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Editorial on the Research Topic

Phagocytes in Immunity: Linking Material Internalization to Immune Responses and
Therapeutic Strategies

In this collection, a series of primary research articles and reviews cover the impressive functional
diversity of phagocytes in the maintenance of organismal homeostasis and immunity. Phagocytes,
including neutrophils, macrophages and dendritic cells, are endowed with the unique capacity to
internalize large quantities of exogenous material. This can occur through the receptor-dependent
uptake of particulate material by phagocytosis or through the uptake of fluid-phase material by
macropinocytosis. In both cases, the internalized material is processed and information is extracted
allowing phagocytes to discern homeostatic debris from any potential threats. A failure in phagocyte
function results in a departure from homeostasis. The study of phagocytes serves as a venue for
interrogating fundamental questions in the biology of molecules, cells and organisms. Here we
highlight the contributions to this Research Topic:

Both phagocytosis and macropinocytosis are initiated by receptors. One commonly studied
phagocytic receptor is the Fcg receptor (FcgR), which binds to antibodies attached to phagocytic
targets. A prerequisite for FcgR signaling involves their clustering in the plane of the plasma
membrane. Clustering is achieved when large, multivalent targets, such as immune complexes,
come into contact with the phagocyte. In this collection, Bailey et al. demonstrate that, below a
critical threshold, FcgR clustering can in fact be inhibitory, adding another layer to our
understanding of the regulation of phagocytic receptor function. In many instances, including in
the case of FcgR-mediated phagocytosis, transmembrane proteins called integrins are intimately
involved, and indeed required, for efficient phagocytosis. Sun et al. describe the activation of and
mechanisms by which integrins contribute to phagocytosis and phagocyte function.

Phagocytes encounter a diverse array of targets. Indeed, targets may be completely immobile, or,
as is the case for many pathogens, may be swimming away at high speed! Targets may be less than a
micron across, or may be filamentous, extending many microns away from the phagocyte. Yet,
phagocytes have evolved mechanisms for dealing with the vast diversity of targets they could
encounter. Baranov et al. discuss in detail how particle size and shape affect phagocytosis.
org September 2021 | Volume 12 | Article 77225615
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One commonly encountered phagocytic target is homeostatic
debris. Endowed with an array of receptors, phagocytes can bind
to and internalize dead and damaged cells. Internalization is
followed by digestion of the homeostatic debris into exportable
components, such as amino acids, nucleotides and lipids which are
transferred out of the phagosome by transmembrane transporters
for recycling or export from the cell. This process is best
exemplified by the clearance of dead and dying cells through a
process known as efferocytosis. Yin and Heit provide a
comprehensive review of efferocytosis and discuss its salient
features including phagocyte metabolism during efferocytosis,
antigen extraction from internalized cells and the coupling of
efferocytosis to the resolution of inflammation. The clearance of
spent cells is not restricted to professional phagocytes. Tissue-
resident non-myeloid cells can harbor phagocyte receptors and
play key roles in the maintenance of tissue homeostasis. Kwon and
Freeman describe how retinal pigment epithelial (RPE) cells
contribute to the optimal functioning of tissues in the eye.
Finally, the scavenging activity of phagocytes is tunable. They
remain responsive to external cues and can therefore regulate both
phagocytic and macropinocytic activity in a context-dependent
manner. Decker et al. describe how specialized pro-resolving
mediators contribute to the resolution of inflammation by
modulating the phagocytic and efferocytic activity of phagocytes.

Phagocytes can also contribute to immunity through the
direct clearance of pathogens by phagocytosis. Interestingly,
Kornstädt et al. show that during inflammation, mast cells
serve as critical regulators of the phagocytic activity of
neighboring phagocytes. Despite phagocyte specialization for
rapid and contained killing, many pathogens have evolved
means of either evading or indeed parasitizing phagocytes.
Gioseffi et al. review how pathogens parasitize phagocyte
membrane trafficking pathways to optimize their own survival.

Phagocytosis and macropinocytosis generate nascent vacuoles,
which must mature into degradative organelles akin to endosomal
maturation. The harsh environment within these compartments
allows for the killing of microbial threats, the extraction of antigen
for presentation to cells of the adaptive immune system, and the
delivery of pathogen-associated molecular patterns (PAMPs) to
intracellular pattern recognition receptors (PRRs). Critical for this
maturation is the fusion of phagosomes/macropinosomes
with lysosomes, which deliver hydrolases and promote lumen
acidification. Nguyen and Yates discuss the current understanding
of the molecular mechanisms of the fusion of phagosomes with
lysosomes. Protein S-acylation is a post-translational modification
that alters the function of many cellular proteins including those
involved in phagocytosis and phagosome maturation. Dixon et al.,
Frontiers in Immunology | www.frontiersin.org 26
discuss what is known and highlight many questions that remain to
understand this modification during these processes. Additionally,
Kawai et al. describe endocytic structures marked by Rab10 that
occur in response to macropinocytic stimuli but are instead
tubular in nature.

Altering and exploiting the adaptive immune response to
combat tumors has been a popular area for many years. Chen
et al. and Britt et al. discuss how manipulating the innate
immune response and in particular harnessing macrophages
and phagocytosis can be beneficial as a targeted cancer
therapy. The direct clearance of malignant tumor cells by
macrophages and presentation of cell-associated antigen by
dendritic cells to T cells have both emerged as areas of intense
study in cancer research. As we continue to learn about
phagocytes, new avenues for understanding the basic biology
of organisms and leveraging that information for future therapies
will undoubtedly continue to emerge.
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Phagocytosis by the Retinal Pigment
Epithelium: Recognition, Resolution,
Recycling
Whijin Kwon1 and Spencer A. Freeman1,2*
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Tissue-resident phagocytes are responsible for the routine binding, engulfment, and
resolution of their meals. Such populations of cells express appropriate surface receptors
that are tailored to recognize the phagocytic targets of their niche and initiate the actin
polymerization that drives internalization. Tissue-resident phagocytes also harbor
enzymes and transporters along the endocytic pathway that orchestrate the resolution
of ingested macromolecules from the phagolysosome. Solutes fluxed from the endocytic
pathway and into the cytosol can then be reutilized by the phagocyte or exported for their
use by neighboring cells. Such a fundamental metabolic coupling between resident
phagocytes and the tissue in which they reside is well-emphasized in the case of retinal
pigment epithelial (RPE) cells; specialized phagocytes that are responsible for the turnover
of photoreceptor outer segments (POS). Photoreceptors are prone to photo-oxidative
damage and their long-term health depends enormously on the disposal of aged portions
of the outer segment. The phagocytosis of the POS by the RPE is the sole means of this
turnover and clearance. RPE are themselves mitotically quiescent and therefore must
resolve the ingested material to prevent their toxic accumulation in the lysosome that
otherwise leads to retinal disorders. Here we describe the sequence of events underlying
the healthy turnover of photoreceptors by the RPE with an emphasis on the signaling that
ensures the phagocytosis of the distal POS and on the transport of solutes from the
phagosome that supersedes its resolution. While other systems may utilize different
receptors and transporters, the biophysical and metabolic manifestations of such events
are expected to apply to all tissue-resident phagocytes that perform regular
phagocytic programs.

Keywords: cholesterol, integrins, actin cytoskeleton, MerTK, glucose transport, V-ATPase, resolvins,
phosphatidylserine (PtdSer)
INTRODUCTION

Phagocytosis, the ingestion of large (>0.5 um) particles, is an evolutionarily conserved, actin-driven
process with roles in nutrient acquisition, immunity, and tissue homeostasis (1–3). The ongoing,
routine phagocytic programs that maintain tissue homeostasis in the absence of infection or injury
are largely performed by tissue-resident phagocytes. These cells are non-migratory and are therefore
org November 2020 | Volume 11 | Article 60420517
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strategically positioned for phagocytic encounters. In some cases,
resident phagocytes are uniformly distributed to optimally
survey the whole tissue by probing the space between them (4,
5). In other cases, they are localized to particular regions that
favor their collection and engulfment of phagocytic loads [e.g.
splenic red pulp macrophages that turnover red blood cells (6) or
bone marrow-resident macrophages that remove nuclei extruded
during erythropoiesis (7, 8)]. In all cases, the efficient removal of
dead cells, parts of cells, and debris by these phagocytes is
essential to prevent secondary necrosis, inflammation, and
autoimmunity (9, 10).

Within the category of tissue resident phagocytes are
“specialized phagocytes”; epithelial derived stromal cells
including the retinal pigment epithelium (RPE) of the eye and
Sertoli cells of the testes (10, 11). As epithelia, these cells
contribute to the formation of blood-tissue barriers while
facilitating the directional transport of oxygen, glucose,
cholesterol, etc. to the tissue from circulation. As specialized
phagocytes, these cells also actively turnover theirs neighbors.
Perhaps the best studied example of specialized phagocytes is
indeed the RPE that intimately associates with photoreceptors
and mediates their turnover (12). A single RPE cell is in contact
with ~30 photoreceptor cells (rods and cones) and is responsible
for the phagocytosis and removal of the distal portions of the
photoreceptor outer segments (POS) that are phagocytosed in a
diurnal fashion (13, 14) (Figure 1). The removed mass is not
trivial; 7–10% is eliminated daily meaning the entire POS
population is turned over every 2 weeks (15). Remarkably, a
burst of phagocytosis is timed with the entry of light to the retina
and, within hours, the phagosomes formed in each healthy RPE
cell are resolved (14, 16).

Expectedly, the removal of the aged regions of the POS and of
metabolic wastes by the RPE is essential for the homeostasis of
the retina (17, 18). Just as critically, the ingested material by the
Frontiers in Immunology | www.frontiersin.org 28
RPE needs to be resolved otherwise it accumulates and forms
lipofuscin (comprised of oxidized proteins and lipids), eventually
leading to retinal disorders (19). Lipofuscin also accumulates in
the eye with healthy aging (20, 21), so an understanding of when
and how this causes disease is fundamental. RPE cells are
themselves post-mitotic and therefore resolution of the
vacuoles formed during phagocytosis is integral to RPE
longevity. The resolution process can be envisaged as a
sequence of steps that includes the maturation of the nascent
phagosome, the digestion of luminal macromolecules, the efflux
of solutes from the phagolysosomes, and the resorption of the
phagosomal membrane. Interestingly, the building blocks from
the ingested photoreceptor outer segments (POS) are thought to
be shuttled back to the photoreceptor cells (22), supporting their
continuous regeneration and completing a “heterocellular
metabolic circuit.” Importantly, in the RPE-photoreceptor
relationship, it is appreciated that dysfunction in one cell type
leads to degeneration in the other. Such metabolic coupling and
the sequence of events that complete these circuits, while
recognized in the case of the RPE and photoreceptors, are
poorly understood for other tissue-resident phagocytes (23).

Here we describe the phagocytosis, breakdown, and
resolution of ingested POS by RPE cells. We first illustrate
phagocytosis by the RPE including the binding, ensheathment,
and ingestion of the POS driven by the RPE actin cytoskeleton.
We subsequently describe the maturation steps of the
phagosome that confer on the vacuole its degradative capacity.
The eventual efflux of solutes from the phagolysosome is
discussed in some detail and we describe how these fluxes are
expected to lead to the remodeling of the phagosomal membrane
including its vesiculation and tubulation. Finally, we propose
that the delivery of building blocks back to the tissue
microenvironment supports the health of neighboring cells and
we speculate on how such events may occur.
A B

FIGURE 1 | The retinal pigment epithelium. (A) The retina lines the back of the eye and is comprised of five cell types: rod and cone photoreceptors, bipolar, horizontal,
amacrine, and retinal ganglion cells. (B) The retinal pigment epithelium that underlies the retina is responsible for the turnover of photoreceptor outer segments (POS) by their
phagocytosis and is critical for photoreceptor function. Photoreceptors are choc-a-bloc with membrane discs that harbor opsins which are susceptible to phototoxic damage.
The most distal segments of the POS that contain the oldest discs are therefore removed from the live photoreceptors while new discs are made at the beginning of the
outer segment. Note: as new discs are formed at the base of the POS, old discs are removed by phagocytosis, a process that takes approximately 2 weeks.
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Photoreceptors and the Retinal Pigment
Epithelium: Close Encounters
Light that enters the vertebrate eye is focused onto the neural
retina, a thin tissue (∼200 µm) comprised of five main classes of
cells including photoreceptors, bipolar cells, amacrine cells,
horizontal cells, and ganglion cells (Figure 1). These cells work
concertedly to process and transmit visual information to the
midbrain, thalamus, and visual cortex via the optic nerve (24).
Despite their posterior positioning (e.g. at the back layer of the
retina and the region farthest from incoming light), it is with the
photoreceptor cells where light is captured and the visual
pathway is initiated. The light is entirely absorbed in outer
segments of the photoreceptor. The POS consists of
membranous discs packed with integral membrane proteins
called opsins. Opsins are made to be light-sensitive by their
covalent association with the chromophore retinal (e.g.
rhodopsin in the case of rods) (25) and are perhaps the best
studied of the G-protein coupled receptors. Upon light exposure,
rhodopsin undergoes immediate bleaching which triggers the
visual transduction pathway. Over time, and with repetitive
bleaching and regeneration of rhodopsin, phototoxic damage
can occur in the neighboring proteins and lipids of the discs (26).
To circumvent the accumulation of damaged components,
photoreceptors undergo continuous turnover facilitated by the
synthesis and assembly of new discs at the base of the outer
segment and the simultaneous shedding of the oldest discs from
the growing tips of the POS (Figure 1). This mechanism results
in photoreceptors that are long-lived and discs of the POS that
are short-lived (~2 weeks).

At the tip of the POS facing the RPE, is the marked
accumulation of phosphatidylserine (PtdSer) exposed on the
outer leaflet of the cell which becomes much more pronounced
with light onset (16) (Figure 2). In virtually all other healthy cell
types, the asymmetric distribution of PtdSer to the inner leaflet is
tightly maintained by the ongoing activity of phospholipid
translocases or “flippases” including ATP11A and ATP11C
(27–30). Only under apoptotic conditions are these flippases
cleaved and inactivated by caspases. The same caspases also
cleave and activate scramblases, which can alternatively be
activated by Ca2+, that begin to randomly flip membrane
phospholipids like PtdSer between the two leaflets (31–34).
Given the tight control over the asymmetric distribution of
PtdSer in most cells, the polarized and relatively sustained
exposure of the phospholipid in the non-apoptotic
photoreceptor is a unique phenomenon. It must require 1) the
very local disruption offlippases/activation of scramblases and 2)
a barrier to the free diffusion of exofacial PtdSer from the distal
POS tip.

The latter may be achieved by secreted molecules that bridge
and tether the PtdSer to RPE receptors. Plenty of bridging
molecules may participate in trapping the exposed PtdSer
including Gas6, Protein S, Tubby, and Tubby-like protein 1
which connect PtdSer to the RPE-expressed MerTK receptor
(35–38) and MFG-E8 which does the same for avb5 integrins
(39). Given that exposed PtdSer remains polarized to the distal
tips of POS inMfge8-/- and Itgb5-/- (b5 integrin) mice (16), there
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may be functional redundancy to this effect or the MerTK ligands
may be the essential factors. Here, at least Gas6 and Protein S are
provided to the interphotoreceptor matrix by their synthesis and
release from the RPEs themselves (35, 37, 40). At least some of
these bridging molecules were recently shown to be transcribed
by the RPE in a circadian fashion (41). Fittingly, experiments
challenging RPEs with POS in vitro are often performed by
augmenting the culture with exogenous Gas6 and/or Protein S
(42) suggesting their requirement and some mechanism(s) of
regulation to their expression by light.

How the local inactivation or exclusion of flippases and
activation of scramblases at the distal tip of the POS occurs
and is regulated in a diurnal fashion, on the other hand, remains
entirely unclear. Notably, scramblases of the anoctamin/
TMEM16 family show a polarized localization in other cell
types (43) and their activation causes membrane expansion
and shedding (44). A role for local Ca2+ flux and caspase
activation has also been suggested (27).

Photoreceptors and the Retinal Pigment
Epithelium: Phagocytosis
The association between the POS of the photoreceptor and the
RPEs is constant: The apical microvilli of the RPE probe and
become elaborated to “ensheath” the outer segments as they
accumulate PtdSer, long before their phagocytosis (Figure 2)
(45–47). Such membrane projections from the RPE can reach
nearly half-way up the POS (up to ~15 µm), yet little is known
about the cytoskeleton and the associated membrane remodeling
that supports these structures. It is unlikely to be mediated by the
features shared between the RPE microvilli and those found in
other epithelial cells like ezrin/radixin/moesin (ERM) proteins
(45, 48) and ERM-binding proteins including NHERF1 (49),
which tend to oppose broad ruffling events (50, 51). Other
features of the RPE apical membrane including the Na+/K+-
ATPase pump, while also unique, are unlikely to directly
drive ensheathment.

Instead, it is known that the ensheathment of POS requires
the engagement of apically targeted MerTK, a member of the
Tyro/Axl/Mer family of receptor tyrosine kinases (52, 53). Once
MerTK is engaged by Gas6 or Protein S, ligand binding induces
its multimerization and trans-autophosphorylation by the kinase
domain. This leads to the recruitment of a number of adaptors
and effectors that facilitate pseudopod extension (Figure 2). For
example, the phosphorylated tyrosines in the cytosolic aspect of
the receptor serve as docking sites for Vav, a potent GEF for Rac
GTPases (54). The ensheathment structures indeed resemble
those of spontaneous ruffles that are observed in macrophages
(55) or that can be stimulated by pathogens (56) in a manner
dependent on the activation of Rac GTPases. MerTK also
stimulates Rac activation by recruiting the p130Cas/CrkII/
Dock180 GEF complex (57). Rac-GTP can then bind and
activate the WASP-family verprolin-homologous protein
(WAVE) regulatory complex (WRC), (58, 59) which functions
as a nucleation promoting factor for Arp2/3-branching of the
F-actin cytoskeleton. Though less appreciated in recent literature,
F-actin branching has long been known to also be mediated by
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flexible dimers of filamins including filA (60). No matter how they
are formed, heavily branched networks of F-actin are indeed
associated with broad membrane ruffling events akin to those of
ensheathing RPEs (61). That Rac activation is associated with
ensheathment is supported by data demonstrating Rac is indeed
essential for the phagocytosis of POS (62).

MerTK also recruits and activates PI3K which in turn
phosphorylates PtdIns(4,5)P2 to generate PtdIns(3,4,5)P3 a
phosphoinositide that can subsequently be converted to PtdIns
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(3,4)P2 (63). PtdIns(3,4,5)P3 and potentially PtdIns(3,4)P2
support Rac activation by recruiting Rac GEFs and also
dismantle linear actin networks by recruiting Rho specific
GAPs (64) (Figure 2). The latter is critical for removing the
submembrane highly bundled actin cables of the cortex that
allows for the focal delivery of membrane from the endocytic
pathway. Collectively, these actions relieve membrane tension
that opposes membrane ruffling (65–68) and helps to explain
why PI3 kinases are critical for the phagocytosis of large particles
A

B

FIGURE 2 | Phagocytosis by the retinal pigment epithelium. (A) Like all types of phagocytosis, the engulfment of POS by the RPE is driven by actin polymerization.
PtdSer is first exposed and tethered by bridging molecules that bind the distal portion of the POS and MerTK receptors. To relieve membrane tension, linear
networks are removed by the activation of PI3K. Branched networks are stimulated by nucleation promoting factors that bring actin monomers to the Arp2/3
complex. Both activities are mediated by MerTK (see also panel B). (B) MerTK initiates a series of signaling pathways that stimulate branched actin polymerization,
networks that attach to the membrane via integrins. The major RPE integrin is avb5, which also binds to PtdSer but via MFG-E8. As actin advances the
pseudopodia tips of the RPE and facilitates severing of the POS, clearance of actin from the base of the cup allows for the delivery of new membrane, a PI3K-
dependent process.
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but not small ones (69, 70). While the phagosomes formed by the
RPE are only 1-2 µm in diameter, a single RPE needs to engulf
~30 targets at once—a number that can in fact be much higher in
the center of the retina—while maintaining junctions with its
neighbors. Given the amount of new membrane delivered and/or
the unfurling of the microvillar membrane that would require
substantive F-actin disassembly for ensheathment, it makes sense
that PI3K activation is indeed a prerequisite for synchronized
POS phagocytosis and that its inhibition leads to increased F-actin
at aborted phagocytic cups (71). That Rho inactivation is central to
the process is supported by experiments demonstrating decreased
phagocytosis when Rho kinase is made to be constitutively
active (72).

While branched networks of F-actin propel and advance
broad regions of the plasma membrane, they must be
stabilized and connected to adhered transmembrane proteins
to prevent the retrograde flow and collapse of the entire effort
(Figure 2). Such points of stability are described as “molecular
clutches” that limit the slipping of the branched F-actin networks
(73) and yield efficiency to phagocytosis in many contexts (74,
75). A molecular clutch in the RPE membrane could be
facilitated by the binding of the RPE cadherins to the neural
cell adhesion molecule (N-CAM) expressed in the POS (76).
Interestingly, aged whole animal KO Ncam-/- mice have thinned
photoreceptor cell layers and premature vision-loss (77). A
specific role for N-CAM in the RPE has not been identified
but is well-expressed in these cells. Another obvious molecular
clutch for the ruffling RPEs is the major RPE integrin, avb5
which is targeted apically. A role for the integrin here would
explain why ensheathment is not stimulated by peppering the
RPEs with MFG-E8 alone (45) but that the efficient, diurnal
removal of the portions of the POS indeed requires the integrin
and its ligand (16, 78).

Crosstalk Between MerTK and avb5
The MerTK and avb5 pathways are not mutually exclusive
(Figure 2) (57). Like other integrins, avb5 is thought to exist
primarily in a “bent” or closed conformation with low affinity for
ligand (79). Its inside-out activation is triggered by receptor
tyrosine kinases like MerTK. Once MerTK is engaged, a number
of SH2-containing proteins are then recruited to the
phosphorylated tyrosine residues including the adaptors Vav,
Crk, and Grb2 as well as the phospholipase C gamma (PLCg)
(80–82) (Figure 2). Importantly, these multi-molecular
assemblies favor the recruitment and activation of Rap
GTPases which in turn recruit the proteins necessary to
disrupt the inactive conformation of the integrin including the
Rap1-GTP-interacting adapter molecule (RIAM) and Talin (83)
leading to its inside-out activation. Talin, once bound to the b5
subunit of the integrin heterodimer, provides binding sites for F-
actin and F-actin-binding proteins like vinculin.

Such an effect is critical in the case of MerTK which itself does
not bind F-actin directly or even, to our knowledge, indirectly.
Since integrins provide the mechanical linkage between actin
polymerization to the ruffling/ensheathing membrane to yield
traction, it makes sense that their activation by primary
phagocytic receptors is observed in many types of phagocytosis
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(84). In this regard, it is noteworthy that MerTK-mediated
phagocytosis involves focal adhesion kinase (FAK) (85),
regulation of FAK activity (62), and the cleavage of PtdIns(4,5)
P2 to generate Ins3P/diacylglycerol (DAG), which are normally
associated with integrin and Rap activation respectively (86).
Still, and as previously described, other ancillary transmembrane
clutches are possible. Just as integrins can augment MerTK
initiated phagocytosis, other receptors also participate
including Tyro3 of the Tyro/Axl/Mer family of receptor
tyrosine kinases (87) and the scavenger receptor CD36 (88).
The relative contribution of Tyro3 and CD36 is still unclear and
MerTK remains the canonical phagocytic receptor of the RPE;
only the ablation of MerTK in the RPE leads to severe
photoreceptor degeneration.

Sealing of the Nascent RPE Phagosome
The final steps of phagocytosis—sealing of the nascent
phagosome by fusion of the pseudopodia tips—is the least
understood step in all instances of engulfment and is especially
poorly understood in the case of the RPE. This is remarkable
since the RPEmust apply a sufficient amount of local force on the
POS to deform and generate scission through two lipid bilayers
of an intact, live cell. The nascent phagosomes formed by RPE
cells are indeed regular in their size (1–2 µm in diameter) as
observed by electron (18) and light microscopy (89), as would be
expected given the regular turnover of the POS, so the steps
leading to scission must also be regulated. The site of eventual
scission may be demarcated on the POS by the polarized
distribution of PtdSer, which expands just before the scission
event (16). However, the final, inward constricting force to
complete phagocytosis remains enigmatic. In other systems,
this has been attributed to the dynamin machinery employed
in generic forms of endocytosis (90) and this could also be the
case for the RPE. Alternatively, or in addition to dynamin,
myosins may provide a “purse-string” constricting force as has
been observed during the phagocytosis of targets by
macrophages (91). Impressively, such a constricting force is
sufficient to deform the skeleton of red cells (91) and to
remove parts of live cells during ‘trogocytosis” (92). Indeed,
MerTK activation in the RPE leads to the marked recruitment of
Myosin II-A and Myosin II-B to the phagocytic cup, and the
pharmacological or genetic ablation of Myosin II partially
prevents POS engulfment in vitro (93). However, like the
majority of the systems used to investigate RPE phagocytosis,
here the targets were delivered in a pre-severed state. Clearly,
further studies are necessary to visualize these events and to
determine the mechanism(s) involved.

Phagosome Maturation
Following its scission from the plasma membrane, the nascent
RPE phagosome undergoes graded fusion with endosomes and
then lysosomes in a complex process termed “maturation”
(Figure 3). Maturation can be envisaged as a series of steps
marked by changes in the signaling phosphoinositides found
within the limiting membrane of the phagosome and changes
in its association with Rab GTPases in particular (12,
94). Importantly, maturation results in the acquisition of the
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V-ATPase and the delivery of enzymes from lysosomes that
grant the vacuole its degradative properties. Maturation also
coincides with—and is highly dependent on—the motor-driven
movement of the phagosomes toward the basolateral side of the
epithelial cell where they collect in a juxtanuclear location (95,
96). While the movement of the POS-containing phagosome
through the cytosol differs markedly from the phagosomes
formed in myeloid cells, the maturation process otherwise
shares many of its salient molecular features. In this section,
we therefore describe maturation in general terms and highlight
what is known in the RPE system.

The Rab family of GTPases that orchestrate membrane fusion
events and organellar trafficking are indispensable for maturation
(94). Following its sealing, Rabex-5, a guanine nucleotide exchange
factor (GEF), is targeted to the early phagosome to recruit and
activate Rab5, Rab21, and Rab22 (97). While these Rab5 subfamily
members all play important roles in phagosome maturation
(98), Rab5 remains the best characterized member (99). Once
active, Rab5 binds to its effectors including Rabaptin-5 which in
Frontiers in Immunology | www.frontiersin.org 612
turn re-stimulates Rabex-5, triggering a positive-feedback loop
(100). Additionally, Rab5 exerts its function through the
recruitment and activation of the phosphatidylinositol 3-kinase
(PI3K) Vps34, which results in the rapid production of
phosphatidylinositol 3-phosphate (PI3P). PI3P is necessary for
the recruitment of early endosomal antigen 1 (EEA1), a protein
that is essential for phagosomematuration by promoting its fusion
with endosomes (99).

Rab5 and EEA1 are indeed reported to localize to the early
RPE phagosome along with PI3P (101). Moreover, the
conditional knockout of Vps34 leads to disordered phagosome
trafficking, impaired lysosome fusion, and retinal degeneration in
mice, supporting a similar role for PI3P in the RPE system (102).
As the RPE phagosome matures, marked by its incorporation of
LAMP proteins, the localization of Rab5 and EEA1 are
expectedly depressed (101). Though mechanisms remain to be
elucidated, the LAMP family of lysosome-resident glycoproteins
is indeed required for the fusion of lysosomes with the
phagosome (103). It is therefore noteworthy, that the loss of
FIGURE 3 | Maturation of the RPE phagosome. Internalized POS particles are sealed in a nascent phagosome that undergoes step-wise maturation which involves
the graded fusion of endosomes and then lysosomes. The maturation of the phagosome is delineated by its association with Rab GTPase and its phosphoinositide
constituents, which act to coordinate fusion. Maturation also involves microtubule-based movement toward the cell center, a switch in Rabs [Rab5 ! Rab7] and
phosphoinositide [PI(3)P ! PI(3,5)P2] composition, a drop in pH [6.5 ! 4.0], and the activation of phagosomal proteases. In the RPE, the movement of the
phagosome is dependent on kinesins which traverse the cytosol towards the plus ends of the microtubules on the basal side of the cell. Once solutes are
transported from the phagolysosome, the compartment undergoes fragmentation to reform and replenish the pool of lysosomes.
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just one of these family members, LAMP2, in the murine RPE
causes delayed POS degradation and the build-up of POS debris
(104). In fact, the loss-of-function mutations in LAMP2 that
cause Danon disease in humans is also associated with retinal
and macular degeneration (105).

In all cases, progression to the late phagosome is marked not
just by the acquisition of LAMP proteins and its luminal
acidification (described later), but also by the transition from
being Rab5- to Rab7-positive, known as a Rab5-Rab7 “switch”
(106). The sharp transition between Rab5 and Rab7 is explained
by Rab7 GEFs that inhibit Rab5 activation. Specifically, Mon1, a
subunit of the Rab7 GEF Mon1-Ccz1 that recruits and activates
Rab7, also ousts Rabex-5 and arrests the Rab5 feedback loop
(107). The Rab5-Rab7 transition promotes the subunit
substitution necessary for the transformation of CORVET, a
protein complex associated with early endosomal fusion, to
HOPS, associated with later stage endosomal fusion (108).

In addition to facilitating fusion with late endosomes and
lysosomes, Rab7 activation also coordinates the inward
movement of the phagosome. In myeloid cells, the Rab7
effectors Rab7-interacting lysosomal protein (RILP) (109) and
OSBP-related protein 1 (ORP1L) (110) form complexes that
cluster dynein motors on the phagosome to cooperatively
facilitate retrograde movement (111). The apical to basal
movement of phagosomes in the RPE, while indeed dependent
on Rab7 and microtubules (112, 113), differs markedly. First, the
phagosomes formed by the RPE are initially engaged by Myosin
VIIa, an unconventional myosin that moves along F-actin.
Myosin VIIa is of particular interest since mutations in the
MYO7A gene cause Usher syndrome 1B which involves
progressive retinal degeneration (114). Fittingly, Myosin VIIa
is largely expressed in the apical region of the RPE where it may
facilitate the initial transport of the phagosome through a dense
apical F-actin network until it can latch on to microtubule
motors (96, 115). Second, the RPE phagosomes are then bound
by kinesin motors and their associated kinesin-1 light chain 1
(KLC1), rather than dynein. The RPE phagosomes on the apical
side of the cell lose their association with Myosin-VIIa as they
begin to associate with KLC1, an event that coincides with their
movement toward the basolateral side (95, 116). Mice lacking
KLC1 show delayed phagosome progression to the basal region
of the cell, the accumulation of debris and drusen, and ultimately
the loss of photoreceptors (96, 116). In contrast to myeloid cells,
a strong association with dynein motor complexes is in fact
associated with delayed phagosome maturation and impaired
phagosome motility in RPE (95). The obvious difference in
phagosomal transport through the cytosol between cell types is
attributed to the polarity of the microtubule tracks that are
inversely oriented in the RPE (12): The plus ends of the
microtubules are found at the basolateral side of the RPE.
Rab7-GTP on the RPE phagosome must therefore mediate
connections between the organelle and kinesins. Interestingly,
active Rab7 binds FYCO1 and kinesin light chain/KIF5 (117). A
role for this complex in orchestrating phagosome motility in the
RPE is unknown, though FYCO1 is known to at least control the
positioning of lysosomes in RPE cells (118).
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The precise regulation of Rabs by their posttranslational
modification is also essential for phagosome maturation,
especially in the RPE. For example, the ablation of the Rab
escort protein (Rep1), a geranylgeranyltransferase that acts on
Rab7 and others, causes a delay in phagosome maturation and
POS clearance, the accumulation of debris in the RPE, and a
pathology resembling age-related macular degeneration (119,
120). Clearly, the efficient mobilization and maturation of the
RPE phagosome is critical for retinal health and homeostasis and
has some unique features that warrant further study.

Acidification of the Phagosome
As phagosomes form in the RPE every morning, their lumens
acidify. The drop in pH is largely driven by the vacuolar ATPase
(V-ATPase) that hydrolyzes ATP to pump protons into the
lumen. Many of the digestive hydrolases, delivered to the
phagosome by its fusion with endolysosomes, are then
activated by the decrease in pH. That the acidification of the
phagosome is indeed critical for the proper digestion of POS is
exemplified by experiments demonstrating that inhibiting the V-
ATPase in the RPE causes their accumulation of swollen
phagolysosomes that do not degrade opsin proteins (121–123).
This ultimately leads to the build-up of undigested debris
between the Bruch’s membrane of the choroid and the RPE, a
phenotype akin to age-related macular degeneration (AMD) in
humans (12).

Despite the imperative role for acidification of the phagosome
via the V-ATPase, it is a process that remains remarkably
enigmatic in the RPE system. This is partly explained from an
operational standpoint. Reliable measurements of phagosomal
pH entail the selection of a suitable probe and the ability to target
it to the phagosome. In the case of retinal flat mounts, phagocytic
targets (i.e. POS) cannot be readily and specifically labeled. Most
pH determinations of the RPE phagosome, and even of their
lysosomes, have therefore been estimated by qualitative or
semiquantitative means using predominantly membrane-
permeant weak bases that accumulate in acidic organelles (89,
124). These include fluorescent dyes like LysoTracker (89), that
accumulates in the phagosome without altering its fluorescence
or LysoSensor that undergoes a pH-dependent spectral shift
(124). While such sensors are acceptable indicators of acidity,
they come with limitations (125). For example, when used at
sufficiently high concentrations, membrane-permeant basic
probes can themselves alter the pH of the (phago)lysosome.
Nevertheless, LysoSensor has been used to determine that
lysosomes in RPE cells in culture are pH 4.5 on average (124).

More recently, a genetically encoded chimera of an
intralumenal, pH-sensitive GFP tethered to a cytosolic
mCherry via a lysosomal transmembrane domain has been
utilized to measure the pH of RPE lysosomes (126). Such a
system also has caveats. First, the pKa of GFP is ~6.0 which is not
optimal for determinations of the more acidic pH values
expected within lysosomes and phagolysosomes. Second, the
proteases within the lysosome are expected to degrade the
internal GFP thereby conflating measurements of the proteolytic
activity and the pH of the compartments.
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Generally, the pH of the POS-containing phagosome or the
rate at which it acidifies has not been formally assessed but has
been inferred by the degradation of its contents (123) or by
LysoTracker (89). Other, non-ratiometric dyes like rhodamine-
based pHrodo®, that exhibit strong fluorescence in acidic
environments have also been used to grossly estimate the pH
of RPE phagosomes (127, 128).

The rates and extent of acidification should not be tacitly
assumed to occur in all phagocytes similarly. One consideration
is that in isolation, the V-ATPase driven proton influx required
for acidification is self-limiting as it creates a membrane potential
detrimental to the efficient acidification of the phagolysosome.
Such an undesirable electrogenic consequence is circumvented
by accompanied counterion fluxes that dissipate the building
voltage. This can be achieved by cation efflux (e.g. the expulsion
of Na+ or K+) or concurrent anion influx (e.g. of Cl−) (129) and
these pathways may differ widely between cell types. Little is
known about counterion flux mechanisms in any phagocyte,
however, it is noteworthy that the whole animal loss of ClC7 or
ClC3, chloride exchangers that can provide such counterion
fluxes, results in retinal degeneration. While a direct role for
ClCs in the RPE is not yet known, this phenotype could suggest
that Cl- flux into the RPE phagosome may be critical for its
acidification and breakdown of POS (130, 131).

Taken together, given that the rapid acidification supersedes
enzymatic breakdown of the POS in the phagosome and is
critical in maintaining retinal health, additional experiments
should be done in this area. Clearly, a complete picture for the
mechanisms that regulate the V-ATPase, pH, and maturation of
the RPE phagosome has yet to emerge.
Distilling and Breaking Down
Macromolecules
The delivery of the V-ATPase and acidification of the phagosome
is concomitant with the enzymatic breakdown of its contents
(Figure 3). Though published results vary, as much as 70% of the
POS dry mass is heavily glycosylated opsin, and the remaining
30% is polyunsaturated lipids, and therefore the proper digestion
in the phagosome requires the delivery and activation of proteases,
glycosidases, and lipases (132). The removal of water from the
phagosome is also thought to be an important early step that
facilitates membrane recycling, decreases the volume required for
the pump to acidify, and increases the contact between enzymes
and their substrates (133). This early step is initiated by
monovalent ion efflux followed by outward movement of
osmotically-obliged water (5) that presumably exits through
aquaporins or other pores and channels that make mammalian
membranes water-permeant.

The proteases involved in breaking down opsins which account
for >95%of the protein content of the shed POS (134) into peptides
and amino acids are primarily cathepsins. Cathepsin D, a
ubiquitously expressed aspartyl protease, has garnered particular
attention as it is both highly-expressed in the RPE and its genetic
inactivation in mice leads to incompletely digested rhodopsins in
the phagosome, the general accumulation of undigested phagocytic
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debris, and photoreceptor death (135, 136). There are numerous
cathepsins that function as cysteine proteases in the RPE, on the
other hand, so while these have also been suggested to play a role in
proteolytic degradation of the OS target, there is likely functional
redundancy between them (12). Making matters more complex, in
addition to their autoactivation, aspartyl proteases like cathepsin D
can be cleaved and activated by these cysteine proteases in the RPE
lysosome (137).

The major phospholipids of the POS are phosphatidylcholine
and phosphatidylethanolamine which account for ~80% of the
total lipid, followed by phosphatidylserine (13%), and minor
contributors like phosphatidylinositol and sphingomyelin (138).
As the photoreceptor discs age, their cholesterol content tends to
decrease, going from 30% of the molar lipid when first generated
by their invagination from the plasma membrane to 10% when
shed as part of the distal POS (139). Ingested photoreceptor
lipids, including phospholipids and glycolipids, are broken down
in the RPE phagolysosome by pH-dependent lipid hydrolases,
namely phospholipase A1 and A2 (140). Cholesterol, on the other
hand, is liberated from the POS and possibly de-esterified via the
lysosomal acid lipase type A (141) and once soluble, transported
into the limiting membrane of the phagosome. This requires a
system of cholesterol-binding proteins that support movement of
the hydrophobic molecule through tunnel-like structures. It can
be achieved by the concerted action of Niemann–Pick type C
(NPC) 1 and 2 (142) as well as by LIMP-2 (143). Niemann-Pick
proteins are indeed necessary for normal retinal function (144).
Upon its incorporation into the phagolysosomal membrane,
cholesterol transport to extra-lysosomal destinations occurs
through vesicular and non-vesicular routes (i.e. membrane
contact sites). By these means, cholesterol can be delivered to
lysosomes and/or trafficked to the plasma membrane, the Golgi
apparatus and the endoplasmic reticulum. Remarkably, as
discussed later, the efflux of POS-derived cholesterol back to
the photoreceptor by the RPE appears to be a means for
its reutilization.

As opsins are replete with glycans, a series of glycosidases are
also deployed by the RPE to the phagosome including alpha-
mannosidase, beta-glucouronidase and alpha fucosidase (145).
Human diseases involving a deficiency of these enzymes
commonly have retinal phenotypes, including degeneration,
photoreceptor death, vision loss, and undigested phagocytic
debris, suggesting that these enzymes play an important role in
POS catabolism (146, 147).

Finally, the POS is in fact embedded within an
interphotoreceptor matrix (IPM) that has a unique molecular
composition that differs from other extracellular matrices. The
major insoluble components of the IPM are in fact
glycosaminoglycans (i.e. hyaluronic acid and proteoglycans with
heparan, chondroitin, and keratan sulfate chains) (148). While the
soluble fraction of the IPM contains only small amounts of these,
the RPE is expected to take up portions of the IPM along with the
POS during phagocytosis andmay even facilitate the turnover of the
IPM over time. It follows that deficiencies in the enzymes
responsible for the breakdown of the glycosaminoglycans
(mucopolysaccharidoses) have some sort of retinal phenotype (149).
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Solute Efflux and Resolution of the RPE
Phagolysosome
Organic and inorganic solutes liberated or accumulated in the
phagosome need to be effluxed from the vacuole in order for the
compartment to “resolve” (Figure 3). Resolution is a normal part
of the phagocytic process but remains the least understood aspect.
In the case of the RPE, the return of the phagosomal membrane to
replenish the pool of lysosomes is essential. Indeed, there are no
observed circadian changes in the expression of prototypical
lysosomal proteins in the RPE and so the pool of lysosomes
used by the phagosomes must be returned to the cell (89).

In the final stages of resolution, the efflux of solutes is in fact
proposed as the mechanism that drives the reformation of
lysosomes (Figure 4). Here, tubulation and vesiculation requires
extreme deformations to the limiting phagosomal membrane and is
opposed by any tension on the vacuole (133). Tension comes in the
form of osmotic pressure, generated because the solute
concentrations of the phagosome can be higher than those of the
cytosol. As solutes flux out of the phagosome, such pressure is
relieved and the membrane becomes more pliable to these
deformations by clathrin for example (150).

The exit pathways for solutes come in the form of solute carrier
proteins (SLCs), and enormous family of transporters. While SLCs
that flux amino acids and dipeptides out of the phagolysosome are
the best appreciate in this regard (151–154), others that flux
monosaccharides, metals, Na+ (155), Ca2+ (156), etc. will all be
critical to the resolution process. The control of the efflux pathways
is only recently becoming appreciated. The mammalian target of
rapamycin (mTOR) and its associated complexes form major
Frontiers in Immunology | www.frontiersin.org 915
regulatory hubs that can both inhibit and stimulate amino acid
efflux by SLCs (151, 152, 157) and even inhibit Na+ channels (155).
We anticipate that the “phagosome-lysosome reformation” (PLR)
will require exquisite control over its timing. For example, the
organic solutes that contribute less osmotically to the compartment
overall may be effluxed before more prevalent monovalent ions to
ensure that the complete digestion and efflux of proteins and amino
acids precedes the reformation of lysosomes. Of course, these ideas
remain to be tested.

Recycling Between the RPE
and Photoreceptors
The photoreceptor outer segment (POS) grows as it is consumed by
theRPE,marking a couplingbetweenahighly anabolic cell type and
a catabolic one (Figure 4). Throughout this review, we have
emphasized the astonishing amount of material that the RPE
must turnover per day. As 90% of the membrane shed in the POS
derives fromthephotosensitivemembranes of the internal discs, the
total surface membrane of a phagosome is ~30 µm2 and the RPE
consumes ~900 µm2 of surfacemembrane on average daily. It is not
surprising that membrane-associated elements can be recycled by
theRPEback to the photoreceptor (18). In some cases, the recycling
pathwaysbetween theRPEandphotoreceptors arewell-established,
especially for the retinoid cycle (158). As described previously, the
phototransduction by opsins occur when the bound 11-cis-retinal
undergoes isomerization to all-trans-retinal which in turns alters
the conformation of the opsin. The return to the photosensitive
receptor conformation requires the rejuvenation of the 11-cis-
retinal from all-trans-retinal. Aside from the reduction of the all-
FIGURE 4 | Digestion and solute efflux in the mature RPE phagolysosome. The retinoid cycle necessitates the active participation of the RPE. Upon
photoisomerization of 11-cis-retinal to all-trans-retinal, the chromophore activates opsins and phototransduction. The removal of all-trans-retinal can then occurs by
active means or passive diffusion but importantly, is delivered to the RPE for its esterification (catalyzed by lecithin:retinol acyltransferase/LRAT). Isomerization to 11-
cis-retinol and oxidation to 11-cis-retinal also occurs in the RPE before diffusion back to the POS. The coupling between the POS and the RPE does not stop there.
Glucose is transported to the interphotoreceptor matrix from circulation by the RPE and could conceivably also come from the phagolysosome. Similarly, high
density lipoprotein mediates lipid efflux from the RPE to be used by the photoreceptors. Lipids, including cholesterol, are either transported from circulation or
recycled from the POS-containing phagosome. Finally, other building blocks like amino acids may be supplied to the IPM by means not yet determined.
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trans-retinal to retinol, all reactions that support the retinoid cycle
in fact take place in the RPE (159). The all-trans-retinol enters the
RPE from circulation but a significant portion seems to be shuttled
through the IPM (159) or by phagocytosis of the POS. The return of
the 11-cis-retinal to the photoreceptor is in turn mediated by
binding proteins, passive diffusion through the IPM, or
direct transport.

The retinoid cycle represents just one of the recycling
pathways between the cells. For example, the phospholipids of
the photosensitive membrane discs of the POS are enriched in
docosahexanoic acid (DHA), an omega-3 fatty acid. Remarkably,
the retina can retain DHA even during long periods of dietary
deprivation of omega-3 fatty acids (160). Careful experiments
using radiolabeled DHA tracked the fatty acid through the POS
and into the RPE and found that phagosomes are indeed packed
with DHA to the same extent as the distal POS. Moreover, these
types of experiments found that labelling in the RPE cytosol
remains low and diffuse throughout extended (days long) periods
of tracing, demonstrating that the DHA is quickly recycled back
to the photoreceptors (22, 161).

Whilebeyond the scopeof this review, it shouldbementioned that
normal functions of RPE include maintaining an anti-inflammatory
microenvironment and this is owed to the ongoing lipidmetabolism
of the phagosome. In particular, not all of the DHA is necessarily
recycled back to the POSas is. TheDHAsupplied to theRPE can also
be enzymatically converted to derive resolvins including
neuroprotection D1 (NPD1) (162). NPD1 is a potent anti-
inflammatory mediator that inhibits pro-apoptotic proteins and
induces anti-apoptotic proteins, yielding cell-protective effects
(162). On the other hand, the RPE can also contribute to pro-
inflammatory pathways in certain contexts. Under sustained
oxidative stress, for example, the RPE makes inflammatory
cytokines including IL-6 and IL-1b and this can lead to AMD (163).

In addition to supplying the photoreceptor with retinal and
DHA, the RPE sources the photoreceptors with glucose. To do
so, the RPE expresses remarkably high levels of GLUT1 at their
apical and basolateral surface (164). Glucose in the cytosol would
normally be quickly converted for its use in glycolysis, but this is
effectively suppressed in the RPE by the lactate that is produced
and exported by the photoreceptor and because kinases that act
on sugars are inhibited or expressed at sufficient low levels (164,
165). Conversely, such kinases (e.g. pyruvate kinase) are highly
enriched in the photoreceptor making the cell highly glycolytic
(164). When the RPE is made to consume more glucose, the
neighboring photoreceptors become starved and ultimately
degenerate. Using the same Glut1-based transport and others,
we anticipate monosaccharides could be recycled from the RPE
phagosome back to the IPM as well.

Finally, like other phagocytes, the RPE specialize in lipid/
cholesterol efflux as emphasized by their robust expression and
use of the cholesterol efflux regulatory protein ATP-binding
cassette transporter A1 (ABCA1) (166). Here, ABCA1 shuttles
cholesterol from the cytoplasm onto HDL. In the RPE, ABCA1 is
targeted to both basolateral and apical membranes and can
mediate efflux towards the subretinal space (i.e. the IPM) or, to
a lesser extent, the choroidal space. Such efflux is more evident
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when the cells are given liver X receptor agonists or POS targets.
Notably, the RPE is well-endowed with other cholesterol efflux
proteins like SRB1 and ABCG1 (166). The RPE also metabolizes
fatty acids found in the POS like palmitate to produce beta-
hydroxybutyrate (167). Interestingly, photoreceptors were also
recently found to use palmitate as an energy source through
oxidative phosphorylation (168). The shuttling of palmitate or
beta-hydroxybutyrate from the RPE to the photoreceptor as
potential substates could therefore generally serve to maintain
photoreceptor function (169).

It remains to be tested if other building blocks like sugars and
amino acids are indeed recycled back to the photoreceptor once
fluxed out of the RPE phagosome. Forms of direct transport,
where photoreceptors and the RPE could be coupled by GAP
junction proteins that support direct connections of the cytosol,
are conceivable.
CONCLUSION

The routine phagocytosis performed by the RPE of their
photoreceptor neighbors serves as a reasonable guide for future
investigations of heterocellular metabolic circuits as formed by
tissue-resident phagocytes and the cells they prune and turnover.
Unlike in the retina, other tissues can quite readily expand and
contract with abrupt dietary changes or with developmental
programs like involution. In these cases, the growth of resident
populations of phagocytes are kept in check by the stroma: Well-
defined paracrine growth factor circuits between stromal cells and
macrophages can stabilize the ratios of these populations and this
requires intimate contacts between the cells (170). Supporting
mitogenesis in such circuits with nutrient supplies may be an
overlooked feature of the coupling. A recent emphasis on cell-cell
competition in tissues (171) may benefit from understanding the
circuits, cell-cell sharing and recycling, and themetabolic ecosystems
that ensure tissue homeostasis. Such studies would immediately lend
themselves to an appreciation for how tumor-associated
macrophages support the growth of lesions. Additionally, more
emphasis on phagosome resolution and the handling of solutes in
the endocytic pathway of phagocytes iswill certainly lead to strategies
that break or support such processes and cycles. The RPE-
photoreceptor coupling is a well-defined Yin and Yang relationship
but represents one of many more circuits to be uncovered.
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Evasion of immunosurveillance is critical for cancer initiation and development. The
expression of “don’t eat me” signals protects cancer cells from being phagocytosed by
macrophages, and the blockade of such signals demonstrates therapeutic potential by
restoring the susceptibility of cancer cells to macrophage-mediated phagocytosis.
However, whether additional self-protective mechanisms play a role against
macrophage surveillance remains unexplored. Here, we derived a macrophage-
resistant cancer model from cells deficient in the expression of CD47, a major “don’t
eat me” signal, via a macrophage selection assay. Comparative studies performed
between the parental and resistant cells identified self-protective traits independent of
CD47, which were examined with both pharmacological or genetic approaches in in vitro
phagocytosis assays and in vivo tumor models for their roles in protecting against
macrophage surveillance. Here we demonstrated that extracellular acidification resulting
from glycolysis in cancer cells protected them against macrophage-mediated
phagocytosis. The acidic tumor microenvironment resulted in direct inhibition of
macrophage phagocytic ability and recruitment of weakly phagocytic macrophages.
Targeting V-ATPase which transports excessive protons in cancer cells to acidify
extracellular medium elicited a pro-phagocytic microenvironment with an increased ratio
of M1-/M2-like macrophage populations, therefore inhibiting tumor development and
metastasis. In addition, blockade of extracellular acidification enhanced cell surface
exposure of CD71, targeting which by antibodies promoted cancer cell phagocytosis.
Our results reveal that extracellular acidification due to the Warburg effect confers immune
evasion ability on cancer cells. This previously unrecognized role highlights the
components mediating the Warburg effect as potential targets for new immunotherapy
harnessing the tumoricidal capabilities of macrophages.
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INTRODUCTION

In addition to malignant cells, the tumor microenvironment
(TME) comprises a large population of resident-tissue cells and
recruited immune cells (1–3). Tumor-associated macrophages
(TAMs) are usually the most abundant groups of immune cells
found within the TME (4–8). TAMs are generally classified into
two major groups depending on their activation states: 1)
classically activated macrophages (M1), and 2) alternatively
activated macrophages (M2), both of which carry out different
functions related to tumor development and angiogenesis (9),
although these two populations are not always exclusive.

Recent breakthroughs in cancer immunology have identified
a novel role of macrophages in recognizing cancer cells and
attacking them via cellular engulfment. This process was termed
“Programmed Cell Removal” (PrCR), during which cancer cells
are directly phagocytosed by macrophages, bypassing the
induction of cell death (10, 11). Oftentimes, in established
tumors and metastases, cancer cells have evaded PrCR by
developing self-protective mechanisms, among which the best
known were the upregulation of “don’t eat me” signals to directly
inhibit PrCR, such as CD47, MHCI and CD24 (12–15). Recent
exciting progress demonstrated that PrCR may be induced by
blocking “don’t eat me” pathways to remove this inhibitory
effect, or by activating “eat me” pathways to enhance target cell
recognition, therefore reinstating macrophage-mediated
immunosurveillance and subsequently the elimination of
cancer cells (16–19). CD47 has been identified as one of the
most important anti-phagocytic “don’t eat me” signals, owing to
its upregulation on many different types of human cancer cells
(10, 11). Antibodies blocking the interaction between CD47 and
its receptor on macrophages, signal regulatory protein alpha
(SIRPa), have been shown to diminish the inhibitory signaling
transduced to macrophages via the CD47-SIRPa axis, thus
enabling the phagocytosis of cancer cells (16–19). PrCR
induction has proven to be a promising new class of cancer
immunotherapy in many preclinical cancer models, as well as
clinical trials for hematopoietic malignancies and solid tumors
(12, 13, 17, 18, 20–29).

However, the blockade of “don’t eat me” or induction of “eat
me” signals usually were not sufficient to fully eradicate cancer
cells. In addition to “don’t eat me” signals, it remains largely
unexplored whether there are other self-protective mechanisms
exploited by cancer cells to escape PrCR. The identification of
such mechanisms may reveal novel therapeutic targets for
inducing PrCR which can potentially be combined with existing
immunotherapies to achieve a superior anti-cancer efficacy.

Distinct from that in normal tissue, the unique
microenvironment in tumors directly impacts the metabolism,
signaling and function of T cells, as revealed in previous studies in
cancer immunology (30). The effects of tumor microenvironment
on PrCR, however, remains largely unexplored. Glucose oxidation
is one of the main sources of nutrients for cells and provides cells
with energy in the form of ATP. Even in the presence of oxygen,
cancer cells with high proliferation rates preferentially rely on
glycolysis, an incomplete form of glucose oxidation, for energy
production, a phenomenon known as the Warburg effect (31–33).
Frontiers in Immunology | www.frontiersin.org 223
While full oxidation of glucose produces carbon dioxide (CO2),
aerobic glycolysis in cancer cells leads to the production of lactic
acid in the form of lactate and protons. Cytosolic lactate is
transported out of the cells via monocarboxylate transporters
(MCT), while protons (H+) are secreted through membrane-
bound transporters, leading to extracellular acidification
(34, 35). Vacuolar ATPases (V-ATPase) are one of the most
important H+ transporters responsible for maintaining the acidic
extracellular pH (36, 37). V-ATPase is a multi-subunit protein
complex, consisting of a membrane-anchored V0 domain, a
cytosolic V1 domain, and accessory subunits. ATP hydrolysis in
the V1 domain drives the rotation of the V0 domain for H+

translocation, acidifying the extracellular space (38). An acidic
extracellular microenvironment has been shown to benefit cancer
cells in their proliferation, survival, metastasis, and signal
transduction (39–43), but whether it is involved in mediating
the interaction between cancer cells and TAMs and regulating the
immune evasion capabilities of cancers from PrCR has not
been addressed.

Cancer progression has been positively correlated with the
development of an immunosuppressive tumor microenvironment
(44). Here, we demonstrate that extracellular acidification
maintained by V-ATPase confers a self-protective mechanism
on cancer cells independent of anti-PrCR mechanisms elicited by
“don’t eat me” signals. This mode of defense occurs by attenuating
the phagocytic ability of macrophages against the cancer cells.
Therefore, targeting V-ATPase with pharmacological or gene
editing tactics sensitizes cancer cells to macrophage-mediated
immunosurveillance by restoring their susceptibility to PrCR,
hampering tumor development. This approach synergizes with
CD47 blocking, amplifying PrCR and yielding potent anti-cancer
activity. In addition to this, we demonstrate that a blockade of the
V-ATPase pathway in cancer cells promotes the expression of a
cancer therapeutic target, CD71 (45), and thus can be used in
combination with anti-CD71 antibodies to induce a “synthetic”
PrCR. Our results reveal a previously unrecognized role of
extracellular acidification, a common feature of many cancers, in
generating an anti-PrCR immunosuppressive microenvironment,
and may inspire future efforts for developing novel PrCR-based
cancer immunotherapy for a variety of cancers.
MATERIALS AND METHODS

Animals
BALB/c, NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG), and RAG2−/−

gc−/− BALB/c mice were bred in the Animal Resources Center at
City of Hope Comprehensive Cancer Center. BALB/c mouse strain
was purchased from the Jackson Laboratory. RAG2−/− gc−/− mouse
strain was a generous gift from Dr. Irving L. Weissman at Stanford
University. All the procedures were approved by the Administrative
Panel on Laboratory Animal Care at City of Hope Comprehensive
Cancer Center (IACUC17051, approved in August 2017).

Cell Culture
MDA-MB-231 and SW620 were cultured in DMEM (Gibco)
supplemented with 10% FBS (Gibco) and 1% penicillin/
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Warburg Effect Against Macrophage Immunosurveillance
streptomycin. DLD1, Raji and U937 cells were cultured in RPMI-
1640 (Gibco) medium supplemented with 10% FBS (Gibco) and
1% penicillin/streptomycin. All cell lines were purchased from
ATCC and maintained at 37°C in a 5% CO2 atmosphere.
Cryopreservation of large quantities of low passage (below 3)
cells was performed and cells with passage number below 20
were used in this study. Mycoplasma examination was routinely
performed every two months.

Generation of Macrophages
To generate mouse bone marrow derived macrophages
(BMDMs), bone marrow cells were harvested from the femur
and tibia of 6–12 weeks old BALB/c mice. After the red blood
cells were lysed by ACK buffer for 2 min, the bone marrow cells
were filtered through a 70-mm strainer, washed twice with
DMEM medium supplemented with 10% FBS and cultured in
IMDM medium supplemented with 10% FBS and 10ng/ml of
MCSF for 6–8 days to differentiate into macrophages.

To generate human peripheral blood mononuclear cells
(hPBMC) derived macrophages, human peripheral blood was
obtained from the blood center at City of Hope Helford Clinical
Research Hospital. CD14+ monocytes were enriched by
Magnetic-activated Cell Sorting (MACS) with CD14
MicroBeads (Miltenyi Biotec) and subsequently cultured in
IMDM with 10% human serum (Omega) for 6–8 days.

Bioinformatics Analysis
V-ATPase related gene expression data of normal tissue and
primary tumors from TCGA breast datasets were obtained from
https://portal.gdc.cancer.gov/. In total, 10 ATPase H+ Transporting
V0 subunit protein coding genes, 13 ATPase H+ Transporting V1
subunit protein coding genes and 3 ATPase H+ Transporting
accessory protein coding genes were included into the analysis.

The correlation between expression of V-ATPase related
genes including ATP6V1A, ATP6V0D1, ATP6AP1 and
ATP6AP2 and M1/M2 macrophage infiltration from TCGA
breast and colon cancer dataset was analyzed via TIMER2.0
(46). Gene expression datasets containing cancer patient
outcomes were analyzed via PRECOG program (47) to assess
the correlation between the expression of V-ATPase subunits
and survival outcomes of patients with breast cancer, colon
cancer, gastric cancer, lung cancer, pancreatic cancer, brain
cancer and hematopoietic malignancies.

Enrichment of PrCR Resistant Cells
A CD47KO SW620 stable line was generated with Transcription
activator-like effector nucleases (TALENs), as described
previously (23). Briefly, SW620 cells were transfected with
constructs containing TALEN pairs TGTCGTCATTCCATG
CTTTG and TATACTTCAGTAGTGTTTTG which were
designed to target exon2 of CD47. Cells were stained with
anti-CD47 or isotype antibodies and CD47- cells were sorted.
CD47KO SW620 cells was cocultured with BMDMs at a 1:1 ratio
for 24 h. Surviving cells were detached from the cell culture plate
by a brief incubation with trypsin during which majority of the
BMDMs were still attached to the plate. The cells were then
washed once with PBS and put back to cell culture plate with
Frontiers in Immunology | www.frontiersin.org 324
fresh growth medium (DMEM supplemented with 10% FBS) for
a recovery of 2–3 days. Cell numbers were determined by
counting GFP+ cells under a fluorescent microscope. The cells
were then added to freshly prepared BMDMs at a 1:1 ratio to
repeat the phagocytosis selection. After 10 rounds of such
selection process, the derived CD47KO SW620 sub-line cells
(termed P10) were sorted and cultured in fresh growth
medium for a recovery of 7 days. CD47KO SW620 cells that
were cultured for the same procedure and time period but in the
absence of BMDMs were used as the control line (termed P0).

The expression of CD47 on P0 and P10 cells was examined
by flow cytometry with anti-CD47 antibody (clone B6H12,
BD Biosciences) to ensure no CD47-expressing cells were
enriched. Resistance of P10 cells to PrCR was evaluated by a
phagocytosis assay.

Extracellular pH, Lactic Acid, and
V-ATPase Activity Measurement
To measure extracellular pH, SW620, DLD1 or MDA-MB-231
cells were seeded into the 6-well plates with 5x105 cells per well,
including cells treated with vehicles or concanamycin (10nM), or
cells transduced with Cas9 and control sgRNAs (non-targeting)
or sgRNAs targeting ATP6AP2, as indicated in the figure legend,
and pH of culture medium was measured at the indicated time
points by pH meter (ThermoFisher).

To measure lactic acid secretion, SW620 P0 or P10 cells were
seeded into the 24-well plates with 105 cells per well and cultured
with DMEM medium supplemented with 10% dialyzed FBS
(Gibco). Culture media of P0 and P10 were collected at 24, 48,
and 72h for lactate measurement. Cell numbers were also
recorded at these time points. The lactate release was measured
by L-Lactate Assay Kit (Eton Bioscience).

To measure V-ATPase activity, SW620 P0 or P10 cells were
seeded into the 6-well plates with 5x105 cells per well. After
overnight incubation, fresh culture medium with 100 nmol/L
Lysotracker Red DND-99 (ThermoFisher) were added to the cells
and incubated at 37°C in a 5% CO2 atmosphere for 50 min. Cells
were washed once with PBS and incubated with fresh medium for
another 10 min before the imaging. Images of brightfield and
fluorescence were taken by Cytation 3 (BioTek). The mean (Texas
Red 586,647) fluorescent intensity was calculated by Cytation 3
and set as the LysoTracker signal. The V-ATPase activity was
quantified by the LysoTracker signal per cell.

CRISPR/Cas9-Mediated Gene Editing
Suppression of gene expression was performed using the CRISPR/
Cas9 system in SW620, DLD1 and MDA-MB-231 cells. Pairs of
primers containing control sgRNAs (non-targeting) or sgRNAs
targeting human CD47, ATP6V1A, ATP6V1D, ATP6V0D1,
ATP6AP1, or ATP6AP2 genes were designed and cloned into
the all-in-one LentiCRISPR V2 vector (48). The LentiCRISPR V2
vector was transfected with the packing plasmids into HEK293T
cells. Forty-eight hours after transfection, lentiviruses were
collected and filtered through 0.45um filters to remove residual
293T cells and cell debris. SW620, DLD1 or MDA-MB-231 cells
were cultured in 6-well cell culture plates with 2x105 cells per well
and incubated with lentiviruses for 48 h in the presence of
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polybrene (8µg/ml), recovered for 24 h and selected with
puromycin (2µg/ml) for at least 6 days to obtain stable lines
with indicated genes suppressed.

The following sgRNA sequences were used:

Control 1 (Non-targeting): GAACGUAGAAAUUCCCAUUU (48)

Control 2 (LacZ): UUGGGAAGGGCGAUCGGUGC (49)

Human CD47: CUACUGAAGUAUACGUAAAG (48)

Human ATP6V1A: UGGAGAGAUUAUUCGAUUGG (48)

Human ATP6V1D: CUGUCGAAAUCGAAGAGUUA (48)

Human ATP6V0D1: AGUCAUCGAUGACCGGCUCA (48)

Human ATP6AP1: UGGUGCUUCCUGCCGUCGAC (48)

Human ATP6AP2: AGGAGAGCGGAUCCCAGACG (48)

For the rescue experiment, sgRNA targeting ATP6AP2 was
cloned into the all-in-one LentiCRISPR V2-Blast vector.
LentiCRISPR v2-Blast was a gift from Dr. Mohan Babu
(Addgene plasmid #83480) . ATP6AP2 cDNA with
synonymous mutations was cloned into pCDH vector (System
Biosciences) with a HA tag (TATCCTTACGACGTGCCTGA
CTACGCC) to its C-terminus. The targeting sequence by sgRNA
and PAM sequence in ATP6AP2 was mutated from
AGGAGAGCGGATCCCAGACGTGG to AGGTGAAC
GCATTCCTGATGTAG by site-directed mutagenesis and
confirmed by Sanger sequencing. The LentiCRISPR V2-blast
vector and pCDH vector were transfected with the packing
plasmids into HEK293T cells, respectively. Forty-eight hours
after transfection, lentiviruses were collected and filtered through
0.45um filters to remove residual 293T cells and cell debris.
SW620 cells were cultured in 6-well cell culture plates with 2x105

cells per well and incubated with lentiviruses generated from
LentiCRISPR V2 and pCDH for 48 h in the presence of
polybrene (8µg/ml), recovered for 24 h and selected with
blasticidin (30µg/ml) and puromycin (2µg/ml) for at least 2
days to obtain stable lines with suppression and/or exogenous
expression of ATP6AP2.

Flow Cytometry Analysis
Anti-human CD47 (clone B6H12, BD Biosciences), anti-mouse
F4/80 (clone BM8, BioLegend), anti-Sirpa (clone P84,
BioLegend), anti-mouse/human CD11b (clone M1/70,
BioLegend), anti-mouse CD45 (clone 30-F11, BioLegend), anti-
mouse MHC II (clone M5/114.15.2, BioLegend), anti-mouse
CD206 (clone C068C2, BioLegend), anti-mouse CD80 (clone
16-10A1, BioLegend), anti-mouse CD86 (clone GL-1,
BioLegend), anti-mouse PD-L1 (clone 10F.9G2, BioLegend),
anti-mouse Gr1(clone RB6-8C5,BioLegend), anti-human CD14
(clone HCD14, BioLegend), and anti-human CD71 (clone
CY1G4, BioLegend; clone OKT9, ThermoFisher; clone L01.1
and clone M-A712, BD Biosciences) were used for FACS
analyses. Antibodies were Phycoerythrin (PE)-, PE/Cyanine7,
APC, APC/Cyanine7, PerCP/Cyanine5.5, PE/Dazzle™ 594,
Alexa Flour® 700 or BV605 conjugated, or fluorophore-
conjugated secondary antibodies were used. Annexin V (BD
Biosciences), Sytox blue (ThermoFisher), 7-Aminoactinomycin
D (7-AAD, ThermoFisher), or Zombie Violet™ Fixable Viability
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Kit (Biolegend) was used to exclude dead cells. Flow cytometry
was performed using the BD LSRFortessa cell analyzers (BD).

Phagocytosis Assay
Phagocytosis assays were performed with mouse bone marrow-
derived macrophages (BMDMs) or human peripheral blood
monocyte-derived macrophages.

For short-term phagocytosis assays, macrophages and target
cancer cells were detached from cell culture plates by incubation
with TrypLE (Gibco). Cells were washed twice with PBS and cell
numbers were determined by cell counting. For each sample,
0.1x106 BMDMs or hPBMC macrophages were cocultured with
0.2x106 cancer cells expressing a GFP-luciferase fusion protein in
IMDM medium at 37°C in the cell culture incubator for 2 h in
the presence of CD47-blocking antibodies or other agents as
indicated in the figure legend. Cells were washed once with FACS
buffer (PBS supplemented with 2% FBS). Mouse macrophages
were stained with anti-mouse F4/80 antibody (clone BM8,
BioLegend) conjugated with PE-Cy7 and hPBMC macrophages
were stained with anti-human CD14 antibody (clone HCD14,
BioLegend) conjugated with APC. Phagocytosis index was
determined by the percentage of macrophages that have
phagocytosed cancer cells, thus becoming double positive (PE-
Cy7+GFP+ or APC+GFP+) among the entire macrophage
population (PE-Cy7+ or APC+) by flow cytometry analyses
using the BD LSRFortessa cell analyzers. Anti-CD47 antibody
(clone B6H12, BioXCell) or anti-Sirpa (clone P84, BioLegend)
antibody was used in phagocytosis assays for blocking CD47-
Sirpa interaction. Phagocytosis index was normalized to the
maximal response by each independent donor (human or
mouse) against each cell line.

In some phagocytosis assays as indicated, cancer cells were
labeled with pHrodo™ Red succinimidyl ester (Thermo). SW620
cells were washed twice with PBS and resuspended with PBS at
0.2 million cells/ml. The pHrodo™ Red was added to a final
concentration of 120 ng/ml. Cells were incubated with pHrodo™

Red for 30 min at room temperature in the dark. Cells were
washed twice with PBS and cell numbers were determined by cell
counting. For each sample, 0.1x106 BMDMs or hPBMC
macrophages were cocultured with 0.2x106 cancer cells
expressing a GFP-luciferase fusion protein in IMDM medium
at 37°C in the cell culture incubator for 2 h in the presence of
CD47-blocking antibodies or other agents as indicated in the
figure legend. The pHrodo™ Red dye becomes brightly red in
phagosomes, indicating the labeled cells were engulfed
by macrophages.

For long-term phagocytosis assays, 0.1x106 macrophages and
target cancer cells expressing a GFP-luciferase fusion protein
were cocultured in 96-well cell culture plate at ratios of 1:1 to 1:3
for 24 h. Samples with cancer cells alone (without macrophages)
were used as controls. The plates were washed once with PBS and
luciferin (SYDlabs) was added to the wells. Surviving cancer cells
were quantified by reading the luminescence signals with
Cytation 3. Cancer cell killing was determined by normalizing
the luminescence of surviving cancer cells to that of the same
type of cancer cells with the same treatment but in the absence
of macrophages.
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Western Blotting
The ATP6AP2 gene knockdown efficiency was examined by
western blotting. Cells were lysed in lysis buffer (PBS
supplemented with 0.5% SDS) along with protease inhibitors
and protein concentrations were quantified by BCA protein
assay. Protein samples were diluted in the loading buffer (62.5
mM Tris-HCl pH 6.8, 10% Glycerol, 2% SDS, 0.01%
Bromophenol Blue, 100 mM DTT) and subjected to SDS-
polyacrylamide gel electrophoresis. For immunoblotting,
anti-HA (Covance), anti-ATP6AP2 (Novus Biologicals) and
anti-GAPDH (Cell Signaling, loading control) primary
antibodies and HRP-conjugated anti-rabbit IgG or anti-mouse
IgG secondary antibodies were used.

In Vivo Tumor Models
RAG2−/− gc−/− mice were engrafted with SW620, DLD1 or MDA-
MB-231 cells expressing a GFP-luciferase fusion protein to evaluate
the role of V-ATPase-mediated extracellular acidification in tumor
development and metastasis. For the SW620 and DLD1 models,
0.05x106 CtrlKD (sgRNA targeting LacZ gene) or ATP6AP2KD cells
were suspended in RPMI medium with 25% Matrigel Matrix
(Corning) and subcutaneously injected into the 6-8 weeks old
RAG2−/− gc−/− mice. Mice were treated with PBS (control) or
CD47-blocking antibody (clone B6H12, BioXCell) once per week
starting 7 days after tumor engraftment. CD47-blocking antibody
was diluted in PBS and used as a dose of 2.5mg/kg body weight. For
the MDA-MB-231 model, 0.2 x 106 CtrlKD (sgRNA targeting LacZ
gene), CD47KD, ATP6AP2KD, or DoubleKD cells were suspended in
DMEMmedium with 25%Matrigel Matrix (Corning) and injected
into the mammary fat pad of 6-8 weeks old female NSG mice.
Bioluminescent imaging was used to monitor tumor development
and metastasis. In detail, tumor-bearing mice were injected
intraperitoneally with D-luciferin in PBS with a dose of 139mg
luciferin/kg body weight. Imaging was performed using Lago X
(Spectral Instruments Imaging) and bioluminescence signals were
analyzed with Aura Image software (Spectral Instruments
Imaging). All the tumor-bearing mice were sacrificed at the
end point.

The tumors developed by CtrlKD and ATP6AP2KD DLD1 cells
were collected, minced into small pieces, and dissociated in
DMEM with Liberase TM enzymes (ThermoFisher) and
DNase (ThermoFisher) at 37°C until a single-cell suspension
was achieved. Red blood cells were lysed with ACK lysis buffer.
Cells from the tumor were washed twice with FACS buffer (PBS
supplemented with 2% FBS) and filtered through a 70-um cell
strainer to remove undigested pieces. FcR blocker (Miltenyi) was
used to treat the cells to block non-specific binding of antibodies
and the cells were then stained with indicated antibodies and
subjected to flow cytometry analysis. A combination of cell
surface markers (CD45+ F4/80+CD11b+Gr-1-) and Zombie
Violet - were used to define tumor-associated macrophages
(TAMs). The expression of CD206, MHC II, CD80, CD86,
PD-L1 on TAMs was examined.

Quantitative PCR
Total RNA of BMDM cultured under pH 7.4 and 6.5 for 48h was
extracted with an RNA extraction kit (Qiagen). cDNA was
Frontiers in Immunology | www.frontiersin.org 526
generated by SuperScript™ VILO™ cDNA Synthesis Kit
(Invitrogen) and quantitative PCR was performed with SYBR
Green (BIOLINE) and acquired by CXF96 real-time system
(BIO-RAD).

The following primer sequences were used:

Gapdh F: CCAGTTGGTAACAATGCCATGT

Gapdh R: GAGTTGCTGTTGAAGTCGCA

Cxcl10 F: CCAAGTGCTGCCGTCATTTTC

Cxcl10 R: GGCTCGCAGGGATGATTTCAA

Tnf F: CTGAACTTCGGGGTGATCGG

Tnf R: GGCTTGTCACTCGAATTTTGAGA

Ccl5 F: GCTGCTTTGCCTACCTCTCC

Ccl5 R: TCGAGTGACAAACACGACTGC

Arg1 F: CTCCAAGCCAAAGTCCTTAGAG

Arg1 R: AGGAGCTGTCATTAGGGACATC

Fn1 F: ATGTGGACCCCTCCTGATAGT

Fn1 R: GCCCAGTGATTTCAGCAAAGG
Cytokine/Chemokine Analysis
CtrlKD and ATP6AP2KD MDA-MB-231 cells were seeded in the
12-well plates at a density of 5x 105 cells per well for 48 h. Cell
culture medium from these two lines were collected and
centrifuged. The supernatants were collected and submitted to
Eve Technologies for Human Cytokine Array/Chemokine Array
48-plex discovery arrays which were analyzed using Millipore
MILLIPLEX human cytokine/chemokine kit.

Antibody Array
Cell surface proteome on cancer cells with V-ATPase blockade
was examined by a flow cytometry-based high-throughput
antibody array.

LEGENDScreen kit purchased from BioLegend contained 332
PE-conjugated monoclonal antibodies against human cell
surface proteins. The kit also contains 10 mouse, rat and
hamster Ig isotype controls. Lyophilized antibodies in 96-well
plates were reconstituted with deionized water. SW620 cells
treated with vehicles or concanamycin (10nM) overnight were
detached from the cell culture dishes by trypsin and cell numbers
were determined by cell counting. Cells were washed twice with
cell staining buffer included in the kit and seeded to ultra-low
attachment 96-well plate with 105 cells per well using multi-
channel pipettes. Reconstituted antibodies were added to each
well of cells and gently mixed with the cell suspensions. The
plates were then incubated at 4°C for 30 min, washed twice with
cell staining buffer and subjected to flow cytometry analyses
using the High Throughput Sampler (HTS) mode of BD
LSRFortessa cell analyzers.

Statistical Analysis
Statistical analyses were performed under GraphPad Prism 8.3.0
(GraphPad Software) and Excel (Microsoft). Data are presented
as mean ± SD. Student t tests for two group comparisons
and one-way ANOVA test for multi-group comparisons were
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used for the study. A p-value of <0.05 was considered
statistically significant.
RESULTS

To identify mechanisms exploited by cancer cells against PrCR
beyond CD47 upregulation, we first knocked out CD47
expression in SW620, a human colon cancer line, by
transducing the cells with TALEN (transcription activator-like
effector nucleases) plasmids and sorting for CD47 negative cells.
A phagocytosis assay was then performed to examine the
susceptibility of cancer cells to PrCR by macrophages. In most
cancers, tumor-associated macrophages (TAMs) originated from
bone marrow progenitor cells and monocytes, which were
recruited to tumors and differentiated into TAMs. Therefore,
bone marrow-derived macrophages (BMDMs) have been
established as a sound research tool for assessing the
phagocytic ability of macrophages against cancer cells. Next, we
designed a PrCR selection assay to enrich for cells resistant to
PrCR (Figure 1A). In this assay, CD47KO SW620 cells were co-
cultured with BMDMs for 24 h. Surviving SW620 cells were
collected from the tissue culture plates and subjected to another
round of co-culture with freshly prepared BMDMs. We reasoned
that the repeated selection would lead to the depletion of cells
susceptible to PrCR, and thus the enrichment of cells resistant to
PrCR. After ten rounds of such selection, we collected the
surviving SW620 CD47KO cells (which we termed P10). We
demonstrated that consistent with previous studies, the parental
CD47KO cells became much more vulnerable to macrophage
phagocytosis due to the loss of CD47 protection (Figures 1B,
C), while the P10 cells surviving from PrCR selection had become
significantly more resistant to PrCR, as compared to the parental
cells (which we termed P0) (Figures 1B, C, and Figures S1A, B).
We assessed phagocytosis with two independent approaches: 1)
to examine the extent by which macrophages have phagocytosed
cancer cells after 2 h of macrophage-SW620 coculture, or 2) to
examine surviving cancer cells after an overnight macrophage-
SW620 coculture (Figures 1B, C). The same conclusions were
achieved from both methods, indicating PrCR-resistant cells have
been enriched in P10. Importantly, the P10 cells remained CD47
deficient (Figure 1D and Figure S1C), excluding the possibility
that our selection had enriched residual CD47-expressing cells.

During glycolysis in cancer cells, lactic acid resulting from
the Warburg effect is transported out of the cells to acidify
the extracellular microenvironment (50). Interestingly, a
significantly lower pH and higher concentration of lactate were
detected in the extracellular medium taken from P10 cells
compared to the parental cells (Figures 1E, F), although the
proliferation rate of P0 and P10 was comparable (Figure S1D),
suggesting that the P10 cells had acidified the extracellular
medium more rapidly. In addition, an increase in lysotracker
staining was observed in P10 cells (Figure 1G), indicating
enhanced assembly and activity of V-ATPases. V-ATPase is
critical for maintaining an acidic pH within the lysosomal
lumen for protein digestion and recycling (37, 38). Beyond
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this, V-ATPase also pumps protons out of the cells, leading to
an acidic microenvironment in cancer tissues (51, 52). To assess
the implications on clinical cases, we analyzed a large cohort of
gene expression datasets containing cancer patient outcomes
with the PRECOG program (47), including that of breast cancer,
colon cancer, and hematopoietic malignancies. We found that a
higher expression of V-ATPase subunits, including the V0
domain, V1 domain, and accessory domains, was correlated
with a worse overall survival outcome (Figures 1H, I and
Figures S1E–S1J). These data indicate that the hyper-
activation of V-ATPase is clinically relevant to the progression
of a wide range of cancers.

Because the evasion of PrCR has been shown to be an
important mechanism contributing to worse prognosis (53), we
decided to examine whether V-ATPase plays a role in inhibiting
macrophage-mediated PrCR. First, we used pharmacological
inhibitors to block V-ATPase activity in SW620 cells. We found
that treating the cells with concanamycin A, which blocks the
ATP-binding site in the V1 domain to disrupt its ATPase activity,
diminished extracellular acidification (Figure 2A) and
significantly promoted PrCR of P10 cells to a similar level of
that of P0 cells (Figure 2B), indicating that V-ATPase-mediated
self-protection is a major mechanism accounting for their
resistance to PrCR. Previous studies have demonstrated that
dysfunction in the subunits of the V0 domain, V1 domain, and
accessory subunits AP1 or AP2 compromises the ability for V-
ATPase to pump protons (54–56). Analyses of gene expression
profiling of patient specimens from GDC TCGA Breast Cancer
dataset revealed an enhanced expression of V-ATPase subunits in
primary tumors as compared to normal tissues (Figure 2C).
Therefore, we used a CRISPR/Cas-9-mediated gene editing
approach to knock down the expression of these subunits
individually in SW620 cells and evaluated their effects by
examining SW620 susceptibility to macrophages. Enhanced
PrCR was observed across the single subunit knockdowns
(Figure 2D), indicating that a functional V-ATPase complex is
critical for maintaining the anti-PrCR ability of cancer cells.

To evaluate whether targeting V-ATPase can be a widely
applicable strategy in inducing PrCR, we then assessed the effects
of blocking V-ATP activity by pharmacological inhibitors to
inhibit its ATPase function in a wider range of human cancer
cells including lymphoma, colon cancer and breast cancer
(Figures 3A–D). Different concentrations of concanamycin
and macrophage models including both BMDMs and human
peripheral blood monocyte-derived macrophages were used for
assessing the role of V-ATPase in regulating PrCR (Figures 3A–D
and Figures S2A, B). Enhanced elimination of cancer cells by
macrophages was observed across all the cancer lines examined,
when V-ATPase was inhibited. The blockade of the CD47-SIRPa
axis further enhanced PrCR induced by V-ATPase disruption
(Figures 3A–D), suggesting that the V-ATPase-mediated anti-
PrCR effect is independent of the inhibitory signaling transduced
by CD47. ATPase H+ Transporting Accessory Protein 2, or
ATP6AP2, is a critical component that is essential for the proper
assembly and function of the V-ATPase complex (57, 58). We
then moved to assess the effects of knocking down ATP6AP2 in a
February 2021 | Volume 11 | Article 621757

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Warburg Effect Against Macrophage Immunosurveillance
variety of cancer cells, and found a similar enhancement of PrCR
(Figure 3E). Consistently, exogenous expression of ATP6AP2 led
to an inhibition of PrCR and was able to reverse the enhanced
PrCR due to ATP6AP2 suppression (Figure 3F and Figure S3A).
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Our results suggested that the anti-PrCR effects mediated by V-
ATPase on cancer cells was in fact a general mechanism. That is,
targeting V-ATPase, either by its subunits or assembly machinery,
is sufficient to elicit PrCR.
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FIGURE 1 | Increased extracellular acidification induced by cancer cells correlated with resistance to macrophage-mediated PrCR and worse prognosis in patients.
(A) A Schematic showing the strategy to generate cells resistant to macrophage-mediated PrCR. (B, C) A 2h phagocytosis assay (B) and an overnight phagocytosis
assay (C) demonstrated the resistance of P10 cells to macrophage-mediated PrCR. P10 group was compared with the P0 group. (Normalization is described in
details in “Methods”. For overnight assay, the values of WT cells were normalized as 100%) **P < 0.01 (t test). (D) Flow cytometry analysis of CD47 expression on
SW620 WT, P0 and P10 cells. (E) P10 cells acidified extracellular microenvironment more rapidly than P0 cells. P10 group was compared with the P0 group,
72h culture medium was collected for analysis. **P < 0.01 (t test). (F) A higher concentration of L-lactate was detected in the extracellular medium of P10 cells,
as compared to that of P0 cells. P10 group was compared with the P0 group at individual time point. **P < 0.01 (t test). (G) Lysotracker staining indicated an
increased activity of V-ATPase in P10 cell, as compared to that in P0 cells. P10 group was compared with the P0 group. **P < 0.01 (t test). (H, I) Upregulation of
V-ATPase subunits V1D1 (H), V0B (I)] correlates with a worse overall survival rate in patients with colon cancer and breast cancer.
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Next, we examined the anti-cancer effects of blocking V-
ATPase in in vivo xenotransplantation models. Human colon
cancer lines SW620 or DLD1 cells were transduced with
lentiviruses expressing a GFP-luciferase fusion protein. Cas9 and
non-targeting or ATP6AP2-targeting sgRNAs were transduced
into these cells to establish CtrlKD or ATP6AP2KD stable cell lines,
respectively (Figure S3B). RAG2-/-, gc-/- or NSG mice (deficient in
T, B and NK cells but maintain functional phagocytes) were used
for tumor engraftment. After engrafted with CtrlKD or
ATP6AP2KD SW620 or DLD1 cells, the mice were treated with
a monoclonal antibody blocking CD47-SIRPa interaction, and
tumor development was quantified via bioluminescence imaging.
We showed that ATP6AP2 knockdown or CD47 blockade alone
inhibited tumorigenicity of SW620 and DLD1 in mice, and a
combination of ATP6AP2 knockdown and CD47 blockade
elicited a strong inhibition of tumor growth and development
(Figures 4A, B). Next, we used a xenotransplantation breast
cancer model to examine the effects of blocking V-ATPase on
breast tumor development and metastasis. A human breast
cancer line MDA-MB-231 stable lines with CtrlKD, CD47KD,
ATP6AP2KD, or a double knockdown were established by
CRISPR/Cas9 (Figure S2B) and injected into the mammary fat
pad of RAG2-/-, gc-/- mice (Figures 4C, D). Tumor development
and lung metastasis were monitored by bioluminescence imaging.
Suppression of either CD47 or ATP6AP2 alone in MDA-MB-231
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cells demonstrated anti-cancer effects, and a double knockdown
revealed a synergistic effect and dramatically inhibited tumor
development and lung metastasis (Figures 4C, D).

Next, we sought to understand the underlying mechanisms by
which V-ATPase in cancer cells confers the ability to escape from
PrCR. The extracellular acidification resulting from the Warburg
effect leads to an acidic tumor microenvironment with a pH value
being as low as 5.8–6.1 (59–62). To investigate the effects of acidic
media on PrCR, we performed a phagocytosis assay in media with
a pH ranging from 5.8 to 8.8 titrated by lactic acid, and found that
cancer cell phagocytosis was dramatically inhibited in the acidic
medium compared to the neutral or alkaline medium (Figure 5A
and Figure S4A). The effects of blocking V-ATPase in promoting
PrCR were diminished when the extracellular media were
maintained acidic by excessive lactic acid (Figure S4B). While
both M1- and M2-like macrophage respond to blockade of
CD47-Sirpa axis to carry out PrCR, stronger phagocytic ability
has been associated with M1-polarized macrophages (63). We
demonstrated when macrophages were cultured in acidic media,
the expression of markers for M1-like states (64, 65) including
Cxcl10, Tnf and Ccl5 was downregulated, whereas the expression
of key markers for M2-like macrophages (64, 65) including Arg1
and Fn1 was dramatically upregulated, in macrophages cultured
in acidic media (Figure 5B). Next, we assessed the effects of acidic
microenvironment in the recruitment and polarization of TAMs
A

C

B

D

FIGURE 2 | Upregulated V-ATPase activity conferred resistance to macrophage-mediated PrCR. (A) Pharmacological inhibition of V-ATPase with concanamycin A
(10 nM) diminished extracellular acidification of P10 cells. **P < 0.01 (one-way ANOVA test). (B) A phagocytosis assay with BMDMs showing that concanamycin A
treatment restored the vulnerability of P10 cells to macrophage-mediated PrCR. Each group was compared with the WT group. **P < 0.01 (one-way ANOVA test).
(C) Significant up-regulation of V-ATPase subunit coding genes in breast cancer (n=1,102) tissues as compared to the adjacent normal tissues, based on TCGA
datasets (In total 10 ATPase H+ Transporting V0 subunit protein coding genes, 13 ATPase H+ Transporting V1 subunit protein coding genes and 3 ATPase H+

Transporting accessory protein coding genes were included into the analysis). *P < 0.05 (t test). (D) A phagocytosis assay with BMDMs showing that knocking-down
the expression of the individual subunit of V-ATPase with CRISPR increased the susceptibility of SW620 cells to PrCR. Each group was compared with the CtrlKD

group. **P < 0.01 (one-way ANOVA test).
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FIGURE 3 | V-ATPase inhibition synergized with CD47 blockades to induce PrCR. (A) Phagocytosis assays with BMDMs showing that pharmacological inhibition of
V-ATPase with concanamycin A (10 nM) promoted PrCR and increased CD47-blocking antibody-induced phagocytosis. The assays were performed with human
lymphoma (U973 and Raji), colon cancer (SW620 and DLD1) and breast cancer (MDA-MB-231) lines. Each group was compared with the Ctrl group. *P < 0.05,
**P < 0.01 (one-way ANOVA test). (B) A phagocytosis assay with human peripheral blood monocyte-derived macrophages showing that concanamycin A treatment
enhanced PrCR of SW620 and MDA-MB-231 cells in the absence or presence of CD47 blocking antibodies. Each group was compared with corresponding non-
treated or treated Ctrl group. **P < 0.01 (one-way ANOVA test). (C) Representative flow cytometry plots for (B) Macrophages were labeled with anti-CD14. SW620
cells were GFP+. Concanamycin A treatment increased the percentages of human macrophage phagocytosing cancer cells (hCD14+GFP+) with or without anti-
CD47 antibody. (D) An overnight phagocytosis assay showing macrophage-mediated PrCR induced by either CD47 blocking antibody or genetic deletion of CD47
was largely potentiated by treatment of SW620 and MDA-MB-231 cells with concanamycin A (the values of CtrlKD were normalized as 100%). **P < 0.01 (one-way
ANOVA test). (E) A phagocytosis assay with BMDMs showing that genetic knockdown of ATP6AP2 expression was able to induce PrCR of SW620, DLD1 and
MDA-MB-231 cells and synergized with knockdown of CD47 expression. Each group was compared with the CtrlKD group. *P < 0.05, **P < 0.01 (one-way ANOVA
test). (F) A phagocytosis assay with BMDMs showing exogenous expression of ATP6AP2 inhibited PrCR of SW620 cells and reversed the enhanced PrCR of
ATP6AP2KD cells. *P < 0.05, **P < 0.01 (t test).
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in the tumors and investigated whether targeting V-ATPase
could reverse these effects and generate a pro-phagocytic
microenvironment. We demonstrated that disruption of V-
ATPase reverted extracellular pH back to a neutral level
(Figure 5C and Figures S4C, D) without directly impacting the
viability of cancer cells (Figures S4E, F). Therefore, we engrafted
mice with CtrlKD DLD1 cells or ATP6AP2KD DLD1 cells which
are deficient in the capability of acidifying extracellular medium,
and assessed TAMs from tumors developed by these cells by
examining their cell surface marker expression. While the
expression of markers related to antigen-presentation, such as
CD80 and CD86 (66), as well as ligands for immune checkpoints,
such as PD-L1, remained unchanged, there was a significant
downregulation of CD206 expression in macrophages taken from
Frontiers in Immunology | www.frontiersin.org 1031
tumors resulted from ATP6AP2KD cancer cells (Figures 5D–I).
Because CD206 is a well-defined marker representing
polarization toward M2-like macrophages (67), we then
examined the M1- (classically activated macrophages; CD206-,
MHC IIhigh) and M2- (alternatively activated macrophages;
CD206+, MHC IIlow/neg) like tumor-associated macrophages,
and found a significant increase of the ratio of M1:M2
macrophages (Figures 5J), suggesting that the disruption of the
acidic tumor microenvironment had compromised the
recruitment and enrichment of CD206-expressing M2-like
TAMs in the tumors. We further investigated the cytokine and
chemokine profiling of ATP6AP2 KD MDA-MB-231 cells by
quantifying 48 different human cytokine and chemokine
secreted by MDA-MB-231 cells at the protein level. We found
A B

C

D

FIGURE 4 | Suppression of ATP6AP2 expression inhibited tumor growth and metastasis in in vivo mouse models and synergized with CD47 blockade to yield a
dramatic anticancer effect. (A, B) Growth of tumors developed by SW620 cells (A) and DLD1 (B) in RAG2−/− gc−/− mice. Mice engrafted with CtrlKD cells or
ATP6AP2KD cells were treated with PBS or anti-CD47 antibody. Tumor growth was measured by bioluminescence imaging. (n=5 for SW620 model and n=7 for
DLD1 model, at 21 days after tumor engraftment). *P < 0.05, **P < 0.01 (t test). (C, D) Growth (C) and metastasis (D) of tumors developed by MDA-MB-231 cells in
RAG2−/− gc−/− mice. Mice orthotopically engrafted with CtrlKD, CD47KD, AP2KD, or double knockdown (DoubleKD) MDA-MB-231 cells. Tumor growth and metastasis
were measured by bioluminescence imaging (n=7, 7, 8, 8). In (C) Left, Tumor growth curve, *P < 0.05, **P < 0.01 (t test); Right, animal image from different groups.
In (D) Left, luminescence signals of lung metastases at day 35, **P < 0.01 (t test); Right, animal image from different groups.
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FIGURE 5 | V-ATPase-mediated extracellular acidification facilitated cancer cell evasion of PrCR via inhibition of macrophage phagocytic ability and recruitment of
M2-like TAMs. (A) A phagocytosis assay with BMDMs and SW620 cells in media with a pH ranging from 6.8 to 7.4 showing that acidic medium attenuated
macrophage-mediated PrCR toward cancer cells in the absence or presence of CD47 blockades. Each group was compared with corresponding Ctrl group.
**P < 0.01 (one-way ANOVA test). (B) mRNA expression of Cxcl10, Tnf, Ccl5, Arg1 and Fn1 in BMDMs cultured at acidic pH as compared to that in BMDMs cultured
at natural pH. (C) V-ATPase inhibition by ATP6AP2 KD or concanamycin A reverted extracellular acidification by DLD1 cells. Each group was compared with the CtrlKD

group. **P < 0.01 (one-way ANOVA test). (D) Representative FACS plots showing the expression of CD206 (bottom) on TAMs from tumors developed by CtrlKD or
ATPAP2KD DLD1 cells in mice. (E–I) Mean Fluorescent Intensity (MFI) of CD206, MHC II, CD86, CD80 or PD-L1 expression on TAMs from tumors developed by CtrlKD

or ATPAP2KD DLD1 cells in mice. **P < 0.01 (Paired t test). (J) The ratio of M1:M2 TAMs from tumors developed by CtrlKD or ATPAP2KD DLD1 cells in mice. *P < 0.05
(Paired t test). (K) Measurement of cytokine and chemokine secretion profiling of CtrlKD and ATP6AP2 KD MDA-MB-231 cells. Scale bars indicated Log2(pg/mL).
(L) Volcano plot showing the differences of cytokine and chemokine secretion by CtrlKD and ATP6AP2 KD MDA-MB-231 cells. (M, N) Correlation of ATP6AP2
expression with M1 and M2 macrophage infiltration in TCGA colon cancer (n=458) (M) and breast cancer (n=1100) (N) datasets.
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significantly higher G-CSF, IP-10 and GROa concentration in
the ATP6AP2 KD cell medium (Figures 5K, L). Although the
roles of G-CSF in macrophage polarization remained to be
determined, IP-10 and GROa has been found in many studies
to be involved in recruiting proinflammatory leukocytes and
reprograming macrophage towards M1 polarization (68, 69).
These results suggested that the inhibition of V-ATPase
function in cancer cells may be linked to the production in
proinflammatory cytokines, although such a link to eliciting the
tumor microenvironment toward a proinflammatory state
remains to be determined by further analysis. In addition, we
found V-ATPase related genes including ATP6V1A, ATP6V0D1,
ATP6AP1 and ATP6AP2 expression were positively correlated
with M2 macrophage infiltration but not M1 macrophage in
TCGA colon cancer and breast cancer dataset (Figures 5M, N
and Figures S4G–S4L), which is consistent with our findings that
acidic tumor microenvironment facilitated polarization and
recruitment of M2-like macrophages.

