YC, the rate of rising limb (II) in CY, and the
uniformity in WL are completely consistent with the
commencement time of the TGD and Gezhouba, the
commencement time of Gaobazhou, and the completion time
of Wujiangdu, respectively.

Although the intensified dam-building activities directly
affected the flood regime change, the influence of the
precipitation structure change is also non-negligible, since the
Min River, the Jialing River, and the Yalong River are located in
the rainstorm area in western Sichuan. From Table 6, we can find
that the abrupt change points of Pingshan, Gaochang, and Beibei
are not consistent with the commencement or completion time of
corresponding major water conservancy projects. The change of
precipitation structure is the most obvious indicator of the
variation of water cycle (Moberg et al., 2006; Brommer et al.,
2007; Zolina et al., 2010), and precipitation in July and August
over the upper reaches of the Yangtze River is highly correlated
with annual peak discharge (Li et al., 2020). Two abrupt climate
change points of summer precipitation in China that occurred in
1978 and 1992 were identified by Ding et al. (2008), and the shift
of the summer rainfall over the Yangtze River valley in the late
1970s was also identified (Gong and Ho, 2002; Gao and Xie,
2016). In addition, Ye et al. (2014) analyzed the spatiotemporal
variability characteristics of precipitation structure across the
upper reaches of the Yangtze River and found that the year of
1976 was marked by an abrupt change for the contribution rate of
short-duration (1 and 2 days) precipitation events, while the
timing of abrupt changes for the occurrence rate and the
contribution rate of long duration (6 and 10 days) was in 1984
and 1999, respectively, all of which happened during 1970s–1990s
and were consistent with the abrupt change points of Pingshan,
Gaochang, and Beibei. Therefore, it can be concluded that the
abrupt change points of Yichang, Changyang, and Wulong
during 1970s–1990s are mainly caused by the dam-building
activities, while those in Pingshan, Gaochang, and Beibei are
mainly caused by the precipitation change in the late 1970s across
the Yangtze River Basin, especially in the rainstorm area in
western Sichuan.

Periodicity Analysis
The periodicity of all evaluation indicators was analyzed
according to the Morlet wavelet transformation. The real
part of the wavelet transform coefficient contains the
information of the signal distribution and phase along the
time axis under certain time scale. In the contour map of the
real part of the wavelet coefficient, the positive value indicates
that the annual maximum flood peak presents an increasing
trend, while the negative value indicates that the annual
maximum flood peak presents a decreasing trend. The
modulus of the wavelet coefficient is equivalent to the
wavelet energy spectrum, from which the oscillation
energy of different scales (period) can be analyzed. When
the modulus is larger, the periodicity of the corresponding
time and scale is more obvious.

In regard to the annual peak-flood series in YC, the contour
plot of the real part and modulus of the wavelet transformation
coefficients and the global power spectrum are shown in Figures
5A–C, respectively. The periodicity analysis results of all
evaluation indicators are concluded in Table 8.

For Figures 5A–C, the Y-coordinate represents period, while
the X-coordinate represents time in (A) and (B) and power in (C),
respectively. The positive value and the negative value in
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Figure 5A indicate that the annual maximum flood peak presents
an increasing trend and a decreasing trend, respectively. And the
modulus in Figure 5B represents the intensity of the periodicity:
the larger the modulus, the stronger the periodicity.

It can be seen from Figure 5A that there were four clear
periodicities of annual maximum flood peak flow time series in
YC during the period from 1892 to 2020, which were 14a, 22a,
41a, and 61a, respectively. The periodicity of 41a existed
throughout the whole study period with relatively stable
performance, while 22a mainly existed from 1880s to 1960s,
and 14a mainly existed from 1960s to 2020s. It can be seen
from Figure 5B that the wavelet coefficient modulus
corresponding to the periodicity of 41a is the largest, so the
periodicity is the strongest, followed by 22a, as shown in
Figure 5C.

From Table 8, we can know that the first main periodicity of
most evaluation indicators in Y was about 45a. The first main
periodicity of annual maximum flood peak time and flood
volume series in CY was about 21a; the first main periodicity
of the flood peak occurrence time and uniformity, and most rates
of rising and recession limb were 23a, 6a, and 16a, respectively.
The first main period of all evaluation indicators in BB and WL
varied obviously, while that in GC are mainly 11a and 15a, and
that in PS are mainly 26a and 20a.

SUMMARY AND DISCUSSION

The “stationarity” of flood-generating mechanism is lost under
the changing environment. Climate and human forcings

FIGURE 5 | Contour plots of the real part (A), the modulus (B), and the global power spectrum (C) of Morlet wavelet transform coefficients.

TABLE 8 | Periodicity analysis of evaluation indicators at the six stations in the UYR.

Indicators
stations

Flood
peak
flow

Flood volume Time
of flood
peak

occurrence

Uniformity Rate of rising limb Rate of recession limb

3-days 5-days 7-days I II III I II III

Yichang (YC) 41;
22; 61

44;
22; 59

22;
44; 59

22;
44; 59

56; 6; 36 — 22; 40; 7 — — 46;
20; 11

46;
20; 11

46;
20; 11

Changyang
(CY)

21; 11; 5 20;
11; —

21;
11; —

20;
11; —

23; 4; — 6; 14; 25 16;
22; 10

6; 14; 25 6;
14; 25

16;
22; 10

16;
22; 10

16;
22; 20

Beibei (BB) 14; 8; 5 8; 14; 5 13; 8; 5 14; 8; — 7; —; — 27; 9; 15 15; 8; 4 9; 6; 13 27;
14; 8

8—— 5; 26; 14 8; 6; 4

Wulong (WL) 22; 30; 6 30; 6; 22 7; 22; 31 7; 21; 11 13; 5; 30 7; 4; — 30; 7; 13 26;
18; 12

22;
15; 7

30;
22; 12

30; 6— 30; 7; 14

Gaochang (GC) 11; 3; — 11; 3— 11; 21; 3 11; 21; 3 13; 9— — 15; 11; 5 15; 11; 5 15;
11; 5

15; 11; 5 15; 11; 5 15; 11; 5

Pingshan (PS) 26; 13; 6 26; 13; 6 26; 13; 6 26; 13; 6 23; 17; 7 — 20; 8; 12 6; 11; 27 — 22; 8; 4 20; 8; 12 17; 25; 9
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FIGURE 6 | Variation of annual peak discharge before and after the Three Gorges Dam (TDG) construction.

FIGURE 7 | Sunspot numbers (SSNs) in March during 1749–2020.

FIGURE 8 | North Atlantic Oscillation (NAO) in December (1822–2020).
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combined have been imposed on the flood regimes in the upper
Yangtze River. Ye et al. (2015) applied univariate and the
multivariate Mann–Kendall method to test the stationarity of
the annual peak discharge and annual maximum 15-day volume
of four control hydrological stations in the UYR. Xiong and Guo
(2004) carried out the trend test and change-point analysis of the
annual maximum, annual minimum, and annual mean discharge
series in Yichang station during the period of 1882–2001. Zhang et al.
(2006) detected the trend and periodicity of the annual maximum
water level and streamflowofYichang,Hankou, and theDatong station
across the Yangtze River Basin. Most of the research aforementioned
found the decreasing trend of flood peak discharge and flood volume
due to the intensified dam-building, yet the other characteristics of
flood regime, such as the timing offloodpeak occurrence (Bloschl et al.,
2017; Rokaya et al., 2018) and uniformity (Chen et al., 2015), were
ignored. To improve the understanding of the all-round flood regime
change in the UYR, the non-stationarity analysis of hydrological series,

including 12 evaluation indicators time series extracted from the annual
typical flood event, was performed.

For trend analysis, the annual flood peak discharge and flood
volume present a decreasing trend except Pingshan and Wulong,
since the length of the two stations are 71 (1940–2010) and 50
(1952–2001), respectively. The Xiangjiaba and Xiluodu dams
were not fully built, and the construction of the Baihetan and
Wudongde dams were not started yet before 2010. The four
reservoirs are located in the lower reaches of the Jinsha River,
which have direct influence on the flood regime in Pingshan
station. The reason for the increasing trend of annual peak
discharge and flood volume is similar for Wulong station,
since the key reservoirs in the lower reaches of the Wu River
have not been constructed yet. And therefore, the uniformity of
the two stations exhibited no obvious change during the
corresponding study period.

For abrupt change analysis, the abrupt change of flood regimes
in YC, CY, and WL is mainly caused by the dam-building
activities, while that in PS, GC, and BB is mainly caused by
the precipitation change in the late 1970s across the Yangtze River
Basin, especially in the rainstorm area in western Sichuan. For
periodicity analysis, the major period of the Yichang station is
longer than that of other stations. As the controlling station of the
upper Yangtze River, it has stronger regulatory capacity, while
other stations are more prone to be influenced by the human
activities and climate change.

To better understand the role of peak-flood clipping the TGD
plays, we quantitatively evaluate the contribution of the climatic

FIGURE 9 | Reconstructed discharge through the BP neural network and observed discharge in the modern period.

TABLE 9 | Observed and reconstructed flood magnitudes with different recurrence intervals by the BP model after the construction of the TGD (1994–2020).

