About this Research Topic
Before conducting RCM/RESMs simulations, it is therefore indispensable to identify a suitable physics parametrization combination for long-term climate projections or to perform multi-physics ensemble forecasts for short-term weather or seasonal climate forecasts. In the selection process of suitable parameterization combinations, it is usually focused on the evaluation of single variables, which might lead to complex bias structures between the variables. Therefore, it might become crucial to apply a bias correction before passing the RCM/RESM output to climate impact models. Various correction methods of different complexity exist, ranging from very simple linear and univariate approaches to complex and multivariate approaches. It is assumed that the selection of a suitable setup of the RCM/RESM may reduce the need for applying complex post-processing bias correction methods.
This Research Topic seeks contributions of the following themes:
•Development and application RCMs/RESMs, in particular, multi-physics RCM/RESM experiments for different regions worldwide to support weather forecaster and climate modelers for modeling studies on different temporal scales, ranging from short-term weather predictions and medium-term seasonal predictions, towards long-term climate projections;
•Innovative methods and techniques to assess the model performance considering the spatial representation of hydrometeorological patterns (e.g. precipitation patterns due to different ENSO phase or typical storm tracks) or techniques accounting for the covariance structure between different hydrometeorological variables such as between temperature, precipitation and humidity;
•Evaluating different post-processing bias correction methods of different complexity for improving the representation of hydrometeorological variables in RCM/RESM simulations (for both deterministic and ensemble forecast systems). It can be tested whether or not different approaches may compensate for complex biases introduced by non-suitable RCM/RESM physics parameterization.
We would like to acknowledge Dr. Tien Duc Du who has acted as coordinator and has contributed to the preparation of the proposal for this Research Topic.
Keywords: RCM physics parametrization, Regional Climate Models (RCMs), Regional Earth System Models (RESMs), multi-physics ensemble forecasts, bias correction
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.