Cell surface proteome is the interface mediating intercellular
interaction including communications between cancer cells and
the immune system, and many of the cell surface receptors have
become important therapeutic targets for blocking cancer cell
proliferation, survival and immune evasion (70–73). Therefore,
we investigated the effects of V-ATPase disruption on cancer cell
surface proteomic landscape. SW620 cells were treated with
vehicles or concanamycin to inhibit V-ATPase activity and
subjected to an antibody array to examine cell surface marker
expression. A panel of 332 antibodies were included in the
antibody array and cell surface marker expression was assessed
by flow cytometry. We discovered that 15 proteins were
significantly upregulated on the cell surface, and 3 proteins
were significantly downregulated (Figures 6A–C). CD71 is one
such protein whose expression on SW620 cells was dramatically
upregulated upon blockade of V-ATPase (Figures 6A–C). CD71,
or transferrin receptor 1, was previously identified as a therapeutic
target for antibody-mediated cancer therapy (45, 74). The anti-
cancer effects of CD71 antibodies can be achieved by direct
cytotoxic effect through crosslinking of the receptor, or by
antibody-dependent cell-mediated cytotoxicity/phagocytosis
(ADCC/ADCP) based on Fc effector functions. We confirmed
induction of CD71 surface exposure upon V-ATPase blockade in
both SW620 and MDA-MB-231 cells (Figures 6D, E) and
reasoned that the upregulated exposure of CD71 induced by V-
ATPase blockade may further enhance the efficacy of anti-CD71
antibodies in inducing PrCR. Indeed, we found that treatment of
SW620 or MDA-MB-231 cells with anti-CD71 antibodies was
able to induce PrCR of the cells in a Fc-dependent manner
(Figures 6F, G). Furthermore, using four different monoclonal
antibodies recognizing CD71, we demonstrated that cells with
their V-ATPase blocked had become significantly more
susceptible to CD71 antibody-induced PrCR (Figures 6F, G).
DISCUSSION

The identification of T cell immune checkpoints and the
development of therapies targeting these immune inhibitory
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regulatory mechanisms have revolutionized cancer therapeutics
(75, 76). As essential components of immune regulatory
programs, negative signaling induced by ligand binding causes
a downregulation of the immune response to avoid overactivation
of immune activities (77). So far, over ten of such immune
checkpoints have been identified, such as PD-1, CTLA4, TIM3,
and so on. These immune checkpoints have been found to
function at different stages of the T cell’s lifecycle, including the
priming, proliferation, and effector phases. Blocking immune
checkpoints has been found to elicit T and NK cell attack of
malignant cells and lead to significant anti-cancer immune
responses (78). Tumor-associated macrophages represent the
largest population of immune cells present in tumors and
metastases (4, 5). The identification of immune checkpoints on
TAMs and their ligands on cancer cells revealed the therapeutic
potential for re-activating macrophages in the tumor
microenvironment for direct phagocytosis and elimination of
cancer cells (10, 11). The blockade of immune checkpoints on
macrophages subsequently restored their ability to carry out
PrCR. Recent progress in numerous preclinical models and
clinical trials has revealed the therapeutic potential of inducing
PrCR as a new class of promising immunotherapy (21, 22, 53).

Despite the exciting progress, it remains unclear whether
and how the tumor microenvironment at different stages of
tumor development impacts the PrCR ability of TAMs. The
metabolic programs in cancer cells are characterized by aerobic
glycolysis even when sufficient oxygen is present, known as the
Warburg effect, during which 2 mol of ATP can be generated per
mol of glucose (32). This directly contrasts with oxidative
phosphorylation, in which 32 mol of ATP can be generated
per mol of glucose. Glucose is converted to lactic acid during
aerobic glycolysis, which is secreted out of the cell to acidify the
microenvironment (40). The Warburg effect allows for rapid
ATP synthesis and provides intermediate biosynthetic materials,
both of which are critical for meeting the high proliferative
demands of cancer cells (33, 43). In addition to this, acidity
generated by lactic acid secretion into the extracellular medium
leads to remodeling at the tumor-stroma interface to facilitate
tumor invasion (79). The accumulation of lactic acid and
acidification of tumor sites have been reported to block
lymphocyte infiltration into tumors by limiting glucose supply
and diminishing T cell and NK cell activity (80, 81).

Here we show that the acidic microenvironment resulting from
the Warburg effect significantly attenuates macrophage-mediated
PrCR against cancer cells. Interestingly, in addition to directly
inhibiting the phagocytic ability of macrophages, an acidic
microenvironment may be involved in polarizing TAMs towards
a M2-like phenotype, therefore compromising the detection and
recognition of cancer cells. We demonstrate that targeting V-
ATPase on cancer cells to disrupt their proton pumping
machinery dramatically promoted cancer cell recognition and
PrCR. Importantly, resistance to PrCR induced by CD47-
blockade has been described in several types of cancers, which is
not attributable to the deficiency of CD47 expression on these cells
nor the contribution of other known “don’t eat me” signals,
suggesting the existence of additional anti-PrCR mechanisms
(82–84). Our results reveal a strategy of activating PrCR
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independent of and complementary to current PrCR-based
therapies by blocking CD47 on cancer cells. Therefore, this may
represent a widely applicable treatment approach for various
cancers, including those with limited or no CD47 expression.
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Cell surface proteins on cancer cells play important roles in
transmitting extracellular signals and mediating their interactions
with the immune cells, and thus are critical for cancer cells
to maintain a highly proliferative state and escape from
A C

B

G

F

E

D

FIGURE 6 | Cell surface proteome analysis revealed CD71 as a potential target for synthetic PrCR upon V-ATPase inhibition. (A) Examination of cell surface marker
expression on SW620 cells treated with vehicles or concanamycin with an antibody array containing a panel of 332 antibodies. (B) Identification of 15 upregulated
and 3 downregulated surface proteins upon concanamycin treatment. (C) Representative flow cytometry staining of the upregulated and downregulated surface
proteins on SW620 upon concanamycin treatment. (D, E) Flow cytometry analyses showing the upregulation CD71 expression on the cell surface of concanamycin-
treated SW620 (D) or MDA-MB-231 (E) cells. (F, G) Phagocytosis assay with BMDMs showing that concanamycin treatment enabled macrophage-mediated PrCR
of SW620 (F) or MDA-MB-231 (G) cells induced by CD71 antibodies. Each group was compared with corresponding Ctrl group. **P < 0.01 (t test).
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immunosurveillance (70–73). Therefore, cell surface receptors are
important therapeutic targets for cancer treatment. In this study,
we deduced a “synthetic PrCR”model, in which the blockade of V-
ATPase enhances cell surface exposure of therapeutic markers such
as CD71 and the ADCP effects from targeting such markers using
antibodies was found to be dramatically improved. Future studies
will be performed to further characterize subgroups of TAMs and
decipher their molecular phenotypes in the acidic tumor
microenvironment. This will then be used to develop strategies
to convert TAM populations with a hampered PrCR ability to
PrCR-competent groups for superior success at cancer detection
and subsequent elimination.
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Next to their role in IgE-mediated allergic diseases and in promoting inflammation, mast
cells also have antiinflammatory functions. They release pro- as well as antiinflammatory
mediators, depending on the biological setting. Here we aimed to better understand the
role of mast cells during the resolution phase of a local inflammation induced with the Toll-
like receptor (TLR)-2 agonist zymosan. Multiple sequential immunohistology combined
with a statistical neighborhood analysis showed that mast cells are located in a
predominantly antiinflammatory microenvironment during resolution of inflammation and
that mast cell-deficiency causes decreased efferocytosis in the resolution phase.
Accordingly, FACS analysis showed decreased phagocytosis of zymosan and
neutrophils by macrophages in mast cell-deficient mice. mRNA sequencing using
zymosan-induced bone marrow-derived mast cells (BMMC) revealed a strong type I
interferon (IFN) response, which is known to enhance phagocytosis by macrophages.
Both, zymosan and lipopolysaccharides (LPS) induced IFN-b synthesis in BMMCs in
similar amounts as in bone marrow derived macrophages. IFN-b was expressed by mast
cells in paws from naïve mice and during zymosan-induced inflammation. As described for
macrophages the release of type I IFNs from mast cells depended on TLR internalization
and endosome acidification. In conclusion, mast cells are able to produce several
mediators including IFN-b, which are alone or in combination with each other able to
regulate the phagocytotic activity of macrophages during resolution of inflammation.
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INTRODUCTION

Mast cells are part of the first line of defense of the body,
protecting against invading pathogens and other environmental
harm. They are long-lived, tissue-resident leukocytes, located most
abundantly close to surfaces exposed to the environment, like skin
and mucosal tissues. Their most characteristic feature is the
secretory granules densely packed with pre-formed mediators,
which can be released rapidly upon activation by degranulation.
Mast cell activation can also induce de novo synthesis and release
of lipid mediators (e.g. prostaglandin (PG) E2 and thromboxane),
cytokines and chemokines (1, 2). The precise response and
signaling pathway activated in a mast cell depends on the
stimulus activating the cell, which can be recognized and
discriminated by an extensive repertoire of receptors. These
receptors coordinate the selective release of proinflammatory
(e.g. histamine, interleukin (IL)-1b) or antiinflammatory (e.g.
IL-4, IL-10, IL-13) mediators (1, 3).

To detect invading pathogens, mast cells express a variety of
pattern recognition receptors (PRRs), including Toll-like
receptors (TLRs). TLRs are transmembrane proteins located at
the cell surface or in intracellular compartments like endosomes
or lysosomes. They form homo- or heterodimers and recruit a set
of adaptor molecules such as MyD88 and TRIF for signaling (4,
5). While MyD88 is known to be utilized by all TLRs except for
TLR3, TRIF is considered to be selectively recruited to TLR3 and
TLR4. The MyD88-dependent pathway leads to the activation of
the NF-kB pathway and the MAPK pathway, resulting in the
induction of pro-inflammatory cytokines like IL-1b. The TRIF-
dependent pathway depends on TLRs present on endosomes and
mediates the induction of type I IFNs and IFN-inducible genes
by activating transcription factors of the IFN regulatory factor
(IRF) family (4, 5). Notably, intracellular localization of TLR4
can also be required for the MyD88-dependent pathway (6).

As part of the anti-viral response, e.g. against SARS-CoV-2,
mast cells release a specific set of proinflammatory mediators,
including IL-1 and IL-6, which are positively associated with
COVID-19 severity (7, 8). Also type I IFNs were originally
described to be induced as an anti-viral response but are also
produced in response to bacterial pathogens (9). The family of
type I IFNs consists of at least 13 IFN-a isotypes, one IFN-b
isotype and various others. The cytosolic TLR receptors TLR3,
TLR7, and TLR9 sense viral nucleic acids and respond by
initiating the type I IFN response. TLR4 activates the MyD88-
dependent NF-kB pathway while located in the plasma
membrane and starts type I IFN signaling through TRIF when
internalized into endosomal compartments. Induction of the
type I IFN response by TLR2 also takes place from endosomal
compartments, but in a MyD88-dependent pathway (10–12).

Here we aimed to investigate the potential roles of
antiinflammatory mediators released by mast cells during the
resolution phase of a local zymosan-induced inflammation.
Zymosan-induced inflammation is a widely used model for
local short-lasting inflammation and evokes well-defined
inflammatory and behavioral responses. In an untargeted
mRNA sequencing approach to identify transcriptional
changes in mast cells in response to the TLR2 ligand zymosan,
Frontiers in Immunology | www.frontiersin.org 239
we found strong upregulation of genes involved in the type I IFN
response. We further showed that mast cells produce type I IFNs
also in response to LPS, which activates TLR4. This was
surprising since mast cells were believed to lack the ability to
produce type I IFNs as answer to TLR4 activation, due to being
unable to internalize surface-bound pathogens (13, 14).
Furthermore, as previously shown for macrophages (12, 13)
the induction of the type I IFN response is elicited from
endosomal compartments also in mast cells.
MATERIALS AND METHODS

Animals
C57BL/6N mice were supplied by Janvier (Le Genest, France).
Mcpt5-DTA-Cre mice were originally described and provided by
Professor Axel Roers, Technische Universität Dresden, Germany
(15). Sex and age matched Mcpt5-DTA-Cre- litter mates were
used as control mice for Mcpt5-DTA-Cre+ mice. The animals
were cared for according to the International Association for the
Study of Pain guidelines (Grants FK1066, FK1093, and FK1138).
For all experiments, the ethics guidelines for investigations in
conscious animals were obeyed and the procedures were
approved by the local ethics committee (Regierungspräsidium
Darmstadt). The animals had free access to food (Sniff standard
diet) and water and were maintained in climate- (23°C ± 0.5°C)
and light-controlled rooms (light from 6.00 a.m. to 6.00 p.m.).

Behavioral Tests
Inflammation was induced by injection of 10 µl zymosan (12 mg/
ml in PBS, #Z4250, Sigma-Aldrich) subcutaneously into the
plantar side of one hind paw. Mechanical hypersensitivity was
determined by measuring the latency of paw withdrawal using a
plantar aesthesiometer (Dynamic Plantar Aesthesiometer, Ugo
Basile). A force range of 0 to 5 g with a ramp of 0.5 g/s was
applied with a steel rod of 2 mm in diameter, until a strong and
immediate withdrawal occurred. The cutoff time was set to 20 s.

Multi Epitope Ligand Cartography (MELC)
MELC technology is an automated immunohistological imaging
method and can be used to visualize very high numbers of
antibodies on the same sample as described before (16–18).
Briefly, tissues were embedded in tissue freezing medium
(Tissue-Tek O.C.T. Compound, #4583, Sakura Finetek B.V.),
cryosections of 10 µm thickness were applied on silane-coated
coverslips, fixed in 4% paraformaldehyde in PBS for 15 min,
permeabilized with 0.1% Triton X100 in PBS for 15 min and
blocked with 3% BSA in PBS for 1 h. The sample was placed on
the stage of a Leica DM IRE2 and a picture was taken. Then, in an
automated procedure, the sample was incubated for 15 min with
bleachable fluorescence-labeled antibodies and rinsed with PBS.
Afterward, the phase contrast and fluorescence signals were
imaged by a cooled charge-coupled device camera (Apogee
KX4, Apogee Instruments). A bleaching step was performed to
delete fluorescence signals, and the post-bleaching image was
recorded. Then the next antibody was applied and the process
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repeated. For data analysis, fluorescence images produced by
each antibody were aligned pixel-wise and were corrected for
illumination faults using flat-field correction. The post-bleaching
images were subtracted from their following fluorescence image.
The antibodies used for MELC analysis were against CD11b
(BioRad, #MCA74F), CD11c (Miltenyi Biotec, #130-102-799),
CD31 (BD Biosciences, #553373), CD45 (Miltenyi Biotec, #130-
091-609), CD54 (Biolegend, #116105), CD80 (Biolegend,
#104706), CD86 (Biolegend, #105008), CD117 (Bioss, #bs-
10005R-Cy5), CD206 (AbDSerotec, #MCA22335FA), F4 80
(Biolegend, #123107), IL-1b (Thermo Fisher, #11-7114-82), IL-
4 (Biolegend, #504109), IL-10 (eBioscience, #11-7101), IL-13
(Invitrogen, #53-7133-82), Ly6C (eBioscience, #17-5932-80),
Ly6G (eBioscience, #11-5931-82), MHC II (Miltenyi Biotec,
#120-000-810), Siglec F (BD Pharmingen, #562068). Nuclei
were s ta ined with propidium iodide (PI) (S igma-
Aldrich, #P4170)

Analysis of MELC Data
In a first step all greyscale antibody channel images were
processed using ImageJ 1.52v to diminish noise, background
fluorescence and remove artifacts for further analyses if
necessary. Subsequently, images for propidium iodide (cell
nuclei) and CD45 were used for single-cell segmentation using
Cell Profiler (version 3.1.9) (19). The resulting segmentation
mask was loaded into histoCAT (version 1.76) (20) together with
the corresponding antibody channel images. All images,
excluding zymosan images and images used for single-cell
mask generation, were z-score normalized and used for
Barnes-Hut t-SNE (BH t-SNE) (21) and PhenoGraph analysis
(22) as implemented in histoCAT. PhenoGraph defines cell
clusters based on single-cell mask and marker colocalization (k
was set to 20 or 30). BH t-SNE scatter plot was overlaid with a
colored PhenoGraph cluster map. To investigate the relationship
between clusters, neighborhood analysis under standard
conditions as implemented in histoCAT was used (20).

Multiplex Cytokine Assay
Cytokine and chemokine levels were determined in ipsi- and
contralateral paws of Cre- and Cre+ Mcpt5-DTA mice 48 h after
injection of 10 µl 12 mg/ml zymosan, using the Bio-Plex Pro
mouse cytokine group I (Bio-Rad). Tissue samples of paws were
dissected and frozen directly at −80°C until protein extraction.
The tissue was lysed in 400 µl lysis buffer (1x Protease Inhibitor
Cocktail (#11697498001, Roche) in Tissue Extraction Reagent
(#FNN0071, Invitrogen). Samples were cut in small pieces and
then sonicated twice at 60% power for 10 sec with an Ultrasonic
Homogenizer (SONOPULS HD2070 MS73, Bandelin).
Afterwards all samples were centrifuged for 10 min at 10,000 g
and the supernatant harvested. The concentration of total
protein in the samples was assessed by the bicinchoninic acid
assay. All samples were diluted to a final protein concentration of
200–900 µg/ml, according to the kit requirements. The
concentrations of IL-1a, IL-1b, IL-2, IL-3, IL-4, IL-5, IL-6, IL-
9, IL-10, IL-12p40, IL12-p70, IL-13, IL-17, Eotaxin, G-CSF, GM-
CSF, IFN-g, CXCL1 (KC), CCL2 (MCP-1), CCL3 (MIP-1a),
CCL4 (MIP-1b), CCL5 (RANTES), TNF-a were measured with
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a Bioplex 200 (Bio-Rad). The concentration was then normalized
to the total protein concentration of the respective sample and is
shown as pg/mg protein.

Polychromatic Flow Cytometry
Mcpt5-DTA Cre- and Cre+ mice were injected with 10 µl
zymosan (12 mg/ml #Z4250, Sigma-Aldrich) and pHrodo Red
zymosan Bioparticles (#P35364, Invitrogen) per paw into the
plantar side of one hind paw per mouse. Polychromatic flow
cytometry was performed essentially as described previously
(23). Briefly, single-cell suspensions were generated from solid
tissues (<1 mm3), by digestion with 3 mg/ml Collagenase IA
(Sigma) DMEM for 45 min at 37°C, followed by filtration
through a 70 µm nylon mesh (BD Life Sciences). Then the
cells were incubated for 5 min in DMEM containing 10% FCS to
stop the lysis followed by incubation in ACK buffer for 5 min.
After centrifugation (1,000 g, 5 min), the cells were washed in
PBS and resuspended in 30 µl FACS buffer (1% FCS in PBS),
followed by incubation with an antibody cocktail for 1 h at 4°C.
Cells were transferred to FACS tubes. Samples were acquired
with a FACS Canto II flow cytometer and analyzed using FlowJo
software V10 (both BD Biosciences). For gating, fluorescence
minus 1 (FMO) controls were used. The antibodies used for
FACS analysis were: CD117-PE (Miltenyi, #130-102-795),
FcϵRIa-FITC (#134305, Biolegend), Ly6C-eFluor450
(eBioscience #48-5932-82) Ly6G/Ly6C-FITC (eBioscience, #11-
5931-82), F4/80-PE/Cy7 (Biolegend, #123113), F4/80-PE
(Biolegend, #123110), SiglecF-PE-Vio770 (Miltenyi, #130-102-
167), CD45-VioGreen (Miltenyi, #130-123-900), CD206-APC
(Biolegend, #141708), CD86-BrilliantViolet421 (Biolegend,
#105031), CD11b-APC/Cy7 (Biolegend, #101225), MHCII-
FITC (Miltenyi, 130-081-601). For analysis of phagocytosed
neutrophils, intracellular staining with Ly6G-APC (Biolegend,
#127614) was performed. Cells were prepared as described
above, incubated with ACK buffer, fixed for 5 min with 1%
PFA and washed with PBS. Then the cells were permeabilized
with 0.1% Saponin and incubated for 1 h at 4°C with antibodies
in FACS buffer containing 0.1% Saponin. After the incubation,
the cells were washed with 0.1% Saponin and resuspended in PBS
for flow cytometry analysis.

Bone Marrow-Derived Mast
Cells (BMMCs)
BMMCs were prepared as described earlier (24). Bone marrow
cells were isolated from murine femur and tibia from the hind
legs of adult mice. The bones were cut open at one end and
centrifuged at 10,000 g for 1 min. The cells of a single animal
were resuspended in 40 ml of mast cell medium consisting of
RPMI 1640 medium supplemented with 10% fetal bovine serum,
100 U/ml penicillin/streptomycin, 4 mM L-Glutamine, 1 mM
sodium pyruvate, 1% MEM nonessential amino acids, 50 µM 2-
mercaptoethanol and 10 µg/L IL-3 (#213-13, PeproTech). Forty
milliliters of medium was added twice a week. The cells were
cultivated for 4 to 6 weeks at 37°C with 5% CO2 under
humidified conditions. After 4–6 weeks, the purity and
maturity of the mast cells was assessed by FACS analysis on a
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FACS Canto II flow cytometer (BD Life Sciences). For FACS
analysis, a portion of the cells was centrifuged at 500 g for
10 min, washed with PBS and then resuspended in FACS buffer
(1% FCS in PBS). The cells were then incubated for 1 h with
CD117-PE (130-102-795, Miltenyi Biotec) and FcϵRIa-FITC
(#134305, Biolegend) at 4°C, washed and analyzed on a FACS
Canto II flow cytometer (BD Life Sciences) (Figure S1).

Bone Marrow-Derived
Macrophages (BMDMs)
BMDMs were prepared as described earlier (16). Bone marrow
cells were isolated from murine femur and tibia from the hind
legs of adult mice. The bones were cut open at one end and
centrifuged at 10,000 g for 1 min. The cells were differentiated in
macrophage medium consisting of RPMI 1640 GlutaMAX
medium supplemented with 10% fetal bovine serum, 100 U/ml
penicillin/streptomycin, and 20 ng/ml macrophage colony
stimulating factor (M-CSF, #AF-315-02, Peprotech). Non-
adherent cells were removed after one day of cultivation by
exchange of medium, fresh medium was added after 4 days. Cells
were grown for 7 days at 37°C and 5% CO2. Non-adherent cells
were removed after one day of cultivation by exchange of
medium, fresh medium was added after 4 days.

RNA Sequencing
BMMCs were cultivated for 4–6 weeks as described, then the cell
number was adjusted to 8x105 cells/ml and the cells were treated
with 10 µg/ml zymosan for 24 h or 48 h or left untreated (0 h).
Cells were stained as described above and then sorted using a
FACS Aria (BD Biosciences) to obtain a pure population of
CD117+/FcϵRIa+ double-positive cells. RNA was isolated from
the FACS-sorted cells using the RNeasy micro Kit (Qiagen,
#74004). Library preparation was carried out with the
QuantSeq 3’ mRNA Library Prep Kit FWD (Lexogen). The
quality of the libraries was controlled with a Bioanalyzer High
Sensitivity DNA Assay (Agilent Technologies), quantification
was carried out using a Qubit dsDNA HS assay (Thermo Fisher
Scientific). Sequencing was performed on a NextSeq500 using a
NextSeq500 High Output (75 cyc) Kit (Illumina).

The raw sequencing reads were preprocessed with the
software bcl2fastq. Read mapping against the mouse reference
genome (GRCm38.p6, primary assembly) was done with the
STAR aligner (version 2.6.0a 2018/04/23) (25). The mapped
reads were assigned to annotated features (genes) using the
Bioconductor package Rsubread (v1.28.1) (26). Unassignable
reads comprise reads overlapping with more than one gene
(ambiguous), non-unique mappers and reads that map outside
known genes. On average 75% of uniquely mapped reads could
be assigned to genes. Differential expression of genes between
conditions was assessed with the Bioconductor package DESeq2
(v1.18.1) (27). Gene ontology analysis was performed with the
gene set library “GO Biological Processes 2018” by EnrichR
(28, 29).

Cytokine Measurements
BMMCs were cultivated for 4–6 weeks as described, then the cell
number was adjusted to 8x105 cells/ml in mast cell medium and
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the cells were pre-incubated and induced as indicated in the
respective figure legends with 25 µM Cytochalasin D (#C2618,
Sigma-Aldrich), 50 µM Bafilomycin A (#SML1661, Sigma-
Aldrich), and 10 µg/ml zymosan (#Z4250, Sigma-Aldrich) or
100 ng/ml LPS (#L3129, Sigma-Aldrich). BMDMs were
cultivated for 7 days as described and induced with 10 µg/ml
zymosan. Cytokines were measured at the indicated time points
after induction using the following ELISA Kits: Mouse IL-10
Quantikine (#M1000B), Mouse IL-1 beta/IL-1F2 Quantikine
(#MLB00C), Mouse IFN-beta Quantikine (#MIFNB0, all from
R&D Systems), VeriKine-HS (High Sensitivity) Mouse IFN
Alpha All Subtype (#42115-1, PBL Assay Science).

LC-MS/MS
LC-MS/MS analysis of PGE2 in BMMC culture medium was
performed as described previously (24). Briefly, 100 µl PBS, 100
µl 150 mM EDTA, and 20 µl internal standard solution (10 ng/ml
of [2H4]-PGE2 in methanol) were added to 100 µl cell suspension
before extraction liquid-liquid extraction using with 600 µl ethyl
acetate. Organic layer was separated and the extraction was
repeated using again 600 µl ethyl acetate. The organic layers
were combined, evaporated at 45°C under a gentle stream of
nitrogen and reconstituted with 50 µl of acetonitrile:water:formic
acid (20:80:0.0025, v/v). 10 µl of this solution were injected into
the LC-MS/MS system. For LC-MS/MS analysis an Agilent 1290
Infinity LC system (Agilent, Waldbronn, Germany) coupled to a
hybrid triple quadrupole linear ion trap mass spectrometer
QTRAP 6500+ (Sciex, Darmstadt, Germany) equipped with a
Turbo-V-source operating in negative ESI mode was used.
Chromatographic separation was done using a Synergi Hydro-
RP column (2.0 x 150 mm, 4 µm particle size; Phenomenex,
Aschaffenburg, Germany), coupled to a precolumn of the same
material. 0.0025% formic acid and acetonitrile containing
0.0025% formic acid served as mobile phases. Mass
spectrometric parameters were: Ionspray-voltage −4,500 V,
source temperature 500°C, curtain-gas 40 psi, nebulizer-gas
40 psi, Turboheater-gas 60 psi. Both quadrupoles were running
at unit resolution. For analysis, Analyst Software 1.6 and
Multiquant Software 3.0 (both Sciex, Darmstadt, Germany)
were used, employing the internal standard method (isotope-
dilution mass spectrometry).

Statistical Analysis
Statistical significance was determined by unpaired t-test, one-
way ANOVA using a Tukey’s post-test or Dunnett’s post-test, or
two-way ANOVA using a Sidak’s post-test through the
GraphPad Prism 6 software as outlined in the figure legends.
RESULTS

Mast Cells Influence Macrophage
Phagocytosis During Resolution of
Zymosan-Induced Inflammation
To study the time course of the inflammatory response to the
TLR2 ligand zymosan, we determined the mechanical
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hypersensitivity after subcutaneous injection of zymosan into the
plantar side of one hind paw. Mechanical hypersensitivity
increased significantly as early as 1 h after zymosan injection
and was maintained for at least 8 h after injection. Afterwards
hypersensitivity receded until it returned to baseline at day 5
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(Figure 1A). The receding mechanical hypersensitivity is
indicative for the resolution phase of the inflammation. To
study the localization of mast cells and to determine their
neighboring cells during resolution of inflammation, MELC
analyses were performed with paws from naïve mice as well as
A

C

D

B

E

FIGURE 1 | Mast cells are located in antiinflammatory regions during resolution phase of zymosan-induced inflammation. (A) Mechanical paw withdrawal latencies in
mice (n=10) at indicated time points after injection of zymosan (10 µl, 12 mg/ml in PBS). Data are mean ± S.E.M., one-way ANOVA, Dunnett’s test vs. baseline,
***p<0.001, ****p<0.0001. (B) Representative images of immunohistological multi epitope ligand cartography (MELC) staining of paws form naïve mice or 4 h or 48 h
after injection of zymosan. FITC-labeled zymosan, marker for pro-inflammatory cells (CD86), anti-inflammatory cells (CD206), mast cells (CD117) are shown in false
colors. White dotted lines depict the outline of the zymosan-filled area in the paw. (C) Representative Barnes-Hut t-SNE (BH t-SNE) plot colored by cell clusters
defined by PhenoGraph analysis. Underlying images originate from MELC analysis of mice paw 48 h after zymosan injection. The positions of some cell types are
depicted in the plot. DC, dendritic cells; MF, macrophages. (D) Heat map showing a representative result of the neighborhood analysis for mast cells in naïve paw
and 4 h or 48 h after zymosan injection (n=3–4). UC, unidentified cluster. Red depicts cells, which neighbor mast cells more frequently than they would in random
permutations of cell cluster labels in each image set. Blue depicts cell clusters neighbor less frequently than with randomly permuted cell labels and white depicts
cells cluster neighbors with random frequency. (E) Averaged score for mast cell neighborhood regarding antiinflammatory macrophages (M2 MF) based on
neighborhood analysis of naïve paw or 4 h or 48 h after injection of zymosan (n=3-4). A score was assigned for red=1, white=0, blue=−1. Data are shown as mean ±
S.E.M., one-way ANOVA test, *p<0.05.
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4 and 48 h after injection of zymosan into the paw. Throughout
the time-course there was no significant increase of the mast cell
number (Figures S2A, B). The MELC technology is an
automated system, allowing the sequential imaging of an
unrestricted number of directly labeled antibodies on the same
tissue sample. To enable visualization of zymosan in the paw
FITC-labeled zymosan was used for injection. At peak
inflammation 4 h after zymosan injection, a time point with
early inflammation and hypersensitivity, neutrophils (Ly6G+)
were located in and around the zymosan-containing region
(Figure 1B). In addition the appearance of CD86+/CD206+

macrophages outside of the zymosan-containing region was
observed. Forty-eight hours after zymosan injection, a time
point with declining mechanical hypersensitivity, neutrophils
(Ly6G+) were located mainly in the same region as zymosan
(Figure 1B) and proinflammatory CD86+ cells were located in or
near the zymosan-containing area. Antiinflammatory CD206+

cells surrounded the region containing the CD86+ cells (18).
Quantitative analysis of the MELC data was performed using a
machine learning approach using HistoCAT software (20), to
determine individual cell phenotypes and their cellular
microenvironments. Single-cell segmentation was performed
based on staining for CD45 and nuclei, which was followed by
PhenoGraph analysis allowing the discrimination of the different
immune cell types including mast cells (Figure 1C). PhenoGraph
analysis of MELC images for the relative location of 21
antibodies showed expression of cytokines with certain
antiinflammatory properties (IL-4, IL-13, and IL-33) as well as
the proinflammatory cytokine IL-1b in mast cells (Figure S3).
To determine the cellular neighborhood of mast cells, a
neighborhood analysis for all identified mast cells was
performed. This analysis aims to determine which cell types
are neighboring mast cells more often as expected for a random
distribution (20). The analysis revealed that 48 h after zymosan
antiinflammatory M2-like macrophages (CD206+) and to a lesser
degree eosinophils (Siglec F+) and dendritic cells (CD11c+, MHC
II+) are found in the neighborhood of mast cells (Figure 1D).
Quantitation of the presence of M2-like macrophages in the
cellular neighborhood of mast cells was subsequently performed
with independent MELC runs using a scoring system
differentiating between random distribution (0) as well as more
(1) or less (−1) often than expected for random distribution.
Here, the presence of M2-like macrophages next to mast cells
reached significance 48 h after zymosan injection (Figure 1E).
Proinflammatory M1-like macrophages (CD86+) or neutrophils
(Ly6G+) in the neighborhood of mast cells are found in numbers
corresponding to a random distribution (Figure 1D).

To assess potential effects of mast cells on the immune
response, we compared in a first approach the expression
patterns of macrophage populations using a PhenoGraph
analysis of MELC images with inflamed paw tissue 48 h after
zymosan-injection in Mcpt5-DTA-Cre mice. In these mice Cre
recombinase is under control of the mouse mast cell protease 5
(Mcpt5) promotor and activates a Cre-dependent expression of
the catalytically active diphtheria toxin A (DTA) subunit causing
constitutive mast cell deficiency (15). Accordingly, remaining
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numbers of mast cells in paws from Cre+ mice were around 20%
as compared to Cre- mice (Figure S2C). The PhenoGraph
analysis showed a striking reduction of the Ly6G marker for
neutrophil granulocytes in M1-like macrophages of the mast
cell-deficient mice (Cre+), which is suggestive for decreased
efferocytosis (Figure 2, Figure S4). Notably, neutrophils were
more present 4 h than 48 h after zymosan injection, while Ly6G-
positive macrophages were more prominent 48 h after zymosan
injection (Figure S5) reflecting increased efferocytosis during the
resolution phase.

The observed potential reduction of efferocytosis was not due
to alterations in the recruitment of immune cells to the site of
inflammation, since the number of neutrophils, macrophages,
dendritic cells and eosinophils were not changed in mast cell-
deficient mice 48 h after zymosan injection (Figure 3A, Figure
S6A). Thus, mast cell-derived cytokines do not contribute to the
recruitment of cells in that phase of the inflammatory reaction.
Also, macrophage polarization toward M1-like or M2-like
phenotypes was not altered by the absence of mast cells 48 h
after zymosan injection (Figure 3B, Figure S6B). Finally, since
mast cells are known to regulate the ability of macrophages to
phagocytose apoptotic cells, such as neutrophils (30), we
determined phagocytotic activity of macrophages and
neutrophils by injecting pH-sensitive pHrodo Red zymosan
bioparticles, which become fluorescent after phagocytosis
inside of lysosomes. Forty-eight hours after injection of these
pHrodo Red zymosan particles FACS analysis showed no
difference in the percentage of for pHrodo Red zymosan+

neutrophils or the mean fluorescence intensity (MFI) in these
cells between Cre- and Cre+ Mcpt5-DTA mice (Figures 3C, D).
Most importantly, the percentage and the MFI of pHrodo Red
zymosan+/F4 80+ macrophages were significantly decreased in
mast cell-deficient mice (Figures 3C, E). Likewise, the
phagocytotic activity of macrophages toward neutrophils, as
determined by the percentage of macrophages showing
phagocytosis of neutrophils (Ly6G+), was decreased in mast
cell-deficient mice (Figures 3F, G). Notably, the observed
decreased phagocytotic activity of macrophages in mast cell-
deficient mice did not lead to significant changes in the
mechanical hypersensitivity between Cre- and Cre+ Mcpt5-
DTA mice (Figure S7), demonstrating that the decreased
efferocytosis is not taking part in the nociceptive processes
underlying mechanical hypersensitivity.

To identify mediators, that mediate mast cell-regulated
efferocytosis, we determined the levels of 23 cytokines,
chemokines and growth factors in Cre- and Cre+ Mcpt5-DTA
mice. Out of 23 mediators included in the screen, 11 were
significantly increased in the inflamed paws of Mcpt5-DTA-Cre-
mice as compared to tissue from untreated mice (Figure 4). Out of
these 11 mediators only IL-4 and CXCL1 showed a significant
difference in zymosan-injected paws between Cre- and Cre+ mice.
Both mediators were significantly lower in zymosan-injected paws
of mast cell-deficient mice. Other cytokines, such as IL-6 and IL-9,
were only significantly elevated in zymosan treated paws from Cre-

mice, but did not reach significance between Cre- and Cre+ mice
(Figure 4). IL-4 is known for driving polarization of macrophages
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toward antiinflammatory (M2-like) phenotypes and CXCL1 for
promoting chemotaxis of neutrophils. However, the decreased
efferocytosis in mast cell-deficient mice cannot be explained by an
increase of M1-like macrophages nor a decrease of neutrophil
number, since neither of these effects was observed by flow
cytometry analysis.

RNA Sequencing Shows Activation of
Type I IFN Pathway in Zymosan-Induced
Mast Cells
To better understand zymosan-induced changes in the gene
expression of mast cells, we employed bone marrow-derived
mast cells (BMMCs). First, we stimulated BMMCs with zymosan
or LPS to determine the time course of their activation by
determining the release of IL-10 and Il-1b. The levels of both
cytokines reached a maximum after zymosan stimulation for 24–
Frontiers in Immunology | www.frontiersin.org 744
48 h (Figure 5A). A similar response was seen for LPS
stimulation whereby the IL-10 release was markedly lower than
during zymosan-stimulation (Figure 5B). Thus, to investigate
the changes in gene expression induced by zymosan in mast cells
in detail, we used untreated BMMCs as well as BMMCs
stimulated for 24 or 48 h with zymosan, FACS-sorted them to
homogeneity using antibodies against CD117 and FceRIa
(Figure S8) and performed the mRNA sequencing. The
principal component analysis showed that the major
differences in gene expression were seen between unstimulated
and stimulated cells (Figure 5C). No significant differences in
gene expression were detected between 24 and 48 h. Most of the
significantly differentially expressed genes are upregulated at
both time points when compared to unstimulated cells.

Gene ontology term enrichment analysis of the sequencing
data showed that the most prominent response is the upregulation
FIGURE 2 | M1 macrophage phagocytosis of neutrophils is reduced in mast cell-deficient Mcpt5-DTA Cre+ mice compared to Cre- control mice. Images show
representative BH t-SNE analysis from Mcpt5-DTA Cre+ or Cre- mice 48 h after injection of zymosan. Plots on the left are colored by cell clusters defined by
PhenoGraph analysis (Figure S4). Plots on the right are heatmaps for the expression of the neutrophil marker Ly6G. The position of cell phenotype clusters
containing CD86+ M1 macrophages (M1 MF) or neutrophils (Ly6G+/F4 80-) is indicated.
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of the type I IFN pathway after 24 and 48 h incubation (Figure 6A,
Figure S9). Eight and nine groups out of the top ten gene ontology
terms were related to this response after 24 and 48 h, respectively.
(Figure 6A, Figure S9). The type I IFN response is generally
regarded as an anti-viral response, which explains why terms
related to “response to virus” are assigned to some genes.
Moreover, after 24 h the six strongest upregulated genes were all
IFN-inducible genes (Figure 6B). One of the genes with the
strongest increase (6,12 log2 fold change) after 24 h of zymosan
stimulation is Interferon regulatory factor 7 (Irf7), a transcription
factor, which mediates the induction of the type I IFN response by
TLR ligands in macrophages (12). Likewise, Irf1 and Irf9 are
upregulated, with a log2 fold increase of 1.45 and 2.18,
respectively. Thus, so far the data show that in mast cells
zymosan induces the release of several antiinflammatory
cytokines, and additionally a type I IFN response is triggered.
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Either of the responses alone or in combination can serve to
explain the altered efferocytosis by macrophages in mast cell-
deficient mice. mRNA expression for the two mediators, IL-4 and
CXCL1, which were at the protein level significantly lower in
inflamed paws from mast cell-deficient mice, was also detected in
the zymosan-stimulated BMMCs, although changes between
untreated and treated cells did not reach significance due to
variability of the expression levels.

Mast Cells Release of IFN-b in Response
to Zymosan and LPS Requires Phagosome
Maturation
Next, we aimed to validate the findings from the RNA sequencing
approach by determining the concentration of type I IFNs released
by BMMCs after induction with zymosan and LPS. The time course
showed an early IFN-b increase in the medium (6 h after zymosan
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FIGURE 3 | Mast cells influence phagocytosing activity of macrophages during resolution phase of zymosan-induced inflammation. (A) FACS analysis for the
number of neutrophils, macrophages, eosinophils and dendritic cells in Mcpt5-DTA-Cre- and Cre+ mice 48 h after injection of zymosan (10 µl, 12 mg/ml in PBS).
Data are shown in % of all cells as mean ± S.E.M. (n=5–9), unpaired two-tailed t-test. (B) Number of M1-like (CD86+) macrophages and M2-like (CD206+)
macrophages 48 h after injection of zymosan (10 µl, 12 mg/ml in PBS). Data are shown in % of all F4 80+ cells as mean ± S.E.M. (n=7–9), unpaired two-tailed t-test.
(C) Gating strategy for flow cytometry analysis of phagocytosis of pHrodo Red zymosan by macrophages (F4 80+) and neutrophils (F4 80-/Ly6G+). (D, E)
Phagocytosis of pHrodo Red zymosan (10 µl, 12 mg/ml in PBS) by neutrophils (panel D) or macrophages (panel E) in Mcpt5-DTA-Cre- and Cre+ mice 48 h after
zymosan injection. Data are mean ± S.E.M. (n=7–9), unpaired two-tailed t-test, *p<0.05. (F) Gating strategy for flow cytometry analysis of phagocytosis of neutrophils
by macrophages. Intracellular staining of Ly6G+ neutrophils was performed. (G) Decreased phagocytosis of neutrophils (intracellular Ly6G) by macrophages (F4 80+).
Data are mean ± S.E.M. (n=7–9), unpaired two-tailed t-test, *p<0.05.
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FIGURE 4 | Mast cells influence the level of IL-4 and CXCL1 in paws of zymosan-injected mice. Levels of 23 cytokines, chemokines and growth factors in
contralateral paws (untreated) and ipsilateral paws 48 h after injection of zymosan (10 µl, 12 mg/ml in PBS) in Mcpt5-DTA Cre- and Cre+ mice determined by
multiplex cytokine assay. Data are mean ± S.E.M. (n=6). Two-way ANOVA, Tukey’s multiple comparison test, significance between ipsi- and contralateral paws
within one genotype is presented by *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, significance between genotypes is presented by #<0.05, ##p<0.01.
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or LPS stimulation), which declined gradually afterwards
(Figures 7A, B). In contrast, IFN-a, another member of the type
I IFN-family, was not detected after stimulation of BMMCs (Figure
S10). IFN-b concentrations in the mast cells themselves were
not detectable in untreated BMMCs suggesting that IFN-b is
newly synthesized (Figure 7A). It should be noted that the
amount of IFN-b synthesized in BMMCs was in a similar range
as the amount of IFN-b synthesized in bone marrow-derived
macrophages, which served as positive control (Figure 7C).
Importantly, immunohistological analysis showed that IFN-b is
expressed inmast cells in paws from naïve mice as well as 4 and 48 h
after zymosan injection into the paws of wild type mice (Figure
Frontiers in Immunology | www.frontiersin.org 1047
7D), suggesting that in contrast to BMMCs mast cells in paws show
a basal IFN-b expression.

Since in macrophages TLR2- and TLR4-induced IFN-b
release depends on the internalization of these receptors, we
investigated if receptor internalization is also a prerequisite in
mast cells (12, 13). First we tested whether or not IFN-b release
depends in mast cells on the translocation of surface receptors to
acidic endolysosomal compartments. We used Cytochalasin D
(Cyt D) to prevent receptor internalization by inhibiting actin
polymerization and Bafilomycin A (Baf A), a proton pump
inhibitor, which interferes with endosomal acidification. Both
inhibitors inhibited the release of IFN-b (Figure 7E), whereas the
release of IL-1b in response to zymosan and LPS was not reduced
(Figure 7F). Finally, zymosan has previously been demonstrated
to activate various immune cells in an ERK-dependent matter
through dectin-1 instead of TLR2 (31–33). However, inhibition
of the ERK signaling pathway using the MEK inhibitor U0126
did not reduce zymosan-induced IFN-b release from BMMCs
(Figure 7G).
DISCUSSION

Being located closely to host-environment interfaces, mast cells are
among the first cells to come into contact with invading pathogens.
They are equipped with a wide variety of receptors and an immense
amount of preformed mediators and are thus able to respond
quickly and specifically to diverse stimuli. Besides their role in
initiating and promoting a proinflammatory immune response,
they also have antiinflammatory and immunosuppressive functions.
In this regard it has been proposed that mast cells are able to adjust
their mode of action to the changing microenvironment during the
different stages of an inflammation (34). Antiinflammatory
immunomodulatory functions of mast cells have been so far
mostly assigned to the cytokine IL-10 (35–38). It is well known
that many cell types, including mast cells, respond to viral infections
through TLR3, TLR7, and TLR9 initiating the type I IFN response
as well as release of various proinflammatory cytokines (7, 8), which
make them targets for antiinflammatory treatments including the
use of cytokines of the IL-1 family with antiinflammatory properties
(39, 40). RNA sequencing showed that mast cells are also able to
initiate a strong type 1 IFN response in response to TLR2 and TLR4
activation. In this regard we observed a strong upregulation of genes
associated with the type I IFN pathway inmast cells, stimulated with
the TLR2 agonist zymosan as well as the release of IFN-b from these
cells. This was surprising since mast cells were believed to be unable
to internalize the receptor-pathogen complex necessary for IFN
production and since TRIF signaling does not participate in LPS-
mediated induction of TLR4 (13, 14). In contrast to TLR4, TLR2 is
not associated with TRIF adaptor molecules and is known to be able
to induce the type I IFN pathway in a MyD88-dependent way (10).

In our study we observed the release of IFN-b also after TLR4
induction by LPS, contradicting previous findings. A possible
explanation for the induction of IFN-b by TLR4 despite the
apparent absence of TRIF signaling might be that, similar to
TLR2, TLR4 can mediate IFN-b induction in a MyD88-
A

B

C

FIGURE 5 | RNA sequencing shows differential expression of genes in bone
marrow-derived mast cells (BMMCs) after induction with zymosan. (A, B)
Concentration of IL-10 and IL-1b in the supernatant of BMMCs induced with
zymosan (10 µg/ml) (panel A) or lipopolysaccharides (LPS) (100 ng/ml) (panel
B) at the indicated time points. Data are mean ± S.E.M. (n=4). One-way
ANOVA, Dunnett’s multiple comparison test for IL-10 and IL-1b, compared to
0 h control, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. (C) The principal
component analysis (PCA) was calculated on the 500 most variable genes
across conditions in the RNA sequencing.
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dependent way. The absence of detectable IFN-b in one previous
study might be explained by the fact that IFN detection was not
performed through a direct measurement, such as an ELISA
assay, but through an indirect assay using IFN induced luciferase
production in L929 cells transfected with an IFN-sensitive
luciferase construct (14). Possibly this assay was not sensitive
enough to detect IFN, since also viral activation of mast cells led
not to IFN-b detection. In the study of Dietrich et al. (13), lack of
TLR-induced IFN-b synthesis was proposed to be based on the
inability of mast cells to actively internalize the pathogen-
receptor complex. However, this is in contrast to several
papers, which demonstrated the internalization of TLR4
receptor in mast cells. For example, LPS treatment of BMMCs
induced the internalization of TLR4 receptor by a mechanism
Frontiers in Immunology | www.frontiersin.org 1148
dependent on the activity of dynamin and the transport protein
Huntingtin (41). Here, TLR4 internalization was necessary for
LPS-induced ERK1/2 activation and TNFa production. Likewise,
intracellular localization of TLR4 was shown for peripheral
blood-derived mast cells, lung mast cells as well as in the
human mast cell line HMC-1 (42, 43).

Previous studies demonstrated that endolysosomal trafficking
is required for the successful induction of the type I IFN pathway
for primarily cell surface-located TLRs. It was also shown that
TRAF3 is necessary for induction of the type I IFN response and
is not efficiently recruited to the TLR signaling complex at the
plasma membrane. The intracellular localization together with
potential conformational changes in the acidic environment are
thought to facilitate the interaction with TRAF3 (11, 44, 45). In
A

B

FIGURE 6 | IFN type I signaling is the dominant response in bone marrow-derived mast cells (BMMCs) after 24 h stimulation with zymosan. (A) Top ten upregulated
gene ontology terms of RNA sequencing by EnrichR 24 h vs. 0 h after induction of BMMCs with 10 µg/ml zymosan. (B) List of the 32 genes with the strongest
upregulation 24 h after induction with 10 µg/ml zymosan as compared to untreated BMMCs.
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A B C
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FIGURE 7 | Interferon (IFN)-b is produced by mast cells after induction with zymosan or LPS and requires receptor internalization. (A) IFN-b from bone marrow-
derived mast cells (BMMCs) after induction with zymosan (10 µg/ml) at the indicated time points in cell pellet and supernatant. Data are shown as mean ± S.E.M.
(n=3). One-way ANOVA, Dunnett’s multiple comparison test compared to control, *p<0.05, **p<0.01, ***p<0.001. (B) Release of IFN-b from BMMCs after induction
with lipopolysaccharides (LPS) (100 ng/ml) at the indicated time points. Data are shown as mean ± S.E.M. (n=3). One-way ANOVA, Dunnett’s multiple comparison
test compared to control, *p<0.05. (C) Release of IFN-b from BMMCs and BMDMs 24 h after induction with zymosan (10 µg/ml). Data are shown as mean ± S.E.M.
(n=4). Two-way ANOVA, Sidak’s multiple comparison test compared to unstimulated control, ***p<0.001, ****p<0.0001. (D) Representative stainings for CD117 and
IFN-b of paws from naïve mice or 4 and 48 h after zymosan-injection. (E, F) BMMCs either untreated or pre-treated for 1 h with 25 µM Cytochalasin D or 50 µM
Bafilomycin A were stimulated for 24 h with 10 µg/ml zymosan or 100 ng/ml LPS. The concentrations of IFN-b (E) or IL-1b (F) were determined in the medium. Data
is shown as mean ± S.E.M. (n = 4). Multiple t-test comparing unstimulated and zymosan or LPS stimulated cells, Holm Sidak’s multiple comparison test, *p<0.05.
(G) BMMCs either untreated or pre-treated for 1 h with 10 µM MEK-inhibitor U0126 were stimulated for 24 h with 10 µg/ml zymosan. The concentrations of IFN-b
and IL-1b were determined in the medium. Data are shown as mean ± S.E.M. (n = 4). Multiple t-test comparing control and zymosan treatment, Holm Sidak’s
multiple comparison test, *p<0.05.
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accordance with this, pharmacological blockage of receptor
internalization and endosome maturation in mast cells also
inhib i t s the induct ion of type I IFNs , whi le the
proinflammatory response is still active upon TLR2 and
TLR4 activation.

The time course of the release of IFN-b from BMMCs showed
that the IFN-b release peaks 6 h after zymosan stimulation, while
significant amounts of IL-10 and IL-1b are only detected after
24 h of zymosan treatment. Since IFN-b was not detected in
unstimulated mast cells, this early response demonstrates the
induction of IFN-b synthesis. The induction of the expression of
other mediators, which are able to induce IFN-b, would be also a
possibility, although this scenario does not fit to the observed
time frame. Taken together the data point toward a direct
induction of IFN-b synthesis in BMMCs by zymosan.
However, it should be noted that the situation in vivo differs
from the findings in BMMCs, since we found mast cells
expressing IFN-b not only in inflamed paws but also in naïve
mice. The fact that mast cells in paws express IFN-b also under
basal conditions points toward the storage of this mediator for its
fast release in response to pathogens including zymosan or LPS.
Thus, the specific in vivo microenvironment of mast cells in paw
tissue apparently allows the basal expression and most likely the
storage of IFN-b in mast cells. While IFN-b was seen in mast
cells in vivo using immunohistochemistry, we did not detect
IFN-b by ELISA in whole paw lysates. However, since relative
few mast cells are localized in the paw, IFN-b levels might be
locally increased but too low to be detected in the context of
whole tissue analyses. Whether or not this IFN-b released by
mast cells affects phagocytotic activity of macrophages during
zymosan-induced inflammation is not clear. Also in case that
IFN-b modulates the phagocytotic activity of macrophages in
this model, it can only be speculated if this regulation is a direct
effect or is mediated by secondary mechanisms, such as altering
the release of other mediators from mast cells themselves or
other immune cells is still an open question, which needs to be
addressed in future studies.

The enhancing effect of IFN-b on efferocytosis by
macrophages has been shown recently, demonstrating the pro-
resolving functions of this cytokine (46). Here, we observed a
decrease of the phagocytotic activity of macrophages in mast cell-
deficient mice during resolution of inflammation, while no
changes in the number of neutrophils, monocyte-derived
macrophages, eosinophils or dendritic cells recruited to the
zymosan-injected paw were observed. These findings show that
mast cells do not play a dominant role in immune cell
recruitment in the resolution phase of zymosan-induced
inflammation. The screening for alterations in cytokine and
chemokine levels in mast cell-deficient mice showed a decrease
of IL-4 and CXCL1 in absence of mast cells. CXCL1 is best
known for its ability to promote chemotaxis of neutrophils. The
fact that CXCL1 levels are reduced in mast cell-deficient mice
without that a change in neutrophil numbers occurs supports the
notion that mast cells are not involved in immune cell
recruitment in this phase of inflammation. Instead other
CXCL1 functions, such as its role in wound healing (i.e.
Frontiers in Immunology | www.frontiersin.org 1350
epithelialization and angiogenesis) (47), might explain its mast
cell-dependent increase during the resolution phase of
inflammation. IL-4 on the other hand is known to drive
polarization of macrophages toward antiinflammatory (M2-
like) phenotypes and fits to the localization of mast cells in the
cellular neighborhood of M2-like macrophages. Other cytokines,
which are released by mast cells, were not changed 48 h after
zymosan injection in Cre+ mast cell deficient mice as compared
to Cre- mice. In this regard, although IL-10 and PGE2 synthesis
in BMMCs was induced by zymosan there was no difference
between their levels in inflamed paws from mast cell-deficient
and control mice (Figure 4, Figure S11). On one hand this could
reflect the differences between the phenotypes of BMMCs and
mast cells located in the paw tissue. On the other hand IL-10 can
also be produced by other immune cells in amounts, which could
mask changes in mast cell-derived IL10 in the context of whole
tissue analyses. Notably, this notion does not oppose possible
local effects of mast cell-derived IL-10 in the defined area
surrounding the zymosan-containing area. Another
explanation could be based on IFN-b effects on mast cells
themselves, which could influence the synthesis and release of
mediators. In this regard also other mediators that can be
produced by mast cells upon zymosan-stimulation, i.e. IL-1b,
IL-4 and PGE2, have been demonstrated to increase phagocytosis
in macrophages as well (48–50). Therefore, the enhancing effect
of mast cells on the phagocytosing activity of macrophages could
be derived from one of these mediators, including IFN-b, or a
combination of these (51).

Finally, the observed localization of mast cells during the
resolut ion phase of loca l inflammation with in an
antiinflammatory cellular neighborhood suggests a reversal of
the immunological function of mast cells. In this regard various
mediators including cytokines (e.g. IL-10 and IL-4), chemokines
(e.g. CXCL1) or lipids such as PGE2, which all can mediate effects
promoting antiinflammation and/or wound healing, have
already been demonstrated to be synthesized in mast cells and
to promote mast cell-dependent antiinflammatory effects (36,
52). Thus, the well-known proinflammatory role of mast cells in
the beginning of an inflammation seems to be reversible allowing
mast cells to gain an antiinflammatory phenotype and to expand
its role in inflammation depending on the needs of the
specific microenvironment.
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The immune system has to cope with a wide range of irregularly shaped pathogens that
can actively move (e.g., by flagella) and also dynamically remodel their shape (e.g.,
transition from yeast-shaped to hyphal fungi). The goal of this review is to draw general
conclusions of how the size and geometry of a pathogen affect its uptake and processing
by phagocytes of the immune system. We compared both theoretical and experimental
studies with different cells, model particles, and pathogenic microbes (particularly fungi)
showing that particle size, shape, rigidity, and surface roughness are important
parameters for cellular uptake and subsequent immune responses, particularly
inflammasome activation and T cell activation. Understanding how the physical
properties of particles affect immune responses can aid the design of better vaccines.

Keywords: phagocytosis, F-actin (filamentous actin), pathogens, vaccination, endocytosis
INTRODUCTION

The cells of immune system can morphologically change their plasma membrane for uptake and
clearance of foreign particles that enter the body, such as bacteria and fungi upon an infection, and
particles from endogenous sources, such as apoptotic cell bodies (1). The cellular uptake of
extracellular particles is essential for many cellular functions, and, among other things, plays
important roles in the immune system and for tissue remodeling. Pathogens or particles entering the
body are ingested by immune phagocytes by engaging receptors on their surface. This process is
required for the clearance of infectious microbes (e.g., bacteria, fungi), senescent (cancer) cells and
inorganic particles from the body by immune phagocytes (1). Endocytosis is an umbrella term for
different types of uptake of smaller particles, while larger particles are taken up by a mechanistically
different mechanism called phagocytosis. In this review we will define endocytosis as the uptake of
particles < 0.5 mm in size and phagocytosis as the cellular uptake of particles larger than 0.5 mm.
Endocytic vesicles can have vesicular, flask-like, or tubular morphologies (2). The best understood
form of endocytosis is mediated by clathrin, a coat protein on the cytoplasmic side of the membrane,
but other coat proteins (e.g., caveolin) also exist and endocytosis seems not always dependent on
coat proteins (2). Due to size constrains of the clathrin lattice, clathrin has a preference for
orchestrating uptake of small particles (<0.1 mm in diameter). Membrane invaginations, originating
from membrane ruffles and from actin-rich membrane extensions called lamellipodia, form
org February 2021 | Volume 11 | Article 607945153
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phagocytic cups, which upon sealing lead to formation of large
mm-sized membrane-bound vacuoles called phagosomes
(receptor-mediated process) or macropinosomes (receptor-
independent) (2, 3). Phagocytosis is generally mediated by the
actin cytoskeleton that provides a substantial force for
overcoming physical constrains necessary for the membrane
wrapping of larger particles (Figure 1). Phagocytosis differs
from the uptake of smaller particles by endocytosis, as it does
not rely on coat proteins, such as clathrin and caveolin, and
endocytosis has less involvement of the actin cytoskeleton (1, 2).
For actin polymerization, phagocytosis requires activity of Rho-
GTPases and phosphoinositide 3-kinase (PI3K)-family kinases
(2), and this is especially necessary for phagocytosis of larger
particles (> 5 µm) (4, 5). In this review, the focus is on mm-range
model particles and fungal pathogens, as the effects of
morphology on cellular uptake are best understood for these
phagocytic cargoes.

The main immune phagocytes are macrophages, neutrophils
and dendritic cells (DCs) (1). Neutrophils are the most abundant
phagocytes in the body, capable of eliciting oxidative and non-
oxidative microbicidal responses, such as by secretion of
antibacterial proteins and trapping of pathogens in neutrophil
extracellular traps (NETs) of released DNA (Figure 1) (6).
Macrophages are found in all tissues and are able to clear
infections by phagocytosis and trigger inflammatory responses.
They are more equipped to phagocytose smaller morphological
states of fungi; larger hyphae or spores sometimes cannot be
taken up by macrophages (7–9). Macrophages can polarize into
Frontiers in Immunology | www.frontiersin.org 254
pro-inflammatory (M1) phenotypes if activated by pro-
inflammatory stimuli such as interferon (IFN)-g, granulocyte-
macrophage colony-stimulating factor (GM-CSF), or microbial
stimuli such as lipopolysaccharide (LPS) (10). Alternatively,
macrophages can polarize into anti-inflammatory homeostatic
(M2) phenotypes induced by anti-inflammatory cytokines
interleukin (IL)-4 or IL-13 (10). The shift from M2 to M1-like
phenotypes is associated with more microbicidal activity of
macrophages (10). Similar to neutrophils and macrophages,
dendritic cells (DCs) also sample the blood and peripheral
tissues of the body for pathogens and apoptotic/necrotic cells
(11). However, in contrast to neutrophils and macrophages, DCs
can efficiently migrate to the lymph nodes after phagocytosis of
pathogens. In the lymph nodes, the DCs can present antigenic
peptides derived from the ingested pathogenic proteins on their
cell surface in major histocompatibility complex (MHC) class II
to naive CD4-positive “helper” T cells (Th) and, in a process
called cross-presentation, in MHC class I to naive CD8-positive
“killer” T cells (11, 12). Antigen (cross-)presentation by DCs is
essential to activate naive T cells and elicit an adaptive immune
response against invading pathogens and cancer.

Because clearance of different pathogens (fungi, bacteria,
viruses, helminths) and malignant cells requires different immune
responses, the immune system has evolved many receptors that
recognize different pathogens, called pathogen recognition
receptors (PRR). These PRRs recognize so-called microbial-
associated molecular patterns (MAMPs), which are structures
present on microbes but not host cells, and danger-associated
A

B

FIGURE 1 | Uptake of antigenic particles by immune phagocytes. (A) Dendritic cells (DC), macrophages (MF), and neutrophils (NE) of the immune system encounter
particles with different physical properties (size, shape, rigidity, surface roughness). NE can release extracellular traps (NETs) for capturing large pathogens such as
hyphal fungi. Macrophages can undergo reprogramming into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes. (B) Particles >0.5 µm are ingested by
phagocytosis; smaller particles by endocytosis which can be clathrin or caveolin-mediated. The F-actin cytoskeleton is important for membrane wrapping at the
phagocytic cup. Fusion with lysosomes containing lytic enzymes is the final step in endo/phagosomal maturation.
February 2021 | Volume 11 | Article 607945

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Baranov et al. Particle Properties Affecting Immune Responses
molecular patterns (DAMPs), which are present on damaged but
not (or only in low amounts) on healthy host cells (13). Many
PRRs, but not all, can also trigger endocytosis and/or phagocytosis.
For example, the fungal cell wall b-glucans and chitins trigger both
antigen recognition and phagocytosis by binding to the C-type
lectins dectin-1 and the mannose receptor (CD206) on the surface
of DCs and macrophages. A major class of PRRs are Toll-like
receptors (TLR), which bind to many different MAMPs, such as
TLR4 which binds to LPS. The engagement of different receptors,
such as dectin-1 and TLRs, enables immune phagocytes to
differentiate between different morphological states of fungi (14,
15). For example, compared to the hyphae, the swollen conidia
form of the pathogenic fungus Aspergillus fumigatus has increased
levels of surface-exposed b-glucans and triggers stronger
inflammatory responses (16).

Likely because different pathogens have different sizes and
engage different phagocytic PRRs, it can trigger different types of
phagocytosis. For example, large hyphal forms of the mold
Aspergillus fumigatus are ingested by Fc-receptor mediated
phagocytosis, whereas smaller spores of the same mold are
taken up via the mannose receptor (10). Phagocytosis
mediated by the Fc-receptor triggers a so-called zipper model
of uptake, characterized by a close-fitting zipper-like advance of
membrane and the branched actin cytoskeleton over the particle
surface; the efficiency of this process depends on the particle
rigidity, size, the density of antibodies on the particle surface
(17–19) and the distance between the phagocyte’s membrane
and the particle surface (limited by the size of the Fc-receptor-
ligand complex) (20). Less stiff apoptotic cells are taken up
through the zipper model as well (3), but with less efficiency
than stiffer targets such as bacteria and yeasts (17). In contrast,
phagocytosis by complement receptor 3 (CR3) occurs via flappy
membrane ruffles orchestrated by linear actin, smaller
membrane protrusions and phagosomal “sinking” into the
cytoplasm (reviewed in (3)). Recent data shows that Fc- and
complement-mediated uptake can be intertwined and both can
rely on the anchoring of actin via integrin aMb2 at the leading
edge of pseudopods at the phagocytic cup (17, 21).

Particles that are too large for ingestion by immune
phagocytes result in stalling of the phagocytic process and this
is called frustrated phagocytosis (22, 23). Such frustrated
phagocytosis can result in the so-called fiber paradigm that sets
out the basis for the harmful effects of long (>15 µm), thin, non-
biodegradable fibers such as asbestos in the lung (22). Here, the
alveolar macrophages can only partially take up the fiber,
resulting in the release of lytic enzymes and reactive oxygen
species (ROS) in the extracellular environment (22). This release
of these contents can lead to inflammation and tissue damage,
and eventually can trigger chronic inflammation, fibrosis, and
oncogenesis (22, 24).

Phagocytosis and endocytosis thus depend on the type of PRR
and phagocytic receptor engaged, but also on the geometry and
mechanical properties of the particle (23, 25–34). How the
morphology of particles affects their uptake is well-understood
from experimental (23, 25–33) and theoretical studies (34–41).
The goal of this review is to draw general conclusions on how
geometry and mechanical properties affect endocytosis and
Frontiers in Immunology | www.frontiersin.org 355
phagocytosis and the subsequent endo/phagosomal maturation
and immune responses, and on how this knowledge can be used
in particle-based vaccine design. We therefore compared both
theoretical and experimental studies with differently sized and
shaped model particles and pathogens. However, the conclusions
from these comparisons have to be interpreted with care, because
the modes of uptake can be very different among cells types and
the direct comparison between endocytic and phagocytic cargoes
and techniques might not always be warranted.
PARTICLE SIZE AND SHAPE:
THEORETICAL STUDIES AND MODELING

Theoretical approaches have been extensively used to predict
modes of uptake for different particles with different sizes and
shapes (Supplementary Table 1) (35–37, 41). Spheroid particles
can be described by their aspect ratio (AR), which is the ratio
between its ellipsoid axis (axis a, see Figure 2) over its spherical
axis (axis b): oblate disk-like particles (AR<1), spheres (AR=1),
and prolate particles (AR>1). Prolate particles with high AR
(AR>2) are also called ellipsoid or rod-shaped particles. Monte-
Carlo (35) and coarse-grained (39) simulations compared three
modes of uptake for oblate particles and ellipsoids: tip-first
(membrane first faces highest curvature of prolate particles or
lowest curvature faces of oblate particles), laying-down
(membrane first faces lowest curvature of prolate particles or
highest curvature faces of oblate particles), and tilted (principle
axes are non-perpendicular relative to the membrane) (Figure
2). From these simulations, it was predicted that, at least for
endocytosis of small particles with sizes between 25 and 100 nm,
oblate particles with a low AR (AR<0.5) are likely to be ingested
by tip-first uptake mode, e.g., facing the membrane with the
lowest curvature side (35, 39) (Figure 3). Likewise, prolate
particles are more likely to be ingested by laying-down mode,
thus also facing the membrane with the lowest curvature side
(39). Other computational studies also predicted that prolate
particles are more likely to be ingested via the laying-down mode
(35, 37) and that tip-first uptake for prolate particles will be
slower than tip-first uptake for oblate particles (34). However,
the wrapping can be accompanied by a reorientation of the
particle. For instance, in several theoretical studies, it was
predicted that while prolate particles become attached to the
membrane in a laying-down mode, at higher adhesive strengths
this state becomes unstable and the particle reorients toward a
deeply wrapped tip-first uptake mechanism (42, 43).

The energy of uptake depends on the bending properties of
the membrane and the strength of receptor interactions, and
overall endocytosis is more efficient (lower free energy
requirement) with a stronger adhesiveness and a larger contact
area (44). Simulations of clathrin-mediated endocytosis of ~100
nm particles predicted that the efficiency of uptake is determined
by the membrane bending rigidity, which is proportional to the
stiffness of the plasma surface because this determines the
formation of receptor-ligand bonds (37). Computational
modelling also predicted that a membrane can completely
wrap particles with 0.68<AR<2.3 (35). Compared to spherical
February 2021 | Volume 11 | Article 607945
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prolate particles, more stretched ellipsoid particles of the same
volume can be less efficiently ingested because the reduced
contact area facilitates less ligand-receptor interactions (35).
Because of this, spheres are predicted to be engulfed more
efficiently than prolate and oblate ellipsoids (Figure 3) (38),
although particles with a bit of oblate shape, but close to
Frontiers in Immunology | www.frontiersin.org 456
spherical, might have an optimal contact area and therefore be
engulfed faster than precisely round spheres (34). Thus,
computational modelling predicts hindered uptake of particles
with extreme shapes characterized by either high or low ARs,
while more spherical particles are more permissive for uptake
(Figure 3) (35, 38, 39).
A

B

FIGURE 2 | Spherical, oblate, and prolate particles. (A) Spheroid particles can be described by their aspect ratio (AR), which is the ratio between the ellipsoid axis (axis
a) over the spherical axis (axis b) of the particle: oblate disk-like particles (AR<1), spheres (AR=1), and prolate particles (AR>1). Particles can be ingested by different
modes of uptake: tip-first (membrane first faces highest curvature of prolate particles or lowest curvature faces of oblate particles) or laying-down (membrane first faces
lowest curvature of prolate particles or highest curvature faces of oblate particles). (B) Simulations of uptake of spherical, prolate, oblate, and corresponding non-spherical
particles (cubic, rod-like, and disc-like) generally predict that spherical particles are ingested better than prolate and oblate particles. Prolate particles are generally
predicted to be ingested most efficiently in laying-down mode, whereas oblate particles are ingested best in tip-first mode. Details; see text.
February 2021 | Volume 11 | Article 607945
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Simulations show that for particles of different shapes and
volumes, the membrane has to overcome different free energy
thresholds for particle wrapping (38, 45). Because of an increased
energy cost for wrapping of the highly curved tips, ellipsoid
particles are predicted to be ingested less efficiently than similarly
sized spherical particles (45). Due to the lower local curvature of
larger particles, smaller volume oblate particles are predicted to
be taken up less efficiently than smaller volume prolate particles,
but larger volume oblate particles are taken up more efficiently
than larger volume prolate particles (38). For endocytosis,
simulated clathrin-mediated uptake is predicted to be at
maximum efficiency for larger spherical particles, with optimal
sizes close to the size limit of the relatively rigid clathrin lattice
(more efficient uptake for 80 nm, than for 40 nm or 160 nm-sized
particles (37)), and this also depends on ligand coverage and
rigidity for simulated particles (36, 37). Finally, a theoretical
study predicted that the curvature of the tip of the particle
matters, as particles with high aspect ratios and round tips were
predicted to enter via laying-down mode, while particles with
smaller aspect ratios and flat tips might be ingested more
efficiently in tip-first mode (46). This seems to contradict
another computational modelling study, where it was predicted
that, given that the particle rigidity remains the same, the uptake
rate and membrane bending are similar for cubes and spheres,
Frontiers in Immunology | www.frontiersin.org 557
discs and oblate particles, and rods and prolate particles (Figure
2B) (39). Overall, a single general rule seems to apply to the
uptake of such differently shaped particles: particles with larger
volumes might be taken up more efficiently than particles with
smaller volumes but the same AR (Figure 3), because of lower
membrane curvature and a higher number of receptor-ligand
interactions (38).

Concerning the mechanical properties of particles, computer
simulations predict that the uptake of elastic (soft) particles is
less efficient than of more rigid particles, because particle
deformations lead to higher energy barriers for membrane
wrapping, and uptake of softer particles might need more
receptors for overcoming this energy barrier (Figure 3) (39).
Uptake of oblate particles is predicted to be least sensitive to this
elasticity if the particles are positioned tip-first because they have
a larger contact area with the membrane promoting the
recruitment of receptors facilitating uptake. Similarly, when a
prolate particle is in laying-down position at the cell membrane,
its uptake could be more efficient due to a larger contact surface
area with the membrane (39). This may well have consequences
for phagocytosis as well, because for example cancer cells can be
less rigid and softer than normal cells (47), and perhaps their
rigidity is a determining factor for being phagocytosed by cells of
the immune system.
FIGURE 3 | Uptake efficiency determined by physical properties of particles: theoretical predictions and experimental evidence. Particle geometry in phagocytosis.
Size, aspect ratio (AR), angle of initial contact between principle axis and membrane (see Figure 2), particle rigidity, and ligand density dictate the efficiency of endo/
phagocytosis. Summary of theoretical predictions and experimental results. The experimental evidence for how particle rigidity affects uptake is controversial.
February 2021 | Volume 11 | Article 607945
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Finally, asymmetry of the membrane (i.e., different
composition of the membrane leaflets) is predicted to strongly
affect phagocytosis, as this causes spontaneous membrane
curvature which can aid or hinder membrane wrapping and
can form a membrane area reservoir for providing additional
membrane for engulfment of particles (48).

These theoretical predictions have several caveats. First, in
real biological systems, the interaction between particles and
membrane can be heavily influenced by a “corona” of proteins on
the particle surface, leading to non-symmetrical engagement of
uptake receptors (49). In addition, cellular uptake can be
influenced by sugars on the particle surface (50), a so-called
“glycocalyx” consisting of glycoproteins, glycolipids, and
proteoglycans on the surface of target cells (51) and pathogens
(52). Second, the plasma membrane of immune phagocytes is a
highly crowded environment with different receptors and many
other membrane proteins clustered and segregated in functional
domains, and modelling showed that the membrane distribution
of receptors can affect phagocytosis (35, 36, 39, 41). Third, most
modelling approaches have as main assumption that the energy
for membrane deformation is the bottleneck for uptake, and do
not incorporate the role of the cytoskeleton nor do they include
regulatory feedback. While the wrapping of membrane around a
particle has been predicted to be strongly influenced by
competing membrane-cytoskeleton interactions (53, 54),
simulations do not account for the active remodelling of the
cytoskeleton that can actively promote, and might even be the
bottleneck for, particle invagination (see below). Fourth,
biological membranes contain large numbers of different
components that do not interact with the particle, such as
membrane proteins and (glyco)lipids, which might affect the
local membrane curvature and are predicted by statistical
mechanical modelling and molecular dynamics simulations to
dramatically influence cargo uptake even if the total spontaneous
curvature of a membrane remains unchanged (55). Fifth,
quantitative comparisons of simulation and experimental
timescales associated with the phagocytic process are
problematic and can only be done qualitatively. Because of
these caveats, experimental findings sometimes contradict
theoretical predictions as will be discussed below.
MODEL PARTICLE SIZE AND SHAPE:
EXPERIMENTAL EVIDENCE

Experimental studies with synthetic model particles also show
that shape, size and rigidity are important determinants for
phagocytosis, but, likely due to the high complexity in cells,
experimental findings are not always in agreement with the
predictions from theoretical modeling. Moreover, as will be
detailed below, experimental findings between studies do not
always agree with each other, likely due to differences in the cell
type, modes of uptake and properties of the phagocytic cargoes.
Nevertheless, from a comparison of these different studies, some
general conclusions can be drawn on how particle size and shape
affect the endocytosis and phagocytosis of model particles.
Frontiers in Immunology | www.frontiersin.org 658
Model particles can be ingested by the same PRRs and uptake
mechanisms as microbes. In the circulation, soluble antibodies
and/or proteins from the complement system can be deposited
on the surface of pathogens, called opsonization, and this triggers
phagocytosis by Fc-receptors and the complement receptor 3
(CR3/integrin aMb2/Mac-1), respectively. Similarly,
opsonization can mediate the uptake of model particles. For
example, antibodies can also bind to the polyanionic surface of
latex particles, which enhances their uptake by Fc-receptors, but
the binding of antibodies (mainly IgG1 and IgM) may also
trigger the classical complement pathway resulting in
deposition of protein C3 cleavage products recognized by the
complement receptors of host cells (56–58). Targets can also be
recognized by a class of PRRs called scavenger receptors (SR), for
example SCARB1 and MARCO, that recognize oxidized low-
density lipoprotein (LDL) on the surface of apoptotic cells but
also bind to polyanionic structures such as latex particles (56).
Finally, integrins can mediate phagocytosis of particles (56, 59).
Thus, naked polystyrene particles can be phagocytosed via four
ways: i) direct binding to scavenger receptors, ii) opsonization by
host-deposited IgG1 or IgM leading to iC3b binding followed by
binding to complement receptor 3 (57), iii) opsonization by
antibodies followed by recognition by Fc-receptors (FcR) (17),
and iv) direct binding to integrins (aVb3, a5b1, and aVb5) (59).
Particles composed of other materials are also ingested by
immune phagocytes. For example, silica particles are
recognized by scavenger receptors SCARA1, SCARB1, and
CD36, while monosodium urate (MSU) crystals can directly
bind to cholesterol of cell membranes facilitating internalization.
MSU and cholesterol crystals can also activate complement
pathways through crystal opsonization by complement factor
iC3b (60). The uptake routes of particles are not always
understood, and for instance the mechanism of uptake of
hydroxyapatite crystals by macrophages is still unclear (60).

Concerning particle size and phagocytosis, the available
evidence seems to suggest there is an optimal size for spherical
particles of about ~3 µm in diameter for most efficient
phagocytosis. Both in vivo and in vitro studies showed that rat
alveolar macrophages can efficiently clear particles in the range
of 1–5 mm (Figure 3) (61–63), with an optimal particle size of
~2–3 mm (63). This is in line with another study addressing
uptake of smaller (<1 µm) particles of different shapes made out
of a polyethylene glycol diacrylate (PEGDA)-based hydrogel by
endothelial cells, where it was found that the larger and more
oblate particles were ingested more efficiently than smaller and
prolate particles by endothelial cells (26).

There is an upper limit in the size of particles that cells can
ingest, as particles exceeding the size of macrophages can halt
phagocytosis (64), and larger sized particles result in frustrated
phagocytosis (22). For needle-shaped particles, this limit is
typically around 15 µM (22, 65), but this depends on the cell
type: Although long (>20 µm) polystyrene worm-shaped
particles with aspect ratios of about 22.5 could not be
completely internalized by rat alveolar macrophages (27), 20
µm long calcium carbonate (CaCO3) needles (aspect ratio >20)
could be internalized by THP-1 macrophages and primary
murine peritoneal macrophages (32). For spherical particles,
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a study comparing differently sized of poly(lactic-co-glycolic
acid) (PLGA) particles orally administrated to mice showed
that 10 µm size was the largest size of particles that could be
phagocytosed by gut phagocytes (66), although this finding
might also be explained by a lower penetration of larger
particles through the mucosal barrier. Likely, cells cannot
phagocytose very large particles, because this requires more
membrane and an increase in membrane surface area, which
might be approximately equal to the surface area of the target,
can thereby limit the size of particles that can be taken up (67).
There is a limit up to which the plasma membrane can stretch
without rupture (68, 69), about 3% for red blood cells (68), and in
order to meet the need of substantial membrane for enveloping
the target particles, there are two types of sources for membrane:
i) folds in the plasma membrane, and ii) intracellular vesicles and
granules (70–74). It is quite likely that phagocytosis of large
particles requires a trigger to regulate the mobilization of these
membrane reservoirs, and the plasma membrane itself might
provide a mechano-chemical tuning mechanism by generating
membrane tension during the uptake (75). Indeed, membrane
tension could be released in a sequential manner where first the
plasma membrane surface area increases by ~20 to 40% due to
smoothening of the folded membrane and subsequently
additional membrane was provided by exocytosis near the
phagocytic cup (76). Such delivery of intracellular vesicles also
plays a role during later stages of phagocytosis, an internal source
of membrane derived from lysosomes was shown to be crucial to
maintain the membrane integrity of phagosomes containing
expanding hyphae of Candida albicans (74).

Although the surface density of ligands for phagocytic
receptors improves uptake overall, this also seems to depend
on the size of the particles. For phagocytosis, higher IgG
opsonization only enhanced uptake of polystyrene spheres
between 0.5 and 2 µm by RAW264.7 macrophage-like cells,
but not for spheres > 2 µm (18). When uptake of differently sized
liposomes by alveolar rat macrophages and RAW264.7 cells was
compared, the largest tested liposomes of 650 nm – 2 um were
ingested more efficiently than smaller liposomes (77, 78). For
clathrin-mediated endocytosis, the uptake of particles seems
restricted by the size (~100 nm) of the clathrin lattice, and
larger particles are ingested less efficiently (Figure 3). Seventy
nanometer sized flat hexagonally shaped or spherical particles
were taken up with similar efficiency by mouse alveolar
macrophages, but already a slight increase in size to 120 nm
resulted in a reduced uptake of hexagonally shaped particles (79).
Similarly, 150 nm silica spheres were ingested more efficiently by
RAW264.7 cells compared to 250, 500 and 850 nm spheres (80)
and round silica nanoparticles of 70 nm were ingested more
efficiently than 300 nm and 1 µm sized particles by the murine
XS52 epidermal Langerhans cell line (81). Thus, in general,
phagocytosis might be most efficient for a particle size of about
3 µm, while clathrin-mediated endocytosis is optimal for
particles around 100 nm.

Theoretical predictions that spheres are more efficiently
ingested than more extremely shaped particles (35, 38, 39) are
supported by experimental evidence (Figure 3). For both
endocytosis and phagocytosis, a wide range of particles was
Frontiers in Immunology | www.frontiersin.org 759
tested to prove that shape rather than size has more effect on
cellular uptake, and uptake of spheres was more efficient than
uptake of any other stretched shapes (25, 29). Similarly, in
comparison with spherical shapes, elongated particles (derived
from 150 nm or 2 µm PLGA spheres) were ingested less
efficiently by J774.A1 macrophages (82). HeLa cells more
efficiently endocytosed spherical over rod-shaped nanometer-
sized gold particles (83). Micrometer-sized spheres made out of
CdTe quantum dot-cysteine micro-composites were
phagocytosed with higher efficiency than rectangular disks and
especially needle-shaped particles by RAW264.7 macrophages
(84). Another study reports that although prolate micrometer-
sized polystyrene particles showed the best attachment to
RAW264.7 cells, they were less efficiently phagocytosed
compared to spheres (Figure 3) (30). The same study showed
that not spheres, but oblate disc-shaped ellipsoid particles are
internalized with the highest efficiency, but this difference
disappears with increasing particle size (30). Compared to
other shapes and sizes, polystyrene prolate ellipsoid particles
with 2-3 µm in their longest dimension also attached more to
mouse J774 and rat alveolar NR8383 macrophage-like cells, but
offered no advantage in actual uptake (25, 31). A similar
preference for attachment of prolate particles was shown for
nm-sized silica cylinders over spheres, although extremely long
particles (worms) attached less well to RAW264.7 cells (85).
Finally, prolate PLGA particles were inefficiently phagocytosed
by J774 mouse macrophages, but were phagocytosed as soon as
the shape of the particles was changed to more spherical (3 µm
diameter) by pressure and temperature (86).

Evidence suggests that phagocytosis of differently shaped
particles requires different signaling cascades. Experiments
with the amoeba Dictyostelium showed that the coordinated
activity of the small-GTPases Rac and Ras at the phagocytic
cup by the multidomain protein RGBARG (RCC1, RhoGEF,
BAR, and RasGAP-containing protein) is key for uptake of
particles and microbes of different shapes (87). The authors
propose that RGBARG promotes the protrusion of the
cytoskeleton at the periphery of the phagocytic cup by
expanding Rac activation in this region, while it suppresses Ras
at more central regions of the nascent phagocytic cup (87).
Although Dictyostelium without RGBARG showed improved
phagocytosis of larger model particles and yeast, the spatial
regulation of Ras by RGBARG was found to be important for
phagocytosis of elongated cargoes (87).

Concerning the mode of uptake in phagocytosis,
experimental findings seem to contradict most theoretical
predictions (Figure 3). Tip-first phagocytosis by NR8383 and
J774 cells was shown to be more efficient for µm-sized flattened
prolate particles (i.e., particles with three different primary axes)
(25) and for long worm-shaped particles with high aspect ratios
(~22.5) (27), showing that uptake is fostered by membrane
interactions with high positive curvature regions. The same
was observed for uptake of 2 × 10 µm cylinders made out of
multiple silica spheres glued together with agarose by murine
alveolar macrophages (33). Interestingly, the phagocytic cup
membrane was found to move along the length of the
orthogonally positioned cylinders, showing that phagocytes
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were actively searching for high-curvature tips of the cylinders
before uptake (33). Oblate µm-sized polystyrene particles were
found to be phagocytosed inefficiently in tip-first mode by rat
and mouse macrophage cell lines (25). A similar preference for
uptake via high curvature (tip-first for prolate, or laying-down
for oblate particles) over low curvature (laying down for prolate
and tip-first for oblate particles) membrane contact was observed
for rectangular disks composed of CdTe quantum dot–cystine
microcomposites by RAW264.7 cells (84). Thus, all these
findings show that phagocytosis is more efficient upon contact
with higher membrane curved regions of particles and this seems
to contradict most theoretical predictions (Figure 3) (35, 38).

Theoretical predictions that stiffer particles are generally
better ingested by cells also do not always seem to hold true
(39). A review of available experimental data reported on particle
elasticity (39) showed that sometimes less rigid/softer particles
are internalized with higher efficiency than more rigid particles.
For example, phagocytosis of softer layer-by-layer (LBL) capsules
by HeLa and SUM159 cells was found to be more efficient than
more rigid counterparts (39). However, the opposite has also
been reported and for instance antibody-opsonized deformable
poly-AAm-co-AAc microparticles (DAAM-particles) with a
relatively high rigidity of 7 kPa were phagocytosed by J774
murine macrophage-like cells with 6-fold higher efficiency than
1 kPa particles (19). This controversy is likely attributable to the
different modes of uptake for different particles and cell types.
For example, clathrin coats are relatively rigid and have a well-
defined shape, and in some instances less-stiff particles might be
easier to ingest because they can be deformed to better fit in
clathrin-coated vesicles.

Particularly silica particles can be toxic to cells, although there
does not seem to be consensus on the size dependency of this
toxicity. In a study comparing uptake of 150–850 nm silica
spheres by RAW264.7 cells, the larger particles caused higher
toxicity as evident from higher membrane rupture, ROS and
tumor necrosis factor (TNF)-a production (80). However, this
contrasts findings in the mouse epidermal Langerhans cell line
XS52, where 70 nm amorphous silica nanoparticles were more
cytotoxic compared to 300 nm and 1 µm sized particles as
assessed by acetate dehydrogenase (LDH) release (81).
Moreover, crystalline 0.3 mm-sized silica particles caused more
ROS and TNF-a production in RAW264.7 cells than larger 4.1
mm-sized particles (88). Also in non-phagocytic HeLa cells,
spherical silica particles of 70 nm were proven to be more
cytotoxic than 200 and 500 nm sized particles, and this was
attributed to their higher tendency for lysosomal localization
(89). The toxicity of silica is likely caused by inflammasome
activation as will be discussed below.
PATHOGEN SIZE AND SHAPE:
EXPERIMENTAL EVIDENCE

Findings from model particles might not always be directly
applicable to real pathogens, as pathogens can engage different
phagocytic receptors resulting in different modes of uptake.
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Moreover, pathogens can sometimes remodel their shape and
express virulence factors that can affect the phagocytic process
(90–93). In this section, we provide an overview of how the shape
and size of pathogens affects phagocytosis. The phagocytosis of
differentially shaped and sized pathogens is best understood for
fungi, which are therefore the main focus of this section.

Different strains of the pathogenic fungi C. albicans can have
different morphologies, ranging from a spherical yeast to an
elongated hyphal cell (Figure 4A) (7, 8, 13, 93–97). As predicted
bymodeling of spherical versus elongated particles (see above), live
C. albicans with spherical morphology were engulfed more
efficiently than hyphal C. albicans, and hyphae of above 20 µm
(but not below 20 µm) significantly hindered uptake by J774.1
macrophages (7). However, phagocytosis of live yeast-locked
mutant strains of C. albicans that cannot form hyphae (and
therefore have more spherical shapes) was significantly slower
than for strains that formed hyphae (7). The phagocytosis
efficiency was also dependent on the orientation of the pathogen,
because hyphal cells of C. albicans that were positioned toward a
phagocyte in a tip-first orientationwere taken upmore rapidly than
those engulfed at an angle or where cell-cell contact was in laying-
down mode (Figure 4A) (7). Also for bacteria, phagocytosis of
A

B

FIGURE 4 | Fungal morphology affects phagocytosis. (A) Uptake efficiency
of yeast and hyphal forms of Candida albicans and Exserohilum rostratum by
macrophages. (B) Paracoccidioides brasiliensis can form star-like mother-
daughter shapes. Cryptococcus gattii forms large titan cells and Coccidioides
spp. forms spherules which are larger than the size of phagocytic cells.
Details; see text.
February 2021 | Volume 11 | Article 607945

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Baranov et al. Particle Properties Affecting Immune Responses
filamentous Escherichia coli bacteria by J774A.1 macrophages
requires access to one of the terminal bacterial filament poles (tip-
first), while a laying-downmode of uptake (with the longest axis of
E. coliorientedparallel to themacrophage surface)wasunsuccessful
and no actin accumulation and phagocytic cup formation were
observed (98). As discussed above, this contrasts previous
theoretical predictions for the uptake of prolate ellipsoids, but is
in agreement with experimental findings with model particles
(Figure 3).

In contrast to elongated rods or filament shapes of bacteria
that are taken up preferentially in a tip-first orientation, the
phagocytosis of highly curved spiral-shaped bacterial species, for
example Campylobacter andHelicobacter, might be stalled due to
their shape (27, 99). Simulations have demonstrated inhibition in
the uptake of such elongated particles in horizontal orientation
due to the high energetic cost required for bending the plasma
membrane around two different curvatures (99). Thus, the
combination of a positive and negative curvature in spiral
shaped particles may inhibit the membrane wrapping around
the twisted surface and thereby prevent phagocytosis.

The hyphae of C. albicans are taken up more rapidly if
phagocytosis of live fungi is initiated at the yeast-end than at
the hyphae-end (7), perhaps because the round morphology of
the yeast-end is more permissive for uptake. A similar
observation was made for uptake of both live and heat-killed
spindle-shaped spores of the fungus Exserohilum rostratum
(~20 × 60 µm) (9). These are too large for uptake, but ~84% of
macrophages attempted the uptake at the poles (reminiscent of
tip-first uptake) and only ~16% positioned to the spore’s middle
section (laying-down mode of uptake) (9). However, this
differential macrophage positioning might not be attributable
to the shape of the spores, but rather to differences in the cell wall
composition at the poles and in the middle of the microbes (9).

Some C. albicans strains can alter their shape after
phagocytosis, because C. albicans can avoid its destruction and
evade immune response by forming germ tubes and hyphen
within the sealed phagosome, resulting in perforation of the
phagosomal membrane (Figure 4A) (95, 100). The formation of
hyphae is promoted by the conditions within phagosomes, such
as nitric oxide (101–103), H2O2 (104, 105), and alkaline pH
(106). Candida albicans actively alkalinizes the phagosomal
lumen by utilizing amino acids as a carbon source and
excreting ammonia (94).

The fungus Blastomyces dermatitidis can adopt a “Trojan
Horse”method where it first is phagocytosed efficiently in a small
spore form (2–5 µm) by alveolar macrophages and later survives
intracellularly by increasing its size 10-fold and disseminate from
the host cell as a larger yeast form (10–30 µm) (107). This large
yeast form can also be taken up by phagocytes, but less efficiently
compared to the smaller spore form (107). Not only fungi, but
also some bacteria can adopt a filamentous morphology in order
to escape phagocytosis (108–110), but how this affects
phagosomal maturation is incompletely understood.

As already mentioned above, spores (~20 × 60 µm) or hyphae
of E. rostratum are too large to be phagocytosed by RAW264.7
macrophages and primary mouse bone marrow-derived
macrophages (Figure 4A) (9). Similarly, the fungal pathogen
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Cryptococcus gattii is capable to form titan cryptococcal cells of
50–100 µm in diameter, which is larger than most immune
phagocytes and prevents phagocytosis (13, 111), whereas smaller
sized (5–10 µm) Cryptococcus neoformans particles are efficiently
phagocytosed (112, 113). Other fungi such as Coccidioides immitis
and Coccidioides posadasii also form giant spherules of about 120
µm to avoid uptake by host phagocytes. Once reaching the host
organism, the pathogenic fungi Paracoccidioides brasiliensis and
Paracoccidioides lutzii can impede phagocytosis by creating so
called asteroid bodies which are round colonies with radial
symmetry of mother cells (~30 µm2) surrounded by daughter
cells reaching an area that ranges from 75 µm2 to over 150 µm2

diameter (Figure 4B) (114). Knock-down of the actin regulator
Cdc42p in P. brasiliensis caused a size reduction of these asteroid
bodies and promoted uptake by mouse bone marrow-derived
macrophages and more efficient clearance from circulation after
intravenous injection in mice, demonstrating that this pathogen
increases its size to prevent host immune clearance (115).

Evidence suggests that neutrophils can sense microbial size.
Phagocytosis of living small yeast-locked C. albicans mutant
strains triggers ROS production and elastase recruitment to
phagolysosomes, whereas uptake of the larger hyphal forms of
C. albicans or the large aggregates ofMycobacterium bovis lead to
elastase translocation to the nucleus of neutrophils (6). The latter
nuclear translocation of elastase causes proteolytic cleavage of
histones and chromatin decondensation which leads to the
release of NETs targeting pathogens (Figure 1A) (6). Finally,
budding yeasts can stall phagocytosis when the phagocytic cup
reaches the negative curvature at the neck separating a mother
and daughter cell, as shown for phagocytosis of living yeast by
the amoeba Dictyostelium (116) and for paraformaldehyde-fixed
and heat-killed yeast by RAW264.7 macrophages (117). This is
in line with findings from theoretical modeling that hourglass-
shaped particles can stall phagocytosis (Figure 5A) (34).
PHAGOCYTOSIS AND
THE CYTOSKELETON

Phagocytosis is dependent on the actin cytoskeleton that aids in
the protrusion of membrane for engulfment, forming a cup-
shaped membrane fold around the particle (3, 17, 21) (Figures 1
and 4B). At the base of the phagocytic cup, F-actin is cleared
thereby enabling the invagination of the membrane in a process
driven by phosphoinositide remodeling (1, 2). At the rim of the
phagocytic cup, F-actin rich pseudopodia continue to extent
around the particle until they fully enwrap the particle and fuse,
thereby sealing the particle into a phagosome (1, 2). The F-actin
cytoskeleton exerts forces on the particles dragging them toward
the center of the cell, and regulates membrane fusion events (118,
120–122). Moreover, the contractile activity of F-actin is
necessary for phagocytic cup closure (17, 21). The role of F-
actin in the phagocytic process has been extensively reviewed
elsewhere (3, 17, 123–127), and we will limit our discussion to
the role and organization of F-actin for uptake of differently
shaped and sized phagocytic cargoes.
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The organization of F-actin on the surface of phagosomes
might well be dependent on the shape of the ingested particle.
Super-resolution microscopy revealed that F-actin aligns in
concentric rings or parallel fibers on the surface of phagosomes
containing (spherical) zymosan yeast particles (Figure 5A)
(118). So far only a limited number of studies addressed the
question of how the F-actin skeleton is organized at the
subdiffractional level on phagosomes containing particles/
pathogens with irregular shapes (128), but since many proteins
and lipids involved in cytoskeletal anchoring (integrins,
phosphoinositides, ERM proteins) are sensitive to curvature,
phagosomes carrying irregularly shaped particles can be
expected to have distinct cytoskeletal-anchoring sites (129,
130). Moreover, because of the persistence length of F-actin
filaments, it might be expected that F-actin filaments tethered to
phagosomes containing elongated particles would align along the
long axis of such particles. In line with this, in vitro experiments
with polymerization of actin encapsulated in artificial liposomes
converted the morphology of the liposomes from spherical to
tubular (131). The notion that F-actin formation is dependent on
particle shape is supported by the finding that F-actin only
formed a ring at the leading edge of the phagocytic cup in
alveolar macrophages phagocytosing spheres or flattened prolate
particles (~14 × 4 × 1 µm) provided they were phagocytosed
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orthogonal to their major axis (tip-first) (Figure 5A). In contrast,
even though F-actin was assembled if the initial contact with the
particles occurred orthogonal to their minor axis (laying-down),
it failed to form cup-like membrane extensions or a F-actin ring,
which stalled uptake (64). Similarly, uptake of filamentous E. coli
bacteria by J774A.1 macrophages was unsuccessful and no actin
accumulation and phagocytic cup formation was observed when
the bacteria were positioned with their longest axis parallel to the
macrophage surface (laying-down) (98).

A study utilizing DAAM-particles with stiffnesses comparable
to biological objects showed that, during phagocytic uptake by
murine macrophage-like cells J774A.1 cells, pseudopods of
phagocytes exert ring-like compression on the DAAM particles
(19). Interestingly, those rings were not round and contained
dents and pits indicating that the pressure was not uniform over
the perimeter of the ring (19). The dents might be caused by
localized pressure exerted by podosome-like spots of F-actin at
phagocytic cups (132). During the uptake of the DAAM-
particles, also pits caused by compressive forces were observed
at the base of the phagocytic cup and these pits were even
observed during phagocytic cup closure (19). It seems unlikely
that these compressive forces are exerted by the F-actin
cytoskeleton, as F-actin is cleared from the cup base at this
stage of phagocytosis (133).
A

B

FIGURE 5 | Pathogen and particle shape affect phagosomal F-actin. (A) Theoretical modeling of receptor mediated uptake of hour-glass particles and experimental
evidence from budding yeast. The local negative curvature at the neck can slow uptake. Ring(s) of F-actin present during uptake of yeast (117, 118) and prolate
particles (64). (B) F-actin at phagosomes containing fungi that alter morphology inside host cells. F-actin forms wave-like dynamic rings and cuffs around hyphae
during internalization. At later stages, tubes of dynamic F-actin cover hyphae (93, 97, 119). Hyphal tips protruding membranes also recruit F-actin. Details; see text.
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The F-actin cytoskeleton not only mediates phagocytosis, but
also plays a role later during the maturation of the phagosome and
fungal pathogens sometimes express virulence factors that interfere
with this. For instance, the intracellular pathogen Cryptococcus
neoformans can block acidification of its phagosomes in a
pathogen-driven process and disrupt the integrity of the
phagosomal membrane to gain access to the cytosol (134). This
phagosomal permeabilization is followed by transient appearance
of F-actin on the phagosomal surface during fusion of the
phagosome with the plasma membrane, leading to non-lytic
escape of C. neoformans from the cell (vomocytosis) (135). In
addition to virulence factors, the size, shape, and/or surface
properties of C. neoformans might also contribute to these actin
flashes, as they were not only observed in phagosomes with live
pathogen, but also with heat-inactivated pathogen and they were
more persistent than for latex beads (135). A point of discussion is
whether this F-actin has a protective function against phagosomal
membrane rupture. SuchF-actinflashes have also beenobserved on
phagocytosed latex beads and heat-inactivated C. neoformans, but
these flashes occurredwith lower frequency and such particles were
not capable of the non-lytic expulsion (135). Moreover, F-actin
removal from the phagosome could be a necessary step before the
phagosome can fuse with endosomes and lysosomes (117, 135),
although this is controversial because the F-actin tethering protein
ezrin was shown to stabilize phagosomal F-actin promoting the
recruitment of the lysosomal membrane protein LAMP2 (136).