Climate control Q10 (m³/s) Q100 (m³/s) Q1000 (m³/s) Q10000 (m³/s)

Reconstruction by SSN-only 61,283.24 74,061.72 86,288.66 93,281.61
Reconstruction by NAO-only 60,732.33 75,315.46 86,544.45 89,634.87
Reconstruction by SSN-NAO 62,467.30 78,042.56 91,686.82 94,405.70
Observed flow at baseline period 65,173.17 78,765.88 89,832.51 91,678.12
Observed flow at modern period 59,024.21 73,070.49 84,458.67 94,561.79

TABLE 10 | Contributions of climatic control and human activities to floods with
different recurrence intervals.

Climate control Factors Q10 (%) Q100 (%) Q1000 (%) Q10000 (%)

SSN-only Natural 0.63 0.83 0.66 0.56
Human 0.37 0.17 0.34 0.44

NAO-only Natural 0.72 0.61 0.61 0.40
Human 0.28 0.39 0.39 0.60

SSN-NAO Natural 0.44 0.13 −0.35 −0.53
Human 0.56 0.87 1.35 1.53
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control factors and the TDG to the variation of the annual flood
peak in Yichang station. According to the time at which the TDG-
building activities commenced, the whole study period
(1882–2020) was divided into two phases: the period before
1994 (defined as the “baseline period”) and the period after
1994 (defined as the “modern period”). Accordingly, the
observed discharge was also divided into two types: the
observed discharged during the baseline period and that
during the modern period as shown in Figure 6. It is clear
that the mean value of the annual peak discharge before and
after the TGD construction is 51,571.4 m³/s and 44,845.3 m³/s,
respectively, which shows the important role of peak-flood
clipping the TGD plays.

To assess the effects of climatic control on flood peak
discharge, the climate control factors need to be identified.
The SSNs in March and the NAO in December were found to
be highly correlated with annual peak discharges (Li et al., 2020).
The SSNs in March during 1749–2020 and the North Atlantic
Oscillation in December (1882–2020) are shown in Figures 7, 8,
respectively. Over the nearly past 300 years, SSNs have exhibited
an average 11-year cycle (Clette et al., 2014), while the NAO
presents irregular oscillation without any obvious cycle (Gu et al.,
2009).

To separate the impacts of natural and human activities on the
variation of the flood peak discharge, the reconstructed annual
peak discharge during 1994–2020 was derived based on the back
propagation neural network (BPNN) model, which was trained
by the corresponding discharge, SSNs in March, NAO in
December, and SSN–NAO, respectively (R2 � 0.69; 0.62; 0.57),
as shown in Figure 9. In the absence of human activities, the SSN-
only model predicts that Q10, Q100, Q1000, and Q10000 obtained by
P-III fitting were 61,283.24; 74,061.72; 84,288.66; and
93,281.61 m³/s (in Table 9), respectively, accounting for
approximately 56–83% of the observed decrease in discharge.
This implies the remainder (approximately 17–44%) of the
decline in flood magnitude is the result of the TGD
construction. However, the results predicted by SSN–NAO (in
Table 10) indicate that climatic controls and the TGD construction

contribute − 53–44% and 56–153%, respectively. Therefore, the
TGD construction has played a positive role in reducing flood
magnitude with different recurrence intervals, especially for the
flood with a 0.01% chance of exceedance in any year.
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Dual Effects of Synoptic Weather
Patterns and Urbanization on Summer
Diurnal Temperature Range in an
Urban Agglomeration of East China
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Previous studies on the impact of urbanization on the diurnal temperature range (DTR)
have mainly concentrated on the intra-seasonal and interannual–decadal scales, while
relatively fewer studies have considered synoptic scales. In particular, the modulation of
DTR by different synoptic weather patterns (SWPs) is not yet fully understood. Taking the
urban agglomeration of the Yangtze River Delta region (YRDUA) in eastern China as an
example, and by using random forest machine learning and objective weather
classification methods, this paper analyzes the characteristics of DTR and its
urban–rural differences (DTRU–R) in summer from 2013 to 2016, based on surface
meteorological observations, satellite remote sensing, and reanalysis data. Ultimately,
the influences of urbanization-related factors and different large-scale SWPs on DTR and
DTRU–R are explored. Results show that YRDUA is controlled by four SWPs in the 850-hPa
geopotential height field in summer, and the DTRs in three sub-regions are significantly
different under the four SWPs, indicating that they play a role in regulating the DTR in
YRDUA. In terms of the average DTR for each SWP, the southern sub-region of the YRDUA
is the highest, followed by the northern sub-region, and the middle sub-region is the
lowest, which is most significantly affected by high-level urbanization and high
anthropogenic heat emission. The DTRU–R is negative and differs under the four
different SWPs with variation in sunshine and rainfall. The difference in anthropogenic
heat flux between urban and rural areas is one of the potentially important urbanization-
related drivers for DTRU–R. Our findings help towards furthering our understanding of the
response of DTR in urban agglomerations to different SWPs via the modulation of local
meteorological conditions.

Keywords: diurnal temperature range, urbanization, synoptic weather pattern, random forests, Yangtze River Delta
region
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INTRODUCTION

Diurnal temperature range (DTR) is the difference between the
maximum surface air temperature and the minimum surface air
temperature in a whole day, which can reflect the global and
regional characteristics of temperature change (Easterling, 1997;
Braganza et al., 2004; Vose et al., 2005), and has an important
impact on human health (Kan et al., 2007; Lim et al., 2012; Yang
et al., 2013; Zhang et al., 2018) and crop yield (Lobell, 2007; Tao
et al., 2008). Indeed, DTR has become an important indicator of
climate change and the human living environment (Easterling
et al., 2000).

In the past century, the global average temperature has been
rising, with an asymmetrical trend of change in the maximum
and minimum temperature. The rising trend of minimum
temperature is higher than that of maximum temperature,
which leads to a decline in the global DTR (Sun et al., 2019).
The intensification of urbanization across the globe has also
contributed to the decline in DTR since the 1950s (Gallo
et al., 1996; Kalnay and Cai, 2003; Feddema 2005; Mohan and
Kandya, 2015). This is mainly because the underlying impervious
surfaces of cities increases the nighttime temperature by
absorbing a large amount of energy in the daytime and
releasing it at night (Forster and Solomon, 2003; Zhou et al.,
2007; Yang et al., 2020a; Zong et al., 2021). At the same time, due
to the radiative cooling effect of aerosol pollution over cities, the
daytime temperature decreases (Zheng et al., 2018; Yang et al.,
2020b), and ultimately the DTR decreases in cities owing to the
asymmetry in the changes of maximum and minimum
temperature.

With its developed economy and dense human population, the
level of urbanization in the Yangtze River Delta region is the
heighest in China. Under such rapid urbanization, the distance
between urban areas is shrinking, which greatly changes the
original natural state and the regional-scale ecological
environment, intensifies the risk of high-temperature heat
waves in summer (Luo and Lau, 2018, 2019), and seriously
endangers the public health and production of the region
(Chen et al., 2018; Yang Y. et al., 2013; Yang X. et al., 2017,
2019). The rapid urbanization of the Yangtze River Delta region
also has an important impact on its DTR (Hua et al., 2006; Chen
and Chen, 2007; Liu et al., 1995-2000; Wang et al., 2012; Shen
et al., 2014). Through the effect of urbanization on the maximum
temperature, the DTR also shows a significant decreasing trend
(Shen et al., 2014). In the past 40 years, the extreme values of
maximum temperature and minimum temperature in big cities
were greater than those in small towns, and the number of days
with a low DTR was more than those in small towns (Hua et al.,
2006; Qi et al., 2019). Taking Shanghai as an example, in the past
130 years, its DTR has shown a significant decreasing trend, with
the DTR decreasing by 0.15°C per decade, and urbanization has
had a significant impact on this trend (Zhou et al., 2012). In
general, the change in DTR is directly affected by the asymmetry
of the change in the maximum and minimum temperature, and
the influencing factors can be mainly divided into natural factors
(radiation, sunshine duration, precipitation, atmospheric
circulation, etc.) and human factors (urbanization-related

land-use change, anthropogenic heat release, aerosol
pollution, etc.) (Dai et al., 1999; Liu et al., 2016; Sun et al.,
2019; Xue et al., 2019; Yang et al., 2020b). Existing research on
the variation in the DTR in the Yangtze River Delta region
mainly focuses on the intra-seasonal scale (Dong and Huang,
2015; Yang et al., 2020a) and the interannual–decadal scale (Hua
et al., 2006; Chen and Chen, 2007; Liu et al., 1995-2000; Wang
et al., 2012; Shen et al., 2014), with the synoptic scale relatively
less well studied. In particular, the regulatory effects of different
synoptic weather patterns (SWPs) on DTR variation and the
urban–rural differences in DTR (DTRU–R) in the Yangtze River
Delta region remain unclear.

Therefore, taking the urban agglomeration of the Yangtze
River Delta (YRDUA) in eastern China as an example, this paper
studies the influence of circulation patterns at different synoptic
scales on the DTR in the region, and explores the factors driving
the variation in DTR on the synoptic scale. Section Data and
Methods describes the data and methods used in this study.
Section Results and Discussion examines the difference in DTR
between urban and rural areas and the influence of synoptic
circulation on DTRU–R. In this section, we also discuss the factors
influencing the DTR of YRDUA and how weather patterns affect
local meteorological elements to change the DTRU–R.
Conclusions are provided in Section Conclusion.