There are indications that the recruitment of F-actin during
later stages of phagosomal maturation depends on the shape of
the ingested particle. The neck of budding yeasts creates negative
curvature between mother and daughter cells, which stalls F-
actin in that region during phagocytic uptake by RAW264.7
macrophages, leading to persistent F-actin flashes in that region
(Figure 5B) (117). F-actin was only present during the early
stages of phagocytic uptake of C. albicans mutants that were
unable to form hyphae, whereas it was also present after
phagocytosis of wildtype hyphae-forming C. albicans. In fact,
different topologies of F-actin have been observed on
phagosomes containing the hyphal form of C. albicans: cuffs of
F-actin at entry points (sleeve-like extended phagocytic cups,
also observed in (97)), tubes of F-actin lining fully internalized
hyphae (unlike the yeast form that does not have F-actin), and F-
actin at hyphal tips (93) (Figure 5B). However, it is arguable how
much of these differences in F-actin localization is driven by the
geometry of the pathogen and how much it depends on cell wall
composition; F-actin was less recruited to phagosomes
containing C. albicans mutants with dysfunctional O-
mannosylation (and disrupted cell walls), even though this
mutant formed hyphae comparable to wildtype fungi (93).

Moreover, C. albicans might express virulence factors that
alter F-actin formation at the phagosomes. Using the class I PI3K
inhibitor LY294002, the activity of PI3K was shown to be
unnecessary for later tube-like F-actin polymerization around
C. albicans hyphae (97). Since class I PI3K is known to play an
essential role in cortical F-actin dynamics (2, 4, 137), this
suggests that C. albicans might trigger signaling cascades to
evade host defense responses, either by creating a F-actin
barrier independent from class I PI3K kinases that prevents
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fusion with lysosomes, or by utilizing F-actin for repairing the
membrane rupture caused by fast growing hyphae. Interestingly,
the role of PI3K in endocytosis (138) seems to depend on particle
shape, as the broad PI3K inhibitor wortmannin could block
uptake of nm-sized silica worms by RAW264.7 and alveolar
macrophages, but affected uptake of spheres to a lesser
extent (85).

Although much less studied, not only the F-actin
cytoskeleton, but also microtubules might affect phagocytosis.
First, microtubules control RAW264.7 macrophage spreading
and migration, thereby linking this to phagocytic capacity (139).
The involvement of microtubules depends on the phagocytic
cargo, as phagocytosis of spherical 3 µm-sized non-opsonized
and complement-opsonized silica particles by the mouse alveolar
macrophage cell line MH-S, but not antibody-opsonized silica
particles, depends on the microtubular cytoskeleton (140).
Second, after phagocytosis, ingested particles are moved from
the cellular periphery toward the microtubule organizing center
(MTOC) located at the center of the cell (139, 141). This
retrograde intracellular transport is likely mediated by motor
proteins of the dynein family (142). Microtubules are thus
responsible for the intracellular transport of phagosomes (143,
144) and this facilitates the fusion of phagosomes with endocytic
organelles (145). In Fc-receptor mediated phagocytosis by
RAW264.7 macrophages, the microtubules also re-orient the
MTOC toward the phagosomal cargo, and this is necessary for
Golgi positioning next to the phagosome for subsequent antigen
presentation to T cells (141).

Actin and microtubules are also important for clathrin-
mediated endocytosis and this depends on particle shape. For
instance, it was shown that small molecule inhibitors of F-actin
or inhibitors of microtubule assembly in macrophages caused a
reduced uptake of nm-sized particles with more complex shapes,
such as worms and cylinders, but not of spherical particles which
were more sensitive to inhibitors of clathrin (85).

Since particle shape would be expected to determine the
resistance and drag forces a phagosome encounters within a
cell, it is logical to assume that particles will be reoriented within
the cell to minimize the forces required for intracellular
transport. In line with this, it has been reported that the initial
contact is not the only parameter determining the direction of
phagocytosis, and (at least spherical) particles can be rotated
following uptake (146).
PHAGOCYTOSIS AND
ORGANELLAR TRAFFICKING

Most studies on cellular uptake of differently shaped and sized
particles only focus on the uptake mechanism, and not on the
maturation of phagocytic/endocytic organelles within host
cells. After full particle engulfment by the plasma membrane,
both endosomes and phagosomes undergo a process called endo/
phagosomal maturation. This maturation is driven by membrane
fusion events, where compartments of early endosomal and
lysosomal nature fuse with the endo/phagosomes, and by
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fission events characterized by vesicles budding-off from the
endo/phagosome (1, 147–150). Cytosolic components, such as
Rab proteins, their effectors, SNAREs, SNARE-interacting
proteins, BAR-proteins, and phosphoinositide kinases, remodel
the membrane of endo/phagosomes and thereby also drive
maturation (1, 147, 148). After uptake of a microbial pathogen,
the phagocyte attempts to kill the ingested pathogen by
generating large amounts of reactive oxygen species (ROS) by
the NADPH-oxidase NOX2 in the lumen of the phagosome
(151). During endo/phagosomal maturation, the endo/
phagosome becomes enriched in lipases, nucleases and
proteases (126, 152). Among the proteases are cathepsins
which play a role in antigen processing and MHC-class II
chaperon chain pre-processing for antigen presentation to T
cells (152). The resulting lysosome (endocytosis) or
phagolysosome (phagocytosis) is a degradative compartment
characterized by low pH, as a result of proton import by the
vacuolar (v-)ATPase from the cytoplasm to the phagosomal
lumen, and this enables the degradation of the ingested
pathogen (1, 94, 108, 137).

The notion that membrane trafficking leads to asymmetry in
phagosome maturation is well-established. This asymmetry can
already occur early in the phagocytic process at the nascent
phagocytic cup. For instance, it was observed that membrane
fusion during phagocytosis of large spherical particles resulted in
a displacement of the original membrane constituents at the base
of the phagosomal cup, which thereby became more mature than
peripheral regions and this heterogeneity was more apparent for
larger particles (153). In line with this, a clear spatial gradient of
phosphoinositide lipids and the proteins p85 and SHIP1 was
observable early during phagocytosis of ellipsoid ~10 µm prolate
polystyrene particles (154). In RAW264.7 macrophage-like cells,
the uptake of PFA-inactivated filamentous Legionella
pneumophila, Salmonella typherium, and C. albicans proceeded
via long-lasting phagocytic cups and endosomes already fused
with and released their contents along the surface of these
nascent phagosomes (23, 155). However, despite acquiring late
phagosomal markers (e.g., Rab7, LAMP1), the lumen of the
nascent phagosomes did not acidify prior to sealing and low
molecular compounds and lysosomal hydrolases could leak into
the extracellular environment (23, 155). This shows that particle
morphology affects phagocytic cup remodeling and closure,
phagosomal acidificat ion, and the integri ty of the
phagosomal membrane.

Also after sealing of the phagocytic cup, it can be expected that
a maturation asymmetry is present on phagosomes carrying
highly curved particles, since many phagosomal proteins
(including BAR-domain proteins, vesicle coats) and lipids
(phosphoinositides, phosphatidic acids) are responsive to
membrane curvature (129, 130, 156, 157). Since these proteins
and lipids regulate intracellular membrane fusion and fission, this
raises the possibility that organellar trafficking events driving
phagosomal maturation might predominantly occur at the
highly curved membrane regions of phagosomes containing
irregularly shaped particles. This might contribute to the
pathogenicity of C. albicans, as it was found that phagosomes
containing the hyphal form of the pathogen mature slower (93)
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and have prolonged presence of the small GTPase Rab14, which
favors LAMP1 and cathepsin B recruitment compromising fungal
survival and immune escape (119). In this study, the prolonged
retention of Rab14 on phagosomes was found to be proportional
to hyphal length, which supports the hypothesis that particle shape
is a key parameter for phagosomal maturation.
INFLAMMASOME ACTIVATION

Several MAMPs and DAMPs can be sensed by an important
class of PRRs: nucleotide-binding domain and leucine-rich-
repeat proteins (NLRPs) (158). Within the cytosol, NLRPs can
assemble into a large macromolecular complex called the
inflammasome which triggers caspase-1 activity. Caspase-1
causes production of the inflammatory cytokines IL-1b and IL-
18, leading to inflammation and inflammatory cell death
(pyroptosis) (Figure 6A). In various pathological conditions,
crystals of alum (e.g., in vaccine adjuvants), urate (in the
disease gout), cholesterol (atherosclerotic lesions), calcium
pyrophosphate (pseudogout), asbestos (asbestosis, meso
thelioma), and silica (silicosis) can be ingested by phagocytes
and trigger inflammasome activation (158–160), and this is the
main explanation why crystalline silica particles are cytotoxic
(see above). Inflammasome activation can be caused by
destabilization of the membranes of lysosomes leading to the
release of cathepsin B into the cytosol and/or efflux of potassium
ions through K+ channels (Figures 6A, B), which promote
inflammasome activation and IL-1b and IL-18 production, but
also can increase apoptosis due to cytochrome C release from
mitochondria (158, 161–164).

The activation of the inflammasome by particles depends on
their surface properties. Particles with reactive surface chemistry
and/or particles with rough surface topologies (e.g., silica, carbon
black, silver, polystyrene) can destabilize lysosomal and
phagosomal membranes, thereby causing inflammasome
activation, as has been extensively reviewed elsewhere (158,
165–168). Overall, for such particles with rough and/or
reactive surfaces, smaller nanoparticles are more potent for
inflammasome activation, because they have a larger surface
area per mass, as also reviewed elsewhere (Figure 7) (166, 169).
However, an inverse size-dependency has been reported for long
particles with extreme AR. Such needle-like particles can also
result in inflammasome activation, even if they are composed of
biological inert material, and this is a hallmark of the fiber
paradigm explaining the toxicity of long fiber like materials
(asbestos, carbon nanoparticles) (22). For such particles with
extreme NA, larger particles generally are more capable of
inflammasome activation, as is well understood for needle-
shaped particles of titanium rutile, poly(ethylene oxide), gold
and carbon, and other materials (Figure 7) (161, 166). The
activation of the inflammasome by needle-shaped particles
depends on ROS production and cathepsin B (170), and
although the precise mechanism and the contribution of
membrane destabilization in this process are less clear (170,
171), it likely relates to frustrated phagocytosis and the leakage of
ROS and lytic enzymes in the extracellular environment (the
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fiber paradigm) (22). Similar to needle-shaped particles,
irregularly shaped particles with high curvatures can also
induce the inflammasome and here larger particles are also
more effective than smaller ones (161, 164, 166). For instance,
6 µm sized irregularly shaped CoCrMo particles were more
potent for IL-1b production by human primary monocytes and
human THP-1 monocytes than similarly sized smooth particles
and 1 µm irregularly shaped particles (163).

The inflammasome can also be triggered following the uptake
of certain pathogens. Here, the inflammasome can be activated
following destabilization of endosomal or phagosomal membranes
by virulence factors, but also certain topological cues such as the
hyphae of fungi or some bacterial nanofeatures, such as flagella,
pili, and fimbriae, might activate the inflammasome (74, 167, 168).
For the pathogen C. albicans, this plays a role in its escape from
phagocytes by lytic expulsion fol lowing pyroptosis
(inflammasome-mediated cell death) (96). It is argued that the
hyphae of C. albicans can trigger activation of the inflammasome
which in turn triggers cytotoxicity of phagocytes (94), and that
thereby the pathogen can escape from phagocytes. Whether
filamentation is a sole trigger of such pyroptosis is debated, but
it is agreed on that solely phagosomal rupture does not cause cell
death, but rather a combination of NLRP3-activation, physical cell
destruction, changes in pathogen morphology (96) and fungal cell
wall remodeling (172) are required.
Frontiers in Immunology | www.frontiersin.org 1365
PARTICLE SIZE AND MORPHOLOGY IN
THE IMMUNE SYSTEM

PRRs not only can mediate uptake but also signal intracellularly
and IL-1b and IL-18 are critical for the immune system; it is
therefore no surprise that particle size and shape can modulate
immune activation as shown in both cultured immune cells and
animal models (Figure 8). For example, compared to spherical
particles composed of nucleic acids and cationic peptides,
endocytosis by cultured mouse splenocytes of 10–100 nm sized
fiber-shaped particles from the same material resulted in more
expression of activation marker CD86 and the inflammatory
cytokine IL-6, whereas expression of the co-stimulatory receptor
CD40 and production of the inflammatory cytokine IFN-g were
reduced (173). In another study, the phagocytosis of 15–20 µm
sized needle-shaped calcium carbonate particles by the THP-1
macrophage cell line resulted inmore secretion of TNF-a and IL-8,
thereby triggering a pro-inflammatory response (32). Finally, in
mice injected with 7–8 mm-sized particles with complex geometries,
neutrophil recruitment to the injection site wasmore rapid than with
smooth particles, and phagocytosis, activation of the inflammasome
and secretion of IL-1b were increased (174). The comparison of
these in vitro and in vivo systems thus consistently shows that both
endocytic and phagocytic cargoes with high NA induce more
potent immune responses than more spherical particles.
A

B

FIGURE 6 | Particle size and morphology: inflammasome activation. (A) Particles with spiky morphologies can disrupt endo/phagosomal membranes leading to K+

and cathepsin leakage into the cytosol (so-called signal 2). Mitochondrial destabilization causes cytochrome C release leading to cytotoxicity. These stimuli activate
inflammasome assembly from caspase-1, ASC, and NLRP3 which cleaves pro-IL-1b and pro-IL-18 into mature IL-1b and IL-18. Inflammasome activation can trigger
cell death (pyroptosis). (B) Particle shape is an agonist in particle-based vaccination. Administration of TiO2 spiky particles initiating mechanical rapture of
phagosomes (signal 2) in mice together with a bacterial TLR ligand (signal 1). TLR signaling activates NF-kB relocation to the nucleus leading to pro-IL-1b and pro-
IL-18 transcription and translation and upregulation of activation markers CD40, CD80, and CD86. Signal 2 initiates inflammasome-mediated proteolytic conversion
into mature IL-1b and IL-18. Mice receiving a combination of spiky particles and a TLR-ligand thereby induce a potent Th1 response.
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The size of the particles is also an important determinant for
immune activation. Hydroxyapatite crystals smaller than 1–2 µm
caused more TNF-a release by cultured human primary
macrophages compared to 6 and 14 µm sized particles (175),
likely because of more efficient activation of the inflammasome
as discussed above (166). However, the particle size also
influences the processing of the antigens for activation of T
cells. Antigenic proteins conjugated to nanometer-sized PLGA
particles were more efficient in eliciting MHC-I cross-
presentation in comparison to micrometer-sized particles in
cultured DCs (Figure 8A) (reviewed in (176)). Here, the
differently sized particles were found to be differently
processed by the antigen presenting DCs: the proteins bound
to nanometer-range particles were processed by the proteasome
for cross-presentation in cultured DCs, indicating that they
escaped from the lumen of the endosome into the cytosol
(177). In contrast, proteins bound to micrometer-sized
particles were processed by endolysosomal proteases (177),
indicating that these proteins did not escape into the cytosol.

The size of the endocytic particles also influences the immune
response by determining the speed of endosomal maturation.
Endosomes containing smaller silver particles of 200 nm acquired
lysosomal markers, such as LAMP1, sooner than endosomes
carrying larger particles of 500 nm in cultured mouse bone
marrow-derived macrophages (178). Although MHC-II was
recruited to endosomes containing both types of particles, antigen
presentation occurred more efficiently with the larger particles and
this fostered more efficient CD4+ T cell activation (Figure 8A)
(178). In this case, the efficient recruitment of lysosomes to
endosomes containing smaller particles may result in a complete
breakdown of the antigenic protein and thereby lower the efficiency
Frontiers in Immunology | www.frontiersin.org 1466
ofMHC-II presentation (179). Indeed, other studies found that not
only the uptakebut also the intracellular processingwas determined
by the particle size: 20–40 nm-sized particles composed of
amphiphilic poly(gamma-glutamic acid) were not only more
efficiently ingested by cultured murine bone marrow–derived
DCs and RAW264.7 macrophage-like cells than larger 200–1,000
nm-sized particles (179, 180), but also underwent faster lysosomal
degradation and were less likely to reside in earlier endosomal
compartments (178, 179).

Because the shape and size of a particle can affect the immune
system, it can affect the efficiency of particle-based vaccines
(review (181)). First, the size of a particle is an important
parameter for determining where a particle ends up in the
body. Large particles (>1 µm) generally accumulate in small
capillaries particularly in the lungs and can cause thrombosis
(181). Partially due to uptake by macrophages and monocytes,
which have an optimal particle size for endocytosis of about 100
nm as discussed above, particles with this size range are generally
more readily cleared from circulation. For instance, one study
reported that liposomal particles (bisphosphonates) carrying
immune-activating molecules of ~80 nm size remained longer
in circulation in animal models than 100 nm particles (Figure
8A) (78). However, the same study showed more potent immune
responses for larger particles, as large liposomes (~200 nm) were
more prone to cause cytokine production (IL-1b, TNF-a, IFN-g,
IL-6, IL-8, and IL-10) than small liposomes (~80 nm) both in
vitro and in vivo (78). Finally, size is important for the efficacy of
a vaccine, because large particles can simply contain more
antigen than larger particles. PLGA particles of 40, 100, and
200 nm in size were administered subcutaneously in mice and,
even although their uptake by lymphatic DCs showed a two-fold
FIGURE 7 | Summary of particle geometry in inflammasome activation (IL-1b production) and cytotoxicity. The effect of particle size on inflammasome activation and
cytotoxicity is controversial. Details; see text.
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higher uptake for the smaller 40 nm particles, DCs carrying 200
nm particles showed a three-fold higher level of relative antigen
content (180).

Based on different MAMP and DAMP signaling, DCs can
discriminate between different pathogens and other immune
challenges. This allows the DC to steer CD4+ T cells toward
different subsets: Th1 or Th2 (182). Th1 cells secrete pro-
inflammatory cytokines, such as IFN-g and TNF-a, for
activating MHC expression and antimicrobial responses in
phagocytes. Th2 cells secrete more anti-inflammatory cytokines
including L-4, IL-5, IL-10, and IL-13 for activating responses
against extracellular pathogens via class switching and antibody
production by B-cells. Moreover, IL-10 produced by Th2 cells
inhibits the function and development of Th1 cells and
macrophages (182). Because of these different cytokines, Th1
cells promote immune responses that favor microbial and viral
Frontiers in Immunology | www.frontiersin.org 1567
elimination (10), while Th2 responses are more directed to
fending off large parasites such as helminths and worms (182).
In addition to recognizing different pathogens based on MAMP
and DAMP signaling, and as discussed above, immune
phagocytes can discriminate between different pathogen types
based on shape and size and this plays a role in T cell
differentiation (Figure 8B) (182). Although very small gold
particles (2 nm; the size of a protein) do not efficiently activate
DCs because they diffuse into cells and end-up in a non-
membranous compartments, 12 nm-sized particles can enter
the DCs via some form of receptor-mediated endocytosis and
promote Th1 differentiation by the DCs (181). Moreover, OVA-
conjugated polystyrene particles in size ~50 nm are more likely
to initiate Th1 activation in mice than micrometer-sized particles
(183, 184), whereas micrometer-sized particles are more prone to
trigger Th2 responses (185, 186). In line with these findings, the
smaller sized round conidia of Aspergillus fumigatus or yeast
form of C. albicans skew immune responses by monocytes
toward Th1, while the larger hyphae forms of these pathogens
trigger more Th2 responses (Figure 8B) (10). However, this also
depends on the shape and topology of the particles, particularly
whether the inflammasome is activated as discussed above,
because for instance nano-spikes on the surface of TiO2

particles resulted in Th1 responses in mice despite the large
micrometer-range size of these particles (Figure 8B) (164).
FUTURE PROSPECTS

An apparent conclusion in this review is that predictions from
simulations and theoretical modeling do not always agree with
experimental findings, particularly concerning the uptake mode
of elongated oblate or prolate particles. As discussed above, most
theoretical studies predict that such elongated particles are
ingested by maximizing the contact area between the plasma
membrane and the particle (laying-down mode for prolate
particles; tip-first mode for oblate particles) (34–41). However,
as also discussed above, this seems to directly oppose
experimental findings with model particles and hyphen-
forming fungal pathogens and filamentous bacteria (7, 9, 10,
23, 25–33, 93, 94, 96–98, 119, 181). A reason for this discrepancy
might be that most simulations and theoretical modeling only/
mainly consider the plasma membrane, and are therefore based
on the assumption that the energy required for the remodeling of
the membrane is rate-limiting for uptake. However, as explained
in this review, different forms of endocytosis and phagocytosis
are far more complex and this assumption might not hold true.
In the future, more sophisticated models should incorporate this
complexity and for instance account for regional signaling by
uptake receptors, localized activation of Rho-GTPases and the
polarization and active remodeling of the actin cytoskeleton.

As discussed in this review,manyproteins and lipids involved in
signaling and cytoskeleton-anchoring are sensitive to membrane
curvature (129, 130, 156, 157, 187–189). Therefore, regions on
particles with high positive or negative curvature might well result
in phagosomal domains of protein/lipid interactions and signaling.
A

B

FIGURE 8 | Particle size and morphology: immune responses. (A) Summary
of immunomodulatory effects of physical properties of particles. Ag, antigen.
(B) Summary of effects of physical properties of particles on CD4+ T cell
differentiation (Th1 and Th2) and macrophage polarization (M1 and M2).
Details; see text.
February 2021 | Volume 11 | Article 607945

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Baranov et al. Particle Properties Affecting Immune Responses
These domains can be transient, given the highly dynamic nature of
endocytosis and phagocytosis. In order to facilitate studying this,
some approaches focus on creating stable membrane curvatures
induced by surface topography that cells come in contact with
(Figure 9) (188–192). Nano-topography-based methods such as
electron-beam (E-beam) lithography can be used to create
nanostructures as small as 50–100 nm, which enables high
membrane curvatures (188–190). These approaches can be used
for studying a wide range of questions related to curvature-induced
distribution of clathrin-dependent endocytic proteins (187),
polymerization of F-actin (188, 189) and nuclear membrane
deformations affecting chromatin distribution and gene
expression (190). Using this approach, it was found that nano-
topographies of above 30 nm are sensed by macrophages and
printed patterns above 71 nm in height induce higher endocytic
Frontiers in Immunology | www.frontiersin.org 1668
activity (193). Moreover, microprinting allows creating adjacent
structures with different sizes and topologies to compare these side-
by-side using confocal or electron microscopy (Figure 9B) (187,
190). For example, one study using such a gradient of topologies
showed that clathrin-related proteins prefer a positive curvature
with a radius <200 nm (187). Moreover, an array of nanometer-
sized bar-shaped structures with different diameters of the tips was
used to show that only curvatures in the range of ~100–400 nm
could trigger recruitment of theBARprotein FBP17 and theArp2/3
complex required for F-actin assembly (188). An interesting
modification of this method is the development of imprinted
light-sensitive azobenzene-based polymer structures that can
dynamically change their shape using light, thereby exerting
forces and affecting the membrane curvature of cells interacting
with these structures (Figure 9C) (189). Using this approach, it was
FIGURE 9 | Nanostructure topologies for studying effects of curvature on membrane. (A) Nanostructure fabrication using electron-beam (E-beam) lithography.
Pillars, bars, and C-like patterns can be designed for generation of a library of positive and negative curvatures and flat surfaces. Curvature libraries such as nano-
bars can be used of mapping proteins sensing curvature in clathrin-mediated endocytosis. End-to-center ratio is higher for markers localizing mainly to the regions of
high curvature. Curvature signature can be used for mapping of curvature-dependent protein recruitment in time. (B) Cells can be cultured on patterned substrates
for nanoscale manipulation of membrane curvature. A smaller pillar diameter results in a higher curvature. Positive curvature with a radius of <200 nm is preferred by
components of clathrin-mediated endocytosis and F-actin. (C) Azopolymers can change shape from vertical pillar to stretched nano-bar under the influence of light
and can be used for dynamic manipulation of membrane curvature. Membrane stretching at nano-bar ends triggered F-actin nucleation.
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shown that the light-induced elongation of vertical pillars, which
generated a higher cell membrane curvature on the tips of the
pillars, promoted the local accumulation of the actin nucleator
Arp2/3 complex and F-acting assembly (189). This method may
inspire more future approaches to dynamically manipulate the
membrane curvature and analyze protein responses in real-time.

Other advances in the material sciences and microscopy will
also lead to the development of better tools to study how particle
size and shape affect different forms of endocytosis and
phagocytosis. Modern synthetic methods allow to create
functional colloidal building blocks and define general self-
assembly principles (194). Particle’s shape, activity and
patchiness can be engineered by combining classic sol-gel
chemistry with a recently developed micro-emulsification
methodology (195). These approaches will allow to design and
fabricate biocompatible particles to serve as model phagocytic
cargoes featuring tailored curvatures and symmetries. Designer
cargos can be used for resolving particle reorientation within cells,
heterogeneities of the phagosomal membrane, sites of membrane
trafficking, and the arrangement of the cytoskeleton. Super-
resolution stochastic optical reconstruction microscopy
(STORM), stimulated emission depletion (STED) microscopy
(128) and Förster resonance energy transfer-fluorescence
lifetime imaging microscopy (FRET-FLIM) (196, 197) would be
of benefit to determine membrane heterogeneities, the presence of
maturation markers and cytoskeleton re-arrangements on the
surface of irregularly shaped colloids engulfed by phagocytes.
The combination of light sheet fluorescence microscopy with
atomic force microscopy (AFM) enables to simultaneously
visualize phagocytosis with force measurements (198) and hence
will allow to answer the question of how particle size and shape
affect the forces exerted by the cell. New image processing machine
learning algorithms and digital holographic imaging techniques
(128, 199) are gaining traction to visualize the positions and
orientations of the colloids in 3D from 2D images. Phagosomes
can be isolated from cells using density-gradient centrifugation or
by using magnetic particles allowing for proteomic analysis. Such
proteome analysis of different morphotypes of pathogenic fungi
interacting with host immune cells may shed more light on the key
curvature-sensing proteins that phagocytes rely on to interact with
invaders (14).

In addition to these experiments with cells, experiments with
artificial membranes can be of value and bridge the gap with
modelling and theory. For instance, particles with a range of
curvatures can be potentially encapsulated in artificial
membranes for determining the organization of the membrane
(i.e., by encapsulating fluorescent lipid analogues, such as
phospohoinositides, around the colloids for example by
centrifugation of the colloids through a lipid/oil suspension on
top of an aqueous buffer (200)). These artificial lipid membranes
can be used for studying potential localized binding of
recombinantly purified proteins that bind specific lipid species
(e.g., pleckstrin-homology domains) or sense membrane
curvature (e.g., BAR-domain proteins).

Current studies mostly employ either artificial colloids or
killed microbial cells (by heat or chemicals) as models for
Frontiers in Immunology | www.frontiersin.org 1769
phagocytosis, whereas the immune system encounters a wide
range of pathogens in different shapes that actively move (e.g., by
flagella) and can remodel their shape (13, 201). How pathogen
motilities within phagosomes affect their degradation and
whether the immune cell is somehow able to sense the
movement of ingested pathogens is incompletely understood.
As discussed above, various pathogens use shape to avoid
clearance by the immune system, and the many pathogenic
fungi can switch their morphology, for instance between small
circular cells and extensive elongated hyphae (Figure 5B)
(reviews (13, 201)). Moreover, bacteria of regular size (e.g.,
Legionel la pneumophila , Streptococcus pneumoniae ,
uropathogenic E. coli) may undergo filamentation that slows
down phagocytosis due to a higher AR (23, 98, 110). Size
reduction is also used by some bacteria, as for example
Moraxella catarrhalis, Neisseria meningitidis, Salmonella
typhimurium, and Streptococcus pneumoniae convert from
growing in longer chains to short chains, which results in a
smaller surface area for complement deposition and reduced
complement-dependent killing by phagocytes (110). These
dynamic shape changes in the morphology of particles and the
motion of particles in phagosomes can be studied using particles
that can change their shape, for instance by light (189), and
chemically powered micro- and nano-motors coupled to
particles to induce self-propelled movements in fluids (202,
203) and by simulations (204). A particularly interesting class
of model phagocytic cargoes are self-propelled colloids—
synthetic particles equipped with a chemically powered nano-
motor. The motor, typically platinum, catalyzes the
decomposition of a suitable fuel generating a localized
chemical gradient that propels the particle by either phoretic
or bubble propulsion mechanisms (194, 205–211). Hematite or
titania-based motors work in a similar manner, however, their
activity can be controlled by light, thus allowing for a convenient
on/off switch (212).

The H2O2 produced in phagosomes of neutrophils and
dendritic cells by the NADPH oxidase NOX2 could be used as
fuel to power active colloidal particles and generate forces in
living cells (213, 214). More specifically, H2O2-fuelled particles
might be engineered to utilize H2O2 produced in the phagosomal
lumen by NOX2 for triggering particle motion, membrane
rupture, and phagocytic escape (analogous to fungal
pathogens). Moreover, membrane deformations by asymmetric
forces exerted on the phagosome membrane by H2O2-fuelled
active colloids might also result in polarized membrane
trafficking. An alternative approach would be to create
magnetic particles (e.g., with Fe2O3 cores) to allow for external
manipulation using magnetic fields (194, 205–211, 215).

Biocompatible particleswith sizes in the nmrange are of interest
as carriers for drug-delivery or vaccination, therefore how their size,
shape, rigidity, and surface composition affect cellular uptake is of
particular interest (reviewed in (216)).Numerous studies attempt to
use particles in the body to deliver drugs, vaccines, imaging agents
or DNA or RNA for gene therapy (review (66, 164, 176, 181, 183,
184, 217)). Theoretical modeling and experiments addressing how
particle shapes and sizes affect cellular uptake and (immune
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responses) might help in the design of such particle-based clinical
agents (35–41).
CONCLUDING REMARKS

-Theoretical simulations combined with experiments of
pathogen shape, AR, and size may inspire particle design
for vaccination for high antigen uptake or prolonged
residence in circulation.

-Future theoretical studies should incorporate localized signaling
of receptors and the cytoskeleton.

-The size and shape of pathogens affect the activation of antigen
presenting cells and can skew T cell responses to Th1 and Th2
responses.

-Rough and spiky particles and particles with high AR can cause
inflammasome activation and cell death.

-Pathogens change their shape to escape the immune system and
this could be potentially used in vaccines.

-Molecular nanomotors can be used to study how pathogen
mobility and shape-shifting affect phagocytosis and immune
responses.

-Nano-topography-based methods of patterns printed on
substrates can be used to gain a detailed understanding how
curvature affects phagocytosis and different forms of
endocytosis.
Frontiers in Immunology | www.frontiersin.org 1870
AUTHOR CONTRIBUTIONS

MB wrote the manuscript with support from MK, SS, ST, and
GB. All authors contributed to the article and approved the
submitted version.
FUNDING

ST, SS and GB are funded by a Young Investigator Grant from
the Human Frontier Science Program (HFSP; RGY0080/2018).
GB has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and
innovation program (grant agreement No. 862137) and the
Netherlands Organization for Scientific Research (Vidi grant
NWO-ALWVIDI 864.14.001). ST further acknowledges support
from the Department of Atomic Energy, Government of India,
under project no. 12-R&D-TFR-5.04-0800 and 12-D&D-TFR-
5.10-1100, the Simons Foundation (Grant No. 287975) and the
Max Planck Society through a Max-Planck Partner-Group.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2020.
607945/full#supplementary-material
REFERENCES
1. Flannagan RS, Jaumouille V, Grinstein S. The cell biology of phagocytosis.

Annu Rev Pathol (2012) 7:61–98. doi: 10.1146/annurev-pathol-011811-132445
2. Bohdanowicz M, Grinstein S. Role of Phospholipids in Endocytosis,

Phagocytosis, and Macropinocytosis. Physiol Rev (2013) 93(1):69–106. doi:
10.1152/physrev.00002.2012

3. Swanson JA. Shaping cups into phagosomes and macropinosomes. Nat Rev
Mol Cell Biol (2008) 9(8):639–49. doi: 10.1038/nrm2447

4. Cox D, Tseng CC, Bjekic G, Greenberg S. A requirement for
phosphatidylinositol 3-kinase in pseudopod extension. J Biol Chem (1999)
274(3):1240–7. doi: 10.1074/jbc.274.3.1240

5. Schlam D, Bagshaw RD, Freeman SA, Collins RF, Pawson T, Fairn GD, et al.
Phosphoinositide 3-kinase enables phagocytosis of large particles by
terminating actin assembly through Rac/Cdc42 GTPase-activating proteins.
Nat Commun (2015) 6(1):8623. doi: 10.1038/ncomms9623

6. Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD,
et al. Neutrophils sense microbe size and selectively release neutrophil
extracellular traps in response to large pathogens. Nat Immunol (2014) 15
(11):1017–25. doi: 10.1038/ni.2987

7. Lewis LE, Bain JM, Lowes C, Gillespie C, Rudkin FM, Gow NA, et al. Stage
specific assessment of Candida albicans phagocytosis by macrophages identifies
cell wall composition and morphogenesis as key determinants. PloS Pathog
(2012) 8(3):e1002578. doi: 10.1371/journal.ppat.1002578

8. Duggan S, Essig F, Hünniger K, Mokhtari Z, Bauer L, Lehnert T, et al. Neutrophil
activation by Candida glabrata but not Candida albicans promotes fungal uptake
by monocytes. (2015) 17(9):1259–76. doi: 10.1111/cmi.12443

9. Reedy JL, Negoro PE, Feliu M, Lord AK, Khan NS, Lukason DP, et al. The
Carbohydrate Lectin Receptor Dectin-1 Mediates the Immune Response to
Exserohilum rostratum. Infect Immun (2017) 85(3):e00903-16. doi: 10.1128/
IAI.00903-16

10. Heung LJ. Monocytes and the Host Response to Fungal Pathogens. Front Cell
Infect Microbiol (2020) 10:34. doi: 10.3389/fcimb.2020.00034
11. Vyas JM, Van der Veen AG, Ploegh HL. The known unknowns of antigen
processing and presentation. Nat Rev Immunol (2008) 8(8):607–18. doi:
10.1038/nri2368

12. Grotzke JE, Sengupta D, Lu Q, Cresswell P. The ongoing saga of the
mechanism(s) of MHC class I-restricted cross-presentation. Curr Opin
Immunol (2017) 46:89–96. doi: 10.1016/j.coi.2017.03.015

13. Erwig LP, Gow NA. Interactions of fungal pathogens with phagocytes. Nat Rev
Microbiol (2016) 14(3):163–76. doi: 10.1038/nrmicro.2015.21

14. Kruger T, Luo T, Schmidt H, Shopova I, Kniemeyer O. Challenges and
Strategies for Proteome Analysis of the Interaction of Human Pathogenic
Fungi with Host Immune Cells. Proteomes (2015) 3(4):467–95. doi: 10.3390/
proteomes3040467

15. Sukhithasri V, Nisha N, Biswas L, Anil Kumar V, Biswas R. Innate immune
recognition of microbial cell wall components and microbial strategies to
evade such recognitions. Microbiol Res (2013) 168(7):396–406. doi: 10.1016/
j.micres.2013.02.005

16. Steele C, Rapaka RR, Metz A, Pop SM,Williams DL, Gordon S, et al. The beta-
glucan receptor dectin-1 recognizes specific morphologies of Aspergillus
fumigatus. PloS Pathog (2005) 1(4):e42. doi: 10.1371/journal.ppat.0010042

17. Freeman SA, Grinstein S. Phagocytosis: Mechanosensing, Traction Forces,
and a Molecular Clutch. Curr Biol (2020) 30(1):R24–r26. doi: 10.1016/
j.cub.2019.11.047

18. Pacheco P, White D, Sulchek T. Effects of microparticle size and Fc density on
macrophage phagocytosis. PloS One (2013) 8(4):e60989. doi: 10.1371/
journal.pone.0060989

19. Vorselen D, Wang Y, de Jesus MM, Shah PK, Footer MJ, Huse M, et al.
Microparticle traction force microscopy reveals subcellular force exertion
patterns in immune cell–target interactions. Nat Commun (2020) 11(1):20.
doi: 10.1038/s41467-019-13804-z

20. Bakalar MH, Joffe AM, Schmid EM, Son S, Podolski M, Fletcher DA. Size-
Dependent Segregation Controls Macrophage Phagocytosis of Antibody-
Opsonized Targets. Cell (2018) 174(1):131–42.e13. doi: 10.1016/
j.cell.2018.05.059
February 2021 | Volume 11 | Article 607945

https://www.frontiersin.org/articles/10.3389/fimmu.2020.607945/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2020.607945/full#supplementary-material
https://doi.org/10.1146/annurev-pathol-011811-132445
https://doi.org/10.1152/physrev.00002.2012
https://doi.org/10.1038/nrm2447
https://doi.org/10.1074/jbc.274.3.1240
https://doi.org/10.1038/ncomms9623
https://doi.org/10.1038/ni.2987
https://doi.org/10.1371/journal.ppat.1002578
https://doi.org/10.1111/cmi.12443
https://doi.org/10.1128/IAI.00903-16
https://doi.org/10.1128/IAI.00903-16
https://doi.org/10.3389/fcimb.2020.00034
https://doi.org/10.1038/nri2368
https://doi.org/10.1016/j.coi.2017.03.015
https://doi.org/10.1038/nrmicro.2015.21
https://doi.org/10.3390/proteomes3040467
https://doi.org/10.3390/proteomes3040467
https://doi.org/10.1016/j.micres.2013.02.005
https://doi.org/10.1016/j.micres.2013.02.005
https://doi.org/10.1371/journal.ppat.0010042
https://doi.org/10.1016/j.cub.2019.11.047
https://doi.org/10.1016/j.cub.2019.11.047
https://doi.org/10.1371/journal.pone.0060989
https://doi.org/10.1371/journal.pone.0060989
https://doi.org/10.1038/s41467-019-13804-z
https://doi.org/10.1016/j.cell.2018.05.059
https://doi.org/10.1016/j.cell.2018.05.059
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Baranov et al. Particle Properties Affecting Immune Responses
21. Jaumouille V, Cartagena-Rivera AX, Waterman CM. Coupling of beta2
integrins to actin by a mechanosensitive molecular clutch drives
complement receptor-mediated phagocytosis. Nat Cell Biol (2019) 21
(11):1357–69. doi: 10.1038/s41556-019-0414-2

22. Donaldson K, Murphy FA, Duffin R, Poland CA. Asbestos, carbon nanotubes
and the pleural mesothelium: a review of the hypothesis regarding the role of
long fibre retention in the parietal pleura, inflammation and mesothelioma.
Part Fibre Toxicol (2010) 7(1):5. doi: 10.1186/1743-8977-7-5

23. Prashar A, Bhatia S, Gigliozzi D, Martin T, Duncan C, Guyard C, et al.
Filamentous morphology of bacteria delays the timing of phagosome
morphogenesis in macrophages. J Cell Biol (2013) 203(6):1081–97. doi:
10.1083/jcb.201304095

24. Huang SX, JaurandMC, KampDW,Whysner J, Hei TK. Role ofmutagenicity in
asbestos fiber-induced carcinogenicity and other diseases. J Toxicol Environ
Health B Crit Rev (2011) 14(1-4):179–245. doi: 10.1080/10937404.2011.556051

25. Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of
polymeric microspheres. Pharm Res (2008) 25(8):1815–21. doi: 10.1007/
s11095-008-9562-y

26. Agarwal R, Singh V, Jurney P, Shi L, Sreenivasan SV, Roy K. Mammalian cells
preferentially internalize hydrogel nanodiscs over nanorods and use shape-
specific uptake mechanisms. Proc Natl Acad Sci U.S.A. (2013) 110(43):17247–
52. doi: 10.1073/pnas.1305000110

27. Champion JA,Mitragotri S. Shape induced inhibition of phagocytosis of polymer
particles. Pharm Res (2009) 26(1):244–9. doi: 10.1007/s11095-008-9626-z

28. Lu Z, Qiao Y, Zheng XT, Chan-Parka MB, Li CM. Effect of particle shape on
phagocytosis of CdTe quantum dot–cystine composites. Med Chem Commun
(2010) 1:84–6. doi: 10.1039/c0md00008f

29. Paul D, Achouri S, Yoon YZ, Herre J, Bryant CE, Cicuta P. Phagocytosis
dynamics depends on target shape. Biophys J (2013) 105(5):1143–50. doi:
10.1016/j.bpj.2013.07.036

30. Sharma G, Valenta DT, Altman Y, Harvey S, Xie H, Mitragotri S, et al.
Polymer particle shape independently influences binding and internalization
by macrophages. J Control Release (2010) 147(3):408–12. doi: 10.1016/
j.jconrel.2010.07.116

31. Doshi N, Mitragotri S. Macrophages recognize size and shape of their targets.
PLoS One (2010) 5(4):e10051. doi: 10.1371/journal.pone.0010051

32. Tabei Y, Sugino S, Eguchi K, Tajika M, Abe H, Nakajima Y, et al. Effect of
calcium carbonate particle shape on phagocytosis and pro-inflammatory
response in differentiated THP-1 macrophages. Biochem Biophys Res
Commun (2017) 490(2):499–505. doi: 10.1016/j.bbrc.2017.06.069

33. Tscheka C, HittingerM, Lehr CM, Schneider-DaumN, SchneiderM.Macrophage
uptake of cylindrical microparticles investigated with correlative microscopy. Eur J
Pharm Biopharm (2015) 95(Pt A):151–5. doi: 10.1016/j.ejpb.2015.03.010

34. Richards DM, Endres RG. Target shape dependence in a simple model of
receptor-mediated endocytosis and phagocytosis. Proc Natl Acad Sci USA
(2016) 113(22):6113–8. doi: 10.1073/pnas.1521974113

35. Deng H, Dutta P, Liu J. Entry modes of ellipsoidal nanoparticles on a
membrane during clathrin-mediated endocytosis. Soft Matter (2019) 15
(25):5128–37. doi: 10.1039/C9SM00751B

36. Deng H, Dutta P, Liu J. Stochastic modeling of nanoparticle internalization
and expulsion through receptor-mediated transcytosis. Nanoscale (2019)
11(23):11227–35. doi: 10.1039/C9NR02710F

37. Deng H, Dutta P, Liu J. Stochastic simulations of nanoparticle internalization
through transferrin receptor dependent clathrin-mediated endocytosis.
Biochim Biophys Acta Gen Subj (2018) 1862(9):2104–11. doi: 10.1016/
j.bbagen.2018.06.018

38. Chen L, Xiao S, Zhu H, Wang L, Liang H. Shape-dependent internalization
kinetics of nanoparticles by membranes. Soft Matter (2016) 12(9):2632–41.
doi: 10.1039/C5SM01869B

39. Shen Z, Ye H. Membrane Wrapping Efficiency of Elastic Nanoparticles during
Endocytosis: Size and Shape Matter. ACS Nano (2019) 13(1):215–28. doi:
10.1021/acsnano.8b05340

40. Xiong K, Zhao J, Yang D, Cheng Q, Wang J, Ji H. Cooperative wrapping of
nanoparticles of various sizes and shapes by lipid membranes. Soft Matter
(2017) 13(26):4644–52. doi: 10.1039/C7SM00345E

41. Bahrami AH, Raatz M, Agudo-Canalejo J, Michel R, Curtis EM, Hall CK, et al.
Wrapping of nanoparticles by membranes. Adv Colloid Interface Sci (2014)
208:214–24. doi: 10.1016/j.cis.2014.02.012
Frontiers in Immunology | www.frontiersin.org 1971
42. Agudo-Canalejo J. Engulfment of ellipsoidal nanoparticles by membranes: full
description of orientational changes. J Phys Condens Matter (2020) 32
(29):294001. doi: 10.1088/1361-648X/ab8034

43. Bahrami AH. Orientational changes and impaired internalization of
ellipsoidal nanoparticles by vesicle membranes. Soft Matter (2013) 9
(36):8642–6. doi: 10.1039/c3sm50885d

44. Agudo-Canalejo J, Lipowsky R. Adhesive Nanoparticles as Local Probes of
Membrane Curvature. Nano Lett (2015) 15(10):7168–73. doi: 10.1021/
acs.nanolett.5b03475

45. Dasgupta S, Auth T, Gompper G.Wrapping of ellipsoidal nano-particles by fluid
membranes. Soft Matter (2013) 9(22):5473–82. doi: 10.1039/C3SM50351H

46. Dasgupta S, Auth T, Gompper G. Shape and Orientation Matter for the
Cellular Uptake of Nonspherical Particles. Nano Lett (2014) 14(2):687–93.
doi: 10.1021/nl403949h

47. Alibert C, Goud B, Manneville JB. Are cancer cells really softer than normal
cells? Biol Cell (2017) 109(5):167–89. doi: 10.1111/boc.201600078

48. Agudo-Canalejo J. Particle engulfment by strongly asymmetric membranes
with area reservoirs. Soft Matter (2020) 17:298–307. doi: 10.1039/C9SM02367D

49. Ge C, Tian J, Zhao Y, Chen C, Zhou R, Chai Z. Towards understanding of
nanoparticle-protein corona. Arch Toxicol (2015) 89(4):519–39. doi: 10.1007/
s00204-015-1458-0

50. Wu L, Zhang Y, Li Z, Yang G, Kochovski Z, Chen G, et al. “Sweet”
Architecture-Dependent Uptake of Glycocalyx-Mimicking Nanoparticles
Based on Biodegradable Aliphatic Polyesters by Macrophages. J Am Chem
Soc (2017) 139(41):14684–92. doi: 10.1021/jacs.7b07768

51. Kuo JC-H, Gandhi JG, Zia RN Paszek MJ. Physical biology of the cancer cell
glycocalyx. Nat Phys (2018) 14(7):658–69. doi: 10.1038/s41567-018-0186-9

52. Möckl L. The Emerging Role of the Mammalian Glycocalyx in Functional
Membrane Organization and Immune System Regulation. Front Cell Dev Biol
(2020) 8:253. doi: 10.3389/fcell.2020.00253

53. Khosravanizadeh A, Sens P, Mohammad-Rafiee F. Wrapping of a nanowire by
a supported lipid membrane. Soft Matter (2019) 15(37):7490–500. doi:
10.1039/C9SM00618D

54. Hashemi SM, Sens P, Mohammad-Rafiee F. Regulation of the membrane
wrapping transition of a cylindrical target by cytoskeleton adhesion. J R Soc
Interface (2014) 11(100):20140769. doi: 10.1098/rsif.2014.0769

55. Curk T, Wirnsberger P, Dobnikar J, Frenkel D, Šarić A. Controlling Cargo
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Define Valency Control of Cell
Surface Fcg Receptor Inhibition
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The inhibition of Fcg receptors (FcgR) is an attractive strategy for treating diseases driven
by IgG immune complexes (IC). Previously, we demonstrated that an engineered tri-
valent arrangement of IgG1 Fc domains (SIF1) potently inhibited FcgR activation by IC,
whereas a penta-valent Fc molecule (PentX) activated FcgR, potentially mimicking ICs
and leading to Syk phosphorylation. Thus, a precise balance exists between the
number of engaged FcgRs for inhibition versus activation. Here, we demonstrate that
Fc valency differentially controls FcgR activation and inhibition within distinct subcellular
compartments. Large Fc multimer clusters consisting of 5-50 Fc domains predominately
recruited Syk-mScarlet to patches on the plasma membrane, whereas PentX exclusively
recruited Syk-mScarlet to endosomes in human monocytic cell line (THP-1 cells). In
contrast, SIF1, similar to monomeric Fc, spent longer periods docked to FcgRs on the
plasma membrane and did not accumulate and recruit Syk-mScarlet within large
endosomes. Single particle tracking (SPT) of fluorescent engineered Fc molecules and
Syk-mScarlet at the plasma membrane imaged by total internal reflection fluorescence
microscopy (SPT-TIRF), revealed that Syk-mScarlet sampled the plasma membrane was
not recruited to FcgR docked with any of the engineered Fc molecules at the plasma
membrane. Furthermore, the motions of FcgRs docked with recombinant Fc (rFc), SIF1
or PentX, displayed similar motions with D ~ 0.15 mm2/s, indicating that SIF1 and PentX
did not induce reorganization or microclustering of FcgRs beyond the ligating valency.
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Multicolor SPT-TIRF and brightness analysis of docked rFc, SIF1 and PentX also
indicated that FcgRs were not pre-assembled into clusters. Taken together, activation
on the plasma membrane requires assembly of more than 5 FcgRs. Unlike rFc or SIF1,
PentX accumulated Syk-mScarlet on endosomes indicating that the threshold for FcgR
activation on endosomes is lower than on the plasma membrane. We conclude that the
inhibitory effects of SIF1 are mediated by stabilizing a ligated and inactive FcgR on the
plasma membrane. Thus, FcgR inhibition can be achieved by low valency ligation with
SIF1 that behaves similarly to FcgR docked with monomeric IgG.
Keywords: macrophage, Fcg receptor, antibodies, immune complex, autoimmunity, monocyte, inhibitor,
single molecule
INTRODUCTION

Immune complexes (IC) containing immunoglobulin G (IgG)
are a hallmark of many autoimmune diseases and inflammatory
reactions. The activation of Fcg receptors (FcgR) on macrophages
by IC-IgG contributes to cytokine signaling and inflammatory
pathogenesis in autoimmunity including the recruitment of
neutrophils, monocytes, T cells, natural killer cells (NK cells),
and additional macrophages (1, 2). In systemic lupus
erythematosus (SLE), a chronic autoimmune disease, IC-IgG
deposits in organs and tissues (3) and are recognized by
FcgRs on macrophages, monocytes and neutrophils (4).
In SLE, macrophages are overwhelmed and unable to clear the
ICs leading to continued macrophage activation, sustained
secretion of pro-inflammatory cytokines, autoantibody
production, tissue damage and acute phases of the disease (5).
Macrophages also present antigen to T cells, which promotes
their activation and additional tissue damage (5). Thus,
inhibiting FcgR activation and disrupting this inflammatory
circuit is an attractive therapeutic strategy for treating
autoimmunity (6).

Immune reactions to IC-IgGs are governed by activating and
inhibitory FcgRs. Activating FcgRs (FcgRI, FcgRIIa, FcgRIIc, and
FcgRIIIa/b) signal via immunoreceptor tyrosine-based activation
motifs (ITAMs) found in the cytoplasmic tail of FcgRIIa/c or
within the ‘common gamma chain’ (FcRg) associated with FcgRI
and FcgRIIIa/b. FcgRIIb contains an immunoreceptor tyrosine-
based inhibition motif (ITIM). IgG bound to ICs or pathogen
surfaces bind FcgRs leading to clustering and phosphorylation of
ITAM phosphotyrosines by the Src family kinases, including
Lyn. Recruitment of Syk kinase to phosphorylated ITAM is the
hallmark of FcgR activation (2, 7, 8), where it promotes
phosphorylation of additional signaling molecules including
phosphotidylinositiol-3-kinase and Bruton’s tyrosine kinase
(BTK) leading to signal amplification (9, 10). Phosphorylation
of the ITIM within FcgRIIb allows docking of SHIP-1, a
5’-phophoinosital phosphatase that negatively regulates
inflammatory responses triggered by ICs (2). Downstream
effects of FcgR activation include antibody-dependent cell-
mediated cytotoxicity (ADCC), and phagocytosis (ADCP) (1,
2, 11), as well as cytokine production promoting inflammation
and autoimmunity in NFAT/NFkb dependent pathways (2).
org 277
FcgR inhibition is a therapeutic target for autoimmune
diseases with demonstrated potential for treating IC-associated
autoimmune diseases (6, 12–15). Monomeric IgG Fc fragments
and IVIG are effective in treating rheumatoid arthritis models
in mice and humans for various autoimmune diseases such as
Kawasaki disease and acute immune thrombocytopenic purpura
(ITP) (13–15). While this strategy can provide therapeutic
benefit, it requires large doses as the Fc-FcgR binding is 1:1
and may be displaced by polyvalent ICs. An alternative strategy
currently in clinical trial, is to create multivalent Fc molecules
that have high affinity for the FcgR, but do not activate it, thereby
preventing the IC-IgG binding and providing long-lived
inhibition (6). Disruption of FcgR signaling in turn inhibits
pro-inflammatory response and alleviates inflammation and
tissue damage and limits B and T cell activation and
autoantibody production (2, 5, 6). Previously, we demonstrated
that the valency of engineered Fc molecules could potently
inhibit or potently activate FcgRs (6). Specifically, pentameric
Fc arranged in an X-geometry (PentX), was a strong agonist for
FcgRs, mediating potent Syk phosphorylation, whereas the
trimer, SIF1, inhibited FcgR activation by IC-IgG both in vitro
as well as in animal autoimmune models (6). How these two
constructs effect differential outcomes for FcgR signaling offers
new mechanistic insights.

Understanding the biophysical mechanisms of FcgR
activation is critical for elucidating robust strategies using
engineered Fc molecules as inhibitors. In the context of
phagocytosis, engagement of FcgR with hundreds to
thousands of surface-associated IgG promotes FcgR clustering
on the micrometer length scale driven by the macrophage
cytoskeleton (16). For IC-IgG, recent superresolution
experiments on fixed cells suggest that FcgRs exist as both
monomers and in pre-formed clusters confined by the
cytoskeleton and that IC-IgG prompts clustering of additional
FcgRs (17, 18). Furthermore, IC-IgG immobilization of FcgR
clusters is thought to promote internalization and degradation of
the ICs in the lysosome (19), IC-mediated signaling from
endosomes along the endocytic pathway have not been
evaluated. Here, we defined the effect of Fcs with defined
valency on the movements of FcgRs on the cell surface,
endocytosis and Syk recruitment to the plasma membrane and
FcgR bearing endosomes. Our findings shed new light on FcgR
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inhibition at the plasma membrane and illustrate that
endocytosis may lower thresholds for FcgR activation.
METHODS

Cell Culture
THP-1 cells were cultured in RPMI-1640 Medium (ATCC 30-
2001) and maintained at 100,000–200,000 cells per milliliter.
Differentiation of THP-1 cells into macrophage-like cells with
high levels of FcgR was achieved in a 48-h incubation in RPMI
containing 50 ng/ml Phorbol 12-myristate 13-acetate, 97%
(PMA, Acros Organics, AC356150010) and rested for 24-h in
RPMI without PMA. Lentiviral vectors were produced in 293T
cells by transfection with Syk-mScarlet-pLJM1 (https://
benchling.com/s/seq-VHzJFZG9UJ4vW2bJ2Rmp/edit), pPAX2
(Addgene plasmid # 12260), pVSVG (Addgene plasmid
#8454), using polyethylenimine (PEI). After 48 h, lentivirus
was harvested, centrifuged, and added to THP-1 cells. After the
48-h transduction, cells were selected with Blastidin (10 mg/ml)
for 2 days.

PMA differentiated THP-1 cells were characterized using
fluorescently conjugated Fab fragments (to exclude Fc-
mediated binding to FcgRs) of anti-hCD64 (Santa Cruz
Biotechnology sc1184) and ant i -hCD32 (StemCel l
Technologies 60012). Fab fragments were generated using 62.5
mg of each antibody using the Pierce Fab micro preparation kit
(Thermo Fisher 44685). The anti-CD64 and anti-CD32 Fab
fragments were labeled with AF647 NHS ester and used to
label THP-1 and differentiated THP-1 cells. Cells were blocked
with dPBS+1% FBS for 15 min on ice before adding the Fab
fragments diluted into dPBS with 1% FBS at a 1:8 dilution of 1.14
mM labeled Fab fragments (final concentration of approximately
0.18 mM), incubated 20 min on ice, spun down at 800 g for 3 min
and resuspended in cold Hank’s Balanced Salt Solution (HBSS,
Corning™21023CV) and kept on ice until analyzed by the BD
Accuri C6 flow cytometer (Supplementary Figure 1). We were
unsuccessful in preparing anti-CD16 Fab fragments.

Differentiated THP-1 were evaluated for their phagocytic
activity by dropping a 30:1 MOI of biotinylated and anti-IgG2a
opsonized sRBCs (sheep red blood cells) on differentiated THP-1
cells. Phase contrast microscopy using an inverted fluorescent
microscope was used for a qualitative analysis to observe
phagocytosed sRBCs. PMA differentiated THP-1 cells had an
elevated phagocytic capacity (data not shown).

Fetal liver macrophages expressing Cas9 (FLMCas9) cell
cultures were generated from gestational day 15–19 mouse
fetuses from B6J.129(Cg)-Igs2tm1.1(CAG-cas9*)Mmw/J mice
(The Jackson Laboratory, Stock No. 028239, Bar Harbor, ME)
(20) in accordance with South Dakota State University
Institutional Animal Use and Care Committee. Liver tissue was
mechanically dissociated using sterile fine-pointed forceps and a
single-cell suspension was created by passing the tissue through a
1 ml pipette tip. Cells were plated on non-tissue culture treated
dishes and kept in growth and differentiation medium
containing the following: 20% heat-inactivated fetal bovine
serum; 30% L-cell supernatant, a source of MCSF and 50%
Frontiers in Immunology | www.frontiersin.org 378
Dulbecco’s modified growth medium containing 4.5 g/L
glucose, 110 mg/L sodium pyruvate, 584 mg/L-glutamine,
1 IU/ml penicillin and 100 mg/ml streptomycin. FLM
were cultured for at least 8 weeks prior to transduction
and experiments.

Gene disruption of Syk in FLMCas9 cells was conducted by
lentiviral integration of an sgRNA and puromycin drug selection
marker following the approach outlined above in 293T cells with
the transfer plasmid replaced by plentiGuide-Puro (Addgene
plasmid #52963) targeting an early exon (sgRNA targeting:
ATTGCACTACCGCATTGACA). 293T supernatant was
transferred onto the FLMCas9 cells and puromycin selection of
1 µg/ml was carried out for 48h.

Multimeric Fc Molecules
All Fc molecules were prepared and labeled at Momenta
Pharmaceutics using the methods described in (6). Size
exclusion chromatography was used to validate the purity of
the labeled molecules. Supplementary Figure 1 provides the
SEC data demonstrating that all molecules were of high purity
and of the expected size.

Live Cell Imaging
For imaging cells on glass, cells were differentiated directly on
ethanol flamed 25 mm coverslips (Number 1.5, Thermo Fisher)
or onto 96-well glass bottom plates (Dot Scientific, MGB096-1-2-
LG-L) for high content experiments. The 25 mm coverslips were
imaged in AttoFluor chambers (Thermo Fisher). TIRF-based
imaging which was conducted with an inverted microscope built
around a Till iMIC (Till Photonics, Germany) equipped with a
60 × 1.49 N.A. oil immersion objective lens, enclosed in a custom
environmental chamber to keep the samples at 35–37°C. The
entire microscope setup and centering of the back focal plane was
previously described in (21). Excitation for TIRF was provided by
either a 561 nm laser, for DL594 labeled molecules or Syk-
mScarlet, or a 488 nm laser for the AF488 labeled molecules.
Single point TIRF was used for fast imaging of single particles
while TIRF 360 was used to create uniform TIRF illumination for
moderate speed particle tracking by steering the laser at the
back-focal plane (22). The microscope was custom-built
based on iMIC system (TILL Photonics, Munich, Germany)
with 60x 1.49 oil immersion objective lens (Olympus,
Tokyo, Japan).

For confocal experiments on undifferentiated THP-1 cells,
cells were plated on 25mm coverslips that had been coated with
0.01% Poly-L-Lysine solution (Sigma, A-005-M) and imaging
was performed on a TIL photonics Andromeda Spinning Disk
Confocal, using a 60x oil 1.4 oil immersion objective lens. Cells
were plated overnight and incubated with 100 µg/ml of either the
FcM AF488 or the PentX AF488 for 5 min before imaging. As in
the TIRF imaging, cells were maintained at 35–37°C in HBSS.

High content microscopy of FLM cell were plated into 96-well
glass bottom plates (Dot Scientific, MGB096-1-2-LG-L) 2–4 h
prior to imaging. Images were captured on an ImageXpress
Micro XLS (Molecular Devices, Sunnyvale, CA) equipped with
a 40 × 0.90 N.A. objective lens. Macrophages were marked with
HCS NuclearMask™ Blue Stain (ThermoFisher scientific) for
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identification and AF647 or DL647 fluorescence was collected
using integrated filter cubes for far red and red respectively. For
antibody dependent phagocytosis, sheep red blood cells (sRBC)
were biotinlayted using a mixture of NHS-biotin and NHS-
AF647 (Thermo Fisher scientific) and opsonized with murine
IgG2a anti-biotin [3E6] (ab36406, Abcam). IgG-sRBCs were
added at an MOI of 20 and incubated for 40 min prior
to imaging.

Supported Lipid Bilayers
Supported lipid bilayers (SLB) were formed by spontaneous
fusion of lipid vesicles. For the bilayers, small unilamellar
vesicles were prepared by mixing DSPE-PEG(2000)-DBCO
(Avanti Polar Lipids 880229) and POPC (850457 Avanti Polar
Lipids) at a molar ratio of 1:1,000 with total lipid concentration
of 500 mM (380 µg/ml), in chloroform and dried using vacuum
centrifugation. The lipid film was resuspended in 1 milliliter PBS
(without Ca+ and Mg+) by vortexing and then sonicating for
5 min using a bath sonicator, followed by extrusion (Avanti Polar
Lipids 610000) through 100 nm filter at least 13 times (Whatman
Nucleopore Track-Etch 100 nm membrane). The 500 uM stock
of lipids were diluted 1:6 in 2 mM Mg2+ PBS. The bilayer was
formed by pipetting the diluted lipids onto 25 mm Piranha acid
[H2SO4 (30%, v/v):H2O2 (3:1, v/v)] cleaned coverslip (held in
Leiden chambers) and incubated at 37°C for 20 min. Following
incubation, bilayers were then submerged in water at 42°C to
remove excess liposomes. The water was exchanged with PBS
followed by HBSS for imaging.

The cRGD {Cyclo[Arg-Gly-Asp-D-Phe-Lys(Azide)]} was
linked to liposomes via a copper free click chemistry reaction
following resuspension of the dried lipids. Here, 1 mg cRGD-
Azide (Peptides International RGD-3749-PI) was reacted to the
380 mg of liposomes, so that there was an excess (about 3 fold) of
cRGD-Azide to liposomes. The cRGD-Azide was added to the
liposome solution prior to vortexing. The lipids were then
sonicated and extruded (to form the liposomes 100 nm in size
as described above.

IgG-opsonized bilayers were prepared as described in but
were instead comprised of DSPE-PEG(2000) Biotin (Avanti
Polar Lipids 880129) mixed with POPC (850457 Avanti Polar
Lipids) at a molar ratio of 1:1000 with total lipid concentration of
500 mM. Alexa Fluor 647 NHS ester (Thermo Fisher Invitrogen)
was conjugated to anti-Biotin IgG (3E6) (Abcam ab36406) for
antibody fluorescent labeling. The labeled antibody was
incubated with the 0.1% PEG-biotin SLB at 37°C for 30 min in
dPBS. Excess IgG was washed with HBSS.

Fc Inhibitor Treatments
For single particle assays on the cRGD bilayer, differentiated
THP-1 cells were removed from the plastic dish using cold dPBS
and then exposed to either 0.03 mg/ml rFc-DL594, 0.11 mg/ml
SIF1-DL594, or 0.17 mg/ml PentX-DL594 (~0.7 nM each) in
suspension at 4°C for 30 min. Cells were washed and
resuspended in HBSS and dropped on the supported lipid
bilayers at 37°C. For high dosage treatments on glass, Fc
multimers labeled with AF488 were held at the same mass, 33
mg/ml, 66 mg/ml, or 100–110 mg/ml doses for the particle
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tracking data. These were treated at 37°C for 5 min and then
washed with HBSS and imaged at times indicated. For brightness
analysis, Fc multimers were all 0.4 mM for each to keep the total
number of molecules the same for each.

For FcM-AF488 and PentX-AF488 treatment of
undifferentiated THP-1 cells, plated on Poly-L-Lysine coated
coverslips, 100 µg/ml for each was incubated for 5 min prior to
imaging. Due to lack of cell adherence, cells were not washed, so
cells were continuously exposed over the duration of imaging.

Image Processing
For fiducial data collection and image registration, single images
were registered using calibration images acquired simultaneously
on each of the four EMCCD detectors. A single image of 200 nm
green beads (Life Technologies, Carlsbad, CA) immobilized on a
glass coverslip were excited using 445 nm excitation. Coordinates
for registration were determined using the MATLAB (The
MathWorks, Inc., Natick MA) cpselect tool. A rigid affine
transformation was used to transform all points onto the red
channel. Image montages were generated using ImageJ, and due
to unintended photobleaching in some data sets, the Bleach
Correction tool was used.

U-track (Danuser Lab) was used for single particle tracking
using the Gaussian detection (23). Motion of the Fc multimer
tracks were classified by the divide-and-conquer moment scaling
spectrum (DC-MSS) method (24). Syk detections per µm2 per
second were measured using Gaussian detection in U-track from
a cropped region that excluded the cell edge to prevent
anomalous detections from the transition between cell
background and cell-free background regions. For the
brightness analysis, point source detection in U-track was
carried out from single frames.
RESULTS

Engagement of FcgRs by Large
Complexes of Fc Recruit Syk to the
Plasma Membrane, Whereas PentX
Recruits Syk to Endosomes
To determine the location of FcgR activation in response to IC-
IgG, fluorescently tagged polymeric multimers of Fc
(uncontrolled multimer, UM (6), comprised predominately of
10–40 Fc domains similar to IC-IgG were added to THP-1 cells.
Syk-mScarlet expressing THP-1 cells formed patches of UM
clusters at the cell surface that recruited Syk-mScarlet within
30 min (Figure 1A, Supplementary Video 1). Intracellular
vesicles bearing UM and Syk-mScarlet were also observed
(Figure 1A). This result was consistent with the conventional
model in which clustering of FcgRs by binding IC-IgG or FcϵRI
binding IC-IgE, leads to phosphorylation of ITAMs, Syk
recruitment and subsequent internalization (19, 25). We
anticipated that PentX, which potently promoted Syk
phosphorylation (6), would behave similarly. Surprisingly,
PentX did not produce clusters at the plasma membrane (PM).
Rather, PentX bound to the cell surface and then within 15 min
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localized to small and large intracellular vesicles, where it
recruited Syk-mScarlet (Figure 1A, Supplementary Video 2).
Quantification of these confocal images indicated that Syk-
mScarlet was weakly or not recruited to the PM of cells
exposed to PentX, whereas UM readily accumulated Syk-
mScarlet at the PM (Figure 1B). Thus, PentX did not
significantly activate FcgRs on the cell surface, but rather
selectively promoted FcgR activation and accumulation in
endosomes. These results reveal that Fc valency controls the
subcellular distribution and activation of FcgR.

SIF1 and rFc Linger on the Plasma
Membrane and Do Not Recruit Syk
We next sought to compare the effects of monomeric, trimeric
and pentameric Fc-molecules (Figure 2A) on the activation of
FcgRs on subcellular membranes. Using HiLo microscopy, which
allowed greater sensitivity than confocal microscopy, but with
similar optical sectioning (26), we imaged the distributions of
monomeric rFc, the inhibitory Fc trimer (SIF1), and PentX
relative to Syk-mScarlet in THP-1 cells differentiated toward
macrophages by 48 h exposure to PMA which increased
expression of FcgR1 and adherence to glass coverslips
(Supplementary Figure 2). Since PentX was internalized by
~15 min, the data were divided between early timepoints,
below 15 min (Figures 2B, C), and later timepoints, 15–30
min (Figures 2D, E). In contrast to PentX which accumulated
on endosomes, rFc and SIF1 were lingered on the PM, with a
small fraction trafficking on small endosomes for at least 30 min
and neither recruited Syk-mScarlet to the PM (Figures 2B–E)
consistent with (6). The high sensitivity of the HiLo approach
revealed many larger PentX containing endosomes that
extensively recruited Syk-mScarlet with some variability
between endosomes (Figures 2B–E). A basal level of
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endocytosis appeared to internalize rFc and SIF1 over time,
but Syk-mScarlet did not colocalize with rFc or SIF1 in
vesicles. These observations are consistent with the known
inhibitory activity of SIF1 and indicate that it traps FcgR in a
state mimicking monovalent Fc binding, whereas PentX either
promotes FcgR internalization or prevents recycling of FcgRs to
the PM by their activation on endosomes.

rFc, SIF1 and PentX Do Not Recruit Syk to
the PM Unlike Surface Associated IgG
During Frustrated Phagocytosis
Given that PentX recruited Syk to endosomes, we sought to
determine if Syk was initially recruited to FcgRs at the PM and
if there was any reversible recruitment of Syk to rFc or SIF1-
engaged FcgRs. Total internal reflection fluorescence (TIRF)
microscopy provides an exquisite view of single molecule
movements at the PM while eliminating contaminating
fluorescence from other regions of the cell (16). Differentiated
THP-1 cells robustly engaged AF647-IgG docked on supported
lipid bilayers (SLB) by spreading and recruiting many hundreds to
thousands of Syk-mScarlet molecules per µm2 to the advancing
lamellipodia within ~–1–5 min of contacting the surface (Figure
3A, Supplementary Video 3). Notably, the patches of AF647-IgG,
to which Syk-mScarlet was recruited, were reminiscent in
structure to those created by UM molecules (Figure 2, compare
with Figure 1A), suggesting the binding of surface associated IgG
or high-valency IgG molecules such as UM, creates large patches
of FcgRs on the PM to which Syk is recruited. Conversely, TIRF
imaging of the adherent plasma membrane of Syk-mScarlet
expressing THP-1 docked with saturating concentrations (100
µg/ml) of labeled AF488-rFc, SIF1 or PentX revealed a
predominately uniform dim fluorescence emanating from Syk-
mScarlet molecules diffusing in the cytoplasm. Syk-mScarlet
A B

FIGURE 1 | PentX recruits Syk to endosomes, whereas multimeric Fc-FcgR complexes recruit Syk to the plasma membrane (PM). (A) Confocal imaging of Syk-
mScarlet localization in THP-1 cells relative to fluorescently labeled PentX-AF488 or unconstrained Fc multimer (UM-AF488). By 15 min of incubation with Fc
constructs, Syk-mScarlet localized to PM patches of UM-AF488 and occasionally on endosomes, whereas Syk-mScarlet localized only to endosomes PentX-AF488
(scale bar, 5µm). (B) The percentage of cells exhibiting localization of UM-AF488 or PentX-AF488 or Syk-mScarlet to PM, PM-clusters or intracellular vesicles
following15 min of incubation (error bars are standard deviation, n= 34 and 53 cells for PentX and UM respectively, two independent experiments).
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molecules transiently sampled the plasma membrane, as seen by
localized bursts of fluorescence, however, the generally did not
frequently colocalize with AF488-rFc, SIF1 or PentX docked to
FcgRs (Figure 3B and Supplementary Videos 4–6). We
quantified the number of Syk localizations to the plasma
membrane, since their duration was too short to reliably track,
and found only a slight, non-statistically significant trend toward
more localizations for PentX and indistinguishable frequency for
SIF1 and rFc (Figure 3C). Most of these localizations were fleeting,
lasting around 1 s or less. Thus, unlike surface associated IgG, the
soluble, multimeric molecules do not significantly recruit Syk to
the PM.

Syk Contributes to the Endocytic
Traffic of PentX
To determine if Syk was required for the accumulation of PentX
in endosomes, we created murine fetal liver macrophages (FLMs)
Frontiers in Immunology | www.frontiersin.org 681
from Cas9 mice and knocked out Syk using lentiviral expression
and selection for single guide RNA (sgRNA) targeting an early
exon to produce SyksgRNA FLMs. Similar to differentiated THP-1
cells, DL594-rFc and DL594-SIF1 lingered on the PM and were
small endosomes, whereas DL594-PentX was internalized and
trafficked to large endosomes following 20 min of incubation
(Figure 3D). Notably, more small endosomes containing DL594-
rFc or DL594-SIF1 were observed than in THP-1 cells,
potentially due to the elevated endocytic and macropinocytic
activity of these cells relative to THP-1 cells (data not shown).
Quantification by high content microscopy indicated that the
failure of SyksgRNA FLMs to traffic DL594-PentX into large
endosomes at 20 min post exposure (Figures 3D, E).
Additionally, small vesicles were observed below the plasma
membrane for DL594-rFc, DL594-SIF1 and DL594-PentX
suggesting that Syk controls the endocytic traffic of the
activating PentX and potentially recycling to the cell surface.
A C

B

E

D

FIGURE 2 | SIF1 and rFc remain on PM and do not recruit Syk. (A) Molecular structure cartoons from (6). (B) Representative Hi-Lo images of Fc-AF488 constructs
(100 µg/ml) and Syk-mScarlet distribution within 15 min. of exposure of differentiated THP-1 cells to Fc constructs (scale bar, 5µm). (C) Quantification of Fc-AF488
molecules and Syk-mScarlet localization within 15 min. post treatment (error bars = standard deviation, n=21 cells rFc, 16 cells SIF1, 14 cells across 3 experiments).
Cells were categorized as exhibiting Fc and Syk localization at either the plasma membrane or intracellular, typically within distinct vesicles. Cells could show both
localizations. (D) Representative Hi-Lo images of Fc-AF488 constructs (100 µg/ml) and Syk-mScarlet distribution between 16 min. and 30 min. of Fc treatment of
differentiated THP-1 cells (scale bar, 5µm). (E) Data taken on cells within 16–30 min of Fc treatment were quantified in the same way as panel (C) (error bars =
standard deviation, n=35 cells rFc, 35 cells SIF1, 33 cells across three experiments).
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To confirm the knockout phenotype of the SyksgRNA FLMs and
functionality of the Syk-mScarlet probe we performed high
content microscopy of WT, Syk-KO and Syk-KO/Syk-mScarlet
rescued cells. WT FLMs robustly internalized IgG-opsonized
sheep red blood cells (IgG-sRBC) whereas Syk-KO cells were
Frontiers in Immunology | www.frontiersin.org 782
incapable of engulfing sRBCs (Figures 3F, G). Expression of the
Syk-mScarlet, followed by drug selection, showed a striking
rescue of sRBC engulfment in SyksgRNA FLMs indicating that
the Syk-mScarlet construct should not interfere with the function
of the endogenous Syk molecules in the THP-1 cells and should
A B C

D

F G

E

FIGURE 3 | Syk is recruited to surface associated IgG bound FcgR, but not those docked with low Fc valencies. (A) TIRF imaging of intense Syk-mScarlet
recruitment during frustrated phagocytosis by a THP-1 cell of SLB presenting AF647-IgG. Note that too many Syk-mScarlet molecules are recruited for single
molecule detection. Image is representative of 20+ cells. Scale bar is 5µm. (B) Single particle detections of Syk-mScarlet molecules on the surface of cells docked
with AF488-Fc molecules (100 µg/ml rFc, SIF1, or PentX). Scale bar is 5µm. (C) The frequency of Syk-mScarlet detections observed. No statistical significant
difference. Data represents 10 rFc-treated cells, 20 SIF1-treated cells, and 20 PentX-treated cells from a single day that represents results of two experiments. Bars
are mean +/- standard error of the mean. (D) Wild-type and Syk-KO FLMs exposed to DL594-rFc, SIF1 or PentX. Scale bar is 5µm. (E) Quantification of localization
frequencies of DL594-rFc, SIF1, or PentX in WT and Syk-KO FLMs. ~150 cells/condition from two independent experiments. Error bars are standard deviation.
(F) Antibody dependent phagocytosis of IgG-sRBC labeled with AF647 by WT, Syk-KO, and Syk-KO+Syk-mScarlet expressing FLMs. Scale bar is 10µm.
(G) Quantification of the frequency of macrophages internalizing 5 or more IgG-sRBC. ~120 cells/condition. Error bars are standard deviation.
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FIGURE 4 | Motion analysis of Fc molecules docked to FcgR. (A) SPT tracks following analysis with DC-MSS, from TIRF imaging of THP-1 cells treated with 100
mg/ml rFc, SIF1 or Pentx, color coded by motion class. Note that transitions in track classifications (e.g. confined to free) can be observed within single tracks. All
scale bars represent 2µm. (B) The average diffusion coefficient for each cell by diffusion class. (C) The percentage of tracks for each diffusion class. Data in panels
A–C are from 22 rFc treated cell, 21 SIF1 treated cells, and 17 PentX treated cells from a single day experiment but are representative of multiple replicates.
(D) Representative SPT tracks of THP-1 cells treated with fluorescently labeled Fc molecules and attached to supported lipid bilayers displaying cycloRGD, at sub-
activating/inhibiting doses of 0.7 nM (0.03 µg/ml rFc, 0.11 µg/ml SIF1, and 0.17 µg/ml PentX). All scale bars represent 2µm. (E) The average diffusion coefficient for
each cell plotted by diffusion class at 0.7 nM. (F) The percentage of tracks for each diffusion at 0.7nM. Data from panels (D–F) are from 24 rFc treated cells, 22 SIF1
treated cells, and 22 PentX treated cells taken across three different experiments. Red bars are the mean +/- standard error of the mean. Significance was calculated
using Tukey’s one-way ANOVA where (*P < 0.05, **P < 0.005, *** < 0.0005).
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provide a functionally accurate view of Syk dynamics. We
interpret these results to indicate that at the PM low valency
(<5) Fcs may do not significantly recruit Syk or maintain it
actively docked at the PM and that once internalized on
endosomes. However, complexes of 5 FcgRs can robustly
recruit Syk to endosomes where signaling unique from that
encountered at the plasma membrane may occur (Figure 2).

rFc, SIF1, and PentX Display Similar
Motions at the Plasma Membrane
Since Syk was not recruited to low valency Fc-FcgR complexes on
the plasma membrane, we speculated that the SIF1- and PentX-
Frontiers in Immunology | www.frontiersin.org 984
FcgR complexes were not forming clusters and have similar
diffusive motions on the PM. Conversely, decreased mobility of
these complexes would be an indicator of FcgR clustering or the
association with endosomal structures. To test this idea, THP-1
cells were treated with 100 µg/ml of DL594-Fc molecules at fully
activating (PentX) or inhibiting (SIF1) concentrations (6) and
plated onto coverslips. The adherent surface was imaged by TIRF
microscopy at 18 frames per second for 200 frames. SPT
trajectories from these movies were found using U-track (23)
and classified by the divide-and-conquer moment scaling
spectrum (DC-MSS) method (24) and color coded by the
diffusion type as freely diffusing, confined diffusion and
A

B

C

D

E

FIGURE 5 | Multicolor imaging of Fc molecules indicates an absence of FcgR superclustering. (A, B) Montages of cells treated with AF488 and DL594-labeled rFc
(A), SIF1 (B), PentX (C) at 33 µg/ml and imaged with a time-lapse of 40 s. Scale bar is 5µm. (D) Montage illustrating path crossing of a green and red SIF1
molecules (arrows). Scale bar is 5 µm. (E) Co-association and disappearance of red and green PentX, indicating a putative endocytic event. Scale bar is 5 µm.
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immobile (Figure 4A). Here ‘immobile’ from the DC-MSS
analysis may reflect highly confined trajectories at the noise/
localization limit for the organic fluorophores used, and thus a
diffusion coefficient is reported for this class, even though it likely
Frontiers in Immunology | www.frontiersin.org 1085
reflects an upper bound. Overall, the quality of tracking was quite
high indicating that the TIRF microscopy approach provided a
sufficiently low background for imaging an organic fluorophore
(DL594) rather than the more frequently used quantum dots.
A B
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J

FIGURE 6 | Fc receptors are not substantially preclustered and remain in small, mobile clusters upon binding multivalent Fcs. (A) Schematic of Fc-FcgR groupings
and the resulting intensities of sub-resolution clusters. (B) Representative images of cells treated with 0.4 mM Fc molecule (Scale bar, 5 µm). (C) Zoom of the red
region in B displaying individual detections of fluorescence spots. (D) Frequency of fluorescence of Fc molecules at 0.4 mM. Data is taken from 14 cells treated with
rFc, 14 cells treated with SIF1, and 13 cells treated with PentX. (E) Example of stepwise photobleaching of rFc-DL594 over 200 frames taken 0.22 s apart. The rFc-
DL594 was kept at 10 µg/ml to be able to track while, the rFc-AF488 was at 100 µg/ml to ensure cells remained at saturating levels. Scale bar represents 2µm.
(F) Top: chymograph of single fluorophore bleach event from (E) example. Bottom: Intensity over time (frames) of bleached track. (G) Top: chymograph of multistep/
fluorophore bleach event. Bottom: Intensity over time (frames) of the above chymograph. (H) Average amplitude of individual spots per cell taken over the first four
frames of 100 µg/ml and 0.01 µg/ml dose multivalent Fc SPT data. (I–J) Histograms of single spots amplitudes averaged over 4 frames for all tracks for 0.01 µg/ml
(I) and 100 µg/ml conditions (J).
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The motions of the Fc constructs displayed similar proportions
of each motion class and could be observed transitioning
between classes (frequently between confined and free
diffusion, dark blue to or from light blue, Figure 3A). These
motion types are consistent with Fc-FcgR complexes interacting
with actin corrals, lipid rafts, and protein islands (27–30). As
predicted by the lack of Syk recruitment, only small differences in
diffusion constants and types of motions were observed across
rFc, SIF1 and PentX (Figure 4B). A small increase in the fraction
of immobile complexes was observed for PentX and SIF1 over
rFc along with a concomitant reduction in freely diffusing
complexes (Figure 4C). We interpret these results to indicate
that SIF1 and PentX do not assemble activated FcgR complexes
at the PM. The small increase in immobile fractions of SIF1 and
PentX likely reflects an increasing probability that one or more
FcgR in the complex was trapped by a diffusion barrier.

We repeated these measurements using sub-activating and
sub-inhibiting concentrations of Fc constructs to determine if the
fractional occupancy of total FcgRs affected our SPT
measurements. At low densities corresponding to ~1%–10%
receptor occupancy, the tight adhesion of PMA differentiated
THP-1 cells to glass appeared to result in more immobile Fc-
FcgR complexes than expected. To overcome this limitation, we
created SLBs displaying cyclo-RGD to allow integrin-mediated
attachment. THP-1 cells were treated with the sub-activating or
inhibiting concentrations (0.7 nM) multimeric Fcs at 4°C and
then allowed to adhere to the cRGD-SLB at 37°C for 30 min prior
to imaging by SPT-TIRF. TIRF imaging at 28 frames per second
for 100 frames allowed clear resolution of low densities of
DL594-Fc molecules as single particles (Figure 4D). As
anticipated, the SLB increased the fraction of complexes
undergoing free diffusion compared with cells plated on glass
(Figure 4F vs. Figure 4B). Although we do not know the reasons
for this, one possible explanation is that on glass, the integrin
attachments may be quite static and create diffusion barriers
(31), whereas on the SLB which was comprised of fluid lipids
they may be free to move. Importantly, the diffusion coefficients
for the rFc, SIF1 and PentX single complexes were statistically
indistinguishable (Figure 4E), and similar to that observed on
glass (Figure 4B), indicating that collisions with transmembrane
proteins and cytosolic molecules dominated the diffusion
coefficients as has been observed in apical surface SPT
experiments (32, 33). Overall our diffusion coefficients
measurements were nearly two times faster than those noted in
literature, with the median rate of free receptors being 0.179 ±
0.012 mm2 per second (median ± standard error of the mean),
0.192 ± 0.011 mm2 per second, and 0.216 ± 0.010 mm2 per second,
for rFc, SIF1, and PentX, compared with 0.074 ± 0.004 mm2/s for
FcgRIIa labeled with Cy3-Fab (32) or ~0.7 mm2/s for FcRIIa/b &
III labeled with Qdot-Fab (24). These differences may reflect the
smoothness of the adherent surface of the THP-1 cells observed
in TIRF here, in contrast with the ostensibly rougher non-
adherent surface imaged in these other studies. Thus, FcgRs
ligated with low valency Fcs retain rapid diffusion on the PM,
suggesting no additional binding or aggregation of FcgR occur,
even when five FcgRs are bound by PentX.
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FcgRs Move Autonomously in Preferential
Sub-Domains of PM and Are Not
Pre-Clustered

Previous studies using super-resolution imaging in fixed cells
observed pre-clustering (18) or corralling of FcgR by actin or
lipid rafts and these clusters expanded when IC-IgG were added
(17). To determine if FcgR pre-clustering could be observed and
was remodeled by low-valency Fc binding, we imaged mixtures
of the engineered Fc constructs labeled with two different
fluorophores. If pre-clustering of FcgR was present, rFc of both
colors should frequently be observed within the same diffraction
limited sites at diminishing frequency due to the increased
valency of SIF1 and PentX. Moreover, if SIF1 or PentX induce
clustering on the PM beyond their binding valencies, these
structures should be evident as increased frequencies of co-
localized colors. The SPT data (Figure 4), predicts that neither
preclustering nor induced clustering occur with these molecules.
To test these possibilities, THP-1 cells were treated with the rFc,
SIF1, and PentX, tagged with AF488 or DL594 in a 1:1 mixture at
FcgR saturating concentrations (33 µg/ml of each) and imaged by
two-color TIRF-360 microscopy. TIRF movies revealed that the
two-color rFc molecules generally moved independently of one
another and only occasionally co-localized (Figure 5A,
Supplementary Video 7). Similar behavior was observed for
SIF1 and PentX, with an increase in the number of confined and
immobile spots, consistent with the SPT analysis (Figures 4, 5B,
C). Overall, Fc-multimers appeared to predominately move
independently from one another despite crossing paths (Figure
5D, Supplementary Video 7). Occasionally, green and red spots
could be identified within these movies, often appearing to group
at immobile sites followed by both colored molecules vanishing,
suggesting endocytic events (Figure 5E). We were unable to
quantify these data using dual color SPT as the SNR for the
AF488-Fc multimers was simply too low relative to the
background for reliable tracking of splitting and merging
events. Our qualitative analysis indicated that, rFc, SIF1, and
PentX largely maintained their autonomy on the cell surface, but
only occasionally would group together on the cell surface. These
observations are inconsistent with extensive FcgR preclustering
and contrasts sharply with clusters that form in response to IgG-
docked to the SLB (Figure 3A, Supplementary Video 3) and
UM (Figure 1), which create large cluster of FcgRs that are
rapidly remodeled (16).

With the findings that docked Fcs moved independently
(Figure 5, Supplementary Video 7) and that preferential
zones of plasma membrane occupancy were evident by SPT-
TIRF (Figure 2B), we further explored the possibility that FcgRs
are grouped within microdomains of the plasma membrane.
Here, we performed an intensity analysis of our SPT data to
count the number of molecules within single spots, limited by the
resolution of the microscope (<250nm). Fluorescent Fc
molecules binding to FcgRs within very small microdomains
(<50 nm), should produce single spots with brightness that scales
with the number of fluorescent Fc molecules docked (Figures
6A–D). Histograms of all Fc-spot detections at high, equimolar,
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Fc concentrations on fixed cells had similar intensities, with the
mean intensities of rFc>SIF1>PentX (Figure 6D), suggesting
that Fcs could dock to microdomains containing multiple FcgRs.
The differences in the means were less than a factor of two, much
smaller than expected if pre-clustering was prominent amongst
FcgRs. If pre-clustering of FcgRs was prevalent, the brightness of
rFc spots should be maximal since multiple rFc molecules would
dock within sub-resolution spots. The number of SIF1 or PentX
molecules that could dock to microdomains containing a similar
number of FcgRs would be reduced by ~1/3 for SIF1 and ~1/5 for
PentX, resulting in a corresponding decrease in brightness.
Previous work demonstrated full valency binding for these Fc
multimers (6). The observed differences in intensity were much
smaller, ~20% decrease from rFc to SIF1 and ~35% decrease
from rFc to PentX. We conclude that the similar intensity
histograms represent FcgRs generally dispersed over a larger ~
50 nm corrals. This finding is consistent with the SPT tracks
spanning hundreds of nanometers within 200 s (Figures 2C, 3B),
and thus, a chance of coincident occupation of FcgRs within a
given microdomain is transient, consistent with the observations
of the 2-color experiments (Figure 5). Thus, our data supports a
model where corrals on the cell surface weakly constrain FcgR
movements, but they do not trap them in pre-formed clusters in
when bound with rFc, SIF1, or PentX.

Detailed analysis of fluorescent intensities from SPT data
revealed that many tracked spots exhibited single stepwise
photobleaching indicating a single fluorophore (Figures 6E, F).
Occasionally multiple photobleaching steps indicative of multiple
fluorophores could be observed (Figure 6G) indicating multiple
Frontiers in Immunology | www.frontiersin.org 1287
Fcs or multiple dyes per Fc molecule. At low concentrations of Fc
molecules (0.01 µg/ml) the spot intensities were indistinguishable
across rFc, SIF1, and PentX (Figure 6I) indicating that they
predominantly reflected single Fc molecules docked to FcgRs,
supporting the notion that low valency Fcs did not create larger
FcgR clusters. Moreover, at saturating doses (100 mg/ml) of rFc,
SIF1 or PentX, the preponderance of spots in live cells displayed
similar spot-intensity histograms (Figure 6J). For PentX, the
histograms were nearly identical between low and saturating
concentrations. For SIF1, and to a greater degree, rFc, the
histograms displayed tails to the right, indicating that coincident
detections were more common owing to more frequent labeling of
multiple FcgR within a sub-resolution spot. Taken together, these
results are consistent with a model in which FcgRs move
independently within large corrals with some that are weakly
trapped or immobilized in regions of the plasma membrane, yet
changing their oligomerization states when docked with rFc, SIF1,
or PentX had no impact on this trapping. Likely only activating
valencies of Fcs such as encountered in IgG-IC (Figure 1) or
surface associated IgG (Figure 3A) are able to remodel FcgR
distributions on the cell surface.
DISCUSSION

The engineered multimeric Fc molecules, rFc, SIF1, and PentX,
provided new insight into the minimal number of FcgRs that
must be engaged for signaling and that this threshold depends on
the subcellular environment. While the classical models for FcgR
FIGURE 7 | Proposed mechanisms of spatio-temporal FcgR activation and Syk recruitment by multivalent-Fc molecules. IC-IgG : FcgR clusters at the plasma
membrane with a valency of more than five Fc domains undergo Syk recruitment and activation at the cells surface. IC : FcgR clusters with a valency of five or fewer
do not robustly recruit Syk to the plasma membrane and are unable to fully activate at the cell surface. However, at the valency of five, in a pentameric geometry,
FcgR clusters are endocytosed and recruit Syk at the endosome. Molecules with less than 5 Fc domains can engage FcgRs at the cell surface but cannot recruit
Syk. Created with BioRender.com.
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activation predict a minimal number of ligated and clustered
receptors is necessary for activation, our findings give the
surprising result that endosomes may afford a lower threshold
of activation for the minimum number of FcgRs than the plasma
membrane. Specifically, we found that PentX, which potently
drives Syk phosphorylation through the binding of five FcgRs
(6), can only fully activate FcgRs within endosomes (Figure 7).
This result could be explained by two potential mechanisms.
First, endosomes may allow segregation of the FcgRs
from plasma membrane associated phosphatases to allow
full activation. Alternatively, sorting of PentX-FcgRs within
endosome membrane may result in compartmental or sub-
compartmental sorting that creates elevated concentrations of
PentX-FcgRs enabling FcgR activation. A notable feature of
these results was that PentX accumulated and was trafficked to
large endosomes whereas SIF1 and rFc were only evident on
small endosomes at similar times of incubation (Figure 2).
Additionally, we found that Syk was required for the
accumulation of PentX within large endosomes, and its
absence resulted in PentX traffic that was similar to rFc and
SIF1 (Figure 3). These observations support a model in which
Syk recruitment to endosomal FcgRs may facilitate
compartmental or sub-compartmental sorting by trapping
PentX-FcgRs. Conversely, SIF1 and rFc do not recruit Syk to
endosomes displayed slower internalization and endosomal
traffic, which was faster in the likely more endocytic FLM than
THP-1 cells. Another possibility, supported by the observation of
vesicles bearing SIF1 and rFc but were dim and they did not
recruit Syk, is that they are transient intermediate of membrane
recycling. An implication of this finding is that IC-IgGs
could preferentially activate FcgRs on endosomes, where FcgR
signals may be unique from those generated at the PM. The
PentX molecule provides a powerful new tool for studying
the properties of endosomal FcgR-specific signaling that
cannot be accessed as precisely with heterogenous IC-
IgG preparations.

Our finding, that FcgRs on the PM are dynamically confined,
but not preclustered on the PM, and that their threshold for
activation requires more than five FcgRs sets a lower bound on
the minimum number of FcgRs needed to form signaling
competent clusters on the PM. While exactly how FcgR
rearrangements generate productive signaling, our results are
consistent with the actin cytoskeleton and potentially other
transmembrane proteins acting as fences corralling FcgRs (29,
33, 34). These interactions are likely important for organizing
FcgRs activation during engagement of particle associated IgG by
sorting activated FcgRs into regions that have close spacing
between the phagocyte membrane and target, allowing
exclusion of bulky and glycosylated phosphatases such as
CD45 (29, 35). More work will be needed to determine if
initiation of FcgR phosphorylation by Src-family kinases,
including Lyn, occurs on FcgRs docked with PentX or similar
low valency molecules, but is insufficient to recruit Syk or is
rapidly reversed at PM. Our finding here that large Fc oligomers
(UM) were able to self-organize into patches at the PM suggests
that this sorting process does not require an opposing target
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membrane for clustering FcgRs into PM patches, however it is
possible that CD45 exclusion could occur by the molecular
crowding of many Fc/FcgRs complexes. Moreover, super
resolution imaging indicated that of IC-IgGs made up of 2,4-
dinitrophenyl-bovine serum albumin bearing approximately 12-
24 anti-DNP IgGs were sufficient to promote clustering and
activation on human monocytes (17), implying that the number
of ligated FcgRs required for signaling is between 6 and 12. In
contrast to the work by Brandsma et al., in which pre-patching of
FcgRs that were expanded by IC-IgG observed in fixed cells, we
did not find evidence of pre-formed FcgR clusters or altered FcgR
distributions for low-valency Fc molecules. Rather, our SPT
traces in living cells showed zones of preferential dynamic
occupancy and exclusion typically containing tracks from free
and confined receptors with D ~ 0.15–0.2 mm2/s suggesting
that rather than pre-formed clusters, the FcgRs are corralled by
actin (29). Indeed, observed confined diffusion trajectories had
dimensions similar to the cluster diameters (~ 50 nm) observed
by Brandsma et al. (17). This distinction has important
consequences for IC induced signaling and FcgR activation and
inhibition, as both the number of ligated FcgRs and their spatial
organization across membrane microdomains appears to be a
critical for controlling their activation.

The mechanism of SIF1 inhibition of FcgR signaling
elucidated here, indicates that FcgRs can be inhibited without
activation or promoting degradation beyond membrane
turnover. At the plasma membrane, SIF1-FcgR complexes had
nearly indistinguishable motions as rFc-FcgR and none recruited
Syk-mScarlet, indicating that SIF1 occupied the IgG binding sites
while trapping the FcgR in a non-activatable state. Within
endosomes, SIF1 and rFc docked FcgRs were few and transient
indicating that they lingered on the PM, with a relatively slow
internalization kinetic. We interpret these findings as SIF1 binds
FcgRs but does not alter their native inactive state in any
subcellular compartment, even with the lower activation
thresholds as implied by the PentX results. SIF1 is an attractive
inhibitor as it has significantly higher overall affinity than rFc or
IVIG, arising from avidity by binding three FcgRs, leading to
therapeutic effects at lower drug concentrations against immune
complex mediated diseases (6). Moreover, SIF1 can likely engage
with all FcgR types while maintaining the properties of a single
receptor making it ideal to displace pathological IC-IgGs or to
disrupt particle opsonized IgG responses such as antibody
dependent cellular cytotoxicity or phagocytosis.

In contrast to conventional thinking, internalization from
plasma membrane in this system does not appear to be a result of
Syk recruitment to ligated FcgRs, but rather provides a
microenvironment for FcgR signaling and Syk recruitment in
subcellular membranes. A remaining question is do the
multivalent Fcs promote Syk recruitment in endosomes or is
internalization of the Fc/FcgR complexes a default pathway that
through removal of the complex from the PM, facilitates FcgR
activation? Our data suggest that in the case of SIF1 and rFc, no
detectable Syk recruitment is observed on internal membranes or
the PM, despite endocytic traffic of SIF1 and rFc. Furthermore,
the long residence time of SIF1 and rFc on the cell surface,
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suggests that these molecules docked to FcgRs are dynamically
being internalized and recycled back to the cell surface.
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Supplementary Video 1 | Syk-mScarlet redistribution to patches of Uncontrolled
Multimer (UM) AF488 (100 µg/ml). The confocal movies from left to right include the
UM AF488, Syk-mScarlet, and the overlay of the two, with FcM pseudo-colored
green and the Syk-mScarlet pseudo-colored magenta. Movies are 50 frames with
time between frames being 0.292 s. Scale Bar represents 5mm.

upplementary Video 2 | Redistribution Syk-mScarlet, to internalized PentX-
AF488 (100 µg/ml). The confocal movies from left to right include the PentX AF488,
Syk-mScarlet, and the overlay of the two, with PentX pseudo-colored green and the
Syk-mScarlet pseudo-colored magenta. Movies are 50 frames at 0.292 s between
frames. Scale Bar represents 5mm.

Supplementary Video 3 | Syk-mScarlet is recruited to patches of FcgRs moving
on an IgG opsonized bilayer. TIRF imaging show THP-1 cells engaging an IgG-
AF647 opsonized bilayer, driving FcgR clustering, and Syk-mScarlet recruitment to
clustering receptors. In the merge, green represents IgG-AF647 and the magenta
represents Syk-mScarlet. 100 frames at 1 s between frames. Scale Bar represents
5mm.

upplementary Video 4 | TIRF imaging of Syk-mScarlet in THP-1 cells treated
with 100 µg/ml rFc-AF488. In the merged movie, rFc is pseudo-colored green and
Syk-mScarlet is pseudo-colored magenta. The movies are 100 frames with 0.120 s
between frames. Scale bar represents 5mm.

Supplementary Video 5 | TIRF imaging of Syk-mScarlet in THP-1 cells treated
with 100 µg/ml SIF1-AF488. In the merged movie, SIF1 is pseudo-colored green
and Syk-mScarlet is pseudo-colored magenta. The movies are 100 frames with
0.120 s between frames. Scale bar represents 5mm.

Supplementary Video 6 | TIRF imaging of Syk-mScarlet in THP-1 cells treated
with 100 µg/ml PentX-AF488. In the merged movie, PentX is pseudo-colored green
and Syk is pseudo-colored magenta. The movies are 100 frames with 0.120 s
between frames. Scale bar represents 5mm.

Supplementary Video 7 | THP-1 cells with a 1:1 mixtures of Fc multimers
labeled with two different fluorophores. The molecules, rFc, SIF1, and PentX, were
conjugated with either AF488 or DyL594 to investigate super clustering. The left
panel shows THP-1 cells with docked rFc-AF88, pseudo-colored green, and rFc-
DL594, pseudo-colored magenta. The middle panel shows THP-1 cells with
docked SIF1-AF88, pseudo-colored green, and SIF1-DL594, pseudo-colored
magenta. The right panel shows THP-1 cells with docked PentX-AF88, pseudo-
colored green, and PentX-DL594, pseudo-colored magenta. The two-color movies
are 50 frames with 0.220 s between frames, concentrations were 33 µg/ml for
AF488- Fcs and 33µg/ml AF594-Fcs. The scale bar represents 5mm.
REFERENCES

1. Nimmerjahn F, Ravetch JV. Fcg receptors as regulators of immune responses.
Nat Rev Immunol (2008) 8:34. doi: 10.1038/nri2206

2. Li X, Kimberly RP. Targeting the Fc receptor in autoimmune disease. Expert
Opin Ther Targets (2014) 18(3):335–50. doi: 10.1517/14728222.2014.877891

3. Cojocaru M, Cojocaru IM, Silosi I, Vrabie CD. Manifestations of systemic
lupus erythematosus. Maedica (2011) 6(4):330–6.

4. Murphy KW. Casey, Janeway"s Immunology. Vol. 9 Vol. 924. New York and
London: Garland Science Taylor and Francis Group (2017).

5. Ushio A, Arakaki R, Yamada A, Saito M, Tsunematsu T, Kudo Y, et al. Crucial
roles of macrophages in the pathogenesis of autoimmune disease. World J
Immunol (2017) 7(1):1–8. doi: 10.5411/wji.v7.i1.1

6. Ortiz DF, Lansing JC, Rutitzky L, Kurtagic E, Prod’homme T, Choudhury A,
et al. Elucidating the interplay between IgG-Fc valency and FcgR activation
for the design of immune complex inhibitors. Sci Trans Med (2016) 8
(365):365ra158. doi: 10.1126/scitranslmed.aaf9418

7. Lowell CA. Src-family and Syk kinases in activating and inhibitory pathways
in innate immune cells: signaling cross talk. Cold Spring Harb Perspect Biol
(2011) 3(3). doi: 10.1101/cshperspect.a002352

8. Mocsai A, Ruland J, Tybulewicz VL. The SYK tyrosine kinase: a crucial player
in diverse biological functions. Nat Rev Immunol (2010) 10(6):387–402. doi:
10.1038/nri2765

9. Flannagan RS, Jaumouille V, Grinstein S. The cell biology of phagocytosis.
Annu Rev Pathol (2012) 7:61–98. doi: 10.1146/annurev-pathol-011811-
132445

10. Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J, Wolf AJ, et al.
Activation of the innate immune receptor Dectin-1 upon formation of a
‘phagocytic synapse’. Nature (2011) 472(7344):471–5. doi: 10.1038/
nature10071
February 2021 | Volume 11 | Article 617767

https://www.frontiersin.org/articles/10.3389/fimmu.2020.617767/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2020.617767/full#supplementary-material
https://doi.org/10.1038/nri2206
https://doi.org/10.1517/14728222.2014.877891
https://doi.org/10.5411/wji.v7.i1.1
https://doi.org/10.1126/scitranslmed.aaf9418
https://doi.org/10.1101/cshperspect.a002352
https://doi.org/10.1038/nri2765
https://doi.org/10.1146/annurev-pathol-011811-132445
https://doi.org/10.1146/annurev-pathol-011811-132445
https://doi.org/10.1038/nature10071
https://doi.org/10.1038/nature10071
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bailey et al. Multivalent Control of Fcg Receptors
11. Zhang Y, Hoppe AD, Swanson JA. Coordination of Fc receptor signaling
regulates cellular commitment to phagocytosis. Proc Natl Acad Sci USA (2010)
107(45):19332–7. doi: 10.1073/pnas.1008248107

12. Flaherty MM, MacLachlan TK, Troutt M, Magee T, Tuaillon N, Johnson S,
et al. Nonclinical evaluation of GMA161–an antihuman CD16
(FcgammaRIII) monoclonal antibody for treatment of autoimmune
disorders in CD16 transgenic mice. Toxicol Sci (2012) 125(1):299–309. doi:
10.1093/toxsci/kfr278
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Use of Flow Cytometry to Evaluate
Phagocytosis of Staphylococcus
aureus by Human Neutrophils
Elena Boero1,2, Iris Brinkman1, Thessely Juliet1, Eline van Yperen1, Jos A. G. van Strijp1,
Suzan H. M. Rooijakkers1 and Kok P. M. van Kessel1*

1 Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands, 2 GlaxoSmithKline
Vaccines S.r.l., Siena, Italy

Neutrophils play a key role in the human immune response to Staphylococcus aureus
infections. These professional phagocytes rapidly migrate to the site of infection to engulf
bacteria and destroy them via specialized intracellular killing mechanisms. Here we
describe a robust and relatively high-throughput flow cytometry assay to quantify
phagocytosis of S. aureus by human neutrophils. We show that effective phagocytic
uptake of S. aureus is greatly enhanced by opsonization, i.e. the tagging of microbial
surfaces with plasma-derived host proteins like antibodies and complement. Our rapid
assay to monitor phagocytosis can be used to study neutrophil deficiencies and bacterial
evasion, but also provides a powerful tool to assess the opsonic capacity of antibodies,
either in the context of natural immune responses or immune therapies.

Keywords: Staphylococcus aureus, human, neutrophils, phagocytosis, flow cytometry
INTRODUCTION

Staphylococcus aureus is a leading pathogen causing an array of serious and possibly fatal diseases in
humans (1). Due to its fast acquisition of antibiotic resistance, treatment of S. aureus infections is
becoming increasingly difficult (2). Alternative measures such as vaccine candidates tested so far
were unsuccessful (3, 4), thus new research efforts are urgently required. Patients with compromised
neutrophil function are more susceptible to S. aureus infections (5). This suggests that studying the
role of neutrophils in the clearance of different clinical strains of this bacterium could provide us
with clues to develop therapies.

Neutrophils are the most abundant professional phagocytes of the innate immune system. These
terminally differentiated cells are regularly released in the bloodstream to patrol the body. When
Abbreviations: AUC, Area Under Curve; CH50, Classical Pathway Hemolytic Assay; CR, Complement Receptor; EC50, Half
Maximal Effective Concentration; FcRs, Fc receptors; FITC, Fluorescein Isothiocyanate; FSC, Forward Scatter; GFP, Green
Fluorescent Protein; HI-NHS, Heat-inactivated NHS; HSA, Human serum albumin; IgA, Immunoglobulin A; IgG,
Immunoglobulin G; IgM, Immunoglobulin M; IVIg, Intravenous Immunoglobulin; PBS, Phosphate Buffer Saline; PMNs,
Polymorphonuclear Leukocytes; LDS, Laser Dye Styryl; mAm, mAmetrine; MFL, Mean Fluorescence; MHB, Mueller-Hinton
Broth; NHS, Normal Human Serum; RPMI, Roswell Park Memorial Institute Medium; Sbi, Second Immunoglobulin-Binding
Protein; sGFP, Superfolder Green Fluorescent Protein; ShRBC, Sheep Red Blood Cells; SpA, Staphylococcal Protein A; SSC,
Side Scatter; DIgGDIgM serum, IgG and IgM-depleted Serum; THA, Todd Hewitt Agar; THB, Todd Hewitt Broth; TMB,
3,3’,5,5’-Tetramethylbenzidine; WGA, Wheat Germ Agglutinin.
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S. aureus invades tissues, neutrophils sense inflammatory signals
released by local cells and extravasate, migrating towards the site of
infection (5–8). The inflammatory milieu also primes neutrophils,
boosting their capacity to recognize and clear bacteria (9).
Neutrophils mainly kill pathogens through phagocytosis, a
process in which bacteria are engulfed into intracellular vesicles
called phagosomes. The phagosomes then mature into lytic
vesicles: they become filled with antimicrobial substances stored
into cytoplasmic granules and with toxic reactive oxygen species.
These events, combined with the tuning of the vacuolar pH, finely
regulates the enzymatic activity, ultimately leading to killing and
digestion of the bacteria (10, 11).

Phagocytosis is an active process that requires the direct
contact between S. aureus and the neutrophil. This process is
typically aided by opsonins, host plasma proteins that mark
bacterial surfaces increasing their probability of interacting with
neutrophils phagocytic receptors. The main opsonins are
immunoglobulins and complement proteins (12).

Immunoglobulins are adaptive immune molecules designed
to specifically recognize an antigen, such as Staphylococcal
surface proteins. Once bound to the bacteria, immunoglobulins
of class G (IgG) and A (IgA) induce phagocytosis by direct
interaction of their Fc with their specific phagocytic receptors
FcgRs and FcaRs. Furthermore, IgGs and IgMs induce
phagocytosis indirectly, by activating the complement cascade
via the classical pathway (13).

The complement system also comprises proteins that label
bacterial surfaces that enhance phagocytosis. Since complement
deposition is aspecific its activation is guided by three
recognition pathways, including the aforementioned classical
complement pathway in which complement activation is
triggered by the recognition of S. aureus by antibodies (14, 15).
The three recognition pathways all converge to the cleavage of
C3 into C3b, which deposits on and tags bacterial surfaces. C3b is
further inactivated into iC3b, and together they are ligands of
neutrophil phagocytic receptors CR1 and CR3 (16).

In this methodological paper we describe an in vitro assay to
measure phagocytosis. Traditionally, bacterial phagocytosis by
human neutrophils is analyzed by enumeration of viable bacteria
on growth media or by counting particles under the microscope.
This method is very time-consuming since for each condition
serial dilutions of lysed neutrophils are needed. Therefore, we
and others have developed several approaches to determine
phagocytosis of bacteria by neutrophils (17–30), many of them
in multi-well plates. Here, we describe a powerful flow cytometry
method to quantify phagocytosis of S. aureus by freshly isolated
human neutrophils in vitro. Although our phagocytosis assay is
not novel, we here intend to provide an extensive overview of the
methodology, pinpoint basic parameters and considerations for
the proper interpretation of results. In particular, we apply the
method to unravel the role of different opsonins in the
phagocytosis process using primary human neutrophils. By
taking these parameters into account, a flow cytometric
phagocytosis assay becomes a powerful method for studying
neutrophil activity, as well as bacterial phenotypes and
antibody responses.
Frontiers in Immunology | www.frontiersin.org 292
MATERIALS AND METHODS

Ethics Statement
Blood was obtained from healthy donors after informed consent
was obtained from all subjects, in accordance with the
Declaration of Helsinki. Approval from the Medical Ethics
Committee of the University Medical Center Utrecht was
obtained (METC protocol 07-125/C approved on March
1, 2010).
S. aureus Strains Choice, Labeling
and Culture
S. aureus strains used in phagocytosis assays were selected to
have low or no expression of staphylococcal protein A (SpA) and
second immunoglobulin-binding protein (Sbi), the main
immunoglobulin binding proteins of S. aureus, that could
otherwise interfere with opsonization and lower the resolution
of the assay. In a separate experiment, several wild type S. aureus
strains were included for comparison (see Table 1). All S. aureus
strains were fluorescently labelled to allow detection by flow
cytometry. We used both genetically labelled bacteria (GFP and
mAm) and surface-labelled bacteria (FITC).

To construct GFP-labelled S. aureus strains, bacteria were
transformed with a GFP-expressing plasmid pCM29 that
constitutively and robustly expresses the superfolder green
fluorescent protein (sGFP) from the sarAP1 promoter (33). A
codon optimized gene for the fluorescent protein mAmetrine
(mAm; GenBank: KX759016) was also cloned into the pCM29
plasmid (34). Competent bacteria (~5x109) were electroporated
with 10 µl plasmid with a Gene Pulser II (BioRad; 100 Ohm
resistance, 25 µF capacitance at 2.5 kVolt) (35). After recovery,
bacteria were plated on Todd Hewitt agar (THA) plates
containing 10 µg/ml chloramphenicol. A colony was picked for
propagation in liquid THB plus 10 µg/ml chloramphenicol,
collected and stored in PBS + glycerol (final concentration
15%) at −80°C.

To prepare bacterial stocks for phagocytosis experiments,
S. aureus was grown overnight in Todd Hewitt broth (THB)
TABLE 1 | S. aureus strains used.

S. aureus strains Description Reference or source Notes

KV27 Clinical strain
UMCU

Pleural effusion Low SpA
expression*

Newman DSpA DSbi spa sbi knockout
mutant

(31)

Newman wt Wild type strain Tim Foster, Dublin
MW2 Michael Otto, NIH
8325-4 Tim Foster, Dublin (32)
COL Andreas Peschel,

Germany
(32)

USA300 Frank Deleo, NIAID (32)
Wood-46 ATCC10932
SH1000 Tim Foster, Dublin
February
 2021 | Volume 12 | Art
*Determined by comparing isotype mouse IgG2a binding levels among several clinical
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with the necessary antibiotics, diluted to an OD660nm of 0.05 in
fresh THB and cultured until an OD660nm of ~ 0.50,
corresponding to an early exponential phase. Bacteria were
then collected by centrifuging at 2,400 x g at 4°C, for 15 min,
washed twice, resuspended in RPMI + 0.05% HSA (RPMI-HSA),
and stored aliquoted at −20°C.

For the chemical surface labeling with FITC, bacteria were
grown as described above and after centrifugation labelled for 1 h
at 4°C in 0.1 M carbonate buffer (pH 9.0) or PBS containing
250 µg/ml FITC. Finally, bacteria were washed thoroughly from
excessive dye and stored at −20°C. Since the FITC isothiocyanate
group reacts with amino terminal and primary amines available
on the surface of the bacteria, we checked whether this procedure
would affect the opsonization capacity of the serum. We
therefore compared the phagocytosis of S. aureus expressing a
mAmetrine fluorescent protein, unlabelled or externally labelled
with FITC. The additional FITC labeling did not change the
opsonization profile of the bacteria and did not interfere with
phagocytosis (Figure S1).

Isolation of Human Polymorphonuclear
Leukocytes (PMNs)
PMNs were isolated from healthy donors’ blood. Whole blood
was obtained by venepuncture and collected in sodium heparin 9
mL tubes (Greiner). Dual Ficoll/Histopaque density gradients
were prepared by slowly layering 10 mL Ficoll (GE Healthcare)
over 12 mL Histopaque (density 1.119; Sigma) in 50 mL tubes.
Finally, 20–25 mL of blood diluted 1:1 (v/v) with PBS were
carefully layered on top of the gradient, which was then
centrifuged at 22°C for 20 min at 390 x g in a swinging bucket
rotor without brake. After centrifugation the upper plasma,
PBMC ring and the transparent layer of Histopaque were
discarded. The pink Histopaque layer on top of the packed
erythrocytes containing the PMNs was collected and washed
with RPMI-HSA at 4°C for 10 min at 249 x g. Residual
erythrocytes in the pellet were lysed by hypotonic shock with
9 mL of cold sterile deionized H2O. Osmolarity was restored with
1 mL of 10x PBS after exactly 30 s. Cells were washed again
with RPMI-HSA at 4°C for 10 min at 249 x g and were suspended
in RPMI-HSA. From 9 mL of blood the yield will range from 5 x
106 to 3 x 107, depending on the donor. For more details on the
procedure see Surewaard et al. (30).

The isolated PMN fraction contains neutrophils, 1–5% non-
phagocytosing eosinophils, other cell types and debris, with a
viability of >97%.

Preparation of Serum From Blood
Fresh blood was collected in tubes with no anticoagulant
(Greiner) and allowed to clot undisturbed for 30 min at room
temperature. The blood tubes were then centrifuged at 4°C for
10 min at 2,075 x g, and the supernatant (serum) was collected.
Sera from 20 healthy individuals were stored individually at
−80°C and pooled to be aliquoted as normal human serum
(NHS), to avoid donor to donor variability in anti-staphylococcal
antibody repertoire and complement activity. It is important to
process the serum rapidly at low temperature and avoid freeze-
Frontiers in Immunology | www.frontiersin.org 393
thaw cycles to preserve the activity of complement. Heat-
inactivated serum was prepared by incubating serum at 56°C
for 30 min to deactivate thermosensitive complement proteins.
Isolation of Antibodies From Serum
and DIgGDIgM NHS Production
The protocol is described in detail in by Zwarthoff (36). Briefly,
part of the NHS was depleted from IgG and IgM (DIgGDIgM
NHS) by affinity chromatography, passing it through two affinity
columns in tandem, a HiTrap Protein G High Performance
column (GE Healthcare) and a Tricorn column filled with
POROS CaptureSelect IgM Affinity Matrix (Thermo Scientific).
The flow through fractions with serum-like appearance that also
peaked in UV absorbance were pooled and stored aliquoted at
−80°C. Roughly 70–80% of the original volume of serum was
retrieved. Effectivity of the depletion of serum was determined by
specific ELISAs leaving <1% of IgG and IgM. The residual
complement activity of the DIgGDIgM NHS was ~50%,
evaluated by measuring the serum hemolytic activity of sheep
erythrocytes (CH50).

IgG and IgM were separately recovered from their respective
affinity columns using a 0.1 M glycine-HCl buffer at pH 2.7, runs
pooled and dialyzed against PBS. Purified IgG and IgM were
checked for purity on a size exclusion Superdex-200 column.
NHS and DIgGDIgM NHS were checked for the presence of IgG
and IgM by ELISA using affinity purified Sheep-anti-Hu-IgG or
anti-Hu-IgM respectively (ICN) as a capture and Peroxidase-
labelled Goat-anti-Hu-IgG or anti-Hu-IgM (SouthernBiotech) as
corresponding detection antibody. Purified IgG (Human
Gamma Globulin; Jackson ImmunoResearch) or IgM (Sigma
Aldrich) was used as reference.

Classical Pathway Hemolytic Assay (CH50)
Sheep blood (bioTRADING Benelux B.V.) was washed twice
with PBS to obtain pelleted red blood cells (ShRBC). ShRBC
carry the Forssman glycolid structure and most humans
(considered to be a Forssman antigen-negative species) have
naturally occurring anti-Forssman antibodies (IgG and IgM) that
would induce ShRBC lysis without additional opsonization.
Therefore, human serum was pre-absorbed with pelleted
ShRBC for 15 min on ice to eliminate these antibodies.

For the lysis experiment, pelleted ShRBC were resuspended in
Veronal buffer (727 mMNaCl, 9.1 mM sodium barbital, 10.2 mM
diethyl barbituric acid, pH 7.5) containing 0.5 mM CaCl2 and
0.25 mM MgCl2 and sensitized with 1:2,000 diluted Rabbit-anti-
ShRBC serum for 10 min, washed and resuspended again in
Veronal buffer. In a round-bottom 96-well plate, 25 µl of anti-
Forssman antibodies-depleted human serum (starting at 10% with
2-fold dilutions) were mixed with 25 µl opsonized ShRBC and
incubated for 60 min at 37°C on a shaking plateau. After
centrifugation, release of hemoglobin was measured at 415 nm
after transferring 25 µl supernatant to a half-area flat-bottom plate
containing 25 µl MQ per well. Data were normalized for plateau
4% serum value (after subtraction of background spontaneous
lysis) and used to calculate the EC50 value (GraphPad version 8;
February 2021 | Volume 12 | Article 635825

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Boero et al. Staphylococcus aureus Phagocytosis by Neutrophils
Sigmoidal dose–response with variable slope Least squares fit).
EC50 is converted to titer using the formula 100/EC50.

Affinity Purification of Anti-S. aureus IgGs
As a source of anti-S. aureus IgGs, we chose a commercial human
normal immunoglobulin preparation for intravenous use
containing at least 95% polyclonal IgGs (Kiovig, Sanquin). We
will refer to this product as intravenous immunoglobulin (IVIg).
In order to isolate anti-S. aureus specific IgGs from IVIg, a column
with coupled bacteria was prepared. For this purpose, we chose the
S. aureus strain Newman DSpA DSbi, which lacks both main IgG-
binding proteins of S. aureus, to avoid non-specific retaining of
antibodies. Bacteria were grown overnight in Mueller-Hinton
Broth (MHB), and subsequently diluted in fresh MHB and
grown to OD660nm 0.5. Bacteria were resuspended from growth
medium in PBS, fixed with 1% formaldehyde in PBS for 30 min at
4°C with gentle mixing and washed again in PBS. Finally, bacteria
were resuspended to OD660nm of 1.0 in coupling buffer (0.2 M
NaCO3 and 0.5 M NaCl pH 8.0) and 7.5 mL recirculated over a 5
mL HiTrap NHS-column (GE healthcare). Column was washed
alternating with 0.5 M ethanolamine in 0.5 M NaCl (pH 8.3) and
0.1 M acetate buffer in 0.5 M NaCl (pH 4.0) according to the
manufacturer’s instructions. Based on OD660nm, 70% of the input
was coated resulting in ± 43 x 109 coupled bacteria.

For the isolation of affinity-purified IgGs, the column was
loaded at 2 mL/min with 1 g IVIg at 10 mg/mL. Column was
washed with PBS, eluted with 100 mM Glycine-HCL (pH 2.7)
and peak fractions for OD280nm directly neutralized with 1 M
Tris (pH 8.0). IgG eluate was dialyzed overnight against PBS.
Finally, only 1.15 mg affinity purified IgG was recovered.

ELISA to Verify Enrichment of S. aureus
Human IgGs From IVIg Preparation
To verify the enrichment of anti-S. aureus human IgG, the
original and affinity purified IVIg were compared in an ELISA
(detailed protocol in van den Berg et al., 2015). Briefly,
logarithmic grown bacteria were coated at 5x106 per well (50
µl) in PBS overnight at 4°C in a high-binding microplate
(Greiner). Plates were blocked with 4% BSA in PBS/Tween-20
(0.05%). Serial dilutions of IgG in PBS/Tween-20 with 1% BSA
were added and bound IgG detected with F(ab’)2-goat-anti-Hu-
IgG (Fc-gamma)-HRP labelled (Jackson) and TMB as substrate.
Reaction was stopped with H2SO4 and the absorbance was
measured at 450nm.

Phagocytosis Assay
Phagocytosis was performed in phagocytosis buffer RPMI-HSA.
In a round-bottom 96-well plate (Greiner), 20 µl of fluorescent
bacteria (3.75 x 107 CFU/mL) were mixed with 20 µl
of a concentration range of human serum and/or purified
antibodies for opsonization, for 15 min at 37°C on a
plate thermoshaker (750 rpm). Subsequently, 10 µl of PMNs
(7.5 x 106 cells/mL) were added to reach a 10:1 bacteria-to-cell
ratio in a final volume of 50 µl. The reaction was incubated for
other 15 min at 37°C on a plate thermoshaker (750 rpm).
Samples were then fixed for 30 min with 100 mL cold
Frontiers in Immunology | www.frontiersin.org 494
formaldehyde at a concentration of 1.5% (diluted from 10%
aqueous methanol free, formaldehyde, Ultra pure; Polysciences,
Inc.). Samples were either acquired immediately after 30 min of
fixation at 4°C or after overnight fixation.

Standard Data Acquisition of Phagocytosis
by Flow Cytometry
Samples were acquired on a FACSVerse flow cytometer with
Universal Loader (Becton Dickinson) equipped with a three-laser
system (405, 488, 633 nm), 8-color (4-2-2) configuration and BD
FACSuite software version 1.06.

In our standard acquisition set up, only neutrophil-related
parameters were analyzed. Although we used density gradient
centrifugation to isolate highly pure PMNs, gating of cells is still
required to eliminate cell debris and possible free or clumped
bacteria. Neutrophils were therefore gated adjusting Forward
scatter (FSC) and Side scatter (SSC) parameters to linear scale. A
threshold at FSC signal was also set, so that free bacteria were
excluded from the acquisition. The fluorescence of FITC-, GFP-,
or mAm-labelled staphylococci associated with neutrophils was
acquired in logarithmic scale. A total of 7,000 events were
collected for each sample gated on neutrophils. All data were
exported as Flow Cytometry Standard format 3.0 files (FCS files).

Analysis of Flow Cytometry
Phagocytosis Data
FSC files were analyzed by FlowJo (Version 10; Treestar US,
Ashland, OR). Our analysis of phagocytosis is based on the
variation in the fluorescence intensity of neutrophils. This is
easily visualized in histograms showing the number of cells
distributed based on their fluorescence intensity (Figures 1A,
B). The fluorescence intensity often results in two defined peaks:
the GFP-negative cells that did not interact with fluorescent
bacteria (left side), and of phagocytosing GFP-positive cells
(right side). The main parameters of interest are: (1) the
percentage of cells with a positive fluorescent signal (% positive
cells), representing the part of the population that interacted with
bacteria in our experimental conditions (2) the mean
fluorescence (MFL) of all neutrophils. Because MFL values
differ between experiments due to use of different batches of
bacteria and labels, different Flow Cytometers with their
respective instrument settings, and different donors, MFL data
are preferably expressed relative to an optimal reference
condition. To evaluate the different concentration curves in a
single value, the Area Under the Curve (AUC) was calculated using
GraphPad Prism (version 8). Therefore, serum concentration
values were converted to their logarithmic number, and AUC
was calculated using all serum concentrations with baseline
correction for the % GFP+ Neutrophils of control samples
(neutrophils and bacteria without serum).

Alternative Data Acquisition of
Phagocytosis (Neutrophils and Bacteria)
We adapted the flow cytometry protocol to measure the
percentage of bacteria taken up by the neutrophils, as usually
February 2021 | Volume 12 | Article 635825
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done in a classical phagocytosis assay. Samples pre- and post-
phagocytosis were acquired on a FACSVerse flow cytometer. To
acquire both bacteria (~1 µm diameter) and neutrophils
(~12 µm), FSC and SSC parameters were set in logarithmic
mode. To eliminate the substantial background events due to the
full-scale log amplification for FSC and SSC, neutrophils were
fluorescently labelled post-phagocytosis with 0.3 µg/ml LDS-751
Frontiers in Immunology | www.frontiersin.org 595
nuclear stain (Thermofisher) for 5 min at 4°C without washing.
GFP (S. aureus) and LDS-751 (PerCP channel setting)
(neutrophils) signals were acquired on logarithmic scale and
both used as threshold signals to collect only bacteria and
neutrophils. A total of 50,000 events was acquired.

Setting quadrants in the GFP versus LDS-751 dot plot enables
counting the number of free bacteria (GFP+/LDS-), neutrophils
A B

D

E

C

FIGURE 1 | Acquisition of phagocytosis assay by flow cytometry. Acquisition of neutrophil phagocytosis of S. aureus KV27 opsonized with normal human serum
(NHS) at a 10:1 bacteria-to-cell ratio after 15 min incubation. (A) Gating of PMNs in the linear FSC and SSC, required to eliminate cell debris and possible free or
clumped bacteria from the analysis (left graph). Representative histogram describing the GFP intensity per number of events. The total population is composed by a
percentage of GFP- and GFP+ PMNs (right graph). (B) Typical histogram overlay of the GFP intensity distribution of the total neutrophil population per each
concentration point of opsonizing NHS. (C) Phagocytosis expressed as the % of GFP+ neutrophils per increasing % of NHS. Mean ± SEM for n=8–25 (D)
Phagocytosis expressed as the Mean Fluorescence (MFL) of neutrophils relative to the MFL obtained with opsonization with 4% NHS. Mean ± SD for n=8–25.
(E) Confocal image of S. aureus KV27 (green, GFP) incubated with 4% NHS engulfed by human neutrophils (red, membrane stain WGA-Alexa647 and blue, nuclear
stain SYTO-82), control (right image) or treated with actin-blocking agent cytochalasin-D (left image).
February 2021 | Volume 12 | Article 635825

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Boero et al. Staphylococcus aureus Phagocytosis by Neutrophils
(GFP-/LDS+) and neutrophils containing bacteria (LDS+/GFP+).
Hereby both cell types are acquired with minimal noise, enabling
to calculate the ratio of bacteria (GFP+) versus neutrophils
(LDS+). This setup allows monitoring of the percentage of
neutrophils that participate in phagocytosis (LDS+/GFP+
fraction of LDS+ events), as well as the MFL value of the
neutrophil population, but also the percentage of bacterial
uptake reflected by the drop-in ratio, as alternative for actual
concentration determinations (Figure S3).

Microscopy Analysis of Phagocytosis
To analyse phagocytosis via light microscopy, samples were not
fixed with formaldehyde, but immediately centrifugated onto
glass slides using a cytospin-3 (Shandon), air dried and
subsequently stained with the rapid Diff-Quick (Dade Behring)
procedure. Pictures were taken with a Sony Nex-5 camera
mounted without lens on an Olympus BX50 microscope.

For confocal microscopy, formaldehyde-fixed phagocytosis
samples were mixed with Alexa Fluor647-labelled WGA (3 µg/ml;
Molecular Probes) and SYTO-82 Orange Fluorescent Nucleic
Acid Stain (5 µM; Molecular Probes) for 5 min before cytospin
preparation. Air-dried cytospin slides were mounted with Poly-
Mount and a cover slip. For confocal microscopy, samples were
viewed on a Leica TCS SP5 using the 488 Argon laser line, 543
and 633 Helium-Neon laser line with a TD 488/561/633 dichroic
beam splitter. Samples were viewed with two successive
sequential scans to eliminate spill-over signals.
RESULTS

Basic Parameters for the Acquisition
of Neutrophils Phagocytosis of S. aureus
by Flow Cytometry
Flow cytometry is a convenient high-throughput method for the
evaluation of phagocytosis of fluorescently labelled S. aureus by
neutrophils in suspension. In our standard assay set up we mix
neutrophils with bacteria previously opsonized with pooled
serum from healthy donors (normal human serum (NHS)), to
enhance the engagement of cell surface receptors. By opsonizing
bacteria with increasing concentrations of NHS, we can assess
the impact of opsonization on phagocytosis.

As described in detail in the methods section, we evaluated the
outcome of phagocytosis from cell-derived parameters. First,
PMNs (containing >90% neutrophils) were gated to exclude cell
debris and free bacteria from the analysis of internalized
fluorescent S. aureus. Figure 1A shows an example of
neutrophils gating, as well as the identification of the “GFP-”
and “GFP+” cells in the GFP fluorescence histogram. The
distinction between GFP negative and positive cells is defined by
the autofluorescence signal of neutrophils in the absence of
bacteria. Figure 1B shows the results in the form of overlaid
histograms, representing the distribution of GFP fluorescence in
the PMN population. With increasing serum concentrations, a
marked increase of GFP-positive neutrophils is observed, together
with the coherent increase of their fluorescence intensity,
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indicating that a larger number of cells was interacting with an
increasing number of bacteria.

Figure 1C shows the percentage of GFP-positive neutrophils,
thus the proportion of population that interacted with bacteria
for each serum concentration. In the absence of serum, still 15%
of PMNs interact with S. aureus. Conversely, when serum is
introduced neutrophil engagement spikes rapidly. Already at a
serum concentration of just 0.25%, more than >90% neutrophils
are phagocytosing. Since isolated PMN fraction consists of ~95%
neutrophils, 1–5% eosinophils (non-phagocytosing) and a few
death cells, a non-phagocytosing fraction is always expected. We
can reasonably conclude that >90% positive values indicate that
virtually all neutrophils interacted with bacteria.

Figure 1D represents the mean fluorescence (MFL) of the
neutrophil population, which summarizes the overall phagocytic
activity of neutrophils considering both GFP- and GFP+ cells.
This graph shows that, despite the percentage of neutrophils
involved in phagocytosis reached a plateau after 0.25%
opsonization, higher serum concentrations stimulate the cells
to continue engulfing more bacteria.

One limitation of standard flow cytometry analysis is
the inability to distinguish between bound or internalized
bacteria within the GFP+ neutrophils. Figure 1E shows two
representative confocal images of a phagocytosis experiment.
The picture on the left clearly indicates that all bacteria are inside
when opsonized with 4% NHS. The picture on the right shows a
phagocytosis assay with neutrophils treated with actin-blocking
agent Cytochalasin-D, which impairs phagocytosis. The confocal
images thus demonstrate that despite the inability of flow
cytometry to distinguish non-internalized bacteria, the number
of bacteria attached to the cell surface is negligible, thus the
results of flow cytometric analysis are attributable to the
internalized bacteria. In addition, phagocytosis was performed
on ice (with shaking) in parallel with 37°C, both conditions first
opsonized for 15 min at 37°C. Keeping the conditions strictly
cold, only background association was observed comparable with
no serum (Figure S2).

Together our results confirm that, under these assay
conditions, opsonization of bacteria with serum is essential for
successful phagocytosis by neutrophils.

Incubation Time and Bacteria-To-Cell
Ratio Dictate the Dynamics of the
Phagocytosis Assay
The dynamics of phagocytosis in vitro depend on assay
parameters that regulate the contact between cells and bacteria.
Incubation time and bacteria-to-cell ratio are two main
parameters that govern and influence the contact phase. In our
standard phagocytosis assay, opsonized bacteria and cells are
incubated together with vigorous shaking for 15 min at a 10:1
bacteria-to-cell ratio. To justify these choices, experiments are
shown to evaluate the effect of varying the incubation time and
ratio on the outcome of the phagocytosis assay.

To investigate how incubation time affects phagocytosis
efficiency, we performed the same phagocytosis assay described
in the previous section, with GFP-expressing S. aureus KV27
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opsonized with increasing concentrations of NHS, but we stopped
the incubation with cells between 1 to 30 min. Figure 2A shows
that, as incubation time increases, so does the percentage of
phagocytosing neutrophils, demonstrating that a longer
incubation time increases the probability of a cell to encounter a
bacterium. It is also clear that phagocytosis is a fast process; after
only 1 min, more than 40% neutrophils phagocytosed bacteria,
and by 8 min more than 90% neutrophils participated.

For all incubation times, we confirmed the observation from
the previous section that a higher opsonization of bacteria
enhanced phagocytosis. However, when bacteria were treated
Frontiers in Immunology | www.frontiersin.org 797
with 1% or more serum phagocytosis reached a plateau,
suggesting that bacteria were saturated by opsonins and
neutrophil stimulation reached its maximum.

Figure 2B represents the total mean fluorescence values,
reflecting the mean number of phagocytosed bacteria per
neutrophil. In accordance with Figure 2A, the MFL increased
proportionally with incubation time, indicating that neutrophils
engulf more bacteria when offered more time. When all neutrophils
participated in the phagocytosis process, reaching their plateau after
8min (Figure 2A), neutrophils kept engulfingmore bacteria per cell
the more the incubation time was extended (Figure 2B).
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FIGURE 2 | Effect of Incubation Time and Bacteria-to-Cells Ratio on Opsonophagocytosis. (A, B) Time-dependent phagocytosis of KV27-GFP in the presence of
pooled NHS. Bacteria and PMNs at a 10:1 ratio were incubated at 37°C in tubes and samples were withdrawn for each time point into ice cold formaldehyde to
stop the reaction. Data are expressed as % GFP+ PMNs (A) and Mean fluorescence (B). Representative experiment of n=2. (C, D) Phagocytosis of GFP-expressing
Newman DSpA DSbi using different ratios bacteria to neutrophils. Phagocytosis of NHS opsonized bacteria expressed as % GFP+ neutrophils for depicted ratios (C)
and as MFL of total neutrophils (D). (E, F) For 1% serum at different ratios, data of % GFP+ neutrophils are fitted to a nonlinear regression curve [least squares fit;
GraphPad, Agonist vs. response (three parameters)] (E) and data of total MFL are fitted to a linear regression curve (F). Data pooled from n=2 experiments.
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Next, we evaluated the outcome of phagocytosis when varying
the bacteria-to-cell ratio. Low bacteria-to-cell ratios, from 0.5:1
to 20:1, were chosen to emulate the physiological ratios at the site
of infection. Figures 2C, D show that both the percentage of
positive neutrophils and total mean fluorescence are still
dependent on the serum concentration for all ratios tested, and
the percentage of neutrophil population involved reaches a
plateau at ratio 8:1.

To better compare the serum-concentration curves for each
ratio, the area under the curve (AUC) was calculated for both the
percentage of positive neutrophils and their total MFL, as
representative number for the phagocytic capacity of
neutrophils for all serum concentrations. As already evident
from Figure 2C (depicting a selected part of all ratios tested),
with increasing ratios the AUC for neutrophils participating in
phagocytosis reaches a plateau at a ratio of 6:1 (Figure 2E).
Clearly, Figure 2F shows that, with increasing ratios, the ability
to phagocytose more bacteria per neutrophil accumulates and
under these conditions, does not reach a maximal plateau of
phagocytic capacity.

Correlation of Microscopy and Flow
Cytometry Analysis
A phagocytosis assay is typically evaluated by measuring engulfed
bacteria inside cells, either by microscopy or flow cytometry. Here
we compared the automated and more throughput flow
cytometric analysis to the classical microscopic counting, to
ensure that a higher MFL signal indeed reflects phagocytosis of
more bacteria per neutrophil.

To provide two different phagocytosis conditions, bacteria
were opsonized with either NHS or heat-inactivated serum (HI-
NHS), in which key complement proteins are inactive. Due to the
absence of complement activation, we expect a marked decrease
in the efficiency of phagocytosis, since engulfment will be mainly
mediated by the interaction of Fc receptors (FcRs) with
opsonizing IgGs and a few IgAs. This will therefore give us the
opportunity to compare two markedly different results with
both techniques.

Figures 3A–C show the analysis of the assay via microscopy,
where engulfment is typically evaluated by counting visually the
number of bacteria per cell. The average number of bacteria per
50–100 cells is reported in Figures 3B, C. Phagocytosis is
heterogeneous throughout the neutrophil population, as already
evidenced in the relative broad fluorescence histograms shown in
Figure 1B. As expected, the average number of bacteria per cell
was higher with increasing concentrations of serum. In addition, a
marked decrease in phagocytosis efficiency was observed when
bacteria were opsonized with HI-NHS (Figure 3C), when
compared with NHS (Figure 3B), showing that complement
greatly contributes to enhance the phagocytic process.

Figures 3D–F show the analysis of the same experiments by
flow cytometry. In contrast to the laborious microscopic analysis,
the flow cytometer automatically evaluates the fluorescence of
~7000 neutrophils in a short time (exemplified in Figure 3D).
This way of analysing the experiments clearly shows the presence
of a significant portion of non-phagocytosing cells, which was
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also clear by microscopy analysis. However, for the evaluation by
microscopy, only neutrophils containing bacteria were analyzed.
The results of the experiments are presented in the standard
format (explained in Section 1) as % of phagocytosing GFP+
neutrophils (Figure 3E) and relative GFP mean fluorescence of
the total neutrophil population (Figure 3F).

To be able to compare the counted numbers with a
representing fluorescence value, the mean fluorescence of the
GFP+ neutrophil population alone was determined (Figures 3D,
G). Plotting the bacteria/cell (microscopy) versus MFL/cell (flow
cytometry) showed a linear regression with an R2 = 0.96,
indicating that the flow cytometric MFL reflects number of
phagocytosed bacteria (Figure 3H).

Dissecting the Role of IgG, IgM, and
Complement in Phagocytosis of S. aureus
In the previous section we showed that inactivating complement
deposition on S. aureus severely impairs bacterial uptake. In this
section we will elaborate more on the single contributions of
serum opsonins in the phagocytosis of S. aureus.

First, we analyzed the contribution of complement proteins to
opsonization. To obtain an antibody-free complement source
(denoted as DIgGDIgMNHS), we depleted pooled serum from all
IgG and IgM antibodies. When bacteria were opsonized with
DIgGDIgM NHS, phagocytosis efficiency was scarce (Figures 4A,
B). Only at the highest concentrations of 8 and 4% DIgGDIgM
NHS used, a small proportion of neutrophils were involved in
phagocytosis. This result suggests that at lower concentrations of
serum, antibodies are required to kick start complement
deposition via the classical pathway.

Subsequently, we analyzed the phagocytic stimulus offered by
monomeric IgGs and multimeric IgMs antibodies, which were
recovered during the depletion of pooled serum. We used the
equivalent concentrations of purified IgM and IgG present in 8%
serum as 120 µg/ml for IgM (~1.5 mg/ml in serum) and 1,000 µg/
ml for IgG (~12.5 mg/ml in serum) in Ig conditions only as well
as reconstituted into DIgGDIgM NHS. Additionally, we
evaluated commercial IgGs for intravenous use (IVIg), which
are usually offered to patients in need for a supplement of
antibodies. As expected, purified IgMs alone did not stimulate
any phagocytosis (Figure 4A). On the contrary, purified IgGs
triggered phagocytosis, but reached a plateau of 40% cells
involvement by ~60 µg/mL (shown as ~0.6% equivalent
serum), suggesting a saturation of the bacterium and/or
maximal engagement of FcgRs of neutrophils (Figure 4B). We
also compared the phagocytic efficiency of the IgM or IgG
antibody class from pooled serum recombined with their
original complement source DIgGDIgM NHS. In both cases,
the percentage of phagocytosing neutrophils triplicated. We
observed that when complement was present, IgM was slightly
more efficient then IgG in stimulating phagocytosis (compare
Figure 4A with Figure 4B). In fact, oligomeric IgM are strong
complement activators, providing a preferential docking station
for C1q deposition (37).

Also increasing concentrations of IVIg were used to
opsonize bacteria, resulting in >70% phagocytosing neutrophils
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(Figures 4C, D). The highest phagocytosis level was reached at
IVIg concentrations of 200 µg/mL. This result confirms that
commercial preparations also contain sufficient anti-Staphylococcal
antibodies to efficiently stimulate S. aureus phagocytosis.

To showmore directly the presence and capacity of specific anti-
S. aureus antibodies within this pool of IgG, we enriched the IVIg
solution by passing it over a column with sepharose-coupled
formalin-fixed S. aureus Newman DSpA DSbi (Affi-IVIg). This
strain was purposely chosen to prevent the aspecific capturing of
antibodies by the IgG-binding proteins on the bacterial surface.
The S. aureus-bound IgGs were then recovered and re-tested in the
phagocytosis assay. To reach the same level of phagocytosis of the
Frontiers in Immunology | www.frontiersin.org 999
original IVIg, a 10-fold lower concentration of enriched IgGs was
sufficient, in concordance with the 10-fold enrichment of anti-
Staphylococcal antibodies measured by ELISA with coated bacteria
(Figure 4E). The enrichment overall enhanced the percentage of
phagocytosing neutrophils (Figure 4C), as well as the uptake of
fluorescent bacteria at maximal concentrations used (Figure 4D).

In summary, purified IgGs provide a better phagocytic
stimulus than IgM, but in combination with complement, their
phagocytosis efficiency is comparable. We also observed that by
enriching IgG preparations with S. aureus-specific antibodies, we
can enhance phagocytosis and potentially aid the clearance of the
bacterium in patients with lower amounts of specific antibodies.
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FIGURE 3 | Correlation between microscopy and flow cytometry. (A) Example of cytospin preparation after phagocytosis for 15 min with 1% NHS (top) and 1%
HI-NHS (bottom). (B, C) Counting bacteria per neutrophil on cytospin preparations after phagocytosis with NHS (B) and HI-NHS (C). Individual counts and
means ± SD (n=25–100) for only neutrophils with bacteria. (D) Representative histogram to show GFP− and GFP+ population and their corresponding MFL
value versus their total MFL. (E, F) Flow cytometry analysis of phagocytosis with NHS and HI-NHS shown as % GFP+ neutrophils (E) and relative MFL to 8%
NHS (F) for total neutrophil population. (G, H) Representative figure for MFL of only the GFP+ neutrophil population (G) and correlation of that with microscopic
counts per cell (H) for n=2 experiments.
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Phagocytosis Efficiency of Single Serum
Does Not Correlate With Its Antibody-
Dependent Phagocytosis or Its
Complement Activity

We observed in the previous section that pooled human serum,
which is rich in anti-Staphylococcal antibodies, makes an excellent
opsonic source for S. aureus phagocytosis. However, the humoral
response differs in every individual, as well as complement activity.
In this section we assess the ability of 24 sera from healthy donors
to mediate phagocytosis of S. aureus strain Newman DSpA DSbi
and we compare it to pooled serum (NHS).
Frontiers in Immunology | www.frontiersin.org 10100
Figure 5A shows the opsonic capacity of individual sera and
their pooled NHS represented as the percentage of engulfing
neutrophils. All sera succeeded in mediating phagocytosis,
although they displayed some heterogeneity. Figure 5B
represents the percentage of phagocytosis induced by the same
sera after heat-inactivation, to eliminate complement activity.
The same data were represented in Figures 5C, D where the
areas under the curve (AUC) were related to NHS. We observed
that the hierarchy observed in Figure 5A is not maintained in
Figure 5B, exemplified by the colored individual sera. This
suggests that the antibody repertoire mediating phagocytosis
via FcgR is not the only determinant factor responsible for the
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FIGURE 4 | Role of antibodies and complement in the phagocytosis of S. aureus. (A, B) Phagocytosis expressed as percentage of GFP+ neutrophils of Newman
DSpA DSbi opsonized with a complement source depleted of antibodies (DIgGDIgM NHS), NHS-purified IgM (A) or IgG (B), or the combination of IgM (A) or IgG
(B) reconstituted with complement. For purified IgM the equivalent concentration present in 8% serum is used, 120 µg/ml (A), and for purified IgG that is
1,000 µg/ml (B); these concentrations were also used to reconstitute into 8% DIgGDIgM NHS. Data represent Mean ± SEM for n=2–8. (C, D) Phagocytosis of S.
aureus KV27 opsonized with either commercial IgGs for intravenous use (IVIg), or the same IgGs affinity purified on a S. aureus Newman DSpA DSbi column (Affi-
IVIg). Phagocytosis is expressed as the % of GFP+ neutrophils per increasing percentage of IVIgs or Affi-IVIgs. Mean ± SEM for n=7 (C) and as the Mean
Fluorescence (MFL) of the total neutrophils engulfing GFP-expressing bacteria (D). Mean ± SEM for n=6. (E) Binding specificity of NHS, IVIg (IgG total) and Affi-IVIg
(IgG eluted) antibodies assessed by ELISA, using S. aureus strain Newman DSpA DSbi. Mean ± SD for n = 2.
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final strength of the serum. In fact, no correlation was found
between the potency of normal and heat inactivated sera
(Figure 5F).

We then investigated whether complement could have a
predominant role in the final efficacy of a serum in mediating
S. aureus phagocytosis. To assess the complement activity of each
serum independently from its antibody content, we performed a
CH50 assay, which defines the percentage of serum that lyses
50% of sheep erythrocytes pre-sensitized by specific antibodies.
When compared to NHS complement activity as a reference, sera
still displayed heterogeneity (Figure 5E), however they also did
Frontiers in Immunology | www.frontiersin.org 11101
not show any correlation with the potency of the related full sera
(Figure 5G).

To further evaluate the competence of an individual donor serum
for different S. aureus strains, we chose a “Low” (#15) and a “High”
(#13) donor from the representative experiment shown in Figure
5B. These two donors were compared with the HI-NHS pool in
opsonophagocytosis of 9 different S. aureus strains, including the
KV27 and Newman DSpA DSbi strain as well as wild-type Newman.
Figures 6A, B shows the phagocytosis curves for the different S.
aureus strains opsonized by the “Low” and the “High” donor. There
is a high variability among the tested S. aureus strains to be
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FIGURE 5 | No correlation between phagocytosis by NHS versus HI-NHS or complement activity. (A, B) Phagocytosis of individual sera as compared to the same
sera present in the pooled NHS expressed as % GFP+ neutrophils for NHS (A) and Heat-Inactivated serum (HI-NHS), without complement activity (B).
Representative experiment for 16 individual sera and their pool (NHS) with some color coded for comparison. C–E) AUC value for each individual serum curve
expressed relative to NHS phagocytosis (C; n=40), HI-NHS phagocytosis (D; n=37), and CH50 value relative to NHS (E; n=37). (F, G) No correlation between
phagocytosis AUC for NHS versus HI-NHS (F) or for phagocytosis versus CH50 for NHS (G) with n=37.
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phagocytosed. Conversion of the data to AUC and ranking the
different strains for HI-NHS in ascending order (Figure 6C) clearly
shows that the opsonic capacity of a serum is universal for different
S. aureus strains, indicative for common epitope recognition.

In conclusion, the potency of a single donor serum to
opsonize S. aureus for efficient phagocytosis by neutrophils is
not solely determined by its anti-staphylococcal IgG or intrinsic
complement activity, but is comparable for different strains.

Conditions to Clear All Bacteria Efficiently
Our standard phagocytosis assay provides efficient basic
parameters to compare opsonization conditions, or factors that
either inhibit or stimulate neutrophil phagocytic capacity. The
former is exemplified by e.g. S. aureus immune evasion proteins
that interfere with C3b deposition on bacteria (38) or IgG
interaction with FcgRs (39). Modification of the assay also
provides the opportunity to use flow cytometry to evaluate
actual bacterial uptake; the percentage of phagocytosed
bacteria. Using two fluorescent tags for neutrophils and
bacteria during acquisition, both partners of the phagocytosis
assay can be analyzed simultaneously. Phagocytosis was
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performed with a full serum opsonization range at different
bacteria-to-cell ratios for both 15 and 60 min incubation time.
The gating analysis strategy is depicted in Figure S3 for samples
with a starting ratio of 1:1 (Figures S3A, B) and 8:1 (Figures S3
D, E), in the presence of 4% NHS with immediate fixation. As
phagocytosis proceeds with increasing serum concentrations and
time, the percentage of free bacteria will decrease, which can be
calculated from a decrease in bacteria-to-cell ratio, as compared
to the starting situation. Representative example is shown in
Figure S3 for phagocytosis after 15 min in the presence of 4%
NHS at a 1:1 (Figure S3C) and a 8:1 (Figure S3F) ratio. The
multiple analysis of these data is depicted in heat-maps presented
as percentage of GFP+ neutrophils (representing the % of all
neutrophils that contain bacteria; Section 2.11) and percentage of
bacterial phagocytosis (representing the % of all bacteria present
that are taken up by the neutrophils; Section 2.12) (Figure 7). It is
clear that at very low bacteria to neutrophil ratios (≤1:1), the
percentage GFP+ cells remain low (Figures 7A, C; 15 min versus
60 min with NHS), but prolonging the incubation time enables
efficient uptake of all available bacteria (Figures 7B, D). For the
higher bacteria to neutrophil ratios (≥2:1), the percentage of GFP+
A B

C

FIGURE 6 | Consistent donor opsonic capacity for multiple S. aureus strains. (A, B) Phagocytosis of different S. aureus strains opsonized with HI-serum of two individual
donors chosen from the panel of 37 individual donors. Donor with “Low” (A) and donor with “High” (B) opsonic capacity as determined for Newman DSpA DSbi were
compared with HI-NHS (graph not shown). (C) AUC values for each individual S. aureus curve were ranked in ascending order for HI-NHS as opsonic source. Data are
from one experiment using standard 10:1 bacteria to neutrophil ratio and 15 min phagocytosis time and expressed as % GFP+ neutrophils.
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neutrophils is much higher conform our previous data in Figure
2, but uptake of bacteria requires more opsonisation (Figures 7A,
B for 15 min and C, D for 60 min). For all ratios, a prolonged
incubation time is required to clear most of the bacteria from the
Frontiers in Immunology | www.frontiersin.org 13103
incubation mixture. The same condition for heat-inactivated
serum after 60 min incubation (Figures 7E, F) again stresses
the requirement for active complement for proper opsonization to
provide optimal uptake of all available bacteria.
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FIGURE 7 | Percentage of phagocytosing neutrophils vs. % phagocytosed bacteria. Heat map visualization of both % GFP+ neutrophils (left side panels) and %
bacterial phagocytosis (right side panels) for increasing ratios of bacteria to neutrophils. Results for 15 (A, B) and 60 (C, D) min phagocytosis in the presence of
increasing concentration NHS and for 60 min phagocytosis in the presence of HI-NHS (E, F). Data are mean values of n=3 experiments, and X are missing data points.
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General Conclusion
Our flow cytometric method for the determination of neutrophil
mediated phagocytosis of S. aureus especially pinpoints to the role
of different opsonins that steer the uptake. Basic characteristics of
the method were evaluated that in general influence the dynamics
of the assay, and maybe adapted for different research questions.
The comparison of normal serum versus heat-inactivated serum
(30 min at 56°C) is an easy way to study the contribution of the
complement system in the opsonophagocytosis process. We also
compared that with purified IgG, IgM and human serum depleted
for naturally present IgG and IgM as an alternative complement
source. Changing opsonisation conditions affects the phagocytosis
capacity of neutrophils, not always reflected in the percentage of
neutrophils that engulf bacteria, but usually more clear in the
number of ingested bacteria (reflected by the total mean
fluorescence value). This was verified by microscopic counting.
In general, individual healthy donors possess sufficient opsonic
capacity for proper phagocytosis of different S. aureus strains, but
with variability that is consistent for the tested strains. Finally, we
showed that under proper conditions of prolonged time and
around a 1 to 1 bacteria to neutrophil ratio, almost all bacteria
present can be engulfed. Although several well described flow
cytometric assays were already known, this method adds some new
considerations in comparing different opsonisation conditions.
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Supplementary Figure 1 | Chemical surface labelling with FITC do not impact
opsonization and phagocytosis. S. aureus Newman DSpA DSbi expressing the
violet excitable yellow fluorescent protein mAmetrine was additionally externally
labeled with fluorescein isothiocyanate (FITC) and compared with the mock treated
bacteria in the phagocytosis assay with NHS and HI-NHS. Phagocytosis was
measured as % of mAm+ PMNs (A, B) and mAmetrine MFL of the total population
(C, D). (E, F) Control graphs showing that FITC MFL of PMNs only increases when
bacteria are FITC-labeled. Representative experiment.

Supplementary Figure 2 | On ice no phagocytosis occurs. S. aureus was
opsonized with NHS at 37°C for 15 min, cooled on ice or kept on room temp for
10 min, and subsequently mixed with neutrophils (cold versus room temp) for a
15 min phagocytosis on ice or at 37°C. Phagocytosis is expressed as % GFP+
neutrophils (A) and GFP relative MFL (4% serum) of the total population (B). Data
are the mean of 2 experiments ± SD.

Supplementary Figure 3 | Gating strategies for the alternative phagocytosis
assay using FITC (or GFP) and LDS-753 (PerCP signal) as thresholod parameters
for data aquisition. Shown are representative dot plots for a phagocytosis assays
performed with putative bacteria to cell ratio 1:1 (upper panel) and 8:1 (lower panel).
During the acquisition, bacteria to cell ratio was verified by gating both bacteria and
PMNs by setting logarithmic scatter parameters (panel A for 1:1 and D for 8:1) or
fluorescence parameters (panel B for 1:1 and E for 8:1). The actual observed ratio
for the 1:1 appeared to be 1.1:1, and for the 8:1 ratio appeared to be 6.3:1, both in
agreement for the scatter and the fluorescence based parameters. Dot plots are
from the control samples before starting the experiments with 4% NHS, mixed on
ice and immediately fixed with paraformaldehyde. Panels C, F are representative
fluorescence dotplots for the 15 min phagocytosis timepoint with 4% NHS showing
for the 1.1:1 ratio (C) 53.8% GFP+ neutrophils at a 0.45:1 ratio resulting in 59.8%
bacterial phagocytosis, and for the 6.3:1 ratio (F) 96.6% GFP+ neutrophils and a
58.2% bacterial phagocytosis.
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Following phagocytosis, the nascent phagosome undergoes maturation to become a
phagolysosome with an acidic, hydrolytic, and often oxidative lumen that can efficiently kill
and digest engulfed microbes, cells, and debris. The fusion of phagosomes with
lysosomes is a principal driver of phagosomal maturation and is targeted by several
adapted intracellular pathogens. Impairment of this process has significant consequences
for microbial infection, tissue inflammation, the onset of adaptive immunity, and disease.
Given the importance of phagosome-lysosome fusion to phagocyte function and the
many virulence factors that target it, it is unsurprising that multiple molecular pathways
have evolved to mediate this essential process. While the full range of these pathways has
yet to be fully characterized, several pathways involving proteins such as members of
the Rab GTPases, tethering factors and SNAREs have been identified. Here, we
summarize the current state of knowledge to clarify the ambiguities in the field and
construct a more comprehensive phagolysosome formation model. Lastly, we discuss
how other cellular pathways help support phagolysosome biogenesis and, consequently,
phagocyte function.

Keywords: phagosome-lysosome fusion, phagosome, phagocyte, lysosome, membrane fusion, microbial
clearance, homeostasis, phagosome maturation
INTRODUCTION

Professional phagocytes, such as macrophages, dendritic cells (DCs), and neutrophils, are critical to the
innate immune response and the maintenance of homeostasis through their ability to ingest and degrade
microbes, debris, and dying cells (1). The versatility of professional phagocytes stems from the expression
of phagocytic receptors that canmediate the uptake of a vast array of cargoes via phagocytosis. Following
uptake, the engulfed material is contained within the specialized vacuole called the phagosome, which
initially has the lumenal characteristics of the extracellular space (2). The phagosome undergoes
progressive maturation through multiple transient fusion-fission events with vesicles of the
endolyososmal system leading to an increasingly acidic and hydrolytic environment within the
phagosomal lumen (3, 4). The fusion of the phagosome with lysosomes forms the mature
phagolysosome (PL) which has full degradative and microbicidal capacity. Heterotypic fusion
between the phagosome and lysosome is imperative for phagocytes to carry out their functions in
immunity and homeostasis and is a tightly regulated process. The importance of membrane fusion in
org February 2021 | Volume 12 | Article 6360781106

https://www.frontiersin.org/articles/10.3389/fimmu.2021.636078/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.636078/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:rmyates@ucalgary.ca
https://doi.org/10.3389/fimmu.2021.636078
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.636078
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.636078&domain=pdf&date_stamp=2021-02-25


Nguyen and Yates Current Insights Into Phagosome-Lysosome Fusion
phagocyte function is further highlighted by the myriad of
mechanisms various pathogens have developed which impede
fusion machinery in order to prevent PL formation, and the
microbicidal environment that is established. Indeed, gram-
negative bacteria Mycobacterium tuberculosis and Coxiella
burnetii, parasites of the Leishmania genus and the fungi
Aspergillus fumigatus can inhibit PL fusion to avoid death in
phagosomes, among many others (5–9).

PL fusion involves the stepwise recruitment and coordinated
action of a number of proteins. To date, 30 soluble N-
ethylmaleimide-sensitive fusion factor attachment protein
(SNAP)-receptors (SNAREs), 20 Rab GTPases, six multi-subunit
tethering complexes, and four tethering proteins of the Sec1/
Munc18 (SM) family have been identified on phagosomes (10,
11). The extensive number of fusion proteins and promiscuity
among interacting components creates mechanistic redundancy of
this crucial function of phagocytes. Given the overwhelming
number of fusion proteins and the even larger pool of potential
binding partners, it is unsurprising that the identity and roles of the
fusion machinery, their regulatory signals, and their spatiotemporal
organizations in PL fusion have yet to be fully elucidated. These gaps
in the literature continue to be active areas of investigation, and here
we highlight the progress made on this topic in the context of
phagocyte biology. This review aims to summarize current and
recent developments in understanding the fusion machinery
modulating PL fusion and the consequences to phagocyte
function when this machinery is impaired. Finally, we discuss
how phagocytes can employ the related engulfment process of
autophagy, to support the phagocytic pathway during homeostasis
and defense against pathogens.
Abbreviations: Arl, ADP-ribosylation factor-like protein; Arp2/3, actin-related
protein 2/3; Atg, autophagy-related; CDC42, cell division control protein 42
homolog; DC, dendritic cell; ESAT6, early secretory antigenic target 6; Gabarap,
g-aminobutyric acid receptor-associated protein; GAP, GTPase-activating protein;
GDI, guanine dissociation inhibitor; GEF, guanine exchange factor; HOPS,
homotypic fusion and vacuole sorting; IFN-g, interferon-g; IKK2, inhibitor
kappa B kinase 2; IL, interleukin; IRG, immunity-related GTPase; LAP, LC3-
associated phagocytosis; LC3, microtubule-associated protein A1/B1-light chain 3;
MAPK, p38a-mitogen-activated protein kinase; MHCII, major histocompatibility
complex class II; MT, microtubule; N-WASP, Wiskott-Aldrich syndrome protein;
NADPH, nicotinamide adenine dinucleotide phosphate; Ndk, nucleoside
diphosphate kinase; Nox2, NADPH oxidase 2 complex; NRBF2, nuclear
receptor binding factor 2; NSF, N-ethylmaleimide-sensitive factor; ORP1L,
oxysterol-binding protein-related protein 1L; PI, phosphoinositide; PI3K,
phosphoinositide 3-kinase; PI3KIA, class IA PI3K; PI3KIII, class III
phosphoinositide 3-kinase; PI4KIIa, class II phosphatidylinositol 4-kinase a;
PI4P, phospoinositide-4-phosphate; PL, phagolysosome; Plekhm1, pleckstrin
homology domain-containing family M member 1; PtpA, protein phosphatase
2A; RILP, Rab7-interacting lysosomal protein; ROS, reactive oxygen species;
SapM, secreted acid phosphatase M; SM, Sec1/Munc18; SNAP, soluble N-
ethylmaleimide-sensitive fusion factor attachment protein; Snap23,
synaptosomal-associated protein 23; Snapin, SNAP-associated protein; SNARE,
soluble NSF attachment protein receptor; Snx10, sorting nexin 10; Stx, syntaxin;
TIM4, T cell immunoglobin and mucin domain containing 4; TLR, toll-like
receptor; V-ATPase, vacuolar-type ATPase; Vamp, vesicle associated membrane
protein; Vps, vacuolar protein sorting; Vti1b, vesicle transport though interaction
with T-SNAREs 1b.
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PHAGOSOME-LYSOSOME MEMBRANE
FUSION: AN OVERVIEW

Once the phagosome is formed and has undergone transient
fusion-fission events with early and late endosomes, phagosomes
migrate to the lysosome-rich perinuclear region of the
phagocytic cell (12). Similar to many other types of cells,
phagocytes employ a coordinated transport system consisting
of the microtubule (MT) networks, the associated MT motors,
and their effector/adaptor proteins to carry phagosomal vesicles
to the perinuclear region (13, 14). Long-distance transport is
initiated by the small Rab GTPases Rab5 and Rab7 which are
recruited to early and late phagosomes, respectively. Rab5 and
Rab7, in turn, coordinate the recruitment of necessary motor
proteins required for the dynein-driven transport of phagosomes
to the perinuclear region (13, 15). Once phagosomes and
lysosomes are in close apposition, membrane fusion occurs
through the concerted action of fusion proteins.

Membrane fusion is the process by which two separate lipid
membranes combine to form one continuous bilayer (16). Within
the endomembrane system, fusion requires the coordinated action
between members of the Rab GTPase superfamily and their
effectors, tethering factors, N-ethylmaleimide-sensitive factor
(NSF), and SNAREs (17). Generally, these proteins are
consecutively recruited during the following steps of membrane
fusion: i) tethering; ii) SNARE assembly; iii) SNARE zippering and
membrane fusion; and iv) SNARE disassembly and recycling
(Figure 1). First, Rab GTPases are recruited to the membrane of
vesicles pending fusion, to mark the position for fusion.
Subsequently, Rabs, through the recruitment of their effectors
bind to tethering factors from the cytosol (18, 19). Through this
action, Rabs establish the site at which proteins assemble into
membrane microdomains at the fusion site. Rab effector-mediated
tethering brings adjacent membranes into proximity. Once tethered,
SNARE proteins congregate at the fusion site and supply the energy
necessary to overcome the electrostatic repulsion between two lipid
membranes (20–22) . Numerous SNAREs reside on
endomembranes, yet only a finite number can form a stable
SNARE complex in trans that consists of four SNARE domains
(23). SNARE assembly is not a spontaneous process but requires
SM proteins to form SNARE intermediates that await a missing
cognate SNARE (24, 25). Once a trans-SNARE complex is formed, a
conformational change brings the two membranes together, forming
a cis-SNARE complex in a process called “zippering” (20–22, 26). The
post-fusion cis-SNARE complex, where all SNARE proteins are
located on the same membrane, is then disassembled by NSF along
with its cofactor a-SNAP (27–29). The disassembly process is
powered by NSF-mediated ATP hydrolysis which provides the
energy for the dissociated SNARE proteins.

Early studies on pathogen clearance and efferocytosis in mice
and Caenorhabditis elegans identified specific Rab GTPases and
their corresponding tethering complexes in PL biogenesis and
phagocyte function (30–33). Despite their lack in professional
phagocytes, C. elegans have phagocytic-like cells that have been
used in many early and current studies to study phagosome
maturation after efferocytosis due to their genetic conservation
February 2021 | Volume 12 | Article 636078
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(34–36). Thus, C. elegans has been a powerful model to identify
genes and mechanisms involved in PL fusion.

Identifying SNAREs involved in PL fusion has been more
challenging due to their promiscuous nature and involvement in
several cellular pathways crucial for cellular upkeep. Although,
putative SNARE complexes have recently been identified using
cell-free systems where subsequent investigations are beginning to
unravel the functions of these proteins in PL fusion (37–40). Other
insights into the proteins modulating PL fusion have been inferred
from studies of the closely related process of endo-lysosome fusion
in other cells. However, differences in the cargo and regulation
between phagocytosis and endocytosis, maintain PL fusion as a
distinct process compared to endosome-lysosome fusion (41).
Given the large degree of heterogeneity in models and approaches
to study this process, this review aims to consolidate the literature
focusing on PL fusion proteins in phagocyte-specific studies, and
where information is lacking in this context, identify potential
candidate proteins and complexes, in order to generate a clearer
picture of this fundamentally important aspect of phagocyte
function. The key components of the PL fusion machinery are
summarized in Supplementary Table 1.
MARKING THE MEMBRANES: SMALL
RAB GTPASES

The Rab GTPases are peripheral membrane proteins that serve as
molecular identifiers on membranes, and to regulate multiple
Frontiers in Immunology | www.frontiersin.org 3108
steps during membrane fusion. Rab GTPases function as
molecular switches that toggle between an inactive GDP-bound
and an active GTP-bound state. Rabs are maintained in their
inactive soluble GDP-bound state by a guanine dissociation
inhibitor (GDI) (42, 43). At vesicular membranes, guanine
exchange factors (GEFs) possess the dual capacity to recruit
Rabs from the cytosol and catalyze the displacement of GDP with
GTP, which both activates Rabs and displaces the GDI, thus
allowing for Rabs to be inserted into the membrane (44, 45).
Once activated, Rabs are able to bind to effector proteins on
fusion targets in order to tether fusing vesicles, modulate the
recruitment of fusion components, and mediate the process of PL
biogenesis. Post-fusion, GTPase-activating proteins (GAPs)
hydrolyze GTP to inactivate Rabs where they are solubilized by
a GDI, returning them to the pool of inactive cytosolic Rabs (46).
The numerous influences on GTPase regulation make Rabs a
strong focal point for modulation of PL biogenesis.

It has long been established that small GTPase Rab7 is
essential for the fusion between late-stage phagosomes and
lysosomes, and consequently, for the function of phagocytes in
both pathogen and apoptotic cell clearance (33, 47, 48). Several
pathogens have been described to inhibit Rab7 recruitment in
order to replicate and survive within phagosomes, and has been
comprehensively reviewed (49). Early studies reported the
inhibition of Rab7 recruitment to the phagosomes by M.
tuberculosis and M. bovis J774 macrophages, preventing PL
fusion (33). A more recent example describes the necessity
of Rab7 in the clearance of Pseudomonas aeruginosa infection
in J774A.1-derived macrophages (50). This study reported that
FIGURE 1 | Overview of the cyclical nature of membrane fusion. Rab GTPases and their effectors recruit tethers to the membrane fusion site during the tethering
step. Subsequently, SNAREs are recruited to opposing membranes and assemble in trans via the catalyzing activity of a SM protein. Once assembled, SNARE
zippering drives membrane fusion. Post-fusion, NSF and a-SNAP bind to the cis-SNARE and ATP-driven complex disassembly recycles the individual SNAREs
intothe cytosol for recycling.
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sialylated P. aeruginosa remained viable in phagosomes by
preventing the recruitment of Rab7. In addition to the
clearance of microbes, Rab7 is essential to the degradation of
apoptotic cells following phagocytosis. In a C. elegans model of
apoptotic cell removal, the siRNA-mediated knockdown of Rab7
contributed to the accumulation of apoptotic bodies in
phagosomes (34). Similarly, in an in vivo model of murine
ulcerative colitis, inflammation and disease severity was
exacerbated when Rab7 activation and recruitment was
impaired in macrophages, reportedly due to an accumulation
of apoptotic epithelial cells in the colon (48).

The mechanism by which Rab7 is recruited to phagosomes in
professional phagocytes is not fully elucidated. However, studies
in C. elegans demonstrated that Rab7 recruitment to late
endosomes/lysosomes was facilitated by the cytosolic SAND1-
CCZ1 complex (51–53). The mammalian orthologues of SAND1
and CCZ1, namely, Mon1a/b and Ccz1 display GEF activity and
were found to form a complex which displaces the GDI
associated with the GDP-bound form of Rab7, allowing GTP
switching and integration of Rab7 into phagosomal membranes
(Figure 2Ai) in C. elegans which is believed to be evolutionary
conserved in mammals (52).

Phosphatidylinositol-3-phosphates (PI3P) on early phagosomes
have been proposed to both recruit Mon1-Ccz1 to early-to-late
transitional phagosomes and activate the GEF activity of the
complex (Figure 2Ai) (48, 53). Recently, nuclear receptor binding
factor 2 (NRBF2), a component of the class III phosphoinositide 3-
kinase (PI3KIII)/vacuolar sorting protein (Vps) 34 complex that
generates PI3P on phagosomes, has been implicated to regulate the
function of the Mon1-Ccz1 complex during apoptotic cell clearance
in macrophages (48). NRBF2 is a binding partner of the catalytic
subunit of the PI3KIII/Vps34 complex and can facilitate the
interaction between PI3KIII/Vps34 and Mon1-Ccz1 (Figure 2Ai).
Through this interaction, NRBF2 may bring the PI3KIII/Vps34
complex to phagosomes or support the activation of PI3KIII/Vps34,
thereby generating PI3P to activate the GEF activity of the Mon1-
Ccz1 complex. Further evidence that NRBF2 modulates the activity
of the Mon1-Ccz1complex is provided by an observed loss of GTP-
bound Rab7 around phagosomes as well as delayed Rab7
recruitment in NRBF2-knockout macrophages (48). Lou and
colleagues (54) have proposed that another factor, sorting nexin
10 (Snx10), can promote the recruitment of Mon1-Ccz1 to early
endosomes and phagosomes to mediate Rab7 recruitment (Figure
2Ai). Snx10 is upregulated in response to TLR signaling and
phagocytosis of several different microbes, suggesting that Snx10
has an antimicrobial role (54). Indeed, depletion of Snx10 reduced
Rab7 recruitment on bacteria-containing phagosomes. Taken
together with the studies in C. elegans, Mon1-Ccz1 is likely a
major Rab7 GEF on phagosomes in mammalian cells.

While there is ample evidence for the Mon1-Ccz1 complex as
a Rab7 GEF on endosomes and phagosomes, it is potentially not
the only one. Early insights from studies in yeast and C. elegans
have implicated that the homotypic fusion and vacuole sorting
(HOPS) complex can also act as a Rab7 GEF (Figure 2Aii) (52,
55). It was demonstrated by Barry and colleagues (56) that HOPS
could function the same way in mammalian cells for Rab7 found
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on phagosomes in macrophages containing C. burnetii.
Macrophages phagocytosing an avirulent strain of C. burnetti
induce p38a-mitogen-activated protein kinase (MAPK)-
dependent phosphorylation of the HOPS Vps41 subunit which
was demonstrated to be necessary for Rab7 recruitment to
endosomal and phagosomal membranes (56). In contrast, the
lipopolysaccharide produced by the virulent strain of C. burnetti
prevented p38a- MAPK activation and phosphorylation of
Vps41, allowing bacterial persistence in Rab7-deficient
phagosomes. Why Mon1-Ccz1 was unable to act as the Rab7
GEF instead of HOPs in this model is unknown; however, it is
possible that Mon1-Ccz1 and the HOPS complex act
independently depending on the phagosomal cargo.

Rab7 is vital for PL fusion and therefore phagocytic function, but
it is not the only GTPase involved in PL fusion: Rab2 and Rab14
have been shown to possibly function redundantly to each other or
in parallel to recruit lysosomes to phagosomes during apoptotic cell
degradation in C. elegans (31, 32). Rab2 and Rab14 are transiently
recruited to phagosomes prior to Rab7, and it is postulated that like
A

B

FIGURE 2 | Fusion machinery involved in phagosome maturation.
(A) Working models for Rab7 recruitment and activation at the phagosome
membrane during maturation: i) The Mon1-Ccz1 complex is recruited directly
by PI3P and indirectly by Snx10 and NRBF2-PI3KIII/Vps34. PI3P activates
the GEF activity of Mon1-Ccz1; ii) The GEF activity of PI4P-recruited HOPS
activates Rab7. (B) Working model of the trans-SNARE complex mediating
fusion between the late phagosome and lysosome. The small GTPase Rab7
recruits effectors RILP and Plekhm1, and concurrently with Arl8, additionally
recruits the HOPS tethering complex. HOPS docks the late phagosome to
the lysosome and stabilizes the trans-SNARE Stx7-Snap23-Vamp7/8 or
Stx7-Vti1b-Stx8-Vamp7/8 complex at the point of membrane fusion. Note
that either Plekhm1, Arl8, PI4P, or RILP on either lysosomes or phagosomes
bind to HOPS Vps41 at one time, while RILP can also bind HOPS Vps39.
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Rab7, Rab2 and Rab14 may recruit tethering factors to initiate
interaction between phagosomes and lysosomes (31). Interestingly,
Rab2 is a direct binding partner of HOPS during autophagosome
fusion with lysosomes inDrosophila melanogaster cells (57, 58), and
thus, the HOPS complexmay serve as the effector for both Rab2 and
Rab14 to coordinate fusion of lysosomes to phagosomes.
Additionally, proteomic studies in an oyster cell model of
phagocytosis identified Rab2 and Rab14 in the phagosomal
proteome (59). Although Rab2 has not been studied in a
mammalian model, the role of Rab14 in PL fusion was partially
elucidated in Raw264.7 and J774 murine macrophages infected with
the fungal pathogen Candida albicans. Knockdown of Rab14
disrupted fusion of lysosomes to phagosomes which both delayed
the acquisition and activation of hydrolytic proteases in PLs. This
defect in lysosome fusion and protease activation resulted in
increased susceptibility of macrophages to C. albicans (60).

Taken together, Rab2 and Rab14 may function redundantly
in an early tethering step prior to Rab7 recruitment and the
docking/fusion of lysosomes with phagosomes. The presence of
Rab7 on the phagosome membrane sets the stage for PL fusion;
however, the mere presence of Rab7 on phagosomes is not
sufficient to enact PL fusion (61). Rather, it requires further
interaction with effector proteins to tether the vesicles together to
facilitate fusion.
SECURING THE PHAGOSOMES TO
LYSOSOMES: TETHERING EFFECTORS

Tethering effectors, in the form of proteins and protein
complexes, are recruited from the cytoplasm to specific
membranes designated by small GTPases such as Rab or ADP-
ribosylation factor-like protein (Arl) proteins (17). During the
tethering step prior to fusion, tethering factors bind to Rab
GTPases on the adjacent vesicles to provide an initial physical
interaction (62). In addition to their function as linkages between
two vicinal membranes, tethers can recruit SNARES as well as
the proteins that catalyze the formation of the SNARE complex.
Moreover, tethers can strengthen the association amongst
fusion-relevant factors at the fusion site. Altogether, tethers
ensure fusion fidelity and increase the efficiency of SNARE
formation at the docking site.

Rab GTPases modulate fusion of vesicular membranes
through their effector proteins. One of the most well-
characterized Rab7 effectors is the Rab7-interacting lysosomal
protein (RILP) which is found on endosomes, lysosomes, and
phagosomes (47, 63). The role of RILP in PL formation lies in its
interaction with the dynein-dynactin complex during centripetal
migration of phagosomes (47). Further, RILP recruits other Rab
effectors involved in vesicle tethering and Rab7 activation. Thus,
RILP recruitment is an attractive target for intracellular
pathogens to exploit. Indeed, live Mycobacteria were found to
secrete a Rab7 deactivating factor that could disrupt the
interaction between RILP and membrane-bound Rab7 in
macrophages (30). This was later determined to be nucleoside
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diphosphate kinase (Ndk), which enacts GAP activity to lock
Rab7 in a GDP-bound state, and permitted survival of
Mycobacteria within the phagosome (64). While this effect is
likely not specific to RILP-Rab7 interactions, it does highlight the
importance of maintaining Rab7 in a GTP-bound state to
facilitate effector protein function.

Pleckstrin homology domain-containing family M member 1
(Plekhm1) is another Rab7 adaptor that is implicated in
modulating PL formation. After the uptake of Salmonella by
macrophages, Plekhm1 has been shown to bind the multi-
subunit HOPS complex which facilitates the delivery of late
endosome and lysosomes to Salmonella-containing vacuoles, and
this is essential to maintain the integrity of these phagosomes for
bacterial persistence (65, 66).

The multi-subunit complex HOPS is a Rab7 effector that can
function as an upstream Rab7 GEF and a downstream tethering
effector (56, 67, 68). Mammalian HOPS is a well-characterized
tethering complex that facilitates vesicle-lysosome fusion of
multiple degradative pathways, including PL fusion. The
complex consists of seven proteins: Vps11, Vps16, Vps18,
Vps33A, Vps39, and Vps41 (56, 69, 70). Two subunits appear
to be particularly crucial for tethering. Vps39 and Vps41, which
are respectively recruited to the HOPs complex by Vps11 and
Vps18, can each interact with RILP and this may bridge two
RILP molecules on opposing vesicles (Figure 2B) (71). Vps41
can also bind directly to Plekhm1 on either lysosomes or
phagosomes (66), lysosomal Arl8 (70, 72) and phospoinositide-
4-phosphates (PI4P) on phagosomes (73). The capacity for
HOPS to bind to multiple partners likely increases the
efficiency of HOPS acquisition to the fusion site, improves
tethering between vesicles and maintains fusion fidelity (73).

In addition to its function in vesicle tethering, the HOPS
complex can promote trans-SNARE docking at the PL fusion site
and guide the formation of SNARE complexes to promote
SNARE-mediated PL fusion (73). The HOPS Vps33 subunit is
a member of the SM-family of proteins (74, 75) that can interact
directly with SNAREs (76) and is proposed to catalyze SNARE
complex assembly. Insights from yeast models suggest a dual-
binding capacity of Vps33, where it binds two SNAREs, each
from a different membrane, and serve as a base for generating
partially-formed SNARE intermediates (24, 25). Bach et al. (77)
provided evidence that mammalian Vps33 has a similar function
during PL fusion through host-pathogen studies in
Mycobacterium-infected THP-1-derived macrophages. Protein
phosphatase 2A (PtpA), produced by M. tuberculosis, can
dephosphorylate and inactivate Vps33b, one of the two Vps33
proteins in higher eukaryotes, as evidenced by a reduction in PL
fusion after the uptake of PtpA-coated experimental particles by
macrophages (77). PL biogenesis was similarly abrogated in
Vps33b-silenced macrophages with or without PtpA-coated
experimental particles and re-introduction of active Vps33b to
the Vps33b-silenced macrophages restored PL fusion. The
observation that functional Vps33b is important in PL
biogenesis and bacterial clearance is even further supported by
the observation that the loss of Vps33b or its binding partner
February 2021 | Volume 12 | Article 636078

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Nguyen and Yates Current Insights Into Phagosome-Lysosome Fusion
Vps16b in the Drosophila Oregon-R phagocytic cell line leads to
defects in PL formation (78). Taken together, all seven HOPs
subunits are necessary for phagosome maturation.

The HOPS complex is the most extensively characterized
Rab7 tethering effector facilitating PL fusion. Since other Rabs
have been implicated in PL biogenesis, such as, Rab2 and Rab14,
non-Rab7-facilitated HOPS recruitment is possible, or other
tethering factors are involved in PL biogenesis, which warrants
further investigation. Additional Rab7 adaptors including
oxysterol-binding protein-related protein 1L (ORP1L) (79),
Vps34/p150 (80) and Rubicon (81) have been characterized in
endosome maturation but have yet to be explored in the context
of phagosome maturation. Overall, the multifunctional HOPS
complex provides a base at the PL fusion site that allows for local
SNARE assembly, stabilizing the intermediate complex as the SM
protein activity of HOPS chaperones SNARE assembly.
FUSING THE PHAGOSOME AND
LYSOSOME MEMBRANES: SNARES

SNARE proteins compose the core machinery required to fuse
phagosomes with lysosomes efficiently. Based on the
contributing amino acid to the hydrophobic core in the
assembled SNARE complex, SNAREs can be structurally
categorized into R-SNAREs or Q-SNAREs (of which can be
subclassified into Qa-, Qb-, and Qc-SNAREs) (82). During
membrane fusion, an R-SNARE on one membrane forms a
transient trans-SNARE complex with three Q-SNARES located
on the partner membrane (82). The resulting complex consists of
an R, Qa-, Qb-, and Qc-SNARE that aligns in a parallel four-helix
bundle and fuses the juxtaposed membranes via a zipper model
(22). Post-fusion, all of the SNAREs are located on the same
membrane in a fully assembled cis-SNARE complex. The post-
fusion cis-SNARE complex is then recognized and disassembled
by NSF along with its cofactor a-SNAP (27).

Early studies performed in J774 macrophages and cell-free
systems demonstrated that PL fusion is dependent on NSF,
providing first experimental evidence that this process employs
SNARE proteins (83, 84). According to several quantitative
proteomic studies, the presence and abundance of different
SNAREs found at the phagosome changes depending on the
cell-type, stage of maturation and the phagocytosed cargo (11,
85–88). As many as 30 of the 38 known human SNARE proteins
have been identified on phagosomes (10), but which of these
members function in coordinating late-stage phagosome-
lysosome fusion is not well described. Rather, there is a greater
understanding of their involvement in phagocytosis, phagosomal
trafficking and early phagosome maturation, than during the
final stages of maturation. The SNAREs that have thus far been
implicated in PL fusion and found to be enriched in lysosomes
and phagosomes, include, Syntaxin (Stx) 7, Stx8, vesicle
transport through interaction with T-SNAREs 1b (Vti1b),
vesicle associated membrane protein 7 (Vamp7) and Vamp8
(37, 39, 89, 90). Initial evidence of the involvement of these
SNAREs in PL fusion was provided in a cell-free study wherein
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SNARE function was inhibited by the addition of the soluble
cytosolic domain of various SNAREs (37). These truncated
SNARE fragments outcompete their endogenous counterparts
for binding with their membrane-bound cognate partners and
form a stable SNARE complex that cannot mediate fusion
because they lack transmembrane anchors. In the presence of
the truncated form of the Qabc-SNAREs Stx7, Vti1b and Stx8,
and the R-SNAREs Vamp7 and Vamp8, PL fusion was reduced,
as evidenced by decreased lumenal mixing between lysosomes
and phagosomes (37). Stx7-Vti1b-Stx8 were found to form a
stable quaternary complex with the lysosomal R-SNARE Vamp7
or Vamp8, suggesting these may constitute a possible SNARE
complex in PL fusion (37). In summary, Stx7-Vti1b-Stx8 may
form a ternary Qabc-SNARE intermediate on the late phagosome
that can then mediate PL fusion together with Vamp7 or Vamp8
on the lysosome, although evidence is lacking to support that
these particular SNARE complexes are occurring within living
cells to facilitate the fusion of phagosomes with lysosomes.

Interestingly, several investigations into the molecular
mechanism underlying gp91phox recruitment to phagosomes
have provided insight into PL fusion, and identified
synaptosomal-associated protein 23 (Snap23) as a potential
Qbc-SNARE acting in this process (38, 39, 91). gp91phox is the
integral membrane component of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase 2 complex (Nox2)
which is responsible for generating the reactive oxygen species
(ROS) that facilitate pathogen killing and the modulation of
phagosomal proteolysis for antigen processing (92–94). The
phagosome accumulates gp91phox predominantly through its
fusion with lysosomes (95–97). siRNA-mediated knockdown of
Snap23, Stx7, and Vamp8 decreased phagosomal gp91phox

recruitment and subsequent ROS production in J774
macrophages, presumably from inhibited PL fusion (39). In
corroboration with this observation, silencing Snap23 in
primary neutrophils (91) and DCs (38) also inhibited gp91phox

trafficking to phagosomes for subsequent ROS production.
Whether Snap23 can act as the Qbc-SNARE instead of Vti1b-
Stx8 in the Stx7-Vti1b-Stx8-Vamp7/8 model described above
was supported by immunofluorescence and cellular fractionation
experiments which found that Snap23 colocalizes with Stx7 and
Vamp8 and can interact with Stx7 in J774 macrophages (38, 39).
Moreover, Snap23, Stx7, and Vamp8 can form a stable SNARE
complex in vitro (39) and knockdown of any of these SNAREs
decreases phagosomal acquisition of gp91phox (38, 98). In
another study, Vamp8 contributed to the regulation of
phagosomal oxidative activity via PL fusion in Leishmania-
infected primary macrophages (99). It is worth noting that
Snap23 can also pair with Vamp7 (39), thus Vamp7 and
Vamp8 may have redundant roles as a cognate R-SNARE
on lysosomes.

Further insight into the function of Snap23 in PL formation was
generated from a recent study by Sakurai et al. (40) that reported
Snap23 could regulate PL formation based on its phosphorylation
status. It was found that the phosphorylation of Snap23 at Ser95 by
the protein kinase inhibitor kappa B kinase 2 (IKK2), in response to
interferon-g (IFN-g) treatment, decreased fusion between
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phagosomes and late-endosomes/lysosomes in J774 macrophages.
Thus, Snap23 is implicated to have an important physiologic role in
activated macrophages by delaying phagosome fusion with acidic
lysosomes, thereby contributing to the development of a
phagosomal environment that favors antigen processing in pro-
inflammatory environments (40, 100).

Current evidence suggests that Vamp7/8 on lysosomes,
paired with Stx7 and Snap23/Vti1B-Stx8 on late phagosomes,
act as the R-, Qa- and Qbc-SNAREs respectively, to facilitate
fusion of these vesicles (Figure 2B). However, the promiscuous
nature of SNARE proteins likely allows multiple SNARE
complex permutations to facilitate the fusion of phagosomes
and lysosomes and is reflected in the studies examined (10, 37,
39, 40). Similarly, multiple levels of posttranslational regulation
of SNARE proteins beyond Snap23 phosphorylation likely exist
to prevent erroneous fusion of these vesicles yet remain to be
characterized (40).
OTHER FACTORS INVOLVED IN
PL FUSION

It is clear from the number of fusion proteins discussed thus far
that PL fusion is a complex process. However, Rabs, tethers and
SNAREs are not the only factors involved in this process. The
lipid composition of phagosomes, the actin cytoskeleton, the
vacuolar-type ATPase (V-ATPase) and calcium signaling play
important roles during phagosome maturation. Here, we will
only discuss the phosphoinositide lipids and the controversial
role of actin and the V-ATPase in PL biogenesis, as calcium
signaling has been extensively reviewed elsewhere (101).

Phosphoinositide Lipids and Their Kinases
Phosphoinositides (PIs) play a critical role in PL formation.
These are a family of mono-, bi-, or tri- phosphorylated
derivatives of the glycerophospholipid phosphatidylinositol.
Phosphorylation of the third, fourth or fifth position of the PI
inositol headgroup by their specific lipid kinases generates
different PI variants that regulate the actin cytoskeleton, signal
transduction and membrane fusion/fission through interactions
with their respective effector proteins (102, 103). In the context of
PL biogenesis, PI3P and PI4P together with their lipid kinases are
the most well-characterized in the fusion of phagosomes and
lysosomes (73).

P13P is enriched on early phagosomes and is necessary to
bind Rab5 for fusion with early endosomes (5, 104). As the
phagosome progresses to the early-to-late-stage transition, PI3P
is lost while both PI4P and PI3,5P2 are acquired in tandem with
Rab7 (105, 106). PI4P is associated with the recruitment of the
HOPS complex (73), whereas the role of PI3,5P2 remains less
understood and there is conflicting reports on whether this lipid
is essential for PL fusion and the full activation of the
phagosomal V-ATPase (107, 108). Reduced PI3,5P2 synthesis
in Raw264.7 macrophages abrogated both PL fusion and
degradative capacity but had little effect on phagosome
acidification, and at least on lysosomes, the V-ATPase was still
Frontiers in Immunology | www.frontiersin.org 7112
active (107, 109). However, in lower eukaryotic models and
mammalian epithelial cells, PI3,5P2 was required for V-
ATPase activity, efficient phagosome fusion with lysosomes
and acquisition of a microbicidal phagosomal lumen (108,
110–112). Thus, these discrepancies are likely due to
physiological differences between macrophages and other cell
models/types. Interestingly, PI3,5P2 has also been implicated in
regulating lysosome/phagosome calcium channels in Raw264.7
macrophages (113).

Deciphering the roles of PIs during each step of PL formation
within phagocytes is challenging as PIs function in the early steps
of phagocytosis, and interference of PIs also affects the
maturation of the phagosome upstream of PL fusion (114).
Thus, reconstitution of PL fusion in cell-free in vitro assays in
this scenario provides an advantage over in vitro systems since
each fusion “subreaction” in PL formation can be manipulated
and studied in isolation, without interfering with the early
maturation of the phagosome (73, 114). In particular, work by
Jeschke and colleagues have shed additional light on the role of
PI3P, PI4P and their lipid kinases. As found by Jeschke et al.
(114), phagosomes containing opsonized latex beads isolated
from J774 macrophages contained PI3P, PI4P, and the class II
phosphatidylinositol 4-kinase a (PI4KIIa), one of the four lipid
kinases that catalyze the formation of PIs to PI4P (114).
Sequestration of PI3P by the mouse hepatocyte growth factor-
regulated tyrosine kinase substrate 2xFYVE domain or PI4P by
the P4C fragment of Legionella pneumophila protein SidC
blocked PL formation (115, 116). Further, chemical inhibition
of either PI4KIIa or PI3KIII/Vps34 respectively reduced the
levels of PI4P or PI3P generated on phagosomes, also impeding
PL formation. This corroborates earlier studies, wherein
inhibition of PI3KIII/Vps34 in J774 and Raw264.7
macrophages precluded the acquisition of the late endosome/
lysosome makers, LAMP1 and lysobisphosphatidic acid, by
phagosomes due to a defect in PL fusion (5, 104). Hence, PI3P
and PI4P are required for PL fusion in a cell-free system, and this
process can be regulated by PI lipid kinases that modulate the
levels of PI3P and PI4P generated on phagosomes (114).

Further investigation by Jeschke and Haas (73) into the role of
PI3P and PI4P in the steps leading to PL fusion observed that
these PIs were involved during the tethering step of membrane
fusion. Both PI3P and PI4P were present on phagosomes bound
to lysosomes and sequestration of PI4P with P4C inhibited
phagosome-to-lysosome binding and hemi-fusion of vesicles,
while sequestration of PI3P by the 2xFYVE domain inhibited
PL fusion after vesicles had docked (73). Since PIs exert their
functions by anchoring PI effector proteins to membranes, it was
postulated that PI3P and PI4P were recruiting PL-fusion-
relevant proteins to phagosomes and lysosomes (73, 117).
Indeed, a lack of available PI3P due to sequestration decreased
the presence of the HOPS component Vps41 on phagosomes and
lysosomes, and similarly, PI4P sequestration decreased both
Vps41 and Arl8 levels. Further, when P4C and 2xFYVE were
added to fusion sub-reactions containing isolated phagosomes
and lysosomes but in the absence of cytosol, (which contains free
PIs), membrane-bound Vps41 and Arl8 were absent, thereby
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supporting the observation that PI3P and PI4P are required to
anchor tethering effectors. In addition to tethering, PI3P and
PI4P have an impact on the fusion step of PL biogenesis, and
thus may directly or indirectly recruit SNARE proteins (73).
Interestingly, Vamp8 can bind directly to PI3P on Salmonella-
containing vacuoles (118). It is known that Vamp8 binds PI3P to
support phagocytosis of Salmonella (118), but whether the
Vamp8-PI3P interaction is required or able to facilitate
SNARE complex formation or PL membrane fusion requires
further investigation. PI4P is also a substrate for the formation of
PI4,5P2 on late endosomes/phagosomes and lysosomes (119).
PI4,5P2 is required for the nucleation of actin around
phagosomes, wherein this process has been postulated to
promote PL fusion by interacting with SNARE proteins and
will be discussed below (119, 120).