DATA AND METHODS

Data
This paper employs surface meteorological observation data in
the form of daily maximum surface air temperature (Tmax), daily
minimum surface air temperature (Tmin), sunshine duration
(SSD), and precipitation on the daily and 8-days-average
scales. Covering 148 stations in the Yangtze River Delta region
during June, July and August from 2013 to 2016, the data were
provided by the China Meteorological Data Service Center
(http://Data.cma.cn/en). The DTR is the difference between
Tmax and Tmin.

Additionally, daily and 8-days-average daytime land surface
temperature, nighttime land surface temperature, and
Normalized Difference Vegetation Index (NDVI) were
obtained from MODIS remote sensing land surface
temperature data with a spatial resolution of 1 km (https://
lpdaac.usgs.gov); anthropogenic heat flux (AHF) data in the
Yangtze River Delta region were retrieved from NOAA
satellite nighttime light information (http://ngdc.NOAA.gov/
eog/dmsp/downloadV4composites.html) noting that the error
in the AHF results is generally within 12% (Chen and Shi,
2012; Chen et al., 2012, 2014, 2015, 2016); and specific
humidity, air pressure, and horizontal and vertical wind speed
data were obtained from the fifth generation European Centre for
Medium-Range Weather Forecasts reanalysis (ERA5), which has
a high spatiotemporal resolution (0.25° × 0.25, hourly; https://cds.
climate.copernicus.eu/cdsapp#!/home). The built up area data are
from the 30m resolution dataset of China’s urban impervious
surfaces (derived from https://zenodo.org/record/4034161#.
YFXn29y-uUk) (Kuang et al., 2000-2018).
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Methods
Division and Matching of Urban and Rural Stations
Since the measurement of surface air temperature is taken at the
height of 2m, according to previous studies (Cai, 2008; Yang et al.,
2013; Shi et al., 2015; Shi et al., 2021; Yang et al., 2020), the
maximum impact of anthropogenic heat on meteorological
observations around the station usually does not exceed 5 km
under advection and turbulence transport conditions. Thus, we

chose 5 km as the radius of the buffer zone to capture the effects of
urbanization on air temperature. Firstly, we took the built-up area
(i.e., impervious surface area) as background in Figure 1, showing
that the spatial distribution of anthropogenic heat flux
corresponds well with actual distribution of the land covers
(Figure 1). Anthropogenic heat flux is closely related to the
change in built-up area around the stations (Figure 1B).
Therefore, anthropogenic heat flux can be considered to

FIGURE 1 | (A) Spatial distribution of built-up area in summer 2015 in the Yangtze River Delta region and classification of urban and rural stations. (B) Correlation
between anthropogenic heat flux and built-up area in 2015.

FIGURE 2 | (A) Spatial distribution of anthropogenic heat in summer 2016 in the Yangtze River Delta region. (B) Average anthropogenic heat flux (W/m2) distribution
within 5 km around stations in three sub-regions of YRDUA. (C) Three sub-regions of YRDUA and the classification of urban and rural stations.
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reliably reflect the effects of both anthropogenic emissions and
land-use change related to latent heat flux and sensible heat flux
(Jiang et al., 2019; Chen et al., 2020). Therefore, classified the
stations by the mean anthropogenic heat fluxes around all the
stations. Figure 2A shows the spatial distribution of
anthropogenic heat in the Yangtze River Delta region in 2016.
It can be seen that high anthropogenic heat is mainly distributed
in the YRDUA region. Therefore, we further calculated the
average AHF within 5 km around each station in the YRDUA
region (Figure 2B), and then, based on the correlation between
anthropogenic heat and the built-up area, the average
anthropogenic heat within 5 km of the 148 stations was sorted
from high to low to distinguish urban and rural reference stations;
that is, the first third of stations with a high anthropogenic heat
value are regarded as urban stations, and the last third as rural
reference stations (Figure 2B,C). Finally, based on the local
pattern of precipitation, the difference in sunshine with

latitude, and the level of urbanization of different regions, this
paper divides the YRDUA region into three sub-regions—the
northern plain and hilly region (NR), the central urban
agglomeration region (MR), and the southern mountainous
region (SR) (Figures 2B,C). Then we further calculated the
diurnal temperature range difference (DTRu–r) between the
city stationand one or more nearby rural reference stations in
each sub-region in order to discuss the influence of urbanization
on the DTR (Figure 2C).

Random Forest Model
The random forest (RF) model is currently a popular and highly
flexiblemachine learning algorithm. The basic unit of the RFmodel
is a decision tree. Compared with traditional statistical methods, RF
has a better fitting effect on nonlinear data, and can analyze the
importance of variables. The specific steps of the RF model
construction process are as follows (Zeng et al., 2020): 1) In the

FIGURE 3 | The 850-hPa geopotential height field and wind field for four SynopticWeather Patterns (SWPs): (A) Type 1, (B) Type 2, (C) Type 3, and (D) Type 4. The
purple box indicates the YRDUA region.
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N total samples, n times of replacement are randomly selected, n
new training sets are obtained, and the unextracted part constitutes
“out-of-bag” (OOB) data; 2) Each training set generates a decision
tree, each node of the decision tree selects mtry from the
independent variables, and branches grow according to the
principle of minimum node impurity; 3) Repeat step (2) n
times to obtain n decision trees to form a random forest; 4)
The result of the random forest is the result obtained by the
simple averaging method for each decision tree, and the prediction
accuracy is determined by the average OOB of each decision tree.

Based on the RF model, we obtain the DTR difference between
urban and rural areas and explore and analyze the importance of

each factor influencing the DTRU–R. We validated the RF model
using a 10-fold cross validation (CV) method to repeatedly
estimate the expected model performance based on each
subset of training data in general during prediction (Wang H.
et al., 2019; Yang X. et al., 2019; Zeng et al., 2020). The method of
10-fold CV involved cutting the sample into 10 subsets, reserving
one subset for testing the accuracy of the model, and using the
other nine subsets for training the model. This CV was repeated
10 times until every subset was guaranteed to have been used once
for testing. The average value of the 10-fold CV results was taken
to obtain a final prediction result. The coefficient of
determination (R2) and root-mean-square error (RMSE) were

FIGURE 4 | Spatial distribution of themean Diurnal Temperature Range (DTR) in the urban agglomeration of the Yangtze River Delta region in summer: (A) June, (B)
July, (C) August, and (D) June–August.

TABLE 1 | Statistics of the DTR in three YRDUA sub-regions in June, July and August.

Subregion Mode (°C)
(Jun/Jul/Aug)

Median (°C)
(Jun/Jul/Aug)

Mean (°C)
(Jun/Jul/Aug)

Skewness
(Jun/Jul/Aug)

Kurtosis
(Jun/Jul/Aug)

NR 6.9/6.6/6.7 7.3/7.3/7.2 7.3/7.4/7.5 0.2/0.6/1.1 −0.4/1.3/2.3
MR 5.7/6.8/7.5 6.4/7.1/6.6 6.4/7.4/6.8 0.2/0.5/0.9 −0.1/0.5/2.1
SR 7.8/8.8/7.9 7.4/8.5/7.6 7.5/8.7/7.8 0.3/0.2/0.5 0.02/−0.2/0.8
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used to jointly assess the predictive performance of the 10-fold
CV approach.

Finally, variance importance analysis was conducted to
determine the contribution of each variable; that is, the “Mean
Decrease Accuracy” (%IncMSE) and “Mean Decrease Gini”
(IncNodePurity) (sorted in descending order from top to
bottom) of attributes were used. A higher value of %IncMSE
or IncNodePurity indicates a more important input variable.

Classification of Synoptic Weather Patterns
In this paper, T-mode principal component analysis (T-PCA) is
used for the classification of SWPs, which is a computer-based
objective mathematical method (Huth et al., 2008; Miao et al.,
2017, 2019). It can reproduce the preset dominant SWPs without

relying on the preset parameters (Ning et al., 2018; Ning et al.,
2019; Yang et al., 2021). The T-PCA analysis module of the
COST733 software (http://cost733.met.no/) developed by the
European Scientific and Technical Research Cooperation, was
used to classify the daily synoptic circulation patterns based on
the 850 hPa geopotential height field. The cost733class program is
a FORTRAN software package consisting of several modules for
classification, evaluation and comparison of weather and
circulation patterns. First, the weather data are spatially
standardized and split into 10 subsets by T-PCA. Then the
principal components (PCs) of weather information are
estimated by applying singular value decomposition, and the
PC score for each subset can be calculated after oblique rotation.
Finally, the resultant subset with the highest sum will be selected

FIGURE 5 | Seasonal variation of the DTR at (A) urban and (B) rural stations in the urban agglomeration of the Yangtze River Delta region.

FIGURE 6 | Boxplots of the DTR of (A) urban and (B) rural stations in the urban agglomeration of the Yangtze River Delta region from June to August.
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by comparing 10 subsets according to contingency tables, and its
types can be output as well (Philipp et al., 2014; Miao et al., 2017).
To assess the performance of synoptic classification and
determine the number of classes, the explained cluster
variance (ECV) was selected in this study (Hoffmann and
Heinke SchlüNzen, 2013; Philipp et al., 2014; Ning et al.,
2019). The purpose of using this method is to analyze the
differences in the characteristics of the DTR and its main
driving factors between urban and rural areas under
different SWPs.