The class IA PI3K (PI3KIA), a kinase commonly associated with
phagocytosis of large particles (>4 µm) and early endosome-
phagosome fusion, has also been implicated in PL fusion (121).
Thi and colleagues (121) used THP-1-derived macrophages to
report a novel role for the class IA PI3K in PL fusion that
depended on its catalytic subunit p110a (121). In p110a
knockdown cells, phagocytosis of M. smegmatis or experimental
particles occurred normally, however, phagosomes displayed
impaired procurement of LAMP1 and lysosomal hydrolases due
to defective fusion with lysosomes. Interestingly, p110a knockdown
did not prevent Rab7 recruitment to phagosomes, nor its
subsequent activation, as the recruitment of the Rab7 effectors
HOPS and RILP were unaffected. This suggests recruitment of
Rab7 and its effectors is insufficient to drive PL fusion alone, and
requires the additional action of PI3KIA tomediate the formation of
the PL. Moreover, cellular and phagosomal levels of the SNAREs
Vamp7 and Vti1b in p110a-silenced macrophages were similar to
the control. Hence, in this experimental system, the blockage of PL
fusion is not due to a lack of membrane fusion machinery, but an
undetermined mechanism. PIK3IA generates PI3,4,5P3 by the
phosphorylation of PI4,5P2 (122). PI3,4,5P3 is transiently
enriched at the phagocytic cup and is known for its role in actin
polymerization upon Fc-g receptor and complement receptor-
mediated phagocytosis (123). With the exception of Fc-g receptor
phagocytosis, PI3,4,5P3 reappears on the maturing phagosome and
is implicated in activating a second wave of actin formation
important for PL biogenesis (124, 125). Since PI3,4,5P3 levels are
decreased upon depletion of p110a (121), it is plausible that this
may interfere with PI3,4,5P3-regulated actin polymerization around
phagosomes (124).

Overall, host-pathogen studies have unveiled the consequences
to bacterial clearance when certain PIs are unavailable for PL fusion
while cell-free assays have allowed us better to understand where
and when certain PIs are involved in the formation of PLs. From
these studies, PI3KIII/Vps34, PI4KIIa and their respective lipid
products PI3P and PI4P, as well as PI3KIA, regulate the
development of PLs.

The Actin Cytoskeleton
The actin cytoskeleton is a major player in regulating phagocytosis
(126, 127) and the fusion/fission of endolysosomes with
Frontiers in Immunology | www.frontiersin.org 8113
phagosomes (120, 125, 128–130). Filamentous actin (hereafter
referred to as actin) has been observed to transiently polymerize
around phagosomes in a process called “actin-flashing”. The
function of this phenomena is unclear but has been proposed to
prevent PL fusion (125). Numerous reports using phagocytes and
cell-free systems have demonstrated that actin coats a subset of
purified phagosomes and acts as a physical barrier to PL biogenesis
(Figure 3A) (125, 131–133). Furthermore, when internalized,
certain pathogens, including Legionella, Leishmania, and
Mycobacteria, induce the assembly of actin on the early
phagosome to prevent phagosomal maturation (133–136).
However, conflicting reports propose that actin can have a
stimulatory role in membrane fusion, thus lending uncertainty to
the role of actin in PL fusion (Figure 3B) (120, 128). A plausible
explanation is that actin has dual roles in membrane fusion whereby
it can both inhibit and induce phagosome-lysosome fusion
depending on the maturation state of the phagosome (120). Most
studies reporting the inhibitory role of actin limited their
investigation to early-stage phagosomes. In particular, transient
accumulations of actin were observed to surround a
subpopulation of purified immature phagosomes which prevented
association with endolysosomal vesicles (125, 137). It was also
demonstrated that de novo actin assembly on nascent
phagosomes increases under cell stress conditions when the
phagocytic or endocytic pathway is overloaded with digestive
cargo (125). These actin “flashes” repeat in waves to physically
block phagosome-lysosome fusion.

Not only can actin act as a physical barrier to fusion, it can also
compete with dynein-dynactin-based binding tomicrotubules at the
cellular periphery (Figure 3A). Phagosomes can bind to actin, in an
ATP-dependent manner, through association with the actin motor
protein myosin Va (131). Myosin Va interactions occur at defined
regions of the phagosomal membrane, which dissociates the
interactions with MT-associated proteins. It has been postulated
that transient actin assembly on endolysosomal and phagosomal
systems slows phagosome-lysosome fusion when these vesicles
contain more cargo than they have the capacity to digest (125).
Actomyosin association is a possible complimentary mechanism
that can either delay phagosomemigration to the perinuclear region
to allow them extra time to preprocess internalized phagosomal
content, and to not outpace the availability of lysosomes for fusion
(131, 137).

In contrast, late-stage phagosomes and endolysosomes have
been shown to nucleate actin locally around the phagosome-to-
lysosome docking sites (128). Interestingly, numerous actin
cytoskeleton-associated machinery regulating actin nucleation
were localized around latex bead-containing late-phagosomes,
such as ezrin, neural Wiskott-Aldrich syndrome protein (N-
WASP) and the actin-related protein 2/3 (Arp2/3) complex
(Figure 3C). Ezrin binds to PI4,5P2 on the phagosomal
membrane, although it is unclear whether PI4,5P2 is sufficient
to recruit ezrin (119, 138). Ezrin has been proposed to recruit N-
WASP to the phagosome membrane, which subsequently
activates Arp2/3 to initiate actin nucleation. The idea that actin
promotes late-stage phagosome maturation was further
supported by the observation that downregulating ezrin
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Nguyen and Yates Current Insights Into Phagosome-Lysosome Fusion
hindered PL fusion (120). In later studies, cell division control
protein 42 homolog (CDC42) of the Rho-family of GTPases was
found to be required for the activation of N-WASP (139, 140).
The dynamic phosphorylation and dephosphorylation of actin-
binding protein cofilin is also required to mediate cyclic actin
polymerization and depolymerization that promotes PL fusion
(141). Furthermore, flotillin-1, a membrane protein that
associates with lipid rafts on late phagosomes is also implicated
in actin nucleation since actin predominantly accumulates and
polymerizes at these sites (142, 143). Dermine et al. (142)
observed decreased flotillin-1 association with phagosomes
containing Leishmania in J774 macrophages. Leishmania
expresses a surface glycolipid lipophosphoglycan that impedes
PL fusion. Since lipophosphoglycan preferentially anchors to
phagosomal lipid rafts, it was proposed that this process may
interfere with lipid raft formation, and subsequent flotillin-1
association and actin assembly (142). However, the molecular
interactions between flotillin-1 and the other actin polymerizing
machinery at phagosomal lipid microdomains were not
addressed and remain largely obscure. How actin functions in
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tandem with membrane fusion machinery—whether by bringing
fusing vesicles together via myosin motor proteins, or by
facilitating the docking and tethering of lysosomes to the
phagosome membrane (Figure 3B) (120, 128)—is unclear and
warrants further investigation.

Interestingly, the same actin nucleation machinery is
recruited to early and late phagosomes to exert dualistic
stimulatory and inhibitory effects. Leishmania donovani
promastigotes promote CDC42 retention at phagosomes
thereby prolonging phagosomal actin accumulation to evade
the host endomembrane system in Raw264.7 macrophages
(135). It was recently found that CDC42 is unable to associate
with its GAP and GDI in this context, thereby locking it in a
GTP-bound state (144, 145). One of these studies demonstrated
that Shigella flexneri exploits N-WASP and Arp2/3 recruitment
to the nascent bacteria-containing vesicles to impede lysosomal
fusion. Molecularly, the acyltransferase activity of the type 3
secretion system effector IcsB on CDC42 disrupts its association
with its GDI (144), locking CDC42 in a GTP-bound state which
retains CDC42 at phagosomes (145). Through this, IcsB clusters
A B

C

FIGURE 3 | Duality of filamentous actin during phagosome maturation. (A) Actin delays phagolysosome biogenesis at the early phagosome maturation stage by: i)
transiently assembling around nascent phagosomes when the early phagosome and/or lysosome system is overloaded with cargo thereby blocking phagosome-
lysosome contact, or ii) by facilitating myosin-mediated displacement of the dynein-dynactin microtubule motor and preventing minus-end transport. (B) Actin
stimulates phagolysosome biogenesis by: i) bringing the fusing organelles closer together, or ii) facilitating docking and fusion. (C) Actin polymerization at the
phagosome is mediated by the ezrin-N-WASP-Arp2/3 complex binding to phagosomal PI(4,5)P2 at flotillin-1-associated lipid rafts. Cyclic actin polymerization and
depolymerization is mediated by the respective phosphorylation and dephosphorylation of cofilin.
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N-WASP and Arp2/3 around vesicles to nucleate thick actin
coats, which both block the recruitment of fusion machinery and
shield the bacterium from the endolysosomes. It is important to
note that the studies by Liu et al. (144) and Kühn et al. (145) were
conducted in epithelial cells that although are capable of
phagocytosis, do not possess the repertoire of surface receptors
of professional phagocytes.

In summary, actin networks are thought to have a dual role in
phagosome-lysosome fusion depending on how far the phagosome
has matured and the cargo load of phagosomes and lysosomes.
Actin networks are inhibitory when phagosomes and lysosomes are
saturated with digestive cargo by physically preventing early
phagosomes from contacting endolysosomes. Actomyosin could
potentially compete with dynein-dynactin motor proteins for
binding to the phagosome to delay phagosome maturation. In
contrast, actin networks can support late phagosome-lysosome
fusion, either by bringing vesicles closer together or by facilitating
vesicle docking—although the mechanisms by which actin achieves
these functions and whether the involvement of actin is cargo-
dependent is unclear. Moreover, the spatiotemporal control of actin
that enables it to either block or enhance PL fusion remains
uncharacterized. Indeed, the role of the actin-myosin network
during phagosome maturation is only beginning to be
understood, and further work in the area will help garner
appreciation of such complex interactions.

The Vacuolar ATPase
Phagocytes acidify the phagosomal lumen by recruiting the V-
ATPase, a multiprotein complex that consists of 14 different
subunits (146). The cytosolic V1 domain mediates ATP
hydrolysis, whereas the transmembrane V0 domain forms the
proton channel (146). Phagosomal V-ATPase is largely
considered to be derived from lysosomes; however, other data
suggests that phagosomes acquire V-ATPases from multiple
sources, including, the trans-Golgi, early endosomes, lysosomes
and the plasma membrane (147–149).

Although it is well-known that V-ATPase-mediated
phagosomal acidification is essential for antimicrobial defense
and efficient digestion/processing of phagocytosed cargo, there is
controversy surrounding the role of the V-ATPase in membrane
fusion. The first evidence to demonstrate the requirement of the
V-ATPase in homotypic vesicle fusion was from a study in yeast
(150). Following trans-SNARE formation, the V0 domains from
apposing vesicles were proposed to complex, leading to a
conformational change which allows for lipid mixing and the
formation of a fusion pore (150). An acidification-independent
role of the V-ATPase in membrane fusion was observed in
higher eukaryotes in subsequent studies (151–153).

The role of the V-ATPase in PL fusion was first observed in a
zebrafish model, wherein knockdown of the V0 A1 subunit
prevented PL fusion in microglial cells (154). Further, inhibiting
the macrophage-specific V0 subunit D2 in murine bone marrow-
derived macrophages impaired PL fusion and Salmonella clearance
(155). Interestingly, by immunoprecipitation and glutathione S-
transferase affinity isolation assays, subunit D2 was found to form a
complex with the SNAREs Stx17 and Vamp8 important in
autophagosome-lysosome fusion (155). Whether the V-ATPase
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could associate with fusion machinery involved in PL fusion was
demonstrated in an earlier study inMycobacterium-infected THP-1
macrophages (156). As mentioned above, the M. tuberculosis
effector PtpA dephosphorylates the SM protein Vps33B to
prevent PL fusion (77). Wong et al. (156) demonstrated that
PtpA directly binds to the V1 subunit H to: i) block the
trafficking of this subunit to the mycobacterial phagosome and ii)
block its interaction with Vps33B (156). Moreover, this binding step
is a prerequisite to dephosphorylate Vps33B. When macrophages
were challenged with ptpA knockout strains, subunit H could
localize to phagosomes and recruit Vps33B. Contrary to these
findings implicating the V-ATPase in PL biogenesis, other reports
dispute this contribution.

In mouse peritoneal macrophages, the loss of the V0 subunit
A3 did not block PL formation during Fc-g receptor phagocytosis
of IgG-opsonized latex beads—phagosomes could acquire
lysosomal characteristics including the mature forms of
lysosomal cathepsins, and late-phagosome/lysosome markers
Rab7 and Lamp2 (157). In corroboration with these findings,
mouse bone marrow-derived macrophages deficient in the V0
subunits A1-3 had unaltered microbicidal activity since these
cells could clear avirulent strains of Escherichia coli and Listeria
innocua as efficiently as the control (158). Interestingly, through
pulse-chase experiments with latex beads, the rate of PL fusion
was elevated upon the loss of the V0 subunits A1-3.

Thus, whether the V-ATPase enhances PL fusion is still being
debated. Different phagocytic cargoes and/or cell models leading
to slightly altered maturation pathways may explain
discrepancies in the works described. Moreover, it appears that
specific subunits of the V-ATPase (V0 subunit D2 and V1
subunit H) have more important roles in supporting PL fusion
than others (V0 subunits A1-3).
AUTOPHAGY TO THE RESCUE:
SUPPORTING PHAGOCYTE FUNCTION IN
THE CONTEXT OF PL FUSION

As noted earlier, several pathogens have evolved mechanisms to
subvert canonical maturation of the phagosome. In
response, alternative mechanisms to facilitate PL fusion have
coevolved in professional phagocytes. Macroautophagy, or bulk
degradation autophagy (herein referred to as autophagy), has
been established as a fundamental homeostatic pathway that
affects innate and adaptive immunity (159, 160). Similar to the
phagocytic pathway for exogenous cargoes, autophagy
delivers endogenous material to lysosomes for degradation.
Low levels of basal autophagy is essential for all cells to
clear unwanted cytosolic material and maintain cellular
homeostasis (161–163). In phagocytes, autophagy is upregulated
by several stress signals, including pro-inflammatory cytokines
(164), TLR signaling (165), starvation (166), and microbial
infection (167). The role of autophagy in infection, inflammation,
and adaptive immunity has received increasing attention over the
past 2 decades. Germane to this review, components of the
autophagic pathway have been implicated in PL fusion—proposed
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as an alternate pathway to overcome pathogen inhibition of
canonical phagosomal maturation and enhancing the presentation
of exogenous antigens. In the following section, we will discuss how
the autophagic pathway complements the phagocytic
pathway with an emphasis on PL fusion.

Microbial Clearance
The best-understood pathways by which autophagy augments
microbicidal capabilities of phagocytes are xenophagy (168) and
microtubule-associated protein A1/B1-light chain 3 (LC3)-
associated phagocytosis (LAP) (169–171). Xenophagy is the
selective degradation of cytosolic pathogens or pathogen-
containing vesicles that have been marked with ubiquitin
through autophagic mechanisms (172–174). In contrast, LAP
is a non-canonical form of autophagy that involves phagocytosis
and uses some components of the autophagic pathway to create a
more robust phagolysosome (169–171).

Xenophagy
Several intracellular pathogens have developed mechanisms to
avoid PL-mediated destruction, and autophagy can be deployed
to assist in their elimination (Figure 4). M. tuberculosis is well
known to inhibit phagosomal maturation, but induction of
autophagy is sufficient to eliminate the pathogen via
autophagic consumption of the arrested bacteria-containing
phagosome (175). The parasite Toxoplasma gondii can survive
within macrophages by residing in vacuoles that avoid fusion
with lysosomes (176). However, when macrophages are activated
by a T cell ligand, cluster of differentiation 40 (CD40), xenophagy
is induced to restrict T. gondii growth (177, 178). Alternatively,
when activated by IFN-g, macrophages use some components of
the autophagic machinery to recruit members of the immunity-
related GTPase (IRG) family to mediate the elimination of these
parasites in a process that is not fully understood (179, 180).
However, evidence from Mycobacteria-containing macrophages
suggests that IRGs may promote the fusion of phagosomes to
lysosomes since Irgm1 has been observed to interact with SNAP-
associated protein (Snapin), which binds to SNAREs to mediate
vesicular fusion (181, 182).

Although xenophagy functions as a second line of defense
against pathogens that overcome PL-mediated killing in
phagocytes, some pathogens have further evolved to evade
xenophagic activity by inhibiting the autophagic response. For
example, the virulence factors of M. tuberculosis early secretory
antigenic target 6 (ESAT6) and secreted acid phosphatase M
(SapM), block autophagosome-lysosome fusion in Raw264.7
macrophage-like cells; ESAT6 stimulates the negative regulator
of autophagy mammalian target of rapamycin (MTOR), and
SapM hydrolyzes PI3P to prevent Rab7 recruitment to
phagosomes and autophagosomes (183–186). In another study
using Raw264.7 cells, L. monocytogenes was found to hide from
autophagic recognition through its virulence factor Inlk (187).

In summary, while xenophagy often serves as an effective
second defense to pathogen PL arrest or escape in many cases,
some well-adapted pathogens have evolved virulence factors that
target these autophagic pathways.
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LC3-Associated Phagocytosis
Autophagy can also augment the antimicrobial activity of
phagocytes by supporting increased PL fusion through LAP
(Figure 4). The process of LAP requires several members of
the canonical autophagic machinery, namely autophagy-related
(Atg) 5, Atg7, Atg12, Atg16L, Beclin1, and Vps34 (169), as well
as Rubicon and ROS production by Nox2 (171, 188). Despite
sharing components, LAP and autophagy are functionally
distinct processes that are differentially regulated. For example,
Rubicon inhibits autophagy but is required for efficient LAP
(189). LAP can be stimulated when internalized particles activate
certain surface receptors of phagocytes, including TLRs, Fc
receptors, Dectin-1, and the apoptotic cell receptor T cell
immunoglobin and mucin domain containing 4 (TIM4) (169–
171). When these receptors are engaged, phagosomes recruit
LC3 (now referred to as LAPosomes) which promotes rapid
fusion with lysosomes and enhances cargo degradation (169,
188). Through LAP, phagocytes are better equipped to deal with
microbial infection by bacteria and fungi. For example, PL fusion
with phagosomes containing the bacteria L. monocytogenes (190)
and Legionella dumoffi (191), and the fungi S. cerevisiae (169)
and A. fumigatus (188) is promoted by LAP [reviewed by (192)].
In the absence of LC3 recruitment to phagosomes, macrophages
could not efficiently kill these pathogens and were more
susceptible to sustained infection.

It is unsurprising then that pathogens have also evolved
strategies to avoid targeting by LAP. Some prominent
examples are CpsA production by M. tuberculosis (193),
surface metalloprotease GP63 production by Leishmania major
(194), and melanin production by A. fumigatus (195), which all
function to evade LAP by preventing the Nox2-mediated ROS
production crucial for LC3-recruitment [reviewed by (192)].

It is worth noting that LAP is not the only process that can
enhance PL fusion. Enhanced PL fusion was observed despite the
absence of Nox2-mediated LC3 recruitment to phagosomes
containing IgG-opsonized zymosan and sheep erythrocytes in
macrophages (196). This suggests that under certain conditions,
proteins other than those belonging to the autophagic pathway
such as members of the IRG family mentioned above (181, 182),
can also enhance membrane fusion. Alternatively, it has been
recently demonstrated that the mechanical stress caused by the
growth of some intraphagosomal pathogens can induce lysosome
recruitment and fusion with the phagosome as a means to
increase phagosomal surface area and maintain membrane
integrity (197). Further, LAP has a dual function in antigen
presentation depending on the cell type. LAP stimulates rapid PL
fusion in murine macrophages, favoring cargo degradation over
antigen presentation (169). In contrast, LAP delays recruitment
of lysosomes in human macrophages and DCs to stabilize
substrates for major histocompatibility complex class II
(MHCII)-mediated presentation to the adaptive immunity
(198). Thus, LC3-mediated phagosome maturation is host- and
condition-dependent and is a dynamic process that is influenced
by the activation of phagocytes.

How LAP promotes or inhibits PL fusion at the molecular
level is only beginning to be discerned. One plausible mechanism
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was seen in neuronal cells, where LC3 binding of RILP to
autophagosomes facilitated the recruitment of the dynein-
dynactin motor complex for subsequent centripetal movement
to the lysosome-rich perinuclear region (199). It would be
interesting to investigate whether phagosomal LC3 can recruit
RILP-dynein-dynactin to facilitate phagosome trafficking in a
similar manner in phagocytes, particularly in the context of LAP.
Another possibility is that LC3 plays a role in recruiting
machinery to the phagosome that can assist in tethering
lysosomes to phagosomes (192). Plekhm1 can be recruited by
LC3 to autophagosomes in HeLa cells (200). By extension, LC3-
recruited Plekhm1 on phagosomes could serve to tether HOPS-
and RILP-containing vesicles during PL formation. Additionally,
the LC3 isoforms g-aminobutyric acid receptor-associated
protein (Gabarap) and Gabarap-like 2 can recruit PI4KIIa
(201), which generates PI4P on phagosomes and lysosomes to
promote HOPS recruitment (114, 202). However, direct evidence
to support these hypotheses in phagocyte LAPosomes has yet to
be substantiated and awaits further investigation.

Homeostasis and Inflammation
Dampening
Rapid and efficient clearance of apoptotic cells by phagocytes is
critical for the regulation of tissue and immune homeostasis.
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Professional phagocytes are recruited by chemo-attractants
released by apoptotic cells, and the “eat-me” cell-surface
ligands on the dying cells mark them for phagocytotic
engulfment by efferocytosis. It is now well-established that
autophagy has a complex relationship with apoptosis in that
autophagy can either be preventative or facilitative in
programmed cell death [discussed comprehensively by (203)].
Most recently, LAP has been established as a crucial process in
efferocytosis (Figure 4). Disrupting LAP in macrophages during
TIM4-mediated engulfment delays degradation of apoptotic and
necrotic cells in phagosomes (204). In the absence of LAP
(created by deleting key autophagic genes), apoptotic bodies
accumulate in phagosomes but are not digested due to a decrease
in lysosomal fusion (205). Moreover, the accumulation in
apoptotic cargo leads to secondary necrosis in macrophages.
This was also observed in another study by Zhou et al. (206) in
which autophagy had a cytoprotective effect on macrophages
that phagocytosed apoptotic cells. Silencing a key autophagic
protein, Beclin1, in macrophages displayed increased apoptotic
cell cargo resulting in decreased viability and survival, and
macrophage rupturing (206). When stimulated with apoptotic
cells, macrophages deficient in LAP due to genetic knockout of
Rubicon or Nox2 produced higher levels of pro-inflammatory
cytokines (interleukin-(IL)-1b, IL-6, CXCL10) and lower levels
FIGURE 4 | The autophagic response aids the phagocytic pathway. Phagocytosed microbes and apoptotic cells are degraded in PLs formed from the fusion of
lysosomes with phagosomes. Under certain conditions, LC3 is recruited to phagosomes for LAP to create more robust PLs. Microbes that escape PL-mediated
degradation are ubiquitinated in the cytosol and degraded in autophagolysosomes via xenophagy.
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of anti-inflammatory cytokines (IL-10) compared to LAP-
sufficient cells (205). This increase in pro-inflammatory signals
translates to autoimmunity and the development of systemic
lupus erythematosus-like disease in in vivo mouse models when
LAP is not functioning to clear apoptotic cells (205). Hence,
LAP-enhanced PL fusion is fundamental to regulate pro-
inflammatory and pro-death signals.

In summary, autophagy and phagocytosis are two
complementary pathways that cooperate in PL-mediated
elimination of dangerous exogenous and endogenous material to
regulate infection and homeostasis. Canonical autophagic
machinery is employed to either supplement or support
phagosome maturation or to conduct microbicidal and
homeostatic functions. Induction of the autophagic machinery
enhances PL biogenesis via LAP, although the molecular
mechanism has not yet been fully characterized. Current evidence
suggests LC3-recruitment of phagosome trafficking and fusion
machinery, yet this warrants further investigation.
CONCLUDING REMARKS

Here we have summarized recent findings regarding phagosome-
lysosome fusion. The Rab GTPases Rab7, Rab2 and Rab14
participate in tethering phagosomes and lysosomes albeit
through mechanisms that are less known for Rab2 and Rab14.
Rab7 recruits tethering effectors, whereby the individual subunits
of the HOPS complex give it the multifunctional capacity to serve
as a Rab GEF, a tether and an SM protein that catalyzes SNARE
assembly. The SNAREs Snap23, Stx7, Vamp8, Vti1b, and Stx8
have been shown to assemble into specific complexes to execute
PL fusion. While the Rabs, tethering factors and SNAREs
involved in PL biogenesis are best known, we know less about
how phagosomal lipids, the actin network and the V-ATPase
regulate PL fusion. PI3P and PI4P have been implicated to
interact with fusion machinery, whereas PI4,5P2 is involved in
actin nucleation, which exhibits dual function to either support
or inhibit PL fusion. PI3,5P2 is required for V-ATPase activation
and PL fusion in lower eukaryotes but this has yet to be shown in
mammalian phagocytes. Acidification-independent roles of the
V-ATPase in fusion is still under contention but some evidence
suggests the involvement of specific subunits. Lastly, the
autophagic pathway can bolster the phagocytic pathway
through LAP-enhanced PL fusion, or xenophagy-mediated
protection of phagocyte integrity.

Although there have been great advances in understanding the
proceedings of the molecular events that mediate PL biogenesis, we
have only scratched the surface in delineating the full extent of all
the participating molecules and modulating signals. For those that
have been identified, little is known regarding their spatiotemporal
regulation. The greatest caveat to the existing studies that have
furthered our understanding of the aforementioned fusion
machinery is that they have been performed extensively in in
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vitro cell-free models or phagocyte-like cell lines which limits our
ability to confidently extrapolate to primary phagocytes. To this
degree, few studies have investigated the molecules that control
phagosome-lysosome fusion in live primary phagocytes, generating
a gap between experimental evidence and functional relevance to
the management of infection and disease. For studies that have
employed primary cell models, it is unclear whether the fusion
molecules recruited to phagosomes is consistent for all cargo types.
Phagocytic uptake of macromolecular cargos can be mediated by
several cell-surface receptors that activate different signaling
pathways based on the type of cargo. The activation/inflammation
status of these cells can influence the rate and magnitude of the
dynamic recruitment of fusion-mediating proteins. Even the type of
phagocyte and particular species from which cells are sourced can
influence which particular fusion proteins are involved. Thus,
further studies are required to more comprehensively
characterize this critical and often underappreciated aspect of
phagocyte biology.

Phagosome fusion with lysosomes is crucial to the functional
outcome of phagocytosis and efferocytosis. Impaired lysosome
fusion—and by extension, cargo degradation—disrupts the
immune response to microbial and apoptotic cell clearance,
and can underlie autoimmune and inflammatory disorders,
and persistence of infection. Deciphering the mechanisms that
drive and regulate the fusion of phagosomes with lysosomes will
not only contribute to the greater knowledge of the pathogenesis
of many diseases, but also contribute to our understanding of
health, growth, and homeostasis.
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Cancer immunotherapy has revolutionized the paradigm for the clinical management of
cancer. While FDA-approved cancer immunotherapies thus far mainly exploit the adaptive
immunity for therapeutic efficacy, there is a growing appreciation for the importance of
innate immunity in tumor cell surveillance and eradication. The past decade has witnessed
macrophages being thrust into the spotlight as critical effectors of an innate anti-tumor
response. Promising evidence from preclinical and clinical studies have established
targeting macrophage phagocytosis as an effective therapeutic strategy, either alone or
in combination with other therapeutic moieties. Here, we review the recent translational
advances in harnessing macrophage phagocytosis as a pivotal therapeutic effort in cancer
treatment. In addition, this review emphasizes phagocytosis checkpoint blockade and the
use of nanoparticles as effective strategies to potentiate macrophages for phagocytosis.
We also highlight chimeric antigen receptor macrophages as a next-generation
therapeutic modality linking the closely intertwined innate and adaptive immunity to
induce efficacious anti-tumor immune responses.

Keywords: macrophage, cancer immunotherapy, phagocytosis, antibody, chimeric antigen receptor
(CAR), nanoparticle
INTRODUCTION

Immunotherapy has had a long-standing history in the fight against cancer, with its early beginnings
in the 19th century with Coley’s toxin (1). Up until now, about 40 biologics have been approved by
the U.S. Food and Drug Administration (FDA) for patient use, with approximately 4,000 being
actively investigated in clinical trials globally (2, 3). These modalities include immunomodulators
(e.g., antibodies, antibody conjugates, cytokines, and immune agonists), vaccines, oncolytic viruses,
and cell-based therapies (e.g., chimeric antigen receptor (CAR) T cell therapy) (2). As the
exploration of novel immunotherapeutic targets and tumor-immunity interactions continue (4,
5), there is a growing interest in harnessing innate immunity to drive the development of effective
immunotherapies for cancer.

The innate immune system, a major component of the body’s defense system, stands as the first
line of defense against infectious pathogens and malignancies to maintain the body’s homeostasis
(6). Innate immune cells are a diverse group consisting of effector cells such as natural killer (NK)
org March 2021 | Volume 12 | Article 6351731125
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cells and professional antigen-presenting cells like monocytes,
macrophages, and dendritic cells (DCs). These cells rely on
germline-encoded pattern recognition receptors (PRRs) and
other cell-surface molecules to detect pathogen-associated
molecular patterns (PAMPs) on invading microbes and tumor
cells to orchestrate downstream responses (7). Furthermore, the
innate immune system also cross-primes the adaptive immune
system, during which antigen-presenting cells (APCs) process
and present antigens to naive T and B cells, resulting in their
activation (6). A precursor to this bridging of innate and adaptive
immunity is APC antigen capture via phagocytosis, a multistep
process closely regulated by the interaction of phagocytes and
target cells (8). To evade detection and phagocytosis by the
innate immune system, tumor cells exploit techniques normal
cells use to label themselves as self-cells or counteract signals that
can be detected by the innate immune system (9, 10). Thus,
understanding the mechanism behind phagocytosis regulation
could provide a new avenue for the development of next-
generation therapeutic modalities, unleashing the power of
innate immune system, especially macrophages, the most
prominent tumor-infiltrating innate immune cell (11, 12).

Macrophages are highly efficient phagocytes capable
of engulfing materials such as debris, dead cells, or
pathogens (13). Tumor associated macrophages (TAMs) are a
subset of macrophages that are abundant within the tumor
microenvironment (14). They have demonstrated clinical
significance in that they have been shown to contribute highly
to tumor progression (15), resistance to therapies (16), and
tumor metastases (17). M2 polarized TAMs are generally
considered to have an anti-inflammatory phenotype and foster
an immunosuppressive environment and produce anti-
inflammatory cytokines and chemokines to benefit tumor
growth (18, 19). M1 polarized TAMs have a pro-inflammatory
phenotype and maintains an environment unfavorable for the
tumor via pro-inflammatory cytokines to help hamper tumor
growth. Both M1 and M2 polarized TAMs are capable of
phagocytosing cancer cells (20), with the former being
arguably superior (21). This function is largely mediated by the
recognition of foreign materials mediated by the engagement of
PRRs, scavenger receptors, and Fc receptors (22). For example,
ligation of Fc gamma receptors (FcgRs) on macrophages with
antibody Fc fragments initiates the process of antibody-
dependent cellular phagocytosis (ADCP), an important
mechanism linking innate and adaptive immunity.

In this review, we highlight recent advances made in
enhancing macrophage by phagocytosis by targeting different
stages of this process based on distinct principles. We first
summarize the effects of therapeutic antibodies in inducing
anti-cancer ADCP, followed by a discussion of strategies to
promote ADCP-independent phagocytosis by macrophages,
including nanoparticles and phagocytosis checkpoint blockade.
Lastly, we will discuss recent breakthroughs in utilizing
macrophages equipped with CARs for enhanced targeting and
attacking of cancer cells. We aim to elucidate strategies ligating
the closely intertwined innate and adaptive immune systems to
elicit a superior anti-tumor response as a pivotal and modern
Frontiers in Immunology | www.frontiersin.org 2126
effort to solve an age-old disease. Furthermore, we examine the
implications this has on driving forward the field of immuno-
oncology by challenging the status quo of standard cancer
treatment and care.
ANTIBODY-DEPENDENT CELLULAR
PHAGOCYTOSIS VIA
THERAPEUTIC ANTIBODIES

Monoclonal antibodies are an established paradigm for cancer
treatment (23), achieving therapeutic efficacy not only by the
antigen binding variable domains, but also the fragment
crystallizable (Fc) domains. The Fc domain is bound by its
corresponding immunoglobulin Fc receptor (FcR), a cell
surface receptor family expressed by several hematopoietic
cells, which includes IgG (FcgRI/CD64, FcgRII/CD32, and
FcgRIII/CD16), IgE (FcϵRI), IgA (FcaRI/CD89), IgM (FcmR),
and IgA/IgM (Fca/mR) (24, 25). Within the human FcgR family,
all but FcgRIIB are immunoreceptor tyrosine-based activation
motif (ITAM) bearing activating FcRs that activate upon binding
to IgGs via multimerization of intracellular ITAM domains (24,
26). FcgRIIB, on the other hand, is an immunoreceptor tyrosine-
based inhibition motif (ITIM) bearing inhibitory FcR that
dampens the activation of ITAM-bearing immune receptors
(25), producing an immunosuppressive effect.

ADCP is tumoricidal, as macrophages have been shown to
phagocytose antibody-opsonized tumors across various
preclinical models (Figure 1A). For example, ADCP is a
critical and clinically relevant mechanism of action for
daratumumab, a human monoclonal antibody targeting CD38,
a glycoprotein found on immune cells, in multiple myeloma (27).
Furthermore, ADCP is one of the cytotoxic mechanisms used by
rituximab, ofatumumab, ocaratuzumab, and obinutuzumab,
which are human monoclonal antibodies targeting CD20, a B
cell surface protein, in chronic lymphocytic leukemia (28), as
well as trastuzumab, an anti-HER2 monoclonal antibody that
triggers phagocytic cytotoxicity of HER2+ cancer cells both in
vitro and in vivo (29).

ADCP has also shown to be markedly dependent on FcgR.
When transplanted with human breast tumor and B cell
lymphoma xenografts, mice deficient in FcgRIIB exhibit a
superior antibody-dependent cytotoxicity to tumor cells. That
is, in the absence of the ITIM-bearing inhibitory Fc receptors,
there is significantly more immune activation and cytotoxic
effects exerted on target cells. This is in direct contrast to mice
deficient in ITAM-bearing activating Fc receptors (FcgRI and
FcgRIII), which results in impaired and overall inferior tumor
growth inhibition upon treatment with the same antibody in vivo
(30). This dependency on FcgR is further supported by in vivo
experiments that demonstrate that macrophage depletion
abrogates the ability for anti-CD20 antibodies to deplete B cells
(31). Furthermore, colony-stimulating factor 1 (CSF-1) deficient
mice with impaired macrophage development exhibit
incomplete depletion of B cells upon treatment with anti-CD20
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antibodies, while T or natural killer (NK) cells depletion had no
impact on B cell clearance (31), emphasizing the importance of
FcgR to propagate macrophage mediated ADCP.

Not only are macrophages professional phagocytes, they are
antigen presenting cells as well. Thus, following ADCP of target
cells, phagosomes containing tumor cells fuse with lysosomes for
degradation, and tumor-derived antigen peptides are trafficked
to major histocompatibility complexes (MHCs). This allows for
the cross-presentation, activation, and priming of T cells (32).
The breakdown of phagocytosed target cells within the
phagosome often releases a significant amount of PAMPs.
Nucleic acid sensors toll-like receptor 7 (TLR7), toll-like
receptor 9 (TLR9), absent in melanoma 2 inflammasome
(AIM2), and cyclic GMP-AMP synthase (cGAS) have been
Frontiers in Immunology | www.frontiersin.org 3127
implicated in PAMP detection, subsequently activating
inflammatory pathway cascades and causing the production
and release of pro-inflammatory cytokines such as type I
interferons, IL-1b, IL-6, and IL-12 (33–35).

Multiple lines of evidence have suggested that the
inflammatory biological events in macrophages occur following
ADCP. Interestingly, a recent study demonstrated that ADCP
did not lead to an inflamed tumor microenvironment, but an
immunosuppressive one for NK cells and CD8+ cytotoxic T
cells via upregulation of PD-L1 and IDO expression by tumor-
associated macrophages (34). Admittedly, this phenomenon has
thus far only been reported in breast cancers opsonized by
Trastuzumab, and therefore warrants further investigation.
Beyond this, it has also been reported that upon phagocytosis
FIGURE 1 | Mechanism of action to mobilize macrophages as effector cells against tumor cells. (A) Antibody-dependent cellular phagocytosis (ADCP). Following
treatment with mAbs targeting tumor-associated antigens, Fc gamma receptors on macrophages will recognize the Fc domain of the antibody and trigger
downstream activation of the immunoreceptor tyrosine-based activation motif (ITAM) to cause phagocytosis of the tumor cell. (B) Nanoparticle-mediated reeducation
of M2 tumor associated macrophages (TAMs) into M1 TAMs. Nanoparticles will be recognized as foreign material and engulfed by M2 TAMs. Once this occurs, their
contents will be released into the cytosol and trigger polarization of the macrophage away from the M2 pro-tumor phenotype toward the M1 anti-tumor phenotype.
This process retrains the macrophage to perform phagocytosis on tumor cells. (C) CD47/SIRPa phagocytosis checkpoint blockade. I. Upon binding of CD47 on the
tumor cell to SIRPa on the macrophage, an immunoreceptor tyrosine-based inhibition motif (ITIM) becomes activated, sparing the tumor cell from phagocytosis.
II. Upon binding of the high affinity SIRPa fusion protein or anti-CD47 mAbs to CD47 on the tumor cells, or binding of anti-SIRPa mAbs to SIRPa on macrophages,
the CD47/SIRPa axis is blocked and phagocytosis is restored. III. When a bispecific antibody is used, macrophage SIRPa and PD-1 ITIM activation is inhibited by a
bispecific anti-CD47/PD-L1 antibody targeting the tumor cells, preventing the ligands from binding to its receptors; IV. In another scenario, the specificity of CD47
blockade is reinforced by dual-targeting of CD47 and tumor-associated antigen via a CD47/TAA bispecific antibody, therefore sparing normal tissue cells expressing
CD47 but not TAA; the Fc region on the antibody is recognized by the FcgR on the macrophage, activating its immunoreceptor tyrosine-based activation motif
(ITAM) and subsequently triggering phagocytosis of the tumor cell. (D) CAR-macrophages demonstrate enhanced phagocytic ability and tumor targeting specificity.
When fitted with a CAR construct, macrophages are able to recognize tumor cells via their scFv region and trigger phagocytosis of the tumor cell. This occurs at a
higher specificity and efficacy due to the CAR construct conferring increased tumor recognition capability to the macrophage.
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of Herceptin-opsonized HER2+ breast cancer tumor cells, AIM2
in tumor-associated macrophages is recruited and activated
upon detection of tumoral DNA. This results in the cleavage
of the IL-1b precursor and the release of bioactive IL-1b,
stimulating the upregulation of PD-L1 and IDO in macrophages.
Essentially, this phenomenon effectively inhibits antibody-
dependent cellular cytotoxicity (ADCC) via NK cells and
CD8+ cytotoxic T cells, but is rescued via PD-L1 and IDO
blockade in addition to an anti-HER2 antibody (34).

Ultimately, the conclusion of these studies support the
rationale of utilizing therapeutic strategies developed from
a deeper understanding of macrophage immunology, either
alone or in combination with standard of care therapeutic
modalities, to create a more efficacious and favorable anti-
tumor outcome. There is a dynamic interaction between
macrophages and cancer cells during which macrophages
detect and target cancer cells via the recognition of “eat me”
signals which in many cases are exposed on cancer cells due to
their intrinsic oncogenic stresses (36–38). On the other hand,
tumor cells could utilize additional layers of “don’t eat me”
signals, passing as self-cells, deceiving phagocytes to evade
phagocytosis (36–38). Priming macrophages to enhance their
ability in recognizing and targeting cancer cells, and/or blocking
negative checkpoints or their ligands that transduce inhibitory
signaling for phagocytosis have become attractive strategies for
inducing the robust tumoricidal functions of macrophages (39).
Moreover, the adoptive transfer of macrophages, especially in
vitro tailored macrophages, to replenish tumor-infiltrating
effector cells emerges as a novel avenue to boost tumor
phagocytosis (40).
PHAGOCYTOSIS
CHECKPOINT BLOCKADE

Although the tumoricidal impact of ADCP is well-established,
the complex relationship between tumors and macrophages has
obscured the potential for harnessing tumor-associated
macrophages as effector cells (18). Recent breakthroughs have
highlighted phagocytosis checkpoint axes which can be targeted
to induce the anti-cancer functions of macrophages, such as the
CD47-SIRPa phagocytosis axis (41), PD1-PDL1 axis (10), MHC
I–LILRB1 axis (42), and CD24–Siglec-10 axis (43). While
antagonizing these phagocytosis checkpoints induces
phagocytosis, the CD47-SIRPa axis is not only the best studied
phagocytosis checkpoint, but also the only one with multiple
therapeutic biologics entering clinical phase investigations with
promising early-stage results.

CD47, also known as integrin-associated protein (IAP), is a
ubiquitously expressed surface protein comprised of a long N-
terminal extracellular domain, five transmembrane domains, and
a short cytosolic tail (44). CD47 interacts with its binding
partner, signal regulatory protein a (SIRPa), via its IgV-like
domain with the N-terminal IgV-like domain of SIRPa (36). The
CD47-SIRPa binding leads to the phosphorylation of two
SIRPa intracellular ITIMs (45). Phosphorylated tyrosines in
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ITIMs recruit and activate SHP-1 and SHP-2, leading to the
dephosphorylation of many proteins, including myosin IIA and
paxillin (46). Activated SHP-1 and SHP-2, following CD47/
SIRPa ligation at the phagocytosis synaptic interface, prevent
integrin activation, as demonstrated by a recent study (47). As a
result, cytoskeleton rearrangement is subsequently inhibited, and
phagocytosis of target cells fails as well (Figure 1C–I).
Antagonistic monoclonal antibodies are able to disrupt the
binding of tumoral CD47 with SIRPa expressed on myeloid
lineage cells, such as macrophages, dendritic cells, and
neutrophils (41). Upon this blockade, the phagocytosis
inhibition signal conferred by SIRPa is reversed, restoring
phagocytic ability.

By exploiting this unique feature of CD47, it thus is an
attractive therapeutic target to be used in clinical practice. As
the most well-known anti-phagocytic signal, there have been
and currently are a plethora of studies into using anti-CD47
targeting either as a standalone therapy, in combination with
chemotherapy or to augment existing ADCP-inducing
antibodies for example (48–50). Single agent therapies
involving CD47-SIRPa axis blockade have been extensively
discussed below. Studies have demonstrated that CD47
blockade synergizes with chemotherapy, radiotherapy (51), or
ADCP, such as when in combination with Azacitidine (52), with
anti-HER2 Trastuzumab (53), or with anti-CD20 Rituximab
(54). It has also been reported that CD47 blockade not only
mobilizes macrophages, but also activates dendritic cells,
triggering phagocytosis of target cells and cross-presentation to
the adaptive immune system (55, 56). Taken together, a wide
array in vitro and in vivo studies have reinforced and supported
the appealing therapeutic promise of exploiting CD47 blockade
as a meaningful clinical practice to look toward.

Currently, the CD47-SIRPa axis is one of the most sought-
after phagocytosis checkpoints in anti-tumor therapeutic
development (Figure 1C–II) (57, 58). Multiple therapeutic
biologicals designed to target CD47-SIRPa axis are now under
extensive investigation in different developmental phases (36). A
selection of such therapeutics targeting the CD47-SIRPa
checkpoint currently in clinical trials has been summarized
and compiled in Table 1. As of writing, the most advanced
biologic is magrolimab, a humanized anti-CD47 monoclonal
antibody (59), formally known as hu5F9-G4 (60–62).
Magrolimab was the first-in-class therapeutic antibody,
followed by many, to demonstrate that tumor-associated
macrophages can be weaponized against tumor cells by
blocking a phagocytosis checkpoint. Although magrolimab is
generally well-tolerated in human clinical trials, anemia caused
by on-target off-tumor binding of CD47 expressed on
erythrocytes was a common treatment-related side effect (63).
Given the wide therapeutic potential of anti-CD47 monoclonal
antibody, one that effectively block the CD47 on tumor cells
while sparing erythrocytes would be desirable (64). It is worth
noting that the blockade of tumoral CD47 via a functional
monoclonal antibody does not necessarily bring about
hemagglutination, suggesting that anemia is not an
unavoidable toxicity (65). To resolve this, a “priming dose”
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strategy was proposed and put to practice in clinics to mitigate
the anemic side effects. 1 mg/kg of body weight magrolimab
delivered intravenously eliminated aging red blood cells
selectively while sparing ‘younger’ red blood cells, followed by
a therapeutic dose of antibody treatment up to 45mg/kg one
week later (63). In addition, tailored antibody screening and
engineering was used when later anti-CD47 monoclonal
antibodies were developed, such as Lemzoparlimab (TJC4),
SRF231, and AO-176 (65–67), in which candidates causing
hemagglutination or red blood cell (RBC) phagocytosis were
pre-excluded alongside the characterization and ranking of their
anti-tumor activity. As a result, these anti-CD47 antibodies
maintain favorable phagocytosis of tumor cells facilitated by
CD47 blocking, but exhibit a minimal to negligible amount of
RBC related on-target off-tumor effect in preclinical in vitro
and in vivo development (65–67). Currently, all three
aforementioned anti-CD47 antibodies are in phase I clinical
investigation. Interim analysis of lemzoparlimab in phase I
clinical trial (NCT03934814) showed improved safety profile,
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escalated to 30 mg/kg without dose-limiting toxicity while
achieved one confirmed PR in 30 mg/kg cohort (68).

Beyond employing antibodies to block CD47, another
effective and popular approach is by using recombinant
proteins (Figure 1C–II). These CD47 antagonist recombinant
proteins are designed by first fusing an engineered fragment
derived from the N-terminal V-set Ig domain of SIRPa’s
extracellular domain with a Fc region of an antibody. As of
writing, the most advanced fusion products developed are TTI-
621 (69), TTI-622 (70), and ALX-148, previously known as
CV1 (60, 61). TTI-621 and TTI-622 are derived from the
natural human SIRPa allelic variant V2, harboring a 12
amino-acid mutation to the allelic variant V1 commonly
referred to the SIRPa. TTI-621 and TTI-622 preferably bind
with tumoral CD47 with high affinity, but minimally to CD47
expressed on erythrocytes. Taking advantage of this selectivity,
the two SIRPa-Fc fusion proteins achieved a biased CD47
binding selectivity, thereby facilitating phagocytosis of tumor
cells while avoiding hemagglutination in patients (62, 70). It is
TABLE 1 | Current clinical trials involving CD47 blockade.

NCT Trial
Identifier*

Drug Name Target Disease(s) Treatment Type Current
Phase

Status

NCT04435691 Magrolimab
(Hu5F9-G4)

Recurrent acute myeloid leukemia With azacitidine Phase 1 Recruiting
Refractory acute myeloid leukemia With venetoclax Phase 2

NCT04541017 T-cell lymphoma With mogamulizumab Phase 1 Not yet recruiting
NCT02953509 Relapsed/Refractory B-cell Non-Hodgkin’s Lymphoma With rituximab or with rituximab and

chemotherapy
Phase 1/2 Recruiting

NCT03248479 Hematological Malignancies Alone and with azacitidine Phase 1 Recruiting
NCT04599634 Relapsed and Refractory Indolent B-cell Malignancies With obinutuzumab and venetoclax Phase 1 Not yet recruiting
NCT04435691 Acute myeloid leukemia With azacitidine and venetoclax Phase 1/2 Recruiting
NCT03869190 Advanced/Metastatic ureothelial carcinoma With multiple different immunotherapies Phase 1/2 Recruiting
NCT04313881 Myelodysplastic syndrome (MDS) With azacitidine Phase 3 Recruiting
NCT02663518 TTI-621 Hematological malignancies and solid tumors Alone or with either rituximab or nivolumab Phase 1 Recruiting
NCT03530683 TTI-622 Advanced relapsed/refractory lymphoma or myeloma Alone or with either rituximab, PD-1

inhibitors, or proteasome inhibitors
Phase 1 Recruiting

NCT02367196 CC-90002 Advanced solid and hematological cancers Alone and with rituximab Phase 1 Active, not
recruiting

NCT04485052 IBI-188 Acute myeloid leukemia With azacitidine Phase 1/2 Recruiting
NCT03763149 Advanced malignancies Alone Phase 1 Active, not

recruiting
NCT04485065 High risk myelodysplastic syndrome (MDS) With azacitidine Phase 1 Not yet recruiting
NCT03717103 Advanced malignancies Alone and with rituximab Phase 1 Recruiting
NCT03834948 AO-176 Advanced solid tumors Alone and with paclitaxel Phase 1/2 Recruiting
NCT04445701 Relapsed/refractory multiple myeloma Alone and with either dexamethasone or

both dexamethasone and bortezomib
Phase 1/2 Recruiting

NCT04653142 BI 765063 Advanced solid tumors Alone or with BI 765064 Phase 1 Recruiting
BI 765064 Alone or with BI 765063

NCT03990233 BI 765063 Advanced solid tumors Alone or with BI 754091 Phase 1 Recruiting
NCT04417517 ALX-148 High risk myelodysplastic syndrome (MDS) Alone and with azacitidine Phase 1/2 Recruiting
NCT04675294 Advanced head/neck squamous cell carcinoma Alone and with pembrolizumab Phase 2 Recruiting
NCT04675333 Alone or with pembrolizumab or with

pembrolizumab and chemotherapy
Phase 2 Recruiting

NCT03013218 Advanced solid tumors and lymphoma Alone or with either pembrolizumab,
trastuzumab, rituximab, pembrolizumab
and 5FU and platinum, or trastuzumab and
ramucirumab and paclitaxel

Phase 1 Recruiting

NCT04097769 HX009 Advanced malignant tumors Alone Phase 1 Recruiting
NCT04202003 TJ011133 Relapsed/refractory AML or MDS Alone Phase 1/2 Recruiting
NCT03934814 Relapsed/refractory advanced solid tumors and

lymphoma
Alone or with either pembrolizumab or
rituximab

Phase 1 Recruiting
March 20
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also worth noting that TTI-621 and TTI-622 vary only in their
Fc isotype. TTI-621 is fused to a human IgG1 Fc domain,
whereas TTI-622 to a human IgG4 Fc domain, therefore,
differential activating signals through Fcg receptors in
addition to CD47 blockade can be generated from these two
fusion proteins. However, because the overall safety profile of
the effector functions of Fc fragment in conjugation to
CD47 blockade was not fully determined at the time,
both therapeutic biologics were developed preclinically.
Both TTI-621 and TTI-622 are currently undergoing clinical
trial investigation against hematologic malignancies
(NCT03530683, NCT02663518)

On the other hand, ALX-148 is able to saturate CD47
receptors and easily outcompete endogenous wildtype SIRPa
due to its extraordinarily high binding affinity. However, because
ALX-148 is engineered based on the natural SIRPa allelic variant
V1, it does not differentiate between CD47 expressed on tumor
cells and RBCs, therefore anemia is still observed in clincial trials
(71). The approach of using fusion proteins is largely similar to
using anti-CD47 monoclonal antibodies with regard to their
mechanism of action. Both arms result in a blockade of the
CD47-SIRPa axis, but the fusion protein strategy may have
certain advantages over the monoclonal antibody approach, such
as superior binding affinity and biodistribution. Taking ALX-148
for example, generated via yeast display and directed evolution,
its binding affinity has been enhanced to 11 pM (72), whereas
hu5F9-G4, generated from hybridomas, binds with CD47 at an
affinity of 8 nM, 2 magnitudes lower than ALX-148 (73). Fusion
proteins weigh roughly half the molecular weight of a
monoclonal antibody, therefore it is putative to be easier for
fusion proteins to penetrate into solid tumors, as it has been
shown that smaller molecules can infiltrate solid tumors easier
through leaky capillary vessels via simple diffusion (74, 75).
However, no evidence thus far has supported an improved
biodistribution profile for ALX-148 to the best of our knowledge

However, therapeutic strategies targeting the CD47-SIRPa
axis do not stop at just blocking CD47. Several functional anti-
SIRPa monoclonal antibodies have been reported, serving as an
antagonist for the CD47-SIRPa signal (59, 76–78). For example,
the anti-SIRPa mouse antibody KWAR23 demonstrated
enhanced neutrophil and macrophage anti-tumor abilities in
human SIRPa knocked-in mice. When synergized with
rituximab, the growth of human Burkitt’s lymphoma xenograft
models were profoundly inhibited (76). Humanized anti-SIRPa
antibody 1H9 is the latest reported therapeutic antibody,
showing broad-spectrum binding to several SIRPa variants
without cross-reacting with other SIRP family members. When
synergized with other therapeutic antibodies in various
preclinical in vivo models, 1H9 demonstrates a good safety
profile in non-human primates with less antigen sink
compared to anti-CD47 antibody 5F9 (78). Unlike ubiquitously
expressed CD47, SIRPa expression is largely restricted to cells of
myeloid lineages. Because of this, specifically targeting SIRPa, as
opposed to CD47, could bring about differentiated safety and
efficacy of therapeutic models, therefore allowing for an
improved therapeutic index.
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CD47-SIRPa “don’t eat me” axis blockade has been proved so
far to be a great success in mobilizing tumor-associated
macrophages for tumor cell eradication (57). Various
improvements for therapeutic monoclonal antibodies were
implemented in pursuit of better therapeutic profiles. However,
monoclonal antibodies are sometimes handicapped by their
mechanism of action, in that their biodistribution could lead to
an unfavorable pharmacokinetic profile, bottlenecking clinical
efficacy. Indeed, though CD47 blockade therapies have achieved
early therapeutic efficacy in acute myeloid leukemia (AML) and
myelodysplastic syndrome (MDS) patients in clinical trials (79,
80), this strategy has so far struggled in coping with solid tumors.
Furthermore, it is possible that monotherapy acting on a single
target is simply insufficient to overcoming the heterogeneous
tumor microenvironment (81).
SYSTEMATIC ENGAGEMENT
OF MACROPHAGES BY
BISPECIFIC ANTIBODY

Given the increasing awareness and interest in tumor
heterogeneity, bispecific antibodies have become a promising
strategy to combat cancer and other diseases. In contrast to
targeting T cells or NK cells through a bispecific antibody (82,
83), this principle has remained understudied in macrophages.
To the best of our knowledge, the concept of approaching
macrophages as tumoricidal effectors by bispecific antibody
was first proposed in 2015 (13). As of writing, only a handful
of bispecific antibodies designed to exploit macrophages have
been reported, with even less validated in clinical trials.

Unlike T cell engagers, which require a specific antibody
variable domain arm for engagement (84), macrophages can
recognize and bind to the Fc fragment of an antibody via FcgR
recognition, followed by the phagocytosis of opsonized target
cells (13). This unique feature licenses bispecific antibodies
adopting IgG-like formats to recruit macrophages without
variable domain engagement. Therefore, variable domains of
bispecific antibodies in this category can be exploited to target
tumor-associated antigens and “don’t eat me” signals on target
cells simultaneously, harnessing the power of ADCP and
phagocytosis checkpoint blockade at the same time to enhance
phagocytosis of tumor cells.

The role of CD47 in immune evasion as well as therapeutic
potential of CD47 blockade was first described in an AML
model (9, 41). Following this study, HMBD004, an anti-CD47/
CD33 bispecific antibody, was developed based on a
humanized anti-CD47 antibody and anti-CD33 gemtuzumab,
adapting a 1 + 1 IgG format (85). This bispecific antibody
maintained CD47-SIRPa axis blockade as well as phagocytosis
induction with negligible hemagglutination of erythrocytes in
vitro. Furthermore, HMBD004 treatment of AML xenograft
mice models resulted in a significant decrease in tumor burden
and increased progression-free survival (85). Another notable
example of a bispecific engager was noted in NI-1701, a CD47/
March 2021 | Volume 12 | Article 635173

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Therapeutic Application of Macrophage Phagocytosis
CD19 bispecific antibody constructed with the IgG1 isotype to
elicit an ADCP response. This bispecific antibody demonstrated
potent in vitro and in vivo activity across a plethora of B cell
malignancy models, which rely on the co-engagement of CD47
and CD19 on B cells simultaneously to induce potent ADCP of
target cells (86, 87).

With the success of the anti-CD47 antibody Magrolimab
(hu5F9-G4) in combination with Rituximab in clinical trials
treating B-cell non-Hodgkin’s lymphoma (54, 88), a logical
bispecific antibody design strategy is to combine the anti-
CD47 arm with another arm targeting a B-cell specific antigen,
such as CD20 (89, 90) or CD19 (86, 87, 91) (Figure 1C–IV).
Two bispecific antibodies were recently reported adapting
this strategy: one fused an anti-CD20 variable domains at
the N-terminal of the variable domains of an anti-CD47
antibody (89); the other fused with the N-terminal V-set Ig
domain (residues 1-118) of SIRPa to the N-terminal of the
heavy-chain variable domain of an anti-CD20 antibody (90).
Both bispecific antibodies exhibited improved tumor cell
targeting while avoiding any on-target off-tumor effect.
Furthermore, both bispecific antibodies resulted in superior
in-vivo efficacy in Raji xenograft, conferring improved tumor
growth inhibition and prolonged survival in comparison to
parental antibody monotherapy and combination therapy.
Furthermore, a recent study in 2017 engineered a novel
bispecific antibody known as RTX-CD47 with the ability to
target both CD47 signaling as well as CD20-positive cells. To
accomplish this, the CD20-targeting scFV antibody fragment
from rituximab was fused to a CD47-blocking scFv. In vitro
examinations conducted in various CD20 expressing cell lines
demonstrated superior macrophage-mediated phagocytosis,
particularly when used in synergy with therapeutic
antibodies such as cetuximab, daratumumab, alemtuzumb,
rituximab, or obinutuzumab (92).

In addition to targeting tumor antigens, it is also of interest to
target multiple immune checkpoints, such as CD47 and PD-L1.
PD-L1 is generally overexpressed on tumor lesions, and thus
targeting it could help to improve the retention of CD47/PD-L1
bispecific antibody in tumor tissue (Figure 1C–III). Not only is
PD-L1 a canonical T cell checkpoint (93), it has also been
recently identified as a macrophage “don’t eat me” signal.
Therefore, its blockade has been shown to reinvigorate the
anti-tumor function of TAMs (10). Because of this, a CD47/
PD-L1 bispecific antibody could unleash more potent
macrophage phagocytosis ability. In a recent proof-of-principle
study (94, 95), the pre-clinical anti-tumor efficacy of such a
bispecific antibody was tested in multiple synergistic mouse
models. In comparison to anti-CD47 or anti-PDL1
monotherapy or anti-CD47 + anti-PDL1 combinational
therapy, simultaneously targeting both CD47 and PDL1 on
tumor cells with a CD47/PDL1 bispecific antibody delivered
the best tumor growth inhibition and prolonged recipient
survival (94, 95). Mechanistically, the systemic delivery of the
dual-targeting agent significantly increased DNA sensing,
dendritic cell cross-presentation, and an anti-tumor T cell
response (94, 95).
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Another notable example of a bispecific antibody
was constructed by researchers at Stanford University to
target CD70 and SIRPa by fusing the variable domain of
Vorsetuzumab, an antibody targeting CD70, a protein
expressed on activated lymphocytes, to the N-terminal of
corresponding variable domain of KWAR23, an anti-SIRPa
antibody. The CD70/SIRPa bispecific antibody was able to
target CD70-expressing cells including NHL and renal cell
carcinoma and facilitate the engagement of macrophages.
When compared to Vorsetuzumab + KWAR23 treatment,
the CD70/SIRPa bispecific antibody demonstrated an
enhanced in-vitro phagocytosis of target tumor cells,
but there was no apparent difference in in vivo efficacy
observed (76). This demonstrates that the bispecific
antibody is able to function on a par with a combinatory
treatment of both arms of the antibody separately
(Vorsetuzumab + KWAR23). Given that this only requires
the administration of a single biologic, it eliminates the
possible confounding variable associated with balancing the
administration and controlling for interactions between two
separate biologics. Pharmacokinetically speaking, this would
have implications warranting further study into the dosing
and safety profile of such an antibody.
IMMUNO-QUIESCENT
BISPECIFIC ANTIBODY

Phagocytosis is crucial for maintaining homeostasis. A bispecific
antibody to bring together macrophages and phagocytosis targets
would be of particular interest in cases where tissue homeostasis
restoration is key, without inciting an inflammatory response.
Such scenarios include but are not limited to degenerative central
nervous system diseases, autoimmune diseases, and pandemics
like severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2).

Recently, a team at Genentech performed a proof-of-principle
validation of a MerTK-agonist bispecific antibody (96). MerTK is
a part of the Tyro3-Axl-MerTK family of receptor tyrosine
kinases and are indispensable for maintaining tissue
homeostasis. Guided phagocytosis through agonism of MerTK
was shown to be inflammation-quiescent, in sharp contrast to
the inflammatory nature of FcgRs-mediated phagocytosis,
namely ADCP (96–98). By exploiting LALAPG mutations in
Fc fragments (L234A, L235A, and P329G) to completely abolish
Fc mediated effector function (99, 100), the CD20/MerTK
bispecific antibody (CD20/18G7-LALAPG) has been shown to
induce antigen-specific target cell phagocytosis through
activation of MerTK in human macrophages with negligible
production of pro-inflammatory cytokines (96). This bispecific
antibody model was further engrafted with an anti-Ab amyloid
plaque arm. The Ab/MerTK bispecific antibody, 3D6/20F5-
LALAPG, elicited improved Ab aggregate clearance by
microglial cells, but not the production of inflammatory
cytokines (96).
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FACILITATING PHAGOCYTOSIS
USING NANOPARTICLES

Seeing as ADCP is in some cases insufficient to mount an
effective anti-tumor response, a potential method of
invigorating the phagocytic response is using nanoparticles.
The use of different nanoparticles, such as silica, carbon, iron
oxide, or gold to drive macrophage polarization states has been
extensively studied in literature (101). When TAMs recognize
the nanoparticles as foreign, they will engulf them via
phagocytosis, releasing the contents of the nanoparticle within
the TAMs (102). Therefore, nanoparticles can be packed with
drugs or contents designed to induce macrophage polarization
toward a more phagocytic phenotype to reprogram them with an
affinity for phagocytosis, thus making them an attractive vehicle
for therapy delivery (Figure 1B) (101, 103, 104).

Nanoparticles are an appealing therapeutic vehicle largely due
to their physical characteristics and small size (105, 106). Their
appeal is further reinforced by the phenomenon of Enhanced
Permeability and Retention (EPR) effect, which in tumor tissue
helps to promote the accumulation and persistence of
nanomedicines at the site of the tumor (107, 108). The leaky
nature of the tumor vasculature allows for nanomedicines to
penetrate into tumors, where the minimal lymphatic drainage
and filtration facilitates their accumulation and persistence (109,
110). As of writing, there are over 200 clinical trials currently
underway globally investigating the use of different nanoparticles
against different cancers, primarily solid tumors (111). Patient
use of several nanoparticles has already been validated and
approved by the FDA (112).

However, the prospect of nanoparticles delivering drugs to
specific subsets of macrophage phenotypes has been relatively
understudied (113). A recently published study was among the
first to engineer nanoparticles capable of preferentially targeting
M2 TAMs through the delivery of nanoparticles carrying M1-
polarizing transcription factors and mRNAs for interferon
regulatory factor 5 (IRF5) as well as IKKB, its activating kinase
(114). The delivery of both IRF5 and IKKB were able to force M2
TAMs to polarize to a pro-inflammatory state and convert to a
M1 cytotoxic phenotype (114). A unique quality of this method
is its method of administration via injection that does not trigger
an immune reaction or lead to systemic toxicity in the recipient.
Another innovative aspect about this study is how the authors
generated the targeted mRNA delivery system to target mannose
receptors on M2 macrophages. When tested in vivo¸ treatment
with IRF5/IKKB NPs led to a significant regression of ovarian
cancer and was able to be cleared and prolonged the lifespan of
the mice (114).

This finding was supported by a later study in which
researchers loaded IMD-0354, a TAM repolarization agent,
into mannose-modified cationic lipid-based nanoparticles
(M-IMD-CLN), and sorafenib, a kinase inhibitor used to treat
cancer, into cationic lipid-based nanoparticles (SF-CLN) (115).
Mannose is selectively taken up by M2 TAMs, which are
characterized as highly expressing mannose receptors.
Therefore, the mannose present on the nanoparticles become
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the ligand for M2 mannose receptors and thus enhance its active
uptake by M2 TAMs, as demonstrated by the in vivo experiments
exhibited a superior biodistribution profile and localization to
the site of the tumor, eliciting TAM potent anti-tumor properties
in Hepa1-6 tumor bearing mice (115). In addition to this, when
M-IMD-CLN and SF-CLN are used together in junction, there
appears to be a synergistic augmented anti-tumor efficacy and
TAM re-polarization compared to mice treated with SF-CLN
alone (115).

Later, Chen et al. further reinforced the potential for using
mannose as a ligand for targeted delivery of nanoparticles to M2
TAMs by conjugating bivalent ligands for mannose receptors
onto nanoparticles, effectively driving their uptake by M2 TAMs
(113). This was accomplished by differentiating rat peritoneal
macrophages into M1 via IFN-y and M2 via IL-4/IL-13
treatment. Markers distinguishing between resting, M1, and
M2 macrophages were assessed to confirm their phenotypes.
These groups of macrophages were then treated with the bivalent
mannose nanoparticles and their uptake was quantified. These
nanoparticles were found to have a significantly higher level of
uptake in M2 macrophages, especially when compared to M1 or
resting macrophages (113).

It is important to note that nanoparticles are not limited to
containing only a single drug or compound to be delivered (116).
Multivalent nanoparticles have been studied extensively for their
potential to carry multiple drugs or compounds, thus hitting
multiple targets (117, 118). For example, albumin-based
nanoparticles expressing transferrin receptor binding peptide
T12 and mannose were capable of not only polarizing M2
TAMs to become M1, but also remodeling the tumor
microenvironment to allow for an enhanced anti-tumor
response (119). Gliomas highly express transferrin receptor
and albumin-binding receptor SPARC, while M2 TAMs also
highly express SPARC and mannose, therefore facilitating the
dual-targeting role of these nanoparticles for both gliomas and
M2 TAMs. When these nanoparticles are loaded with both
disulfiram/copper complex, a treatment for glioma, and
regorafenib, a kinase inhibitor that repolarizes TAMs to M1,
glioma proliferation was inhibited and M2 TAMs were re-
programmed toward a M1 phenotype (119, 120). Thus, these
studies and others provide a proof-of-principle that
nanomedicines can be designed to preferentially target M2
TAMs. Future investigations could study arming these
nanoparticles with drug payload with a final destination of M2
TAMs to either inactivate or reprogram them. Therefore, when
considering the use of nanoparticles to facilitate and enhance
macrophage-mediated phagocytosis, the following main
approaches are of interest: 1) inactivating or eliminating M2
TAMs, and 2) reprogramming M2 TAMs to acquire a M1 pro-
inflammatory phenotype to enhance phagocytosis.

Furthermore, a multi-functional protein calreticulin has been
demonstrated as an important pro-phagocytic “eat me” signals
for apoptotic cells and many types of cancer cells. In cancer
cells with apoptosis induced by chemotherapeutic agents such
as anthracyclines and oxliplatin, calreticulin trafficks to the
cell surface, dictating a process of immunogenic cell death
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(ICD) (121). ICD is characterized as an immunostimulatory
process that triggers an adaptive immune response against
certain epitopes of antigens, including tumor neo-epitopes
(122). In addition, macrophages have been shown to be an
important resource for calreticulin (123–127). Macrophages
present calreticulin on their cell surface or secrete it to the
extracellular media to directly label unwanted cells such as
aging or malignant cells for subsequent phagocytosis.
Interaction between calreticulin and asialoglycans on unwanted
cells enables their recognition by macrophages and initiation of
phagocytosis. A recent study demonstrated that macrophage-
mediated anti-tumor immunity was found to be enhanced upon
intratumoral injection of nanoparticles containing calreticulin
(128). Yuan et al. designed dual-function colloidal nanoparticles
capable of 1) targeting HER2, a receptor commonly expressed on
cancers, and 2) promoting anti-tumor phagocytosis via
calreticulin (129). In this case, calreticulin promotes
phagocytosis of target cells by enhancing APC recognition of
target cells. In junction with the HER2 targeting, engagement of
this dual-function nanoparticle with APCs augments the anti-
tumor response by activating both the innate and adaptive
immune system with one particle (129). Effectively, these allow
for a synergistic effect achieved through a combinatory therapy
being delivered within a single particle that may be superior to
either therapy alone. Particularly, this allows for the selective
targeting of M2 TAMs to either inactivate them to remove their
immunosuppression or reprogram them into a M1 phenotype to
elicit anti-tumor immunity.

However, a significant barrier for using nanoparticles is the
fact that despite being able extravasate and persist due to EPR,
only a very small percentage (less than 1%) of injected
nanoparticles are actually able to traffic and be delivered to
their intended destination (130, 131). As such, this remains a
critical handicap to the efficacy of using nanoparticle-based
treatments in patients. It remains a challenge for the
nanoparticles to be homed and actively directed to the site of
the tumor, rather than rely on passive targeting (132).

A study conducted in 2019 highlighted the potential for using
exosomes derived from effector CAR-T cells as they retain their
anti-tumor capabilities with minimal toxicity or cytokine storm
(133). This method could thus be used to mitigate the problem of
poor trafficking and localization of nanoparticles to their
destination. That is, the “CAR exosomes” retain the CAR
expressed on their host cells, allowing these nanoparticles to
maintain their parental cells’ unique targeting feature (133).
Conversely, rather than taking exosomes from CAR-T cells,
another recent study demonstrated this phenomenon in
nanoparticles coated with the cell membrane of CAR-T cells,
therefore conferring them target antigen specificity similar to
CAR-T cells (134). In this study, the CAR-T cell membrane
coated nanoparticles demonstrated a superior tumor targeting
ability compared to uncoated nanoparticles (134). Both of
these findings open the door to future investigation into
how to maximize nanoparticle infiltration, persistence, and
targeting to overcome these barriers in order to enhance their
therapeutic efficacy.
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CHIMERIC ANTIGEN RECEPTOR
ENGINEERED MACROPHAGES

Despite the increasing interest in CAR-T cell therapies, there has
been a struggle in reproducing its therapeutic efficacy observed in
hematological malignancies in solid tumors (135–137). This is
heavily related to the biology of how T cells fight tumor cells, as
they need to be presented with antigens, primed, trafficked to the
tumor, infiltrate tumor tissue, and recognize and kill malignant
cells (81, 138). However, due to the heterogeneous nature of
tumor tissue and the complex immunoinhibitory tumor
microenvironment, not all of these critical events can occur
successfully (74, 136, 139–142).

To address these roadblocks, CAR T cell therapy has recently
turned to macrophages. Macrophages are known to be abundant
and actively recruited to various types of solid tumor tissue (17,
143, 144). Recruited by macrophage chemo-attractants (i.e,
CCL2, MCP1, CSF-1), tumor-associated macrophages
represent up to 50% of tumor-infiltrating cells, as seen in
melanoma, renal cancer, and colonic carcinoma (145, 146),
suggesting they may be able to efficiently infiltrate into solid
tumors upon adoptive transfer. Not only this, but macrophages
have a unique quality in that they have a high degree of versatility
and plasticity (147), and are thus able to adapt and change in
response to external stimuli or the environment (148). The
abundance and plasticity of tumor associated macrophages
corroborate the idea of fitting macrophages with CAR
constructs, therefore conferring target antigen specificity, and
promoting engineered macrophages to efficaciously target
solid tumors (Figure 1D). However, it is worth noting here
that although their plasticity may provide therapeutic versatility,
it may also act as a potential pitfall. In particular, although
plasticity can be a desired trait, it is only so if they skewed toward
a M1 pro-inflammatory phenotype that will target the tumor.
Furthermore, macrophage activation has been associated with
the development of macrophage activation syndrome (MAS),
characterized by a surge in pro-inflammatory cytokines,
resulting in a cytokine storm (149, 150). Ultimately, this
warrants further investigation to see how to prevent or
mitigate these phenotypes in vivo to minimize unwanted side
effects and enhance treatment efficacy and most importantly,
patient safety.

The construction of CARs for macrophages requires similar
components to that of T cells: a target binding extracellular
domain adapted from an antibody, followed by a hinge sequence,
a transmembrane domain connecting the extracellular domain
and intracellular signaling domain (136). It is worth to keep in
mind the differences of signal pathway required for T cell
activation and macrophage phagocytosis when designing a
CAR for macrophages. The intracellular domains of CAR-
macrophages reported so far have varied from that of CAR-T
cells. CD3z is a common intracellular domain being studied in
both, while CD147, FcgR, and Megf10 have been studied more
exclusively in CAR-macrophages (CAR-Ms) only, for example
(40, 151, 152). Phagocytosis-oriented CAR constructs are capable
of rewiring macrophages and jumpstarting phagocytosis.
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Theoretically, CAR expression by macrophages would not only
help the effectors to target cells, but also to circumvent the need
of an “eat me” signal, to initiate phagocytosis signaling.
CURRENT STUDIES OF
CAR-MACROPHAGES

Up until now, the study of utilizing CAR-Ms, has been relatively
limited. A recent study by Morrissey and colleagues was among the
first to provide initial evidence that CAR-engineered macrophages
can promote phagocytosis. By utilizing an extracellular antibody
variable fragment (ScFv) targeting CD19 as well as the CD8
transmembrane domain present in a traditional CD19 CAR-T
construct, researchers were able to generate chimeric antigen
receptors for phagocytosis (CAR-Ps) on murine macrophage cell
line J774A.1 that successfully drove the phagocytosis of antigen-
coated decoy particles in an ex vivo setting (151). In this study, the
authors were able to test phagocytosis specificity guided only by the
antigen recognition feature of the ScFv domain of the CAR
construct. The authors were also able to compare the capacity of
driving phagocytosis by various intracellular domains in a relatively
simplified ex vivo assay (151).

The potential for engineering macrophages with CAR
constructs was further reinforced by another study that elected
to generate murine CAR-Ms specifically targeting the solid tumor
antigen HER2 that utilized the intracellular signaling domain of
CD147 to drive expression of matrix metalloproteinases (MMPs)
in a HER2-dependent manner. To accomplish this, the authors
first forced HER2 expression on 4T1 tumor cells and transduced
murine macrophage cell line Raw264.7 with the HER2-147-CAR
(152). From this, they were able to induce matrix MMP3 and
MMP13 expression specifically upon ligation of the CAR and its
antigen to remodel tumor microenvironment, increase T cell
infiltration, and reduce tumor growth in vivo (152).

A study published earlier this year was the first to successfully
generate human CAR-Ms with demonstrated functionality in
both in vitro and in vivo models (40). CAR-expressing human
macrophages were generated with a chimeric Ad5/F35
adenovirus (40, 153). Using CAR constructs with the CD3-z
intracellular signaling domain and ScFvs targeting CD19, HER2,
and mesothelin, the authors showed that antigen specific tumor
cell killing was triggered by the CAR-transduced human
macrophage line THP-1. Importantly, the authors establish
that primary human macrophages can also be engineered to
express a CAR to promote phagocytosis, and showed that HER2-
CAR Ms exhibited dramatic in vivo therapeutic efficacy in
various preclinical xenograft models. Interesting, transduction
using Ad5/F35 adenovirus polarized human macrophages to a
pro-inflammatory M1 state independent of CAR expression.
Furthermore, CAR-Ms recognition of tumor cells shifted the
tumor microenvironment from an anti-inflammatory one to a
pro-inflammatory one, activating several interferon genes and
inflammatory pathways along the way (40). Taken together,
these findings suggest that CAR-Ms can both induce tumor
phagocytosis, as well as reshape the tumor microenvironment to
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promote anti-tumor T cell responses. A Phase 1 preclinical trial
(NCT04660929) investigating the safety and early-stage efficacy
of HER-2 CAR-Ms is underway.

Collectively, these studies represent the first proof-of-principle
validation of using CAR-M as an immunotherapeutic. CAR-Ms
not only function via direct target cell phagocytosis, but also
through vaccinal antigen cross-presentation and T cell co-
stimulation (40). Macrophages have been shown to reside and
persist within tissues, and certain tissue-resident macrophages are
able to survive quiescently for relatively long period of time until
challenged (154–156). This very feature makes CAR-Ms the ideal
local sentinels for metastatic tumor cells, thus preventing tumor
relapse at early metastasis stage. It is worth noting that the
plasticity of macrophages endows itself the potential for
application beyond tumors where inflammation is dispensable.
With the proper design of CAR constructs, macrophages can be
converted into immunoquiescent CAR-Ms while preserving their
capacity to phagocytose, thus addressing other unmet medical
challenges such as pathogen infection, autoimmune diseases, and
degenerative neural diseases. Given the vast potential, CAR-Ms
can transform the current landscape of cancer care and become a
next-generation therapy for cancers and beyond.
CONCLUSION

The mechanisms of macrophage phagocytosis and subsequent
adaptive immune cross-priming have been increasingly
appreciated and studied as a crucial effector function
complementing adaptive anti-tumor immune responses.
Antibody-dependent cellular phagocytosis has long been
extensively studied and applied in clinical settings for at least 20
years. For example, ritxuimab was the first-in class monoclonal
antibody approved by the FDA in 1997. Since then, this list has
expanded to include a plethora of novel antibodies of varying
designs that are now approved or undergoing clinical trial
evaluation. Although this exciting field of study first began with
the initiation of ADCP via therapeutic antibodies, it has now gone
on to expand into exploiting phagocytosis checkpoints and beyond
to enhance therapeutic efficacy, leading to novel fields of study
including: 1) using nanoparticles to engineer macrophages with
enhanced phagocytic ability, 2) strategies to block self-protective
signals on cancer cells, and 3) fitting CAR constructs on
macrophages to confer target antigen specificity. These exciting
breakthroughs have marked an important step forward as
macrophage-mediated phagocytosis of cancer has begun to enter
the spotlight as a promising novel cell-based therapy.

The CD47–SIRPa axis was the first phagocytosis checkpoint
discovered in cancer (41), and new phagocytosis checkpoints have
since been identified, such as PD1-PDL1 (10), MHC I–LILRB1 (42),
and CD24–Siglec-10 (43). Phagocytosis checkpoint blockade
therapies have thus far resulted in promising human trial data,
such as CD47 blocking therapeutics Magrolimab in NHL and AML,
or TTI-622 in lymphoma (52, 70). By the nature of different yet
complementary immunological pathways mobilized upon
phagocytosis checkpoint blockade, macrophage phagocytosis
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proves itself as a novel and promising therapeutic tool on par
with many approved treatments, such as PD-1 checkpoint
blockade (157). Given the heterogeneity of solid tumor cells,
and the suppressive and often immune exclusive tumor
microenvironment, phagocytosis checkpoint blockade appears to
be a promising starting place for effective anti-tumor innate
immune responses. Whether phagocytosis checkpoint blockades
can serve as a vehicle, either in the form of monoclonal antibody or
bispecific antibody, to conquer solid tumors, especially hard-to-treat
metastatic tumors, warrants further intense investigation.

There are also several clinical trials underway to evaluate
therapies specifically targeting TAMs via nanoparticles. These
trials and other original research studies have yielded promising
data that can hopefully be applied to patients soon (158, 159).
However, in order for these therapies to be optimally translated
into patient use, there is much work that still needs to be done to
prove TAM targeting via nanomedicine is feasible. Thus far,
promising preliminary results suggests there is vast potential in
which these nanoparticles can be applied, even beyond just
targeting TAMs (116). Despite this, more proof-of-principle
and validation studies need to be conducted before its use can
be optimized and integrated into standard practice for cancer
patient care. For example, a critical question that remains to be
answered is how to optimize and maximize the number of
nanoparticles that will actually traffic and localize to the tumor.
As demonstrated in countless studies, despite being bolstered by
EPR to enhance nanoparticle accumulation via leaky vasculature,
only around 1% of the nanoparticles will actually make it to the
site of the tumor (130, 131). This is an important first roadblock
that critically needs to be overcome before expanding into the
plethora of possibilities surrounding nanomedicines.
Furthermore, another question of interest is how to facilitate
the persistence of these nanoparticles in vivo such that they are
not rapidly eliminated by the immune system. Even if the
particles are able to overcome the low trafficking and tumor
localization rate, another factor to consider is the body’s immune
system perceiving them as foreign threats and eliminating them
before they are able to exert their therapeutic effect. To address
this, it would be interesting to apply a principle studied in Deuse
et al. in generating hypoimmunogenic nanoparticles that evade
immune detection and elimination to allow them to persist and
ensure drug delivery through the suppression of MHC I and
MHC II while overexpressing anti-phagocytic signal CD47 (160).
Seeing as these are major handicaps dampening the full potential
and efficacy of nanomedicine-based approaches to elicit potent
M1 TAM activity, there ultimately remains much work to be
done to study this exciting and novel form of immunotherapy.

Last but not least, the prospect of CAR-M based
immunotherapy was propelled forward by previous findings by
Morrissey et al. and Zhang et al. (151, 152). The Klichinsky et al.
study marked a critical breakthrough in reinforcing the efficacy
of macrophage-based therapeutics against cancer (40). By fitting
macrophages with a CAR construct, they leveraged the potency
of macrophage-mediated phagocytosis in conjunction with
target antigen specificity to elicit potent anti-cancer effects that
appear to be on par with their CAR-T counterparts. Not only
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were they able to successfully overcome the difficulties with
transducing primary macrophages, they were also able to
exploit their plasticity to drive them toward a M1 phenotype
while simultaneously remodeling the tumor microenvironment
to be pro-inflammatory. These exciting findings are now
beginning to be put to the test clinically, beginning with a
CAR-M against HER2. Though the use of CAR-Ms holds great
promise as an innovative immuno-oncology therapeutic avenue,
there is still a need for the development of a pipeline investigating
its efficacy and safety profile. As many studies have demonstrated
in their CAR-T counterparts, cytokine release syndrome remains
one of the main obstacles to overcome. Cytokine release
syndrome is largely mediated by the activation of
macrophages, triggering an overwhelming sudden release of
pro-inflammatory cytokines (161). As such, investigations into
the safety profile of CAR-Ms would be particularly interesting to
delve into. In addition to this, another question of interest is how
to design CAR constructs and strike a balance between
maximizing phagocytosis signals and enhancing the CAR-M’s
specificity while minimizing unwanted toxicity. Collectively, this
could be an emerging direction of study in this promising field.

Ultimately, recent breakthroughs in the exciting field of
harnessing macrophage-mediated phagocytosis have highlighted
their potential for clinical use to improve patient outcomes. With
an estimated 1.8 million new cancer cases to be diagnosed and
600,000 cancer-related deaths to occur in the United States in 2020,
the development of effective and innovative therapeutics is urgently
needed more than ever (162). The up and coming field of
immunotherapeutics has yielded a vast array of promising data
and approaches for the treatment of different cancers. However,
there remains much work to be done to continue the momentum
and push forward the hopeful progress that has been established in
preliminary work in this exciting avenue. This would be crucial for
developing further therapies that bridge the innate and adaptive
immune systems to benefit patients with cancer in a clinical setting.
We hope this review inspires more studies to advance the work
done and continue challenging the status quo of standard cancer
care and treatment in order to improve patient outcomes.
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Phagocytes, which include neutrophils, monocytes, macrophages, and dendritic cells,
protect the body by removing foreign particles, bacteria, and dead or dying cells.
Phagocytic integrins are greatly involved in the recognition of and adhesion to specific
antigens on cells and pathogens during phagocytosis as well as the recruitment of
immune cells. b2 integrins, including aLb2, aMb2, aXb2, and aDb2, are the major
integrins presented on the phagocyte surface. The activation of b2 integrins is essential to
the recruitment and phagocytic function of these phagocytes and is critical for the
regulation of inflammation and immune defense. However, aberrant activation of b2
integrins aggravates auto-immune diseases, such as psoriasis, arthritis, and multiple
sclerosis, and facilitates tumor metastasis, making them double-edged swords as
candidates for therapeutic intervention. Therefore, precise regulation of phagocyte
activities by targeting b2 integrins should promote their host defense functions with
minimal side effects on other cells. Here, we reviewed advances in the regulatory
mechanisms underlying b2 integrin inside-out signaling, as well as the roles of b2
integrin activation in phagocyte functions.

Keywords: b2 integrins, integrin activation, integrin adaptors, phagocytes, phagocytosis
INTRODUCTION

Phagocytosis is the mechanism by which microorganisms are engulfed and killed, and it is the main
process by which immune cells disassemble pathogens to present antigens. This is important for the
innate immune response and initiating adaptive immune responses. Phagocytosis is a special form
of cell endocytosis, whereby cells ingest solid particles through vesicles, including microbial
pathogens (1–3). While most cells are capable of phagocytosis, the professional phagocytes of the
immune system, such as macrophages, monocytes, neutrophils, and dendritic cells, excel in this
process (4). During phagocytic uptake, phagocytes use receptors to interact with particles and
mediate signals that encapsulate the particle within the membrane, leading to complete engulfment
(5, 6). Particle recognition and uptake are conducted by a receptor ligation zipper-like process that
involves several types of receptors, such as integrins, Fcg receptors (FcgRs), and scavenger receptors
(1, 7).
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Integrins are essential cell-surface adhesion molecules that are
widely expressed on cell membranes. As cell adhesion receptors,
integrins transduce intracellular and bidirectional intercellular
signals (8, 9), and are crucial for immune system functions (10,
11). In recent years, great progress has been made in elucidating
integrin signal transduction mechanisms in phagocytes. b2
integrins, such as complement receptor 3 (CR3, also known as
integrin aMb2, CD11b/CD18, macrophage-1 antigen, or Mac-1)
and complement receptor 4 (CR4, also known as integrin aXb2,
CD11c/CD18, or p150/95), are highly expressed in phagocytes
and are important for phagocytosis. This review focuses on the
role of b2 integrin activation and signaling during both adhesion
and phagocytosis. We highlight the inside-out signaling basis of
b2 integrin function during adhesion and phagocytosis and
propose that b2 integrin-mediated phagocytosis is a great
model to understand functional regulation of integrins.
b2 INTEGRINS EXPRESSED
BY PHAGOCYTES

b2 integrins play a major role in regulating phagocyte adhesion and
migration to inflamed organs and other immunological processes,
such as phagocytosis (12, 13) (Table 1). In mammals, professional
phagocytes express complement receptors, some of which are b2
integrins, such as CR3 and CR4, which are critical for anti-pathogen
defense and inflammation regulation. Phagocytes like monocytes
and macrophages express all four b2 integrin family members: CR3,
CR4, aLb2 (also known as CD11a/CD18, lymphocyte function-
associated antigen 1, or LFA-1), and aDb2 (CD11d/CD18) (23).
The activation of b2 integrins is involved in multiple functions of
phagocytes, such as cell adhesion, locomotion, exocytosis, and
phagocytosis (14, 24–26). The central role of b2 integrins in
immunity is highlighted by the fact that patients with leukocyte
adhesion deficiency type I (LAD-I) syndrome, who lack b2 integrin
expression, are particularly prone to bacterial infections (27). LAD-
III (leukocyte adhesion deficiency type III) patients have mutations
in kindlin-3 (an integrin binding protein) and show a deficiency in
integrin b2 activation, leading to an adhesion defect of phagocytes
Frontiers in Immunology | www.frontiersin.org 2142
similar to LAD-I (28). These patients end up suffering from
recurrent life-threatening infections (29). Overaggressive b2
integrin activation leads to excessive inflammation and associated
tissue damage (30).

Integrin aLb2 is critical for the adhesion of blood phagocytes
(such as neutrophils and monocytes) to the vascular endothelium
(31–35), as well as intravascular patrolling of monocytes (36, 37)
and transendothelial migration of neutrophils (38, 39). Integrin
aMb2 is involved in cell adhesion, cell migration, phagocytosis, and
degranulation of phagocytes (14, 24–26, 37, 40). Integrin aMb2
recognizes various structurally and functionally different ligands,
including extracellular matrix (ECM)-associated ligands that are
released from damaged cells during inflammatory responses, such
as intercellular adhesion molecule 1 (ICAM-1), glycoprotein Ib-IX,
and junctional adhesion molecule 3 (JAM-3) (41–45). Both aMb2
and aXb2 can bind to complement component iC3b and are
crucial for RhoA-dependent phagocytosis in phagocytes (46–48).
The differences between these two integrins have been studied in
aM and aX knockout mice (Table 1). aMb2 plays a major role in
recruitment of polymorphonuclear neutrophil (PMN) to bacterial
and fungal pathogens. aXb2 plays a central role in monocyte- and
macrophage-mediated inflammatory functions, as shown by aXb2
deficiency that abrogated the recruitment of monocytes and
macrophages to sites of inflammation or infection and reduced
the ability of these cells to kill/phagocytose pathogens (17). Integrin
aDb2 is rarely expressed on peripheral blood phagocytes but is
significantly up-regulated on macrophages during inflammation
(e.g., atherosclerosis) (19). Integrin aDb2 and aMb2 show some
similarities in many functions and share some ligands, such as
ICAM-1, ICAM-2, ICAM-4, fibrinogen, collagen, iC3b, heparin,
GPIba, Thy-1, and plasminogen (49, 50). Recently, it was shown
that b2 integrins are required for both monocyte and
hematopoietic functions, and lower b2 integrin expression is
associated with more severe schistosomiasis in mice (51).

b2 integrins are important for the fusion of human (52) but
not mouse (53) macrophages; Macrophage fusion happens
during chronic infection of persistent pathogens or encounters
with nondegradable foreign objects, and results in the formation
of multinucleated giant cells. Human monocyte-derived
TABLE 1 | Distribution of b2 integrins and phenotypes of engineered gene knockout mice.

Distribution Phenotypes of knockout mice

aLb2 All leukocytes but predominates on
lymphocytes

Defective adhesion and migration of neutrophils, monocytes, and macrophages; impaired neutrophil
chemotaxis; a defect in TNF-a-induced neutrophil and monocyte extravasation from blood vessels; a
defect in the induction of peripheral immune responses; reduced NK cytotoxicity.

(14–16)

aMb2 Abundant on myeloid cells, monocytes/
macrophages, neutrophils, NK cells,
fibrocytes, mast cells, B cells, CD8+ T
cells, and CD4+ gd T cells

Defective recruitment of neutrophils and mast cells to bacterial and fungal pathogens; a defect in
neutrophil binding to fibrinogen and degranulation; impaired mast cell development and innate immunity;
a defect in macrophage egression from the peritoneal cavity.

(14, 15)

aXb2 Abundant on myeloid dendritic cells,
monocytes/macrophages; expressed on
human NK cells and lymphocyte
subpopulations

Defect in intraperitoneal recruitment and adhesive functions of monocytes and macrophages and their
ability to kill/phagocytose pathogens.

(17, 18)

aDb2 Abundant on myeloid cells,
macrophages, neutrophils, and
monocytes; highly expressed on human
NK cells, B cells, and gdT cells

Defective macrophage retention and reduced neutrophil accumulation in the atherosclerotic lesions;
defective accumulation of mononuclear cells and neutrophils in the peritoneal cavities of mice infected by
S. typhimurium; reduced lung macrophages and increased blood neutrophils in mice with cecal ligation
and puncture sepsis or LPS-induced endotoxemia.

(19–22)
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macrophage fusion was decreased ~66% upon treatment with b2
integrin-blocking antibody (52). In mouse studies, thioglycollate-
elicited peritoneal macrophages from Mac-1 knockout mice
showed a significant ~50% decrease in fusion compared to
those from wild-type controls (53). However, thioglycollate-
elicited peritoneal macrophages from wild-type mice treated
with b2 integrin-blocking antibody showed a slight (~35%) but
non-significant decrease of fusion compared to those without
antibody treatment (53).
INTEGRIN ACTIVATION BY
INSIDE-OUT SIGNALING

Both integrin a and b subunits have long ectodomains with a
headpiece and tailpiece, a transmembrane domain (TMD), and a
flexible cytoplasmic tail (54–59) (Figure 1A). b2 integrins form
at least three conformational states (58, 61–66): inactive (bent
ectodomain with closed headpiece, bent-closed), intermediate
Frontiers in Immunology | www.frontiersin.org 3143
(extended ectodomain with closed headpiece, extended-closed),
and active state (extended ectodomain with open headpiece,
extended-closed extended-open). The conformational change in
the extracellular domains enables rapid modulation of cell
adhesion and migration (58, 67, 68). The extended-open
conformation in a5b1 exhibits a 4,000 to 6,000‐fold increase in
ligand-binding affinity over the bent-closed and extended-closed
conformations (69). On human peripheral T lymphocytes or
K562 cells, most of the integrin aLb2 are inactive. After
stimulation, aLb2 integrins on T lymphocytes are activated
and show an ICAM-1 binding KD of ~26 µM (~1.5-3-fold
affinity increase, phorbol 12-myristate 13-acetate or stromal
cell-derived factor 1 stimulation) or ~460 nM (~87-174-fold
affinity increase, manganese stimulation) (65). These results
indicated that only a small amount of aLb2 integrins were
activated upon leukocyte activation.

Recently, a bent-open (bent ectodomain with open
headpiece) conformation was described for b2 integrins
(70, 71). By introducing aX N920C and b2 V674C mutations
A B

C

FIGURE 1 | Inside-out pathway of integrin b2 activation. (A) Structure model of integrin b2. Subdomains and headpiece/tailpiece portions labeled. (B) In resting b2
integrin (middle), the beta subunit (blue) crosses the membrane at a 25° angle, whereas the a subunit (pink) crosses vertically (0 degrees). Upon exposure to IL-8
(left), talin-1 binds to the beta subunit and forces the transmembrane angle to be >25°. This change is transmitted to the extracellular domain through the stiff
transmembrane domain (TMD), resulting in extended b2 integrin with an open headpiece. If the b2 TMD is mutated (b2 L697P, right), talin-1 will still bind the
intracellular domain and align the beginning of the TMD to an angle >25°, but the kink prevents this from being transmitted to the extracellular domain. The integrin
stays bent, but the headpiece opens (60). Talin head domain (THD). (C) Key signaling events that occur downstream of chemokine and lead to integrin activation.
Inactive integrins exist in a bent conformation, and the a and b cytoplasmic tails are held in close proximity by a salt bridge between residues found in the
membrane-proximal region of the tail. Activation of a variety of signaling pathways results in the recruitment of GTP-bound Rap1 and activated talin to the integrin,
leading to tail separation. The conformational change in the cytoplasmic region is transmitted through the integrin transmembrane domains that result in structural
changes in the extracellular region, leading to an open conformation that can bind ligand with high affinity. Part of this signaling pathway is shown here. a) The Rap1/
RIAM/talin-1 axis. Rap1-GTP binds to RIAM, which leads to RIAM binding to talin-1 and recruiting of talin-1 to integrin b tails, consequently activating the integrin.
b) The direct association of Rap1 and talin-1. Rap1-GTP binds to talin-1 through talin-F0 and F1 domains, recruiting talin-1 to interact with integrin b tails and
activation of integrin.
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to form a disulfide, a structure of the bent aXb2 with an internal
ligand-bound headpiece has been shown (72). The internal
ligand has residues on the aI domain that can bind to the bI-
like domain during activation. The binding of internal ligands is
correlated to the headpiece opening in the transition from
extended-closed to extended-open structure (73). The bent
internal ligand-bound structure was considered a bent-open
conformation of aXb2 in this study by reviewing the structure
detail of aI metal-ion-dependent adhesion site (72). There is no
direct ligand-binding result of this bent internal ligand-bound
integrin aXb2. However, other mutations were introduced that
are functionally relevant to the internal ligand. After Mn2+

treatment, the aX K313I, F315E, and I317H mutations exhibited
increased monoclonal antibody 24 (mAb24) binding, which
indicates headpiece opening, but unchanged KIM127 antibody
binding, which indicates extension. A previous electron
microscopy study showed that mAb24 exclusively binds to
extended but not bent aXb2 integrins (61). This can be
explained by the different methods of expressing aXb2 integrin
protein in these two studies: Chen et al. fused aX (1-1084) and b2
(1-677) ectodomains, respectively, to a C-terminal 54-residue
pepetide, which contains an acidic coiled-coil region and a
cysteine for disulfide bond formation; Sen et al. introduced a
disulfide bond by aX N920C and b2 V674C mutations. The
difference in disulfide bond position might result in these different
conformations. Thus, knowing whether bent-open b2 integrins
exist on physiologically relevant cells is important.

The mAb24 and KIM127 antibodies combined with total
internal reflection fluorescence microscopy or super-resolution
stochastic optical reconstruction microscopy indicates the
existence of the bent-open b2 integrins on primary human
neutrophils (70, 71). It has been shown that b2 integrins with
this conformation can bind ligands (ICAM-1, ICAM-2, ICAM-3,
or Fcg receptor IIA) expressed on the same neutrophils in cis and
auto-inhibit neutrophil adhesion and aggregation (70, 71, 74).
The cis interaction between FcgRIIA and the aI domain of bent
aMb2 (74) reduces the binding of FcgRIIA to IgG and inhibits
FcgRIIA-mediated neutrophil recruitment under flow, which
indicates a new anti-inflammatory function for sialylation in
immune responses and benefits for auto-immune disease. Thus,
cis interactions may more broadly serve as an important
regulatory mechanism for calibrating both the activity of the
integrin and, in turn, the heterologous receptor(s) with which it
interacts. However, details of this activation mechanism need
further investigation.

Intracellular proteins bind to integrin a or b subunits, lead to
the separation of integrin cytoplasmic tails, and stabilize the
extended-open conformation (50, 75). This can be initiated by
signaling from other receptors (inside-out signaling) or ligand-
binding of integrins themselves (outside-in signaling) (76). One
model of integrin inside-out signaling suggests that talin (a major
cytoskeletal protein; see below) binds to the b subunit
cytoplasmic tail and disrupts the stabilization of the inner
membrane association of a and b TMDs. This alters the
membrane-crossing angle of b TMD, thereby disrupting the
outer membrane association of a and b TMDs, which is
Frontiers in Immunology | www.frontiersin.org 4144
important for aIIbb3 integrin activation (77). Studies showed
that these transmitting conformation changes across the cell
membrane are also important for both b7 (78) and b2 integrins
(60). Blocking TMD topology transmission by introducing a
TMD kink (L697P mutation) impairs chemokine-induced cell
adhesion and b2 integrin extension, but not chemokine-induced
b2 integrin high‐affinity confirmation and manganese-induced
cell spreading (60). As expected, talin-1 knockout cells showed a
dramatic defect in chemokine-induced b2 integrin extension and
high‐affinity confirmation as well as manganese-induced cell
spreading (Figure 1B). These results indicate that talin-1
interaction with the cytoplasmic tail of b2 subunits may be
involved in two signaling pathways: one includes the TMD
topology transmission and b2 integrin extension, the other is
irrelevant to the TMD topology transmission and regulates b2
integrin high‐affinity confirmation.
ADAPTOR PROTEINS/REGULATORS
OF INTEGRIN ACTIVATION

Integrin inside-out signaling is regulated by intracellular signaling
cascades initiated from several receptors (79). In phagocytes, these
receptors are mostly G-protein-coupled receptors (GPCRs) for
chemokines (such as interleukin 8, monocyte chemoattractant
protein-1, stromal cell-derived factor 1), cytokines (such as tumor
necrosis factor a), and inflammatory factors (such as N-
formylmethionyl-leucyl-phenylalanine and leukotriene B4). The
canonical inside-out signaling pathway of integrin activation (50)
involves the dissociation of guanine nucleotide-binding protein, the
activation of Rho GTPases and phospholipases, the elevation of
intracellular calcium and diacylglycerol, the activation of Ras-related
protein 1 guanine nucleotide exchange factors (Rap1-GEFs) or
protein kinase C, and the activation of Ras-related protein 1
(Rap-1, from GDP-bound form to GTP-bound form). Rap1-GTP
can bind with Rap1-GTP-interacting-adaptor molecule (RIAM, also
known as Amyloid Beta Precursor Protein Binding Family B
Member 1 Interacting Protein, APBB1IP) and recruit talin-1 to
the plasma membrane to interact with the b2 cytoplasmic tail
(Figure 1C). Kindlin-3 is also involved in this process (80).

Rap1 is a small GTPase that functions as the hub in integrin
inside-out signaling (81, 82). Rap1-dependent aMb2 activation
is critical for complement-mediated phagocytosis of red blood
cells (83). Rap1 continuously circulates between inactivated
(GDP-bound) and activated (GTP-bound) forms. It is activated
by Rap1-GEFs from the GDP-bound form to the GTP-bound
form downstream of GPCR signaling, resulting in b2 integrin
activation (81, 82). Calcium and diacylglycerol regulated guanine
nucleotide exchange factor I (CalDAG−GEFI) (84, 85),
RapGEF1, RapGEF3, and RapGEF6 (79) have been identified
as Rap1-GEFs that can activate Rap-1 and integrins. Activated
Rap-1 then goes through a conformational change, allowing both
recruitment and binding to its effectors.

Talin-1 is an adaptor protein linking b2 integrins to the
cytoskeleton. Talin-1 has a head domain and a rod domain. The
talin-1 head domain (THD) is a FERM (band 4.1, ezrin, radixin,
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and moesin) domain with four subdomains: F0, F1, F2, and F3.
Structural studies revealed that the F3 subdomain binds to the
cytoplasmic tail of b2 integrins, leading to integrin conformational
change, the critical final step of integrin activation (86–90). There
are two F3 subdomain binding sites in the cytoplasmic tail of b2
integrins (88): the membrane-distal binding site is the membrane-
proximal NPXY motif of the b2 tail, which contains two NPXY
motifs; The membrane-proximal binding site might be Y713 and
F716 in b2 (corresponding to F727 and F730 in b3). Talin-1
W359A and L325R mutations cause a deficiency in binding to
these two sites, respectively, and affect b2 integrin activation and
neutrophil adhesion (91). The rod domain has 13 subdomains
(R1-R13), including a dimerization domain and binding sites for
integrin, F-actin, vinculin, and RIAM (87, 92).

In the phagocytosis of red blood cells by macrophages, talin-1 is
recruited to the phagocytic cups and is essential for red blood cell
capturing and phagocytosis during aMb2-dependent uptake.
Mutation of the membrane-proximal NPXY motif of the b2 tail
prevents the recruitment of talin-1 to phagocytic cups as well as red
blood cell phagocytosis (93). The mechanism of talin-1 activation
remains unclear. A study showed that phosphatidylinositol-4-
phosphate 5-kinase type 1 g (PIP5K1g) interacts with THD via a
short amino acid sequence present in its 28 amino acid tail (94, 95).
This interaction increases the activity of PIP5K1g (95).
Phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) is the product
of PIP5K1g and strengthens the binding of talin-1 to integrins
(96). Additionally, the RIAM-talin-1 interaction is considered
important for the activation and integrin tail recruitment of talin-
1 (97) (Figure 1C). In a study using the fibroblast-like COS-7 cell
line, Rap1 was found co-immunoprecipitated with talin-1 and
regulated the recruitment of talin-1 to phagocytic cups.
Disrupting the interaction between talin-1 and the b2 tail also
inhibits the recruitment of Rap1 to phagocytic cups. Thus, Rap1 and
talin-1 influence each other’s recruitment to phagocytic cups (98).
Recently, a direct interaction binding site of Rap1 was found in F0
and F1 subdomains of THD (99). Synergistic interaction between
these two domains and an F1 lipid-interacting helix facilitates talin-
1 recognition and activation of integrins (100). This pathway could
be relevant to rapid immune cell responses. Blocking direct binding
between Rap1 and talin-1 inhibits neutrophil adhesion and
phagocytosis but not macrophage adhesion and spreading
(101, 102).

The connection between the Rap proteins and talin-1 is not
fully investigated. One model suggests that activated Rap1 can
recruit RIAM, which relays Rap1 signaling to talin-1 and targets
talin-1 to the integrin (80); RIAM is another critical intracellular
protein for integrin activation. RIAM recruits talin-1 to the
cytoplasmic membrane and facilitates the binding of talin-1
and the integrin b chain (80). Deletion of RIAM results in b2
integrin inactivation, which disables b2-mediated cell migration
and adhesion (103). Loss of RIAM in leukocytes prevents
antigen-dependent autoimmunity by disrupting cell-cell
conjugation between effector T-cells and dendritic cells (104).
Recent work shows that RIAM is necessary for leukocyte integrin
activation in conventional T cells. Surprisingly, it is dispensable
for integrin activation in regulatory T cells, which is because
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lamellipodin (Lpd), a RIAM paralogue (105), compensates for
RIAM deficiency (106). Lpd also contains talin binding sites and
can drive integrin activation in a Rap1- and talin-dependent
manner (97, 107). Interestingly, RIAM was also shown to
associate with kindlin-3, even before it bound to talin-1 (108).
However, whether RIAM directly interacts with kindlin-3
is unknown.

The cytoplasmic tail of b2 integrins interacts with both talin-1
and kindlin-3 (109), both important for phagocyte function. As
mentioned above, talin-1 is critical for b2 integrin activation,
thus essential for phagocyte adhesion and trafficking (91, 110,
111). Kindlin-3 binds to the membrane-distal NPXY motif of the
b2 tail and is also vital for b2 integrin activation (112), especially
the headpiece-open conformation and phagocyte adhesion (111,
113, 114). The migration and phagocytosis of macrophages are
regulated by the kindlin-3 association with the cytoskeleton
(115). In contrast to other known kindlin binding partners,
interactions between kindlin-3 and paxillin negatively regulate
integrin-dependent functions of myeloid cells and limit myeloid
cell motility and phagocytosis (115). However, talin-1 and
kindlin-3 play distinct roles. Talin-1 is essential for both
integrin extension and headpiece-open conformation, which
mediates cell slow-rolling and firm adhesion. In contrast,
kindlin-3 is necessary for headpiece-open activation, which
mediates firm cell adhesion (90, 111, 116). However, although
both talin-1 and kindlin-3 are essential for integrin inside-out
signaling, it is unclear whether they bind sequentially or
simultaneously. The signaling pathway guiding kindlin-3 to
integrins requires further investigation.

Additionally, many other direct or indirect integrin-tail-
binding proteins, such as vinculin, filamin A, paxillin, coronin
1A, or Dok1 might be important for integrin activation
regulation (76, 79, 106). Filamin A is a cytoskeletal protein
that occupies the same site as talin; therefore, it negatively
regulates integrin activation by blocking talin-1 binding to b
integrin tails (117–119). The kindlin binding protein, migfilin,
binds to filamin A. It is possible that kindlin-3 binding to migfilin
releases filamin A from this binding site, leaving it free for talin
(119). Thus, the shuttling on and off of filamin A from integrins
may have the ability of kindlins to coactivate integrins. Several
other FERM domain-containing proteins block integrin
activation, such as docking protein 1 (Dok1) (120) and
integrin cytoplasmic domain associated protein 1 (ICAP1),
which compete for talin binding, thus blocking integrin
activation (121). The talin rod domain includes actin and
vinculin binding sites. It binds to the actin cytoskeleton both
directly and indirectly through vinculin (122). An alternative
mechanism of the Rap1/RIAM/talin1 axis was reported in
lymphocytes, in which WASP family verprolin homologous 2
(WAVE2) recruited vinculin to the immunological synapse,
thereby recruiting talin-1 (123). Paxillin binding to the a4
cytoplasmic tail benefits cell migration but reduces cell
spreading. Phosphorylation of the integrin a4 subunit releases
paxillin and the GTPase ARF6 from the membrane, leading to
the accumulation of active Rac at the leading edge (124). It is
worth studying these integrin-binding proteins in phagocytes to
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identify their roles in integrin activation and particle engulfment
during phagocytosis.
INTEGRIN MODULATION DURING
PHAGOCYTOSIS

Phagocytosis is a multi-step process. Firstly, particles are
recognized and adhered to the surface of phagocytes, followed
by the formation of a phagocytic cup (125), internalization, and
formation of an intracellular-membrane-enclosed organelle – a
phagosome (126, 127). The phagocytic cup and particle
internalization is dependent on the dynamic rearrangement of
F-actin, which is controlled by the Rho GTPase family (46, 128),
in all forms of phagocytosis (125–127). Distinct Rho GTPases
regulate several types of phagocytosis. In FcgR-dependent
phagocytosis, activation of Rac1, Rac2, Cdc42, and RhoG is
thought to play important roles in forming local pseudopods
and membrane ruffles during particle engulfment (129, 130).
Dectin-1-dependent phagocytosis involves activation of Rac1
and Cdc42, but not RhoA (131). In the FcgR and dectin-1
mediated “zipper model” mechanism of internalization, the F-
actin first forms a bona fide phagocytic cup, then matures to first
completely surround the bound particles and eventually fuse to
complete phagocytosis (132).

aMb2 integrin (CR3)-dependent phagocytosis exhibit distinct
characteristic. The activation of aMb2 prior to challenge with
particles is required for aMb2-mediated phagocytosis. The
engulfment process in aMb2-dependent phagocytosis is initiated
by surface-tethering of particles, that then induces an invagination
in the phagocyte plasma membrane into which the particle sinks,
drawn by F-actin cytoskeletal forces (133). Obvious membrane
ruffles were shown during aMb2-mediated phagocytosis after
integrin activation (134). These membrane ruffles differ from the
membrane extensions of the zipper mechanism: They extend only
from one side across the bound phagocytic particle, whereas the
membrane tightly surrounds the entire surface of the particle in
FcR-dependent zipper phagocytosis. Different from FcR-
dependent phagocytosis, aMb2-dependent phagocytosis requires
activation of RhoA, Vav, and RhoG, but not Rac1 or Cdc42 (135,
136). However, this opinion is still controversial. Recent studies
have shown that the formation of protrusions during particle
engulfment is triggered by aMb2-dependent phagocytosis (134,
137). A genetic ablation study demonstrated that Rac1 and Rac2
double-knockout macrophages are defective in both FcgR and
aMb2-mediated phagocytosis (138). This suggests that these two
types of phagocytosis share common elements. Moreover, small
GTPase Rap1 activation, mediated by a variety of growth factor
receptors or other factors, plays an important role in aMb2
activation and phagocytic uptake (83).

As mentioned above, talin-1 and kindlin-3 bind to the
integrin b cytoplasmic tail, which activates integrins (139).
Talin-1 bridges integrin with the actin cytoskeleton, stabilizes
integrin activation, and transmits forces (140, 141). In the
phagocytosis of red blood cells by macrophages, talin-1 is
recruited to the phagocytic cups by a talin-based “molecular
Frontiers in Immunology | www.frontiersin.org 6146
clutch” (142) and is essential for red blood cell capturing and
phagocytosis during aMb2-dependent uptake. Mutation of the
membrane-proximal NPXY motif of the b2 tail prevents the
recruitment of talin-1 to phagocytic cups as well as red blood cell
phagocytosis (93). A recent study reported that b2 integrins
could be coupled to actin and drive phagocytosis by a
mechanosensitive molecular clutch that is mediated by talin,
vinculin, and Arp2/3 (143). Thus, talin and vinculin promote
phagosome formation by coupling actin to aMb2 to drive
phagocytosis. Previous studies have shown talin is transiently
recruited to different types of particles during phagocytosis;
however, talin is essential for aMb2-mediated but not FcgR-
mediated phagocytosis (93, 98). Kindlins are another family of
integrin intracellular binding proteins that mediate integrin
activation by inside-out signaling. A recent study found that
kindlin-3 directly interacts with paxillin and leupaxin through its
F0 domain in the macrophage-like RAW 264.7 cell line;
inhibition of kindlin-3 and paxillin/leupaxin interactions
promoted cell motility and augmented phagocytosis (115).
Another recent work reported that kindlin-3 was essential for
patrolling function and cancer particle uptake of nonclassical
monocytes during tumor metastasis to the lung (144).

RIAM has been shown to play an important role in
complement-dependent phagocytosis (145). Suppressing RIAM
expression in neutrophil-like HL-60 cells, monocyte-like THP-1
cells, or human monocyte-derived macrophages inhibits the
recruitment of talin-1 to phagocytic cups, the activation of
integrin aMb2, and complement-dependent phagocytosis
(145). In RIAM knockout mice, macrophages and neutrophils
show deficiencies in cell adhesion, aMb2-mediated
phagocytosis, and reactive oxygen species production (103).
Recently, VASP was reported to work together with RIAM as a
module regulating b2 integrin-dependent phagocytosis (146).
VASP (vasodilator-stimulated phosphoprotein) is the binding
partner of RIAM. This study showed that RIAM-deficient HL-60
cells presented impaired particle internalization and altered
integrin downstream signaling during complement-dependent
phagocytosis. Similarly, VASP deficiency completely blocked
phagocytosis, while VASP overexpression increased the
random movement of phagocytic particles at the cell surface,
with reduced internalization. These results suggest that RIAM
regulates aMb2 activation and the cytoskeleton via its
interaction with VASP.
DISCUSSION

Integrins are well-established mediators of cell adhesion and
migration, yet underlying mechanisms and signaling pathways
continue to be revealed (147). Further investigation is required
into the role of integrins in mediating multiple phagocytic process
in physiological and pathological conditions and whether integrin
activation signaling pathways during cell movement and
trafficking are also involved in particle engulfment.

Critical gaps remain in our knowledge of phagocytic integrin
signaling. Several alternative mechanisms regulate talin-1
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recruitment, but their contributions and significance are obscure.
The Rap1-talin-1 interaction is evolutionarily conserved and may
contribute to short-term adhesions (148), whereas the Rap1-RIAM-
talin-1 axis may have longer and faster recruitment of effector
proteins. Phagocytosis occurs in various cell types and is mediated
by many integrin types. Several phagocytosis studies have shown
that integrins need adaptor proteins or co-receptors to exert full
functionality. All integrins have a common characteristic of
signaling via Rho GTPases to modulate actin cytoskeleton
dynamics. During integrin-dependent uptake, signaling involves
either RhoA (for aMb2-mediated phagocytosis) or Rac1/Cdc42
activity. This suggests that the particle engulfment in integrin-
dependent phagocytosis may share similar actin-regulating
pathways with general Fc-receptor-dependent phagocytosis modes.

Studies on b2 integrins indicate that integrin-mediated
phagocytosis is an extension capacity of integrin-mediated cell
adhesion. Besides b2 integrins, other integrins may also be
involved in phagocytosis, including those in non-leukocytes.
Integrins bind to ECM components, such as fibrinogen (ligand
of integrinaIIbb3,aVb3, and others), fibronectin (ligand ofa5b1,
a8b1, aVb1, aVb3, aIIbb3, and others), vitronectin (ligand of
avb1, avb3, avb5, avb6, avb8, and others), or collagen (ligand of
integrin a1b1, a2b1, a10b1, and a11b1). However, it is not clear
which integrins are involved in phagocytosis. Those integrins
known to induce actin remodeling might support particle
uptake but need to be further evaluated. As far as we know,
integrins aVb3 and aVb5 are involved in apoptotic-cell (AC)
uptake (149). RGD (arginine-glycine-aspartate) peptides severely
inhibit AC uptake of human macrophages (150). The remodeling
of collagen is essential to the progression of a number of diseases
and depends on the degradation and phagocytosis process, in
which the uptake of collagen fibrils is mediated by a2b1
integrin (151).

An improved understanding of phagocytosis is important since it
is involved in bacterial clearance, antigen presentation, inflammation
resolution, and progression of chronic inflammatory or auto-
immune diseases. b2 integrins are clearly important in
phagocytosis, although their general role is just emerging.
Investigating the detailed molecular mechanism of integrin
functions in the complex phagocytotic process is a fascinating
challenge. b2 integrins are a valuable clinical target (152). However,
side effects of b2 integrin-targeting drugs include immune deficiency
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and infections. This may be due to the important roles that b2
integrins play in regulating the function of all kinds of immune cells,
and theymay exert contrary functions in a cell type-specificmanner.
For example,b2 integrins could limitTcell activationwhenexpressed
on antigen-presenting cells (153), but be necessary for T cell
activation when expressed on T cells (154); infiltration of b2 T cells
prevents tumor progression in early tumor development (155), but
b2 integrins increase tumormigration and angiogenesis (156). Thus,
insight into how the function of b2 integrins can be inhibited in a cell
type-specific manner can avoid potential mechanism-based
toxicities. This might be achieved by targeting specific integrin
conformations or signaling pathways, such as if only the Rap1/
talin-1 interaction pathway regulates integrin activation in platelets,
the Rap1/RIAM/talin-1 axismight be dominant in lymphocytes. It is
worth understanding the regulatory mechanism of b2 integrin
activation in phagocytes and other cell types, since this difference
canbe therapeutically exploited in auto-immunediseases and cancer.
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Phagocytosis is a receptor-mediated process used by cells to engulf a wide variety of
particulates, including microorganisms and apoptotic cells. Many of the proteins involved
in this highly orchestrated process are post-translationally modified with lipids as a means
of regulating signal transduction, membrane remodeling, phagosome maturation
and other immunomodulatory functions of phagocytes. S-acylation, generally referred
to as S-palmitoylation, is the post-translational attachment of fatty acids to a cysteine
residue exposed topologically to the cytosol. This modification is reversible due to the
intrinsically labile thioester bond between the lipid and sulfur atom of cysteine, and thus
lends itself to a variety of regulatory scenarios. Here we present an overview of a growing
number of S-acylated proteins known to regulate phagocytosis and phagosome biology
in macrophages.

Keywords: phagocytosis, phagosome, macrophage, palmitoylation, acylation, lipidation
INTRODUCTION

The functionality of many peripheral and membrane proteins depends on the co- or post-
translational addition of lipids. Covalent attachment of fatty acids to proteins is one of the more
prominent types of lipidation. The type of fatty acylation depends on the fatty acid species
and resulting linkage. N-terminal glycine myristoylation (N-acylation) and cysteine palmitoylation
(S-acylation) are amongst the most common acylation reactions in mammalian cells; each reaction
involves different enzymes, fatty acyl-CoA, and occur in different intracellular locations (1). In
either case, the addition of fatty acids markedly increases the hydrophobicity of targeted proteins
and modulates function by affecting, binding affinity to biological membranes, subcellular
localization and trafficking, folding and stability, and binding interactions with other proteins
and co-factors (1, 2).

S-palmitoylation is a reversible, post-translational modification of proteins in which palmitic
acid (C16:0), is attached to the cysteine residue of a protein substrate via a thioester linkage. Nearly
all palmitoylated proteins are modified via a thioester linkage to cysteine. There are also rare
org April 2021 | Volume 12 | Article 6595331152
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Palmtioylated Proteins Regulate Phagocytosis
instances of palmitate attached to serine residues (O-acylation)
and the N-terminal of a protein (N-acylation) (Table 1). The
transfer of palmitate from palmitoyl-CoA to the sulfhydryl group
of a cysteine residue is catalyzed by a family of protein
acyltransferases (PATs) that possess a zinc finger Asp-His-His-
Cys (zDHHC) domain (3). Notably, many of the studies cited in
this review generally assume that palmitate is the acyl group
attached. Although palmitoyl-CoA is the preferred substrate for
members of the zDHHC family, other acyl-CoAs such as
myristoyl-CoA (C14) and stearoyl-CoA (C18) are also utilized
as donors (4); as such a more encompassing and accurate term
for this modification is S-acylation.

In contrast to other types of acylation, S-acylation is a highly
reversible post-translational modification (Figure 1). Due to the
labile nature of the thioester bond, S-acylated proteins can
undergo a cycle of acylation and deacylation mediated by the
opposing activities of PATs and thioesterases, respectively. There
are at least 3 classes of enzymes capable of de-acylation: cytosolic
acyl protein thioesterases (APT1 and APT2) (5); a/b hydrolase
domain-containing (ABHD) proteins (6, 7); and palmitoyl-
protein thioesterase 1 (PPT1) that remove palmitate from
proteins in the lysosome prior to their degradation (8). The
extent to which S-acylation is regulated by enzymatic de-
acylation is unknown. Still, it is clear that within the cellular
context, the cycle of acylation and de-acylation provides an
important mechanism for dynamically regulating the
localization and function of proteins within a cell. In
particular, cell signaling, and membrane trafficking require that
secreted proteins are able to reversibly associate with
Frontiers in Immunology | www.frontiersin.org 2153
membranes. In this review, we focus on S-acylated proteins as
regulators of phagocytosis and phagosome maturation.
PHAGOCYTOSIS

Phagocytosis is a critical component of both the innate and
adaptive immune responses to microbial pathogens (9). It is a
specialized form of endocytosis that involves receptor-mediated
recognition and ingestion of particles larger than 0.5mm into
plasma membrane derived vacuoles called phagosomes. Most cell
types are capable of phagocytosis, however only a few immune
cells, namely macrophages, neutrophils and dendritic cells are
adept at it. These professional phagocytes (10) play a critical role
in innate immunity – the first line of defense against infection –
by eliminating microorganisms. In addition to their roles in the
innate immune response, phagocytes contribute to tissue
homeostasis and remodeling by removing apoptotic bodies
(11, 12).

Phagocytosis is initiated when a plasma membrane bound
receptor engages its cognate ligand on the surface of a particle.
Receptor engagement initiates complex signaling cascades that
lead to particle internalization by inducing localized membrane
remodeling of the plasma membrane, and the formation of actin-
driven pseudopods which engulf the target particle to form a
nascent phagosome (13). The nascent phagosome then follows a
TABLE 1 | Fatty acylation of proteins.

Modification Lipid Amino acid modified Linkage

S-acylation C16:0 Cysteine Thioester (R-SH)
palmitic acid
C18:0
stearic acid
C16:1
palmitoleic acid
C18:1
oleic acid

C20:4
arachidonic acid

N-acylation C14:0 Glycine Amide (R-NH2)
myristic acid
C16:0
palmitic acid

C16:0 Cysteine Amide (R-NH2)
palmitic acid

N-acylation C14:0 Lysine Amide (R-NH2)
myristic acid
C16:0
palmitic acid

O-acylation C16:0 Serine or threonine Oxyester (R-OH)
palmitic acid
C8:0
octanoic acid

C16:1
palmitoleic acid
FIGURE 1 | S-acylation Cycle. The palmitoyl group is transferred to the free
thiol of cysteine from palmitoyl-CoA by a family of integral membrane zinc-
dependent DHHC protein acyltransferases. The hydrophobicity of palmitate
allows modified proteins to associate with the membranes of various
organelles and facilitates trafficking between these organelles. Acyl-protein
thioesterases remove thioester-linked fatty acids and thus regenerate a free
thiol group.
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Palmtioylated Proteins Regulate Phagocytosis
highly choreographed pathway of successive fusion and fission
events with early endosomes, late endosomes and finally
lysosomes, whereby it matures into a microbiocidal vacuole
called a phagolysosome (Figure 2) (14, 15). At the conclusion
of maturation, the lumen of the mature phagolysosome is a
highly oxidative environment, rich in hydrolytic enzymes that
function at a low pH to destroy the internalized particle. Once
the prey within the phagolysosome has been degraded, a
tubulovesicular process mediates the dissolution of the vacuole
to reform lysosomes which support subsequent rounds
of phagocytosis.

The importance of S-acylation in cellular processes like
phagocytosis has only recently been recognized, owing in large
part to the development of methods that allow high throughput
analysis of S-acylated proteins. The first acyl-biotin exchange
proteomic analysis of RAW 264.7 macrophage-like cells
Frontiers in Immunology | www.frontiersin.org 3154
identified ~80 S-acylated proteins, nearly half of which
partition into detergent resistant membrane (DRM) fractions
(16). Many of the proteins identified have known roles in signal
transduction (Src family kinases (SFKs)) and vesicular transport
(soluble NSF attachment proteins (SNAP) receptor (SNARE)
proteins (e.g., VAMP3, 4, 5, 7 and Syntaxin6, 7, 8, 12). The
identification of these specific proteins highlights the potential
importance of S-acylation for signaling, optimal completion of
particle internalization during phagocytosis, as well as the overall
ability of macrophages to perform their functions as sentinels of
the immune system.

In addition to the elimination of microorganisms and effete
cells via phagocytosis, macrophages must also sense and respond
to bacterial products such as lipopolysaccharide (LPS) or
peptidoglycan (PGN) and mount an effective inflammatory
response. Analysis of macrophages, using metabolic labeling
FIGURE 2 | Life Cycle of the Phagosome. Phagosomes are formed on demand when professional phagocytes encounter target particles such as, opsonized
bacteria or apoptotic cells. Following internalization of a phagocytic target, the nascent phagosome is transformed into a microbiocidal vacuole through successive
fusion and fission events within the endocytic pathway. During this maturation process, the lumen of the phagosome is acidified by the action of v-ATPase, and also
acquires hydrolases and other antimicrobial proteins. Key steps in the maturation process include the conversion from a Rab5-positive early phagosome to a Rab7-
positive late phagosome; the acquisition of LAMP and v-ATPase; the conversion of PI3P to PI3,5P2; and the appearance of PI4P. Once the particle within the
phagolysosome has been degraded, PI4P- and Arl8b-dependent membrane tubulation and budding events breakdown the organelle, reforming lysosomes
consumed in the maturation process. EEA1, early endosomal antigen 1; LAMP, lysosome-associated membrane protein; PI3P, phosphatidylinositol 3-phosphate;
PI3,5P2, phosphatidylinositol 3,5- bisphosphate; PI4P, phosphatidylinositol 4-phosphate; Arl8b, ADP-ribosylation factor-like protein 8B.
April 2021 | Volume 12 | Article 659533
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Palmtioylated Proteins Regulate Phagocytosis
with a lipid analog, revealed that when the cells are stimulation
with LPS, the S-acylated proteome is extensively remodeled, with
154 proteins upregulated and 186 downregulated (17). This
study further demonstrated that the cellular pool of
phosphatidylinositol 4-kinase IIb (PI4KIIb) displays enhanced
levels of S-acylation following the addition of LPS, and that this
lipid kinase is required for the proper production of
inflammatory cytokines. The inducible S-acylation of the
cytosolic PGN sensors NOD1 and NOD2 was recently revealed
as a novel regulatory mechanism. Treating primary bone marrow
derived macrophage cells with PGN resulted in a zDHHC5-
dependent increase in S-acylation of NOD1 and NOD2 required
for their localization to the plasma membrane or phagosomes
and to initiate a signal transduction cascade and NF-kB
activation (18). Taken together, these examples demonstrate
that dynamic control of protein S-acylation in macrophages,
and likely most cell types, is a key regulatory mechanism.

S-Acylation of Immune Receptors
and SFKs
Internalization of immunoglobulin G (IgG) opsonized particles
by Fcg receptors (FcgRs) on the surface of macrophages is the
most widely used model of phagocytosis. FcgRs bind to bivalent
or multivalent ligands to elicit downstream signaling (13).
Frontiers in Immunology | www.frontiersin.org 4155
Recognition and binding of complementary IgG on the surface
of a particle results in receptor clustering, which brings the
cytosolic domain of each FcgR into close apposition and
triggers signaling cascades. The first signaling event to occur
after receptor-ligand binding is phosphorylation of tyrosine
residues within conserved immunoreceptor tyrosine-
based activation motifs (ITAMs) on the cytosolic tail of the
FcgRs, mediated by Src family kinases (SFKs) (Figure 3).
Inhibition of SFKs or overexpression of their negative
regulator, C-terminal Src kinase (Csk), eliminates particle
engulfment, but not binding (19–21). Conversely, the
heterologous expression of FcgRs in many non-phagocytic cells
is able to elicit SFK signaling cascade and the engulfment of IgG-
opsonized particles highlighting the robustness and this system.

Many immunoreceptors including FcgRs are found to reside
in DRMs that also contain SFKs (22). The amino acid
constituents of transmembrane domains and the S-acylation of
juxtamembrane regions can partition proteins into liquid
ordered regions of the plasma membrane (23). The current
evidence suggests that FcgRIIa signaling is only partially
dependent on S-acylation of Cys208; its absence prevents the
intracellular mobilization of calcium without directly impairing
the phosphorylation of the ITAMs (24). Additionally, mutations
in the transmembrane domain, which ablate its localization to
FIGURE 3 | S-acylated proteins in Fcg receptor signaling and actin dynamics. Binding of IgG to the FcgR leads to localized clustering and signal transduction.
Phosphorylation of the ITAM motifs and SFKs generates binding sites for Syk and the recruitment of LAT which together amplify the signal intensity. Additional
downstream signaling leads to GTP-loading of both Cdc42 and Rac1 that results in Wiskott–Aldrich syndrome protein (WASP) and WASP-family verprolin homologous
protein (WAVE) complex mediated actin rearrangements to drive particle engulfment. Two phosphatases, SHP and SHIP, serve as negative regulators of phagocytosis
and are recruited by binding the inhibitor FcgRIIb and may also require S-acylation for their activity. Inset: All SFKs are myristoylated and most are S-acylated.
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DRMs, prevent the activation of NF-kB downstream of FcgRIIa
activation (25). Together these studies demonstrate that both the
S-acylation and the composition of the transmembrane domain
support proper receptor function.

It is possible that multiple activated FcgRs and SFKs associate
in an ordered domain to support maximal signal output, and that
this depends on the membrane lipids, the transmembrane
domain of the receptor, and the recruitment of SFKs. We
suspect that under suboptimal conditions the size of this
domain could be restricted thereby limiting the overall
strength and duration of signals. Similar observations have
been seen with another phagocytic receptor, the scavenger
receptor CD36 (26). In resting cells, CD36 resides in small
clusters associated with the SFK Fyn. Upon activation the
clusters increase in size recruiting more Fyn, leading to
stronger signaling. Since CD36 is S-acylated by zDHHC4 and
zDHHC5 (27), and Fyn is dually acylated with myristate and
palmitate, it is possible that these modifications assist in lateral
segregation and cluster density. Whether this mechanism
explains the observations of FcgRIIa remains to be directly tested.

S-Acylated Proteins That Regulate Actin
Dynamics and Pseudopod Extension
The role of these initial signaling events is to drive particle
internalization through extensive remodeling of the actin
cytoskeleton. In FcgR mediated phagocytosis, the small Rho-
family GTPases Cdc42 and Rac, key regulators of actin dynamics,
are activated and recruited to the site of phagocytosis (28, 29).
GTPases function as molecular switches alternating between an
active (GTP-bound) state and an inactive (GDP-bound) state
(30), through the action of guanine nucleotide exchange factors
(GEFs) and GTPase-activating proteins (GAPs), respectively.
GEFs stimulate GDP dissociation to allow its replacement by
GTP, while GAPs are essential to prompt GTP hydrolysis. The
eventual outcome of cytoskeletal reorganization is the formation
of pseudopod extensions and phagocytic cups that engulf the
particle. Soon after sealing the phagocytic cup, the newly formed
phagosome participates in successive fission and fusion
interactions with endosomes and lysosomes to mature into a
highly degradative phagolysosome.

Rac1 stimulates actin polymerization to promote the
internalization of attached particles and microorganisms
during phagocytosis (31). In its active GTP-bound state, Rac1
is targeted to membranes by prenylation (geranylgeranylation)
and a C-terminal polybasic region (KKRKRK) (32, 33).
Metabolic labeling in fibroblasts with tritiated palmitate
revealed that Rac1 is modified on Cys178 (34, 35). This
modification requires Rac1 to already be localized to the
membrane as both prenylation and an intact C-terminal
polybasic region was required to support S-acylation.
Preventing the S-acylation of Rac1 by treatment with 2-
bromopalmitate or mutation of the Cys178 residue results in a
reduction in both plasma membrane localization and GTP
loading of Rac1, which leads to a reduced activation of p21
activated kinase. Ultimately, cells with impaired Rac1 acylation
display impaired spreading and defects in migration suggesting
Frontiers in Immunology | www.frontiersin.org 5156
defects in the ability to polymerize actin. Whether the S-acylation
of Rac1 occurs in macrophage or is important for pseudopod
extension during phagocytosis is currently unknown. The
identity of the of the zDHHC isoform(s) modifying Rac1 also
needs to be determined.

S-Acylated Membrane Fusion Machinery
Required for Focal Exocytosis During
Particle Engulfment
Video-microscopy of phagocytosing macrophages has revealed
that these cells have the ability to consume large volumes of
particles without a noticeable diminution of their surface area or
alteration in shape. Indeed, through the use of fluorescent
spectroscopic and electrophysiological techniques (e.g.,
membrane capacitance) it was determined that the surface area
of the cell actually increases immediately following phagocytosis
(36, 37). Endocytic vesicles serve as the primary donor of this
“extra”membrane used to support particle engulfment (38). This
localized delivery at the site of phagocytosis is referred to as
“focal exocytosis” (39). Fusion of endocytic vesicles with the base
of the phagocytic cup is mediated by the soluble N-
ethylmaleimide–sensitive factor attachment protein (SNAP)
receptors (SNAREs). SNAREs are classified as Qa‐, Qb‐, Qc‐,
Qbc‐ (which contain two SNARE motifs) or R‐SNAREs (40, 41).
Specific Q‐SNAREs in the target membrane bind, via their
SNARE motifs, to a partner R‐SNARE on vesicles to form a
trans‐SNARE complex (42). This brings the two membranes into
close proximity allowing fusion and delivery of cargo. On the
plasma membrane and base of the phagocytic cup SNAP-23 (a
Qbc) is in complex with a Qa SNARE such as Syntaxin2, 3 or 4.
Unlike the Qa SNAREs, SNAP-23 does not have a
transmembrane and instead associates with cellular
membranes through acylation of a cysteine-rich domain
present in the linker region connecting its Qb and Qc motifs
(43, 44). SNAP-23 has five acylated cysteines and is found to
partition into DRMs (45) which may also explain its preference
for the plasma membrane and endosomes over the endoplasmic
reticulum. Silencing of SNAP-23 in J774 macrophage cells results
in impaired phagocytosis and a reduction in the delivery of
NADPH oxidase 2 complex required to generate superoxide at
the site of phagocytosis/nascent phagosome (46).

During phagocytosis recycling endosomes, early endosomes
and late endosomes/phagosomes can all fuse at the base of the
phagocytic cup. The R-SNAREs vesicle-associated membrane
protein (VAMP) 3 (recycling endosomes) and VAMP7 (late
endosomes/lysosomes) have been shown to be important for
membrane fusion. VAMP3 has been identified in proteomics
screens as an S-acylated protein in macrophages (16, 17).
VAMP3 contains a sole cysteine residue, Cys76, located in the
cytosol and adjacent to its transmembrane domain. To our
knowledge direct examination of this acylation and any
potential role has not been examined. Proteomic studies have
also identified VAMP7 as an S-acylated protein in macrophages
(17). Recent studies using Jurkat T cells have demonstrated that
Cys183 can be acylated by zDHHC18 and zDHHC20 and that
the fraction of VAMP7 that is acylated increases following T cell
April 2021 | Volume 12 | Article 659533
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receptor stimulation (47). In T cells wild-type VAMP7 has a
perinuclear localization which partly overlaps with the Golgi
marker Giantin and possibly recycling endosomes. Conversely,
the Cys183Ala mutant displays a more diffuse cytoplasmic signal
demonstrating that S-acylation is critical for the proper
subcellular distribution. To date the importance of S-acylation
in macrophage or to phagocytosis has not been examined.
However, given the similarity between T cell receptor and FcgR
signaling and the role of VAMP7 in phagocytosis it is tempting
to speculate that this modification will also support the process.
PHAGOSOME MATURATION

The nascent phagosome lacks the microbicidal and degradative
capacity required to destroy an engulfed particle. Through a
sequential process known as maturation, it amasses an arsenal of
oxidative, acidifying and hydrolytic enzymes (14, 48).
Phagosome maturation, particularly the process of
phagolysosome formation, shares some features with the
progression of endosomes to lysosomes, a complex process
that is orchestrated by Rab GTPases. Soon after sealing the
phagocytic cup, the newly formed phagosome fuses with early
endosomes and acquires Rab5 and phosphatidylinositol 3-
phosphate. Eventually, the early phagosome transitions to a
late phagosome that is defined by the acquisition of distinct
biochemical markers, such as Rab7; Rab7 acquisition is
concomitant with the loss of early markers such as Rab5 (49).
Active GTP-bound Rab7 recruits Rab-interacting lysosomal
protein (RILP) to the maturing phagosome and, together, they
regulate the assembly and activation of the vacuolar ATPase (v-
ATPase) leading to further luminal acidification (50, 51). As the
phagosome matures it also receives newly synthesized pro-
enzymes from the Golgi. Many of these pro-enzymes are
packaged in the vesicles arising from the trans-Golgi network
(TGN) via cargo receptors such as mannose 6-phosphate
receptor (M6PR) and sortillin (Figure 4) (52, 53). These
receptors must be actively retrieved from the late phagosome
and returned to the Golgi for subsequent rounds of cargo
delivery or will otherwise be degraded and the pro-enzymes
secreted. The retrograde transport of material from the late
phagosomes to the Golgi is incompletely understood but likely
involves clathrin machinery and the retromer complex and is
possibly regulated by Rab7 (52, 54).

S-Acylated SNAREs Involved in
Phagosome Maturation
In addition to supporting focal exocytosis SNAP23 is also critical
for mediating membrane fusion events during phagosome
maturation. The activity of SNAP23 is necessary for the for the
recruitment of several proteins essential for phagosome
maturation including v-ATPase (46), MHCI (55) and NOX2
(46, 56, 57) from recycling endosomes and lysosomes. Focal
exocytosis of recycling and late endosomes during particle
engulfment results in the delivery of a variety of membrane
proteins found on these compartments including Syntaxin7 and
Frontiers in Immunology | www.frontiersin.org 6157
13 (also referred to as Syntaxin12) (58). This delivery of
endocytic Q-SNAREs to the nascent phagosome allows for
further fusions events with recycling and late endosomes/
lysosomes containing the appropriate R-SNAREs.

In RAW macrophage, Syntaxin13 colocalizes with the
transferrin receptor on recycling endosomes (58). Expression
of the cytosolic domain of Syntaxin13, which is known to act as a
dominant negative mutant, did not have any impact of the
uptake of particles. However, this dominant negative construct
impaired the ability of the phagosome to mature to a late
phagosome/phagolysosome stage. Syntaxin13 is not reported to
be S-acylated and it does not contain any juxtamembrane
cysteine residues. However, its cognate partner Syntaxin4 has
been found to be S-acylated (59). The presence of Syntaxin7 and
8 on maturing phagosomes supports the fusion with late
endosomes and lysosomes via interactions with their cognate
pattern VAMP7. Syntaxin7 and 8 are modified with palmitate on
Cys239 and Cys214, respectively, adjacent to their
transmembrane domains (60). In HeLa cells the Syntaxin 8 is
partly colocalized with both CD63 and LAMP1 consistent with a
late endosome/lysosome distribution. The Cys214Ala mutant
that lacks S-acylation has the same subcellular localization. In
contrast in HeLa cells Syntaxin7 localizes primarily with the early
endosomal marker EEA1 while the Cys239Ala mutant is retained
on the plasma membrane of HeLa. This suggests that S-acylation
is needed for partitioning into an endocytic carrier. Whether this
mode of regulation is important in macrophage is yet to
be examined.

S-Acylation Regulates Delivery of
v-ATPase to Lysosomes and
Possibly Phagosomes
Fusion with late endosomes, lysosomes and carriers derived from
the TGN lead to the accumulation of v-ATPases in the
membrane of the late phagosome that results in the
acidification of the phagosomal lumen. Fusion of the maturing
phagosome with these compartments also delivers a variety of
hydrolytic enzymes to the lumen of the phagolysosome to
facilitate destruction of the internalized prey. The v-ATPase is
a large multimeric protein complex consisting of two functional
subcomplexes, V1 and V0, that together control the import of
protons into the lumen of endosomes and phagosomes (61). The
cytosolic V1 subcomplex mediates ATP hydrolysis, while the V0

subcomplex, integral to the membrane, constitutes the pore
through which protons are pumped at the expense of ATP
(62). The phagosomal acquisition of the membrane embedded
V0 subcomplex requires membrane trafficking either from pre-
existing active complex (i.e., fusion with lysosomes) or the
delivery of newly synthesized V0 from the ER via the Golgi
(Figure 4).

Batten disease is a group of rare, fatal, genetically inherited
disorders that impact the nervous system which all manifest as
neuronal ceroid lipofuscinoses (63). Infantile Batten disease, or
ceroid lipofuscinosis, neuronal, 1 (CLN1) is a severe form of the
disease caused by mutations in the thioesterase PPT1 (64). PPT1
is a soluble protein thioesterase enzyme that resides in the lumen
April 2021 | Volume 12 | Article 659533
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of lysosomes involved in the degradation of lipid-modified
proteins by removing thioester-linked fatty acyl groups from
cysteine residues (65). Delivery of recombinant PPT1 via fluid
phase endocytosis is able to reverse the accumulation of
proteinaceous deposits in the lysosomes lacking PPT1
function. Paradoxically, recent evidence suggests that the
activity of the v-ATPase also requires PPT1 to directly remove
an acyl chain from the v-ATPase in the cytosol.

Neurons, macrophage and microglia express the V0a1
isoform as part of the membrane embedded V0 complex of
the v-ATPase. A recent study has demonstrated that the
V0a1 containing Vo complex requires S-acylation for proper
trafficking from the Golgi to lysosomes (66). This feature is
unique to the a1 isoform compared to the other tissue-
selective isoforms (a2-a4). Cys25 of the a1 subunit was
Frontiers in Immunology | www.frontiersin.org 7158
shown to be S-acylated by acyl-biotin exchange and that this
modification is important for the recognition of the V0 complex
by the adaptor complex 3 in the trans-Golgi and its subsequent
delivery to lysosomes. Curiously, despite its role in trafficking,
the modification itself impairs maximal proton translocation
activity (66). Mutations in PPT1 result in a significantly higher
lysosomal pH in neurons compared to those from littermate
controls. It is currently unclear how lysosomal PPT1 can remove
fatty acids attached to a cytosolically modified Cys residue. One
possibility is that a small fraction of the PPT1 also resides in the
cytosol (66). Whether this is through inefficient insertion into the
ER during biosynthesis or escape via some sort of transient
“leak” in limiting membrane of the lysosome is unclear. Since
some bacterial pathogens and inert particles can rupture
phagolysosomes it would be worth investigating to determine
FIGURE 4 | Vesicular transport pathways required for phagosome maturation. (A) The maturing phagosome undergoes numerous SNARE-mediated fusion events
during the course of its maturation. SNAP23 and SNAP25 are S-acylated, while a subset of SNARE proteins also require acylation for proper function and stability.
Newly synthesized v-ATPase transits from the Golgi to late endosomes/lysosomes or directly to maturing phagosomes. The clathrin adaptor complex 3 aids in the
sorting and delivery of a variety of proteins including the PI4KIIa and cargo receptors such as sortillin to the (phago)lysosome. S-acylation of the PI4KIIa and v-
ATPase is critical to deliver these enzymes to (phago)lyosomes. (B) Cargo receptors M6PR and sortillin must constantly traffic back and forth between the Golgi
apparatus and (phago)lysosomes to ensure that pro-hydrolytic enzymes are properly delivered to the lumen of (phago)lysosomes. Both the cation independent
M6PR and Sortillin can be S-acylated and modification aids in interactions with the retromer complex. Additionally, S-acylation of Rab7 also promotes its interactions
with the retromer complex and the retrieval cargo receptors.
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if the release of PPT1 into the cytosol impacts the S-acylome
of macrophages.

S-Acylation of PI4KIIa and Its Delivery and
Activity Are Required for Optimal
Phagolysosome Acidification
Phosphatidylinositol 4-kinase IIa (PI4KIIa) resides primarily in
the trans-Golgi network (TGN) and endosomes/lysosomes and
plays essential roles in membrane transport including: cargo
trafficking between the TGN and endosomes via direct
interactions with adaptor protein complexes, AP-1 and AP-3
(67–69). Importantly both the activity and the presence of
PI4KIIa supports the formation of vesicular carriers (68).
PI4KIIa is a peripheral membrane protein that is S-acylated
within its catalytic core (70). All four cysteine residues within its
CCPCC motif are capable of being S-acylated by zDHHC3 and/
or zDHHC7 (71). However, mutational analysis indicates that
the first two are the preferred sites of this modification (70).

Recently it was also demonstrated that following the
acquisition of Rab7, the maturing late phagosome, acquires
PI4KIIa by fusion with lysosomes or vesicles from the TGN.
This leads to the appearance of PI4P on this late stage
phagosome and is required for the maximal acidification of the
now phagolysosome (72). Additionally, in dendritic cells PI4K2a
and PI4P have been shown to be critical for the localization and
activity of toll-like receptor 4 (73). Following the digestion of the
prey within the phagolysosome, the organelle is eliminated by a
tubulovesicular dissolution process, which concomitantly
regenerates lysosomes. The precise mechanisms of this
phagolysosomal dissolution or resolution are unclear, however,
it is known that if the phagolysosome fails to acquire PI4P its
dissolution in inhibited (74). Moreover, similar PI4P/PI4K2a
positive tubules in dendritic cells may account for the
requirement for PI4K2a to support optimal presentation of
antigens by the major histocompatibility complex II (73).
Thus, we would predict that loss of both zDHHC3 and
zDHHC7 would result in an inability of phagolysosomes to
degrade prey and be broken down into lysosomes.

A Potential Role for S-Acylation of Rab7 in
Retrograde Transport From the
Phagolysosome to Trans-Golgi Network
In non-myeloid cells, Rab7 is S-acylated on Cys83 and Cys84 and
this regulates the ability of Rab7 to interact with and recruit the
retromer complex to late endosomes (75). Prevention of Rab7
acylation results in the aberrant secretion of lysosomal pro-
enzyme to the extracellular medium. Although the S-acylation
of these two residues has now been demonstrated, it is still not
fully understood how this regulates the retromer. While the role
of Rab7 acylation has not been investigated in phagosome
maturation, it is tempting to speculate that it will also be
required for retrograde transport of cargo receptors such as the
mannose 6-phosphate receptor or sortillin back to the Golgi. In a
separate investigation identified zDHHC15 as a protein required
for optimal retrograde lysosome to Golgi transport of sortillin
and the cation-independent M6PR (76). This study also
Frontiers in Immunology | www.frontiersin.org 8159
demonstrated that acylation was required for these two cargo
proteins to associate with the retromer complex. This raises the
possibility that zDHHC15 may directly modify Rab7 to mediate
retrograde transport from lysosomes/phagosomes to the trans-
Golgi Network.
WHY DO MACROPHAGES THAT LACK
ZDHHC5 EAT FASTER?

Using the human myeloid cell line U937, a recent CRISPR screen
identified numerous genes that either positively or negatively
regulated phagocytosis of numerous phagocytic prey (77). The
authors demonstrated that loss of zDHHC5 resulted in a
substantial increase in phagocytosis mediated by a variety of
receptors including FcgR, complement, dect in and
phosphatidylserine (apoptotic body). This finding was
substantiated by another study using murine bone marrow
derived macrophage cells lacking zDHHC5 (18). Together,
these studies reveal that key negative regulator(s) of
phagocytosis require zDHHC5-mediated S-acylation for their
proper function and that in the absence of this post-translational
modification, phagocytic signaling is either enhanced and/
or accelerated.

In addition to ITAM containing receptors, there exist
comparable receptors which contain immunoreceptor tyrosine-
based inhibitory motifs (ITIMs). These include FcgIIb and the
phosphatidylserine receptor CD300a (78, 79). Two key
molecules which associate with the inhibitory ITIM motifs are
Src homology 2 (SH2)-containing tyrosine phosphatase (SHP)
and SH2 domain containing inositol phosphatase (SHIP) (80)
both of which inhibit phagocytosis by directly dephosphorylating
phosphotyrosine and phosphatidylinositol 3,4,5-trisphosphate,
respectively, essential for phagocytosis. Proteomics screens for
S-acylated proteins in RAW264.7 macrophage-like cells have
identified both SHP (17, 81) and SHIP (81). We speculate that
the plasmalemmal localized zDHHC5 acylates one or both of
these proteins which is required for their optimal function. In
the absence of lipidation, these phosphatases would have
impaired targeting to the sites of receptor activation leading
to enhanced signaling and faster rates of phagocytosis.
CONCLUSIONS AND PERSPECTIVES

In this review, we have focused on the role of experimentally
validated S-acylated proteins as regulators of phagocytosis and
phagosome maturation in macrophages. It is clear from these
examples that protein acylation can contribute to membrane
binding, trafficking and targeting. All of which can be explained,
at least in part, by two molecular mechanisms: the hydrophobic
insertion of an acyl chain into a lipid bilayer enhances membrane
binding, and saturated fatty acids prefer to insert into liquid
ordered raft domains rather than the bulk plasma membrane. It
is intriguing to speculate whether the function of S-acylated
proteins is directly associated with the acylation process or is a
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consequence of correct trafficking or localization of the target
protein. S-acylation of FcgRIIa and Rac1 exemplify the versatility
of S-acylation in modifying protein function beyond membrane
binding and targeting. In both instances’ acylation is essential for
downstream signaling pathways. However, the relationship
between S-acylation and protein function isn’t always so
transparent as we see for many of the proteins reviewed here.
As more S-acylated proteins and PATs are identified,
knockdown, knockout and knockin techniques wil l
complement the biochemical studies to help elucidate the
functions of S-acylation.

Finally, our collective understanding of the cellular roles of
protein S-acylation has lagged behind other post-translational
modifications such as phosphorylation, ubiquitination and
prenylation. Although in the past few years the identification
of several palmitoyl transferases as well as their protein
substrates has brought major advances to the protein
palmitoylation field many central questions remain. Part of the
challenge historically has been the limited number of tools,
techniques and reagents to study S-palmitoylation. However,
the development of new methods using bioorthogonal chemical
reporters, ABE and the closely related acyl PEG and acyl-RAC
assays, have accelerated both proteomic and directed studies.
Additionally, the recent cryo-EM structures of zDHHC15 and
zDHHC20 will no doubt help bolster the development of better
ligands for in vitro studies and inhibitors for cell and animal
studies. As the field continues to grow, we believe that the
macrophage and the process of phagocytosis and phagosome
Frontiers in Immunology | www.frontiersin.org 9160
maturation will be excellent paradigms to study the role of
zDHHC PATs, thioesterases and their modified substrates.
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México, Mexico

*Correspondence:
Adam P. Williamson

awilliams6@brynmawr.edu

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to
Molecular Innate Immunity,

a section of the journal
Frontiers in Immunology

Received: 31 January 2021
Accepted: 22 March 2021
Published: 19 April 2021

Citation:
Britt EA, Gitau V, Saha A and
Williamson AP (2021) Modular

Organization of Engulfment Receptors
and Proximal Signaling Networks:

Avenues to Reprogram Phagocytosis.
Front. Immunol. 12:661974.

doi: 10.3389/fimmu.2021.661974

MINI REVIEW
published: 19 April 2021

doi: 10.3389/fimmu.2021.661974
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Networks: Avenues to
Reprogram Phagocytosis
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Department of Biology, Bryn Mawr College, Bryn Mawr, PA, United States

Transmembrane protein engulfment receptors expressed on the surface of phagocytes
engage ligands on apoptotic cells and debris to initiate a sequence of events culminating
in material internalization and immunologically beneficial outcomes. Engulfment receptors
are modular, comprised of functionally independent extracellular ligation domains and
cytosolic signaling motifs. Cognate kinases, adaptors, and phosphatases regulate
engulfment by controlling the degree of receptor activation in phagocyte plasma
membranes, thus acting as receptor-proximal signaling modules. Here, we review
recent efforts to reprogram phagocytes using modular synthetic receptors composed
of antibody-based extracellular domains fused to engulfment receptor signaling domains.
To aid the development of new phagocyte reprogramming methods, we then define the
kinases, adaptors, and phosphatases that regulate a conserved family of engulfment
receptors. Finally, we discuss current challenges and opportunities for the field.

Keywords: phagocytosis, engulfment, immune receptor, signal transduction, macrophage reprogramming,
chimeric antigen receptor, immunotherapy
INTRODUCTION

The Megf10/Draper/CED-1 receptors, an ancient family of single-pass transmembrane proteins,
enable phagocytes across phyla to initiate the internalization of apoptotic cells, synapses, and cell
debris (1–3). Ligation of engulfment receptor extracellular domains to “eat me” signals on the target,
including the complement protein C1q and the lipid phosphatidylserine (PS), induces receptor
phosphorylation by “writer” kinases. Phosphorylation recruits “reader” proteins that initiate a series
of cytoskeletal and membrane-remodeling events that enable the phagocytes to ingest large targets
and digest internalized material in intracellular compartments. “Eraser” phosphatases then
dephosphorylate engulfment receptors to return the receptor to its unphosphorylated resting
state (4). Writer-reader-eraser modules that regulate receptor activation are common components
of vertebrate immune cell signaling pathways (Figure 1A). Notable examples include the Src-Syk-
CD45 writer-reader-eraser network that controls Fc-receptor signaling and the Lck-ZAP70-CD45
module that tunes activation the T cell receptor (TCR) (5).

The Megf10/Draper/CED-1 receptors are composed of functionally separable extracellular ligation
and intracellular signaling modules. The modularity of engulfment receptors enables phagocyte
reprogramming, as replacement of the extracellular domain with a new recognition element directs
org April 2021 | Volume 12 | Article 6619741163
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phagocytes to identify and ingest new targets (6–8). The
organization of engulfment signaling is also modular at the level
of the receptor proximal signaling networks. Engulfment receptors
function in concert with effector modules comprised of kinases,
adaptors, and phosphatases that initiate the engulfment signaling
program. Here, we review recent work that highlights the promise
of reprogramming phagocytosis to understand basic immunology
in pre-clinical settings. We then use the modular structure of
synthetic engulfment receptors as an inlet to define and compare
the writers, readers, and erasers that regulate initiation of the
engulfment signaling program through the Megf10/Draper/CED-
1 receptors (Figure 1B).
REPROGRAMMING PHAGOCYTOSIS
USING CHIMERIC ANTIGEN RECEPTORS

In multiple immune cell types, including T cells, phagocytes, and
natural killer cells, replacement of an extracellular domain with a
single-chain antibody fragment (scFv) can reprogram an
immune cell towards the cognate antigen of a specific scFv (7,
9, 10). Reprogramming immune cell signaling has ushered in a
new suite of methods to engineer the immune response to target
cancer (11). Analogous to Chimeric Antigen Receptors in T cells
(CAR-T), the modular organization of engulfment receptors
enables investigators to reprogram phagocytes to identify and
eliminate targets of therapeutic interest.

The modular organization of the T cell, Fc-, and phagocyte
receptors enables the reprogramming of immune cells to
Frontiers in Immunology | www.frontiersin.org 2164
recognize and respond to non-native targets of therapeutic
interest, including cancer antigens (6, 7, 9). Multiple groups
have successfully reprogrammed macrophages to recognize
cancer antigens by introducing synthetic Chimeric Antigen
Receptors for Phagocytosis (CAR-Ps) (6, 7). Fusing the Megf10
or Fc-receptor signaling domains to an scFv recognizing the B-
lymphocyte antigen CD19 programmed mouse macrophages to
ingest antigen-coated beads and cancer cells (Figure 1C) (7).
Surprisingly, chimeric receptors expressed in macrophages
composed of extracellular scFvs fused to the T cell receptor
signaling domain CD3z also drive engulfment (6, 7).
Importantly, Klichinsky et al. also demonstrated the following:
anti-cancer activity in humanized mouse models; induction of a
pro-inflammatory tumor microenvironment; and antigen cross
presentation to boost anti-tumor T cell responses (6).
Collectively, coupling scFv-based extracellular modules to
ITAM-based intracellular signaling domains from Megf10, Fc-
receptor, and the TCR, presents an attractive strategy to
reprogram macrophages towards therapeutically relevant
targets linked to both hematopoietic malignancies and solid
tumors (6, 7).

At present, methods primarily rely on extracellular antibody-
based modules that recognize antigens with high affinity.
However, high-affinity CAR-Ps may signal in a manner that
does not reflect endogenous receptor mechanisms. Recent work
demonstrates that T cells transduce signals through CAR-T
independently of a key T cell signaling protein required by
physiological T cells called Linker of Activated T cells (LAT)
(12). Future work for the field will require engineering molecules
A B C

FIGURE 1 | Receptors and proximal writer-reader-eraser modules. (A) Schematic of a generalized receptor and writer-reader-eraser module. Receptor ligation
induces phosphorylation of a receptor intracellular signaling domain by a writer kinase. The phosphorylated receptor recruits a reader adaptor protein. An eraser
phosphatase removes phosphorylation marks on the receptor intracellular domain, returning the system to its resting state. (B) A writer-reader-eraser module
regulates signal transduction through the Draper receptor. Draper, expressed on fruit fly phagocytes, recognizes phosphatidylserine (PS) or other ligands.
Phosphorylation of the Draper intracellular domain by the kinase Src42a induces recruitment of the adaptor kinase Shark. The phosphatase Corkscrew erases
phosphorylation marks on the intracellular domain of Draper. (C) Chimeric Antigen Receptor for Phagocytosis (CAR-P). Synthetic CAR-Ps bind cancer antigens (e.g.
the B cell antigen CD19) via an extracellular single-chain antibody fragment (scFv). Extracellular antibody ligation induces phosphorylation of engulfment receptor
signaling domains (e.g. the intracellular domain of mouse Megf10). Phosphorylation of the Megf10 receptor signaling domain on CAR-P recruits the Syk adaptor, a
cognate reader for murine Megf10. Schematic created in BioRender (biorender.com).
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that more closely reflect the biology of native engulfment
receptors, perhaps by developing new CARs that combine
multiple signaling modules to orient cellular responses towards
desired immunological outcomes. To learn how engulfment
receptors interface with proximal signaling modules, we
systematically defined the writer, reader, and erasers that
regulate the Megf10/Draper/CED-1 family.
MODULAR ORGANIZATION OF
ENGULFMENT SIGNALING NETWORKS
ACROSS PHYLA

Application of the writer-reader-eraser framework enables
conserved rules and regulatory principles underlying engulfment
to emerge from this complex collection of receptors and their
proximal signaling networks. Here, writers refer to protein
tyrosine kinases that create reversible binding sites for readers.
The readers, SH2- and PTB-domain-containing proteins, initiate
the engulfment program by activating “downstream” signaling
modules that remodel the actin cytoskeleton and cell membranes
(13). The cycle is completed by erasers, protein tyrosine
phosphatases that return the system to its deactivated state.

Megf10: Clearing Corpses and Shaping
Synapses in the Mouse Brain
Megf10, a receptor expressed on phagocytic astrocytes in the mouse
brain, promotes synapse elimination (14) and apoptotic cell
clearance (1). Megf10 also plays roles in retinal patterning (15)
and elimination of amyloid-b (16). After recognition of its ligand,
the complement protein C1q (1), Src-family kinase writers
phosphorylate Tyrosine (Tyr) residues within the Megf10
Immunoreceptor Tyrosine-based Activation Motif (ITAM) (17).
In addition to its ITAM, the cytosolic tail of Megf10 encodes an
NPxY motif (18), a domain capable of recruiting cytosolic signaling
proteins via direct interaction with phosphotyrosine binding (PTB)
domains. Consistent with a writer function for Src-family kinases,
treating HeLa cells that overexpress Megf10 with the Src-family
kinase inhibitor PP2 decreases engulfment of microspheres by HeLa
cells transfected withMegf10 (17). Thus, multiple Src-family kinases
can create binding sites for readers on the cytosolic tail of Megf10.

The tandem SH2-domain-containing kinase Syk is a Megf10
reader that interacts with phosphorylated ITAM residues on the
cytosolic domain of Megf10 (17). Though the specific actions of
Syk that enable phagocytosis in glia are unclear, Syk is an
important engulfment effector in macrophages and plays a role
in remodeling the actin cytoskeleton when bound to the Fc-
receptor (19). The PTB-containing protein GULP is upregulated
in reactive astrocytes after transient ischemic injury, an
expression pattern similar to Megf10 (20). Thus, in addition to
Syk, GULP is a candidate to interact with the intracellular
domain of Megf10 via an NPxY motif.

A specific eraser for Megf10 is not reported, though mouse
astrocytes express SHP-2 (PTPN11) mRNA (21). SHP-2 is a
cytosolic protein tyrosine phosphatase that dephosphorylates the
ITAM-bearing C-type lectin receptor that governs anti-fungal
Frontiers in Immunology | www.frontiersin.org 3165
immunity (22). In sum, Megf10 is an invariant single-pass
transmembrane engulfment receptor. A module comprised of
multiple Src-family kinases and Syk enables Megf10 to initiate
the clearance of apoptotic cells and synapses.

Draper and a Proximal Writer-Reader-
Eraser Module Initiate Engulfment by
Fly Phagocytes
Phagocytes in the fruit fly Drosophila melanogaster clear apoptotic
corpses and axonal debris to maintain tissue homeostasis and
repair the nervous system after injury. Engulfment in flies is
carried out by an array of cell types including hemocytes (23),
epithelial cells (24), and glia (2, 25). The Draper receptor,
expressed in each of these cell types, is comprised of an
extracellular emlin (EMI) domain that facilitates protein-protein
interactions (26) and nimrod (NIM) repeats, EGF-like domains
found on multiple fruit fly innate immune receptors (27). The
intracellular signaling domain of Draper contains two
phosphotyrosine-based signaling sequences that serve as
candidate sites for phosphorylation by Src-family kinase writers:
an NPxY and an ITAM.

Ligation of Draper to phosphatidylserine induces
phosphorylation of the cytosolic signaling domain of Draper
(8, 28). Intriguingly, Draper recognizes a diverse array of
additional ligands in other contexts including the proteins
Pretaporter (29) and DmCaBP1 (30) and the bacterial surface
molecule Lipoteichoic acid (31). Once ligand-receptor binding
occurs, clustered Draper is rapidly phosphorylated in phagocyte
plasma membranes (8). At least 5 residues on the cytoplasmic
signaling domain of Draper, including at least 4 outside the
ITAM, are phosphorylated by the kinase Src42a (8, 32). The
kinase Src42a is the writer in this system, creating a binding site
for the tandem SH2-domain kinase Shark (32) (Figure 1B).

The cytosolic protein tyrosine phosphatase Corkscrew, which
binds an alternatively spliced isoform of Draper called Draper-II via
an Immunoreceptor Tyrosine-based Inhibitory Motif (ITIM), is the
eraser for Draper (33). Corkscrew is capable of dephosphorylating
Draper and, intriguingly, loss of Corkscrew in vivo inhibits the
ability of glia to respond to secondary injury (33). The
interdependence of the writer, reader, and eraser in the fly system
underscores the importance of returning this immune cell signaling
system to its ground state to respond to future insults.

Collectively, a wealth of genetic, biochemical, and cell biological
evidence supports the model that engulfment through Draper is
carried out by a writer-reader-eraser module comprised of a writer
kinase Src42a, an SH2-domain-containing reader Shark, and an
eraser Corkscrew. As writers, readers, and erasers remain to be
determined in other organisms, the fruit fly represents an
exceptional model system for defining the mechanisms
underlying engulfment through the Megf10/Draper/CED-
1 receptors.

CED-1 in the Worm: A Divergent
Engulfment Receptor
Genetic work in the nematode Caenorhabditis elegans, including
the discovery of the CED-1 receptor (3), founded the engulfment
April 2021 | Volume 12 | Article 661974
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field. C. elegans phagocytes clear dead and dying cells using two
pathways governed by engulfment factors expressed by ced
genes. One pathway includes ced-2, ced-5, and ced-12 while
the other pathway includes ced-1, ced-6, and ced-7 (34). These
pathways converge on actin to facilitate rearrangements that
enable engulfment (35).

Corpse clearance by phagocytic cells in the worm is initiated
when cells neighboring the apoptotic cell release the secretory
protein Transthyretin-related 52 (TTR-52) (36). TTR-52 binds
PS on the corpse and serves as a bridging molecule to the
receptor CED-1. CED-1 ligation to TTR-52 induces activation
of the CED-6 and CED-7 signaling pathway. Like Draper and
Megf10, the extracellular domain of CED-1 contains EMI and
EGF-like domains (3, 26). The cytosolic signaling tail on CED-1
contains a possible Tyrosine phosphorylation site on a single
YxxL motif (3). The tail also contains an NPxY motif with a Tyr
residue. However, in vitro evidence indicates that NPxY motifs
may bind PTB-domain-containing proteins such as CED-6 in
the absence of Tyr phosphorylation (37). Thus, our application
of the writer-reader-eraser framework to the C. elegans CED-1/
CED-6/CED-7 engulfment module reveals that while worms do
encode candidate writer kinases and eraser phosphatases, the
CED-1 receptor may perform engulfment in the absence of
Tyr phosphorylation.
CONCLUSIONS, CURRENT CHALLENGES,
AND NEW OPPORTUNITIES

Comparison of Writer-Reader-Eraser
Modules Used by Phagocytes Across Phyla
Our application of the writer-reader-eraser framework to define the
proximal signaling networks that regulate theMegf10/Draper/CED-
1 receptor family revealed broad mechanistic similarities and
intriguing differences (Table 1). All three receptors contain at
least one cytoplasmic Tyr residue in an ITAM or NPxY motif,
potential phosphorylation sites for kinase writers. At least one
reader protein interacts with Megf10, Draper, or CED-1 to initiate
the complex series of cytoskeletal andmembrane-remodeling events
that power material internalization. Megf10 and Draper recruit a
Frontiers in Immunology | www.frontiersin.org 4166
Syk-family kinase reader and CED-6/GULP adaptor proteins. CED-
1 binds the reader CED-6. Collectively, the proximal writers and
readers governingMegf10 and Draper function are highly similar to
one another. Because the CED-6 adaptor protein may bind CED-1
independently of Tyr phosphorylation, CED-1 may function via a
distinct activation mechanism that does not require a writer kinase.
Less is known about the eraser phosphatases that negatively regulate
theMegf10/Draper/CED-1 receptors. The eraser for Draper, a SHP-
2 tyrosine phosphatase ortholog called Corkscrew, works by binding
an inhibitory splice isoform of Draper (33). The cognate
phosphatases for Megf10 and CED-1, though presumably
expressed by the relevant phagocytes, remain unreported.

Megf10, Draper, and CED-1 differ remarkably in their ligand
specificities, perhaps a result of their evolutionary divergence and
the large number of different “eat me” signals presented on the
surface of apoptotic cells and other targets (41). Megf10 binds the
complement protein C1q to initiate the engulfment of apoptotic
cells (1). Draper initiates engulfment by interacting with diverse
ligands including the lipid PS and the proteins DmCaBP1 and
Pretaporter (8, 28–30). Finally, CED-1 recognizes the secreted
protein TTR-52 that serves as A bridge between CED-1 and PS
(36). Perhaps the diversity of ligands that the Megf10/Draper/CED-
1 receptors recognize provides the mechanistic basis for
reprogramming the receptors using synthetic extracellular
domains. We hope that further study of engulfment receptors and
their proximal signaling modules will enable researchers to design a
new generation of synthetic signaling systems comprised of CARs
that interact with engineered intracellular signaling modules.

Reprogramming Phagocytes Toward
New Targets
In theory, new CAR-Ps that enable phagocytes to bind any
extracellular cell surface protein or secreted molecule should
program phagocytes to ingest non-native targets. At present,
however, implementing CAR-Ps in a clinical context requires
laborious editing protocols to manipulate autologous cells. Thus,
the use of CAR-Ps as therapies to treat human disease remains a
goal for the future. For now, CAR-Ps are emerging as
important tools to define basic immunology by elucidating the
mechanisms used by receptors expressed across diverse
phagocyte populations.
TABLE 1 | Summary of receptors and writer-reader-eraser modules used across biological processes and organisms.

Biological Process (Organism) Receptor Ligand(s) Writer Reader Eraser References

Phagocytosis of opsonized targets
(Mouse)

Fc-receptor Antibody fragment crystallizable (Fc) region Src-family
kinases

Syk CD45 (38, 39)

T-cell receptor activation (Mouse) T-cell receptor Peptide-MHC Lck ZAP70 CD45 (40)
Targeting hematologic malignancies
(Mouse)

Antibody-based Chimeric
Receptors

CD19, CD22 Not reported Syk Not
reported

(6, 7)

Targeting solid tumors (Mouse) Antibody-based Chimeric
Receptors

Mesothelin, HER2 Not reported Syk Not
reported

(6)

Engulfment of apoptotic cells and
synapses (Mouse)

Megf10 C1q Src-family
kinases

Syk Not
reported

(1, 17)

Engulfment of apoptotic cells and
axonal debris (Fly)

Draper Phosphatidylserine, Lipoteichoic acid,
Pretaporter, DmCaBP1

Src42a Shark Corkscrew (8, 28–33)

Engulfment of apoptotic cells (Worm) CED-1 TTR-52 Not reported CED-6 Not
reported

(3, 35, 36)
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As investigators continue to design and express new receptors, it
will be critical to move beyond internalization to learn how engulfed
material is targeted to promote specific immunological outcomes.
For example, recent work linking the receptor DNGR-1 to antigen
cross-presentation suggests that expression of a DNGR-1-based
CAR-P in Dendritic Cells may drive the efficient cross-presentation
of cancer antigens (42). In the long term, replacing cell-based CAR-
Ps with bi- or tri-specific antibodies that couple desired phagocyte
populations exposing known cell surface molecules to disease-
associated antigens may prove to be viable, inexpensive strategies
that could democratize access to new therapies.

Reprogrammed Phagocytes That Facilitate
Nondestructive Immune Responses
In conclusion, further study of engineered phagocytes could spur
the development of therapeutic interventions that cover a broad
array of “accommodation” immune archetypes: active,
nondestructive responses that, among other outcomes,
promote wound healing and tissue repair (43). Phagocytes are
particularly well suited to promote nondestructive responses
because their endogenous functions include clearing apoptotic
cells without inducing local inflammatory responses. In this
review, we focused on modular receptor signaling systems that
offer opportunities to reprogram phagocytes to ingest cancer
cells. A key future challenge for the field is to develop phagocyte
engineering strategies targeted at a broader range of diseases and
cell populations. We anticipate that the development of new
chimeric receptors that connect extracellular ligation to synthetic
intracellular signaling modules will lead to exciting discoveries at
the frontier of this nascent, expanding field.
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Extracellular vesicles (EVs) have garnered significant interest in recent years due to their
contributions to cell-to-cell communication and disease processes. EVs are composed of
a complex profile of bioactive molecules, which include lipids, nucleic acids, metabolites,
and proteins. Although the biogenesis of EVs released by cells under various normal and
abnormal conditions has been well-studied, there is incomplete knowledge about how
infection influences EV biogenesis. EVs from infected cells contain specific molecules of
both host and pathogen origin that may contribute to pathogenesis and the elicitation of
the host immune response. Intracellular pathogens exhibit diverse lifestyles that
undoubtedly dictate the mechanisms by which their molecules enter the cell’s exosome
biogenesis schemes. We will discuss the current understanding of the mechanisms used
during infection to traffic molecules from their vacuolar niche to host EVs by selected
intravacuolar pathogens. We initially review general exosome biogenesis schemes and
then discuss what is known about EV biogenesis in Mycobacterium, Plasmodium,
Toxoplasma, and Leishmania infections, which are pathogens that reside within
membrane delimited compartments in phagocytes at some time in their life cycle within
mammalian hosts. The review includes discussion of the need for further studies into the
biogenesis of EVs to better understand the contributions of these vesicles to host-
pathogen interactions, and to uncover potential therapeutic targets to control
these pathogens.

Keywords: extracellular vesicles, exosomes, infections, Leishmania, Mycobacterium, Plasmodium, Toxoplasma
INTRODUCTION

There are myriad facets of host–pathogen interactions that contribute to infection outcomes. Such is
the case with intracellular pathogenesis, which includes organisms that use the host biosynthetic
machinery to propagate themselves, organisms that reside in the cell cytoplasm and organisms that
reside within vacuolar compartments in host cells. Progress in our understanding of mechanisms
deployed by pathogens to exploit or subvert host mechanisms is uneven. It should therefore be
enlightening to consider current knowledge of pathogen-host interactions by pathogens that share
important characteristics. Our focus will be on pathogens that reside within membrane delimited
vacuolar compartments in the cell. Even among this relatively small subset of pathogens, there is
org April 2021 | Volume 12 | Article 6629441169
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great diversity in pathogen strategies to interface with the cell,
including differences in the composition and interactions of the
pathogen-containing vacuolar compartments. Each pathogen
elaborates unique strategies to translocate molecules from their
intravacuolar niche into the cell cytosol or to other host cell
organelles where they target host cell processes. It is presumed
that some of the molecules that are released into the cell cytosol
may access the exosome biogenesis machinery of host cells. The
intravacuolar pathogens that we will discuss infect phagocytes at
some point in their life cycle. Phagocytes are residents of tissues
where they play important roles in tissue homeostasis and
disease [reviewed in (1)]. Phagocytes are also recruited to sites
of tissue damage from infection or other insults, where they
proceed to limit the infection by various strategies, including
ingesting and destroying any intruders, elaboration of molecular
mediators to recruit and activate cells, removal of damaged host
cells, or attempts to wall off the site. Paradoxically, phagocytes
are unwitting hosts of a wide range of pathogens, including
viruses, bacteria, and eukaryotic parasites. Infection of
phagocytes and other host cells by the intravacuolar pathogens
discussed here results in diseases that cause tremendous
human suffering.

Numerous studies have shown that extracellular vesicles
(EVs) released by phagocytic cells infected with intracellular
pathogens hold infection-specific molecular cargo that may
contribute to pathogenesis and host immune responses
[reviewed in (2–4)]. Despite the abundance of proteomic and
functional data, the process of EV biogenesis during infection
and mechanisms by which pathogen-derived molecules are
packaged into host exosomes are poorly understood. Insightful
studies of EV biogenesis in the context of infection have focused
on viral pathogens, revealing that many viruses utilize the
endosomal sorting complex required for transport (ESCRT)
machinery for viral egress. However, the biogenesis of EVs
from infection by intracellular bacteria or intracellular
eukaryotic pathogens remains poorly understood. The purpose
of this review is to discuss the current understanding of the
mechanisms of EV biogenesis in the context of intravacuolar
pathogen infection to highlight each pathogen’s strategies to
exploit host EV biogenesis schemes. We initially discuss
universal characteristics and EV biogenesis schemes, after
which the situation in the context of infection is considered.
EXOSOME COMPOSITION
AND BIOGENESIS

Extracellular vesicles are secreted by all mammalian cells and can
be isolated from various bodily fluids, including blood, urine,
breast milk, tears, and cerebrospinal fluid (5). Extracellular
vesicles have garnered significant interest in recent years
because of their ability to transfer potentially important
intercellular communication mediators, including proteins (6).
This function is of particular interest in the context of host-
pathogen interactions, as EVs may be critical mediators of host-
pathogen communication and contribute to pathogenesis.
Frontiers in Immunology | www.frontiersin.org 2170
Exosomes may be classified by their size, cell of origin,
biogenesis, or proposed function (7–9). Apoptotic bodies are
membrane-enveloped vesicles that range in diameter between
50 - 5000nm released via the blebbing of cells undergoing
apoptosis (5, 8, 10). The existence of apoptotic bodies has
been long known and studied. Healthy cells also shed
extracellular vesicles, including microvesicles and exosomes
(11). Microvesicles are membrane-bound vesicles released
through outward budding and fission of the plasma (11, 12).
Microvesicles are a heterogeneous group of vesicles that have
been referred to by various terms including, ectosomes, shedding
vesicles, microparticles, or platelet dust; that range in size from
100 - >1000nm in diameter (12, 13). Lastly, exosomes are
membrane-enclosed vesicles between 50-150 nm in diameter
that are secreted when multivesicular bodies (MVBs) in the
endosomal pathway fuse with the plasma membrane and
release intraluminal vesicles (ILVs) into the extracellular space
(13). Together, these three classes of vesicles whose minimal
characteristics and nomenclature have been standardized (14),
are set apart in significant ways by both their biogenesis and
biological functions.

Exosomes were first described in 1987 (15) and have since
been found to be secreted by nearly all eukaryotic cells except for
mature red blood cells, which do not possess endocytic capacities
(16). Exosomes are secreted by healthy cells continuously, and
their cargo and pattern of release can be altered by conditions of
stress or infection (17). These nanosized vesicles contain
thousands of cell-specific molecules, including proteins, nucleic
acids, and lipids, enclosed within a single lipid bilayer membrane
(18). Some of these molecules are conserved across exosomes
from different origins, including tetraspanins (CD9, CD63, and
CD81), proteins involved in intracellular trafficking (Rab
GTPases, annexins), chaperones (Hsc70), biogenesis factors
(ALIX), and proteins associated with signal transduction (14-3-
3 proteins) (11). However, the exact composition of exosomes is
dynamic and reflective of cellular context and the health of its cell
of origin. Because the composition of exosomes is adaptive and
reflective of the cell environment and condition, they are
intriguing candidates for disease biomarker discovery through
the isolation and screening of exosomes from patient bodily
fluids (19).

Exosomes are of endosomal origin and are created when
intraluminal vesicles (ILVs) form by inward budding of the early
endosome (EE) (20). Early endosomes containing ILVs thenmature
into MVBs and are directed either to the lysosome for degradation
or fuse with the plasma membrane to release the ILVs to the
extracellular space as exosomes (20). Exosomes contain an
assortment of molecular cargo, including membrane proteins with
exposed extracellular domains on the exosomal surface and
cytosolic proteins enclosed within their lumen (21). The protein
composition of exosomes is specific and not reflective of the total
cell, indicating that there are specific mechanisms to control the
loading of select molecules into exosomes (22). Exosome biogenesis
and the process of selective protein loading remain poorly
understood phenomena. It is known, however, that the process of
exosome biogenesis is driven by at least two general mechanisms:
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endosomal sorting complexes required for transport (ESCRT)-
dependent and ESCRT-independent (tetraspanin or lipid-
dependent) processes (22).

ESCRT-Dependent Pathway
The ESCRT machinery was first shown to play a role in sorting
proteins into MVBs in yeast in 2001 (23). The ESCRT complex
comprises nearly 30 proteins assembled into five coordinating
subcomplexes that function in a stepwise fashion (24): ESCRT-0,
-I, -II, and -III, and associated AAA ATPase Vps4 complex (25).
The primary function of ESCRT in ancestral organisms was to
constrict and sever narrow membrane necks by a currently
unknown mechanism of membrane scission (26). The ESCRT
machinery is involved in many eukaryotic cellular processes,
including the sorting of ubiquitinated proteins into ILVs for
lysosomal degradation, viral egress, and membrane scission
during cytokinesis (27). More recently, ESCRT components
such as Tsg101 and Alix have been identified in exosome
preparations from different sources, which suggested the
involvement of ESCRT in the biogenesis of these vesicles (25).

The ESCRT subcomplexes perform a series of synchronized
tasks to drive both cargo loading and physical membrane-
remodeling and scission, leading to the production of ILVs:
ESCRT-0 sequesters ubiquitinated cargo, ESCRT-I, -II, and -III
control ILV budding, and Vps4 regulates membrane scission
(28). ESCRT-0 consists of two subunits, hepatocyte growth
factor-regulated tyrosine kinase substrate (Hrs) and signal-
transducing adaptor molecule 1/2 (STAM1/2), and can bind
both phosphatidylinositol 3-phosphate (PtdIns3P) and
ubiquitin, providing membrane recruitment, endosomal
specificity, and interaction with ubiquitinated target proteins
(29). ESCRT-0, ESCRT-I, and ESCRT-II all contain ubiquitin-
binding domains, suggesting that ubiquitination is important for
the selective loading of cargo proteins into exosomes (30).
ESCRT-I consists of tumor susceptibility gene 101 (Tsg101),
Vps28, Vps37, and multivesicular body 12 (hMvb12) and
interacts with both ESCRT-0 and ESCRT-II using domains
located on opposite ends of the complex (31). ESCRT-I then
recruits ESCRT-II, a Y-shaped subcomplex consisting of EAP30,
EAP45, and two subunits of EAP20, which cooperates with
ESCRT-0 to provide further endosomal specificity and recruits
ESCRT-III (32). ESCRT-III is composed of four main subunits-
charged multivesicular body proteins (CHMPs) CHMP2A, B,
CHMP6, CHMP3, and CHMP4A,B,C- and several adaptors and
accessory proteins such as ALIX, which can recruit a
deubiquitinating enzyme and is essential for cargo loading (33,
34), Deubiquitylation appears to be involved in loading cargo
into ILVs, which are destined for degradation, while exosomal
proteins remain ubiquitinated (25). The multimeric
mechanoenzyme class I AAA (ATPase associated with various
cellular activities) ATPase Vps4 is required to remove assembled
ESCRT-III from the membrane before vesicle formation (35).

The PDZ (postsynaptic density protein, disc large, and zonula
occludens) domain-containing protein syntenin is important for
the biogenesis of a specific subclass of CD63-positive ILVs.
Syntenin interacts with ALIX, pieces of the ESCRT machinery,
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and membrane receptors such as syndecans to produce ILVs
using an alternative ESCRT pathway of cargo recruitment and
vesicle budding (36), suggesting that ESCRT-dependent exosome
production may be a flexible process resulting in a heterogeneous
population of vesicles (9).

ESCRT-Independent Pathway
Depletion of all four ESCRT subcomplexes is insufficient to block
exosome secretion entirely in eukaryotic cell lines but does result
in drastic changes in cell morphology, such as enlarged, empty
MVBs and irregularly shaped ILVs (37). Therefore, these larger,
heterogeneous vesicles are produced by ESCRT-independent
mechanisms that rely on other lipids and proteins for the
loading and budding of exosomes (25).

Lipidomic analysis of EVs reveals that exosomes contain an
overall low concentration of lipids, resulting in a high protein/lipid
ratio (38). The lipid composition of exosomes is reminiscent of
detergent-resistant lipid rafts, and it is enriched in cholesterol,
ceramide, and sphingolipids essential for the ESCRT-independent
sorting of cargo into ILVs (39). Inhibition of ceramide production
using the neutral sphingomyelinase (nSMase) inhibitor GW4869
showed a marked reduction in exosome release, which appeared to
be specific and independent from ESCRT-dependent mechanisms
rather than a derangement of the entire endosomal system (39).
Furthermore, ILVs destined to be secreted as exosomes contain
ceramide while ILVs intended for lysosomal degradation contain
another related lipid, lysobisphosphatidic acid (LBPA), which is
absent in exosomes, suggesting that lipid composition is involved
in the determination of vesicle fate (40, 41).

However, depletion of ceramide has no effect on MVB
biogenesis or exosome secretion in human melanoma cells (42).
In these cells, the tetraspanin CD63 was involved in the ESCRT-
independent sorting of cargo into ILVs (42). Other tetraspanins,
including CD82 and CD9, have also been shown to participate in
the ceramide-dependent biogenesis of exosomes in healthy primary
cells (43). Tetraspanin-enriched microdomains (TEMs) may act as
sorting platforms for cargo molecules during the ESCRT-
independent biogenesis of ILVs (Figure 1C). However, the exact
mechanisms by which tetraspanins facilitate exosomal cargo sorting
are unknown (44).

Cargo Sorting: Post-Translational
Modification of Target Proteins
Exosomal protein composition is selective and dynamic, suggesting
that there are regulated mechanisms involved in loading specific
target molecules during vesicle biogenesis. Mass spectrometry
analysis of exosomes reveals that post-translational modifications
(PTMs) such as ubiquitination (mono-ubiquitination and poly-
ubiquitination), the addition of small ubiquitin-related modifier
(SUMOylation), phosphorylation, and glycosylation are all
common modifications of exosome proteins and may be involved
in the selective sorting of cargo molecules (45).

Ubiquitin can be bound to a target protein at numerous
positions via the isopeptide bond of C-terminal glycine of
ubiquitin with the ϵ-amino group of a lysine residue present in
the target protein, resulting in a complex network of
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modifications (45). The relationship between ubiquitination and
cargo sorting is unclear as protein sorting can also occur through
ESCRT and ubiquitin- independent mechanisms (22). SUMO,
another ubiquitin-like modifier, has also been shown to modify
exosomal proteins and influence miRNAs packaging into
exosomes (46). Also, phosphorylation has been found to work
in conjunction with ubiquitination and lipid rafts to regulate the
sorting of some specific subsets of proteins into the exosomes
(47). Despite these observations, current studies are so far unable
to unravel the complicated network of PTMs and their
involvement in selective cargo trafficking and vesicle fate.

The Potential of EVs in Infectious Disease
Extracellular vesicles are known to carry cargo whose
composition is unique to the cell of origin and is modulated by
the cell’s environment and growth conditions. This implies that
the profile of cargo molecules in EVs from cells experiencing
stressful growth conditions, including infection, will differ
somewhat from the molecular profile of EVs released under
non-stressful growth conditions. EVs therefore carry biomarkers
that can inform on the staging of a disease process. It is no
surprise therefore that exosomes are being touted as a source for
promising biomarkers for cancer diagnosis and that they
represent new targets for cancer therapy (48). In infectious
diseases as well, knowledge of EV composition modulated by
infection could similarly be exploited for development of
biomarkers for diagnosis of infection and identification of
immune targets. Exosomes released by macrophages infected
with several intracellular pathogens, including Salmonella enterica
andMycobacterium tuberculosis, have been demonstrated to include
pathogen antigens, stimulate a pro-inflammatory response in naïve
cells (49) and protect against subsequent infection challenges (50),
suggesting that exosomes may also be useful as cell-free vaccines
against infectious pathogens.
INTRAVACUOLAR PROKARYOTIC
PATHOGEN

Roles of Exosomes in Infections
Caused by Mycobacteria
Mycobacteria are acid-fast bacteria that prefer an intracellular
lifestyle. Mycobacterium tuberculosis is a human pathogen that
causes tuberculosis, and M. avium complex bacteria also lead to
lung infection, although primarily in immunocompromised
individuals. Finally, M. bovis bacillus Calmette-Guérin (BCG)
is a vaccine strain of Mycobacterium. Mycobacteria can infect
several cell types, such as neutrophils, macrophages, and
monocytes, although alveolar macrophages appear to be the
preferred host of Mycobacterium tuberculosis in the early
phases of infection (51). During the host cell infection,
Mycobacterium binds to the macrophage surface, followed by
internalization of the bacteria into Mycobacterium containing
vacuoles (MCV) that do not fuse with lysosomes, which ensures
that the bacterium survives in the vacuole (52). This bacterium
recruits several host proteins to the MCV surface, including rab5,
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to prevent phagolysosomal fusion at the early endosome stage.
This phenomenon is reflected by the fact that MCVs have a low
abundance of lysosomal markers, such as CD63, LAMP-1 and -2,
or rab7 (53, 54). Mycobacterium uses the SecA2 pathway to
secrete SapM and PknG effector proteins that affect phagosome
and autophagosome maturation (55).

While surviving in the MCV, Mycobacterium components,
pathogen-associated molecular patterns (PAMPs) appear to be
translocated from the vacuole via secretion systems. It has
been shown that cell wall constituents of M. avium,
glycopeptidolipids, are released by infected macrophages (56).
These glycopeptidolipids are trafficked from the MCV to
multivesicular bodies (MVBs), and the trafficking process is
enabled by the endocytic network. After the MVBs fuse with the
plasma membrane, the released exosomes still contain the
glycopeptidolipids, which are transferred from infected to
uninfected macrophages where they stimulate proinflammatory
mediators via Toll-like receptors (TLRs) -2, -4, that are dependent
on the MyD88 pathway (56). Other studies showed that exosomes
isolated from the bronchoalveolar lavage fluid (BALF) ofM. bovis
BCG–infected mice also stimulated proinflammatory responses in
macrophages, resulting in TNF-a production (57). These vesicles
contained the Mycobacteria components lipoarabinomannan and
the 19-kDa lipoprotein. Intranasal vaccination with exosomes
isolated from macrophages previously infected with M. bovis
BCG and M. tuberculosis stimulated TNF-a or IL-12 production
and aided in neutrophil and macrophage recruitment to the lung
of mice (57). A similar experiment was performed with exosomes
isolated from Mycobacterium-infected macrophages, which were
used to treat naïve bone marrow-derived macrophages, revealing
that these exosomes also stimulate other cytokines, such as GCSF,
sICAM1, IL-1ra, MIP-1a, MIP-1b, MIP-2, RANTES, and MCP-5.
In addition to inducing the release of cytokines, exosomes from
Mycobacteria-infected cells have been shown to induce migration
of macrophages. This phenomenon has been demonstrated in
vivo, based on the fact that the intranasally injected exosomes
resulted in the recruitment of CD11b+ cells into the lung (58).

Apart from exosomes’ effect on innate immune cells, exosomes
derived from Mycobacteria-infected cells also stimulate adaptive
immunity in the M. tuberculosis model. Exosomes derived from
macrophages exposed to culture filtrate proteins (CFP) of M.
tuberculosis induced pathogen‐specific IFN‐g and IL‐2‐expressing
CD4+ and CD8+ T cells. This Th1-biased immune response was
specific to mice vaccinated with exosomes obtained from CFP-
treated macrophages, while the BCG vaccine boosted the Th2
response. Those exosomes were also shown to prime a protective
immune response at a level comparable to BCG and provided a
booster to a previous BCG immunization, leading to a decrease in
mycobacterial count in lung and spleen of mice challenged with
aerosolizedM. tuberculosis (50). Exosomes released in vivo during
infection with M. tuberculosis also contribute to T cell response,
which was shown by using rab27a-deficient mice (59), which have
a defect in the exosome generation (60). The deletion of rab27a
was correlated with an increased bacterial burden and decreased T
cell activation, indicating the importance of exosomes in the T cell
function (59).
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Trafficking of Mycobacterial Proteins
to Exosomes
Mycobacterial proteins are trafficked to exosomes, shown first for
the 19-kDa lipoprotein (57). A proteomic study conducted on
exosomes derived from M. tuberculosis-infected J774 cells
identified 41 mycobacterial proteins, mostly predicted or known
to be secreted proteins, including previously known immunogenic
proteins ESAT-6, Ag85 complex proteins, MPT64, or MPT63 (61).
Interestingly, some of the mycobacterial proteins in exosomes
released from macrophages treated with M. tuberculosis CFP were
identical to the ones contained in exosomes isolated from infected
cells. This observation implies that mycobacterial proteins may have
a signal for trafficking into exosomes upon entry into the cell via
phagocytosis or endocytosis-based mechanisms (61). Similarly,
exosomes obtained from sera of active TB patients also include
M. tuberculosis proteins. This observation suggested that exosomes
can serve as a source of peptide biomarkers for TB. In comparison
to the exosomes isolated from the bronchoalveolar lavage (BAL)
fluid from M. tuberculosis-infected BALB/c mice and infected J774
macrophages (61), five of these proteins were in common, including
DnaK, PstS2, GlcB, HspX, and AcpM (62). The mycobacterial
proteins contained within the host exosomes appear to be secreted
via the SecA and type VII secretion system, although at least one of
these proteins is not expected to be secreted (GabD1). This might
mean that several different mechanisms, including bacterial lysis, are
responsible for the release of mycobacterial proteins prior to their
incorporation into exosomes (61).

The mechanisms that control the trafficking of these soluble
bacterial antigens to the exosomal compartments are not
currently known. For M. tuberculosis several pathways have
been shown to be important in the antigen trafficking to
exosomes. In addition to rab27a discussed above, they also
showed reduced trafficking of M. tuberculosis 19 kDa
lipoprotein, which were (59). This observation suggested the
importance of rab27a pathway in the trafficking of mycobacterial
proteins to exosomes.