Four SWPs were obtained through objective classification of
the 850-hPa geopotential height field and wind field in June, July

and August from 2013 to 2016. Figure 3 shows the different
patterns of the 850-hPa geopotential height field and wind field.
Type 1 is southeastern subtropical high pressure (frequency
51.90%), in which the Yangtze River Delta region is located in
the northwest of the subtropical high pressure, the weather
system frequency is the highest, and the dominant wind is
southwesterly. Type 2 is western low pressure (frequency
17.66%), in which there is a weak low pressure in the west of
the Yangtze River Delta region and the dominant wind is easterly.
Type 3 is controlled by wind shear in the west (frequency:
20.11%), and the dominant wind is southwesterly and
northwesterly. Type 4 is southern low pressure (frequency:

FIGURE 8 | The DTRU–R (A) training value and (B) testing value and the importance of (C) DTRU–R impact factors, and the△Tmax (D) training value and (E) testing
value and the importance of (F) △Tmax impact factors, of the RF model.

FIGURE 7 | Probability density distributions of DTR at urban and rural stations in the urban agglomeration of the Yangtze River Delta region in (A) June, (B) July, and
(C) August.
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10.35%), in which the Yangtze River Delta region is located at the
top of the low pressure, the dominant wind is easterly, and the
occurrence frequency of the weather system is the lowest.

RESULTS AND DISCUSSION

Urban–Rural Differences in Diurnal
Temperature Range at the Monthly Scale
Figure 4 shows the spatial distribution of DTR in YRDUA in
summer, showing obvious intra-seasonal variation and
significant sub-regional differences. Accordingly, Table 1
shows the mode, median, mean, skewness, and kurtosis of
DTR in June, July, and August. On the whole, the DTR in the
MR sub-region (with its high density of urban areas) is relatively
low (most concentrated at 3–9°C), which is related to the rapid
development of urbanization in this sub-region. The monthly
mean DTR is significantly higher in July (7.4°C) than in June
(6.4°C) and August (6.8°C). The DTR in the mountainous SR sub-
region is relatively high (about 6–10°C), which also shows intra-
seasonal variation, and the average DTR value is 7.5, 8.7 and 7.8°C
in June, July, and August, respectively. While the DTR

distribution in the NR sub-region is similar (about 6–9°C)
from June to August, i.e., the average DTR value is 7.3°C in
June, 7.4°C in July, and 7.5°C in August.

Figure 5 further shows the monthly variation of the summer
monthly mean DTR of urban and rural stations in the YRDUA.
The DTR of urban stations is the highest in July, ranging from 7 to
10°C, while the DTR in June and August is similar, ranging from 5
to 8°C. The monthly average DTRs of rural reference stations are
similar, and there is no obvious seasonal variation. The DTR of
rural stations range from 5 to 10°C during June–August.

Figure 6 shows boxplots of the DTR difference between urban
and rural stations in the YRDUA region from June to August,
showing that the DTR of urban stations in June, July and August
is more concentrated than that of rural stations. As can be seen
from Figure 6, the DTR of urban stations in July is concentrated
within 7–8°C, which is basically a normal distribution, and the
mean value of DTR is higher than that of June and August. The
DTR of urban stations in June and August is concentrated within
6.5–7°C, in which there are small anomalies and large abnormal
anomalies in July, and small anomalies in August. Overall, the
peak DTR for urban stations occurs in July. The DTR of rural
stations in June and August is relatively concentrated, and the

FIGURE 9 | Spatial distribution of mean DTR in the YRDUA region: (A) Type 1; (B) Type 2; (C) Type 3; and (D) Type 4.
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DTR in August is basically a normal distribution, among which
the DTR in July is relatively high and the value is concentrated
within 7.5–9°C. Small anomalies appear in June and August at
rural stations.

The probability density distributions of DTR for urban and
rural stations in June, July and August are shown in Figure 7 In
June, the peak value of DTR for urban stations is about 6.5°C, and
that of rural stations is about 7.5°C. In July, the peak values of
DTR for urban and rural stations are around 7.5–8°C. In August,
the distribution of urban DTR is concentrated at 7°C, and the
peak distribution of DTR for rural stations is concentrated at 8°C.
In general, the DTR of urban stations is lower than that of rural
stations, which indicates that urbanization influences the
decrease in DTR. Due to the development of urbanization, the
concentrations of aerosols produced by human activities have
increased greatly. Aerosols scatter and absorb solar radiation in
the daytime, making the maximum temperature drop, while they

weaken the upward longwave radiation on the surface and
increase the minimum temperature at night, which leads to
the decrease in DTR at urban stations (Dai et al., 1999; Zhang
et al., 2011; Zheng et al., 2018; Yang et al., 2020b).

Urbanization Drivers
In order to explore what is the first dominant factor for DTRU–R,
△Tmax or △Tmin, we calculated nine factor differences between
urban and rural stations (Figures 8A–C), including the average
DTR and Tmax, Tmin, the average surface temperature in the day
(LSTD), the surface temperature at night (LSTN), anthropogenic
heat emission, the NDVI within a 5-km range of meteorological
observation stations, altitude, rainfall, and SSD at the 8-days scale.
These nine factors of difference between urban and rural areas
were the independent variables, and DTRU–R the dependent
variable, when building the RF machine learning model, and
the output was the importance of factors affecting DTRU–R. The

FIGURE 10 | Probability density distributions of the DTR in (A,D,G) urban and (B,E,H) rural areas, and (C,F,I) their difference (DTRU–R), under four SWPs in NR, MR
and SR, respectively.
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results show that the change of DTRU–R is Tmax–driven type in
the urban agglomeration of the Yangtze River Delta region
(Figure 8C). So, we further employed the RF model to check
the drivers of△Tmax (Figures 8D–F), that is, Tmax was selected as
the dependent variable, and △LSTD, △LSTN, △AHF, △NDVI,
△Altitude, △rainfall, and △SSD as independent variables. In
addition to the direct retrieval of solar radiation, SSD also
includes the influence of aerosols, cloud cover, and
precipitation on the daily global solar radiation (Wang K.
et al., 2012, Wang Y. et al., 2012, 2013; Zeng et al., 2020).

The RF model was not only used to reveal the possible factors
related to the difference in DTR between urban and rural stations,
but also to evaluate the relative importance and contribution of

these factors. Firstly, 10-fold CV was used to test the reliability of
the RF model. Figures 8A,B,D,E show the model training and
validation of DTRU–R and△Tmax. It can be seen that the results of
RF training and testing are good, i.e., the R2 value of the traning
and testing of DTRU–R is 0.94 and 0.62, respectively, and the R2

value of training and the testing of △Tmax is 0.93 and 0.58,
respectively, indicating that the RF model is reasonable and
reliable for analyzing the impact factors of DTRU–R.

Further analysis of the RF model results provides the order of
importance of the factors affecting DTRU–R. As shown in
Figure 8C, △Tmax is more important to DTRU–R than △Tmin,
implying that the comprehensive effect of urbanization (changed
land use and soil water content) and aerosol pollution (changed

FIGURE 11 | The 850-hPa water vapor flux (WVF � V×q/g, where q is specific humidity, g is gravitational acceleration, and V is horizonal wind; vectors; see scale
arrow in the bottom right in units of 5 gcm−1hPa−1s−1) under four SWPs: (A) Type 1; (B) Type 2; (C) Type 3; and (D) Type 4.
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solar radiation and cloud fraction) has a more obvious impact on
daytime air temperature in urban areas, relative to rural areas
(Dai et al., 1999; Sun et al., 2019; Yang et al., 2020b). The
development of urbanization results in elevated concentrations
of the aerosols produced by human activities, which leads to
increased cloud cover (Wang K. et al., 2012, Wang Y. et al., 2012,
2013; Yang et al., 2020b; Zeng et al., 2020). The existence of
aerosols and clouds can have an impact on solar radiation.
Aerosols and cloud can reduce daytime incoming shortwave
radiation at the surface and trap more upward longwave
radiation from the surface and emit more downward longwave
radiation to warm the near-surface atmosphere during nighttime.
Relative to clean days, this radiation effect will easily lead to a
smaller (larger) Tmax (Tmin) during pollution days, leading to a
smaller DTR over urban areas. These are consistent with previous
studies (Dai et al., 1999; Zhang et al., 2011; Zheng et al., 2018;
Yang et al., 2020b), and so the variation trend of DTRU–R also
increases. However, due to different regional environments, the
thermal environment around meteorological stations will also be
different, such as the difference in land-use types, vegetation
coverage, etc. The most important environmental factors in this
regard are Altitude, AHF, and NDVI, followed by rainfall, SSD,

LSTN and LSTD,. Urban–rural differences of AHF play an
important role in the magnitude of DTRU–R (Wang K. et al.,
2012, Wang Y., et al., 2012, 2013; Zeng et al., 2020). The
development of urbanization will also change the DTR by
changing the nature of the urban underlying surface. Gallo
et al. (1996) pointed out that different vegetation coverage
around meteorological stations will cause different DTRs, and
the DTRs of farms and towns are larger than those of cities. In
conclusion, the difference in AHF is one of the potentially
important driving factor of urbanization for DTRU–R. In
general, the △Tmax, △Altitude, △AHF, △NDVI, △LSTD,
△LSTN between urban and rural areas are almost unchanged,
which are more important relative to the various △SSD and
△rainfall between urban and rural areas. This is because △SSD
and △rainfall are also modulated by various synoptic patterns in
urban and rural areas.

Urban–Rural Differences in DTR Under
Different Synoptic Weather Patterns
To better compare the DTR at urban stations with rural stations,
we have excluded the suburban stations from the below analysis.

FIGURE 12 | As in Figure 9 but for mean Sunshine Duration (SSD).
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Figure 9 shows the spatial distributions of mean DTR under the
four synoptic circulation patterns. In general, under these four
weather patterns, the DTR in the southern region is the highest,
followed by the northern region, and the DTR in the central
region is the lowest (ranging from 2 to 6°C), mainly because the
central-region DTR is most significantly affected by urbanization.
Specifically, the DTR in the three sub-regions of YRDUA is
greatly affected by the synoptic circulation, and the DTRs
under the four SWPs are significantly different. For example,
the DTR in the northern region is high under type 4 but low
under type 1, in the central urban agglomeration it is high under
type 1 and low under type 3, while in the southern region it is high
under type 1 and low under type 2.

The probability density distributions of DTR for urban and
rural stations in the three sub-regions under the four SWPs are
shown in Figures 10A,B,D,E,G,H. In NR, the DTR peak
distributions of urban stations are concentrated at about 7–8°C
under the four weather patterns. Meanwhile, the peak
distributions of rural stations are also concentrated at about
7–8°C under type 1, 3 and 4, whereas under type 2 it is about
8–9°C. In MR, the DTR peak distributions of urban and rural
stations are concentrated at about 6–8°C under the four weather
patterns. In SR, the peak values of DTR for urban stations are
concentrated at about 6–8°C, and that of rural stations are

concentrated at about 7–8°C under type 2, 3 and 4, while that
of urban stations at about 8–9°C and rural stations at about
9–10°C under type 1. In order to further compare the influence of
weather systems on the difference in DTR between urban and
rural areas, the probability density distributions of DTRU-R under
different weather patterns were statistically analyzed (Figures
10C,F,I). The results show that the probability density
distribution of DTRU–R under the four weather types tends to
be negative on the whole, and the peak values are concentrated
within −1–0°C. The absolute value of the peak value of DTRU–R in
NR and MR under the four weather patterns follow the order
Type 2 > Type 1 > Type 3 > Type 4. It can be concluded that the
difference in DTR between urban and rural areas in NR and MR
under Type 4 is relatively small, while that under Type 2 is the
largest. But the absolute values of the peak value of DTRU–R in SR
under the four weather patterns are similar and higher than that
of in NR and MR. However, the DTR also is regulated by
meteorological conditions (precipitation and SSD) under
different SWPs, which is further analyzed below.

Roles of Synoptic Weather Patterns
Local meteorological factors are closely related to SWPs. The
increase in global precipitation is one of the reasons for the
downward trend in global DTR, but the relationship between

FIGURE 13 | As in Figure 9 but for mean precipitation.
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precipitation and DTR is more based on the good correlation
between precipitation, cloud cover, and soil water content (Dai
et al., 1997, 1998, 1999; Sun et al., 2019). Cloud cover and soil
water content mainly lead to a decrease in DTR by decreasing the
Tmax. Therefore, increased cloud cover and precipitation will slow
down the rising trend of Tmax and have relatively little effect on
Tmin (Dai et al., 1999), which is consistent with our RF model
results showing that the urban–rural difference in Tmax is most
important to DTRU–R.

Cloud cover and soil water content are closely related to water
vapor flux in summer, so Figure 11 shows the 850-hPa water
vapor flux in the urban agglomeration of the YRDUA region.
Combined with the classification results (Figure 3), we found
that, under the type 1 synoptic circulation, the YRDUA is affected
by the southeastern subtropical high pressure, and the southwest
has strong water vapor transport, large water vapor flux, and
more precipitation. The water vapor under type 2 synoptic
circulation comes from the south, and the water vapor flux is
small. Type 3 water vapor mainly comes from the southwest, and
the water vapor flux is large in the south of YRDUA, but small in

the north. The water vapor of type 4 comes from the southeast
ocean area, and the water vapor flux is small.

The SSD reflects the influence of cloud cover and precipitation
on the daily total solar radiation, so the variation of DTR can be
discussed through the influence of SSD and precipitation on
temperature. Figures 12, 13 show the average distribution of
sunshine duration and local precipitation under the four SWPs.
Due to the difference in the synoptic circulation situation and
water vapor flux, there are obvious differences in local
precipitation and sunshine duration under the four SWPs.
Specifically, compared with Figure 9 and Figure 11, less
precipitation and longer SSD favor a larger DTR in most sub-
regions, e.g., the NR sub-region under type 2, the MR sub-region
under type 4, and the SR sub-region under types 1, 3 and 4,.
Meanwhile, more precipitation and shorter SSD induce a smaller
DTR, e.g., in the NR sub-region under type 1, the MR sub-region
under type 1, and the SR sub-region under type 2.

Because urbanization has increased extreme precipitation, we
further quantified the precipitation frequency (PF) (Figure 14).
Compared with Figure 13, precipitation under type 1 and 2 is

FIGURE 14 | As in Figure 9 but for mean precipitation frequency (PF � DP/DT×100%, where DP is the number of days of precipitation, and DT is total number of
days).

Frontiers in Environmental Science | www.frontiersin.org June 2021 | Volume 9 | Article 67229513

Guo et al. Summer Diurnal Temperature Range

198

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


large, but the PF is small, which indicates that urban extreme
precipitation is more significant under type 1 and 2, especially in
the central urban agglomeration under type 2. Combined with
Figure 10, the difference in DTR between urban and rural areas is
the most significant under type 2. Due to the impervious nature of the
urban underlying surface, the soilmoisture increaseswhenprecipitation
occurs, while soil moisture increases the releases of surface latent heat
and slows down the rise in temperature during the day (Dai et al., 1999),
which also reduce the urban DTR and increase the urban–rural DTR
differences. This also indicates that precipitation plays an important role
in the impact of urbanization on DTR.

CONCLUSION

Through objective weather classification and machine learning
modeling, this paper analyzes the difference characteristics and
influencing factors of DTR and DTRU–R in YRDUA under
different SWPs (according to the differences in the climate
background and underlying surface properties). The main
conclusions are as follows:

The YRDUA region is mainly controlled by four SWPs in the
850-hPa geopotential height field. The average values of DTR
under each SWP exhibit obvious sub-regional differences in
space: the southern subregion is the highest, followed by the
northern subregion, and the middle subregion is the lowest. The
lower DTR in the middle sub-region is mainly affected by its
high levels of urbanization and anthropogenic heat emissions.
The average DTR in the three sub-regions of YRDUA present
significant differences in DTR under the four SWPs, indicating
that SWPs play a greater role in regulating the DTR in YRDUA.
In general, the DTR of urban stations is smaller than that of
rural stations under all four SWPs, and the urban–rural
difference in AHF is one of the potentially important
urbanization-related driver affecting DTRU–R. The order of
the absolute value of the DTRU–R peak in NR and MR under
the four SWPs is as follows: type 2 > type 1 > type 3 > type 4. In
particular, affected by urban extreme precipitation, the DTR
under Type 2 is the largest, while the absolute values of the peak
DTRU–R in SR under the four weather patterns are similar and
higher than that of in NR and MR. The present work provides
evidence that the complex features of levels of urbanization and
atmospheric circulation patterns on synoptic scales can

modulate the daily variations of DTR. This study’s findings
help towards furthering our understanding of the response of
DTR in an urban agglomeration to different SWPs via the
modulation of local meteorological conditions (e.g.,
precipitation, SSD, etc.).

Overall, whilst the present paper discusses the dual impact of
urbanization factors and SWPs on DTRU–R on the synoptic scale,
the influence of changes in the occurrence frequencies of different
SWPs at the interannual scale on the long-term trend of DTR
requires further exploration.
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Whether the CMIP5 Models Can
Reproduce the Long-Range
Correlation of Daily Precipitation?
Tianyun Dong1, Shanshan Zhao2,3, Ying Mei1, Xiaoqiang Xie1, Shiquan Wan4 and
Wenping He1,2*

1School of Atmospheric Sciences, and Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry
of Education, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China, 2Collaborative Innovation
Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Sciences and Technology,
Nanjing, China, 3National Climate Center, China Meteorological Administration, Beijing, China, 4Yangzhou Meteorological Office,
Yangzhou, China

In this study, we investigated the performance of nine CMIP5 models for global daily
precipitation by comparing with NCEP data from 1960 to 2005 based on the detrended
fluctuation analysis (DFA) method. We found that NCEP daily precipitation exhibits long-
range correlation (LRC) characteristics in most regions of the world. The LRC of daily
precipitation over the central of North American continent is the strongest in summer, while
the LRC of precipitation is the weakest for the equatorial central Pacific Ocean. The zonal
average scaling exponents of NCEP daily precipitation are smaller in middle and high
latitudes than those in the tropics. The scaling exponents are above 0.9 over the tropical
middle and east Pacific Ocean for the year and four seasons. Most CMIP5 models can
capture the characteristic that zonal mean scaling exponents of daily precipitation reach
the peak in the tropics, and then decrease rapidly with the latitude increasing. The zonal
mean scaling exponents simulated by CMCC-CMS, GFDL-ESM2G and IPSL-CM5A-MR
show consistencies with those of NCEP, while BCC_CSM1.1(m) and FGOALS-g2 cannot
capture the seasonal variations of daily precipitation’s LRC. The biases of scaling
exponents between CMIP5 models and NCEP are smaller in the high latitudes, and
even less than the absolute value of 0.05 in some regions, including Arctic Ocean, Siberian,
Southern Ocean and Antarctic. However, for Western Africa, Eastern Africa, Tropical
Eastern Pacific and Northern South America, the simulated biases of scaling exponents are
greater than the absolute value of 0.05 for the year and all four seasons. In general, the
spatial biases of LRC simulated by GFDL-ESM2G, HadGEM2-AO and INM-CM4 are
relatively small, which indicating that the LRC characteristics of daily precipitation are well
simulated by these models.