The pathway that is crucial for the trafficking of proteins into
macrophages is ESCRT dependent pathway. Knockdown of Tsg101
and Hrs, which are the ubiquitin-binding domains of ESCRT-1 and
ESCRT-0, respectively, resulted in the reduction of exosomes
produced in RAW 264.7 macrophages, which indicated that
ubiquitin might be one of the mechanisms involved in the
trafficking of proteins to MVBs and exosomes (63). Schorey et al.
examined whether ubiquitination is a post-translational
modification necessary for the trafficking of soluble mycobacterial
antigens into the exosomes. Toward this goal, exosomes were
purified from Mycobacterium-infected RAW264.7 macrophages,
followed by pull-down of mono-ubiquitinated proteins. The
western blotting of such mono-ubiquitinated proteins was done
using an antibody that recognizes culture filtrate proteins of M.
tuberculosis, and the results indicated that several mycobacterial
proteins are ubiquitinated. Moreover, specific mycobacterial
proteins KatG, HspX, and GroES were shown to be ubiquitinated
by using this western blot technique (63). An inhibitor PYR-41 was
used to treat cells prior to the exosome purification since this
molecule inhibits the thioester bond formation between ubiquitin
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and E1. This compound treatment leads to a complete depletion of
mycobacterial proteins in the collected exosomes. Further, mutation
of a specific lysine residue in the mycobacterial protein HspX
diminished its trafficking into the exosomes that was dependent
on the clathrin-mediated endocytosis. Mono-ubiquitination is
required for the trafficking of some proteins into the endosomes.
Indeed, the trafficking of HspX was shown to be dependent on
clathrin-mediated endocytosis, based on the treatment with
Dynasore, which is an inhibitor of this uptake mechanism (63).
In addition, expression of a C‐terminal fusion of ubiquitin to EGFP
and M. tuberculosis proteins Ag85B and ESAT-6 in HEK 293 cells
enhanced the delivery of these proteins into exosomes by ten-fold
when they were coupled to ubiquitin (Figure 1). These exosomes
were able to elicit a T cell response by stimulating the production of
INFɣ‐secreting T lymphocytes in the lung and spleen (64).

These results collectively suggested that mono-ubiquitination
could serve as a mechanism for the trafficking of bacterial proteins
into the exosomes via clathrin-mediated endocytosis. The
ubiquitin E3 ligases responsible for the ubiquitination of these
bacterial proteins have not yet been identified, but it is likely that
multiple E3 ligases exist that play this function in sorting of
proteins to exosomes. Furthermore, apart from a better
characterization of ubiquitination in this context, it would be
interesting to investigate additional mechanisms that might guide
mycobacterial proteins to vesicular compartments. Moreover, the
fate of the mycobacterial proteins that are carried in exosomes to
target cells is also unknown. It would be important to track the
bacterial proteins carried to target cells via exosomes, in order to
identify the colocalization of these proteins with intracellular
compartments, such as endocytic vesicles and lysosomes.
Furthermore, since exosomes can carry these mycobacterial
proteins to the antigen-presenting cells, and because exosomes
formed during the Mtb infection stimulate protective immunity
against Mtb (50, 59), it is possible that the Mtb antigens are either
loaded on MHC molecules or the entire exosomal complex
containing MHC and Mtb antigenic peptide are exposed on the
cell surface. The trafficking of the exosomal content within the
target cell clearly deserves further mechanistic studies.

Small Extracellular Vesicles From
Mycobacterium-Infected Macrophages
Carry RNA
Apart from proteins, exosomes can also transmit other molecules
from infected cells. In the case of M. tuberculosis infection,
exosomes carry a smaller amount of microRNA (miRNA) than
uninfected cells. However, transcripts regulating immune
response are more abundant in exosomes derived from M.
tuberculosis-infected macrophages. Apart from the host RNA,
the vesicles are also capable of carrying mycobacterial RNA.
Similar to proteins, the RNA cargo is transferred between cells
via exosomes (65). Currently, a mechanism responsible for the
trafficking of bacterial transcripts to the exosomes remains
uncharacterized, although RNA‐binding protein hnRNPA2B1
has been shown to bind specific miRNAs (46). This and other
RNA‐binding proteins are, therefore, likely capable of sorting
relevant miRNAs into the vesicles.
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EUKARYOTIC PATHOGENS

Brief Review of Plasmodium biology
Plasmodium parasites are apicomplexan parasites that cause
malaria. It is estimated that over 100 million people are infected
worldwide, and just under 1 million people succumb to these
infections each year (66). Infections in humans are initiated by
sporozoites deposited into a host by female Anopheles mosquitoes
when they take a blood meal. The sporozoites establish a productive
infection when they infect liver cells. Although hepatocytes are the
principal hosts of parasites in the liver, it has been shown that
sporozoites take up transient residence in Kupfer cells that mediate
their access to hepatocytes (67, 68). It was also shown that after
infection of hepatocytes, a small subset of liver parasites is acquired
by monocyte-derived CD11c+ cells (69). Infection of CD11c+ cells
and hepatocytes were shown to be dependent on their expression of
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the tetraspanin CD81, which coincidentally is a vital component of
exosomes (70). The parasitophorous vacuoles (PVs) in which the
parasites reside in hepatocytes exhibit unique characteristics
compared to PVs that harbor other Apicomplexan parasites. For
example, Plasmodium containing PVs rest close to the cell nucleus
and establish interactions with the Endoplasmic Reticulum (ER),
which is in contrast to Toxoplasma whose PVs establish a tight
association with the Golgi apparatus, Mitochondria, and
Endoplasmic Reticulum (ER) (71) of the host cell, Furthermore,
Plasmodium-containing PVs have been shown to have pores
through which nutrients smaller than 3000 Da can be exchanged
between the PV lumen and cell cytosol (71). Parasites in PVs within
liver cells undergo rapid division into merozoites. The PVs enlarge
into giant syncytium-like compartments (71). Upon their release
from the liver, merozoites enter the blood circulation, where they
infect red blood cells. Of the five species of Plasmodium parasites
A B

C

FIGURE 1 | Biogenesis of extracellular vesicles in intravacuolar pathogen infections. (A) Mammalian cell-derived extracellular vesicles include exosomes and
microvesicles, which can be characterized by their biogenesis, size, and composition. While microvesicles are generated by the direct outward budding of the cell’s
outer membrane, exosomes are derived from an endocytic origin. First, early endosomes (EE) undergo inward budding. This forms intralumenal vesicles (ILVs) inside
what is then called the late endosomal vesicle (LE) or multivesicular body (MVB). Depending on molecular signals, the MVB may then be destined for degradation by
fusing with lysosomes or will fuse with the plasma membrane, releasing the ILVs to the extracellular space where they are then called exosomes. In the context of
intravacuolar pathogens, exosomes are a possible mechanism for the release of pathogen molecules from infected cells. The exact mechanisms for how these
pathogen molecules escape their respective vacuoles and are trafficked to host exosomes is not fully understood, but it is likely to be unique for each pathogen as
discussed in this review. The composition of pathogen-containing vacuoles is diverse and requires unique methods for the exchange of molecules between host and
pathogen. Mycobacteria utilize secA, type VII secretion system (represented by blue channel), and possibly other secretion systems to secrete exosome-bound
proteins from the Mycobacterium containing vacuole (MCV). Plasmodium containing vacuoles (PL-PVs) conversely contain pores (represented by dashed vacuole
boarder) through which small molecules may pass freely between the PV lumen and host cytosol, presenting easy access of pathogen molecules to host cytosol and
exosome processes. Leishmania parasitophorous vacuoles (LPVs) are dynamic compartments that interact with the host’s endocytic and secretory pathways.
Multimembranous structures within LPVs whose cellular origin is not known, may transport molecules from LPVs to host cell organelles including MVBs. Dashed
arrows represent speculative pathways for trafficking of pathogen molecules into host ILVs. (B, C) Exosome biogenesis can occur by two general mechanisms-
either ESCRT-dependent or ESCRT-independent. (B) ESCRT, or endosomal sorting complexes required for transport, is a specialized multi-subunit complex which
allows for the recruitment of ubiquitinated proteins and the inward budding and scission of ILVs. ESCRT-0 recruits ubiquitinated proteins while ESCRT-I, ESCRT-II,
and ESCRT-III facilitate ILV budding, and finally Vsp4 facilitates membrane scission. Accessory proteins such as ALIX are also involved which perform
deubiquitylation for cargo loading. (C) Less is currently known about the mechanisms of ESCRT-independent exosome biogenesis, however it is proposed that
ceramide and other lipids, such as sphingomyelin and cholesterol, as well as tetraspanins play a part in the trafficking of proteins and inward budding. Created with
BioRender.com.
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that infect humans, Plasmodium falciparum and Plasmodium
knowlesi infect all red blood cells. In contrast, Plasmodium vivax
and Plasmodium ovale infect only reticulocytes. Plasmodium
malariae infect older red blood cells. Many mechanistic studies
on Plasmodium infections have been performed in experimental
models with parasites of rodents, including P. berghei, P. yoelii and
P. chabaudi that exhibit similarities and differences with
Plasmodium falciparum and Plasmodium vivax, depending on the
stage of infection.

Exosomes in Plasmodium Infections
As discussed above, during their life cycle, Plasmodium parasites
infect distinct cell types that should be expected to employ
mechanisms for exosome biogenesis. Several studies have
explored the role of exosomes and microvesicles (previously
called microparticles) in Plasmodium infections. Mature red
blood cells are devoid of a nucleus and the endocytic cell
machinery in their cytoplasm, including multivesicular bodies
(MVBs) that play a critical role in exosome biogenesis in
nucleated cells. Plasmodium within mature red blood cells have
been shown to translocate over 300 parasite-derived proteins
from their PVs into the red blood cell cytosol. These molecules
that are distributed throughout the red blood cell, including on
its cell surface, have been implicated in several functions,
including the formation of Maurer’s clefts that appear to play
some role in exosome formation in Plasmodium-infected cells
(72). It is striking that only a subset of the molecules that are
translocated into the red cell has been identified in EVs that are
recovered from the supernatant fluid of cultured infected
erythrocytes (73, 74). While EVs included proteins from the
PV membrane and some well-studied surface molecules such as
PfEBA and knob-associated molecules, they however, lacked
other well studied molecules, including PfEMP1(a knob
associated protein) and AMA-1. This observation suggests that
there is a machinery outside of the parasite in the red blood cell
that plays a pivotal role in selecting molecules for inclusion in
EVs. Abdi et al. (74) analyzed exosomes released from red blood
cells infected with a relatively earlier parasite passage. They
identified over 50 more Plasmodium molecules in those EVs as
compared to exosomes produced from a parasite line that had
long been adapted to the in vitro culture conditions (74). Not
surprisingly, many of the molecules that were identified in the
study with the low passage parasites were involved in virulence.
That study underscored the need to evaluate recently obtained
field isolates and suggested that molecules in exosomes may play
a role in the parasites’ virulence.

A couple of elegant studies have shown that exosomes can
mediate intracellular communication between parasites within
infected red blood cells [reviewed in (75)]. Studies using
transgenic parasites expressing a drug resistance marker
showed that DNA packaged in EVs could be exchanged by
parasites in an infected cell, which results in the spread of a
resistance marker (72). Another study showed that infected red
blood cells selectively took up EVs produced by other infected
cells, which then stimulated gametocyte production in the
recipient infected cells (73). Exosomes have also been shown to
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stimulate the immune response by activating macrophages and
neutrophils [reviewed in (75)]. They also play significant roles in
cerebral malaria where among other activities, they promote
vascular changes, including endothelial cell activation [reviewed
in (76)]. Together, those studies demonstrated the critical role of
EVs in Plasmodium infections and suggested that a greater
understanding of their biogenesis and functions could be
exploited to modify the course of malaria.

Studies on the ATP binding cassette transporter A1 have
suggested a role for this molecule in EV biogenesis in Plasmodium
infections. It had been shown that ATP binding cassette transporter
A-1 (ABCA-1) plays a role in phosphatidylserine distribution at the
plasmamembrane (77). ABCA-1 knock-outmicewere subsequently
shown to be defective in EV release. Red blood cells from these mice
produced reduced levels of EVs, which implicated this molecule in
EV biogenesis in red blood cells [reviewed in (76)]. As mentioned
briefly above, the molecules localized to Maurer’s clefts were
identified in EVs from Plasmodium-infected RBCs. Studies by
Regev-Rudzki et al. (72) identified and tracked the PfEMP1
trafficking protein (PfPTP) that associates with Maurer’s cleft (72).
They proceeded to show that parasites thatwere genetically altered to
lack expression of PTP-2 were defective in EV release when used to
infect red blood cells. This provided compelling evidence of the role
of Maurer’s clefts in EV biogenesis in infected cells.

In contrast to mature red blood cells, reticulocytes are
nucleated and possess the biosynthetic machinery of
mammalian nucleated cells. The composition and functions of
exosomes released from Plasmodium-infected reticulocytes and
liver cells have been described. The studies of Martin-Jaular et al.
(78) that characterized exosomes released by BALB/c mice
infected with non-lethal Plasmodium yoelii 17X described the
presence of parasite-derived molecules in exosomes from
infected reticulocytes (78). In that experimental model, where
Plasmodium yoelii 17X infects reticulocytes, infections were
initiated by intraperitoneal injection of infected cell blood cells.
Up to 31 parasite-derived proteins were found to be included
among the molecules in the reticulocyte-derive exosomes. Some
of the parasite proteins that were identified included the serine-
rich antigen (SERA) that is expressed by a multigene family and
has been implicated in virulence [reviewed in (79)], merozoite
surface antigens (MSP1 and MSP9), and heat shock protein 70.
The mechanisms that led to their inclusion in reticulocyte
derived exosomes have not been described. A more recent
study by Gualdrón-López et al . (80) described the
characterization of exosomes that were secreted from the liver
stages of Plasmodium vivax infections (80). The research team
took advantage of the human liver-chimeric (FRG huHep)
mouse (81) in which an immunocompromised mouse with
several genetic mutations was engrafted with human
hepatocytes. FRG huHep mice support the complete
development of the human parasites, P. falciparum (81) and P.
vivax (82) that would not otherwise infect mice. The analysis of
exosomes isolated from the blood plasma of the P. vivax infected
FRG huHep mice (ExEF) identified 290 and 234 proteins from
mouse and human origin, which included liver proteins that had
previously been described from liver exosomes (80). This
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analysis also identified 17 parasite-derived molecules that were
included in exosomes from liver-infected cells. When the authors
compared human ExEF exosomes from infected animals versus
uninfected control mice, they stated that several proteins were
differentially associated with P. vivax infections (P-value < 0.05).
This finding is consistent with studies from other infections that
have shown that the infection influences host-derived molecules’
composition in exosomes. The list of parasite proteins in ExEF
included heat shock protein 70 (HSP70), which was also seen in
the study on infected reticulocyte-derived exosomes described
above. A different variant of merozoite surface antigen (MSP3)
was found in the ExEF, which differed from the variants found in
the infected reticulocyte derived exosomes discussed above.
Whether it is 17 or 31 parasite-derived proteins identified in
exosomes from infected liver cells or from infected reticulocytes,
it is currently unknown which characteristics of these proteins
direct them to the host cellular exosome biogenesis machinery. It
is also not known whether ubiquitination plays a role in exosome
loading within Plasmodium-infected cells.

Toxoplasma
Toxoplasma are Apicomplexan parasites that can infect all
warm-blooded animals, including mammals and birds. In
humans, Toxoplasma have been implicated in a range of
clinical presentations whose severity is determined by the
individual’s immune status. Toxoplasma is acquired by
ingestion of raw or inadequately cooked meat. It can also be
acquired upon ingestion of oocyst dispersed in the environment
in cat feces. This later mode of acquiring the infection by
pregnant women is the subject of public health campaigns that
dissuade women from changing cat litter, as infection during
pregnancy can lead to congenital transmission resulting in
stillbirths or hydrocephalus or retinal infections of the
newborn. Toxoplasma can infect all nucleated cells in
mammals. Parasite entry into cells involves the sequential
deployment of molecules from Apicomplexan-specific
organelles. The release of proteins from Rhoptries follows the
discharge of micronemal proteins. Dense granule proteins are
then released, which contribute to the formation of the
parasitophorous vacuole and the intravacuolar network.
Rastogi et al. (83), Håkansson (84), and Nadipuram (85) have
described the export machinery of proteins from the Toxoplasma
PVM and provided examples of molecules that are transported
to the host cell (83–85). Whether displayed on the PVM or
translocated to other host cell organelles or the cytosol, most of
these molecules are potentially accessible to the exosome
biogenesis machinery.

Studies of the potential role of exosomes in toxoplasmosis
have evaluated exosomes that are released from axenic cultures
of parasites (86) or exosomes that are released from dendritic
cells that are pulse with Toxoplasma antigens (lysate) (87, 88) or
mammalian cells that are infected with Toxoplasma (56, 89).
Despite the obvious differences in the sources of Toxoplasma
molecules, exosomes containing Toxoplasma molecules were
shown to be able to stimulate naïve recipient cells to secrete
cytokines. Injection into hosts in experimental studies led to the
elaboration of a variety of Toxoplasma specific responses. Some
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studies of exosomes secreted from Toxoplasma, have shown that
infection with Toxoplasma induces the release of a unique profile
of protein and nucleic acids that is different from those released
by uninfected cells. In infections of human foreskin fibroblast
cells, Wowk analyzed exosomes from cells infected with
Toxoplasma gondii and compared their protein content to
exosomes from axenic cultured tachyzoites. They found 69
unique parasite derived proteins in infection derived EVs,
however the number of parasite derived proteins was not
stated (90). In another study in which dendritic cells were
infected with Toxoplasma gondii, 12 differentially expressed
miRNAs compared to exosomes from uninfected cells were
identified (91). Further analysis predicted that in recipient
cells, these miRNAs could be associated with a variety of
biological processes, including signaling pathways involved in
host ubiquitin system, innate immunity, biosynthesis, and
transferase activity. Future studies will no doubt provide
greater insight on the trafficking of these parasites derived
molecules in the infected host cells.

Leishmania
Brief Review of Leishmania Infections
Leishmania are members of the family Trypanomastidae in the
order Kinetoplastida. Leishmania parasites are grouped into two
subgenera: Leishmania (Leishmania) and Leishmania (Viannia)
that are further classified into species and subspecies. Infection of
humans results in a disease presentation that is mostly
dependent on the parasite species. Parasites of the Leishmania
(Leishmania) subgenus including L.(L) donovani, L.(L) infantum
and L.(L) chagasi (with a few exceptions including L.(L)
amazonensis and L.(L) major, L.(L) tropica that cause
cutaneous infections) are the primary causative agents of
visceral disease. In contrast, parasites of the Leishmania
(Viannia) subgenus, including L.(V) braziliensis, L.(V)
panamensis, cause cutaneous infections that can manifest as
self-limiting lesions or disseminated lesions or mucocutaneous
infections [reviewed in (92, 93)]. However, there are reports of
visceral disease caused by parasites that ordinarily lead to
cutaneous lesions, while other reports of cutaneous lesions
have implicated parasites species that typically lead to visceral
disease [reviewed in (94)]. These ‘unexpected’ disease
presentations underscore the complexity of these infections
and may be due to host genetics contributions and poorly
defined environmental factors (94, 95). Leishmania parasites
are transmitted by sandflies. Once inside the mammalian host,
Leishmania infects phagocytic cells wherein they reside in
Leishmania-containing parasitophorous vacuoles (LPVs). The
Leishmania species determine LPV morphology. At the extremes
of morphological differences, parasites of the L. mexicana
complex (L. mexicana, L. amazonensis) reside within large
communal LPVs that continuously distend. At the other
extreme, L. donovani, L. chagasi/L. Infantum reside in tight
LPVs that harbor a single parasite. After parasite replication
and fission, daughter parasites segregate into secondary LPVs
that also house individual parasites. All other Leishmania species
reside in LPVs that may house one to four parasites. It is
presently not known how LPV morphology differences affect
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Leishmania pathogenesis. LPVs are dynamic compartments
composed of molecules from the host secretory pathway,
including the endoplasmic reticulum (ER) and the endocytic
pathway, including late endosomes and lysosomes (96).
Although much has been learned about the molecular
composition of LPVs, there are still unanswered questions
about the biology of LPVs, including how Leishmania derived
molecules are translocated across the LPV membrane and which
signals mediate the trafficking of parasite-derived molecules to
the intracellular sites where they express their functions. On this
topic, a recent publication provided evidence of traffic of
Leishmania proteins from LPVs to the ER in vesicles that
otherwise transmit cargo between the Golgi and the ER (97).
The authors proposed that this could be one route through which
parasite molecules are retrieved from LPVs for distribution in the
infected cell and beyond.

In natural infections, the parasite’s promastigote form is
deposited in the skin of the host by the sandfly. The parasites
commence a skin phase of the infection. After a transient residence
in neutrophils, parasites are transferred to macrophages wherein
they undergo replication as amastigotes (98, 99). In cutaneous
infections, inflammatory cells are recruited to the bite site, which
results in a cutaneous lesion over time. In infections by parasites that
cause visceral infections, there is also an initial cutaneous phase (can
last for several weeks) after which infected cells migrate to visceral
organs where they replicate and form inflammatory lesions; this was
first demonstrated in infections of hamsters (100). Parasites such as
L. amazonensis and L. braziliensis that disseminate to secondary
sites, proliferate for much longer periods at the primary site
(months to years) before dissemination. Recent studies that have
explored the phenotype of cells at primary and secondary sites in
experimental infections with L. major, highlighted the expression of
chemokine receptors CCR2+ and CX3CR1+ on the monocyte-
derived cells that are the primary host cells of these parasites (99,
101). Infections in knockout mice that lack these receptors were
limited, which suggested a role for chemokines in Leishmania-
infected cell dissemination [Also reviewed in (102)]. Nonetheless,
neither the triggers for disseminating the infection nor the factors
that determine the selection of secondary sites to which parasites
spread are not known. Could some of the mechanisms that promote
metastatic tumor dissemination, such as the roles played by
exosomes in tissue homing or organotropism (reviewed in
(103, 104), be also important in the dissemination of
Leishmania infections?

After parasites take up residence at a tissue site, remodeling of
the site ensues. Analyses of skin lesions in humans revealed the
noticeable presence of blood vessels of varying morphologies at
these sites (105, 106). Experimental infections of cutaneous and
visceral leishmaniasis also undergo vascular changes at the lesion
site. Horst et al. (107) reported that cutaneous infection by
L. major parasites in the hindfoot of C57BL/6 wild-type mice
resulted in extensively vascularized lesions because the
lymphatic and blood vessels were readily evident as the infection
established (107). The authors implicated the expression of
carcinoembryonic antigen-related cell adhesion molecule 1
(CEACAM1) on mononuclear cells (CD11bhi cells) as essential
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mediators of angiogenesis in L. major infected lesions. Also
performing studies with L. major, Weinkopff et al. (108),
showed that there was increased expression of vascular
endothelial growth factor-A (VEGF-A) and vascular endothelial
growth factor receptor (VEGFR-2) at the site of infection that
mirrored the increase in lesion size and parasite numbers (108). In
infections with L. donovani, where lesions form in visceral tissue,
Yurdakul et al. (109), described vascularization and
neovascularization of the red pulp and white pulp regions of the
spleen, respectively (109). They attributed splenic vascularization
to Ly6C+ inflammatory monocytes. In a more recent study,
Dalton et al. (110), showed that neurotrophic tyrosine kinase
receptor type 2 (Ntrk2, also known as TrkB) was aberrantly
expressed on splenic endothelial cells following Leishmania
infections (110). The study then showed that macrophages
expressed the ligand(s) for Ntrk2 in the infected spleen and that
inhibition of signaling through Ntrk2 blocked white
pulp neovascularization.

Exosomes in Leishmania Infections
Natural Leishmania infections are initiated with promastigotes,
which are a transient stage within the mammalian host. Within
24 hours of internalization into macrophages, they transform into
amastigotes. The characteristics of this transformation that is
triggered by temperature and pH changes were described by
Zilberstein and colleagues (111, 112). The present challenge is to
determine which molecules are released from long-term infections.
Many Leishmania virulence factors have been described; however,
as Kaye et al. (113) noted in their recent review, no Leishmania
parasite-derived factors that cause tissue damage are known (113). It
is likely, though, that exosomes released from infected cells carry
molecules that could play a role in lesion development and immune
response activation. Leishmania parasites themselves produce a
variety of extracellular vesicles, including exosomes, which enable
them to interact with and respond to their environment.
Leishmania promastigotes were found to release vesicles with an
average diameter of 30-70nm, consistent with exosomes released by
other cell types (114). The molecular composition of these parasite-
derived exosomes has been evaluated and shown to contain
homologs of some mammalian exosome markers, as well as
molecules that may enhance infectivity (114, 115). Up to 329
molecules have been identified in exosomes released from axenic
promastigotes, accounting for greater than 52% of the parasite
secretome (115). Atayde et al. (116) showed that L. major parasites
secrete exosomes within the sandfly midgut, which, when injected
with parasites during the initial insect bite of a mammalian host,
enhance infection and lesion development in mice (116).
Additionally, the exosomes produced by axenic Leishmania
promastigotes modulate the chemotactic activity and cytokine
secretion of macrophages in vitro to suppress the immune
response and enhance permissiveness to subsequent infection
(115). The vesicles also have the capacity to activate the immune
system of the host. Exosomes released from L. major parasites were
shown to induce Th2 polarization and enhanced disease
progression in mice, indicating that parasite-derived vesicles are
immunosuppressive and proparasitic in nature.
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The Leishmania major surface protease (MSP), also referred
to as GP63, is an important virulence factor, which contributes to
enhanced phagocytosis by macrophages and promoting the
survival of the parasite during both promastigote and
amastigote life stages. There are three pools of GP63: surface-
localized, internal, or released, that are believed to traffic
separately through the cell and then released into the
extracellular environment (117). Upon infection of
macrophages, released GP63 is captured in vesicles and may
also access the macrophage cytoplasm, though the exact
mechanism of GP63 delivery to the host cytoplasm remains
unclear; Leishmania parasites lack secretion systems comparable
to those found in pathogenic bacteria (118). Exosomes released
by L. mexicana-infected J774 macrophages for 24 hours were
found to contain GP63, suggesting that parasite molecules from
this intracellular pathogen can access host exosomes and then be
released widely (119).

Recent research also indicates that macrophages infected with
L. donovani amastigotes release exosomes containing a mixture
of unique host and parasite proteins contributing to pathogenic
processes (120). In that study, infections of RAW264.7
macrophages were initiated with L. donovani promastigotes,
and infections were allowed to continue for 72 hours (about 3
days) to evaluate mature infections. After 72 hours of infection,
extracellular vesicles were purified from media supernatants
using differential centrifugation and then subjected to liquid
chromatography combined with tandem mass spectrometry. In-
solution and in-gel protocols for tryptic digestion were used prior
to the mass spectrometry-based analysis, and data combined to
yield protein composition profiles for uninfected and infected
macrophage-derived EVs. Consequently, this approach led to a
confident identification of 59 parasite proteins in EVs released by
infected macrophages. These proteins included a putative
Vasohibin, nucleoside transporter 1, kinesin, DNA directed
RNA polymerase II subunit 2, dynein heavy chain, and
putative protein kinases. Interestingly, some of the same
protein families were also identified in a study of circulating
immune complexes in the peripheral blood of 115 human
patients with active L. donovani infections (121). In that
clinical study, circulating immune complexes (CICs) were
purified from patient serum using PEG-assisted precipitation
and centrifugation, CIC antigens and antibodies were then
dissociated using an acidic buffer, and the antibody was
removed using protein A agarose to yield purified antigens.
The researchers then used 2D gel electrophoresis and mass
spectrometry of these purified CIC antigens to identify parasite
proteins, revealing 31 proteins present during active infection
before drug treatment. While there appears to be an elevated
level of congruence between the parasite-derived protein profiles
of these CICs and EVs isolated from infected macrophages, it is
difficult to resolve this relationship past the family level. Finding
similarities when comparing data between projects can be
complicated due to differences in mass spectrometry approach,
poor protein annotations, and the overall redundancy of
Leishmania protein databases currently in use. In addition, it
can be challenging to match proteins exactly across different
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experiments by reported accession numbers. However, the parity
between these profiles at the protein family level remains
intriguing. Along with what is known about exosomes and
their ability to circulate through the body and deliver their
contents to tissues distant from their origin, these findings
suggest that L. donovani infected macrophages release
exosomes containing parasite factors that may aid in their
circulation throughout the host.

It is also worth noting that exosomes released by infected
macrophages contain only 59 parasite-derived proteins, a
significantly smaller number than the 329 parasite proteins
identified in Leishmania promastigote secreted exosomes (122).
Comparing the parasite-derived profiles of exosomes from
promastigotes versus exosomes from amastigote infected
macrophages, we again see several overlapping protein families,
including elongation factor 1-alpha, serine/threonine-protein
kinase, kinesin, and calpain-like cysteine peptidase. Strikingly,
many of the molecules present only in promastigote-derived
exosomes are homologs of mammalian exosome structural
components (5). The absence of these parasite proteins in
exosomes released by infected macrophages may be the result of
two biological phenomena. First, the expression of parasite proteins
may be differentially regulated between the promastigote and
amastigote life stages. For example, a sizable portion of
promastigote proteins are downregulated during macrophage
infection as the parasites adapt to life in the intracellular
environment. Alternatively, it may be unnecessary for the
structural proteins of EVs to be contributed by the parasites
during infection, as the parasites may be able to hijack the
existing host machinery for protein secretion and exosome
biogenesis. To be sure, the mammalian counterparts of these
structural proteins were identified in EVs from infected
macrophages, suggesting that Leishmania amastigotes may
translocate their molecules across the LPVM into the host cytosol
to utilize normal host processes to their advantage for the secretion
of specific parasite molecules. EVs released by Leishmania-infected
macrophages were also found to enhance several measures of
endothelial cell activation in vitro, including tube formation, cell
migration, and enhanced production of VEGF and IL8, which
suggests that infection-induced EVs may play a role in
neovascularization and pathogenesis (120).
CONCLUSION

All eukaryotic cells release EVs, including exosomes. The
biogenesis of EVs released by cells under various normal and
abnormal conditions has been well-studied. There is ample
evidence that intrinsic cell characteristics and environmental
queues determine the composition of EVs. This results in unique
exosome compositions that could be monitored for diagnostic
value. Ongoing studies have shown that intracellular pathogens,
including viruses, bacteria, and parasites, can take advantage of
the host exosome machinery to release virulence factors.
Pathogens may smuggle pathogen-encoded virulence factors
and other molecules that collectively contribute to their
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pathogenesis. The existence of these mechanisms suggests that
pathogens have evolved adaptations to take advantage of host
protein trafficking mechanisms for exosomal packaging. For its
part, the host cells also modulate exosome composition as an
anti-pathogen strategy since exosomes induce immune responses
directed against specific pathogens. More research is needed to
evaluate specific mechanisms by which pathogen-derived
molecules are targeted to multivesicular bodies within infected
cells and further packaged into host-derived exosomes. This
information will elucidate a large gap in our understanding of
intracellular host-pathogen interactions and identify novel drug
targets for infection control.
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The rapid and efficient phagocytic clearance of apoptotic cells, termed efferocytosis, is a
critical mechanism in the maintenance of tissue homeostasis. Removal of apoptotic cells
through efferocytosis prevents secondary necrosis and the resultant inflammation caused
by the release of intracellular contents. The importance of efferocytosis in homeostasis is
underscored by the large number of inflammatory and autoimmune disorders, including
atherosclerosis and systemic lupus erythematosus, that are characterized by defective
apoptotic cell clearance. Although mechanistically similar to the phagocytic clearance of
pathogens, efferocytosis differs from phagocytosis in that it is immunologically silent and
induces a tissue repair response. Efferocytes face unique challenges resulting from the
internalization of apoptotic cells, including degradation of the apoptotic cell, dealing with
the extra metabolic load imposed by the processing of apoptotic cell contents, and the
coordination of an anti-inflammatory, pro-tissue repair response. This review will discuss
recent advances in our understanding of the cellular response to apoptotic cell uptake,
including trafficking of apoptotic cell cargo and antigen presentation, signaling and
transcriptional events initiated by efferocytosis, the coordination of an anti-inflammatory
response and tissue repair, unique cellular metabolic responses and the role of efferocytosis
in host defense. A better understanding of how efferocytic cells respond to apoptotic cell
uptake will be critical in unraveling the complex connections between apoptotic cell removal
and inflammation resolution and maintenance of tissue homeostasis.

Keywords: efferocytosis, intracellular trafficking, transcriptional regulation, cellular metabolism, inflammation
resolution, host defense
INTRODUCTION

Efferocytosis is the process of rapid and efficient clearance of apoptotic cells by both professional
and non-professional phagocytic cells (1, 2). From an evolutionary perspective, efferocytosis is an
ancient mechanism that allowed early multicellular organisms to regulate their growth through the
disposal of dying cells during development (3). In complex multicellular organisms, efferocytosis is
Abbreviations: LAP, LC3-associated phagocytosis; PI3KCIII, class III phosphatidylinositol-3-kinase; TLR, Toll-like receptor;
DCs, dendritic cells; PtdSer, phosphatidylserine; LXR, liver X receptor; PPAR, peroxisome proliferator-activated receptor;
SPM, pro-resolving mediator.
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critical in growth and development, for the resolution of
inflammation, and for maintaining tissue homeostasis (4–6).
Mechanistically, efferocytosis closely resembles phagocytosis—
the internalization and clearance of pathogens and other foreign
particulates (7). Indeed, though efferocytosis utilizes a distinct
and well-characterized set of cell surface receptors (e.g. TAM
family receptors, Tim4, aV integrins) and soluble opsonins (e.g.
Gas6, MFGE8, CD93) that bind to ligands found on the plasma
membrane of apoptotic cells (e.g. phosphatidylserine), much of
the processes downstream of apoptotic cell internalization such
as intracellular trafficking of apoptotic cell cargo and cellular
responses to internalized of apoptotic cell contents are either
thought to be wholly analogous to phagocytosis or to be poorly
understood (1, 7–10). Strikingly, efferocytes such as macrophages
can distinguish between normal apoptotic cells and those
infected with an intracellular pathogen, despite the fact that
much of the contents of an infected apoptotic cell (e.g. lipids,
nucleic acids, proteins) are identical to that of a non-infected cell,
allowing the efferocyte to mount an appropriate immunological
response to pathogens within efferocytosed cells (3). This
demonstrates that efferocytosis is a distinct process from
phagocytosis, that and efferocytes are fine-tuned to be able to
distinguish between apoptotic versus pathogenic cargo.

The major efferocytic cell—or efferocyte—within the body is
the macrophage (11). These immune cells are responsible for
clearance of apoptotic cells and debris across many tissues (12,
13). There is emerging evidence that efferocytic macrophages
form a distinct subset of tissue-resident macrophages that differ
in both function and pattern of gene expression compared to
other tissue-resident macrophage populations (14, 15). Indeed,
A-Gonzalez et al. (14) found that tissue-resident murine
efferocytic macrophages from across a range of different tissues
share a common transcriptional profile, which is characterized
by downregulation of proinflammatory cytokines such as IL1b
and expression of the mannose receptor CD206 (14).
Interestingly, although this population upregulates several
anti-inflammatory genes, it’s gene expression profile does not
co-cluster with alternatively activated (M2) macrophages
(14). This suggests that efferocytic macrophages cannot
simply to be thought of as “anti-inflammatory” macrophages,
and instead occupy a distinct space in the macrophage
transcriptional landscape.

The purpose of this review will be to discuss the distinct
cellular responses elicited upon uptake of apoptotic cells by an
efferocyte, with a focus on macrophages as the major efferocytic
cell population within the body. In particular, we will review
differences in trafficking of apoptotic cell cargo and presentation
of antigens following internalization, alterations in cell signaling
and transcriptional regulation, as well as explore how changes in
cargo trafficking and gene expression contribute to the anti-
inflammatory phenotype that characterize efferocytes. Further,
we will explore recent advances in our understanding of how
efferocytes deal with the metabolic stress of internalizing
apoptotic cells, how efferocytes respond upon uptake of
infected apoptotic cells, and the role of efferocytosis in
host defense.
Frontiers in Immunology | www.frontiersin.org 2184
EFFEROSOME TRAFFICKING AND
ANTIGEN PRESENTATION

Following recognition, apoptotic cells are engulfed by the
efferocyte into a plasma membrane-derived vacuole termed an
efferosome (8). Similar to phagosomes that contain internalized
pathogens, efferosomes undergo a highly regulated series of
sequential fusions with early endosomes, late endosomes, and
finally lysosomes (Figure 1) (16–18). These fusion events are
regulated by proteins including Rab GTPases and SNAREs, with
the fusion events delivering the hydrolytic enzymes which
degrade the apoptotic cell within the efferosome (19–23). This
process is termed efferosome maturation and is analogous to the
maturation processes observed following phagocytosis and
endocytosis (8, 24).

The efferosome maturation process bears many similarities to
phagosome maturation, including the recruitment of the Rab
GTPases Rab5 and Rab7 (23, 25, 26). Rab5 is recruited to
efferosomes as the apoptotic cell is internalized, and remains
bound to the efferosome for several minutes following the release
of the efferosome from the plasma membrane (19, 27). Here,
Rab5 mediates the fusion of the efferosome with early
endosomes, beginning the degradative process which will
ultimately disassemble the apoptotic cell (19, 20). Rab5 is
exchanged for Rab7 several minutes after efferosome
formation, with Rab7 mediating the fusion of late endosomes
and lysosomes to the efferosome – thus generating a highly
hydrolytic environment capable of the complete degradation of
the apoptotic cell (18, 27). Recent work by our group and others
have demonstrate important differences between the regulation
of efferosome maturation versus phagosome maturation (27, 28).
Efferosome acidification is a central process that facilitates the
degradation of apoptotic cargo through activation of lysosomal
proteases (29, 30).

Efferosomes have also been shown to employ LC3-associated
phagocytosis (LAP, Figure 1), a noncanonical form of autophagy
that involves recruitment of autophagy mediators including the
class III phosphatidylinositol-3-kinase (PI3KCIII) complex
ATG5 and ATG7 to the surface of nascent efferosomes (31,
32). These elements then direct the rapid maturation of the
efferosome and processing of the apoptotic cargo in a manner
that suppresses antigen presentation and serves to polarize
macrophages towards an anti-inflammatory phenotype (33).
While the exact signals which allow for LAP to be employed
for efferosome maturation remain unknown, work from the
Medzhitov group has demonstrated that phagosome-derived
Toll-like receptor (TLR) signaling is required to direct
materials into the classical phagocytic (e.g. non-LAP) pathway
where they then undergo antigen presentation (34, 35). This
indicates that the detection of pathogen products via TLR’s
serves not only to induce the expression of genes involved in
inflammation and antigen presentation, but also induces
immediate differences in the trafficking of cargo bearing TLR
ligands compared to those lacking these ligands (36). Rab39a
may serve to inhibit LAP following phagocytosis, as this GTPase
inhibits autophagy following TLR signaling, and is required for
April 2021 | Volume 12 | Article 631714
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the delivery ofMHC I to phagosomes for antigen cross-presentation
(37, 38). However, there are no published studies of the role of
Rab39a in efferocytosis, and therefore its role in efferocytosis-
associated LAP remains unclear. Interestingly, LAP and the
formation of LC3-associated efferosomes is dependent on the
Beclin1-interacting protein Rubicon (39). Rubicon is a negative
regulator of canonical autophagy and downregulation of this
protein results in an increase in the number of autophagosomes
(39, 40). Indeed, deletion of Rubicon in a mouse model of
autoimmune disease significantly increases susceptibility to the
development of systemic lupus erythematosus-like features in
these animals, potentially due to altered processing of apoptotic
cells (41).

Differences in acidification and trafficking of efferosomes, as
compared to phagosomes, also plays a role in ensuring the
immunologically silent degradation of apoptotic cells (34, 42,
43). There is conflicting evidence in the literature on the kinetics
of efferosome maturation as compared to phagosome maturation
(35, 42). Erwig et al. reported that in murine macrophages, early
maturation and acidification of efferosomes containing apoptotic
Frontiers in Immunology | www.frontiersin.org 3185
neutrophils proceeded at a faster rate than phagosomes
containing IgG-opsonized neutrophils (42). Inhibition of the
small GTPase RhoA using a small molecule inhibitor was
sufficient to negate these differences (42). In contrast, Blander
and Medzhitov have shown that efferosome maturation
proceeded at a slower rate than phagosomes (35). Of note, in
the case of Blander and Medzhitov, the phagocytic target
employed was inactivated Escherichia coli and the authors
argue that it was activation of TLR2 and TLR4 signaling that
drove accelerated phagosome maturation (35). In contrast, the
IgG-coated neutrophils used by Erwig and colleagues would not
have stimulated TLRs in the same fashion (42).

Our group has recently demonstrated that efferosome
localization appears to play a role in distinguishing the fate of
apoptotic cargo (28). Canonically, phagosomes undergo dynein-
mediated trafficking towards the cell centre as they mature,
where lysosomes are concentrated due to a similar dynein-
mediated trafficking pathway (16, 44–46). Thus, by moving to
the cell centre, phagosomes can efficiently undergo fusion with
lysosomes to acquire the hydrolytic enzymes that degrade
FIGURE 1 | Efferosome Maturation Pathways. Efferocytosis can occur through the canonical endo-lysosomal maturation pathway (left) in which the GTPases Rab5
and Rab7 mediate the sequential fusion of early endosomes (EE), late endosomes (LE), and lysosomes (LY) with the maturing efferosome. Unlike phagocytosis, this
efferosome maturation pathway also involves Rab17 which directs the degraded contents from the efferosome to the recycling endosome from where they may be
exocytosed, thereby avoiding the delivery of these materials to antigen loading compartments. In addition to the canonical pathway, some efferosomes may mature
through an LC3-mediated, autophagy-like pathway (right). In this pathway, the efferosome recruits the protein LC3 which then mediates a rapid degradation of the
efferosome in a fashion which suppresses antigen presentation. Similar to LC3-associated phagocytosis, the recruitment of the autophagy-related proteins ATG5 and
ATG7, as well as Rubicon to the nascent efferosome appear to be important for efferocytosis through this pathway. The activity of ATG5 and ATG7 are inhibited by
Rab35a, which is activated downstream of TLR signaling. Figure produced using BioRender.
April 2021 | Volume 12 | Article 631714
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phagosome cargos (29, 47). In contrast, we have shown that
while efferosomes also undergo an initial migration towards the
cell centre where they fuse with lysosomes, they subsequently
fragment into smaller efferosome-derived vesicles (EDVs) which
migrate away from the cell centre and towards the periphery
(28). At the periphery, EDVs undergo fusion with the recycling
endosome compartment, presumably to facilitate exocytosis of
degraded apoptotic cargo or resorption of nutrients (28). This
process is driven by the small GTPase Rab17 (Figure 1), which is
required for both the fragmentation of efferosomes into EDVs
and for the movement of the EDVs to the cell periphery (27, 28).
Macrophages that overexpress a dominant-negative mutant of
Rab17 accumulate efferosomes at the cell center (28).
Furthermore, the presence of Rab17 on efferosomes also
prevents the delivery of MHC class II, circumventing
autoantigen presentation from degraded apoptotic cargo (27).
Expression of a dominant-negative Rab17 impairs this pathway,
leading to MHC II accumulation in mature efferosomes (27).

The presence of three processes that work simultaneously to
limit antigen presentation of efferosome-derived antigens – LAP,
accelerated maturation, and Rab17-mediated redirection of cargo
out of the maturing efferosome – indicates that limiting
autoantigen presentation is a fundamental response of
phagocytes following efferocytosis. Moreover, efferocytes engage
in non-trafficking-based mechanisms to limit autoimmune
responses to efferocytosed materials. As described later in this
review, efferocytosis is often accompanied by the upregulation of
cytokines such as IL-10 which suppress the activity of mature T
cells and promotes the formation of Treg cells from naive T cells
(48). Consequentially, T cell responses are inhibited following
efferocytosis. For example, Rodriguez-Fernandez et al.
demonstrated that in human DCs, efferocytosis of PtdSer-
containing liposomes biased the stimulation of autologous T
cells from a proliferative to a tolerogenic profile, likely through
altered cytokine expression by the DCs (49). Consistent with these
mechanisms acting to limit autoreactivity, emerging evidence
indicate that defects in the suppression of antigen presentation
following efferocytosis is a driver of autoimmune disease (50, 51).
In mouse models of systemic lupus erythematosus, dysregulated
expression of specific pro-efferocytic receptors such as Tim4, C1q
or CLM-1 result in either deficient apoptotic cell clearance or
inappropriate antigen presentation that then promotes the
development of autoimmune disease in these mice (52). In
humans, mutations in efferocytic receptors, especially in
MERTK and its opsonins, are associated with a similar increase
in the risk of autoimmune disorders including multiple sclerosis
and rheumatoid arthritis, highlighting the importance of efficient
efferocytosis in limiting autoimmunity (53–57).

Interestingly, some professional antigen presenting cells have
mechanisms that allow efferosome-derived antigens to be cross-
presented on MHC I. A recent study by Canton et al.
demonstrated that type 1 conventional dendritic cells use the
receptor DNGR-1 to recognize actin-myosin complexes exposed
to the efferosome lumen during the early stage of efferosome
maturation (58). Recognition of actin-myosin complexes leads to
an alternative maturation pathway where the efferosome does
not acquire its normal degradative capacity, and instead, Syk-
Frontiers in Immunology | www.frontiersin.org 4186
induced NADPH oxidase activity damages the efferosomal
membrane, releasing the efferosome’s cargo into the cytosol.
Once in the cytosol, the efferocytosed materials are processed
and presented via the canonical MHC I presentation pathway
[reviewed in (59)]. Interestingly, the restriction of this process to
the early stages of efferosome maturation suggests that this
process may only occur in response to engulfed cells that have
pre-exposed actin-myosin complexes – e.g. cells which have lost
membrane integrity as they progress through late stage
apoptosis, or cells which have died a lytic form of cell death
such as necroptosis or necrosis (9). Alternatively, this pathway
may enable the routine “screening” of apoptotic cell-derived
antigens viaMHC I, which because it relies on T cells previously
activated to the same antigen presented on MHC II by
professional antigen presenting cells, lacks the autoimmune
potential of MHC II presentation (60).
CELL SIGNALING AND
TRANSCRIPTIONAL REGULATION

Differences between the cellular response of phagocytes to
efferocytosis of apoptotic cells versus phagocytosis of pathogens
require that there be efferocytosis-specific signal transduction
events and transcriptional regulation (1, 2). We are just
beginning to develop an understanding of the key transcriptional
factors that control the cellular events that occur following
efferocytosis. Two key families of transcriptional factors that
drive this response are members of the liver X receptor (LXR)
and peroxisome proliferator-activated receptor (PPAR) families of
nuclear receptors (61–63). These transcription factor families bind
to the same DNA motifs, and often act as heterodimers, meaning
that their functions are often overlapping and redundant (64). Both
receptor families bind to many of the same ligands, notably lipid-
derived metabolites, with their activation leading to the preferential
formation of heterodimers that then bind to direct 5’ – RGKTCA –
3’ repeats (65). Once bound, these LXRs and PPARs coordinate
with other transcription factors to either activate or repress
transcription (64, 66, 67).

LXRs are well-characterized regulators of cholesterol, glucose
and fatty acid metabolism (68). The two members of the LXR
family, LXRa and LXRb, are both activated following efferocytic
apoptotic cell uptake, and in turn increase the cell’s efferocytic
capacity via two distinct mechanisms (69). The first mechanism –
described in-detail later in this review – is the upregulation of the
metabolic pathways required to process the large quantities of
lipids, sterols and proteins present in an efferocytosed apoptotic
cell. The second mechanism is the upregulation of efferocytic
receptors and signaling molecules. Stimulation of LXRs in vivo
with apoptotic thymocytes has been shown to upregulate MERTK,
a key efferocytic receptor involved in apoptotic cell recognition
and uptake (69, 70). This enhances the efferocytic capacity of the
efferocyte, and increases MERTK-mediated anti-inflammatory
activity via increased activation of SOCS3, a suppressor of
cytokine-induced JAK/STAT signaling (71). Conversely,
peritoneal macrophages isolated from LXR double-knockout
mice have been shown to have diminished capacity to engage in
April 2021 | Volume 12 | Article 631714

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yin and Heit Cellular Responses to Efferocytocis
efferocytosis, without any impairment in the phagocytosis of E. coli
(69). Indeed, activation of LXRa/b appears to be required to shift
macrophages away from a pro-inflammatory state following
efferocytosis, with exposure of LXR double-knockout
macrophages to apoptotic thymocytes resulting in increased
expression of several pro-inflammatory mediators including
IL1b, MCP-1 and the scavenger receptor MARCO (69).

Given the functional overlap between LXRs and PPARs, it is of
no surprise that the observed role of the PPAR family in
efferocytosis closely parallels the role of LXRs. As with LXRs,
PPARs have previously been implicated in macrophage
polarization and in enhancing lipids metabolism and synthesis of
lipid-derived molecules such as eicosanoids and arachidonic acid
(72). Similar to the LXR family of transcription factors, activation
of certain members of the PPAR family, including PPARg and
PPARd, appear to directly enhance efferocytic activity in
macrophages (63, 66, 73). Majai et al. demonstrated that
downregulation of PPARg activity using a small-molecule
inhibitor resulted in a diminished capacity of human monocyte-
derived macrophages to efferocytosed apoptotic neutrophils (66).
This resulted from the downregulation of several key efferocytic
receptors including CD36, AXL, TG2 and PTX3 (66). Using
PPARg-specific agonists, Zizzo & Cohen demonstrated that
PPARg activation leads directly to upregulation of MERTK and
its opsonin Gas6 in macrophages, as well as to polarization of
macrophages to a pro-efferocytic M2c phenotype (74).
Furthermore, efferocytosis of apoptotic cells by macrophages has
been shown to directly suppress key inflammatory pathways,
including activation of PKCa, a kinase involved in many cellular
functions including inflammatory cytokine transcription and the
generation of bactericidal free radicals (64). Indeed, activation of
PPARg in response to efferocytosis of apoptotic cells in murine
macrophages has been shown to attenuate reactive oxygen species
formation in response to proinflammatory mediators (64).
Similarly, efferocytosis induces the expression of SOCS1 and
SOCS3, which in turn inhibit Jak/STAT signaling through
inflammatory cytokine receptors, thereby reducing the
responsiveness of efferocytic macrophages to inflammatory
stimuli (75). Finally, the uptake of apoptotic thymocytes by
murine bone marrow-derived macrophages has been shown by
Mukundan and colleagues to upregulate PPARd and stimulate
PPARd-dependent expression of C1qb, a member of the
complement cascade that has been identified as an opsonin
involved in the efferocytic clearance of apoptotic macrophages (63).

Defects in efferocytosis have been implicated in the
pathogenesis of several inflammatory and autoimmune disorders,
including atherosclerosis (76, 77). Our group recently discovered
that atherosclerotic macrophages upregulated the hematopoietic
transcription factor GATA2 in response to modified lipoproteins
(78). Upregulation of GATA2 led to the downregulation of
multiple proteins required for efficient efferocytosis, including
downregulation of the efferocytic receptor aX integrin, multiple
signaling molecules required for these receptors function including
multiple Src-family kinases, impaired efferosome-lysosome fusion
via decreased expression of Rab7, and impairment in multiple
degradative pathways needed for the degradation of apoptotic
cargos including lysosomal acidification (10, 78). Interestingly,
Frontiers in Immunology | www.frontiersin.org 5187
mutations in the GATA2 gene has been linked to increased risk
of cardiovascular disease in human cohort studies (79). It remains
to be seen whether there are other transcription factors that act to
impair efferocytosis during autoimmune or inflammatory diseases.
RESOLUTION OF INFLAMMATION

A key feature of efferocytosis is the limitation of inflammation
and the resolution of inflammatory responses (5, 9). We have
previously discussed how efferosome maturation acts to prevent
antigen presentation on MHC II, and how efferocytosis activates
transcriptional programs that restrain inflammation (27, 78). It is
well established that efferocytosis induces the production of anti-
inflammatory mediators (80, 81). Meagher et al. showed as early
as 1992 that the uptake of apoptotic neutrophils by macrophages
does not lead to release of the pro-inflammatory mediator
thromboxane A2, in contrast with phagocytosis of bacterial
pathogens (80). Only a few years later Fadok and colleagues
demonstrated that efferocytosis in macrophages resulted in
suppression of a host of proinflammatory molecules including
IL1b, IL8, IL10, GM-CSF and TNFa (81). Furthermore, these
investigators determined that efferocytosis upregulated anti-
inflammatory mediators including TGFb and prostaglandin
E2 (81).

More recent studies have demonstrated that efferocytic
macrophages carry anti-inflammatory functions and gene
expression signatures. A landmark study in 2017 showed that
pro-efferocytic macrophages across various tissues carried a
distinct gene expression signature that differentiated them
from other tissue-resident macrophages (14). In particular, this
pro-efferocytic signature is characterized by downregulation of
the inflammatory cytokine IL1b (14). Campana et al. further
demonstrated that in a sterile liver inflammation model,
efferocytosis of apoptotic hepatocytes induced a M2-like
phenotype and activation of the STAT3-IL6-IL10 pathway
(82). Finally, in an acute coronary ligature model, Howangyin
and colleagues demonstrated that mouse macrophages lacking
the efferocytic receptor MERTK and its opsonin MFGE8 had
decreased production of the vascular tissue repair factor VEGF-A
and increased tissue damage in a model of myocardial
infarct (83).

Beyond simply downregulating the production of pro-
inflammatory factors, there is growing evidence that efferocytosis
also directly induces the resolution of inflammation (61, 84).
Specialized pro-resolving mediators (SPMs) are a class of
signaling molecules including resolvins and lipoxins that are
derived from free fatty acids that play a key role in limiting
inflammation in physiological settings (85). The work of Cai
et al. demonstrated that mice lacking the efferocytic receptor
MERTK have decreased levels of LXA4 and RvD1 when
challenged with zymosan in a model of inducible peritonitis (86).
These authors further demonstrated that activation of MERTK
using a cross-linking antibody resulted in decreased levels of the
enzyme 5-lipooxygenase in the macrophage nucleus, which has
previously been shown to result in increased SPM production (86).
Interestingly, SPM signaling enhances the efferocytic capacity of
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macrophages and reduces their sensitivity to efferocytosis-induced
cell stress, suggesting that SPM production may be a self-
reinforcing stimuli which acts in an autocrine or paracrine
manner to enhance the efferocytic capacity within a tissue when
apoptotic cells are present (87, 88).
EFFEROCYTE METABOLISM

The uptake and degradation of apoptotic cells places a unique
metabolic demand on efferocytes (89). These cells must not only
quickly degrade the apoptotic cell, but must also ensure that
components of the degraded apoptotic cell - especially excess
lipids and cholesterol - are redistributed and not allowed to
accumulate within the efferocyte (90, 91). A failure to prevent the
accumulation of metabolites such as cholesterol and lipids is a
source of significant cellular stress that promotes inflammation
and can lead to the death of the efferocyte (92, 93). Evidence
indicates that efferocytes such as macrophages have unique
means of dealing with this additional metabolic load (94, 95).
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Lipid catabolism is enhanced via a distinctive metabolome
characterized by an increase in the generation of ATP from the
b-oxidation, accompanied by a concordant enhancement of the
mitochondrial electron transport chain, fatty acid oxidation, and
oxidative phosphorylation (Figure 2) (94). These adaptations
allow efferocytes to rapidly process excess lipids obtained from
internalized apoptotic cells.

Efferocytes have multiple molecular mechanisms in place to
deal with the metabolic stress induced by cholesterol
accumulation, most of which converge on increasing the rate of
cholesterol export from the cell (96, 97). Following uptake of an
apoptotic cell, cholesterol is exported from the efferosome by
NPC1 and NPC2 to cytosolic cholesterol carriers (98). These
carriers transport cholesterol throughout the cell, but in the
absence of cholesterol export, these carriers ultimately deliver
cholesterol to the ER (98, 99). Here, cholesterol accumulates
within the ER membrane, eventually forming lipid droplets
(100). Unaddressed, these droplets can accumulate to the point
where they induce the ER’s unfolded protein response, leading to
apoptosis of the efferocyte (92). Efferocytes such as macrophages
FIGURE 2 | Efferocyte Metabolism. The biomolecules released as efferocytosed apoptotic cells are degraded must be processed by the efferocyte, incurring a
significant metabolic load. Cholesterol (C) is exported from the efferosome to cytosolic carriers which, in the presence of cholesterol transporters such as pABCA1
and ABCG1, can export this cholesterol to circulating high density lipoprotein. In the absence of sufficient export, cholesterol is esterified into cholesterol esters (CE)
which can accumulate in the endoplasmic reticulum (ER). DNA is degraded in the efferosome by DNase II, and proteins by a range of cathepsin and other proteases,
with the resulting nucleotides and amino acids transported into the cytosol where they are recycled. The amino acid arginine is converted in the cytosol to the
putrescine, which activates Dbl to enhance Rac1 activity, thereby promoting the efferocytosis of additional apoptotic cells. Lastly, the activation or PPAR and LXR
nuclear receptors by lipid-derived metabolites induces a pro-efferocytic metabolic profile via upregulation of cholesterol export machinery and upregulation of lipid
b-oxidation. Figure prepared in BioRender.
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increase the expression of genes involved in cholesterol export to
avoid this fate, notably the cholesterol efflux pumps ABCA1 and
ABCG1, which export cytosolic cholesterol to lipid-poor
apolipoproteins and HDL (Figure 2) (101, 102). Macrophages
have multiple pathways by which these cholesterol efflux pumps
can be induced. This includes the induction of ABCA1
transcription by LXR following apoptotic cell uptake (103). In
parallel, signaling through the efferocytic receptor BAI1 induces a
signaling through the BAI1/ELMO/Rac1 pathway that leads to
upregulation of ABCA1 in an LXR-independent manner (104).
Both the LXR-dependent and -independent pathways enable
macrophages to export excess cholesterol absorbed during
efferocytosis, thus maintaining cholesterol homeostasis within
the cell and avoiding death of the efferocyte (103, 104). The
consequences of impaired cholesterol efflux can be dire. The
increased ER stress caused by lipid droplet formation not only
leads to death via the unfolded protein response but is also
inflammatory due to activation of the NLRP3 inflammasome
(105). In addition to causing cell death, the accumulation of
cholesterol can directly impair efferocytosis. In one study, Viaud
et al. inhibited lysosomal acid lipase, an enzyme required for
hydrolysis of cholesterol esters within lysosomes into free
cholesterol prior to their export via NPC1/2 to cytosolic carriers
(106). This resulted in accumulation of cholesterol esters within
the lysosome interfered with Rac1 activation, blocking the
engulfment of additional apoptotic cells (106).

In addition to excess lipids and cholesterol, efferocytes must
also deal with excess amino acids, short peptides, and apoptotic
cell DNA (107). While amino acids and peptides are exported
from efferosomes by lysosomal transporters, and via trafficking
to the recycling endosome, apoptotic cell DNA is degraded
by DNase II in professional efferocytes such as macrophages
(108). This is a critical step in maintaining the immunologically
silent nature of efferocytosis, with deletion of DNase II from
macrophages resulting in the upregulation of pro-inflammatory
mediators such as TNFa, likely via activation of TLR9 by
partially digested DNA fragments containing unmethylated
CpG motifs (108, 109).

Another important alteration to cellular metabolism following
efferocytosis are those allowing for additional rounds of
efferocytosis (110). Professional efferocytes such as macrophages
must often clear multiple apoptotic cells in succession, and
impaired clearance of multiple apoptotic cells is regarded as a
marker of defective efferocytosis (110, 111). Several components
of cellular metabolism are altered in order to facilitate continuous
efferocytosis. Wang et al. showed that efferocytic uptake of
apoptotic cells induced Drp1-mediated mitochondrial fission
along with mitochondrial calcium ion release (110). When this
fission process was inhibited macrophages lost their ability to
successively engulf apoptotic cells. These macrophages exhibited
defective sealing of the efferosome and decreased continuous
efferocytic capacity (110). Interestingly, this process is
accompanied by a loss of mitochondrial membrane potential
driven by the uncoupling protein Ucp2, increased glucose
uptake via SLC2A1, and a shift to glycolysis over oxidative
phsophroylation (2, 111, 112). In parallel, these cells upregulate
the lactate transporter SLC16A1, enabling the rapid export of the
Frontiers in Immunology | www.frontiersin.org 7189
end-product of glycolysis (112). This shift in cellular energetics
may be required to sustain rapid, successive apoptotic cell uptake
and degradation, although how the decoupling of oxidative
phosphorylation observed in these studies occurs in cells
seemingly also requiring increased oxidative phosphorylation for
the b-oxidation of fatty acids remains unresolved (94, 95, 112).
Broadly speaking, mitochondrial fission and fusion are important
processes that serve to regulate mitochondrial DNA segregation,
mitochondrial reactive oxygen species levels and calcium
homeostasis (113). These processes have also been shown to be
coupled to particular metabolic states in macrophages (113, 114).
For example, classically activated, pro-inflammatory macrophages
require massive upregulation of glycolysis within the cell (114).
Nair et al. demonstrated that blockade of mitochondrial fission
with Mdivi-1, a mitochondrial division inhibitor, led to reversal of
metabolic reprogramming towards glycolysis in macrophages
treated with LPS (115). Therefore, alteration of mitochondrial
fusion and fission following efferocytosis may represent alignment
with the unique metabolic state adopted by efferocytes following
apoptotic cell internalization. Finally, recent work has shown that
apoptotic cell-derived arginine and ornithine are converted by
macrophages into to putrescine through the activity of the
enzymes arginase 1 and ornithine decarboxylase (116).
Putrescine subsequently increases Rac1 activity through
upregulation of the GTP exchange factor Dbl, enhancing the
ability of the efferocyte to engulf additional apoptotic cells (Figure
2) (116). During efferocytosis, macrophages further process
putrescine into other polyamines such as spermidine and
spermine, but these don’t appear to have the same efferocytosis-
enhancing effect as putrescine (116). However, it should be noted
that some polyamines, in particular spermidine, confer protection
from atherosclerosis by promoting enhanced cholesterol efflux
and appear to have cardioprotective effects in animal models of
heart failure (117, 118).
HOST DEFENSE

An often-underappreciated role of efferocytosis is its role in host
defense (3, 119). Efferocytosis plays an important role in control
of intracellular pathogens, most notably, control of
Mycobacterium tuberculosis (120). In its natural life cycle, M.
tuberculosis is internalized by macrophages, where it persists
within the phagosome by halting phagosome maturation prior to
acidification (121). But while M. tuberculosis can proliferate
within these phagosomes, the infected macrophages eventually
undergo apoptosis and are cleared through efferocytosis by other,
healthy macrophages (3, 121). Because the bacterium is trapped
within the apoptotic cell, it is unable to inhibit efferosome
maturation as efficiently as it inhibits phagosome maturation
(122). Consequentially, the clearance of infected macrophages by
efferocytosis is an important mechanism for controlling
M. tuberculosis through killing within fully matured
efferosomes (3, 120). Importantly, the efferocytic degradation
of M. tuberculosis-infected apoptotic cells results in antigen
presentation on MHC II – unlike what is observed with
uninfected apoptotic cells. While the exact mechanism which
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allows for the normally non-immunogenic efferocytic pathway to
result in antigen presentation remains unclear, it is mediated at
least in part by annexin 1, which is required for cross-
presentation of M. tuberculosis antigens on MHC I to CD8+
T cells (123).

The ability of macrophages to recognize intracellular
pathogens within infected apoptotic cells is a relatively new
finding, and the mechanisms that underlie this process remain
incompletely defined. It is thought that engagement of TLRs
within the maturing efferosome is required, with TLR4 known to
be required for the recognition of infected apoptotic cells in other
models (124). The detection of pathogens within apoptotic cells
is not restricted to bacteria. Efferocytosis of apoptotic cells
infected by the herpes simplex virus appears to trigger
recognition within the efferosome and subsequent preparation
and cross-presentation of viral antigens to CD8+ T cells, where it
plays an important role in the control of the virus in a mouse
models of infection (125).

It is also unclear whether differences exist in how efferocytes
handle the processing of excess cholesterol, lipids and nucleic
acids derived from apoptotic cell uptake should that cell be
infected with an intracellular pathogen. Indeed, the lipidomic
response to pathogen phagocytosis appears to be the opposite of
that following efferocytosis. Lipid synthesis is increased following
pathogen phagocytosis, including synthesis of ceramides on the
phagosome itself (126), and an accompanying upregulation of
lipogenesis via TLR-mediated activation of the transcription
factors sterol regulatory element binding transcription factor 1
and 2 (SREBP1/2) (127–130). To our knowledge however, no
study to date has examined whether a similar phenomenon
occurs in maturing efferosomes or whether there is any
difference in how efferocytes handle excess lipids and other
metabolites following uptake of an infected apoptotic cell.
DISCUSSION

Efferocytosis is an essential homeostatic mechanism which clears
apoptotic cells and debris before the dying cell progresses to
necrosis and induces an inflammatory response (1, 13). Although
mechanistically similar to phagocytosis, efferocytosis is mediated
by a distinct set of receptors, engages a unique maturation
pathway, and ultimately results in the efficient degradation of
internalized apoptotic cells while avoiding antigen presentation
and inflammation (16). To engage in efferocytosis, macrophages
take on a unique gene expression and metabolic profile to ensure
they are equipped with the necessary metabolic capacity to
process the contents of multiple dying cells (14, 94). In this
review, we explored several cellular responses to apoptotic cell
uptake observed in efferocytes, especially in professional
efferocytic cells such as macrophages.

The process of efferosome maturation is similar to that of
phagosome maturation, with processes ultimately resulting in
cargo degradation (8). However, while phagosomes acquire
antigen-presentation machinery – resulting in the presentation
of phagosome-derived antigens on both MHC I and II –
efferosomes avoid this process and instead dispose of apoptotic
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cargo in an immunologically silent fashion (1, 28). Similarly,
while phagocytosis results in activation of several signaling
cascades that lead to generation of a pro-inflammatory
response, efferocytosis engages a different set of pathways which
upregulate anti-inflammatory and tissue remodeling mediators.
This is accomplished through the activation of distinct
transcription factors in cells undergoing phagocytosis versus
efferocytosis. Indeed, efferocytic macrophages carry a common
gene expression signature associated with these functions that
distinguish them from pro-inflammatory, tissue patrolling, and
other tissue-resident macrophages (14). Efferocytosis of apoptotic
cells also appears to induce a unique set of metabolic adaptations
designed to permit the efferocyte to effectively deal with the
increase burden of lipids, cholesterol and other apoptotic cell-
derived macromolecules, while simultaneously priming the cell to
engage in additional rounds of efferocytosis (94, 110). Finally,
efferocytosis has a role in host defense against intracellular
pathogens, including both bacteria and viruses (119, 120, 125).

Although there have been significant advances in our
understanding of efferocytosis over the past few decades, there
remain significant gaps in our understanding – especially regarding
the role of efferocytosis in pathogen clearance, and in our
understanding of the metabolic reprogramming of efferocytes. In
particular, we current lack a detailed mechanistic understanding of
how efferocytes are able to distinguish between infected versus non-
infected apoptotic cells. It is further unclear how efferocytes
respond metabolically to infected apoptotic cells. Furthermore, it
remains unclear whether differences in immunological outcomes
following pathogen versus apoptotic cell uptake are solely the result
of differences in the receptors used to recognize each type of cargo,
or if the processing of cargo within the phagosome or efferosome
also plays a significant role. Finally, we are only beginning to
unravel the complexities of immunometabolic responses to
apoptotic cell uptake and further work is needed to fully define
how efferocytes are able to cope efficiently with the massive intake
of lipids, proteins and nucleic acids. With a growing body of
evidence that defects in efferocytosis are involved in inflammatory
and autoimmune disease, a clearer understanding of how
professional efferocytes such as macrophages respond to
apoptotic cell uptake will be crucial in furthering our
understanding of the pathogenesis of these disorders and
identifying potential therapeutic options.
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Phagocytosis is an essential process for the uptake of large (>0.5 µm) particulate matter
including microbes and dying cells. Specialized cells in the body perform phagocytosis
which is enabled by cell surface receptors that recognize and bind target cells.
Professional phagocytes play a prominent role in innate immunity and include
macrophages, neutrophils and dendritic cells. These cells display a repertoire of
phagocytic receptors that engage the target cells directly, or indirectly via opsonins, to
mediate binding and internalization of the target into a phagosome. Phagosome
maturation then proceeds to cause destruction and recycling of the phagosome
contents. Key subsequent events include antigen presentation and cytokine production
to alert and recruit cells involved in the adaptive immune response. Bridging the innate and
adaptive immunity, macrophages secrete a broad selection of inflammatory mediators to
orchestrate the type and magnitude of an inflammatory response. This review will focus on
cytokines produced by NF-kB signaling which is activated by extracellular ligands and
serves a master regulator of the inflammatory response to microbes. Macrophages
secrete pro-inflammatory cytokines including TNFa, IL1b, IL6, IL8 and IL12 which
together increases vascular permeability and promotes recruitment of other immune
cells. The major anti-inflammatory cytokines produced by macrophages include IL10 and
TGFb which act to suppress inflammatory gene expression in macrophages and other
immune cells. Typically, macrophage cytokines are synthesized, trafficked intracellularly
and released in response to activation of pattern recognition receptors (PRRs) or
inflammasomes. Direct evidence linking the event of phagocytosis to cytokine
production in macrophages is lacking. This review will focus on cytokine output after
engagement of macrophage phagocytic receptors by particulate microbial targets.
Microbial receptors include the PRRs: Toll-like receptors (TLRs), scavenger receptors
(SRs), C-type lectin and the opsonic receptors. Our current understanding of how
macrophage receptor stimulation impacts cytokine production is largely based on work
utilizing soluble ligands that are destined for endocytosis. We will instead focus this review
on research examining receptor ligation during uptake of particulate microbes and how
org April 2021 | Volume 12 | Article 6620631195
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this complex internalization process may influence inflammatory cytokine production
in macrophages.
Keywords: macrophage, cytokine, receptor, inflammation, phagocyte
PHAGOCYTOSIS RECEPTORS AND
CYTOKINE INDUCTION IN
MACROPHAGES

Phagocytosis is a receptor-mediated process designed to engulf
and destroy large target cells, including microbes, from the body.
Professional phagocytes possess specialized receptors that can
engage with the target directly or via intermediary products
including opsonins. We will review known phagocytic targets for
each receptor and the literature documenting cytokine induction
during phagocytosis in macrophages (Figure 1). The mechanism
by which an inflammatory outcome is signaled is unique to each
receptor and we will consider some examples.

Toll-Like Receptors (TLRs) and CD14
Phagocytic targets: Within the TLR superfamily, TLR2, TLR4 and
TLR5 are considered phagocytic receptors in macrophages (1)
(Figure 2). While, TLR2 often forms heterodimers with TLR1
and TLR6, TLR2 ligation is most essential for uptake of
Leishmania donovani (L. donovani) promastigotes and
Escherichia coli (E. coli) in macrophages (2, 3). TLR2
heterodimers recognize lipopeptides, peptidoglycan and
lipoteichoic acid (LTA), lipoarabinomannan, zymosan and the
org 2196
hemagglutinin protein on the surface of bacteria, viruses,
mycobacteria and parasites (4, 5). Alternatively, TLR4 binds to
lipopolysaccharide (LPS) on the outer membrane of gram-
negative bacteria to promote their uptake into macrophages (6,
7). While this review will focus on particulate microbial antigens,
TLR2 and TLR4 are also the major receptors that recognize
danger-associated molecular patterns (DAMPs) that are
expressed on apoptotic or necrotic cells. The role of other
TLRs in phagocytosis is more ambiguous, however it was
recently shown that TLR5 ligation to bacteria flagella is
responsible for uptake of Pseudomonas aeruginosa (P.
aeruginosa) by alveolar macrophages (8). CD14 is a TLR4 co-
receptor expressed on the cell surface of monocytes,
macrophages and dendritic cells and is responsible for the
uptake and clearance of gram-negative bacteria including
nontypeable Haemophilus influenzae (NTHi), Acinetobacter
baumannii (A. baumannii) and E. coli (9–11).

Cytokine Induction: Cytokine induction by TLR2, TLR4 and
CD14 signaling in macrophages is strongly pro-inflammatory.
Pro-inflammatory cytokine induction by soluble ligands to TLR2
and TLR4 have been well-studied and is reviewed elsewhere (4, 5,
7, 12, 13). Insight into TLR signaling events during phagocytosis
of intact microbes has been gained from the use of receptor
FIGURE 1 | Schematic of phagocytosis and cytokine gene induction in macrophages. Phagocytosis is initiated by the binding of target particles to the macrophage
cell surface via specific receptors. Receptor signaling initiates localized changes in the plasma membrane and underlying cytoskeleton to engulf and internalize the
target particle into a membrane-bound phagosome. Receptor ligation to the target particle induces signal transduction to promote gene expression of pro- or anti-
inflammatory cytokines. Conflicting evidence exists for the relevance of particle internalization and phagosome maturation in cytokine production in macrophages.
April 2021 | Volume 12 | Article 662063
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knockout mice or antibody-blocking experiments (see Table 1
for complete list). For example, ingestion of NTHi by alveolar
macrophages, null for either TLR4 or CD14, caused a marked
reduction in secreted TNFa protein levels, compared to control
macrophages (10). Staphylococcus aureus (S. aureus) or S.
epidermidis exposure to macrophages from TLR2 knockout
mice resulted in attenuated TNFa and IL6 secretion, compared
to control macrophages (14, 15). Additionally, bone marrow-
derived macrophages (BMDMs) from TLR2 and TLR4 double
knockout mice had blunted TNFa and IL6 release during
uptake of the oral bacterium Fusobacterium nucleatum or
Aggregatibacter actinomycetemcomitans (19). Finally, alveolar
macrophages from TLR5 knockout mice had dampened IL1b
production during ingestion of P. aeruginosa (8). Thus, similar to
the extensive research on soluble ligands, stimulation of TLR2,
TLR4, TLR5 and CD14 by particulate antigens induces a robust
pro-inflammatory response in macrophages.

Ligation of TLR2 and TLR4 also modulates cytokine
expression when other phagocytic receptors on macrophages
are co-engaged by the same microbial target. This includes
scavenger receptors like Dectin-1 as well as the opsonic
receptors (Table 1) and we discuss receptor signaling cross-
talk in subsequent sections.

Scavenger Receptors (SRs)
Phagocytic targets: Scavenger receptors are another prominent
family of phagocytosis receptors utilized by macrophages to bind
and destroy microbes. These receptors include: Scavenger receptor-
A (SR-A), SR-A6 (macrophage receptor with collagenous structure;
MARCO), SR-B2 (CD36), SR-E2 (Dectin-1) and SR-E3 (Mannose
Frontiers in Immunology | www.frontiersin.org 3197
Receptor; MR) (Figure 2). Scavenger receptors are PRRs that bind
to several microbe-associated molecular patterns (MAMPs) and
DAMPs onmicrobes. SR-A protects the host against the invasion of
various pathogens including gram-positive bacteria such as S.
aureus, Listeria monocytogenes (L. monocytogenes), Streptococcus
pneumoniae (S. pneumoniae) and gram-negative bacteria including
Neisseria meningitides (N. meningitides) (58). This protective effect
is due to SR-A-mediated bacterial clearance through phagocytosis
by macrophages. The scavenger receptor MARCO is expressed on
macrophages of the splenic marginal zone, medullary cords of the
lymph nodes and alveolar macrophages of the lung (59–62) and is
used to bind E. coli and S. aureus for clearance in the spleen (63).

CD36 belongs to the class B scavenger receptor family (64)
and the phagocytic targets of CD36 include S. aureus, E. coli, as
well as apoptotic cells and fibrillar b-amyloid (25, 65, 66).
Dectin-1 directly mediates the phagocytosis of various kinds of
fungi including fungal pathogens as well as fungal particles like
zymosan (67–69). With assistance from TLR2, Dectin-1 also
induces uptake of Aspergillus fumigatus conidia by murine
macrophages (70). Mannose receptors recognize and phagocytose
microbial targets expressing terminal mannose residues (71–76).
While some studies indicate that the mannose receptor does not
discriminate between pathogenic and non-pathogenic
mycobacteria (77), other evidence indicates that the mannose
receptor binds and internalizes virulent M. tuberculosis strains
more efficiently compared to attenuated bacteria strains (78, 79).

Cytokine Induction: Phagocytosis induced by SRs in
macrophages frequently induces pro-inflammatory cytokine
production and often with TLR help (see Table 1 for complete
list). While phagocytosis of N. meningitides is reduced in
FIGURE 2 | Summary illustration of the major receptor/ligand interactions that initiate phagocytosis of microbes and induce cytokine release in macrophages.
Macrophages bind to targets directly or indirectly via opsonins. Toll-like receptors, scavenger receptors and other phagocytic receptors interact with ligands inherent
to the surface of microbes that includes MAMPs and DAMPs. Some representative ligand examples are shown. Target particles that are coated (opsonized) with
either IgG or C3bi bind to the FcgR or CR3 receptors, respectively. DAMP, damage-associated molecular pattern; LPS, lipopolysaccharide; LTA, lipoteichoic acid;
MAMP, microbe-associated molecular pattern; SR, scavenger receptor; TDM, trehalose 6,6-dimycolate.
April 2021 | Volume 12 | Article 662063
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TABLE 1 | Research articles investigating phagocytic receptors and cytokine production when macrophages were exposed to particulate microbial antigens.

Receptor-induced
pro-inflammatory

cytokines

Receptor-induced
anti-inflammatory

cytokines

Literature
cited

↑TNFa (10)

↑TNFa
↑IL6

(14)

↑TNFa
↑IL6

(15)

↑TNFa (16)

↑TNFa (17)
↑TNFa (10)
↑TNFa
↑IL6

(18)

↑TNFa
↑IL6

(19)

↑IL1b (8)
↑TNFa
↑IL6
↑IL1

(20)

↑TNFa (21)
↑TNFa (10)

–TNFa
–IL12

–IL10 (18)

↑TNFa
↑IL12
↑TNFa (22)

↑NF-kB activation

↑TNFa (22)
↑IL6
↑TNFa
↑IL1b
↑NF-kB activation

–TNFa (23)

↑IL1b (24)
↑IL6
↑TNFa

(25)
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Phagocytic receptor Phagocytic target/ligand Macrophage cell type Experimental model

TOLL-LIKE RECEPTORS (TLRs)
TLR2 nontypeable Haemophilus influenzae

(NTHi)
alveolar macrophages TLR2-/- mice

Staphylococcus epidermidis (S.
epidermidis)

peritoneal macrophages TLR2-/- mice

Staphylococcus aureus (S. aureus) peritoneal macrophages TLR2-/- mice

zymosan bone marrow-derived
macrophages (BMDMs)

TLR2-/- mice

Candida albicans (C. albicans) cell wall human monocytes anti-TLR2 antibody
TLR4 NTHi alveolar macrophages TLR4-/- mice

mutant Neisseria meningitides (N.
meningitides)

murine BMDMs N. meningitides strain lacking LPS

+TLR2 Fusobacterium nucleatum and
Aggregatibacter actinomycetemcomitans

BMDMs TLR2 and TLR4 double -/- mice

TLR5 Pseudomonas aeruginosa alveolar macrophages TLR5-/- mice
CD14 co-receptor Streptococcus pneumococci (S.

pneumococci), or purified S.
pneumococci cell wall

THP1 human macrophages anti-CD14
antibody

group B streptococci type III (GBS) human monocytes anti-CD14 antibody
NTHi alveolar macrophages CD14-/- mice

SCAVENGER RECEPTORS (SRs)
SR-A N. meningitides BMDMs SR-A-/- mice

+TLR4 N. meningitides BMDMs TLR4-/- mice

Trehalose 6,6′-dimycolate (TDM)-coated
beads

resident peritoneal macrophages SR-A-/- mice

+TLR2/4,CD14,
MARCO

TDM-beads HEK293 cells Co-expression of MARCO, CD14
and TLR2 or SR-A, CD14, TLR2,
MD2 and TLR4

SR-A6 TDM-beads RAW264.7 cells MARCO overexpression
Macrophage receptor (MARCO) peritoneal macrophages MARCO-/- mice

+TLR2/4,CD14, SR-A HEK293 cells Co-expression of MARCO, CD14
and TLR2 or SR-A, CD14, TLR2,
MD2 and TLR4

SR-B2
(CD36)

Plasmodium falciparum (P. falciparum)
malaria-parasitized erythrocytes

human peripheral blood
mononuclear cells and murine
peritoneal macrophages

anti-CD36 antibody

+TLR2 Cryptococcus neoformans RAW264.7 macrophages CD36 knockdown
S. aureus or E. coli BMDMs CD36-/- rat
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TABLE 1 | Continued

eptor-induced
-inflammatory
cytokines

Receptor-induced
anti-inflammatory

cytokines

Literature
cited

1 (26)

a (16)

a (27)
a ↑IL10 (28)

a

ared to LPS

(29)

a (30)
a

a

(31)

B activation
a

(27)

mRNA
mRNA

(32)

a
1

(33)

1
a
B nuclear

location
(34)

B activation

a

(35)

a (36)

a ↓IL10 (28)

a ↑IL10 (37)
a ↑IL10 (38)

a (39)
a ↑ IL10 (40)

↑ IL10

a mRNA (41)
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Phagocytic receptor Phagocytic target/ligand Macrophage cell type Experimental model Rec
pro

b-amyloid peritoneal macrophages CD36 downstream signaling kinase
knockdown

↑MC

SR-E2
(Dectin-1)

zymosan, live C. albicans and S.
cerevisiae

RAW264.7 cells Dectin-1 overexpression ↑TNF

zymosan RAW264.7 cells Dectin-1 overexpression ↑TNF
Candida glabrata (C. glabrata) thioglycollate-elicited

macrophages
Dectin-1-/- mice ↑TNF

↑IL6
+TLR4 Exserohilum rostratum (E. rostratum)

E. rostratum
+
LPS

BMDMs
BMDMs

Dectin-1-/- mice
Dectin-1-/- mice

↑TNF
↑IL1b
com

Aspergillus fumigatus germ tubes murine peritoneal macrophages anti-Dectin-1 antibody ↑TNF
zymosan and soluble and particulate b-
glucan

resident peritoneal macrophages,
alveolar macrophages
RAW264.7 cells Dectin-1 overexpression

↑TNF

↑TNF
+TLR2 zymosan HEK293 cells

RAW264.7 cells with endogenous
TLR2

Dectin-1 and TLR2 overexpression
Dectin-1 overexpression

↑NF-
↑TNF

SR-E3
(Mannose Receptor (MR))

C. albicans thioglycollate-elicited peritoneal
macrophages

MR knockdown ↑IL1b
↑IL6

C. albicans thioglycollate-elicited peritoneal
macrophages

MR-/-mice ↑TNF
↑MC

zymosan thioglycollate-elicited peritoneal
macrophages

MR-/-mice –MC
–TNF

Pneumocystis carinii (P. carinii) human alveolar macrophages MR-blocking ligand and MR
knockdown

↑NF-
trans

P. carinii human alveolar macrophages MR-blocking ligand and MR
knockdown

↑NF-
–IL1b
–IL6
–TNF

C-TYPE LECTIN RECEPTORS
Dectin-2 C. glabrata

C. albicans yeast
C. albicans hyphae

peritoneal macrophages

peritoneal macrophages
peritoneal macrophages

Dectin-2-/- mice

Dectin-2-/- mice
Dectin-2-/- mice

↓TNF
↓IL6
↓IL1b
↓IL1b

C. glabrata thioglycollate-elicited macrophage Dectin-2-/- mice ↑TNF
↑IL6

Mincle Tannerella forsythia THP1 cells Mincle knockdown ↑TNF
Malassezia BMDMs Mincle-/- mice ↑TNF

↑IL6
C. albicans BMDMs Mincle-/- mice ↑TNF

+TLR2 TDM-coated beads
+ Pam3CSK4

BMDMs Mincle-/- mice ↑TNF

Mycobacterium bovis Bacillus Calmette–
Guérin (M. bovis BCG)

BMDMs Mincle-/- mice

M. tuberculosis H37Rv BMDMs Mincle-/- mice ↑TNF
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TABLE 1 | Continued

Receptor-induced
pro-inflammatory

cytokines

Receptor-induced
anti-inflammatory

cytokines

Literature
cited

↑TNFa mRNA (42)

↑TNFa ↑IL10 (43)

↓TNFa mRNA
↓IL6 mRNA
↓IL1b mRNA
↓TNFa
↓IL6

(44)

↑TNFa
↑IL1b (mRNA and
protein)

↑IL10 mRNA (45)

↑TNFa (46)

↓MCP1 (47)
↓IL6 (48)

↑H2O2 release (49)
↑arachidonic acid (50)
–TNFa
–IL1b
–IL6

(51)

Low IgG:
↑IL12
High IgG:
↓IL12

Low IgG:
↓IL10
High IgG:
↑IL10

(52, 53)

↑TNFa
↑IL1b
↑IL6

(54)

↑IL10 (55)

–arachidonic acid (50)
–H2O2 release (49)

↑TNFa
↑IL1b
↑IL6

(51)

↑TNFa
↑IL6

(56)

↑TNFa
↑IL6

(57)

r involvement are also briefly described. Finally, the effect of receptor

Fu
and

H
arrison

M
acrophage

P
hagocytic

R
eceptors

and
C
ytokine

P
roduction

Frontiers
in

Im
m
unology

|
w
w
w
.frontiersin.org

A
pril2021

|
Volum

e
12

|
A
rticle

662063
6

Phagocytic receptor Phagocytic target/ligand Macrophage cell type Experimental model

Macrophage C-type lectin (MCL) M. tuberculosis BMDMs MCL-/- mice
OTHER RECEPTORS
Macrophage galactose-type lectin
(MGL)

Trypanosoma cruzi peritoneal macrophages MGL-/- mice

Dendritic Cell-Specific Intercellular
adhesion molecule-3-Grabbing Non-
integrin (DC-SIGN)

M. tuberculosis human MDMs DC-SIGN
knockdown

Triggering receptor expressed on
myeloid cells 1 (TREM1)

M. tuberculosis cell lysates BMDMs TREM1-/- mice

heat-killed S. pneumoniae BMDMs and alveolar
macrophages

TREM1/3-/- mice

TREM2 M. bovis BCG peritoneal macrophages TREM2-/-mice
E. coli peritoneal macrophages TREM2-/- mice and TREM2

overexpression
OPSONIC RECEPTORS
FcgR IgG-coated tissue culture plates human monocytes

IgG-coated beads murine peritoneal macrophages
IgG-opsonized sheep red blood cells
(sRBCs)

BMDMs

+TLR4 IgG-opsonized sRBCs LPS-stimulated BMDMs

+CD36 P. falciparum-infected erythrocytes
opsonized with pooled patient immune
serum

IFN-g-primed human MDMs

+TLR2 heat aggregated gamma-globulins +P3C
(soluble TLR2 ligand)

IFN-g-primed human MDMs

Complement receptor3 (CR3) IgM-C3bi-coated beads murine peritoneal macrophages
C3b- or C3bi- coated tissue culture
plates

human monocytes

C3bi-opsonized sRBCs BMDMs

+Dectin-1 heat-killed Histoplasma capsulatum (H.
capsulatum)

peritoneal macrophages CR3 and Dectin-1 single and
double -/- mice

+Dectin-1 heat-killed H. capsulatum peritoneal macrophages anti-CR3 and anti-Dectin-1
antibodies

Phagocytic receptor and target particles are listed as well as the type of primary macrophage or macrophage cell line utilized. Experimental strategies to test recept
stimulation on either pro- or anti-inflammatory cytokine production is summarized.
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macrophages from SR-A-/- mice, the pro-inflammatory response
is not impacted and is dependent on TLR4 expression and ligation
to LPS (18) (Table 1). This is likely attributed to the inherent
structure of SR-A, which does not have an intracellular signaling
domain. However, peritoneal macrophages from SR-A-/- mice
showed decreased TNFa production during uptake of latex beads
coated with trehalose 6,6′-dimycolate (TDM), the cell wall
glycolipid of M. tuberculosis (22), indicating a more direct role
for SR-A in cytokine signaling, or the involvement of another as of
yet identified signaling co-receptor. Likewise, MARCO is
implicated in tethering and phagocytosis of M. tuberculosis but
does not have an intracellular signaling moiety and requires TLR2
stimulation and signaling for cytokine induction in macrophages
(22) (Table 1).

In macrophages, CD36 can either independently, or in
cooperation with TLR2 receptors, mediate pro-inflammatory
cytokine release during phagocytosis. CD36 presents bacterial
LTA as well as diacylated lipoproteins to TLR2/6 heterodimers
(80). Phagocytosis studies in macrophages have confirmed that
CD36 signaling mediates internalization of microbes but requires
TLR2 signaling for pro-inflammatory cytokine secretion (23, 24)
(Table 1). Dectin-1 also synergizes with TLR2 for the production
of pro-inflammatory cytokines in macrophages (16, 27)
(Table 1). Phagocytosis of zymosan by macrophages occurred
through either Dectin-1 or the mannose receptor, but only
Dectin-1-mediated phagocytosis of zymosan led to the
production of superoxide (77). As discussed later, Dectin-1-
mediated cytokine induction during phagocytosis also depends
on ligand density and the activation status of macrophages.

Stimulation of the mannose receptor during phagocytosis has
varying effects on cytokine production in murine macrophages
(Table 1). C. albicans binding to mannose receptors on
thioglycollate-elicited peritoneal macrophages induced
transcription of IL6 and IL1b (32), indicating a pro-inflammatory
response. The mannose receptor is the main receptor for
phagocytosis of unopsonized Pneumocystis, a pathogen that
causes pneumonia (72, 81). While mannose receptor ligation to
Pneumocystis carinii (P. carinii) induced NF-kB nuclear
translocation in human alveolar macrophages, the expression and
secretion of IL1b, IL6 and TNFa did not occur (34, 35). The
observed effects on NF-kB translocation may be related to the
different bacteria MOIs used in these studies (34, 35). NF-kB
activation requires a particular threshold of signal density from
PRRs, including input from MAPKs, for transcription of cytokine
genes to occur (82). Other receptor involvement may also be
required for pro-inflammatory cytokine production during P.
carinii uptake, for instance through bacteria opsonization. In
support of this, immune serum opsonization of Pneumocystis
bacteria promoted significant TNFa production, compared to
unopsonized bacteria, in macrophages (83).

C-Type Lectin Receptors and Other PRR
Phagocytic Receptors
Phagocytic targets: Dectin-2 belongs to the C-type lectin
phagocytic receptors which also include macrophage inducible
C-type lectin (Mincle) and macrophage C-type lectin (MCL)
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(Figure 2). Dectin-2 mediates the phagocytosis and killing of
Candida glabrata (C. glabrata) by macrophages (36). Both
Mincle and MCL are TDM receptors, where Mincle recognizes
the carbohydrate part of TDM and MCL recognizes the lipid
portion of TDM (84). Mincle ligation drives the phagocytosis of
Klebsiella pneumonia (85), but not C. albicans, although
interestingly Mincle is localized to both the phagocytic cup and
C. albicans-containing phagosomes (39, 86). Mincle can form
heterodimers with MCL and serves as a bridge between MCL and
FcRg. The Mincle-MCL-FcRg complex has a much higher
phagocytosis capacity for anti-Mincle- or anti-MCL-coated
beads in macrophages (87).

Other phagocytic PRR receptors include macrophage
galactose-type lectin (MGL) which recognizes Gal/GalNAc
residues present in N- and O-glycans on glycoproteins and/or
glycosphingolipids and thus MGL binds tumor antigens,
apoptotic cells and foreign glycoproteins on helminth parasites
(88). Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-
SIGN) is another C-type lectin receptor which has a
carbohydrate recognition domain that recognizes glycoproteins
with mannose-containing structures (89). Triggering receptor
expressed on myeloid cells 1 (TREM1) and TREM2 are
expressed in macrophages and other cells of the myeloid
lineage (90). TREM1 mediates the phagocytosis of b-amyloid
peptides by human monocytes and promotes the uptake of heat-
killed S. pneumoniae by BMDMs and alveolar macrophages (46).
TREM2, is required for the phagocytosis of K. pneumoniae (91),
and is also responsible for the uptake of E. coli, S. aureus,
zymosan and b-amyloid (Ab 1-42) (48, 92, 93).

Cytokine Induction: There are conflicting studies on the role of
Dectin-2 in cytokine release during phagocytosis in macrophages.
In one study, Dectin-2-deficient peritoneal macrophages released
more pro-inflammatory cytokines after C. glabrata and C. albicans
stimulation, compared to control macrophages (36). However,
another study examining thioglycollate-elicited peritoneal
macrophages from Dectin-2-/- mice, showed reduced TNFa and
IL6 levels and enhanced IL10 levels after C. glabrata infection,
compared to control macrophages (28). The activation status of the
macrophages may be impacting the signaling capacity for Dectin-2,
which lacks signaling domains and must associate with the adaptor
FcRg chain that contains an immunoreceptor tyrosine-based
activation motif (ITAM) (94).

Mincle activation can promote the release of both pro- and
anti-inflammatory cytokines when macrophages engage with
gram-negative bacterium, mycobacteria, fungi and inorganic
particles. For instance, while Mincle was not required for the
phagocytosis of the gram-negative Tannerella forsythia (T.
forsythia) bacteria, Mincle ligation to T. forsythia promoted
pro-inflammatory cytokine TNFa and anti-inflammatory
cytokine IL10 release in macrophages (37) (Table 1). Mincle
also mediated the release of TNFa, IL6 and IL10 in BMDMs
ingesting the fungiMalassezia (38). Mincle activity can synergize
with TLR2 in macrophages to promote pro- and anti-
inflammatory cytokine release. As an example, BMDMs
stimulated with the TLR2 agonist Pam3CSK4 produced more
pro-inflammatory TNFa and anti-inflammatory cytokine IL10
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when co-stimulated with TDM-coated beads, that was depended
on Mincle signaling (40). While MCL has not received as much
attention as other C-type lectin receptors, BMDMs from MCL-/-
mice had reduced levels of TNF mRNA after M. tuberculosis
H37Rv stimulation, compared to control macrophages (42)
(Table 1), indicating that this receptor may signal for cytokine
gene expression in a similar manner to Mincle. Similarly, little
has been reported about cytokine induction during phagocytosis
induced by MGL ligation, however one study of peritoneal
macrophages from MGL-/- mice showed reduced TNFa and
IL10 secretion during phagocytosis of Trypanosoma cruzi
parasites, compared to control macrophages (43) (Table 1).

In contrast to other C-type lectin receptors, DC-SIGN
signaling during phagocytosis dampens pro-inflammatory
signaling in macrophages. For instance, when DC-SIGN
receptor levels were experimentally downregulated in human
monocyte-derived macrophages (MDMs) exposed to M.
tuberculosis, the mRNA and secreted protein levels of TNFa,
IL6, and IL1b were increased, compared to control macrophages
(44) (Table 1). DC-SIGN is more abundant in dendritic cells,
where inhibitory PRRs are more common (95), and act to the
advantage of the pathogen to actively suppress host immune
defenses. It is quite probable that most macrophage PRRs are
strongly pro-inflammatory to reflect the front-line response of
macrophages in infections.

Finally, TREM1 ligation induces a pro-inflammatory response
during bacterial uptake and accordingly, TREM1 inhibition is
protective in septic shock animal models (90). Macrophages from
TREM1 knockout mice have attenuated TNFa and IL1b mRNA
and protein levels after M. tuberculosis exposure (45) (Table 1).
TNFa secretion is also reduced from TREM1/3-/- BMDMs and
alveolar macrophages during uptake of heat-killed S. pneumoniae
(46). Compared to TREM1, TREM2 is more anti-inflammatory.