Keywords: detrended fluctuation analysis, CMIP5, daily precipitation, scaling exponent, long-range correlation

INTRODUCTION

Precipitation changes not only affect the global hydrographic cycle (Trenberth, 2011; Ma and Zhou,
2015), but also play an essential role for human societal and economic development (Wang et al.,
2012; IPCC, 2013; Zhang et al., 2018; Chen et al., 2020). Global climate models are widely used to
reproduce the current climate and project future climate change (Zhou and Yu, 2006; Xu and Xu,
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2012; Knutson et al., 2013; Kumar et al., 2013; Jiang et al., 2015;
Dong et al., 2018; He et al., 2019). It’s crucial to evaluate and
investigate the models’ performance in simulating daily

precipitation for developing adaptation strategies to reduce
uncertainties of projecting precipitation in the future (Jiang
et al., 2007; Jiang et al., 2009; Wang and Chen, 2013; Li et al.,
2015; Li et al., 2018; Lin et al., 2019).

The Coupled Model Intercomparison Project Phase 5
(CMIP5) includes more comprehensive global climate models
enabling researchers to address many scientific questions (Taylor
et al., 2012). At present, assessment methods for different models’
performance are transforming from traditional qualitative
methods to quantitative methods (Sillmann et al., 2013; Jiang
et al., 2016; Li et al., 2017). A lot of studies evaluate models based
on some traditional statistical methods, such as linear trend
analysis (Guo et al., 2013; Dong et al., 2018), the spatial
correlation coefficients (Zhao et al., 2014; Tian et al., 2015),
the standard deviation (STD) (Yang et al., 2014), signal-to-
noise ratio (SNR) (Peng et al., 2019) and so on. However,
these evaluation methods cannot reproduce the inner
dynamical characteristics of climate system. Therefore, a
nonlinear method, long-range correlation (LRC) is needed to
understand the intrinsic dynamical characteristics of climate
system (Koscielny-Bunde et al., 1998; Malamud and Turcotte
1999; Fu et al., 2016; He et al., 2016; Zhao et al., 2017).

The LRC method is characterized by a timescale and shows
the scaling law of an autocorrelation function (Peng et al.,
1994; Bunde et al., 2005). For a random system, it is
uncorrelated in both temporal and spatial evolution, so the
scaling exponent of its time series is 0.5. However, for the
climate system, which is a nonlinear complex system with
multi-scale interactions, the persistence of external forcing and
transmission of energy and information between different
subsystems make it no longer isolated. Moreover, the large
scale system will have a continuous impact on the small scale
system, which makes its time evolution nonrandom.
Therefore, its previous state will have a strong or weak
impact on its future evolution, which is the LRC revealed in
this paper. The value of LRC reflects the strength of nonlinear
interaction between different subsystems, and to some extent,

TABLE 1 | Details of the nine CMIP5 climate models.

Modeling
center

Nation Institution Model information

Model name Atmosphere
resolution

BCC China Beijing Climate Center, China Meteorological Administration BCC_CSM1.1(m) T106 (∼1.125 ×
1.125°) L26

CMCC Italy Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC-CMS T63 (∼1.875 ×
1.865°) L95

CNRM-
CERFACS

France Center National de Recherches Meteorologiques/Center Europeen de Recherche et
Formation Avancees en Calcul Scientifique

CNRM-CM5 TL127 (∼1.4 × 1.4°) L31

LASG China Institue of Atmospheric Physics Chinese Academy of Sciences FGOALS-g2 (∼2.81 × 1.66°) L26
GFDL United States NOAA Geophysical Fluid Dynamics Laboratory GFDL-ESM2G M45 (∼2 × 2.5°) L24
INM Russia Institute for Numerical Mathematics INM-CM4 (∼1.5 × 2.0°) L21
IPSL France Institute Pierre-Simon Laplace IPSL-CM5A-MR LMDZ4 (∼1.2587

× 2.5°)
MOHC United Kingdom Met Office Hadley Center HadGEM2-AO T63 (∼1.875 ×

1.865°) L38
MPI-M Germany Max Planck Institute for Meteorology MPI-ESM-MR T63 (∼1.875 ×

1.865°) L47

TABLE 2 | Names and coordinates for 34 regions in the world.

Region name Abbreviation Coordinates

Longitude Latitude

Tropical West Pacific TWP 110–170°E 20°S–20°N
Tropical Central Pacific TCP 170°E–125°W 20°S–20°N
Tropical Eastern Pacific TEP 125°W–75°W 20°S–20°N
North Pacific Ocean NPO 120°E–120°W 20–70°N
South Pacific Ocean SPO 140°E–70°W 60–20°S
Northern South America NSA 170°E–125°W 20°S–20°N
Southern South America SSA 75–40°W 60–20°S
Southern Africa SAF 10–40°E 35–10°S
Eastern Africa EAF 20–50°E 10°S–20°N
North Africa NAF 20°W–65°E 20–30°N
Western Africa WAF 20°W–20°E 10°S–20°N
Tropical Indian Ocean TIO 40–120°E 20°S–20°N
South Indian Ocean SIO 15–140°E 60–20°S
Australia AUS 110–155°E 40–10°S
South Atlantic Ocean SAO 65°W–15°E 60–20°S
Tropical Atlantic Ocean TAO 70°W–10°E 20°S–20°N
North Atlantic Ocean NAO 90°W–0° 20–60°N
Mexio MEX 115–80°W 10–30°N
Central North America CNA 105–85°W 30–50°N
Eastern North America ENA 85–60°W 20–50°N
Western North America WNA 130–105°W 30–60°N
Alaska ALA 170–105°W 60–70°N
Greenland GRL 105–10°W 50–80°N
Mediterranean MED 10°W–40°E 30–50°N
Central Asia CAS 40–75°E 30–50°N
Tibetan TIB 75–100°E 30–50°N
East Asia EAS 100–145°E 20–50°N
South Asia SAS 65–100°E 5–30°N
Southeast Asia SEA 90–155°E 10°S–20°N
Siberian SIB 40°E–180°E 50–70°N
Northern Europe NEU 10°W–40°E 50–75°N
Arctic Ocean AO 0°–180°W 60–90°N
Southern Ocean SO 0–180°W 80–60°S
Antarctic ANT 0–180°W 90–60°S
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it reflects the internal dynamic characteristics of climate
system (Bunde and Havlin., 2002; Lennartz and Bunde
2011; Yuan et al., 2015). For example, the LRC in equatorial
Pacific is larger than that in land, which shows relatively strong
interaction between ocean and atmosphere (Yeo and Kim,
2014). Therefore, we try to address the question about whether
the CMIP5 models can reproduce the LRC of daily
precipitation. It is very important and urgent to consider
the LRC besides the traditional statistical methods.

The detrended fluctuation analysis (DFA) is a useful tool to
estimate the LRC for assessing models’ simulate performance
(Kantelhardt et al., 2001; Kantelhardt et al., 2002; Blender and
Fraedrich, 2003; Kumar et al., 2013; Zhao and He, 2014; Zhao
and He, 2015; He and Zhao, 2017). Govindan et al. (2002) found
that sevenmodels failed to reproduce the LRCof temperature. Kumar
et al. (2013) assessed the performance of 19 CMIP5 models based on
long-term persistence and concluded that these models show poor
performance in the long-term persistence of precipitation, however,
they show better performance in temperature. Differentmodels show
different performance in the LRC of climatic variables. Most
continents exhibit the long-range correlation of temperature in
global coupled general circulation models (Rybski et al., 2008).
Daily precipitation also shows long-range correlation both for the
Beijing Climate Center Climate System Model [BCC_CSM1.1(m)]
and observational data in China (Zhao and He, 2015). The LRC is
present in many aspects of climate system, such as air temperature
(Du et al., 2013; Yuan et al., 2015; Koscielny-Bunde, et al., 1998;
Talkner and Weber, 2000), precipitation (Kantelhardt et al., 2006;
Zhao and He, 2015; He and Zhao, 2017), sea surface temperature
(Zhang and Zhao, 2015), geopotential height (Tsonis et al., 1999),
extreme climate events (Feng et al., 2009) and so on. Therefore, in
terms of the LRC of climate system, it is an effective way to assess
CMIP5 models’ performance in global daily precipitation. Based on
this, we will have a deeper understanding for intrinsic dynamical
characteristics of the climate system and make contributions to
improve models’ development.

The remainder of this paper is organized as follows. The data
sets andDFAmethod are introduced inMethods and Data. Results

presents the features of the LRC for the year and four seasons
based onNCEP andCMIP5 data.Moreover, the spatial differences
of LRC from different regions are shown in Results. Finally, a
summary and discussion are given in Discussion and Conclusion.

METHODS AND DATA

Data
The global daily precipitation datasets used in this study are
composed of reanalysis data from the National Centers for
Environmental Prediction and National Center for
Atmospheric Research (NCEP) (Kalnay et al., 1996). The
performance of NCEP reanalysis dataset has been assessed
based on LRC characteristics (He and Zhao, 2017; Zhao et al.,
2017), which are similar to the results of the observation. So we
can use NCEP dataset as the benchmark to evaluate CMIP5
models’ LRC characteristic of daily precipitation.

The simulated daily precipitation data is retrieved from the
Earth System Grid (ESG) data portal for nine CMIP5 models
(https://esgf-node.llnl.gov/search/cmip5/) (Taylor et al.,
2012), which are from historical experiments. Only one
realization of each model is analyzed. The more detailed
information of each model is listed in Table 1. The
horizontal resolution is different in different models. In
order to facilitate model intercomparison and validation
against observation, the inverse distance weighting method
is used to regrid the model outputs to 2.5° × 2.5° grid.
Considering the length of time series both for reanalyzed
and simulated data, we chose 1960–2005 as the study period.

To reveal the geographical heterogeneity of DFA for the daily
precipitation in the world, we divided the global world into 34
regions, including 12 ocean basins and 22 sub-continental land
regions (Table 2 and Figure 1). The 22 sub-continental regions are
defined based onGiorgi (2002), and the 12 ocean basins aremodified
based on Chan and Wu (2015). We calculated the area-averaged
LRC in each region for NCEP and model data, then the differences
between NCEP and CMIP5 models are compared.

FIGURE 1 | Divisions of the world.
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Method
The DFA method is often used to estimate the LRC of time
series and an index of power law exponent, namely scaling
exponent, can be used to quantitatively quantify the strength of

LRC, which could be obtained by DFA (Peng et al., 1994;
Bunde and Havlin, 2002; Bunde et al., 2005). DFA has been
extensively applied to investigate LRC in climate variability
(Talkner and Weber, 2000; Kantelhardt et al., 2006; Gan et al.,

FIGURE 2 | The DFA2 results of daily precipitation from NCEP and CMIP5 models at the point of (110°W, 35°N) for (A) year, (B) spring, (C) summer, (D) autumn,
and (E) winter.
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2007; Jiang et al., 2015). For a giving time series, {Xi, i � 1, 2,
. . ., N}, the departures of Xi is calculated to eliminate the
periodic seasonal trends in the climate system.

xi � Xi − Xi (1)

In this study, Xi is the daily mean value for each calendar date
i. For example, Xi in 1st January can be obtained by averaging

FIGURE 3 | The DFA2 exponents of daily precipitation obtained from NCEP and CMIP5models at (A) point of (110°W, 35°N), (B) point of (175°W, 0°) for year and all
four seasons.
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the daily temperature on 1st January of all years in the records.
Then, cumulative sum y (k) of the time series x (i) is calculated
(Eq. 2), which is called profile.

y(k) � ∑k

i�1xi, k � 1, 2, . . . ,N (2)

Next, the profile y(k) is divided into n � int(N/τ) non-overlapping
segments of equal length τ. In each segment, we apply a polynomial
function, yτ(k), to fit the local trend. For order l of DFA (DFA1 if l �
1, DFA2 if l� 2, etc.), the l-order polynomial function should be used
for the fitting. Thus, profile y(k) is detrended by subtracting the local
trend yτ(k) in each segment, and the fluctuation function (F(τ)) of
each segment is calculated by

F(τ) �
�������������������
1
nτ

∑nτ

k�1[y(k) − yτ(k)]2√
(3)

Typically, F(τ)will increase with the segment length τ. A linear
relationship on a log-log plot indicates the presence of the
power law. In this case, fluctuations functions can be
characterized by a scaling exponent a.

F(τ) ∼ τα (4)

If 0.5<a<1, the time series {Xi, i � 1, 2, . . ., N} is long range
correlation. If a � 0.5, the time series is uncorrelated. If
0<a<0.5, the series {Xi} has anti-persistent correlation. In
this study, the DFA2 method is used to estimate the scaling
exponent in a time series.

RESULTS

The LRC Characteristics of Daily
Precipitation Based on NCEP and CMIP5
Models
Two grid points in the central of North American continent
(110°W, 35°N) and the equatorial central Pacific Ocean (175°W,
0°) are randomly selected as examples to show the detailed
information of precipitation’s LRC on land and ocean,

respectively. The scaling exponent of NCEP daily precipitation
is 0.62 (typical LRC characteristic) at the point of North
American continent. The daily precipitation simulated by all
nine CMIP5 models exhibits the LRC characteristic
(Figure 2A). The scaling exponents of CMCC-CMS, FGOALS-
g2 and MPI-ESM-MR range from 0.5 to 0.55, while the scaling
exponents for the other models are close to 0.62 at the grid point
(110°W, 35°N) (Figure 3A). In spring, the scaling exponent of
NCEP precipitation is 0.66 at this point. Except for CMCC-CMS,
FGOALS-g2 and MPI-ESM-MR, the other models show greater
scaling exponents than 0.59, and even the value for GFDL-ESM2G
is 0.7 (Figures 2B, 3A). In summer, the LRC of NCEP daily
precipitation at this point is the strongest, and the scaling exponent
reaches 0.84. Except for CMCC-CMS, FGOALS-g2 andMPI-ESM-
MR, the other models’ scaling exponents are greater than 0.6. In
autumn, the scaling exponent of NCEP precipitation is 0.6, which is
the smallest among four seasons (Figure 3A). The scaling
exponents of CMCC-CMS and MPI-ESM-MR are smaller
(0.55), while that of INM-CM is the largest (0.7) among nine
models. In winter, the scaling exponent for daily precipitation of
NCEP is 0.63. Except for BCC_CSM1.1(m), the LRC value of most
CMIP5 models are underestimated.

In general, the scaling exponent of NCEP daily precipitation at
the central of North American continent (110°W, 35°N) is the
biggest in summer and the smallest in autumn (Figures 2, 3A).
The seasonal variations of scaling exponents simulated by
CNRM-CM5, GFDL-ESM2G, HadGEM2-AO and IPSL-
CM5A-MR are similar to those of NCEP. These four models
can capture the main characteristics that the scaling exponents
are the largest in summer and the smallest in autumn, while the
seasonal differences of scaling exponents simulated by the other
models are various.

At the grid point (175°W, 0°) of the equatorial central Pacific
Ocean, the scaling exponent of NCEP precipitation is 0.96 for the
whole year, and the values simulated by nine CMIP5 models
range from 0.71 to 1.0 (Figure 4A). In spring, the scaling
exponent of NCEP precipitation is 0.81. The scaling exponents
of daily precipitation simulated by CMCC-CMS and MPI-ESM-

FIGURE 4 | The same as Figure 2, but for the point of (175°W, 0°).
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MR are both 1.03, while the values of the other models are closer
to NCEP (Figure 4B). The scaling exponent of NCEP
precipitation in summer is 0.76, which is slightly lower than
that in spring. Except for BCC_CSM1.1(m) and FGOALS-g2, the
scaling exponents of the other models are greater than 0.7, among
which CMCC-CMS, CNRM-CM5 and IPSL-CM5A-MR are
greater than 0.9 (Figures 3B, 4C). The scaling exponent of
NCEP in autumn is 0.76, which is the same as that in spring.
For the results of models, the scaling exponents of
BCC_CSM1.1(m) and MPI-ESM-MR are less than 0.7, while
those of CMCC-CMS and CNRM-CM5 are greater than 0.9
(Figures 3B, 4D). In winter, the scaling exponent of NCEP
precipitation is 1.0. The scaling exponents of CMCC-CMS,
CNRM-CM5, INM-CM4 and IPSL-CM5A-MR are close to 1.0
value, meanwhile, CMCC-CMS shows the biggest scaling
exponent among nine models, which is 1.06 (Figures 3B, 4E).

We also calculated the median values of the scaling exponents
for year and four seasons (Figure is not shown). The median
values of the scaling exponents’ biases throughout the year range
from −0.04 to −0.02, and most of them are closer to zero. From
the 5% and 95% ranking values, GFDL-ESM2G and HadGEM2-
AO show smaller biases band, FGOALS-g2 shows bigger biases
band. The differences of scaling exponents of global daily
precipitation simulated by models are smaller in spring than
those of other seasons.

Generally, the scaling exponents of daily precipitation in
the equatorial central Pacific Ocean are the smallest in
summer, followed by spring and autumn. While for winter
and the whole year, the scaling exponents fluctuate around
the value of 1.0 (Figure 3B). The seasonal differences of
scaling exponents simulated by BCC_CSM1.1(m), CMCC-

CMS and FGOALS-g2 are smaller than the other models in
summer.

The Spatial Distribution of LRC for nine
CMIP5 Models’ Daily Precipitation
The zonal average scaling exponents of NCEP daily precipitation
are smaller in middle and high latitudes (Figure 5A). The zonal
mean scaling exponents decrease rapidly from the equator to
middle latitudes and decrease to about 0.6 near 30°S and 30°N.
Subsequently, the reduction rate slows down and the zonal
average scaling exponents range from 0.5 to 0.6 in the high
latitude regions. The scaling exponents of daily precipitation
simulated by CMIP5 models also show similar characteristics,
the zonal average scaling exponents are smaller in middle and
high latitudes. However, the scaling exponents of CMIP5 models’
daily precipitation are underestimated, especially in the tropics.
The zonal mean scaling exponents simulated by CMCC-CMS,
GFDL-ESM2G and IPSL-CM5A-MR are closer to those of NCEP,
while BCC_CSM1.1(m) and FGOALS-g2 show relatively poor
performance.