Knocking out the TREM2 gene in macrophages engaging
M. bovis BCG increased the BCG-induced release of the pro-
inflammatory cytokine, MCP1 (47). Similarly, TREM2-/-
peritoneal macrophages had higher IL6 secretion after
engagement with E. coli while RAW264.7 cells overexpressing
TREM2 had attenuated IL6 release after E. coli stimulation,
compared to control cells (48). Why might there be such a
variation in cytokine induction by TREM1 and TREM2? One
possibility is that TREM2 does not induce complete
phosphorylation of the required adaptor, DAP12. The ITAM
of DAP12 becomes only partially phosphorylated if the
associated receptor has a low affinity or avidity to ligand (96).
Incomplete phosphorylation of the ITAM recruits the SH2
domain-containing protein tyrosine phosphatase SHP-1,
leading to dephosphorylation of downstream targets of Syk (97).

Opsonic Receptors
Phagocytic targets: Fcg receptors (FcgR) bind to the fragment
crystalline (Fc) region of IgG exposed on opsonized targets that
have been recognized with the fragment antigen binding (Fab)
portion of IgG (98) (Figure 2). Once ligated, clustered FcgRs use the
ITAM either in the cytosolic domain of the receptor or in associated
subunits (FcRg or FcϵRIb chain) to activate downstream signaling
cascades. The complement system is activated either through the
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classic pathway, the alternative pathway or the lectin pathway,
which leads to the generation of C3b that can bind to exposed
hydroxyl and amino groups on the surface of pathogens (99).
Bound C3b can also be cleaved into an inactivated form that is
called C3bi (99). Phagocytes express CR3 receptors, which upon
inside-out activation can bind to deposited C3b or C3bi on target
cells (99, 100) (Figure 2).

Cytokine Induction: While the study of phagocytosis has
centered on uptake by the opsonic receptors, there is relatively
little work on their connectedness with cytokine induction in
macrophages (Table 1). An early study of human monocytes
plated on IgG-coated substrates showed a significantly higher
production of H2O2 in these cells, compared to macrophages on a
control surface (49). In contrast, H2O2 levels remained unchanged
in monocytes plated on C3b- or C3bi-coated substrates (49). A
follow-up study of murine peritoneal macrophages revealed that
internalization of opsonized latex beads through Fcg receptors, but
not CRs, caused elevated arachidonic acid production, which is a
potent inflammatory mediator of vascular permeability (50). This
led to the belief that phagocytosis through Fcg, but not CR3, was
pro-inflammatory. However, our lab recently showed that the
phagocytosis of C3bi-opsonized sRBCs increased the release of a
host of pro-inflammatory cytokines including TNFa, IL1b and IL6,
compared to control macrophages and those ingesting IgG-sRBCs
(51) (Table 1). CR3 is an integrin, and we identified a role for the
downstream signaling protein, calpain, in mediating this
response (51).

Recent evidence suggests that FcgRs do not induce cytokine
production directly, but can modulate cytokine release mediated
by other receptors. For example, IFN-g-primed human MDMs
produced much higher pro-inflammatory cytokines (TNFa,
IL1b, IL6) when ingesting P. falciparum-infected erythrocytes
opsonized with pooled patient immune serum, compared to
unopsonized targets (54) (Table 1). Complement receptors are
also well-known to coordinate with TLRs for inflammatory
responses when macrophages engage with targets coated with
both respective ligands (101, 102). CR3 also synergizes with
Dectin-1 in pro-inflammatory cytokine release whenmacrophages
interact with microbes. For example, macrophages exposed to
heat-killed Histoplasma capsulatum have significantly reduced
TNFa and IL6 secretion when both CR3 and Dectin-1 signaling
is blunted, compared to single receptor inhibition (56, 57). Table 1
captures the available literature investigating microbial phagocytic
receptor involvement in cytokine production in macrophages. We
will next discuss putative cytokine-invoking signaling elements
that are activated during phagocytosis and the contributions of
particulate ligands and the internalization process in the
inflammatory response.
SHARED SIGNALING ELEMENTS IN
PHAGOCYTOSIS AND CYTOKINE
PRODUCTION IN MACROPHAGES

The intracellular signaling events that lead to NF-kB activation
and pro-inflammatory cytokine gene expression in macrophages
April 2021 | Volume 12 | Article 662063
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is best understood for TLRs and is described in several
comprehensive reviews (4, 5, 103) (Figure 3). We have
mentioned several phagocytosis receptors that cooperate with
TLR-mediated signaling for cytokine induction (Table 1)
(Figure 3). However, some phagocytosis receptors signal
independently and induce cytokine expression in the absence
of TLR ligation. These signal transduction pathways are not as
well-understood due to inherent challenges when blocking
receptors and the consequent impact on particle binding/
internalization. Thus, it is difficult to uncouple these events
and address whether the pronounced F-actin remodeling
events in phagocytosis signal to the nucleus for a pro-
inflammatory response. However, we are beginning to
understand some of the signaling commonalities between
phagocytosis and cytokine induction in macrophages. For
phagocytosis, a wealth of literature exists describing the
signaling events during FcgR-mediated phagocytosis (reviewed
in (104, 105)). Dissecting this comprehensive signal transduction
pathway allows us opportunities to identify major areas of
signaling overlap (Figure 3) that have been substantiated with
experimental evidence.

Phagocytosis is initiated by receptor engagement with the
microbe and subsequent receptor clustering along the plasma
membrane. The ITAMs within the receptor or adaptor proteins
become phosphorylated by Src-family kinases to allow docking
and activation of Syk (106, 107). Syk is also activated in the NF-
kB signaling pathway induced by soluble ligands to TLR4 (108,
109) and thus represents a potential signaling hub between
Frontiers in Immunology | www.frontiersin.org 9203
phagocytosis and cytokine induction in macrophages. Binding
of Dectin-1 to its target leads to Syk phosphorylation which
activates the caspase recruitment domain family member 9
(CARD9)/B-cell lymphoma 10 (BCL-10)/mucosa-associated
lymphoid tissue lymphoma translocation protein 1 (MALT1)
protein complex leading to the activation of NF-kB (107). While
phagocytic receptors like FcgRIIA contain an ITAM, or
hemITAM (Dectin-1), for signal transduction, others like
Dectin-2 and the TREM family proteins utilize adaptor
proteins containing ITAMs, which vary in their ability to
induce pro- or anti-inflammatory gene expression. CD36 does
not possess an ITAM and associates with the ITAM-bearing
adaptor FcRg for signaling to Syk (110). Similarly, the FcRg
ITAM becomes phosphorylated after Mincle stimulation with
ligand, which in turn recruits Syk. Syk then activates the MALT1
signalosomes leading to NF-kB activation (84).

Syk activation during FcgR-mediated phagocytosis recruits
PI3K and phospholipase Cg (PLCg) for key lipid modifications at
the phagocytic cup (104, 111, 112). The production of
diacylglycerol by PLCg activity triggers calcium release that
stimulates protein kinase C (PKC) and Erk1/2 and p38
MAPKs (104). PKC-e is required for membrane delivery to the
phagocytic cup (113) and also for LPS-induced 1L12 secretion
(114), and thus may serve as an intersection point between
phagocytosis and cytokine production in macrophages (Figure
3). Similarly, the MAPK family plays pivotal functions in both
particle internalization and NF-kB activation. Following LPS
stimulation of TLRs in macrophages, Erk1/2, p38 and JNK are
FIGURE 3 | Potential signaling molecules involved in pro-inflammatory cytokine gene expression during phagocytosis. Macrophage phagocytic receptor clustering
will activate F-actin-remodeling signaling elements, some kinases of which (black bold), have also been implicated in canonical TLR signaling induced by soluble
ligands. While some phagocytosis receptors can independently activate an inflammatory response, other phagocytosis receptors require co-ligation of TLR receptors
and subsequent TLR signaling to promote NF-kB and AP-1 activation and pro-inflammatory cytokine gene expression.
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activated by TGFb-activated kinase 1 (TAK1 kinase) (115).
MAPKs activate the transcription factor activator protein 1
(AP-1) leading to additional cytokine gene transcription (4, 7)
(Figure 3). Relevant to phagocytosis, Erk1/2 is activated and
required for FcgR-mediated phagocytosis in macrophages (116,
117). MARCO null macrophages exposed to TDM beads had
reduced MAPK activation and TNFa, IL6, and IL1b production,
compared to control macrophages (22) (Table 1). CD36-
mediated uptake of fibrillar b-amyloid by CD36 induced Lyn
signaling to Fyn and MAPK, which were necessary for pro-
inflammatory reactive oxygen species (ROS) and MCP1
production in peritoneal macrophages (26). Both the amino
and carboxy termini of CD36 are cytosolic and palmitoylated
which targets CD36 to lipid rafts containing Src kinase family
members that can activate p38 and Erk1/2 (26). Similarly,
Dectin-1-mediated phagocytosis of C. glabrata and subsequent
secretion of IL6, TNFa and IL10 in thioglycollate-elicited
peritoneal macrophages was induced by the activation of
MAPK and NF-kB pathways (28).

We recently identified calpain as a potential mediator of
cytokine production during CR3-mediated phagocytosis in
macrophages (51) (Figure 3). Calpain is a cysteine protease
that has been shown to degrade IkBa (118), the inhibitory
subunit for NF-kB (119, 120). In canonical TLR signaling,
TAK1 activates the IKK complex whereby the IKKb subunit
phosphorylates IkBa. Phosphorylated IkBa is degraded by the
proteasome and NF-kB is freed for translocation into the nucleus
to turn on pro-inflammatory genes (Figure 3).

It remains to be seen whether the robust F-actin machinery
involved in particle internalization (Rac1, RhoA, WAVE, Arp2/
3, etc.) plays a direct signaling role in cytokine production in
macrophages (Figure 3). F-actin depolymerizing agents have an
impact on cytokine production in macrophages (described
below) but these experiments do not address the role of
individual F-actin signaling elements in cytokine induction and
is worthy of further investigation.
CYTOKINE INDUCTION BY MICROBES
VERSUS SOLUBLE LIGANDS IN
MACROPHAGES

Utilizing soluble ligands to study phagocytic receptor signaling
allows a simplified analysis of its potential role in cytokine
induction. However, soluble ligands engage fewer receptors
than intact microbes and do not induce receptor clustering and
cross-linking, which strongly impacts the type and amplitude of
downstream signaling events. In an elegant Dectin-1 study,
macrophages were exposed to either soluble b-glucans or
particulate/immobilized b-glucan and assayed for pro-
inflammatory responses (121). While uptake of soluble b-
glucans did not induce TNFa release and reactive oxygen
species (ROS) production in macrophages, both particulate b-
glucan and zymosan induced a significant pro-inflammatory
response. Additionally, when soluble b-glucans were adhered
to 0.8 µm latex beads to promote phagocytosis, ROS production
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was enhanced in macrophages (121). Immunofluorescence
analysis of the macrophages plated on surface-immobilized b-
glucan showed that Dectin-1 adherence to large targets removed/
excluded the inhibitory CD45 and CD148 proteins from the
“phagocytic synapse”. Clearance of these proteins is believed to
allow the Src-Syk-MAPK signaling cascade induced by Dectin-1
to induce pro-inflammatory gene expression (121). Related to
this, a recent study engineered a nanoarray of TLR1/2 ligands to
recreate the phagocytic synapse. The researchers were able
to manipulate the spatial organization of ligands and observed
that closer spacing of ligands (and presumably receptors)
enhanced TNFa release in RAW264.7 cells, up to an intrinsic
limit (122). While a wealth of receptor signaling information can
be gleaned from studying soluble ligands, there is value in
investigating large targets where the magnitude of receptor
ligation and clustering may impact intracellular signaling events.
VARIATIONS IN CYTOKINE SIGNAL
STRENGTH AND CROSS-TALK BY
PHAGOCYTOSIS RECEPTORS

Many signaling proteins overlap during phagocytosis and NF-kB
activation pathways, yet the type of pro-inflammatory cytokines
and magnitude of the secreted cytokine levels varies widely.
Studies in our lab have directly compared cytokine secretion after
stimulation of macrophages with different ligands. TLR signaling
induced an order of magnitude higher cytokine production in
macrophages, compared to CR3 or FcgR stimulation using
opsonized sRBCs (51, 52). As mentioned earlier, opsonization
of microbes is known to influence the cytokine production
profile induced by other receptors. Antibody-opsonized targets
are indicative of a measured adaptive immune response and may
not signal the urgency of a new infection represented by
microbes solely displaying MAMPs.

The degree of opsonization also strongly influences cytokine
production in macrophages. In LPS-stimulated macrophages,
increasing IgG on RBCs to saturation inhibited IL12 production
and surprisingly, induced secretion of the anti-inflammatory
cytokine, IL10 (53). Equivalent amounts of soluble antibody
added to media had no effect suggesting that the ligand must
be present at high enough densities to cluster FcgRs. This FcgR-
mediated influence on TLR signaling included pronounced Erk1/
2 activation, known to induce histone modifications associated
with the IL10 gene promotor (123). The coinciding increase in
sRBC phagocytosis at higher opsonin concentrations also begs
the question of whether the enhanced internalized particles also
contributed to altered cytokine gene expression. Potential
receptor signaling contributions during particle uptake and
from phagosome membranes are discussed in the next sections.

Dectin-1-mediated cytokine expression during phagocytosis
is also dependent on the density and type of fungal ligands. Fungi
with higher levels of b-glucans on the cell wall induces more
Dectin-1 engagement and pro-inflammatory cytokine release,
compared to fungi with lower b-glucans levels. For example,
macrophage uptake of A. fumigatus resting conidia did not
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induce pro-inflammatory signals while maturing A. fumigatus
germ tubes caused pronounced NF-kB activation and the
production of TNFa and ROS in macrophages (30).

In addition to ligand density, microbes contain multiple ligands
and activate PRRs and opsonic receptors of the same or different
type(s). These findings underscore the importance of using intact
microbes to decipher the relationship between phagocytosis and
cytokine induction. As detailed in Table 1, complexities in cytokine
induction in macrophages arise when more than one phagocytic
receptor is engaged. For instance, a synergistic production of pro-
inflammatory cytokine production was observed when both CR3
and Dectin-1 were engaged in macrophages ingesting H.
capsulatum. The signal amplification by these receptors occurred
via pronounced Syk activation, which then enhanced downstream
Syk-JNK-AP-1 signaling (56). Dectin-1 co-ligation also magnifies
TLR2 or TLR4 signaling during phagocytosis. For instance, the
uptake of Exserohilum rostratum (E. rostratum) in the presence of
LPS, provoked a much higher IL1b release in macrophages,
compared to LPS or E. rostratum stimulation alone (29). Dectin-
1 signaling also synergizes with TLR2 for NF-kB activation after
zymosan stimulation (27). As we have discussed, MAPK may
represent a common node for signaling by phagocytic receptors
and parallel activation of MAPK via different pathways could lead
to synergistic cytokine expression outcomes. The opsonization of
bacteria activates both FcgR and TLR signaling pathways often
leading to amplified cytokine responses in macrophages (52, 53)
(Table 1). There likely exists a hierarchy of responses by PRRs to
the threat at hand which is mediated by co-ligation of different
receptor combinations.
ROLE OF PARTICLE INTERNALIZATION
IN CYTOKINE INDUCTION
IN MACROPHAGES

Phagocytosis is typified by dramatic F-actin remodeling and
plasma membrane protrusions but is this unique morphological
event required for inflammatory signaling? Some clues to help
answer this question can be provided by experiments that block
microbial uptake or utilize targets that cannot be internalized.
Inhibition of particle internalization can be achieved with F-actin
depolymerizing agents. Treatment of thioglycollate-elicited
BMDMs with cytochalasin D (cyto D) to block uptake of heat-
killed S. aureus did not impact TNF or IL10 release, suggesting
that internalization was not required for TLR2/4-mediated pro-
inflammatory signaling (124). In contrast, cyto D treatment to
inhibit internalization of K. pneumoniae through TLR2 and
Dectin-1 receptors, blocked secretion of the pro-inflammatory
cytokine, IL8 (125). Impeding phagocytosis of gram-positive
bacteria using cyto D also reduced the expectant IL12 response
(126). While the latter observations were made in respiratory
epithelium and monocytes, respectively, the results warrant
investigation in macrophages. Cyto D is a blunt tool to block
microbial internalization and we have utilized Src and Syk
inhibitors in our own work to prevent particle uptake in
macrophages (51). While we observed a marked reduction in
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pro-inflammatory cytokine secretion in drug-treated BMDMs,
phagocytosis still proceeded at a lower level in Src- and Syk-
inhibited cells, confounding the results (51).

Another strategy to delineate receptor signaling events is to
employ “frustrated phagocytosis” assays where ligand is bound to a
coverslip and thus cannot be internalized. Exploiting such an assay,
robust TNFa and ROS production was seen in BMDMs engaged
with plate-immobilized b-glucan, validating the cell surface as a
predominant cytokine signaling locale for the Dectin-1 phagocytic
receptor (121). Similarly, there was a Dectin-1-dependent secretion
of TNFa when macrophages were bound to E. rostratum, a bacteria
that cannot be internalized (29). In contrast, compelling evidence
for an internalization requirement for cytokine secretion in
macrophages came from a study on the rough and smooth
varieties of Mycobacteria abscessus (M. abscessus), where the
topology of the rough strain impedes effective engulfment by
macrophages (127). Interestingly, human PMBCs engaged with
roughM. abscessus strains produced significantly less TNF and IL10
cytokines than after engulfment of the smooth bacteria strain (127).
There are a few potential reasons for this. As we discussed, shared
signaling elements between phagocytosis and NF-kB activation
pathways may amplify the response when microbes are
internalized. Furthermore, phagocytic receptor signaling may
acutely persist on the phagosome (Figure 1), which is the next
topic of discussion.
PHAGOCYTIC RECEPTOR SIGNALING
IN PHAGOSOMES

Do phagocytosis receptors signal within phagosomes for cytokine
induction? As previously mentioned, it is inherently difficult to
uncouple signaling events during particle uptake with cytokine gene
expression, as down-regulating the receptor usually blocks
internalization. However, it is well-known that after uptake of
soluble ligands, internalized TLR4 can recruit TRAM and TRIF
that lead to the activation of NF-kB-mediated pro-inflammatory
cytokine gene expression and type I IFN gene expression (4). While
TLR4 can signal at both the cell surface and within endosomes,
other TLR family members signal only at the plasma membrane or
from endosomal compartments (128). CARD9, an important
downstream signaling element for Dectin-1, is recruited to early
phagosomes where it may exert some of its pro-inflammatory
effects (31). It remains to be determined if other bona fide
phagocytic receptors mediate inflammatory signaling at the
plasma membrane and/or along phagosomes (Figure 1). Once
internalized, the newly formed phagosome organelle is quickly
remodeled as it fuses sequentially with vesicles of endocytic
lineage in a process known as phagosome maturation, reviewed
in (105). Membrane fission events from the phagosome also occurs
to collect microbe fragments for antigen presentation and to recycle
receptors (129). It is unlikely that FcgR signals extensively from the
phagosomal membrane as the rapid loss of F-actin from the nascent
phagosomes (111) implies a termination of the signal. Interestingly,
we observed recruitment and successive F-actin flashes on CR3-
phagosomes that were rarely observed in FcgR-phagosomes (130).
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F-actin flashes also occur on some bacteria-containing phagosomes
(131) and apart from mechanically fragmenting cargo (130), these
F-actin accumulations may represent phagocytic receptor signaling
hubs important in cytokine production.

Maturing phagosomes ultimately fuse with lysosomes for
terminal cargo destruction and killing of internalized
microorganisms (105). The progressive loss of receptors from the
phagosome resulting from fission events likely attenuates any long-
term intracellular signaling. Interestingly, mannose receptors were
recruited to C. albicans-containing phagosomes 20 minutes after
uptake and were implicated in stimulating TNFa and MCP1
production post-internalization (33). While it is not clear if
phagocytic receptor signaling commonly promotes cytokine
induction from the phagosome, the routing of microbial contents
to lysosomes triggers additional inflammatory receptors, including
intracellular PRRs (reviewed in (132)). A larger pool of ligands is
obscured in intact microbes and becomes accessible only after
phagolysosome formation and digestion of the microorganism.
Phagosome degradation of bacteria exposes additional TLR2
ligands as well as releasing DNA to activate intracellular TLR9
and downstream inflammatory responses (133). Ultimately,
phagosome membrane remodeling and saturation of intracellular
receptors will cease signaling to signify removal of the microbe and
defeat of the threat (134).
MACROPHAGE POLARIZATION AND
CYTOKINE INDUCTION DURING
PHAGOCYTOSIS

Macrophages exist in “resting” states and various forms of
activation/polarization in vitro and in vivo. M1 macrophages
are primed with microbial products like LPS and the cytokine
IFN-g and subsequently secrete many pro-inflammatory
cytokines including TNFa, IL6, IL12, IL18 and IL1b (135). In
contrast, IL4-induced M2 macrophages secrete anti-inflammatory
cytokines such as IL8, IL10, TGFb and MCP1 and are ascribed a
wound healing role (135). While phagocytosis of pathogens in
particular will polarize macrophages, it is still unclear whether pre-
programmed, polarized macrophage subsets have a different
inflammatory response upon encounter with a target, compared
to naïve macrophages. The results surveyed in this review largely
describe resting or resident macrophages, but some studies utilized
PMA-treated or thioglycollate-elicited macrophages (Table 1),
which may influence the inflammatory outcome. For instance,
while resting macrophages undergoing Dectin-1-mediated uptake
of zymosan did not induce NF-kB activation and TNFa
production, priming of the macrophages with either GM-CSF or
IFN-g led to Dectin-1-CARD9-mediated TNFa production (31).
Macrophage priming also enhanced the surface expression of
Dectin-1 (31), which may account for enhanced pro-
inflammatory signaling. Interestingly, we have shown that
classical activation (IFN-g + LPS) of macrophages promotes
TLR4 delivery to the cell surface (136). Circulating IFN-g is
indicative of an ongoing infection, and consequent changes in
Frontiers in Immunology | www.frontiersin.org 12206
phagocytic receptor display may create macrophage populations
prepared for this circumstance. Our lab has also shown that
classically activated macrophages have a dramatically enhanced
stable microtubule population (137, 138). In M1 macrophages,
these stabilized microtubule subsets have a prominent role in
transporting vesicles containing matrix metalloproteinase-9,
important for invasion (139). It will be of interest to determine
whether phagocytosis receptor- and cytokine-containing vesicles
also mobilize these stabilized tracks and whether this augments a
pro-inflammatory response during phagocytosis.
CONCLUSIONS

In this review, we summarize the numerous macrophage receptors
that serve as PRRs to recognize and engulf microbes and trigger
pro- or anti-inflammatory outcomes. Many of the pro-
inflammatory responses during phagocytosis are activated
through TLR signaling pathways alone or with other receptors
collaborating with TLRs. TLRs, in concert with other phagocytic
receptors, can together enhance the macrophages’ ability to target
a variety of pathogens while utilizing the robust TLR signaling
pathways to induce and regulate cytokine gene expression. The
purpose of this review was to highlight the importance of
understanding the macrophage response to whole microbes,
versus soluble MAMPs, since these are the major players in
infections. Future studies investigating additional receptor cross-
talk during phagocytosis will likely reveal more physiological
insights into cytokine outcomes for particles with multiple target
moieties for macrophage engagement. Importantly, understanding
how the phagocytosis machinery responsible for the uptake of
large apoptotic and necrotic cells contributes to the well-described
anti-inflammatory response in macrophages will add valuable
insight to the field.
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Canonical Macropinocytosis in
RAW264 Macrophages
Katsuhisa Kawai , Arata Nishigaki , Seiji Moriya , Youhei Egami and Nobukazu Araki*

Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Japan

Using the optogenetic photo-manipulation of photoactivatable (PA)-Rac1, remarkable cell
surface ruffling and the formation of a macropinocytic cup (premacropinosome) could be
induced in the region of RAW264 macrophages irradiated with blue light due to the
activation of PA-Rac1. However, the completion of macropinosome formation did not
occur until Rac1 was deactivated by the removal of the light stimulus. Following PA-Rac1
deactivation, some premacropinosomes closed into intracellular macropinosomes,
whereas many others transformed into long Rab10-positive tubules without forming
typical macropinosomes. These Rab10-positive tubules moved centripetally towards the
perinuclear Golgi region along microtubules. Surprisingly, these Rab10-positive tubules
did not contain any endosome/lysosome compartment markers, such as Rab5, Rab7, or
LAMP1, suggesting that the Rab10-positive tubules were not part of the degradation
pathway for lysosomes. These Rab10-positive tubules were distinct from recycling
endosomal compartments, which are labeled with Rab4, Rab11, or SNX1. These
findings suggested that these Rab10-positive tubules may be a part of non-degradative
endocytic pathway that has never been known. The formation of Rab10-positive tubules
from premacropinosomes was also observed in control and phorbol myristate acetate
(PMA)-stimulated macrophages, although their frequencies were low. Interestingly, the
formation of Rab10-positive premacropinosomes and tubules was not inhibited by
phosphoinositide 3-kinase (PI3K) inhibitors, while the classical macropinosome
formation requires PI3K activity. Thus, this study provides evidence to support the
existence of Rab10-positive tubules as a novel endocytic pathway that diverges from
canonical macropinocytosis.
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INTRODUCTION

Macropinocytosis is a form of clathrin-independent, actin-
dependent endocytosis that mediates the non-selective uptake of
extracellular fluids and solutes into 0.2 – several mm diameter
endocytic vesicles called macropinosomes. Newly-formed
macropinosomes undergo a maturation process, during which
they fuse with other endocytic compartments and eventually
merged with lysosomes (1, 2). In macrophages and dendritic
cells, this endocytic pathway is involved in immune surveillance
and antigen presentation (3). In tumor cells, macropinocytosis
serves as an amino acid supply route to support active cell
proliferation (4). In neuronal cells, macropinocytosis has been
proposed to be involved in the uptake and propagation of
pathogenic protein aggregates associated with neurodegenerative
diseases such as Alzheimer’s disease and Parkinson’s disease (5).
In addition, many pathogenic bacteria and viruses exploit
macropinocytosis pathways to gain entry into host cells during
infection (6). Therefore, a better understanding of the molecular
mechanisms underlying macropinocytosis and its related
pathways has implications for cell biology and the establishment
of therapeutic strategies to combat various diseases, including
cancer and viral infections.

Phosphoinositide metabolism and small GTPases of the Ras
superfamily, including the Rho and Rab families, coordinately
regulate macropinosome formation and maturation (7, 8).
Macropinocytosis is initiated by the plasma membrane
ruffle formation driven by the actin polymerization and
reorganization which is upregulated by Rac1, a member of the
Rho family GTPases. Using an optogenetic technology in which
RAW macrophages express photoactivatable Rac1 (PA-Rac1), we
have found that Rac1 activation is sufficient to induce plasma
membrane ruffling and circular ruffle/macropinocytic cup
formation; however, persistent Rac1 activation stalls at the
macropinocytic cup stage without progressing to the complete
formation of macropinosomes. Rac1 deactivation following
temporal activation enables some macropinocytic cups to form
macropinosomes (9). By repeating the activation and deactivation
of PA-Rac1 at a certain interval, macropinocytosis can be
efficiently induced. However, many macropinocytic cups
collapse prior to the completion of macropinosome formation.
It is also known that a considerable number of circular ruffles or
macropinocytic cups in macrophages under normal conditions
disappear without resulting in intracellular macropinosome
formation (1). Nonetheless, no attention has been paid to the
phenomenon of cup collapse so far. Therefore, in this study, we
focused our attention on the differences between collapsing
macropinocytic cups and typical cups that form macropinosomes.

The Rab family GTPases comprise more than 60 members in
mammals and are key regulators of membrane trafficking (10, 11).
One protein, Rab10, has been implicated in a variety of membrane
trafficking pathways (12–17). More recently, Rab10 was identified as
a novel protein regulator of tubular recycling endosome formation
through interaction with the kinesin motor protein KIF13 (18).
Furthermore, it was reported that Rab10 phosphorylation by
leucine-rich repeat kinase 2 (LRRK2) has been associated with the
regulation of macropinosome early maturation (19).
Frontiers in Immunology | www.frontiersin.org 2212
In this study, while studying RAW264 macrophages
expressing a fluorescent protein-tagged Rab10 and PA-Rac1, we
unexpectedly discovered that macropinocytic cup or pocket-like
structures (premacropinosomes) that were intensively associated
with Rab10 collapsed and disappeared by transforming into
Rab10-positive tubules, whereas those premacropinosomes that
were only faintly or briefly associated with Rab10 became
intracellular macropinosomes. The Rab10-positive tubules that
originated from premacropinosomes were distinct from known
endocytic compartments having Rab4, Rab5, Rab7, Rab11, SNX1,
or lysosomal associated membrane protein 1 (LAMP1). Here, we
provide evidence to support the existence of a new endocytic
pathway that diverges from canonical macropinocytosis.
MATERIALS AND METHODS

Chemicals and Plasmids
pEGFP-C1, pECFP-C1, and pmCherry-C1 were obtained from
Clontech. pEGFP-Rab8a, pEGFP-Rab10, pmCherry-Rab10,
pEGFP-Rab35-4E, EGFP-tubulin, pEGFP-EHBP1, pEGFP-
EHD1, pEGFP-MICAL-L1, and pEGFP-SNX1 were generated
by amplifying the full-length open reading frames of each gene
by polymerase chain reaction (PCR), followed by the cloning of
the resultant PCR products into pEGFP-C1, or pmCherry-C1.
The pmCitrine-Rab4, pmCitrine-Rab5, pmCitrine-Rab7,
pmCitrine-LAMP1, and pmCitrine-Akt-PH domain were
provided by Dr. Joel A. Swanson (University of Michigan).
pEGFP-Rab11 was provided by Dr. Marino Zerial (Max Planck
Institute). pTriEx/mCherry-PA-Rac1 was obtained from Dr.
Klaus Hahn through Addgene (Plasmid #22027, Cambridge,
MA). pECFP-PA-Rac1 was created by the insertion of the PA-
Rac1 fragment into pECFP-C1.

Other reagents were purchased from Sigma-Aldrich (St.
Louis, MO) or Nakalai Tesque (Kyoto, Japan) unless
otherwise indicated.

Cell Culture and Transfection
RAW264 cells were obtained from Riken Cell Bank (Tsukuba,
Japan) and maintained in Dulbecco’s modified Eagle medium
supplemented with 10% heat-inactivated fetal bovine serum and
antibiotics (100 U/mL of penicillin and 0.1 mg/mL streptomycin)
at 37°C in a humidified atmosphere containing 5% CO2. Cells
were transfected with vectors using the Neon Transfection
System (Life Technologies), according to the manufacturer’s
protocol. Briefly, 100 mL of a RAW264 cell suspension (1.0 ×
107 cells/mL) in Buffer R was mixed with 1.0–3.0 µg of the
indicated plasmids and electroporated once at 1,680 V for 20 ms.
The cells were then seeded onto 25-mm circular coverslips in
culture dishes containing the culture medium. At 10–24 h after
transfection, the cells were subjected to live-cell imaging.

Live-Cell Imaging and Optogenetic
Photo-Manipulation
RAW264 cells transfected with plasmids were cultured on 25-
mm circular coverslips. The coverslip was assembled in an
Attofluor cell chamber (A7816, Molecular Probes, Eugene, OR)
May 2021 | Volume 12 | Article 649600
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filled with Ringer’s buffer (RB), consisting of 155 mM NaCl, 5
mM KCl, 1 mM MgCl2, 2 mM Na2HPO4, 10 mM glucose, 10
mM HEPES and 0.5 mg/mL bovine serum albumin (BSA) at
pH 7.2. The chamber was settled onto a thermo-controlled stage
(Tokai Hit, Shizuoka, Japan) attached to a confocal laser
microscope (Zeiss LSM700) or an epifluorescence microscope
(Leica DMI6000B).

The optogenetic photo-manipulation of PA-Rac1 activity was
performed as previously described (9, 20). Briefly, cells were
transfected with pTriEx/mCherry- or pECFP-PA-Rac1 (21) and
observed under the LSM700 confocal microscope controlled by
ZEN (Zeiss) By illuminating a blue-light laser (445 or 488 nm
wavelength) to the cells expressing PA-Rac1 under the indicated
conditions, PA-Rac1 was activated through the conformational
change of the light oxygen voltage 2 domain (LOV2) of PA-Rac1
in either a local area or the whole-cell region. PA-Rac1 can be
reversibly deactivated by turning off the blue-light illumination
(21). To observe the dynamics of a red fluorescent protein-tagged
protein during PA-Rac1 photo-manipulation, pECFP-PA-Rac1
was employed. In some optogenetic photo-manipulation
experiments were performed using the Leica DMI6000B
automated epifluorescence microscopy system, controlled by
MetaMorph software (Molecular Devices) (20). The acquired
fluorescence images were processed using the Safir denoising
software (INRIA) and the nearest neighbor deconvolution
algorism of the MetaMorph software. Microscopic images are
representative of ≥7 cells from at least three separate experiments.

Data Presentation and Statistical Analysis
Quantitation of macropinosome and premacropinosome
formation was performed by counting phase-bright
macropinosomes and Rab10-positive premacropinosomes
larger than 2 mm in diameter using time-lapse microscopic
movies. The number of macropinosomes/premacropinosomes
formed during 10 min/cell was calculated. Quantitative data are
expresses as the means ± standard deviations (SD, n≥7 cells from
at least three independent experiments). Significant differences in
mean values were determined by a two-tailed unpaired t-test.
P-values less than 0.05 were considered statistically significant.
RESULTS

Reversible Optogenetic Control of
PA-Rac1 Activity Induces Rab10-Positive
Tubule Formation
Through the optogenetic control of PA- Rac1 activity in
RAW264 cells, we were able to manipulate the process of
macropinocytosis (9). The activation of PA-Rac1 by local
irradiation with blue light-induced cell surface ruffling.
Continuous blue-light irradiation applied to the same area
results in the formation of numerous bubble-like structures
underneath the ruffles. Our previous study revealed that these
bubble-like structures are unclosed macropinocytic cups or
pockets, which we refer to as premacropinosomes. After
turning off the blue-light irradiation, some premacropinosomes
Frontiers in Immunology | www.frontiersin.org 3213
were closed into intracellular macropinosomes, but many other
premacropinosomes (~70%) disappear without forming
macropinosomes (Figure 1A, Supplementary Movie 1), as we
have previously reported (9).

To clarify the involvement of Rab10 in this process, enhanced
green fluorescent protein (EGFP) - or mCherry-tagged Rab10 was
co-expressed together with enhanced cyan fluorescent protein
(ECFP)-tagged PA-Rac1 and observed in live RAW264 cells
during the optogenetic control of PA-Rac1 activity. We found that
most PA-Rac1induced premacropinosomes were intensively
positive for Rab10. Following the deactivation of PA-Rac1,
these Rab10-positive premacropinosomes transformed into tubular
structures. Under phase-contrast microscopy, premacropinosomes
appeared to collapse and return to the cell surface without forming
phase-bright macropinosomes; however, they actually transformed
into tubular structures. Curiously, only Rab10-negative
premacropinosomes, ~30% of all premacropinosomes, became
phase-bright macropinosomes (Figures 1A, B, Supplementary
Figures S1).

When we observed EGFP-Rab10 dynamics in RAW264 cells
co-expressing with mCherry-PA-Rac1, which was temporally
activated by 488 nm excitation for EGFP-Rab10 observation
with 15-sec intervals, we found that the Rab10-positive tubules
frequently form from the Rab10-positive premacropinosomes
(Figures 1C, D). By live-cell imaging of RAW264 cells co-
expressing EGFP-Rab10 with PA-Rac1, it was apparently
shown that a few Rab10-tubules extended from one peripheral
premacropinosome toward the cell center perinuclear region.
The body of the premacropinosome gradually shrunk and
disappeared without moving into the cell center (Figure 1D,
Supplementary Movie 2). We were able to constantly induce the
formation of Rab10-posit ive tubules from multiple
premacropinosomes over a 30-min observation period through
repeating PA-Rac1 activation (ON) and deactivation (OFF)
cycles with the 488 nm-excitation light for EGFP observation.

The Rab10-Positive Tubular Endocytic
Pathway Exists in Cells Under
Near-Physiological Conditions
Rab10-positive tubule may reflect an artificial structure that is an
artifact of PA-Rac1 photo-manipulation. To rule out this possibility,
we examined whether Rab10-positive tubules could be observed in
RAW264 cells under near-physiological conditions. In RAW264
cells stimulated with 100 nM phorbol myristate acetate (PMA),
membrane ruffling and macropinosome formation were enhanced.
During the normal process of macropinosome formation, Rab10
transiently localized to nascent macropinosomes. The Rab10
localization to macropinosomal membranes was much sparser
than that on premacropinosomes formed by the photo-
manipulation of PA-Rac1 ON-OFF cycling. During a long and
careful observation, we observed that Rab10-positive
premacropinosomes and tubules were occasionally formed in
PMA-stimulated cells (Figure 2, Supplementary Movie 3).
Counting the number of Rab10-positive premacropinosomes and
Rab10-negative macropinosomes formed showed that the
percentage of Rab10-positive premacropinosomes across all
May 2021 | Volume 12 | Article 649600
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FIGURE 1 | Rab10 dynamics in live RAW264 cells under the optogenetic control of PA-Rac1 activity. (A) The blue boxed area of a cell expressing ECFP-PA-Rac1
was irradiated with a blue laser to photoactivate PA-Rac1. Phase-contrast (left) and mCherry-Rab10 (right) images were acquired at the indicated times after
PA-Rac1 activation (ON) and deactivation (OFF). Scale bar =10 mm. (B) Enlarged images of the white boxed area in (A) Following local PA-Rac1 activation, Rab10-
positive premacropinosomes were formed in the area. After PA-Rac1 OFF, a few Rab10-positive tubules extended from a premacropinosome (arrowheads). Scale
bar = 2 mm. (C) Representative phase-contrast and EGFP-Rab10 fluorescence images of RAW264 cells during PA-Rac1 ON-OFF cycles. (D) Confocal time-lapse
microscopy of EGFP-Rab10 in RAW264 cells during PA-Rac1 ON-OFF cycles. Selected frames from the time-lapse movie are presented. Elapsed times are shown
in the frame. Scale bar = 10 mm. The corresponding movie is available in the Supplementary Material Movie 2.
Frontiers in Immunology | www.frontiersin.org May 2021 | Volume 12 | Article 6496004214
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macropinosomal structures was ~23%, which is a much lower
proportion than was observed in RAW cells during the
photo-manipulation of PA-Rac1 ON-OFF cycling (~68%)
(Supplementary Figure S1C). Similarly, the formation of Rab10-
positive premacropinosomes was also observed in control RAW264
cells, although the frequency of this event is lower than in PMA-
stimulated cells (Supplementary Figure S1C). Thus, Rab10-
positive premacropinosomes and tubules exist in cells under
near-physiological conditions, although they were likely easily
overlooked due to their shorter lifetimes and lower frequency
of appearance. They disappeared within a few minutes by
transforming to tubular profiles.

Compared with near-physiological conditions, the
frequency of Rab10-positive premacropinosome formation
significantly increases under photo-manipulation conditions,
therefore, we attempted to characterize these Rab10-positive
premacropinosomes and tubules mainly under the condition of
repeating PA-Rac1 ON-OFF cycles.

Rab10-Positive Tubules Originate From
Unclosed Macropinocytic Cups
Our previous study indicated that the premacropinosomes
induced by the PA-Rac1 photoactivation are unclosed, and
continuous with the cell surface plasma membrane by the
lipophilic dye FM4-64 staining (9). However, it is unknown if
the Rab10-positive tubules originate from the membrane of
unclosed premacropinosomes or closed macropinosomes. To
solve this question, the FM4-64 was added to the cells
immediately after confirming the formation of EGFP-Rab10-
positive tubules by the photo-manipulation of PA-Rac1 ON-OFF
cycling (Figure 3A). Examining EGFP-Rab10 localization and
FM4-64 labeling, we found that the preexisting Rab10-positive
premacropinosomes and tubules were labeled with FM4-64
Frontiers in Immunology | www.frontiersin.org 5215
within 20 seconds after the addition of FM4-64 (Figure 3B).
This result suggested that these Rab10-positive tubules elongated
directly from the membrane of unclosed premacropinosomes,
although the possibility that new Rab10-tubules will extend from
the closed macropinosomes cannot be ruled out.

Rab10-Positive Tubules That Extend From
Premacropinosomes Centripetally Move
Along Microtubules
Next, we examined whether Rab10-positive tubule movement was
dependent on microtubules using RAW264 cells co-expressing
EGFP-tubulin, mCherry-Rab10, and PA-Rac1. When Rab10-
tubule formation was induced by PA-Rac1 ON-OFF cycling, long
Rab10-positive tubules were observed to move along microtubules
centripetally (Figures 4A, B, Supplementary Movies 4, 5). The
long-distance vectorial movement of Rab10-positive tubules
toward the perinuclear region was disturbed when microtubules
were disruptedby the additionof 3.3mMnocodazole, amicrotubule
depolymerizer (Figure4C,SupplementaryMovie 6).However, the
budding of short Rab10-positive tubules frompremacropinosomes
that displayed short-distance, non-vectorial movements was
occasionally observed, even in the presence of nocodazole. These
findings indicated that the vectorial movement of Rab10-positive
tubules was highly dependent on microtubules, although the
budding of Rab10-positive tubules from premacropinosomes may
not require microtubules.

The Rab10 Effectors EHBP1 and MICAL-L1
May Link Rab10 to EHD1 for Membrane
Tubulation
Eps15 homology domain-binding protein 1 (EHBP1) is known as a
Rab10 effector in the endocytic recycling pathway inCaenorhabditis
elegans. It is reported that EHBP1 links EH domain-containing
FIGURE 2 | Short-lived Rab10-positive premacropinosomal structures exist in RAW264 cells under near-physiological conditions. Confocal live-cell imaging of RAW
264 cells expressing EGFP-Rab10 stimulated with 10 nM phorbol myristate acetate (PMA). Elapsed times after the addition of PMA are shown in the frame. Arrows
indicate a Rab10-positive premacropinosome which disappears within a few minutes. Asterisks indicate a Rab10-negative macropinosomal structure that remains as
a phase-bright macropinosome. Scale bar = 10 mm. The corresponding movie is available in the Supplementary Material Movie 3.
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protein 1 (EHD1) to Rab10 to promote endosome tubulation (22,
23). Therefore, we investigated the involvement of EHBP1 in
Rab10-positive tubules from premacropinosomes in RAW264
cells co-expressing EGFP-EHBP1 and mCherry-Rab10. As
expected, we observed the colocalization of Rab10 and EHBP1 in
the premacropinosome and tubular structures induced by the PA-
Rac1 ON-OFF photo-manipulation (Figure 5A, Supplementary
Movie 7). EHD1 has membrane tubulation activity in an ATP-
dependent manner and plays a role in the regulation of tubular
recycling endosome trafficking to the plasma membrane (24).
Consistently, EGFP-EHD1 was found to localize to the tubules
budding from Rab10-positive premacropinosomes (Figure 5B,
Supplementary Movie 8). Similarly, MICAL-L1, a Rab10 effector
that links Rab10 to EHD1 (25, 26), was also observed in Rab10-
positive tubules (data not shown). These results implied that
EHBP1 and/or MICAL-L1 may link Rab10 to EHD1 which may
cause the tubulation of membranes.

Rab10-Positive Tubular Structures
Represent a Novel Endocytic Pathway
of Membrane Trafficking
Classical macropinosomes undergo a maturation process through
the acquisition of Rab 5 and Rab7 before merging with lysosomes,
where their contents are degraded. Therefore, we examined
whether Rab10-positive tubules matured or fused with other
endocytic compartments by performing a time-lapse image
analysis in RAW264 cells co-expressing mCherry-Rab10 and
various fluorescent protein-tagged endocytic marker proteins.
Rab10-negative or faintly-positive compartments transiently
acquire Rab5, an early endocytic protein. In contrast, Rab10-
Frontiers in Immunology | www.frontiersin.org 6216
positive profiles do not become Rab5-positive (Figures 6A, B,
SupplementaryMovie 9). Also, Rab10-positive profiles were never
observed to fuse with Rab7-positive late endocytic compartments
or with LAMP1-positive lysosomal compartments (Figures 7A, B,
Supplementary Movies 10, 11). These findings indicated that
these Rab10-positive profiles represented distinct entities from
conventional endocytic pathways for lysosomal degradation.

Next, we examined the relationship between Rab10-positive
tubules and recycling compartments using Rab4, which mediates
fast recycling, or Rab11 which mediates slow recycling (27, 28).
Although EGFP-Rab11was slightly observed on the membranes
of Rab10-positive premacropinosomes, Rab11 was not localized
on Rab10-positive tubules. EGFP-Rab4 was also not observed on
Rab10-positive premacropinosomes or tubules. These findings
indicated that the Rab10-positive tubules that extended from
premacropinosomes were not recycling compartments
(Figures 7C, D, Supplementary Movie 12). Sorting nexin 1
(SNX1), which contains BAR (Bin/Amphiphysin/Rvs) domains,
localizes to early macropinosomes and tubules that extended
from the early macropinosomes (29–31). However, we did not
observe SNX1 localization on Rab10-positive compartments
(Figure 7E, Supplementary Movie 13). To determine the
destination of Rab10-positive tubules, we observed the
relationship between the Rab10-positive tubules and the Golgi
complex using EGFP-Rab35-4E, a Golgi marker that was created
by a C-terminal mutation of Rab35 (32). The front end of Rab10-
positive tubules appeared to reach out to the center of the Golgi
region (Supplementary Movie 13). However, we could not see
the fate of tubules because there is no specific tracer. Thus,
Rab10-positive profiles likely exist as non-degradative
FIGURE 3 | Rab10-positive tubules originate from unclosed macropinocytic cups (premacropinosomes). Rab10-positive macropinosome-like structures were
induced by PA-Rac1 ON-OFF cycling. After confirming the formation of Rab10-positive tubules elongated from macropinosome-like structures, the FM4-64
membrane-impermeable dye was added to the medium to label the cell surface plasma membrane during image recording. (A) Images acquired just before the
addition of FM4-64 (time 0 sec). Rab10-positive tubules elongated from Rab10-positive macropinosome-like structures were confirmed (arrows). (B) The EGFP-
Rab10 and FM4-64 images were acquired at 20 sec after the FM4-64 addition. Although phase-bright Rab10-negative macropinosomes (blue asterisks) were
unlabeled with the FM4-64, Rab10-positive macropinocytic structures with extending tubules (arrows) were labeled with the FM4-64. Scale bar = 10 mm.
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compartments that are distinct from canonical endosomes or
recycling compartments. Among various Rab proteins that we
examined, Rab8a, a Rab protein very closely related to Rab10, is
found to be colocalized with Rab10 in the premacropinosomes
and tubules (Figure 7F, Supplementary Movie 14).

Rab10-Positive Premacropinosome
and Tubule Formation Is Not
Dependent on PI3K
It is well-known that PI(3,4,5)P3 production by class I PI3K is
critical for macropinosome closure during the process of classical
Frontiers in Immunology | www.frontiersin.org 7217
macropinocytosis (33, 34). However, the dependency of Rab10-
positive premacropinosome and tubule formation on PI3K has
not yet been determined. Therefore, we examined the PI3K-
dependency of the Rab10-positive endocytic pathway using
pharmacological inhibitors and mCitrine-fused Akt pleckstrin
homology (PH) domain (Akt-PH), which binds to PI(3,4,5)P3/PI
(3,4)P2. In RAW 264 cells during PA-Rac1 ON-OFF cycling, the
localization of Rab10 to macropinocytic cups or nascent
macropinosomes was frequently observed. However, in most
cases, the recruitment of Rab10 to these structures was transient
and small in amount (Figure 8A, Supplementary Movie 15).
FIGURE 4 | The retrograde movement of Rab10-positive tubules is dependent on microtubules. (A) Epifluorescence microscopy of mCherry-Rab10 and EGFP-
tubulin in live RAW 264 cells during PA-Rac1 ON-OFF cycling. Arrow indicates a Rab10-positive tubule extended from a peripheral premacropinosome. Scale
bar=10 mm. (B) Higher-magnification view of extending Rab10-positive tubules (red arrows) along microtubules (green arrows). Scale bar = 2 mm. (C) The extension
of EGFP-Rab10 tubules was inhibited in nocodazole-treated RAW264 cells, while many Rab10-positive premacropinosomes (arrows) were formed. Scale bar = 10 mm.
The corresponding movies are available in the (Supplementary Material Movies 4–6).
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Incontrast, when the cells were treated with a PI3K inhibitor
(10 mM LY294002 or 100 nM wortmannin), the remarkable
accumulation of Rab10 in macropinocytic cups was frequently
observed, although Rab10-negative macropinosomes were
hardly seen (Figure 8B, Supplementary Movie 15). As a
consequence, large macropinosomes rarely formed, whereas
Rab10-positive tubule formation from premacropinosomes was
not perturbed. Although Rab10 accumulation on the Akt-PH-
positive macropinosomal membrane was not seen in RAW
cells during PA-Rac1 ON-OFF cycling, Rab10-positive
premacropinosomes without Akt-PH signals were frequently
observed after treatment with PI3K inhibitors (Figures 8A, B,
Supplementary Movie 15). These results suggested that Rab10-
recruitment and Rab10-positive premacropinosome formation
were PI3K-independent.
DISCUSSION

In this study, we first identified a novel endocytic pathway that
diverges from canonical macropinocytosis using the optogenetic
photo-manipulation of Rac1 activity. As we have reported
previously (9), local PA-Rac1 activation induced the formation of
premacropinosomes, which opened to the cell surface. Following
Frontiers in Immunology | www.frontiersin.org 8218
the deactivation of PA-Rac1, some of the premacropinosomes
closed into intracellular macropinosomes, whereas the majority of
these structures (~70%) disappeared within several minutes.
Through the co-expression of PA-Rac1 and EGFP-Rab10,
we found that Rab10-negative premacropinosomes became
intracellular macropinosomes, whereas Rab10-enriched
premacropinosomes shrank and disappeared without forming
intracellular macropinosomes. Instead, Rab10-positive
premacropinosomes transformed into Rab10-positive tubules that
extended toward the perinuclear region. Because the
premacropinosomes were unclosed, the fluid contents of the
premacropinosomes were likely to be returned to the extracellular
fluid, and premacropinosome membranes can be efficiently
transported because the Rab10-tubule features a much smaller
diameter with a larger surface area/volume ratio than
premacropinosomes. Thus, the abundant and sustained
localization of Rab10 on premacropinosomes may change the
mode of endocytosis from fluid-phase to membrane flow.

Previous studies have shown that Rab10 is involved in
membrane recycling to the plasma membrane, associated with
tubular recycling endosomes in other cell types (15, 16, 18, 23).
Although the morphologies of these Rab10-positive tubular
recycling endosomes are very similar to those observed in this
study, the direction of movement for these tubular structures was
A

B

FIGURE 5 | Localizations of EHBP1 and EHD1 on Rab10-positive premacropinosomes and tubules. (A) EHBP1 colocalized with Rab10 in premacropinosomes and
tubules. Scale bar = 10 mm. (B) EHD1 predominantly localized on Rab10-positive tubules extended from premacropinosomes. Scale bar = 5 mm. Corresponding
movies are available in the (Supplementary Material Movies 7, 8).
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the opposite of those observed here. Etoh and Fukuda revealed
that Rab10-positive tubules extended from early endosomes in a
microtubule-dependent manner and were anterogradely
transported using the kinesin motors KIF13A and KIF13B
(18). In contrast, the Rab10-positive tubules that extended
from premacropinosomes were retrogradely transported along
microtubules. Furthermore, the Rab10-positive tubules observed
in this study were negative for Rab4 or Rab11, which are involved
in fast recycling and slow recycling pathways, respectively (35),
whereas the Rab10/Rab8a-positive tubules previously reported in
other studies were associated with Rab4 or Rab11 proteins (13,
18, 36, 37). Thus, the identified Rab10-positive tubules in this
study are likely distinct from recycling tubules that traffic toward
the plasma membrane. Curiously, no other early or late
endocytic marker proteins, such as Rab5, Rab7, or LAMP1,
were recruited to the Rab10-positive tubules observed in this
study, which suggested that the Rab10-positive tubules that
originate from premacropinosomes represent a non-
degradative pathway that diverges from macropinocytosis.

Although SNX1, a tubulation protein having a BAR domain,
is known to be localized on tubular recycling endosomes that
derive from early macropinosomes (29–31), we could not detect
SNX1 on the Rab10-positive tubules. Therefore, Rab10-positive
tubules from premacropinosomes appear to be distinct from
SNX1-positive recycling tubules that derive from early
macropinosomes. Taken together, these findings suggested that
the Rab10-positive tubules that extend from premacropinosomes
toward the perinuclear Golgi region represent a previously
undefined endocytic pathway.
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Among the various Rab proteins that we examined, Rab8a
showed a very similar localization pattern to Rab10 in the
premacropinosomes and tubules. Because Rab8a/b are highly
homologous to Rab10, they share common effectors, such as
MICAL-L1 and EHBP1, in addition to upstream regulators, GEF,
and GAP proteins. Therefore, Rab10 and Rab8 may be
functionally redundant. Wall et al. (38, 39) reported that Rab8a
is localized to macropinosomes and tubular compartments that
elongate from macropinosomes in lipopolysaccharide (LPS)-
stimulated RAW264.7 macrophages (38, 39). Although they
have regarded these Rab8-positive tubules as components of
the conventional macropinocytosis pathway, the Rab8a-positive
tubules observed in their studies may be identical to the Rab10-
positive tubules observed in this study. In HeLaM cells, the
knockout of Rab10 completely abolished Rab8- and MICAL-L1-
positive tubular structures, whereas the Rab8a/b double-
knockout did not perturb Rab10- and MICAL-L1-positive
tubules (18). This study suggested that Rab10 plays a primary
role in the formation of the tubular recycling endosome
structure. Whether Rab10 and Rab8 play differential roles in
macrophages should be clarified in future studies.

When exploring the underlying molecular mechanism
responsible for Rab10-tubule formation, we found that EHBP1
and MICAL-L1, which are Rab10 effectors, both localized to
Rab10-positive premacropinosomes and tubules. EHD1, a
membrane tubulation protein, was also predominantly observed
on Rab10-positive tubules. EHBP1 is known to link the EH
domain-containing protein 1 (EHD1) to Rab10 to promote
endosome tubulation (22, 23). MICAL-L1 also links EHD1 to
A

B

FIGURE 6 | Rab5, an early endocytic marker, is not recruited to Rab10-positive premacropinosomes and tubules. (A) Live-cell microscopy of RAW264 cells
expressing EGFP-Rab5a and mCherry-Rab10. Scale bar = 10 mm. (B) Enlarged micrographs of the boxed area in (A). Selective frames at two-time points as
indicated. Rab5a-positive macropinosomes are Rab10-negative (asterisk). Rab10-positive compartments disappear within a few minutes without becoming Rab5a-
positive, suggesting that Rab10-positive compartments are distinct from those of the classical macropinocytic pathway. Scale bar = 5 mm. The corresponding movie
is available in the (Supplementary Material Movie 9).
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FIGURE 7 | Rab10-positive premacropinosomes and tubules are distinct from conventional degradative endocytic or recycling pathways. Rab10-positive
premacropinosomes and tubules are not labeled with the late endosome/lysosome markers, Rab7- (A) or LAMP1 (B). The recycling endosomal markers, Rab4 (C),
Rab11 (D), and sorting nexin 1 (SNX1) (E) are faintly observed in Rab10-positive premacropinosomes and tubules, although they are only transiently recruited to the
Rab10-negative conventional macropinosomes. Only Rab8a colocalized with Rab10 in the premacropinosomes and extending tubules (F). All scale bars = 10 mm.
The corresponding movies are available in the (Supplementary Material Movies 10–14).
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tubular recycling endosomes (25, 26). Therefore, it can be
conceived that Rab10 may recruit EHD1 to premacropinosomes
through EHBP1 and/or MICAL-L1, causing membrane tubule
budding from premacropinosomes.

Macropinosome formation is well-known to depend on PI
(3,4,5)P3 production by class I PI3K (7, 8, 34, 40). Live-cell
imaging of the fluorescent protein-tagged Akt-PH domain
demonstrated that PI(3,4,5)P3 levels in macropinocytic cup
membranes rapidly increased at the timing of macropinosome
closure (7, 38). However, PI(3,4,5)P3 production was not observed
upon the formation of Rab10-positive premacropinosomes.
Furthermore, PI3K inhibition using pharmacological
inhibitors did not reduce the formation of Rab10-positive
premacropinosomes, whereas Rab10-negative macropinosome
Frontiers in Immunology | www.frontiersin.org 11221
formation was drastically abolished. All Rab10-positive
premacropinosomes were transformed into Rab10-positive
tubules. These results suggested that the PI3K inhibition
facilitates Rab10 localization to macropinocytic cups, leading to
the transformation of premacropinosomes into tubules instead of
macropinosome formation.

Recently, Liu et al. (19) reported the transitional association
of Rab10 with early macropinosomes in RAW macrophages. In
their study, the LRRK2-mediated phosphorylation of Rab10 was
shown to play a regulatory role in macropinosome maturation
(19). However, they did not mention the formation of Rab10-
positive tubules derived from the premacropinosomes that are
persistently Rab10-positive. This inconsistency may be due to
differences in the experimental conditions. Under the condition
A

B

FIGURE 8 | Premacropinosome formation and the recruitment of Rab10 are not PI3K-dependent. The PI(3,4,5)P3/PI(3,4)P2 production by class I PI3K was
monitored through the expression of mCitrine-Akt-PH domain (Akt-PH, green) in RAW264 cells during PA-Rac1 ON-OFF cycling (A) Although only small amounts of
Akt-PH were observed on Rab10-positive premacropinosomes (arrows), Rab10-negative premacropinosomes were strongly positive for Akt-PH (arrowheads) at the
timing of macropinosome closure. Elapsed time is shown in the frame. (B) In the presence of 10 mM LY294002, a PI3K inhibitor, the formation of Rab10-positive
premacropinosomes was frequently seen (open arrows), whereas Akt-PH recruitment to the membrane was completely abolished. All scale bars = 10 mm. The
corresponding movies are available in the (Supplementary Material Movie 15).
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of PA-Rac1 photo-manipulation, the majority of the induced
premacropinosomes transitioned into the Rab10-positive tubular
endosome pathway, whereas LPS-induced macropinosomes
underwent maturation in the classical macropinocytosis
pathway. This difference is likely the reason why this Rab10-
positive endocytic pathway has been overlooked or neglected.
The identification of this novel pathway was a fortunate accident
due to the use of innovative optogenetic technology. Importantly,
we revealed that the Rab10-positive tubular endocytic pathway
appears inmacrophages even under near-physiological conditions,
although the frequency is reduced under near-physiological
conditions compared with PA-Rac1 photo-manipulation
conditions. This finding suggested that the Rab10-positive
endocytic pathway may play a significant role under physiological
and pathological conditions.

Although the function of Rab10 in macrophages remains
obscure, Rab10 has recently been reported to be involved in
the transport of Toll-like receptor 4 (TLR4) to the plasma
membrane in macrophages (16). The Rab10-positive endocytic
route identified in this study may be responsible for the
membrane trafficking of TLR4 and other membrane proteins.
Further studies will be needed to clarify the cargos and
destination of the Rab10-positive endocytic pathway. The present
study has demonstrated that Rab10 mediates a tubular membrane
trafficking pathway that diverges from the canonical fluid-phase
uptake by macropinocytosis. The discovery of this non-degradative,
endocytic pathway is likely to provide novel insights into the
concepts of intracellular membrane trafficking. The intracellular
pathway that avoids the lysosomal degradation system might be
related to the pathophysiology of some metabolic diseases, and be
utilized as a virus infection route.
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Movie 1 | Optogenetic control of PA-Rac1 activity in RAW264 cells. The boxed
area was locally irradiated with a blue laser to activate Rac1 (PA-Rac1 ON); then, the
blue laser was turned off to deactivate Rac1 (PA-Rac1 OFF). ×80 speed.
Scale bar = 10 mm.

Movie 2 | Time-lapse movie showing the formation of Rab10-positive
premacropinosomes and tubules in RAW264 macrophages expressing EGFP-
Rab10 by PA-Rac1 ON-OFF cycling. ×80 speed. Scale bar = 10 mm.

Movie 3 | EGFP-Rab10 and phase-contrast overlay images showing the
formation of short-lifetime, EGFP-Rab10-positive premacropinosomes, and
Rab10-negative classical macropinosomes in a PMA-stimulated RAW264 cell. ×80
speed. Scale bar = 10 mm.

Movie 4 | Time-lapse movie showing dynamics of mCherry-Rab10 and EGFP-
tubulin in live RAW264 cells during PA-Rac1 ON-OFF cycling. ×30 speed.
Scale bar = 10 mm.

Movie 5 | High-magnification movie showing extending Rab10-positive tubules
(red) along microtubules (green). × 80 speed, Scale bar = 2 mm.

Movie 6 | Time-lapse movie showing dynamics of EGFP-Rab10 in a nocodazole-
treated RAW264 cell during PA-Rac1ON-OFF cycling. ×80 speed. Scale bar = 10 mm.
6:e1006093

Movie 7 | Dual-color time-lapse movie showing that EGFP-EHPB1 (green) is
found to colocalize with mCherry-Rab10 (red) in premacropinosomes and tubules.
×80 speed. Scale bar = 10 mm.

Movie 8 | Dual-color time-lapse movie showing that EGFP-EHD1 (green) is
predominantly localized on mCherry-Rab10 (red)-positive tubules extending from
premacropinosomes. ×80 speed. Scale bar = 5 mm.

Movie 9 | Dual-color time-lapse movie showing that EGFP-Rab5a (green) and
mCherry-Rab10 (red) localize to distinct compartments. Although the Rab10-
negative, Rab5a-temporarily positive compartment remains a phase-bright
macropinosome (arrow), mCherry-Rab10-positive compartments disappear within a
fewminutes without becoming Rab5a-positive. The merged image was overlaid with
the corresponding phase-contrast image (right). ×80 speed. Scale bar = 10 mm.

Movie 10 | Dual-color time-lapse movie showing that mCherry-Rab10 (red)-
positive tubules extending from Rab10-positive premacropinosomes do not obtain
mCitrine-Rab7 (green). ×80 speed. Scale bar = 10 mm.

Movie 11 | Dual-color time-lapse movie showing that mCherry-Rab10 (red)-
positive premacropinosomes and extending tubules do not merge with mCitrine-
LAMP1 (green). ×80 speed. Scale bar=10 mm.
May 2021 | Volume 12 | Article 649600

https://www.frontiersin.org/articles/10.3389/fimmu.2021.649600/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2021.649600/full#supplementary-material
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kawai et al. Rab10-Positive Tubular Endocytic Pathway
Movie 12 | Dual-color time-lapse movie showing that mCherry-Rab10 (red)-
positive premacropinosomes and extending tubules are distinct compartments
from EGFP-Rab4 (green)-positive fast recycling endosomal compartments (A) or
EGFP-Rab11 (green)-positive recycling endosomal compartments (B). ×80 speed.
Scale bar = 10 mm.

Movie 13 | (A) Dual-color time-lapse movie showing that mCherry-Rab10 (red)-
positive premacropinosomes and extending tubules are distinct compartments
from EGFP-SNX1 (green)-positive recycling tubules that extend from conventional
macropinosomes. ×80 speed. Scale bar = 10 mm. (B) Dual-color time-lapse movie
showing the relationship between mCherry-Rab10 (red)-positive tubules and the
Golgi apparatus labeled with an EGFP-Golgi marker (EGFP-Rab35-4E, green).
×80 speed. Scale bar = 10 mm.
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Movie 14 | Dual-color time-lapse movie showing that EGFP-Rab8a (green) and
mCherry-Rab10 colocalize on premacropinosomes and extending tubules. ×80
speed. Scale bar = 10 mm.

Movie 15 | Dual-color time-lapse movie showing PI(3,4,5)P3/PI(3,4)P2 production,
monitored by the mCitrine-Akt PH domain (green) in a RAW264 cell during PA-Rac1
ON-OFF cycling. (A) Although only small amounts of Akt-PH are observed on
Rab10-positive premacropinosomes (green arrow), Rab10-negative
premacropinosomes are strongly positive for Akt-PH (red arrow). (B) LY294002 does
not inhibit Rab10-positive premacropinosome formation, while the recruitment of
mCitrine-Akt-PH (green) to Rab10-positive premacropinosomal membranes was
completely abolished. Arrows indicate the formation of Rab10-positive
premacropinosomes by PA-Rac1 ON-OFF cycling. ×80 speed. Scale bar = 10 mm.
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Pro-Resolving Ligands
Orchestrate Phagocytosis
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The resolution of inflammation is a tissue protective program that is governed by several
factors including specialized pro-resolving mediators (SPMs), proteins, gasses and
nucleotides. Pro-resolving mediators activate counterregulatory programs to quell
inflammation and promote tissue repair in a manner that does not compromise host
defense. Phagocytes like neutrophils and macrophages play key roles in the resolution of
inflammation because of their ability to remove debris, microbes and dead cells through
processes including phagocytosis and efferocytosis. Emerging evidence suggests that
failed resolution of inflammation and defective phagocytosis or efferocytosis underpins
several prevalent human diseases. Therefore, understanding factors and mechanisms
associated with enhancing these processes is a critical need. SPMs enhance
phagocytosis and efferocytosis and this review will highlight mechanisms associated
with their actions.

Keywords: macrophage, phagocytosis, efferocytosis, resolvin, inflammation
INTRODUCTION

Elie Metchnikoff uncovered the significance of phagocytosis nearly 100 years ago (1). Since then,
phagocytosis has been recognized as a critical cellular program for innate and adaptive immune
responses to foreign material. Moreover, we now appreciate that engulfment and neutralization of
invading organisms is key to maintain health. Phagocytes like PMN and macrophages promote
microbial removal and wound debridement. Mechanisms associated with phagocytosis continue to be
uncovered which has aided in our understanding of inflammation and disease. There are now numerous
endogenous factors like lipid mediators (LMs), proteins, metabolites and gasses, that can promote
phagocytosis. For example, LMs like specialized pro-resolving mediators (SPMs) are biosynthesized
from arachidonate (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or n-3
docosapentaenoic acid (DPA) (2, 3). SPMs are named lipoxins, resolvins, protectins, their aspirin-
triggered isomers, maresins, cysteinyl-conjugated SPMs (CTRs) and 13-series resolvins (RvTs) (2, 4–9).
Each of the SPMs has a distinct chemical structure (2) and several of the SPMs bind and signal through
distinct G-protein coupled receptors (GPCRs) (10–14). SPMs in general exert a tissue protective action
in as much as they can temper pro-inflammatory factors and promote the clearance of harmful stimuli
and dead cells (i.e. phagocytosis). Pro-phagocytic ligands are not limited to SPMs and indeed the
repertoire of these factors are growing and is summarized in Table 1.

Non-resolving inflammation is an underpinning of several prevalent diseases, including
cardiovascular and neurodegenerative diseases, cancer, arthritis, asthma etc. Phagocytes play a major
org June 2021 | Volume 12 | Article 6608651225
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TABLE 1 | Pro-resolving factors that promote phagocytosis.

Phagocyte Phagocytic action elicited References

Lipid
Mediators

EPA Derived RvE1 Macrophages (human
and murine)

-Increases phagocytosis of Zymosan, E. coli, C. albicans (15–19)

Neutrophils (human and
murine) -Promotes efferocytosis of apoptotic PMN

RvE2 Macrophages (human) -Increases phagocytosis of Zymosan (20)

RvE4 Macrophages (human) -Increases efferocytosis of apoptotic PMN, effete RBCs (21, 22)

DHA
Derived

RvD1, AT-
RvD1

Macrophages (human,
murine, rat)

- Increases phagocytosis of Zymosan, E. coli, P. aeruginosa, NTHi, IgA-
OVA-coated beads, Amyloidb, clot particles, cancer cell debris

(23–41)

Neutrophils (human and
murine)

- Promotes efferocytosis of apoptotic PMN, osteoblasts, Jurkats,
macrophages, thymocytes, and sickle cell RBCs

Fibroblasts (human) -Enhances clearance of necroptotic cells

RvD2 Macrophages (human
and murine)

-Enhances phagocytosis of live E. coli (29, 42–44)

Neutrophils (human and
murine)

-Promotes efferocytosis of apoptotic PMN apoptotic osteoblasts

RvD3, AT-
RvD3

Macrophages (human
and murine)

-Enhances phagocytosis (40, 45)
-Promotes efferocytosis of apoptotic PMN
-Increases uptake of cancer cell debris

RvD4 Macrophages (human) -Enhances phagocytosis of S. aureus, Zymosan (25, 46)
Fibroblasts (Human)
Whole blood phagocytes -Increases efferocytosis of apoptotic PMN

RvD5 Macrophages (human) -Enhances phagocytosis of E. coli (23)

MaR1,
MaR2

Macrophages (human
and murine)

-Enhances phagocytosis of E. coli, Zymosan (47–50)
–Increases efferocytosis of apoptotic PMN

PD1/NPD1,
AT-PD1

Macrophages (human
and murine)

-Increases efferocytosis of apoptotic PMN, thymocytes (15, 23, 41, 51–54)

Cys SPMs: Macrophages (human
and murine)

-Enhances phagocytosis of E. coli, Zymosan (8, 55–59)
MCTR1,
MCTR2,
MCTR3, -Increases efferocytosis of apoptotic PMN
PCTR1,
PCTR2,
PCTR3,
RCTR1,
RCTR2,
RCTR3

n-3 DPA
derived
SPMs

RvD5n-3DPA Macrophages (human
and murine)

-Increases phagocytosis of S. aureus, Zymosan (9, 14, 60)
PD1n-3DPA
Marn-3DPA
RvDn-3DPA
RvT -Enhances efferocytosis of apoptotic HL-60 cells

AA Derived LXA4, AT-
LXA4

Macrophages (human,
murine, rat, THP-1 cells)

-Enhances efferocytosis of apoptotic PMN (61–63)

LXB4, AT-
LXB4

Macrophages (human,
murine, rat)

-Increases phagocytosis of E. coli (63, 64)
-Enhances efferocytosis of apoptotic PMN

Proteins Annexin A1,
Ac2-26

Macrophages (human) -Enhances efferocytosis of apoptotic PMN (65)

DEL-1 Macrophages (murine) -Increases efferocytosis of apoptotic PMN (66)

IL-10 Macrophages (human) -Increases phagocytosis of E. coli (67)
-Enhances efferocytosis of apoptotic PMN

IFN-b Macrophages (murine) -Enhances efferocytosis of apoptotic PMN (68)

(Continued)
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role in the resolution of inflammation because of their ability to
neutralize and contain harmful stimuli and clear dead cells and
debris, which is a feed-forward process that helps repair tissue
injury. Not surprisingly, phagocyte functions in several diseases
mentioned above have been shown to be dysregulated and are nicely
reviewed in the following reference (79). Instead, we appreciate that
aging is a major risk factor for several diseases and is a scourge of
modernmedicine. Therefore, this mini review will highlight some of
the pro-phagocytic bioactions of SPMs, with a focus on aging.
Lastly, we will offer some suggestions for future studies in this arena.
PRO-RESOLVING LIGANDS
ENHANCE THE CLEARANCE
OF MICROBES AND DEBRIS

We now appreciate that phagocytosis and thus the engulfment and
neutralization of invading organisms is key tomaintain health. There
are several manners in which phagocytes like neutrophils or
macrophages ingest pathogens, which is nicely reviewed by
Flannagan RS et al. (80). Briefly, the removal of pathogens is a
highly orchestrated event that involves cell surface receptors and
specific signaling pathways to initiate recognition, engulfment and
degradation. SPMs have been shown to increase phagocytosis (Table
1) of pathogens and some of the initial findings are described below.
One of the earliest observations involved the SPM called Resolvin E1
(RvE1). RvE1 was shown to enhance the clearance of Candida
albicans by human neutrophils and in a mouse model of candidiasis
(17). In this same paper, RvE1 was also shown to be biosynthesized
by C. albicans. Other pathogens like Pseudomonas aeruginosa (81),
T. gondii (82) and T. cruzi (83) were also shown to biosynthesize
SPMs. Collectively, these studies demonstrate an intimate link
between host-derived SPMs and pathogens. Some questions
remain, like why would microbes make SPMs? From the
viewpoint of pathogens like Candida, RvE1 could potentially limit
the number of recruited polymorphonuclear lymphocytes (PMN),
Frontiers in Immunology | www.frontiersin.org 3227
allowing for its persistence. From the perspective of the host,
Candida also increases IL-8 (which is a neutrophil
chemoattractant) and the presence of RvE1 can enhance local
phagocytes to clear Candida (17). From an evolutionary
perspective, it is possible that mammalian hosts hijacked SPMs as
important armament to protect against foreign invaders. Therefore it
is possible that evolutionary pressures on the host are what drove
SPMs to possess the ability to enhance phagocytosis. Along these
lines, several SPMs such as RvD5, PD1, RvD1 and RvD2 each
enhanced the clearance and neutralization of E. coli by neutrophils
and macrophages (23, 42). An important finding was that these
SPMs do not directly kill E. coli, but rather act on phagocytes to
enhance killing in a contained manner. Table 1 summarizes key
papers associated with SPM’s ability to enhance phagocytosis in
numerous contexts. SPMs also promote phagocytosis of pathogens
found in the lungs (34, 84, 85), which may be important for a return
to homeostasis post airway infections. Along these lines, RvD1 and
Mar1 contain and limit Mycobacterium tuberculosis intracellular
growth in macrophages (86). RvD1 increased antimicrobial peptides
including bactericidal/permeability-increasing protein (BPI) and LL-
37 and Mar1 only increased BPI. The control and containment of
Tuberculosis relies heavily on the balance between pro-inflammatory
and pro-resolving factors (87). Moreover, RvD1 and Mar1 each
stimulated NF-kB nuclear translocation but only Mar1 promoted
Nrf2 localization. These results suggest that while RvD1 and Mar1
have overlapping functions, they also exert distinct actions and thus
highlight the utter importance of having several distinct SPM species
available to promote optimal function. A deeper understanding of
the common and distinct actions of SPMs on phagocytosis are
of interest.

Along these lines, uncovering mechanisms associated with SPM
clearance of microbes and debris is an emerging area of research.
As an example, aspirin-triggered lipoxin A4 (or AT-LXA4) was
shown to enhance phagocytosis in a mannose scavenger receptor
dependent manner (61) because inhibition of the mannose
receptor by treatment with mannin completely abrogated AT-
LXA4’s ability to enhance the clearance of E. coli (61). In this same
TABLE 1 | Continued

Phagocyte Phagocytic action elicited References

Galectin-1 Microglial cells
Macrophages

-Enhances phagocytosis of myelin (69, 70)
–Increases efferocytosis of apoptotic PMN

Galectin-3 Neutrophils (human) -Enhances phagocytosis IgG-RBCs (71, 72)
Macrophages (murine) –Increases efferocytosis of apoptotic PMN

Melanocortin Macrophages (murine) -Enhances phagocytosis of zymosan (73)
–Increases efferocytosis of apoptotic PMN

Alpha-2-
macroglobin

Macrophages (murine) -Enhances phagocytosis of zymosan (74)
–Increases efferocytosis of apoptotic PMN

Gases H2S Macrophages -Enhances phagocytosis of bacteria (75)

CO Macrophages (human) -Increases phagocytosis of zymosan (76)
–Increases efferocytosis of apoptotic PMN

Nucleotides Adenosine PMN -Stimulates Fc-mediated phagocytosis (77)

Lipids Estrogen Microglial cells -Stimulated efferocytosis of apoptotic PC12 cells (78)
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study, the authors also found that AT-LXA4 required PI3K and
p110g to enhance phagocytosis (61). AT-LXA4 binds and signals
through a GPCR called ALX/FPR2 and so these results suggest that
SPMs engage signaling pathways via their cell surface GPCRs.
Accordingly, RvD2 binds and signals through a GPCR called
GPR18 and knockdown of GPR18 abrogated RvD2’s ability to
enhance phagocytosis (43). Moreover, RvD2 enhanced the
expression of key phagocytic recognition receptors like CD206
and CD163 (43). In a subsequent study, RvD2 was also found to
increase phagocytosis through mechanisms involving cAMP, PKA
and STAT3 (44). Other SPMs, like 13S,14S-epoxy-DHA (or eMaR)
and RvD1 also increased surface levels of CD163 and CD206 on
human macrophages (88). Also, n-3 docosapentaenoic acid–
derived resolvin D5 (RvD5n-3 DPA) enhanced phagocytosis
through mechanisms involving a GPCR called GPR101 (14).
Collectively, these are only a few examples of how SPMs enhance
phagocytosis and further understanding of the intricate signaling
pathways associated with SPM-initiated phagocytosis are of
immense interest. SPMs have also been reported to enhance the
clearance of debris, including fibrin clots (35), which is an
important process to maintain vascular homeostasis. Overall,
SPMs enhance the clearance of microbes and debris. There are
several remaining questions: Do particular subsets of macrophages
or neutrophils respond optimally to SPMs, and if so which species
of SPM? How are SPM GPCRs regulated during phagocytosis?
How do SPMs impact macrophage or PMN metabolism when
ingesting and neutralizing pathogens? Addressing these questions
will likely yield important information as to how cells integrate
SPM signals and may help inform the development of targeted
therapies for particular infections. Another critical aspect to the
maintenance of homeostasis is the clearance of dead cells. The next
sections will focus on how SPMs enhance dead cell removal
by phagocytes.
PRO-RESOLVING LIGANDS ENHANCE
THE CLEARANCE OF DEAD CELLS

Billions of cells die daily in adult lives and so the efficient
clearance of dead cells is utterly critical for homeostasis (89).
Moreover, a large number of cells also die during the resolution of
a pathological outcome, such as infection or tissue damage (89).
The engulfment of dead cells by professional phagocytes like
macrophages is called efferocytosis, which is a highly intricate
process that ultimately allows for the recycling of cellular
products and tissue repair (79, 90). Failure to clear dead cells
can lead to accumulation of necrotic debris, which is associated
with several prevalent human diseases, including atherosclerosis
(91). Therefore, a major topic of interest in recent years has been
the exploration of factors that increase efferocytosis to quell
persistent inflammation, limit tissue necrosis and promote repair.

SPMs are of immense interest because of their ability to
enhance efferocytosis. Lipoxin A4 (LXA4) was among the first
SPMs that was published to enhance the clearance of apoptotic
cells in vitro (62, 92). Mechanistically, the increase in efferocytosis
is in part through LXA4’s ability to dephosphorylate MYH9, a
Frontiers in Immunology | www.frontiersin.org 4228
protein involved with cytoskeletal rearrangement (92). This
dephosphorylation results in the activation of components of a
signaling cascade leading to cell polarization and increased
phagocytosis. In addition to MYH9, LXA4 also activates CDC42,
which promotes engulfment (92).

Numerous SPMs, including the E-series, D-series, DPA-
derived resolvins, protectins and maresins enhance the clearance
of dead cells (93). This redundancy again suggests that SPMs and
efferocytosis are utterly critical for tissue repair mechanisms and
our survival. The mechanisms by which SPMs enhance
efferocytosis are under investigation. Because SPMs have distinct
structures, the first step in our understanding toward mechanisms
is to investigate the receptors to which they bind. Indeed, several
SPM receptors have been discovered and are highlighted in further
detail by Chiang et al. (2). Removal of key receptors for SPMs
demonstrate that SPMs initiate pro-efferocytotic programs
through their cell surface receptors (14, 36, 43, 47).

Intracellular signaling associated with SPM mechanisms are
also of immense interest. Resolvin D1 for example binds and
signals through a GPCR called ALX/FPR2 (36). RvD1 initiates a
cAMP-PKA signaling event and also limits the phosphorylation
of p47, a crucial molecule involved in NADPH oxidase (NOX)
activation (37). Limiting the activation of NOX aids in quelling
inflammation by reducing the amount of ROS which trigger
oxidative stress induced cellular damage (37). To this end, it is
appreciated that certain pro-inflammatory cytokines, like TNF-a
can limit efferocytosis through increased ROS in macrophages
(94). RvD1 also limits LPS-induced TNF-a expression to rescue
defective efferocytosis by controlling the classical NF-kB1
pathway and activating an atypical pathway that suppresses the
secretion of TNF-a and IL-1b (28). Moreover, through C-
terminal cleavage of NF-kB1, RvD1 initiates formation of a p50/
p50 homodimer which competes for DNA binding with the
classical heterodimer (28). Therefore, RvD1’s actions in limiting
the release of pro-inflammatory factors (28, 37, 95–97) may also
aid in its ability to enhance efferocytosis. Another interesting
angle is that oral administration of RvD1 was recently shown to
control key transcriptional profiles in ingesting macrophages in
vivo (98). For example, RvD1 reduced transcript levels of
coactivator‐associated arginine methyltransferase 1 (CARM1),
histone aminotransferase 1 (HAT1), histone deacetylase 5 and 7
(HDAC5 and HDAC7), protein arginine N‐methyltransferase 2
(PMRT2), and ribosomal protein S6 kinase, polypeptide 5
(RPS6KA5) in macrophages from inflammatory loci ex vivo
(98). With regard to the regulation of CARM1, adoptive
transfer of siCARM1‐transfected human macrophages to
zymosan‐challenged mice resulted in a significant increase in
PMN clearance, which suggests an important counter regulatory
role for CARM1 and efferocytosis (98). RvD1 also decreased
HDAC5 and HDAC7, which suggests that RvD1 may regulate
epigenetic mechanisms (98). How RvD1-initated epigenetic
control of macrophages impacts its efferocytic function is of
interest. Along these lines, RvD1 also regulated a panel of
miRNAs that might contribute to phagocytosis, efferocytosis
and resolution of inflammation (99) and a deeper exploration
of roles and mechanisms of pro-resolving and pro-phagocytic
miRNAs are also of interest.
June 2021 | Volume 12 | Article 660865
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Another emerging area of interest is the macrophage’s ability
to carry out continual efferocytosis, which is the ability of
individual macrophages to engulf multiple apoptotic cells
consecutively. Early work in this arena demonstrated that
CD11b levels were associated with a macrophage’s ability to
eat “a little” or “a lot” of apoptotic cells (100). We now appreciate
that macrophages within tissues are very diverse with regard to
function and phenotype and newer research suggests that
macrophage metabolism is an important player in the ability of
a macrophage to eat apoptotic cells (101–105). Apoptotic cell
engulfment and the eventual breakdown of the corpse provides
the fuel for metabolic programs like fatty acid oxidation (FAO)
and oxidative phosphorylation (OXPHOS) (101). Macrophages
also engage aerobic glycolysis to ingest apoptotic cells (105).
Recent work by Yurdagul A et al. demonstrates a critical role for
amino acid metabolism and continual efferocytosis (102, 103).
Briefly, they found that arginine can be metabolized to ornithine
by Arginase-1 in pro-resolving macrophages. Moreover they also
found that pro-resolving macrophages converted ornithine into
putrescine via ornithine decarboxylase (ODC) for continual
efferocytosis. To further this mechanism they then found that
ODC-dependent putrescine synthesis drives IL-10 production
and inflammation-resolution in vivo. Moreover, putrescine
promoted MerTK levels through sH3K9 di/trimethylation
mechanisms. Together, these results uncover key players in our
understanding of the link between macrophage metabolism,
efferocytosis and inflammation resolution programs.
EFFEROCYTOSIS PROMOTES SPM
BIOSYNTHESIS

Another fascinating finding is that the process of efferocytosis
itself leads to the biosynthesis of more SPMs (15, 106, 107). This
feed-forward circuit was first demonstrated in murine systems
(15). Human macrophages that had ingested apoptotic PMN also
had increased biosynthesis of SPMs, including RvD1, RvD2 and
LXB4 (106). A potential mechanism for the increase in SPMs
during efferocytosis is transcellular biosynthesis (106). From a
mechanistic perspective and to determine whether released
SPMs enhance efferocytosis in a feed forward manner, Chiang
N et al. knocked down a key SPM biosynthetic enzyme called 15-
lipoxygenase (15-LOX) in human macrophages. They found the
15-LOX silenced macrophages had significantly impaired
efferocytosis, which suggests a critical role for SPM synthesis
and efficient clearance (76). Another mechanism that promotes
SPMs during efferocytosis is through MerTK signaling (107). Cai
B. et al. demonstrated that MerTK signaling led to increased
SPMs and that silencing of MerTK resulted in less SPMs (107).
Mechanisms through which MerTK increases SPMs may be
through non-nuclear subcellular localization of a key SPM
biosynthetic enzyme called 5-lipoxyeganse (5-LOX) (95, 107).
Collectively, these papers point to a critical feed-forward
mechanism in which efferocytosis stimulates SPMs and SPMs
act locally to further enhance efferocytosis.
Frontiers in Immunology | www.frontiersin.org 5229
RELEASED SPMS AS IMPORTANT
“GOOD-BYE” TISSUE MESSENGERS

SPMs and other lipid mediators were also shown to be released
by apoptotic neutrophils (106). Interestingly some SPMs
enhance the migration of monocytes and macrophages and so
released SPMs by apoptotic cells may act as a signal for
phagocytes to find these cells for swift clearance. Moreover,
these findings suggest that apoptotic cells themselves are active
participants in their own clearance. Newer work suggests that
metabolites such as putrescine released by apoptotic cells also
participate in their own clearance (108) and so released products
from apoptotic cells may play critical roles in their swift
clearance. More work regarding apoptotic cell secretomes and
how released factors impact their clearance are of interest. In fact,
Medina et al. profiled the metabolite secretome of apoptotic
lymphocytes and macrophages and showed specific metabolites
released by apoptotic cells act as “good-bye” messengers to
modulate tissue functions. These metabolites reprogram the
genes of neighboring healthy cells to facilitate an anti-
inflammatory phenotype and promote tissue homeostasis (108).

Moreover, we know there are many modes of cell death beyond
apoptosis. Lytic cell death like necroptosis, impacts phagocyte
function given the pro-inflammatory nature of their death (109). In
addition to the release of DAMPs, cytokines and chemokines, recent
work from our lab suggests that necroptotic cells release prostanoids
(26). Advanced atherosclerotic plaques from hypercholesterolemic
Mlkl-/- mice had significantly more prostanoids like PGE2, PGD2,
PGF2a, and thromboxane (TX) compared with wild type (Wt)
controls (26). In vitro studies revealed that necroptotic macrophages
and endothelial cells also released prostanoids, including TX and
PGE2 (26). Receptor antagonists for DP (i.e. PGD2 receptor), EP2
(i.e. PGE2 receptor) and TP (i.e. TX receptor) rescued defective
efferocytosis caused by necroptotic cell releasate, suggesting that a
prostanoid storm negatively impacts phagocyte behavior (26).
Moreover, macrophages stimulated with a TP agonist called
U46619 impaired the clearance of both apoptotic and necroptotic
cells and so TXmay be a novel “avoidme” signal (26). As mentioned
above, certain pro-inflammatory cytokines also limit efferocytosis and
so released factors from necroptotic cells (or cells that undergo a pro-
inflammatory mode of death) may play a large role in negatively
impacting phagocyte behavior in tissues.
SPMS PROMOTE THE CLEARANCE
OF NECROPTOTIC CELLS

Necroptosis is a pro-inflammatory form of cell death (110, 111) and
so the accumulation of necroptotic cells can be damaging to tissues
(112). Therefore, uncovering mechanisms associated with
necroptotic cell clearance is of immense interest. Earlier work
demonstrated that necroptotic cells were cleared by macrophages
in a distinct and less efficient manner than apoptotic cells (113, 114).
However, detailed molecular mechanisms, quantification methods,
and factors that augment the clearance of necroptotic cells were not
June 2021 | Volume 12 | Article 660865
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known. We recently found that necroptotic macrophages express
high levels of a “don’t eat me” signal called CD47 (27). Other work
suggests that the exuberant expression of CD47 results from pro-
inflammatory cytokines, like TNF-a (115), and so the pro-
inflammatory nature of this cell death likely drives the increase of
CD47. Moreover, because necroptotic cells have regions
of disrupted membrane (109), we also found that elevated levels
of CD47 were present in clusters on the surface of the necroptotic
cell (27). The elevated levels and clustering of CD47 led to an
inefficient “nibbling” of necroptotic cells via a RhoA-pMLC
signaling event (27). RvD1 when given in vitro and in vivo was
able to enhance the clearance of necroptotic cells by promoting
whole cell engulfment (26, 27). RvD1-stimulated whole cell
engulfment of necroptotic cells by macrophages was non-
phlogistic and RvD1 acted by limiting RhoA-pMLC signaling and
promoting CDC42 (27). Additionally, RvD1-stimulated
macrophages swiftly recognized necroptotic cells for their
engulfment and how RvD1 overcame the “don’t eat me”
recognition was of interest. ER-mediated phagocytosis is a process
in which macrophages release calreticulin onto their target. In other
contexts, ER-mediated phagocytosis has been described and is
thought to be important for eating large cargo (116, 117). Our
work suggests that RvD1 promotes the release of calreticulin from
macrophages (117) and may be a mechanism through which RvD1
can swiftly recognize these cells for whole-cell clearance. This work
highlights the intricate set of signals/signaling that a macrophage
needs to decode for efficient engulfment and clearance of dead cells.

From ametabolic perspective RvD1 stimulates p-AMPK, fatty
acid oxidation (FAO) and oxidative phosphorylation (OXHPOS)
mechanisms in macrophages to allow for enhanced clearance of
Frontiers in Immunology | www.frontiersin.org 6230
necroptotic cells (26). We found OXPHOS is not as readily
activated in vehicle-treated macrophages that were ingesting
necroptotic cells (26), which suggests that the cargo load
within the macrophage may be important for initiating these
programs. As mentioned above, apoptotic cell uptake and its
eventual breakdown provides the fuel for FAO and OXPHOS in
macrophages (101) and so these data suggest that RvD1
maintains this protective metabolic phenotype.
PRO-RESOLVING LIGANDS RESCUE AGE-
RELATED DEFECTS IN EFFEROCYTOSIS

The population is rapidly aging, health care costs are already
insurmountable and therapeutics to manage several age-related
diseases are limited. Therefore aging and age-related diseases are the
scourgesofmodernmedicine.Aging is a complexprocess that involves
genetic, environmental and biological factors. Therefore
understanding a common mechanism that may link all of these
diseases will inform the development of therapeutics that can
promote health span. Persistent, non-resolving inflammation, or
inflammaging, largely contributes to a panoply of age-related
diseases including periodontal disease, neurodegenerative diseases,
macular degeneration, and atherosclerotic cardiovascular disease
(118). Defective efferocytosis in aging is well appreciated (119–123).
Linehanet al. observed thatperitonealmacrophages fromoldmicehad
diminished efferocytosis comparedwith peritonealmacrophages from
young mice (121). Interestingly, they transferred peritoneal
macrophages from young mice into the peritoneum of old mice,
and found that the young macrophages exhibited defective
A B

FIGURE 1 | Schematic diagram depicting failed efferocytosis mechanisms during aging. (A) Efferocytic receptors like MerTK or TIMD4 on young healthy
macrophages interact with phosphatidyl serine on apoptotic cells to promote efficient clearance. SPMs promote efferocytosis and MerTK signaling in a feed forward
manner which stimulates the synthesis of SPMs. In response to apoptotic cell ingestion, the pro-inflammatory p38 MAPK pathway is inhibited and macrophages
prevent the production of pro-inflammatory programs. (B) In the context of aging, MerTK is cleaved by released factors from senescent cells (i.e. factors from the
senescence-associated secretory phenotype or SASP) which limits apoptotic cell uptake and the feed-forward pro-resolution circuit. TIMD4 expression is also
significantly decreased on macrophages from aging humans which drives the activation of p38 to propagate inflammation.
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efferocytosis similar to thatofmacrophages fromoldmice (121),which
suggests that the aging milieu drives defective efferocytosis (120, 121).
Lungmacrophages fromoldmice also exhibiteddefective efferocytosis,
whichmayaccount for theaccumulationof leukocytes and failed tissue
repair in lungs from influenza-infected aged mice (124, 125).

Accumulation of senescent cells is also associated with
inflammaging (126). Senescent cells acquire a senescence-
associated secretory phenotype (SASP) which exacerbates
inflammation (126) and contributes to inefficient clearance of
dead cells (38). Briefly, we found that released factors from
senescent cells promote the cleavage of a critical efferocytosis
receptor on macrophages called MerTK to limit efferocytosis (38).
RvD1rescued senescent cell-induceddefective efferocytosis in vitro.
RvD1 treatment to old mice also increased in situ efferocytosis in
lungsposthind-limb ischemia-reperfusion injury (38).MerTKis an
interesting efferocytosis receptor because of its ability to stimulate a
pro-resolution feed-forward circuit. In this regard,MerTK cleavage
is associated with delayed temporal resolution, impaired SPM
synthesis over pro-inflammatory lipid mediators and has been
shown to promote atherosclerosis (107, 127). Also, with regard to
otherTAMreceptors andaging, Frisch et al. found thatGas6,which
is a ligand for MerTK (and other TAM receptors), was down
regulated in the bone marrow from aged mice (123) which may
account for defective efferocytosis in the aging bonemarrowmilieu.
Moreover, they demonstrated loss-of-function of another
efferocytic TAM receptor, Axl in bone marrow macrophages
from aged mice which further leads to a significant increase in
pro-inflammatory IL-1b signaling. Together, these results suggest
that efferocytosis receptors and thus a feed-forward pro-resolution
circuit may be dysfunctional in aging.

Along these lines, imbalances in the SPM to pro-inflammatory
lipid mediator ratios have been observed in mice and humans in the
context of inflammaging (122, 128). In elderly humans, urinary
lipoxins (LXs) were decreased resulting in a profound imbalance
between pro-resolving LXs and leukotrienes (LTs) (128). Other
relevant age-related diseases like atherosclerosis, peripheral vascular
disease, periodontal disease and Alzheimer’s disease are also
associated with imbalances in this critical ratio and restoration of
defective SPMs to these pre-clinical models of disease result in
protection (129–132). Nevertheless, how these imbalances arise in
aging is of interest but work suggests that one mechanism (of many)
may be through MerTK signaling (38). MerTK signaling in human
macrophages decreased activity of the mitogen-activated protein
kinase (MAPK) p38 and the kinase MK2, resulting in the increased
non-phosphorylated, cytoplasmic form of 5-LOX and enhanced SPM
biosynthesis (133). Therefore, downstream signaling events from
efferocytic responses may drive SPM synthesis of pro-inflammatory
mediators. Of note, RvD1 was shown to limit p38 activation
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which promotes a pro-resolution circuit in macrophages (95).
Therefore, continued activation of p38 may not only drive defective
efferocytosis but also impair resolution in aging (Figure 1).

Recent work demonstrated that the efferocytosis receptor,
TIM-4 was decreased on macrophages from elderly humans in
self-limited inflammatory loci (134). Reduced levels of TIM4 in
elderly humans was attributed to increased p38 activation (134)
and blockade of elevated p38 restored efferocytosis in the elderly.
This work provides strong rationale for therapeutic strategies
that target p38 to promote efferocytosis in aging (135). Together,
phagocyte function in aging is impaired, which may be one of
several factors that contributes to limited tissue repair in aging. A
deeper exploration of efferocytosis mechanisms in aging may
help inform the development of new tissue-reparative therapies.
CLOSING REMARKS: THERAPEUTIC
OPPORTUNITY

SPMsandother pro-resolving ligands offer tremendous opportunities
for therapeutic use. Currently, treating inflammation is difficult
because we evolved inflammatory reactions to fight infection and
repair wounds. Therefore anti-inflammatories possess a risk in which
critical host defense mechanisms are weakened. Anti-inflammatories
mayhalt theprogressionofongoing inflammation, butdovery little to
repair the already damaged tissue. Ultimately what is lacking is a
therapeutic strategy that can repair tissuedamageonce ithasoccurred.
SPMs are protective in numerous pre-clinical models of disease and
most recently have been shown to reduce PMN infiltration during
acute sterile inflammation in humans (136). SPMs stimulate
phagocytes to clear, and neutralize pathogens or accelerate the
removal of unwanted dead cells or debris, all while dampening
inflammatory mediators and stimulating necessary pro-repair
factors (58). Thus, SPMs offer an entirely new way to control
inflammation which includes enhancing the removal of harmful
stimuli and promoting tissue repair.
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