In spring, the zonal mean scaling exponents of NCEP are
larger in the northern hemisphere than those in the southern
hemisphere, and reach a peak value more than 0.7 in the
equatorial region (Figure 5B). The zonal average scaling
exponents in the northern hemisphere vary slightly from
extratropical areas to high latitudes. In the southern
hemisphere, the zonal average scaling exponents reach the
minimum near 40°S, and then increase to 0.6 with the
increase of latitudes. The zonal mean scaling exponents
simulated by most models in the mid-latitude region are

FIGURE 5 | Zonal distribution of daily precipitation’s scaling exponents obtained from NCEP and nine CMIP5 models for (A) year; (B) spring; (C) summer; (D)
autumn; (E) winter.
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closer to those of NCEP, while the differences simulated by
BCC_CSM1.1(m), CNRM-CM5, FGOALS-g2 are greater in the
tropical region. The zonal mean scaling exponents of daily
precipitation simulated by CMIP5 models are generally
smaller than those of NCEP in low and middle latitudes.
Seasonal characteristics in summer and autumn are similar
to those in spring (Figures 5C,D). INM-CM4 performs
worse at the middle latitudes in summer. In winter, the
scaling exponents of NCEP daily precipitation reach the
minimum near 60°S in the southern hemisphere, and then
increase rapidly (Figure 5E).

In conclusion, most CMIP5 models can capture the
characteristic that zonal mean scaling exponents of daily
precipitation reach the peak in the tropics, and then decrease
rapidly with the latitude increasing. Among nine CMIP5 models,
the zonal mean scaling exponents simulated by CMCC-CMS,
GFDL-ESM2G and IPSL-CM5A-MR are similar to those of

NCEP, while BCC_CSM1.1(m) and FGOALS-g2 cannot
capture the feature of seasonal variations.

According to the annual average scaling exponents of daily
precipitation in each region, the differences between CMIP5
models and NCEP are generally no more than the absolute
value of 0.25. In addition, the differences are larger in the
middle and low latitudes (Figure 6A). In AO, SIB, ALA, GRL,
MED, CAS, NPO, ENA, NAO, SIO, SPO, SAO, SO and ANT
regions, the differences of scaling exponents between CMIP5
models and NCEP are less than the absolute value of 0.05. While
the scaling exponent biases are greater than the absolute value of
0.05 in TIB, EAS, EAF, TEP and NSA.

In spring, the differences of scaling exponents between NCEP
and CMIP5 models are less than the absolute value of 0.05 in
most of the world, while the differences are greater in tropical
areas (Figure 6B). In MEX, WAF, EAF, TEP, NSA, TAO, more
than half of the models show the absolute value of biases more

FIGURE 6 | The biases of the region average scaling exponents between CMIP5 models and NCEP for (A) year; (B) spring; (C) summer; (D) autumn; (E) winter.
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than 0.05. In summer, models performs relatively well in the
middle and high latitudes of the southern hemisphere. In SIO,
SPO, AUS, SSA, SAO, SO, ANT, AOGRL, CASNPO, ENA and
NAO, the absolute value of biases simulated by CMIP5 models
are less than 0.05. In WAF, EAF, NEU, SAS, SEA, TCP, TEP,
NSA, TAO, SAF, there are more than half of models, which

show the absolute value of differences greater than 0.05
(Figure 6C). In autumn, the absolute value of the model’s
biases are less than 0.05 in the most extratropical areas, while
the absolute value of more than half of simulated models’ biases
are greater than 0.05 in WAF, EAF, SEA and TEP areas
(Figure 6D). In winter, the absolute value of the CMIP5

FIGURE 7 | Scaling exponents of NCEP daily precipitation and differences between NCEP and nine CMIP5 models for annual average. (A) NCEP daily
precipitation, (B) BCC_CSM1.1(m), (C) CMCC-CMS, (D) CNRM-CM5, (E) FGOALS-g2, (F) GFDL-ESM2G, (G) HadGEM2-AO, (H) INM-CM4, (I) IPSL-CM5A-MR, (J)
MPI-ESM-MR (Black dot represents the difference is significant at a significance level of 0.05).
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models’ simulated biases are less than 0.05 in most parts of the
northern hemisphere and middle and high latitudes in the
southern hemisphere. In WAF, EAF, TIO, TCP, TEP, NSA
and SAF areas, there are more than half of the models’ absolute
value of biases greater than 0.05 (Figure 6E).

The global daily precipitation of NCEP shows LRC
characteristic in most parts of the world. The scaling
exponents are generally range from 0.65 to 0.9 in tropical

areas and even above 0.9 in the tropical middle and east
Pacific Ocean, which are significant at a significance level of
0.05 (Figure 7A). Compared with NCEP data, the scaling
exponents simulated by most models are smaller in the
tropics. Seven models overestimate the LRC in the equatorial
western Pacific except for BCC_CSM1.1(m) and HadGEM2-AO.
There are larger biases in Northwest Africa, while smaller biases
in the extratropical areas for most models. Overall, the biases of

FIGURE 8 | The same as Figure 7, but for summer.
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GFDL-ESM2G, INM-CM4 and HadGEM2-AO are relatively
small. For seasonal variations, global spatial distributions of
scaling exponents obtained by NCEP data are similar to those
of annual mean distributions. Taking summer as an example, the
scaling exponents of NCEP precipitation in the tropics and most
regions of Eurasia are above 0.65, and the values in the equatorial
Middle East and Pacific are above 0.9, which are significant at a
significance level of 0.05 (Figure 8). Compared with NCEP, the
scaling exponents of BCC_CSM1.1(m), CNRM-CM5, FGOALS-
g2 and MPI-ESM-MR are smaller in the tropics, most of Eurasia
and North America. The scaling exponents of CMCC-CMS and
INM-CM4 in the tropical western Pacific and Indian Ocean are
bigger than those in other tropical regions. The scaling exponents
obtained by GFDL-ESM2G and HadGEM2-AO show similar
spatial distribution to that of NCEP precipitation in most of
the world, except for the equatorial eastern Pacific. In other
seasons, the performance of nine CMIP5 models also varies in
different regions, and the biases’ distribution of higher values and
lower values are similar to those in summer. Generally, the biases
of precipitation’s scaling exponents simulated by GFDL-ESM2G,
HadGEM2-AO and INM-CM4 are relatively small, which means
the inner dynamical characteristics of climate systems are well
simulated by these models.

DISCUSSION AND CONCLUSION

Based on the DFA method, this paper evaluates the performance of
nine CMIP5 models for global daily precipitation from 1960 to 2005.
The DFA results of NCEP daily precipitation present long-term
correlation characteristics in most regions of the world. The scaling
exponents of precipitation in the central part of North America are the
largest in summer. The seasonal variations of daily precipitation’s
scaling exponents simulated by CNRM-CM5, GFDL-ESM2G,
HadGEM2-AO and IPSL-CM5A-MR are similar to those of NCEP,
which can capture the characteristics that scaling exponents are the
biggest in summer and the smallest in autumn. The scaling exponents
of precipitation in the equatorial central Pacific are the smallest in
summer, indicating the LRC in this region is the weakest in summer.
Moreover, the scaling exponents in winter are around 1.0 value.

The zonal average scaling exponents of NCEP daily precipitation
are smaller in middle and high latitudes. In spring, the zonal mean
scaling exponents of NCEP are larger in the northern hemisphere
than those in the southern hemisphere. The zonal average scaling
exponents in the northern hemisphere vary slightly with the latitudes
increasing and the scaling exponents are around 0.6. In the southern
hemisphere, the zonal average scaling exponents reach theminimum
near 40°S, and then increase to 0.6 with the increase of latitudes.
Seasonal characteristics in summer and autumn are similar to those
in spring. In winter, the scaling exponents of NCEP reach the
minimum near 60°S in the southern hemisphere and then
increase rapidly. Most CMIP5 models can capture the
characteristics that zonal mean scaling exponents of daily

precipitation reach the peak in the tropics and then decrease
rapidly with the latitudes increasing. The zonal mean scaling
exponents simulated by CMCC-CMS, GFDL-ESM2G and IPSL-
CM5A-MR are similar to those of NCEP, while BCC_CSM1.1(m)
and FGOALS-g2 cannot capture this feature of seasonal variations.

The global daily precipitation of NCEP shows LRC in most
parts of the world, in which the scaling exponents are generally
bigger and above 0.9 over the tropical middle and east Pacific
Ocean for the year and four seasons. The differences between
models and NCEP are larger in the middle and low latitudes. In
AO, SIB, SO and ANT regions, the differences of scaling
exponents’ absolute value between CMIP5 models and NCEP
are less than 0.05. While in WAF, EAF, TEP and NSA, the
absolute value of scaling exponents’ biases are greater than 0.05
for the year and all four seasons. The biases of GFDL-ESM2G,
HadGEM2-AO and INM-CM4 are relatively small, which means
that the dynamical characteristics of climate systems are well
simulated by these models.

The present study provides a reference for different CMIP5
models’ performance in simulating the LRC of global daily
precipitation. Comparing the individual models for certain
regions reveals that most CMIP5 models can capture the
dynamical characteristics of climate system, while there are
inter-model differences in various regions. Therefore,
appropriate models should be selected according to different
research regions.
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